
A system for collecting labelled data and
evaluating AI algorithms for in-ear

detection in hearing protection

Dominika Agata Limanówka-Pieniak

Thesis submitted for the degree of
Master in Applied Computer and Information Technology (ACIT)

30 credits

Department of Computer Science
Faculty of Technology, Art and Design

OSLO METROPOLITAN UNIVERSITY

Spring 2024

A system for collecting labelled data and
evaluating AI algorithms for in-ear

detection in hearing protection

Dominika Agata Limanówka-Pieniak

© 2024 Dominika Agata Limanówka-Pieniak

A system for collecting labelled data and evaluating AI algorithms for in-ear
detection in hearing protection

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Abstract

This thesis investigates the integration of artificial intelligence (AI) algorithms to
precisely determine the status of an earplug within hearing protection devices,
discerning whether it is correctly inserted in the ear or not. Motivated by the global
prevalence of noice induced hearing loss and the need for effective protection, the
study holds the potential to contribute towards increased safety in noisy work
environments. Working with Minuendo, an innovative hearing-protection solutions
company, it is addressing the issue by adopting AI in practical context.

Even though AI is becoming increasingly popular, its introduction into
industrial settings presents multiple challenges. This thesis addresses these
challenges by designing and implementing a system on cloud infrastructure, using
modern practices that streamline the setup of the necessary architecture. This allows
for straightforward experimentation with machine learning algorithms, supporting
iterative development and ensuring reproducibility of results. The study merges
theoretical insights with real-world applications, facilitating the integration of
cutting-edge technology into industrial environments.

A significant aspect of this thesis is the exploration of various machine learning
algorithms for detecting the in-ear placement of earplugs. Through initial analysis,
strategic data gathering, and the pilot implementation of diverse machine learning
algorithms, this research provides initial insights into their effectiveness and
practicality.

i

ii

Acknowledgments

I am profoundly grateful to my academic supervisor at the university, Pål Halvorsen.
His support and insightful comments were crucial in shaping the final version of
this thesis. I extend my heartfelt thank you for all professors and mentors who have
significantly influenced my educational journey. Their guidance and encouragement
have been instrumental in shaping my academic path. Each interaction has left a
lasting impact, and I am genuinely grateful for the invaluable support and wisdom
they have provided along the way.

Special thanks are due to Olav Kvaløy from Minuendo for his invaluable
domain knowledge in auditory safety and hearing protection. His mentorship
provided me with the unique opportunity to apply theoretical concepts to a real-
world problem, enriching my research experience. I am also thankful to the entire
team at Minuendo, who welcomed me into the company and provided the necessary
data and tools for my research.

I would also like to express my deepest appreciation to my family and friends
for their love and unwavering support. They have always believed in me and
encouraged me to pursue my passions, providing a foundation of strength and
motivation.

Lastly, I must acknowledge my husband for his willingness to accompany me
on the adventure of studying for our master’s degrees in Oslo and for always being
there for me, cheering me on, and believing in me when I needed it most. Oskar, I am
forever grateful to have shared this experience with you by my side.

To everyone who has contributed to this journey, thank you!

iii

iv

Preface

The master’s studies period is undoubtedly an incredibly exciting one. Having
already gained foundational knowledge in a specific field, this stage allows for a
focused exploration of one’s areas of interest. It offers the opportunity to delve in-
depth into a chosen subject to achieve expertise while fostering a broader perspective
by recognizing connections with diverse realms of science and industry.

I particularly appreciate my pursuit of a master’s degree in Applied Computer
and Information Technology, especially because of its applied nature. Throughout
my academic journey, the vision of the direct application of knowledge in real-
life scenarios attracted me the most. For this reason, I was very committed to the
idea that my master’s thesis would employ the knowledge and experience I had
gained during the studies into a real-life, practical case. I seek to utilize academic
knowledge as a bridge between academia’s theoretical landscape and industry’s
practical domain.

This thesis has been created in collaboration with Minuendo, a company
dedicated to advancing hearing protection technologies. Their work in this field is
inspiring, and it is an honor to contribute even a small part to their efforts. I hope this
thesis can provide valuable insights that could contribute to their ongoing efforts to
improve safety in noisy work environments.

v

vi

Contents

Abstract i

Acknowledgments iii

Preface v

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Scope . 3

1.4 Limitations . 4

1.5 Research Methods . 5

1.6 Ethical Considerations . 7

1.7 Main Contributions . 7

1.8 Thesis Outline . 8

2 Background and Related Work 11

2.1 Smart Alert . 11

2.1.1 Product Specification . 12

2.1.2 In-ear Detection . 13

vii

2.1.3 Data Structure . 14

2.2 AI Fundamentals and Classification Techniques 15

2.2.1 Definitions and Core Concepts . 16

2.2.2 The Machine Learning Workflow 17

2.2.3 Examining Classification Algorithms 22

2.2.4 Tools and Technologies . 27

2.3 Practical Aspects of AI Adoption . 31

2.3.1 AI Implementation Challenges in Industry 31

2.3.2 Machine Learning Operations . 32

2.3.3 MLOps Tools and Technologies . 34

2.4 Summary . 37

3 Design and Implementation 39

3.1 Initial Analysis . 40

3.1.1 Data Assessment . 40

3.1.2 Clarifying Objectives . 41

3.1.3 Domain Experts Consultation . 42

3.2 Data Acquisition . 42

3.2.1 Overview . 42

3.2.2 Integration with Smart Alert Application 43

3.2.3 Earplug Data Synchronization . 44

3.2.4 Sending Labels to the System . 44

3.2.5 Obtaining the Data . 46

3.3 Pilot Implementation . 46

3.3.1 System Overview . 46

viii

3.3.2 Central Data Repository . 50

3.3.3 Developer Server . 54

3.3.4 DVC Remote Server . 58

3.3.5 Master Server . 58

3.3.6 In-ear Detection Pilot Methodology 60

3.4 Summary . 64

4 Results 65

4.1 System Evaluation . 65

4.1.1 Data Gathering and Labeling Process 65

4.1.2 Infrastructure Setup . 67

4.1.3 Operational Testing of the Central Data Repository 70

4.1.4 Version Control for Data and Project Management 72

4.2 Pilot Iterations Analysis . 75

4.2.1 First Iteration . 75

4.2.2 Second Iteration . 79

4.2.3 Third Iteration . 86

4.2.4 Fourth Iteration . 91

4.3 Summary . 94

5 Discussion 95

5.1 Assessment of Research Goals . 95

5.2 Data Acqusition . 96

5.3 System for Iterative Pilot Development 97

5.4 Utilization of ML Algorithms for In-ear Detection 98

ix

5.5 Summary . 99

6 Summary and Conclusions 101

6.1 Summary of Work . 101

6.2 Main Contributions . 102

6.3 Future Work . 103

A Source Code 113

x

List of Figures

2.1 Smart Alert Components . 12

2.2 Earplug Specification . 13

2.3 Machine Learning Flow . 18

2.4 Two-Dimensional Classification Matrix 20

2.5 Machine Learning Operations Overview 34

3.1 Stages of the Project Plan . 40

3.2 Slide Illustrating In-Ear Data Collection Steps 43

3.3 Interface for Uploading Earplugs Data to the Cloud 44

3.4 Interface for Data Labeling . 45

3.5 Detailed System Architecture Diagram . 48

3.6 Stages in the Pilot Development Methodology 61

4.1 Data Labeling Interface: Before and After User Feedback 66

4.2 Successful Infrastructure Setup: Console Feedback 68

4.3 Successful Infrastructure Setup: Central Data Repository Server 68

4.4 Successful Infrastructure Setup: Developer Server 69

4.5 Successful Infrastructure Setup: DVC Remote Storage Server 70

4.6 Screenshots of the Manual Testing Results for the POST Endpoint 72

4.7 Manual Checkout Between Versions . 73

xi

4.8 Scripted Checkout Between Versions . 74

4.9 Comparison of Manual and Scripted Pushing of the Changes 74

4.10 Pie Chart of IN-EAR and OUT-OF-EAR Labels Distribution (1st Iteration) 76

4.11 Data Distribution Across Serials with IN-EAR and OUT-OF-EAR
Counts (1st Iteration) . 76

4.12 Histograms of dB Values per Frequency Band (1st Iteration) 77

4.13 Pie Chart of IN-EAR and OUT-OF-EAR Labels Distribution (2nd
Iteration) . 81

4.14 Data Distribution Across Serials with IN-EAR and OUT-OF-EAR
Counts (2nd Iteration) . 81

4.15 Models Accuracy by Validation Files (2nd Iteration) 85

4.16 Models Accuracy by Validation Files for Left/Right Earplug (2nd
Iteration) . 85

4.17 Correlation Matrix for IN-EAR Data (3rd Iteration) 87

4.18 Correlation Matrix for OUT-OF-EAR Data (3rd Iteration) 87

4.19 Comparative Histograms of Differential dB Values by Earplug Status
for Five Frequency Bands (3rd Iteration) 88

4.20 Decision Tree Feature Importance (4th Iteration) 92

4.21 Random Forest Feature Importance (4th Iteration) 92

4.22 Logistic Regression Coefficients for Features (4th Iteration) 93

4.23 LinearSVC Coefficients for Features (4th Iteration) 93

xii

List of Tables

4.1 Performance Metrics of Various Models on Testing and New Test Sets . . 78

4.2 Performance Metrics of Machine Learning Models on Standardized
and Validation Sets (2nd Iteration) . 83

4.3 Comparison of Performance Metrics Using Cross-Validation (CV) and
Standard Training (ST) (2nd Iteration) . 84

4.4 Detailed Performance Metrics for Various Machine Learning Models
Across Different Data Conditions . 90

xiii

xiv

Chapter 1

Introduction

Increasingly, industrial safety relies not just on protective equipment but on the
smart integration of technology to ensure that such equipment is used effectively.
In this evolving landscape, several safety concerns demand attention, with hearing
protection being one of the prominent examples. Especially in environments with
high noise levels, addressing the issue of hearing protection becomes imperative, as
exposure to loud noises can be a significant risk to individuals’ long-term well-being.
This thesis, developed in collaboration with Minuendo - an innovative company in
hearing safety - explores the potential of artificial intelligence (AI) to enhance the
effectiveness of ear protection while navigating the challenges associated with this
process.

1.1 Motivation

According to statistics from the World Health Organization (WHO), the global
prevalence of hearing loss exceeds 1.5 billion individuals [54]. Hearing loss makes
communication and daily functioning much more difficult, leading to mental
health challenges. Numerous studies have found a connection between hearing
loss and increased depressive symptoms, especially among older adults [14, 31] and
adolescents [12]. Research also indicates that hearing loss is linked to a higher risk
of dementia [43, 76], highlighting the broader impact of this condition on cognitive
health.

A variety of factors, including genetic susceptibility, infections, exposure to loud
noises, medications, and lifestyle preferences, can contribute to hearing loss [54].

1

Noise-induced hearing loss stands out among this array of factors, as it could be
completely prevented through early attention and care. Noise-induced hearing
loss (NIHL) presents a unique challenge as its effects may not become evident until
later in life. The gradual buildup of damage due to inadequate hearing care may go
unnoticed until it is too late to reverse. Moreover, hearing damage is affected not
only by the volume of surrounding noise but also by the duration of the exposure.
Without appropriate measurement tools, it is difficult to determine whether safe
thresholds for noise exposure have been exceeded, especially when people spend
a significant amount of time in noisy environments, such as workplaces. The
magnitude of the problem is confirmed by the fact that occupational noise-induced
hearing loss is currently the most prevalent occupational disease in the world [13].
In response to this challenge, Minuendo has introduced the Smart Alert. This
cutting-edge solution combines advanced hearing protection with noise monitoring
technology, enabling users to receive real-time alerts when safe noise levels are
exceeded and track their exposure values in the cloud application for comprehensive
monitoring of their hearing health.

The Smart Alert solution is a product that already helps protect the hearing
of workers, but its potential could be further enhanced by integrating artificial
intelligence to improve earplug placement detection. Correctly detecting whether
earplugs are in the ears is important for proper data analysis and determining actual
noise exposure. In the current landscape, AI has gained extensive popularity for
its transformative capabilities across various sectors. AI has the exceptional ability
to improve efficiency, reduce costs and support the decision-making process. Both
businesses and individuals are increasingly integrating AI into their operations.
For Smart Alert, AI could be applied to analyze data from the earplugs to either
replace or provide insights for the existing algorithm, thereby ensuring a more
accurate assessment of the earplug status. This use of AI could enhance user safety
by providing more precise and reliable detection which is crucial for accurate safety
alerts and enhanced protection for users.

1.2 Problem Statement

The integration of AI into various sectors promises significant enhancements in
efficiency and capability. However, the adoption of AI technologies is not without
its challenges and risks. Key hurdles include substantial initial investments required
for infrastructure, training, and development, as well as the inherent risks associated

2

with uncertain returns on investment. These challenges can discourage organizations
from fully exploring the potential of AI technologies.

Furthermore, the complexity of deploying AI systems involves technical and
operational challenges that can complicate the direct application of AI in products.
The risks associated with data privacy, the need for tailored solutions, and the
management of continuous learning and adaptation of AI systems in dynamic
environments pose significant barriers. In the context of hearing protection, the
potential of AI for enhancing in-ear detection has been acknowledged. However,
realizing this potential hinges on obtaining accurately labeled data, selecting suitable
algorithms, and rigorously testing these algorithms to build trust.

This study addresses these issues by aiming to facilitate the adoption of AI
methods for in-ear detection. Therefore, this thesis focuses on two main objectives:

• Design and Implement a System: To develop and implement a robust system
that facilitates experimentation with AI technologies specifically for in-ear
detection.

• Evaluate AI Classification Algorithms: To evaluate the performance and
limitations of popular classification algorithms in accurately determining the
in-ear placement of Smart Alert hearing protection devices.

This dual approach not only tests the practical applications of AI for the Smart
Alert solution but also contributes to its ongoing development and refinement in an
applied scenario.

1.3 Scope

The project aims to navigate an introduction of an AI-based system hosted on a cloud
infrastructure to facilitate the exploration of AI capabilities for the real life case of
a small company. This section outlines the scope of this thesis, focusing on the key
components of the project. The scope of this research covers delving into several
aspects of AI integration.

Initial analysis Before delving into the specifics of AI integration and creating
cloud infrastructure, the research conducts an initial analysis to understand the
context in which the AI would be introduced. This involves learning about the

3

currently existing infrastructure and processes, digging deeper into the problem
that AI would solve and identifying potential obstacles. All of this is intended to
help develop the optimal solution and is expected to lead to more informed decision-
making.

Data collection Data collection is one of the most important factors for introducing
supervised learning methods. In order to do this, it is necessary to design a process
for gathering data, create an infrastructure for its uploading and labeling, and
implement preprocessing of this data and a manner for storing it.

Process design All steps should make use of current knowledge in the area of
effective software development as much as possible. Process design should be
embedded into existing workflows as much as possible and follow the principles of
agile development.

Infrastructure preparation The project also covers the technical side of preparing
the necessary infrastructure for managing the data, running the AI algorithms
provided in the open sourced, commercially usable libraries, and visualizing the
results.

Utilizing existing AI algorithms In this study, existing AI algorithms from open-
source libraries will be utilized for in-ear detection. These algorithms will be tuned
by adjusting parameters to optimize their effectiveness for this specific application.
The performance of each algorithm will be evaluated based on accuracy and other
metrics.

Evaluation of the project Among other things, the project’s evaluation will present
what has been accomplished, as well as the problems encountered, along with
suggestions for their solution.

1.4 Limitations

Despite the comprehensive nature of this study, there are several limitations that
should be acknowledged. It is also important to highlight the weaknesses of the

4

project, which were identified at the start of the work.

Algorithm Research and Development The project assumes using existing AI
algorithms implemented in the open-sourced libraries for model development,
without getting into creating new algorithms.

Regulatory Compliance Compliance with specific regulatory requirements or
industry standards is beyond the scope of the project. Ensuring compliance may
require additional legal and regulatory expertise, which is not covered in this project.

Limited Diversity and Volume of Data Due to privacy aspects and the necessity
of existence of labels, the data for the project will be collected by volunteers from
Minuendo and the project developer. For this reason, there is a risk that a relatively
small amount of data will be collected, which may not be very diverse.

1.5 Research Methods

The study serves as a comprehensive attempt to combine academic knowledge with
real-world cases and theoretical insights with practical implementations. Research
methods, based on principles of theory, abstraction and design, are expected to
navigate complexity in both academic and practical contexts. This approach to
computer science problems was drawn from the report "Computing as a Discipline",
which discusses the nature of computer science as a discipline and proposes such a
framework for handling this very broad and diverse field [19]. In this study, a holistic
approach encompassing all three paradigms—theory, abstraction, and design—will
be employed.

Theory The theory paradigm involves gathering information and understanding
the existing knowledge base related to the topic of AI-based systems introduction
in the industry. A comprehensive literature search is conducted at the outset to
establish the theoretical framework and identify potential challenges and available
solutions relevant to the study. This step lays the foundation for further exploration
and analysis. It is also expected to facilitate informed decision-making when it comes
to planning and implementing the other aspects of the project.

5

• The theory paradigm is directly applied to our work as it forms the founda-
tional knowledge upon which all algorithmic and architectural decisions are
based, ensuring that the development of AI systems for in-ear detection is
grounded in well-established computer science principles and relevant AI re-
search.

Abstraction Abstraction, akin to experimental science, forms hypotheses and
analyzes the outcomes. The experiments are conducted to gather data on model
training and validation metrics. This method simplifies complex phenomena,
enabling for the investigation and empirical testing of the ideas. In my project,
abstraction allows for the systematic testing of different AI algorithms, making it
possible to distill complex data interactions into understandable models that predict
in-ear detection efficacy.

• Abstraction is applied to this project as it allows for the formulation and testing
of hypotheses about AI performance in in-ear detection to empirically validate
and refine our AI models.

Design The design paradigm is the one that mainly guides the design and
implementation of this research methodology, facilitating a seamless integration of
theoretical ideas into practical applications. Within the scope of the project, a scalable
infrastructure is being set up to conduct experiments and a process is being designed
to collect data that will later be used by AI algorithms.

• The design paradigm is applied to my work as it guides the practical
application of theoretical and abstracted insights into a tangible AI system. This
involves creating an infrastructure that can support continuous experimentation
with AI algorithms.

Building upon the established frameworks of design, theory, and abstraction,
elements of both qualitative and quantitative research are to be incorporated to
provide a comprehensive view of the created system. The system will be evaluated
not only through the collection of quantitative data, such as algorithm accuracy
metrics, but also through the gathering of qualitative feedback from domain experts
within the company. This dual approach ensures that a holistic understanding of
both the system’s and algorithms performance and its practical efficacy in real-world
applications is achieved.

6

Additionally, the research will employ iterative experimentation, a methodology
favored in modern software development for its flexibility and rapid feedback
integration. This technique allows for continuous refinement and optimization of the
AI solution, ensuring that the development process remains dynamic and responsive
to emerging needs and findings throughout the duration of the thesis.

1.6 Ethical Considerations

Ethical issues related especially to the use of data are paramount in any AI project.
Given the sensitive nature of the data, discussions of ethical issues are key to
ensuring responsible and transparent practices throughout the duration of the
project.

The data collected during the project comes from earplug sensors. Among them
are data from the microphones in the form of frequency values, from which, however,
it is not possible to reproduce recordings of actual sound and conversations - the data
only stores information about noise levels. Therefore, the data was not classified as
confidential information and could easily be stored and processed on Cloud services
at the department of computer science.

Volunteers inside the company are in charge for data recording, keeping
a collaborative approach. Privacy issues are handled with care, protecting
confidentiality and adhering to ethical norms. Every participant has agreed to the
procedure of data collecting and has been properly informed about its purpose. They
have given their consent knowing exactly how their data will be used, so there is
accountability and openness at these issues.

There is also the matter of whether a potential bias exists. Because one of the
study’s drawbacks is the relatively small and non-diverse research sample, the issue
of bias should be acknowledged while evaluating the project’s outcomes.

1.7 Main Contributions

At the heart of this thesis lies a commitment to applying academic knowledge
in practical context. This thesis adopts a comprehensive approach to enable
the introduction of AI for in-ear detection for Smart Alert data. This creates an
opportunity to leverage the AI technology to improve the product that protects the

7

hearing of employees working in noisy environments and prevents NIHL, which is
the most common occupational disease.

The main contribution of this thesis is establishing a systematic framework
and processes essential for conducting experiments with AI, while utilizing an agile
methodology to streamline experimentation. The devised system not only enables
seamless implementation of AI but also incorporates a robust data gathering process,
recognizing the paramount importance of high-quality data in AI applications.

Moreover, the project evaluates the efficacy of common AI algorithms in
classifying data from Smart Alert sensors. By conducting thorough comparison
and analysis, it uncovers valuable insights into how these algorithms perform and
their suitability for improving hearing protection devices. The evaluation provides a
summary of the experiments conducted.

1.8 Thesis Outline

This thesis is divided into six chapters, each of which serves a particular purpose.
The following summary provides an overview of the remaining five chapters.

Chapter 2 - Background and Related Work The Background chapter covers three
major sections. To begin, it presents a detailed review of the Smart Alert product
and the associated problem, which could possibly be handled through the use of AI
technology. Second, it provides a comprehensive overview of common AI algorithms
that are suitable for addressing the classification problem. Finally, the chapter delves
into the necessary Cloud-related background, covering the foundational concepts and
technologies required for setting up the infrastructure to support the proposed AI
solutions effectively.

Chapter 3 - Design and Implementation This chapter defines the methodological
framework used to accomplish the stated objectives of the study. It includes a
detailed plan for conducting the research, along with a description of each step.

Chapter 4 - Results This chapter presents the evaluation of created system and its
components. It also includes the analysis of the pilot iterations.

8

Chapter 5 - Discussion The Discussion chapter serves as a platform to share
insights derived from the research and its relevance to the broader field. It delves
into the analysis of findings, focusing on the applicability of integrating AI for in-ear
detection problem.

Chapter 6 - Summary and Conclusions The final chapter draws conclusions from
the study, followed by a concise summary highlighting key points. Finally, the
chapter concludes by suggesting potential directions for future research.

9

10

Chapter 2

Background and Related Work

This chapter is structured into three main sections, each providing a comprehensive
background for this thesis. In the initial part, we will introduce the Smart Alert
product and its specifications, followed by a detailed exploration of the problem
and the associated data. The second section will present the key concepts of AI that
are relevant to this thesis, laying the groundwork for understanding their practical
applications. It will explore classification techniques in detail and discuss prominent
tools and technologies in the field. In the final section of the chapter, modern
operational strategies for developing and managing ML projects are discussed,
starting with an exploration of challenges in AI integration within the industry.
Emphasizing efficiency in workflow integration and the use of advanced tools, these
strategies aim to facilitate the effective development of ML models.

2.1 Smart Alert

Smart Alert [6] is a complete solution that consists of a cloud service, a wearable
neckband with earplugs, and a dock for charging the earplugs and syncing the data
to the cloud. All these components are shown in Figure 2.1.

This solution is intended to provide effective hearing protection. Earplugs
developed for workers should be put into their ears to give hearing protection in
noisy situations, and microphones in the earplugs and on the collar record and
continuously analyze noise levels in real time to notify workers when their total
exposure during the day exceeds a safe threshold. Importantly, the device records
only noise levels and does not capture or record actual sound. This data is sent to the

11

Figure 2.1: Smart Alert Components

cloud when inserted into the dock and can be viewed on dashboards available on a
web-based application accessible to employees and safety managers.

2.1.1 Product Specification

At the epicenter of this project lies the wearable neckband with earplugs. This device
was designed to be worn during daily work activities and it is equipped with three
microphones: one in each earplug and one on the neckband, labeled M1, M2 and M3
respectively in Figure 2.2. These microphones are intended to record environmental
noise levels and the noise reaching the ears in order to control daily noise exposure
and prevent future hearing damage.

In addition to the microphones, the band features an accelerometer, labeled A
in Figure 2.2. In addition there is haptic feedback, enhancing the user’s interaction
with the device. The band also includes a visual indicator, labeled V in Figure 2.2,
that offers visual cues for battery status or operational modes, a data port, labeled D
in Figure 2.2, for connectivity and firmware updates, and a rechargeable battery.

A key aspect of the band’s design is its lightweight and unobtrusive nature,
allowing for seamless integration into the user’s daily routine without causing
discomfort. Moreover, the use of patented acoustic filter technology in the earplugs
guarantees sound clarity without the muffled effect that is common with traditional
earplugs. This technology not only enhances situational awareness but also prevents
the risk of overprotection, ensuring that users can remain alert to their surroundings
while still protecting their hearing.

12

Figure 2.2: Earplug Specification

2.1.2 In-ear Detection

The incorporation of AI within this project is driven by the primary objective of
accurately identifying the status of an earplug - whether it is inserted into the ear
or not. This distinction is crucial because it dictates the internal processing of the
data, which is critical to effectively ensuring the user’s hearing safety. Wearing
earplugs attenuates noise to a certain extent, and this is accounted for when assessing
hearing safety and determining if noise levels surpass safe thresholds. Consequently,
inaccurately indicating that earplugs are inserted when they are not can potentially
introduce errors in data processing, potentially leading to inaccuracies in tracking the
user’s actual noise exposure.

The issue of in-ear detection has also appeared recently in the case of modern
earbuds. It is increasingly used to enhance user experience by accurately determining
whether the earbuds are in the user’s ears and based on that manage audio playback
more efficiently. This technology typically relies on either optical or physical sensors
to determine the state of earbuds [46]. In the case of Smart Alert, though, it will be
required to rely only on the microphones’ data.

Each Smart Alert microphone captures data across five distinct frequency

13

bands. At present, the status of the earplugs is assessed by comparing the readings
from the microphones on the earplugs with those from the collar microphone, using
predefined conditional expressions. However, implementing AI could provide a
more sophisticated and accurate analysis of the data.

2.1.3 Data Structure

This section contains a description of the data under study, that is, the data collected
from the earplugs. Data can be recorded on the device at varying intervals, with the
units selected for this study logging data to a file every second. Given this frequent
recording interval, the device can store approximately two hours of data before
requiring upload to the cloud via the existing sync interface. It is essential to note that
while the device logs noise data, it does not record actual sound.

Current processes allow the downloading of earplug data from the cloud in
the form of a CSV file. The dataset consists of 31 features that represent the different
information gathered by the device. The following paragraphs will describe the
features of this dataset. The column descriptions will be organized into groups,
linking related variables for a clear and concise presentation of the data.

Timestamp The Timestamp column stores the information about the exact date
and time of each recorded observation. It is expressed in Unix timestamp format,
which represents the number of seconds that have elapsed since midnight on the 1st
of January, 1970 (UTC).

Data from the microphones The dataset contains data from three microphones:
left, right, and collar. Each microphone provides 7 columns of data. In order to
distinguish which microphone the data comes from, there are prefixes added to the
feature name: „L” or „l” for the left microphone, „R” or „r” for the right microphone
and „C” or „c” for the microphone located on the collar.

• mic_leq_a: This column represents the LAeq equivalent sound level during
the logging period, measured in dBA. This value is derived from the current
algorithm used to determine the status of the earplugs. Our analysis covers
assessment of the earplug status so we need to use data that is independent
from the current algorithm. Therefore, this column will not be used in our
analysis.

14

• mic_peak_c: The column presenting peak dBC values from the microphone
represents the maximum decibel level measured within a certain time interval.

• Diag1, Diag2, Diag3, Diag4, Diag5: These columns represent the dB values
from the microphones int the five different frequency bands.

Data from the accelometer The device is equipped with an accelerometer, and
its data is also provided in a csv file. However, the available information is limited
because only the vector magnitude is stored, omitting data from all three axes of the
accelerometer. Nevertheless, this data offers insight into the overall movement of the
device. The dataset features two columns containing accelerometer data:

• accel_mean: It contains the average value of vector magnitude of the device’s
movement in a given time range.

• accel_peak: It contains the peak, maximum value of the device movement
during this time.

Other data The dataset also includes several other values that are not directly
relevant to the analysis conducted in this study. These values, primarily for internal
use, provide additional information about the device and its environment. They
include details such as the battery level of the device and system events that have
occurred. While these data points may have significance in other contexts, they are
not relevant to the specific analysis undertaken here.

2.2 AI Fundamentals and Classification Techniques

In today’s technological landscape, AI is a frequently encountered term, representing
efforts to equip machines with capabilities that mirror human cognition [55]. This
expansive field covers various applications, from understanding languages to
recognizing images, appealing to a broad audience with diverse levels of technical
understanding. AI has grown in popularity and use across a multitude of sectors due
to its versatility and effectiveness. Its methodologies encompass a range of techniques
tailored to address diverse problems, demonstrating its transformative potential in
solving complex challenges across industries.

15

2.2.1 Definitions and Core Concepts

To better understand the framework of AI, it is crucial to define several underlying
concepts that support its complex structure. This section aims to lay the groundwork
by outlining these key principles, allowing for a more in-depth examination of how
they are applied in real-world scenarios.

Classification

In this study, our focus shifts to a specific computational challenge: classification.
Classification is the task of identifying which category or class a new observation
belongs to using a training set of data containing observations whose category is
already known [24]. This involves organizing data into distinct categories based
on recognizable patterns or attributes, a fundamental component in many AI
applications where data categorization directly impacts functionality and outcomes.

Binary Classification

It is a specific type of classification where there are only two possible outcomes for
each input [29]. An example pertinent to this thesis is determining the insertion status
of earplugs, categorized simply as IN-EAR or OUT-OF-EAR. Binary classification
simplifies decision-making processes in various applications, making it a widely used
technique.

Machine Learning

Machine Learning (ML) is a subset of AI that focuses on developing algorithms
capable of learning from and making predictions or decisions based on data. ML
enables computers to perform specific tasks from data without using explicit
instructions, relying instead on patterns and inference [24]. It encompasses a range
of methods enabling machines to enhance their performance by learning from data
over time. In the context of this study, where we are examining the categorization of
data into distinct classes, ML is a more precise term that specifically addresses our
case of enhancing algorithmic intelligence and functionality through experience and
data. However, we will use the terms „AI” and „ML” interchangeably throughout
this thesis to encompass the broader scope of AI technologies while focusing on ML
applications.

16

Supervised Learning

This type of task, where models are trained on labeled data to categorize new
inputs, is referred to as supervised learning. Supervised learning is a more precise
term within ML, a subset of AI focused specifically on algorithms that improve
automatically through experience. In supervised learning, each piece of training data
includes an input and a corresponding output label, which the model uses to learn
how to predict the correct label for new, unseen data [29].

Overfitting and Underfitting

These terms describe common challenges in ML model training. Overfitting occurs
when a model learns too much detail from the training data, including noise, which
harms its performance on new data. On the contrary, underfitting occurs when a
model is overly simplistic, incapable of capturing the intrinsic patterns within the
training data, thus displaying subpar performance even on its training dataset.
Both have a negative impact on model accuracy, with overfitting due to excessive
complexity and underfitting due to insufficient model complexity [24].

2.2.2 The Machine Learning Workflow

To effectively implement ML techniques, it is essential to understand the structured
process that guides the development and deployment of models. The ML workflow
encompasses a series of strategic steps, each critical for ensuring the accuracy,
efficiency, and applicability of the solutions derived. This section outlines the key
stages of this workflow, as illustrated in Figure 2.3 (adapted from [11]). However,
despite the structured nature of the pipeline, the stages are often intertwined [11].

Data Acquisition

The Data Acquisition step involves gathering, loading, and integrating data to form
a cohesive dataset [11], a foundational component in any ML project. In this case, it
entails collecting labeled data from various users and earplug units, and integrating
them into one dataset.

17

Figure 2.3: Machine Learning Flow

Exploratory Data Analysis and Visualisation

The Exploratory Data Analysis and Visualization step is instrumental in gaining
insights into the data and facilitating model development. It is focusing on thorough
data exploration to unveil hidden structures, detect anomalies, and validate
hypotheses [77]. By computing feature importance and visualizing patterns, this
step helps in understanding the dataset thoroughly. Visualizations can include
histograms, scatter plots, and box plots to explore data distributions, relationships
between variables, and potential outliers.

Data Preparation

The Data Preparation stage is responsible for converting raw data into a format that is
suitable for analysis purposes. This could include tasks data transformation, cleaning
data, and standardizing formats to ensure accuracy. Effective data preparation
provides a reliable foundation for subsequent tasks [11].

Feature engineering

In the Feature Engineering stage the focus is on enhancing the quality and
effectiveness of the feature set to improve model performance [11]. This involves a
variety of techniques aimed at transforming and augmenting the original dataset to
extract meaningful information and reduce computational complexity.

• Creating New Features: This technique involves generating additional columns
based on existing ones to capture additional insights or enhance model

18

performance. For example, creating interaction terms, polynomial features, or
derived features based on domain knowledge can provide valuable information
for modeling [85].

• Encoding Categorical Variables: Categorical variables, which represent
qualitative data, often need to be converted into a numerical format for ML
models to process them effectively. Techniques such as one-hot encoding,
label encoding, and target encoding are commonly used to encode categorical
variables while preserving their meaningful information [29].

• Feature Scaling: Feature scaling techniques are applied to ensure that all
features have a similar scale, preventing certain features from dominating the
model training process. Common scaling methods include standardization and
normalization, which rescale features to a standard range [29].

• Dimensionality Reduction: High-dimensional datasets may suffer from the
curse of dimensionality, leading to increased computational complexity and
reduced model performance. Dimensionality reduction techniques such as
Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor
Embedding (t-SNE) [24, 29] are employed to reduce the number of features
while preserving as much information as possible, thereby improving model
efficiency and interpretability.

Modeling

The Modeling stage involves the construction and refinement of the models. During
this phase, various modeling techniques and algorithms are explored, selected, and
implemented to analyze the data effectively. Model building could encompass tasks
such as planning the model architecture, selecting appropriate algorithms, and fine-
tuning model parameters to optimize performance. Additionally, the modeling stage
often iterates multiple times, allowing for the refinement and improvement of models
through experimentation and evaluation.

Training

During the Training stage of the ML workflow, the focus moves to optimizing the
model’s performance using labeled data. The model learns from the provided data
through iterative training, modifying its parameters to enhance the precision of its
predictions.

19

Evaluation and Visualization

In the Evaluation and Visualization stage, the model performance is assessed using
various evaluation metrics and visualization techniques. Understanding and using
evaluation metrics enables informed decision-making in model selection, parameter
tuning and overall model optimization.

One of the fundamental tools in this stage is the confusion matrix. It is
often used for binary classification tasks. It presents a clear breakdown of model
predictions versus actual class labels, with elements like true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) [21]. This matrix offers
valuable insights into the performance of the model, especially in scenarios where
class imbalances exist. The example of a two-dimensional confusion matrix is
presented on Figure 2.4.

Figure 2.4: Two-Dimensional Classification Matrix

In addition to the confusion matrix, other commonly used evaluation metrics
for the classification problems include:

• Accuracy: The accuracy score reflects the fraction of correct predictions made
by a classification model. It measures how accurately the model’s predictions
match the true labels of the samples. If the predicted labels match the true labels
for a sample, it contributes to the accuracy score, otherwise, it does not [60]. It
can be calculated from the confusion matrix as follow:

Accuracy =
TP + TN

TP + FP + FN + TN
[21]

20

• Precision: Precision is calculated as the ratio of true positives to the sum of true
positives and false positives. It can be calculated from the confusion matrix as
follow:

Precision =
TP

TP + FP
[21]

• Recall: Recall, also known as sensitivity, is determined by dividing the number
of true positives by the total number of actual positive samples (encompassing
all samples that should have been accurately identified as positive). It can be
calculated from the confusion matrix as follow:

Recall =
TP

TP + FN
[21]

• Specificity: Specificity is determined by dividing the number of true negatives
by the total number of actual negative samples (all samples that should have
been identified as negative). It can be calculated from the confusion matrix as
follow:

Specificity =
TN

TN + FP
[21]

• F1 Score: It represents the harmonic mean of precision and recall, offering
a balance between the two metrics. It is calculated as the ratio of twice the
product of precision and recall to their sum. This metric ranges between 0 and
1, where a higher score indicates better model performance. It is especially
useful in situations where there is an imbalance between the classes or when
both false positives and false negatives need to be minimized simultaneously. It
can be calculated from the confusion matrix as follow:

F1 = 2 × Precision × Recall
Precision + Recall

[21]

There are situations where false negatives are more critical, the goal is then
to minimize false negatives and prioritize sensitivity (which is true positive rate),
whereas in scenarios where false positives are more tolerable, the focus lies on
maximizing specificity (which is true negative rate). The confusion matrix helps with
making informed decisions about the trade-offs between these metrics based on the
specific requirements of the problem domain [61].

Prediction

In the Prediction stage of the ML workflow, the model’s performance in making
predictions in unseen data is assessed. After undergoing rigorous evaluation, the
model is deployed to address the specific problem and evaluate its effectiveness.

21

2.2.3 Examining Classification Algorithms

In this section, we focus on straightforward and effective binary classification
algorithms that are easy to implement and require minimal tuning. We emphasize
methods that are well-documented and widely accessible, suitable for quick
deployment across a range of applications. This approach ensures practical solutions
can be quickly integrated and utilized effectively, without the complexity and
extensive configuration often associated with more advanced models.

Following subsections will explore various binary classification algorithms,
delving into how they function, their efficiency with different-sized datasets,
and their adaptability to multi-dimensional environments. We will examine the
preprocessing requirements essential for each algorithm to perform optimally. This
detailed analysis aims to highlight the distinct features and operational frameworks
of each method, providing a clear understanding of how they process and categorize
data, which is crucial for applying these algorithms in real-world scenarios.

Additionally, each algorithm will be evaluated for its suitability in addressing
a specific problem — detecting in-ear placement using dB values from multiple
frequency bands. Particular attention will be given to the interpretability of the
results provided by each model. This is vital for building trust and for the practical
application of these algorithms, as decisions that are based on ML models need to be
justifiable and comprehensible to end-users, particularly in domains where accuracy
and reliability are critical.

k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is very popular method used in ML,
particularly for classification tasks. It belongs to the category of instance-based
methods, meaning it does not construct an explicit model but rather stores instances
of the training set. When classifying a new observation, k-NN identifies the k number
of data points in the training dataset that is closest to it (hence the name nearest
neighbors) and assigns the majority class among them to the new observation. The
choice of the parameter k, representing the number of neighbors, is crucial and
depends on the dataset characteristics. [66]

• Handling Small/Big Datasets: It can work effectively with different dataset
sizes. While it doesn’t necessarily require a lot of data, its performance
generally improves with larger datasets due to the availability of more diverse

22

neighbors for classification [39]. However, with small datasets, k-NN can still
produce reliable results [28].

• Handling Multiple Dimensions: It operates effectively in low-dimensional
spaces because the distance between points (used to determine nearest
neighbors) is less likely to be distorted. As the number of dimensions
increases, the distance metric may become less meaningful due to the curse of
dimensionality, potentially leading to less accurate predictions [39].

• Preprocessing Needs: Preprocessing typically include feature scaling to ensure
equal importance, handling missing values through imputation or exclusion,
addressing outliers, and encoding categorical variables for numerical ones [41,
72], all aimed at optimizing distance calculations and enhancing the algorithm’s
performance.

• Interpretability: The decision-making process of k-NN is clear-cut: it examines
the labels of neighboring data points to ascertain the majority class, resulting in
easily understandable and transparent outcomes.

• Suitability for in-ear Detection: It can be suitable due to its simplicity and
interpretability, although considering dimensionality reduction techniques
could further optimize its performance given the modest dimensionality of our
dataset.

Support Vector Classifier

The Support Vector Classifier (SVC) is another supervised learning classification
method. Unlike k-NN algorithm, it is not instance-based. Instead, it seeks to find
the optimal hyperplane that separates different classes in the feature space in a way
to maximize the margin between them. It is useful for both binary and multi-class
classification tasks. [68]

• Handling Small/Big Datasets: SVC is well-suited for small datasets, offering
efficient training. However, it becomes less efficient as dataset sizes increase. [3]

• Handling Multiple Dimensions: SVC is highly effective in handling
multi-dimensional data due to their ability to operate effectively in high-
dimensional spaces, even when the number of dimensions exceeds the number
of samples [68].

23

• Preprocessing Needs: SVC requires careful preprocessing which includes
feature scaling [68] to ensure that the model isn’t biased towards variables with
larger scales to maintain the model’s accuracy and robustness.

• Interpretability: The interpretability of SVC is generally limited[53], but
using a linear kernel can yield coefficients [68] that clarify the importance of
each feature in decision-making. For non-linear kernels, however, complex
transformations obscure this direct understanding.

• Suitability for in-ear Detection: This algorithm is powerful and well-suited for
in-ear detection task, as it can effectively handle small datasets by focusing on
the most informative data points, optimizing performance even with limited
data.

Logistic Regression

Logistic Regression is a method commonly used for binary classification tasks,
leveraging a logistic (sigmoid) function to convert regression outputs into
probabilities constrained between 0 and 1 [84]. This transformation enables the
prediction of class membership probabilities, making it particularly valuable in
scenarios where outcomes are distinctly categorical. It is designed to provide
outputs that are directly interpretable as probabilities, offering a solid foundation for
decision-making based on the likelihood of different classifications.

• Handling Small/Big Datasets: It can be effectively applied to both small and
large datasets. It generally requires a sufficient number of samples to ensure
robust parameter estimates and to avoid overfitting, especially when dealing
with multiple predictors [84].

• Handling Multiple Dimensions: Logistic Regression can be utilized for high-
dimensional tasks, showing that it can handle datasets with a large number of
attributes effectively [18]. However, it is crucial to ensure that the dataset has
more observations than dimensions [42].

• Preprocessing Needs: It does not necessarily require preprocessing, but scaling
can be helpful to ensure faster convergence and more stable optimization
during model training [18].

• Interpretability: One of the major strengths of Logistic Regression is its
interpretability. The model’s coefficients offer insights into how predictor

24

variables influence the probability of class membership by indicating the
change in the log odds of the dependent variable for a one-unit change in an
independent variable [84].

• Suitability for in-ear Detection: It seems to be well suited for in-ear detection
(which is binary classification problem) due to its ability to model the
probability of class memberships. This makes it particularly useful in fields
where probabilities need to be clear and interpretable.

Decision Trees

Decision Trees (DTs) are a supervised ML method that splits data into branches to
form a tree structure based on the purity of nodes, using criteria like information gain
or the Gini index to choose attributes at each decision node [21]. Each node in the tree
represents a decision that helps distinguish between the classifications, leading to a
leaf node that provides the final outcome.

• Handling Small/Big Datasets: DTs generally perform well with both small and
large datasets. However, with large datasets, they can become overly complex
and are susceptible to overfitting, necessitating meticulous tuning. Conversely,
with very small datasets, there is a risk that the trees might not capture complex
patterns effectively [21].

• Handling Multiple Dimensions: DTs are prone to overfitting, particularly
when confronted with datasets characterized by a substantial number of
features compared to the number of samples. To mitigate this risk, it is
crucial to maintain a balanced ratio of samples to features, and implementing
dimensionality reduction techniques may prove beneficial [63].

• Preprocessing Needs: DTs require minimal data preparation. For instance,
scaling of features is unnecessary, and their performance is not affected by
outliers. Furthermore, certain decision tree algorithms can handle missing data
effectively [62].

• Interpretability: A significant advantage of DTs is their high interpretability.
They produce a clear and understandable model structure that can be easily
visualized, facilitating straightforward explanations of the predictions made by
the model [63].

• Suitability for in-ear Detection: This algorithm appear to be well-suited for
in-ear detection. They can generally handle both large and small datasets

25

efficiently, do not necessitate extensive data preparation, and offer a clear, easily
understood model structure, making them a practical choice for applications
where understanding and interpreting the model’s decisions is important.

Random Forest

The Random Forest (RF) algorithm is a powerful tool for solving classification
problems. It works by constructing a collection of decision trees, each trained on a
different subset of the data and using a random selection of features. By combining
the predictions from all these trees, it produces a more accurate and robust final
prediction. This approach helps to reduce overfitting and improves the model’s
ability to generalize to new, unseen yet data. [64]

• Handling Small/Big Datasets: RF handle both small and large datasets
efficiently. They utilize bootstrap sampling from the training set to reduce
variance and combat overfitting, making them robust even as datasets scale
up [65], making this algorithm a better choice for large datasets in comparison
to the DTs.

• Handling Multiple Dimensions: RF performs effectively in multidimensional
cases by using a proximity measure that assesses how closely related samples
are within the forest. This approach groups similar samples based on their
paths through the ensemble of trees, providing a robust method for managing
high-dimensional datasets [45].

• Preprocessing Needs: RF generally requires minimal preprocessing of data. It
also maintains accuracy despite missing data and is resilient to outliers [21].

• Interpretability: The RF is easy to use, though analyzing it can be challen-
ging [21]. Nevertheless, it offers valuable insights by evaluating the impact of
each feature on the predictions through feature importance metrics [64].

• Suitability for in-ear Detection: RF is suitable for in-ear detection as it is
straightforward to use, requires little preprocessing, and performs well even
with large datasets. Although it generally achieves excellent performance, it can
be somewhat difficult to interpret.

26

Multi-layer Perceptron

The Multi-layer Perceptron (MLP) is a versatile neural network algorithm used for
classification tasks. It consists of multiple layers of interconnected nodes, including
an input layer, hidden layers, and an output layer. During training, the MLP adjusts
the connection weights between nodes to minimize a specified loss function, allowing
it to learn complex patterns in the data. In classification tasks, the output layer
typically has nodes corresponding to each class, with a softmax activation function
to produce class probabilities. [67]

• Handling Small/Big Datasets: The MLP is capable of performing with various
sizes of training sets, effectively handling both small and large datasets [7].

• Handling Multiple Dimensions: MLPs can handle multi-dimensional input
data, which is necessary for applications where inputs are continuous and
multi-dimensional [7].

• Preprocessing Needs: MLP models can greatly benefit from standardization.
It ensures that each feature contributes equally to the model’s calculations by
scaling the data uniformly and prevents any single feature from dominating the
training process [52].

• Interpretability: he interpretability of MLPs is generally considered low,
especially when compared to methods like decision trees. MLPs, with their
complex network structures and weight adjustments, do not easily lend
themselves to intuitive understanding or visualization of how decisions are
made [7].

• Suitability for in-ear Detection: MLP models are commonly utilized for
binary classification tasks in experimental setups due to their versatility and
effectiveness so might potentially perform very well for in-ear detection
problem. However, their complex architectures and non-linear nature often
make them challenging to interpret easily.

2.2.4 Tools and Technologies

This section will focus on fundamental tools and technologies that are vital for ML
workflows. From core development environments to specialized frameworks and
visualization libraries, each component is considered integral for robust research

27

and innovation. A comprehensive review of available technologies will be provided,
offering insights into their functionalities and applications in ML.

Programming Language

Programming languages form the backbone of ML development, providing the
necessary tools and frameworks to implement algorithms and build predictive
models. In this subsection, we explore some of the key programming languages
commonly used in the field of ML, drawing insights from a comparative analysis [34]
of Python, Java, and R.

• Python [71]: Python can be characterized by user-friendly syntax, extensive
range of libraries tailored for tasks such as ML and data analysis, and
widespread adoption within the research community.

• Java [5]: With a focus on reliability, security, and platform independence, Java
finds its niche in enterprise-level solutions and Android app development. Its
robust object-oriented paradigm and extensive community support make it
suitable for building scalable ML applications.

• R [69]: Specifically designed for statistical computing and data analysis, R
offers a comprehensive suite of tools and packages tailored for ML tasks. Its
extensive collection of statistical algorithms and visualization features renders
it the preferred option for statisticians and researchers operating within the ML
domain.

In summary, Python, Java, and R are among the leading programming languages
utilized in ML development, each bringing unique strengths and catering to diverse
use cases. Python’s simplicity and extensive library support make it the preferred
choice for most ML practitioners, while Java and R continue to play significant roles
in specific domains and applications within the field [34].

Frameworks and Libraries

This section investigates the essential frameworks and libraries used to facilitate ML
development. With so many possibilities accessible, the focus is focused to Python,
the dominating programming language in the ML field.

28

• Data Manipulation: Data manipulation libraries play a crucial role in ML
development, enabling efficient preprocessing and manipulation of datasets.
These libraries provide essential tools for tasks as data cleaning, transformation,
and analysis.

– Pandas [49]: It is an open-source data manipulation and analysis tool in
Python, well-suited for handling large data sets with its DataFrame struc-
tures for tabular data. It excels in tasks like data cleaning, manipulation,
and reading various file formats.

– NumPy [23]: It is a core library for numerical computing in Python,
providing efficient operations on large, multi-dimensional arrays and
matrices. It offers extensive mathematical functions, speed, and memory
efficiency, which are essential for high-performance scientific computing.

• Machine Learning Libraries: ML libraries provide a wide range of algorithms
and tools for building, training, and evaluating ML models. These libraries
streamline the development process by offering implementations of various
algorithms, as well as utilities for data preprocessing or model evaluation.

– Scikit-learn [58]: It offers a wide array of algorithms, simplifies complex
tasks and grants access to diverse ML methods. This versatility makes it
an indispensable tool for exploring and deploying advanced techniques in
research projects.

– TensorFlow [1]: TensorFlow is a powerful open-source ML library
developed by Google Brain. It provides comprehensive support for deep
learning and neural network models, along with tools for deployment
across various platforms.

– PyTorch [57]: It is an open-source deep learning framework developed
by Facebook’s AI Research lab. PyTorch offers dynamic computational
graphs, making it flexible and suitable for research experimentation.

– Keras [15]: Keras is a user-friendly, high-level neural networks API written
in Python. Its design prioritizes simplicity and modularity, facilitating
rapid experimentation with deep learning models. Keras allows for
rapid prototyping of neural networks and can run seamlessly on top of
TensorFlow.

• Visualization Libraries: Data visualization enables gaining insights from
data and communicate findings effectively. Visualizing data allows for the
exploration of patterns, trends, and relationships, facilitating the understanding

29

of complex datasets. Some popular visualization libraries that provide tools for
creating insightful plots and charts are:

– Matplotlib [26]: A versatile library for creating static and interactive
visualizations in Python, offering a wide range of plotting functions.

– Seaborn [81]: Built on Matplotlib, Seaborn simplifies statistical data
visualization with high-level functions for creating attractive and
informative plots.

– Plotly [27]: An interactive visualization library supporting static and
dynamic plotting. It enables the creation of interactive charts, dashboards,
and web applications with support for various chart types and cross-
platform compatibility.

Integrated Development Environments

An Integrated Development Environment (IDE) is a software application that
provides programmers with tools for software development, including a source code
editor, build automation, and debugging capabilities, all within a single interface.
IDEs supporting ML development integrate built-in ML libraries, interactive
notebooks, and data visualization tools, streamlining the process of experimenting
with ML algorithms and analyzing results.

• Jupyter Notebook[37]: Jupyter Notebook stands is a vital tool for AI experi-
mentation, offering an interactive space for data analysis and collaboration. Its
compatibility with the Python language enables the effortless exploration and
application of various AI techniques. With its user-friendly interface and mul-
timedia features, experimentation, analysis, and dissemination of findings are
simplified.

• Visual Studio Code [51]: Visual Studio Code is a lightweight yet powerful
source code editor developed by Microsoft. It supports various programming
languages and provides features such as debugging, syntax highlighting, and
intelligent code completion, making it a popular choice for ML development.

• PyCharm[32]: PyCharm is a robust IDE specifically designed for Python de-
velopment. It offers a wide range of features tailored to Python programming,
including code analysis, debugging, and version control integration. PyCharm’s
intelligent code editor and extensive plugin ecosystem make it well-suited for
ML projects.

30

2.3 Practical Aspects of AI Adoption

In the realm of software, operations entail a diverse set of activities crucial for the
development, deployment, and maintenance of software systems. These tasks,
spanning infrastructure management, environment configuration, and performance
monitoring, are essential for the smooth operation of software applications.
With organizations relying heavily on software to support their operations, the
effectiveness of these operational practices is key to delivering value to customers
and stakeholders.

2.3.1 AI Implementation Challenges in Industry

Integrating AI solutions into industrial operations presents numerous organizational,
technological, and ethical challenges. Drawing on current literature, this section
identifies the key obstacles to implementing AI technologies in real-world industrial
settings.

Organizational Challenges

Organizational factors are one of the most common types of issues. These include
managerial, cultural, and strategic obstacles that could hinder the successful
implementation of AI. Challenges include a lack of understanding of AI’s business
potential [10, 25, 79], inadequate top-level support [4, 10, 44, 78], and uncertainty
about return on investment [10, 30, 35, 74].

Data Challenges

The second category is the Data Challenges. They were mentioned most frequently in
the literature. AI needs a huge amount of data, so ensuring the quality, quantity, and
accessibility of data is paramount for effective AI implementation. These challenges
encompass various aspects, including the lack of quality and volume of available
data [4, 10, 22, 30, 35, 36, 38, 74, 79], data governance issues [4, 10, 38, 74], security
risks [10, 22, 30, 36, 74], acquiring, processing, and linking data effectively [30, 36,
74], data latency and transport issues [30], model training and testing difficulties
due to data shortage and bias [36, 38, 74], and challenges in model interpretation and
deriving business value [4, 10, 30, 35].

31

Technology Challenges

Integrating AI into industrial applications presents several technological challenges.
Managing complex AI and ML models requires sophisticated version control systems
for data, code, and hyperparameters [33, 47, 48, 73], and the need for computationally
intensive hardware like GPUs [4, 47]. Continuous monitoring is crucial to detect and
swiftly address biases or adversarial attacks, ensuring the integrity and performance
of AI applications [22, 30, 33, 38, 48, 75]. Additionally, the rapid deployment of AI
models into existing workflows necessitates an adaptable infrastructure that supports
frequent updates without disrupting operations [10, 22, 33, 36, 40, 70, 74].

Ethical and Legal Challenges

Finally, in the last category, Ethical and Legal Issues, the analysis underscores the
critical importance of addressing ethical and legal considerations in AI adoption.
These encompass various concerns, including transparency and fairness in AI
adoption [4, 22, 35, 38, 79, 83], as well as the immaturity of the legal environment and
the potential for legal and regulatory violations [4, 38, 74, 79]. Furthermore, ensuring
privacy, security, consent, and bias considerations in data usage is paramount,
alongside concerns about the suitability of AI technology for the industry and
adherence to laws and regulations [4, 22, 35, 38].

2.3.2 Machine Learning Operations

Developing and deploying ML models efficiently and effectively can be a challenge.
Traditional software development practices often fall short when applied to ML
workflows due to the unique challenges posed by the iterative nature of model
development, the complexity of managing data and models, and the necessity for
rapid adaptation to new data. This has spurred the development of practices that
cater specifically to the needs of ML projects.

Popular Methodologies in Modern Software Development

Several methodologies have revolutionized modern software development, each
bringing unique principles that enhance various aspects of the software development
lifecycle. These methodologies include:

32

• Agile: Agile practices promote an iterative and incremental development
process, enabling teams to respond to changes quickly and deliver work in
small, manageable increments [8]. This flexibility helps maintain a focus on
delivering value to customers through continuous feedback and adjustment.

• Lean: Originating from manufacturing principles, the Lean methodology
emphasizes generating greater value for customers while utilizing fewer
resources. This includes minimizing unnecessary tasks and optimizing efficient
practices [59].

• DevOps: This methodology integrates software development (Dev) and IT
operations (Ops), emphasizing automation, continuous integration (CI), and
continuous delivery (CD) to speed up and enhance the reliability of software
deployment [20].

Together, these methodologies create a robust environment for developing, testing,
and releasing software that better aligns with business goals and customer needs.
They provide a solid foundation for developing and deploying ML models.

MLOps

A specialized framework, known as Machine Learning Operations (MLOps), has
been conceptualized to address the specific needs of ML production processes.
Emerging from the integration of traditional DevOps practices with the distinctive
demands of ML, MLOps is positioned at the crucial intersection of three key areas:
data engineering, ML, and DevOps, as illustrated in the Figure 2.5. Each of the areas
is responsible for different tasks within the realm of ML models development and
deployment:

• Data Engineering: Effective handling of data through meticulous collection,
analysis, and visualization.

• Machine Learning: Efficient management of model development, feature
engineering, and parameter tuning.

• DevOps: Adaptation of continuous integration, automated testing, and
performance monitoring specifically tailored for ML workflows.

Despite promising performances in the experimental stage, most models
fail to progress due to the complexities of deployment and maintenance, leading

33

Figure 2.5: Machine Learning Operations Overview

to stagnation at the prototype phase [2]. MLOps offers automated processes and
structured frameworks to overcome these obstacles, enabling organizations to
experiment with AI technologies more effectively and drive innovation.

2.3.3 MLOps Tools and Technologies

MLOps is characterized by the integration of ML with operational practices
to facilitate the deployment and maintenance of ML models in production
environments. This section is dedicated to the exploration of examples of tools and
technologies that underpin successful MLOps implementations. Covered are aspects
of data engineering, ML development, and DevOps practices.

Data Engineering Tools and Technologies

The goal of data engineering is to prepare and manage data to ensure its quality,
availability, and consistency for use in ML applications. This section examines
examples of essential tools and technologies found in the literature that facilitate data
collection and integration, storage and management, and versioning. These processes

34

are critical for ensuring that data is reliable and accessible, supporting robust MLOps
framework. By exploring how each category of tools contributes to effective data
engineering, we provide a foundation for understanding the technologies that
enhance and streamline the handling of data in ML deployments.

• Data Collection and Integration: Data collection can involve gathering
information from diverse sources which may include databases, sensors, or
web APIs, to create comprehensive datasets used in ML. Effective integration is
crucial, particularly when these sources provide varied formats and data types,
requiring sophisticated tools to consolidate and normalize data into a unified
format. This ensures that the datasets are consistent and usable for analysis.
Tools like Apache Kafka [40] and RabbitMQ [9] , which facilitates real-time data
streaming, and Apache NiFi [56], known for its ability to automate and manage
data flows across multiple systems, are commonly employed to support these
tasks.

• Data Storage and Management: Data Storage and Management in ML
integrates various technologies to handle large and diverse datasets efficiently.
Distributed file systems like Apache Hadoop manage vast volumes, while
databases such as SQL and NoSQL—including key-value, columnar, document,
and graph stores—offer flexible storage solutions tailored to specific data types
and queries [17]. Querying platforms like Hive, Impala, Spark SQL, and Drill
enhance data retrieval, supported by cloud platforms such as Amazon S3,
Microsoft Azure, and OpenStack, which provide scalable storage options [17].
Additionally, fog computing extends processing capabilities closer to data
sources, improving response times and efficiency for ML projects [17].

• Data Versioning: Data versioning is crucial for ensuring the reproducibility
and maintainability of ML models. Among the most popular tools, DVC (Data
Version Control) and Delta Lake stand out as open-source options that provide
robust solutions for managing and tracking changes in data and models [75].
Additionally, LakeFS offers similar capabilities with a focus on ease of merging
and branching, akin to traditional software version control systems [75]. On
the private side, Pachyderm offers an integrated platform that includes data
versioning, catering to enterprises needing comprehensive data management
systems [75].

35

Machine Learning Tools and Technologies

ML Tools form a critical component of MLOps, providing the necessary functionalit-
ies for building, training, and evaluating models. These tools range from libraries and
frameworks that facilitate the construction of ML algorithms to platforms that assist
in model training and hyperparameter tuning.

• Frameworks and Libraries: Frameworks and libraries in ML serve the crucial
goal of providing foundational tools and pre-built algorithms that facilitate
the development and training of ML models. These resources were previously
explored in detail in section 2.2.4, Tools and Technologies. Among the most
notable are Scikit-learn, TensorFlow, and PyTorch.

• Hyperparameter Tuning: Effective tuning of hyperparameters can significantly
enhance model performance. Tools that automate this process, such as
HyperOpt, SigOpt, and Optuna [75], allow practitioners to explore more
parameter combinations faster than manual tuning.

DevOps Tools and Technologies

DevOps tools and technologies streamline the continuous integration, delivery,
and deployment of ML models into production environments. These tools enhance
collaboration between development and operations teams and ensure that ML
models are deployed efficiently and reliably.

• Continuous Integration and Continuous Delivery (CI/CD): CI/CD automates
the integration of code changes from multiple developers and their deployment
to production environments. This reduces errors and accelerates deployment
cycles, allowing for quicker feedback and more iterative updates. Tools like
Jenkins, GitLab CI/CD, and GitHub Actions are instrumental in managing
these processes efficiently [40, 70].

• Containerization and Orchestration: Containerization encapsulates an
application and its dependencies into a container, ensuring consistent execution
across any infrastructure. Orchestration manages these containers across
different environments, ensuring they scale and operate efficiently. Docker is
a popular choice for containerization, while Kubernetes is extensively used for
orchestrating containers [40, 47, 70, 75, 82].

36

• Infrastructure as Code (IaC): IaC manages and provisions the infrastructure
through code rather than manual processes, enhancing both productivity and
consistency across environments. This approach allows for the automated setup
of servers, databases, networks, and other infrastructure elements needed for
ML deployments. Tools such as Terraform and AWS CloudFormation enable
teams to define their infrastructure in scripts which can be versioned and
reused [16, 47, 80].

• Configuration Management: Configuration management tools help maintain
consistency of the application’s operational environment, ensuring that soft-
ware performs as expected on all systems. This is crucial for ML applications
where consistency across data processing and model training environments is
essential. Ansible, Puppet, and Chef are popular choices that automate the soft-
ware configuration process across various environments [47, 50, 80].

• Monitoring and Logging: Effective monitoring and logging are critical
for maintaining the health and performance of ML models once they are
in production. These tools help identify and diagnose issues in real-time,
ensuring high availability and performance. Prometheus is commonly used
for monitoring, while the ELK Stack (Elasticsearch, Logstash, and Kibana) is
utilized for powerful logging and visualization capabilities [40].

2.4 Summary

This chapter has laid a comprehensive foundation for the thesis, encompassing
essential domain knowledge in the field of hearing protection, AI, and cloud
computing principles. It has explored the specifics of the Smart Alert system and the
in-ear detection problem, demonstrating the potential of ML to enhance detection
accuracy and ensure user safety. Additionally, this chapter addressed the challenges
of integrating AI into practical applications and highlighted the significance of
MLOps in managing the lifecycle of AI models efficiently. Moving forward, the next
chapter will delve into the design and implementation of the system, detailing its
architecture and the methodologies used for pilot development.

37

38

Chapter 3

Design and Implementation

This chapter serves as a framework outlining the systematic approach taken to
achieve the defined goals which include designing and implementing a system
to explore the potential of AI algorithms for hearing-protecting equipment. A
comprehensive strategy was established at the beginning to streamline the research
process and facilitate progress monitoring.

The methodology is based on a project plan divided into four distinct stages,
each strategically designed to achieve specific objectives critical to meeting the
research goals. A visual representation of the plan is presented in Figure 3.6. These
stages encompass a wide range of activities, including:

1. Initial Analysis: It is the initial stage of the research, which consists of
understanding the data, defining the problem, and aligning project objectives
with company needs through in-depth discussions with company experts.

2. Data Acquisition: The main goal of this stage is to design and implement the
process for generating, labeling, storing, and processing the required data.

3. Iterative Pilot Development: This stage involves setting up the infrastructure
to enable AI experiments and putting in place an iterative pilot development
process to enable gaining hands-on experience with AI and a better opportunity
to determine the potential challenges, costs and benefits from introducing AI
into the company’s production environment.

4. Evaluation: It is the final stage of the project which consists of evaluating the
created pilot version, along with identifying the potentially existing obstacles
and proposing ways to overcome them.

39

Figure 3.1: Stages of the Project Plan

The subsequent sections will elaborate on each stage of the project plan, identifying
the expected outcomes and the necessary activities, tools and technologies for each
phase of the research process.

3.1 Initial Analysis

The project begins with an initial analysis phase, where the primary focus is on
understanding the data, comprehensively grasping the problem, and engaging in
discussions with experts from the company. This stage serves as a project kickoff,
facilitating a mutual understanding of expectations and objectives. It involves in-
depth conversations with company specialists to ensure alignment of the project’s
direction with the company’s needs and to gain insights into the specific challenges
and requirements of the AI application in hearing protection.

3.1.1 Data Assessment

Data is the cornerstone of this AI project, with its quality directly influencing the
models’ effectiveness. While there is a substantial amount of data collected from
earplugs, the usability of this data for the project is limited because it includes
labels indicating whether an earplug is IN-EAR or OUT-OF-EAR, generated by an
existing algorithm. The project aims to develop a new algorithm and will not use
these existing labels, focusing instead on creating a system that can generate more
accurate and reliable labels. Furthermore, since this data originates from clients,
there are significant privacy and permission constraints preventing its use for this
project. Therefore, there is a need to establish a new system that can gather and
label data independently, ensuring the labels are accurate and the data is collected in
compliance with privacy standards. This approach will facilitate the development of
more advanced and reliable AI models by providing clean, well-labeled, and usable

40

datasets.

3.1.2 Clarifying Objectives

In the Initial Analysis phase of the project, setting clear and achievable objectives is
paramount for guiding the development and ensuring the project aligns with the
strategic goals. This section outlines the main goals of the project that were agreed
to with the company.

Primary Objective The primary objective of this thesis is to develop a comprehens-
ive system designed to facilitate the experimentation with AI algorithms and estab-
lish a robust process for the collection of accurately labeled data. This system aims
to:

• Enable AI Experimentation: Provide a structured environment where different
AI algorithms can be tested and analyzed to determine their suitability and
effectiveness for specific tasks within the project.

• Streamline Data Collection: Implement a methodical approach for gathering
high-quality, accurately labeled data, which is critical for training and validating
AI models. This involves designing user interfaces (UI) and backend processes
that integrate seamlessly with existing workflows, ensuring that data collection
is both efficient and scalable.

Secondary Focus In addition to setting up a dynamic framework for AI experiment-
ation and data collection, there is a significant secondary focus on the actual creation
and evaluation of models using available open-source algorithms. This aspect of the
project will involve:

• Utilizing Open-Source Libraries: Leverage existing implementations of ML
algorithms from open-source libraries, which offer a wide range of robust tools
for AI development.

• Model Development and Evaluation: Use of available algorithms, adjustment
of them and evaluation of their performance specifically for ear detection
tasks. This includes thorough testing of model accuracy, precision and recall
to identify the most effective algorithms.

41

• Parameter Optimization: Explore different parameter settings and feature
engineering techniques to optimize the models. This iterative process aims
to enhance model performance, adapting to the nuanced requirements of in-
ear detection, and potentially extending the models’ applicability to broader
scenarios.

3.1.3 Domain Experts Consultation

Throughout the development of the thesis, there will be ongoing consultations with
domain experts from the company. These consultations are designed to ensure that
the project remains aligned with the operational realities and technical requirements
of the earplug data systems. Experts will provide insights into the nuances of earplug
data, help refine problem definitions, and validate the practicality of the proposed
solutions. Their input will be crucial in guiding the development process, ensuring
the solutions developed are not only theoretically sound but also practically viable.

3.2 Data Acquisition

Data is essential for the implementation of AI. While the company already has some
data storage mechanisms in place, the unique nature of the problem, requiring
existence of reliable labels of the measurement, demands the collection of new data.
It is important to ensure that the data collected is relevant and of high quality as it
can directly impact the performance of the AI model. The data needs to be labeled
accurately to train the model effectively.

3.2.1 Overview

The specific challenge in collecting data for the project lies in the necessity for reliable
labels that clearly indicate the status of the earplugs. It was decided that the data
would be collected by company employees and that integrating this process into
existing workflows could help streamline data collection and ensure a steady supply
of data for the project.

To facilitate the data collection process, an additional menu tab has been imple-
mented in the Smart Alert application to enable the earplug data synchronization and
sending labels to the system. The features have been made available and visible only

42

to Minuendo employees. Several employees expressed their willingness to be volun-
teers and assist in collecting the labeled data. They were provided with a purpose-
built multimedia presentation explaining the data collection procedure. Figure 3.2
displays a slide from the presentation that outlines the procedure for recording data
with earplugs in place. It details the steps from fitting the earplugs correctly to sub-
mitting start and stop labels through the app during an activity session, concluding
with the removal of the earplugs after data collection.

Figure 3.2: Slide Illustrating In-Ear Data Collection Steps

3.2.2 Integration with Smart Alert Application

The Smart Alert application is an integral part of the product’s system, extensively
used by employees. The application is a web application built using Flutter, which
allows it to operate efficiently on browsers both on computers and mobile platforms.

There are two main functionalities relevant for data gathering process:

1. Data Syncing: The application already includes a data syncing feature that
is crucial for the data gathering process. This feature requires the use of a
computer as it involves uploading earplug data through a USB connection
directly into the system.

2. Labelling Interface: A new labeling feature is planned to be developed and
integrated into the application. This feature will allow employees to label the

43

state of earplugs as IN-EAR or OUT-OF-EAR at precise moments. The interface
will be designed to be user-friendly and intuitive, merging smoothly with the
existing application to ensure ease of use without adding complexity.

3.2.3 Earplug Data Synchronization

This functionality was based on the existing interface for synchronizing plug data
available in the production version of the Smart Alert application. This screen
provides instructions to guide the user through the whole process. To synchronize
data, users need to connect the earplugs to a computer and select the appropriate
device in the serial port window to validate the connection. Then click the „START”
button to start transferring data. When the process, illustrated by a progress bar,
is complete, a message is displayed saying whether the data synchronization was
successful - then the device can be unplugged. A screenshot showing the data
synchronization interface is shown in Figure 3.3.

Figure 3.3: Interface for Uploading Earplugs Data to the Cloud

3.2.4 Sending Labels to the System

A new user-friendly interface has been developed to streamline the data labeling
process, featuring a simple label upload form accessible from both computers and
mobile devices. A screenshot showing the sending labels interface is shown in Figure

44

3.4. The interface has been designed for ease of use, ensuring seamless labeling even
while performing manual tasks. Key elements of the form include:

• A text field for inputting the device’s serial number, pre-filled with the user’s
assigned device number to eliminate need of manual entry.

• A label button indicating whether the earplugs are in or out of the ear.

• START/STOP buttons for marking the beginning and end of each measurement.

• An optional text field for users to add comments about the measurement.

• An optional button for adjusting the measurement time, with default settings of
current time.

Figure 3.4: Interface for Data Labeling

45

3.2.5 Obtaining the Data

The data collected from the Smart Alert application is directly transmitted to the
Minuendo server, where it could be exported as CSV files for each measurement. The
CSV files include standard columns for this data, as described in section 2.1.3 Data
Structure, along with four additional columns:

• labelId - This column contains information regarding the ID of the label
assigned to each measurement.

• serial - This column provides details about the serial number of the device from
which the measurement originates.

• userId - This column includes the ID number of the user who submitted the
measurement.

• inear - The „inear” column serves as a crucial in this case label, specifying
whether the earplugs were inserted (1) or removed (0) from the ears during the
measurement.

3.3 Pilot Implementation

The iterative Pilot Development stage marks an important phase in the project. It
focuses on establishing the necessary infrastructure to facilitate AI experiments
and piloting a development process aimed at gaining practical experience with
AI technologies for in-ear detection cases. By following this structured approach,
the Pilot Implementation stage lays the groundwork for iterative experimentation
and refinement, ultimately paving the way for the successful integration of AI
technologies.

3.3.1 System Overview

This section provides a comprehensive overview of this project stage, highlighting its
key components. It covers the system objectives, provides a description of the general
design and infrastructure, and introduces the cloud environment utilized.

46

System Objectives

The system’s key objective is to prioritize simplicity, ensuring that chosen solutions
are straightforward and easy to use and facilitates quick experimentation with
ML algorithms. While the focus is on experimentation with ML, developing a full
deployment system is not required. However, integrating certain MLOps practices,
such as automation, is essential to enhance the system’s efficiency.

Additionally, the system will include a data management platform to streamline
working with acquired CSV data, enhancing the overall workflow. Experiments
with ML algorithms will follow an iterative development approach, underscoring
the necessity for version control for both code and data to ensure reproducibility
across experiments. This systematic approach aims to provide a robust foundation
for conducting ML experiments efficiently and effectively within the context of in-ear
detection research.

System Design

The project’s infrastructure comprises a well-organized network of servers, each
serving a distinct purpose to support the various aspects of the AI development
process and data management. Figure 3.5 shows a system architecture diagram,
which includes the key components and interactions that exist between them. The
diagram is organized into several key areas:

• Master Server: The Master Server acts as the command center for the entire
infrastructure setup. It hosts the Terraform and Puppet configuration files,
making it the primary point for orchestrating and initializing the infrastructure.
This server is essential for deploying and managing all other servers in the
system, ensuring that configurations are consistently applied and maintained.

• Central Data Management Repository: The repository contains all the files
needed to deploy the Central Data Repository Management Tool, including the
SQL database init schemas, API code in Python, Dockerfile for building the API
image, and a docker-compose file for orchestrating the deployment.

• Central Data Repository Server: The Central Data Repository Server is
dedicated to storing all CSV data files. It operates a custom-made Docker-
based Data Repository Management Tool system with an API and a database.
The API provides an endpoint for uploading data files, which analyzes each

47

sent file, stores its metadata in the database, and saves the file in a dedicated
Docker volume. Both the database and CSV file volumes are mounted directly
on the server to ensure data persistence and resilience. The docker compose
is deployed on the server using the GitLab CI/CD pipeline to automate the
process.

• In-ear Detection Repository: The In-ear Detection Repository houses Jupyter
notebook for ML experiments and leverages DVC for tracking training and
validation datasets.

• Developer Server: The Developer Server hosts the Jupyter environment,
maintains a clone of the in-ear detection repository, and synchronizes files from
the Central Data Repository Server. It is also integrated with a DVC remote
storage server, facilitating access to all necessary data for ML experiments.

• DVC Remote Server: It serves as a remote storage for datasets versioned
by DVC, providing a centralized location for storing and retrieving various
versions of the datasets.

Figure 3.5: Detailed System Architecture Diagram

48

Cloud Environment

All work for the ML project is conducted on the university’s servers, which are
part of a secure cloud infrastructure based on OpenStack and exclusively accessible
within the university’s network. Access to the server is regulated through SSH key
authentication, ensuring only authorized individuals, such as myself, can access and
manage the data. For consistency and reliability across all instances created for the
project, Ubuntu 20.04 was chosen as the source image.

Backup

The OsloMet’s cloud solution utilizes Ceph storage technology, which provides
built-in redundancy and fault tolerance. This ensures data resilience and reliability,
with automated backups safeguarding against data loss or corruption. However,
the architecture employed by the university involves storing all data in a singular
location which could lead to a potential risk of losing the data in case of any on-site
incident.

To address these concerns and ensure that the data and configurations remain
safe and recoverable, a system has been devised to regularly back up important
data to an external location. This system integrates a scheduled synchronization
process, utilizing rsync, a powerful file-copying tool, which is particularly efficient
in transferring and synchronizing files across multiple systems over SSH. The choice
of rsync for this task stems from its ability to efficiently handle large datasets by
transferring only the changes made to the data, thereby reducing bandwidth usage
and improving backup times.

The backup mechanism involves secure SSH communications, enabled through
key-based authentication, eliminating the need for passwords and securing data
transfers. Backups are automated through a cron job scheduled to run daily at 2 AM,
optimizing performance by operating during off-peak hours.

Run the backup script daily at 2 AM and save the logs into log file

0 2 * * * /home/user/backup_script.sh >> /home/user/backup_log.log 2>&1

Listing 3.1: Setting up CRON job

#!/bin/bash

Backup CSV Data

rsync -avzhe ssh central_data_repo:/srv/data/backup_directory

Backup PostgreSQL Database

49

rsync -avzhe ssh central_data_repo:/srv/postgres/backup_directory

Backup Developer Repository

rsync -avzhe ssh dev_server:/home/dev/inearaidetection/backup_directory

Backup DVC Remote Server

rsync -avzhe ssh dvc_server:/srv/dvc/data/backup_directory

Listing 3.2: Backup script

3.3.2 Central Data Repository

This section introduces the purpose and fundamental operation of the Central Data
Repository server. It outlines the server’s role as the primary storage location for all
CSV files used within the project. This server stores raw data files and optimizes their
accessibility through an effective data management strategy.

The data is maintained in CSV format and is uploaded to the Centralized
Data Repository Server through a dedicated API endpoint. This method facilitates
ease of data management while ensuring data integrity. Each file’s upload triggers
the storage of relevant metadata in a PostgreSQL database, which includes details
such as file name, earplug serial number, the date range covered by the file, upload
timestamp, and file size. The complete source code for all components described
below is provided in the appendix.

API

The server is equipped with a Flask-based API, created to facilitate efficient
data handling and management. To enhance deployment consistency and
streamline environment management, this API is fully dockerized, encapsulating
its dependencies and runtime environment within Docker containers. This setup
ensures that the API can be deployed uniformly across different development
and production environments without compatibility issues. The API implements
following endpoints:

• File Upload Endpoint (POST): This endpoint handles the uploading of CSV
files. Upon receiving a file, the endpoint first validates the file format and then
utilizes the Pandas library, a powerful tool for data analysis in Python, to parse
and extract necessary information from the file. This extracted data includes key
metrics and identifiers which are essential for data categorization and retrieval.

50

Following the analysis, the relevant data is stored in the database, with
connection parameters securely sourced from environment variables provided
by Docker. This ensures that each interaction is secure and contextually
configured to its deployment environment.

• Data Retrieval Endpoint (GET): This endpoint allows querying files based on
specific criteria such as measurement or upload date, earplug’s serial number,
label and more.

• System Health Check Endpoint (GET): This endpoint could be used for
maintaining API reliability by continuously monitoring the health of the API,
providing essential diagnostics and ensuring that the system remains fully
operational without disruptions.

Database

The metadata extracted by the API is stored in a PostgreSQL database. This setup is
implemented within a Docker container to leverage the benefits of containerization,
such as portability and consistency across different environments. The database
contains a single table, csv_metadata, which is structured to store comprehensive
metadata for each CSV file uploaded. The schema for this table is defined on
Listing 3.3. It contains a range of data about each file:

• file_name: The name of the file, ensuring no duplicates.

• label: A boolean that indicates whether the measurement was classified as IN-
EAR or OUT-OF-EAR.

• label_id, earplug_id, user_id: Identifiers linking the file to specific labels,
earplug devices, and users, facilitating detailed tracking and analysis.

• timestamp_start and timestamp_end: Timestamps defining the data coverage
period within each file.

• file_path: The storage path of the file on the server, ensuring each file’s location
is uniquely identified.

• file_length: The amount of rows in the CSV file.

• upload_date: The timestamp marking when the file was uploaded to the
system.

51

CREATE TABLE IF NOT EXISTS csv_metadata (

id SERIAL PRIMARY KEY,

file_name VARCHAR(50) NOT NULL UNIQUE,

label BOOLEAN NOT NULL,

label_id INT NOT NULL UNIQUE,

earplug_id VARCHAR(8) NOT NULL,

user_id INT,

timestamp_start TIMESTAMP NOT NULL,

timestamp_end TIMESTAMP NOT NULL,

file_path TEXT NOT NULL UNIQUE,

file_length INT NOT NULL,

upload_date TIMESTAMP NOT NULL

);

Listing 3.3: Database table definition

Containerization and Volume Management

As previously mentioned, our system employs Docker to streamline the deployment
and management of our services. This containerization technology enables us
to encapsulate the API within a Docker container, making it straightforward to
expose the API on a specified port. Docker Compose orchestrates this setup through
configurations specified in the docker-compose.yaml file, which outlines the
necessary services, networks, and, importantly, volumes for data persistence. It is
presented on the Listing 3.4.

version: ’3.8’

services:

api:

build: .

volumes:

- .:/app

- /srv/data:/api/uploads

ports:

- "${API_PORT}:5000"

depends_on:

- db

environment:

52

- DATABASE_URL=postgres://${POSTGRES_USER}:${POSTGRES_PASSWORD}@db/$

{POSTGRES_DB}

db:

image: postgres:latest

environment:

POSTGRES_DB: ${POSTGRES_DB}

POSTGRES_USER: ${POSTGRES_USER}

POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}

volumes:

- ./db/init:/docker-entrypoint-initdb.d

- /srv/postgres:/var/lib/postgresql/data

ports:

- "${DB_PORT}:5432"

Listing 3.4: Configuration of docker compose

This setup utilizes Docker volumes for storing uploaded CSV files and PostgreSQL
database files, ensuring continuity and integrity of data across the lifecycle of
containers. Mounting these volumes directly on the host system enables seamless
backups and secure data access during updates and routine maintenance. This
strategic use of Docker not only simplifies the deployment process but also enhances
the application’s overall security and scalability.

Application Deployment

Application deployment for the Central Data Repository server involved a process
facilitated by GitLab CI/CD. The repository containing the API code, database
initialization scripts, Docker Compose configuration, and Dockerfile was stored on
GitLab. The deployment process was orchestrated using GitLab CI/CD pipelines
configured to automate the deployment workflow.

In the deployment workflow, a simple pipeline was created with a single step to
manage the deployment process, as shown in Listing 3.5. This snippet initiates the
deployment by bringing down existing containers and rebuilding the application
using Docker Compose. While this pipeline step serves as a foundational element,
it can be extended with additional steps such as integration testing, security checks,
artifact publishing, and rollback mechanisms to enhance reliability and efficiency.

deploy_step:

stage: deploy

53

script:

- echo "Starting deployment..."

- docker-compose down

- docker-compose up --build -d

Listing 3.5: Deployment Step in GitLab CI/CD Pipeline for Central Data Repository

Technology Selection Justification

Selecting the appropriate technologies was paramount, with a focus on balancing
performance, flexibility, and ease of implementation. Below, the rationale behind the
choices are presented and some proposed alternatives are outlined.

• API: For the API development, the Flask framework was selected. It was chosen
for its simplicity and flexibility in building lightweight web applications.
Alternatives could include the Django REST framework for more complex
projects requiring additional features and built-in functionalities.

• Database: For the database, PostgreSQL was selected. It offers robust features,
reliability, and adherence to SQL standards, making it suitable for handling
relational data. However, since the database consists only of one table,
alternatives such as SQLite could be considered for simpler implementations
due to its lightweight nature and ease of use or any NoSQL databases.

• Containerization: Docker was chosen for containerization. It provides a
standardized way to package and deploy applications, ensuring consistency
across different environments. Although alternatives like Kubernetes offer
advanced orchestration capabilities, it was decided that they might be too
complicated for this case, and Docker alone would suffice for our needs.

3.3.3 Developer Server

The Developer Server is a crucial element of the system infrastructure, specifically
designed to facilitate the development and testing of AI models for in-ear detection.
The server provides an environment equipped with the necessary tools and
resources, such as Jupyter Notebooks and necessary libraries. It hosts a version-
controlled repository cloned from GitLab, which contains all necessary scripts and
notebooks for developing and refining AI algorithms.

54

The Developer Server is configured to sync seamlessly with the Central Data
Repository Server, ensuring access to the most up-to-date datasets for training and
testing. This configuration allows developers to selectively include specific datasets
in their work by placing them in the data directories within the repository. These
directories, while not tracked by Git, are managed with Data Version Control (DVC)
to facilitate the efficient handling of large datasets and to maintain a clear historical
record of data used in various experiments. This setup optimizes the development
process, allowing for robust testing and iterative improvements of AI models while
ensuring data consistency and reproducibility in experiments.

In-ear Detection Repository

The project repository is structured to support efficient development and version
control of used data, adhering to the goal of transparency and reproducibility. The
repository is organized as follows:

• /dataset: This directory contains the training data files, which are essential for
developing the ML models. Managed by DVC, changes in these data files are
meticulously tracked without bloating the Git repository with large files.

• /validation: Holds the validation data files used for testing and evaluating the
models. Like the training data, modifications to validation data are tracked
using DVC to ensure precise version control.

• pilot_development.ipynb: A Jupyter notebook that encapsulates the entire
process of data exploration, model training, and evaluation. This notebook
serves as the central document for explaining the methodology and results.

• dataset.dvc and validation.dvc: DVC tracker files for the training and
validation datasets. These files store metadata about the datasets’ versions,
facilitating robust data versioning.

• .dvc/: A directory automatically generated by DVC, containing metadata and
configuration details crucial for dataset tracking and project reproducibility.

• .DVC/config: Contains DVC configuration settings that link the project with
remote storage and define data management workflows.

• .gitignore: Specifies intentionally untracked files that Git should ignore,
including DVC-managed data files and other non-source code elements.

55

This organization ensures that each component of the ML workflow is clearly
defined and easily accessible, promoting an efficient and transparent development
process. The complete source code for all components of this repository is available in
the appendix.

In-ear Detection Development

Development is conducted within Jupyter notebooks, chosen for their versatility
in allowing extensive room for experimentation and iterative refinement. These
interactive environments are ideal for exploring various hypotheses, visualizing data,
and incrementally building models.

The main notebook guides the development of AI models for in-ear detection
and begins by importing essential Python libraries and modules, setting up
configurations like file paths. Functionalities are encapsulated into reusable functions
to keep the code organized and maintainable.

The remainder of the notebook aligns with the steps defined in the In-ear
Detection Pilot Methodology, described later in Section 3.3.6. It consists of data
aggregation, where multiple CSV files are merged into a single dataframe for
comprehensive analysis. This stage sets the foundation for the subsequent data
handling processes, which include splitting the data, applying optional scaling, and
conducting feature engineering.

Model training follows these preparatory steps, involving selecting and tuning
algorithms, evaluating their performance on a validation set, and visualizing the
results to assess predictive accuracy. This structured approach ensures that each
model development phase is methodically executed to maintain consistency and
reliability.

Data Management

Due to the iterative nature of developing AI models for ear-in detection, keeping
track of changes in the dataset is not just useful but essential. Although it is
recognized that storing large datasets directly in the repository alongside the code
is not a best practice, it remains important to track dataset versions and match them
with specific model iterations for reproducibility and systematic improvement.

To efficiently manage this challenge, it was decided to utilize DVC. DVC allows

56

versioning datasets without bloating the code repository and linking specific datasets
to model iterations. This ensures clarity on which model was trained with which
version of the dataset, a critical factor for reproducibility. This approach streamlines
the development, testing, and, in the future, deploying of AI models, fully adapting
to the demands of iterative model development.

Despite the advantages of using DVC, managing it alongside regular Git
operations can be cumbersome, requiring commands such as dvc push/pull every time
changes need to be synced with the remote data storage. To streamline this process
and reduce the overhead of managing both Git and DVC commands separately,
scripts named full_checkout and full_push were created. These scripts consolidate
Git and DVC operations into single commands, thereby simplifying the version
control workflow and ensuring that dataset and code versions remain synchronized
effortlessly.

These scripts were added to the .bashrc file on the development server to
enhance usability, allowing them to be used as commands directly from the terminal.
This integration facilitates seamless execution of version control tasks within the
development environment. The code for these scripts is provided in the appendix
for detailed reference.

Technology Selection Justification

This section briefly overviews the justifications for choosing specific technologies
used on the Developer Server, emphasizing how they contribute to the project’s
objectives and enhance the development environment.

• IDE: Jupyter Notebooks were utilized as the IDE due to their interactivity,
ease of use, and widespread adoption within the data science community.
Their unique capability to combine code, output, visualization, and narrative
into a single document streamlines the process of exploratory analysis and
iterative model development. Popular alternatives to Jupyter for interactive
development include RStudio for development with R programming language,
and Visual Studio Code, which supports numerous programming languages
and extensions tailored for data science workflows.

• Data Versioning DVC was chosen for its efficiency in managing large datasets
and maintaining reproducibility without enlarging the Git repository. It mimics
Git commands, simplifying the learning curve for users already familiar

57

with version control systems, and allows for external storage of large files
while keeping track of their versions. A popular alternative for handling data
versioning is MLFlow, which offers a broader range of features but is generally
more complex compared to DVC.

3.3.4 DVC Remote Server

The DVC Remote Server functions as a dedicated storage and management system
for datasets used in projects versioned by DVC. It primarily stores the actual data
files, where each file is identified by a unique hash that acts like a fingerprint of the
file’s content. This hashing mechanism ensures that every version of a file is stored
distinctly, allowing for precise retrieval based on its version. Additionally, the server
maintains metadata associated with these files, which includes versioning details
that correlate directly with the revisions of the project in the DVC system, much like
commits in a Git repository. This setup is crucial for tracking the evolution of data
alongside code changes, ensuring consistency and reproducibility in data-driven
projects.

Alternative Storage Options

While the project employs an on-site hosting solution with SSH for security and
control, other viable alternatives include cloud solutions like AWS S3, Azure Blob
Storage, and Google Cloud Storage. These platforms offer scalable and secure data
storage options. Google Drive is another alternative, offering quick setup and easy
access.

3.3.5 Master Server

The Master Server in this project architecture plays a pivotal role in orchestrating the
setup and management of the entire network of servers used for the AI development.
This server acts as the central command point from which all other servers are
provisioned and managed. The following sections outline the key functionalities of
this server.

58

Infrastructure and Configuration Management

Centralized around the Master Server, the infrastructure setup and configuration
management utilize Terraform and Puppet. These tools automate the provisioning
and configuration of the servers, streamlining the deployment process and enhancing
the system’s reliability and scalability. The Master Server oversees the setup of
components such as the Central Data Repository, Developer Server and DVC Remote
Storage Server.

Creating a strategic plan for the deployment and management of servers was
a critical step in the infrastructure setup and configuration management. This plan
involved defining specific deployment requirements for each server to ensure that
they are optimized for their respective roles within the system. Below are the tailored
requirements essential for the functionality of each server in the setup:

• Central Data Repository Server:

– Must have Docker and Docker Compose installed to manage containerized
applications.

– Requires a GitLab Runner installed and running to handle CI/CD
processes, allowing for automated deployment of the application.

• Developer Server:

– Requires installation of DVC for data version control, Jupyter for
interactive development, and Python for running the application.

– Must be provisioned with custom scripts full_checkout and full_push
to simplify DVC and Git operations. These scripts should be added to
the .bashrc file to make them available as commands directly from the
command line.

• DVC Remote Storage Server:

– Needs to have a dedicated user account set up for managing data versions
with DVC.

– An authorized_keys file must be created in the .ssh directory to manage
SSH access. This file will store the public SSH keys of servers that are
authorized to use this storage, ensuring secure and controlled access to the
data.

59

The deployment and configuration of these servers were largely automated using
Terraform and Puppet, with the complete code for these processes available in
the appendix. However, it’s important to note that the automation was not all-
encompassing. Manual interventions were necessary for tasks such as the registration
of the CI/CD GitLab Runner and the management of SSH keys, which are essential
for maintaining secure and authorized access to GitLab repositories. These manual
steps are crucial for ensuring the security and integrity of the system.

Potential Features and Extensions

While the current setup effectively supports the core functionalities, future
enhancements could include integrated monitoring and alert systems. Incorporating
tools like Prometheus for monitoring and Grafana for analytics could provide deeper
insights into system performance and help preemptively address potential issues.

Technology Selection Justification

Other options such as Ansible and Chef were considered for infrastructure
automation and configuration. However, Terraform and Puppet were ultimately
recognized as a sufficient and well-suited fit for the project’s needs. These
tools provided the necessary capabilities for robust and scalable infrastructure
management, aligning effectively with the project’s specific requirements.

3.3.6 In-ear Detection Pilot Methodology

The methodology for the in-ear detection pilot is designed to ensure a robust and
flexible approach to developing and validating ML models for earplug detection.
This process is inherently iterative, allowing for continuous refinement and
adaptation in response to experimental insights and evolving data patterns. Each
iteration of the in-ear detection pilot methodology has been presented on Figure 3.6
and consists of the following steps:

• Data Acquisition: This step involves selecting which files to include in the
dataset to ensure it is diverse and representative for robust model development.

• Exploratory Data Analysis and Visualization: Conducts initial data analysis
to uncover patterns and identify potential issues, using visualization tools for

60

clarity.

• Data Preparation and Feature Engineering: Describes necessary preprocessing
activities, such as scaling features, to prepare the data for modeling. Additional
techniques may be applied to enhance model relevance.

• Modeling and Training: Discusses the setup and adjustment of AI models,
including algorithm selection and parameter configuration, followed by the
training process.

• Evaluation and Visualization: Assesses model performance using metrics
like Accuracy, Precision, Recall, Specificity, and F1 Score, with visual aids to
illustrate results from test and validation sets.

Figure 3.6: Stages in the Pilot Development Methodology

Iterative Development Process

The iterative nature of this project facilitates flexibility in exploring various
hypotheses and adapting methodologies based on intermediate results. This dynamic
approach supports the progressive refinement of models and techniques, enhancing
the overall effectiveness of the AI systems developed. Each iteration involves
revisiting the data handling, feature engineering, model training, and evaluation
stages, enabling systematic improvements and fine-tuning of the algorithms.

Data Acquisition

The process of setting up the data for training involves strategically placing the
selected files into the dataset directory. This directory serves as the primary data
source for training the ML models. To facilitate the selection of suitable data, details

61

about the available files can be retrieved using the GET API endpoint provided by the
central data repository. This step is crucial as the choice of data significantly impacts
the model’s performance; a dataset that is too small or lacks diversity can adversely
affect the outcomes of the models, leading to less robust predictions. Thus, ensuring a
well-curated and representative dataset is essential for effective model training.

Exploratory Data Analysis and Visualization

During the exploratory data analysis phase, various methods are employed to
scrutinize and understand the dataset thoroughly. Examples of techniques used
include:

• Histograms: These are used to visualize the distribution of variables within the
dataset, which helps understand the spread and skewness of data points.

• Distribution of Labels: Analyzing how data is distributed across different
categories can highlight imbalances or peculiarities that might affect model
training.

• Printing Statistics: Summarizing data through descriptive statistics provides
foundational insights into the central tendencies and variability of the data.

Data Preparation & Feature Engineering

This step involves describing the essential preprocessing activities to ready the data
for modeling. It can include cleaning to remove duplicates and correct errors, along
with scaling to standardize feature ranges. Specific iterations might also employ
additional techniques to enhance model relevance and efficiency. Additionally, data
is split into training and testing sets using an 80/20 ratio. This setup allows for
testing the models on new, unseen data using performance metrics to assess their
effectiveness.

Modeling and Training

In the model selection and training step, six algorithms were identified and selected
for their suitability in handling binary classification tasks, specifically tailored for
in-ear detection. These algorithms include k-NN, SVC (with a linear kernel chosen

62

for its ease of interpretation), DT, RF, Logistic Regression, and MLP. Each algorithm
has its unique advantages and capabilities, making them strong candidates for
effectively determining whether earplugs are correctly in place. The applicability
of these algorithms to the problem of in-ear detection was thoroughly discussed in
Section 2.2.3 where their relevance and potential benefits for this specific application
were detailed. This diverse selection was driven by the objective to explore
various approaches in the initial experimentation phases of the project, allowing
for a comprehensive evaluation of different methodologies to address the in-ear
classification challenge.

Evaluation and Visualization

This step involves assessing the performance metrics such as Accuracy, Precision,
Recall, Specificity, and F1 Score for each model using test sets and validation sets,
supported by visual aids to illustrate the models’ performance. Assessing these
quantitative performance metrics allows for the comparison of results across different
model iterations. The validation set, comprising 9 files not used in the training set
and chosen to represent diverse conditions, serves to mimic real-life predictions. This
evaluation on unseen data provides a measure of the models’ generalizability and
effectiveness.

Technology Selection Justification

This section outlines the rationale for selecting specific technologies for the In-ear
Detection Pilot. This justification encompasses the choice of programming language,
ML library, and visualization tools, which together form the essential technical
framework for the project.

• Programming Language: Python emerged as the preferred choice over
highly-statistical R or Java. Its simplicity and robust libraries facilitate rapid
prototyping and experimentation, crucial for iterative model development and
testing.

• ML Library: Scikit-learn was selected for this pilot project due to its extensive
documentation and comprehensive functionality, making it well-suited for
rapid development. Despite its relative simplicity, it offered all the necessary
functionalities required for the pilot’s experimentation phase

63

• Visualisation Libraries: Due to their simplicity and popularity, it was decided
to use Matplotlib and Seaborn for data visualization in the project. Their
widespread usage and rich functionality enable quick creation of clear and
attractive plots. However, Plotly provides interactive and web-based plotting
capabilities, making it very compelling alternative.

3.4 Summary

This chapter has outlined the comprehensive project plan, encompassing initial
analysis, data acquisition, pilot implementation, and evaluation, providing detailed
insights into each phase. It delved into the architecture of the proposed system,
explaining the rationale behind technology choices and detailing the methodology
used for pilot development, which explores the potential of ML algorithms for in-
ear detection. The next chapter will present the results of these efforts, evaluating the
effectiveness of the system and analysing the pilot development outcomes.

64

Chapter 4

Results

This chapter provides a comprehensive analysis of the results from the project aimed
at facilitating the introduction of AI for in-ear detection problem. The primary
goal was to develop and assess a system capable of integrating AI effectively.
The evaluation is structured to first consider the overall system, focusing on data
gathering processes, infrastructure setup, and testing of system components.
Following this foundational assessment, the chapter delves into the pilot iterations
analysis, detailing the developmental progress and enhancements made to the AI
models.

4.1 System Evaluation

The first part of this chapter is dedicated to examining the outcomes of the primary
objective of this thesis, which was to design and implement a system that enables
experimentation with AI technologies in a real-world setting.

4.1.1 Data Gathering and Labeling Process

The initial phase of this project emphasized the establishment of a rigorous data
collection and annotation system, critical for ensuring the integrity and quality of the
data necessary for training the ML models. In total, approximately 258 MB of data
were collected, comprising 62691 rows of measurements.

65

User Interface for Data Labeling

The UI for data labeling was designed to be user-friendly to facilitate efficient and
accurate data collection. Recognizing the importance of simplicity and accessibility,
the initial UI was adapted to include larger buttons that were easier to click,
especially for users who might be working in challenging conditions or wearing
gloves.

This design choice was directly influenced by user feedback, which indicated
that the original smaller radio buttons were too difficult to navigate quickly during
data collection sessions. The feedback highlighted the need for clearer and more
accessible labeling options to reduce errors and streamline the data entry process.
The updated UI with larger, distinct buttons for different data states such as IN-EAR
and OUT-OF-EAR improved the overall impression of the data collection process.
Figure 4.1 below illustrates both the initial design with small radio buttons and
the subsequent redesign featuring larger, easy-to-click buttons. This comparison
highlights the improvements made to facilitate a more user-friendly and efficient data
collection process.

Figure 4.1: Data Labeling Interface: Before and After User Feedback

66

Data Labelling Process

The data collection process depended on users to mark start and stop of each
recording session. They had to clearly indicate when data recording began and
ended, ensuring the accuracy of the collected data. For instance, when recording
IN-EAR data, users sent start measurement label with IN-EAR value when they put
in the earplugs and sent stop label before taking them out. This strict adherence to
procedures aimed to prevent any mixing or mislabeling of data, maintaining the
reliability of the collected information.

Throughout the project, volunteers from the company provided valuable
feedback on potential ways to simplify the data collection process. One significant
suggestion was to automatically end recording sessions when starting new
measurements, like transitioning from IN-EAR to OUT-OF-EAR. This proposal aimed
to make operations smoother and improve user experience during data collection.

However, there were discussions about the possible effects of such a change,
especially concerning the introduction of potential data uncertainties during
transitions. After careful consideration, the decision was made to keep the manual
demarcation process. This choice was based on prioritizing data accuracy and
methodological rigor, emphasizing the project’s dedication to maintaining the
integrity of collected data, particularly in its early stages. Therefore, despite
recognizing the benefits of simplifying procedures, the project chose to stick with the
detailed manual process to ensure the reliability of the collected datasets.

4.1.2 Infrastructure Setup

The setup of the project’s infrastructure was accomplished using the terraform
apply command, executed on the Master Server. This command was run within the
system_management directory, where Terraform was already initialized.

Upon execution, the infrastructure setup process systematically created each
server. The successful creation of these servers is visually confirmed through the
output in the console, which indicates that the servers were successfully instantiated
and also displays their respective IP addresses. The screenshot of the received
feedback is illustrated in Figure 4.2.

Following the deployment, a comprehensive verification process was
undertaken to ensure that each server met its specific deployment requirements. This

67

verification involved checking whether all necessary applications and configurations,
as defined in the server specifications in Section 3.3.5, were correctly installed and
configured.

Figure 4.2: Successful Infrastructure Setup: Console Feedback

Central Data Repository Server

The Central Data Repository Server is equipped to handle the storage and
management of CSV data files crucial to the project. This server requires Docker
and Docker Compose for container management and a GitLab Runner for handling
CI/CD processes. Following the automated infrastructure setup executed via
Terraform, all necessary software installations and service configurations, including
the running GitLab Runner, were successfully implemented without manual
intervention. Figure 4.3 presents a screenshot confirming these installations and the
operational status of the GitLab Runner.

Figure 4.3: Successful Infrastructure Setup: Central Data Repository Server

The next step involves registering the GitLab Runner to fully activate the CI/CD
pipeline, which will manage the deployment of the API application automatically.
This setup ensures the server is prepared to support CI/CD activities, enhancing
operational efficiency and reliability.

68

Developer Server

The Developer Server should be equipped with DVC for version control, Jupyter
for interactive development, and Python to run applications. It also should include
custom scripts full_checkout and full_push added to the .bashrc file for ease of use
directly from the command line.

The screenshot presented in Figure 4.4 clearly demonstrates that the Developer
Server has successfully installed and verified versions of Jupyter, DVC, and Python
components. The screenshot also shows the usage of custom scripts, full_checkout
and full_push. Notably, an attempt to run full_checkout without specifying a branch
or commit hash displays its usage prompt, indicating the script is operational, though
it is not used in the proper context here. Similarly, the full_push command reveals an
error due to the absence of a Git repository in the current directory, suggesting that
these scripts are ready but require correct environmental setup to function fully.

Figure 4.4: Successful Infrastructure Setup: Developer Server

To fully operationalize the server, manual steps include adding the server’s
SSH key to GitLab for repository access, and to the DVC Remote Storage Server for
data access, ensuring secure and comprehensive integration into our development
environment.

DVC Remote Storage Server

The DVC Remote Storage Server is required to have a dedicated user, referred to as
dvc-user, for managing data versions. This user must have an authorized_keys file in
the .ssh folder to securely manage SSH access. Figure 4.5 successfully demonstrates
that this requirement has been met, showcasing the presence of the user and the file.

69

Figure 4.5: Successful Infrastructure Setup: DVC Remote Storage Server

4.1.3 Operational Testing of the Central Data Repository

In this section, the operational efficacy of the central data repository is examined,
emphasizing the API as an essential component of the system. It is facilitated
by the API that both data storage and metadata retrieval are managed, ensuring
comprehensive handling of information. To showcase the functionality and
robustness of the API, manual testing is conducted based on four distinct use cases.

POST Endpoint Testing

The POST endpoint allows users to upload a CSV file containing earplug data. The
API extracts relevant data from the file and saves it into the database.

• Case 1 - No File Provided Testing Case:

– Description: Access the POST endpoint without uploading any file.

– Desired Response: The API responds with an error message indicating the
requirement for a file upload.

– Actual Response: The API prompts the user to upload a file by returning
an error message indicating that no file was provided, guiding them to take
the necessary action.

• Case 2 - Non-CSV File Testing Case:

– Description: Attempt to upload a file in a format other than CSV (e.g.,
PDF, TXT).

– Desired Response: The API detects the unsupported file format and
returns an error message indicating the need for a CSV file.

– Actual Response: The API prompts the user to upload a file by returning
an error message indicating that no file was provided, guiding them to take
the necessary action.

• Case 3 - Incorrect CSV Format Testing Case:

70

– Description: Upload a CSV file with incorrect formatting, such as missing
columns or incorrect data types.

– Desired Response: The API identifies the formatting errors and returns an
error message specifying the issues encountered.

– Actual Response: The API detects the formatting errors within the CSV
file and returns an error message detailing the specific issues encountered,
ensuring data integrity.

• Case 4 - Valid File Testing Case:

– Description: Upload a properly formatted CSV file containing relevant
data.

– Desired Response: The API successfully extracts the data from the file and
stores it in the database.

– Actual Response: The API extracts the data as expected and returns a
success message along with extracted metadata object and status code
indicating successful processing.

GET Endpoint Testing

The GET endpoint retrieves a list of files based on provided filters, such as date
range, earplug serial number, label type.

• Case 1 - No Filters Provided Testing Case:

– Description: Send a request to the GET endpoint without providing any
filters.

– Desired Response: The API returns all available files since no filtering
criteria are specified.

– Actual Response: The API responds with a list of all available files.

• Case 2 - Combination of Filters Testing Case:

– Description: Test the endpoint with various combinations of filters, such as
date range, file type, and keywords.

– Desired Response: The API accurately filters files based on the combina-
tion of provided filters.

– Actual Response: The API returns a list of files that match the specified
combination of filters, demonstrating accurate filtering functionality.

71

• Case 3 - Invalid Filters Testing Case:

– Description: Provide invalid filters (e.g., incorrect date format, unsuppor-
ted file type).

– Desired Response: The API handles invalid filters and returns an
appropriate error response.

– Actual Response: The API detects and rejects invalid filters, returning an
error message specifying the issue encountered.

Tests Outcomes

Both the GET and POST endpoints were manually tested using the curl command-
line tool to validate their functionality with various files and parameters as defined
in our test cases. Figure 4.6 presents a screenshot of these manual tests for the POST
endpoint, clearly marking each use case with the corresponding curl commands and
the API’s responses, effectively demonstrating the endpoint’s capacity to handle both
correct and erroneous inputs.

Figure 4.6: Screenshots of the Manual Testing Results for the POST Endpoint

4.1.4 Version Control for Data and Project Management

Version control strategy played the crucial role in ensuring the reproducibility and
integrity in the pilot project. Both Git and DVC were essential for tracing changes

72

in the project’s code and datasets through various iterations. The integration of
these tools enabled the synchronization of code versions with corresponding dataset
versions, crucial for accurate reproduction of each project phase.

To streamline this process that normally require repetitive use of multiple
commands, custom scripts were developed to automate the essential version control
operations like checkout and push, enhancing efficiency and reducing potential
errors. Following comparison of the manual version control workflow against the
script-enhanced workflow, showcases the improvements in version control process
management.

Manual Version Control Process

Default option for version control involved manual addition, committing, and
pushing changes to the Git repository. This required careful attention to detail to
ensure that all relevant files were staged correctly. Similarly, updates to datasets that
were handled manually using DVC commands were susceptible to human error,
such as failing to track all necessary files or forgetting to push updated data to the
remote storage. Manually ensuring that dataset versions corresponded accurately
with code revisions involved meticulous record-keeping and coordination, increasing
the complexity and potential for discrepancies.

Figure 4.7: Manual Checkout Between Versions

Scripted Version Control Process

To address the inefficiencies associated with manual version control, custom scripts
were introduced to automate the checkout and push processes. When changes were
made to code or data, scripts automatically handled Git and DVC commands to
ensure all changes were correctly versioned and synchronized. The automation
scripts were designed to reduce the number of steps required, streamlining the
version control process significantly.

73

Figure 4.8: Scripted Checkout Between Versions

Comparison of Version Control Approaches

The examination of manual versus scripted version control methods illustrates a
significant efficiency gap between the two approaches. The manual process, depicted
in Figure 4.7, requires step-by-step user interaction for tasks such as checking out
branches and updating DVC files, which increases the potential for user error or
forgetting the dataset update. In contrast, the scripted approach, shown in Figure 4.8,
automates these tasks, reducing the need of checking out the branch and the dataset.

Figure 4.9: Comparison of Manual and Scripted Pushing of the Changes

Further comparison, as seen in Figure 4.9, showcases the streamlined
effectiveness of scripted operations over manual ones, particularly in pushing
changes where the scripted process consolidates several steps into one automated
command. The rectangles in this figure highlight the reduced number of steps where
user input is required, consolidating several actions into one automated command.
This comparison highlights the substantial benefits of automation in managing

74

version control, reducing time and error while improving project consistency and
user experience.

4.2 Pilot Iterations Analysis

In this section, a detailed examination of the sequential pilot iterations conducted
for the development of AI models for in-ear detection within Smart Alert devices is
presented. Each iteration is methodically analyzed through the all aspects of the ML
workflow.

4.2.1 First Iteration

The initial iteration marked the commencement of the project, aiming to lay the
groundwork for integrating AI for the in-ear detection problem. This phase focused
on the primary steps of gathering data personally and initiating explorations with AI
algorithms, setting a foundational benchmark for the project’s capabilities.

Data Acquisition

Data collection was meticulous, with an emphasis on capturing various scenarios of
IN-EAR and OUT-OF-EAR conditions. This careful collection resulted in a robust
dataset that was ideal for the initial exploration of an AI-based in-ear detection
system. It should be noted, however, that the data in the first iteration came from
only one person.

Exploratory Data Analysis and Visualisation

The Exploratory Data Analysis and Visualization step was vital in uncovering
insights from the initial dataset and setting the stage for applying AI models. Three
significant figures were created during this phase:

• Pie Chart of IN-EAR and OUT-OF-EAR Labels Distribution: The pie chart in
Figure 4.10 illustrates the proportion of IN-EAR to OUT-OF-EAR labels in the
dataset, providing a visual representation of label distribution, emphasizing the
proportion of data in both categories. Data labeled as IN-EAR forms a larger

75

segment at 57.1% of the total. OUT-OF-EAR condition makes up 42.9% of the
data, delineating the dataset’s division into nearly balanced states, which is
desired for binary classification tasks.

• Data Distribution Across Serials with IN-EAR and OUT-OF-EAR Counts:
Since the data was collected solely by one person, there is only one group of
bars in Figure 4.11 representing one serial of the device. This setup underscores
the homogeneity of the dataset. The chart clearly delineates the count of
labels for both categories. The visualization directly complements the findings
presented in the pie chart.

• Histograms of dB Values per Frequency Band: Figure 4.12 depict histograms
for dB values captured from multiple channels in every microphone labeled
as CDiag1 through CDiag5 for collar microphone, RDiag1 through RDiag5
for right earplug microphone, and LDiag1 through LDiag5 for left earplug
mcirophone. Each histogram represents frequency distributions for values
recorded from these channels, split into IN-EAR and OUT-OF-EAR conditions.

Figure 4.10: Pie Chart of IN-EAR
and OUT-OF-EAR Labels Distribution
(1st Iteration)

Figure 4.11: Data Distribution
Across Serials with IN-EAR and OUT-
OF-EAR Counts (1st Iteration)

Consistent color schemes were used in visualizations where orange represents
the IN-EAR condition and gray denotes the OUT-OF-EAR condition. This color
consistency helps in quickly identifying patterns and anomalies that are crucial for
the analysis presented in this study.

76

Figure 4.12: Histograms of dB Values per Frequency Band (1st Iteration)

Data Preparation and Feature Engineering

Data cleaning involved eliminating missing data and narrowing the focus to relevant
columns for clearer analysis. Each recording, originally comprising data from the left
and right earplug microphones alongside the collar microphone, was reorganized
into two records: one with the right earplug and collar microphone data, and another
with the left earplug and collar microphone data. This step ensured that each input
instance was uniformly formatted for the AI models.

No further preprocessing or feature engineering was employed at this stage,
maintaining the integrity of the raw data for a baseline assessment of the model’s
initial performance.

Modeling and Training

Algorithms such as k-NN, Linear SVC, DT, RF, Logistic Regression, and MLP were
employed in the analysis. All models were run with their default parameters,
ensuring consistency and establishing an unaltered baseline for each algorithm’s
performance. This straightforward approach enabled a direct comparison of the
initial performance of all six algorithms without any modifications or optimizations.

77

Evaluation and Visualisation

The evaluation of the models involved two main steps. Firstly, performance metrics
such as Accuracy, Precision, Recall, Specificity, and F1 Score were calculated for the
testing set, which comprised 20% of the original dataset and was extracted before
the training phase. Secondly, these metrics were also calculated on a validation
dataset, which consisted of different files, partly sourced from various earplugs and
individuals. This approach provided a comprehensive assessment of each model’s
performance across different datasets and scenarios. The values of these metrics for
both sets and all algorithms are summarized in Table 4.1.

Model Metric Accuracy Precision Recall Specificity F1 Score

Testing Set

k-NN 0.98 0.98 0.99 0.98 0.99
Linear SVC 0.93 0.92 0.97 0.88 0.94
RF 0.98 0.98 0.99 0.97 0.99
MLP 0.98 0.98 0.98 0.97 0.98
Logistic Regression 0.95 0.96 0.96 0.94 0.96
DT 0.98 0.98 0.98 0.97 0.98

Validation Set

k-NN 0.87 0.90 0.79 0.93 0.84
Linear SVC 0.82 0.81 0.78 0.85 0.79
RF 0.84 0.83 0.81 0.87 0.82
MLP 0.85 0.97 0.69 0.98 0.81
Logistic Regression 0.83 0.85 0.75 0.89 0.80
DT 0.81 0.84 0.70 0.89 0.76

Table 4.1: Performance Metrics of Various Models on Testing and New Test Sets

The evaluation of various ML models on testing and validation sets highlights
challenges in achieving robust detection of earplug status. All models experienced a
decline in performance when applied to the more diverse validation set, suggesting
issues with generalizability, particularly due to the training on data from a single
individual without preprocessing adjustments like scaling or dimensionality
reduction. This setup likely led to overfitting, as indicated by the decreased
generalizability of the models on the validation set.

Among the models, the most critical flaw was demonstrated by a decreased
recall in some, such as Linear SVC and MLP. These models are particularly

78

vulnerable to the most dangerous type of error: failing to detect when an earplug is
OUT-OF-EAR. This scenario falsely assures the user of hearing protection, preventing
necessary alerts and potentially leading to unsafe exposure. Despite high precision,
the low recall significantly impacts user safety as it increases the risk of undetected
earplug absence. In contrast, RF and k-NN showed more balanced metrics, making
them potentially more reliable for applications where user safety is paramount.

Given that this analysis represents the first iteration of model exploration,
further research and model tuning are essential to enhance their performance and
reliability. Future efforts should focus on incorporating more diverse training data,
implementing appropriate preprocessing techniques, and refining model parameters
to improve recall specifically. This iterative process is crucial to developing a robust
system that reliably minimizes false negatives, ensuring that users are always alerted
to potential hearing hazards.

Iteration Summary

• Initial assessment of the dataset, focusing on the distribution of labels and
identifying patterns in the data.

• First attempts at creating models with the limited dataset originating from
single person measurements.

• Encountered issues with performance drop after validating the models with
completely unseen data, leading to plans for more robust data preprocessing
and expanding the dataset.

4.2.2 Second Iteration

In the second iteration of the pilot development for AI models focused on in-ear
detection, the scope of data inclusion was significantly broadened to enhance the
models’ generalizability. Unlike the first iteration, which relied on data from a
single individual, this phase involved data from multiple users. Additionally, data
scaling techniques were implemented to standardize the data, ensuring consistency
and comparability across different inputs. Moreover, a method was implemented
to systematically display the models’ accuracy for each file in the validation set
separately, enabling a more detailed analysis of performance across diverse scenarios.

79

Data Acquisition

The datasets employed for this iteration comprised recordings from additional
users, providing a richer and more diverse data pool. This expansion was intended
to challenge the models with a wider array of data patterns and usage scenarios,
enhancing their ability to adapt to more generalized settings.

Exploratory Data Analysis and Visualisation

The Exploratory Data Analysis and Visualization phase for the second iteration
was crucial for interpreting the expanded dataset and preparing it for subsequent
AI model application. Despite the methodology remaining consistent with the first
iteration, the incorporation of a larger and more diverse dataset has influenced the
outcomes of the visual representations. Two key figures were generated during this
phase;

• Pie Chart of IN-EAR and OUT-OF-EAR Labels Distribution: Presented in
Figure 4.13, this pie chart details the label distribution within the dataset,
showing a slight predominance of OUT-OF-EAR labels at 58.2% compared to
41.8% for IN-EAR. This shift from the first iteration’s near balance provides new
challenges and insights into label disparity, emphasizing the need for careful
consideration in model training to avoid bias.

• Data Distribution Across Serials with IN-EAR and OUT-OF-EAR Counts:
Figure 4.14 illustrates the distribution of labels across different serials of the
device, reflecting the variability in data collection sources. This bar chart
shows significant differences in label counts between serials, highlighting
the heterogeneity introduced by incorporating data from multiple users and
devices.

Data Preparation and Feature Engineering

The methodology for processing data in the second iteration retained much of
the first iteration’s framework, with a crucial enhancement in the form of data
scaling. This adjustment was specifically introduced to boost model performance,
particularly for algorithms that are sensitive to feature scaling. Without such scaling,
certain features might disproportionately influence the model due to their range

80

Figure 4.13: Pie Chart of IN-EAR
and OUT-OF-EAR Labels Distribution
(2nd Iteration)

Figure 4.14: Data Distribution
Across Serials with IN-EAR and OUT-
OF-EAR Counts (2nd Iteration)

and distribution, potentially skewing the results. Standardizing the data ensures
that each feature contributes equally to the model’s decision process, thus fostering
more accurate and consistent predictions across varied datasets. This approach is
particularly critical for algorithms like k-NN, SVMs and neural networks, where
feature scaling can significantly impact overall performance.

Modeling and Training

The modeling and training approaches in the second iteration were consistent with
the first, with no changes to the models’ parameters or architecture. This consistency
was maintained to directly assess the effects of the expanded dataset and the new
scaling preprocessing step on model performance, highlighting the impact of
improved data handling without altering the underlying model structures.

Evaluation and Visualisation

The evaluation process for the second iteration of AI models closely followed
the framework established in the first iteration, utilizing the same performance
metrics—Accuracy, Precision, Recall, Specificity, and F1 Score. Metrics were assessed
for both the testing set, which comprised 20% of the original dataset, and a validation
set, which utilized the same previously unseen files as the first iteration. This

81

consistent approach allows for a straightforward comparison of results across
iterations to clearly identify improvements or setbacks resulting from modifications
in the data volume and preprocessing steps.

Additionally, this iteration included enhanced visualizations that specifically
focused on the accuracy of each model for individual validation files. This new aspect
of visualization aimed to uncover any specific challenges the models faced with
particular files or conditions, providing deeper insights into model performance and
areas needing further refinement.

The summarized results of this evaluation are detailed in Table 4.2. Although
the values for testing set showed a decrease in performance compared to the first
iteration, this was anticipated due to the increased complexity and variability in
the data. The models were now dealing with inputs that were less homogeneous,
which typically poses a greater challenge in achieving high accuracy. Analysis of
these results reveals that while the performance metrics on the testing set show a
general decrease, there is a notable increase in the metrics for the validation set. This
pattern suggests that the models, though slightly less effective on the testing set, have
improved in their ability to generalize to new, unseen data. For instance, while the
precision and recall values are lower on the standardized testing set compared to the
first iteration, they have increased on the validation set, indicating enhanced model
robustness and adaptability.

Following the encouraging initial results from the model evaluations, it was
decided to further verify these outcomes using another method to ensure their
reliability. Stratified K-Fold cross-validation was chosen for this purpose because it
helps confirm that the models perform consistently across different data segments.
This method maintains an equal proportion of each class in every fold, providing a
thorough assessment of model stability and generalization across varied subsets of
the dataset. This step was crucial in validating the robustness of the models before
their practical application.

The Table 4.3 presents performance metrics for the models, comparing results
from standard training to those obtained through Stratified K-Fold cross-validation,
with each cross-validation result representing the average of five splits. The metrics
across both methods do not vary significantly, indicating that the models demonstrate
consistent performance and reliable generalization capabilities when exposed
to different subsets of the data. This consistency is particularly noteworthy as it
suggests that the models are not overfitting to the training set and are likely to
perform well on unseen data. The close alignment of these values across standard

82

Model Metric Accuracy Precision Recall Specificity F1 Score

Testing Set

k-NN 0.88 0.87 0.84 0.91 0.86
Linear SVC 0.84 0.85 0.75 0.91 0.80
RF 0.86 0.84 0.82 0.89 0.83
MLP 0.91 0.88 0.92 0.91 0.90
Logistic Regression 0.84 0.84 0.76 0.90 0.80
DT 0.85 0.82 0.81 0.87 0.82

Validation Set

k-NN 0.87 0.92 0.77 0.95 0.84
Linear SVC 0.82 0.92 0.66 0.95 0.77
RF 0.88 0.94 0.78 0.96 0.86
MLP 0.89 0.91 0.85 0.93 0.88
Logistic Regression 0.83 0.91 0.68 0.95 0.78
DT 0.85 0.89 0.76 0.92 0.82

Table 4.2: Performance Metrics of Machine Learning Models on Standardized
and Validation Sets (2nd Iteration)

training and cross-validation is encouraging, as it validates the robustness of the
training process and the models’ ability to handle varied data inputs effectively.

Additionally, this iteration included enhanced visualizations that specifically
focused on the accuracy of each model for individual validation files. This new aspect
of visualization aimed to uncover any specific challenges the models faced with
particular files or conditions, providing deeper insights into model performance and
areas needing further refinement. Figure 4.15 illustrates the performance of each AI
model in terms of accuracy across individual validation files.

The chart reveals that for most validation files, the models achieve very good
accuracies, often exceeding 0.90, indicating strong performance across various
scenarios. However, there is a notable exception in the "IN walk-conversation.csv"
file, where accuracies significantly drop, with some models like Linear SVC showing
accuracies as low as 0.46. This specific file highlights a critical area of concern
where models struggle to maintain reliable performance. After consultation
with an audiology domain expert, it was determined that during this particular
measurement, one earplug was not properly fitted, likely causing the models’
confusion. To investigate this hypothesis further, the accuracies for this file were

83

Model Method Accuracy Precision Recall Specificity F1 Score

k-NN
ST 0.88 0.87 0.84 0.91 0.86
CV 0.89 0.88 0.85 0.92 0.87

Linear SVC
ST 0.84 0.85 0.75 0.91 0.80
CV 0.84 0.85 0.75 0.90 0.80

RF
ST 0.86 0.84 0.82 0.89 0.83
CV 0.87 0.85 0.83 0.90 0.84

MLP
ST 0.91 0.88 0.92 0.91 0.90
CV 0.91 0.90 0.85 0.95 0.89

Logistic Regression
ST 0.84 0.84 0.76 0.90 0.80
CV 0.84 0.84 0.77 0.90 0.80

DT
ST 0.85 0.82 0.81 0.87 0.82
CV 0.85 0.83 0.81 0.88 0.82

Table 4.3: Comparison of Performance Metrics Using Cross-Validation (CV) and
Standard Training (ST) (2nd Iteration)

additionally split between the left and right earplug, allowing a more detailed
examination of how the fit of each earplug affected model performance.

The chart presented in Figure 4.16 showcases accuracy metrics for AI models
used in detecting earplug status, with red indicating the right earplug and blue the
left, aligning with audiology standards. Notably, discrepancies in accuracy for the
„IN walk-conversation.csv” and „IN tram-ride.csv” files were initially perplexing.
Upon consultation with a domain expert and further investigation, it was determined
that these were not model inaccuracies. Instead, these results highlighted the models’
capability to discern suboptimal earplug fittings—a crucial safety feature. The
earplugs, though technically „IN”, were not properly fitted, a state that the models
accurately identified, demonstrating their effectiveness in detecting not just clear-cut
cases but also nuanced situations of earplug use. This insight led to an understanding
that the AI’s predictions were valid and valuable, showcasing the sophisticated
detection abilities of the models.

Iteration Summary

• Larger and more diverse dataset, sourced from several people.

84

Figure 4.15: Models Accuracy by Validation Files (2nd Iteration)

Figure 4.16: Models Accuracy by Validation Files for Left/Right Earplug (2nd
Iteration)

• Added scaling of dataset in the Data Preparation step to serve the scale-
sensitive algorithms.

• Utilization of cross-validation techniques to ensure that the improved results
were stable and not due to random variation or specific to the train-test split
used.

85

4.2.3 Third Iteration

In this third iteration of the pilot development, an experimental approach has been
taken to enhance the interpretability of the models. Given the strong performance
observed in previous iterations, it has been decided to deepen the experimental
investigation into the decision-making processes of these models. This focus is crucial
for further refining the models, increasing transparency, and building user trust by
providing clear insights into the internal workings of the AI systems used in earplug
detection.

Data Acquisition

In the third iteration of our AI model development, no new data was introduced;
however, additional preprocessing and feature engineering techniques were applied
to explore further enhancements that could be derived from the existing dataset.
This approach was adopted to delve deeper into the data’s potential, focusing on
extracting more nuanced insights.

Exploratory Data Analysis and Visualisation

In the third iteration of the analysis, a correlation matrix was incorporated into the
Exploratory Data Analysis and Visualization section to enhance the understanding
of relationships among variables when earplugs are IN-EAR and OUT-OF-EAR. This
addition aimed to identify key interdependencies between the dB values recorded
from earplug and collar microphones across different frequency ranges.

The correlation matrices for IN-EAR data and OUT-OF-EAR data are depicted
in Figures 4.17 and 4.18 respectively. Analysis of these matrices reveals that the
overall correlations between corresponding Diag and CDiag variables are higher
in the OUT-OF-EAR data compared to the IN-EAR data. This observation aligns
with the expectation that when earplugs are out, the earplug and collar microphones
should detect similar sound levels in the corresponding frequency bands, leading to
higher correlations. Such consistency in sound detection across the two microphone
types when earplugs are not in use suggests that both devices are equally influenced
by the external acoustic environment, reflecting a natural correlation in their
measurements.

86

Figure 4.17: Correlation Matrix
for IN-EAR Data (3rd Iteration)

Figure 4.18: Correlation Matrix
for OUT-OF-EAR Data (3rd Iteration)

Data Preparation and Feature Engineering

In the Data Preparation and Feature Engineering section of this iteration, it
was decided to explore the potential benefits of adding differential features for
each of the five frequency bands, based on domain knowledge. This initiative
involves calculating the difference in decibel levels between the collar and earplug
microphones for each specific frequency band. The introduction of these differential
features is a strategic move to determine if such enhancements can significantly
improve the performance of the in-ear detection models.

Three versions of the dataset were subsequently prepared: one containing only
the original dB values from the microphones, a second combining both the original
dB values and the differential features, and a third composed solely of the differential
features. This approach allowed for a comprehensive evaluation of how each dataset
variation impacts the performance of the in-ear detection models.

Figure 4.19 displays histograms of the differential decibel values across
five frequency bands (DiffDiag1 to DiffDiag5) between the earplug and collar
microphones. The orange bars represent instances when the earplugs are IN-EAR,
and the gray bars represent OUT-OF-EAR scenarios. Notably, the distribution of
differences when the earplugs are IN tends to have a broader range compared
to when the earplugs are OUT. This observation aligns with the expectation that
differential values will vary more significantly when earplugs are in place, due to
their ability to attenuate external sounds differently depending on the environmental
noise and the wearer’s activities, such as speaking. In contrast, the values are more
centered around zero when the earplugs are OUT-OF-EAR, indicating similar sound

87

levels captured by both microphones, as there is no noise attenuation by the earplugs.
This visual representation underscores the variability and the potential of using these
differential values for enhancing in-ear detection model accuracy.

Figure 4.19: Comparative Histograms of Differential dB Values by Earplug
Status for Five Frequency Bands (3rd Iteration)

Modeling and Training

In the current iteration of our analysis, a systematic exploration was conducted to
understand the impact of different feature sets on the performance of various ML
models. This approach was motivated by the hypothesis that the choice of features
and their scale could influence model outcomes.

To conduct this investigation, three distinct datasets that were prepared in
previous steps were utilized for training and testing the models:

• Original Dataset: This dataset, used in previous iteration, consists of the
baseline features without any modifications. It serves as a control group to
gauge the effects of additional or altered features in the other dataset versions.

• Extended Dataset: This version includes the original features along with
differential values calculated from the dataset. The differential values are
intended to capture changes between pair of columns representing values for
the same frequency range, potentially offering additional insights.

• DiffOnly Dataset: Contrasting the extended dataset, this dataset exclusively
comprises differential values, excluding the original features. This allows for an
assessment of whether the dynamics captured by the differential values alone
can suffice for effective model training and prediction.

Additionally, it was decided to expand this experiment with an exploration of
the scaling effect. In the previous iteration, all features were scaled, but interest grew
regarding its actual impact, as not every algorithm requires scaling. Moreover, the

88

original features are already within a quite similar range, suggesting that scaling
might not be necessary for certain models. This nuanced approach allows for a
clearer understanding of how each algorithm performs under varying preprocessing
conditions, particularly for those like DTs and RFs that are less sensitive to feature
scaling compared to algorithms like k-NN and SVC.

Evaluation and Visualisation

Table 4.4, organizes performance metrics for various ML models across different
data conditions, utilizing a concise notation to communicate the scaling of data.
Model abbreviations used are k-NN for K-Nearest Neighbors, SVC for Support
Vector Classification, RF for Random Forest, MLP for Multi-Layer Perceptron, LR
for Logistic Regression, and DT for Decision Tree. Data types include "Original",
"Extended", and "DiffOnly". The check mark (✓) indicates scaled data, while the cross
mark (✗) denotes unscaled data, and the diamond mark (✧) signifies that scaling did
not impact the results significantly, based on rounding metrics to two decimal places.

The Extended dataset did not consistently enhance model performance,
indicating that the addition of extra features or data points might not always be
beneficial, possibly due to introducing redundant information in this case. On
the other hand, the DiffOnly dataset generally led to slightly poorer performance
metrics across models, suggesting that using only differential features could remove
important information necessary for achieving higher accuracy and other metrics.

Scaling generally did not have a significant impact on most models. Notably, it
did not affect the k-NN model, which is often sensitive to unscaled data. It may be
due to the fact that the features in the dataset already have similar ranges. Similarly,
DTs and RF models, which are generally not sensitive to different feature range,
showed negligible differences in the performance metrics values between scaled
and unscaled data. In contrast, the MLP demonstrated a improvement with scaled
data, highlighting its sensitivity to input standardization, which is typical for neural
networks that benefit from uniform scaling for effective weight updates during
training.

Iteration Summary

• Including the addition of differential values to explore their potential role in
improving algorithms’ performance.

89

Model Data Type Scaled Accuracy Precision Recall Specificity F1 Score

k-NN
Original ✧ 0.88 0.87 0.84 0.91 0.86

Extended ✧ 0.88 0.87 0.85 0.91 0.86

DiffOnly ✧ 0.87 0.87 0.81 0.92 0.84

SVC

Original ✧ 0.85 0.90 0.73 0.94 0.81

Extended
✓ 0.85 0.90 0.73 0.94 0.81
✗ 0.85 0.89 0.74 0.94 0.81

DiffOnly
✓ 0.81 0.90 0.61 0.95 0.73
✗ 0.81 0.90 0.62 0.95 0.73

RF
Original ✧ 0.86 0.84 0.82 0.89 0.83

Extended ✧ 0.86 0.84 0.82 0.89 0.83

DiffOnly ✧ 0.84 0.82 0.80 0.88 0.81

MLP

Original
✓ 0.92 0.97 0.83 0.98 0.89
✗ 0.90 0.88 0.88 0.92 0.88

Extended
✓ 0.91 0.92 0.87 0.94 0.89
✗ 0.91 0.93 0.84 0.96 0.89

DiffOnly
✓ 0.90 0.95 0.79 0.97 0.86
✗ 0.89 0.95 0.79 0.97 0.86

LR

Original
✓ 0.84 0.84 0.76 0.90 0.80
✗ 0.83 0.86 0.72 0.92 0.78

Extended
✓ 0.84 0.84 0.76 0.90 0.80
✗ 0.82 0.83 0.73 0.90 0.78

DiffOnly ✧ 0.82 0.88 0.64 0.94 0.74

DT

Original
✓ 0.85 0.82 0.81 0.87 0.82
✗ 0.85 0.82 0.81 0.88 0.82

Extended ✧ 0.85 0.83 0.81 0.88 0.82

DiffOnly ✧ 0.82 0.78 0.78 0.85 0.78

Table 4.4: Detailed Performance Metrics for Various Machine Learning Models
Across Different Data Conditions

• Comprehensive testing of all models across all three datasets (Original,
Extended, DiffOnly) with both scaled and unscaled data to assess the full

90

impact of feature selection and scaling.

4.2.4 Fourth Iteration

The focus of the final iteration was on fine-tuning the algorithms through a
comprehensive grid search and enhancing model interpretability. To facilitate this,
only algorithms capable of reporting feature importance were employed. Notably,
k-NN and MLP were excluded from this phase despite their strong performance
in earlier iterations, due to their lack of inherent interpretability in terms of feature
importance.

Data Acquisition

Data from the previous iteration was reused, maintaining consistency in the dataset
to ensure that the potential improvements in model performance could be attributed
to algorithmic refinements and not to variations in data.

Exploratory Data Analysis and Visualisation

This stage was unchanged from previous iterations, focusing on understanding the
underlying patterns and distributions within the data.

Data Preparation and Feature Engineering

Optional scaling was applied based on findings from the previous iteration. DTs and
RF operated on unscaled data to leverage their inherent handling of feature scales,
while Logistic Regression and Linear SVC utilized scaled data. Only original features
were used, excluding derived differential features explored in previous iteration to
simplify the models and focus on primary data attributes.

Modeling and Training

Each model underwent a rigorous grid search to identify the optimal parameters,
focusing solely on maximizing accuracy across three cross-validation splits. The best-

91

performing model configurations were then used to compute detailed performance
metrics.

Evaluation and Visualisation

In the final iteration, a detailed evaluation and visualization of model performance
and feature importance were conducted to better understand the predictive
capabilities of each model and the significance of various features in the prediction
process.

For DT and RF models, feature importance was directly extracted using built-
in methods provided by these models. The values of feature importance for these
two algorithms are presented on Figures 4.20 ąnd 4.21 respectively. These methods
quantify the contribution of each feature to the predictive accuracy of the model. On
the other hand, for Logistic Regression and LinearSVC models, feature importance
was inferred indirectly through the examination of their coefficients. While these
coefficients are not directly interpretable as feature importance scores, they provide
insights into the influence of each feature on the model’s decision boundary.
Coefficients values for Logistic Regression model are presented on Figure 4.22 and
for Linear SVC model on Figure 4.23.

Figure 4.20: Decision Tree
Feature Importance (4th Iteration)

Figure 4.21: Random Forest
Feature Importance (4th Iteration)

Two features - Diag1 and CDiag1 - consistently emerge as highly significant
across all models, underscoring their pivotal roles in the classification process.

92

Figure 4.22: Logistic
Regression Coefficients for Features
(4th Iteration)

Figure 4.23: LinearSVC
Coefficients for Features (4th
Iteration)

Conversely, other features show varying degrees of importance across different
models. This variation can be largely attributed to the strong correlation among
Diag2, Diag3, and Diag4 features, and similarly among CDiag2, CDiag3, and CDiag4
which was recognized in the third iteration and is visible on Figures 4.17 and 4.18.
Such correlations can influence the model’s learning process, as correlated features
may contribute redundant information. Consequently, some models might prioritize
one feature over others within these correlated groups to optimize performance.

In terms of performance on a validation set, the algorithms, once tuned,
demonstrated similar metrics values to those observed in earlier iteration. However,
some issues were identified within the validation set, particularly with files
exhibiting poor earplug fit for one ear. This underscores the necessity of further
validation using a new validation dataset. Conducting such validation could provide
a more robust assessment of the models’ performance and generalizability, ensuring
that the algorithms effectively handle varied real-world scenarios.

Iteration Summary

• Models were optimized for accuracy by rigorous grid search, with a focus on
models that could evaluate feature importance.

• Key features like Diag1 and CDiag1 consistently showed high importance

93

across models.

• Future iterations could explore using a subset of features to simplify models
and enhance performance.

4.3 Summary

This chapter has evaluated the created system and its components and provided
a detailed analysis of the pilot iterations and their outcomes. It showcased the
performance of the ML algorithms used for in-ear detection, including metrics such
as accuracy and precision, presented through various graphs and tables for different
cases. It tested the impact of creating additional columns, scaling data, and tuning the
algorithms to optimize performance. Building on these insights, the next chapter will
transition into a discussion of the broader implications of these findings, addressing
the practical applications, challenges encountered during implementation, and
potential strategies for optimizing the system.

94

Chapter 5

Discussion

In the previous chapter, the results of this research were presented, demonstrating
the effectiveness and challenges of our approaches. This chapter aims to revisit
and reflect upon the thesis’ objectives, key components, and the methodologies
that were used to address them. Each component will be thoroughly examined
not only to assess the success and impact of these elements, but also to identify
and discuss any limitations encountered. This comprehensive review seeks to
contextualize our findings within the broader scope of the field, offering insights into
both achievements and areas for improvement.

5.1 Assessment of Research Goals

This thesis was guided by two main objectives aimed at enhancing the integration of
AI technologies into the field of in-ear detection for Smart Alert hearing protection
devices:

• Design and Implement a System: To develop and implement a robust system
that facilitates experimentation with AI technologies specifically for in-ear
detection.

• Evaluate ML Classification Algorithms: To evaluate the performance and
limitations of popular ML classification algorithms in accurately determining
the in-ear placement of Smart Alert hearing protection devices.

Both objectives were instrumental in guiding the functional implementation of the
AI system. The first objective, while broad, established a comprehensive framework

95

for the design and implementation that allowed for effective experimentation with
various AI technologies.

The second objective focused on the flexibility and adjustability of algorithms
during the pilot development. Specific metrics such as accuracy, precision, recall,
and F1-score were employed to evaluate the performance of these algorithms.
This allowed for a more focused analysis on the capabilities and limitations of the
algorithms, providing actionable insights into their performance. However, while
these metrics provided a solid foundation for evaluation, the broad application scope
and variability in environmental conditions presented challenges in assessing the full
range of algorithmic performance.

5.2 Data Acqusition

A fundamental aspect of this research involved setting up a process to gather
labeled data, which are essential for implementing supervised learning classification
algorithms. This process was successfully established, resulting in a fully functional
platform for data labeling. With the assistance of the Minuendo employees, it was
possible to collect data that allowed to start experimenting with ML algorithms and
even draw preliminary insights.

Despite the successful setup of the data acquisition system, there were notable
limitations in the volume and diversity of data collected. The data gathered needs
to be sufficiently extensive to guarantee the reliability of the results across varied
scenarios. For more robust and generalizable findings, a larger and more diverse
dataset would be necessary. The current manual process relies heavily on internal
resources of the small company and does not allow for the extensive data collection.

To overcome these limitations and enhance data collection, transitioning the
solution to a production mode could be considered. This would enable the collection
of a much larger dataset, improving the diversity and representativeness of the
data. However, such an expansion raises questions about user engagement and
the motivation for data labeling. Introducing elements of gamification could be
one strategy to encourage user participation and engagement. By making the data
collection process more interactive and rewarding, it may increase user involvement
and thereby enrich the dataset.

Additionally, exploring the integration of other sensors could offer alternative or
supplementary data collection methods that bypass some of the current limitations

96

associated with relying solely on microphone data for in-ear detection. However,
this approach could fundamentally alter the problem statement, shifting the focus
from improving microphone-based detection to developing multi-sensor detection
systems.

5.3 System for Iterative Pilot Development

The system designed in this research provides a functional infrastructure for the
initial stages of integrating AI, particularly when exploring the potential of ML
algorithms. Built on a cloud-based platform, the system incorporates modern
DevOps practices and Data Version Control to ensure reproducibility and systematic
tracking of experiments, which is vital for maintaining the integrity of experimental
processes.

Automation features prominently in the system through the use of IaC and
CI/CD pipeline. These tools automate much of the deployment and management
process, making the system straightforward to set up and maintain. This level of
automation minimizes human error and increases the efficiency of operational
workflows.

However, the system does face limitations, primarily because it is designed
to facilitate experimentation rather than function as a complete MLOps system.
It lacks a model deployment stage, which is critical for operationalizing ML in
production environments. The system is also not built to scale seamlessly for larger,
more complex projects, and it requires further development to address security more
comprehensively and to add robust monitoring and logging capabilities.

These limitations highlight the system’s current role as a platform for
development and testing which was rather than for full-scale production use.
Future enhancements could focus on expanding its capabilities to include model
deployment and improving scalability and security features. Such improvements
would transform the system into a comprehensive MLOps solution capable of
supporting ML applications across various sectors.

97

5.4 Utilization of ML Algorithms for In-ear Detection

Although relatively straightforward, the experiments conducted with ML algorithms
for in-ear detection have demonstrated promising potential. These initial trials, using
simple classification models, suggest that the application of ML could enhance in-ear
detection capabilities. However, a significant limitation was the relatively small and
non-diverse dataset used, insufficient for fully validating the current hypotheses or
refining the predictive accuracy of the developed models.

During the experiments, a notable observation emerged while analyzing the
accuracy of model predictions across different validation files. Two specific files
showed significantly poorer results. Further investigation, including consultation
with an expert, revealed that these discrepancies were due to poor earplug fit in one
of the ears during the measurements. Despite being labeled as IN, the inadequate fit
of the earplugs likely compromised protection, posing a classification challenge. It
turned out that when models predicted an OUT-OF-EAR label for these instances,
they were not incorrect. This finding suggests that in-ear detection may not be a
straightforward binary classification task, and that alternative methods assessing the
quality of fit might be more appropriate.

Additionally, the pilot analysis uncovered that certain features influence
model decisions more than others. This insight, if verified with a larger and more
diverse dataset, suggests that focusing on these key features could streamline
the modeling process. For the company, this could lead into experimenting with
reducing the number of frequency bands analyzed, which would enhance system
efficiency and reduce computational demands on devices. Such adjustments not only
optimize performance but also align with strategic objectives to improve the overall
functionality and cost-efficiency of the technology.

The initial findings from these simple experiments lay a promising foundation
for further investigation. They not only emphasize the importance of expanding the
dataset but also challenge existing assumptions about the nature of in-ear detection.
As the project progresses, exploring new ideas could lead to more sophisticated
models and a deeper understanding of the practical aspects of earplug fit and its
implications for hearing protection.

98

5.5 Summary

This chapter has assessed the research objectives, delving into the challenges
encountered in data gathering and evaluating the system and its limitations.
It has provided a detailed analysis of the pilot findings within the context of
hearing protection, discussing how the results contribute to the field and what
improvements can be made. The discussion also reflects on the practical applications
and potential enhancements to better integrate ML for in-ear detection. The next
chapter will conclude the thesis by summarizing the key findings, outlining the main
contributions, and suggesting directions for future research.

99

100

Chapter 6

Summary and Conclusions

This chapter encapsulates the key outcomes and insights derived from this study
alongside its contributions. It also outlines potential future directions to extend the
research further.

6.1 Summary of Work

This thesis focused on creating a system to facilitate research and experimentation
with AI technologies for in-ear detection within the Smart Alert hearing protection
device. In partnership with Minuendo, a company dedicated to improving hearing
safety, the project explored the potential of utilizing popular ML algorithms to
bolster the functionality of hearing protection. It provided a practical framework for
applying theoretical models and integrating AI technology in an industrial context.

The thesis details a comprehensive approach to developing a cloud-based
infrastructure that supports the exploration and iterative refinement of ML
algorithms. This setup not only facilitated the pilot testing of various AI models
but also ensured the reproducibility of results, which is critical in scientific research.
Recognizing the importance of a robust dataset for effectively training and evaluating
AI algorithms, the project also included the development of a system for collecting
and labelling data.

The pilot implementation tested multiple algorithms to identify which ones
might be most effective for detecting proper earplug fit. The results from these initial
tests provided insights into how AI might be used to enhance the functionality of
hearing protection devices, although further testing and refinement are necessary.

101

Overall, this thesis lays the groundwork for further research into the application
of AI in industrial safety equipment, emphasizing practical and incremental
improvements rather than large-scale transformations. By integrating advanced
practices in system automation and cloud infrastructure management, the project
establishes a robust framework for continuous development and testing in an
experimental setting.

6.2 Main Contributions

This thesis aimed to streamline the exploration of AI algorithms’ potential to
enhance hearing protection devices. The project used a comprehensive approach
to integrating AI for in-ear detection, culminating in several key contributions that
underscore the potential of the practical utility of AI in occupational safety and set a
solid foundation for future innovations in the domain. The main contributions of this
thesis are as follows:

Development of a System for AI Experimentation A significant achievement of
this work is creating a comprehensive system that facilitates iterative testing and
experimentation with AI algorithms for in-ear detection. This system is built on
agile principles, allowing for the swift exploration and refinement of ML models in
a structured yet flexible manner.

Establishment of a Data Collection and Labeling Process Recognizing the critical
importance of high-quality data for AI model training and evaluation, this thesis
details the creation of a data collection and labelling process. This process ensures the
availability of accurate and well-annotated data sets, indispensable for developing
reliable AI models. The methodology developed here supports the current project’s
needs and offers a blueprint for future potential research.

Exploration of ML Algorithms for In-ear Detection Another essential contribution
is the initial evaluation and analysis of various ML algorithms. This investigation
provides initial insights into the algorithms’ performance and suitability for in-
ear detection task. The findings from this evaluation play a crucial role in directing
future efforts towards optimizing, refining, and implementing the most promising
algorithms for the task.

102

6.3 Future Work

Building upon the foundations laid by this thesis, the path forward for enhancing
hearing protection devices with AI is ripe with potential. A natural progression of
this work would involve exploring a broader spectrum of AI algorithms. It could
be interesting to explore algorithms that can analyze data in a temporal context,
acknowledging the inherent continuity and time-related dependencies in earplug
usage patterns. For instance, considering the physical impossibility of inserting or
removing the device within a second, algorithms that account for time series data
could offer more nuanced insights and improved detection accuracy.

Another exciting direction for future research involves rethinking the binary
nature of in-ear detection. Rather than a simple IN-EAR or OUT-OF-EAR status,
there could be significant benefits to developing models that assess the quality of the
earplug fit. This nuanced approach could lead to more effective hearing protection by
identifying when earplugs are not providing optimal protection, even if they are in
place. Additionally, there’s potential to enhance system efficiency by exploring ways
to reduce the number of frequency bands analyzed. Reducing the computational load
could allow more sophisticated algorithms to run on-device, enhancing the real-time
capabilities of hearing protection devices.

Furthermore, the continuation of data-gathering efforts is of utmost importance.
Expanding the dataset with broader usage scenarios, environmental conditions,
and user behaviors will be pivotal in refining AI models. A more diverse and
comprehensive dataset will empower the development of algorithms that are
robust across various real-world conditions, thereby bolstering the reliability and
effectiveness of AI-enhanced hearing protection devices.

Regarding system infrastructure, there is an opportunity to further develop the
cloud-based capabilities introduced in this thesis. Enhancing the cloud infrastructure
to better support AI model development and deployment could involve more
sophisticated automation and optimization strategies. For example, implementing
advanced MLOps practices could help streamline model deployment, updates, and
management, improving the system’s efficiency and scalability.

A significant milestone in the evolution of hearing protection technology will
be the implementation of AI algorithms to function on the fly within the device
units themselves. This significant shift would replace the static, rule-based systems
with dynamic learning models capable of real-time analysis. However, achieving
this transition demands not only technical advancements but also a concerted effort

103

to build greater trust in the developed AI models. Establishing this trust requires
rigorous validation of the models’ reliability and accuracy in various scenarios.

104

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean and Matthieu Devin.
TensorFlow: Large-scale machine learning on heterogeneous systems. Generic. 2015.

[2] Sridhar Alla and Suman Kalyan Adari. Beginning MLOps with MLFlow: Deploy
Models in AWS SageMaker, Google Cloud, and Microsoft Azure. 1st Edition.
Berkeley, CA: Berkeley, CA: Apress L. P, 2020. ISBN: 1484265483 9781484265482
9781484265499 1484265491. DOI: 10.1007/978-1-4842-6549-9.

[3] Mohammad Hassan Almaspoor, Ali Safaei, Afshin Salajegheh and Behrouz
Minaei-Bidgoli. ‘Support Vector Machines in Big Data Classification: A
Systematic Literature Review’. In: (2021).

[4] Rebecka C. Ångström, Michael Björn, Linus Dahlander, Magnus Mähring and
Martin W. Wallin. ‘Getting AI Implementation Right: Insights from a Global
Survey’. In: California Management Review 66.1 (2023), pp. 5–22. ISSN: 0008-1256.

[5] Ken Arnold, James Gosling and David Holmes. The Java programming language.
Addison Wesley Professional, 2005. ISBN: 0321349806.

[6] Minuendo AS. Smart Alert. Accessed: 29.03.2024. 2024. URL: https : / / www .
minuendo.com/smart-alert.

[7] Les Atlas, Jerome Connor, Dong Park, Mohamed El-Sharkawi, Robert Marks,
Alan Lippman, Ronald Cole and Yeshwant Muthusamy. ‘A performance
comparison of trained multilayer perceptrons and trained classification trees’.
In: IEEE, pp. 915–920.

[8] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt
and Ron Jeffries. The agile manifesto. Generic. 2001.

[9] Ayoub Bensakhria. ‘End-to-End MLOPS Pipeline for Object Detection using
TensorFlow 2 and Flask’. In: ().

105

https://doi.org/10.1007/978-1-4842-6549-9
https://www.minuendo.com/smart-alert
https://www.minuendo.com/smart-alert

[10] Mathieu Bérubé, Tanya Giannelia and Gregory Vial. ‘Barriers to the Implement-
ation of AI in Organizations: Findings from a Delphi Study’. In: (2021). ISSN:
0998133140.

[11] Sumon Biswas, Mohammad Wardat and Hridesh Rajan. ‘The art and practice of
data science pipelines’. In.

[12] Ivette Cejas, Jennifer Coto, Chrisanda Sanchez, Meredith Holcomb and Nicole
E. Lorenzo. ‘Prevalence of depression and anxiety in adolescents with hearing
loss’. In: Otology & neurotology 42.4 (2021), e470–e475. ISSN: 1531-7129.

[13] Kou-Huang Chen, Shih-Bin Su and Kow-Tong Chen. ‘An overview of
occupational noise-induced hearing loss among workers: epidemiology,
pathogenesis, and preventive measures’. In: Environmental health and preventive
medicine 25.1 (2020), p. 65. ISSN: 1342-078X.

[14] Alexander Chern, Alexandria L. Irace and Justin S. Golub. ‘The laterality of
age-related hearing loss and depression’. In: Otology & Neurotology 43.6 (2022),
pp. 625–631. ISSN: 1531-7129.

[15] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.

[16] Mandepudi Nobel Chowdary, Bussa Sankeerth, Chennupati Kumar Chowdary
and Manu Gupta. ‘Accelerating the Machine Learning Model Deployment
using MLOps’. In: vol. 2327. IOP Publishing, p. 012027. ISBN: 1742-6596.

[17] Angelo Corallo, Anna Maria Crespino, Vito Del Vecchio, Massimiliano Gervasi,
Mariangela Lazoi and Manuela Marra. ‘Evaluating maturity level of big data
management and analytics in industrial companies’. In: Technological Forecasting
and Social Change 196 (2023), p. 122826. ISSN: 0040-1625.

[18] DataCamp. Preprocessing in Data Science (Part 2): Centering, Scaling and Logistic
Regression. Accessed: 05.05.2024. May 2016. URL: https://www.datacamp.com/
tutorial/preprocessing-in-data-science-part-2-centering-scaling-and-logistic-regression.

[19] Peter Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen
B. Tucker, A. Joe Turner and Paul R. Young. ‘Computing as a discipline:
preliminary report of the ACM task force on the core of computer science’. In:
pp. 41–41.

[20] Christof Ebert, Gorka Gallardo, Josune Hernantes and Nicolas Serrano.
‘DevOps’. In: IEEE software 33.3 (2016), pp. 94–100. ISSN: 0740-7459. DOI: 10 .
1109/MS.2016.68.

[21] Pramod Gupta and Naresh K. Sehgal. Introduction to machine learning in the cloud
with python: Concepts and practices. Springer Nature, 2021. ISBN: 3030712702.

106

https://github.com/fchollet/keras
https://www.datacamp.com/tutorial/preprocessing-in-data-science-part-2-centering-scaling-and-logistic-regression
https://www.datacamp.com/tutorial/preprocessing-in-data-science-part-2-centering-scaling-and-logistic-regression
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/MS.2016.68

[22] Johannes Hangl, Simon Krause and Viktoria Joy Behrens. ‘Drivers, barriers and
social considerations for AI adoption in SCM’. In: Technology in Society 74 (2023),
p. 102299. ISSN: 0160-791X.

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J. Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg
and Nathaniel J. Smith. ‘Array programming with NumPy’. In: Nature 585.7825
(2020), pp. 357–362. ISSN: 0028-0836.

[24] Jeff Heaton, Ian Goodfellow, Yoshua Bengio and Aaron Courville. ‘Deep
learning: Genetic programming and evolvable machines’. In: Genetic
programming and evolvable machines 19.1 (2018), pp. 305–307. ISSN: 1389-2576.
DOI: 10.1007/s10710-017-9314-z.

[25] Jonny Holmström. ‘From AI to digital transformation: The AI readiness
framework’. In: Business Horizons 65.3 (2022), pp. 329–339. ISSN: 0007-6813.

[26] John D. Hunter. ‘Matplotlib: A 2D graphics environment’. In: Computing in
science & engineering 9.03 (2007), pp. 90–95. ISSN: 1521-9615.

[27] Plotly Technologies Inc. Collaborative data science. 2015. URL: https://plot.ly.

[28] Sayali D. Jadhav and H. P. Channe. ‘Comparative study of K-NN, naive Bayes
and decision tree classification techniques’. In: International Journal of Science and
Research (IJSR) 5.1 (2016), pp. 1842–1845.

[29] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani and Jonathan
Taylor. An introduction to statistical learning: With applications in python. Springer
Nature, 2023. ISBN: 3031387473.

[30] Zohaib Jan, Farhad Ahamed, Wolfgang Mayer, Niki Patel, Georg Grossmann,
Markus Stumptner and Ana Kuusk. ‘Artificial intelligence for industry 4.0:
Systematic review of applications, challenges, and opportunities’. In: Expert
Systems with Applications 216 (2023), p. 119456. ISSN: 0957-4174.

[31] Dona M. P. Jayakody, Osvaldo P. Almeida, Craig P. Speelman, Rebecca
J. Bennett, Thomas C. Moyle, Jessica M. Yiannos and Peter L. Friedland.
‘Association between speech and high-frequency hearing loss and depression,
anxiety and stress in older adults’. In: Maturitas 110 (2018), pp. 86–91. ISSN:
0378-5122.

[32] JetBrains. PyCharm Documentation. https : / / www . jetbrains . com / pycharm /
documentation/. Accessed: 05.05.2024. n.d.

[33] Meenu Mary John, Helena Holmström Olsson and Jan Bosch. ‘Towards mlops:
A framework and maturity model’. In: IEEE, pp. 1–8. ISBN: 1665427051.

107

https://doi.org/10.1007/s10710-017-9314-z
https://plot.ly
https://www.jetbrains.com/pycharm/documentation/
https://www.jetbrains.com/pycharm/documentation/

[34] Ben Johnson and Anjana S. Chandran. ‘Comparison between Python, Java and
R progrmming language in machine learning’. In: Int. Res. J. Modernization Eng.
Technol. Sci 3.6 (2021), pp. 1–6.

[35] Mayank Kejriwal. ‘AI in Practice and Implementation: Issues and Costs’.
In: Artificial Intelligence for Industries of the Future: Beyond Facebook, Amazon,
Microsoft and Google. Springer, 2022, pp. 25–45.

[36] Steffen Kinkel, Marco Baumgartner and Enrica Cherubini. ‘Prerequisites for
the adoption of AI technologies in manufacturing–Evidence from a worldwide
sample of manufacturing companies’. In: Technovation 110 (2022), p. 102375.
ISSN: 0166-4972.

[37] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla and
Carol Willing. ‘Jupyter Notebooks – a publishing format for reproducible
computational workflows’. In: Positioning and Power in Academic Publishing:
Players, Agents and Agendas. IOS Press. 2016, pp. 87–90.

[38] Henrik Kortum, Jonas Rebstadt, Tula Böschen, Pascal Meier and Oliver
Thomas. ‘Towards the operationalization of trustworthy AI: integrating the EU
assessment list into a procedure model for the development and operation of
AI-systems’. In: (2022). ISSN: 3885797208.

[39] Oliver Kramer. ‘K-Nearest Neighbors’. In: Dimensionality Reduction with
Unsupervised Nearest Neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 13–23. ISBN: 978-3-642-38652-7. DOI: 10.1007/978-3-642-38652-7_2.
URL: https://doi.org/10.1007/978-3-642-38652-7_2.

[40] Dominik Kreuzberger, Niklas Kühl and Sebastian Hirschl. ‘Machine learning
operations (mlops): Overview, definition, and architecture’. In: IEEE access
(2023). ISSN: 2169-3536.

[41] Trevor LaViale. ‘Deep Dive on KNN: Understanding and Implementing the K-
Nearest Neighbor Algorithm’. In: Tech Blog (2023). Accessed: 27.04.2024.

[42] Noha Lim, Hongshik Ahn, Hojin Moon and James J. Chen. ‘Classification of
high-dimensional data with ensemble of logistic regression models’. In: Journal
of Biopharmaceutical Statistics 20.1 (2009), pp. 160–171. ISSN: 1054-3406.

[43] Chin-Mei Liu and Charles Tzu-Chi Lee. ‘Association of hearing loss with
dementia’. In: JAMA network open 2.7 (2019), e198112–e198112.

108

https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2

[44] John A. Loonam and Joe McDonagh. ‘Exploring top management support for
the introduction of enterprise information systems: a literature review’. In: Irish
Journal of Management 26.1 (2005), p. 163. ISSN: 1649-248X.

[45] Gilles Louppe. ‘Understanding random forests: From theory to practice’. In:
arXiv preprint arXiv:1407.7502 (2014).

[46] Ben Lovejoy. AirPods 3 improvements include better in-ear detection. Accessed:
12.04.2024. 2021. URL: https://9to5mac.com/2021/10/20/airpods-3-improvements-
in-ear-detection/.

[47] Sasu Mäkinen. ‘Designing an open-source cloud-native MLOps pipeline’. In:
University of Helsinki (2021).

[48] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen and Tommi Mikkonen.
‘Who needs MLOps: What data scientists seek to accomplish and how can
MLOps help?’ In: IEEE, pp. 109–112. ISBN: 1665444703.

[49] Wes McKinney. ‘Data structures for statistical computing in Python’. In:
vol. 445, pp. 51–56.

[50] Bacigál Michal. ‘Design and Implementation of Machine Learning Operations’.
In: (2024).

[51] Microsoft. Visual Studio Code Documentation. https://code.visualstudio.com/docs.
Accessed: 05.05.2024. n.d.

[52] Md Nahiduzzaman, Md Julker Nayeem, Md Toukir Ahmed and Md Shahid
Uz Zaman. ‘Prediction of heart disease using multi-layer perceptron neural
network and support vector machine’. In: IEEE, pp. 1–6. ISBN: 1728160405.

[53] A. Navia-Vázquez and E. Parrado-Hernández. ‘Support vector machine
interpretation’. In: Neurocomputing (Amsterdam) 69.13 (2006), pp. 1754–1759.
ISSN: 0925-2312. DOI: 10.1016/j.neucom.2005.12.118.

[54] World Health Organization et al. World report on hearing. World Health
Organization, 2021.

[55] Eneko Osaba, Esther Villar, Jesus L. Lobo, Ibai Laña and Andries Engelbrecht.
Artificial Intelligence: Latest Advances, New Paradigms and Novel Applications.
BoD–Books on Demand, 2021. ISBN: 183962387X.

[56] Deven Panchal, Isilay Baran, Dan Musgrove and David Lu. ‘MLOps:
Automatic, Zero-touch and Reusable Machine Learning Training and Serving
Pipelines’. In: IEEE, pp. 175–181. ISBN: 9798350319040.

109

https://9to5mac.com/2021/10/20/airpods-3-improvements-in-ear-detection/
https://9to5mac.com/2021/10/20/airpods-3-improvements-in-ear-detection/
https://code.visualstudio.com/docs
https://doi.org/10.1016/j.neucom.2005.12.118

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein and Luca
Antiga. ‘Pytorch: An imperative style, high-performance deep learning library’.
In: Advances in neural information processing systems 32 (2019).

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss and Vincent Dubourg. ‘Scikit-learn: Machine learning in Python’. In: the
Journal of machine Learning research 12 (2011), pp. 2825–2830. ISSN: 1532-4435.

[59] Mary Poppendieck. ‘Lean software development’. In: IEEE, pp. 165–166. ISBN:
0769528929.

[60] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Accuracy score. Accessed: 29.03.2024. URL: https://scikit-learn.org/stable/modules/
model_evaluation.html#accuracy-score.

[61] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Confusion matrix. Accessed: 29.03.2024. URL: https : / / scikit - learn . org/ stable /
modules/model_evaluation.html#confusion-matrix.

[62] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Decision Trees. Missing Values Support. Accessed: 05.05.2024. URL: https://scikit-
learn.org/stable/modules/tree.html#tree-missing-value-support.

[63] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Decision Trees. Tips on practical use. Accessed: 05.05.2024. URL: https : / / scikit -
learn.org/stable/modules/tree.html#tips-on-practical-use.

[64] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Ensembles: Gradient boosting, random forests, bagging, voting, stacking. Accessed:
29.03.2024. URL: https://scikit-learn.org/stable/modules/ensemble.html#forest.

[65] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Ensembles: Gradient boosting, random forests, bagging, voting, stacking. Random
forests and other randomized tree ensembles. Accessed: 05.05.2024. URL: https : //
scikit - learn . org / stable /modules / ensemble . html# random - forests - and - other -
randomized-tree-ensembles.

[66] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Nearest Neighbors. Accessed: 29.03.2024. URL: https ://scikit - learn .org/stable/
modules/neighbors.html#classification.

[67] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.). Neural
network models (supervised). Accessed: 29.03.2024. URL: https://scikit- learn.org/
stable/modules/neural_networks_supervised.html.

110

https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
https://scikit-learn.org/stable/modules/tree.html#tree-missing-value-support
https://scikit-learn.org/stable/modules/tree.html#tree-missing-value-support
https://scikit-learn.org/stable/modules/tree.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/tree.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#random-forests-and-other-randomized-tree-ensembles
https://scikit-learn.org/stable/modules/ensemble.html#random-forests-and-other-randomized-tree-ensembles
https://scikit-learn.org/stable/modules/ensemble.html#random-forests-and-other-randomized-tree-ensembles
https://scikit-learn.org/stable/modules/neighbors.html#classification
https://scikit-learn.org/stable/modules/neighbors.html#classification
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html

[68] scikit-learn: machine learning in Python. scikit-learn Documentation (n.d.).
Support Vector Machines. Accessed: 29.03.2024. URL: https : // scikit - learn . org/
stable/modules/svm.html#svm-classification.

[69] R. R Core Team. ‘R: A language and environment for statistical computing’. In:
(2013).

[70] Gilberto Recupito, Fabiano Pecorelli, Gemma Catolino, Sergio Moreschini,
Dario Di Nucci, Fabio Palomba and Damian A. Tamburri. ‘A multivocal
literature review of mlops tools and features’. In: IEEE, pp. 84–91. ISBN:
1665461527.

[71] Guido Rossum. Python reference manual. Generic. 1995.

[72] Roopashri Shetty, M. Geetha, Dinesh U. Acharya and G. Shyamala. ‘Data
Preprocessing and Finding Optimal Value of K for KNN Model’. In: Springer,
pp. 1–9.

[73] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis and George A.
Papakostas. ‘MLOps-definitions, tools and challenges’. In: IEEE, pp. 0453–0460.
ISBN: 1665483032.

[74] Amir Taherizadeh and Catherine Beaudry. ‘An emergent grounded theory of
AI-driven digital transformation: Canadian SMEs’ perspectives’. In: Industry
and Innovation 30.9 (2023), pp. 1244–1273. ISSN: 1366-2716.

[75] Matteo Testi, Matteo Ballabio, Emanuele Frontoni, Giulio Iannello, Sara Moccia,
Paolo Soda and Gennaro Vessio. ‘Mlops: A taxonomy and a methodology’. In:
IEEE Access 10 (2022), pp. 63606–63618. ISSN: 2169-3536.

[76] Rhett S. Thomson, Priscilla Auduong, Alexander T. Miller and Richard K.
Gurgel. ‘Hearing loss as a risk factor for dementia: a systematic review’. In:
Laryngoscope investigative otolaryngology 2.2 (2017), pp. 69–79. ISSN: 2378-8038.

[77] John Wilder Tukey. Exploratory data analysis. Vol. 2. Springer, 1977.

[78] Mirela Cătălina Türkes, , Ionica Oncioiu, Hassan Danial Aslam, Andreea Marin-
Pantelescu, Dan Ioan Topor and Sorinel Căpus, neanu. ‘Drivers and barriers in
using industry 4.0: a perspective of SMEs in Romania’. In: Processes 7.3 (2019),
p. 153. ISSN: 2227-9717.

[79] Janviere Umurerwa and Maja Lesjak. AI Implementation and Usage: A qualitative
study of managerial challenges in implementation and use of AI solutions from the
researchers’ perspective. Generic. 2021.

[80] Andrés Felipe Varón Maya. ‘The state of MLOps’. In: (2021).

[81] Michael L. Waskom. ‘Seaborn: statistical data visualization’. In: Journal of Open
Source Software 6.60 (2021), p. 3021. ISSN: 2475-9066.

111

https://scikit-learn.org/stable/modules/svm.html#svm-classification
https://scikit-learn.org/stable/modules/svm.html#svm-classification

[82] Samar Wazir, Gautam Siddharth Kashyap and Parag Saxena. ‘MLOps: A
review’. In: arXiv preprint arXiv:2308.10908 (2023).

[83] Samantha Werens and Jörg von Garrel. ‘Implementation of artificial intelligence
at the workplace, considering the work ability of employees’. In: TATuP-
Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis 32.2 (2023), pp. 43–
49. ISSN: 2567-8833.

[84] Ian H. Witten and Eibe Frank. ‘Data mining: practical machine learning tools
and techniques with Java implementations’. In: Acm Sigmod Record 31.1 (2002),
pp. 76–77. ISSN: 0163-5808.

[85] Geqi Yan, Wanying Zhao, Chaoyuan Wang, Zhengxiang Shi, Hao Li, Zhenwei
Yu, Hongchao Jiao and Hai Lin. ‘A comparative study of machine learning
models for respiration rate prediction in dairy cows: Exploring algorithms,
feature engineering, and model interpretation’. In: Biosystems Engineering 239
(2024), pp. 207–230. ISSN: 1537-5110.

112

Appendix A

Source Code

The master thesis repository, accessible via https://github.com/s372039/master-thesis,
contains all the source code and configuration files used throughout the project. This
repository is structured into three distinct directories:

System Management

Located in the system_management directory, this section includes Terraform and
Puppet files used for configuring and managing the master server infrastructure.

Central Data Repository Application

The central_data_repository_application directory houses the application code for the
central data repository. It includes a Flask API server setup and is containerized us-
ing Docker. This directory also contains Dockerfiles, docker-compose configurations,
and CI/CD pipeline definitions.

In-Ear Detection Repository

The in-ear_detection_repository houses the Jupyter notebook (pilot_development.ipynb)
that details the machine learning experiments conducted for in-ear detection. This
directory also utilizes DVC to manage and version large datasets. Additional config-
uration files support the use of Git and DVC for version control and reproducibility.

113

https://github.com/s372039/master-thesis

	Abstract
	Acknowledgments
	Preface
	Introduction
	Motivation
	Problem Statement
	Scope
	Limitations
	Research Methods
	Ethical Considerations
	Main Contributions
	Thesis Outline

	Background and Related Work
	Smart Alert
	Product Specification
	In-ear Detection
	Data Structure

	AI Fundamentals and Classification Techniques
	Definitions and Core Concepts
	The Machine Learning Workflow
	Examining Classification Algorithms
	Tools and Technologies

	Practical Aspects of AI Adoption
	AI Implementation Challenges in Industry
	Machine Learning Operations
	MLOps Tools and Technologies

	Summary

	Design and Implementation
	Initial Analysis
	Data Assessment
	Clarifying Objectives
	Domain Experts Consultation

	Data Acquisition
	Overview
	Integration with Smart Alert Application
	Earplug Data Synchronization
	Sending Labels to the System
	Obtaining the Data

	Pilot Implementation
	System Overview
	Central Data Repository
	Developer Server
	DVC Remote Server
	Master Server
	In-ear Detection Pilot Methodology

	Summary

	Results
	System Evaluation
	Data Gathering and Labeling Process
	Infrastructure Setup
	Operational Testing of the Central Data Repository
	Version Control for Data and Project Management

	Pilot Iterations Analysis
	First Iteration
	Second Iteration
	Third Iteration
	Fourth Iteration

	Summary

	Discussion
	Assessment of Research Goals
	Data Acqusition
	System for Iterative Pilot Development
	Utilization of ML Algorithms for In-ear Detection
	Summary

	Summary and Conclusions
	Summary of Work
	Main Contributions
	Future Work

	Source Code

