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Abstract

The rapid growth and increasing availability of sports multimedia and metadata,
demands advanced information retrieval systems capable of efficiently processing
vast amounts of multimodal data. This paper introduces SoccerRAG, an innovative
framework that leverages Retrieval Augmented Generation (RAG), SQL agents, and
Large Language Models (LLMs) to extract soccer-related information through natural
language queries. By utilizing a multimodal dataset, SoccerRAG enables database
querying, automatic data validation, and enhanced user interaction, making sports
archives more accessible. Our evaluations demonstrate that SoccerRAG effectively
handles complex queries and improves the accuracy of traditional natural language
to SQL query, systems. The results highlight the potential of RAG, agents, and LLMs
in sports analytics, paving the way for future innovations in the accessibility and real-
time processing of sports data.






Acknowledgments

| would like to express my heartfelt gratitude to my supervisors at SimulaMet, Pal
Halvorsen, Sushant Gautam and Cise Midoglu for always having the time to discuss
interesting topics and challenging my ideas and implementations. This work is a
testament to their mentorship, and I’'m forever grateful for their guidance and support.
| would also like to thank my girlfriend and family for putting up with me during this
stressful time of research, writing, and job hunting.






Contents

Abstract

Acknowledgments

1

Introduction

1.1 Motivation . . . . . . . ..
1.2 Problem Statement . . . . . . .. ... ... L
1.3 Scope . . . .
1.4 ResearchMethods . . . . .. .. ... .. ... .. .. ... .. .....
1.5 Ethical Considerations . . . . . . ... .. .. ... ... ......
1.6 Main Contributions . . . . . . . . ... ... ... L
1.7 ThesisOutline . . .. .. .. . . . ... .. .. .

Background and Related Work

21 Terminology . . . . . . . .

2.2 SoccerBasics ... ..

2.3 SoccerNetDataset . . . . .. .. ... . . ...

2.4 LargelanguageModels . . . . . . .. .. ... Lo
241 Multimodality . . . .. ... ...
2.4.2 InformationRetrieval . . . . ... ... ... ... ... ...
243 LangChain . . .. ... ... . ...
244 ChainLit . . . . . . . .

2.5 Chapter Summary . . . . . . . . ...

Methodology and Implementation

3.1 DataManagement . . . . . . ... ...
3.1.1 SourceDataset. . .. ... ... .. ... ... . ... ... ...
3.1.2 ContextRetrievers . . . . . .. . .. ... .. ... . ...
3.1.3 Database . .. .. ... ... .. ...

3.2 Proposed Pipeline . . . . .. ... . ...
3.2.1 Choosing a Language Model . . . .. ... ... ... ......

Vv

O A WN = = =:

© N N

12
13
16
16
17



3.2.2 Feature Extraction . . . ... .. .. ... ... .. L.
3.2.3 Feature Validation . .. ... ... ... .. ............
3.24 SQLAgent ... ... ... . ...
3.3 Proposed Evaluation . . . . ... ... ... ... oL,
3.3.1 Metrics for Evaluation . . . ... ... ... ... ........
3.3.2 Queries for Evaluation . . . . ... ... ... ...........
3.4 ProposedUserinterface . . . . . . .. .. .. ... ... .. ...
3.5 Chapter Summary . . . . . . . .. ...

Experiments and Results

4.1 Query Complexity Analysis . . . . . . .. .. ... .. ...

4.2 Per-Component Evaluation . . . ... ... ... ... ... ...
421 Extractor-Validator . . . . ... ... ... ... .. ..
422 SQLAgentandRAG . . ... ... ... ... ... ...
423 AblationStudy . ... ... ...

4.3 End-to-End Pipeline Evaluation . . . . . ... ... ... ... ......
431 ExecutionTime . . .. ... ... . ... .. .. ... ... ...
432 Cost . . . . .
433 Robustness . . . . . . ...
43.4 Modellaziness. . . . ... ... . . ...
435 LLMcapability . . ... ... ... ...

4.4 Chapter Summary . . .. . . . . ...

Discussion
5.1 Competitor Analysis . . . . . . . .. .. ..
52 ModellLaziness . . . . . . . . . . . ..
5.3 Importance of Cleaned Input . . . . .. ... ... ... ... ......
5.4 Modular Implementation of Extractor-Validator Module . . . . . ... ..
55 NewModels. . . . . . . . . . . . . e
5.6 PotentialUseCases . . . ... ... .. .. . ... ...
56.1 SoccerNetUseCases . . . ... ... ... ... ... ......
5.6.2 Natural Language SQL Retrieval . . . . ... ... ........

Conclusion

6.1 Insights . . . . . . . . .
6.2 Addressing The Research Questions . . . . ... ... ..........
6.3 Limitationsand Future Work . . . . . . .. .. ... ... .. ..
6.4 Contributions . . . . . . ... ..

55
55
57
57
58
60
61
61
61
62
63
63
63

65
65
67
68
68
69
69
70
70



A Results 83

A1 Ablation Study Results . . . . . . .. ..o 83
A.2 Extractor- ValidatorResults . . . . .. .. ... ... ... ........ 91
A.3 SQL Complexity Calculations . . . . .. ... ... ... ... ...... 100
A4 ExecutionTime . . . . . . . . .. . ... 110
A5 SQLRag . . ... . . e 116
B Publications 129

B.1 SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries 130
B.2 Demo: Soccer Information Retrieval via Natural Queries using
SoccerRAG

Vi



viii



List of Figures

3.1 PipelineConcept . . . . . . . . . 19
3.2 Directory StructureinDataset . . . . . ... ... ... .. ........ 20
3.3 Dataset - Event Type Distribution from Labels-caption.json . . . . . . .. 22
3.4 Dataset - Event Type Distribution from Labels-v2.json . . . . ... ... 23
3.5 Aggregated Labels per Game, for Game 1 to 126 - From Labels_v2.json 24
3.6 RAG using Embedding Models and Vector Databases . . . . ... ... 25
3.7 RAGusingSQLAgents . . . ... ... . ... ... 27
3.8 Database ER Diagram . . . . . . . . . . ... ... 30
3.9 Proposed Pipeline . . ... .. ... ... ... 33
3.10 Extractor Module - Part 1 of Proposed Pipeline . . . .. ... ... ... 35
3.11 Extractor Concept Figure . . . . . . . . .. ... ... 37
3.12 Validation Module - Part 2 of Proposed Pipeline . . . . . ... ... ... 37
3.13 Cleaning of ExtractedData . . . . .. ... ... ... .......... 41
3.14 Conceptual Overview of SQL Agent . . . . . . . . ... ... ... ... 44
3.15 Proposed Ul . . . . . . . . . .. 50
316 GUIExample 1 . . . . . . . 51
3.17 SoccerRAG GUIExample2 . . . . . . . ... ... .. .. 52
4.1 Hit Rate for SQLRag Basedon TestResults . . . . . ... ... ... .. 59
4.2 Total Execution Time for Questions1-10 . . . . . ... ... ... .... 62
5.1 ScreenshotofVanna.ai . ... ... ... .. ... .. .. ... .... 66
5.2 Total Execution Time for Questions 1-10 for GPT4o0 . . . . . . . . . . .. 69

A.1 Execution Time for Question 1 with GPT-3.5-Turbo and GPT-4-Turbo . . 110
A.2 Execution Time for Question 2 with GPT-3.5-Turbo and GPT-4-Turbo . . 111
A.3 Execution Time for Question 3 with GPT-3.5-Turbo and GPT-4-Turbo . . 111
A.4 Execution Time for Question 4 with GPT-3.5-Turbo and GPT-4-Turbo . . 112
A.5 Execution Time for Question 5 with GPT-3.5-Turbo and GPT-4-Turbo . . 112
A.6 Execution Time for Question 6 with GPT-3.5-Turbo and GPT-4-Turbo . . 113
A.7 Execution Time for Question 7 with GPT-3.5-Turbo and GPT-4-Turbo . . 113
A.8 Execution Time for Question 8 with GPT-3.5-Turbo and GPT-4-Turbo . . 114

iX



A.9 Execution Time for Question 9 with GPT-3.5-Turbo and GPT-4-Turbo . . 114
A.10 Execution Time for Question 10 with GPT-3.5-Turbo and GPT-4-Turbo . 115



List of Tables

2.1 Function Calling Leaderboard - 09.05.2024 (Yan et al., 2024) . . . . ..

3.1 Labels-caption.json. . . . . . . . . ..
3.2 Labels-v2.json . . . . . . ..
3.3 Pricing for Different Models (OpenAl, 2023¢c) . .. ... ... ... ...
3.4 Team Names and Abbreviation . . . . .. ... ... ... ... .....

4.1 Query Complexity Analysis . . . . . ... .. ... ... ...
4.2 Extractor-Validator Evaluation . . . . . .. .. ... ... .........
4.3 Combined Hit Rate Q1-Q60 - FS=1, FS=2, FS=3,FS=5 . . ... .. ..
4.4 Ablation Study Results for Question1to10 . . .. ... ... ... ...
4.5 The cost for Q21 with GPT-3.5-Turbo and GPT-4.0-Turbo . . . . . . ..

5.1 Comparisonof SQL Services . . . . . . . . . ... ... . ... ...

A.1 Question 1: Is Manchester United in the database? - GPT 3.5-Turbo . .
A.2 Question 1: Is Manchester United in the database? - GPT 4-Turbo . . .
A.3 Question 2: Give me the total home goals for Bayern M in the 2014-15
season-GPT3.5-Turbo . . . ... ... ... . ... ... .. .. ...
A.4 Question 2: Give me the total home goals for Bayern M in the 2014-15
season-GPT4-Turbo . . . . ... ... ... ... . ... .. ......
A.5 Question 3: Calculate home advantage for Real Madrid in the 2015-16
season-GPT3.5-Turbo . . . ... ... ... ... ... .........
A.6 Question 3: Calculate home advantage for Real Madrid in the 2015-16
season-GPT4-Turbo . . . . ... ... . ... ... . . .. ... ...
A.7 Question 4 - How many goals did Messi score in the 15-16 season? -
GPT3.5-Turbo . .. .. .. . . . .
A.8 Question 4 - How many goals did Messi score in the 15-16 season? -
GPT4-Turbo . . . . . . . . .
A.9 Question 5 - How many yellow-cards did Enzo Perez get in the 15-2016
season? -GPT 35-Turbo . . . .. ... .. .. ... ... . .......
A.10 Question 5 - How many yellow-cards did Enzo Perez get in the 15-2016
season? -GPT4-Turbo . . . . . . .. . . ... .. .. . ...



A.11 Question 6 - List all teams that played a game against Napoli in 2016-
17 season in seriea? Do not limit the number of results - GPT 3.5-Turbo
A.12 Question 6 - List all teams that played a game against Napoli in 2016-
17 season in seriea? Do not limit the number of results - GPT 4-Turbo .
A.13 Question 7 - Give all the teams in the league ucl in the 2015-2016
season? -GPT 3.5-Turbo . . . . . ... .. .. .. ... .. ... ...,
A.14 Question 7 - Give all the teams in the league ucl in the 2015-2016
season? -GPT 4-Turbo . . . ... ... . ... .. . ... . ... ....
A.15 Question 8 - Give me all games in epl with yellow cards in the first half
in the 2015-2016 season - GPT 3.5-Turbo . . . . . . .. ... ... ...
A.16 Question 8 - Give me all games in epl with yellow cards in the first half
in the 2015-2016 season - GPT 4-Turbo . . . . . . . .. ... ... ...
A.17 Question 9 - What teams and leagues has Adnan Januzaj play in? -
GPT35-Turbo . .. .. .. . . . .
A.18 Question 9 - What teams and leagues has Adnan Januzaj play in? -
GPT 4-Turbo . . . . . . . . .
A.19 Question 10 - List ALL players that started a game for Las Palmas in
the 2016-2017 season? Do NOT limit the number of results - GPT 3.5-
Turbo . . . e
A.20 Question 10 - List ALL players that started a game for Las Palmas in
the 2016-2017 season? Do NOT limit the number of results - GPT 4-
Turbo . . . e

Xii

87

88

88

88

89

89

89

90

90



Chapter 1

Introduction

1.1 Motivation

The rapid growth of digital sports content has created a demand for efficient retrieval
systems that can understand and process natural language queries (Gautam, 2023;
Gautam et al., 2022a). Such systems can enable more people to access the ever-
growing data. The motivation behind this research is to address the challenges in
retrieving specific content from textual data generated from an extensive sports video
libraries using intuitive, natural language requests. This approach simplifies user
interaction and enhances the accessibility of sports video archives.

The first step in this research is retrieving data from a database using natural
language, leveraging the power of LLMs. A problem with the current solutions is
handling misspellings or abbreviations in user input. It seems that most research
focuses on the retrieval of data using proper language and full names of entities of
interest. This is, however, not how a "normal" user of an information retrieval system
would behave. To increase user satisfaction, systems should be able to understand
what a user is interested in and, if not, ask for additional input.

The focus of this research is to address these challenges and contribute to the
development of efficient retrieval systems that can simplify user interaction and
enhance the accessibility of sports video archives. By leveraging the power of Natural
Language Processing (NLP), traditional algorithms and machine learning techniques,
this research seeks to enable users to retrieve specific sports content using intuitive,
natural language requests, such as "show me the first goal scored by Team A" or
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"did Player B get a yellow card?". This approach has the potential to change the way
users interact with sports content, making it more accessible, engaging, and useful for
a wide range of applications.

1.2 Problem Statement

Current sports statistics retrieval systems often rely on manual tagging or basic
keyword searches, which can be time-consuming and imprecise. The problem
this research addresses is the development of an advanced retrieval system that
leverages NLP and multimodal data fusion to interpret and fulfill complex natural
language queries accurately.

The main research question this thesis will answer is:

Can we effectively query complex datasets using natural language?

As the numbers of tables and columns increase in a database, the complexity of the
queries needed to retrieve data also increases. In this thesis, we want to explore if
LLMs can be used to retrieve data from these sources.

This question encompasses several sub-questions and challenges, including:

Sub-question 1: How does the system handle spelling mistakes and other input
errors?

One of the critical factors in enabling natural language querying is the ability to handle
imperfect inputs, such as spelling mistakes, typographical errors, or ungrammatical
constructions. An effective retrieval system should be robust enough to identify and
correct these errors, ensuring that the intended meaning of the query is accurately
captured. This sub-question explores the techniques and algorithms employed to
achieve this level of fault tolerance.

Sub-question 2: How dynamic is the system? Can a change in the underlying
database necessitate code changes?

In real-world scenarios, databases constantly evolve, with new data added, updated,
or removed. An ideal retrieval system should be adaptable and flexible, capable of
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accommodating changes to the underlying database without requiring extensive code
modifications or system overhauls. This sub-question investigates the system’s ability
to adapt to changes in the data structure and content dynamically, ensuring seamless
operation and minimizing maintenance efforts.

Sub-question 3: Is it possible to extract detailed statistics from the database using
natural language?

When working with datasets about real events, we often want to understand why

an event occurs and look for patterns to predict similar events in the future. The
suitability of a solution like this to provide statistics and structured lists is based on the
system’s ability to retrieve complete information sets in order to answer the question.

Sub-question 4: What role does different LLMs play in the quality of the system?

Is the capability of the LLM a decisive factor when querying data, or can good data
preparation reduce the complexity that the LLM needs to handle?

By addressing these sub-questions, the research aims to develop a comprehensive
and robust natural language querying system that can efficiently handle complex
gueries, accommodate input errors, and adapt to changes in the underlying data
sources.

1.3 Scope

This research focuses on creating a database retrieval system, integrating LLMs,
machine learning, and algorithms. The scope includes developing data indexing and
efficient retrieval of statistics found in the dataset.

The main focus of the research will be on ensuring that the interaction between

the user and the database is as streamlined as possible. This will enable other
researchers and developers to adopt this solution and integrate it into their own
systems, enhancing the overall user experience. By making it easier for developers

to incorporate natural language querying into their designs, this research will pave the
way for a more universal approach to database querying, where databases can be
queried using natural language.



One important goal is to make the solution as generalized as possible, meaning one
could easily apply the created framework to databases for other domains.

The scope do not cover implementation of open source LLM, nor video retrieval
directly. Production deployment is also outside the scope, as this is a research thesis.

Since our main focus is on creating a basic framework that demonstrates the

idea, only a small set of 20 test questions was used to test the frameworks’
performance. It's important to note that this small sample might not give us a
complete understanding of how well the framework performs in all situations.
However, the goal of this research thesis was to show that the basic idea works. In
the future, more testing and improvements can be done to make it better and use it
on a larger scale.

1.4 Research Methods

Computer science and Al research covers a diverse range of methodologies.
According to the ACM Education Board, the field of computing can be categorized
into three primary paradigms: theory, abstraction, and design (Denning et al., 1989).

Our research aligns with the design paradigm, which involves a systematic approach
to constructing a system that solves a specific problem. This approach consists of
four distinct stages:

1. Elucidating requirements: defining the problem domain and identifying the
needs of the system.

2. Specifying the system: outlining the functional and non-functional specifications
of the system.

3. Designing and implementing the system: creating a detailed design and
developing the system according to the specifications.

4. Testing the system: verifying the system’s performance and evaluating its
efficacy.

The primary motivation behind this thesis is to design a system capable of retrieving
data from a database using natural language queries. This requires identifying
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suitable tools for the task, defining specifications, and implementing the pipeline.
To validate the system’s performance, we will formulate a set of test questions to be
executed using the pipeline.

Furthermore, to isolate the contribution of each component in our pipeline, we
will conduct ablation studies, which will provide valuable insights into the system’s
functionality and effectiveness.

1.5 Ethical Considerations

As LLM becomes more capable and widely accepted, it's important to consider

the ethical implications of deploying systems using these models. LLM has a

bias stemming from the data it’s trained on, which can affect the output. It is also
important to remember that LLMs is not a knowledge base, they are generative
models that predict the next token based on patterns observed in their training data.
The ethical consequences for this can be enormous, where those who develop the
best LLM, becomes the owner of truth. In this regard, it is important to give the LLM
supplemented data to ensure that it answers based on our facts.

Another critical ethical consideration in Al is privacy. To address this, our research
focuses on publicly available data published by SoccerNet (Giancola et al., 2018),
published under an MIT license, for research purposes. Balancing the innovative
benefits of Al with the fundamental right to privacy is crucial for public trust and
ensuring ethical Al development and deployment (Y. Zhang et al., 2021). The use
of Al and machine learning models will be critically evaluated to prevent biases and
ensure fairness in retrieval results.

Ethical disclaimer: During the writing of this thesis, Grammarly was used to help with
spelling and, in some cases, sentence building.

1.6 Main Contributions

The primary contributions include the development of a novel sports statistics retrieval
system that accepts natural language queries, enabling users to retrieve data from
sports metadata using everyday language, which enhances user-friendliness and
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accessibility.

The extraction-validation process we propose, is a novel method, making it possible
to enhance the process of querying data using natural language, regardless of the
data domain.

The integration of multimodal data for comprehensive search results, which merges
various data types such as video metadata, audio, and text, resulting in a more
complete and in-depth search experience that provides more accurate and relevant
results.

The enhancement of universal design through the use of natural language to
query databases. This capability promotes inclusivity and accessibility by making
information more accessible to a wider range of users, regardless of their age,
disability, or other factors.

1.7 Thesis Outline

In Chapter 2 Background and Related Work, we introduce key terminology, provide
information about SoccerNet and soccer basics, and present an overview of current
research in the field of (LLMs) and context retrieval systems.

In Chapter 3 Methodology and Implementation, different ways of implementing
data retrieval are discussed, the dataset is described, and we present the pipeline for
the framework. Additionally, we propose various experiments and implement a user
interface for the application.

In Chapter 4 Experiments and Results, the framework is tested and evaluated
before we conduct an ablation study to assess its components. We then test the
pipeline end-to-end, examining metrics such as execution time and costs.

In Chapter 5 Discussion, we start by looking at competing solutions, look at current
issues with LLMs, and the importance of validated data.

In Chapter 6 Conclusion, we address the research questions posed in Section 1.2.
We then discuss potential use cases, limitations, and future work and highlight the
contributions this paper makes to the field.



Chapter 2

Background and Related Work

In this chapter, key terminology will be introduced, together with information about
SoccerNet and soccer basics. We will also present an overview of topics discussed
later in the thesis.

2.1 Terminology

Words can take on different meanings depending on the context in which they

are presented. To ensure clarity, it is important to define key concepts and the
terminology used to describe them in this research. By establishing a common
understanding of these terms, we can achieve effective communication and prevent
misinterpretations throughout the discussion.

Events are used for in-game events, such as corners, cards, goals, and fouls
shot on and off target.

» Shot on target is an event when a player shoots the ball, and the goalkeeper or
defender makes a save, preventing the ball from entering the goal.

» Shot off target is an event when a player shoots the ball but misses the goal,
either wide, high, or low, without the goalkeeper or defender making a save.

» LLMs are machine learning models that can understand and generate text in
human language. In this thesis, we will mostly be talking about OpenAl's GPT
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3.5-Turbo(‘GPT-3.5-Turbo’, 2024) and 4.0-Turbo(‘GPT-4’, 2024) models when
using the term, but there are several other LLMs on the market.

Tokens are what LLMs use to predict the next word. A token can be a single
character, a part of a word, a whole word, and, in some cases, multiple words
(Song et al., 2021). When calculating the cost of APl usage regarding LLMs, we
calculate input and output tokens.

Input tokens refer to the tokens that are provided as input to the language
model, representing the text or sequence of tokens that the model will process
and generate predictions for.

Output tokens refer to the tokens generated by the language model as output,
based on the input tokens and the model’s learned patterns and knowledge.

Chains are a concept in several frameworks designed around LLMs. In this
context, chains are pipelines that perform one task after another before arriving
at the desired output. A chain consists of a sequence of predetermined steps,
where each step is executed in a predefined order (Langchain, 2024a).

Agents are a similar concept as chains, and also involve LLMs. Agents use a
language model as a reasoning engine to determine which actions to take and
in which order rather than following a hard-coded sequence of steps. Agents
have the freedom and flexibility to dynamically decide on the next function or
action to execute based on the given inputs and intermediate results, using
reasoning and a decision-making process powered by the language model
(Langchain, 2024a).

Context Retriever is a term used about modules that can retrieve extra context
to help an LLM answer a question. This could be a search engine plugin, an
agent that has access to databases, or RAG solutions.

Hallucinations is text generated by a LLM that is not grounded in factual
information. The LLM will, however, present the false information as it's correct
(Ji et al., 2022).

Properties or Entities when talking about extraction is things like player name,
team name, in-game-events, and so forth.

8



2.2 Soccer Basics

Soccer is one of the biggest sports in the world. At its core, soccer is a simple game,
where two teams of eleven players each are competing in scoring the most goals.
However, beneath the simple objective of the game, there are several layers of
tactics, athleticism, teamwork, and rules. These rules, or the Laws of the Game

as defined by The International Football Association Board (IFAB), establish the
framework within which the game operates.

Most countries where soccer is played have national leagues. Here, several teams
play against each other twice a year, gaining 3 points for winning, 1 point for a draw,
and 0 points for losing. At the end of the year, the team with the most points wins the
league, and the teams with the least points might be transferred to a lower division.

A team consists of eleven starting players, but the coach has the opportunity to
substitute up to three players at any given time. This allows for tactical adjustments,
fresh legs, and the opportunity to respond to the changing dynamics of the game.

When a player shoots at the goal, we can put the shot into one of three categories:
goal, shot on target, or shot off target. If the player scores, we record the shot as

a goal. If the goalkeeper saves the shot, it’s recorded as a shot on target, and if

the shot misses the goal, it's recorded as a shot off target. These statistics provide
valuable insights into a team’s attacking efficiency and the performance of individual
players.

Additionally, the game features various types of fouls and disciplinary actions, such
as free kicks, yellow cards and red cards, which can have a significant impact on the
flow and outcome of the match. Referees are responsible for ensuring the rules are
followed and maintaining the integrity of the game (International Football Association
Board, 2023).

2.3 SoccerNet Dataset

SoccerNet is a large-scale dataset for soccer video understanding, consisting of 550
recordings of broadcasts across the top European leagues, such as the Premier
League, La Liga, and Bundesliga. To foster research and innovation in the field of
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sports analytics, the team behind SoccerNet hosts yearly competitions where teams
of researchers compete to solve tasks like Ball Action Spotting and Game State
Reconstruction.

The SoccerNet dataset and its associated challenges have attracted a growing
community of researchers from diverse backgrounds, including computer vision,
machine learning, and sports analytics. The yearly competitions provide a platform
for teams to showcase their innovative approaches and push the boundaries of what
is possible in the realm of soccer video understanding (Giancola et al., 2018).

2.4 Large Language Models

LLMs have become vital in the generative Al revolution, transforming our interaction
with and processing of language. The development of LLMs originated in the 1950s
and 1960s with rule-based models. These early models, reliant on hand-crafted
linguistic rules (symbolic Al), were inadequate for the complexities of NLP (Hadi et
al., 2023).

Generative Al is a type of unsupervised machine learning that enables the creation of
multimodal content, such as text, images, videos, and 3D models, that can be highly
realistic and often indistinguishable from human-generated content. The technology
uses neural networks, such as GANs and Transformers, to generate new data that
can be used in a wide range of applications, from art and entertainment to education
and science (Fui-Hoon Nah et al., 2023).

The first chatbot capable of simulating human conversation, Eliza, was developed

in 1966 by MIT researcher Joseph Weizenbaum. Eliza employed a pattern-
matching methodology, using predefined rules to identify keywords in user input and
formulate responses (Weizenbaum, 1966). Although limited in functionality, Eliza
represented a significant milestone in NLP research, laying the groundwork for future
advancements.

In the 1990s, statistical language models, based on probabilistic methods, improved
upon rule-based models (Jelinek, 1998). These models were better equipped to
manage larger datasets and offered enhanced accuracy, yet they struggled with
semantic understanding and contextual language processing (Hadi et al., 2023).
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A major breakthrough occurred in the mid-2010s with the introduction of neural
language models, notably the recurrent neural network language model (RNNLM)

in 2010. Subsequent developments, such as the Google Neural Machine Translation
(GNMT) system in 2015, marked significant progress in modeling language context
and generating natural-sounding text (Hadi et al., 2023).

The 2017 introduction of the Transformer model was a huge advancement in the field.
It facilitated learning of longer-term language dependencies and enabled parallel
training on multiple GPUs (Vaswani et al., 2023). This advancement allowed for

the training of larger models and the release of OpenAl's GPT-1 in 2018, with its
transformer-based architecture, was a notable advance, leading to subsequent
models like GPT-3.5-Turbo (‘GPT-3.5-Turbo’, 2024) and GPT-4.0-Turbo (‘GPT-4’,
2024). These models demonstrated exceptional proficiency in producing coherent
and natural text. Other significant developments include Meta’s Llama, Google’s Bard,
Amazon’s Alexa Al features, and Huawei’'s Pangu models (Hadi et al., 2023).

There is currently an arms race between companies to create new and improved
LLMs. To navigate this ever-changing field, "leaderboards" such as Berkeley
Function-Calling Leaderboard (Yan et al., 2024) In table 2.1 functions with the suffix
(FC) can be plugged into function calling frameworks.

Rank | Overall Acc | Model Organization License
1 87 GPT-4-0125-Preview (Prompt) OpenAl Proprietary
2 86.47 Claude-3-Opus-20240229 (Prompt) Anthropic Proprietary
3 84.35 GPT-4-1106-Preview (FC) OpenAl Proprietary
4 84.24 GPT-4-turbo-2024-04-09 (Prompt) OpenAl Proprietary
5 83.29 Gorilla-OpenFunctions-v2 (FC) Gorilla LLM Apache 2.0
6 83.12 GPT-4-0125-Preview (FC) OpenAl Proprietary
7 82.12 Meta-Llama-3-70B-Instruct (Prompt) Meta Meta Llama 3 Community
25 62.47 GPT-3.5-Turbo-0125 (FC) OpenAl Proprietary

Table 2.1: Function Calling Leaderboard - 09.05.2024 (Yan et al., 2024)

The table shows that proprietary models outperform open-source models on function-
calling tasks, but models like Gorilla-OpenFunctions-v2 (Patil et al., 2023) show
promising results. The overall accuracy is calculated as a mean of nine metrics the
leaderboard uses.

The validation of systems employing LLMs can indeed pose challenges due to their
inherently non-deterministic characteristics, as described by Ouyang et al., 2023.

However, LLMs has a laziness issue. The laziness manifests in the LLM not
completing a given task or providing an example of how the user can complete
the task. OpenAl has stated that their new GPT-4.0-Turbo model is less lazy, but
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feedback from regular users of the model is mixed (IVG, 2024; Mauran, 2023;
OpenAl, 2023b).

2.4.1 Multimodality

The drive to enhance model versatility for handling various inputs, such as images,
sound, and video, has made multimodal data fusion a key research area. Big data,
characterized by its high volume, velocity, variety, and veracity, often comprises
structured, semi-structured, and unstructured formats from diverse sources.

Each modality carries unique information. For example, a sports news webpage
might combine images and text, representing different modalities of the same
event. Integrating these multimodal data types is essential for a comprehensive
understanding, particularly when individual modalities offer partial information.
Multimodal data fusion integrates disparate data sources, types, and distributions
into a unified representation, enabling exploration of both inter-modality and cross-
modality relationships (Gautam et al., 2022b). This fusion yields insights superior to
those from any single modality. Consequently, multimodal models have emerged as
a powerful tool in Al, paving the way for more comprehensive and intelligent systems.
Central to these multimodal models are LLMs (Gao et al., 2020; Wu et al., 2023).

These models, capable of complex reasoning across various tasks, offer user-friendly
interfaces instructable with natural language (Touvron et al., 2023). However, the
static nature of LLMs, exemplified by the extensive training of models like Llama-2-
13b, poses a limitation. Training this model required 368640 hours on Nvidia A100
GPUs, highlighting the challenge (Touvron et al., 2023). To address this, LORA
(Low-Rank Adapters) and QLoRA (Quantized Low-Rank Adapters) have been
developed, reducing computational expenses. LoRA, by altering a small subset of
the model’'s weights, yields significant improvements with minimal updates. QLoRA
further reduces memory requirements through quantization methods (Dettmers et
al., 2023). These methods make it possible to fine-tune a model for a specific use
case. Although effective for specific fields, these methods are limited in dynamic
scenarios. Fine-tuning is a method where an unsupervised trained model is trained
with supervision (Ziegler et al., 2020). This approach is mainly about giving the model
a sense of direction on how to respond, but it also has the added benefit of helping
the model learn new information, such as a new language (Strand et al., 2024).
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2.4.2 Information Retrieval

For external information retrieval, RAG is a more suitable approach. RAG is a
method for open-domain question answering that combines retrieval of relevant
documents with a generation model to produce accurate answers. The RAG method
first vectorizes the input query and uses that to retrieve a set of K documents from

a vector database. This will return the K documents most likely to contain the
information to the question. The retrieved documents are then passed to a LLM,
which generates the final answer based on the content of the documents and the
question (Yu et al., 2022).

Vector databases are used to store and retrieve documents efficiently for RAG
systems. In a vector database, each document is represented as a dense vector in a
high-dimensional space. These vectors are generated using pre-trained embedding
models, which convert the text of the document into a fixed-length vector that
captures its semantic meaning. When a question is posed, the RAG model generates
a query vector for the question using the same embedding technique. The vector
database then retrieves the documents whose vectors have the highest cosine
similarity to the query vector, indicating that they are most likely to contain relevant
information (Lewis et al., 2021).

By using a vector database to store and retrieve documents, RAG models can
efficiently access a large corpus of text to find the most relevant information for a
given question. This approach allows RAG models to answer questions that require
knowledge beyond the scope of the training data, making them well-suited for
open-domain question-answering tasks (Lewis et al., 2021). A vector database is
designed for the efficient storage and retrieval of vector data, setting it apart from
conventional databases that organize data in tables and columns. Unlike traditional
systems, vector databases are specifically tailored to handle high-dimensional vector
representations of data, optimizing both storage and query capabilities.

FAISS and ChromaDB stand out as leading local vector databases. While they
primarily operate as local vector management libraries and not strictly as databases,
they offer seamless integration with Al tools like LangChain and OpenAl’s embedding
models. This integration enhances the efficiency of embedding searches (Jeong,
2023).

However, as the database and complexity of documents grow, and especially in multi-
modal cases where the system needs to handle information from several different
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documents, standard RAG methods has shown some weaknesses. Solutions like
MuRAG (Chen et al., 2022), LIaVA (Liu et al., 2024), and Video-Llama (H. Zhang et
al., 2023) have been proposed to incorporate additional modalities. However, they are
not applicable to this research because metadata from sources such as video, audio,
and images has already been extracted and presented in a text format. Structuring
this type of data can be effectively managed with databases. With the advancement
of models like GPT-4, it is possible to develop "agents" capable of converting natural
language into SQL queries for use in production environments. These agents will
then retrieve information from the database based on the user’s input. There are
several ways to create these agents, and the two most commonly used frameworks
are Langchain and Llama-index.

In the LangChain framework, agents are important components for constructing LLM
applications. These agents, categorized into Action Agents and Plan-and-Execute
Agents, determine the appropriate tools and actions based on user input. Action
Agents decide on the next action by considering the outputs of all previous actions. At
the same time, Plan-and-Execute Agents devise a comprehensive sequence of steps
based on user input and execute them sequentially. This approach is essential for
developing flexible and dynamic LLM applications (Topsakal & Akinci, 2023). Agents
interact with the world through tools, which are interfaces facilitating specific actions
aligned with the agent’s functional objectives. These tools are purposefully selected
based on the agent’s intended purpose. For instance, an agent interfacing with a SQL
database would need tools for executing queries and inspecting tables.

Additionally, LangChain introduces the concept of toolkits. These are aggregated
collections of synergistic tools assembled for particular use cases, designed to
consolidate tools that function effectively together for distinct tasks. Toolkits also
encompass convenience methods for easy loading, enhancing the integration process
of various tools into the agent’s workflow. This architecture allows for a high degree

of flexibility and customization in LangChain. Agents can be tailored to specific
applications by selecting the right tools and toolkits, enabling them to perform a wide
range of tasks efficiently and interact with diverse data sources and environments
(Topsakal & Akinci, 2023).

It is important to understand that tools are not run on the LLM, but locally or the
application serving the user interface.

In the paper, Can LLM Already Serve as A Database Interface? (Li et al., 2024), the
authors evaluate the performance of LLMs on a novel text-to-SQL benchmark called
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BIRD (Blg bench for laRge-scale Database grounded in text-to-SQLs). The BIRD
benchmark aims to mimic real-world scenarios by incorporating large databases with
complex schemas, noisy data values, and the need for external knowledge reasoning.
The authors test several state-of-the-art LLMs, including GPT-4, on this challenging
benchmark. Their experimental results demonstrate that even the most powerful
model, GPT-4, achieves only 54.89% execution accuracy, significantly lagging behind
human performance of 92.96%. This highlights the limitations of current LLMs in
handling text-to-SQL tasks involving large, noisy databases and the need for external
knowledge grounding. The paper addresses a crucial issue, as many existing text-to-
SQL solutions are designed and evaluated on clean, relatively small databases, which
do not accurately reflect the complexities encountered in real-world applications. The
authors encourage further research to address the challenges presented in the BIRD
benchmark, paving the way for more robust and practical text-to-SQL systems (Li et
al., 2024).

It is worth noting that this paper does not include any open-source models. This might
be because open-source models currently do not have advanced function-calling
abilities. In NexusRaven: a Commercially-Permissive Language Model for Function
Calling (Srinivasan et al., 2023), the authors claim that their model surpasses even
GPT-4 in function calling. However, the model "primarily emphasizes single-round
interactions with humans through natural language instruction”. The model’s focus
on single-round interactions may limit its applicability in scenarios requiring multi-step
reasoning or extended dialogue. However, the techniques introduced, such as multi-
step data refinement and demonstration retrieval augmentation, could potentially
benefit other language models and approaches aimed at more interactive and multi-
turn tool usage.

To properly understand the limitations of language models with respect to functions or
tools, it is essential to grasp the fundamental concept of functions. A function, in the
context of language models, is analogous to functions in programming languages.

It expects an input, processes the input according to its defined logic, and returns

an output or result. When using functions with LLMs like GPT-3.5 or GPT-4, the user
must provide the model with a description of the function’s purpose and the expected
input format. Based on this information and its internal reasoning capabilities, the
model can then decide whether to call or invoke the function. If the model chooses

to call the function, the function’s execution occurs on the client side (i.e., outside the
model), and the resulting output is returned to the model (OpenAl, 2023a).
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2.4.3 LangChain

In the LangChain framework, one can create either a chain of functions, calling one or
more predefined functions sequentially before providing the user with a final answer
or output, or create an Agent that has a set of tools (functions). The Agent provides a
lot more flexibility and adaptability, as it can do internal reasoning and decide on what
tools, and how many tools, should be invoked to give the final answer as described in
(Langchain, 2024a).

The team behind LangChain has also created LangSmith. LangSmith is a
comprehensive platform designed to help you manage your LLM applications with
ease. With its powerful tools, you can efficiently monitor, calculate costs, and trace
API usage from your applications. The platform’s intuitive dashboard provides
essential information, such as the origin of the call, input and output details, start
time, total tokens, and the cost of an APl call (‘Getting Started with LangSmith’,
2024).

By utilizing database property verification prior to executing the LLM agent, the
speed and quality of the solution can be significantly improved. A feasible approach
to achieve this is to employ the Langchains extractor chain (Langchain, 2024b),
which can extract properties from a given prompt into a schema. This chain will
always return data in the same format, making it possible for a program to process
it. Subsequently, a conventional algorithm can be applied to identify the closest
matches. One such algorithm is the Ratcliff/Obershelp pattern recognition (Gestalt
Approach), first introduced in 1988 (Raitcliff & Metzener, 1988). This algorithm
performs well at finding the best match between two sets of data, taking into account
the sequence and structure of the data, rather than relying solely on exact matches.
This approach effectively detects similarities and differences, making it highly
valuable in applications such as spell checking, text analysis, and natural language
processing, where recognizing related or similar words is essential. Other methods
explored in this field are the longest common sub-sequence algorithms Bergroth et
al., 2000 and the Levenshtein algorithm (Schulz & Mihov, 2002).

2.4.4 ChainlLit

Chainlit is an open-source Python package that enables developers to build
production-ready conversational Al applications. It provides a range of features that
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make it an attractive choice for building chatbots and virtual assistants. Chainlit’s

key features include building conversational Al applications quickly by integrating
seamlessly with an existing codebase or starting from scratch in minutes. The
platform also provides tools for visualizing multi-step reasoning. Chainlit comes

with a set of integrations with popular libraries and frameworks, such as OpenAl

and LangChain, making it a flexible and versatile choice for building LLM based
applications. Furthermore, Chainlit allows developers to build custom frontends,
providing them with the ability to integrate their own React-based user interfaces with
the Chainlit backend (Chainlit, 2023).

2.5 Chapter Summary

In this chapter, we have discussed the terminology used in the paper, looked briefly at
soccer and the dataset SoccerNet.

We also discussed some key concepts related to LLMs and how they’re used in the
context of agents and tools. LLMs are impressive machine learning models that
can understand and generate text in human languages. One popular example of
an LLM is OpenAl's GPT models. To help these models predict the next word in a
sentence, they use tokens. Tokens can represent single characters, parts of words,
whole words, or even multiple words, depending on the context.

We also explored two important concepts: chains and agents. Chains are a series
of tasks that are performed one after another to achieve a specific goal. They follow
a fixed sequence of steps, and each step is executed in a predefined order. On the
other hand, agents are more flexible and adaptive. They use a LLM to reason and
determine the best actions to take and the order in which to take them. This allows
agents to make decisions based on the inputs they receive and any intermediate
results that might be generated.

Another essential concept is tools. Tools are functions that agents can use to
accomplish tasks. Each tool has an input schema that tells the language model what
parameters are needed to call the tool, and a function that actually runs the tool.
Tools can provide operations such as RAG, feature extracting and SQL-querying.

In order to be able to retrieve data from an external source, we rely on these agents
with their tools. However, tools are not able to verify that entities asked for exist in the
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dataset at their disposal. The dataset schema is also important to improve in retrieval
accuracy.

We will therefore in the next chapter look at different retrieval schemas, and explore
options to verify that entities in the user’s question exists in the dataset.
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Chapter 3
Methodology and Implementation

In this chapter, we delve into the various implementation options for our framework.
We will explore the design of the dataset structure, the retrieval schema, and the
experiments. In addition to this, we will discuss and implement a User Interface (Ul)
for the framework.

The vision behind this framework is to give non-technical users the ability to quickly
and accurately get information from a mixture of text files using only natural language.
We aim for the framework to work as a layer between users and data sources, as
illustrated in figure 3.1.

] B

IEcumeﬁts Datobase |

Find extro context
Respense

S o=
User Query /r

Query + Extra Context

Figure 3.1: Pipeline Concept

The pipeline aims to simplify the interaction as much as possible, making interaction
streamlined. One of the major components of the solution is the context retriever.
Context retrievers have the ability to search for extra information in documents,
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databases, and even online. This data is then paired with the user’s question to give
the LLM with updated and accurate information.

3.1 Data Management

3.1.1 Source Dataset

The dataset used in this framework consists of files from SoccerNet, and are
organized in a hierarchy of directories and JSON files as shown in Figure 3.2, and
ASR files from the paper SoccerNet-Echoes (Gautam et al., 2024). For the game
between Brunley and Liverpool on 20-08-2017, the files can be found in the following
path: "Dataset/SN-ASR_captions_and_actions/england_epl/2016-2017/2016-08-20

- 17-00 Burnley 2 - 0 Liverpool". This directory contains four files: 1_half-ASR.json,
2_half-ASR.json, Labels-caption.json, and Labels-v2.json.

The 1_half-ASR.json and 2_half-ASR.json files contain transcribed commentary
using Whisper (Radford et al., 2022) for voice-to-text. Each transcribed line is
segmented, with start time, end time, and transcribed text.

g Dataset
| P League A
L 2014-2015
| € Game12345
@ Labels-caption.json
& labels-v2.json
& 1 _half-ASR.json
& 2 half-ASR.json

| 2015-2016

. ¥ League B

Figure 3.2: Directory Structure in Dataset

One can download the files from SoccerNet by running these lines of code:

from SoccerNet.Downloader import SoccerNetDownloader

Downloader = SoccerNetDownloader(LocalDirectory="data/dataset/SoccerNet")
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Downloader.downloadGames (files="Labels-v2. json",
split=["train", "valid", "test"])
Downloader.downloadGames (files="Labels-caption.json",

split=["train", "valid", "test"])

The Labels-caption.json file has two main parts. Part one is general information
about the game. Here we find

Timestamp - Unix time format for game start

» Score - Final score of the game

Round - The round of the season

» Teams - The teams that played in that game

We also find game lineup in part one. In the lineup, we get information about players,
both starting and substitutes, with name, shirt number, country of birth, and a lineup
number. The lineup number can be translated to position on the field. In addition, we
find a item called facts for each player. This item contains information about goals,
yellow and red cards, assists, and substitutions for the given player.

The dataset then includes game-specific facts, such as

* Referee - Name of the referee in charge of the match
* Venue - Where the game was played

» Game date - The date and time of the game presented in DD/MM/YYYY -
HH:MM format.

In part two of the file, the dataset contains Annotations. This is information about the
game, created by clean commentary from the game. The annotations contain eight
items for each record, but only six of them are interesting for our use case. These are

* Important - A boolean flag that say if a event is important or not
+ gameTime - Time of the event, presented as PERIOD - TIME
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 Label - Describe the event, such as corner, substitution, soccer-ball (goal),
funfact, y-card and so on. All event labels and the total occurrence in the
database is shown in Figure 3.3

» Description - Textual description of the event, extracted from game comment-
ary

* Visibility - If the event was shown on camera or not

* Position - At what frame of the video did the event happened.

To standardize the dataset, and make it easier for the SQL Agent to navigate, soccer-
ball was renamed to goal, while y- and r-card were renamed to Yellow and Red card.
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Figure 3.3: Dataset - Event Type Distribution from Labels-caption.json

The Labels-v2.json file is a more compact and detailed version of the annotations in
Labels-captions.json. This file includes

+ gameTime - Time of the event, presented as PERIOD - TIME

* Label - Description of the event. This dataset contains a lot more events, such
as Shots on/off target, Throw-in, Clearance, Foul, in adittion to what is found in
Labels-captions.json. All event labels and the total occurrence in the database
is shown in Figure 3.4
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* Position - At what frame of the video did the event happen.
+ Team - What team the event is for. (Home, Away, Not applicable)

« Visibility - Is the event shown on camera, translated from a string value of
"visible" and "not shown" to a boolean true/false value.

By examining the different events in the dataset, we discovered that Labels-v2.json
had more events recorded than Labels-captions.json, as shown in Figure 3.4 and
Figure 3.3. Therefor, event names in Labels-v2.json was chosen as our standard,
and labels in Labels-captions.json was renamed to follow this standard. Since Labels-
captions.json also include a description of the event, an effort was made trying to
connect the two tables using the gameTime column. Sadly, the gameTime of these
two dataset is out of sync, making it hard to connect an event across the two files.

.10% |
4| = i
xQ
i
o
3 |
o]
Aol
o
= S =
2 — — |
3 5§
O Ne) — 1
oN — o o
R 9 — 5 O
10 N Q8 o " 8 R P D 8
+ & S N S 15 10 oo =
DN — NN\QLODDN o
ol L o O Bm—-=* O 0 m > |
T T T T T T T T T T T T T T T T T
N 2 F V2o O QQ
R N S N S A S SIS
S @ ¥ FE LI XILL O
S @ < & LER S T @
\O ) (‘)\' 6\ 9 & (-o\) *Q\S'
S S ,\(\6\ > S \\e}

Figure 3.4: Dataset - Event Type Distribution from Labels-v2.json

As shown in 3.1 and 3.2, both describing the first goal in the match between Chelsea
and Burnley on 02.02.2015, both gameTime and position (frame in video) is out of

sync. This makes it impractical to tie the two files together. Thus, it was decided to
put the information in two different tables.
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Table 3.1: Labels-caption.json

Value

Key

true

important

1-13:36

gameTime
label

soccer-ball
description Goal! Eden Hazard provides Branislav Ivanovic (Chelsea)

with a nice pass inside the box. It allows him to finish with a

precise effort into the bottom right corner. 1:0.

shown

visibility

816000

position

Table 3.2: Labels-v2.json

Value

Key

1-13:10

Goal

gameTime
label

790722

position
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expect, ball out of play is the most common event, while events such as goal and red
Figure 3.5: Aggregated Labels per Game, for Game 1 to 126 - From Labels_v2.json

In figure 3.5 the total number of events for game 1 to 126 is shown. As one could
card are rarer.



3.1.2 Context Retrievers

In Chapter 2, we saw that there are several methods to provide additional context to
the LLM. One such method is using embedding models and vector databases to find
similar contexts, as illustrated in figure 3.6.
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Figure 3.6: RAG using Embedding Models and Vector Databases

As outlined in Section 3.1.1, the data provided for each game is organized across
multiple files. Given the project’s multi-modal scope, it’s likely that additional
modalities, and consequently, more files, will be introduced later. Although this
system can retrieve all documents associated with a given game, it’s not assured that
the LLM will effectively interpret the context returned in Figure 3.6. This challenge
arises because some events are linked through timestamps while others provide
general information about the game, among other distinctions. A crucial aspect of
generating embeddings involves dividing the document into several chunks. This
process will further fragment the data, complicating the task for the LLM to analyze
the text efficiently.

If this RAG based system is asked to answer a question such as question 2 in
Chapter 3.3.2, where the system is asked to find the total goals scored by a team
within a season, the RAG module would have to process all documents in the dataset
to what games the team played in. It would then need to extract and aggregate the
goals for each game. This would take a lot of computing, and the system would be
unusable as the database grows.

To address this issue, it was decided to explore the benefits of introducing SQL
agents that can translate text input into SQL queries and then retrieve the context
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directly from the SQLite database. This process is similar to the one described in
Figure 3.6, but it introduces agents that implement a chain of thought reasoning
process. As seen in Figure 3.7, the agent can perform several loops, where it justifies
its reasoning and splits a question from the user into several different queries to the
database.

The introduction of SQL-Agents offers several advantages:

1. Structured Data Retrieval: By translating natural language queries into SQL
statements, the agents can directly access and retrieve relevant information
from the structured database, eliminating the need to sift through and interpret
unstructured text data.

2. Context Preservation: The database stores the data in a well-organized
and context-preserving manner, ensuring that related events and information
are linked together. This enables the agents to retrieve and combine relevant
context more effectively.

3. Modular Approach: The SQL-Agents can be designed to handle specific types
of queries or data modalities, allowing for a modular and extensible system as
new data sources or modalities are introduced.

4. Chain of Thought Reasoning: By implementing a chain of thought reasoning
process, the agents can break down complex queries into smaller, more
manageable steps, justifying their reasoning at each stage. This approach can
improve the overall quality and interpretability of the generated responses.

5. Scalability: With the data stored in a structured database, the system can more
easily scale to handle larger datasets or higher query volumes, as database
management systems are optimized for efficient data retrieval and querying.

The framework can retrieve information from the database based on the user’s
qguestion. After information retrieval, the agent assesses the information and decides
on future actions. These actions could involve querying for more data, providing
data directly from the database, or analyzing the result and providing the user with

a textual answer.

Additionally, there is an opportunity to create a RAG system, which would give the
SQL agent access to sample SQL queries. For instance, a user could ask, "Give me
the name of all teams in the database," and the corresponding SQL query would be
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Figure 3.7: RAG using SQL Agents

SELECT NAME FROM TEAMS:;. This approach would enable us to provide the agent
with additional tools to tackle tasks it may not be performing well on initially and also
provide users with a flexible tool to modify the application to their needs by simply
adding a line of text in the sqls.json file.

Another potential approach is to design a multi-agent system, where one agent
interacts with the database while another agent searches the web for additional
information or generates statistics. However, this method raises two significant
concerns. Firstly, the agent would need to match the entity names in the database
exactly, which could be problematic if the agent resolves a term like "Barca" to
"Barcelona FC" instead of the expected "Barcelona". Secondly, the agent may find
extra information online that does not match the data in the database, which could
lead to inconsistencies. This approach’s lack of user control over the data’s origin is a
major issue. Therefore, we decided to explore alternative solutions.

A common problem we experienced was mistakes in input. For example, a user might
ask, "How many goals did Messi score for Barca in the 15-16 season?" This question
raises three key challenges:

1. First, the player name given by the user is Messi, but in the database, Messi
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is stored as Lionel Messi. The same is the case with Barca, which is stored
as Barcelona. An agent set up to search the web, might resolve Barca to
Barcelona, but it might just as well resolve it to Barcelona FC.

2. The seasons in the database are stored with full years, so 15-16 would need to
be 2015-2016 to find the correct values. One can not expect the web agent to
resolve. Additionally, the season’s structure will change from league to league.
In Norway, we would only use one year to describe a season.

3. The SQL Agent will, in some cases, be able to figure this out by itself by
performing multiple queries searching for information. However, this process
is slow and will not work in all cases.

One possible solution to address the issue of ambiguous user queries might be
to instruct users to use full names in their queries. However, this approach would
compromise the vision of using natural language to query the database. A more
effective approach would be to introduce a query-building stage in the chain.

This stage would involve the agent analyzing the user’s query to identify potential
ambiguities or mismatches between the user’s terminology and the database
schema. By leveraging additional context or information sources, such as knowledge
bases or entity resolution techniques, the agent could attempt to resolve these issues.
For instance, the agent could recognize that "Messi" and "Barca" refer to "Lionel
Messi" and "Barcelona" respectively, and that "15-16 season" should be translated

to "2015-2016" based on the database’s date format.

By incorporating this query-building stage, the agent can effectively bridge the gap
between natural language queries and the structured database schema. This allows
accurate and efficient retrieval of the desired information while still allowing users to
query the database in a natural and intuitive way.

The query-building stage can also be designed to handle more complex queries,
such as those involving multiple entities, dates, locations, and other specific details.
This approach enables a more natural and user-friendly interaction with the system
while still leveraging the structured nature of the database for precise and efficient
information retrieval.

By combining the strengths of SQL agents and a structured database approach,
our system aims to achieve significant improvements in accuracy, efficiency, and
scalability when retrieving and combining relevant context for multi-modal data.
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Furthermore, the chain-of-thought reasoning process enhances the interpretability
of the generated responses, providing a more transparent and trustworthy interaction.

However, in order to make the SQL agent work, the dataset has to be translated into
a structured database.

3.1.3 Database

As discussed in section 3.1.2, using a conventional RAG system for this unstructured
data would be impracticable. However, transforming this data into an SQL database
presents its own challenges. A script utilizing SQLAIchemy was developed to tackle
this issue, with a user-friendly SQLite database as the chosen database system.

This script converts the JSON files into a structured format, creating tables and
columns based on a predefined database schema. This process ensures that

all relevant information is preserved and easily accessible to the SQL Agent. By
structuring the data in this way, information retrieval and generation from the dataset
becomes more efficient and accurate. Figure 3.8 illustrates the entity relation diagram
of the database.

The script also includes a feature that standardizes variable names, enhancing
consistency across the database. The basic structure of the database is as follows:

» teams

* players

* leagues

* games

* game_lineup
* events

* player_events
* captions

* commentary
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* player_events
* player_events_labels
* agumented_teams

» agumented_leagues

player_avant_labals

id INTEGER
label VARCHAR captions
T id INTEGER
game_id INTEGER M
player_events game_time  WARCHAR
players id INTEGER period INTEGER
hash VARCHAR game_id INTEGER label WARCHAR
name VARCHAR “ player_id INTEGER A description  TEXT
country VARCHAR time WARCHAR impaortant BOOLEAN
[ type INTEGER A visitility BOOLEAN
linked_player INTEGER frame_stamp INTEGER
| \ |
game_lineup A | ¥
id INTEGER games augmented_leagues
game_id INTEGER A id INTEGER id INTEGER
team_id INTEGER A timestamp WARCHAR league_il INTEGER A
player_id INTEGER A SCOre WVARCHAR sugmented_name VARGHAR
shirt_number VARCHAR ‘goal_home INTEGER
pasition WARCHAR ‘goal_away INTEGER
starting BOOLEAN B T VARCHAR
captain BOOLEAN home_team_id INTEGER M - laagues
coach BOOLEAN away_team_id INTEGER T
tactics VARCHAR venue VARCHAR L
T referee VARCHAR pemelVARCHAR
attendance WARCHAR
date VARCHAR
3 & SEE50N VARCHAR % \
eams league_id INTEGER 7 |
id INTEGER A
name VARCHAR jComm Stary
| \3 id INTEGER
- game_id INTEGER A
events pericd INTEGER
- id INTEGER event_time_start FLOAT
augmented_teams ‘game_id INTEGER A event_time_end FLOAT
id INTEGER peiod Sz description TEXT
team_id INTEGER & game_time  INTEGER
sugmented_name WARCHAR team_id INTEGER A
frame_stamp INTEGER
label WARCHAR
wisibility BOOLEAN

Figure 3.8: Database ER Diagram

The helper tables, augmented_teams, and augmented_leagues, are created

from CSV files containing pairs of augmentations and full names. This allows the
framework to perform lookups on the team Manchester United by using ManU as an
abbreviation.

The data processing script systematically extracts information from JSON files and
stores it in a structured database. The steps involved in the process are outlined
below:

1. Extract the league and season information based on the folder structure.
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2.

10.

11.

12.

From the label-caption. json file, extract the following game details:

* Home and away team names
» Score

Round

Venue

Referee

Date and timestamp of the game

Attendance

Check if the home and away teams are present in the database; if not, create
new entries for them.

. Add the game details to the database as a new game entry.

From the label-caption. json file, also extract the game lineup information.
For each player in the lineup, get the following details:

 Player number

Captain status

Starting status

Country

Position on the field

Player-specific facts (if any)

Check if the player is already in the database; if not, create a new player entry.

. Add the player to the game_lineup table, linking them with the current game.

Parse player-specific facts and add these as entries in the player_event table
associated with the current game.

Process all the events listed in the label-caption. json file, renaming events as
necessary.

Add each event to the caption table, using the game as a foreign key (FK).

From the 1abel-v2. json file, extract event data and add it to the Event table,
again using the game as a FK.
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13. From files named 1_half-ASR. json and 2_half-ASR. json, add commentary
data to the commentary table with details such as period, event start time, event
end time, and the description of the event.

During the development of the SQL chain, it became evident that descriptive table
and column names played a crucial role in improving the LLM’s understanding and
ability to provide accurate solutions. As a result, we had to revisit and refine the
database design multiple times before settling on a clear and intuitive structure for
both users and the LLM.

One of the key considerations was the naming convention for tables and columns,

as the SQL Chain relies on these names to comprehend the data and determine

the appropriate queries to retrieve the desired information. For instance, in the early
stages of the project, the table containing event information was named "annotations,"
while the table now known as "captions" was called "events." Although both tables
contained event-related data, the "annotations" table had more comprehensive
labeling, making it a better choice when the user requested information about specific
events like shots, fouls, or corners.

By iterating on the database design and ensuring clear and descriptive naming
conventions, we were able to improve the LLM’s ability to understand the data
structure and formulate accurate queries. This, in turn, enhanced the overall
performance and reliability of the RAG system, allowing for more precise and relevant
information retrieval and generation.

3.2 Proposed Pipeline

Querying a database using natural language involves multiple steps to translate
human input into an optimized form for LLMs. The proposed pipeline, as illustrated
in Figure 3.9, consists of several stages designed to ensure accurate and efficient
retrieval of information. Creating a robust chain can also have the extra benefit that
it allows a weaker LLMs to run the chain and get the correct result. This can both
reduce costs and improve the overall speed of the system. This can also open the
path for using open-source models at a later time.

The three main stages is: Feature Extraction, Feature Validation, and SQL
Querying.
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Figure 3.9: Proposed Pipeline

1. Feature Extraction: The user’s input is sent to an LLM along with the
properties schema and a system prompt describing the properties the LLM
should extract from the question. The schema should be designed to be
as dynamic as possible. The LLM then returns a list of extracted properties
relevant to the query.

2. Feature Validation: In this stage, each extracted feature is checked against the
appropriate table in the database using string-matching algorithms. This step
aims to correct spelling mistakes and abbreviations. Once a value is found, both
the value and its primary key are added to the extracted value.

3. SQL Querying: The cleaned user prompt, along with system-specific prompts,
is combined to guide the LLM in generating SQL queries that will answer the
user’s question. The constructed query is then passed to the SQL chain, which
designs and executes the SQL queries against the underlying database. The
SQL chain handles communication between the system and the database,
retrieves the requested data, and prepares the results for presentation to the
user.

By addressing potential issues such as spelling mistakes, abbreviations, or context-
dependent interpretations and by including primary keys for items in the database
during the feature extraction and validation stages, the system can better understand
the user’s intent and prepare the query for the subsequent stages. The query
construction stage leverages the cleaned user prompt and system prompts to guide
the LLM in generating SQL queries that accurately represent the user’s information
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needs. Finally, the SQL chain bridges the gap between natural language and
structured data retrieval, executing the query and presenting the results to the user.

3.2.1 Choosing a Language Model

In the field of LLMs, new models are emerging on a weekly basis, with many of them
available in semi-open source formats, making it possible to host them on one’s own
infrastructure. While this approach is interesting and can be cost-effective, as well
as enabling better customization, open-source models like Llama and Mistral do

not yet support advanced function calling as required by the LangChain framework.
Gorilla-openfunctions-v2 (Patil et al., 2023) do work with functions, but during initial
testing, it would most times stop mid-chain. It has been considered to fine-tune

a model to handle the feature extraction part of the chain. While this is a viable
option, it demands a substantial amount of data, is time-consuming, and would shift
focus away from the overall goal of this thesis. Therefore, it was decided to focus on
OpenAl's GPT-4.0-Turbo and GPT-3.5-Turbo models.

From table 3.3, one can see that there is a huge increase in the cost of using GPT
4 over GPT 3.5. For both input and output tokens, the cost increase is 1900%. This
makes it clear that one should aim to use GPT 3.5 whenever possible (OpenAl,
2023c).

We aim to investigate how the two models work with the SQL chain. By optimizing the
chain and making it easier for the LLM to perform its task efficiently, we can also pave
the way for the use of locally hosted open source LLMs once they achieve function
calling abilities.

Model Input Output
gpt-4-0125-preview $10.00 / 1M tokens $30.00 / 1M tokens
gpt-3.5-turbo-0125  $0.50 / 1M tokens  $1.50 / 1M tokens

Table 3.3: Pricing for Different Models (OpenAl, 2023c)

While thorough experiments and validation has been conducted with GPT-3.5-

Turbo and GPT-4-Turbo, it is important to note that the landscape of LLMs is rapidly
evolving, with new models and advancements emerging at a rapid pace. As a result,
it is crucial to periodically re-evaluate the available options and consider incorporating
newer models or techniques that may offer improved performance, capabilities, or
cost-effectiveness for a specific use case.
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3.2.2 Feature Extraction

The feature extraction module is an important step when it comes to improving the
overall quality of natural language to SQL queries and in our proposed pipeline, this
module is step one. During our prototyping phase, it became clear that user will not
fully type all names, they will not know how events are labeled in the database, and
even when having this information spelling mistakes might happen.

Ex’tmc‘tion:
. Schewo. .
5 user quer‘y

.................... - " Json ol:-_J

Figure 3.10: Extractor Module - Part 1 of Proposed Pipeline

In order to improve the LLM’s comprehension of user queries and to ensure the

input of complete names, the extractor was integrated into the chain. This extractor,
which utilizes the LangChain library, functions by sending the query to the LLM and
receiving structured output, as illustrated in Figure 3.10 and 3.11. The obtained data
is then cross-referenced with the database to expand abbreviations, and seasons are
adjusted using a custom function.

This procedure is crucial because the SQLchain often encounters difficulties in
managing typos and abbreviations. In the best-case scenario, it may necessitate
executing additional queries, while in the worst-case scenario, it may yield incorrect
or no information at all.

A potential approach to address this issue could involve pre-evaluating the prompt
with the LLM before starting the SQL chain. Although this introduces an additional
step, it would streamline the process for instances where the LLM already possesses
the required information, eliminating the need for a database lookup. However, a
challenge arises when the LLM uses a different name for a team than what is stored
in the database. For example, the team ’Leicester City FC’ is recorded as ’Leicester
City’ in the dataset, but the LLM refers to it as 'Leicester City FC’, resulting in a
mismatch. Consequently, alternative solutions were explored, such as using vector
databases and traditional algorithms.
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The random nature of LLMs also introduced some extra complexity. Sending this
guestion to the extractor chain: "In what game did Messi score 3 or more goals” will,
in most cases, return a list of

{"person_name": ["Messi"], "in_game_event": ["goals"]}

However, this response could also return

{"person_name": ["Messi"], "in_game_event": ["game", "goals"]}

As one can see in the second response, the word "game" has been extracted as an
in-game event rather than being recognized as part of the question.

This randomness was present across both GPT-3.5-Turbo and GPT-4.0-Turbo.
While there is a slight improvement when using GPT-4.0-Turbo, the increase in time
consumption and cost of using GPT-4.0-Turbo suggest that GPT-3.5-Turbo is the
correct model for this task. This assumption was tested in Section 4.2.1.

Wrongly extracted features were an issue throughout much of the prototyping phase,
and the result could change from run to run. This inconsistency was likely due to the
inherent randomness and variability in the way LLMs processes and understands
natural language inputs. Even with the same input, the models might sometimes
interpret the text slightly differently, leading to variations in the extracted features.

A stricter system prompt was crafted to mitigate this, providing more explicit
guidance and context to the language model. This aimed to reduce the potential for
misinterpretations and improve the consistency of the extracted features. Additionally,
we decided to create unit tests for the module. This approach makes it possible to
verify that the extractor was providing correct results at a given time by comparing its
outputs to a set of predefined, expected outputs.

Unit testing is a commonly used software development practice that helps ensure
the correctness and reliability of individual components or functions. By establishing
a suite of test cases that cover various input scenarios and expected behaviors,
developers can automatically validate the extractor’'s performance and catch any
regressions or deviations from the desired functionality. However, in most cases, one
creates mock API calls, meaning that the test does not call the actual API endpoint
but calls a function that returns a pre-defined value. Since our issue was with the
response from the APl itself, this would not be helpful.
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How many 3oa\|s cid Messi score For Barco in the 15-16 season?

Schemo.
schema = {
"properties": {
"person_name": {"type":

string},

"team_name": {"type": strlng} - - {"person_name" : "Messi", "team_name": "Barca",
" "strlng}

"in_game_event": {"type": "in_game_event": "goal", "season": "15-16"}
"season": {"type":"string},

} 1

required": (),
}
Function

"name": "information_extraction",
"description": "Extracts information from the passage.",
"parameters" {Properties}

Figure 3.11: Extractor Concept Figure

Because of testing against a live APl endpoint, there is a cost associated with each
unit test, and it was therefore decided not to implement the test in a CI/CD pipeline.

3.2.3 Feature Validation
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Figure 3.12: Validation Module - Part 2 of Proposed Pipeline

The initial approach to feature validation involved the use of a vector database
combined with RAG techniques. However, despite the potential benefits of this
approach, the results proved to be unreliable, especially when extracting short
abbreviations like "Man" or "ManU". Another potential issue arises when the user only
provides the first or last name of a player. There are several players with "Henry" as
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a first name, and with no last name provided, the framework was unable to decide
which Henry to validate against,

In light of the unsatisfactory performance of the vector database combined with RAG,
the focus shifted toward exploring traditional lookup and word-matching methods.
This move was driven by the need to identify a more robust and reliable solution for
handling user prompts and queries. Among the potential solutions that emerged from
this investigation were the Ratcliff-Obershelp algorithm, Levenshtein Distance, and
Longest Common Subsequence (LCS).

The Ratcliff-Obershelp algorithm, which calculates the similarity between two strings
based on the number of matching characters, offered promising results. Similarly, the
Levenshtein Distance, a measure of the minimum number of single-character edits
required to transform one string into another, also demonstrated acceptable accuracy.
After careful evaluation and comparison of these two options, the choice ultimately
fell on Levenshtein Distance as the preferred method for handling user prompts and
queries.

This transition from complex embedding models to a traditional algorithm serves

as a valuable reminder of the importance of revisiting established solutions when
addressing challenges in Al. While cutting-edge Al techniques can be compelling,

it is crucial not to overlook the potential benefits of more conventional methods. In
some cases, advancements in Al can be discovered by re-examining how problems
were previously tackled and adapting those solutions to the current context. This
underscores the need for a balanced approach that considers both innovation and
proven techniques in the pursuit of Al development.

Figure 3.13 showcases the process of extracting the name 'Messi’ from the user-
generated prompt. This extraction is an essential step, as it allows the system to
identify and isolate the key information required for further processing. Once the
value is extracted, it is employed to perform a lookup against the database, with
the objective of finding the entry that most closely corresponds to the name. This
comparison is based on string similarity measures, which evaluate the likeness
between the extracted value and the entries stored in the database.

A threshold-based approach was implemented to optimize user experience and
enhance process efficiency. If a match is found with a score above a threshold and
there are no competing matches with the same score, the system automatically
selects the highest scoring value as the correct match. This eliminates the need for
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user intervention in cases where the system can confidently determine the correct
match.

However, there may be instances where no match achieves a score higher than the
threshold or multiple matches ties with a score over the threshold. In such cases, the
system cannot confidently determine the correct match without additional input. To
resolve this problem, the function will generate a list of the N most similar names to
the extracted value and present this list to the user. The user is then asked to provide
feedback by selecting the most accurate value from the list. This feedback not only
helps the system determine the correct match for the current query but could also
contribute to the system’s learning and improvement for future queries.

Once the correct value is confirmed, either through automatic selection or user
feedback, the process is repeated for each property associated with the user prompt.
This iterative process ensures that all properties are accurately identified and
matched with their corresponding entries in the database. Upon completing this
process, a new property dictionary is created, which stores the confirmed values for
all properties. This dictionary serves as the basis for further processing and analysis,
enabling the system to provide accurate and relevant responses to the user’s query.

An abbreviations table was incorporated into the database to provide additional
support and enhance the functionality of the system. This table serves as a repository
for multiple abbreviations associated with a team, as demonstrated in Table 3.4. To
create abbreviation tables for teams and leagues, we provide the files

data/dataset/augmented_teams.csv

data/dataset/augmented_leagues.csv

in the project’s GitHub repo. The design of the extractor validator schema allows

for abbreviation tables to be defined as needed. This ensures a dynamic and
scalable design for this module. It also allows this module to be used on a completely
unrelated database. Listing 1 shows the schema entry for the team name extraction.
On line 5 - 7 the table and columns that one should check against is defined. On lines
9 - 11, the augmented table is defined together with its respective columns. These
lines are optional, and if not included, there will not be any abbreviation check for the

property.

The introduction of this table necessitates some manual effort to populate it with
the correct values. However, the benefits of this addition significantly outweigh the
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initial investment of time and effort, as it contributes to improved system speed and
accuracy.

"team_name": {
"type": "array",
"items": {
"type": "string",
"db_table": "teams",

"db_column": "name",

"pk_column": "id",

"numeric": false,

"augmented_table": "augmented_teams",
"augmented_column": "augmented_name",
"augmented_fk": "team_id"

Listing 1: JSON Structure for the "team_name" Field

Team Name Abbreviation Name
Manchester United ManU

Manchester United Man U

Manchester United ManUnt

Manchester City ManC

Liverpool LFC

Table 3.4: Team Names and Abbreviation

The improvement in speed can be attributed to the priority given to the abbreviations
table during the lookup process. When a user prompt is received, the function

first checks for matches from the abbreviation table before proceeding with other
lookup methods. If a match is discovered in the abbreviation table, the function can
immediately return the full team name, bypassing the need for further lookup. This
speeds up the overall process, enabling the system to provide faster responses to
user queries.

The abbreviations table also offers end users the opportunity to customize the
abbreviations for the entities they frequently engage with. This personalization feature
not only caters to individual user preferences but also enhances the accuracy of the
system. By allowing users to define their own abbreviations, the system can better
understand and interpret user prompts, resulting in more accurate and relevant
responses. This combination of speed and accuracy improvements ultimately leads
to an enhanced user experience and increased satisfaction with the system. This
module makes up part 2 of our proposed pipeline and is conceptually designed as
shown in Figure 3.12.
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Once all properties are correct, the user prompt is updated with the correct names
and their respective primary keys where this makes sense. By applying this cleaning
step, the SQL chain gets a lot more information, and one can omit the exploring
steps of the chain. This will also guarantee that the framework gets the information
requested.

USG,I’ PFOMPt ["Hw many ﬁ.oals did Messi score for Barca in the 15-16 season?“}

l

. DifRlib Punction
Extroctor {"person_name" : "Mesil", "team_name": "Bal}:‘ca", A'es.s,-
"in_game_event": "goal", "season": "15-16" Retrive all names
\ from database

i match:
Do Por-o.H Select best mateh for person name; oF o 2 mobches retrun name
roperties L1 Matah 1 List ? else:
Human Reedback L2] Match 2 — retum top 3

L4 Enter new vc\!ue

)

. {"person_name" : "Lionel Messi", "team_name": "Barcelona",
Custom C.le_(’\”\"’\ﬁ "in_game_event": "Goal", "season": "2015-2016"}

"How wany goals did Messi score for Barca in the 15-16 season?
Upda‘tepl Information:

- Messi (now referred to as Lionel Mess) has a primary key: pk_value
- Barco (now referred To as Barcelona) has a primary key: pk_value
- 15-16 (now referred to as 2015-2016)

Update prompt

Figure 3.13: Cleaning of Extracted Data

During experiments conducted by sending users’ prompts directly versus cleaning
them first, it was observed that the cleaned prompts more frequently led to the correct
answer. This highlights the significance of preprocessing user inputs to enhance
response accuracy.

To delve deeper into the underlying issues, let’s examine some examples. We can
identify patterns and common challenges in the original prompts by analyzing specific
instances where preprocessing made a difference.

» User prompt: "Did Real or Man U win the most games in the 2015 season?"

Output: Swansea won the most games in the 2014-2015 season with
a total of 37 wins.

» Cleaned prompt: "Did Real or Man U win the most games in the 2015 season?
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Updated Information:

— Real (now referred to as Real Madrid) has a primary key: 30.
— Man U (now referred to as Manchester United) has a primary key: 7.
— 2015 (now referred to as the 2015-2016 season).

Output: In the 2015-2016 season, Real Madrid won 26 games, while
Manchester United won 5 games. Therefore, Real Madrid won the
most games in that season.

This analysis reveals that the initial user prompt incorrectly retrieved Swansea as the
team with the most wins for the 2014-2015 season. This error occurred because the
system could not resolve the references to "Man U" or "Real," and thus defaulted to
querying for the team with the most wins in any season. Furthermore, the system
incorrectly defaulted to the 2014-2015 season without considering alternatives.

In contrast, the cleaned prompt provided the system with clear references for teams
and the specific season to look for, enabling it to deliver the correct answer based on
the information found in the database.

Another example of this, with an even worse outcome, can be seen using this prompt:

» User prompt: "Who (and when) got the first yellow card in the game between
Chelsea and Swansea in the 15-16 season?"

Output: The first yellow card in the game between Chelsea and
Swansea in the 15-16 season was given at the following time:

— Description: A yellow card was given to a Chelsea player for a
foul.

— Event Time: 2700 seconds (45 minutes into the game).

» Cleaned prompt: "Who (and when) got the first yellow card in the game
between Chelsea and Swansea in the 15-16 season? Updated Information:

— Swansea (now referred to as Swansea) has a primary key: 6.
— 15-16 (now referred to as the 2015-2016 season).

— First yellow card (now referred to as yellow card).

Output: The first yellow card in the game between Chelsea and
Swansea in the 2015-2016 season was received by Jonjo Shelvey.
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The initial observation reveals an incorrect spelling of "Swansea," a mistake used in
the uncleaned version of the prompt, leading to a failed query that returns an empty
string. Consequently, the LLM begins to generate inaccurate information, fabricating
events that do not exist.

When looking at the cleaned prompt, it’'s clear that it returns more accurate results,
successfully identifying the first of three yellow cards and extracting commentary
data that describe the yellow card. However, it falls short of providing comprehensive
details, failing to specify the player’s team, or at what time of the game the event
happened.

The last example highlights a fascinating challenge. Here, the user requests Lionel
Messi’s full name, a task the LLM could easily accomplish without resorting to a SQL
chain. However, due to the operational design of the chain, it attempts a database
lookup. Using the user’s input, it fails to find an exact match and tells the user this.

» User prompt: "What is Messi’s full name?"
Output: | am unable to retrieve Messi’s full name from the database.
» Cleaned prompt: "What is Messi’s full name? Updated Information:
— Messi (now referred to as Lionel Messi) has a primary key: vgOOdZbd.

Output: Messi’s full name is Lionel Messi.

The cleaned prompt illustrates another intriguing aspect: even though the prompt
provides Messi’s full name, the system fetches this information using a database
query instead of using the directly provided name.

During the development of this feature, a benchmark set was created to track
progress across iterations more easily. The benchmark was designed to verify that
the extractor extracted all the expected values and that the values could be found in
the database.

3.2.4 SQL Agent

The final step of the pipeline is the SQL agent provided by the LangChain framework.
Figure 3.14 presents a conceptual overview of this agent. Extracted and validated
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Figure 3.14: Conceptual Overview of SQL Agent

properties are used in a pipeline aimed at retrieving information from the database to
help answer the user’s question.

The first step uses vector search on the query to get the top k similar queries from
the SQL examples file. The LLM then assesses if it can answer the question based
on this information alone. If not, it utilizes internal tools like "get_db_schema" or
"describe_table" to retrieve additional information about the database schema and
contents. This schema exploration can be repeated multiple times before proceeding.
If the query is highly similar to one or more examples, the agent may choose to skip
this exploration step.

Next, the agent writes an SQL query intended to solve the task. It then runs this
query against the database using the "query_db" tool. Note that the LLM can
potentially write queries that alter or drop tables, so care must be taken when
querying production databases.

Once the query returns results, the LLM re-assesses whether this information can
answer the original question. If so, a final answer is composed. Otherwise, the agent
cycles back to retrieve more schema information or revise the query.

The flow follows a cycle of retrieving relevant information, writing queries, executing
queries, and evaluating whether the results are sufficient to answer the question. This
iterative process allows the agent to come up with a response through incremental
knowledge gathering and query improvements. In cases where the Agent can’t come
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up with a good answer, it is instructed to return "/ don’t know" by the system prompt.

The system prompt is an instruction that can be sent to a LLM to tell it how it should
act. The system prompt used by our system is based on LangChain’s (Langchain,
2024a) base prompt and is as follows:

You are an agent designed to interact with a SQL database.

Given an input question, create a syntactically correct {dialect} query to run,
then look at the results of the query and return the answer.

Unless the user specifies a specific number of examples they wish to obtain,
always limit your query to at most {top_k} results.

You can order the results by a relevant column to return the most interesting
examples in the database.

Never query for all the columns from a specific table, only ask for the
relevant columns given the question.

You have access to tools for interacting with the database.

Only use the given tools. Only use the information returned

by the tools to construct your final answer. You MUST double check

your query before executing it.

If you get an error while executing a query, rewrite the query and try again.

DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the

database.

If the question does not seem related to the database, just return
'T don't know' as the answer.

DO NOT include information that is not present in the database in your answer.

Here are some examples of user inputs and their corresponding SQL queries.
They are tested and works.

Use them as a guide when creating your own queries:

The prompt starts by defining the role of the LLM and sets guidelines, such as the
SQL dialect to use and the number of results to return. It then informs the system
what tools are available for communication with x|the database. To lower the chance
of hallucinations (generating text that is not grounded in factual information), the LLM
is asked only to use information returned from the tools in the final answer.

An interesting line in the prompt is the "DO NOT make any DML statements.." This
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line aims to prevent the LLM from altering the database in any way or form.

The prompt then instructs the system on what it should say if it cannot find relevant
information.

The final paragraph of the prompt is where SQL examples are provided. These
examples act as guidelines to help the LLM design a query to answer the question.

The prompt aims to provide a structured environment for the LLM to interact with the
database while also setting clear boundaries and guidelines to ensure the integrity
and security of the database.

3.3 Proposed Evaluation

3.3.1 Metrics for Evaluation

Extractor-validator For the extractor-validator module, we propose to use questions
1-20, paired with ground truth for these questions, and evaluate the extractor and the
validator as separate modules. We ask one question for each module:

1. Did the extractor successfully extract all the expected items? Options: Yes, No
or Partial

2. Did the validator successfully validate all the extracted items? Options: Yes, No,
Partial

This scoring system, with the options of Yes (e), No (a), and Partial (-) for each
component, allows for a quantitative assessment of the extractor-validator chain’s
ability to accurately identify and validate the relevant information from the given
questions. The overall performance could then be evaluated by analyzing the
distribution of scores across all ten questions. The questions contain some spelling
mistakes, and the chain leverages the aberration tables for both team names and
league names.

Since these two modules are interconnected, we chose to test them in the same
chain instead of doing module-by-module.
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SQLRAG The RAG module plays a pivotal role in guiding the framework to solve

the task effectively. To evaluate its performance, we suggest an additional 40

test questions, so we, in total, got 60 questions, each manually paired with a
corresponding SQL query from /src/conf/sqls.json. The pairing should be done using
experience.

To measure the efficiency of the RAG solution, we propose testing with four different
numbers of few-shot, FS of 1,2,3 and 5. To calculate the hit rate, we see if the
returned list of few-shots contains the SQL query mapped to the question. If yes,
record a hit, if no, mark it as a miss.

Ablation To fully understand the contributions of the different parts of our pipeline, we
suggest an extensive ablation study where all possible configurations of our pipeline
were tested with Q1-Q10.

1. Only SQL Agent: Sending the prompt directly to the SQL agent without RAG.
This is the last step in every test.

2. SQL Agent with RAG: Sending the prompt directly to the SQL agent with RAG
3. Extractor only: Sending the prompt with extracted values to the SQL agent

4. Extractor and SQL RAG: Sending the prompt with extracted values to the SQL
agent. The SQL agent uses RAG to get examples

5. Extractor and Validation: Sending the prompt with extracted and validated
values to the SQL agent

6. Extractor, Validation, and SQL RAG: Sending the prompt with extracted and
validated values to the SQL agent. The SQL agent uses RAG to get examples

By testing the components in these different configurations, it was possible to quantify
the contribution of each component to the final solution. This information is crucial for
understanding the strengths and weaknesses of the various parts of the system and
identifying areas for potential improvement.

3.3.2 AQueries for Evaluation

In order to evaluate the framework’s capabilities effectively, we have carefully chosen
guestions that encompass a wide variety of scenarios. These questions have been
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strategically designed to progress in difficulty, starting from Q1, which simply requires
finding an entity in the database, to Q20, demanding identification and connection of
five distinct entities.

Our selection also includes questions that involve aggregation and list-based queries
to push the boundaries of the framework. Furthermore, we have intentionally
incorporated questions like Q18, which are specifically crafted to challenge the
framework, particularly the context awareness and accuracy of the extractor-validator
component.

We define a set of 21 questions to be used during the experiments. The questions
are split into several categories, such as

1. Existence and membership queries (Q - 1,9,13,17,20)
2. Statistical and aggregation queries (Q - 2,3,11,12,16,18)
3. Record retrieval and listing queries (Q - 6,7,10,21)

4. Event dependent queries (Q - 4,5,8,14,15,19)

* Question 1: Is Manchester United in the database?

* Question 2: Give me the total home goals for Bayern M in the 2014-15 season
* Question 3: Calculate home advantage for Real Madrid in the 2015-16 season
* Question 4: How many goals did Messi score in the 15-16 season?

* Question 5: How many yellow-cards did Enzo Perez get in the 15-2016
season?

* Question 6: List all teams that played a game against Napoli in 2016-17
season in seriea? Do not limit the number of results

* Question 7: Give all the teams in the league ucl in the 2015-2016 season?

* Question 8: Give me all games in epl with yellow cards in the first half in the
2015-2016 season

» Question 9: What teams and leagues has Adnan Januzaj play in?

* Question 10: List ALL players that started a game for Las Palmas in the 2016-
2017 season? Do NOT limit the number of results
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* Question 11: Did Ajax or Manchester United win the most games in the 2014-
15 season?

* Question 12: How many yellow and red cards were given in the UEFA
Champions League in the 2015-2016 season?

* Question 13: Are Messi and C. Ronaldo in the database?

* Question 14: How many goals did E. Hazard score in the game between
Bournemouth and Chelsea in the 2015-2016 season?

* Question 15: How many yellow cards were given in the game between Bayern
Munich and Shakhtar Donetsk in the 2014-15 UEFA Champions League, and
did anyone receive a red card?

» Question 16: Make a list of when corners happened in the English Premier
League (EPL) 2015-2016 season. Aggregate by a period of 15 minutes.

* Question 17: What league is Manchester United, Arsenal, Bournemouth, Real
Madrid, Chelsea, and Liverpool in?

* Question 18: How many players have "Aleksandar" as their first name in the
database, and how many goals have they scored in total?

* Question 19: What did the commentary say about the game between Arsenal
and Southampton in the 2016-17 season?

* Question 20: Have Mesut Ozil, Pablo Insua, or Alex Pike played for West Ham
or Barcelona?

* Question 21: How many games has Real Madrid and Malaga played against
each other? List each game with the date and score. Also say who was the
home team. Output should be: home_team_name, away_team_name, date,
home_team_score, away_team_score

3.4 Proposed User Interface

To further enhance user experience and effectively demonstrate the framework’s
capabilities, we propose the integration of a user inference module built upon CainLit.
This incorporation yields two significant advantages. Firstly, CainLit’s built-in step
function enables the visualization of the data extraction and validation process,
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Figure 3.15: Proposed Ul

providing users with a clear understanding of the framework’s operations. In addition,
the validation function can present users with buttons to select the correct option in
instances where the module is uncertain. To solve the potential issues with wrongly
extracted features, we can implement a "No update” function, allowing users to
discard these values and improve both the updated prompt and the output.

As shown in Figure 3.15, the user first asks the system a question. The extractor
module extracts the results and feeds the extracted values back to the Ul and to the
validation module. If the validator needs feedback, the user will be asked to choose
from N buttons to clarify what entity they want. The validated properties are then sent
to the SQL Agent, which will query the database and provide the final answer to the
ul.

Secondly, CainLit’s native support for Markdown formatting enables the generation

of visually appealing and well-structured output from the LLM. This feature enhances
the overall aesthetic of the framework’s output, making it more engaging and easier to
comprehend for users. By leveraging these capabilities, the framework’s usability and
effectiveness can be significantly improved, providing users with a more intuitive and
informative experience.

A Ul was designed using the proposed framework ChainLit and shared as open
source in our GitHub repository (‘SoccerRAG: Multimodal Soccer Information
Retrieval via Natural Queries’, 2024). By running the command
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pip install -r requirements.txt
python setup.py
chainlit run app.py

from the root of the project, a web page with the Ul is presented. In figure 3.16, the
user asks, "Can you calculate Real Madrids [sic] home advantage for the 2015/16
season". The extractor module then extracts and presents the properties extracted
from that prompt. We can also see that the validator validated the properties
automatically in this instance. The user is then presented with the updated prompt,
which is then sent to the SQL agent.

© Yo

Can you calculate Real Madrids home advantage for the 2015-16 season?

Extractor

Extracted properties:

Cleaner

MNew prompt is as follows:
Can you calculate Real Madrids home advantage for the 2015-16 season?
Updated Information:

+ Real Madrid has a primary key: 30.
* 2015-16 (now referred to as 2015-2016).

© chatbot

This is the final answer: Real Madrid's home advantage for the 2015-2016 season is as follows:

« Total Home Games: 18
+ Home Wins: 14

* Home Draws: 1

* Home Losses: 3

Figure 3.16: GUI Example 1

At the end of the chain, the entity "ChatBot" presents the user with the answer to the
question.

This demonstrates that the framework is able to grasp soccer-related concepts such
as home and away matches.

In Figure 3.17a, the user asks "Create a list of all games Lionel got a yellow card
/ Make the list in markdown with following columns [sic] / Gameld, HomeTeam,
AwayTeam, Score, Date" Both player name, "Lionel" and in-game event, "yellow card"
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is extracted. However, the database contains two players with the first name Lionel,
and the validator module is unable to determine which one to select. Therefore, the
system presents the user with a choice between the two options, plus an additional
"No Update" option, ensuring that the correct information is retrieved.

If the user chooses "No Update", the property will not be checked against the
database. This is a useful feature if the framework extracts labels of no interest.

Once the user makes a selection, the prompt is updated, and the output is presented
in Figure 3.17b. In the final cell of this figure, the framework seamlessly converts
the markdown list into a list object, thereby making it easier for the user to read the
information and enhancing the overall user experience.

For a complete guide to running the framework, see Appendix B.2 or our GitHub
repository (‘SoccerRAG: Multimodal Soccer Information Retrieval via Natural
Queries’, 2024).

Choice

Lionel Messi

© vaiidator

Selected:

Mzke the list in markdown with following coulms
Gameld, HomeTeam, AwayTeam, Scare, Date
Updated Information:

© Earactor
= Linel (now referrad to as Lionel Messi) has a primary key: vg00dZbd.

Extracted properties:
= yellow card (now refemred to as Yellow card.

© chatvor

This is the final answar: Here is a list of all games Lionel Messi got a yellow card, limited to § results:

Gameld  HomeTeam AwayTeam  Score Date
125 Parls SG Barcelona  1-3 15/04/2015 - 20:45
421 Barcelona Dep.laCoruna 4-0  15/10/2016 - 16115
369 Al Madrid Barcelona  0-1 17/05/2015 - 18:00
453 Barceiona Valencia  4-2 19/03/2017 - 20045

473 valencia Barcelona  2-3  22/10/2016 - 16715

Lionsi Messi | | Lionel Carole | [ NoUpdate b

(a) Step 1 (b) Step 2
Figure 3.17: SoccerRAG GUI Example 2

It is worth noting that every extracted item from a question will try to auto-validate
first, but if the similarity score is too low or two items have a matching score, the user
will be asked to clarify.

For demo purposes, we deployed an instance of the application®. This application
requires the user to add an OpenAl API key. Since this is purely to demonstrate the
framework, it's not set up with multiple sessions. That means you should remove your

Thttps://simulamet-host-soccerrag.hf.space/
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API key once it is done, or it will leak to other user sessions. For continued usage, it's
suggested that the GitHub repository be cloned and the application hosted locally.

3.5 Chapter Summary

In this chapter, we explored a regular RAG solution before deciding on a SQL-based
retrieval schema. The importance of providing the framework with the correct data
structure is an important step in improving overall performance. The dataset was
then transformed from folders with JSON files to a structured SQL database. A
solution was proposed for the validation of entities, and we designed a pipeline
consisting of Feature Extraction, Feature Validation and SQL Querying with a few-
shot RAG technique. The need for abbreviation tables was discussed, and some
simple experiments were done to explore this need.

Furthermore, we looked at the pricing difference between OpenAl’s LLMs, and
identified a potential saving by utilizing GPT-3.5-Turbo instead of GPT-4.0-Turbo. This
is another motivation to construct a better framework around the SQL Agent, as a
better-structured input demands less of the LLM used.

A Ul for the framework was proposed and implemented. This component is important
since it makes it easier for non-technical users to interact with the framework. We
also proposed a set of experiments to evaluate our framework.

In the next chapter, we will conduct the experiments proposed to evaluate the
framework.
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Chapter 4
Experiments and Results

In this chapter, we test the framework to verify the justification of the different modules
added to the framework. Firstly, we will calculate query complexities, to be able to

get a difficulty score for each of the test questions used in the ablation study. We will
then perform a per-component evaluation and an ablation study, before evaluating

the framework end-to-end in terms of execution time, cost, robustness, and model
laziness.

4.1 Query Complexity Analysis

For each question from the user, the system will generate and run an SQL query
against the database. These SQL queries has different complexity based on the
question the user ask. For example, "Is Manchester United in the database?", can
be solved with:

SELECT t.*
FROM teams AS t
WHERE t.name = 'Manchester United';

Whereas the question, "List all teams that played a game against Napoli in 2016-17
season in seriea? Do not limit the number of results” needs a more complex query,
such as:
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SELECT DISTINCT

CASE

WHEN t1.name = ’Napoli’ THEN t2.name
ELSE t1.name

END AS opponent_team_name

FROM

games g

JOIN

leagues 1 ON g.league_id = 1.1id

JOIN

teams t1 ON g.home_team_id
JOIN

teams t2 ON g.away_team_id
WHERE

1l.name = ’italy_serie-a’
AND g.season = ’2016-2017’
AND (tl.name = ’Napoli’ OR t2.name = ’Napoli’)
ORDER BY

opponent_team_name;

tl.id

t2.1id

In order to quantify the complexity, we chose to look at the Halstead Metrics
(Halstead, 1977), and specifically the "Difficulty”" calculation. These calculations
are expected to give insights into how difficult a question would be to answer for the
framework. It is worth noting

Where

D is the difficulty of understanding the query.
* 1 is the number of distinct operators.

* 1, is the number of distinct operands.

Nj is the total number of operands.

Operators are symbols or keywords that specify the type of computation to be
performed. They represent actions like addition, subtraction, multiplication, division,
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Table 4.1: Query Complexity Analysis

Query Complexity Metric Qi Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Number of distinct operators, 1, 5 6 8 8 8 10 10 9 8 9
Number of distinct operands, n; 5 14 31 26 26 31 20 36 28 25
Total number of operators, Ny 5 11 33 18 18 22 16 27 19 19
Total number of operands, N, 5 16 110 26 26 38 22 41 31 26
Vocabulary, n 10 20 39 34 34 41 30 45 36 34
Length, N 10 27 143 44 44 60 38 68 50 45
Volume, V 33.22 | 116.69 755.81 223.85 | 223.85 | 321.45 186.46 373.45 258.50 228.94
Difficulty, D 2.50 3.43 14.19 4.00 4.00 6.13 5.50 5.12 4.43 4.68
Effort, E 83.05 | 400.09 | 10727.66 | 895.39 | 895.39 | 1970.20 | 1025.54 | 1913.91 | 1144.77 | 1071.42
Time to understand (s), T 4.61 22.23 595.98 49.74 49.74 109.46 56.97 106.33 63.60 59.52

comparison, logical operations (AND, OR, NOT), and more. In SQL, operators also
include keywords that control the flow of queries, such as SELECT, JOIN, WHERE,
and others that dictate how data should be fetched, joined, or filtered.

Operands are the entities on which operators act. They can be constants, variables,
columns, or more complex expressions. In essence, operands are the values or
references that are manipulated or examined by the operations defined by the
operators. In an SQL query like SELECT t.* FROM teams AS t WHERE t.name

= 'Manchester United’,t.*, teams, t and 'Manchester United’ are operands, while
SELECT, FROM, WHERE, AS and = are operators.

The results of the calculations are presented in Table 4.1, and show that Q3 is
ranked as the most complex query, with a difficulty rating of 14.19. By analyzing the
calculations in Appendix A.3, we see that the length of the query is what contributes
the most to this complexity score.

It is worth noting that the queries used in the calculations were hand-made, and
tested to confirm they return the data needed to answer the question. We can
however not guarantee that the SQL Agent generate the exact same SQL query when
answering the questions, as there is the possibility that more than one query can
return the needed data.

4.2 Per-Component Evaluation

4.2.1 Extractor-Validator

Following the setup in Chapter 3.3.1, we tested Q1-20 on the extractor-validator
module using GPT-3.5-Turbo. The experiments were initially planned to run on both
GPT-3.5-Turbo and GPT-4.0-Turbo. However, after completing them on GPT-3.5-
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Turbo, a decision was made to re-run the test only for the two questions that did not
receive a perfect score.

The results, presented in Table 4.2 and Appendix A.2, show that GPT-3.5-Turbo

only had problems with Q1, Q15 and Q18. In Q1, it extracted an extra entity without
causing any issues within the framework. In Q15, GPT-3.5-Turbo missed the red card,
and in Q18 it extracted the player name.

When using GPT-4.0-Turbo, the framework gave a correct answer for Q15.
Nonetheless, it still extracted the player name for Q18. This observation suggests that
while GPT-4.0-Turbo performs better on more complex tasks, the extractor chain is
context-unaware, irrespective of the underlying language model.

Table 4.2: Extractor-Validator Evaluation

Module Evaluation || Q1 Q2 | Q3 | Q4 | Q5 | G6 | Q7 | Q@8 | Q9 | Q10
Extractor ° ° ° ° ° ° ° ° °
Validator ° ° ° ° ° ° ° ° ° °
Overall ° ° ° ° ° ° ° ° ° °
Q11 | Q12 | Q13 | Q14 | Q15 | Q16 | Q17 | Q18 | Q19 | Q20
Extractor ° ° ° ° Ale ° ° ° °
Validator ° ° ° ° o/e ° ° ° ° °
Overall ° ° ° ° /e ° ° ° ° °

From the experiments, it can be assumed that the extractor-validator chain can be run
with GPT-3.5-Trubo without significant loss of accuracy. Knowing this, all experiments
following this experiment, uses this model for feature extraction, regardless of what'’s
being used in other part of the solution.

4.2.2 SQL Agent and RAG

We conducted four rounds of testing, varying the few-shot (FS) variable, which
controls the number of examples returned by the RAG module. Our objective was to
get a balance between minimizing the number of samples returned while maintaining
high accuracy levels.

However, as shown in Figure 4.1, reducing the FS variable to 1 had a severely
negative impact, and resulted in a hit rate of 63.33%. Setting FS to 2 gave 80%, FS
to 3, 85% and FS to 5 gave 90%.

There are some negative effects of including too many examples. Firstly, more
examples mean more tokens, making the framework both slower and more costly. In
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Table 4.3: Combined Hit Rate Q1-Q60 - FS=1, FS=2, FS=3, FS=5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

ARRXX | XV | VVVY | VYV | VYV | RRVY | RRVY | VYV | RV | RRVYV

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

RRAX | VVVYV | VVVY | VYV | RRRK | KRR | RRRY | XXX | VY | VY

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

RRXX | VVVV | VVVY | VVVY | VVYVY | VVYVY | VVYVY | VYV | VYV | VYV

Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40

VVVV | VYV | RV | VY | VYV | VY | VVYVY | RV | RRRY | VYV

Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50

VvV | VYV | VYV | VYV | VYV | VYV | RV | VY | VYV | VYV

Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60

VvV | RV | RV | VYV | VYV | VYV | RRRY | VYV | VYV | VYV

addition to this, including more queries, can confuse the LLM, since it's not always
clear what query it should use as a base. Therefore, we set FS=2 as the default
for the framework, and the results for this setting, together with the additional 40
questions, are presented in Appendix A.5.
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Figure 4.1: Hit Rate for SQLRag Based on Test Results

In Table 4.3 we see that some questions fail for all settings of FS. These insights can
be used to either add new SQL examples or modify the description of the examples
given. There are also some cases when no good SQL examples are present, and we
chose what we deemed to be the closest match. This choice is done from personal
preference, and might not always line up with what a vector search would pick.
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4.2.3 Ablation Study

For the ablation study, we decided to test with both GPT-3.5-Turbo and GPT-4.0-Turbo
to investigate the difference in quality, speed, and cost between the two models.

From table 4.4, we see that with the full pipeline, GPT-3.5-Turbo and GPT-4.0-Turbo
have comparable performance. On question 7, GPT-4.0-Turbo fails as a result of
laziness, not due to a wrong query. It is also interesting to see that all pipelines for
both models failed on question 8. From table 4.1, we see that it's not the most difficult
query, but the query returns a lot of data. This creates a situation where the LLM gets
overwhelmed and struggles with processing it in a meaningful way.

From the experiment, we can also conclude that the extractor and validation module
play a vital role in aiding the SQL Chain. It is also clear that GPT-4.0-Turbo is a more
capable model, and manages to solve 60% of the questions without using SQL Rag.

An interesting observation in regard to the results presented in table 4.1, is that Q8,
is only the 4th most difficult query. However, the query has the highest vocabulary
(distinct operands + distinct operators), thus the most difficult for a LLM to construct.

This suggests that one can optimize the way query complexity is calculated in the
age of LLMs, as the Halstead Metrics were proposed in 1977 and targeting human
understanding.

Table 4.4: Ablation Study Results for Question 1 to 10

LLM Pipeline | Q1 | Q2 | Q3 | Q4 | Q5| Q6 | Q7 | Q8

GPT-3.5-Turbo

GPT-4.0-Turbo

@mAwNAmmwaA
SV % % %%
UX %% XXX XK
XX XU %% %%
XX XXX XKXXRXX
UK X% %X XX R
UK X% %A %% %%
XUXUXUX X XXX
 EEEEE EEE R R R
TUXRUR XX %% %3
TR X[ %% %% %2
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4.3 End-to-End Pipeline Evaluation

4.3.1 Execution Time

During the development process, we observed that OpenAl’s response latency varied
depending on the time of day. We hypothesized that this latency fluctuation was
related to server load, likely influenced by working hours in the United States. To
confirm this hypothesis, we decided to run questions 1 through 10 five times during
peak hours (when server load was expected to be high, defined as 8AM-5PM EST,

or 2PM-11PM CET) and five times during off-peak hours (when server load was
expected to be low, defined as 5PM-8AM EST, or 11PM-2PM CET).

The experiment reveals that there are peak usage hours when utilizing the OpenAl
language models, resulting in increased execution times. Figure 4.2 illustrates that
GPT-4.0-Turbo experiences the most significant impact during peak hours, with a
46.15% increase in execution time compared to non-peak hours. For GPT-3.5-Turbo,
the execution time increase is 22.56%. The contribution of each individual question to
the overall execution time is provided in Appendix A.4.

During peak usage hours, the demand for computing resources from the OpenAl
language models is higher, leading to longer queuing times and potentially slower
response times. This phenomenon is more pronounced for GPT-4.0-Turbo, the more
advanced and computationally intensive model, which experiences a larger relative
increase in execution time compared to GPT-3.5-Turbo.

It is worth noting that the execution time increase observed in this experiment may
vary depending on factors such as the specific workload, the complexity of the
prompts, and the overall system load on the OpenAl infrastructure at the time of the
experiment.

4.3.2 Cost

Our framework makes several calls to OpenAl’s APls, each having a small cost.

After concluding that GPT-3.5-Turbo provides acceptable results for the extractor
chain, we decided on using that in all chains to cut both costs and execution time.
However, for more complex questions, GPT-4.0-Turbo provides better quality answers.

61



238.12

250 |

N
I
0
I

=

— 200 8

c =

ie) 18

§ .

S 150 . : |

> S ©

L _ %

= S =

5 100 | - :
2 A ,

o)
N

Run number

e‘age

I1v3.5 Peaklltv3.5 Off-peak l1v4 Peaklliv4 Off-peak

Figure 4.2: Total Execution Time for Questions 1-10

When deciding between the two models, both cost and time are important factors. As
discussed in chapter 3.2.1, GPT-4.0-Turbo is 1900% more expensive than GPT-3.5-
Turbo.

Model Extractor SQL Agent Total
gpt-4-0125-preview  $0.00347  $0.05919  $0.063
gpt-3.5-turbo-0125  $0.000196  $0.00288  $0.003

Table 4.5: The cost for Q21 with GPT-3.5-Turbo and GPT-4.0-Turbo

We utilized LangSmith to track costs of each API call made by the framework and
from Table 4.5 we see that for Q21 the total cost was approx 2000% more expensive
with GPT-4.0-Turbo than GPT-3.5-Turbo.

4.3.3 Robustness

Due to the non-deterministic nature of LLMs, the robustness of the framework is a
critical concern. The inherent stochasticity in LLMs, comes from the probabilistic
foundations and can lead to variability in performance across different runs, even
when the input remains the same. This variability poses a challenge for ensuring the
reliability and stability of the framework in practical applications.

There is not much that can be done to combat this issue, except from creating stricter
prompts.
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4.3.4 Model Laziness

Model laziness is an issue where GPT-3.5-Turbo and GPT-4.0-Turbo either stop the
answer or the chain prematurely. We see this across several answers, especially
when the framework is asked to return a list of items.

An example of this can be seen in Table A.13 and A.14. When using the full pipeline,
both models write and execute the correct SQL query, but GPT-4.0-Turbo only returns
the first 5 teams. This happens even if the model is instructed to limit the response to
10 items, if not anything else is specified.

4.3.5 LLM capability

Throughout the experiments, we see that GPT-4.0-Turbo preform better than GPT-
3.5-Turbo, when helper functions are removed. For complex questions, asking about
more than one statistic, such as "List all players that got a yellow card in game X.
Also list players that got a red card in that game", GPT-4.0-Turbo seems like a more
capable model.

4.4 Chapter Summary

The experiments conducted in this chapter show that the Extractor-Validator module
plays an important part in enhancing the overall performance of the framework.

The reason for this is that even if an LLM would try to fix spelling mistakes and
abbreviations, it does not know the naming convention within the database. If a player
asked for statistics on a player called Alessandro M, the agent would not be able on
its own to decide if the user was asking for Alessandro Mastalli or Alessandro Matari
(two players in the dataset).

In this regard, the introduction of augmentation tables also greatly help. A good
example for this is league names. The league names come in a short form from
SoccerNet, where the English Premier League is named england_epl. Without the
extraction and validation, the SQL Agent would have to query for all league name,
and then make a qualified guess of what league the user was asking for.
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It was also discovered that the difficulty parameter of the Halstead Metrics did not, as
we expected, give the best estimate of query difficulty, and one should instead look
at grading questions around the vocabulary parameter. However, further research
should be done to find an optimal metric for query complexity in regard to LLMs.

The results from the ablation study also suggest that our framework can greatly
improve GPT-3.5-Turbo, making the pipeline both faster and cheaper to use.
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Chapter 5

Discussion

5.1 Competitor Analysis

Cloud providers like AWS' and Azure? are providing their own solutions for natural
language to SQL. These solutions provide both the query framework and hosting of
the database. A drawback of these solutions is the complexity and that you become
provider dependent, as they want their users to host every part of the chain, from
database, training data, and LLM within their ecosystem. That might be a perfect
solution for an organization already using the ecosystem, but can act as a limiting
factor within research or academic organizations. Another issue is that it’s hard to
verify how well the solution works. As for AWS, they mention self-correcting queries,
but the documentation does not explain what happens when spelling mistakes or
abbreviations are introduced. In table 5.1 we therefore gave AWS a medium ()
score on Feature validation. There are also several open-source frameworks that
aim to solve the task of SQL querying using natural languages. These frameworks
provide the option to bring your own LLMs and databases. One notable mention is
Vanna.ai. They have a mature user inference and an optimized pipeline. By training a
specific RAG solution for a database, they improve the quality of the SQL generation.
One notable drawback of this solution is the setup complexity. To be able to train the
RAG layer, the user has to provide high-quality training data consisting of queries,
database structure, and general information about the dataset or company.

'https://aws.amazon.com/blogs/machine-learning/
build-a-robust-text-to-sql-solution-generating-complex-queries-self-correcting-and-querying-diverse-data-sources/

2https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/
revolutionizing-sql-queries-with-azure-open-ai-and-semantic/ba-p/3913513
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Top 10 Artists by Sales

= A
i

Total Sales

Summarization can be enabled if you set allow_lim_to_see_data=True

‘Were the results correct?

Figure 5.1: Screenshot of Vanna.ai

Our analysis of the Vanna.ai framework revealed significant limitations in handling
misspelled words, abbreviations, and even straightforward queries. In stark contrast
to the polished "demo" solution advertised, the framework consistently faltered on
simple inputs, rendering it unusable without extensive retraining efforts. Refining the
model to meet practical requirements would necessitate a substantial investment

of time and resources, calling into question the viability of Vanna as an off-the-shelf
solution for real-world applications.

However, as shown in Figure 5.1, the solution has a polished framework able to plot
data and read text out loud for the users. This Ul is based on the Streamlit framework,
a similar framework as our Ul is built on.
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Service Open source | Scalability | Modality | Feature Validation | Cost | DB Connection | Can runlocal | Ul
Ai2SQL A O A A $9/mo A A °
text2sql A O A A $7/mo A A °
AWS A ® ° ® A o
Azure A ® [ A 0 A o
Vanna o O O A $0/mo O O o
SoccerRAG o ° ° o $0/mo 0 ° o
LangChain ° ° O A $0/mo ° ° A

Table 5.1: Comparison of SQL Services

In addition to the mentioned applications, there are also tools like Ai2SQL and
text2sql that enable users to define their database schema and then respond to
natural language queries by generating a corresponding SQL query. However, a
significant drawback of these methods is that they require users to manually query
the database themselves.

LangChain is the base framework that SoccerRAG is based on. It's a modal and open
framework, enabling a high degree of freedom and customization. Using LangChain
directly will, however, require designing a wrapper for its core functions.

From what we found, no current framework but ours applies the extraction and
validation of properties.

5.2 Model Laziness

When querying for larger lists, as in question 8 of the experiments, we can observe
that model laziness plays a role in not returning the correct answer. This suggests
that queries aimed at creating long lists of data or calculating statistics from 20 or
more entities in the database are currently unsolvable with the existing models.

As such, these types of queries should be left out of the scope of this project. An
example of this behavior can be seen by asking, "List ALL players that started a
game for Las Palmas in the 2016-2017 season? Do NOT limit the number of results”".
This will write the correct query and return a list of 19 players, but the system gives
this answer: "The query returned the names of players who started a game for Las
Palmas in the 2016-2017 season. Here are some of the players who started the
games:" before proceeding with listing 10 of them. During experimentation, this
behavior would come and go, suggesting that there is no apparent reason for it to
happen.

However, it is crucial to acknowledge that issues like model laziness are likely to
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arise, and with OpenAl confirming this issue, we can expect models addressing this
problem to be released in the future. Therefore, while we must exclude such queries
from the current project’s scope, it is essential to remain aware of these limitations
and be prepared to revisit them as model capabilities improves.

5.3 Importance of Cleaned Input

The ablation study in Section 4.2.3 demonstrates the critical role of accurate input
prompts when retrieving information from a database. While LLMs can sometimes
correct mistakes in the prompts, there are situations where their ability to do so is
insufficient, or the prompt is corrected to what the LLM finds most likely. This finding
also raises the question of whether there is a need to provide clear guidance and
instructions to users of such applications on how to formulate prompts correctly to
achieve the desired results.

Inaccurate or poorly designed prompts can lead to irrelevant or incorrect information
being retrieved, undermining the effectiveness of the system. By making users aware
of the importance of precise and unambiguous language in their prompts, as well

as any specific formatting or structure requirements, might improve the overall user
experience. Providing examples of well-crafted prompts and common mistakes to
avoid can be valuable in ensuring that users interact with the system effectively.

5.4 Modular Implementation of Extractor-Validator
Module

A key obijective of this thesis is to develop a highly generalizable solution. To

achieve this, we have designed the extractor-validator module to be modular and
reusable. Currently, it can be imported as a standalone component, allowing for easy
integration with other systems. To adapt the module to a new database, users need
to modify the src/conf/schema.json file to match the new database schema. While
providing the module as a standalone package would further improve its modularity,
this was beyond the scope of this thesis due to time constraints.

The implications of this is that competing frameworks can easily implement this
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feature to improve their solution, thus contributing to the development of better
frameworks for text-to-SQL frameworks.

5.5 New Models

One day before the deadline for this thesis, OpenAl released GPT-40 (OpenAl, 2024).
Due to time constraints, we have not run extensive testing, but our preliminary results
show that GPT-40 matches the speed of GPT-3.5-Turbo, as shown in Figure 5.2,
while providing the same quality as GPT-4.0-Turbo. GPT-40 also cost half as much

as GPT-4.0-Turbo, but still 10 times more expensive as GPT-3.5-Turbo.
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Figure 5.2: Total Execution Time for Questions 1-10 for GPT4o0

Due to the modular setup of the framework, we were able to test this model just by
changing the "OPENAI_MODEL" parameter in the .env file. This paves the way for
easy updating of new models as they emerge. Easy updating of the model is key to
keeping up with the ever-changing LLM field.

5.6 Potential Use Cases

The framework has several use cases, and we can be divided into two subcategories.
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5.6.1 SoccerNet Use Cases

Since we use SoccerNet data while building this framework, we propose some use
cases for this data.

1. Game summary

Using SoccerRAG as a module, a system can be developed to generate
informative summaries of games, leagues, and player performances. This could
enable users to quickly grasp key insights and trends from large datasets.

By retrieving statistics using the SQL Agent, it would then be possible to develop
a traditional RAG based system, that would only have access to relevant data.

This has the potential to greatly reduce the search space for the RAG module,
and thus improve the accuracy of the system.

2. Video retrieval

This framework is an important step towards being able to retrieve specific
video segments, such as highlights, goals, and other events, from metadata.
By building upon SoccerRAG, systems can be created to provide user tailored
video segments, providing valuable insights and new perspectives.

SoccerRAG can be instructed to return timestamps for events and the
player_event tables. It is then possible to design a new module that extract the
timestamps returned, and pass them to a function retrieving video clips from the
timestamps.

3. Injury analysis

By combining video retrieval with injury-related metadata, a system could be
developed to analyze the situations where player injuries happens, providing
insights into the causes and potential prevention strategies. This could lead to
improved player safety and reduced injury rates.

5.6.2 Natural Language SQL Retrieval

1. Enhancing Existing Frameworks

Our innovative approach to extracting properties and validating them against
the database can significantly improve the accuracy of natural language search
against databases. The modular design of our framework enables integration
with existing text-to-SQL frameworks, potentially enhancing their capabilities.
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2. Streamlining development with open-source Ul

We have made our Ul code available as open-source software ‘SoccerRAG:
Multimodal Soccer Information Retrieval via Natural Queries’, 2024. This
resource can accelerate the development of other applications built around

LLMs, facilitating the creation of user-friendly interfaces for natural language
SQL retrieval.
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Chapter 6

Conclusion

This thesis shows that by introducing new elements to a standard SQL agent, one
can greatly improve the performance of the system. Furthermore, we see that the
stochastic nature of LLMs can create issues in a production environment since the
same input given right after one another can result in different results. Deploying
open-source language models instead of relying on the OpenAl API can mitigate this
in the future.

6.1 Insights

 Traditional algorithms still work. In the early stage of development, we
decided to use a LLM to clean entities before querying the database. This
worked for some abbreviations, but for others, the LLM resolved the name to
something else than we had in the database. We then went on to use vector
search in an effort to validate the items without the help of the LLM, without
an acceptable accuracy. It was not until we applied the Levenshtein Distance
algorithm to the problem that we found the results to be acceptable.

This stands as a great reminder that traditional methods still play an important
part in creating intelligent systems.

» Things do not always work as advertised. There are several existing
frameworks claiming to be able to query databases. However, when we
took a closer look, it was impossible to recreate their accuracy with custom
datasets. This was a major setback for this thesis, as the main focus had to
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pivot from video retrieval to creating a working natural language to SQL retrieval
framework.

» We need more capable open source LLMs. While GPT-4.0-Turbo may appear
to be the undisputed champion of LLMs at first glance, its limitations become
apparent upon closer inspection. Since the model is only accessible through
an API, we lack direct control over how it processes data. Furthermore, our
experience has shown that OpenAl’s models do not produce the same answers
when prompted with the same prompt, which can be a significant issue in
production environments.

The unpredictability of these models can lead to unreliable application
performance, as it is impossible to ensure that the application will work as
expected. In many cases, a less capable model that consistently produces
the same output from the same input may be a better fit. This would allow for
the creation of tailored helper functions to address the model’s weaknesses,
enabling the framework to function as expected.

6.2 Addressing The Research Questions

In Section 1.2 we asked one main question and four sub-questions. Here we will
address these questions.

How does the system handle spelling mistakes and other input errors? As

seen in section 4.2.3, the Extractor and Validator play a crucial role in providing the
correct answer. This suggests that the SQL Agent doesn’t handle spelling mistakes or
abbreviations well on its own. When constructing the questions for the experiments,
the aim was to write them as directly as possible, without considering that a LLM
would need to understand them later. However, some extra instructions were needed
in some questions, such as question 10, where "Do NOT limit the number of result”
was added to combat model laziness.

Overall, we conclude that the system handle spelling mistakes satisfying, and that
using a commanding natural language works well when asking questions.

How dynamic is the system? Can a change in the underlying database
necessitate code changes? From experiments, it is clear that data added to the
database will not necessitate code changes. However, when adding new tables to
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the database, one has to update the SQL Rag document with new examples covering
the new tables. If one omits this step, there is no guarantee that the new table will be
used by the system.

To increase the likelihood of new tables or columns being used by the framework, a
change in src/conf/sqls.json is needed. This change could either be updating existing
queries or introducing new example queries.

Is it possible to extract detailed statistics from the database using natural
language? As shown in Table 4.4, the framework provides good answers when
asked to generate limited statistics. However, when the user asks questions
demanding a long list of information, model laziness often comes into play, resulting
in a wrong answer.

Because of this, we must conclude that it is possible to generate statistics, but
questions like "Count the numbers of goals ...", will perform better than "List the goals
...", simply because it’s less likely that model laziness will be an issue.

What role does different LLMs play in the quality of the system? Our frame-
work’s design significantly enhances the performance of the GPT-3.5-Turbo model.
As shown in Table 4.4, both models show similar quality when all components of the
framework are utilized. However, it is evident that GPT-4.0-Turbo achieves higher
accuracy in pipelines 1-5, indicating that it's a stronger model. This suggests that
GPT-4.0-Turbo may improve the quality of answers in scenarios where the framework
doesn’t find a matching SQL example.

Moreover, we are pleased to observe that the top FC model in Table 2.1 performs
similarly to the 25th-ranked model when the full framework is employed. This finding
highlights the importance of creating helper functions, which can greatly improve the
capabilities of text-to-SQL systems.

Based on this, we must conclude that different LLMs do play a role, but the impact of
using a lower quality model can be greatly reduced when using SoccerRAG.

Can we effectively query complex datasets using natural language? Based

on the findings in this thesis, we can conclude that it is possible to query complex
datasets using a mixture of data preparation, such as converting the dataset into a
database, applying a pipeline designed for the problem, and providing an intuitive Ul.
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6.3 Limitations and Future Work

Question complexity: As questions become more complex, the framework struggles
to provide SQL queries that answer the question. The primary reason for this
limitation is the limited number of examples in the SQL RAG file (src/conf/sqls.json).
After submitting B.1 SoccerRAG: Multimodal Soccer Information Retrieval via Natural
Queries, no additional examples were added to the file. While theoretically, we could
design SQL queries that enable the framework to achieve a perfect score on most
questions, we chose to focus on improving the framework with a small set of queries
rather than overfitting to our test questions.

In the future, the results presented in Table 4.3 should be addressed by adding new
input-query pairs to the sqls.json file, improving the system’s performance for real-
world applications.

Video retrieval: Initially, our framework was intended to include custom video and
media retrieval using natural language. However, given the current state of the text-to-
SQL framework, and our limited time, we prioritized improving retrieval methods over
adding a video retrieval module.

In the future, an additional module could be developed to utilize the frame_stamp or
game_time parameters in the events table to return videos, such as game highlights.
To ensure accurate input for this module, new examples should first be included in
sqls.json. The system’s output would then be processed through a new extraction
pipeline to extract parameters like game_time and other relevant information.

Game summarization: When the dataset first got examined, a hypothesis was
made that one could generate detailed match summaries using a mix of transcribed
commentary, events, and other metadata. This has not been explored fully due to
time constraints. Designing SQL queries aimed at fetching important information from
the commentary table, and processing information in a meaningful way is something
we expect will be done in our future works.

Model laziness: Throughout the process, we were limited by model laziness, where
the LLM only returned a partial list when asked to retrieve "all" "entities" from a
table. However, this was a problem that would randomly appear, and it's therefore
problematic to design good solutions for this issue while relying on a third-party API.

LLM constraints: With the current framework, we are constrained to use OpenAl’s
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API endpoint. GPT-4.0-Turbo is the strongest LLM on the market, but both other
commercial and open source models are catching up and can surpass GPT-4.0-Turbo
in isolated tasks. As seenin 2.1, Gorilla-v2, could be one such model. Due to time
constraints, we have not explored these models, but since our framework is built on
top of LangChain, changing the model is a trivial task. This could also mitigate the
laziness and randomness of the framework. More research should be done by finding
suitable open source LLMs for the framework.

6.4 Contributions

Scientific contributions: We introduce the extraction-validation schema, making it
possible to validate properties before the LLM query the database. The schema has
been shown to provide a great improvement in accuracy for systems using natural
language to query databases.

Our additional public dissemination and artifacts include:

» Software:

— We present SoccerRAG as open source software (‘SoccerRAG:
Multimodal Soccer Information Retrieval via Natural Queries’, 2024).
This is an important contribution as it enables further research and
improvements in the field.

— Additional code is released as open-source (‘SoccerRAG: Thesis Repo’,
2024)

 Demo:

— Proof-of-concept framework deployment: An interactive demo is
deployed to provide easy access to the framework. This contribution makes
it possible to evaluate the solution without a technical background. The
demo is available at https://simulamet-host-soccerrag.hf.space/.

+ Datasets:

— agumented_leauges: A dataset containing augmented names and
abbreviations for leagues (‘SoccerRAG: Multimodal Soccer Information
Retrieval via Natural Queries’, 2024).
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— augmented_teams: A dataset containing augmented names and
abbreviations for teams (‘SoccerRAG: Multimodal Soccer Information
Retrieval via Natural Queries’, 2024).

These datasets are valuable as they can be reused by other researchers
working with soccer data in general.

Publications:

— SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries
B.1

— Demo: Soccer Information Retrieval via Natural Queries using SoccerRAG
B.2

We chose to publish two papers to effectively communicate our research, which
constitutes a scientific contribution to the field. By dividing our work into two
separate papers, we ensured that the core concepts and methodology were
presented clearly and concisely. The first paper provides a detailed examination
of the underlying principles and ideas. In contrast, the second paper is a
practical guide, demonstrating how to apply the framework through a command-
line interface and an interactive Ul.

78



Bibliography

Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common
subsequence algorithms. Proceedings Seventh International Symposium on
String Processing and Information Retrieval. SPIRE 2000, 39—48. https://doi.
org/10.1109/SPIRE.2000.878178

Chainlit. (2023). Chainlit [Accessed: 2024-05-03]. Chainlit.

Chen, W., Hu, H., Chen, X., Verga, P., & Cohen, W. W. (2022). Murag: Multimodal
retrieval-augmented generator for open question answering over images and
text. arXiv preprint arXiv:2210.02928.

Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, J., & Young, P.
(1989). Computing as a discipline. Computer, 22, 63—70. https://doi.org/10.
1109/2.19833

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient
finetuning of quantized lims.

Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative ai and
chatgpt: Applications, challenges, and ai-human collaboration.

Gao, J., Li, P, Chen, Z., & Zhang, J. (2020). A Survey on Deep Learning for
Multimodal Data Fusion. Neural Computation, 32(5), 829-864. https://doi.
org/10.1162/neco_a_01273

Gautam, S. (2023). Bridging Multimedia Modalities: Enhanced Multimodal Al
Understanding and Intelligent Agents. ICMI '23: Proceedings of the 25th
International Conference on Multimodal Interaction, 695—699. https://doi.org/
10.1145/3577190.3614225

Gautam, S., Midoglu, C., Shafiee Sabet, S., Kshatri, D. B., & Halvorsen, P. (2022a).
Assisting soccer game summarization via audio intensity analysis of game
highlights. Proceedings of 12th IOE Graduate Conference, 12, 25-32. https:
//doi.org/10.13140/RG.2.2.34457.70240/1

Gautam, S., Midoglu, C., Shafiee Sabet, S., Kshatri, D. B., & Halvorsen, P. (2022b,
October 10). Soccer Game Summarization using Audio Commentary,
Metadata, and Captions. In NarSUM "22: Proceedings of the 1st Workshop on

79


https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1109/2.19833
https://doi.org/10.1109/2.19833
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1145/3577190.3614225
https://doi.org/10.1145/3577190.3614225
https://doi.org/10.13140/RG.2.2.34457.70240/1
https://doi.org/10.13140/RG.2.2.34457.70240/1

User-centric Narrative Summarization of Long Videos (pp. 13—22). Association
for Computing Machinery. https://doi.org/10.1145/3552463.3557019

Gautam, S., Sarkhoosh, M. H., Held, J., Midoglu, C., Cioppa, A., Giancola, S.,
Thambawita, V., Riegler, M. A., Halvorsen, P., & Shah, M. (2024). SoccerNet-
Echoes: A Soccer Game Audio Commentary Dataset. arXiv. https://doi.org/10.
48550/arXiv.2405.07354

Getting started with langsmith [Accessed: 2024-04-18]. (2024).

Giancola, S., Amine, M., Dghaily, T., & Ghanem, B. (2018). SoccerNet: A Scalable
Dataset for Action Spotting in Soccer Videos. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 18—
22). IEEE. https://doi.org/10.1109/CVPRW.2018.00223

GPT-3.5-Turbo [[Online; accessed 12. Apr. 2024]]. (2024, April). https ://platform .
openai.com/docs/models/gpt-3-5-turbo

GPT-4 [[Online; accessed 12. Apr. 2024]]. (2024, April). https://openai.com/gpt-4

Hadi, M. U., tashi gasem al, g. a., Qureshi, R., Shah, A., muneer amgad, a., Irfan,
M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2023). A survey
on large language models: Applications, challenges, limitations, and practical
usage. https://doi.org/10.36227/techrxiv.23589741.v1

Halstead, M. H. (1977). Elements of Software Science (Operating and programming
systems series) | Guide books. Elsevier Science Inc. https://dl.acm.org/doi/
abs/10.5555/540137

International Football Association Board. (2023). Laws of the game 2023/24
[Accessed: 2024-03-30]. https ://www . theifab.com/laws - of - the - game -
documents/

IVG. (2024). How to deal with lazy gpt-4 [Accessed: 2024-03-20]. https://community.
openai.com/t/how-to-deal-with-lazy-gpt-4/689286/12

Jelinek, F. (1998). Statistical methods for speech recognition. MIT Press. https ://
books.google.no/books?id=1C9dzcJTWowC

Jeong, C. (2023). A study on the implementation of generative ai services using
an enterprise data-based lim application architecture. arXiv preprint
arXiv:2309.01105.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y., Madotto, A., &
Fung, P. (2022). Survey of hallucination in natural language generation. CoRR,
abs/2202.03629. https://arxiv.org/abs/2202.03629

Langchain. (2024a). Docs [Accessed: 2024-03-28]. https://python.langchain.com/
docs/

Langchain. (2024b). Extraction [Accessed: 2024-02-16]. https://python.langchain.
com/docs/use_cases/extraction

80


https://doi.org/10.1145/3552463.3557019
https://doi.org/10.48550/arXiv.2405.07354
https://doi.org/10.48550/arXiv.2405.07354
https://doi.org/10.1109/CVPRW.2018.00223
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://openai.com/gpt-4
https://doi.org/10.36227/techrxiv.23589741.v1
https://dl.acm.org/doi/abs/10.5555/540137
https://dl.acm.org/doi/abs/10.5555/540137
https://www.theifab.com/laws-of-the-game-documents/
https://www.theifab.com/laws-of-the-game-documents/
https://community.openai.com/t/how-to-deal-with-lazy-gpt-4/689286/12
https://community.openai.com/t/how-to-deal-with-lazy-gpt-4/689286/12
https://books.google.no/books?id=1C9dzcJTWowC
https://books.google.no/books?id=1C9dzcJTWowC
https://arxiv.org/abs/2202.03629
https://python.langchain.com/docs/
https://python.langchain.com/docs/
https://python.langchain.com/docs/use_cases/extraction
https://python.langchain.com/docs/use_cases/extraction

Lewis, P, Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kittler, H.,
Lewis, M., Yih, W.-t., Rocktaschel, T., Riedel, S., & Kiela, D. (2021). Retrieval-
augmented generation for knowledge-intensive nlp tasks.

Li, J., Hui, B., Qu, G., Yang, J., Li, B., Li, B., Wang, B., Qin, B., Geng, R., Huo, N.,
et al. (2024). Can lim already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information
Processing Systems, 36.

Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2024). Visual instruction tuning. Advances in
neural information processing systems, 36.

Mauran, C. (2023). Chatgpt’s laziness fixed in openai’s upgrade to gpt-4 turbo
[Accessed: 2024-03-20]. Mashable. https ://mashable.com/article/chatgpt-
laziness-openai-upgrade-gpt-4-turbo

OpenAl. (2023a). Chat api reference - functions. https://platform.openai.com/docs/
api-reference/chat/create%5C#chat/create-functions

OpenAl. (2023b). Gpt-4 and gpt-4 turbo documentation [Accessed: 2024-03-20].
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

OpenAl. (2023c). Openai pricing [Accessed: 2024-03-20]. https://openai.com/pricing

OpenAl. (2024). Gpt-4 and gpt-4 turbo documentation [Accessed: 2024-05-14]. https:
/Iplatform.openai.com/docs/models/gpt-40

Ouyang, S., Zhang, J. M., Harman, M., & Wang, M. (2023). LIm is like a box of
chocolates: The non-determinism of chatgpt in code generation.

Patil, S. G., Zhang, T., Wang, X., & Gonzalez, J. E. (2023). Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, . (2022).

Robust speech recognition via large-scale weak supervision.

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern matching: The gestalt approach. Dr.
Dobb’s. https://www.drdobbs.com/database/pattern- matching-the-gestalt-
approach/184407970?pgno=5

Schulz, K. U., & Mihov, S. (2002). Fast string correction with levenshtein automata.
International Journal on Document Analysis and Recognition, 5(1), 67—-85.
https://doi.org/10.1007/s10032-002-0082-8

SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries [[Online;
accessed 12. Apr. 2024]]. (2024, April). https://github.com/simula/soccer-rag

SoccerRAG: Thesis Repo [[Online; accessed 14. May 2024]]. (2024, May). https://
github.com/simula/forzify

Song, X., Salcianu, A., Song, Y., Dopson, D., & Zhou, D. (2021). Fast wordpiece
tokenization.

Srinivasan, V. K., Dong, Z., Zhu, B., Yu, B., Mosk-Aoyama, D., Keutzer, K., Jiao, J.,
& Zhang, J. (2023). Nexusraven: A commercially-permissive language model

81


https://mashable.com/article/chatgpt-laziness-openai-upgrade-gpt-4-turbo
https://mashable.com/article/chatgpt-laziness-openai-upgrade-gpt-4-turbo
https://platform.openai.com/docs/api-reference/chat/create%5C#chat/create-functions
https://platform.openai.com/docs/api-reference/chat/create%5C#chat/create-functions
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://openai.com/pricing
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://doi.org/10.1007/s10032-002-0082-8
https://github.com/simula/soccer-rag
https://github.com/simula/forzify
https://github.com/simula/forzify

for function calling. NeurlPS 2023 Foundation Models for Decision Making
Workshop.

Strand, T. A., Balla, F., Kumar, N., Lotfigolian, M., & Willoch, S. H. (2024). How we
created rutergpt — ai-lab at ruter — part 3. Medium: Ruter - Produktutvikling
og teknologi. https://medium.com/ruter-produktutvikling-og-teknologi/how-we-
created-rutergpt-ai-lab-at-ruter-part-3-8e2961f9449e

Topsakal, O., & Akinci, T. C. (2023). Creating large language model applications
utilizing langchain: A primer on developing llm apps fast. Proceedings of
the International Conference on Applied Engineering and Natural Sciences,
Konya, Turkey, 10—12.

Touvron, H., Martin, L., Stone, K., Albert, P., Aimahairi, A., Babaei, Y., Bashlykov,

N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., ... Scialom,
T. (2023). Llama 2: Open foundation and fine-tuned chat models.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2023). Attention is all you need.

Weizenbaum, J. (1966). Eliza—a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1),
36—-45. https://doi.org/10.1145/365153.365168

Wu, J., Gan, W., Chen, Z., Wan, S., & Yu, P. S. (2023). Multimodal large language
models: A survey.

Yan, F., Mao, H., Ji, C. C.-J., Zhang, T., Patil, S. G., Stoica, |., & Gonzalez, J. E.
(2024). Berkeley function calling leaderboard.

Yu, W., Zhu, C., Li, Z., Hu, Z., Wang, Q., Ji, H., et al. (2022). A Survey of Knowledge-
enhanced Text Generation. ACM Comput. Surv., 54(11s), 1-38. https://doi.org/
10.1145/3512467

Zhang, H., Li, X., & Bing, L. (2023). Video-llama: An instruction-tuned audio-visual
language model for video understanding. arXiv preprint arXiv:2306.02858.

Zhang, Y., Wu, M., Tian, G. Y., Zhang, G., & Lu, J. (2021). Ethics and privacy of
artificial intelligence: Understandings from bibliometrics. Knowledge-Based
Systems, 222, 106994. https://doi.org/10.1016/j.knosys.2021.106994

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D., Christiano,
P, & Irving, G. (2020). Fine-tuning language models from human preferences.

82


https://medium.com/ruter-produktutvikling-og-teknologi/how-we-created-rutergpt-ai-lab-at-ruter-part-3-8e2961f9449e
https://medium.com/ruter-produktutvikling-og-teknologi/how-we-created-rutergpt-ai-lab-at-ruter-part-3-8e2961f9449e
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/3512467
https://doi.org/10.1145/3512467
https://doi.org/10.1016/j.knosys.2021.106994

Appendix A

Results

A.1 Ablation Study Results

The ablation study results, presented in Chapter 4.2.3, contain the data used. The
accepted parameter is set subjectively.

Table A.1: Question 1: Is Manchester United in the database? - GPT 3.5-Turbo

Answer Time Accepted
| cannot confirm if Manchester United is in the database... 3,8 0

Yes, Manchester United is in the database. 7,8 1
...However, the team "Manchester United" is not listed in the 5,3 0
database....

... Therefore, Manchester United is not in the database. 4.4 0

Yes, Manchester United is in the database. 5,9 1

Yes, Manchester United is in the database. 7,3 1

Table A.2: Question 1: Is Manchester United in the database? - GPT 4-Turbo

Answer Time Accepted
Yes, Manchester United is in the database.. 14,8 1

Yes, Manchester United is in the database. 11,1 1

Yes, Manchester United is in the database. 20,3 1

Yes, Manchester United is in the database. 10,4 1

Yes, Manchester United is in the database. 14,4 1

Yes, Manchester United is in the database with a primary 9,9 1

key of 7.
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Table A.3: Question 2: Give me the total home goals for Bayern M in the 2014-15

season - GPT 3.5-Turbo

Answer Time Accepted
The total home goals for Bayern Munich in the 2014-15 5,6 0
seasonis 1.

The total home goals scored by Bayern M in the 2014-15 8,1 0
seasonis 1.

The total home goals for Bayern M in the 2014-15 seasonis 10,4 0
0.

The total home goals for Bayern Munich in the 2014-2015 55 1
season were 25.

The total home goals scored by Bayern M in the 2014-15 17,0 0
season is 0.

The total home goals scored by Bayern Munich in the 2014- 16,2 1

2015 season is 25.

Table A.4: Question 2: Give me the total home goals for Bayern M in the 2014-15

season - GPT 4-Turbo

Answer Time Accepted
The total home goals for Bayern M in the 2014-15 seasonis 11,1 0
not available in the database.

The total home goals for Bayern Munich in the 2014-15 24,1 0
season is not available in the database.

The total home goals for Bayern M in the 2014-15 seasonis 28,1 0
not available in the database.

The total home goals for Bayern Munich in the 2014-2015 15,5 1
season was 25.

The total home goals for Bayern M in the 2014-15 seasonis 13,8 0
not available in the database.

The total home goals for Bayern Munich in the 2014-2015 18,2 1

season was 25.
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Table A.5: Question 3: Calculate home advantage for Real Madrid in the 2015-16

season - GPT 3.5-Turbo

Answer Time Accepted
The query results show the games where Real Madrid 11,4 0
played at home in the 2015-2016 season. Here are some

of the games:

It seems that there might be no data available for Real 17,3 0
Madrid in the specified season.

| don’t have the specific information needed to calculate the 7,3 0
home advantage for Real Madrid in the 2015-16 season.

Here are some of the games played by Real Madrid at 9,6 0
home during that season:

The database contains tables for "games" and "teams" with 11,3 0
the following columns:

In the 2015-2016 season, Real Madrid played a total of 18 14,7 1

home games. Out of these games:

Table A.6: Question 3: Calculate home advantage for Real Madrid in the 2015-16

season - GPT 4-Turbo

Answer Time Accepted
This indicates a home advantage, as their win rate was 22,6 1
higher in home games compared to away games.

This data suggests that Real Madrid had a stronger 82,8 0
performance at home compared to away games during the

2015-16 season, indicating a home advantage.

I’'m unable to calculate the home advantage for Real Madrid 134,3 0
for that specific season.

For Real Madrid in the 2015-2016 season, the home 46,2 1
advantage statistics are as follows:

It appears there was an issue with the data retrieval, 76,9 0
resulting in null

... 2015-2016 season, with a slightly better win rate in home 87,3 1

games
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Table A.7: Question 4 - How many goals did Messi score in the 15-16 season? - GPT
3.5-Turbo

Answer Time (s) Accepted
Messi scored 2 goals in the 15-16 season. 6.21 0
Messi scored 0 goals in the 15-16 season. 7.77 0
| have queried the database to find the number of goals 7.39 0

Messi scored in the 15-16 season, but the query did

not return any results. It seems that there may be a

discrepancy in the data or the way the events are recorded

in the database.

Lionel Messi scored goals in the 2015-2016 season. The 7.72 0
number of goals he scored can be retrieved by querying the

specific goal information for Lionel Messi in that season.

Messi did not score any goals in the 15-16 season based 15.58 0
on the data in the database.

Lionel Messi scored a total of 3 goals in the 2015-2016 10.93 1
season.

Table A.8: Question 4 - How many goals did Messi score in the 15-16 season? - GPT
4-Turbo

Answer Time Accepted
Messi scored 0 goals in the 15-16 season according to the  28.76 0
database. s.

Messi scored 0 goals in the 15-16 season according to the  25.40 0
database.

Messi scored 0 goals in the 15-16 season according to the  28.34 0

database. This result might not reflect actual historical data,
as it depends on the completeness and accuracy of the
database’s records.

Lionel Messi scored 38 goals in the 2015-2016 season. 24.44 0
Messi scored 0 goals in the 15-16 season according to the  58.41 0
database.

Lionel Messi scored 3 goals in the 2015-2016 season. 26.49 1
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Table A.9: Question 5 - How many yellow-cards did Enzo Perez get in the 15-2016

season? - GPT 3.5-Turbo

Answer Time Accepted
Enzo Perez received 2 yellow cards in the 2015-2016 6.72 0
season.

Enzo Perez received a total of 3 yellow cards in the 2015- 9.377 1
2016 season.

Enzo Perez received 2 yellow cards in the 2015-2016 5.99 0
season.

| don’t have the specific column name for yellow cards in 11.35 0
the player_events table..

Enzo Perez received 0 yellow cards in the 2015-2016 20.11 0
season.

Enzo Perez received a total of 3 yellow cards in the 2015- 13.41 1

2016 season.

Table A.10: Question 5 - How many yellow-cards did Enzo Perez get in the 15-2016

season? - GPT 4-Turbo

Answer Time Accepted
Enzo Perez received 0 yellow cards in the 15-2016 season. 29.03 0

Enzo Perez received 0 yellow cards in the 15-2016 season. 22.53 0

Enzo Perez received 0 yellow cards in the 15-2016 season. 24.60 0

Enzo Perez received 3 yellow cards in the 2015-2016 37.05 1

season.

Enzo Perez received 0 yellow cards in the 15-2016 season.  30.08 0

Enzo Perez received 3 yellow cards in the 2015-2016 27.68 1

season.

Table A.11: Question 6 - List all teams that played a game against Napoli in 2016-17

season in seriea? Do not limit the number of results - GPT 3.5-Turbo

Answer Time Accepted
| don’t know 5.17 0

The query has been executed successfully. 8.9 0

| have queried the database to find all teams that played a 7.7 0

game against..

The teams that played a game against Napoli in the 2016- 10.54 1

2017 season..

The query has been executed, and here are the results: 12.1 0

The teams that played a game against Napoli in the 2016- 20.5 1

2017 seasonin..
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Table A.12: Question 6 - List all teams that played a game against Napoli in 2016-17
season in seriea? Do not limit the number of results - GPT 4-Turbo

Answer Time Accepted
The query did not return any results, 33.73 0
This could be due to a lack of specific data for that season 58.69 0
or team in the database.

| couldn’t find any teams that played a game against Napoli  27.38 0
in the 2016-17

The teams that played a game against Napoli in the 2016- 39.28 1
2017 season in the Italy Serie A

There are no teams listed that played against Napoli in the  36.28 0
2016-17

The teams that played a game against Napoli in the 2016- 40.93 1

2017 season in the ltaly Serie A are

Table A.13: Question 7 - Give all the teams in the league ucl in the 2015-2016

season? - GPT 3.5-Turbo

Answer Time Accepted
| have queried the database, but it seems there was no data 6.21 0
returned for the given question

The database contains tables for "games", "leagues”, and 16.18 0
"teams".

The teams in the UEFA Champions League (UCL)... 8.184 0
The team in the UEFA Champions League (UCL) in the 7.92 0
2015-2016 season is Burnley.

The teams in the league "ucl" (UEFA Champions League) in  12.21 0
the season "2015-2016" are

The teams in the "europe_uefa-champions-league” 20.26 1

Table A.14: Question 7 - Give all the teams in the league ucl in the 2015-2016

season? - GPT 4-Turbo

Answer Time Accepted
The teams in the UEFA Champions League for the 2015- 36.14 1
2016 season..

The teams in the UEFA Champions League for the 2015- 35.54 0
2016 season, limited to 5 examples

The teams in the UEFA Champions League for the 2015- 44 .46 1
2016 season were:

The teams in the UEFA Champions League for the 2015- 26.19 1
2016 season were:

The teams in the UEFA Champions League for the 2015- 38.86 0
2016 season were: Limit 10

This is a limited list of the first 5 teams alphabetically. (Lazy) 31.21 0
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Table A.15: Question 8 - Give me all games in epl with yellow cards in the first half in
the 2015-2016 season - GPT 3.5-Turbo

Answer Time Accepted
List 10 games 10.3 0

| have re-executed the query, but it seems there are no 15.28 0

results matching the criteria..

List 3 games 9.79 0

List 10 games 14.38 0

List 3 games 11,67 0

List 3 games 10.89 0

Table A.16: Question 8 - Give me all games in epl with yellow cards in the first half in
the 2015-2016 season - GPT 4-Turbo

Answer Time Accepted
List 10 games 50.69 0

There are no games in the English Premier League (EPL) 42.4 0

during the 2015-2016 season with yellow cards..

List 5 games 35.93 0

List 10 games 48.74 0

,There are no games in the English Premier League (EPL)  41.34 0

during the 2015-2016 season with yellow cards..
List 5 games 81.91 0

Table A.17: Question 9 - What teams and leagues has Adnan Januzaj play in? - GPT
3.5-Turbo

Answer Time Accepted
Adnan Januzaj has played for the team ""Manchester 7.51 0
United"" in the database

Dortmund, Manchester United 17.31 0

I’m unable to retrieve the information ... due to a missing 10.94 0

column

| dont’'t know 5.92 0

List all three teams and leagues 24.38 1

List all three teams and leagues 10.27 1
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Table A.18: Question 9 - What teams and leagues has Adnan Januzaj play in? - GPT
4-Turbo

Answer Time Accepted
... it seems there was an issue retrieving the data... 42.7 0
List 3 teams and leagues 36.22 1
Only Manchester 40.60 0
... returned no values ... 30.03 0
List all three teams and leagues 35.99 1
List all three teams and leagues 27.26 1

Table A.19: Question 10 - List ALL players that started a game for Las Palmas in the
2016-2017 season? Do NOT limit the number of results - GPT 3.5-Turbo

Answer Time Accepted
| don’t know 4.95 0
Las Palmas is not present ... 13.87 0
List 10 players 9.67 0
... no results returned for Las Palmas... 8.01 0
List 5 players 9.83 0
List 19 players 26.19 1

Table A.20: Question 10 - List ALL players that started a game for Las Palmas in the
2016-2017 season? Do NOT limit the number of results - GPT 4-Turbo

Answer Time Accepted
.. it seems there was an issue retrieving the data.. 42.7 0
List 19 players 36.22 1
List 18 players 40.60 0
List 18 players 30.03 0
List 19 players 35.99 1
List 19 players 27.26 1
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A.2 Extractor - Validator Results

The extractor-validator results show the performance of the extractor and validator
module presented in Chapter 4.2.1. The scoring parameter in the results is either
"Perfect" or if any issues happened, comment on what went wrong.

Question 1: Is Manchester United in the database?

» Extracted values:
— Team Name: Manchester United

» Cleaned prompt Is Manchester United in the database? Updated Information:
- Manchester United has a primary key: 7.

» Score - Perfect

Question 2: Give me the total home goals for Bayern M in the 2014-15 season

» Extracted values:

— Team Name: Bayern M
— Year Season: 2014-15

— In Game Event: home goals

» Cleaned prompt Give me the total home goals for Bayern M in the 2014-15
season Updated Information: - Bayern M (now referred to as Bayern Munich)
has a primary key: 33. - 2014-15 (now referred to as 2014-2015). - home goals
(now referred to as Goal).

 Score - Should not have extracted home goals

Question 3: Calculate home advantage for Real Madrid in the 2015-16 season

» Extracted values:

— Team Name: Real Madrid

— Year Season: 2015-16
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 Cleaned prompt Calculate home advantage for Real Madrid in the 2015-16
season Updated Information: - Real Madrid has a primary key: 30. - 2015-16
(now referred to as 2015-2016).

» Score - Perfect

Question 4: How many goals did Messi score in the 15-16 season?

» Extracted values:

— Person Name: Messi
— Year Season: 15-16
— In Game Event: goals
» Cleaned prompt How many goals did Messi score in the 15-16 season?
Updated Information: - Messi (now referred to as Lionel Messi) has a primary

key: vgOOdZbd. - 15-16 (now referred to as 2015-2016). - goals (now referred
to as Goal).

» Score - Perfect

Question 5: How many yellow-cards did Enzo Perez get in the 15-2016 season?

» Extracted values:

— Person Name: Enzo Perez
— In Game Event: yellow-cards
— Year Season: 15-2016
» Cleaned prompt How many yellow-cards did Enzo Perez get in the 15-2016
season? Updated Information: - Enzo Perez has a primary key: 2Prv80YO.

- yellow-cards (now referred to as Yellow card). - 15-2016 (now referred to as
2015-2016).

» Score - Perfect

Question 6: List all teams that played a game against Napoli in 2016-17 season in
seriea? Do not limit the number of results

92



» Extracted values:

— Team Name: Napoli
— Year Season: 2016-17

— League: seriea

» Cleaned prompt List all teams that played a game against Napoli in 2016-17
season in seriea? Do not limit the number of results Updated Information:
- Napoli has a primary key: 61. - 2016-17 (now referred to as 2016-2017). -
seriea (now referred to as italy_serie-a) has a primary key: 5.

» Score - Perfect

Question 7: Give all the teams in the league ucl in the 2015-2016 season?

» Extracted values:

— League: ucl
— Year Season: 2015-2016

 Cleaned prompt Give all the teams in the league ucl in the 2015-2016 season?
Updated Information: - ucl (now referred to as europe_uefa-champions-
league) has a primary key: 2.

» Score - Perfect

Question 8: Give me all games in epl with yellow cards in the first half in the 2015-
2016 season. Its important that you list all of them!

» Extracted values:

— In Game Event: yellow cards
— Year Season: 2015-2016
— League: epl
» Cleaned prompt Give me all games in epl with yellow cards in the first half
in the 2015-2016 season. lts important that you list all of them! Updated

Information: - yellow cards (now referred to as Yellow card). - epl (now referred
to as england_epl) has a primary key: 1.
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» Score - Perfect

Question 9: What teams and leagues has Adnan Januzaj play in?

» Extracted values:
— Person Name: Adnan Januzaj

» Cleaned prompt What teams and leagues has Adnan Januzaj play in? Updated
Information: - Adnan Januzaj has a primary key: 6qyeYCYO.

« Score - Perfect

Question 10: List ALL players that started a game for Las Palmas in the 2016-2017
season? Do NOT limit the number of results

» Extracted values:

— Team Name: Las Palmas

— Year Season: 2016-2017

» Cleaned prompt List ALL players that started a game for Las Palmas in the
2016-2017 season? Do NOT limit the number of results Updated Information:
- Las Palmas has a primary key: 115.

» Score - Perfect

Question 11: Did Ajax or Mancheter United win the most games in the 2014-15
season?

» Extracted values:

— Team Name: Ajax, Mancheter United
— Year Season: 2014-15
» Cleaned prompt Did Ajax or Mancheter United win the most games in the 2014-
15 season? Updated Information: - Ajax has a primary key: 31. - Mancheter

United (now referred to as Manchester United) has a primary key: 7. - 2014-15
(now referred to as 2014-2015).
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» Score - Perfect

Question 12: How many yellow and red cards were given in UCL in the 2015-2016
season?

» Extracted values:

— In Game Event: yellow cards, red cards
— League: UCL
— Year Season: 2015-2016

» Cleaned prompt How many yellow and red cards were given in UCL in the 2015-
2016 season? Updated Information: - yellow cards (now referred to as Yellow
card). - red cards (now referred to as Red card). - UCL (now referred to as
europe_uefa-champions-league) has a primary key: 2.

» Score - Perfect

Question 13: Is Messi and C Ronaldo in the database?

» Extracted values:
— Person Name: Messi, C Ronaldo

» Cleaned prompt Is Messi and C Ronaldo in the database? Updated In-
formation: - Messi (now referred to as Lionel Messi) has a primary key:
vgOOdZbd. - C Ronaldo (now referred to as Cristiano Ronaldo) has a primary
key: WGOY4FSt.

» Score - Perfect

Question 14: How many goals did E Hazard score in the game between
Bournemouth and Chelsea in the 2015-2016 season?

» Extracted values:

— Person Name: E Hazard

— Team Name: Bournemouth, Chelsea
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— Year Season: 2015-2016
— In Game Event: goals
» Cleaned prompt How many goals did E Hazard score in the game between
Bournemouth and Chelsea in the 2015-2016 season? Updated Information:
- E Hazard (now referred to as Thorgan Hazard) has a primary key: KOgOyhLo.

- Bournemouth has a primary key: 21. - Chelsea has a primary key: 1. - goals
(now referred to as Goal).

» Score - Perfect

Question 15: How many yellow cards where given in the game between Bayer
Munich and S Donetsk in, and did anyone get a red card the 2014-15 ucl?

GPT-3.5-Turbo

» Extracted values:

— Team Name: Bayer Munich, S Donetsk

— In Game Event: yellow cards

— League: ucl

— Year Season: 2014-15

» Cleaned prompt How many yellow cards were given in the game between Bayer

Munich and S Donetsk in, and did anyone get a red card the 2014-15 ucl?
Updated Information: - Bayer Munich (now referred to as Bayern Munich)
has a primary key: 33. - S Donetsk (now referred to as Shakhtar Donetsk) has
a primary key: 40. - yellow cards (now referred to as Yellow card). - ucl (now

referred to as europe_uefa-champions-league) has a primary key: 2. - 2014-15
(now referred to as 2014-2015).

» Score - Partial, missing the red card from extracted items. Corrects the
grammatical error "where" to "were" in the cleaned prompt.

GPT-4-Turbo

» Extracted values:

— Team Name: Bayer Munich, S Donetsk
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— Year Season: 2014-15

— League: ucl

— In Game Event: yellow cards, red card

» Cleaned prompt How many yellow cards were given in the game between Bayer

Munich and S Donetsk in, and did anyone get a red card the 2014-15 ucl?
Updated Information: - Bayer Munich (now referred to as Bayern Munich) has
a primary key: 33. - S Donetsk (now referred to as Shakhtar Donetsk) has a
primary key: 40. - 2014-15 (now referred to as 2014-2015). - ucl (now referred

to as europe_uefa-champions-league) has a primary key: 2. - yellow cards (now
referred to as Yellow card). - red card (now referred to as Red card).

» Score - Perfect

Question 16: Make a list of when corners happened in the EPL 2015-2016 season.
Aggregate by a period of 15 minutes.

» Extracted values:

— Year Season: 2015-2016
— In Game Event: corners

— League: EPL

 Cleaned prompt Make a list of when corners happened in the EPL 2015-2016
season. Aggregate by a period of 15 minutes. Updated Information: - corners
(now referred to as Corner). - EPL (now referred to as england_epl) has a
primary key: 1.

« Score - Perfect

Question 17: What league is ManU, Arsenal, Bournemouth, Real Madrid, Chelsea
and Liverpool in?

» Extracted values:

— Team Name: ManU, Arsenal, Bournemouth, Real Madrid, Chelsea,
Liverpool
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 Cleaned prompt What league is ManU, Arsenal, Bournemouth, Real Madrid,
Chelsea and Liverpool in? Updated Information: - Manchester United has a
primary key: 7. - Arsenal has a primary key: 5. - Bournemouth has a primary
key: 21. - Real Madrid has a primary key: 30. - Chelsea has a primary key: 1. -
Liverpool has a primary key: 9.

» Score - Perfect

Question 18: How many players has Aleksandar as first name in the database, and
how many goals have they scored in total?

GPT-3.5-Turbo & GPT-4-Turbo

» Extracted values:
— Person Name: Aleksandar

» Cleaned prompt How many players has Aleksandar as first name in the
database, and how many goals have they scored in total?

» Score - It extracts the name Aleksandar correctly, but the question is asking
about multiple Aleksandar’s, thus extracting one player will confuse the agent.

Question 19: What did the commentary say about the game between Arsenl and
Southamptn in the 2016-17 season?

» Extracted values:

— Team Name: Arsenl, Southamptn

— Year Season: 2016-17

» Cleaned prompt What did the commentary say about the game between Arsenl
and Southamptn in the 2016-17 season? Updated Information: - Arsenl (now
referred to as Arsenal) has a primary key: 5. - Southamptn (now referred to as
Southampton) has a primary key: 8. - 2016-17 (now referred to as 2016-2017).

» Score - Perfect

Question 20: Have Mesut Ozil, Pablo Insua or Alex Pike played for West Ham or
Barcelona?
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» Extracted values:

— Person Name: Mesut Ozil, Pablo Insua, Alex Pike
— Team Name: West Ham, Barcelona
 Cleaned prompt Have Mesut Ozil, Pablo Insua or Alex Pike played for West
Ham or Barcelona? Updated Information: - Mesut Ozil has a primary key:
U30xq9EJ. - Pablo Insua has a primary key: 2PZuGsll. - Alex Pike has a

primary key: MD4vSR3r. - West Ham has a primary key: 12. - Barcelona has
a primary key: 32.

» Score - Perfect
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A.3 SQL Complexity Calculations

To be able to gain insight on how difficult a question is for the framework to answer,
we calculated the Halstead Metrics (Halstead, 1977). These metrics In order to
calculate this metric, we designed for each question a query that would solve the task
given. How these metrics were calculated is explained in Chapter 4.1.

Question 1: Is Manchester United in the database?

Correct query:

SELECT t.x*
FROM teams AS t
WHERE t.name = 'Manchester United'

Number of distinct operators, n; =5
Number of distinct operands, n, =5
Total number of operators, Ny =5
Total number of operands, N, =5

Vocabulary, n = ny +n, = 10

Length, N = N; + N, = 10 (A.1)
Volume, V = N x log,(n) = 33.22
Difficulty, D = ™ x N2 _ 5 50
2 ny
Effort, E=D x V = 83.05
. E
Time to understand (seconds), T = = 4.61

Question 2: Give me the total home goals for Bayern M in the 2014-15 season

Correct query:

SELECT
SUM(goal_home) AS TotalHomeGoals
FROM

games
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WHERE
home_team_id = (SELECT id FROM teams WHERE name = 'Bayern Munich')
AND season = '2014-2015';

Number of distinct operators, n; = 6

Number of distinct operands, n, = 14
Total number of operators, Ny = 11
Total number of operands, N, = 16

Vocabulary, n = ny + np, = 20

Length, N = N; + N, =27 (A.2)
Volume, V = N x log,(n) = 116.69
Difficulty, D = " x N2 _ 343
2 nop
Effort, E= D x V = 400.09
: E
Time to understand (seconds), T = = 22.23

Question 3: Calculate home advantage for Real Madrid in the 2015-16

Correct query:

SELECT
'Home' AS Venue,
SUM(CASE WHEN goal_home > goal_away THEN 1 ELSE
SUM(CASE WHEN goal_home = goal_away THEN 1 ELSE
SUM(CASE WHEN goal_home < goal_away THEN 1 ELSE
FROM
games
WHERE
home_team_id = (SELECT id FROM teams WHERE name = 'Real Madrid')
AND season = '2015-2016"
UNION ALL
SELECT
"Away',
SUM(CASE WHEN goal_away > goal_home THEN 1 ELSE
SUM(CASE WHEN goal_away = goal_home THEN 1 ELSE

o

END) AS Wins,
END) AS Draws,
END) AS Losses

o O

o

END) AS Wins,
END) AS Draws,

o
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SUM(CASE WHEN goal_away < goal_home THEN 1 ELSE O END) AS Losses
FROM
games
WHERE
away_team_id = (SELECT id FROM teams WHERE name = 'Real Madrid')
AND season = '2015-2016';

Number of distinct operators, n; = 8

Number of distinct operands, n, = 31
Total number of operators, N; = 33
Total number of operands, N, = 110

Vocabulary, n = ny + np, = 39

Length, N = N; + N, = 143 (A.3)
Volume, V = N x log, (1) = 755.81
Difficulty, D = " x N2 1419
2 nop

Effort, E= D x V = 10727.66
. E
Time to understand (seconds), T = T 595.98

Question 4: How many goals did Messi score in the 15-16 season?

Correct query:

SELECT

COUNT(*) AS goals_count
FROM

player_events pe
JOIN

players p ON pe.player_id = p.hash
JOIN

games g ON pe.game_id = g.id
JOIN

player_event_labels pel ON pe.type = pel.id
WHERE

102



p.name = 'Lionel Messi'
AND g.season = '2015-2016'
AND pel.label = 'Goal';

Number of distinct operators, n; = 8
Number of distinct operands, n, = 26
Total number of operators, N; = 18
Total number of operands, N, = 26
Vocabulary, n = ny +n, = 34
Length, N = N; + N, =44

Volume, V = N x log,(n) = 223.85
nq NQ

Difficulty, D = — x — =4.00
ifficulty, > X -
Effort, E= D x V = 895.39
, E
Time to understand (seconds), T = 8= 49.74

Question 5: How many yellow-cards did Enzo Perez get in the 15-2016 season?

Correct query:

SELECT

COUNT(*) AS yellow_cards_count
FROM

player_events pe
JOIN

players p ON pe.player_id = p.hash
JOIN

games g ON pe.game_id = g.id
JOIN

player_event_labels pel ON pe.type = pel.id
WHERE

p.name = 'Enzo Perez'

AND g.season = '2015-2016"

AND pel.label = 'Yellow card';
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Number of distinct operators, n; = 8

Number of distinct operands, n, = 26
Total number of operators, N; = 18
Total number of operands, N, = 26

Vocabulary, n = ny +n, = 34

Length, N = N; + N, = 44 (A-5)
Volume, V = N x log,(n) = 223.85
Difficulty, D = ™ » ™2 _ 400
2 nop

Effort, E= D x V = 895.39

. E
Time to understand (seconds), T = T 49.74

Question 6: List all teams that played a game against Napoli in 2016-17 season in
seriea? Do not limit the number of results

Correct query:

SELECT DISTINCT
CASE
WHEN t1.name = 'Napoli' THEN t2.name
ELSE t1.name
END AS opponent_team_name

FROM

games g
JOIN

leagues 1 ON g.league_id = 1.id
JOIN

teams t1 ON g.home_team_id = t1.id
JOIN

teams t2 ON g.away_team_id = t2.id
WHERE

l.name = 'italy_serie-a'

AND g.season = '2016-2017"
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AND (t1.name = 'Napoli' OR t2.name = 'Napoli')
ORDER BY

opponent_team_name;

Number of distinct operators, n; = 10
Number of distinct operands, n, = 31
Total number of operators, N; = 22
Total number of operands, N, = 38
Vocabulary, n = ny +np, = 41
Length, N = N; + N, = 60
Volume, V = N x log,(n) = 321.45

- N;
Difficulty, D = " x -2 — 6.13
2 nop
Effort, E= D x V = 1970.20
, E
Time to understand (seconds), T = 8= 109.46

Question 7: Give all the teams in the league ucl in the 2015-2016 season?

Correct query:

SELECT DISTINCT
t.name AS team_name
FROM
games g
JOIN
leagues 1 ON g.league_id = 1.id
JOIN
teams t ON g.home_team_id = t.id OR g.away_team_id = t.id
WHERE

1l.name = 'europe_uefa-champions-league'
AND g.season = '2015-2016"

ORDER BY
t.name;
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Number of distinct operators, n; = 10
Number of distinct operands, n, = 20
Total number of operators, N; = 16
Total number of operands, N, = 22

Vocabulary, n = ny + n, = 30

Length, N = N; + N, = 38 (A.7)
Volume, V = N x log,(n) = 186.46
Difficulty, D = " x N2 _ 550
2 no

Effort, E= D x V = 1025.54

. E
Time to understand (seconds), T = 8= 56.97

Question 8: Give me all games in epl with yellow cards in the first half in the 2015-
2016 season

Correct query:

SELECT DISTINCT
g.id AS game_id,
g.date AS game_date,
t1.name AS home_teamn,

t2.name AS away_team

FROM

games g
JOIN

leagues 1 ON g.league_id = 1.id
JOIN

teams t1 ON g.home_team_id = tl1.id
JOIN

teams t2 ON g.away_team_id = t2.id
JOIN

events e ON g.id = e.game_id
WHERE

1l.name = 'england_epl'

AND g.season = '2015-2016"
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AND e.label = 'Yellow card'
AND e.period =1

ORDER BY
g.date;

Number of distinct operators, n; =9
Number of distinct operands, n, = 36
Total number of operators, Ny = 27
Total number of operands, N, = 41
Vocabulary, n = nq +np, = 45
Length, N = Ny + N, = 68
Volume, V = N x log,(n) = 373.45

Difficulty, D = "0 x N2 _ 517
2 nop

Effort, E= D x V = 1913.91

, E
Time to understand (seconds), T = T 106.33

Question 9: What teams and leagues has Adnan Januzaj play in?

Correct query:
SELECT DISTINCT

t.name AS team_name,

1.name AS league_name

FROM

game_lineup gl
JOIN

players p ON gl.player_id = p.hash
JOIN

teams t ON gl.team_id = t.id
JOIN

games g ON gl.game_id = g.id
JOIN

leagues 1 ON g.league_id = 1.id
WHERE
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p.-name = 'Adnan Januzaj'
ORDER BY

t.name, 1l.name;

Number of distinct operators, n; = 8

Number of distinct operands, n, = 28
Total number of operators, N; = 19
Total number of operands, N, = 31

Vocabulary, n = ny +n, = 36

Length, N = N; + N, = 50 (A.9)
Volume, V = N x log,(n) = 258.50
Difficulty, D = " x N2 _ 443
2 nop
Effort, E=D x V = 1144.77
, E
Time to understand (seconds), T = 8= 63.60

Question 10: List ALL players that started a game for Las Palmas in the 2016-2017
season? Do NOT limit the number of results

Correct query:

SELECT DISTINCT
p.-name AS player_name
FROM
game_lineup gl
JOIN players p ON gl.player_id = p.hash
JOIN teams t ON gl.team_id = t.id
JOIN games g ON gl.game_id = g.id
WHERE
t.name = 'Las Palmas'
AND g.season = '2016-2017"
AND gl.starting =1
ORDER BY

p.name;
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Number of distinct operators, n; =9

Number of distinct operands, n, = 25
Total number of operators, N; = 19
Total number of operands, N, = 26

Vocabulary, n = ny +n, = 34

Length, N = N; + N, = 45 (A.10)
Volume, V = N x log,(n) = 228.94
Difficulty, D = ™ » ™2 _ 468
2 no

Effort, E= D x V = 1071.42

. E
Time to understand (seconds), T = 8= 59.52
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A.4 Execution Time

The execution time for questions 1-10 combined is shown in Chapter 4.3.1 and

in Figure 4.2. The following figures show the execution time for questions 1 - 10
individually. The experiment was conducted by prompting the OpenAl API five times
for each question and calculating the mean response time. This was done for both
GPT-3.5-Turbo and GPT-4.0-Turbo, and during two different times, called peak and
off-peak.

After experimenting with response times during the development of the framework,
peak time was set to 8AM-5PM EST and off-peak was set to 5PM-8AM EST.

The reason for using EST timestamps is because we identified that peak time was
well aligned with US working hours.

25 8

20 8

15.41
16.68

15

Execution Time (s)

10

I1v3.5 Peak8v3.5 Off-peak l1v4 Peakl1v4 Off-peak

Figure A.1: Execution Time for Question 1 with GPT-3.5-Turbo and GPT-4-Turbo
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Execution Time (s)

I1v3.5 Peaklliv3.5 Off-peak l1v4 Peakiv4 Off-peak

Figure A.2: Execution Time for Question 2 with GPT-3.5-Turbo and GPT-4-Turbo

Execution Time (s)

I1v3.5 Peak8v3.5 Off-peak l1v4 Peakliv4 Off-peak

Figure A.3: Execution Time for Question 3 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.4: Execution Time for Question 4 with GPT-3.5-Turbo and GPT-4-Turbo
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I1v3.5 Peak8v3.5 Off-peak l1v4 Peakliv4 Off-peak

Figure A.5: Execution Time for Question 5 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.6: Execution Time for Question 6 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.7: Execution Time for Question 7 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.8: Execution Time for Question 8 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.9: Execution Time for Question 9 with GPT-3.5-Turbo and GPT-4-Turbo
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Figure A.10: Execution Time for Question 10 with GPT-3.5-Turbo and GPT-4-Turbo
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A.5 SQL Rag

The result obtained from the experiments described in 4.2.2, where FS=2, is
presented in this section.

Input 1: Is Manchester United in the database?

Expected Query: SELECT DISTINCT team.name FROM games JOIN teams team ON team.id = games.home_team_id OR
team.id = games.away_team_id WHERE games.league_id = (SELECT id FROM leagues WHERE name = '<league_name>’)
AND games.season = '<season>’

Returned Queries: select distinct t.name as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams
t on gl.team_id = t.id where p.name = '<player>’ order by t.name, select distinct p.name as player_name, t.name as team_name,
g.season, l.name as league_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id =

t.id join games g on gl.game_id = g.id join leagues | on g.league_id = l.id where p.name = '<player>’ order by p.name, t.name,
g.season, l.name

Correct: No

Input 2: Give me the total home goals for Bayern M in the 2014-15 season

Expected Query: SELECT t.name AS TeamName, g.season, SUM(CASE WHEN g.home_team_id = t.id THEN g.goal_home
ELSE 0 END + CASE WHEN g.away_team_id = t.id THEN g.goal_away ELSE 0 END) AS TotalGoals FROM games g JOIN
teams t ON g.home_team_id = t.id OR g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>" GROUP
BY t.name, g.season;

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games
inner join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’
group by teams.name order by (home_goals + away_goals) desc limit 3;’), select t.name as teamname, g.season, sum(case
when g.home_team_id = t.id then g.goal_home else 0 end + case when g.away_team_id = t.id then g.goal_away else 0 end) as
totalgoals from games g join teams t on g.home_team_id = t.id or g.away_team_id = t.id where t.name = '<team>’ and g.season
= '<season>’ group by t.name, g.season

Correct: Yes

Input 3: Calculate home advantage for Real Madrid in the 2015-16 season

Expected Query: SELECT teams.name, SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home ELSE
0 END) AS home_goals, SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END) AS
away_goals, COUNT(*) AS matches_played, (SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home
ELSE 0 END) + SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END)) * 1.0/
COUNT(*) AS avg_goals_per_match FROM games INNER JOIN teams ON teams.id = games.home_team_id OR teams.id =
games.away_team_id WHERE games.season = '2016-2017° GROUP BY teams.name ORDER BY (home_goals + away_goals)
DESC LIMIT 3;);

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games
inner join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-

2017’ group by teams.name order by (home_goals + away_goals) desc limit 3;’), with home_games as (select g.id, g.season,
g.home_team_id as team_id, case when g.goal_home >g.goal_away then 1 else 0 end as won, case when g.goal_home

= g.goal_away then 1 else 0 end as draw, case when g.goal_home <g.goal_away then 1 else 0 end as lost from games

g join teams t on g.home_team_id = t.id where t.name = '<team>’ and g.season = '<season>’), away_games as (select

g.id, g.season, g.away_team_id as team_id, case when g.goal_away >g.goal_home then 1 else 0 end as won, case when
g.goal_away = g.goal_home then 1 else 0 end as draw, case when g.goal_away <g.goal_home then 1 else 0 end as lost

from games g join teams t on g.away_team_id = t.id where t.name = '<team>’ and g.season = '<season>’), home_stats as
(select count(*) as total_home_games, sum(won) as home_wins, sum(draw) as home_draws, sum(lost) as home_losses from
home_games), away_stats as (select count(*) as total_away_games, sum(won) as away_wins, sum(draw) as away_draws,
sum(lost) as away_losses from away_games) select hs.total_home_games, hs.home_wins, hs.home_draws, hs.home_losses,
as_stats.total_away_games, as_stats.away_wins, as_stats.away_draws, as_stats.away_losses from home_stats hs, away_stats
as_stats
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Correct: Yes

Input 4: How many goals did Messi score in the 15-16 season?

Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN player_event_labels pel ON pe.type = pel.id WHERE p.name = <player>AND g.season =
<season>AND pel.label = 'Goal’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = l.id join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and |.name = <league>and pel.label = 'goal’

Correct: Yes

Input 5: How many yellow-cards did Enzo Perez get in the 15-2016 season?

Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN player_event_labels pel ON pe.type = pel.id WHERE p.name = <player>AND g.season =
<season>AND pel.label = 'Goal’;

Returned Queries: select count(*) as substitution_count from player_events pe join players p on pe.player_id = p.hash join
games g on pe.game_id = g.id where p.hash = <player_hash>and g.season = <season>and (pe.type = 6 or pe.type = 7), select
count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join
player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 6: List all teams that played a game against Napoli in 2016-17 season in seriea? Do not limit the number of results.
Expected Query: SELECT DISTINCT CASE WHEN ht.name = '<team>" THEN at.name ELSE ht.name END AS
OpponentTeam FROM games g JOIN teams ht ON g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id JOIN
leagues | ON g.league_id = l.id WHERE (ht.name = '<team>’ OR at.name = '<team>’) AND |.name = '<league>’ AND g.season =
‘<season>" ORDER BY OpponentTeam;

Returned Queries: select distinct opponent.name as opponent_name from games join teams as opponent on (opponent.id
= games.home_team_id or opponent.id = games.away_team_id) join teams as specified_team on (specified_team.id =
games.home_team_id or specified_team.id = games.away_team_id) where (games.home_team_id = (select id from teams
where name = '<team>’) or games.away_team_id = (select id from teams where name = '<team>’)) and games.season =
‘<season>’ and opponent.name !='<team>’, select distinct t.name as team_name from game_lineup gl join players p on
gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name = '<player>’ order by t.name

Correct: No

Input 7: Give all the teams in the league ucl in the 2015-2016 season?

Expected Query: SELECT DISTINCT team.name FROM games JOIN teams team ON team.id = games.home_team_id OR
team.id = games.away_team_id WHERE games.league_id = (SELECT id FROM leagues WHERE name = '<league_name>’)
AND games.season = '<season>’

Returned Queries: select * from teams, select distinct t.name as team_name from game_lineup gl join players p on gl.player_id
= p.hash join teams t on gl.team_id = t.id where p.name = '<player>’ order by t.name

Correct: No

Input 8: Give me all games in epl with yellow cards in the first half in the 2015-2016 season

Expected Query: SELECT p.name AS player_name, pel.label AS card_type, pe.time AS event_time FROM player_events

pe JOIN players p ON pe.player_id = p.hash JOIN player_event_labels pel ON pe.type = pel.id WHERE pe.game_id =
<game_id>AND (pel.label = "Yellow card’ OR pel.label = 'Red card’) ORDER BY CAST(pe.time AS UNSIGNED) ASC;
Returned Queries: select p.name as player_name, pel.label as card_type, pe.time as event_time from player_events pe

join players p on pe.player_id = p.hash join player_event_labels pel on pe.type = pel.id where pe.game_id = <game_id>and
(pel.label = 'yellow card’ or pel.label = 'red card’) order by cast(pe.time as unsigned) asc, select ht.name as home_team,
at.name as away_team, g.score, g.date from games g join leagues | on g.league_id = l.id join events e on g.id = e.game_id and
g.home_team_id = e.team_id join teams ht on g.home_team_id = ht.id join teams at on g.away_team_id = at.id where l.name =
‘<leauge>’ and g.season = '<season>’ and e.period = 1 and e.label = '<event>’ group by g.id

Correct: Yes

Input 9: What teams and leagues has Adnan Januzaj play in?
Expected Query: SELECT DISTINCT t.name AS team_name FROM game_lineup gl JOIN players p ON gl.player_id = p.hash
JOIN teams t ON gl.team_id = t.id WHERE p.name = '<player>" ORDER BY t.name;
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Returned Queries: select distinct p.name as player_name, t.name as team_name, g.season, l.name as league_name from
game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id join
leagues | on g.league_id = |.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name, select distinct t.name
as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name =
‘<player>’ order by t.name

Correct: Yes

Input 10: List ALL players that started a game for Las Palmas in the 2016-2017 season? Do NOT limit the number of results.
Expected Query: SELECT DISTINCT p.name AS player_name FROM game_lineup gl JOIN players p ON gl.player_id = p.hash
JOIN teams t ON gl.team_id = t.id JOIN games g ON gl.game_id = g.id WHERE t.name = '<team>’ AND g.season = '<season>’
ORDER BY p.name;

Returned Queries: select distinct t.name as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams
t on gl.team_id = t.id where p.name = '<player>’ order by t.name, select distinct p.name as player_name, t.name as team_name,
g.season, l.name as league_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id =

t.id join games g on gl.game_id = g.id join leagues | on g.league_id = |.id where p.name = '<player>’ order by p.name, t.name,
g.season, l.name

Correct: No

Input 11: Did Ajax or Mancheter United win the most games in the 2014-15 season?

Expected Query: WITH home_games AS (SELECT g.id, g.season, g.home_team_id AS team_id, CASE WHEN g.goal_home
>g.goal_away THEN 1 ELSE 0 END AS won, CASE WHEN g.goal_home = g.goal_away THEN 1 ELSE 0 END AS draw, CASE
WHEN g.goal_home <g.goal_away THEN 1 ELSE 0 END AS lost FROM games g JOIN teams t ON g.home_team_id = t.id
WHERE t.name = '<team>" AND g.season = '<season>’), away_games AS (SELECT g.id, g.season, g.away_team_id AS
team_id, CASE WHEN g.goal_away >g.goal_home THEN 1 ELSE 0 END AS won, CASE WHEN g.goal_away = g.goal_home
THEN 1 ELSE 0 END AS draw, CASE WHEN g.goal_away <g.goal_home THEN 1 ELSE 0 END AS lost FROM games g

JOIN teams t ON g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>’), home_stats AS (SELECT
COUNT(*) AS total_home_games, SUM(won) AS home_wins, SUM(draw) AS home_draws, SUM(lost) AS home_losses
FROM home_games), away_stats AS (SELECT COUNT(*) AS total_away_games, SUM(won) AS away_wins, SUM(draw) AS
away_draws, SUM(lost) AS away_losses FROM away_games) SELECT hs.total_home_games, hs.home_wins, hs.home_draws,
hs.home_losses, as_stats.total_away_games, as_stats.away_wins, as_stats.away_draws, as_stats.away_losses FROM
home_stats hs, away_stats as_stats;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)

as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;’)

Correct: No

Input 12: How many yellow and red cards where given in UCL in the 2015-2016 season?

Expected Query: SELECT p.name AS player_name, pel.label AS card_type, pe.time AS event_time FROM player_events

pe JOIN players p ON pe.player_id = p.hash JOIN player_event_labels pel ON pe.type = pel.id WHERE pe.game_id =
<game_id>AND (pel.label = "Yellow card’ OR pel.label = 'Red card’) ORDER BY CAST(pe.time AS UNSIGNED) ASC;

Returned Queries: select p.name as player_name, pel.label as card_type, pe.time as event_time from player_events pe join
players p on pe.player_id = p.hash join player_event_labels pel on pe.type = pel.id where pe.game_id = <game_id>and (pel.label
="yellow card’ or pel.label = 'red card’) order by cast(pe.time as unsigned) asc, select count(*) as substitution_count from
player_events pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id where p.hash = <player_hash>and
g.season = <season>and (pe.type = 6 or pe.type = 7)

Correct: Yes

Input 13: Is Messi and C Ronaldo in the database?

Expected Query: SELECT * FROM players WHERE name = 'name’;

Returned Queries: select * from players where name = 'name’, select distinct p.name as player_name, t.name as team_name,
g.season, l.name as league_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id =

t.id join games g on gl.game_id = g.id join leagues | on g.league_id = |.id where p.name = '<player>’ order by p.name, t.name,
g.season, l.name

Correct: Yes
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Input 14: How many goals did E Hazard score in the game between Bournemouth and Chelsea in the 2015-2016 season?
Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN player_event_labels pel ON pe.type = pel.id WHERE p.name = <player>AND g.season =
<season>AND pel.label = 'Goal’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = l.id join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and l.name = <league>and pel.label = 'goal’

Correct: Yes

Input 15: How many yellow cards where given in the game between Bayer Munich and S Donetsk in, and did anyone get a red
card the 2014-15 ucl?

Expected Query: SELECT p.name AS player_name, pel.label AS card_type, pe.time AS event_time FROM player_events
pe JOIN players p ON pe.player_id = p.hash JOIN player_event_labels pel ON pe.type = pel.id WHERE pe.game_id =
<game_id>AND (pel.label = "Yellow card’ OR pel.label = 'Red card’) ORDER BY CAST(pe.time AS UNSIGNED) ASC;
Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select distinct p.name as player_name, t.name as team_name, g.season, l.name as league_name from
game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id join
leagues | on g.league_id = |.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name

Correct: No

Input 16: Make a list of when corners happened in the EPL 2015-2016 season. Aggregate by a periode of 15 minutes.
Expected Query: SELECT ht.name AS home_team, at.name AS away_team, g.score, g.date, COUNT(e.id) AS event_count
FROM games g JOIN leagues | ON g.league_id = l.id JOIN events e ON g.id = e.game_id AND g.home_team_id = e.team_id
JOIN teams ht ON g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id WHERE l.name = '<leauge>" AND
g.season = '<season>" AND e.label = '<event>" GROUP BY g.id;

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;’), select t.name as team_name, a.period, sum(case when
a.label = 'shots on target’ then 1 else 0 end) as shots_on_target, sum(case when a.label = 'goal’ then 1 else 0 end) as goals
from annotations a join teams t on a.team_id = t.id where a.game_id = x and (a.label = 'shots on target’ or a.label = 'goal’) group
by t.name, a.period order by t.name, a.period

Correct: No

Input 17: What league is Manchester United, Arsenal, Bournemouth, Real Madrid, Chelsea and Liverpool in?

Expected Query: SELECT * FROM teams;

Returned Queries: select distinct p.name as player_name, t.name as team_name, g.season, |.name as league_name from
game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id

join leagues | on g.league_id = l.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name, select p.name as
player_name, pe.game_id, pe.time as event_time from player_events pe join players p on pe.player_id = p.hash join (select g.id
from games g join leagues | on g.league_id = l.id where g.season = '<season>’ and l.id = <leauge_id>order by g.id limit 1) as
first_game on pe.game_id = first_game.id join player_event_labels pel on pe.type = pel.id where pel.label = <event>order by
cast(pe.time as unsigned) asc limit 1

Correct: No

Input 18: How many players has Aleksandar as first name in the database, and how many goals have they scored in total?
Expected Query: SELECT * FROM players WHERE name = 'name’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = Lid join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and |.name = <league>and pel.label = 'goal’

Correct: No

Input 19: What did the commentary say about the game between Arsenl and Southamptn in the 2016-17 season?
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Expected Query: SELECT description FROM captions WHERE game_id = <game_id>AND important = 1 AND
LENGTH(description) >20 ORDER BY period, game_time;

Returned Queries: select description from captions where game_id = <game_id>and important = 1 and length(description) >20
order by period, game_time, select distinct p.name as player_name, t.name as team_name, g.season, l.name as league_name
from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id
join leagues | on g.league_id = l.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name

Correct: Yes

Input 20: Have Mesut Ozil, Pablo Insua or Alex Pike played for West Ham or Barcelona?

Expected Query: SELECT DISTINCT p.name AS player_name, t.name AS team_name, g.season, l.name AS league_name
FROM game_lineup gl JOIN players p ON gl.player_id = p.hash JOIN teams t ON gl.team_id = t.id JOIN games g ON
gl.game_id = g.id JOIN leagues | ON g.league_id = |.id WHERE p.name = '<player>’" ORDER BY p.name, t.name, g.season,
l.name;

Returned Queries: select distinct p.name as player_name, t.name as team_name, g.season, l.name as league_name from
game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id join
leagues | on g.league_id = |.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name, select distinct t.name
as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name =
‘<player>’ order by t.name

Correct: Yes

Input 21: How many games has Real Madrid and Malaga played against each other? List each game with the date and

score. Also say who was the home team. Output should be: home_team_name, away_team_name, date, home_team_score,
away_team_score

Expected Query: SELECT DISTINCT opponent.name AS opponent_name FROM games JOIN teams AS opponent

ON (opponent.id = games.home_team_id OR opponent.id = games.away_team_id) JOIN teams AS specified_team ON
(specified_team.id = games.home_team_id OR specified_team.id = games.away_team_id) WHERE (games.home_team_id

= (SELECT id FROM teams WHERE name = '<team>’) OR games.away_team_id = (SELECT id FROM teams WHERE name =
‘<team>’)) AND games.season = '<season>" AND opponent.name !='<team>’

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;), select t.name as team_name, p.name || case when l.captain
then’ (c)’ else ” end as player_name, l.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on
t.id = l.team_id and l.game_id = g.id join players p on l.player_id = p.hash where g.id = x

Correct: No

Input 22: List all teams

Expected Query: SELECT * FROM teams;

Returned Queries: select * from teams, select distinct team.name from games join teams team on team.id =
games.home_team_id or team.id = games.away_team_id where games.league_id = (select id from leagues where name =
‘<league_name>’) and games.season = '<season>’

Correct: Yes

Input 23: Find player named Filipe Luis

Expected Query: SELECT * FROM players WHERE name = 'name’;

Returned Queries: select * from players where name = 'name’, select distinct t.name as team_name from game_lineup gl join
players p on gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name = '<player>’ order by t.name

Correct: Yes

Input 24: Select the names of teams and calculate their total home and away goals in the 2016-2017 season. Count the total
matches played and calculate the average goals per match. Order the teams by their total goals scored and limit the results to
the top three.

Expected Query: SELECT teams.name, SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home ELSE
0 END) AS home_goals, SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END) AS
away_goals, COUNT(*) AS matches_played, (SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home
ELSE 0 END) + SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END)) * 1.0/
COUNT(*) AS avg_goals_per_match FROM games INNER JOIN teams ON teams.id = games.home_team_id OR teams.id =
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games.away_team_id WHERE games.season = '2016-2017° GROUP BY teams.name ORDER BY (home_goals + away_goals)
DESC LIMIT 3;);

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0

end) as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals,
count(*) as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case
when games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from
games inner join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season =
’2016-2017’ group by teams.name order by (home_goals + away_goals) desc limit 3;), select count(*) as goal_count from
player_events pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join leagues | on g.league_id = l.id
join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and l.name = <league>and
pel.label = 'goal’

Correct: Yes

Input 25: Retrieve the name and country of a player identified by hash = Kty10JVG.

Expected Query: SELECT players.name, players.country FROM players WHERE players.hash = 'hash’;

Returned Queries: select players.name, players.country from players where players.hash = 'hash’, select * from players where
name = 'name’

Correct: Yes

Input 26: Get information about what happened in game 5, between the time range of 10 and 20 minutes.

Expected Query: SELECT event_time_start, event_time_end, period, description FROM Commentary WHERE game_id =
game_id AND period = period AND ABS(event_time_start - start_time) <= duration;

Returned Queries: select event_time_start, event_time_end, period, description from commentary where game_id = game_id
and period = period and abs(event_time_start - start_time) <= duration, select a.game_id, a.label, a.position, a.period from
annotations a join games g on a.game_id = g.id where a.game_id = x and a.label = 'offside’ and a.team_id = g.away_team_id
Correct: Yes

Input 27: For the a game with ID 43, list the home team’s name, players’ names (with a captain indicator), and shirt numbers.
Expected Query: SELECT t.name AS team_name, p.name || CASE WHEN I.captain THEN ’ (C)’ ELSE ” END AS player_name,
|.shirt_number FROM games g JOIN teams t ON g.home_team_id = t.id JOIN game_lineup | ON t.id = I.team_id AND l.game_id
= g.id JOIN players p ON l.player_id = p.hash WHERE g.id = X;

Returned Queries: select t.name as team_name, p.name || case when l.captain then ’ (c)’ else ” end as player_name,
|.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on t.id = l.team_id and l.game_id

= g.id join players p on l.player_id = p.hash where g.id = x, select home_team.name as home_team, away_team.name as
away_team from games join teams as home_team on games.home_team_id = home_team.id join teams as away_team on
games.away_team_id = away_team.id where games.id = x

Correct: Yes

Input 28: Who was the home team, and away team in game 527

Expected Query: SELECT home_team.name AS home_team, away_team.name AS away_team FROM games JOIN teams AS
home_team ON games.home_team_id = home_team.id JOIN teams AS away_team ON games.away_team_id = away_team.id
WHERE games.id = X;

Returned Queries: select home_team.name as home_team, away_team.name as away_team from games join teams as
home_team on games.home_team_id = home_team.id join teams as away_team on games.away_team_id = away_team.id
where games.id = X, select t.name as team_name, p.name || case when l.captain then’ (c)’ else ” end as player_name,
|.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on t.id = l.team_id and l.game_id = g.id
join players p on l.player_id = p.hash where g.id = x

Correct: Yes

Input 29: For game 132, list all Shots on targets and goals, for each team (using their name not id) for each period

Expected Query: SELECT t.name AS team_name, a.period, SUM(CASE WHEN a.label = 'Shots on target’ THEN 1 ELSE

0 END) AS shots_on_target, SUM(CASE WHEN a.label = ‘Goal’ THEN 1 ELSE 0 END) AS goals FROM annotations a JOIN
teams t ON a.team_id = t.id WHERE a.game_id = X AND (a.label = 'Shots on target’ OR a.label = 'Goal’) GROUP BY t.name,
a.period ORDER BY t.name, a.period;

Returned Queries: select t.name as team_name, a.period, sum(case when a.label = ’shots on target’ then 1 else 0 end) as
shots_on_target, sum(case when a.label = 'goal’ then 1 else 0 end) as goals from annotations a join teams t on a.team_id
=t.id where a.game_id = x and (a.label = 'shots on target’ or a.label = ’goal’) group by t.name, a.period order by t.name,
a.period, select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) as
home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
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games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;")

Correct: Yes

Input 30: How many offsides were caused by the away team in game 65, also get the time of the event

Expected Query: SELECT a.game_id, a.label, a.position, a.period FROM annotations a JOIN games g ON a.game_id = g.id
WHERE a.game_id = X AND a.label = 'Offside’ AND a.team_id = g.away_team_id;

Returned Queries: select a.game_id, a.label, a.position, a.period from annotations a join games g on a.game_id = g.id
where a.game_id = x and a.label = 'offside’ and a.team_id = g.away_team_id, select home_team.name as home_team,
away_team.name as away_team from games join teams as home_team on games.home_team_id = home_team.id join teams
as away_team on games.away_team_id = away_team.id where games.id = x

Correct: Yes

Input 31: all goals scored by Dortmund in 2014-2015

Expected Query: SELECT t.name AS TeamName, g.season, SUM(CASE WHEN g.home_team_id = t.id THEN g.goal_home
ELSE 0 END + CASE WHEN g.away_team_id = t.id THEN g.goal_away ELSE 0 END) AS TotalGoals FROM games g JOIN
teams t ON g.home_team_id = t.id OR g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>" GROUP
BY t.name, g.season;

Returned Queries: select t.name as teamname, g.season, sum(case when g.home_team_id = t.id then g.goal_home else 0 end
+ case when g.away_team_id = t.id then g.goal_away else 0 end) as totalgoals from games g join teams t on g.home_team_id
=t.id or g.away_team_id = t.id where t.name = '<team>’ and g.season = '<season>’ group by t.name, g.season, select
count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join
player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 32: All games played by Benfica in 2015-2016 in cl

Expected Query: SELECT g.id, g.date, g.season, l.name AS LeagueName, ht.name AS HomeTeam, at.name AS AwayTeam,
g.score FROM games g JOIN teams ht ON g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id JOIN leagues

| ON g.league_id = l.id WHERE (ht.name = '<team>’ OR at.name = '<team>") AND l.name = '<league>’ AND g.season =
‘<season>’;

Returned Queries: select g.id, g.date, g.season, |.name as leaguename, ht.name as hometeam, at.name as awayteam, g.score
from games g join teams ht on g.home_team_id = ht.id join teams at on g.away_team_id = at.id join leagues | on g.league_id

= Lid where (ht.name = '<team>’ or at.name = '<team>’) and l.name = '<league>’ and g.season = '<season>’, select t.name as
teamname, g.season, sum(case when g.home_team_id = t.id then g.goal_home else 0 end + case when g.away_team_id = t.id
then g.goal_away else 0 end) as totalgoals from games g join teams t on g.home_team_id = t.id or g.away_team_id = t.id where
t.name = <team>’ and g.season = '<season>’ group by t.name, g.season

Correct: Yes

Input 33: List all teams that played against ManU in season 2015-2016 and league epl

Expected Query: SELECT DISTINCT CASE WHEN ht.name = '<team>’ THEN at.name ELSE ht.name END AS
OpponentTeam FROM games g JOIN teams ht ON g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id JOIN
leagues | ON g.league_id = l.id WHERE (ht.name = '<team>’ OR at.name = '<team>’) AND |.name = '<league>’ AND g.season =
‘<season>" ORDER BY OpponentTeam;

Returned Queries: select distinct opponent.name as opponent_name from games join teams as opponent on (opponent.id

= games.home_team_id or opponent.id = games.away_team_id) join teams as specified_team on (specified_team.id =
games.home_team_id or specified_team.id = games.away_team_id) where (games.home_team_id = (select id from teams
where name = '<team>’) or games.away_team_id = (select id from teams where name = '<team>’)) and games.season =
‘<season>’ and opponent.name !="<team>’, select distinct case when ht.name = '<team>’ then at.name else ht.name end as
opponentteam from games g join teams ht on g.home_team_id = ht.id join teams at on g.away_team_id = at.id join leagues | on
g.league_id = l.id where (ht.name = '<team>’ or at.name = '<team>’) and l.name = '<league>’ and g.season = '<season>’ order
by opponentteam

Correct: Yes

Input 34: Get home and away stats for Real Madrid in 2015-2016

Expected Query: WITH home_games AS (SELECT g.id, g.season, g.home_team_id AS team_id, CASE WHEN g.goal_home
>g.goal_away THEN 1 ELSE 0 END AS won, CASE WHEN g.goal_home = g.goal_away THEN 1 ELSE 0 END AS draw, CASE
WHEN g.goal_home <g.goal_away THEN 1 ELSE 0 END AS lost FROM games g JOIN teams t ON g.home_team_id = t.id
WHERE t.name = '<team>’ AND g.season = '<season>’), away_games AS (SELECT g.id, g.season, g.away_team_id AS
team_id, CASE WHEN g.goal_away >g.goal_home THEN 1 ELSE 0 END AS won, CASE WHEN g.goal_away = g.goal_home
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THEN 1 ELSE 0 END AS draw, CASE WHEN g.goal_away <g.goal_home THEN 1 ELSE 0 END AS lost FROM games g

JOIN teams t ON g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>’), home_stats AS (SELECT
COUNT(*) AS total_home_games, SUM(won) AS home_wins, SUM(draw) AS home_draws, SUM(lost) AS home_losses

FROM home_games), away_stats AS (SELECT COUNT(*) AS total_away_games, SUM(won) AS away_wins, SUM(draw) AS
away_draws, SUM(lost) AS away_losses FROM away_games) SELECT hs.total_home_games, hs.home_wins, hs.home_draws,
hs.home_losses, as_stats.total_away_games, as_stats.away_wins, as_stats.away_draws, as_stats.away_losses FROM
home_stats hs, away_stats as_stats;

Returned Queries: with home_games as (select g.id, g.season, g.home_team_id as team_id, case when g.goal_home
>g.goal_away then 1 else 0 end as won, case when g.goal_home = g.goal_away then 1 else 0 end as draw, case when
g.goal_home <g.goal_away then 1 else 0 end as lost from games g join teams t on g.home_team_id = t.id where t.name
='<team>’ and g.season = '<season>’), away_games as (select g.id, g.season, g.away_team_id as team_id, case when
g.goal_away >g.goal_home then 1 else 0 end as won, case when g.goal_away = g.goal_home then 1 else 0 end as

draw, case when g.goal_away <g.goal_home then 1 else 0 end as lost from games g join teams t on g.away_team_id

= t.id where t.name = '<team>’ and g.season = '<season>’), home_stats as (select count(*) as total_home_games,

sum(won) as home_wins, sum(draw) as home_draws, sum(lost) as home_losses from home_games), away_stats as

(select count(*) as total_away_games, sum(won) as away_wins, sum(draw) as away_draws, sum(lost) as away_losses from
away_games) select hs.total_home_games, hs.home_wins, hs.home_draws, hs.home_losses, as_stats.total_away_games,
as_stats.away_wins, as_stats.away_draws, as_stats.away_losses from home_stats hs, away_stats as_stats, select teams.name,
sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) as home_goals, sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*) as matches_played, (sum(case
when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when games.away_team_id = teams.id
then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner join teams on teams.id =
games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group by teams.name order

by (home_goals + away_goals) desc limit 3;’)

Correct: Yes

Input 35: How many goals did Messi score in 2014-2015 in la liga?

Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN leagues | ON g.league_id = l.id JOIN player_event_labels pel ON pe.type = pel.id WHERE
p.name = <player>AND g.season = <season>AND l.name = <league>AND pel.label = 'Goal’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = l.id join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and l.name = <league>and pel.label = 'goal’, select count(*) as goal_count from player_events
pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id
where p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 36: How many goals did John Obi Mikel score in 2015-20167?

Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN player_event_labels pel ON pe.type = pel.id WHERE p.name = <player>AND g.season =
<season>AND pel.label = 'Goal’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = Lid join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and l.name = <league>and pel.label = 'goal’

Correct: Yes

Input 37: List all teams that played against Chelsea in season 2014-2015

Expected Query: SELECT DISTINCT opponent.name AS opponent_name FROM games JOIN teams AS opponent

ON (opponent.id = games.home_team_id OR opponent.id = games.away_team_id) JOIN teams AS specified_team ON
(specified_team.id = games.home_team_id OR specified_team.id = games.away_team_id) WHERE (games.home_team_id

= (SELECT id FROM teams WHERE name = '<team>’) OR games.away_team_id = (SELECT id FROM teams WHERE name =
‘<team>’)) AND games.season = '<season>" AND opponent.name !='<team>’

Returned Queries: select distinct opponent.name as opponent_name from games join teams as opponent on (opponent.id

= games.home_team_id or opponent.id = games.away_team_id) join teams as specified_team on (specified_team.id =
games.home_team_id or specified_team.id = games.away_team_id) where (games.home_team_id = (select id from teams
where name = '<team>’) or games.away_team_id = (select id from teams where name = '<team>’)) and games.season =
‘<season>’ and opponent.name !='<teams’, select distinct case when ht.name = '<team>’ then at.name else ht.name end as
opponentteam from games g join teams ht on g.home_team_id = ht.id join teams at on g.away_team_id = at.id join leagues | on
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g.league_id = l.id where (ht.name = '<team>’ or at.name = '<team>’) and l.name = '<league>’ and g.season = '<season>’ order
by opponentteam
Correct: Yes

Input 38: List all teams in cl in 15-16

Expected Query: SELECT DISTINCT team.name FROM games JOIN teams team ON team.id = games.home_team_id OR
team.id = games.away_team_id WHERE games.league_id = (SELECT id FROM leagues WHERE name = '<league_name>’)
AND games.season = '<season>’

Returned Queries: select * from teams, select distinct team.name from games join teams team on team.id =
games.home_team_id or team.id = games.away_team_id where games.league_id = (select id from leagues where name =
‘<league_name>’) and games.season = '<season>’

Correct: Yes

Input 39: List all games in seria in 14-15 with Goal in first half

Expected Query: SELECT ht.name AS home_team, at.name AS away_team, g.score, g.date FROM games g JOIN

leagues | ON g.league_id = l.id JOIN events e ON g.id = e.game_id AND g.home_team_id = e.team_id JOIN teams ht ON
g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id WHERE l.name = '<leauge>’ AND g.season = '<season>’
AND e.period = 1 AND e.label = '<event>" GROUP BY g.id;

Returned Queries: select t.name as teamname, g.season, sum(case when g.home_team_id = t.id then g.goal_home else 0 end
+ case when g.away_team_id = t.id then g.goal_away else 0 end) as totalgoals from games g join teams t on g.home_team_id =
t.id or g.away_team_id = t.id where t.name = '<team>’ and g.season = '<season>’ group by t.name, g.season, select t.name as
team_name, a.period, sum(case when a.label = 'shots on target’ then 1 else 0 end) as shots_on_target, sum(case when a.label
='goal’ then 1 else 0 end) as goals from annotations a join teams t on a.team_id = t.id where a.game_id = x and (a.label = 'shots
on target’ or a.label = 'goal’) group by t.name, a.period order by t.name, a.period

Correct: No

Input 40: List all games in ucl in 2016-17 with offside, and include the number of times the event occurred

Expected Query: SELECT ht.name AS home_team, at.name AS away_team, g.score, g.date, COUNT(e.id) AS event_count
FROM games g JOIN leagues | ON g.league_id = l.id JOIN events e ON g.id = e.game_id AND g.home_team_id = e.team_id
JOIN teams ht ON g.home_team_id = ht.id JOIN teams at ON g.away_team_id = at.id WHERE l.name = '<leauge>" AND
g.season = '<season>" AND e.label = '<event>" GROUP BY g.id;

Returned Queries: select a.game_id, a.label, a.position, a.period from annotations a join games g on a.game_id = g.id where
a.game_id = x and a.label = 'offside’ and a.team_id = g.away_team_id, select ht.name as home_team, at.name as away_team,
g.score, g.date, count(e.id) as event_count from games g join leagues | on g.league_id = l.id join events e on g.id = e.game_id
and g.home_team_id = e.team_id join teams ht on g.home_team_id = ht.id join teams at on g.away_team_id = at.id where
l.name = '<leauge>’ and g.season = '<season>’ and e.label = '<event>’ group by g.id

Correct: Yes

Input 41: What teams and in what season did John Obi Mikel play in?

Expected Query: SELECT DISTINCT p.name AS player_name, t.name AS team_name, g.season, l.name AS league_name
FROM game_lineup gl JOIN players p ON gl.player_id = p.hash JOIN teams t ON gl.team_id = t.id JOIN games g ON
gl.game_id = g.id JOIN leagues | ON g.league_id = |.id WHERE p.name = '<player>’" ORDER BY p.name, t.name, g.season,
l.name;

Returned Queries: select distinct p.name as player_name, t.name as team_name, g.season, |.name as league_name from
game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id join
leagues | on g.league_id = l.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name, select distinct t.name
as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name =
‘<player>’ order by t.name

Correct: Yes

Input 42: List all players in Aston Villa in 14-15

Expected Query: SELECT DISTINCT p.name AS player_name FROM game_lineup gl JOIN players p ON gl.player_id = p.hash
JOIN teams t ON gl.team_id = t.id JOIN games g ON gl.game_id = g.id WHERE t.name = '<team>" AND g.season = '<season>’
ORDER BY p.name;

Returned Queries: select distinct t.name as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams
t on gl.team_id = t.id where p.name = '<player>’ order by t.name, select distinct p.name as player_name from game_lineup

gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on gl.game_id = g.id where t.name =
‘<team>’ and g.season = '<season>’ order by p.name

Correct: Yes
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Input 43: List all teams Steven Reid has played for

Expected Query: SELECT DISTINCT t.name AS team_name FROM game_lineup gl JOIN players p ON gl.player_id = p.hash
JOIN teams t ON gl.team_id = t.id WHERE p.name = '<player>" ORDER BY t.name;

Returned Queries: select distinct t.name as team_name from game_lineup gl join players p on gl.player_id = p.hash join teams
t on gl.team_id = t.id where p.name = '<player>’ order by t.name, select * from teams

Correct: Yes

Input 44: List all yellow and red cards for game 43, sorted by time

Expected Query: SELECT p.name AS player_name, pel.label AS card_type, pe.time AS event_time FROM player_events
pe JOIN players p ON pe.player_id = p.hash JOIN player_event_labels pel ON pe.type = pel.id WHERE pe.game_id =
<game_id>AND (pel.label = "Yellow card’ OR pel.label = 'Red card’) ORDER BY CAST(pe.time AS UNSIGNED) ASC;
Returned Queries: select p.name as player_name, pel.label as card_type, pe.time as event_time from player_events pe

join players p on pe.player_id = p.hash join player_event_labels pel on pe.type = pel.id where pe.game_id = <game_id>and
(pel.label = 'yellow card’ or pel.label = 'red card’) order by cast(pe.time as unsigned) asc, select a.game_id, a.label, a.position,
a.period from annotations a join games g on a.game_id = g.id where a.game_id = x and a.label = offside’ and a.team_id =
g.away_team_id

Correct: Yes

Input 45: What player had the first yellow card in league epl in season 14-15?

Expected Query: SELECT p.name AS player_name, pe.game_id, pe.time AS event_time FROM player_events pe JOIN
players p ON pe.player_id = p.hash JOIN (SELECT g.id FROM games g JOIN leagues | ON g.league_id = l.id WHERE
g.season = '<season>’' AND l.id = <leauge_id>ORDER BY g.id LIMIT 1) AS first_game ON pe.game_id = first_game.id JOIN
player_event_labels pel ON pe.type = pel.id WHERE pel.label = <event>ORDER BY CAST (pe.time AS UNSIGNED) ASC LIMIT
15

Returned Queries: select p.name as player_name, pe.game_id, pe.time as event_time from player_events pe join players p on
pe.player_id = p.hash join (select g.id from games g join leagues | on g.league_id = l.id where g.season = '<season>’ and l.id =
<leauge_id>order by g.id limit 1) as first._game on pe.game_id = first_game.id join player_event_labels pel on pe.type = pel.id
where pel.label = <event>order by cast(pe.time as unsigned) asc limit 1, select count(*) as substitution_count from player_events
pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id where p.hash = <player_hash>and g.season =
<season>and (pe.type = 6 or pe.type = 7)

Correct: Yes

Input 46: How many times did Sean Dyche get substituted in 15-16?

Expected Query: SELECT COUNT(*) AS substitution_count FROM player_events pe JOIN players p ON pe.player_id = p.hash
JOIN games g ON pe.game_id = g.id WHERE p.hash = <player_hash>AND g.season = <season>AND (pe.type = 6 or pe.type =
7)

Returned Queries: select count(*) as substitution_count from player_events pe join players p on pe.player_id = p.hash join
games g on pe.game_id = g.id where p.hash = <player_hash>and g.season = <season>and (pe.type = 6 or pe.type = 7), select
count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join
player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 47: List the goals scored by Lukas Podolski in game 153. Include the event time.

Expected Query: SELECT COUNT(*) AS goal_count FROM player_events pe JOIN players p ON pe.player_id = p.hash JOIN
games g ON pe.game_id = g.id JOIN player_event_labels pel ON pe.type = pel.id WHERE p.name = <player>AND g.season =
<season>AND pel.label = 'Goal’;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games

g on pe.game_id = g.id join leagues | on g.league_id = l.id join player_event_labels pel on pe.type = pel.id where p.name =
<player>and g.season = <season>and l.name = <league>and pel.label = 'goal’, select count(*) as goal_count from player_events
pe join players p on pe.player_id = p.hash join games g on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id
where p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 48: List all games ManU played against ManC and the final score. List the games in chronological order, based on the
game date.

Expected Query: SELECT teams.name, SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home ELSE
0 END) AS home_goals, SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END) AS
away_goals, COUNT(*) AS matches_played, (SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home
ELSE 0 END) + SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END)) * 1.0/
COUNT(*) AS avg_goals_per_match FROM games INNER JOIN teams ON teams.id = games.home_team_id OR teams.id =
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games.away_team_id WHERE games.season = '2016-2017° GROUP BY teams.name ORDER BY (home_goals + away_goals)
DESC LIMIT 3;);

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games
inner join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’
group by teams.name order by (home_goals + away_goals) desc limit 3;’), select g.id, g.date, g.season, l.name as leaguename,
ht.name as hometeam, at.name as awayteam, g.score from games g join teams ht on g.home_team_id = ht.id join teams at

on g.away_team_id = at.id join leagues | on g.league_id = l.id where (ht.name = '<team>’ or at.name = '<team>’) and l.name =
‘<league>’ and g.season = '<season>’

Correct: Yes

Input 49: What is the current roster of teams?

Expected Query: SELECT * FROM teams;

Returned Queries: select * from teams, select distinct p.name as player_name, t.name as team_name, g.season, l.name as
league_name from game_lineup gl join players p on gl.player_id = p.hash join teams t on gl.team_id = t.id join games g on
gl.game_id = g.id join leagues | on g.league_id = l.id where p.name = '<player>’ order by p.name, t.name, g.season, l.name
Correct: Yes

Input 50: | need to pull up a player’s details using just their first or last name. Lukas Podolski

Expected Query: SELECT * FROM players WHERE name = 'name’;

Returned Queries: select * from players where name = 'name’, select distinct t.name as team_name from game_lineup gl join
players p on gl.player_id = p.hash join teams t on gl.team_id = t.id where p.name = '<player>’ order by t.name

Correct: Yes

Input 51: Which teams scored the most in the 2016-2017 season, including their average goals per game?

Expected Query: SELECT teams.name, SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home ELSE
0 END) AS home_goals, SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END) AS
away_goals, COUNT(*) AS matches_played, (SUM(CASE WHEN games.home_team_id = teams.id THEN games.goal_home
ELSE 0 END) + SUM(CASE WHEN games.away_team_id = teams.id THEN games.goal_away ELSE 0 END)) * 1.0/
COUNT(*) AS avg_goals_per_match FROM games INNER JOIN teams ON teams.id = games.home_team_id OR teams.id =
games.away_team_id WHERE games.season = '2016-2017° GROUP BY teams.name ORDER BY (home_goals + away_goals)
DESC LIMIT 3;);

Returned Queries: select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;), select count(*) as goal_count from player_events pe join
players p on pe.player_id = p.hash join games g on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where
p.name = <player>and g.season = <season>and pel.label = 'goal’

Correct: Yes

Input 52: How do | find the personal and national information of a player with hash IpabyhMe?

Expected Query: SELECT players.name, players.country FROM players WHERE players.hash = 'hash’;

Returned Queries: select * from players where name = 'name’, select players.name, players.country from players where
players.hash = ’hash’

Correct: Yes

Input 53: What were the line-ups for the home team in game 21, specifically noting the team captain?

Expected Query: SELECT t.name AS team_name, p.name || CASE WHEN I.captain THEN ’ (C)’ ELSE " END AS player_name,
|.shirt_number FROM games g JOIN teams t ON g.home_team_id = t.id JOIN game_lineup | ON t.id = I.team_id AND l.game_id
= g.id JOIN players p ON l.player_id = p.hash WHERE g.id = X;

Returned Queries: select home_team.name as home_team, away_team.name as away_team from games join teams as
home_team on games.home_team_id = home_team.id join teams as away_team on games.away_team_id = away_team.id
where games.id = x, select t.name as team_name, p.name || case when l.captain then’ (c)’ else ” end as player_name,
|.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on t.id = l.team_id and l.game_id = g.id
join players p on l.player_id = p.hash where g.id = x

Correct: Yes
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Input 54: Could you tell me who were the home and away teams for the specific match identified by 52?

Expected Query: SELECT home_team.name AS home_team, away_team.name AS away_team FROM games JOIN teams AS
home_team ON games.home_team_id = home_team.id JOIN teams AS away_team ON games.away_team_id = away_team.id
WHERE games.id = X;

Returned Queries: select home_team.name as home_team, away_team.name as away_team from games join teams as
home_team on games.home_team_id = home_team.id join teams as away_team on games.away_team_id = away_team.id
where games.id = X, select t.name as team_name, p.name || case when l.captain then’ (c)’ else ” end as player_name,
|.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on t.id = l.team_id and l.game_id = g.id
join players p on l.player_id = p.hash where g.id = x

Correct: Yes

Input 55: In game 34, | want to see a breakdown of goals and shots on target for each team per period.

Expected Query: SELECT t.name AS team_name, a.period, SUM(CASE WHEN a.label = 'Shots on target’ THEN 1 ELSE

0 END) AS shots_on_target, SUM(CASE WHEN a.label = ‘Goal’ THEN 1 ELSE 0 END) AS goals FROM annotations a JOIN
teams t ON a.team_id = t.id WHERE a.game_id = X AND (a.label = 'Shots on target’ OR a.label = 'Goal’) GROUP BY t.name,
a.period ORDER BY t.name, a.period,;

Returned Queries: select t.name as team_name, a.period, sum(case when a.label = ’shots on target’ then 1 else 0 end) as
shots_on_target, sum(case when a.label = 'goal’ then 1 else 0 end) as goals from annotations a join teams t on a.team_id
=t.id where a.game_id = x and (a.label = 'shots on target’ or a.label = 'goal’) group by t.name, a.period order by t.name,
a.period, select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) as
home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)

as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;’)

Correct: Yes

Input 56: Need the count and timing of offsides by the away team in game 2.

Expected Query: SELECT a.game_id, a.label, a.position, a.period FROM annotations a JOIN games g ON a.game_id = g.id
WHERE a.game_id = X AND a.label = 'Offside’ AND a.team_id = g.away_team_id;

Returned Queries: select a.game_id, a.label, a.position, a.period from annotations a join games g on a.game_id = g.id
where a.game_id = x and a.label = 'offside’ and a.team_id = g.away_team_id, select home_team.name as home_team,
away_team.name as away_team from games join teams as home_team on games.home_team_id = home_team.id join teams
as away_team on games.away_team_id = away_team.id where games.id = x

Correct: Yes

Input 57: Show me how many goals a Arsenal scored in a 2014-15 season.

Expected Query: SELECT t.name AS TeamName, g.season, SUM(CASE WHEN g.home_team_id = t.id THEN g.goal_home
ELSE 0 END + CASE WHEN g.away_team_id = t.id THEN g.goal_away ELSE 0 END) AS TotalGoals FROM games g JOIN
teams t ON g.home_team_id = t.id OR g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>" GROUP
BY t.name, g.season;

Returned Queries: select count(*) as goal_count from player_events pe join players p on pe.player_id = p.hash join games g
on pe.game_id = g.id join player_event_labels pel on pe.type = pel.id where p.name = <player>and g.season = <season>and
pel.label = 'goal’, select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end)
as home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)
as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;’)

Correct: No

Input 58: In game 5, who was the home team?

Expected Query: SELECT home_team.name AS home_team, away_team.name AS away_team FROM games JOIN teams AS
home_team ON games.home_team_id = home_team.id JOIN teams AS away_team ON games.away_team_id = away_team.id
WHERE games.id = X;

Returned Queries: select home_team.name as home_team, away_team.name as away_team from games join teams as
home_team on games.home_team_id = home_team.id join teams as away_team on games.away_team_id = away_team.id
where games.id = X, select t.name as team_name, p.name || case when l.captain then’ (c)’ else ” end as player_name,
|.shirt_number from games g join teams t on g.home_team_id = t.id join game_lineup | on t.id = l.team_id and l.game_id = g.id
join players p on l.player_id = p.hash where g.id = x
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Correct: Yes

Input 59: List all goals scored by Dortmund in 2014-2015

Expected Query: SELECT t.name AS TeamName, g.season, SUM(CASE WHEN g.home_team_id = t.id THEN g.goal_home
ELSE 0 END + CASE WHEN g.away_team_id = t.id THEN g.goal_away ELSE 0 END) AS TotalGoals FROM games g JOIN
teams t ON g.home_team_id = t.id OR g.away_team_id = t.id WHERE t.name = '<team>’ AND g.season = '<season>" GROUP
BY t.name, g.season;

Returned Queries: select t.name as teamname, g.season, sum(case when g.home_team_id = t.id then g.goal_home else 0 end
+ case when g.away_team_id = t.id then g.goal_away else 0 end) as totalgoals from games g join teams t on g.home_team_id

= t.id or g.away_team_id = t.id where t.name = '<team>’ and g.season = '<season>’ group by t.name, g.season, select
teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) as home_goals, sum(case
when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*) as matches_played,
(sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when games.away_team_id
= teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner join teams on
teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group by teams.name
order by (home_goals + away_goals) desc limit 3;")

Correct: Yes

Input 60: For game 56, give the number of shots on target and goals for each team in each period.

Expected Query: SELECT t.name AS team_name, a.period, SUM(CASE WHEN a.label = 'Shots on target’ THEN 1 ELSE

0 END) AS shots_on_target, SUM(CASE WHEN a.label = ‘Goal’ THEN 1 ELSE 0 END) AS goals FROM annotations a JOIN
teams t ON a.team_id = t.id WHERE a.game_id = X AND (a.label = 'Shots on target’ OR a.label = 'Goal’) GROUP BY t.name,
a.period ORDER BY t.name, a.period;

Returned Queries: select t.name as team_name, a.period, sum(case when a.label = 'shots on target’ then 1 else 0 end) as
shots_on_target, sum(case when a.label = ’goal’ then 1 else 0 end) as goals from annotations a join teams t on a.team_id

= t.id where a.game_id = x and (a.label = 'shots on target’ or a.label = 'goal’) group by t.name, a.period order by t.name,
a.period, select teams.name, sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) as
home_goals, sum(case when games.away_team_id = teams.id then games.goal_away else 0 end) as away_goals, count(*)

as matches_played, (sum(case when games.home_team_id = teams.id then games.goal_home else 0 end) + sum(case when
games.away_team_id = teams.id then games.goal_away else 0 end)) * 1.0 / count(*) as avg_goals_per_match from games inner
join teams on teams.id = games.home_team_id or teams.id = games.away_team_id where games.season = '2016-2017’ group
by teams.name order by (home_goals + away_goals) desc limit 3;")

Correct: Yes
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Appendix B

Publications

During the work with this thesis, we submitted two papers for publication to CBMI
2024 21st International Conference on Content-Based Multimedia Indexing’

'https://cbmi2024.org/
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B.1 SoccerRAG: Multimodal Soccer Information
Retrieval via Natural Queries

Authors Strand, Aleksander Theo; Gautam, Sushant; Midoglu, Cise; Halvorsen, Pal
Venue

CBMI 2024 21st International Conference on Content-Based Multimedia Indexing
September 18-20, 2024 | Reykjavik, Iceland

Status Under review

Abstract The rapid evolution of digital sports media necessitates sophisticated
information retrieval systems that can efficiently parse extensive multimodal datasets.
This paper introduces SoccerRAG, an innovative framework designed to harness
the power of Retrieval Augmented Generation (RAG) and Large Language Models
(LLMSs) to extract soccer-related information through natural language queries.

By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and
automatic data validation, enhancing user interaction and accessibility to sports
archives. Our evaluations indicate that SoccerRAG effectively handles complex
queries, offering significant improvements over traditional retrieval systems in terms
of accuracy and user engagement. The results underscore the potential of using
RAG and LLMs in sports analytics, paving the way for future advancements in the
accessibility and real-time processing of sports data.
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Abstract—The rapid evolution of digital sports media ne-
cessitates sophisticated information retrieval systems that can
efficiently parse extensive multimodal datasets. This paper intro-
duces SoccerRAG, an innovative framework designed to harness
the power of Retrieval Augmented Generation (RAG) and Large
Language Models (LLMs) to extract soccer-related information
through natural language queries. By leveraging a multimodal
dataset, SoccerRAG supports dynamic querying and automatic
data validation, enhancing user interaction and accessibility to
sports archives. Our evaluations indicate that SoccerRAG effec-
tively handles complex queries, offering significant improvements
over traditional retrieval systems in terms of accuracy and
user engagement. The results underscore the potential of using
RAG and LLMs in sports analytics, paving the way for future
advancements in the accessibility and real-time processing of
sports data.

Index Terms—association football, information retrieval, large
language models, multimodal data fusion, natural language
processing, sports

I. INTRODUCTION

The rapid growth of digital sports content has created a
demand for efficient retrieval systems that can understand
and process natural language queries [1], [2]. The motivation
behind our research is to address the challenges in retrieving
specific content from extensive sports libraries using intuitive,
natural language requests. This approach simplifies user in-
teraction and enhances the accessibility of sports archives.
Soccer, as one of the most popular sports worldwide, serves
as a prominent use case and context for our proof-of-concept
retrieval application.

We propose SoccerRAG, a framework for retrieving mul-
timodal soccer information using natural language queries,
from an augmented soccer dataset based on SoccerNet [3],
[4], which includes game videos with image frames and
audio, timestamped captions (transcribed audio), annotations
for game events, and player information. In short:

o We highlight the opportunities presented by the rapid
advancements in Large Language Models (LLMs) and
Retrieval Augmented Generation (RAG), and motivate
the use of these technologies in the context of sports and
more specifically for soccer analytics (Section II).

o We propose a framework concept and design for the re-
trieval of multimodal soccer information through natural
queries, called SoccerRAG, which integrates components
for data representation, feature extraction and validation,

Pal Halvorsen
OsloMet, SimulaMet, Forzasys
Oslo, Norway
0000-0003-2073-7029

Cise Midoglu
SimulaMet, Forzasys

Oslo, Norway
0000-0003-0991-4418

and database querying. Our conceptualization includes
a proposed database schema for an augmented version
of the SoccerNet dataset, as well as a novel extractor-
validator chain (Section III).

« We provide an open source implementation for Soccer-
RAG which is accessible under [5] and fully reproducible
through the instructions provided therein.

o We present a preliminary evaluation of the SoccerRAG
framework through the analysis of the extractor-validator
chain, query complexity, individual component contri-
butions, and execution time, for different LLMs (Sec-
tion IV), and discuss our insights (Section V).

II. BACKGROUND AND RELATED WORK

LLMs have revolutionized the field of Natural Language
Processing (NLP) and generative Al [6]. The evolution
of LLMs, from early rule-based models to contemporary
GPT iterations, exemplifies significant technological advance-
ments [7]. The capabilities of these models extend beyond
text generation to include reasoning, decision-making, and
multimodal data fusion, addressing both the static nature of
early models and the computational demands of training and
fine-tuning [8].

A. Multimodal Soccer Understanding

Soccer, a globally beloved sport, serves as a rich domain
for analytical exploration. The multifaceted aspects of soccer
analytics are explored through the SoccerNet dataset and chal-
lenges [3], [4], a comprehensive repository of soccer broadcast
recordings and various annotations, facilitating research in
areas such as action spotting, video captioning, and game state
reconstruction [9]. Midoglu et al. [10] focused on automatic
event clipping, thumbnail selection, and game summarization
through Al, to streamline the production of engaging soccer
game highlights and summaries. There are interesting lines
of research in soccer game understanding around event detec-
tion [11], [12], automatic game summarization [13], highlight
generation [14], caption generation [15], [16], and similar.
Most of this research demonstrates that the use of multiple
modalities (including but not limited to videos, images, text,
audio, and structured metadata such as commentary text,
event information, and team statistics) can enhance game
understanding [1], [2].



B. Information Retrieval (IR)

Information Retrieval (IR) is focused on the extraction
of relevant information from vast datasets based on user
queries [17]. It encompasses a range of techniques including
indexing, search algorithms, and natural language processing,
to organize and retrieve unstructured data efficiently [18].
Recent advancements have leveraged machine learning and Al
to enhance the precision of search outcomes through a better
understanding of user intent and document semantics [19].
Despite its progress, IR continues to face challenges such as
data volume management and privacy concerns, highlighting
the need for innovative solutions in data retrieval [20].

C. Retrieval Augmented Generation (RAG)

RAG systems represent a paradigm shift in open-domain
question answering, combining document retrieval with gener-
ative modeling to produce contextually relevant answers [21].
The utility of vector databases in RAG systems, particu-
larly in efficiently managing and retrieving high-dimensional
vector representations of text, underscores their significance
in enhancing the accuracy and relevance of generated re-
sponses [22]. RAG has found application in different domains
including enterprise contexts where LLMs are integrated with
chatbots, enabling them to automatically derive more accurate
answers from company documents and knowledge bases [23].

D. Terminology

LLMs are advanced deep learning models capable of un-
derstanding and generating human-like text [24]. Our research
predominantly focuses on OpenAl’s closed-source GPT-3.5-
Turbo [25] and GPT-4.0-Turbo [26], although we acknowledge
the broader landscape of available LLMs. Tokens are the
atomic elements used by LLMs for text generation and pre-
diction. Tokens can represent varying levels of linguistic units,
from single characters to multiple words, crucial for modeling
and API cost calculations [27]. Other concepts that are integral
to LLM frameworks include chains which are sequences of
tasks executed in a predefined order [28], and agents which
are dynamic entities that use LLMs for decision-making and
executing actions based on reasoning [29]. Vector databases
handle high-dimensional data, such as text and image embed-
dings [30], enabling quick similarity searches [31] through
Approximate Nearest Neighbor (ANN) algorithms. They are
crucial for integrating with LLMs across various industries,
allowing for complex queries over extensive datasets, offering
a faster alternative to traditional database search methods [32].
Extractors are specialized mechanisms that harness the capa-
bilities of LLMs for efficient information extraction, and are
traditionally manual, rule-based processes [33]. They adapt
to tasks via instructions or emulate JSON for structured
output [34]. They offer tool calling for schema structuring,
JSON mode for structured output, and prompting-based extrac-
tion for versatile retrieval, streamlining the costly traditional
systems [35].

E. Novelty

The burgeoning interest in RAG, fueled by the rapid ad-
vancements in LLMs, has paved new avenues for exploring
innovative use cases across various domains, notably within
multimodal information retrieval [36]. Despite the wide ap-
plicability of RAG frameworks in enhancing the capabili-
ties of generative Al for open-domain question answering
and beyond, its potential in the sports domain, particularly
within soccer analytics, remains largely untapped. Our re-
search endeavors to bridge this gap by harnessing the mul-
timodal datasets inherent to the soccer broadcast pipeline.
By integrating RAG with multiple data modalities, we aim
to develop a sophisticated system capable of understanding
complex game scenarios and responding to user queries in
a manner that resonates with the intricate language of soccer.
The potential of our proposed system for video retrieval offers
a promising avenue for users and broadcasters alike, enabling
the recollection of game moments through natural queries.

III. PROPOSED FRAMEWORK

Figure 1 presents an overview of our proposed SoccerRAG
framework, which includes 4 main components: database,
feature extractor, feature validator, and SQL agent. The
application flow is as follows: (1) The user provides a natural
language query related to the contents of the database. (2) The
user input is sent to an LLM along with the properties schema
and a system prompt describing the properties the LLM should
extract from the question. The LLM then returns a list of
extracted properties relevant to the query. (3) Each extracted
feature is checked against the appropriate table in the database
using string matching algorithms. This step aims to correct
spelling mistakes and abbreviations. Once a value is found,
both the value and its primary key are added to the extracted
value. (4) The cleaned user prompt is combined with system-
specific prompts to guide the LLM in generating SQL queries
that will answer the user’s question. The constructed query is
then passed to the SQL chain, which designs and executes the
SQL queries against the underlying database. The SQL chain
handles communication between the system and the database,
retrieves the requested data, and prepares the results for
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Fig. 1. Overview of the proposed SoccerRAG framework.



presentation to the user. The complete SoccerRAG framework
can be replicated in an end-to-end manner by running our
open source software, which is accessible under [5], through
the instructions provided.

A. Database

The SoccerNet dataset consists of game broadcast videos
and metadata information for 550 soccer games, from a
number of top European leagues across multiple seasons.
We have run Automatic Speech Recognition (ASR) on all
games with available audio using Open AI’s Whisper [37]
to transcribe the audio, converting spoken commentary into
textual data. Overall, for each game, we have files containing
transcribed commentary (<1/2>_half-ASR.json), annotations
describing key events during the game such goals, cards, fouls,
etc. (Labels-v2.json), general game information such as home
and away teams, lineups, score, referee, and other details
(Labels-caption.json), as shown in Figure 2. In the context
of this work, an event refers to in-game events, commentary
refers to the transcribed commentary from the game broadcast,
and caption refers to a short description of an event.

% Dataset
| ¥ League A
| M 2014-2015
& Game12345
@ Labels-caption.json
& lLabels-v2.7json
& 1_half-ASR.json
& 2_half-ASR.json

| £ 2015-2016

| @ League B

e

Fig. 2. Dataset structure for the enhanced SoccerNet dataset used.

To make this diverse dataset usable for an SQL agent, we
converted the JSON files into a structured SQLite database
(detailed in Figure 3) with a script utilizing SQLAlchemy [5].
This script creates tables and columns based on a prede-
fined schema, follows a systematic process of extracting
league/season details, game details, lineups, events, commen-
tary, and creates links between related entities. Clear and
descriptive naming conventions for tables/columns were itera-
tively refined to improve the LLM’s understanding of the data
structure.

B. Feature Extractor

In the extractor chain, instructions are provided to the
LLM to return a JSON structure, where pre-defined properties
(defined in the schema.json file under [5]) are extracted from
the given prompt. We use the Langchain framework for its easy
adjustability to new tasks. The schema also includes a list of
the tables and columns a property exists in in the database, as
a preparation for the validation function.

player_events

player_svent_labels
—I id INTEGER
B e
EE—— hash VARCHAR

id INTEGER
INTEGER
playerid  INTEGER
type INTEGER
linked_player INTEGER

game._id

W NN
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team_id INTEGER A
player_id INTEGER & [ |

augmented_teams
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I
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away_team_id INTEGER A [
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id INTEGER
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Nar-ra
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events

id INTEGER
game_id INTEGER 7
team_id INTEGER 7

augmented_leagues

id INTEGER
league_id INTEGER A

Fig. 3. Database schema of the structured SQLite database.

C. Feature Validator

Extracted features can have spelling errors or include ab-
breviations, rendering them disparate from the representations
stored in the database. This discrepancy necessitates a valida-
tion procedure. To address the challenge of abbreviations (e.g.,
the natural query referring to "ManU" in reference to Manch-
ester United F.C.), we manually constructed auxiliary tables
within the database and populated them with abbreviations
pertaining to common soccer team and player nomenclature
(augmented_<teams/leagues>.csv files under [5]). These sup-
plementary tables are also delineated in the extractor schema
for properties that warrant their employment.

The validation process commences by selecting the initial
property key, which comprises a list of the extracted items for
that property. If the property is associated with an auxiliary
table, a search for a matching entry is performed within that
table. In the event that no match is found, the system retrieves
all items in the table linked to the property and computes the
Levenshtein Distance [38] to ascertain the closest match for
each item. Utilizing a predefined threshold for closeness, the
system attempts to automatically select the optimal match, but
may solicit user input for clarification in cases of ambiguity.
Upon the validation of all items, the original prompt is
returned with updated information containing the correct item
designation, and where feasible, the corresponding foreign key
in the database.

D. SQL Agent

The final component of the SoccerRAG framework lever-
ages the SQL agent from the LangChain framework [39]. To
enhance the capabilities of the agent, we implemented a few-
shot SQL RAG solution. By employing this approach, the



system prompt for the agent is consistently accompanied by
N number of queries that are pertinent to the user’s question,
where N is externally configurable. To identify the matching
queries, we employ vector search facilitated by a FIASS
database. This database is populated with data originating from
a JSON file (sgls.json under [5]), which contains a collection
of human crafted SQL queries. The vector search technique
entails embedding both the user’s question and the SQL
queries into high-dimensional vector spaces, thereby enabling
the identification of semantically similar queries through the
calculation of vector similarities.

By providing the agent with a few-shot context consisting
of relevant SQL queries, we provide the user of the system a
way of telling the system what data is expected to be retrieved
for different questions. This approach leverages the strengths
of both retrieval and generation components, harnessing the
domain knowledge encoded within the SQL query repository
while enabling the agent to adapt and construct tailored queries
based on the specific requirements of the user’s input.

E. Choosing an LLM

LLMs are used in the feature extractor and SQL agent
components of the SoccerRAG framework. In the LLM field,
new open-source models such as LlamA 2 [40], [41] and
Mistral-7B [42] are rapidly emerging, but lack advanced
function calling capabilities required by LangChain. While
fine-tuning a model for feature extraction is viable, it de-
mands substantial data and is time-consuming. Therefore, we
decided on using OpenAl’s GPT-4.0-Turbo [26] and GPT-3.5-
Turbo [25] models.

IV. EVALUATION

We use the following set of example questions throughout
our experiments to evaluate SoccerRAG and its components:

Question 1: Is Manchester United in the database?

Question 2: Give me the total home goals for Bayern M in the 2014-15 season

Question 3: Calculate home advantage for Real Madrid in the 2015-16 season

Question 4: How many goals did Messi score in the 15-16 season?

Question 5: How many yellow-cards did Enzo Perez get in the 15-2016 season?

Question 6: List all teams that played a game against Napoli in 2016-17 season

in seriea? Do not limit the number of results

Question 7: Give all the teams in the league ucl in the 2015-2016 season?

e Question 8: Give me all games in epl with yellow cards in the first half in the
2015-2016 season

e Question 9: What teams and leagues has Adnan Januzaj play in?

e Question 10: List ALL players that started a game for Las Palmas in the 2016-
2017 season? Do NOT limit the number of results

e Question 11: Did Ajax or Manchester United win the most games in the 2014-15
season?

o Question 12: How many yellow and red cards were given in the UEFA Champions
League in the 2015-2016 season?

e Question 13: Are Messi and C. Ronaldo in the database?

e Question 14: How many goals did E. Hazard score in the game between
Bournemouth and Chelsea in the 2015-2016 season?

e Question 15: How many yellow cards were given in the game between Bayern
Munich and Shakhtar Donetsk in the 2014-15 UEFA Champions League, and did
anyone receive a red card?

o Question 16: Make a list of when corners happened in the English Premier League
(EPL) 2015-2016 season. Aggregate by a period of 15 minutes.

e Question 17: What league is Manchester United, Arsenal, Bournemouth, Real
Madrid, Chelsea, and Liverpool in?

e Question 18: How many players have "Aleksandar” as their first name in the
database, and how many goals have they scored in total?

o Question 19: What did the commentary say about the game between Arsenal and
Southampton in the 2016-17 season?

e Question 20: Have Mesut Ozil, Pablo Insua, or Alex Pike played for West Ham

or Barcelona?

A. Extractor-Validator Evaluation

The extractor-validator chain was evaluated on questions 1-
20 subjectively, with the following evaluation criteria: (1) Were
all properties extracted? (2) Were extra properties extracted?
(3) Could extracted properties be validated? (4) Did the chain
need human input? A perfect score (indicated with e in Table I)
was given if all properties were extracted and validated. If
any properties were missed or validation failed, the result was
marked as failed (A). Extracting extra information or needing
human feedback resulted in a 50% score ().

GPT-3.5-Turbo was used for all questions except 15 and
18, which were re-run with GPT-4.0-Turbo. The results in
Table I show optimal performance for questions 2-10 and most
of 11-20. In question 1, an extra item was extracted, without
disrupting the rest of the chain. GPT-3.5-Turbo failed to extract
one property in question 15, which GPT-4.0-Turbo handled
correctly, this is demonstrated by presenting two results for
Question 15. In Table I Question 18, which was a question
designed to confuse the extractor by asking about players
named "Aleksandar". The extractor extracts the name, and then
tries to validate it against a single player. This shows that the
chain does not understand context, as opposed to the SQL
agent which is more content aware.

B. Query Complexity Analysis

To investigate the difficulty of composing database queries
to represent natural language queries, query complexity scores
were calculated for questions 1-10 using the Halstead met-
rics [43]. For each of the 10 questions, a database query was
manually composed, and the number of unique operators (e.g.
"SELECT", "FROM", "=") and operands (e.g. table and col-
umn names) were counted, as well as the total occurrences of
operators and operands across the query. Halstead metrics were
then calculated based on these counts. The results (presented
in the middle part of Table I) show that question 3 had the
highest complexity score. Further analysis revealed that this
was due to the query for question 3 performing several SUM
operations.

C. Ablation Study

By testing the framework components under different con-
figurations, it is possible to quantify the contribution of each
component to the final SoccerRAG framework. This informa-
tion is crucial for understanding the strengths and weaknesses
of the various parts of the system, and identifying areas for
potential improvement. We performed an extensive ablation
study using the following pipeline configurations, where (6)
corresponds to the full SoccerRAG framework.

1) SQL agent only: Sending the prompt directly to the SQL agent without RAG

2) SQL agent with RAG: Sending the prompt directly to the SQL agent with RAG

3) Extractor only: Sending the prompt with extracted values to the SQL agent

4) Extractor and SQL RAG: Sending the prompt with extracted values to the SQL

agent, the SQL agent uses RAG to get examples

5) Extractor and validator: Sending the prompt with extracted and validated values

to the SQL agent

6) Extractor, validator, and SQL RAG: Sending the prompt with extracted and
validated values to the SQL agent, the SQL agent uses RAG to get examples



TABLE 1
FRAMEWORK EVALUATION: EXTRACTOR-VALIDATOR EVALUATION (TOP), QUERY COMPLEXITY ANALYSIS (MIDDLE), ABLATION STUDY (BOTTOM).

Module Evaluation Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qs Q9 Q10
Extractor [ ] [ ) [} [ ] [ ) O] [ [] [
Validator ° ° ° ° ° ° ° ° ° °
Overall [ ° ° ° ° ° ° ° ° °
QI1 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Extractor O O ° O Ao O O O O
Validator [} [} [ [ e/ [ [ [ ] [ ] [
Overall [ ] [ ] [} [} /® [ J [} [ ] [ ] [ ]
Query Complexity Metric Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Number of distinct operators, 11 5 6 8 8 8 10 10 9 8 9
Number of distinct operands, ng 5 14 31 26 26 31 20 36 28 25
Total number of operators, N1 5 11 33 18 18 22 16 27 19 19
Total number of operands, N2 5 16 110 26 26 38 22 41 31 26
Vocabulary, n 10 20 39 34 34 41 30 45 36 34
Length, N 10 27 143 44 44 60 38 68 50 45
Volume, V/ 3322 | 116.69 | 755.81 22385 | 22385 | 321.45 186.46 | 37345 | 25850 | 228.94
Difficulty, D 2.50 343 14.19 4.00 4.00 6.13 5.50 5.12 443 4.68
Effort, 2 83.05 | 400.09 | 10727.66 | 89539 | 89539 | 197020 | 1025.54 | 1913.91 | 114477 | 1071.42
Time to understand (s), 7' 4.61 2223 595.98 4974 | 4974 | 109.46 56.97 106.33 63.60 59.52
LLM Pipeline Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
T x x 3 x x x 3 *® 3 *®
2 v x® ® ® v x® ® x® ® *®
3 ® ® ® ® ® % ® *® ® ®
GPT-3.5-Turbo 2 *® *® ”® *® *® ® *® *® v *®
5 *® v v ® x v ® x ® ®
6 v v v v v v v x® v v
I v *® 3 *x *® % v *® 3 *x
2 v ® v ® ® ® ® x v v
3 v v ® x x® ® v x® ® ®
GPT-4.0-Turbo 4 v *® ® *® ® *® ® *® v v
5 v x v ® v v v ® ® v
6 v v v v v v ® x® v v
For the ablation study, questions 1-10 were used. A correct ‘ .~
answer resulted in a pass score (indicated with ¢in Table 1), 250 2 %
while an incorrect or incomplete answer resulted in a fail score S o

(®). The answers generated by the prompts created during
the query complexity analysis (Section IV-B) were used to
determine the success rate. The experimental setup involved
using both GPT-3.5-Turbo and GPT-4.0-Turbo models to gain
insights into their respective performance and to investigate the
difference in quality, speed and cost between the two models.
For the SQL-RAG, the value of K was set to 2.

As shown in Table I, the standalone SQL agent struggled
with both models. The results indicate that the extractor-
validator chain is crucial for increasing the hit rate. Interest-
ingly, both models exhibited similar performance when the full
pipeline was applied. GPT-4.0-Turbo failed on question 7 due
to model laziness, where it provided only a partial answer.
For question 8, the query returned a substantial amount of
text, causing the language model to refuse to provide a correct
answer.

D. Execution Time

We investigated the execution time (total time from query
until model output) for GPT-3.5-Turbo and GPT-4.0-Turbo.
As the performance of cloud-based services might change
based on global usage, we explored "peak" and "off-peak"
periods separately (peak defined as SAM-5PM EST and off-
peak defined as SPM-8AM EST). To observe and quantify
the difference in execution time and response quality, we ran
questions 1-10 consecutively, five times per batch, during peak
and off-peak periods, with both models. Figure 4 presents our
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Fig. 4. Total execution time for questions 1-10.

findings, which indicate that peak usage is related to working
hours in the US, and that performance degrades during peak
usage periods for both models, although GPT-3.5-Turbo is
significantly faster than GPT-4.0-Turbo overall.

V. DISCUSSION
A. Handling Input Errors

The extractor-validator chain has proven invaluable in miti-
gating spelling mistakes and other input errors and enhancing



the overall accuracy of the system. Its functions can range from
simple substitutions (e.g., heterogeneous season indicators
in questions 5 and 6 into the uniform yyyy-yyyy format,
or "seriea" in question 6 to "Serie A", as expected by the
database) to resolving more complex issues. In the examples
below, we see that when the LLM doesn’t manage to resolve
keywords, it will in many cases produce a wrong output.

Prompt: Did Real or Man U win the most games in the 2015 season?
Output: Swansea won the most games in the 2014-2015 season with a total of
37 wins.
Cleaned prompt: Did Real or Man U win the most games in the 2015 season?
Updated Information:

e Real (now referred to as Real Madrid) has a primary key: 30.

e Man U (now referred to as Manchester United) has a primary key: 7.

e 2015 (now referred to as the 2015-2016 season).

Output: In the 2015-2016 season, Real Madrid won 26 games, while Manchester
United won 5 games. Therefore, Real Madrid won the most games in that season.

B. Retrieving Statistics

It is possible to extract detailed statistics using natural
language queries with SoccerRAG, as demonstrated below.

Prompt: Calculate home advantage for Real Madrid in the 2015-16 season
Output: For Real Madrid in the 2015-2016 season, the home advantage can be
calculated as follows:

o Total home goals scored: 55

o Total away goals scored: 39

e Number of home games played: 18

e Number of away games played: 17
This indicates that Real Madrid scored significantly more goals at home compared
to away games, suggesting a strong home advantage during the 2015-2016 season.

However, LLMs make mistakes with complex mathematics
or large lists. We found that asking for a list often led to
only a subset being returned (e.g., question 8, Prompt A),
whereas asking for a count of events provided the correct
answer (Prompt B=modified version of question 8).

Prompt A: Give all the teams in the league ucl in the 2015-2016 season
Output: The teams in the UEFA Champions League (UCL) during the 2015-2016
season, limited to five examples, are:

1) Galatasaray

2) Atletico Madrid

3) Manchester City

4) Juventus

5) Paris Saint-Germain (Paris SG)
Prompt B: Count all games in epl with yellow cards in the first half in the
2015-2016 season
Output: There were 70 games in the English Premier League (england_epl) with
yellow cards in the first half in the 2015-2016 season.

C. Influence of LLM

Execution time: We discovered that the OpenAl API works
slower during peak periods, which follow the US timezone,
with the execution time 22.56% slower for GPT-3.5-Turbo,
and 46.5% slower for GPT-4.0-Turbo.

Robustness: Robustness refers to providing the same cor-
rect answer when presented with the same question multiple
times. We did not observe significant degradation in the ro-
bustness of responses during peak periods. However, responses
can exhibit variations across different runs, even for the same
input. While strict prompting techniques can mitigate this
inconsistency to some extent, the inherent stochastic nature of
LLMs poses challenges in achieving complete determinism.
To address this issue and gain greater control over the output,

a solution would be to explore the usage of self-hosted LLMs
for the framework. Self-hosted LLMs also provide users with
control over computational load, request prioritization, etc. that
might influence the quality of the response.

Model laziness: The phenomenon where an LLM prema-
turely stops a task without fully completing it [44] can be
manifested in two ways. Model stopping before querying:
While attempting to answer a question, the framework makes
multiple requests to the LLM. We observed instances where
the framework prematurely halted during this reasoning phase,
responding to the user with "I now have the information I
need, and should query the database for the answer." This
was addressed by including "I will not stop until I query the
database and return the answer." in the system prompt for
the GPT-3.5-Turbo model, which seemed to fix most issues.
The GPT-4.0-Turbo model did not exhibit this problem. (2)
Model returning a subset: Both models faced this issue when
asked to return a list. Despite fetching the correct data, the
LLMs would often limit their response to 5-10 items. Stricter
prompting did not resolve this issue, which is acknowledged
by OpenAl [45].

D. Future Work

SoccerRAG supports multimodal data integration by con-
necting metadata about game events with video timestamps,
enabling several future applications. These include searching
and retrieving specific video clips associated with particular
game events using metadata, performing tasks such as object
detection, action recognition, and scene understanding on
video clips, and ultimately, automatically generating video
highlights centered around game events of interest, or entire
game summaries. SoccerRAG also faces several limitations
that need addressing. First, the system struggles with complex
queries and large data volumes. LLM model laziness might
cause tasks to conclude prematurely or provide partial data,
especially with extensive outputs. There is also a need to ex-
plore emerging LLMs, including open-source alternatives, for
potential performance improvements with respect to function
calling, language to query translation, and extraction abilities.
Multimodal data synchronization and real-time processing
capabilities require significant improvement to be viable for
live sports analytics applications. Finally, ensuring privacy and
ethical data handling is paramount, necessitating robust secu-
rity measures and ethical guidelines in future developments.

VI. CONCLUSION

We introduce SoccerRAG, a framework that leverages RAG
and LLMs to efficiently retrieve multimodal soccer informa-
tion via natural language queries, enhancing the accessibility
of vast sports datasets by allowing for intuitive user inter-
actions with complex data archives. Ultimately, SoccerRAG
exemplifies the transformative potential of Al in sports an-
alytics, promising a future where technology enriches the
global fan experience and advances the accessibility of sports
information.



(1]

(2]

(3]

(4]

[5]

[6]

(71

(8]
[9]
(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

S. Gautam et al., “Assisting soccer game summarization via audio
intensity analysis of game highlights,” in Proc. 12th IOE Graduate
Conference. Inst. of Eng. Tribhuvan University, Nepal, Oct. 2022, pp.
25-32. [Online]. Available: http://conference.ioe.edu.np/publications/
ioegc12/I0EGC-12-004-12009.pdf

S. Gautam, “Bridging Multimedia Modalities: Enhanced Multimodal AI
Understanding and Intelligent Agents,” in ICMI ’23: Proceedings of the
25th International Conference on Multimodal Interaction. New York,
NY, USA: Association for Computing Machinery, Oct. 2023, pp. 695—
699.

S. Giancola et al., “SoccerNet: A Scalable Dataset for Action Spotting
in Soccer Videos,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). 1EEE, 2018, pp. 18-22.
A. Deliege et al., “SoccerNet-v2: A Dataset and Benchmarks for
Holistic Understanding of Broadcast Soccer Videos,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 1IEEE, 2021, pp. 19-25.

“SoccerRAG: Multimodal Soccer Information Retrieval via Natural
Queries,” Apr. 2024, [Online; accessed 12. Apr. 2024]. [Online].
Available: https://github.com/simula/soccer-rag

J. Yang et al., “Harnessing the Power of LLMs in Practice: A Survey
on ChatGPT and Beyond,” ACM Trans. Knowl. Discovery Data, Jun.
2023.

D. Myers et al., “Foundation and large language models: fundamentals,
challenges, opportunities, and social impacts,” Cluster Comput., vol. 27,
no. 1, pp. 1-26, Feb. 2024.

Z. Xi et al., “The Rise and Potential of Large Language Model Based
Agents: A Survey,” arXiv, Sep. 2023.

S. Akan and S. Varli, “Use of deep learning in soccer videos analysis:
survey,” Multimedia Systems, vol. 29, no. 3, pp. 897-915, Jun. 2023.
C. Midoglu et al., “MMSys’22 Grand Challenge on Al-based Video
Production for Soccer,” arXiv, Feb. 2022.

L. Morra et al., “Slicing and Dicing Soccer: Automatic Detection of
Complex Events from Spatio-Temporal Data,” in Image Analysis and
Recognition. Cham, Switzerland: Springer, Jun. 2020, pp. 107-121.
O. A. N. Rongved et al., “Real-Time Detection of Events in Soccer
Videos using 3D Convolutional Neural Networks,” in [EEE Interna-
tional Symposium on Multimedia (ISM). 1EEE, 2020, pp. 02-04.

S. Gautam et al., “Soccer Game Summarization using Audio Commen-
tary, Metadata, and Captions,” in NarSUM ’'22: Proceedings of the Ist
Workshop on User-centric Narrative Summarization of Long Videos.
New York, NY, USA: Association for Computing Machinery, Oct. 2022,
pp. 13-22.

C. Midoglu et al., “Al-Based Sports Highlight Generation for Social
Media,” in MHV ’24: Proceedings of the 3rd Mile-High Video Confer-
ence. New York, NY, USA: Association for Computing Machinery,
Feb. 2024, pp. 7-13.

H. Mkhallati et al., “SoccerNet-Caption: Dense Video Captioning for
Soccer Broadcasts Commentaries,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). 1EEE,
2023, pp. 17-24.

J. Qi et al., “GOAL: A Challenging Knowledge-grounded Video Cap-
tioning Benchmark for Real-time Soccer Commentary Generation,” in
CIKM °23: Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. New York, NY, USA:
Association for Computing Machinery, Oct. 2023, pp. 5391-5395.

G. G. Chowdhury, Introduction to modern information retrieval. Facet
publishing, 2010.

K. Boukhari and M. N. Omri, “DL-VSM based document indexing
approach for information retrieval,” J. Ambient Intell. Hum. Comput.,
vol. 14, no. 5, pp. 5383-5394, May 2023.

J. Guo et al., “A Deep Look into neural ranking models for information
retrieval,” Information Processing & Management, vol. 57, no. 6, p.
102067, Nov. 2020.

[20]

[21]
[22]
[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35

[36]
[37]

[38]

[39

[40]
[41]

[42]
[43]

[44]

[45]

A. Olteanu et al., “FACTS-IR: fairness, accountability, confidentiality,
transparency, and safety in information retrieval,” SIGIR Forum, vol. 53,
no. 2, pp. 2043, Mar. 2021.

L. Liu et al., “Challenges in Generalization in Open Domain Question
Answering,” ACL Anthology, pp. 2014-2029, Jul. 2022.

W. Yu et al., “A Survey of Knowledge-enhanced Text Generation,” ACM
Comput. Surv., vol. 54, no. 11s, pp. 1-38, Nov. 2022.

C. Jeong, “A Study on the Implementation of Generative Al Services
Using an Enterprise Data-Based LLM Application Architecture,” arXiv,
Sep. 2023.

W. X. Zhao et al., “A Survey of Large Language Models,” arXiv, Mar.
2023.

“GPT-3.5-Turbo,” Apr. 2024, [Online; accessed 12. Apr. 2024]. [Online].
Available: https://platform.openai.com/docs/models/gpt-3-5-turbo
“GPT-4,” Apr. 2024, [Online; accessed 12. Apr. 2024]. [Online].
Available: https://openai.com/gpt-4

A. Vaswani et al., “Attention is all you need,” in NIPS’17: Proceedings
of the 31st International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp.
6000-6010.

T. Wu, M. Terry, and C. J. Cai, “Al Chains: Transparent and Controllable
Human-AI Interaction by Chaining Large Language Model Prompts,” in
CHI ’22: Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing
Machinery, Apr. 2022, pp. 1-22.

X. Liu et al., “AgentBench: Evaluating LLMs as Agents,” arXiv, Aug.
2023.

S. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative
study of dimensionality reduction techniques for high dimensional data,”
Information Fusion, vol. 59, pp. 44-58, Jul. 2020.

K. Echihabi, K. Zoumpatianos, and T. Palpanas, “New trends in high-D
vector similarity search: al-driven, progressive, and distributed,” Proc.
VLDB Endow., vol. 14, no. 12, pp. 3198-3201, Jul. 2021.

L. Friedman et al., “Leveraging Large Language Models in Conversa-
tional Recommender Systems,” arXiv, May 2023.

D. Xu et al., “Large Language Models for Generative Information
Extraction: A Survey,” arXiv, Dec. 2023.

K. Zhang, B. J. Gutiérrez, and Y. Su, “Aligning Instruction Tasks
Unlocks Large Language Models as Zero-Shot Relation Extractors,”
arXiv, May 2023.

“Extracting structured output | LangChain,” Apr. 2024, [Online;
accessed 8. Apr. 2024]. [Online]. Available: https://python.langchain.
com/docs/use_cases/extraction

Y. Cheng et al., “Exploring Large Language Model based Intelligent
Agents: Definitions, Methods, and Prospects,” arXiv, Jan. 2024.

A. Radford er al., “Robust speech recognition via large-scale weak
supervision,” 2022.

V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707-710.

“Agents | LangChain,” Apr. 2024, [Online; accessed 10. Apr. 2024].
[Online]. Available: https://python.langchain.com/docs/use_cases/sql/
agents

H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” 2023.

“Llama 2, Apr. 2024, [Online; accessed 12. Apr. 2024]. [Online].
Available: https://llama.meta.com/llama2/

A. Q. Jiang et al., “Mistral 7b,” 2023.

M. H. Halstead, Elements of Software Science (Operating and
programming systems series) | Guide books. Oxford, England, UK:
Elsevier Science Inc., 1977. [Online]. Available: https://dl.acm.org/doi/
abs/10.5555/540137

J. Wei et al., “Measuring and Reducing LLM Hallucination without
Gold-Standard Answers via Expertise-Weighting,” arXiv, Feb. 2024.

D. Coldewey, “OpenAl drops prices and fixes ’lazy’
GPT-4 that refused to work | TechCrunch,” TechCrunch,
Jan. 2024. [Online]. Available: https://techcrunch.com/2024/01/25/

openai-drops- prices-and- fixes-lazy- gpt-4-that-refused- to- work/



B.2 Demo: Soccer Information Retrieval via Natural
Queries using SoccerRAG

Authors Strand, Aleksander Theo; Gautam, Sushant; Midoglu, Cise; Halvorsen, Pal
Venue

CBMI 2024 21st International Conference on Content-Based Multimedia Indexing
September 18-20, 2024 | Reykjavik, Iceland

Status Under review

Abstract The rapid evolution of digital sports media necessitates sophisticated
information retrieval systems that can efficiently parse extensive multimodal datasets.
This paper demonstrates SoccerRAG, an innovative framework designed to harness
the power of Retrieval Augmented Generation (RAG) and Large Language Models
(LLMSs) to extract soccer-related information through natural language queries.

By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and
automatic data validation, enhancing user interaction and accessibility to sports
archives. We present a novel interactive user interface (Ul) based on the Chainlit
framework which wraps around the core functionality, and enable users to interact
with the SoccerRAG framework in a chatbot-like visual manner.
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Abstract—The rapid evolution of digital sports media neces-
sitates sophisticated information retrieval systems that can effi-
ciently parse extensive multimodal datasets. This paper demon-
strates SoccerRAG, an innovative framework designed to harness
the power of Retrieval Augmented Generation (RAG) and Large
Language Models (LLMs) to extract soccer-related information
through natural language queries. By leveraging a multimodal
dataset, SoccerRAG supports dynamic querying and automatic
data validation, enhancing user interaction and accessibility to
sports archives. We present a novel interactive user interface (UI)
based on the Chainlit framework which wraps around the core
functionality, and enable users to interact with the SoccerRAG
framework in a chatbot-like visual manner.

Index Terms—association football, information retrieval, large
language models, natural language processing, sports, UL

I. INTRODUCTION

The burgeoning interest in Retrieval Augmented Generation
(RAG), fueled by the rapid advancements in Large Language
Models (LLMs), has paved new avenues for exploring inno-
vative use cases across various domains, notably within multi-
modal information retrieval [1]. Despite the wide applicability
of RAG frameworks in enhancing the capabilities of generative
Al for open-domain question answering and beyond, its poten-
tial in the sports domain, particularly within soccer analytics,
remains largely untapped. Our recent research has endeavored
to bridge this gap by harnessing multimodal datasets inherent
to the soccer broadcast pipeline and integrating RAG with
different data modalities. We have presented SoccerRAG, a
framework for retrieving multimodal soccer information using
natural language queries, from an augmented soccer dataset
based on SoccerNet [2], [3], which includes game videos with
image frames and audio, timestamped captions (transcribed
audio), annotations for game events, and player information.

In this paper, we demonstrate the use of the SoccerRAG
framework through the command-line interface (CLI) and
a novel user interface (UI). Figure 1 presents an overview
of the SoccerRAG framework, with the core components
(database, feature extractor, feature validator, and SQL agent)
as presented earlier, wrapped by a novel interactive Ul which
serves as a user-friendly tool for visual interactions. The
Ul was created using the Chainlit framework. Chainlit is
an open-source Python package that enables developers to
build production-ready conversational Al applications, pro-
viding features for quick integration. It offers integrations
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Pal Halvorsen
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Oslo, Norway
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with popular libraries and frameworks, such as OpenAl and
LangChain, and allows for custom front-ends with React-based
user interfaces [4]. The SoccerRAG integrates functionality for
data representation, feature extraction and validation, database
querying (based on our proposed database schema for the
augmented version of the SoccerNet dataset), and a novel
extractor-validator chain. The open source implementation for
SoccerRAG is accessible under [5] and fully reproducible
through the instructions provided therein, which are detailed

below.
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Fig. 1: Overview of the SoccerRAG framework, including the
novel interactive UI.

The potential of our proposed system for information re-
trieval offers a promising avenue for fans and broadcasters
alike, enabling the recollection of game specific information
and highlights, as well as broader statistics and insights (within
the scope of the entire database) through natural queries. Pur-
suing this avenue of research, we aspire not only to contribute
to the body of knowledge surrounding RAG and multimodal
information retrieval, but also to pioneer a smart system that
encapsulates the dynamic essence of soccer, fostering a deeper
connection between the sport and its global audience.

II. DEMONSTRATION

A. Application Flow

The core functionality of the SoccerRAG framework can be
represented with the following application flow:
o The user provides a natural language query related to the
contents of the database.



o The user input is sent to an LLM along with the properties
schema and a system prompt describing the properties
the LLM should extract from the query. The LLM then
returns a list of extracted properties relevant to the query.

o Each extracted feature is checked against the appropriate
table in the database using string matching algorithms.
This step aims to correct spelling mistakes and abbre-
viations. Once a value is found, both the value and its
primary key are added to the extracted value.

e The cleaned user prompt is combined with system-
specific prompts to guide the LLM in generating SQL
queries that will answer the user’s natural language query.
The constructed query is then passed to the SQL chain,
which designs and executes the SQL queries against the
underlying database. The SQL chain handles communi-
cation between the system and the database, retrieves the
requested data, and prepares the results for presentation
to the user.

B. Artifacts

Figure 2 presents the structure of the SoccerRAG codebase,
publicly accessible under [5]. The data folder is used by the
core pipeline to read in the source dataset (including the origi-
nal SoccerNet data, as well as our augmented league and team
tables), and storing the database files. The src folder contains
the configuration and executable files. The root directory in-
cludes the main executable (main.py), environment variables
(.env), and a list of dependencies (requirements.txt).
A proof-of-concept deployment of the SoccerRAG UI can be
found under: https://simulamet-host-soccerrag.hf.space/

€ SoccerRAG
| € data/
O dataset/
@ augmented_leagues.csv
@ augmented_teams.csv
<downloaded assets>
| <> src/
</> database.py
<[> extractor.py
</> sgl_chain.py
£ conf/
schema. json
sgls. json
,  .env
, </> app.py
| <> main.py
| <> main_cli.py

| requirements.txt

| <> setup.py

Fig. 2: Structure of the SoccerRAG codebase.

C. Requirements

The SoccerRAG codebase requires Python 3.12 or above
to be run. The requirements.txt file in the codebase

specifies the required packages, which can be installed through
pip. SoccerRAG does not require a GPU, and can be run on
any machine with a CPU. For the experiments presented in
the research paper, a machine with a Windows 11 operating
system, Intel(R) Core(TM) i5-9300H CPU @2.40GHz, and
16GB memory has been used. SoccerRAG requires an OpenAl
API key, which should be specified in the . env file. In order
to log all queries to the OpenAl endpoints, it is possible to set
a LangSmith API key [6]. This makes it possible to monitor
the cost of each call, and keep history.

D. Running the Framework

Below are the steps to run the SoccerRAG framework (core
functionality described in Section II-A).

1) Configuration: The SoccerRAG framework is set up us-
ing environment variables. Table I presents an overview of the
configuration parameters. The parameters marked as manda-
tory do not have default values, and need to be configured
before runtime. There should be an entry in .env for each
configuration parameter. The SoccerRAG framework has been
tested with GPT-3.5-Turbo [7] and GPT-4.0-Turbo [8], [9],
but can support any model available from OpenAl [10]. The
model version can be specified through the OPENAI_MODEL
configuration parameter.

Parameter Description M Default
OPENAI_API_KEY OpenAl API key v NA
OPENAI_MODEL GPT version X gpt-3.5-turbo-0125
DATABASE_URL Location of DB x "/data/games."
LANGSMITH Trace api calls x False
LANGSMITH_API_KEY API key for LangSmith V! NA
LANGSMITH_PROJECT Project tag for LangSmith x SoccerRag
FEW_SHOT Num. options in user validation X 3

TABLE I: SoccerRAG configuration parameters (M: manda-
tory).

2) Running via UI: Run python setup.py to down-
load the dataset and set up the DB, and chainlit run
app.py for the UL

Figure 3 presents an example screenshot, depicting alterna-
tive background colors? for the U, as well as the intermediate
feedback to users that the SoccerRAG provides for each
operational step, which are retrieved from the feature extractor
and feature validator components in the core pipeline. The
meaningful response returned to the user prompt "Can you
calculate Real Madrids [sic] home advantage for the 2015/16
season?" demonstrates that the framework is able to grasp
soccer-related concepts such as a home advantage (which
refers to the difference in scores achieved by a team in home
Vs. away games).

Figures 4 and 5 present further example screenshots, demon-
strating the capabilities of SoccerRAG which range from
database-wide statistics (example 2: "How many yellow cards
did messi [sic] get in the 2015-16 season on home turf?"
is returned with the correct aggregation across all games of

'If LANGSMITH is set to True.
2SoccerRAG UI background color is configurable: click the user icon in
the top right corner, select settings, then toggle the dark mode switch.



0

Can you calculate Real Madrids home advantage for the 2015+16 season?.

0 Extractor

Extractad properties:

© Cleaner
New prompt s as follows:
Can you calculate Real Madrids home advantage for the 2015-16 season?
Updated Information:

* Real Madrid hes a primary
+ 2015-16 (now referred to

=]

Chatbot

This is the final answer: Real Madrid's home advantage for the 20152016 season s as follows:
« Total Home Games: 18

+ Home Wins: 14
« Home Dr:

(a) Black background

© v

Gan you calculate Real Madrids home advantage for the 2015-16 season?

© extactor

Extracted properties:

Cleaner

New prompt s as follows:
Can you calculate Real Madrids home advantage for the 2015-16 season?
Updated Information

« Real Madrid has a primary key: 30.
+ 2015-16 (now referred to as 2015-2016).
o

© chamor

“This s the final answer: Real Madrid's home agvantage for the 2015-2016 season s as follows:

« Total Home Games: 18
« Home Wins: 14
« Home Draws: 1
« Home Losses: 3

o

(b) White background

Fig. 3: SoccerRAG UI example 1. The user prompts: "Can you
calculate Real Madrids [sic] home advantage for the 2015/16
season?"

the desired season), to supporting multi-format information
presentation (example 3: "List all games played by ManU
[sic] in the 16-17 season. / Give the result as a markdown
table with following format / HomeTeam AwayTeam Score
Venue Attendance Date").

One of the challenges faced by systems which are prompted
via natural language queries is the potential lack of clarifica-
tion with respect to the entities in the prompt. In the context
of soccer, these can be player, team, or league names, places,
season dates, etc. SoccerRAG requests clarification from the
user in cases of inadequate information, as shown in Figure 6.
Here (example 4: "Create a list of all games Lionel got a
yellow card / Make the list in markdown with following
coulms [sic] / Gameld, HomeTeam, AwayTeam, Score, Date"),
as opposed to directly returning a response ("one-step") as in
examples 1-3, the framework needs to ask the user to select the
correct value for "Lionel", as there are multiple entities in the
database with this name ("two-step"). In the UI, the user can

Q v

How many yellow cards did messi get in the 2015-16 season on home turf?

© Extractor

Extracted properties:

© Cleaner
New prompt i as follows:
How many yellow cards did messi get in the 2015-16 season on home turf?
Updated Information:
« messi (now referred to s Lionel Messi) has a primary key: vg0OGZbd in table players
+ 201516 (now referred to as 2015-2016 in table games).
+ yellow cards (now referred to as Yellow card in table events)

© chatot

This is the final answer: Lionel Messi received 35 yellow cards in the 2015-2016 season on home turf.

A 0 (]

Fig. 4: SoccerRAG UI example 2. The user prompts: "How
many yellow cards did messi [sic/ get in the 2015-16 season
on home turf?"

o
Give the resull as a markdown Lable with following format

@ Exvactor

Extracted properties:

© Cloaner
New prompt is 25 follows:
List al games piayed by Manl in the 16-17 season
Give the resull as a markdown table with following format
HomeTeam AuayTeam Scora Venue Allendance Dale.
Updated information:

* ManU (now referred 1o as Manchester United) has a primary key: 7 in lable teams.
1617 (now referred to as 2016-2017 in table garmes)

© cratwot
This s the final answer: Hara are the games played by Manchestar Uited (ManU) in the 2016-2017 season:

ate

Fig. 5: SoccerRAG Ul example 3. The user prompts: "List all
games played by ManU [sic] in the 16-17 season. / Give the
result as a markdown table with following format / HomeTeam
AwayTeam Score Venue Attendance Date"

click a button to communicate their choice and validate one of
the presented options, or pass the original string untranslated
to the next component.

3) Running via CLI: Run python setup.py to down-
load the dataset set up the DB, and python main_cli.py
-g <query> to use the CLI. The <query> should be
encapsulated by quotation marks (e.g., "How many goals did
Arsenal score in the 2015-16 season?"). If linebreaks are
intended, "\n" can be used.

Figure 7 presents an example screenshot, depicting the



O v
Greate aist of all games Lionel got a yellow card
Make the st n markdown with folowing couims
Gamela, HomeTaam, AwayTeam, Score, Date

© Extracior

Extracted properties:

© vatcator

Select the correct value for Lionel

Lionst Messi | [ Lionsi Caroe | [ Noupdate

(a) Step 1: user asked for clarification
© cnoice

| Lionel Messi

© vaiicator

Selected:

© cieaner
New prompt is as follows:
Create a list of all games Lionel got a yellow card
Make the list in markdown with following coulms
Gameld, HomeTeam, AwayTeam, Score, Date
Updated Information:

« Lionel {now referred to as Lionel Messi) has a primary key: vg00dZbd
« yellow card (now referred to as Yellow card.

© chatvot

This is the final answer: Here is a list of all games Lionel Messi got a yellow card, limited to 5 results:

Gameld  HomeTeam AwayTesm  Score Date

w5 PaissG Barceiona  1+3 15/04/2015 - 20:45
421 Barcelona Dep.laCowna 4-0  15/10/2016 - 16415
369 AL Magri Barceiona 01 17/05/2015 - 19:00
453 Barcelona Valencia  4-2 18/03/2017 - 2045

423 valencia Barceiona  2-3 2201012016 - 16415

(b) Step 2: response returned based on additional
user input

Fig. 6: SoccerRAG UI example 4. The user prompts: "Create
a list of all games Lionel got a yellow card / Make the list in
markdown with following coulms [sic] / Gameld, HomeTeam,
AwayTeam, Score, Date".

(.venv) PS C:\Users\theoo\Documents\GitHub\soccer-rag> -q "In
between Chelsea and Burnley in the 2014-15
ho. "

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/embeddings "HTTP/1.1 260 OK"
INFO: faiss. Loader: Loading faiss with AVX2 support

INFO: faiss. Loader: Successfully loaded faiss with AVX2 support

season, did anyone get a yellow card?

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST https://api.openai.com/vl/embeddings "HTTP/1.1 260 OK"

> Entering new AgentExecutor chain
INFO: httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 200 OK"

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 200 OK"
augmented_leagues, augmented_teams, captions, commentary, events, gam
ues, player_event_labels, player_events, players, teams

ve_lineup, games, leag

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 200 OK"

> Finished chain

In the game between Chelsea and Burnley in the 2014-2015 season, the following players rec
eived a yellow card

1. Branislav Ivanovic

2. George Boyd

3. Michael Kightly

Fig. 7: SoccerRAG CLI example 1. The user prompts: "In the
game between Chelsea and Burnley in the 2014-15 season,
did anyone get a yellow card? If yes, who."

console outputs from the CLI for the query "In the game
between Chelsea and Burnley in the 2014-15 season, did
anyone get a yellow card? If yes, who.", which receives a
response directly (one-step).

C.venv) PS C:\Users\theoo\Documents\GitHub\soccer-rag>
Henry in the database \n What teams have they played for
INFO:httpx:HTTP Request: POST https://api.openai.com/vl/embeddings "HTTP/1.1 200 OK"

INFO: faiss. loader:Loading faiss with AVX2 support

INFO: faiss . Loader: Successfully loaded faiss with AVX2 support

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 260 OK"

—q "Is Lionel or

Current person_name: Lionel
[1] Lionel
[2] Lionel Mes:

[4] Enter new value

Select the best match for person_name (1-4): 2
Updated person_name to Lionel Messi

Current person_name: Henry
[1] Henrikh Mkhitaryan

[2] Henri Bedimo

[3] Henri Saivet

[4] Enter new value

Select the best match for person_name (1-4): 3

Updated person_name to Henri Saivet

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/embeddings "HTTP/1.1 200 OK"

INFO:httpx:HTTP Request: POST https://api.openai.com/vl/chat/completions "HTTP/1.1 200 OK"

> Finished chain
Henri Saivet has played for Newcastle Utd and St Etienne, while Lionel Messi has played fo
r Barcelona

Fig. 8: SoccerRAG CLI example 2. The user prompts: "Is
Lionel or Henry in the database \n What teams have they
played for?"

Figure 8 presents an example screenshot, depicting the
console outputs for the query "Is Lionel or Henry in the
database \n What teams have they played for?", which requires
clarification from the user before returning the response (two-
step). Differently than the UI, the user can also provide a
custom string as a new value (option).

III. CONCLUSION

We demonstrate SoccerRAG, a framework that leverages
RAG and LLMs to efficiently retrieve multimodal soccer infor-
mation via natural language queries, enhancing the accessibil-
ity of sports datasets by allowing for intuitive user interactions
with complex data archives. In addition to the core pipeline
presented in our research paper, we have introduced a novel
UI to facilitate visual user interactions with the framework in
a chatbot-like manner. The UI serves as a wrapper around the
core pipeline, whereby it passes the user query to the feature
extractor component, after which the query is validated by the
feature validator against the database, the query with validated
properties are passed to SQL agent, which retrieves data from
the database and returns a response, and the UI presents the
response to the user.

We present the entire codebase for the SoccerRAG as open
source software, along with instructions to run the framework
either via CLI or via UIL. Our experiments up to now demon-
strate SoccerRAG’s capability to accurately interpret complex
queries and facilitate dynamic user engagements with soccer
content. We believe that SoccerRAG exemplifies the transfor-
mative potential of Al in sports analytics, promising enriched
global fan experiences and advances in the accessibility of
sports information.
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