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Abstract

This thesis investigates the feasibility and effectiveness of machine learning in predicting injuries
among Norwegian women’s soccer players. We have identified certain features, including illness,
weekly load, Chronic Training Load over the past 28 days, Acute Training Load, Chronic Training
Load over the past 42 days, monotony, strain, and Acute:Chronic Workload Ratio, have a strong
correlation with injury occurrence. We also identified the most effective time frame for predicting
injuries, while algorithms including Decision Tree, K‑Nearest Neighbors, LSTM, and XGBoost
performed best using a 32‑day time frame. Furthermore, we have investigated eight machine
learning algorithms performance to predict Norwegian women’s soccer players injuries. XGBoost
performed the best with an F1 score of 0.58. Themodel achieved a recall of 0.50 and a precision of
0.71, showcasing its strong performance in predicting soccer player injuries while also minimizing
the occurrence of false positive predictions.

We have conducted hyperparameter tuning on seven machine learning algorithms to evaluate
their performance before and after the tuning process. After conducting hyperparameter tuning,
we observed enhanced performance in algorithms such as Logistic Regression, Random Forest,
K‑Nearest Neighbors, Support Vector Machine, and Naive Bayes. Furthermore, we evaluate the
performance of machine learning algorithms on a single team dataset. We found that K‑Nearest
Neighbors performed exceptionally well in predicting injuries for a single team. On the other hand,
XGBoost emerged as the top performer for predicting injuries across multiple teams. We also
analyzedour algorithmsperformance, specifically on the injuredplayers dataset. We identified that
XGBoost performed best among other algorithms, whereas Decision Tree and K‑Nearest Neighbors
showed moderate performance. Lastly, we have evaluated algorithms performance based on
dataset size. The full dataset had a class imbalance (56 injury records, 8526 non‑injured records),
making it difficult to predict injuries. The single team dataset (Team A) provided better predictions
within that specific context but may not be applicable to other teams. Analyzing only the dataset
of injured players revealed specific patterns but may not capture broader injury trends.

Our research introduces a novel approach to predicting injuries in women’s soccer players using
machine learning algorithms. Furthermore, this thesis offers meaningful insights for players,
coaches, medical professionals, and physicians interested in studying soccer player injuries and
related factors.

Keywords: Machine learning, injury prediction, women’s soccer players, SoccerMon, algorithms,
hyperparameter tuning, performance metrics.
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Chapter 1

Introduction

Soccer is one of themost famous games in the world, with a huge fanbase. According toWikipedia,
around 250 million active soccer players in 200 countries [15][6]. The soccer market is enormous
and continues to expand annually. According to a Deloitte report, the European market expanded
by 7% to reach 29.5 billion euros during the 2021/22 session. Other soccer leagues like the La Liga,
Bundesliga, and Premier League are growing quickly in terms of review, club size, and fan support.
At the start of each season, clubs seek talented and fit players to join their teams. They invest a lot
of money in buying new players. Inmodern times, teams actively keep track of their players health,
performance, and injury history. This information is used to analyze player capabilities, prevent
injuries, and provide valuable insights to coaches and team management about the overall team
situation. This study focuses on using machine learning techniques to understand and prevent
injuries in women’s soccer.

The main objective of this thesis is to investigate the features contributing to injuries and predict
injury risk using machine learning algorithms. To achieve this, we have divided our research
objective into seven sub‑questions. Previous studies have primarily focused on subjective or
objective playermetrics, such aswellness, training load, and gameperformance, to predict injuries
[55] [50], readiness [48], and game performance [58]. However, our approach takes a different path
by integrating both subjective and objective GPS data from SoccerMon. This unique approach will
enable us to provide more accurate and insightful answers to our research objectives and sub‑
research questions.

1.1 Motivation

Besides men’s soccer, the growth of women’s soccer has been remarkable over the past few
decades, with increasing participation, visibility, and recognition across the world. More and
more women are participating in soccer at various levels. Behind the growth of women’s soccer,
leagues such as the National Women’s Soccer League (NWSL) in the United States, the FAWomen’s
Super League in England, and Division 1 Féminine in France played key roles [49]. Many investors
and large corporations are now providing financial support for women’s soccer. Greater media
coverage and broadcasting of women’s soccermatches have significantly increased the visibility of
the sport. This exposure helps in attracting fans, sponsors, and support for women’s soccer. There
are 211 members of FIFA, and almost all the member countries have women’s soccer teams [23].
The women’s national teams participate in various international competitions, including regional
tournaments like the UEFA Women’s Championship, CONCACAF Women’s Championship, AFC

1



CHAPTER 1. INTRODUCTION

Women’s Asian Cup, CAF Women’s Africa Cup of Nations, OFC Women’s Nations Cup, and others.
The value of the women’s soccer market has been steadily increasing, reflecting the growth and
rising popularity of women’s soccer globally. According to a recent UEFA report, women’s soccer in
Europe may see a six‑fold growth in its economic value over the next ten years, reaching over £578
million annually.

Soccer is a highly dynamic and fast‑paced sport that demands agility, skill, strategy, and teamwork.
Maintaining optimal health is critical to winning the game and is a highly desired quality in each
member of a team. The team physician and coach have responsibilities for making sure a player
is in optimal physical condition and healthy. One of the primary concerns for coaches and players
alike is the possibility of injury during hard training sessions or in competitive play. Preventing
injuries stands as a top priority for both players and coaching staff. A player who is in optimal
physical shape can make a significant positive impact on their team’s ability to secure victories,
whereas an injured player has the potential to hinder overall teamperformance. The player’s injury
cost over £500 million in the 2021/22 season, according to the findings of the European Football
Injury Index [54]. In addition, the recovery period for injured players is frequently lengthy, which
adversely impacts teamspirit, finances, andother important factors. In recent years, there hasbeen
a growing focus on reducing the risk of injuries in soccer [8]. Many clubs and research organizations
have done several research projects, and there are several ongoing projects to investigate the
reasons behind the players injuries as well as to find out injury prevention strategies. Experts in the
industry recommend several strategies for injury prevention. Proper warm‑up exercises before the
game are crucial to prepare players andminimize the risk of injury. Balance and stability exercises
are also important to enhance performance and prevent joint injuries. Adequate rest and recovery
after training sessions and games are essential for players. Additionally, maintaining proper
hydration and a balanced diet supports overall health, muscle recovery, and injury prevention. It
is also recommended to promptly address minor injuries and seek professional medical advice to
prevent them from worsening.

There are various factors that can contribute to a soccer player’s injury. These factors may include
intense training sessions preceding a competitive match, illness, mood, or other wellness‑related
elements. Nowadays, soccer clubs are more interested in collecting players data and using the
data for further analysis. subjective metrics, such as player wellness reports, training load, injury
records, illness history, and game performance parameters, are commonly used for analyzing and
predicting injury, player performance, etc. The author, Anna Linnea Jarmann [55], used SoccerMon
[52] subjectivemetrics to identify the injury risk factors for elite soccer teams using survival analysis.
There are also several existing studies where researchers used objective metrics to analyze and
predict participants’ readiness, injury, game performance, and so on. For example, the author,
Lars Hoel [50], used the GPS parameters from SoccerMon objectivemetrics to visualize and predict
features. In our thesis, we used both subjective and objective metrics to predict the injuries of
women’s soccer players using machine learning algorithms. We have extracted the GPS features
fromobjectivemetrics andcombined themwith subjectdata suchaswellness, training load, illness,
injury, and game performance parameters to predict injury.

One of themost promising approaches for injury prediction is to usemachine learning techniques.
Machine learning can help prevent and reduce the risk of injury to soccer players [28] [50]. By using
machine learning techniques, it is possible to find the patterns and trends of soccer players that
might be more useful for players, coaches, and teammanagement officials. This kind of approach
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helps players understand their condition after a game or training session, coaches can get better
insights, and team management can make decisions based on the report. While there is existing
research on the topic, there is a noticeable gap when it comes to evaluating the performance of
machine learning algorithms in identifying injury risk using both subjective and objective metrics.
We recognized the need for further exploration in this area and sought to find answers. In addition,
our thesis addresses specific research questions and provides results and explanations to enhance
understanding.

1.2 Research Questions

Our study aims to investigate various types ofmachine learning algorithms for identifying injury risk
in women’s soccer players. The primary research objective of this thesis is:

How can state‑of‑the‑artmachine learning algorithms predict and help to reduce the risk
of injuries in women’s soccer?

To address our main research objective, we have divided it into seven sub‑questions. The
SoccerMon [52] dataset provides various features, both subjective and objective. However, we are
uncertain about the importance of these features in predicting injuries. Thus, our investigation
focuses on identifying the most relevant features that are related to injuries. Additionally, we
have investigated the optimal time frame for predicting injuries, as we are unsure about the ideal
duration for predicting injuries in women’s soccer players for the following day. Moreover, we
are uncertain about the best machine learning algorithm for injury prediction. Hence, we have
explored eight machine learning algorithms to determine the most effective one for predicting
injuries in women’s soccer players.

We are unsure about the performance of our machine learning algorithms after hyperparameter
tuning. Therefore, our thesis investigates their performancebothbefore andafter tuning. Moreover,
we do not have an idea if our machine learning algorithms will perform the same for all the teams.
Therefore, we investigate how the algorithms perform on multiple teams and on a single team.
Additionally, what if a soccer club only wants to focus on previously injured players and analyze
their data to identify the risk of injury for those specific players? We do not know how ourmachine
learning algorithms will perform on the dataset of only injured players. So, we investigate our
algorithms’ performance to predict injury using only the injured players dataset. Moreover, we are
uncertain about how our machine learning model will perform on different datasets. To address
this uncertainty, we evaluate the performance of the algorithms on datasets of varying scales. This
investigation helps us understand how effectively the algorithms can adapt to and perform across
different sizes of datasets.

RQ1: What are the most important features that are correlated with injuries in women’s soccer
players?

RQ2: Howmany days is the most effective time frame for predicting injuries?

RQ3: Which machine learning algorithm is most effective for predicting injuries for the following
day?

3



CHAPTER 1. INTRODUCTION

RQ4: How does the hyperparameter tuning have an influence on improving the performance of
the algoritms?

RQ5: Is it more effective to use a single algorithm for all teams or to develop separate algorithms
for each team when predicting injuries?

RQ6: How do machine learning algorithms perform when evaluated on a dataset containing only
injured players?

RQ7: How does the scale of the dataset have an impact on the performance of machine learning
algorithms?

1.3 Scope

This thesis aims to usemachine learning algorithms to predict injuries amongNorwegianwomen’s
soccer players. We have used the SoccerMon [52] dataset for our thesis, which consists of data
collected from two top Norwegian soccer teams during 2020 and 2021. This dataset includes both
subjective and objective metrics about the soccer players. We have used both these subjective
metrics and GPS features extracted from the objectivemetrics for our study. The subjectivemetrics
include player wellness, training load, injury, illness, and game performance parameters. Our
analysis has identified the key factors that are highly correlated with injuries. Additionally, we
have also identified the features that have moderate and weak correlations with injuries. This
information can be valuable for developing effective training and recovery programs for soccer
players. Furthermore, we have conducted research to determine the optimal time frame for
predicting injuries. The findings from this experiment can be beneficial for future researchers in
this field, as they can utilize this knowledge to identify the most suitable time frame for predicting
injuries in their studies.

In our study, we have used eight different machine learning algorithms to predict injuries. In
the results and discussion chapter, we have provided a brief overview of the performance and
usefulness of these algorithms. This information can be used as a basis for future research.
Furthermore, we have evaluated the performance of ourmachine learning algorithms on a specific
team (Team A) dataset to evaluate their effectiveness on a smaller scale. These findings can
help researchers determine whether it is more effective to develop a common machine learning
framework for multiple teams or to create separate frameworks for each team when predicting
injuries. Additionally, wehave considered theperformanceof our algorithms specifically for injured
players, as coaches and teammanagement oftenprioritize their recovery. Lastly, we investigate the
impact of dataset size on the performance of ourmachine learning algorithms, providing guidance
for future experiments in selecting appropriate dataset sizes.

The findings of this thesis make significant contributions to both machine learning and soccer.
We demonstrate how to handle an imbalanced dataset, evaluate the performance of different
machine learning algorithms, explore the effects of hyperparameter tuning, and more. We believe
our findings will help reduce injury risks for players. Additionally, our work will be valuable to other
researchers focusing on the health and injuries of soccer players.
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1.4 Ethical Considerations

In this thesis, we aim to predict injuries among women’s soccer players using machine learning
techniques. Our analysis is based on the SoccerMon [52] dataset, which includes information on
players from two Norwegian soccer teams. Since this data contains both subjective and objective
details, including personal and sensitive information, it is crucial to prioritize the privacy and
security of the participants. To achieve this, we have taken steps to anonymize the data thoroughly.
This involves removing all metadata and using randomly generated file names, a widely accepted
method for protecting data privacy. Additionally, all players are fully informed about how the data
is collected, its nature, and the purpose of its use. This ensures transparency and ethical handling
of the data throughout the research process.

To complete this thesis, we used various internal resources that are not publicly accessible.
This confidentiality is critical to protecting the personal information of the teams and players
being studied. Despite the limitations on data accessibility, the insights gained from this private
information are significant and should be included in the thesis. While the findings may not be
comparable due to the private nature of the data, they nonetheless provide value to the research.

1.5 Main Contributions

The primary objective of this thesis is to develop a machine learning framework for predicting
the risk of injury among Norwegian elite women’s soccer players. The ultimate goal is to assist
elite soccer teams in reducing the risk of injury. Additionally, this research aims to help players,
coaches, and teammanagement gain a better understanding of the main factors linked to injuries.
By identifying these factors, the research can offer valuable insights into injury prevention and
player management strategies.

Several previous studies have used the SoccerMon dataset to predict player readiness, game
performance, injuries, and so on. For instance, Anna Linnea Jarmann proposed a survival analysis
technique to identify injury risk factors, focusing solely on subjectivemetrics. In a similar vein, Lars
Hoel used athlete GPS monitoring data to visualize and predict various features. In our thesis, we
have identified a gap in the existing research, as previous studies have primarily focused on either
subjective or objective metrics for injury prediction. To address this gap, we have integrated both
subjective metrics and objective GPS features into our analysis.

• At the early stage, we have proposed a pipeline to run the experiment to predict the risk of
injury for elite Norwegianwomen’s soccer players. The pipeline contains data preprocessing,
exploratory data analysis (EDA), feature engineering, model training, injury prediction, and
model evaluation.

• We have provided detailed information about the SoccerMon dataset through exploratory
data analysis. The EDA part includes correlations between features, outliers of various
numerical features, and time series analyses to identify the correlation levels of various
performance and well‑being metrics.

• In this thesis, we have discovered and highlighted potential causes of injury in women’s
soccer players. Features such as illness, weekly_load, ctl28, atl, ctl42, monotony, strain,
and acwr have a great influence on injury occurrence. There are some other features, such
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as daily_load, fatigue, average_running_speed, soreness, and top_speed have moderately
correlation with injury. This information can be used to create effective strategies to prevent
injuries.

• We have used the window function to identify the most effective time frame for injury
prediction. We have used the window sizes of 2, 4, 8, 16, and 32. Based on our experiment,
we have found that the best time frame for injury prediction is 32 days.

• We have used eight machine learning algorithms, including Logistic Regression, Decision
Tree, Random Forest, K‑Nearest Neighbors, LSTM, Support Vector Machine, XGBoost, and
Naive Bayes, and evaluated their performance. Among all the algorithms, XGBoost
performed best with an F1 score of 0.58 and recall and precision scores of 0.50 and 0.71,
respectively.

• At a later stage, we have investigated the influence of hyperparameter tuning on the
performance of themachine learning algorithms. Our findings demonstrate how fine‑tuning
hyperparameters significantly improve algorithm accuracy, precision, and recall, thereby
enhancing the reliability of injury predictions.

• Through our experiments, we have explored whether multiple teams can use a common
machine learning framework to predict injuries or if each team benefits from a separate
framework. This analysis provides valuable insights into howwell the developed algorithms
can be applied in different team settings.

• We have conducted experiments to evaluate the performance of the algorithms on datasets
containing only injured players, providing insights into the algorithms sensitivity to injury
patterns.

• Additionally, We also explored the impact of dataset scale on algorithms performance and
highlighted the importance of data quantity and quality in injury prediction.

The novelty of this thesis is that it includes the prediction of injury for two Norwegian elite soccer
teams using different types of machine learning algorithms using both subjective metrics and
GPS features from objective metrics. Moreover, the dataset had mentionable missing values, and
we introduced a random forest imputer to handle the missing values. Furthermore, we have
introduced oversampling and undersampling techniques to handle an imbalanced dataset. In
summary, our approach gives valuable insights to predict the risk of injury.

1.6 Thesis Outline

The remaining content of the thesis is structured into the following six chapters.

• Chapter 2: Background explored the PmSys framework with a focus on mobile apps, web
apps, and soccer dashboards. We also presented an overview of the SoccerMon dataset
that we used for injury prediction. We introduced basic machine learning and explained
the algorithms used in our thesis for injury prediction. Additionally, we discussed different
sampling techniques tohandle imbalanceddata. Furthermore,wediscussed variousmetrics
for monitoring athlete health and performance, including training, wellness, illness, and
game performance. We also examined the implementation of AI for injury prediction in
soccer and reviewed existing research in this area.
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• Chapter 3: Methodology and Implementation one of the most crucial chapters within
this thesis is the methodology and implementation, where we provide in‑depth in‑depth
knowledge to build the machine learning framework to predict the injuries of Norwegian
women’s soccer players. This chapter serves as a comprehensive guide, covering a range
of essential aspects, including the proposed pipeline, import dataset, data preprocessing,
exploratory data analysis, feature engineering, final datasets, and injury prediction. By
meticulously detailing each of these components, we aim to present a comprehensive
understanding of the practical execution of our thesis.

• Chapter 4: Experiments and Results presents a thorough analysis of the algorithm’s
performance and evaluation. Through a series of seven experiments, we provide
comprehensive results and findings for each of these experiments. Furthermore, we
include preliminary discussions to offer valuable insights and interpretations of the obtained
results. Overall, this chapter serves as a comprehensive repository, encompassing all the
experimental data and analyses conducted throughout this study.

• Chapter 5: Discussion offers a comprehensive summary of the entire thesis work. We
revisit and address all the research questions introduced in Chapter 1, providing detailed
explanations and answers for each of them. We also discuss the limitations encountered
during the research process, acknowledging any constraints or areas for improvement.
Additionally, the future scope of the study is outlined, highlighting potential avenues for
further exploration anddevelopment. Lastly, weprovide a concise recapof the contributions
made by our research, emphasizing the novel insights and advancements achieved through
this thesis.

• Chapter 6: Conclusion summarize our thesis and provide a complete overview of our
work. We highlight the experimental findings and explore their real‑world applications.
Furthermore, we discuss the exciting potential for future research in this field.
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Chapter 2

Background and RelatedWork

Before diving into our main work, we have invested significant effort in conducting thorough
background studies and gathering relevant research studies from the past. In this chapter, we have
introduced the PmSys, a player monitoring system that provides daily updates on the wellness,
illness, injury, and training load of soccer players. We also discussed the SoccerMon dataset and
both subjective and objectivemetrics. Furthermore, we provided an overview of machine learning
and the eight algorithms used in our experiments. We also discussed the sampling methods
for machine learning. To address our imbalanced dataset, we utilized two different sampling
techniques suchasundersampling andoversampling. Additionally, weexploredathletehealth and
monitoring. Later in this chapter, we presented information on the acute:chronic workload ratio
and its application in identifying injury risk. We also discussed the use of artificial intelligence for
injury prediction in soccer. Finally, webriefly reviewed the research conductedbyother researchers
in this field and highlighted their findings.

2.1 PmSys Framework

PmSys is a player monitoring system developed by the collaboration between researchers and
students at Simula Research Laboratory, University of Tromsø, and ForzaSys [27] [51]. The system
aims to assist athletes in their daily wellness reporting and provide trainers with valuable insights
into player and team performance. The main component of PmSys is the mobile application.
By using this application, athletes can easily report their daily wellness, injury, illness, game
performance, and so on. The app is user‑friendly and allows athletes to provide trainers with up‑to‑
date information. The data collected from the app is then accessible through a web‑based trainer
portal. Trainers can access andanalyze the reports submittedby athletes. This streamlinedprocess
saves time and effort, allowing trainers to have a holistic understanding of each player’s fitness and
well‑being. The trainer portal provides a range of features to enhance the training andperformance
management processes. Trainers can use the data to curate training sessions that are tailored to
individual players needs.

2.1.1 Mobile App

The PmSys mobile application is available on both Android and iOS platforms, making it easily
accessible for athletes. This user‑friendly appoffers awide rangeof options for athletes to report on
different aspects of their well‑being and performance. These features, including coronavirus check,
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wellness, injury, game report, session RP, participation, and illness, provide a holistic approach to
their athletic journey [14]. Figure 2.1. visually represents these features.

Figure 2.1: The figure indicates all the features of the PmSys mobile app’s reporting features.

During COVID‑19, athletes can easily report their completion of mandatory Corona checkups
through a mobile app, providing crucial information to officials. The app also allows athletes
to report their wellness, including sleep quality, mood, stress, soreness, and fatigue, enabling
them to communicate their physical and mental well‑being. In the injury section, athletes can
report any health conditions to trainers and club officials, facilitating appropriate action. The
game report function enables athletes to provide feedback after each match, assisting coaches
in analyzing performance and planning future sessions. Additionally, athletes can subjectively
assess their perceived exertion through theSessionRatingof PerceivedExertion (sRPE) feature. The
participation function allows athletes to report their involvement in activities, training, and exercise
actions, while the illness sectionpermits reportingof specific symptoms, aiding in the identification
and management of potential health issues. Overall, this comprehensive mobile app facilitates
efficient and effective communication between athletes and officials, ensuring the health, safety,
and performance of athletes during these challenging times.

2.1.2 Web App

The web application is designed to streamline communication and data management for various
stakeholders within a sports organization [14]. Coaches, physicians, trainers, and club authorities
can easily access athlete reports submitted through the PmSys mobile app. These reports provide
a comprehensive overview of athlete performance and well‑being, allowing officials to make
informed decisions. The web app offers visual representations of key metrics such as injuries,
illnesses, and performance parameters, aiding coaches in formulating strategies and selecting the
best team for upcoming matches. Club physicians can access injury and illness reports to provide
tailored treatments and care plans for players. Additionally, club authorities can use the web app
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to assess athlete performance for salary and contract negotiations. Overall, this user‑friendly web
app enhances communication and supports decision‑making for all key stakeholders in the sports
organization.

2.1.3 Soccer Dashboard

SoccerMon is a comprehensive dataset specifically focused on elite women’s soccer teams in
Norway. It consists of two main components: subjective metrics and objective metrics. The
subjective metrics portion includes a staggering 54,485 reports, with a total of 529,963 entries
manually recorded. On the other hand, the objective metrics section encompasses 10,075
measurement sessions, resulting in a massive 6,248,770,794 GPS positions recorded on the fields.
Overall, the dataset is comprised of an astounding 106,229,103,498 data points, highlighting its
extensive nature. To facilitate the analysis and visualization of this vast dataset, the researchers
at Simula Metropolitan Center for Digital Engineering AS (SimulaMet) developed an innovative
tool known as the Soccer Dashboard [48]. This web‑based tool provides users with the ability
to visualize and analyze the data from the SoccerMon dataset. With the Soccer Dashboard,
researchers, coaches, and other stakeholders can gain valuable insights and make informed
decisions based on the extensive data available.

Figure 2.2: The features of Soccer Dashboard [48].

The Soccer Dashboard in Figure 2.2. offers a user‑friendly and intuitive interface that allows users
to easily access a wide range of player metrics, readiness and wellness forecasts, training load
summaries, teammetrics, injury insights, training loaddata, andcorrelationanalyses for bothTeam
A and Team B. This comprehensive overview provides valuable insights and information to help
analyze and optimize player performance and team strategies.

The Figure 2.3. provides an easy and better visualization and analysis of individual women’s soccer
athlete readiness, wellness overview, and training load overview. The readiness forecast utilizes
an auto‑regressive moving average algorithm with exogenous regression, using historical data to
anticipate a player’s preparedness for training in the coming days. The Y‑axis represents matrix
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values ranging from 3 to 10, while the X‑axis represents time.

The second analysis focuses on the wellness evaluation of athletes, considering parameters such
as mood, sleep quality, stress levels, soreness, and fatigue. Coaches and trainers can access the
wellness analysis report for individual athletes over different time frames, including the last week,
fortnight,month, or even the last year. This comprehensivewellness analysis report offers a holistic
view of an athlete’s overall well‑being. By examining these wellness parameters, coaches and
trainers canmake informed decisions tailored to the specific needs and conditions of each athlete.

Figure 2.3: The figure highlights the information about the soccer players subjective metrics
parameters [48].

The last analysis focuses on the athlete’s training load overview, examining data from different
time frames such as the last week, fortnight, month, or even the last year. The visualization graph
represents the training load over time, with the X‑axis indicating time and the Y‑axis representing
the acute chronic workload ratio (ACWR). A bar chart is used in the graph to display the variations
in training load,making it easier to understand and interpret the data. The color schemewithin the
graph helps to interpret the intensity of the training load: red indicates a high training load, blue
signifies a low training load, and black represents a normal training load. This visual representation
provides a clear understanding of an athlete’s training load status over time. Moreover, this analysis
assists coaches in effectivelymanaging and optimizing an athlete’s training program. Furthermore,
Coaches adjust training based on low and high training days to meet each athlete’s needs.
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Figure 2.4: The figure illustrates the visualization report for the teams [48].
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TheSoccerDashboardprovides aneasy andcomprehensive team‑wide visualizationandanalytical
report, as depicted in Figure 2.4. It includes aggregate metrics, injuries, training load data,
and correlation analysis. The dashboard presents a visualization and analysis of training load
and health indicators for each player within a chosen team and time frame. It also offers a
comprehensive overview of the team’s injury landscape, helping coaches identify strategies to
mitigate injury risks. Additionally, the dashboard provides a tabulated report showcasing the
training load of each player, aiding coaches in planning and scheduling future training sessions
based on the collected data. Overall, the Soccer Dashboard serves as a valuable resource for
coaches, providing insights and tools to optimize team performance and reduce the likelihood of
injuries.

TheFigure 2.5. presents the correlationmatrix, which showcases the relationshipbetweenwellness
parameters and training load metrics. This matrix is a helpful tool for analyzing the connection
betweendifferent variables. It enables us to gain insights into how variousmatrices ofwellness and
training load parameters are interconnected. By examining this correlation matrix, we can better
understand the relationship between these factors and their impact on performance and overall
well‑being.

Figure 2.5: Correlation metrics from the Soccer Dashboard [48].
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2.2 SoccerMon Dataset

TheSoccerMondataset [52], developedby researchers at Simula Research Laboratory, is a valuable
collection of information on soccer players. This dataset was gathered over a span of two years
from two elite women’s soccer teams. It includes data on various aspects such aswellness, training
load, illness, game performance, injury, and movements. The SoccerMon dataset is divided into
subjective and objective metrics, with subjective metrics obtained through PmSys and objective
metrics acquired from the STATSports APEX system.

The SoccerMon dataset is a valuable resource for researchers in the field of women’s soccer.
It is currently the largest dataset available, offering numerous possibilities for research and
experimentation. While some studies have already been conducted using this dataset, such as
the implementation of PmSys and predictions related to readiness and athlete performance, there
is still much untapped potential. Researchers can use the SoccerMon dataset to develop strategies
that specifically target injury prevention for women’s soccer players. By doing so, they can greatly
improve the well‑being and performance of these athletes, ultimately making a significant impact
on the sport as a whole.

2.2.1 Subjective Metrics

The SoccerMon dataset is split into two categories: subjective metrics and objective metrics.
The subjective metrics section comprises data on the player’s training load, wellness, game
performance, illness, and injuries. This information is collected through the PmSys system, which
was developed by Simula Research Laboratory, the University of Tromsø, and ForzaSys. PmSys is a
performancemonitoring system specifically designed for soccer players. It allows players to record
their training load, wellness, game performance, illness, and injury details. The PmSys application
is available onboth iOS andAndroid platforms,making it convenient for players to report their data
after each task.

Figure 2.6: The illustration of sRPE reporting in PmSys [57].

The Figure 2.6. provides a visual representation of the sRPE (session rating of perceived exertion)
in the PmSys application within the playermonitoring system. Athletes engage inmultiple training
sessions or activities leading up to a match to adequately prepare themselves. Following each
training session, athletes utilize the PmSys application to report their training load. During the
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reportingprocess, athletesencounter variousquestionnaires, includingdetails suchas theduration
of the training period, date and time of training, types of exercises performed, and the perceived
difficulty level of the sessiononascaleof 1 to10. Onceall thequestionnairesare completed, players
submit their reports through the mobile app.

…

Figure 2.7: The illustration of wellness reporting in pmSys [57].

The Figure 2.7. presents the interface for reporting wellness within the player monitoring system.
The parameters for reporting wellness include readiness, fatigue, sleep duration, sleep quality,
soreness, stress, mood, and menstruation. The reporting process follows a similar method to that
of reporting sRPE. The first questionprompts athletes to select the date forwhich they are reporting
their wellness. The second question revolves around the athlete’s readiness for training, allowing
them to indicate their readiness level on a scale from1 to 10, with options such as ready for training,
not ready, almost ready, and so on. The third question focuses on the athlete’s general feelings.
Following that, athletes are asked to report their sleep duration from the previous night. Lastly,
athletes are prompted to provide feedback on the quality of their sleep from the previous night.
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Figure 2.8: The illustration of injury reporting in PmSys [57].

Athletes often sustain injuries during their training sessions. To simplify the reporting process, the
PmSys mobile app allows athletes to report their injuries conveniently. Figure 2.8. showcases the
user‑friendly interface of the app, specifically designed for injury reporting. By simply tapping on
the affected area of their body, athletes can report the injury. The app uses a color‑coded system,
with yellow indicating a minor injury and red representing a major injury. This straightforward
and intuitive process allows athletes to quickly and accurately report their injuries for proper
management and treatment.

2.2.2 Objective Metrics

The SoccerMon dataset includes objective metrics collected using the STATSports APEX system.
This system, developed by STATSports, provides valuable insights into an athlete’s physical
performance and health. It tracks various parameters such as player movement, heart rate,
distance traveled, speed, acceleration, and more. The APEX system is approved by FIFA and is
widely used by coaches and sports scientists. Athletes wear a GPS tracker vest, as shown in Figure
2.9, which is equipped with lightweight GPS and sensors to collect the necessary data. This data
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helps in analyzing performance, making informed training decisions, and preventing injuries.

(a) input (b) output

Figure 2.9: STATSports GPS tracker [61].

The STATSports APEX system is not limited to specific leagues or countries. It is widely used by
various sports teams around the world, including Premier League soccer clubs in the UK, National
Rugby League (NRL) teams in Australia, and National Soccer League (NFL) teams in the United
States. In the case of the women’s elite soccer teams in Norway, researchers from Simula Research
Laboratory, UIT The Arctic University of Norway, and Forzasys utilized the APEX system to collect
objective metrics. After each training or game session, the data captured by the wearable units
of the APEX system is retrieved and seamlessly uploaded to the club’s dedicated laptop using the
STATSports Sonra 2.1.4 software. The collected data is then systematically processed and stored as
SoccerMon objective metrics for further analysis and insights.

2.3 Machine Learning

Machine learning, a subset of artificial intelligence, is frequently used to find patterns in data
through the use of algorithms [45]. The algorithm constantly aims to increase its forecast accuracy
by learning from the available data. There are several key components ofmachine learning, such as
data, features, algorithms, training, testing, validation, hyperparameters, and so on. The concept
of machine learning has been around for several decades. The idea was first introduced in the
1950s by a man named Arthur Samuel [53], who worked at IBM and was known as a pioneer in
the field of artificial intelligence. Nowadays, many sectors are using machine learning techniques
to increase productivity. The healthcare sector uses machine learning for drug discovery, disease
prediction, and patient outcome prediction. Frauds are a big threat to the banking sector. Banks
are using machine learning techniques to detect prospective fraud. Machine learning is also used
for image classification, object detection, facial recognition, chatbots, and so on [29]. All of us have
heard about the self‑driving car. Self‑driving cars usemachine learning for perception anddecision‑
making. In the following part, we will discuss some additional aspects of machine learning as well
as algorithms that are relevant to this research study.
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2.3.1 Supervised Learning

Supervised learning is a sub‑field of machine learning and artificial intelligence. In supervised
learning, algorithms are trained using labeled data to predict outcomes accurately [19]. Labeled
data represents meaningful data attributes like name, type, or number. Supervised learning learns
patterns and relationships between the input and output. Additionally, it applies algorithms to
learn the relationship between features and targets from the given dataset. There are two types
of supervised learning: classification and regression. Some of the supervised learning algorithms
are Random Forest, Support Vector Machine, Linear Regression, Logistic Regression, k‑nearest
Neighbors, Naive Bayes, and Neural Networks. Supervised learning is mostly used in the finance,
retail, manufacturing, agriculture, and marketing sectors. There is also huge potential in the fields
of education, pharmaceuticals, and nutrition.

Supervised learning is widely used in the healthcare sector. It can help doctors analyze the X‑ray
image to detect tumors. The algorithms can predict the risk of various health‑related outcomes,
including heart disease, stroke, and readmission rates. It is particularly well‑suited for injury
prediction tasks because it allows for the development of predictive algorithms that can help
identify potential risks and take preventive measures to reduce the occurrence of injuries.

2.3.2 Unsupervised Learning

Unsupervised learning is a type ofmachine learning used to analyze and cluster unlabeleddatasets
[43]. The main difference between supervised and unsupervised learning is that unsupervised
learning can handle data without any label, whereas supervised learning is only applicable to
labeled data. In unsupervised learning, users do not need to guide the algorithm; instead, the
algorithm learns by itself and discovers patterns and information that were previously undetected.
Some of the unsupervised learning algorithms are k‑means clustering, hierarchical clustering,
isolation forests, autoencoders, etc.

It is very popular for clustering, anomaly detection, dimensionality reduction, recommendation
systems, natural language processing, genomics, video analysis, robotics, and autonomous
systems. Moreover, unsupervised learning is used for climate data analysis to identify weather
patterns and trends. Furthermore, it is used in the e‑commerce sector to recommend products
and content to customers to increase the volume of sales.

2.3.3 Logistic Regression

Logistic regression is a statistical method used for binary classification tasks, where the goal is to
predict theprobability that anobservationbelongs tooneof twoclasses [25]. Itworksbyestimating
the probability that an observation belongs to a particular class based on its features. Unlike linear
regression, logistic regressionalgorithms this relationshipusing the logistic function,whichensures
that the predicted probabilities fall within the range of 0 to 1. Logistic regression uses a threshold
(often 0.5) to compare these probabilities and classify observations into the most likely group.

Because logistic regression is easy to understand and effective at handling binary classification
tasks, it is still widely used in various fields such as medicine, social sciences, marketing, and
finance. It is also possible to use logistic regression for predicting customer churn [5], determining
disease diagnosis, analyzing the impact of marketing campaigns, and more.
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P (Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)
(2.1)

Formula 2.1 shows the formula for logistic regression, where, P(Y=1|X) is the probability of the
dependent variable (Y) being 1 given the predictor variables (X), ꞵ0, ꞵ1, ꞵ2, ..., ꞵn are the coefficients
or weights associated with each predictor variable (X1, X2, Xn) and e is the base of the natural
logarithm. In logistic regression, the coefficients (ꞵ0, ꞵ1, ꞵ2, ..., ꞵn) are estimated through a process
called maximum likelihood estimation. The goal is to find the best‑fitting line that maximizes the
likelihood of observing the given data.

2.3.4 Decision Tree

The decision tree is one of the popularmachine learning algorithms that build a tree‑like algorithm
formaking decisions or predictions by learning simple decision rules from the data [37]. It is widely
used for both classification and regression tasks. The decision tree algorithm starts with a single
node, known as the root node, which represents the entire dataset. It then splits the data based on
the values of different features to create decision nodes. Each decision node represents a test on a
specific feature, and the branches from the node represent the possible outcomes of that test. The
process continues recursively until a stopping condition ismet, such as reaching amaximumdepth
or having a minimum number of samples in each leaf node. To make predictions using a decision
tree, new data is passed down the tree from the root node to the leaf nodes based on the test
conditions at each decision node. The predicted outcome is then determined by themajority class
or the average value of the samples in the corresponding leaf node. The equation for a decision
tree in machine learning can be represented as follows:

y = f(x) =


y1 if x ≤ t1

y2 if t1 < x ≤ t2
...
yn if x > tn

(2.2)

There are several use cases for decision trees. It is commonly used for classifying data into
different categories or classes, such as identifying different groups of customers based on their
characteristics and behaviors, identifying fraudulent transactions or activities based on patterns
and indicators, assessing patient symptoms and medical history to determine potential diseases
or conditions [18], etc.

2.3.5 Random Forest

Random forest is one of the popular machine learning algorithms that combine several decision
trees to make predictions [30]. It is a method of collaborative learning that improves the stability
and accuracy of each decision tree separately. During the training process, random forests create
a multitude of decision trees. Each single tree is trained on a random subset of the training
data, and only a subset of the input features is considered at each split. Because of this process,
random forest is good at handling overfitting as well as increasing the generalization ability of the
algorithm [21]. To make a prediction using a Random Forest algorithm, each tree in the ensemble
independently predicts the class label (for classification) or output value (for regression). The
final prediction is determined by taking the majority vote (for classification) or the average (for
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regression) of the predictions fromall the trees. The equation for a random forest can be expressed
as:

y = f(x) =
∑

(w · h(x)) (2.3)

Here y presents the predictive outcome. f(x) is the function that predicts the outcome based on the
input variables (x). Σ denotes the summation of all the trees in the random forest. w represents
the weight or importance assigned to each tree’s prediction. h(x) represents the prediction made
by an individual decision tree based on the input variables. Random forest is useful in various
applications such as classification, regression, and feature selection. It can handle larger datasets
and high‑dimensional data. Moreover, it can handle overfitting better than individual decision
trees.

2.3.6 K‑Nearest Neighbors (KNN)

KNN stands for K‑Nearest Neighbors, which is one of the popularmachine learning algorithmsused
for classification and regression tasks [22]. It works by finding the closest k neighbors to a given
data point based on a distance metric, and then making predictions based on the labels or values
of those neighbors. Consider a data point to be classified/predicted as P, and let D be the set of all
data points in the training dataset. The KNN algorithm calculates the distance between P and each
datapoint inDusingadistancemetric (e.g., Euclideandistance), and selects theknearest neighbors
of P. The class label y of P is determined by assigning the most prevalent class label among the k
neighbors.

Euclidean Distance Formula: (2.4)

The Euclidean distance between two data points (x1, y1) and (x2, y2) in a two‑dimensional space
is given by:

distance =

√
(x2 − x1)

2 + (y2 − y1)
2 (2.5)

This formula measures the straight‑line distance between two points in a Cartesian coordinate
system. It can be extended to higher‑dimensional spaces by including the corresponding
differences in coordinates.

2.3.7 LSTM

LSTM stands for Long Short‑TermMemory, commonly used in various applications, such as natural
language processing and time series analysis [41]. It is designed to effectively capture long‑term
dependencies in sequential data by incorporating memory cells and gating mechanisms [40]. The
working process of LSTM:

Input Gate: The input gate determines which information from the current input should be stored
in the memory cell. It uses the previous output and the current input as input, applies a sigmoid
function to them, and produces a value ranging from 0 to 1 for each memory cell element. It is
calculated as:

i(t) = sigmoid(Wi·[h(t− 1), x(t)] + bi) (2.6)
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Forget Gate: The forget gate decides which information from the previous memory cell should be
discarded. It takes the current input and the previous output, applies a sigmoid function to them,
and outputs a value between 0 and 1 for each element of the memory cell. It is calculated as:

f(t) = sigmoid(Wf·[h(t− 1), x(t)] + bf) (2.7)

Update Memory: The memory cell is updated through the interaction of the input gate and forget
gate. Which values should be updated and which should be forgotten are determined by the input
gate and forget gate, respectively. The input gate value ismultiplied by the current input and added
to the forget gate value, which ismultiplied by the value of the precedingmemory cell, to complete
the update. The update is calculated as:

g(t) = tanh(Wg·[h(t− 1), x(t)] + bg) (2.8)

Output Gate: The output gate value ismultiplied by the currentmemory cell state. This calculation
determines which information should be passed as the output of the LSTM unit. It is calculated as:

o(t) = σ(Wo · [h(t− 1), x(t)] + bo) (2.9)

LSTM iswidely used for text classification, sentiment analysis, speech recognition systems, weather
forecasting, video captioning, handwriting recognition, etc.

2.3.8 Support Vector Machine (SVM)

The way it operates is by identifying the best hyperplane to divide the data points into several
classes and categories. It aims to maximize the margin between the hyperplane and the nearest
data points [1], which helps in achieving better generalization and classification accuracy. There
are two different formulas for binary classification and regression. The SVM formula for binary
classification can be represented as:

f(x) = sign(w · x+ b) (2.10)

Here, f(x) is the predicted class for a given input x, w is the weight vector, x is the input vector, ·
represents the dot product, and b is the bias term. The SVM formula for regression can be written
as:

f(x) = w · x+ b (2.11)

In the formula 2.9, f(x) is the predicted value for a given input x, w is the weight vector, x is the
input vector, · represents the dot product, and b is the bias term.

There are many benefits to using SVM, such as being effective in high‑dimensional spaces,
robust against noise and outliers, versatile in kernels, etc. Moreover, SVM is used in fields like
bioinformatics, genomics, text and image classification, and anomaly detection.

2.3.9 XGBoost

XGBoost, also knownaseXtremeGradientBoosting, is apopularmachine learningalgorithmwidely
used for regression and classification tasks [47]. It works by gradually constructing a collection of
weak decision tree algorithms. Every new algorithm that comes out is trained to fix the errors that
previous algorithmsmade. This process is done iteratively, and the algorithms are combined using
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a technique called gradient boosting. In each iteration, the algorithm calculates the gradient of the
loss function concerning the predictions made by the ensemble so far. It then fits a new decision
tree algorithm to the negative gradient of the loss function, effectively minimizing the loss. The
predictions of this new algorithm are added to the ensemble, and the process is repeated until
a stopping criterion is met. The formula of XGBoost can be divided into two parts: the objective
function and the prediction function.

Objective Function: The objective function in XGBoost is a combination of a loss function and
a regularization term [1]. It measures the quality of the algorithm’s predictions and helps in
optimizing the algorithm during training. The general form of the objective function is:

Objective = Loss(y, ŷ) + λ · Regularization (2.12)

Here, y represents the true labels, ŷ represents the predicted labels, and λ is the regularization
parameter. The loss function quantifies the difference between the true labels and the predicted
labels. Common loss functions includemean squared error (MSE) for regression tasks and log loss
(also known as cross‑entropy) for classification tasks.

PredictionFunction: Theprediction function in XGBoost combines thepredictionsofmultipleweak
decision tree algorithms. Each weak algorithm is a simple decision tree that predicts a specific
output value based on a set of input features. The final prediction is obtained by summing the
predictions of all the weak algorithms, weighted by a learning rate (η):

ŷ = η ·
∑

(prediction of each weak algorithm) (2.13)

The learning rate (η) in XGBoost controls the contribution or weight of each weak algorithm to the
final prediction. It scales the predictions made by each weak algorithm before summing them up.

There aremany use cases for XGBoost, such as predicting sales, customer churn, credit risk, search
engine recommendation systems, sentiment analysis, text classification, etc.

2.3.10 Naive Bayes

Naive Bayes is a classification algorithm based on the Bayes theorem, which assumes that the
presence of a particular feature in a class is unrelated to the presence of any other features [31].
It is referred to as ”naive” since it strongly presumes that each feature is independent of the others.
The Naive Bayes formula can be obtained by applying Bayes’ theorem. The Naive Bayes algorithm,
given a class variable C and a set of features X = x1, x2,..., xn, determines the probability of a given
class given the features in the following way:

P (C|X) =
P (C) · P (X|C)

P (X)
(2.14)

Here, P(C|X) is the posterior probability of class C given the features X, P(C) is the prior probability of
class C, P(X|C) is the likelihood of the features X given class C, P(X) is the probability of the features
X.

Naive Bayes is used for recommendation systems to predict user preferences as well as item
recommendations [11]. Banks and other financial institutions use it to identify fraudulent
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transactions or activities based on various features. Moreover, Naive Bayes uses news filtering
systems to categorize news articles and recommend relevant articles. Furthermore, it is widely
used to analyze and classify opinions and sentiments expressed in text data, often on social media
sites like Facebook and LinkedIn.

2.4 Sampling in Machine Learning

In the real world, we use different types of data to do analysis and prediction. Although the
dataset may be extremely well organized, we often encounter datasets that require preprocessing
before we can effectively use them. One common challenge is dealing with imbalanced datasets
where one class is significantly more prevalent than the others. To overcome this challenge,
sampling techniques are commonly used. These techniques aim to balance the class distribution
and improve the accuracy of algorithms for minority classes. By manipulating the dataset, we
can ensure equal representation of all classes and mitigate the bias towards the majority class.
Sampling techniquesplay a vital role in addressing the issueof imbalanceddatasets andenhancing
the reliability of analysis and prediction tasks. In our thesis, we have used the undersampling and
oversampling techniques to handle the class imbalance of our dataset.

Figure 2.10: The figure represents the working methods of undersampling and oversampling [60].

2.4.1 Undersampling

Undersampling is another commonly used technique to handle imbalanced datasets [20]. Unlike
oversampling, which increases the representation of the minority class, undersampling involves
reducing the number of instances in the majority class to balance the class distribution [36]. The
goal of undersampling is to create a more balanced dataset by randomly selecting a subset of
instances from the majority class. By reducing the number of instances in the majority class,
the class distribution becomes more balanced, allowing the algorithm to give equal importance
to both the minority and majority classes during training. There are various undersampling
techniques available such as random undersampling, cluster‑based undersampling, and tomek
links undersampling.

There are several benefits to using undersampling, such as the fact that the fact that it directly
tackles the issue of class imbalance by reducing the number of instances in the majority class.
This helps to create a more balanced dataset, allowing the algorithm to give equal importance
to both the minority and majority classes during training. Moreover, by reducing the dataset size,

24



2.5. ATHLETE HEALTH AND PERFORMANCE MONITORING

undersampling can lead to faster training and inference times. With fewer instances to process, the
computational complexity of the algorithm decreases, making it more efficient.

2.4.2 Oversampling

One commonmethod for dealing with imbalanced datasets inmachine learning and data analysis
is oversampling. A dataset is considered imbalanced if significant numbers of its instances belong
to one class (majority class) and a smaller proportion to another class (minority class) [38]. The
problem with imbalanced datasets is that they can lead to biased algorithms that perform poorly
in predicting the minority class. This is because the algorithm is more likely to be biased towards
the majority class due to its higher prevalence in the dataset. Oversampling helps overcome
this issue by artificially increasing the number of instances in the minority class. There are a few
different ways to perform oversampling. One common approach is to generate synthetic instances
using techniques such as SMOTE (Synthetic Minority Over‑sampling Technique). SMOTE works by
creating synthetic instances by interpolating between neighboring instances of the minority class.

ADASYN also known as Adaptive Synthetic Sampling is another oversampling technique that is
frequently used to address dataset imbalances [9]. It is an extension of the SMOTE algorithm
that focuses on generating synthetic instances for the minority class in a way that is adaptive
to the data distribution [24]. This algorithm addresses the limitations of SMOTE, which tends
to generate synthetic instances indiscriminately and may not effectively capture the underlying
data distribution. Considering the instance density distribution, ADASYN creates artificial instances
in areas with lower densities. The advantage of ADASYN is that it helps to address the issue
of overgeneralization that may occur with traditional oversampling techniques. By generating
synthetic instances in amore targetedmanner, ADASYNcanbetter represent the complexities of the
minority class and improve the algorithm’s ability to accurately classify instances from theminority
class.

2.5 Athlete Health and Performance Monitoring

Athlete health and performance monitoring indicates the collection and analysis of an athlete’s
physical condition and gameperformance. Athletewellnessmonitoring has evolved to encompass
a multidisciplinary approach. Sports organizations, trainers, and athletes are increasingly
recognizing the value of complete wellness programs in optimizing performance and lowering the
risk of injuries and illnesses. This section emphasizes the crucial importance of wellness in athlete
health and performance.

2.5.1 Training

Effective training is the cornerstone of success in sports like soccer, cricket, and basketball. Soccer
players, in particular, benefit from regular training sessions. Elite clubs such as FC Barcelona,
Manchester City, Real Madrid, and Liverpool FC invest in top‑notch training facilities and dedicated
coaches to nurture their athletes. Manchester City has a total of 16 indoor and outdoor grounds like
this where athletes can get training to prepare for the match. Proper training plays a pivotal role in
translating practice into real match performance on the soccer field. Figure 2.11 shows one of the
women’s soccer players during the training session when they are preparing for the next match. A
training session helps to collect data for a single athlete as well as for the team, which is very useful
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for designing the training session for the coach. Moreover, it helps build muscular strength, power,
and endurance through exercises and routines that target specific muscle groups. Furthermore,
well‑structured training helps to find out the potential athletes for the next game. In cricket, teams
like India, Australia, and England have several small and large training grounds for their national
as well as local teams. Each squad has its analyst who analyzes the athletes’ training sessions to
determine their strengths and weaknesses. They also assist in overcoming a player’s weakness by
evaluating his datamore specifically. The trainer adjusts the athlete’s training session based on the
analytical results.

Figure 2.11: The figure illustrates the women’s soccer player’s training session [56].

2.5.2 Wellness

Athlete’s wellness has a significant impact on the overall health and performance of individuals
who participate in competitive sports and physical activities. It is an important component of
athlete health and performance monitoring systems since it has a direct impact on an athlete’s
ability to train successfully and compete at their best. Physical health, mental health, emotional
well‑being, stressmanagement, rest, and recovery are the primary components of athletewellness.
An athlete must be physically fit. She must maintain proper diet, hydration, physical fitness, and
the avoidance and management of injuries and illnesses to accomplish this. Athlete wellness also
addresses the mental stress of athletes. This includes stress management, motivation, focus, and
psychological well‑being. By managing the mental pressure and having a positive mindset for the
game, you play an important role in doing well. Emotional health refers to an athlete’s emotional
stability as well as general happiness. Athlete wellbeing includes emotional support, resilience,
and the ability to cope with disappointments. Moreover, it must monitor and guarantee that the
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athlete gets adequate recuperation after each training session and competition. Without adequate
rest, an athlete can sustain an injury that can take months to recover from. Furthermore, athletes
are frequently under severe pressure, and appropriate stressmanagement techniques are required
to assist themcopewith the demands of their sport. Mindfulness activities,meditation, and getting
help from sports psychologists or counselors can all help with stress management.

2.5.3 Illness

In the realm of athlete health and performance monitoring, addressing the potential impact of
illnesses on athletes is of paramount importance. Like other humans, athletes are not immune to
illness. Athletes are susceptible to a wide range of illnesses including upper respiratory infections,
gastrointestinal problems, and other common health problems. Moreover, they often face injuries
in different areas of their body. It is very important to prevent the possibility of illness because an
athlete is a big asset for a team as well as for a nation. Preventing illnesses in athletes is a proactive
approach that involves various strategies. Proper hygiene, immunizations, and nutritional support
are some preventive measures that can reduce the risk of illnesses.

It is always critical to discover any potential disease as soon as possible. Monitoring athletes for
signs and symptoms, as well as using laboratory tests as needed, can help with early diagnosis.
The early detection of a disease allows for timely action and treatment. In the modern era
of sports science, data‑driven methods to disease prevention and management are becoming
increasingly important. The combination of smart technology and data analytics enables
continuousmonitoring of athletes’ health and can provide early indications of potential problems,
allowing for proactive solutions. Overall, appropriate management and recovery sessions can
assist anathlete in recoveringquickly. In addition, an effective communicationagreementbetween
athletes andhealthprofessionals is essential so that athletesmay receive correct treatmentwithout
any complications.

2.5.4 Game Performance

The purpose of athlete health and monitoring is to optimize an athlete’s ability to perform at
their highest level during competitive events. Game performance is the output of an athlete’s
training, preparation, and mental and physical conditioning. Game performance is heavily reliant
on an athlete’s physical preparedness. Strength, endurance, speed, agility, and other physical
attributes developed during training are put to the test during competition. Monitoring these
characteristics enables coaches and athletes to fine‑tune training programs and achieve optimal
physical performance. Physical ability is only one aspect of gameplay; mental preparedness is
equally important. Athletes have to cope with the psychological factors of competition, such
as stress, nervousness, and concentration. Psychological assistance and therapies are critical in
improving an athlete’s mental state during competition.

A variety of performance indicators are used to evaluate game performance. Depending on the
sport, these measurements can include things like points scored, shooting accuracy, running
speed, distance covered, and much more. Performance metrics enable objective evaluation and
aid in the identification of areas for development. Wearable equipment has transformed game
performance monitoring in the current day. During competition, athletes may wear gadgets that
track their movements, heart rate, and other physiological parameters. Real‑time data can reveal
player weariness, stress levels, and injury risk. Based on this information, coaches and support
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personnel can modify their approach. Monitoring game performance is important not just for
improving performance but also for preventing injuries. Overuse injuries, fatigue‑related injuries,
and acute injuries can all have an impact on an athlete’s performance. Monitoring techniques can
aid in the identificationof potential injury hazards and enable interventions to lessen the likelihood
of harm during games.

2.6 Injury Analysis and Prediction for Soccer

Injury is a major problem for all types of athletes. Soccer players frequently struggle with injury‑
related problemswhich have an impact on their everyday lives, performance in games, and careers.
The club and national soccer teams suffer a lot from injuries [2]. An athlete can fall in injury during
training or game time. There is a strong connection between training load, wellness, and game
time [16]. It takes several days for an athlete to heal from an injury and return to sports. Moreover,
club‑injured athletes cost an extra budget for treatment, recovery sessions, and replacement. Many
times, injuries force the team coach to change the game strategy, position, and tactics, which may
affect the entire game. Furthermore, an injured athlete always has an emotional impact on her
teammates. Nowadays, soccer clubs and research organizations collect data on soccer athletes
during training sessions and game time to reduce the risk of injury. Organizations such as FIFA,
Aspetar, and UEFA have several scientists who are working on injury prevention. To reduce the
risk of injury, it is important to have a comprehensive injury prevention plan that includes rest and
recovery, warm‑up, proper training equipment, etc [3]. An injury prevention plan can help reduce
the risk of injury significantly.

Figure 2.12: The Acute:Chronic Workload Ratio (ACWR) [17].
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TheAcute:ChronicWorkloadRatio is awidelyusedmetric in the fieldof sports scienceandmedicine
to assess injury risk among athletes, including soccer players [34]. It compares a short‑term (acute)
workload to a more extended (chronic) workload [35]. The ratio is calculated by dividing the acute
workload by the chronic workload, providing insights into the balance between recent and long‑
term training stress. A lower or average ACWR indicates a low level of injury risk, while a high ACWR
means there is a high chance of getting injured. The ratio of two distinct training periods is referred
to as the ACWR. In ACWR, there are two parts the acute side and the chronic side. The acute side
indicates the amount of training done by an athlete in the previous week, while the chronic side
indicates the amount of training for the last four weeks. Therefore, the ratio is comparing the
difference between the two. This helps to understandwhether the training load is low or high. This
helps to fix the training schedule of an athlete.

A paper written by the author, C. Want et al., discussed the effectiveness of ACWR [39]. They
investigated the use of ACWR to comprehend more about how training load related to injury risks
in athletes. Their primary goal was to highlight the relationship between levels of activity and the
possibility of injury in the domains of sports science andmedicine. While ACWR is commonly used
to gauge a player’s training load, some researchers have doubts about its effectiveness. According
to the author FM Impellizzeri et al., there aremany tools to calculate the training load, where ACWR
is the most popular one. Their research found conceptual issues as well as fundamental limits
associated with the use of this metric. The research is likely to examine differences and potential
problems in understanding and implementing ACWR, calling into doubt its efficacy as a trustworthy
tool for forecasting injury occurrences in sports science andmedicine [35].

2.7 Application of AI for Injury Prediction in Soccer

Nowadays, artificial intelligence (AI) applications are widely used in different fields like industry,
public health, education, the military, and even sports. In terms of sports, several teams and
sports companies are using the AI application to increase their productivity and growth in the
field. When we are talking about sports, soccer is a popular game all over the world, from Asia to
America. In soccer, players are the most important asset of any club or team. But players often fall
ill during training ormatch time. Here, AI has the potential to predict and prevent injuries to soccer
players. This section provides an overview of the burgeoning field of AI in soccer injury prediction,
highlighting its significance and potential implications for the safety and performance of players.

2.7.1 Transforming Injury Prediction

When it comes to sports injuries, traditional player examination techniques usually depend on the
knowledge of medical professionals. Regretfully, these traditional methods frequently turn out to
be expensive and time‑consuming. Adding to the problem is the fact that there are times when
a player gets hurt and the distance from the game site to the closest hospital becomes a major
obstacle. Until theathlete canbe sent toahospital, the coaching staffhas fewoptions for gettingup‑
to‑date information regarding theplayer’s status. AI offers a transformativeparadigmbyharnessing
the power of data‑driven analysis to provide a more accurate and comprehensive assessment of
injury risk factors. Author Lars Hoel used soccer players GPS data to visualize and predict injury
in this master’s thesis. His work has proven that meaningful data can be used to forecast injuries
and save a player’s career [50]. Another author, Anna Linnea Jarmann, used survival analysis rather
than the most common technique, ACWR, to identify the risk of injury factors [55].
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2.7.2 Data‑Driven Insights

AI technology helps to get information about a player’s injury by analyzing data. The algorithms
of AI process vast amounts of data, ranging from player biometrics and performance metrics to
match and training conditions. This data‑driven approach helps unlock the opportunity to drive
into the reasons for injury, the condition of the players, and related information. Furthermore, the
analysis report is useful to reduce the risk of injuries in the future. There are already several existing
studies where researchers used data to predict not only the risk of injury but also the performance,
readiness, and soon. Author Siarhei Kulakouandhis teamexploreddifferent time series algorithms
to forecast the performance predictions of soccer players [42]. Another author, Mathias Menkerud
Sagbakken, used the SoccerMon dataset to forecast the readiness to play of soccer players [48]. All
this research suggests thatmachine learning techniques canbeused to improve soccer andbenefit
players.

2.7.3 Injury Preventation Strategies

A soccer player often gets injured during training and, most often, in the game. During the
training period, a player can suffer because of the long training period, hard exercise, and weather
conditions. When it is game time, players can be tackled hard by the opposing team player, and
there is a high possibility of injury. Here injury prevention strategies can play an important role in
preventing injury. Coaches andmedical personnel can reduce the chance of injuries by identifying
soccer players who aremore susceptible to injury and customizing training plans, rest periods, and
preventivemeasuresaccordingly. These tactics can increaseplayer lifespanandsafety,whichcould
improve soccer teams’ overall performance.

2.7.4 Research Progress in AI for Soccer Injuries

Researchers are working on the injury factor of soccer players. Several clubs and national teams
are interested in it, and the research scope and funding are increasing day by day. One of
the well‑known research organizations is the Female Football Research Center (FFRC), which
works on women’s soccer players health, sustainable development, and performance. Research
organizations like FFRC are doing well because they are using the power of AI and other AI‑
related applications. There are many other research organizations, such as the FIFA Medical
Assessment and Research Centre (F‑MARC), the Union of European Football Associations (UEFA),
and the International Olympic Committee (IOC), that work on injury prediction and prevention
using different techniques of AI.

2.8 Overview of RelatedWork

Soccer has long been a popular sport around the world. Researchers are working on different
aspects of soccer and players who play soccer for the national team, club, or league. Injury is one
of the hot topics to do research on for all of the researchers. In this section, we will give a summary
of some of the latest research on injury.

Injury Patterns and Prevention Strategies Among Elite Women’s Soccer Players: Authors
Astrid Junge and Jiri Dvorak have written a paper focused on data collection, types of injury,
severity, affected body parts, and potential contributing factors [7]. According to them, there
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are around 265 million soccer players, of which 26 million are women. Moreover, according to
a FIFA report published in 2006, there are approximately 7 million women’s soccer players in the
United States. In Germany, the figure is 1.8 million, and for Mexico, it is 1.0 million. They also
conducted a survey based on seven tournaments, where they found 387 injured players. Their
research intends to identify the most common injuries, such as muscular strains, ligament sprains,
and concussions. Moreover, based on their research, they likely propose modifications in training,
rule changes, or injurymanagement strategies to reduce the risk of injuries in games, tournaments,
or training sessions. The primary objective of this study is to enhance comprehension of the
patterns of injuries sustained by elite women’s soccer players. This will facilitate the creation of
better techniques for injury prevention and management that are specifically designed for this
group of players.

Performance Enhancement in Adolescent Women’s Soccer Players: Insights from a Ten‑
Week Injury Prevention Intervention: The paper titled ’A ten‑week intervention in adolescent
female football players’ written by authors K. Steffen, H. Bakka, G. Myklebust, and R. Bahr discusses
theeffects of a ten‑week injury preventionprogramon teenagewomen’s soccer players [10]. Soccer
has a greater injury ratio than any other physical game, including badminton, basketball, cricket,
and so on, according to the authors’ research. They conducted a ten‑week experiment in Oslo,
Norway, with thirty‑four female participants. Theymentioned in their paper that a programnamed
”11” discussed injury prevention in soccer. The women’s soccer players had to go through a variety
of testsduring theexperimentdays, including jumping, speeddribbling, shooting, a 40‑meter single
sprint, and more. This study focuses on the performance‑related outcomes resulting from the
implementation of the injury prevention program. Before and after the ten‑week intervention, the
data was gathered based on several performance characteristics, including strength, agility, and
functional movement patterns. The analysis of the collected data is included in the paper, along
with a discussion of the modifications or improvements to the players’ performance metrics after
the intervention. It most likely highlights how the injury prevention program affected performance
factors, providing information on how to increase overall functional abilities, strength, and agility.

Physiological Demands and Tailored Training for Women’s Soccer Players: A paper written
by authors Naomi Datson and Andrew Hulton explores the physiological aspects of women’s
soccer players [13]. They studied the current knowledge on the topic and highlighted the
updated information on the related research work. The authors placed high importance on the
understanding of women’s soccer players physiological demands. Moreover, they have discussed
cardiovascular fitness, muscular strength, and endurance, highlighting the need for tailored
training programs. The authors discuss gender‑specific issues in sports medicine and support
tailored strategies to maximize the performance of women’s soccer players while lowering their
risk of injury.

Financial Implications of Player Injuries in the English Premier League: There are several
top leagues where many of the soccer players come from different parts of the world and play
soccer for the club. Some of the great soccer leagues are La Liga, MLS, the English Premier League,
UEFA, etc. The paper titled ’Estimation of Injury Costs: Financial Damage of English Premier League
Teams’ written by the author Eliakim E. et al. discussed the economic impact of injuries on English
Premier League (EPL) teams [33]. The author’s primary focus is figuring out the financial impact
of player injuries that result in unsatisfactory performance. They utilize an extensive approach
to evaluate the expenses connected to a team’s poor performance as a result of player health
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problems. The research investigation analyzes the financial impact of injuries on club performance
using EPL data. The research offers important new information about the financial effects of player
fitness on the performance and financial stability of Premier League teams by estimating injury‑
related financial damages. This research contributes to the understanding of theway player health,
sports performance, and financial outcomes interact in professional soccer leagues.

Enhancing Soccer Athlete Performance Forecasting through Time Series Analysis: The
master’s thesis titled ’Soccer Athlete Performance Prediction Using Time Series Analysis’ written
by N. Ragab investigates the application of time series analysis in predicting the performance of
soccer athletes [44]. This study aimed to forecast the future performances of soccer players using
historical data. The author utilizes methodologies from time series analysis to develop predictive
algorithms specific to soccer athletes. The research aims to contribute to the understanding of how
temporal patterns in performance data can enhance predictive capabilities in the context of soccer.
By exploring these predictive techniques, the thesis provides insights into potential advancements
in performance management and training strategies for soccer athletes.

Another research paper titled ’Exploration of Different Time Series Algorithms for Soccer Athlete
PerformancePrediction’writtenbySiarhei Kulakouandhis teamusedmachine learningalgorithms
for soccer players performance. They have used the Norwegian women’s soccer team data
collected over two years for the prediction. Their research team focused on wellness parameters
such as fatigue, sleep quality, and sleep duration to predict game performance. Among several
machine learning algorithms, they used algorithms such as recurrent algorithms, algorithms of
mixed recursive convolutional types, ensembles of deepCNNalgorithms, andmultivariate versions
of the recurrent algorithms for prediction of performance [42].

Enhanced Monitoring of Illnesses and Injuries in Elite Soccer Players: The Oslo Sports
TraumaResearch Center Questionnaire: There are severalmethods for tracking soccer players’
illnesses and injuries. Different clubs use different tools to monitor their soccer players. A paper
written by the author B. Clarsen et al. introduced a new method to monitor the illness and
injury of elite soccer players. The authors present the Oslo Sports Trauma Research Center
Questionnaire, designed to systematically gather data on health issues among elite athletes. This
questionnaire provides an expanded view of the well‑being of players by offering an in‑depth
method for monitoring illnesses and injuries [12]. The creation and application of this instrument
are discussed in the paper, with an emphasis on its potential for early wellness issue detection and
prevention. The study emphasizes how crucial proactive monitoring is to optimizing player health
and performance in competitive sports.

Insights into Health Challenges Among Youth Elite Athletes: The study conducted by C.
Moseid et al., investigates the prevalence and severity of health problems in youth elite sports
through a 6‑month prospective cohort study involving 320 athletes [26]. The research highlights
the comprehensive nature of the study, encompassing a diverse range of health problems that
young elite athletesmay face. The authorsmonitor and examine the participants’ health problems
during the period of the research by using a prospective strategy. The results throw light on the
particular difficulties experienced by young athletes in elite sports and provide important insights
into the prevalence and severity of health issues. Tomaximize athlete well‑being and performance,
the research highlights how important it is to understand and deal with health issues in this group.
By providing an in‑depth evaluation of the health environment in young elite sports, the research
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makes a substantial contribution to the body of literature in sports science and facilitates the
creation of focused treatments and preventive measures.

Enhancing Soccer Injury Studies: Consensus Framework for Standardized Definitions
and Methodologies: Authors C. W. Fuller et al. discussed standardizing injury definitions
and data collection methodologies in soccer studies in their paper titled ’Consensus Statement
on Injury Definitions and Data Collection Procedures in Studies of Football Injuries’ [4]. In
their comprehensive consensus statement, the authors stressed several important aspects of
soccer injuries, such as recurrent injuries, severity evaluation, and exposures during practice and
competition. They also suggested a methodical classification system for injuries that considered
the kind, location, diagnosis, and contributing variables. In addition to addressing the complex
nature of soccer injuries, this all‑encompassing strategy offers academics and practitioners a
well‑organized framework for data comparison and analysis. This comprehensive viewpoint
emphasizes the value of industry‑wide terminology and technique standardization, enabling
a more nuanced knowledge of the various aspects of soccer‑related injuries for enhanced
management and preventative tactics.

Advancing Safety in Women’s Soccer: Insights from a Meta‑Analysis of Injury Prevention
Programs: The safety of women’s soccer players is very important and a matter of concern for
every team and club. Authors Kay M. Crossley and Brooke E. Patterson wrote a paper focusing
on enhancing safety in women’s soccer. The study conducts a systematic review and meta‑
analysis, involving 11,773women’s soccer players, to evaluate the effectiveness of injury prevention
programs [32]. The authors analyze existing literature to identify and assess interventions designed
to reduce injuries in women’s soccer. The meta‑analysis provides quantitative insights into the
impact of various preventive measures. The findings provide important information for the
formulation of tactics meant to reduce the risk of injury for women’s soccer players. Overall,
the paper addresses a critical aspect of player welfare and safety in women’s soccer through a
comprehensive analysis of injury prevention programs.

Understanding Injury Triggers in Soccer Players: A Comprehensive Review of Gender‑
Specific Perspectives: Francesco Aiello and Franco M. Impellizzeri have written a systematic
review paper that investigates injury‑inciting activities in male and women’s soccer players. The
study includes a thorough examination of the body of research on the causes of sports‑related
injuries in male and female athletes [46]. The authors look at a variety of activities that can cause
injuries, illuminating particular motions or situations that increase the danger of injuries in soccer.
To offer an in‑depth analysis of the factors impacting injury rates among male and female players,
the review considers a variety of injury categories. It highlights how crucial it is to take gender
into account while managing and preventing injuries. They consider 64 studies and point out
56,740 injuries. From their research, they found that high‑intensity running and kicking are the
most common reasons for the injury.

In conclusion, the vast literature analysis presented here highlights the collaborative effort of
academics to understand the complexities of injuries among women’s soccer players. The studies,
which range from injury types and severity to preventative measures, greatly contribute to our
understanding of athlete well‑being. The authors not only identified common injuries but also
made practical recommendations to reduce risks based on actual research. My thesis, ”Predicting
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the Injury Risk of Women’s Soccer Players Using Machine Learning,” strives to push the frontiers
of injury prediction and prevention as this body of research establishes a solid basis. The goal of
harnessing the power of modern computational methodologies is not only to build on previous
research findings but also to introduce a forward‑thinking approach that embraces the promise of
machine learning in the field of women’s soccer.

2.9 Chapter Summary

In this chapter, we provided a comprehensive overview of the player monitoring system (PmSys),
which is the primary data source for SoccerMon. PmSys has both mobile applications as well as
web‑based versions for the users. Moreover. We also discussed the SoccerMon dataset we used to
predict injuries. Thedataset hasboth subjective aswell asobjectivemetrics. The subjectivemetrics
includeNorwegianelite two soccer teamplayerswellness, training load, illness, gameperformance,
and injury data, whereas GPS data belongs to objective metrics.

Moreover, this chapter presents information about the fundamental knowledge of machine
learning that is required to build ourmachine learning framework to forecast injury. In addition, we
have discussed Supervised Learning, Unsupervised Learning, Logistic Regression, Decision Trees,
Random Forests, K‑Nearest Neighbors, LSTM, Support Vector Machines, XGBoost, and Naive Bayes.
Inour studies, wehaveused theseeightmachine learningalgorithms in the later chapters topredict
the risk of injury for women soccer players. Furthermore, we have explored the athlete health and
performance monitoring techniques that clubs are using nowadays for players and their benefits.
Several clubs are tracking and analyzing player training, wellness, and game performance data to
keep the players fit for the next match as well as prevent injury.

Sampling techniques are often used to handle imbalanced data. The main goal of this thesis
is to predict injuries, although we have very few injury records. To handle the class imbalance
and maximize the performance of the performance of the machine learning algorithms, we have
utilized the undersampling and oversampling techniques. In the later part of this chapter, we have
discussed one of the common metrics named ACWR used to assess the risk of injury in the sports
science andmedical sectors.

AI is widely used in different fields, and AI technology is becoming popular in sports, especially
soccer. In this chapter, we have discussed the use of AI technology to prevent injury in soccer as
well as other possibilities. Lastly, wehavepresented somepreviousworkdonebyother researchers
relevant to our thesis and highlighted their findings. In the next chapter, we have proposed a
pipeline for our machine learning framework to predict the risk of injury.

In the next chapter, we discussed the methodology and implementation part of predicting
Norwegian women’s soccer players  injuries. In the meantime, we have discussed data
preprocessing, exploratory data analysis, feature engineering, model training, injury prediction,
hyperparameter tuning, and so on.
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Chapter 3

Methodology and Implementation

In the previous chapter, we presented the necessary background information and related research
that is pertinent toour thesis. We startedby introducing thePmSys framework and thendelved into
several important topics. These topics encompassed an analysis of the SoccerMon dataset, both
subjective and objective metrics, a thorough exploration of various machine learning algorithms,
different sampling techniques in machine learning, a detailed examination of athlete health
and monitoring metrics, and an investigation into the application of AI for injury prediction in
soccer. Our goal was to provide a thorough and comprehensive understanding of the fundamental
components and concepts that form the basis of our thesis.

In this chapter, we presented a simplified and reader‑friendly explanation of our methodology
and implementation. We focused on the tools and techniques used for tasks such as data
processing, exploratory analysis, feature engineering, and injury prediction. We broke down the
steps involved in preprocessing the dataset, handling null values, analyzing the data, extracting
features, implementingmachine learning algorithms,model training, performance evaluation, and
hyperparameter tuning. We also provided clear and straightforward explanations of the Python
libraries and code used, making it easier for readers to understand and apply our approach to
predicting soccer player injuries.

3.1 Proposed Pipeline

Figure 3.1: The flowchart represents the proposed pipeline for this thesis.

As shown in Figure 3.1. we have presented the proposed pipeline and will now provide a detailed
explanation below.

Import Dataset: We have used the Pandas library to import the data mentioned in Section
3.2. The process of importing data involves bringing external data into a software application or
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database. We used Pandas’ read_csv() function, which simplified the import process for CSV files.
This function allowed us to handle missing values, select specific columns, and perform other
operations as needed. The imported data was then stored in a Pandas DataFrame, providing us
with efficient capabilities for data manipulation and analysis.

Data Preprocessing: Data preprocessing played a crucial role in our study as it involved tasks
such as cleaning, transforming, and organizing raw data to make it suitable for machine learning
algorithms. This process was akin to preparing ingredients before cooking, as it set the foundation
for achieving better results when building algorithms. In Section 3.3, we discussed the specific
stepswe followed to preprocess the data, which included addressingmissing and duplicate values.
By effectively handling these issues, we ensured that the data was of high quality and ready for
analysis.

Exploratory Data Analysis (EDA): Exploratory Data Analysis (EDA) played a crucial role in our
studyas it involvedanalyzing, cleansing,manipulating, andapplying algorithms to thedata inorder
to extractmeaningful information, identify patterns, uncover trends, and gain valuable insights. We
have used various Python libraries such as Matplotlib, Seaborn, and Pandas for EDA, asmentioned
in Section 3.4. These libraries provided us with a range of functionalities for visualizing and
analyzing the data, enabling us to gain a deeper understanding of the dataset.

Feature Engineering: In the realm of data analysis, we have used the feature engineering
technique to extract valuable information from existing features and create new ones. This
technique allowed us to enhance our dataset by generating new features that contributed to
improvedalgorithmperformance. Throughderivingmeaningful insights fromthedataandcreating
relevant features, our goal was to optimize the accuracy and effectiveness of our machine learning
algorithms. In Section 3.5, we provided a brief overview of feature extraction, feature scaling,
aggregated metrics, sorting data, and other techniques employed in our study.

Final Dataset: To conduct our experiments and predict injuries, we created a total of three
datasets. In Section 3.6, we outlined the processwe followed to create these datasets. We provided
a detailed explanation of how we collected and organized the data, as well as the criteria we used
to filter and select the relevant information. By following this process, we ensured that our datasets
were representative and suitable for training and evaluating our machine learning models.

Injury Prediction: One of the primary objectives of our thesis was to utilize machine learning
techniques to predict injuries in women’s soccer players. To accomplish this, we have used eight
different machine learning algorithms to predict injuries. In Section 3.7, we have briefly discussed
how we implemented our machine learning framework, training process, performance evaluation,
and hyperparameter tuning. In this section, we have also discussed sliding windows and the class
imbalance technique.

3.2 Import Dataset

In this section, we prioritized the selection of tools and techniques that would enable us to
seamlessly integrate datasets into our pipeline. We placed a strong emphasis on robust data
handling andaccessibility, particularlywhendealingwithdiverse sources suchas files or databases.
To achieve this, we carefully chose our tool set. It was crucial to ensure that all necessary
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dependencieswere installed prior to loading the dataset, as this ensured smooth and efficient data
processing. Bymaking deliberate choices and taking necessary precautions, we aimed to establish
a solid foundation for handling and integrating datasets effectively.

For dataset management, we relied on the Pandas library, which is widely recognized for its
flexibility and efficiency in data manipulation. To access our SoccerMon dataset, which was stored
in Google Drive, we conveniently mounted Google Drive and utilized Google Cloud libraries for
seamless data retrieval. In particular, we have used the pandas.read_csv() function to read CSV
files and efficiently load data directly from Google Drive. This approach allowed us to streamline
the process of accessing and managing our dataset, ensuring smooth data integration into our
pipeline.

3.3 Dataset Preprocessing

Data preprocessing plays a crucial role in machine learning projects as it involves transforming
raw data into a clean and understandable format before it can be utilized by machine learning
algorithms. After importing the dataset, we performed a series of steps to cleanse and enhance the
data before proceeding to feature extraction. These preprocessing steps are essential to ensure
that the data is in a suitable state for analysis and modeling, thereby improving the accuracy and
effectivenessof the subsequentmachine learning algorithms. By addressing issues suchasmissing
values, outliers, and data inconsistencies, we can ensure that the data is of high quality and ready
for further analysis.

The SoccerMon dataset includes both subjective and objectivemetrics. We initially focused on the
subjectivemetrics, which consistedof features like stress levels, dailyworkload, gameperformance,
and soreness, among others. In this section of our thesis, we highlight the importance of data
preprocessing in handling these subjective metrics. By applying techniques such as handling
missing values, normalizing data, and addressing outliers, we ensure that the subjective metrics
are properly managed and contribute effectively to our analysis and modeling.

Initially, each feature from the subjective metrics set was stored in separate CSV files. Our
primary goal was to merge these files into a single unified CSV dataset. By employing effective
data preprocessing techniques, we were able to successfully consolidate all the features from
the individual CSV files into a cohesive and comprehensive dataset. This consolidation process
ensured that all the necessary information from the subjective metrics was combined and ready
for further analysis and modeling.

Furthermore, we integrated objective metrics from the work of Mathias Menkerud Sagbakken,
which included GPS data [59]. This incorporation of objective metrics served to enhance our
project byproviding additional valuable information for analysis andmodeling. By integratingboth
subjective and objective metrics, we obtained a more comprehensive dataset that allowed for a
more thorough examination of factors influencing injury prediction in women’s soccer players.

Additionally, a substantial portion of the dataset containedNaN (Not aNumber) values. Addressing
theseNaN values is crucial to ensure the precision, reliability, and effectiveness of data analysis and
machine learning endeavors. Employing appropriate strategies, such as imputation or deletion, is
essential for resolving potential issues caused by NaN values in datasets. By handling NaN values
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effectively, we can ensure that our data is complete and suitable for further analysis andmodeling
tasks.

In the SoccerMon Dataset, each feature was stored in a separate CSV file. To streamline further
analysis, we combined these files into a single dataset. We used the pandas merge command for
most of these files. However, due to the unique structure of the ’injury.csv’ and ’illness.csv’ files, we
utilized a specific function to integrate these files into themain dataset. The details of this function
are provided below:

1

2 def addNewDf(filename, datecolumn , newcolumn):
3 df2 = pd.read_csv(os.path.join(directory , filename))
4 df2.rename(columns={'player_name': 'player_names'}, inplace=True)
5 columns_to_keep = ['player_names', datecolumn]
6 df2 = df2[columns_to_keep]
7

8 merged_df = final_df.merge(df2, left_on=['Date', 'player_names'], right_on
=[datecolumn , 'player_names'], how='left')

9 merged_df['timestamp'].fillna(0, inplace=True)
10 merged_df[newcolumn] = (merged_df['timestamp'] != 0).astype(int)
11 merged_df.drop('timestamp', axis=1, inplace=True)
12

13 return merged_df

In the SoccerMon dataset, each feature was initially stored in separate CSV files. To facilitate
further analysis, we merged these files into a single dataset. We primarily used the pandas merge
command for this task. However, due to the unique structure of the ’injury.csv’ and ’illness.csv’
files, we had to use a specific function to integrate these files into the main dataset. This function
allowed us to merge the ’injury.csv’ and ’illness.csv’ files with the main dataset based on the ’Date’
and ’player_names’ columns. It ensured the correct updating of the new column, filled in missing
valueswith 0, and convertedmatches into binary indicators. This approachwas necessary because
the ’injury.csv’ and ’illness.csv’ files had a unique dataset structure that required more specific
handling compared to other files. By using this function, we were able to seamlessly integrate all
relevant information into our final dataset. This ensured the integrity and completeness of our data
for further analysis and model training.

3.3.1 Import Datasets

Initially, we imported all datasets using the pandas to_csv command. Tomerge them into a single
dataset, we used a for loop to iterate through and read all the CSV files. The following codeprovides
an insight into this process:

1

2 directory = '/content/drive/MyDrive/Soccer Player Injury Prediction/Datasets/
subjective metrics/Data'

3 file_names = ['acwr.csv', 'atl.csv', 'ctl28.csv', 'ctl42.csv', 'daily_load.csv'
, 'fatigue.csv', 'monotony.csv', 'mood.csv', 'readiness.csv','
sleep_duration.csv', 'sleep_quality.csv', 'soreness.csv', 'strain.csv', '
stress.csv', 'weekly_load.csv']

4 concatenated_columns_df = {file_name.split('.')[0]: pd.read_csv(os.path.join(
directory , file_name)).iloc[:, 1:].values.flatten() for file_name in
file_names}

5 concatenated_columns_df
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The provided script starts by defining the directory containing the CSV files and listing the file
names. It then initializes an empty DataFrame to store the merged data from all the CSV files.
The for loop reads each CSV file, drops the first column that is not needed, and concatenates the
remaining columns into a single column, which is then named after the file. This method allows
us to efficiently combine multiple datasets into one, creating a comprehensive dataset for further
analysis and model training. By unifying the data in this way, we can ensure a more streamlined
and effective data analysis process.

3.3.2 Subjective Metrics

The subjective metrics contain raw information about players’ daily activities. Once these were
merged into a single dataset, our first challengewas to deal with a significant amount of null values.
Handling these null values is a crucial step in data preprocessing as it ensures the integrity and
reliability of the dataset for further analysis and machine learning algorithms.

Null Value Handling

To address the null values, we started by dropping 731 rows where the Date columnwas null, since
date information is crucial for further procedures. This was accomplished using pandas’ ’dropna’
function. Next, we removed rows where all feature columns had null values and the injury column
was 0. The following code illustrates this:

1

2 cols = ['fatigue', 'mood', 'readiness', 'sleep_duration', 'sleep_quality', '
soreness', 'stress', 'team_performance', 'offensive_performance', '
defensive_performance']

3 df = df.drop(df[df[cols].isnull().all(axis=1) & (df['injury'] == 0)].index)
4 print(df[df[cols].isnull().all(axis=1) & (df['injury'] == 0)].sum())

This procedure significantly reduced the number of null values in each column. Following this, we
used the Iterative Imputer with a Random Forest Regressor from ’sklearn’ to handle the remaining
null values. Thismethod iteratively estimatesmissing valuesbymodeling each feature as a function
of other features, which helps preserve the statistical properties of the dataset:

1

2 cols = ['fatigue', 'mood', 'readiness', 'sleep_duration', 'sleep_quality', '
soreness', 'stress', 'team_performance', 'offensive_performance', '
defensive_performance']

3 df[cols] = IterativeImputer(estimator=RandomForestRegressor(), random_state=0).
fit_transform(df[cols])

By implementing this imputationprocess,weensured that thedatasetwas free frommissing values.
This is a crucial step in data preprocessing, as it increases the robustness and accuracy of the
subsequent model training phase. It allows for a more comprehensive analysis and enables the
machine learning algorithms to perform optimally. With no missing values, the dataset became
fully ready for the next steps in our machine learning pipeline, including exploratory data analysis,
feature engineering, and model development.

Duplicate Rows

Once the null values were addressed, our next concern was handling duplicate rows. We identified
and dropped duplicate rows using the duplicated() function. By removing duplicates, we ensured
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that each observation was unique, which was vital for the integrity of our statistical analyses and
machine learning algorithms. This step helped tomitigate any potential skewing of model training
and improved the accuracy of injury predictions.

1 df = df.drop_duplicates()

By applying these steps, we ensured the integrity and quality of our dataset. We meticulously
preprocessed the data to prepare it for subsequent analysis and model training, ultimately
contributing to the accuracy and reliability of our injury prediction algorithms. With a clean
and well‑structured dataset, we could proceed confidently to the feature extraction and machine
learning phases of our project.

3.3.3 Complete Dataset

Our next crucial step was to integrate the subjective metrics with the GPS data from the objective
metrics. The objective metrics provided valuable insights into players’ speed, HIR (High‑Intensity
Running), and other calculated metrics. We tackled this integration using the following code:

1

2 cols = ['Date', 'player_names', 'injury', 'acwr', 'atl', 'ctl28', 'ctl42', '
monotony', 'strain', 'team_performance', 'offensive_performance', '
defensive_performance', 'illness']

3 merged_df = pd.merge(df1[cols], df0[cols], left_on=['Date', 'player_names'],
right_on=['date', 'player_name_x'], how='inner')

4

5 if not merged_df.empty:
6 df0.update(merged_df[merged_df['Date'].eq(merged_df['date']) & merged_df['

player_names'].eq(merged_df['player_name_x'])][cols[2:]].applymap(str.
capitalize))

7

8 df0['Injury'] = merged_df['Injury']
9 df0.dropna(subset=['Injury'], inplace=True)
10 df0.reset_index(drop=True, inplace=True)

To integrate the subjective metrics with the GPS data from the objective metrics, we employed
a script that extracted relevant columns from both datasets and merged them based on
common identifiers such as date and player name. This process ensured consistency between
corresponding columns from each dataset.

After merging the datasets, we iterated through the merged dataset to update the ’Injury’ column
in the objective metrics with the merged values. This step allowed us to incorporate the injury
information from the subjective metrics into our objective metrics.

To ensure data quality, we also removed any rows with missing injury information. By performing
these steps, we were able to create a unified dataset that combined both subjective and objective
metrics, enabling us to conduct more comprehensive analyses and make more accurate injury
predictions.

By executing this merging process, we successfully consolidated the subjective and objective
metrics into a single dataset. This consolidation allowed us to perform a comprehensive analysis
and develop models with a holistic view of player performance and injury‑related factors. By
combining the subjectivemetricswith the extracted features fromGPSdata, we created a complete
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dataset that enhances the accuracy and effectiveness of our injury prediction algorithms. This
comprehensive dataset serves as a valuable resource for further analysis andmodel development.

3.4 Exploratory Data Analysis

To gain a better understanding of our data, we used different visualizations. These visualizations
helped us analyze the data from various angles and discover patterns, trends, and relationships.
By presenting the information in a visual format, we were able to easily comprehend complex data
and make more informed decisions. Overall, visualizations played a crucial role in enhancing our
understanding of the data.

3.4.1 Correlation Analysis

Using Panda’s corr() function and visualizing the results with a heatmap, we explored the data
correlations. Our observations revealed strong positive correlations between certain variables,
indicating that they tend to increase or decrease together. We also discovered negative
correlations, where one variable increases while the other decreases. Additionally, we identified
independent variables that showed no significant correlationwith others. The heatmapprovided a
visual representation of these correlations, allowing us to easily identify patterns and relationships
within the data. Overall, this analysis enhanced our understanding of how different variables are
interconnected and influenced each other. Here is a summary of our observations:

Highly Correlated Features with Injury: The features that show a high correlation with injury,
indicating a stronger relationship, include illness (0.065), weekly_load (0.059), ctl28 (‑0.110), atl (‑
0.110), ctl42 (‑0.105), monotony (‑0.103), strain (‑0.071), and acwr (‑0.069). These features, along
with injury itself (1.0), have a correlation coefficient above 0.05 or below ‑0.05, suggesting theymay
be significant predictors or indicators of injury occurrences.

Moderate Correlated Features with Injury: The moderately correlated features with injury
have correlation coefficients ranging from 0.02 to 0.05. These include daily_load (0.031), fatigue
(‑0.029), average_running_speed (‑0.030), soreness (‑0.044), and top_speed (‑0.044). While their
relationship with injury is noticeable, it is weaker than that of highly correlated features, suggesting
they may still contribute to injury prediction but with less impact.

Weakly Correlated Features with Injury: Features with weak correlations with injury, having
correlation coefficients less than or equal to 0.02, include stress (0.002), defensive_performance
(‑0.002), Total_distance (‑0.004), readiness (‑0.006), injury_ts (‑0.006), team_performance (‑
0.007), mood (‑0.008), sleep_quality (‑0.008), offensive_performance (‑0.009), HIR (‑0.015), and
sleep_duration (‑0.019). These features showminimal relationship with injury, suggesting they are
less likely to be useful in predicting injury occurrences.

We also checked important feature‑to‑feature correlations:

MonotonyandStrain: A strongpositive correlation (0.8999) indicates that asmonotony increases,
so does reported strain.

Weekly Load and Daily Load: A moderate positive correlation (0.5493) suggests that athletes
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with higher weekly loads tend to have higher daily loads.

CTL42 and CTL28: A very strong positive correlation (0.9416) suggests these are closely related
measures.

Sleep Quality and Mood: A moderate positive correlation (0.4095) indicates that better sleep
quality is associated with a better mood.

Offensive andDefensivePerformance: A strong positive correlation (0.6556) suggests they tend
to improve or decline together.

Weekly Load and Stress: A moderate negative correlation (‑0.1649) suggests that higher weekly
loads might be associated with lower reported stress levels.

HIR and Daily Load: A moderate positive correlation (0.3404) indicates that higher daily loads
may involve more high‑intensity running.

Stress and Mood: A strong positive correlation (0.5958) indicates that stress and mood tend to
move in the same direction.

Sleep Quality and Stress: A moderate positive correlation (0.4074) suggests that higher stress
levels may be associated with poorer sleep quality.

Readiness and Sleep Quality: A moderate positive correlation (0.1714) suggests that higher
readiness might be associated with better sleep quality.

ACWR and CTL42/CTL28: Moderate negative correlations (‑0.4073 and ‑0.3749, respectively)
indicate an inverse relationship between the acute‑to‑chronic workload ratio and CTL42/CTL28.

Injury Timestamps (Injury_ts) and HIR: A weak negative correlation (‑0.0205) implies a slight
inverse relationship between injury timestamps and the Health Impact Ratio.

3.4.2 Pairplot Visualization

We used Seaborn’s pair plot to visualize important features with the following code:
1

2 important_columns = ['monotony', 'weekly_load', 'strain', 'daily_load', 'ctl42'
, 'ctl28', 'defensive_performance', 'injury']

3 sns.pairplot(df[important_columns])
4 plt.show()
5

6 slightly_important_columns = ['team_performance', 'atl', 'stress', 'illness', '
Total_distance', 'readiness', 'acwr', 'injury_ts', 'mood', 'injury']

7 sns.pairplot(df[slightly_important_columns])
8 plt.show()

The analysis of the plots revealed that individuals with longer sleep durations tend to experience
lower levels of soreness. However, no clear patterns or correlations were found between sleep
duration, injury, and soreness. The scatter plots indicated that injuries were scattered across
different levels of these features, suggesting that they may not strongly predict injury occurrence.
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Additionally, while correlations were observed between variables like readiness and illness,
readiness and fatigue, and strain and injury, the scatter plots indicated that these variables do not
stronglypredict injury risk. Mood levelswerealso found tohaveminimal impacton injury rates. The
analysis did not explicitly discuss the relationships between defensive and offensive performance
with other factors.

3.4.3 Boxplot Visualization

We applied Seaborn’s boxplot visualization on numerical features to identify outliers using the
following code:

1 numerical_columns = ['monotony', 'weekly_load', 'strain', 'daily_load', 'ctl42'
, 'ctl28', 'defensive_performance', 'team_performance','atl', 'stress', '
illness', 'Total_distance', 'readiness', 'acwr', 'injury_ts', 'mood','
sleep_quality', 'offensive_performance', 'HIR']

2

3 plt.figure(figsize=(12, 8))
4 sns.boxplot(data=df[numerical_columns], orient='h').set(title='Box Plot of

Numerical Columns with Outliers', xlabel='Values', ylabel='Features')
5 plt.show()

Upon analyzing the dataset, we noticed the presence of notable outliers in various columns,
indicating the potential existence of anomalies or exceptional circumstances within the measured
features. Specifically, in the atl column, a fewdata pointswere observed at higher values, signifying
deviations from the central distribution. These outliers may represent exceptional situations or
unusual occurrences within the dataset. Similarly, the ctl28 column also exhibited several outliers
at higher values, suggesting the presence of unique circumstances or exceptional conditionswithin
the dataset. These outliers warrant further investigation to understand their underlying causes and
assess their impact on the overall analysis and conclusions drawn from the data.

Figure 3.2: The box plot shows the distribution and outliers of various numerical features, with the
boxes representing the interquartile range and whiskers extending to 1.5 times the IQR.
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In addition to the atl and ctl28 columns, the ctdl2 column also displays outliers across a wide
range of values. These outliers might indicate specific events or exceptional circumstances that
significantly influence theoverall trendof this feature. Interestingly,weobserveda singleoutlier at a
higher value in the daily_load column, which could be due to unusual circumstances or a potential
measurement error.

Moreover, both the strain and weekly_load columns reveal numerous outliers across a wide range
of high values. These outliers could represent critical stress levels or exceptional conditions
experienced by the individuals in the dataset. The presence of these outliers highlight the
importanceof using robust dataanalysis techniques. These techniques canhelpus account for and
accurately interpret these extremeobservations, ensuring the reliability of our subsequent analyses
and findings.

3.4.4 Time Series Analysis

Considering the temporal nature of our dataset, we carried out a variety of time series analyses
to thoroughly evaluate our data. These analyses included seasonal analysis, autocorrelation,
and partial autocorrelation. Seasonal analysis allowed us to understand the patterns or trends
that repeat over specific intervals in our data. Autocorrelation analysis helped us to determine
the relationship between a variable’s current value and its past values. Meanwhile, the partial
autocorrelation analysis aided in determining the direct effect of past values on the current value
of a variable. By performing these time series analyses, we were able to gain deeper insights into
the temporal structure of our data, which is crucial for accurate forecasting and modeling.

Seasonal Analysis

To identify recurring patterns in the concentration levels of various performance and well‑
being metrics, we performed a seasonal analysis on a monthly basis. We plotted the average
concentration per month for each column using the following code:

1 fig, ax = plt.subplots(figsize=(20, len(important_columns)*4), nrows=len(
important_columns))

2

3 for idx, var in enumerate(important_columns):
4 data_monthly[[var]].groupby(data_monthly.index.month).mean().plot(ax=ax[idx

], color='RosyBrown', title=f"{var.capitalize()} Concentration Seasonality
- Monthly", ylabel="Concentration", xlabel="Month of the Year").grid(axis='
y')

5

6 plt.tight_layout()
7 plt.show()

Upon analyzing monthly seasonality across various performance and well‑being metrics, we
observed distinct patterns in concentration levels throughout the year. For parameters such as
sleep quality, defensive performance, sleep duration, soreness, illness, readiness, fatigue, offensive
performance, mood, daily load, strain, and ACWR, we noticed cyclic trends. These trends indicate
that concentration levels fluctuate in a recurring manner over time. Recognizing these patterns
helps us understand the temporal dynamics of thesemetrics and can inform strategies to enhance
performance and well‑being based on these cyclical patterns.
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Figure 3.3: The plot illustrates the monthly seasonality of sleep quality concentration throughout
the year. The data shows fluctuations, with a noticeable dip around mid‑year and a peak in
December.

We observed patterns of peaks and troughs at specific months in the data, suggesting a seasonal
influence on individual metrics. For instance, we noticed that variables like readiness, fatigue,
offensive performance, mood, daily load, strain, and ACWR peak in concentration around the
middle of the year and decline rapidly after October. This suggests that performance andworkload
might fluctuate seasonally.

On the other hand, metrics such as sleep quality and illness showed different seasonal patterns,
with concentrations varying across different months. These variations could be influenced by
external factors such as weather changes, training schedules, or competition calendars.

Byunderstanding these seasonal trends,wecangain valuable insights that couldhelp inoptimizing
performance, managing workload, and effectively planning interventions throughout the year.
Recognizing when certain metrics are likely to peak or drop can guide us in developing strategies
to enhance performance and well‑being.

Autocorrelation

Autocorrelation measures how a time series is correlated with its own past values. We applied
autocorrelation analysis using two different approaches:

Lag Plots: We applied autocorrelation analysis using two different visualization approaches ‑ Lag
Plots and Advanced Lag Plots with Regression Lines. Lag plots helped us visualize the relationship
between time‑lagged values for each feature, providing a graphical representation of how each
observation relates to its past values. To further understand the linear relationship between these
lagged values, we used Advanced Lag Plots with Regression Lines. The addition of regression lines
to the lag plots allowed us to quantify the strength and direction of these relationships. These
approaches offered us valuable insights into the time‑dependent structure of our data, aiding in
the creation of more accurate predictive models. The following code was used for these analyses:

1

2 def create_lag_plots(data, lags=6):
3 fig, axs = plt.subplots(len(data.columns), lags, figsize=(40, 60))
4 [[axs[i][j-1].scatter(data.shift(j)[col], data[col], alpha=0.5), axs[i][j

-1].set(xlabel=f"{col} (lagged {j})", ylabel=col, title=f"Time Lagged Plot
of {col} (Lag {j})")] for i, col in enumerate(data.columns) for j in range
(1, lags+1)]

5 plt.tight_layout()
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6 plt.show()
7

8 create_lag_plots(df[important_columns], lags=6)
9

10 def create_lag_plots_adv(data, lags=5):
11 plt.figure(figsize=(44, 60))
12 [sns.regplot(x=data.shift(j)[col], y=data[col], scatter_kws={"s": 10},

line_kws={"color": "red"}).set(xlabel=f"{col} (lagged {j})", ylabel=col,
title=f"Lag Plot of {col} (Lag {j})") for i, col in enumerate(data.columns)
for j in range(1, lags+1)]

13 plt.tight_layout()
14 plt.show()
15

16 create_lag_plots_adv(df[important_columns], lags=5)

Wehave used lag plots to visualize the relationship between the time‑lagged values of each feature.
This was key in understanding the temporal dependencies within our data. For instance, these
plots could demonstrate how past values of specific features like weekly_load or strain might
influence current values. This information proved beneficial when creating predictivemodels, as it
allowed us to consider the impact of past observations on current values. By understanding these
relationships, we were able to build more accurate and effective predictive models.

Partial Autocorrelation

Partial autocorrelation measures the correlation between observations of a time series and
its lagged values, while controlling for the values of the time series at all shorter lags. This
analysis provides insights into the direct relationship between an observation and its lagged value,
excluding the influence of other lagged values. To further analyze our data, we utilized partial
autocorrelation using the following code:

1

2 [plot_pacf(df[col], lags=30, title=f'Partial Autocorrelation Plot of {col}')
for col in important_columns]

By plotting partial autocorrelations, we were able to gain a deeper understanding of the temporal
structure of each feature. We identified significant lags that directly influence current values, which
is crucial information when dealing with time series data. This understanding of how past values
impact current ones is valuable in building accurate time series algorithms. It allows us to make
data‑driven decisions based on patterns observed in historical data, ultimately enhancing the
reliability and effectiveness of our predictive models.

3.5 Feature Engineering

After thoroughly analyzing our data, we used various feature engineering techniques to improve
our data for our algorithms. We created new features from existing ones, standardized the range of
our features, and compiled broader trends from our data. We also organized our data to highlight
patterns, analyzed the importanceof each feature, selected themost relevant features, andhandled
redundant features. Each of these stepswas carefully carried out to enhance the quality of our data
and improve the predictive power of our models.
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3.5.1 Feature Extraction

To enhance our dataset, we have created several new features. One of the first additions was the
historical injury count for each player. This feature provides insight into each player’s injury history,
which can significantly predict future injuries. By tracking the number of previous injuries, we can
consider the player’s injury susceptibility, which can greatly improve the accuracy of our injury
prediction models.

1 df['historical_injury_count'] = df.groupby('player_names')['injury'].apply(np.
cumsum)

Next, we introduced interaction features to capture the relationships between various performance
metrics. These interaction features are critical as they help us understand how different
combinations of factors influence the outcome. By analyzing how thesemetrics interact with each
other, we can gain a deeper insight into the data. This allows us to identify complex relationships
and patterns that might not be evident when looking at individual metrics alone, ultimately
enhancing the effectiveness of our predictive models.

1 interactions = [('daily_load', 'readiness'), ('sleep_duration', 'sleep_quality'
),

2 ('daily_load', 'fatigue'), ('strain', 'readiness'), ('stress',
'readiness'),

3 ('team_performance', 'readiness'), ('offensive_performance', '
readiness'),

4 ('defensive_performance', 'readiness'), ('defensive_performance
', 'weekly_load')]

5

6 for col1, col2 in interactions:
7 df[f'{col1}_{col2}_interaction'] = df[col1] * df[col2]

3.5.2 Feature Scaling

To ensure all numerical features were on the same scale and improve model performance, we
appliedMin‑Max scaling. This normalization technique is an essential step in feature engineering as
it brings all features to the same scale, reducing the likelihood of one or more features dominating
the model due to their larger numerical ranges. This is particularly beneficial for algorithms that
are sensitive to the scale of the data, helping to improve the accuracy and reliability of ourmachine
learning models.

1

2 df[['acwr', 'weekly_load', 'stress']] = MinMaxScaler().fit_transform(df[['acwr'
, 'weekly_load', 'stress']])

Feature scaling is a crucial step in the data preprocessing phase. It ensures that all features
contribute equally to the model training process, preventing features with larger scales from
dominating those with smaller scales. This is particularly important for many machine learning
algorithms, especially those that rely on distance calculations, such as K‑Nearest Neighbors, and
Support Vector Machine. By bringing all features to the same scale, feature scaling helps improve
the accuracy and performance of these algorithms.

3.5.3 Aggregated Metrics

We introduced aggregated metrics to capture long‑term trends and smooth out short‑term
fluctuations in our data. These metrics consolidate data over a specific period, providing a
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summary view that can highlight underlying patterns and trends. This aggregation can help
uncover insights that might not be immediately visible in the raw data, allowing us to better
understand the broader context and make more informed predictions. Aggregated metrics are
particularly useful in time series analysis, where understanding long‑term trends can be crucial
for accurate forecasting.

1 df['acwr_rolling_avg'] = df['acwr'].rolling(window=7).mean()
2 df['weekly_load_ema'] = df['weekly_load'].ewm(alpha=0.5).mean()
3 df['stress_rolling_sum'] = df['stress'].rolling(window=14).sum()

We used rolling averages, exponential moving averages, and rolling sums to see how thesemetrics
change over time. These aggregated metrics helped us spot trends and potential unusual data
points. Theyareespecially usefulwhenanalyzing timeseriesdata, as theycanhelp identifypatterns
over time. By smoothing out short‑term changes, these metrics allow us to focus on long‑term
trends, which can improve the accuracy of our predictive models.

3.5.4 Sorting Data

To maintain the temporal order of the data, we sorted the dataset by player names and dates.
This step is crucial for time series analysis as it ensures that the model trains on sequential data.
By training our algorithms on data in the correct sequence of events, we can create models that
accurately learn from past data to predict future outcomes. This step is particularly important for
our dataset, given its temporal nature, and greatly contributes to the accuracy and reliability of our
predictive models.

1 sorted_df = df.sort_values(by=['player_names', 'Date'])

We sorted the data by player names and dates to preserve the chronological order of the
observations. This is critical for time‑dependent analyses. It ensures thatwemaintain the temporal
relationships within the data, allowing our algorithms to accurately capture and learn from the
sequential patterns and trends. By keeping the data in order, the models we develop are better
equipped to make precise predictions based on these learned patterns.

3.5.5 Feature Importance Analysis and Feature Selection

Identifying the most relevant features is key to improving model performance and interpretability.
We used several methods, including feature correlation, Random Forest Classifier, and Gradient
Boosting Classifier, to calculate feature importance. This comprehensive approach helped us
understand which features weremost informative and should be prioritized duringmodel training.
By focusing on the most relevant features, we can create more accurate and efficient models,
reducing noise and unnecessary complexity in our data.

First, we examined the correlation of each feature with the target variable ’injury’. This step is
crucial as it helps in identifying features that have a strong linear relationship with the outcome. By
examining these correlations, we can identify the features that aremost likely to influence the target
variable. These features are often the most important for predictive modeling, and understanding
their relationships with the target variable can provide valuable insights for model training.

1 correlation_matrix_injury = df.corr()[['injury']].sort_values(by='injury',
ascending=False)

2

3 for col in correlation_matrix_injury.index:
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4 correlation = correlation_matrix_injury.loc[col, 'injury']
5 print(f"Correlation with 'injury' for column '{col}': {correlation}")

Next, we calculated feature importance using two ensemble methods: Random Forest and
Gradient Boosting. These algorithms help determine the importance of each feature by evaluating
how much each feature contributes to reducing the prediction error. By understanding the
significance of each feature in the context of these models, we can identify the most influential
features in our dataset. This information is crucial for building effective predictive models, as it
allows us to focus on the features that have the greatest impact on our predictions.

1 def calculate_feature_importance(df, model):
2 X, y = df.drop('injury', axis=1), df['injury']
3 return pd.Series(model.fit(X, y).feature_importances_ , index=X.columns).

sort_values(ascending=False)
4

5 rf_feature_importances = calculate_feature_importance(df,
RandomForestClassifier())

6 gb_feature_importances = calculate_feature_importance(df,
GradientBoostingClassifier())

After calculating the feature importance using both the Random Forest and Gradient Boosting
algorithms,wecombined these scoresandcalculatedanaverage importance score for each feature.
This stephelped to stabilize the importance rankings andmade sure that the selected featureswere
consistently important across different methods. By doing this, we identified a set of features that
were important to both algorithms, making our feature selection process more reliable.

1 def select_top_features(feature_importances_list , correlation_matrix ,
correlation_threshold=0.005, num_features_to_select=27):

2 selected_features_combined = pd.concat(feature_importances_list , axis=1,
keys=['RF', 'GB']).mean(axis=1).sort_values(ascending=False)

3 correlated_features = [col for col, corr in correlation_matrix['injury'].
drop('injury').items() if abs(corr) >= correlation_threshold]

4 return [feature for feature in selected_features_combined.index if feature
in correlated_features][:num_features_to_select]

5

6 correlation_matrix = df.corr()
7 final_selected_features = pd.DataFrame([select_top_features([

rf_feature_importances , gb_feature_importances], correlation_matrix) for _
in range(5)]).mode().iloc[0].tolist()

The final selected features, which were found to be most important and relevant across all
iterations, include: ‘’historical injury count’, ’ctl42’, ’defensive performance weekly interaction’,
’ctl28’, ’strain readiness interaction’, ’acwr rolling avg’, ’offensiveperformance’, ’atl’, ’strain’, ’acwr’, ’Top
speed’, ’load fatigue interaction’, ’team performance’, ’monotony’, ’Average running speed’, ’weekly
load ema’, ’stress rolling sum’, ’fatigue’, ’weekly load’, ’team performance readiness interaction’,
’defensive performance readiness interaction’, ’HIR’, ’offensive performance readiness interaction’,
’sleep readiness interaction’, ’daily load’, ’mood’, ’load readiness interaction’‘.

By focusing on these selected features, we can ensure that our algorithms are trained on the
most informative and relevant data. This leads to better predictive performance andmore reliable
outcomes. This careful selection process not only reduces noise in our data, but also improves
the interpretability of our models. By focusing on the most impactful features, we can create more
effective predictive algorithms, enhancing the overall accuracy of our models.
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3.5.6 Feature Redundancy

We applied feature correlation analysis to identify feature pairs with relatively high correlation
coefficients that could potentially mislead algorithms in injury prediction. Our observations are
as follows:

Sleep Quality and Sleep Readiness Interaction: There is a strong positive correlation of 0.917
between sleep quality and sleep readiness interaction, indicating that higher sleep readiness tends
to coincide with better sleep quality.

Stress and Mood: Stress and mood have a strong positive correlation of 0.616, suggesting that
higher levels of stress are associated with poorer mood.

Stress and Stress Readiness Interaction: Stress and stress readiness interaction have a very
strong positive correlation of 0.742, indicating that higher stress readiness is associatedwith higher
stress levels.

Weekly LoadandACWR (Acute: ChronicWorkloadRatio) RollingAverage: There is a positive
correlation of 0.881 betweenweekly load and ACWR rolling average, suggesting that as weekly load
increases, the ACWR tends to increase as well.

Monotony and ATL (Acute Training Load): Monotony and ATL have a moderate positive
correlation of 0.648, indicating that higher levels of monotony tend to coincide with higher acute
training loads.

Strain and Strain Readiness Interaction: Strain and strain readiness interaction have a very
strong positive correlation of 0.938, indicating that higher strain readiness tends to coincide with
higher levels of strain.

Load Readiness Interaction and Daily Load: Load readiness interaction and daily load have
a very strong positive correlation of 0.963, indicating that higher load readiness tends to coincide
with higher daily loads.

To handle feature redundancy, we identified and removed highly correlated features (correlation
coefficient > 0.9). Redundant features can mislead the model and reduce performance, so it is
crucial to eliminate them:

1

2 correlation_threshold = 0.9
3 correlation_matrix = df.corr().abs()
4 redundant_features = [correlation_matrix.columns[j] for i, j in zip(*np.where(

np.triu(correlation_matrix > correlation_threshold , k=1)))]
5 df = df.drop(columns=redundant_features)

3.5.7 Final Features

After extensive feature engineering and redundancy removal, we selected the following features
to retain in our dataset: ’daily load’, ’fatigue’, ’mood’, ’readiness’, ’sleep duration’, ’sleep quality’,
’soreness’, ’stress’, ’injury ts’, ’weekly load’, ’Team’, ’Total distance’, ’Average running speed’, ’Top
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speed’, ’HIR’, ’acwr’, ’atl’, ’ctl28’, ’monotony’, ’strain’, ’team performance’, ’offensive performance’,
’defensive performance’, ’illness’, ’historical injury count’, ’stress readiness interaction’, ’team
performance readiness interaction’, ’offensive performance readiness interaction’, ’defensive
performance readiness interaction’, ’acwr rolling avg’, ’stress rolling sum’, ’injury’, and ’Player name’.
Table 3.1. provides an overview of all the selected features name, descriptions, and metrics.

We selected these particular features based on their predictive importance and relevance to the
target variable. These features provide a robust foundation for building accurate and effective
algorithms. By focusing on these selected features, we ensure that our algorithms are trained on
the most relevant and informative data. This approach leads to improved predictive performance
and more reliable outcomes. This careful selection process helps reduce noise in our data and
enhances both the interpretability and effectiveness of our predictive algorithms.

Parameter Description Metric
Daily Load Sum of sRPE per single day Numeric
Fatigue Feeling of constant exhaustion Numeric
Mood Players emotional state Numeric

Readiness Players readiness for a training session or game Numeric
Sleep Duration Duration of sleep Numeric
Sleep Quality Quality of Sleep Numeric
Soreness Level of soreness Numeric
Stress Current level of stress Numeric

Injury TS Binary indication of injury with 1 suggesting an injury Numeric
Weekly Load Sum of sRPR over seven days Numeric

Team Letter describing which team a given player belongs to Numeric
Total Distance Total distance covered during the session Numeric

Average Running Speed The average running speed of the session Numeric
Top Speed Top speed of the session Numeric

HIR Number of high intensity runs throughout the session Numeric
ACWR Acute load related to the chronic load Numeric
Atl Acute training load Numeric

Ctl28 Chronic training load of the last 28 days Numeric
Monotony ATL divided by standard deviation Numeric
Strain Training stress over the last 7 days Numeric

Team Performance Performance of the team Numeric
Offensive Performance Offensive performance of the team Numeric
Defensive Performance Defensive performance of the team Numeric

Illness Level of illness Numeric
Historical Injury Count Sum of occurrence of injury per player Numeric

Stress Readiness Interaction Combination of stress and readiness Numeric
Team Performance Readiness Interaction Combination of team performance and readiness Numeric

Offensive Team Performance Readiness Interaction Combination of offensive team performance and readiness Numeric
Defensive Team Performance Readiness Interaction Combination of defensive team performance and readiness Numeric

ACWR Rolling Average Average of acute chronic workload ratio rolling Numeric
Stress Rolling Sum Sum of stress rolling Numeric

Injury Occurrence of injury Numeric
Player Name Unique ID of the soccer players Object ID

Table 3.1: The table shows all the selected features after feature engineering.

3.6 Final Dataset

After comprehensive preprocessing and feature engineering, we compiled our final dataset, which
consists of a total of 8,582 rows. Out of these, 8,526 rows represent non‑injury cases (labeled as 0),
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and only 56 rows represent injury cases (labeled as 1). This reveals a significant class imbalance in
our dataset, with a much larger number of non‑injury cases compared to injury cases. Such class
imbalance canposea challenge formodel training as it could lead toamodel that is biased towards
predicting themajority class. Therefore, addressing this imbalancewill be an important step in our
model development process to ensure accurate and reliable predictions.

Figure 3.4: The bar chart displays the distribution of injury status, with the vastmajority (over 8000)
of instances having no injury (0) and a very small number indicating injury (1).

3.6.1 Multiple Datasets

To optimize our results and address potential biases, we created multiple versions of the dataset:

Original Version (Full Dataset): In the original version, which we referred to as the full dataset
throughout our thesis, we retained the dataset exactly as it was initially prepared, with all its
features and instances. This version serves as a baseline for comparison, allowing us to assess
the impact of any changes wemake later on. It includes all the information we collected, providing
a comprehensive view of the data for our analyses.

Team A Version (Single Team Dataset): In several parts of our thesis, we created and referred
to a version known as the single team dataset. In this version, we included only players from Team
A to create a dataset. This approach allowed us to examine injury patterns and evaluate model
performance within the specific context of a single team. By focusing on a specific team, we were
able to gain valuable insights into the unique dynamics of injuries within that team, providing a
more detailed and nuanced understanding of the factors at play.
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Filtered Version (Only Injured Players Dataset): The filtered version, which we referred to as
the only injured players dataset, was created by removing rows where players did not have any
injury data. This filtering process resulted in a dataset that consisted of 3,134 non‑injury rows and
56 injury rows. The purpose of this version is to focus on players with a history of injuries. By doing
so, we aimed to potentially enhance the model’s ability to recognize patterns related to injuries.
This concentrated view on injured players could provide more specific insights into the factors
contributing to injuries.

By creating these different versions of the dataset, we aimed to thoroughly explore various aspects
of thedata andenhance the robustness of our algorithms. Each versionoffers a uniqueperspective,
providing a different lens through which to examine the data. This approach allowed us to
better understand the factors influencing injury prediction. It also helped us identify the most
effective strategies for handling imbalanced data and improving the accuracy of our predictions.
This multi‑faceted approach to data analysis contributes to a more comprehensive and nuanced
understanding of the data, ultimately enhancing the quality of our predictive models.

3.7 Injury Prediction

Oncewe had our datasets prepared, we implemented variousmachine learning and deep learning
algorithms to predict injuries. To improve the accuracy of our models, we applied hyperparameter
tuning to optimize the parameters of our algorithms. We also used sliding windows, a technique
often used in time series analysis, to ensure our models could learn from sequential data.
Additionally, we employed techniques to handle class imbalance in our data, ensuring our models
could accurately predict both injury and non‑injury cases. By applying these strategies, we aimed
to create robust, accurate, and reliable injury prediction models.

3.7.1 Sliding Windows

Considering the temporal nature of our dataset, we used sliding windows to train our algorithms.
This approach helps capture temporal dependencies and patterns in the data, which is crucial for
time series analysis. We experimented with different window sizes, such as 2, 4, 8, 16, and 32, to
determine the optimal window size that provides the most accurate results. The following code
snippet illustrates how we implemented sliding windows:

1 def create_player_sequences(df, player, sequence_length=7):
2 player_data = df[df['Player_name'] == player].drop(['Player_name'], axis=1)

.values
3 return np.array([player_data[i:i + sequence_length] for i in range(len(

player_data) - sequence_length)])
4

5 def create_team_sequence(df, sequence_length):
6 return np.concatenate([create_player_sequences(df, player, sequence_length)

for player in df['Player_name'].unique()], axis=0)
7

8 def preprocess(inputWindow):
9 df = pd.read_csv(dataPath)
10 X, y = create_team_sequence(df, inputWindow)
11 return X.astype(np.float32), y.astype(np.float32)

By using sliding windows, we made our algorithms better at capturing how player data changes
over time. This approachconsiders the sequenceof thedata,which is very important for time series
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analysis. By doing so, our algorithms could better understand and learn from the data patterns,
leading to more accurate predictions. This method was key in improving our predictive models.

3.7.2 Class Imbalance Handling

To tackle the issue of class imbalance in our data, where injury cases (the minority class) are
significantly outnumbered by non‑injury cases (the majority class), we implemented several
techniques. These included oversampling, undersampling, SMOTE, and ADASYN sampling
methods.

Oversampling: Oversampling is a technique we applied to balance the class distribution in our
data. Thismethod involves increasing thenumberof instances in theminority class, in this case, the
positive class in our training data. It does this by randomly replicating instances from the minority
class to match the number of instances in the majority class. By using oversampling, we were able
to create amore balanced dataset, reducing the bias towards themajority class and improving the
performance of our predictive models.

Undersampling: Undersampling is another technique we used to balance the class distribution in
our data. In contrast to oversampling, undersampling involves reducing the number of instances
in the majority class, in our case, the negative class in the training data. It achieves balance by
randomly removing instances from the majority class to match the number of instances in the
minority class. By using undersampling, we were able to create amore balanced dataset, reducing
the bias towards the majority class and improving the performance of our predictive models.

SMOTE: The Synthetic Minority Over‑sampling Technique is another method we used to balance
the class distribution in our data. Unlike traditional oversampling, which simply replicates
instances from the minority class, SMOTE generates synthetic samples. It does this by creating
synthetic samples along the line segments joining the k nearest neighbors of minority class
samples. This method allows us to increase the number of instances in the minority class without
simply replicating existing data, thereby enhancing the diversity of the training data and improving
the performance of our predictive models.

ADASYN: The Adaptive Synthetic Sampling Approach for Imbalanced Learning is another technique
we used to balance our class distribution. Similar to SMOTE, ADASYN generates synthetic samples
for the minority class. However, ADASYN focuses more on regions where the class imbalance is
most severe, generating more synthetic samples in those specific areas. By doing so, ADASYN
ensures that themodel paysmoreattention to theseharder‑to‑learn instances, leading to improved
performance of our predictive models.

The following code snippet demonstrates the implementation of these techniques:

1 def resample_data(X_train, y_train, sampling_ratio , oversample_mode):
2 func_map = {'oversample': RandomOverSampler , 'undersample':

RandomUnderSampler , 'smote': SMOTE, 'adasyn': ADASYN}
3 resampler = func_map[oversample_mode](sampling_strategy=sampling_ratio ,

random_state=42)
4 X_resampled , y_resampled = resampler.fit_resample(X_train.reshape(X_train.

shape[0], -1), y_train)
5 precentageOfZeroesInDataset = (y_resampled == 0).sum() / len(y_resampled)
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6 return X_resampled.reshape(X_resampled.shape[0], X_train.shape[1], X_train.
shape[2]), y_resampled , precentageOfZeroesInDataset

By implementing these techniques, we effectively addressed the class imbalance in our data. As
a result, our algorithms were able to make more accurate and reliable predictions. Balancing
the classes in our data ensured that both the majority and minority classes were adequately
represented in our training data, leading to more robust and unbiased predictive models. This
was a crucial step in improving the overall performance of our models.

3.7.3 Models Implementation

We deployed a diverse array of machine learning algorithms, leveraging the capabilities of the
’sklearn’ library, to predict injuries. These algorithms include Decision Tree, K‑Nearest Neighbors,
Support Vector Machine, Logistic Regression, Naive Bayes, Random Forest, and XGBoost. Each
model offers unique strengths and characteristics that contribute to the overall predictive
performance. Additionally, recognizing the potential benefits of deep learning in capturing
temporal dependencies within the data, we also implemented a Long Short‑Term Memory (LSTM)
model. LSTM is a type of Recurrent Neural Network (RNN) that excels at processing sequences of
data, making it particularly well‑suited for time series analysis and sequential data like ours.

By using both traditional machine learning algorithms and deep learning architectures, we aimed
to make our injury predictions more accurate and reliable. Combining these methods let us
take advantage of the benefits of different modeling approaches. Traditional machine learning
algorithms are simple and easy to interpret, while deep learning architectures are powerful and
good at recognizing patterns. This mix of methods improved our predictive modeling approach,
helping us create a system that can make reliable and accurate injury predictions.

3.7.4 Models Training

In our model training phase, we partitioned our dataset into training and testing sets, allocating
80% and 70% of the data for training, respectively, and reserving the remaining portion for testing.
This split was conducted to ensure an adequate amount of data for training while maintaining a
sufficient portion for evaluatingmodel performance. Weexperimentedwithdifferent sample ratios,
using both 0.2 and 0.3 ratios to explore their impact on model accuracy.

For traditional machine learning algorithms such as Decision Tree, we used the Decision Tree
Classifier from the ’sklearn’ library. The training process involved preprocessing the data, splitting
it into training and testing sets, and then fitting the model to the training data. The following code
snippet is a sample of the machine learning model (Decision Tree model) implementation:

1 def decision_tree_classification(test_size , oversample_mode , sampling_ratio):
2 X_scaled = TimeSeriesScalerMinMax().fit_transform(X)
3 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=

test_size , random_state=42, stratify=y)
4 precentageOfZeroesInDataset = (y_train == 0).sum() / len(y_train)
5 X_train, y_train, precentageOfZeroesInDataset = sample_mode(X_train,

y_train, sampling_ratio , oversample_mode)
6 model = DecisionTreeClassifier().fit(X_train.reshape(X_train.shape[0], -1),

y_train)
7 y_pred = model.predict(X_test.reshape(X_test.shape[0], -1))
8 confInjuries = confusion_matrix_only_injuries(y_test, y_pred)
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9 return confInjuries , precentageOfZeroesInDataset

Furthermore, we ventured into deep learning territory by implementing an LSTM model using
TensorFlow and Keras. LSTM is particularly well‑suited for handling sequential data, making it an
ideal candidate for our time series dataset. The LSTM model architecture consisted of multiple
LSTM layers followed by dropout layers to prevent overfitting and a final dense layer with a sigmoid
activation function. We trained the LSTM model using various combinations of hyperparameters,
including inputwindowsizes, test sizes, oversamplingmethods, and sampling ratios. The following
code snippet demonstrates the implementation and training procedure for the LSTMmodel.

1

2 def create_lstm_model(input_shape):
3 model = Sequential([LSTM(64, input_shape=input_shape , return_sequences=True

),
4 Dropout(0.2),
5 LSTM(32),
6 Dropout(0.2),
7 Dense(1, activation='sigmoid')])
8 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['

accuracy'])
9 return model

Throughout the training process, we evaluated each model’s performance using several metrics.
By systematically exploring different hyperparameter combinations and model architectures, we
aimed to identify the most effective strategies for predicting injuries in our dataset.

3.7.5 Models Performance Evaluation

After training our machine learning and deep learning algorithms, we proceeded to evaluate their
performance using a comprehensive set of metrics. For traditional machine learning algorithms
like Decision Tree, we assessed accuracy, F1‑score, precision, and recall to gauge their predictive
capability. These metrics provided insights into the model’s overall accuracy, and its ability to
balance between correctly identifying positive cases (injuries) and avoiding false positives.

In contrast, we utilized the same metrics to evaluate its performance on our sequential data.
Additionally, we used techniques such as time series cross‑validation to ensure robust evaluation,
accounting for the temporal nature of our dataset. By comparing the performance across different
hyperparameter combinations andmodel architectures, wewere able to identify themost effective
strategies for injury prediction.

Moreover, we ranked the algorithms based on their F1 scores to determine the top performers,
providing valuable insights intowhich configurations yielded the best predictive performance. This
rigorous evaluation process allowed us to select the most promising algorithms for deployment
in real‑world scenarios, where accurate injury prediction is of utmost importance for athlete well‑
being and performance optimization.

3.7.6 Hyperparameter Tuning

Hyperparameter tuning is key to improving the performance of machine learning algorithms. It
involves finding the best set of parameters for a given algorithm to improve its accuracy. In the
code below for the Decision Tree Classifier, we used a method called Grid Search Cross Validation
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for hyperparameter tuning. Thismethod helps us find the best parameters for ourmodel by testing
different combinations. By fine‑tuning the parameters, we were able to improve the performance
of our Decision Tree Classifier and make our injury predictions more accurate.

1

2 param_grid = {
3 'criterion': ['gini', 'entropy'],
4 'max_depth': [None, 10, 20, 30],
5 'min_samples_split': [2, 5, 10],
6 'min_samples_leaf': [1, 2, 4],
7 'max_features': ['auto', 'sqrt', 'log2']
8 }

The process starts by defining a grid of hyperparameters and their respective values, such as the
criterion for splitting (’gini’ or ’entropy’), maximumdepth of the tree, minimum samples required to
split an internal node, minimum samples required to be at a leaf node, and themaximum number
of features to consider for the best split. Grid Search Cross Validation then exhaustively searches
through all possible combinations of these hyperparameters to identify the optimal configuration
based on a specified evaluation metric, typically accuracy, F1‑score, or another relevant metric.

Once the search is complete, the best set of hyperparameters is selected based on the performance
of the model on cross‑validated data. This tuned model is then evaluated on the test set to assess
its performance metrics, including accuracy, F1 score, precision, and recall.

Hyperparameter tuning ensures that our algorithms are fine‑tuned to extract the maximum
predictive power from the data, leading to more robust and reliable predictions. By systematically
exploring different hyperparameter configurations, we can uncover the optimal settings that yield
superior performance, enhancing the overall effectiveness of our machine learning algorithms.

3.8 Chapter Summary

This chapter offers a comprehensive overview of the methodology and implementation of our
machine learning framework to predict injuries among Norwegian women’s soccer players. We
began with a proposed plan, followed by a discussion on data import using Python libraries. This
led to the crucial step of data preprocessing, setting the stage for accurate and efficient analysis.
The exploratory data analysis (EDA) that followed involved creating various plots to dig deeper into
our data and unearth key insights.

In the feature engineering section, we explored different aspects, including feature extraction,
feature scaling, and handling feature redundancy, among others. The process of creating our final
dataset and the two additional datasets used for various experiments was also described. The
chapter concluded with an explanation of the sliding window approach, methods for handling
class imbalances, model implementation, model training, andmodel evaluation. We also touched
upon the process of hyperparameter tuning. Each of these steps collectively contributed to the
robustness of our machine learning framework.

In the next chapter, wewill present the results of seven experiments thatwere conducted to answer
specific preliminary, and sub‑questions. These experiments were carried out using the methods
and implementation process described earlier.
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Chapter 4

Experiments and Results

In the previous chapter, we provided a detailed account of our implementation methodology,
focusing on the preprocessing steps, feature engineering, and the application of various machine
learning anddeep learning algorithms. This laid the foundation for our predictive analysis of soccer
player injuries.

In this chapter, we present the results obtained from our predictive algorithms. We will analyze the
performanceof eachalgorithm, comparingmetrics suchas accuracy, precision, recall, andF1‑score
to determine their effectiveness. Additionally, we will discuss the outcomes of hyperparameter
tuning and the impact of handling class imbalance onour algorithm’s performance. By interpreting
these results, we aim to validate our approach and highlight the practical implications of our
findings in the context of sports analytics. This chapter serves to bridge our methodological
framework with its empirical evaluation, providing insights into the predictive power and reliability
of our injury prediction algorithms.

4.1 Experiment 1: Identify Key Risk Factors for Injury

The correlation analysis conducted in our study provided significant insights into the factors
associated with injury occurrence. We have discussed the highly correlated features with injury,
as well as the correlation between different features, in section 3.4.1. Here is a detailed summary
of our observations:

Highly Correlated Features: The Figure 4.1. shows that features such as illness, weekly_load,
ctl28, atl, ctl42, monotony, strain, and acwr exhibit relatively high correlations with the injury
column. This suggests that higher values of these features might be associated with a higher
likelihood of injury occurrence, indicating their potential as strong predictors for injury risk.

Moderate Correlated Features: Features like daily_load, fatigue, average_running_speed,
soreness, and top_speed also show correlations with the injury column, though these correlations
are slightly lower compared to the previously mentioned features. These moderate correlations
indicate a notable association between these factors and injury risk, providing additional variables
that may contribute to predicting injuries.

Weakly Correlated Features: Features such as stress, defensive_performance, Total_distance,
readiness, injury_ts, team_performance, mood, sleep_quality, offensive_performance, HIR, and
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sleep_duration have weak correlations with the injury column. These variables may have limited
predictive power for injury occurrence based on their correlation coefficients with the target
variable, suggesting that they are less critical in predicting injuries.

Figure 4.1: The figure presents information about the correlation between injury and other features.

Additionally, we observed several important correlations between features. There is a strong
positive correlation (0.8999) between monotony and strain, indicating that increased monotony
is associated with higher reported strain. Weekly load and daily load show a moderate positive
correlation (0.5493), suggesting that athleteswith higherweekly loads also tend tohavehigher daily
loads. CTL42 and CTL28 are very strongly positively correlated (0.9416), highlighting their close
relationship. Sleep quality andmood have amoderate positive correlation (0.4095), indicating that
better sleep quality is linked to a better mood. Offensive and defensive performance are strongly
positively correlated (0.6556), implying that they tend to improve or decline together. There is a
moderate negative correlation (‑0.1649) between weekly load and stress, suggesting that higher
weekly loads might be associated with lower stress levels.

HIR and daily load show amoderate positive correlation (0.3404), indicating that higher daily loads
may involve more high‑intensity running. Stress and mood have a strong positive correlation
(0.5958), showing that they tend to move in the same direction. Sleep quality and stress have
a moderate positive correlation (0.4074), suggesting that higher stress levels may be linked to
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poorer sleep quality. Readiness and sleep quality have a moderate positive correlation (0.1714),
indicating that higher readiness might be associated with better sleep quality. Moderate negative
correlations (‑0.4073 and ‑0.3749) betweenACWRandCTL42/CTL28 indicate an inverse relationship
between the acute‑to‑chronic workload ratio and CTL42/CTL28. Lastly, injury timestamps and HIR
have a weak negative correlation (‑0.0205), implying a slight inverse relationship between injury
timestamps and the Health Impact Ratio.

These findings underscore the complex interplay of various factors in injury risk, providing a
comprehensive understanding of the key risk factors. The insights gained from this correlation
analysis are crucial for developingmore effective injury prevention strategies and tailoring training
programs to mitigate injury risk.

4.2 Experiment 2: Optimal Window Size

In this section, we investigate the impact of varying the input window size on the performance
of injury prediction algorithms. The input window size refers to the number of previous time
steps considered when predicting an injury, and optimizing this parameter is crucial for capturing
relevant temporal patterns in the data. We utilized a systematic approach to test different window
sizes, ranging from 2 to 32, and evaluated their effects on algorithm performance using various
oversampling and undersampling techniques to address the class imbalance.

The preprocessing function was designed to create sequences of player data, taking into
account the specified window size. For each player in the dataset, sequences of data were
generated, which were then aggregated to form the training and testing datasets. The function
‘create_team_sequence‘ ensured that the data for all players were included, allowing for
comprehensive training of the algorithms.

To tackle the issue of class imbalance, we employed four different sampling methods: Random
OverSampling, Random UnderSampling, SMOTE (Synthetic Minority Over‑sampling Technique),
and ADASYN (Adaptive Synthetic Sampling). Each method was implemented through dedicated
functions: ‘oversample_data‘, ‘undersample_data‘, ‘smote_data‘, and ‘adasyn_oversample_data‘.
These functions resampled the trainingdata tobalance thenumberof injuries andnon‑injury cases,
aiming to improve the algorithms’ ability to detect injuries.

The experimental setup involved iterating over various combinations of hyperparameters:

• Input Window Sizes: 2, 4, 8, 16, 32

• Test Sizes: 0.2, 0.3

• Oversampling Modes: ”none”, ”oversample”, ”undersample”, ”smote”, ”adasyn”

• Sampling Ratios: 0.2, 0.3

• Interpolate Injuries: True, False

For each combination, the ‘preprocess‘ function was called to generate the corresponding training
and testing datasets. The resampling was performed using the ‘sample_mode‘ function, which
applied the chosen oversampling or undersampling technique based on the specified parameters.
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The algorithms were then evaluated using the Naive Bayes classifier as a baseline. The evaluation
metrics included accuracy, F1 score, precision, recall, and the confusion matrix. These metrics
provided insights into how well each algorithm configuration handled the prediction task. The
results for each configurationwere recorded, including the percentage of zeros (non‑injuries) in the
dataset after resampling.

The code’s structure ensured that each hyperparameter combination was systematically tested,
allowing for a thorough comparison of the effects of different input window sizes and resampling
techniques. This comprehensive approach facilitated the identification of the optimal window size
and sampling strategy, leading to improved performance of the injury prediction algorithms.

The findings from these experiments are crucial for developing robust injury prediction algorithms
that can effectively handle the temporal dynamics of the data and the inherent class imbalance. By
fine‑tuning the input window size and employing appropriate resampling methods, we aimed to
enhance the algorithms’ ability to predict injuries accurately and reliably, ultimately contributing
to better injury prevention strategies in sports.

Models Input Windows Sampling Method Recall Precision F1 Accuracy
Logistic Regression 16 SMOTE 0.25 0.28 0.26 0.99

Decision Tree 32 None 0.50 0.45 0.47 0.99
Random Forest 16 Undersample 0.72 0.09 0.16 0.95

K‑Nearest Neighbor(KNN) 32 Oversample 0.60 0.24 0.34 0.98
LSTM 32 Undersample 0.10 1.0 0.18 0.99

Support Vector Machine (SVM) 8 None 0.27 0.27 0.27 0.99
XGBoost 32 SMOTE 0.50 0.71 0.58 0.99

Naive Bayes 16 SMOTE 0.75 0.06 0.12 0.93

Table 4.1: The optimal window size for injury prediction

4.3 Experiment 3: Top‑tier Algorithms for Injury Prediction

In this section, wewill conduct a thorough analysis of the performance of variousmachine learning
algorithms in predicting injuries among soccer players. We will use the information from Table 4.1.
to explain all eight algorithms performance in detail. Our evaluation will focus on keymetrics such
as the F1 score and confusion matrix to assess the accuracy and reliability of each algorithm. By
scrutinizing these performance indicators, we aim to identify which algorithms excel in accurately
predicting the occurrence of injuries. This analysis will provide valuable insights into the strengths
and limitationsof eachalgorithm, guidingus toward selecting themost effectiveapproach for injury
prediction in the context of sports analytics. Table A.6. provides a summary of the performance of
these algorithms in correctly identifying injuries as injuries and injuries as non‑injuries.

4.3.1 Logistic Regression

The performance of the Logistic Regression algorithm in predicting injuries is comprehensively
summarized inTable 4.2. Thealgorithmsuccessfully identified 4actual injuries, correctly classifying
these instances as injuries. However, it failed to recognize 12 actual injury cases, misclassifying
them as non‑injuries, which is a significant oversight. On the other hand, the algorithm incorrectly
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predicted 10non‑injury cases as injuries, a typeof error knownas a false positive, while it accurately
classified 2463 non‑injury cases, correctly identifying them as non‑injuries.

These results translated into a recall of 0.25, indicating that the algorithm correctly identified 25%
of the actual injury cases. The precision of the algorithm was 0.28, meaning that only 28% of the
cases it predictedas injurieswere indeed injuries. TheF1 score,whichbalances recall andprecision,
stood at 0.26, reflecting the algorithm’s overall effectiveness in handling injury predictions. Despite
these concerning metrics, the algorithm achieved a high overall accuracy of 0.99, primarily due to
its ability to correctly classify the vast majority of non‑injury cases.

While the high accuracy might suggest good performance, it largely reflects the algorithm’s
proficiency in predicting the majority class, which is non‑injury cases. The low recall and
precision scoreshighlight thealgorithm’s struggle to correctly identify injury cases, emphasizing the
challenge of predicting rare events within a heavily imbalanced dataset. Thesemetrics underscore
the necessity of employingmore sophisticated techniques or different algorithms to better capture
the nuances of injury prediction. Addressing these issues is crucial for improving the algorithm’s
reliability and effectiveness in real‑world applicationswhere accurately predicting injuries canhave
significant implications.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 4 12
Actual Non‑Injuries 10 2463

Table 4.2: Actual vs predicted injuries of Logistic Regression.

4.3.2 Decision Tree

The performance of the Decision Tree algorithm in predicting injuries is detailed in Table 4.3. The
algorithm correctly identified 5 actual injury cases, classifying them as predicted injuries, while it
misclassified an equal number of actual injuries, failing to recognize them and classifying them as
non‑injuries. Additionally, the algorithm incorrectly predicted 6 non‑injury cases as injuries, but it
accurately identified 1586 non‑injury cases, classifying them correctly as non‑injuries.

These results yielded a recall of 0.50, indicating that the algorithm successfully identified 50% of
the actual injury cases. The precision of the algorithm was also 0.45, meaning that half of the
cases it predicted as injuries were indeed injuries. The F1 score, which provides a balance between
recall and precision, was 0.47, suggesting a moderate overall performance in injury prediction.
The algorithm achieved a high overall accuracy of 0.99, reflecting its strong capability in correctly
identifying non‑injury cases.

While the accuracy is impressive, primarily drivenby the largenumber of non‑injury cases, the recall
and precision scores suggest that the algorithm is equally split in its ability to identify true positives
and false positives. This performance underscores the challenge of developing algorithms that
can accurately predict rare events like injuries in a dataset dominated by non‑injury cases. Despite
these challenges, the Decision Tree algorithm’s balanced recall and precision indicate a promising
direction for further refinement and improvement in injury prediction.
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Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 5 5
Actual Non‑Injuries 6 1586

Table 4.3: Actual vs predicted injuries of Decision Tree.

4.3.3 Random Forest

The performance of the Random Forest algorithm in predicting injuries is illustrated in Table 4.4.
The algorithm successfully identified 8 actual injury cases, accurately predicting them as injuries.
However, it failed to recognize 3 injury cases, misclassifying them as non‑injuries. The algorithm
also incorrectly predicted 77 non‑injury cases as injuries but correctly classified 1571 non‑injury
cases.

These results translated into a recall of 0.72, indicating that the algorithmcorrectly identified 72%of
the actual injury cases, which is a notable improvement over some other algorithms. The precision
was 0.09, reflecting the lowproportion of true positive injury predictions among all predicted injury
cases. The F1 score, balancing recall and precision, stood at 0.16, highlighting the algorithm’s
moderate performance in predicting injuries. The overall accuracy of the RandomForest algorithm
was 0.95, demonstrating its high capability in accurately classifying non‑injury cases.

Despite the relatively high recall, the low precision indicates a considerable number of false
positives, where non‑injury caseswere incorrectly classified as injuries. This suggests thatwhile the
Random Forest algorithm is better at detecting injury cases compared to other algorithms, it still
faces challenges in reducing the number of false positives. The algorithm’s high accuracy primarily
stems from its effectiveness in identifying non‑injury cases, underscoring the complexities of injury
prediction in an imbalanced dataset.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 8 3
Actual Non‑Injuries 77 1571

Table 4.4: Actual vs predicted injuries of Random Forest.

4.3.4 K‑Nearest Neighbors (KNN)

The performance of the K‑Nearest Neighbors algorithm in predicting injuries is depicted in Table
4.5. The algorithm correctly identified 6 actual injury cases, classifying them accurately as injuries.
However, it missed 4 injury cases, misclassifying them as non‑injuries. On the flip side, the
algorithm falsely predicted 19 non‑injury cases as injuries while accurately classifying 1573 non‑
injury cases.

These outcomes translated into a recall of 0.60, indicating that the algorithm correctly identified
60% of the actual injury cases, which shows a relatively balanced performance. The precision was
0.24, reflecting that 24% of the cases predicted as injuries were true injuries. The F1 score, which
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balances recall and precision, stood at 0.34, indicating moderate effectiveness in handling injury
predictions. The overall accuracy of the KNN algorithm was 0.98, underscoring its high proficiency
in classifying non‑injury cases correctly.

While the KNN algorithm demonstrates a fair balance in identifying injury cases compared to some
other algorithms, its precision indicates a moderate rate of false positives, where non‑injury cases
aremisclassified as injuries. This algorithm’s high accuracy is largely due to its strong performance
in recognizing non‑injury cases, highlighting the ongoing challenge of accurately predicting rare
events such as injuries in a dataset with significant class imbalance.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 6 4
Actual Non‑Injuries 19 1573

Table 4.5: Actual vs predicted injuries of K‑Nearest Neighbour (KNN).

4.3.5 LSTM

The performance of the LSTM in predicting injuries is summarized in Table 4.1. The LSTM algorithm
achieved a recall of 0.10, meaning it correctly identified only 10% of actual injury cases. Despite
this, it had aprecisionof 1.0, indicating that all the cases it predicted as injurieswere indeed injuries.
This high precision suggests that while the algorithm was very cautious and selective in predicting
injuries, it was highly accurate when it did make a prediction.

The F1 score for the LSTM algorithmwas 0.18, reflecting a significant imbalance between recall and
precision. The overall accuracy of the algorithm was 0.99, highlighting its effectiveness in correctly
classifying the majority of non‑injury cases.

These results show that while the LSTM algorithm is very precise in its injury predictions, its low
recall indicates itmisses a significant number of injury cases. This suggests thatwhile the algorithm
is conservative in its injury predictions to avoid false positives, it does so at the cost of failing to
identify a substantial number of actual injuries, which is a crucial aspect in the context of injury
prediction.

4.3.6 Support Vector Machine (SVM)

The performance of the Support Vector Machine algorithm in predicting injuries is illustrated in
Table 4.6. The algorithm correctly identified 3 actual injury cases, classifying them accurately as
injuries. However, it missed 8 injury cases, misclassifying them as non‑injuries. On the other hand,
the algorithm falsely predicted 8 non‑injury cases as injuries while accurately classifying 1669 non‑
injury cases.

These outcomes translate into a recall of 0.27, indicating that the algorithm correctly identified
27% of the actual injury cases, which shows a relatively low performance in detecting injuries. The
precision was 0.27, reflecting that 27% of the cases predicted as injuries were true injuries. The
F1 score, which balances recall and precision, stood at 0.27, indicating limited effectiveness in
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handling injury predictions. The overall accuracy of the SVM algorithm was 0.99, underscoring its
high proficiency in classifying non‑injury cases correctly.

While the SVM algorithm demonstrates high accuracy, primarily due to its strong performance
in recognizing non‑injury cases, its low recall and precision highlight the challenge of accurately
predicting rare events such as injuries in a dataset with significant class imbalance. The algorithm’s
high accuracy is misleading when considering its performance on the minority class (injuries),
emphasizing the need for strategies to improve the identification of such rare but critical events.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 3 8
Actual Non‑Injuries 8 1669

Table 4.6: Actual vs predicted injuries of Support Vector Machine (SVM).

4.3.7 XGBoost

The performance of the XGBoost algorithm in predicting injuries is depicted in Table 4.7. The
algorithmcorrectly identified 5 actual injury cases, classifying themaccurately as injuries. However,
it missed 5 injury cases, misclassifying them as non‑injuries. On the other hand, the algorithm
falsely predicted 2 non‑injury cases as injuries while accurately classifying 1590 non‑injury cases.

These outcomes translated into a recall of 0.50, indicating that the algorithm correctly identified
50% of the actual injury cases, showing a balanced performance in detecting injuries. The
precision was 0.71, reflecting that 71% of the cases predicted as injuries were true injuries. The
F1 score, which balances recall and precision, stood at 0.58, indicating fairly effective handling of
injury predictions. The overall accuracy of the XGBoost algorithm was 0.99, underscoring its high
proficiency in classifying non‑injury cases correctly.

The XGBoost algorithm demonstrates a commendable balance in identifying injury cases
compared to other algorithms, with a higher precision and recall. This algorithm’s high accuracy is
primarily due to its strong performance in recognizing non‑injury cases, while its improved recall
and precision highlight its effectiveness in handling the challenge of accurately predicting rare
events such as injuries in a dataset with significant class imbalance.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 5 5
Actual Non‑Injuries 2 1590

Table 4.7: Actual vs predicted injuries of XGBoost.

4.3.8 Naive Bayes

The performance of the Naive Bayes algorithm in predicting injuries is illustrated in Table 4.8.
The algorithm correctly identified 12 actual injury cases, classifying them accurately as injuries.
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However, it missed 4 injury cases, misclassifying them as non‑injuries. Conversely, the algorithm
falsely predicted 164 non‑injury cases as injuries while accurately classifying 2309 non‑injury cases.

These outcomes translated into a recall of 0.75, indicating that the algorithm correctly identified
75% of the actual injury cases, demonstrating a strong performance in detecting injuries. The
precision was 0.06, reflecting that only 6% of the cases predicted as injuries were true injuries.
The F1 score, which balances recall and precision, stood at 0.13, indicating limited effectiveness
in handling injury predictions despite the high recall. The overall accuracy of the Naive Bayes
algorithm was 0.93, showing good proficiency in classifying non‑injury cases correctly.

While the Naive Bayes algorithm exhibits high recall, indicating its effectiveness in identifyingmost
injury cases, its precision highlights a significant rate of false positives, where non‑injury cases are
misclassifiedas injuries. This algorithm’soverall accuracy is relatively highdue to its performance in
recognizing non‑injury cases. However, the low precision underscores the challenge of accurately
predicting rare events such as injuries, revealing a need for improvement in reducing false positives.

Predicted
Predicted Injuries Predicted Non‑Injuries

Actual Injuries 12 4
Actual Non‑Injuries 164 2309

Table 4.8: Actual vs predicted injuries of Naive Bayes.

4.4 Experiment 4: Impact of Hyperparameter Tuning

In this section, we explore the effects of hyperparameter tuning on the performance of various
machine learning algorithms used for injury prediction in soccer players. Hyperparameter tuning
is a critical step in algorithm optimization that involves adjusting the parameters of an algorithm
to improve its performance. By employing techniques such as grid search cross‑validation and
different sampling methods to address class imbalance, we aimed to enhance the predictive
accuracy and reliability of our algorithms. Table 4.9 presents the results after hyperparameter
tuning for Logistic Regression, Decision Tree, Random Forest, K‑Nearest Neighbor, Support Vector
Machine, XGBoost and Naive Bayes algorithms.

Logistic Regression: For the Logistic Regression algorithm, we fine‑tuned parameters including
the penalty type (‘l1‘ or ‘l2‘), regularization strength ‘C‘ (ranging from 0.001 to 1000), and solver
(‘liblinear‘ or ‘saga‘). The grid search cross‑validation process identified the optimal combination
of these parameters, resulting in a recall of 0.25, a precision of 0.33, and an F1 score of 0.28, with
an overall accuracy of 0.99. The tuning improved precision compared to the untuned algorithm,
indicating a better identification of true positives. However, the recall and F1 scores remained low,
reflecting the ongoing challenge of detecting injury cases in a highly imbalanced dataset. The use
of the Synthetic Minority Over‑sampling Technique (SMOTE) helped to balance the dataset, but
predicting rare events such as injuries continued to be a significant hurdle.

Decision Tree: The Decision Tree algorithm’s hyperparameters included the criterion (‘gini‘ or
‘entropy‘), maximum depth (None, 10, 20, 30), minimum samples split (2, 5, 10), minimum samples
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leaf (1, 2, 4), and maximum features (‘auto‘, ‘sqrt‘, ‘log2‘). After applying grid search for optimal
parameter selection, the Decision Tree algorithm achieved a recall and precision of 0.40 and 0.57,
respectively, an F1 score of 0.47, and an accuracy of 0.99. This balancedperformancedemonstrates
that hyperparameter tuning and the use of oversampling effectively addressed class imbalance,
enabling the algorithm to identify both injury and non‑injury cases with similar accuracy. The
balancedmetrics suggest a well‑calibrated algorithm capable of managing the complexities of the
injury prediction task.

RandomForest: We fine‑tuned Random Forest algorithm setting parameters such as the number
of trees or ’n_estimators’ ranging from 100 to 300, the maximum tree depth as None, 10, 20,
and 30, the minimum samples required to split a node or ’min_samples_split’ of 2, 5, 10, the
minimum samples required at a leaf node or ’min_samples_leaf’, of 1, 2, 4, and the number of
features considered for splitting or ’max_features’ set to ’auto’, ’sqrt’, ’log2’. We have identified
the optimal parameter combination using the Randomized Search Cross‑Validation. Then the
algorithm performed 0.20 F1 score with 0.72 recall and 0.11 precision showing high recall with
low precision indicating a high rate of positives. It shows the difficulty in achieving balanced
performance for injury prediction.

K‑Nearest Neighbor (KNN): The K‑Nearest Neighbors algorithm was tuned for parameters such
as the number of neighbors (3, 5, 7, 9, 11), weight function (‘uniform‘ or ‘distance‘), and the
parameter ‘p‘ for the Minkowski distance metric (1 or 2). The optimal settings resulted in a recall
of 0.30, a precision of 1.0, an F1 score of 0.46, and an accuracy of 0.99. The exceptionally high
precision indicates that the KNN algorithm, when predicting injuries, is almost always correct, thus
minimizing false positives. However, the relatively lower recall suggests that while the algorithm is
accurate, it is conservative in predicting injuries, leading to somemissed injury cases. This trade‑off
between precision and recall is crucial in contexts where the cost of false positives or negatives can
have significant implications.

Support Vector Machine (SVM): We have fine‑tuned the SVM algorithm also setting several
parameters. We have used ’C’ with the values of 0.1, 1, 10, 100, kernel type as ’linear’, ’poly’, ’rbf’,
’sigmoid’, and kernel coefficient ’gamma’ as ’scale’ or ’auto. After applying Randomized Search
Cross‑Validation, the best parameters yielded a recall of 0.18, precision of 0.60, F1 score of 0.28,
and accuracy of 0.99. Theperformance showcases it has avoided false positives but the lower recall
proofs it has missed many true injury cases.

XGBoost: We fine tuned XGBoost algorithm with several parameters. The parameters we used
are ’scale_pos_weight’, learning rate (0.01, 0.05, 0.1, 0.2), maximum depth(’max_depth’ of 3, 5, 7,
10), minimum child weight (’min_child_weight’ of 1, 3, 5), ’gamma’ (0, 0.1, 0.2, 0.3), subsample ratio
’subsample’ (0.6, 0.8, 1.0), ’colsample_bytree’ (0.6, 0.8, 1.0), ’reg_alpha’ and ’reg_lambda’ (0, 0.1, 1.0).
This optimization performed 0.57 F1 score with 0.40 recall and 1.0 precision.

Naive Bayes: The Naive Bayes algorithm was optimized by tuning the smoothing parameter
‘alpha‘ (values of 0.1, 0.5, 1.0, 2.0). Post‑tuning, the algorithm demonstrated a recall of 0.60, a
precision of 0.09, an F1 score of 0.16, and an accuracy of 0.96. The high recall suggests that the
algorithm is effective at identifying injury cases, but the low precision and F1 score indicate a high
number of false positives. This reflects an algorithm that is highly sensitive to detecting injuries
but lacks specificity, resulting in many incorrect injury predictions. This performance underscores
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the need for a careful balance between sensitivity (recall) and precision to ensure meaningful and
actionable predictions.

Overall, the results highlight the significance of hyperparameter tuning and appropriate sampling
methods in enhancing the performance ofmachine learning algorithms for injury prediction. Each
algorithm responded differently to these adjustments, demonstrating the necessity for tailored
approaches to optimize their predictive capabilities. Hyperparameter tuning proved essential
in refining algorithm parameters and improving their ability to handle the imbalanced nature
of injury data, ultimately leading to more accurate and reliable injury prediction algorithms.
This comprehensive approach ensures that the algorithms are well‑equipped to manage the
complexities and nuances of predicting rare events such as injuries in soccer players.

Models Input Windows Sampling Method Recall Precision F1 Accuracy
Logistic Regression 16 SMOTE 0.25 0.33 0.28 0.99

Decision Tree 32 Oversample 0.40 0.57 0.47 0.99
Random Forest 16 Undersample 0.72 0.11 0.20 0.96

K‑Nearest Neighbor(KNN) 32 None 0.30 1.0 0.46 0.99
Support Vector Machine (SVM) 16 None 0.18 0.60 0.28 0.99

XGBoost 32 SMOTE 0.40 1.0 0.57 0.99
Naive Bayes 32 None 0.60 0.09 0.16 0.96

Table 4.9: Algorithms performance after hyper tuning

4.5 Experiment 5: Team Specific Injury Forecasting

In this section, we focus on the performance of injury prediction algorithms when applied
specifically to a single team, namely Team A. The goal is to determine whether tailoring algorithms
to a particular team can enhance prediction accuracy compared to using a general algorithm for
multiple teams. The results, summarized in Table 4.10, indicate that several algorithms exhibit
improved performance when calibrated specifically for Team A.

The algorithmswere evaluated using the same hyperparameter tuning and resampling techniques
as in previous experiments. The inputwindow sizewas set to 32 formost algorithms, with theNaive
Bayes algorithm utilizing an 8‑window configuration. Various resamplingmethods such as Adasyn,
undersampling, oversampling, and none were employed to address class imbalance.

Key observations from the team‑specific results for Team A include:

Logistic Regression: with Adasyn achieved a recall of 0.20 and a precision of 0.25, leading to an
F1 score of 0.22 and an accuracy of 0.99. While the accuracy is high, the recall indicates a need for
better identification of injury cases, suggesting that the algorithm can be refined further to balance
the trade‑off between precision and recall.

Decision Tree: with no resampling exhibited improved performance with a recall of 0.30 and a
precision of 0.42, resulting in an F1 score of 0.35 and an accuracy of 0.99. This indicates that the
algorithm can effectively balance between detecting injuries and avoiding false positives.
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Random Forest: using undersampling, showed a significantly high recall of 0.80 but a low
precision of 0.14, leading to an F1 score of 0.25 and an accuracy of 0.96. This algorithm’s high recall
suggests it is particularly goodat identifyingmost injury cases, albeitwithmany falsepositives. This
is useful in scenarios where it is crucial to identify as many injuries as possible, even at the cost of
some false alarms.

K‑Nearest Neighbor (KNN): with no resampling, achieved a balanced performance with a recall
of 0.40 and a high precision of 0.66, resulting in an F1 score of 0.50 and an accuracy of 0.99. This
indicates a good balance between identifying true injury cases and minimizing false positives,
making it a strong candidate for practical application in injury prediction.

LSTM:withoversampling reachedahigh recall of 0.80 but a lowprecisionof 0.08, which led to an F1
score of 0.14 and an accuracy of 0.93. This suggests the algorithm is good at detecting injuries but
suffers from a high rate of false positives, indicating a need for further tuning to improve precision.

Support Vector Machine (SVM): without resampling, had a recall of 0.20 and a precision of
0.33, culminating in an F1 score of 0.25 and an accuracy of 0.99. This algorithm shows moderate
performance, with room for improvement in both recall and precision.

XGBoost: with Adasyn delivered a recall of 0.30 and an impressive precision of 0.60, resulting in
an F1 score of 0.40 and the highest accuracy of 0.99 among the algorithms tested. This algorithm’s
strong performance highlights its potential as a reliable tool for injury prediction when optimized
for specific team data.

Naive Bayes: using Adasyn and an input window of 8, achieved a recall of 0.54 and a precision
of 0.13, leading to an F1 score of 0.21 and an accuracy of 0.96. While the recall is relatively high,
the low precision indicates a high rate of false positives, suggesting that this algorithmmay benefit
from further refinement and possibly different resampling strategies.

These results demonstrate that algorithm performance can be significantly improved when
algorithms are tailored to specific teams. For instance, the KNN algorithm showed a notably higher
F1 score when applied to Team A compared to its general performance across multiple teams.
Similarly, the Random Forest algorithm, despite its lower precision, provided an excellent recall
rate, making it a valuable tool for injury detection in scenarios where missing an injury is more
critical than having false positives.

Overall, these findings suggest that team‑specific algorithms can offer enhanced predictive
capabilities, allowing for more precise and reliable injury forecasts. Such tailored approaches
are essential for optimizing player healthmanagement and preventing injuries, thereby improving
team performance and player well‑being. Additionally, this experiment highlights the importance
of considering specific team dynamics and characteristics in the development and application of
predictive algorithms. By focusing on the unique attributes and data of each team, it is possible
to achieve a higher level of accuracy and effectiveness in injury prediction, ultimately leading to
better outcomes in sports performance and athlete health management.
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Models Input Windows Sampling Method Recall Precision F1 Accuracy
Logistic Regression 32 Adasyn 0.20 0.25 0.22 0.99

Decision Tree 32 None 0.30 0.42 0.35 0.99
Random Forest 32 Undersample 0.80 0.14 0.25 0.96

K‑Nearest Neighbor(KNN) 32 None 0.40 0.66 0.50 0.99
LSTM 32 Oversample 0.80 0.08 0.14 0.93

Support Vector Machine (SVM) 32 None 0.20 0.33 0.25 0.99
XGBoost 32 Adasyn 0.30 0.60 0.40 0.99

Naive Bayes 8 Adasyn 0.54 0.13 0.21 0.96

Table 4.10: Results for Specific Team (Team A).

4.6 Experiment 6: Injured Players Injury Forecasting

In this experiment, we focused on enhancing the predictive capability of our algorithms by
exclusively utilizing data from players with a history of injuries. By removing data from players who
have never been injured, the algorithms were provided with a clearer andmore consistent pattern
of injury occurrences, allowing them to better learn and predict injuries.

Table 4.11 summarizes the performance metrics of various algorithms when applied to this injury‑
specific dataset. The following observations highlight the efficacy of each algorithm:

Logistic Regression: with a 16‑window input and SMOTE for oversampling achieved a recall of
0.25, precision of 0.28, F1 score of 0.26, and an accuracy of 0.99. This indicates amoderate balance
between sensitivity and precision, suggesting that while the algorithm is fairly accurate in general,
it could benefit from further tuning to improve its ability to correctly identify injuries.

Decision Tree: using a 32‑window input and Adasyn, significantly improved its recall to 0.70, with
a precision of 0.36, resulting in an F1 score of 0.48 and an accuracy of 0.99. This indicates that the
Decision Tree algorithm is adept at identifying injury instanceswith a reasonable trade‑off between
false positives and false negatives, making it a reliable choice for injury prediction.

RandomForest: witha16‑window input andundersampling showedahigh recall of 0.81but a low
precision of 0.08, leading to an F1 score of 0.15 and an accuracy of 0.94. The high recall suggests the
algorithm is effective at identifying injuries but suffers from a high rate of false positives, reducing
its overall precision. This algorithm’s tendency to predict more false positives highlights the need
for further refinement to balance sensitivity and specificity.

K‑Nearest Neighbor (KNN): utilizing a 32‑window input and oversampling, achieved a recall of
0.60 and precision of 0.24, resulting in an F1 score of 0.34 and an accuracy of 0.98. This algorithm
strikes a balance, being moderately effective at predicting injuries with a lower false positive rate
compared to Random Forest. However, there is room for improvement in terms of precision.

LSTM: also with a 32‑window input and oversampling, reached a recall of 0.66 and a precision
of 0.06, leading to an F1 score of 0.10 and an accuracy of 0.93. The high recall indicates that
the algorithm is good at detecting injuries, but the low precision suggests a high number of false
positives. Further refinement of the LSTM algorithm is needed to enhance its precision and overall
performance.
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Support Vector Machine (SVM): with an 8‑window input and no resampling, achieved equal
recall and precision of 0.27, resulting in an F1 score of 0.27 and an accuracy of 0.99. This balanced
performance suggests that the algorithm is consistent but could benefit from additional tuning or
different resampling methods to enhance its predictive power.

XGBoost: with a 32‑window input and SMOTE displayed strong performance with a recall of
0.50 and a high precision of 0.71, resulting in an F1 score of 0.58 and an accuracy of 0.99. This
high precision and accuracy make XGBoost particularly effective for this dataset, indicating its
robustness in predicting injuries with fewer false positives. XGBoost’s performance highlights its
potential as a primary tool for injury forecasting.

Naive Bayes: using a 16‑window input and SMOTE, achieved a high recall of 0.75 but a low
precision of 0.06, leading to an F1 score of 0.12 and an accuracy of 0.93. This algorithm effectively
identifies most injuries but at the cost of a high false positive rate, suggesting that further tuning
is necessary to improve precision. The high recall is promising, but the algorithm’s performance
could be significantly enhanced with better precision.

Overall, by focusing on data from injury‑prone players, the algorithms were able to better identify
injury patterns, resulting in varying levels of success across different algorithms. The XGBoost
algorithm stands out with its high precision and accuracy, making it a promising tool for injury
prediction in scenarios where minimizing false positives is crucial. Meanwhile, the Decision Tree
andRandomForest algorithms also showed substantial recall, indicating their potential usefulness
in contexts where capturing as many injury cases as possible is a priority.

This experiment underscores the importance of tailored data preprocessing and algorithm
selection to enhance injury prediction accuracy. By concentrating on injury‑prone players, we
can developmore specialized and effective predictive algorithms, ultimately contributing to better
playermanagement and injury prevention strategies. Such refined algorithms can be pivotal in the
sports industry, helping teams to preemptively manage player health, optimize performance, and
potentially extend the careers of athletes.

Models Input Windows Sampling Method Recall Precision F1 Accuracy
Logistic Regression 16 SMOTE 0.25 0.28 0.26 0.99

Decision Tree 32 Adasyn 0.70 0.36 0.48 0.99
Random Forest 16 Undersample 0.81 0.08 0.15 0.94

K‑Nearest Neighbor(KNN) 32 Oversample 0.60 0.24 0.34 0.98
LSTM 32 Oversample 0.66 0.06 0.10 0.93

Support Vector Machine (SVM) 8 none 0.27 0.27 0.27 0.99
XGBoost 32 SMOTE 0.50 0.71 0.58 0.99

Naive Bayes 16 SMOTE 0.75 0.06 0.12 0.93

Table 4.11: Performance of the models on the only injured players dataset.

4.7 Experiment 7: Dataset Scale

In this section, we examine how the scale of the dataset influences the performance of injury
prediction algorithms. By exploring different scales, including the full dataset, data specific to a
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single team (Team A), and data solely from players with a history of injuries, we aim to understand
the impact of dataset size and composition on algorithm efficacy.

4.7.1 Full Dataset

The full dataset comprises all available data points, providing a broad view of injury and non‑injury
instances across all teams. The distribution of injury cases in the full dataset is as follows:

• Non‑injury cases: 8526

• Injury cases: 56’

Using the full dataset allows the algorithms to learn from a comprehensive set of examples,
potentially capturing a wide range of injury patterns. However, the high imbalance between non‑
injury and injury cases poses a significant challenge for the algorithms to accurately predict injuries.
This imbalance can lead to an algorithm that is biased toward predicting non‑injury cases, thereby
reducing its effectiveness in identifying actual injury risks.

4.7.2 Single TeamDataset

For the single team dataset, we focus exclusively on Team A. This subset is smaller but more
homogeneous, providing insights into the team’s specific injury patterns. The distribution of injury
cases for Team A is:

• Non‑injury cases: 7180

• Injury cases: 56

By isolatingTeamA’s data, weaim to tailor the algorithmsmore closely to theunique characteristics
and injury trends of this specific team. This approach allows for more precise injury predictions
within the team context but might limit the generalizability of the algorithms to other teams. The
homogeneity of the data can enhance the algorithm’s sensitivity to injury patterns specific to Team
A, but it may also result in overfitting to the nuances of this particular team.

4.7.3 Only Injured Players Dataset

This subset includes only the data fromplayerswhohavepreviously experienced injuries, offering a
focused view on those with a higher likelihood of recurring injuries. The distribution of injury cases
in this dataset is:

• Non‑injury cases: 3134

• Injury cases: 56

Concentrating on players with a history of injuries provides a clearer and more consistent pattern
for the algorithms to learn from, potentially improving their ability to predict future injuries in these
high‑risk individuals. However, this approach excludes data fromnon‑injured players, whichmight
limit the overall predictive power regarding new injury cases. The focused nature of this dataset
helps in understanding the recurring injury trends, but it might miss out on broader patterns that
include the transition from non‑injury to injury status.
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The scale and composition of the dataset significantly impact the performance of injury prediction
algorithms. Each dataset variation offers unique advantages and challenges:

Full Dataset: Provides a comprehensive learning base but suffers from severe class imbalance,
making it challenging to predict injuries accurately.

Single Team Dataset: Allows for more team‑specific predictions but may lack generalizability,
potentially limiting its application to other teams.

Only Injured Players Dataset: Enhances learning from high‑risk individuals but may miss
broader injury patterns that include players transitioning from non‑injury to injury status.

By analyzing these different scales, we can determine the optimal dataset configuration for
developing robust and accurate injury prediction algorithms. This experimentation helps identify
the best strategies tomanage class imbalance and tailor algorithms to specific contexts, ultimately
leading to improved injury prevention and management in sports. This comprehensive approach
is crucial for developing predictive algorithms that not only identify potential injuries but also offer
actionable insights for player healthmanagement and injury prevention strategies, thus enhancing
overall team performance and player well‑being.

4.8 Chapter Summary

In this chapter, we explored various aspects of injury prediction in sports, focusing specifically on
soccer players. We began by presenting some important features such as illness, weekly_load,
ctl28, atl, ctl42, monotony, strain, and acwr that are highly correlated with injury. We have also
highlighted moderately positive and weakly correlated features with injury. Next, we examine
the impact of different input window sizes on algorithm performance, systematically testing a
range of sizes and employing various resampling techniques to address class imbalance. This
approach helped improve the algorithms’ ability to capture relevant temporal patterns and handle
the inherent skew in injury versus non‑injury cases.

Moreover, this chapter represents information about the eight machine learning algorithms
performance that we have used to forecast the injured Norwegian women’s soccer players injuries.
Furthermore, we delved into hyperparameter tuning and its effect on algorithm performance. By
fine‑tuning parameters for Logistic Regression, Decision Tree, K‑Nearest Neighbor, andNaive Bayes
algorithms using grid search cross‑validation, we enhanced their predictive accuracy and reliability.
The implementation of resamplingmethods like RandomOverSampling, RandomUnderSampling,
SMOTE, and ADASYN further balanced the datasets, contributing to better algorithm performance.

We also investigated the benefits of tailoring algorithms to specific contexts, such as team‑specific
injury prediction. Focusing on Team A, we found that algorithms calibrated for this team showed
improved accuracy and precision, highlighting the advantage of using homogeneous and context‑
specific data. This approach underscored the potential for more precise injury forecasts when
algorithms are customized to the unique characteristics and injury patterns of a specific team.

Furthermore, we assessed the impact of using data solely from players with a history of injuries.
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This injury‑focused dataset allowed the algorithms to learn fromclearer andmore consistent injury
patterns, improving their ability to predict future injuries in high‑risk individuals. However, this
approach also illuminated the challenge of potentially missing broader injury patterns that might
be present in a more diverse dataset.

Lastly, we compared different dataset scales to understand how the size and composition
of the data influence algorithm performance. We examined the full dataset, a single team’s
dataset, and data exclusively from injured players. Each scale offered unique insights and
challenges: the full dataset provided a comprehensive learning base but suffered from severe class
imbalance; the single team’s dataset allowed for more precise, context‑specific predictions but
might lack generalizability; and the dataset of only injured players enhanced learning from high‑
risk individuals but excluded potentially valuable data from non‑injured players.

Collectively, these experiments provided valuable insights into optimizing injury prediction
algorithms. By understanding the effects of various parameters and dataset configurations, we can
developmore robust andaccurate algorithms. This research contributes tobetter injuryprevention
andmanagement strategies in sports, ultimately aiding in player health, performance optimization,
and injury mitigation.

The next chapter focused on our main research objective and sub‑research question, and we have
discussed our findings from the Chapter 4. We also highlighted insights from our experiments and
lessons learned during our research study. Additionally, we briefly covered our limitations, future
work, and our contributions. Furthermore, we have discussed the ethical considerations related to
the data of Norwegian women’s soccer players.
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Chapter 5

Discussion

In this chapter, we explore the insights and lessons gleaned fromour experiments. Wewill evaluate
the performance of various machine learning algorithms in predicting injuries and discuss the
broader implications of our findings. We will revisit and address the research questions posed
in Section 1.2. providing comprehensive answers based on the results obtained. This includes
exploring the key factors correlated with injuries, investigating the optimal time frame to predict
the injury, examining the effectiveness of various machine learning algorithms, and exploring
the impact of hyperparameter tuning. Additionally, we will explore the significance of tailoring
algorithms to specific teams, the performance of algorithms on injured‑player datasets, and the
influence of dataset scale.

We will also delve into the practical applications and real‑world use cases of our findings, showing
how these insights can be utilized effectively. Additionally, we will address the limitations we faced
during our research, suggest potential areas for future work, and discuss the ethical considerations
involved in deploying machine learning algorithms for predicting sports injuries. Finally, a
summary will recapitulate the key contributions of this study, emphasizing the advancements
made and their relevance to the field of sports analytics.

5.1 Addressing the Research Questions

In this section, we revisit the research question presented in Section 1.2. and provide thorough
answers based on our findings. Section 1.2. outlined one primary research objective and seven
sub‑research questions that were derived from it. By systematically addressing each sub‑question,
we build a comprehensive understanding of our main research topic. We then integrate these
responses to present a cohesive and detailed answer to our primary research question, ensuring
that all aspects of the research are covered and connected to provide a clear and insightful
conclusion.

RQ1: What are the most important features that are correlated with injuries in women’s
soccer players?

Our study identified several key factors that correlate highly with injuries inwomen’s soccer players,
offering valuable insights for injury prevention strategies and player management. We have
observed that features such as illness, weekly load, CTL28, ATL, CTL42,monotony, strain, andACWR
are highly correlated with injury. Figure 4.1. is the visual representation where we have identified
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all of the highly correlated features with injury.

Furthermore, we also found strong correlations between monotony and strain, weekly load
and daily load, and between 42‑day and 28‑day Chronic Training Load (CTL), emphasizing the
importance of managing training consistency and volume. The positive relation between stress
and mood highlights the need to address stress for both mental health and injury prevention.
Additionally, the connection between readiness and sleep quality underscores the role of
good sleep in maintaining athlete readiness and reducing injury risk. We also observed that
maintaining balanced workload ratios, as indicated by moderate negative correlations between
theAcute:ChronicWorkloadRatio (ACWR) andCTL42/CTL28, is crucial topreventing injuries caused
by sudden increases in training intensity. These findings underscore the complexity of injury risk
in women’s soccer and suggest that targeted interventions and monitoring can improve injury
prevention strategies. Future research should delve into how these factors interact to enhance
evidence‑based approaches for injury prevention and player health management.

RQ2: Howmany days is themost effective time frame for predicting injuries?

In our thesis, we have used eight machine learning algorithms to predict injuries in Norwegian
women’s players. One of ourmain goals was to determine themost effective time frame formaking
these predictions. We have examined different window sizes, including 2, 4, 8, 16, and 32 days.
From the Table C.1. we can see that the short‑term windows (8–16) showed limited effectiveness.
Algorithms several algorithms, Support Vector Machine performed best within an 8‑day time frame
where the F1 score is 0.27. On the other hand, Logistic Regression, RandomForest, andNaive Bayes
performed best with an F1 score of 0.26, 0.16, and 0.12. Using a 16‑day time frame, Random Forest
and Naive Bayes performed poorly. If we looked into the 32‑day time frame, four algorithms out
of eight performed best within this time frame. XGBoost performed best with a 32‑day time frame
where the F1 score is 0.58 and recall and precision are 0.50 and 0.71, respectively. The decision tree
showed a balanced performance with an F1 score of 0.47, whereas the recall and precision were
0.50 and 0.45, respectively. Figure A.5. highlights that 32‑day window size is best to predict injury
compared to other window sizes.

RQ3: Which machine learning algorithm is most effective for predicting injuries for the
following day?

Our study investigated the effectiveness of various machine learning algorithms in predicting
injuries. We have considered the F1 score to measure our algorithm’s performance because it
takes into account both precision and recall. We explored eight machine learning algorithms such
as Logistic Regression, Decision Tree, Random Forest, K‑Nearest Neighbors, LSTM, Support Vector
Machine, XGBoost, and Naive Bayes.

With a 16‑day input window with SMOTE sampling, we ran the Logistic Regression algorithm. The
resultwas an F1 scoreof 0.26, which indicates decent skill but a significant amount of false positives.
TheDecisionTree algorithm, using a 32‑day inputwindowwithout sampling, performedbetterwith
an F1 score of 0.47, balancing recall and precision effectively.

We found that the Random Forest algorithm, using a 16‑day input window with undersampling,
had a high recall (0.72) but low precision (0.09), resulting in a poor F1 score of 0.16. Our K‑Nearest
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Neighbors algorithm, with a 32‑day input window and oversampling, showed a better balance but
still only reached an F1 score of 0.34.

Although the LSTM algorithm had perfect precision, its low recall (0.10) resulted in an F1 score of
0.18 due to its conservative predictions. On theother hand, Support VectorMachine have abalance
recall, precision, and F1 score of 0.27 when the input window size is 8 with a sampling method of
none.

XGBoost emerged as our top performer, using a 32‑day input window with SMOTE sampling,
achieving an F1 score of 0.58 with balanced recall (0.50) and high precision (0.71). Our Naive Bayes
algorithm, with a 16‑day input window and SMOTE sampling, had the lowest F1 score of 0.12,
despite high recall (0.75), due to very low precision (0.06).

Figure 5.1: The radar chart helps in visualizing and comparing the relative performance of different
machine learningmodels, allowing for easy identification of whichmodels performbetter or worse.

We found that the XGBoost algorithmwas the best performer in predicting injuries with an F1 score
of 0.58. However, the Decision Tree algorithm performed well with an F1 score of 0.47. While
Random Forest and Naive Bayes had high recall, their low precision led to poor F1 scores. K‑
Nearest Neighbors and LSTM showed potential but require further tuning. We believe that future
improvements could involve refining these algorithms or exploring hybrid approaches to enhance
predictive accuracy and reliability.

RQ4: How does the hyperparameter tuning have an influence on improving the
performance of the algorithms?

We applied hyperparameter tuning to improve the performance of machine learning algorithms.
Figure 5.2. displayed the performance of the algorithms before and after hyperparameter tuning.
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We have tuned the parameters of Logistic Regression, Decision Tree, Random Forest, K‑Nearest
Neighbors, Support Vector Machine, XGBoost, andNaive Bayes. After tuning, the logistic regression
achieved an F1 score of 0.28with a 16‑day inputwindowandSMOTE sampling, which is considered
better than its previous performance. The Decision Tree algorithm, using Oversample sampling
and a 32‑day input window, scored 0.47, showing balanced recall and precision. However, the
decision tree’s performance did not improve after hyperparameter tuning, indicating that it did not
achieve better results compared to its previous performance. The possible reasons are insufficient
hyperparameter search, inherent limitations of the algorithm, a lack of informative features, and so
on. The K‑Nearest Neighbors, with a 32‑day input window and no sampling, scored 0.46 but had
high precision and lower recall.

Figure 5.2: The graphs provide information about the machine learning model’s performance
before and after hyperparameter tuning.

The Naive Bayes algorithm, despite tuning, had a poor F1 score of 0.16 due to low precision.
RandomForest, tunedwith a 16‑day inputwindowandundersampling, scored 0.20with high recall
but low precision. Support Vector Machine, with a 16‑day input window and no sampling, reached
an F1 score of 0.28 by low recall and high precision.

XGBoost, our top performer, achieved an F1 score of 0.57 with a 32‑day input window and SMOTE
sampling, showing balanced and robust performance. Although the performance of XGBoost did
not improve after tuning, indicating several possible reasons such as insufficient parameter search
space, overfitting, a lack of features, and so on, this algorithm was the best at predicting injuries.

In summary, adjusting hyperparameters improved our algorithms performance, including Logistic
Regression, Random Forest, Support Vector Machine, and Naive  Bayes. The XGBoost and Decision
Tree have a higher F1 score compared to other algorithms, although they require further tuning.
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RQ5: Is it more effective to use a single algorithm for all teams or to develop separate
algorithms for each teamwhen predicting injuries?

Using a single algorithm for all teams is simpler and more scalable. It can learn from a diverse
dataset and generalize well across different teams. Figure 5.3. refers to the performance of the
algorithms on a Single Team (Team A) dataset. For example, our XGBoost algorithm performed
well across all teams, achieving a high F1 score of 0.58. However, this approach may struggle with
team‑specific nuances, leading tomore false positives, as seenwith algorithms like RandomForest
and Naive Bayes.

On the other hand, developing separate algorithms for each team allows us to tailor predictions to
specific team characteristics, improving accuracy. For instance, our K‑Nearest Neighbors algorithm
tuned for Team A achieved an F1 score of 0.50, showing good balance. Yet, this approach requires
more resources and may be challenging for teams with limited data.

Figure 5.3: Machine learning models performance on a single team (Team A) dataset.

In conclusion, the choice depends on balancing generalization and accuracy. A single algorithm
is practical for broad applications but may lack precision, while separate algorithms offer tailored
insights but requiremore resources. Hybrid approaches could be explored in the future to combine
the strengths of both methods.

RQ6: How do machine learning algorithms perform when evaluated on a dataset
containing only injured players?

We looked at how well different machine learning algorithms can predict injuries in players who
have already been injured. By focusing on this group, we aimed to understand how these
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algorithms can identify patterns and predict future injuries in those at high risk. Figure 5.4.
displayed the performance of machine learning algorithms on only injured players.

Figure 5.4: The bar chart gives information on the performance on the performance of seven
machine learning models on the only injured players dataset.

Here’swhatwe found: The Logistic Regression algorithm, using a 16‑day inputwindowwith SMOTE
sampling, got an F1 score of 0.26, showing it needs more fine‑tuning to improve accuracy. The
Decision Tree algorithm did better with a 32‑day input window and Adasyn sampling, achieving an
F1 score of 0.48, balancing recall and precision effectively. The Random Forest algorithm achieved
a 0.15 F1 scorewith a 16‑day inputwindowandundersampling. K‑NearestNeighbors achieved 0.34
with a 32‑day input window and oversampling. With a 32‑day input window, the LSTM algorithm
performeda0.10F1 scoreandoversamplingdue tomany falsepositives. Using8‑day inputSupport
Vector Machine scored 0.27 F1 score without sampling. XGBoost was the top performer with an
F1 score of 0.58, using a 32‑day input window with SMOTE sampling, offering the best balance
between recall and precision. Naive Bayes, with a 16‑day input window and SMOTE sampling, had
the lowest F1 score of 0.12 due to very low precision. In summary, XGBoost and Decision Tree
algorithms were the best at predicting injuries, highlighting the importance of algorithm selection
and customization to improve prediction accuracy and player health management.

RQ7: How does the scale of the dataset have an impact on the performance of machine
learning algorithms?

We examined how dataset size affects the performance of machine learning algorithms for
predicting injuries. By analyzing three types of datasets—full, single team (Team A), and injured
players only—we gained insights into their impact on prediction accuracy. Figure 5.5. showcases
the performance on different datasets.

82
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Figure 5.5: The line graphs illustrate information about themachine learningmodel’s performance
based on the different datasets.

The full dataset gave a broad view but struggled with class imbalance, making it harder to predict
injuries accurately. Focusing on Team A’s data offered more precise predictions within their
context but might not generalize well to other teams. Concentrating on injured players provided
clearer patterns but might miss out on broader injury trends. Each dataset had its pros and
cons, influencing the algorithms’ ability to predict injuries effectively. This analysis helps us
understand how to configure datasets for better injury prediction, essential for improving sports
injury prevention and player well‑being.

The seven experiments were conductedwith the aimof supporting our research objective, which is
to investigate how state‑of‑the‑art machine learning algorithms can predict and assist in reducing
the risk of injuries in women’s soccer. In the first experiment, we explored the potential of machine
learning in helping coaches and teammanagement identify the most important reasons for injury
among soccer players. The second experiment focused on determining the most effective time
frame for predicting injuries the following day. Our findings revealed the optimal time frame for
injuryprediction. In the thirdexperiment, wehaveusedeightdifferentmachine learningalgorithms
to predict injuries in women’s soccer players. Notably, algorithms like XGBoost performed well in
predicting injuries, while theDecision Tree algorithmshowedmoderate results. These experiments
demonstrate the potential of machine learning in predicting injuries and supporting coaches and
team management in their efforts to reduce the risk of injury. Experiment four is the extended
version of experiment three where we have used hyperparameter tuning to enhance algorithm
performance. Experiments five, six, and seven delved into different situations to further investigate
the performance of ourmachine learning algorithms, providing a comprehensive understanding of
our framework’s capabilities in injury prediction.
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Sports and technology have a significant impact on society, and soccer, being a widely popular
sport, is no exception. With millions of fans and players across the globe, the sport has embraced
the potential of machine learning techniques to enhance its efficiency. Machine learning has
proven to be a valuable tool in soccer due to its ability to analyze vast amounts of data and make
accurate predictions. Injuries are a major concern in soccer, affecting players, coaches, and team
management. They not only have a personal impact on the players but can also be costly for
teams in terms of points and potential championship opportunities. Our experimental findings are
designed to assist soccer clubs and teams in identifying the factors closely associated with injuries.
By leveraging our research, they can develop their own machine learning frameworks to predict
and reduce the risk of injuries. Throughour investigations, wehave evaluatedourmachine learning
framework in various scenarios, providing valuable insights and enabling researchers, soccer clubs,
and teams to do further research and experiments.

5.2 Insights and Lessons Learned

This sectionpresents the findings and lessons learned fromour extensive experiments. Throughout
our research, we conducted a total of seven experiments, which are all highlighted in this thesis.
Below are some of the key insights obtained from our study.

• Key Injury Correlates: We have identified highly correlated factors with injuries that offer
actionable insights. As discussed in Section 4.1. variables such as illness, weekly_load, ctl28,
atl, ctl42, monotony, strain, and acwr emerged as significant predictors. This information is
valuable for coaches andmedical staff to proactively monitor andmanage these risk factors.
Understanding these correlations can aid in designing improved training and recovery
protocols to mitigate injury risks.

• Importance of Time Frame: The selection of the time frame for injury prediction has a
substantial impact on the performance of the algorithm. Our experiments showed that a 32‑
day prediction window is the most effective, balancing the need for timely predictions with
the availability of sufficient historical data for accurate algorithm training. Shorter windows
lacked adequate data for reliable predictions, while longer windows diluted the relevance of
the information. This finding underscores the importance of selecting an appropriate time
frame when designing predictive algorithms in sports contexts.

• Algorithm Effectiveness and Selection: One of the primary insights from our study
is the varying effectiveness of different machine learning algorithms in predicting injuries.
algorithms such as XGBoost and K‑Nearest Neighbors demonstrated superior performance
compared to others like Logistic Regression and Support Vector Machines. This suggests
that algorithms capable of capturing complex, non‑linear relationships in the data are
more effective in this domain. This insight is crucial for practitioners looking to implement
predictive analytics in sports, guiding them toward selecting more sophisticated ensemble
methods for better results.

• Hyperparameter Tuning: We found that hyperparameter tuning significantly improved
the performance of our machine‑learning algorithms. By fine‑tuning parameters such as
the learning rate, the number of estimators, and other parameters, we achieved noticeable
gains in the f1 score shown in Table 4.9. This underscores the importance of investing time
and resources in optimizing algorithm parameters rather than relying on default settings.
Practitioners should prioritize this step to enhance the predictive power of their algorithms.
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• General vs. Team‑Specific algorithms: In our study, we explored whether it is more
effective to use a single algorithm for all teams or to develop separate algorithms for each
team. Our results indicated that while a general algorithm provides reasonable predictions,
team‑specific algorithms offer a slight edge in accuracy. This improvement can be attributed
to the unique characteristics and injury patterns of each team. Therefore, when resources
allow, we recommend developing tailored algorithms for individual teams to achieve better
predictive performance.

• Evaluation on Injured‑Player Datasets: When we evaluated a dataset containing
only injured players, the algorithms exhibited distinct performance characteristics. This
evaluation underscored the importance of including a balanced representation of both
injured and non‑injured players in the training data to prevent biased predictions. It also
demonstrated the algorithms’ robustness in identifying injury‑prone players, which is crucial
for implementing early intervention strategies.

• Dataset Scale and Performance: In our further research, we found that the scale of the
dataset had a considerable impact on algorithm performance. Larger datasets generally led
to improved accuracy and stability of predictions, emphasizing the need for comprehensive
data collection and integration efforts. However, we observed diminishing returns beyond a
certain point, suggesting that while more data is beneficial, it is equally important to focus
on the quality and relevance of the data.

In summary, our research highlights the importance of algorithm selection, appropriate time
frames, hyperparameter tuning, and dataset considerations in predicting injuries using machine
learning. These insights not only advance the academic understanding of sports injury prediction
but also provide practical guidelines for implementing effective predictive analytics in women’s
soccer and potentially other sports.

5.3 Use Cases and Applications

Machine learning algorithms for injury prediction in sports, particularly women’s soccer, offer
diverse use cases and applications across various stakeholders involved in athlete management,
sports performance optimization, and injury prevention. The following are some key use cases
and applications of these algorithms:

• Injury Risk Assessment: Machine learning algorithms can assess the risk of injury for
individual players based on their physiological, biomechanical, and performance data. By
analyzing historical injury patterns and player‑specific characteristics, these algorithms can
identify athletes at higher risk of injury and provide early warning indicators to sports
medicine professionals and coaching staff.

• Training Load Management: By integrating data from wearable sensors, training
sessions, and playermonitoring systems,machine learning algorithms can optimize training
load management strategies to minimize the risk of overuse injuries and fatigue‑related
conditions. These algorithms can recommend personalized training programs tailored to
individual player profiles, injury histories, and recovery status.

• Game Strategy Optimization: Machine learning algorithms can analyze match data,
opponent profiles, and environmental factors to optimize game strategies that minimize
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injury risk while maximizing performance outcomes. By identifying situational risk factors
and player fatigue patterns, these algorithms can inform tactical decisions, substitution
strategies, and game plans that prioritize player safety and well‑being.

• Rehabilitation Planning: Following injury occurrence, machine learning algorithms can
assist in designing personalized rehabilitation programs that promote optimal recovery
and return‑to‑play timelines. By analyzing injury severity, recovery progress, and
individual player characteristics, these algorithms can recommend targeted interventions,
rehabilitation exercises, and progressmonitoring protocols tailored to each athlete’s specific
needs.

• Long‑Term Injury Prevention: Machine learning algorithms can contribute to the
development of proactive injury prevention programs aimed at reducing the incidence and
severity of injuries over the long term. By identifying modifiable risk factors, injury trends,
and injury clusters within teams or player cohorts, these algorithms can inform targeted
interventions, training modifications, and injury prevention strategies to enhance player
durability and resilience.

• Player Selection and Recruitment: In talent identification and recruitment processes,
machine learning algorithms can assist scouts and talent evaluators in assessing the injury
risk and performance potential of prospective players. By analyzing player profiles, injury
histories, and performance metrics, these algorithms can identify promising talents while
considering their injury susceptibility and long‑term athletic development prospects.

• Public Health and Epidemiology: Beyond individual athlete management, machine
learning algorithms for injury prediction in women’s soccer contribute to broader public
health and epidemiological research efforts. By analyzing injury trends, risk factors, and
injury mechanisms at the population level, these algorithms facilitate the development of
evidence‑based injury prevention policies, guidelines, and interventions that benefit the
wider sports community.

In summary, machine learning algorithms for injury prediction in women’s soccer have
diverse applications spanning athlete health and performance management, coaching strategies,
rehabilitation practices, talent identification, and public health initiatives. By leveraging advanced
analytics and predictive algorithms techniques, these algorithms support data‑driven decision‑
making and proactive approaches to injury prevention and athlete care across various domains
within the sports industry.

5.4 Limitations

While developing machine learning algorithms to predict injuries in women’s soccer, we
encountered several limitations that need careful consideration. First, thequality andavailability of
data posed significant challenges. With a limited number of injury records compared to non‑injury
instances, the dataset was imbalanced, affecting the algorithms’ accuracy. Moreover, dealing with
missing data and integrating information from different sources added complexity to our analysis.
Additionally, the dynamic nature of sports and athlete behavior posed challenges in capturing
temporal changes and adapting algorithms accordingly. These limitations highlight the need for
robust data collection, addressing imbalances, and continuous algorithm refinement to enhance
accuracy and reliability in injury prediction for women’s soccer.
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5.5 Future Works

There are several promising directionswe can explore to improve ourmachine‑learning algorithms
for predicting injuries in women’s soccer. Here are some ideas for future work:

• Surveys for Insight: Conducting surveys with soccer teams can help us understand what
type of performance forecasting would be most useful. These surveys can give us valuable
feedback on how our algorithms can provide actionable data to help teams.

• FocusonObjectiveMetrics: Wehave seen thebenefits of usingGPS‑derived features in our
current work. However, we’ve also noticed inconsistencies with subjective wellness features.
Therefore, focusing more on objective metrics like GPS measurements might lead to more
accurate predictions. Forecasting these objective metrics could also yield new insights.

• Online Learning and Deployment: Implementing our algorithms in an online learning
environment and deploying a passive machine learning analysis tool on the PmSys app
couldbe thenext step. Thiswouldallowus tocontinually updateand improveour algorithms
with new data.

• Different Use Cases: Instead of just focusing on wellness time series forecasting, we could
explore other applications. For instance, predicting themovements or positions that lead to
injuries or goals using GPS data could be beneficial.

• Exploring Other Machine Learning Algorithms: While we used a selection of machine
learning algorithms for our study, trying out different algorithms might yield better results.
We should experiment with algorithms outside our current selection.

• algorithm Fine‑Tuning: Fine‑tuning our algorithms with specific subsets of the data
relevant to the players we are predicting could enhance accuracy. This approach allows for
more personalized and accurate predictions.

• Dynamic Parameter Selection: By dynamically selecting the most relevant data
configurations, such as input window size and features for each player and algorithm type,
we can significantly improve our results.

There are many avenues to explore to further our understanding and application of machine
learning in predicting athlete data. These methods can be applied not only to soccer but also to
other sports to uncover important statistics and improve training conditions and strategies.

5.6 Recap of Contributions

Our contributions in this thesis span both computer science and sports science. We tackled the
challenge of handling large amounts of missing data and class imbalance, providing detailed
data preprocessing, manipulation, and feature engineering techniques. By analyzing features
and addressing data gaps, we introduced effective preprocessing methods and engineered new
features that enhance the performance of machine learning algorithms in predicting injuries. We
identified key predictors and, based on these, developed additional features to improve algorithm
accuracy. Moreover, we fine‑tuned our machine learning algorithms to better handle the temporal
nature of the dataset, making them more compatible for injury prediction. These efforts not only
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advance the field of computer science by improving data handling techniques but also contribute
to sports science by offering more accurate tools for injury prevention.

• Research Contributions: Our thesis paper and experimental findings make a significant
contribution to the fields of machine learning and soccer. This research provides valuable
insights and practical implications for predicting the risk of injuries in women’s soccer.

• Open Source Software: We have built our machine learning framework to predict the
injuries of women’s soccer players. We have used Google Colab Pro to write our Python
code. All the files are saved as IPYNB files and stored at the Simula PmSys GitHub repository
(https://github.com/simula/pmsys).

• Open Datasets: We have created multiple datasets by using SoccerMon subjective metrics
and extracting GPS features from the objectivemetrics. All the datasets are publicly available
in the Simula Research Laboratory PmSys GitHub Repository (https://github.com/
simula/pmsys).

5.7 Ethical Considerations

We need to think about the consequences of our research and the potential misuse and harm it
can cause. Our algorithms have been affected by the huge imbalance in the data, leading to biases.
This type of bias is one of the key issues in data science, as noted by Saltz et al. In our case, all the
data is related to health or soccer performance and is meant to give important insights into each
player involved. Therefore, it is crucial that our algorithms work properly, or they could harm the
overall success and well‑being of the team or individual players. We need to analyze the features
and use feature importance metrics in real‑world applications to understand how our algorithms
weigh specific predictions.

Using readiness scores to choose players for important events might cause problems if players
inaccurately report high readiness values to increase their chances of being chosen. This would
lead to unreliable predictions because the data is not true. From a wellness perspective, this
could make players fixate on an arbitrary number and cause stress, which goes against our goal
of improving training conditions and game strategies. Therefore, our system needs to be used
ethically, with consideration for the players’ well‑being. We should incorporate a trustworthy AI
approach where each part can be explained and accounted for, especially when our predictions
directly impact people.

In conclusion, the ethical implications of our research cannot be overlooked. By ensuring our
algorithms are transparent, fair, and accurate, we can prevent potential harm and promote a
healthier andmore supportive environment for athletes. It’s our responsibility to continue refining
our methods, prioritizing the well‑being of players, and fostering trust in our predictive tools. This
commitment to ethical research practices will ultimately lead to better outcomes and a more
positive impact on the world of sports.

5.8 Chapter Summary

In this chapter, we have synthesized the findings of our research and provided valuable insights
into the prediction of injuries in women’s soccer using machine learning techniques. We began
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by revisiting the research questions outlined in Section 1.2. and addressing each question based
on our empirical findings. Through rigorous analysis and experimentation, we have identified key
predictors, optimized predictive algorithms, and evaluated their performance in injury prediction
tasks.

Furthermore, we discussed the implications of our findings for sports science, injury prevention,
and athlete well‑being, highlighting the potential applications and use cases of predictive
algorithms in women’s soccer. We also acknowledged the limitations of our study, including
data availability, algorithm generalizability, and ethical considerations, which warrant further
investigation and consideration in future research endeavors.

Looking ahead, we outlined several avenues for future research, including the refinement of
predictive algorithms, validation on larger and more diverse datasets, and the integration of
advanced methodologies for causal inference and interpretability. By addressing these future
directions, we aim to advance the field of injury prediction in women’s soccer and contribute to
the development of evidence‑based strategies for athlete health and performance optimization.

In summary, this chapter consolidates the key findings, insights, and implications of our research,
underscoring the importance of data‑driven approaches in sports science and the potential of
machine learning in enhancing injury prevention and athlete care in women’s soccer. In the next
chapter, we concluded our study by summarizing our findings, answering our sub‑questions and
main research objectives, and discussing future research directions shortly.
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Chapter 6

Conclusion

In this thesis, we have explored the performance ofmachine learning algorithms to predict injuries
in soccer players. We aimed to find the best methods to predict soccer player injury by evaluating
differentmachine learningalgorithms. Our findings include thepotentiality andchallengesof using
machine learning in sports to solve real‑life problems like injury prediction.

In the initial phase of our investigation, we focused on the subjective metrics of the SoccerMon
dataset and extracted GPS features from the objective metrics. Our objective was to find out
the features highly correlated with injury. This information might help coaches, team managers,
and health professionals. After a thorough analysis, we discovered that features such as illness,
weekly_load, ctl28, atl, ctl42, monotony, strain, and acwr have a high correlation with injury.

In our second experiment, we have introduced thewindow function to find out the best time frame
to forecast injury for the following day. We have used awindow size of 2, 4, 8, 16, and 32, where four
algorithms (Decision Tree, K‑Nearest Neighbors, LSTM, and XGBoost performed best with a time
frame of 32 days. During the 16‑day time frame, Logistic Regression, Random Forest, and Naive
Bayes showed optimal results. Only Support Vector Machines performed best in an 8‑day time
frame, whereas no algorithm chose a 2‑ or 4‑day time frame.

In our third experiment, we evaluatedmachine learning algorithms based on the F1 score keeping
an eye on recall and precision scores. Each algorithm showed a different level of performance
with its strengths and weaknesses. For example, the f1 score of Logistic regression is 0.26 showing
moderate accuracy but having the possibility of improvement. The decision Tree algorithm scored
0.47 indicating a good balance of precision and recall. It makes the algorithm reliable in injury
prediction. On the other hand, Random Forest scored 0.16 F1 score with 0.72 recall and 0.09
precision. The result shows the need to reduce false positives. On the other hand, K‑Nearest
Neighbors shows an F1 score of 0.34, where the recall and precision scores are 0.60 and 0.24,
respectively. Like RandomForest, LSTMhas showna low F1 score of 0.18with a recall and precision
of 0.10 and 1.0. The Support Vector Machine performed a 0.27 F1 score with a balanced recall and
precision. It is showing additional tuning. XGBoost performed 0.58 F1 score making it particularly
effective in predicting injuries. Although Naive Bayes scored 0.12 F1 score with high recall and low
precision showing the need for further tuning. Lastly, the Naive Bayes performed poorly, with an
F1 score of 0.12. After performing hyperparameter tuning, among these seven machine learning
algorithms, Logistic Regression, Random Forest, K‑Nearest Neighbors, Support Vector Machine,
and Naive Bayes showed better performance, whereas the performance of Decision Tree and
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XGBoost did not improved.

By focusing on a specific team (Team A), we obtained a more consistent dataset that allowed
us to identify specific injury patterns. However, this approach may limit the generalizability of
our findings. For Team A, K‑Nearest Neighbors performed very well with an F1 score of 0.50. In
contrast, LSTM, with a high recall (0.80) but low precision (0.08), had an F1 score of 0.14, indicating
a significant number of false positives. We also analyzed our machine learning algorithm’s
performance on only injured players, but this method may limit its ability to predict new injuries.
For example, XGBoost performedexcellentlywith an F1 score of 0.58, and theDecision Tree showed
a moderate performance with an F1 score of 0.35. Overall, each approach had its advantages and
limitations, highlighting the complexities of using machine learning for injury prediction in sports.

In our last experiment, we explored the impact of dataset size on our machine learning algorithms.
For the full dataset, we have struggled with class imbalance because of fewer injured records,
which could bias algorithms in predicting non‑injury cases. Among the eight algorithms, XGBoost
performed considerably, with an F1 score of 0.58. When we moved forward and analyzed the
algorithm performance for only a specific team (Team A), we explored that K‑Nearest Neighbors
showed the most promising result with an F1 score of 0.50 and XGBoost of 0.40. Lastly, we made
a dataset focused on only injured players, where XGBoost performed best with an F1 score of 0.58
and recall and precision of 0.50 and 0.71, but these results could be biased as they only focused on
injured players.

Our researchhighlights thediverse applications ofmachine learning algorithms in sports, including
injury risk assessment, training load management, game strategy optimization, rehabilitation
planning, long‑term injury prevention, player selection, and public health. These applications
underscore the potential for data‑driven approaches to enhance athlete health and performance.

Despite the promising results, our study faced several limitations, such as data quality and
availability, the complexity of predicting injuries, and algorithm interpretability. Addressing these
limitations is crucial to improving the accuracy and effectiveness of machine learning algorithms
in sports injury prediction.

The insights of this study would be useful for sports practitioners, coaches, and medical
professionals in practical implications. Usingmachine learning‑based injury prediction algorithms,
they can make important decisions in their training programs, and tactical planning, and manage
team formation proactively.

For future research, we recommend integratingmulti‑modal data, conducting longitudinal studies,
exploring advanced algorithm architectures, leveraging transfer learning, implementing real‑time
injury surveillance systems, and developing ethical frameworks for predictive analytics in sports
injury management. By addressing these areas, we can further refine predictive algorithms and
develop robust, ethical, and effective injury prevention strategies, leading to a safer and more
sustainable sports environment.
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Appendix A

Additional Figures

Figure A.1: The figure illustrates the presence of NaN values for both teams.
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APPENDIX A. ADDITIONAL FIGURES

Figure A.2: Injury records of soccer players from July 2020 to November 2021.

Figure A.3: Partial autocorrelation of acwr.
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Figure A.4: The correlation matrix heatmap visualizes the relationships between various
performance and wellness variables, with color intensity indicating the strength of correlations.
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APPENDIX A. ADDITIONAL FIGURES

Figure A.5: The bar chart represents information about the window size preference of different
algorithms.

FigureA.6: Thebar charts show informationabout algorithms that predict actual injuries andactual
injuries predicted as non‑injuries.
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Appendix B

List of Abbreviations

• ALT ‑ Acute Training Load.

• KNN ‑ K‑Nearest Neighbors.

• ADASYN ‑ Adaptive Synthetic Sampling.

• LSTM ‑ Long Short Term Memory.

• SVM ‑ Support Vector Machine.

• SMOTE ‑ Synthetic Minority Over‑sampling Technique.

• PmSys ‑ Player Monitoring System.

• ACWR ‑ Acute:Chronic Workload Ratio.

• sRPR ‑ Session Rating of Perceived Exertion.

• CTL28 ‑ Chronic Training Load over the past 28 days.

• CTL 42 ‑ Chronic Training Load over the past 42 days.

• HIR ‑ High Intensity Running.

• RNN ‑ Recurrent Neural Network.
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Appendix C

Additional Tables

Models Input Windows Recall Precision F1 Accuracy
Logistic Regression 16 0.25 0.33 0.28 0.99

Decision Tree 32 0.40 0.57 0.47 0.99
Random Forest 16 0.72 0.11 0.20 0.96

K‑Nearest Neighbor(KNN) 32 0.30 1.0 0.46 0.99
Support Vector Machine (SVM) 16 0.18 0.60 0.28 0.99

XGBoost 32 0.40 1.0 0.57 0.99
Naive Bayes 32 0.60 0.09 0.16 0.96

Table C.1: Algorithms performance using different window sizes.
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