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Chapter 1

Approximation of Functions

1.1 Approximation of Functions

Many successful numerical methods for differential equations aim at approx-
imating the unknown function by a sum

u(x) =

N
∑

i=0

ciϕi(x), (1.1)

where ϕi(x) are prescribed functions and ci, i = 0, . . . , N , are unknown coffi-
cients to be determined. Solution methods for differential equations utilizing
(1.1) must have a principle for constructing N + 1 equations to determine
c0, . . . , cN . Then there is a machinery regarding the actual constructions of
the equations for c0, . . . , cN in a particular problem. Finally, there is a solve
phase for computing solution c0, . . . , cN of the N + 1 equations.

Especially in the finite element method, the machinery for constructing
the equations is quite comprehensive, with many mathematical and imple-
mentational details entering the scene at the same time. From a pedagogical
point of view it can therefore be wise to introduce the computational ma-
chinery for a trivial equation, namely u = f . Solving this equation with f
given and u on the form (1.1) means that we seek an approximation u to f .
This approximation problem has the advantage of introducing most of the
finite element toolbox, but with postponing variational forms, integration by
parts, boundary conditions, and coordinate mappings. It is therefore from a
pedagogical point of view advantageous to become familiar with finite ele-
ment approximation before addressing finite element methods for differential
equations.

First, we refresh some linear algebra concepts about approximating vec-
tors in vector spaces. Second, we extend these concepts to approximating
functions in function spaces, using the same principles and the same nota-
tion. We present examples on approximating functions by global basis func-
tions with support throughout the entire domain. Third, we introduce the
finite element type of local basis functions and explain the computational
algorithms for working with such functions. Three types of approximation
principles are covered: 1) the least squares method, 2) the Galerkin method,
and 3) interpolation or collocation.
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1.2 Approximation of Vectors

1.2.1 Approximation of Planar Vectors

Suppose we have given a vector fff = (3, 5) in the x-y plane and that we want
to approximate this vector by a vector aligned in the direction of the vector
(a, b). We introduce the vector space V spanned by the vector ϕϕϕ0 = (a, b):

V = span {ϕϕϕ0} . (1.2)

We say that ϕϕϕ0 is a basis vector in the space V . Our aim is to find the
vector uuu = c0ϕϕϕ0 ∈ V which best approximates the given vector fff = (3, 5). A
reasonable criterion for a best approximation could be to minimize the length
of the difference between the approximate uuu and the given fff . The difference,
or error, eee = fff − uuu has its length given by the norm

||eee|| = (eee,eee)
1
2 ,

where (eee,eee) is the inner product of eee and itself. The inner product, also called
scalar product or dot product, of two vectors uuu = (u0, u1) and vvv = (v0, v1) is
defined as

(uuu,vvv) = u0v0 + u1v1 . (1.3)

Here we should point out that we use the notation (·, ·) for two different
things: (a, b) for scalar quantities a and b means the vector starting in the
origin and ending in the point (a, b), while (uuu,vvv) with vectors uuu and vvv means
the inner product of these vectors. Since vectors are here written in boldface
font there should be no confusion. Note that the norm associated with this
inner product is the usual Eucledian length of a vector.

We now want to find c0 such that it minimizes ||eee||. The algebra is sim-
plified if we minimize the square of the norm, ||eee||2 = (eee,eee). Define

E(c0) = (eee,eee) = (fff − c0ϕϕϕ0, fff − c0ϕϕϕ0) . (1.4)

We can rewrite the expressions of the right-hand side to a more convenient
form for further work:

E(c0) = (fff,fff)− 2c0(fff,ϕϕϕ0) + c20(ϕϕϕ0,ϕϕϕ0) . (1.5)

The rewrite results from using the following fundamental rules for inner prod-
uct spaces1:

(αuuu,vvv) = α(uuu,vvv), α ∈ R, (1.6)

(uuu+ vvv,www) = (uuu,www) + (vvv,www), (1.7)

1 It might be wise to refresh some basic linear algebra by consulting a textbook.
Exercises 1.1 and 1.2 suggest specific tasks to regain familiarity with fundamental
operations on inner product vector spaces.
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(uuu,vvv) = (vvv,uuu) . (1.8)

Minimizing E(c0) implies finding c0 such that

∂E

∂c0
= 0 .

Differentiating (1.5) with respect to c0 gives

∂E

∂c0
= −2(fff,ϕϕϕ0) + 2c0(ϕϕϕ0,ϕϕϕ0) .

Setting the above expression equal to zero and solving for c0 gives

c0 =
(fff,ϕϕϕ0)

(ϕϕϕ0,ϕϕϕ0)
, (1.9)

which in the present case with ϕϕϕ0 = (a, b) results in

c0 =
3a+ 5b

a2 + b2
. (1.10)

Minimizing ||eee||2 implies that eee is orthogonal to the approximation c0ϕϕϕ0.
Straight calculation shows this (recall that two vectors are orthogonal when
their inner product vanishes):

(eee, c0ϕϕϕ0) = (fff − c0v0, v0) = (fff,ϕϕϕ0)−
(fff,ϕϕϕ0)

(ϕϕϕ0,ϕϕϕ0)
(ϕϕϕ0,ϕϕϕ0) = 0 .

Therefore, instead of minimizing the square of the norm, we could demand
that eee is orthogonal to any vector in V . That is,

(eee,vvv) = 0, ∀vvv ∈ V . (1.11)

Since an arbitrary vvv ∈ V can be expressed in terms of the basis of V , vvv = c0ϕϕϕ0,
with an arbitrary c = 0 ∈ R, (1.11) implies

(eee, c0ϕϕϕ0) = c0(eee,ϕϕϕ0) = 0,

which means that

(eee,ϕϕϕ0) = 0 ⇔ (fff − c0ϕϕϕ0,ϕϕϕ0) = 0 .

The latter equation gives (1.9) for c0.

1.2.2 Approximation of General Vectors

Let us generalize the vector approximation from the previous section to vec-
tors in spaces with arbitrary dimension. Given some vector fff , we want to
find the best approximation to this vector in the space

V = span {ϕϕϕ0, . . . ,ϕϕϕN} .
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We assume that the basis vectors ϕϕϕ0, . . . ,ϕϕϕN are linearly independent so that
none of them are redundant and the space has dimension N + 1. Any vector
uuu ∈ V can be written as a linear combination of the basis vectors,

uuu =

N
∑

j=0

cjϕϕϕj ,

where cj ∈ R are scalar coefficients to be determined.
Now we want to find c0, . . . , cN such that uuu is the best approximation to

fff in the sense that the distance, or error, eee = fff − uuu is minimized. Again, we
define the squared distance as a function of the free parameters c0, . . . , cN ,

E(c0, . . . , cN ) = (eee,eee) = (fff −
∑

j

cjϕϕϕj , fff −
∑

j

cjϕϕϕj)

= (fff,fff)− 2

N
∑

j=0

cj(fff,ϕϕϕj) +

N
∑

p=0

N
∑

q=0

cpcq(ϕϕϕp,ϕϕϕq) . (1.12)

Minimizing this E with respect to the independent variables c0, . . . , cN is
obtained by setting

∂E

∂ci
= 0, i = 0, . . . , N .

The second term in (1.12) is differentiated as follows:

∂

∂ci

N
∑

j=0

cj(fff,ϕϕϕj) = ci(fff,ϕϕϕi), (1.13)

since the expression to be differentiated is a sum and only one term contains
ci (write out specifically for, e.g, N = 3 and i = 1). The last term in (1.12)
is more tedious to differentiate. We start with

∂

∂ci
cpcq =















0, if p 6= i and q 6= i,
cq, if p = i and q 6= i,
cp, if p 6= i and q = i,
2ci, if p = q = i,

(1.14)

Then

∂

∂ci

N
∑

p=0

N
∑

q=0

cpcq(ϕϕϕp,ϕϕϕq) =
N
∑

p=0,p 6=i

cp(ϕϕϕp,ϕϕϕi)+
N
∑

q=0,q 6=i

cq(ϕϕϕq,ϕϕϕi)+ 2ci(ϕϕϕi,ϕϕϕi) .

The last term can be included in the other two sums, resulting in

∂

∂ci

N
∑

p=0

N
∑

q=0

cpcq(ϕϕϕp,ϕϕϕq) = 2

N
∑

j=0

ci(ϕϕϕj ,ϕϕϕi) . (1.15)
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It then follows that setting

∂E

∂ci
= 0, i = 0, . . . , N,

leads to a linear system for c0, . . . , cN :

N
∑

j=0

Ai,jcj = bi, i = 0, . . . , N, (1.16)

where

Ai,j = (ϕϕϕi,ϕϕϕj), (1.17)

bi = (ϕϕϕi, fff) . (1.18)

(Note that we can change the order of the two vectors in the inner product
as desired.)

In analogy with the “one-dimensional” example in Chapter 1.2.1, it holds
also here in the general case that minimizing the distance (error) eee is equiv-
alent to demanding that eee is orthogonal to all vvv ∈ V :

(eee,vvv) = 0, ∀vvv ∈ V . (1.19)

Since any vvv ∈ V can be written as vvv =
∑N

i=0 ciϕϕϕi, the statement (1.19) is
equivalent to saying that

(eee,

N
∑

i=0

ciϕϕϕi) = 0,

for any choice of coefficients c0, . . . , cN ∈ R. The latter equation can be
rewritten as

N
∑

i=0

ci(eee,ϕϕϕi) = 0 .

If this is to hold for arbitrary values of c0, . . . , cN , we must require that each
term in the sum vanishes,

(eee,ϕϕϕi) = 0, i = 0, . . . , N . (1.20)

These N + 1 equations result in the same linear system as (1.16). Instead of
differentiating the E(c0, . . . , cN ) function, we could simply use (1.19) as the
principle for determining c0, . . . , cN , resulting in the N + 1 equations (1.20).

One often refers to the procedure of minimizing ||eee||2 as a least squares
method or least squares approximation. The rationale for this name is that
||eee||2 is a sum of squared differences between the components in fff and uuu. We
find uuu such that this sum of squares is minimized.

The principle (1.19), or the equivalent form (1.20), corresponds what is
known as a Galerkin method when we later use the same reasoning to ap-
proximate functions in function spaces.
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1.3 Global Basis Functions

Let V be a function space spanned by a set of basis functions ϕ0, . . . , ϕN ,

V = span {ϕ0, . . . , ϕN},

such that any function u ∈ V can be written as a linear combination of the
basis functions:

u =

N
∑

j=0

cjϕj . (1.21)

For now, in this introduction, we shall look at functions of a single variable
x: u = u(x), ϕi = ϕi(x), i = 0, . . . , N . Later, we will extend the scope
to functions of two- or three-dimensional space. The approximation (1.21)
is typically used to discretize a problem in space. Other methods, most no-
tably finite differences, are common for time discretization (although the form
(1.21) can be used in time too).

1.3.1 The Least-Squares Method

Given a function f(x), how can we determine its best approximation u(x) ∈
V ? A natural starting point is to apply the same reasoning as we did for
vectors in Chapter 1.2.2. That is, we minimize the distance between u and f .
However, this requires a norm for measuring distances, and a norm is most
conveniently defined through an inner product. Viewing a function as a vector
of infinitely many point values, one for each value of x, the inner product could
intuitively be defined as the usual summation of pairwise components, with
summation replaced by integration:

(f, g) =

∫

f(x)g(x) dx .

To fix the integration domain, we let f(x) and ϕi(x) be defined for a domain
Ω ⊂ R. The inner product of two functions f(x) and g(x) is then

(f, g) =

∫

Ω

f(x)g(x) dx . (1.22)

The distance between f and any function u ∈ V is simply f − u, and the
squared norm of this distance is

E = (f(x)−
N
∑

j=0

cjϕj(x), f(x)−
N
∑

j=0

cjϕj(x)) . (1.23)

Note the analogy with (1.12): the given function f plays the role of the given
vector fff , and the basis function ϕi plays the role of the basis vector ϕϕϕi. We
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get can rewrite (1.23), through similar stepss as used for the result (1.12),
leading to

E(c0, . . . , cN ) = (f, f)− 2

N
∑

j=0

cj(f, ϕi) +

N
∑

p=0

N
∑

q=0

cpcq(ϕp, ϕq) . (1.24)

Minimizing this function of N+1 scalar variables c0, . . . , cN requires differen-
tiation with respect to ci, for i = 0, . . . , N . This action gives a linear system
of the form (1.16), with

Ai,j = (ϕi, ϕj) (1.25)

bi = (f, ϕi) . (1.26)

As in Chapter 1.2.2, the minimization of (e, e) is equivalent to

(e, v) = 0, ∀v ∈ V . (1.27)

This is known as the Galerkin method. Using the same reasoning as in (1.19)–
(1.20), it follows that (1.27) is equivalent to

(e, ϕi) = 0, i = 0, . . . , N . (1.28)

Since (1.27) and (1.28) are equivalent to minimizing (e, e), the coefficient
matrix and right-hand side implied by (1.28) are given by (1.25) and (1.26).

1.3.2 Example: Linear Approximation

Let us apply the theory in the previous section to a simple problem: given a
parabola f(x) = x2 + x + 1 for x ∈ Ω = [1, 2], find the best approximation
u(x) in the space of all linear functions:

V = span {1, x} .

That is, ϕ0(x) = 1, ϕ1(x) = x, and N = 1. We seek

u = c0ϕ0(x) + c1ϕ1(x) = c0 + c1x,

where c0 and c1 are found by solving a 2×2 the linear system. The coefficient
matrix has elements

A0,0 = (ϕ0, ϕ0) =

∫ 2

1

1 · 1 dx = 1, (1.29)

A0,1 = (ϕ0, ϕ1) =

∫ 2

1

1 · x dx = 3/2, (1.30)

A1,0 = A0,1 = 3/2, (1.31)

A1,1 = (ϕ1, ϕ1) =

∫ 2

1

x · x dx = 7/3 . (1.32)
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The corresponding right-hand side is

b1 = (f, ϕ0) =

∫ 2

1

(10(x− 1)2 − 1) · 1 dx = 7/3, (1.33)

b2 = (f, ϕ1) =

∫ 2

1

(10(x− 1)2 − 1) · x dx = 13/3 . (1.34)

Solving the linear system results in

c0 = −38/3, c1 = 10, (1.35)

and consequently

u(x) = 10x− 38

3
. (1.36)

Figure 1.1 displays the parabola and its best approximation in the space of
all linear functions.
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Fig. 1.1. Best approximation of a parabola by a straight line.

1.3.3 Implementation of the Least-Squares Method

The linear system can be computed either symbolically or numerically (a
numerical integration rule is needed in the latter case). Here is a function for
symbolic computation of the linear system, where f(x) is given as a sympy

expression f (involving the symbol x), phi is a list of ϕ0, . . . , ϕN , and Omega

is a 2-tuple/list holding the domain Ω:
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import sympy as sm

def least_squares(f, phi, Omega):
N = len(phi) - 1
A = sm.zeros((N+1, N+1))
b = sm.zeros((N+1, 1))
x = sm.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sm.integrate(phi[i]*phi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sm.integrate(phi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(phi)):

u += c[i,0]*phi[i]
return u

Observe that we exploit the symmetry of the coefficient matrix: only the
upper triangular part is computed. Symbolic integration in sympy is often
time consuming, and (roughly) halving the work has noticable effect on the
waiting time for the function to finish execution.

Comparing the given f(x) and the approximate u(x) visually is done by
the following function, which with the aid of sympy’s lambdify tool converts
a sympy functional expression to a Python function for numerical computa-
tions:

def comparison_plot(f, u, Omega, filename=’tmp.eps’):
x = sm.Symbol(’x’)
f = sm.lambdify([x], f, modules="numpy")
u = sm.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

The modules=’numpy’ argument to lambdify is important if there are math-
ematical functions, such as sin or exp in the symbolic expressions in f or u,
and these mathematical functions are to be used with vector arguments, like
xcoor above.

Both the least_squares and comparison_plot are found and coded
in the file approx1D.py. The forthcoming examples on their use appear in
ex_approx1D.py.

1.3.4 Perfect Approximation

Let us use the code above to recompute the problem from Chapter 1.3.2 where
we want to approximate a parabola. What happens if we add an element x2
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to the basis and test what the best approximation is if V is the space of all
parabolic functions? The answer is quickly found by running

u = least_squares(f=10*(x-1)**2-1, phi=[1, x, x**2], Omega=[1, 2])
print u
print sm.expand(f)

From the output we realize that u becomes identical to f in this case. We may
also add many more basis functions, e.g., φi(x) = xi for i = 0, . . . , N = 40.
The output from least_squares is ci = 0 for i > 2.

The following is in fact a general result: if f ∈ V , the best approximation
is u = f . The proof is straightforward: if f ∈ V , f can be expanded in terms
of the basis functions, f =

∑N
j=0 djϕj , for some coefficients d0, . . . , dN , and

the right-hand side then has entries

bi = (f, ϕi) =
N
∑

j=0

dj(ϕj , ϕi) =
N
∑

j=0

djAi,j .

The linear system
∑

j Ai,jcj = bi, i = 0, . . . , N , is then

N
∑

j=0

cjAi,j =

N
∑

j=0

djAi,j , i = 0, . . . , N,

which implies that ci = di for i = 0, . . . , N .

1.3.5 Ill-Conditioning

The computational example in Chapter 1.3.4 applies the least_squares

function which invokes symbolic methods to calculate and solve the linear
system. The correct solution c0 = 9, c1 = −20, c2 = 10, ci = 0 for i ≥ 3 is
perfectly recovered.

Suppose we convert the matrix and right-hand side to floating-point arrays
and then solve the system using finite-precision arithmetics, which is what
one will (almost) always do in real life. This time we get astonishing results!
Up to about N = 7 we get a solution that is reasonably close to the exact one.
Increasing N shows that seriously wrong coefficients are computed. Table 1.1
shows results for N = 10 obtained by three different methods:

– Column 2: The matrix and vector are converted to the sympy.mpmath.fp.matrix
data structure and the sympy.mpmath.fp.lu_solve function is used to
solve the system.

– Column 3: The matrix and vector are converted to numpy arrays with
data type numpy.float32 (single precision floating-point number) and
solved by the numpy.linalg.solve function.
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– Column 4: As column 3, but the data type is numpy.float64 (double
precision floating-point number).

We see from the numbers in the table that double precision performs much
better than single precision. Nevertheless, when plotting all these solutions
the curves cannot be visually distinguished (!). This means that the approx-
imations look perfect, despite the partially wrong values of the coefficients.

Increasing N to 12 makes the numerical solver in sympy report abort with
the message:“matrix is numerically singular”. A matrix has to be non-singular
to be invertible, which is a requirement when solving a linear system. Already
when the matrix is close to singular, it is ill-conditioned, which here implies
that the numerical solution algorithms are sensitive to round-off errors and
may produce (very) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned
is that our basis functions ϕi(x) = xi are nearly linearly dependent for large
i. That is, xi and xi+1 are very close when i is about 10 and higher, which
is evident by plotting two such functions. Almost linearly dependent basis
functions give rise to an ill-conditioned and almost singular matrix. This fact
can be illustrated by computing the determinant, which is indeed very close
to zero (recall that a zero determinant implies a singular and non-invertible
matrix): 10−65 for N = 10 and 10−92 for N = 12. Already for N = 28 the
numerical determinant computation returns a plain zero.

On the other hand, the double precision numpy solver do run for N = 100,
resulting in answers that are not significantly worse than those in Table 1.1,
and large powers are associated with small coefficients (e.g., cj < 10−2 for
10 ≤ j ≤ 20 and c < 10−5 for j > 20). Even for N = 100 the approximation
lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approx-
imation may not uncover fundamental numerical problems with the com-
putations. However, numerical analysts have studied approximations and ill-
conditioning for decades, and it is well known that the basis {1, x, x2, x3, . . . , }
is a bad basis. The best basis from a matrix conditioning point of view is to
have orthogonal functions such that (φi, φj = 0 for i 6= j. There are many
known sets of orthogonal polyomials. The functions used in the finite element
methods are almost orthogonal, and this property helps to avoid problems
with solving matrix systems2.

1.3.6 Fourier Series

A set of sine functions is widely used for approximating functions. Let us take

V = span {sinπx, sin 2πx, . . . , sin(N + 1)πx} .
2 Almost orthogonal is helpful, but not enough when it comes to partial differential
equations, and ill-conditioning of the coefficient matrix is a theme when solving
large-scale finite element systems.
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Table 1.1. Solution of the linear system arising from approximating a parabola by
functions on the form u(x) =

∑N

j=0 cjx
j , N = 10.

exact sympy numpy32 numpy64

9 9.62 5.57 8.98
-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

That is,
ϕi(x) = sin((i+ 1)πx), i = 0, . . . , N .

An approximation to the f(x) function from Chapter 1.3.2 can then be com-
puted by the least_squares function from Chapter 1.3.3:

N = 3
from sympy import sin, pi
phi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u = least_squares(f, phi, Omega)
comparison_plot(f, u, Omega)

Figure 1.2a shows the oscillatory approximation. Changing N to 11 improves
the approximation considerably, see Figure 1.2b.

The choice of sine functions ϕi(x) = sin((i+ 1)πx) has a great computa-
tional advantage: on Ω = [0, 1] these basis functions are orthogonal, implying
that Ai,j = 0 if i 6= j. This result is realized by trying

integrate(sin(j*pi*x)*sin(k*pi*x), x, 0, 1)

in http://wolframalpha.com (avoid i in the integrand as this symbol means
the imaginary unit

√
−1). Also by asking http://wolframalpha.com about

∫ 1

0
sin2(jπx)dx, we find it to equal 1/2. With a diagonal matrix we can easily

solve for the coefficients by hand:

ci = 2

∫ 1

0

f(x) sin((i+ 1)πx)dx, i = 0, . . . , N, (1.37)

which is nothing but the classical formula for the coefficients of the Fourier
sine series of f(x) on [0, 1]. In fact, when V contains the basic functions used in
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Fig. 1.2. Best approximation of a parabola by a sum of sines:
∑N

j=0 cj sin((j+1)πx);
(a) N = 3; (b) N = 11.

a Fourier series expansion, the approximation method derived in Chapter 1.3
results in the classical Fourier series for f(x) (see Exercise 1.7 for details).

For orthogonal basis functions we can make the least_squares function
(much) more efficient:

def least_squares_orth(f, phi, Omega):
N = len(phi) - 1
A = [0]*(N+1)
b = [0]*(N+1)
x = sm.Symbol(’x’)
for i in range(N+1):

A[i] = sm.integrate(phi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sm.integrate(phi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(phi)):

u += c[i]*phi[i]
return u

This function is found in the file approx1D.py.

1.3.7 The Collocation Method

The principle of minimizing the distance between u and f is an intuitive way
of computing a best approximation u ∈ V to f . However, there are other
attractive approaches as well. One is to demand that u(xi) = f(xi) at some
selected points xi, i = 0, . . . , N :

u(xi) =

N
∑

j=0

cjϕj(xi) = f(xi), i = 0, . . . , N . (1.38)
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This criterion also gives a linear system with N + 1 unknown coefficients
c0, . . . , cN :

N
∑

j=0

Ai,jcj = bi, i = 0, . . . , N, (1.39)

with

Ai,j = ϕj(xi), (1.40)

bi = f(xi) . (1.41)

This time the coefficient matrix is not symmetric because ϕj(xi) 6= ϕi(xj)
in general. The method is often referred to as a collocation method and the
xi points are known as collocation points. Others view the approach as an
interpolation method since some point values of f are given (f(xi)) and we
fit a continuous function u that goes through the f(xi) points. In that case
the xi points are called interpolation points.

Given f as a sympy symbolic expression f, ϕ0, . . . , ϕN as a list phi, and
a set of points x0, . . . , xN as a list or array points, the following Python
function sets up and solves the matrix system for the coefficients c0, . . . , cN :

def interpolation(f, phi, points):
N = len(phi) - 1
A = sm.zeros((N+1, N+1))
b = sm.zeros((N+1, 1))
x = sm.Symbol(’x’)
# Turn phi and f into Python functions
phi = [sm.lambdify([x], phi[i]) for i in range(N+1)]
f = sm.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = phi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
u = 0
for i in range(len(phi)):

u += c[i,0]*phi[i](x)
return u

Note that it is convenient to turn the expressions f and phi into Python
functions which can be called with elements of points as arguments when
building the matrix and the right-hand side. The interpolation function is
a part of the approx1D module.

A nice feature of the interpolation or collocation method method is that
it avoids computing integrals. However, one has to decide on the location of
the xi points. A simple, yet common choice, is to distribute them uniformly
throughout Ω.

Let us illustrate the interpolation or collocation method by approximating
our parabola f(x) = 10(x− 1)2 − 1 by a linear function on Ω = [1, 2], using
two collocation points x0 = 1 + 1/3 and x1 = 1 + 2/3:
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f = 10*(x-1)**2 - 1
phi = [1, x]
Omega = [1, 2]
points = [1 + sm.Rational(1,3), 1 + sm.Rational(2,3)]
u = interpolation(f, phi, points)
comparison_plot(f, u, Omega)

The resulting linear system becomes

(

1 4/3
1 5/3

)(

c0
c1

)

=

(

1/9
31/9

)

with solution c0 = −119/9 and c1 = 10. Figure 1.3a shows the resulting
approximation u = −119/9 + 10x. We can easily test other interpolation
points, say x0 = 1 and x1 = 2. This changes the line quite significantly, see
Figure 1.3b.
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Fig. 1.3. Approximation of a parabola on [1, 2] by linear functions computed by
interpolation: (a) x0 = 1 + 1/3, x1 = 1 + 2/3; (b) x0 = 1, x1 = 2.

1.3.8 Lagrange Polynomials

In Chapter 1.3.6 we explain the advantage with having a diagonal matrix:
formulas for the coefficients c0, . . . , cN can then be derived by hand. For a
interpolation or collocation method a diagonal matrix implies that ϕj(xi) = 0
if i 6= j. One set of basis functions ϕi(x) with this property is the Lagrange
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interpolating polynomials, or just Lagrange polynomials3:

ϕi(x) =

N
∏

j=0,j 6=i

x− xj

xi − xj
=

x− x0

xi − x0
· · · x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
· · · x− xN

xi − xN
,

(1.42)
for i = 0, . . . , N . We see from (1.42) that all the ϕi functions are polynomials
of degree N which have the property

ϕi(xs) =

{

1, i = s,
0, i 6= s,

(1.43)

when xs is an interpolation (collocation) point. This property implies that
Ai,j = 0 for i 6= j and Ai,j = 1 when i = j. The solution of the linear system
is them simply

ci = f(xi), i = 0, . . . , N, (1.44)

and

u(x) =

N
∑

j=0

f(xi)ϕi(x) . (1.45)

The following function computes the Lagrange interpolating polynomial
ϕi(x), given the interpolation points x0, . . . , xN in the list or array points:

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

The next function computes a complete basis using equidistant points through-
out Ω:

def Lagrange_polynomials_01(x, N):
if isinstance(x, sm.Symbol):

h = sm.Rational(1, N-1)
else:

h = 1.0/(N-1)
points = [i*h for i in range(N)]
phi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return phi, points

When x is an sm.Symbol object, we let the spacing between the interpolation
points, h, be a sympy rational number for nice end results in the formulas
for ϕi. The other case, when x is a plain Python float, signifies numeri-
cal computing, and then we let h be a floating-point number. Observe that

3 Although the functions are named after Lagrange, they were first discovered by
Waring in 1779, rediscovered by Euler in 1783, and published by Lagrange in
1795.
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the Lagrange_polynomial function works equally well in the symbolic and
numerical case (think of x being an sm.Symbol object or a Python float).
A little interactive session illustrates the difference between symbolic and
numerical computing of the basis functions and points:

>>> import sympy as sm
>>> x = sm.Symbol(’x’)
>>> phi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0, 1/2, 1]
>>> phi
[(1 - x)*(1 - 2*x), 2*x*(2 - 2*x), -x*(1 - 2*x)]

>>> x = 0.5 # numerical computing
>>> phi, points = Lagrange_polynomials_01(x, N=3, symbolic=True)
>>> points
[0.0, 0.5, 1.0]
>>> phi
[-0.0, 1.0, 0.0]

The Lagrange polynomials are very much used in finite element methods
because of their property (1.43).

Trying out the Lagrange polynomial basis for approximating f(x) =
sin 2πx on Ω = [0, 1] with the least squares and the interpolation techniques
can be done by

x = sm.Symbol(’x’)
f = sm.sin(2*sm.pi*x)
phi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]
u = least_squares(f, phi, Omega)
comparison_plot(f, u, Omega)
u = interpolation(f, phi, points)
comparison_plot(f, u, Omega)

Figure 1.3 shows the results. There is little difference between the least
squares and the interpolation technique. Increasing N gives visually better
approximations.

The next example concerns interpolating f(x) = |1 − 2x| on Ω = [0, 1]
using Lagrange polynomials. Figure 1.5 shows a peculiar effect: the approxi-
mation starts to oscillate more and more as N grows. This numerical artifact
is not surprising when looking at the individual Lagrange polynomials: Fig-
ure 1.6 shows two such polynomials of degree 11, and it is clear that the
basis functions oscillate significantly. The reason is simple, since we force the
functions to be 1 at one point and 0 at many other points. A polynomial of
high degree is then forced to oscillate between these points. The oscillations
are particularly severe at the boundary. The phenomenon is named Runge’s
phenomenon and you can read a more detailed explanation on Wikipedia.

The oscillations can be reduced by a more clever choice of interpolation
points, called the Chebyshev nodes :

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(

2i+ 1

2(N + 1)
pi

)

, i = 0 . . . , N, (1.46)
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Fig. 1.4. Approximation of a sine function by Lagrange interpolating polynomials
of degree 4. (a) least squares; (b) interpolation (collocation).

on the intervalΩ = [a, b]. Here is a flexible version of the Lagrange_polynomials_01
function above, valid for any interval Ω = [a, b] and with the possibility to
generate both uniformly distributed points and Chebyshev nodes:

def Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:

if isinstance(x, sm.Symbol):
h = sm.Rational(Omega[1] - Omega[0], N)

else:
h = (Omega[1] - Omega[0])/float(N)

points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:

points = Chebyshev_nodes(Omega[0], Omega[1], N)
phi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return phi, points

def Chebyshev_nodes(a, b, N):
from math import cos, pi
return [0.5*(a+b) + 0.5*(b-a)*cos(float(2*i+1)/(2*(N+1))*pi) \

for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are found
in the module file Lagrange.py. Figure 1.7 shows the improvement of using
Chebyshev nodes (compared with Figure 1.5).

Another cure for undesired oscillation of higher-degree interpolating poly-
nomials is to use lower-degree Lagrange polynomials on many small patches
of the domain, which is the idea persued in the finite elemenet method. For
instance, linear Lagrange polynomials on [0, 1/2] and [1/2, 1] would yield a
perfect approximation to f(x) = |1 − 2x| on Ω = [0, 1] since f is piecewise
linear.

Unfortunately, sympy has problems integrating the f(x) = |1− 2x| func-
tion times a polynomial. Other choices of f(x) can also make the symbolic
integration fail. Therefore, we should extend the least_squares function
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Fig. 1.5. Interpolation of an absolute value function by Lagrange polynomials and
uniformly distributed interpolation points: (a) degree 7; (b) degree 14.
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Fig. 1.6. Illustration of the oscillatory behavior of two Lagrange polynomials for
N = 12 uniformly spaced points (marked by circles).
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Fig. 1.7. Interpolation of an absolute value function by Lagrange polynomials and
Chebyshev nodes as interpolation points (a) degree 7; (b) degree 14.

such that it falls back on numerical integration if the symbolic integration
is uncessful. In the latter case, the returned value from sympy’s integrate
function is an object of type Integral. We can test on this type and uti-
lize the mpmath module in sympy to perform numerical integration of high
precision. Here is the code:

def least_squares(f, phi, Omega):
N = len(phi) - 1
A = sm.zeros((N+1, N+1))
b = sm.zeros((N+1, 1))
x = sm.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = phi[i]*phi[j]
I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sm.Integral):

# Could not integrate symbolically, fallback
# on numerical integration with mpmath.quad
integrand = sm.lambdify([x], integrand)
I = sm.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I
integrand = phi[i]*f
I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sm.Integral):

integrand = sm.lambdify([x], integrand)
I = sm.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b)
u = 0
for i in range(len(phi)):

u += c[i,0]*phi[i]
return u
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1.4 Finite Element Basis Functions

The basis functions in Chapter 1.3 are in general nonzero on the whole domain
Ω. We shall now turn the attention to basis functions that have compact sup-
port, meaning that they are nonzero on only a small portion of Ω. Moreover,
we shall restrict the functions to be piecewise polynomials. This means that
the domain is split into subdomains and the function is a polynomial on one
or more subdomains. At the boundaries between subdomains one normally
forces only continuity of the function so that when connecting two polyno-
mials from two subdomains, the derivative usually becomes discontinuous.
These type of basis functions are fundamental in the finite element method.

1.4.1 Elements and Nodes

Let us divide the interval Ω on which f and u are defined into non-overlapping
subintervals Ω(e), e = 0, . . . , ne:

Ω = Ω(0) ∪ · · · ∪Ω(M) . (1.47)

We shall refer to Ω(e) as an element, having number e, since element is the
common term for such subintervals in the finite element method. On each
element we introduce a set of points called nodes. For now we assume that the
nodes are uniformly spaced throughout the element and that the boundary
points of the elements are also nodes. The nodes are given numbers both at
the element level and in the global domain, referred to as local and global
node numerings, respectively.

Nodes and elements uniquely define a finite element mesh, which is our
discrete representation of the domain in the computations. A common special
case is that of a uniformly partitioned mesh where each element has the same
length and the distance between nodes is constant.

For example, on Ω = [0, 1] we may introduce two elements, Ω(0) = [0, 0.4]
and Ω(1) = [0.4, 1]. Furthermore, let us introduce three nodes per element,
equally spaced within each element. The three nodes in element number 1 are
x0 = 0, x1 = 0.2, and x2 = 0.4. The local and global node numbers are here
equal. In element number 2, we have the local nodes x0 = 0.4, x1 = 0.7, and
x2 = 1 and the corresponding global nodes x2 = 0.4, x3 = 0.7, and x4 = 1.
Note that the global node x2 = 0.4 is shared by the two elements.

For the purpose of implementation, we introduce two lists or arrays: nodes
for storing the coordinates of the nodes, with the global node numbers as
indices, and elements for holding the global node numbers in each element,
with the local node numbers as indices. The nodes and elements lists for
the sample mesh above take the form

nodes = [0, 0.2, 0.4, 0.7, 1]
elements = [[0, 1, 2], [2, 3, 4]]

Looking up the coordinate of local node number 2 in element 1 is here done
by nodes[elements[1][2]].
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1.4.2 The Basis Functions

Standard finite element basis functions are now defined as follows. Let i be
the global node number corresponding to local node r in element number e.

– If local node number r is not on the boundary of the element, take ϕi(x)
to be the Lagrange polynomial that is 1 at the local node number r and
zero at all other nodes in the element. Let ϕi = 0 on all other elements.

– If local node number r is on the boundary of the element, let ϕi be made
up of the Lagrange polynomial that is 1 at this node in element number
e and its neighboring element. On all other elements, ϕi = 0.

Note that when we refer to a Lagrange polynomial on an element, this poly-
nomial is thought to vanish on all other elements.

The construction of basis functions according to the principles above lead
to two important properties of ϕi(x). First,

ϕi(xj) =

{

1, i = j,
0, i 6= j,

(1.48)

when xj is a node in the mesh with global node number j. This property
implies a convenient interpretation of cj :

u(xi) =

N
∑

j=0

cjϕj(xi) = ciϕi(xi) = ci . (1.49)

That is, ci is the value of u at node i (xi).
Second, ϕi(x) is mostly zero throughout the domain: ϕi(x) 6= 0 only on

those elements that contain global node i. In particular, ϕi(x)ϕj(x) 6= 0 if
and only if i and j are global node numbers in the same element. Since Ai,j

is the integral of ϕiϕj it means that most of the elements in the coefficient
matrix will be zero. We will come back to these properties and use them
actively later.

We let each element have d + 1 nodes, resulting in local Lagrange poly-
nomials of degree d. It is not a requirement to have the same d value in each
element, but for now we will assume so.

Figure 1.8 illustrates how piecewise quadratic basis functions can look like
(d = 2). We work with the domain Ω = [0, 1] divided into four equal-sized
elements, each having three nodes. The nodes and elements lists in this
particular example become

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Nodes are marked with circles on the x axis in the figure, and element bound-
aries are marked with small vertical lines.
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Consider element number 1, Ω(1) = [0.25, 0.5], with local nodes 0, 1, and 2
corresponding to global nodes 2, 3, and 4. The coordinates of these nodes are
0.25, 0.375, and 0.5, respectively. We define three Lagrange polynomials on
this element. The one that is 1 at local node 1 (x = 0.375) becomes the global
basis function ϕ3(x) over this element, with ϕ3(x) = 0 outside the element.
The other global functions associated with internal nodes, ϕ1, ϕ5, and ϕ7,
are all of the same shape as ϕ3. The basis function ϕ2(x), corresponding to
a node on the boundary of element 0 and 1, is made up of two pieces: (i) the
Lagrange polynomial on element 1 that is 1 at local node 0 (global node 2)
and zero at all other nodes in element 1, and (ii) the Lagrange polynomial on
element 1 that is 1 at local node 2 (global node 2) and zero at all other nodes
in element 0. Outside the elements that share global node 2, ϕ2(x) = 0. The
same reasoning is applied to the construction of ϕ4(x) and ϕ6(x).
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Fig. 1.8. Illustration of the piecewise quadratic basis functions associated with
nodes in element Ω(1).

Figure 1.9 shows the construction of piecewise linear basis functions (d =
1). Also here we have four elements on Ω = [0, 1]. Consider the element
Ω(1) = [0.25, 0.5]. Now there are no internal nodes in the elements so that
all basis functions are associated with nodes at the element boundaries and
hence made up of two Lagrange polynomials from neighboring elements. For
example, ϕ1(x) results from (i) the Lagrange polynomial in element 0 that
is 1 at local node 1 and 0 at local node 0, and (ii) the Lagrange polynomial
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in element 1 that is 1 at local node 0 and 0 at local node 1. The other basis
functions are constructed similarly.

Explicit mathematical formulas are needed for ϕi(x) in computations. In
the piecewise linear case, one can show that

ϕi(x) =















0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(1.50)

Here, xj , j = i− 1, i, i+ 1, denotes the coordinate of node j. For elements of
equal length h the formulas can be simplified to

ϕi(x) =















0, x < xi−1,
(x− xi−1)/h, xi−1 ≤ x < xi,
1− (x− xi)/h, xi ≤ x < xi+1,
0, x ≥ xi+1

(1.51)
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Fig. 1.9. Illustration of the piecewise linear basis functions associated with nodes
in element Ω(1).

Piecewise cubic basis functions can be defined by introducing four nodes
per element. Figure 1.10 shows examples on ϕi(x), i = 3, 4, 5, 6, associated
with element number 1. Note that ϕ4 and ϕ5 are nonzero on element number
1, while ϕ3 and ϕ6 are made up of Lagrange polynomials on two neighboring
elements.
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Fig. 1.10. Illustration of the piecewise cubic basis functions associated with nodes
in element Ω(1).

We see that all the piecewise linear basis functions have the same “hat”
shape. They are naturally referred to as hat functions (also called chapau
functions). The piecewise quadratic functions in Figure 1.8 are seen to be of
two types. “Rounded hats”associated with internal nodes in the elements and
some more “sombrero” shaped hats associated with element boundary nodes.
Higher-order basis functions also have hat-like shapes, but the functions have
pronounced oscillations in addition, as illustrated in Figure 1.10.

A common terminology is to speak about linear elements as elements with
two local nodes and where the basis functions are piecewise linear. Similarly,
quadratic elements and cubic elements refer to piecewise quadratic or cubic
functions over elements with three or four local nodes, respectively. Alter-
native names, frequently used later, are P1 elements for linear elements, P2
for quadratic elements, and so forth (Pd signifies degree d of the polynomial
basis functions).

1.4.3 Calculating the Linear System

The elements in the coefficient matrix and right-hand side, given by the for-
mulas (1.25) and (1.26), will now be calculated for piecewise polynomial basis
functions. Consider P1 (piecewise linear) elements. Nodes and elements num-
bered consequtively from left to right imply the elements

Ω(i) = [xi, xi+1] = [ih, (i+ 1)h], i = 0, . . . , N − 1 . (1.52)
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We have in this case N elements and N + 1 nodes, and Ω = [x0, xN ]. The
formula for ϕi(x) is given by (1.51) and a graphical illustration is provided
in Figure 1.9. First we see from Figure 1.9 that ϕi(x)ϕj(x) 6= 0 if and only if
j = i− 1, j = i, or j = i+ 1, or with other words, if and only if i and j are
nodes in the same element. Otherwise, ϕi and ϕj are too distant to have an
overlap and consequently a nonzero product.

The element Ai,i−1 in the coefficient matrix can be calculated as

∫

Ω

ϕiϕi−1dx =

∫ xi

xi−1

(

1− x− xi−1

h

)

x− xi

h
dx =

h

6
.

It turns out that Ai,i+1 = h/6 as well and that Ai,i = 2h/3. The numbers
are modified for i = 0 and i = N : A0,0 = h/3 and AN,N = h/3. The general
formula for the right-hand side becomes

bi =

∫ xi

xi−1

x− xi−1

h
f(x)dx+

∫ xi+1

xi

(

1− x− xi

h

)

f(x)dx . (1.53)

With two equal-sized elements in Ω = [0, 1] and f(x) = x(1− x), one gets

A =
h

6





2 1 0
1 4 1
0 1 2



 , b =
h2

12





2− 3h
12− 14h
10− 17h



 .

The solution becomes

c0 =
h2

6
, c1 = h− 5

6
h2, c2 = 2h− 23

6
h2 .

The resulting function

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)

is displayed in Figure 1.11a. Doubling the number of elements to four results
in the improved approximation in Figure 1.11b.

The integrals are naturally split into integrals over individual elements
since the formulas change with the elements. This idea of splitting the integral
is fundamental in all practical implementations of the finite element method.

1.4.4 Assembly of Elementwise Computations

Let us split the integral over Ω into a sum of contributions from each element:

Ai,j =

∫

Ω

ϕiϕjdx =
∑

e

A
(e)
i,j , A

(e)
i,j =

∫

Ω(e)

ϕiϕjdx . (1.54)

Now, A
(e)
i,j 6= 0 if and only if i and j are nodes in element e. Introduce i =

q(e, r) as the mapping of local node number r in element e to the global node
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Fig. 1.11. Least-squares approximation of f(x) = x(1 − x) on Ω = [0, 1] by finite
elements with piecewise linear basis functions: (a) two elements; (b) four elements.

number i. This is just a short notation for the expression i=elements[e][r]

in a program. Let r and s be the local node numbers corresponding to the
global node numbers i = q(e, r) and j = q(e, s). With d nodes per element, all

the nonzero elements in A
(e)
i,j arise from the integrals involving basis functions

with indices corresponding to the global node numbers in element number e:

∫

Ω(e)

ϕq(e,r)ϕq(e,s)dx, r, s = 0, . . . , d .

These contributions can be collected in a (d+ 1)× (d+ 1) matrix known as
the element matrix. We introduce the notation

Ã(e) = {Ã(e)
r,s}, r, s = 0, . . . , d,

for the element matrix. Given the numbers Ã
(e)
r,s , we should acoording to

(1.54) add the contributions to the global coefficient matrix by

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s = 0, . . . , d . (1.55)

This process of adding in elementwise contributions to the global matrix is
called finite element assembly or simply assembly. Figure 1.12 gives a picture
how element matrices for elements with two nodes are added into the global
matrix.

The right-hand side of the linear system is also computed elementwise:

bi =

∫

Ω

ϕiϕjdx =
∑

e

b
(e)
i , b

(e)
i =

∫

Ω(e)

f(x)ϕi(x)dx . (1.56)

We observe that b
(e)
i 6= 0 if and only if global node i is a node in element e.

With d nodes per element we can collect the d+1 nonzero contributions b
(e)
i ,
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element matrices global matrix

2

3

elements[e][r]

Fig. 1.12. Illustration of matrix assembly: element matrices, corresponding to el-
ement 2 and 3, are added to the global matrix. The global node numbers and
elements are here numbered from left to right in the domain Ω.

for i = q(e, r), r = 0, . . . , d, in an element vector

b̃(e)r = {b̃(e)r }, r = 0, . . . , d .

These contributions are added to the global right-hand side by an assembly
process similar to that for the element matrices:

bq(e,r) := bq(e,r) + b̃(e)r , r, s = 0, . . . , d . (1.57)

1.4.5 Mapping to a Reference Element

Instead of computing the integrals

Ã(e)
r,s =

∫

Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx

over some element4 Ω(e) = [xL, xR], it is convenient to map the element
domain [xL, xR] to a standardized reference element domain [−1, 1]. Let X
be the coordinate in the reference element. A linear or affine mapping from
X to x reads

x =
1

2
(xL + xR) +

1

2
(xR − xL)X . (1.58)

4 We now introduce xL and xR as the left and right boundary points of an element.
With a natural numbering of noes and elements from left to right through the
domain, xL = xe and xR = xe+1.
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Integrating on the reference element is a matter of just changing the
integration variable from x to X. Let

ϕ̃r(X) = ϕq(e,r)(x(X)) (1.59)

be the basis function associated with local node number r in the reference
element. The integral transformation reads

Ã(e)
r,s =

∫

Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx =

∫ 1

−1

ϕ̃r(X)ϕ̃s(X)
dx

dX
dX . (1.60)

The stretch factor dx/dX between the x and X coordinates becomes the
determinant of the Jacobian matrix of the mapping between the coordinate
systems in 2D and 3D. To obtain a uniform notation for 1D, 2D, and 3D
problems we therefore replace dx/dX by det J already now. In 1D, det J =
dx/dX = h/2, h being the length of the element (h = xR − xL when Ωe =
[xL, xR]). The integration over the reference element is then written as

Ã(e)
r,s =

∫ 1

−1

ϕ̃r(X)ϕ̃s(X) det J dX . (1.61)

The corresponding formula for the element vector entries becomes

b̃(e)r =

∫

Ω(e)

f(x)ϕq(e,r)(x)dx =

∫ 1

−1

f(x(X))ϕ̃r(X) det J dX . (1.62)

Since we from now on will work in the reference element, we need explicit
mathematical formulas for the basis functions ϕi(x) in the reference element
only, i.e., we only need to specify formulas for ϕ̃r(X). These functions are
simply the Lagrange polynomials defined through the local nodes in the ref-
erence element. For d = 1 and two nodes per element, we have the linear
Lagrange polynomials

ϕ̃0(X) =
1

2
(1−X) (1.63)

ϕ̃1(X) =
1

2
(1 +X) (1.64)

Quadratic polynomials, d = 2, have the formulas

ϕ̃0(X) =
1

2
(X − 1)X (1.65)

ϕ̃1(X) = 1−X2 (1.66)

ϕ̃2(X) =
1

2
(X + 1)X (1.67)

In general,

ϕ̃r(x) =

d
∏

s=0

X −X(s)

X(r) −X(s)
, (1.68)

where X(0), . . . , X(d) are the coordinates of the local nodes in the reference
element. These are normally uniformly spaced:X(r) = −1+2r/d, r = 0, . . . , d.
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1.4.6 Implementation of Reference Element Integration

To illustrate the concepts from the previous section, we now consider calcu-
lation of the element matrix and vector for a specific choice of d and f(x). A
simple choice is d = 1 and f(x) = x(1− x) on Ω = [0, 1]. We have

Ã(e)
r,s =

∫ 1

−1

ϕ̃r(X)ϕ̃s(X) det J dX, (1.69)

b̃(e)r =

∫ 1

−1

f(x(X))ϕ̃r(X) det J dX . (1.70)

1.4.7 Implementation of Symbolic Integration

Although it may be instructive to compute Ã
(e)
r,s and b̃

(e)
r by hand, it is also

natural to make use of sympy and automate the integrations. Appropriate
functions for this purpose are found in the module fe_approx1D.py. First we
need a Python function for defining ϕ̃r(X) in terms of a Lagrange polynomial
of degree d:

import sympy as sm
import numpy as np

def phi_r(r, X, d):
if isinstance(X, sm.Symbol):

h = sm.Rational(1, d)
nodes = [2*i*h - 1 for i in range(d+1)]

else:
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Observe how we construct the phi_r function to be a symbolic expression
for ϕ̃r(X) if X is a sympy Symbol object. Otherwise, we assume that X is a
float object and compute the corresponding floating-point value of ϕ̃r(X).
The Lagrange_polynomial function, copied here from Chapter 1.3.6, works
with both symbolic and numeric x and points variables.

The complete basis ϕ̃0(X), . . . , ϕ̃d(X) on the reference element is con-
structed by

def basis(d=1):
X = sm.Symbol(’X’)
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi
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Now we are in a position to write the function for computing the element
matrix:

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sm.zeros((n, n))
X = sm.Symbol(’X’)
if symbolic:

h = sm.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sm.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

In the symbolic case (symbolic is True), we introduce the element length as
a symbol h in the computations. Otherwise, the real numerical value of the
element interval Omega_e is used and the final matrix elements are numbers,
not symbols. This functionality can be demonstrated:

>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

The computation of the element vector is done by a similar procedure:

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sm.zeros((n, 1))
# Make f a function of X
X = sm.Symbol(’X’)
if symbolic:

h = sm.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x)
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sm.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Here we need to replace x in the expression for f by X, using the mapping
formula. Realize that the previous code segments also document the step by
step procedyre that is needed to perform calculations by hand.

The integration in the element matrix function involves only products of
polynomials, which sympy can easily deal with, but for the right-hand side
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sympy may face difficulties with certain types of expressions f. It may there-
fore be wise to introduce a fallback on numerical integration (see page 22):

I = sm.integrate(f*phi[r]*detJ, (X, -1, 1))
if isinstance(I, sm.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sm.lambdify([X], f*phi[r]*detJ)
I = sm.mpmath.quad(integrand, [-1, 1])

b_e[r] = I

Successful numerical integration requires that the symbolic integrand is con-
verted to a plain Python function (integrand) and that the element length
h is indeed a real number.

1.4.8 Implementation of Linear System Assembly and Solution

The complete algorithm for computing and assembling the elementwise con-
tributions takes the following form

def assemble(nodes, elements, phi, f, symbolic=True):
n_n, n_e = len(nodes), len(elements)
A = sm.zeros((n_n, n_n))
b = sm.zeros((n_n, 1))
for e in range(n_e):

Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

The nodes and elements variables represent the finite element mesh as ex-
plained earlier.

Given the coefficient matrix A and the right-hand side b, we can compute
the cofficients c0, . . . , cN in the expansion u(x) =

∑

j cjϕj as the solution
vector c of the linear system:

c = A.LUsolve(b)

Note that A and b are sympymatrices and that the solution procedure implied
by A.LUsolve is symbolic. This means that the functions above are suited
only for small problems (small N values). Normally, the symbolic integration
will be more time consuming than the symbolic solution of the linear system.
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Example on Computing Approximations. We can exemplify the use of assemble
on the computational case from Chapter 1.4.3 with two elements with linear
basis functions on the domain Ω = [0, 1]. Let us first work with a symbolic
element length:

>>> h, x = sm.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]

We may, for comparison, compute the c vector that corresponds to just in-
terpolating f at the node points:

>>> fn = sm.lambdify([x], f)
>>> [fn(xc) for xc in nodes]
[0, h*(1 - h), 2*h*(1 - 2*h)]

The corresponding numerical computations, as done by sympy and still
based on symbolic integration, goes as follows:

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sm.Symbol(’x’)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The fe_approx1Dmodule contains functions for generating the nodes and
elements lists for equal-sized elements with any number of nodes per element.
The coordinates in nodes can be expressed either through the element length
symbol h or by real numbers. There is also a function
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def approximate(f, symbolic=False, d=1, n_e=4, filename=’tmp.eps’):

which computes a mesh with n_e elements, basis functions of degree d, and
approximates a given symbolic expression f by a finite element expansion
u(x) =

∑

j cjϕj(x). When symbolic is False, u(x) can be computed at
a (large) number of points and plotted together with f(x). The construc-
tion of u points from the solution vector c is done elementwise by evaluting
∑

r crϕ̃r(X) at a (large) number of points in each element, and the discrete
(x, u) values on each elements are stored in arrays that are finally concate-
nated to form global arrays with the x and u coordinates for plotting. The
details are found in the u_glob function in fe_approx1D.py.

1.4.9 The Structure of the Coefficient Matrix

Let us first see how the global matrix looks like if we assemble symbolic
element matrices, expressed in terms of h, from several elements:

>>> d=1; n_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(n_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader should assemble the element matrices by hand and verify this
result. In general we have a coeffient matrix that is tridiagonal:

A =
h

6
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(1.71)

The structure of the right-hand side is more difficult to reveal since it
involves an assembly of elementwise integrals of f(x(X))ϕ̃r(X)h/2, which
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obviously depend on f(x). It is easier to look at the integration in x coor-
dinates, which gives the general formula (1.53). For equal-sized elements of
length h, we can apply the Trapezoidal rule to arrive at a somewhat more
specific expression that (1.53).

bi = h





1

2
φi(x0)f(x0) +

1

2
φi(xN )f(xN ) +

N−1
∑

j=1

φi(xi)f(xi)



 =

{

1
2hf(xi), i = 0 or i = N,
hf(xi), 1 ≤ i ≤ N − 1

(1.72)
The reason for this simple formula is simply that φi is either 0 or 1 at the
nodes and 0 at all but one of them.

Going to P2 elements (d=2) leads to the element matrix

A(e) =
h

30





4 2 −1
2 16 2
−1 2 4



 (1.73)

and the following global assembled matrix from four elements:

A =
h

30





























4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4





























(1.74)

In general, for i odd we have the nonzeroes

Ai,i−2 = −1, Ai−1,i = 2, Ai,i = 8, Ai+1,i = 2, Ai+2,i = −1,

multiplied by h/30, and for i even we have the nonzeros

Ai−1,i = 2, Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to nodes at the
element boundaries and get contributions from two neighboring elements in
the assembly process, while the even numbered rows correspond to internal
nodes in the elements where the only one element contributes to the values
in the global matrix.

1.4.10 Applications

With the aid of the approximate function in the fe_approx1D module we
can easily investigate the quality of various finite element approximations to
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some given functions. Figure 1.13 shows how linear and quadratic elements
approximates the polynomial f(x) = x(1 − x)8 on Ω = [0, 1]. The results
arise from the program

import sympy as sm
from fe_approx1D import approximate
x = sm.Symbol(’x’)

approximate(x*(1-x)**8, symbolic=False, d=1, n_e=4)
approximate(x*(1-x)**8, symbolic=False, d=2, n_e=2)
approximate(x*(1-x)**8, symbolic=False, d=1, n_e=8)
approximate(x*(1-x)**8, symbolic=False, d=2, n_e=4)

The quadratic functions are seen to be better than the linear ones for the same
value of N , as we increase N . This observation has some generality: higher
degree is not necessarily better on a coarse mesh, but it is as we refined the
mesh.
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Fig. 1.13. Comparison of the finite element approximation u(x) to f(x) = x(1−x)8

on Ω = [0, 1]. The approximation applies ne equal-sized elements with polynomials
of degree d, resulting in N unknowns: (a) d = 1, ne = 4, N = 5; (b) d = 2, ne = 2,
N = 5; (c) d = 1, ne = 8, N = 9; (d) d = 2, ne = 4, N = 9.
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Some of the examples in the present section took several minutes to com-
pute, even on small meshes consisting of up to eight elements. The main ex-
planation for slow computations is unsuccessful symbolic integration: sympy
may use a lot of energy on integrals like

∫

f(x(X))ϕ̃r(X)h/2dx before giving
up, and the program resorts to numerical integration. Codes that can deal
with a large number of basis functions and accept flexible choices of f(x)
should compute all integrals numerically and replace the matrix objects from
sympy by the far more efficent array objects from numpy. In particular, one
should turn to sparse storage formats for the coefficient matrix since most
of the terms are known to be zero, and also utilize efficient algorithms for
solving linear systems with sparse coefficient matrices. This is the topic of
the next two sections.

1.4.11 Numerical Integration

Finite element codes usually apply numerical approximations to integrals.
Since the integrands in the coefficient matrix often are (lower-order) polyno-
mials, integration rules that can integrate polynomials exactly are popular.

The numerical integration rules can be expressed on a common form,

∫ 1

−1

g(X)dX ≈
M
∑

j=0

wjX̄j , (1.75)

where X̄j are integration points and wj are integration weights, j = 0, . . . ,M .
Different rules correspond to different choices of points and weights.

Three well-known rules are the Midpoint rule,

∫ 1

−1

g(X)dX ≈ 2g(0), X̄0 = 0, w0 = 2, (1.76)

the Trapezoidal rule,

∫ 1

−1

g(X)dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1, (1.77)

and Simpson’s rule,

∫ 1

−1

g(X)dX ≈ 1

3
(g(−1) + 4g(0) + g(1)) , (1.78)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 =
1

3
, w1 =

4

3
. (1.79)

All these rules apply equally spaced points. More accurate rules, for a given
M , arise if the location of the points are optimized for polynomial integrands.
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The Gauss-Legendre rules (also known as Gauss-Legendre quadrature) con-
stitute one such class of integration methods. Two widely Gauss-Legendre
rules in this family have the choice

M = 1 : X̄0 = − 1√
3
, X̄1 =

1√
3
, w0 = w1 = 1 (1.80)

M = 2 : X̄0 = −
√

3√
5
, X̄0 = 0, X̄2 =

√

3√
5
, w0 = w2 =

5

9
, w1 =

8

9
.

(1.81)

These rules integrate 3rd and 5th degree polynomials exactly. In general,
an M -point Gauss-Legendre rule integrates a polynomial of degree 2M + 1
exactly.

1.4.12 Summary of a Finite Element

The concept of a finite element contains four key components, which we now
formulate in a more abstract sense suitable for later use. A finite element is
defined by

1. a geometric domain in a local reference coordinate system;

2. a set of d+ 1 basis functions ϕ̃i defined on the element;

3. a set of d+ 1 degrees of freedom that uniquely determine the basis func-
tions such that ϕ̃i = 1 for degree of freedom number i and ϕ̃i = 0 for all
other degrees of freedom;

4. a mapping of the element from the reference coordinate system to the
physical coordinate system.

Property 3 ensures that a finite element function u can be written as

u(x) =

N
∑

j=0

cjϕ̃j(x),

where cj is the value of degree of freedom number j of u. The most common
example of a degree of freedom is the function value at a point. With a
mapping between local degrees of freedom and global degrees of freedom, one
can relate the expansion of u on an element to its expansion in the global
physical domain.

The elements we have seen so far in these notes have been one-dimensional
and the geometric domain is therefore an interval and in particular the inter-
val [−1, 1] in the reference coordinate system X. As basis functions we have
chosen Lagrange polynomials. The degrees of freedom are then the function
values at d+1 nodes. We have used equally spaced nodes. The mapping from
the reference system to the physical system is linear.
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We shall see that the above characteristics of an element generalize to
higher dimensions and to much more complicated elements. The concept of
degrees of freedom is important: we may choose other parameters than the
function values at points as the interpretation of the coefficients cj . Here is
one example. Suppose we want an approximation to f based on piecewise
constant functions. Then we can construct an element with one local basis
function, ϕ̃0(X) = 1. The associated degree of freedom can be taken as the
function value at a node in the middle of the element. In this case the element
will have only one node and no nodes on the boundary. Alternatively, we can
omit the concept of nodes and say the degree of freedom is the mean value of
a function rather than a point value. That is, c0 is the mean value of u over
the element. To get a mean value (degree of freedom value) of 1 for ϕ̃0(x)
over [−1, 1], we must have ϕ̃0(X) = 1/2. A global basis functions is associated
with one element, typically ϕi equals 1/hi, where hi is the length of element
i. Then

∫

Ω(i) ϕidx = 1. The mapping from local degrees of freedom to global
degrees of freedom is simple: local degree of freedom 0 in element e maps to
global degree of freedom e.

1.4.13 Sparse Matrix Storage and Solution

1.4.14 Accuracy of Piecewise Polynomial Approximations

Experimental.

1.5 Exercises

Exercise 1.1. Linear algebra refresher I.
Look up the topic of vector space in your favorite linear algebra book or

search for the term at Wikipedia. Prove that vectors in the plane (a, b) form
a vector space by showing that all the axioms of a vector space are satisfied.
Similarly, prove that all linear functions of the form ax+b constitute a vector
space. ⋄

Exercise 1.2. Linear algebra refresher II.
As an extension of Exercise 1.2, check out the topic of inner vector spaces.

Show that both examples of spaces in Exercise 1.2 can be equipped with an
inner product and show that the choice of inner product satisfied the general
requirements of an inner product in a vector space. ⋄

Exercise 1.3. Approximate a three-dimensional vector in a plane.
Given fff = (1, 1, 1) in R

3, find the best approximation vector uuu in the
plane spanned by the unit vectors (1, 0) and (0, 1). Name of program file:
vec111_approx1.py. ⋄
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Exercise 1.4. Solve Exer. 1.3 using a different basis.
We address the same approximation problem as in Exercise 1.3, but choose

uuu ∈ V where
V = span {(2, 1), (1, 2)} .

Name of program file: vec111_approx2.py. ⋄

Exercise 1.5. Approximate the exponential function by power functions.
Let V be a function space with basis functions xk, k = 0, 1, . . . , N . Find

the best approximation to f(x) = ex among all functions in V , using N = 8
and the least_squares function from Chapter 1.3. Name of program file:
exp_by_powers.py. ⋄

Exercise 1.6. Approximate a high frequency sine function by lower frequency
sines.

Find the best approximation of f(x) = sin(20x) on [0, 2π] in the space V
with basis

{sinx, sin 2x, sin 3x},
using the least_squares_orth function from Chapter 1.3.6. Plot f(x) and
its approximation. Name of program file: hilow_sine_approx.py. ⋄

Exercise 1.7. Fourier series as a least-squares approximation.
Given a function f(x) on an interval [0, L], find the formula for the coef-

ficients of the Fourier series of f :

f(x) = a0 +

∞
∑

j=1

aj cos
(

j
πx

L

)

+

∞
∑

j=1

bj sin
(

j
πx

L

)

.

Let an infinite-dimensional vector space V have the basis functions cos j πx
L

for j = 0, 1, . . . ,∞ and sin j πx
L for j = 1, . . . ,∞. Show that the least-squares

approximation method from Chapter 1.3 leads to a linear system whose so-
lution coincides with the standard formulas for the coefficients in a Fourier
series of f(x) (see also Chapter 1.3.6). You may choose

ϕ2i = cos
(

i
π

L
x
)

, ϕ2i+1 = sin
(

i
π

L
x
)

,

for i = 0, 1, . . . , N → ∞.
Choose a specific function f(x), calculate the coefficients in the Fourier

expansion by solving the linear system, arising from the least squares method,
by hand. Plot some truncated versions of the series together with f(x) to show
how the series expansion converge. Name of program file: Fourier_series.py.
⋄

Exercise 1.8. Approximate a tanh function by Lagrange polynomials.
Use interpolation (or collocation) with uniformly distributed points and

Chebychev nodes to approximate

f(x) = tanh(s(x− 1

2
))
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by Lagrange polynomials for s = 10, 100 andN = 3, 6, 9, 11. Name of program
file: tanh_approx.py. ⋄
Exercise 1.9. Improve an approximation by sines.

Consider the approximations of a parabola by a sum of sine functions
in Chapter 1.3.6. Since we always have that u(0) = 0 the approximation at
x = 0 can never be good. Try a remedy:

u(x) = f(0) +
N
∑

j=0

sin((i+ 1)πx) .

Now u(0) = f(0). Plot the approximations for N = 4 and N = 12 together
with f . Is the approximation better than the ones in Figure 1.2? Name of
program file: parabola_by_sines.py. ⋄
Exercise 1.10. Define finite element meshes.

Consider a domain Ω = [0, 2] divided into the three elements [0, 1], [1, 1.2],
and [1.2, 2]. Suggest three different element numberings and global node num-
berings for this mesh and set up the corresponding nodes and elements lists
in each case. Then subdivide the element [1.2, 2] into two new equal-sized
elements and explain how you can extend the nodes and elements data
structures to incorporate the new elements and nodes. fe_numberings.py. ⋄
Exercise 1.11. Approximate a step function by finite elements.

Approximate the step function

f(x) =

{

1 x < 1/2,
2 x ≥ 1/2

This f can also be expressed in terms of the Heaviside function H(x): f(x) =
H(x−1/2). Use 2, 4, and 8 P1 and P2 elements, and compare approximations
visually.

Hint: f can be defined by f = sm.Heaviside(x - sm.Rational(1,2)),
making the approximate function in the fe_approx1D.py module an obvi-
ous candidate to solve the problem. However, sympy does not handle symbolic
integration with the integrands and the approximate function faces a prob-
lem when converting f to a Python function (for plotting) since Heaviside

is not an available function in numpy. Make special-purpose code for this
case instead, or perform all caluclations by hand. Name of program file:
Heaviside_approx_P1P2.py. ⋄
Exercise 1.12. Perform symbolic finite element computations.

Find the coefficient matrix and right-hand side for approximating f(x) =
A sinωx on Ω = [0, 2π/ω] by P1 elements of size h. Perform the calculations
in software. Solve the system in case of two elements. Asinwt_approx_P1.py.
⋄
Exercise 1.13. ....

...py. ⋄



Chapter 2

Stationary Diffusion

The finite element method is a very flexible approach for solving partial dif-
ferential equations. Its two most attractive features are the ease of handling
domains of complex shape in two and three dimensions and the ease of con-
structing higher-order discretization methods. The finite element method is
usually applied for discretization in space, and therefore spatial problems
will be our focus in this chapter. Extensions to time-dependent problems are
covered in the next chapter.

2.1 Basic Principles

2.1.1 Differential Equation Models

Let us consider an abstract differential equation for a function u(x) of one
variable, written as

L(u) = 0, x ∈ Ω . (2.1)

Here are a few examples on possible choices of L(u), of increasing complexity:

L(u) = d2u

dx2
− f(x), (2.2)

L(u) = d

dx

(

α(x)
du

dx

)

+ f(x), (2.3)

L(u) = d

dx

(

α(u)
du

dx

)

− ω2u+ f(x), (2.4)

L(u) = d

dx

(

α(u)
du

dx

)

+ f(u, x) . (2.5)

Both α(x) and f(x) are considered as specified functions, while ω is a pre-
scribed parameter. Differential equations corresponding to (2.2)–(2.3) arise
in diffusion phenomena, such as steady transport of heat in solids and flow
of viscous fluids between flat plates. The form (2.4) arises when transient
diffusion or wave phenomenon are discretized in time by finite differences.
The equation (2.5) appear in chemical models when diffusion of a substance
is combined with chemical reactions. Also in biology, (2.5) plays an impor-
tant role, both for spreading of species and in physiological models involving
generation and propagation of electrical signals.

Let Ω = [0, L] be the domain in one space dimension. In addition to the
differential equation, u must fulfill boundary conditions at the boundaries of
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the domain, x = 0 and x = L. When L contains up to second-order deriva-
tives, as in the examples above, m = 1, we need one boundary conditions at
each of the two boundary points, here abstractly specified as

B0(u) = 0, x = 0, B1(u) = 0, x = L (2.6)

There are three common choices of boundary conditions:

Bi(u) = u− g, Dirichlet condition, (2.7)

Bi(u) = −α
du

dx
− g, Neumann condition, (2.8)

Bi(u) = −α
du

dx
− a(u− g), Robin condition . (2.9)

(2.10)

Here, g and a are specified quantities.
From now on we shall use ue(x) as symbol for the exact solution, fulfilling

L(ue) = 0, x ∈ Ω, (2.11)

while u(x) denotes an approximate solution of the differential equation. We
must immediately remark that in the literature about the finite element
method, is common to use u as the exact solution and uh as the approxi-
mate solution, where h is a discretization parameter. However, the vast part
of the present text is about the approximate solutions, and having a sub-
script h attached all the time is cumbersome. Of equal importance is the close
correspondence between implementation and mathematics that we strive to
achieve in this book: when it is natural to use u and not u_h in code, we
let the mathematical notation be dictated by the code’s preferred notation.
After all, it is the powerful computer implementations of the finite element
method that justifies studying the mathematical formulation and aspects of
the method.

A common model problem used much in this chapter is

−u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = D . (2.12)

The specific choice of f(x) = 2 gives the solution

ue(x) = x(U1 + L− x) .

A closely related problem with a different boundary condition at x = 0 reads

−u′′(x) = f(x), x ∈ Ω = [0, L], u′(0) = E, u(L) = D . (2.13)

A third variant has a variable cofficient,

−(α(x)u′(x))′ = f(x), x ∈ Ω = [0, L], u′(0) = E, u(L) = D . (2.14)
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2.1.2 Residual-Minimizing Principles

The fundamental idea is to seek an approximate solution u in some space V
with basis

{ϕ0(x), . . . , ϕN (x)},
which means that u can always be expressed as1

u(x) =

N
∑

j=0

cjϕj(x),

for some unknown coefficients c0, . . . , cN . As in Chapter 1.3, we need princi-
ples for deriving N+1 equations to determine the N+1 unknowns c0, . . . , cN .
A key idea of Chapter 1.3 was to minimize the approximation error e = u−f .
That principle is not so useful here since the approximation error e = ue − u
is unknown to us when ue is unknown. The only general indicator we have
on the quality of the approximate solution is to what degree u fulfills the
differential equation. Inserting u =

∑

j cjϕj into L(u) reveals that the result
is not zero, because u is only likely to equal ue. The nonzero result,

R = L(u) = L(
∑

j

cjϕj), (2.15)

is called the residual and measures the error in fulfilling the governing equa-
tion. Various principles for determining c0, . . . , cN try to minimize R in some
sense. Note that R varies with x and the c0, . . . , cN parameters. We may write
this dependence explicitly as

R = R(x; c0, . . . , cN ) . (2.16)

The Least-Squares Method. The least-squares method aims to find c0, . . . , cN
so that the integrated square of the residual,

∫

Ω

R2dx (2.17)

is minimized. By introducing an inner product of two fuctions f and g on Ω
as

(f, g) =

∫

Ω

f(x)g(x)dx, (2.18)

the least-squares method can be defined as

min
c0,...,cN

E = (R,R) . (2.19)

1 Later, in Chapter 2.1.6, we will see that if we specify boundary values of u
different from zero, we must look for an approximate solution u(x) = B(x) +∑N

j=0 cjϕj(x), where
∑

j
cjϕj ∈ V and B(x) is some function for incorporating

the right boundary values. Because of B(x), u will not necessarily lie in V . This
modification does not imply any difficulties.
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Differentiating with respect to the free parameters c0, . . . , cN gives the N +1
equations

∫

Ω

2R
∂R

∂ci
dx = 0 ⇔ (R,

∂R

∂ci
) = 0, i = 0, . . . , N . (2.20)

The Galerkin Method. From Chapter 1.3.1 we saw that the least-squares
principle is equivalent to demanding the error to be orthogonal to the space
V . Adopting this principle for the residual R, instead of the true error, implies
that we seek c0, . . . , cN such that

(R, v) = 0, ∀v ∈ V . (2.21)

This is the Galerkin method for differential equations. As shown in (1.19)–
(1.20), this statement is equivalent to R being orthogonal to the N + 1 basis
functions only,

(R,ϕi) = 0, i = 0, . . . , N, (2.22)

yielding N + 1 equations for determining c0, . . . , cN .

The Method of Weighted Residuals. A generalization of the Galerkin method
is to demand that R is orthogonal to some space W , not necessarily the
same space as V where we seek the unknown function. This generalization is
naturally called the method of weighted residuals :

(R, v) = 0, ∀v ∈ W . (2.23)

If {w0, . . . , wN} is a basis for W , we can equivalently express the method of
weighted residuals as

(R,wi) = 0, i = 0, . . . , N . (2.24)

The result is N + 1 equations for c0, . . . , cN .
The least-squares method can also be viewed as a weighted residual method

with wi = ∂R/∂ci.

Variational Formulation. Formulations like (2.23) (or (2.24)) and (2.21) (or
(2.21)) are known as variational formulations2. These equations are in this
book foremost used for a numerical approximation u ∈ V , where V is a
finite-dimensional space with dimension N + 1. However, we may also let V

2 It may be subject to debate whether it is only the form of (2.23) or (2.21) after
integration by parts, as explained in Chapter 2.1.4, that qualifies for the term
variational formulation. The result after integration by parts is what is obtained
after taking the first variation of an optimization problem, see Chapter 2.2.1.
However, here we use variational formulation as a common term for formulations
which, in contrast to the differential equation R = 0, instead demand that an
average of R is zero: (R, v) = 0 for all v in some space.
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be an inifite-dimensional space containing the exact solution ue(x) such that
also ue fulfills a variational formulation. The variational formulation is in
that case a mathematical way of stating the problem, being an alternative to
the usual formulation of a differential equation with initial and/or boundary
conditions.

Test and Trial Functions. In the context of the Galerkin method and the
method of weighted residuals it is common to use the name trial function
for the approximate u =

∑

j cjϕj . The space containing the trial function is
known as the trial space. The function v entering the orthogonality require-
ment in the Galerkin method and the method of weighted residuals is called
test function, and so are the ϕi or wi functions that are used as weights in the
inner products with the residual. The space where the test functions comes
from is naturally called the test space.

We see that in the method of weighted residuals the test and trial spaces
are different and so are the test and trial functions. In the Galerkin method
the test and trial spaces are the same (so far). Later in Chapter 2.1.6 we shall
see that boundary conditions may lead to a difference between the test and
trial spaces in the Galerkin method.

The Collocation Method. The idea of the collocation method is to demand
that R vanishes at N + 1 selected points x0, . . . , xN in Ω:

R(xi; c0, . . . , cN ) = 0, i = 0, . . . , N . (2.25)

The collocation method can also be viewed as a method of weighted residuals
with Dirac delta functions as weighting functions. Let δ(x− xi) be the Dirac
delta function centered around x = xi with the properties that δ(x− xi) = 0
for x 6= xi and

∫

Ω

f(x)δ(x− xi)dx = f(xi), xi ∈ Ω . (2.26)

Intuitively, we think of δ(x−xi) as a very peak-shaped function around x = xi

with integral 1. Because of (2.26), we can let wi = δ(x − xi) be weighting
functions in the method of weighted residuals, and (2.24) becomes equivalent
to (2.25).

The Subdomain Collocation Method. The idea of this approach is to demand
the integral of R to vanish over N + 1 subdomains Ωi of Ω:

∫

Ωi

Rdx = 0, i = 0, . . . , N . (2.27)
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2.1.3 Examples on Using the Principles

Let us now apply global basis function to illustrate the principles for mini-
mizing R. Our choice of basis functions ϕi for V is

ϕi(x) = sin
(

(i+ 1)π
x

L

)

, i = 0, . . . , N . (2.28)

The following property of these functions becomes useful in the forthcoming
calculations:

L
∫

0

sin
(

(i+ 1)π
x

L

)

sin
(

(j + 1)π
x

L

)

dx =

{

1
2L i = j
0, i 6= j

(2.29)

provided i and j are integers.
We address the model problem (2.12). One immediate difficulty is that

with the above choice of basis functions, u(1) =
∑

j cj sin((i + 1)π) = 0
regardless of the coefficients c0, . . . , cN . We therefore set U1 = 0 so that u(x)
fulfills the boundary conditions u(0) = u(1) = 0. Later, in Chapter 2.1.6, we
shall see how we can deal with the condition u(1) = U1 6= 0.

The Residual. We can readily calculate the following explicit expression for
the residual:

R(x; c0, . . . , cN ) = u′′(x) + f(x),

=
d2

dx2





N
∑

j=0

cjϕj(x)



+ f(x),

= −
N
∑

j=0

cjϕ
′′
j (x) + f(x) . (2.30)

The Least-Squares Method. The equations (2.20) in the least-squares method
require an expression for ∂R/∂ci. We have

∂R

∂ci
=

∂

∂ci





N
∑

j=0

cjϕ
′′
j (x) + f(x)



 = ϕ′′
i (x) . (2.31)

The governing equations for c0, . . . , cN are then

(
∑

j

cjϕ
′′
j + f, ϕ′′

i ) = 0, i = 0, . . . , N, (2.32)

which can be rearranged as

N
∑

j=0

(ϕ′′
i , ϕ

′′
j )cj = −(f, ϕ′′

i ), i = 0, . . . , N . (2.33)
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This is nothing but a linear system

N
∑

j=0

Ai,jcj = bi, i = 0, . . . , N,

with

Ai,j = (ϕ′′
i , ϕ

′′
j )

= π4(i+ 1)2(j + 1)2L−4

∫ L

0

sin
(

(i+ 1)π
x

L

)

sin
(

(j + 1)π
x

L

)

dx

=

{

1
2L

−3π4(i+ 1)4 i = j
0, i 6= j

(2.34)

bi = −(f, ϕ′′
i ) = (i+ 1)2π2L−2

∫ L

0

f(x) sin
(

(i+ 1)π
x

L

)

dx (2.35)

Since the coefficient matrix is diagonal we can easily solve for

ci =
2L2

π2(i+ 1)2

∫ L

0

f(x) sin
(

(i+ 1)π
x

L

)

dx . (2.36)

With the special choice of f(x) = 2 the integral becomes

L cos(πi) + L

π(i+ 1)
,

according to http://wolframalpha.com(usej and not i (=
√
−1) when asking).

Hence,

ci =
4L3(1 + (−1)i)

π3(i+ 1)3
.

Now, 1 + (−1)i = 0 for i odd, so only the coefficients with even index are
nonzero. Introducing i = 2k for k = 0, . . . , N/2 to count the relevant indices,
we get the solution

u(x) =

N/2
∑

k=0

8L3

π3(2k + 1)3
sin
(

(2k + 1)π
x

L

)

. (2.37)

The coefficients decay very fast: c2 = c0/27, c4 = c0/125. The solution will
therefore be dominated by the first term,

u(x) ≈ 8L3

π3
sin
(

π
x

L

)

.
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The Galerkin Method. The Galerkin principle (2.21) applied to (2.12) consists
of inserting our special residual (2.30) in (2.21)

(u′′ + f, v) = 0, ∀v ∈ V,

or
(u′′, v) = −(f, v), ∀v ∈ V . (2.38)

This is the variational formulation, based on the Galerkin principle, of our
differential equation. By inserting the approximation for u and letting v = ϕi,
as in (2.21) we get

(

N
∑

j=0

cjϕ
′′
j , ϕi) = −(f, ϕ), i = 0, . . . , N . (2.39)

This equation can be rearranged to a form that explicitly shows that we get
a linear system for the unknowns c0,= . . . , cN :

N
∑

j=0

(ϕi, ϕ
′′
j )cj = (f, ϕi), i = 0, . . . , N . (2.40)

For the particular choice of the basis functions (2.28) we get in fact the same
linear system as in the least-squares method (because ϕ′′ = constϕ).

The Collocation Method. For the collocation method (2.25) we need to decide
upon a set of N+1 collocation points in Ω. A simple choice is to use uniformly
spaced points: xi = i∆x, where ∆x = L/N in our case (N ≥ 1). However,
these points lead to at least two rows in the matrix consisting of zeros (since
ϕi(x0) = 0 and ϕi(xN ) = 0), thereby making the matrix singular and non-
invertible. This forces us to choose some other collocation points, e.g., random
points:

points = np.random.uniform(0, L, size=N+1)

Demanding the residual to vanish at these points leads, in our model problem
(2.12), to the equations

−
N
∑

j=0

cjϕ
′′
j (xi) = f(xi), i = 0, . . . , N .. (2.41)

This is seen to be a linear system with entries

Ai,j = −ϕ′′
j (xi) = (j + 1)2π2L−2 sin

(

(j + 1)πi
L

NL

)

,

in the coefficient matrix and entries bi = 2 for the right-hand side (when
f(x) = 2). The special case of N = 0 can sometimes be of interest. A natural
choice is then the midpoint x0 = L/2 of the domain, which here results in
A0,0 = π2 and c0 = 2L2/π2.

Different dimension from Galerkin/LS
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Comparison.

2.1.4 Integration by Parts

A problem arises if we want to use the finite element functions from Chap-
ter 1.4 to solve our model problem (2.12) by the least-squares, Galerkin,
or collocation methods: the piecewise polynomials ϕi(x) have discontinuous
derivatives at the element boundaries which makes it problematic to compute
ϕ′′
i (x). This fact actually makes the least-squares and collocation methods

less suitable for finite element approximation of the unknown function3. The
Galerkin method and the method of weighted residuals can, however, be ap-
plied using integration by parts as a means for transforming a second-order
derivative to a first-order one.

Consider the model problem (2.12) and its Galerkin formulation

−(u′′, v) = (f, v) ∀v ∈ V .

Using integration by parts in the Galerkin method, we can move a derivative
on u to v:

∫ L

0

u′′(x)v(x)dx = −
∫ L

0

u′(x)v′(x)dx+ [vu′]L0

= −
∫ L

0

u′(x)v′(x)dx+ u′(L)v(L)− u′(0)v(0) . (2.42)

Usually, one integrates the problem at the stage where the u and v func-
tions enter the formulation. Alternatively, we can integrate by parts in the
expressions for the matrix entries:

∫ L

0

ϕi(x)ϕ
′′
j (x)dx = −

∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx+ [ϕiϕ

′
j ]
L
0

= −
∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx+ ϕi(L)ϕ

′
j(L)− ϕi(0)ϕ

′
j(0) .

(2.43)

Integration by parts serves to reduce the order of the derivatives and to make
the coefficient matrix symmetric since (ϕ′

i, ϕ
′
j) = (ϕ′

i, ϕ
′
j). The symmetry

property depends on the type of terms that enter the differential equation.
As will be seen later in Chapter 2.1.7, integration by parts also provides a
method for implementing boundary conditions involving u′.

3 By rewriting the equation −u′′ = f as a system of two first-order equations,
u′ = v and −v′ = f , the least-squares method can be applied. Differentiat-
ing discontinuous functions can, however, be handled by distribution theory in
mathematics, but this is a topc beyond the classical calculus demanded in this
book.
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With the choice (2.28) of basis functions we see that the“boundary terms”
ϕi(L)ϕ

′
j(L) and ϕi(0)ϕ

′
j(0) vanish since ϕi(0) = ϕi(L) = 0. This will happen

in many other examples too.
Since the variational formulation after integration by parts make weaker

demands on the differentiability of u and the basis functions ϕi, the resulting
integral formulation is referred to as a weak form of the differential equation
problem. The original variational formulation with second-order derivatives,
or the differential equation problem with second-order derivative, is then
the strong form, with stronger requirements on the differentiability of the
functions.

For differential equations with second-order derivatives, expressed as vari-
ational formulations and solved by finite element methods, we will always per-
form integration by parts to arrive at expressions involving only first-order
derivatives.

2.1.5 Computing with Finite Elements

The purpose of this section is to demonstrate how the model problem (2.12)
with D = 0 and f(x) = 2 can be solved using finite element basis functions.
The appropriate variational formulation is given by (2.42). Since u is known
to be zero at the end points of the interval, we can utilize a sum over the
basis functions associated with internal nodes only:

u(x) =

N−1
∑

j=1

cjϕj(x) .

Observe that u(0) and u(L) are zero since ϕ0 and ϕN are left out of the
sum. This means that only c1, . . . , cN−1 are unknowns and the variational
statement in (2.42) holds only for i = 1, . . . , N−1. For simplicity, we introduce
uniformly spaced nodes:

xi = ih, h = L/N, i = 0, . . . , N .

The simplest choice of elements are P1 elements with piecewise linear func-
tions. The elements are then Ω(e) = [xe, xe+1].

Global Computation. We shall first perform a computation in the x coor-
dinate system because the integrals can be easily computed here by some
geometric considerations. This is called a global approach since we work in
the x coordinate system and compute integrals on the global domain [0, L].

The ϕi(x) function is specified in (1.51) on page 26. The entries in the
coefficent matrix and right-hand side are

Ai,j =

∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx, bi =

∫ L

0

2ϕi(x)dx .
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We need the derivative of ϕi(x) to compute the coefficient matrix. These are

ϕi(x) =















0, x < xi−1,
h−1, xi−1 ≤ x < xi,
−h−1, xi ≤ x < xi+1,
0, x ≥ xi+1

(2.44)

We realize that ϕ′
i and ϕ′

j has no overlap, and hence their product vanishes,
unless i and j are nodes belonging to the same element. The only nonzero
contributions to the coefficient matrix are therefore

Ai−1,i =

∫ L

0

ϕ′
i−1(x)ϕ

′
i(x)dx, Ai,i =

∫ L

0

ϕi(x)
2dx, Ai,i+1 =

∫ L

0

ϕ′
i(x)ϕ

′
i+1(x)dx .

We see that ϕ′
i−1(x) and ϕ′

i(x) have overlap of one element Ω(i−1) = [xi−1, xi]
and that their product then is −h−2. Then Ai−1,i = −h−2h = −h−1. A
similar reasoning can be applied to Ai+1,i, which also becomes −h−1. The
integral of ϕ′

i(x)
2 gets contributions from two elements and becomes h−22h =

2h−1. The right-hand side involves an integral of ϕi(x), which is just the area
under a ”hat” function of height 1 and width 2h, i.e., equal to h. Hence,
bi = 2h.

The equation system to be solved now reads

1

h
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(2.45)

Since we know that cj equals u(xj), we can introduce the notation uj for the
value of u at node j. The i-th equation in this system is then

− 1

h
ui−1 +

2

h
ui −

1

h
ui+1 = 2h . (2.46)

A finite difference discretization of −u′′(x) = 2 by a centered, second-order
finite difference yields

−ui−1 + 2ui − ui+1

h2
= 2, (2.47)
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which is equivalent to (2.46) if (2.46) is divided by h. Therefore, the finite
difference and the finite element method are equivalent in this simple test
problem. Sometimes a finite element method generates the finite difference
equations on a uniform mesh, and sometimes the finite element method gen-
erates equations that are different. The differences are modest, but may in-
fluence the numerical quality of the solution significantly. There will be many
examples illustrating this point.

Elementwise Computations. We now employ the element by element compu-
tational procedure as explained in Chapters 1.4.4–1.4.6. All integrals need to
be mapped to the local reference coordinate system (X) according to Chap-
ter 1.4.5. In the present case, the matrix entries contain derivatives with
respect to x,

Ai,j =

∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx,

but our basis functions specified in the reference element [−1, 1] are expressed
in terms of the reference coordinate X. We can easily compute ϕ̃i/dX:

ϕ̃0(X) =
1

2
(1−X), ϕ̃1(X) =

1

2
(1 +X),

dϕ̃0

dX
= −1

2
,

dϕ̃1

dX
=

1

2
.

From the chain rule,
dϕ̃r

dx
=

dϕ̃r

dX

dX

dx
=

2

h

dϕ̃r

dX
. (2.48)

The integral is then transformed as follows:

Ai,j =

∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx =

∫ 1

−1

2

h

dϕ̃r

dX

2

h

dϕ̃s

dX

h

2
dX .

Here, r and s are local node numbers corresponding to the global i and j,
respectively.

The right-hand side is transformed as

bi =

∫ L

0

2ϕi(x)dx =

∫ 1

−1

2ϕ̃r(X)
h

2
dX .
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Specifically for P1 elements we get

A0,0 =

∫ 1

−1

2

h

(

−1

2

)

2

h

(

−1

2

)

2

h
dX =

1

h

A0,1 =

∫ 1

−1

2

h

(

−1

2

)

2

h

(

1

2

)

2

h
dX = − 1

h

A1,0 =

∫ 1

−1

2

h

(

1

2

)

2

h

(

−1

2

)

2

h
dX = − 1

h

A1,1 =

∫ 1

−1

2

h

(

1

2

)

2

h

(

1

2

)

2

h
dX =

1

h

b0 =

∫ 1

−1

2
1

2
(1−X)

h

2
dX = h

b1 =

∫ 1

−1

2
1

2
(1 +X)

h

2
dX = h

Writing up the element contributions on matrix and vector form, we have

Ã(e) = A =
1

h

(

1 −1
−1 1

)

, b̃(e) = h

(

1
1

)

. (2.49)

The next step is to assemble the contributions from the various elements.
Since only the unknowns c1, . . . , cN−1 enter the linear system, we assembly

only A
(0)
1,1 and A

(N−1)
0,0 from the first and last element, respectively. The result

becomes identical to (2.45) (which is not surprising since the mathematical
procedures are equivalent).

2.1.6 Boundary Conditions: Specified Value

When the unknown function is specified at the boundary, we have to take spe-
cial actions to incorporate the condition into the computational procedures.
This type of boundary condition is therefore called an essential condition. The
present section outlines alternative (yet mathematically equivalent) methods.
Later sections will futher explain and demonstrate how to handle essential
boundary conditions.

Boundary Function. A boundary condition of the form u(L) = D can be
implemented by demanding that ϕi(L) = 0, i = 0, . . . , N , and adding a
function B(x) with the right boundary value: B(L) = 0. We then see that

u(x) = B(x) +

N
∑

j=0

cjϕj(x)

gets the right value at x = L:

u(L) = B(L) +

N
∑

j=0

cjϕj(L) = B(L) = D .
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For any boundary where u is known we demand ϕi to vansh and construct a
function B(x) to attain the boundary value of u.

For example, with u(0) = 0 and u(L) = D we can choose B(x) = xD/L,
since B(0) = 0 and B(L) = D. The unknown function is then sought on the
form

u(x) =
x

L
D +

N
∑

j=0

cjϕj(x), (2.50)

with ϕi(0) = ϕi(L) = 0. Exercise 2.4 encourages doing the computations to
see how (2.50) modifies the results in the examples from Chapter 2.1.3.

Note that B(x) can be chosen in many ways as long as its boundary
values are correct. As an example, consider a domain Ω = [a, b] where the
the boundary conditions are u(a) = Ua and u(b) = Ub. A class of possible
B(x) functions is

B(x) = Ua +
Ub − Ua

(b− a)p
(x− a)p, p ∈ R .

In general we can formulate the procedure as follows. Let ∂ΩE be the
part(s) of the boundary ∂Ω of the domain Ω where u is specified. Set ϕi = 0
at the points in ∂ΩE . Seek u on the form

u(x) = B(x) +
N
∑

j=0

cjϕj(x), (2.51)

where B(x) equals the boundary conditions on u at ∂ΩE . With the B(x)
term, u does not in general lie in V = span {ϕ0, . . . , ϕN} anymore. Moreover,
when a prescribed value of u at the boundary, say u(a) = Ua is different from
zero, it does not make sense to say that u lies in a vector space, because this
space does not obey the requirements of addition and scalar multiplication.
For example, 2u does not lie in the space since its boundary value is 2Ua,
which is incorrect. It only makes sense to split u in two parts, as done above,
and have the unknown part

∑

j cjϕj in a proper function space.

Construction of B(x). An important special case arises for basis functions
with the property

ϕi(xj) =

{

1, i = j,
0, i 6= j,

when xj is a boundary point. Examples on such functions are the Lagrange
interpolating polynomials and finite element functions. With Ω = [x0, xN ]
and u(x0) = U0 and u(xN ) = UN we can then let

B(x) = U0ϕ0(x) + UNϕN (x) . (2.52)

It is easily realized that B(x0) = U0 and B(xN ) = UN , which is what we want.
The unknown u(x) applies the usual expansion, but with known boundary
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values,

u(x) = U0ϕ0(x) + UNϕN (x) +

N−1
∑

j=1

cjϕj(x) . (2.53)

If u is specified at only one boundary point, B(x) contains just the term
corresponding to that point and the sum

∑

j cjϕj runs over the rest of the
points. This construction of B can easily be generalized to two- and three-
dimensional problems for which the construction is particularly powerful.

Modification of the Linear System.

Modification of the Element Matrix and Vector.

2.1.7 Boundary Conditions: Specified Derivative

Consider now the boundary conditions u′(0) = E and u(L) = D in the
differential equation −u′′(x) = f(x). The latter boundary condition can be
implemented by introducing B(x) = xD/L and ensuring that ϕi(L) = 0,
i = 0, . . . , N . The former boundary condition involvng u′ is implemented by
the boundary terms that arise from integrating by parts. This will now be
shown.

Starting with the Galerkin method,

∫ L

0

(u′′(x) + f(x))ϕi(x)dx = 0, i = 0, . . . , N,

integrating u′′ϕi by parts results in

∫ L

0

u′(x)′ϕ′
i(x)dx−(u′(L)ϕi(L)−u′(0)ϕi(0)) =

∫ L

0

f(x)ϕi(x)dx, i = 0, . . . , N .

The first boundary term vanishes since ϕi(L) = 0 when u(L) is known. The
second term can be used to implement u′(0) = E, provided ϕi(0) 6= 0 for
some i. The variational formulation then becomes

∫ L

0

u′(x)ϕ′
i(x)dx+ Eϕi(0) =

∫ L

0

f(x)ϕi(x)dx, i = 0, . . . , N .

Inserting

u(x) = B(x) +

N
∑

j=0

cjϕj(x),

leads to the linear system

N
∑

j=0

(

∫ L

0

ϕ′
i(x)ϕ

′
j(x)dx

)

cj =

∫ L

0

(f(x)ϕi(x)−B′(x)ϕ′
i(x)) dx− Eϕi(0),

(2.54)
for i = 0, . . . , N .
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Example. Let us solve

−u′′(x) = f(x), x ∈ Ω = [0, 1], u′(0) = E, u(1) = D,

using a polynomial basis. The exact solution is easily obtained by integrating
twice and applying the boundary conditions:

ue(x) = 1− x2 + E(x− 1) +D .

The requirements on ϕi is that ϕi(1) = 0, because u is specified at x = 1, so a
proper set of polynomial basis functions are ϕi(x) = (1−x)i+1, i = 0, . . . , N .
A suitable B(x) function to handle the boundary condition u(1) = D is
B(x) = xD. The variational formulation is given by (2.54). With N = 1 we
can calculate the global matrix system to be

(

1 1
1 4/3

)(

c0
c1

)

=

(

1 +D − E
2/3 +D − E

)

The solution becomes c0 = 2 +D − E and c1 = −1, resulting in

u(x) = xD + (2 +D − E)(1− x)− (1− x2), (2.55)

which is actually equivalent to the exact solution of the problem.

2.1.8 Implementation

It is tempting to automate the computations in the previous example. A
function similar to least_squares from Chapter 1.3.3 can easily be made.
However, in the approximation problem the formulas for the entries in the lin-
ear system are fixed, while when we solve a differential equation the formulas
are only known by the user of the function. We therefore require that the user
prepares a function integrand_lhs(phi, i, j) for returning the integrand
of the integral that contributes to matrix element (i, j). The phi variable
is a Python dictionary holding the basis functions and their derivatives in
symbolic form. That is, phi[q] is a list of

{d
qϕ0

dxq
, . . . ,

dqϕN

dxq
} .

Similarly, integrand_rhs(phi, i) returns the integrand for element i in
the right-hand side vector. Since we also have contributions to this vector
(and potentially also the matrix) from boundary terms without any inte-
gral, we introduce two additional functions, boundary_lhs(phi, i, j) and
boundary_rhs(phi, i) for returning terms in the variational formulation
that are not to be integrated over the domain Ω.

The linear system can now be computed and solved symbolically by the
following function:
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def solve(integrand_lhs, integrand_rhs, phi, Omega,
boundary_lhs=None, boundary_rhs=None):

N = len(phi[0]) - 1
A = sm.zeros((N+1, N+1))
b = sm.zeros((N+1, 1))
x = sm.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(phi, i, j)
I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_lhs is not None:

I += boundary_lhs(phi, i, j)
A[i,j] = A[j,i] = I

integrand = integrand_rhs(phi, i)
I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_rhs is not None:

I += boundary_rhs(phi, i)
b[i,0] = I

c = A.LUsolve(b)
u = 0
for i in range(len(phi[0])):

print i
u += c[i,0]*phi[0][i]

return u

It turns out that symbolic solution of differential equations, discretized by
a Galerkin method with global basis functions, is of limited interest beyond
the simplest problems. Symbolic integration might be very time consuming
or impossible, not only in sympy but also in http://wolframalpha.com (which
applies the perhaps most powerful symbolic integration software available to-
day: Mathematica). Numerical integration as an option is therefore desirable.
The extended solve function below tries to combine the symbolic and numer-
ical integration. The latter can be enforced by the user, or it can be invoked
after a non-successful symbolic integration (being detected by an Integral

object as the result of the integration, see also Chapter 1.3.8). Note that for
a numerical integration, symbolic expressions must be converted to Python
function (using lambdify), and the expressions cannot contain other symbols
than x. The real solve routine in the varform1D module has error checking
and meaningful error messages in such cases. The solve code below is a con-
densed version of the real one, with the purpose of showing how to automate
the Galerkin method for solving differential equations in 1D with global basis
functions:

def solve(integrand_lhs, integrand_rhs, phi, Omega,
boundary_lhs=None, boundary_rhs=None, numint=False):

N = len(phi[0]) - 1
A = sm.zeros((N+1, N+1))
b = sm.zeros((N+1, 1))
x = sm.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(phi, i, j)
if not numint:
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I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sm.Integral):

numint = True # force num.int. hereafter
if numint:

integrand = sm.lambdify([x], integrand)
I = sm.mpmath.quad(integrand, [Omega[0], Omega[1]])

if boundary_lhs is not None:
I += boundary_lhs(phi, i, j)

A[i,j] = A[j,i] = I
integrand = integrand_rhs(phi, i)
if not numint:

I = sm.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sm.Integral):

numint = True
if numint:

integrand = sm.lambdify([x], integrand)
I = sm.mpmath.quad(integrand, [Omega[0], Omega[1]])

if boundary_rhs is not None:
I += boundary_rhs(phi, i)

b[i,0] = I
print
c = A.LUsolve(b)
u = 0
for i in range(len(phi[0])):

u += c[i,0]*phi[0][i]
return u

Is type(I) == type(sm.Integral) better than too much isin-
stance? Might be easier to read

Example: Constant Right-Hand Side. To demonstrate the code above, we
address

−u′′(x) = b, x ∈ Ω = [0, 1], u(1) = 1, u(0) = 0,

with b as a (symbolic) constant. A possible choice of space V , where the basis
functions satisfy the requirements ϕi(0) = ϕi(1) = 0, is V = span {ϕi(x) =
xi+1(1 − x)}Ni=0. We also need a B(x) function to take care of the known
boundary values of u. Any function B(x) = 1 − xp, p ∈ R, is a candidate.
One choice is B(x) = 1−x3. The unknown function is then written as a sum
of a known and an unknown function:

u(x) = B(x) + ū(x), ū(x) =

N
∑

j=0

cjϕj(x) .

The appropriate variational formulation arises by multiplying the differential
equation by v and integrate by parts, yielding

∫ 1

0

u′v′dx =

∫ 1

0

fvdx ∀v ∈ V,

and with u = B + ū,

∫ 1

0

ū′v′dx =

∫ 1

0

(f −B′)vdx ∀v ∈ V . (2.56)
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Inserting ū =
∑

j cjϕj , we get the linear system

N
∑

j=0

(∫ 1

0

ϕ′
iϕ

′
jdx

)

cj =

∫ 1

0

(f −B′)ϕidx, i = 0, . . . , N . (2.57)

x, b = sm.symbols(’x b’)
f = b
B = 1 - x**3
dBdx = sm.diff(B, x)

N = 3
# Compute basis functions and their derivatives
phi = {0: [x**(i+1)*(1-x) for i in range(N+1)]}
for d in range(1, highest_derivative+1):

phi[d] = [sm.diff(phi[0][i], x, d) for i in range(len(phi[0]))]

def integrand_lhs(phi, i, j):
return phi[1][i]*phi[1][j]

def integrand_rhs(phi, i):
return f*phi[0][i] - dBdx*phi[1][i]

Omega = [0, 1]

u_bar = solve(integrand_lhs, integrand_rhs, phi, Omega,
boundary_lhs, boundary_rhs, verbose=verbose,
numint=numint)

u = B + u_bar
print u

The exact solution, ue(x), can be obtained by integrating f(x) twice and
determine the two integration constants from the two boundary conditions.
The following sympy code does the task:

f1 = sm.integrate(f, x)
f2 = sm.integrate(f1, x)
C1, C2 = sm.symbols(’C1 C2’)
u = -f2 + C1*x + C2
s = sm.solve([u.subs(x,0) - 1, u.subs(x,1) - 0], [C1, C2])
u_exact = -f2 + s[C1]*x + s[C2]

In this example, ue(x) is a parabola and our approximate u recovers the exact
solution already for N = 0.

Example: Variable Right-Hand Side.

Example: Variable Coefficient a(x).

2.1.9 Reference Element Computing with Finite Elements

We are now in a position to redo the finite element problem in Chapter 2.1.5
with more general boundary conditions and with an element by element com-
putational algorithm. Let us address the model problem

−u′′(x) = 2, x ∈ Ω = [0, L], u(0) = b0, u′(L) = bL . (2.58)
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The exact solution reads ue(x) = −x2 + (bL + 2L)x+ b0. The test and trial
space V must consists of finite element functions vanishing for x = 0 since
u(0) is specified as boundary condition. Numbering nodes from left to right
through the domain, we let B(x) = b0ϕ0 and hence

u(x) = b0ϕ0(x) +

N
∑

j=1

cjϕj(x) .

To derive the appropriate variational formulation, based on Galerkin’s
method, we first multiply the differential equation by a test function v ∈ V
and integrate over the domain:

−
∫ L

0

u′′vdx =

∫ L

0

2vdx ∀v ∈ V .

Then we integrate by parts, use that v(0) = 0 in the boundary term, and
insert the boundary condition u′(L) = bL in the other boundary term:

∫ L

0

u′v′dx =

∫ L

0

2dx+ bLv(L) ∀v ∈ V . (2.59)

For detailed calculations by hand we now insert the expansion for u and
after some algebraic manipulations arrive at the linear system

N
∑

j=1

(∫ 1

0

ϕ′
iϕ

′
jdx

)

dx =

∫ 1

0

(f − b0ϕ0)dx+ bLϕi(L), i = 0, . . . , N . (2.60)

The element by element computational procedure consists in splitting the
integral to integrals over each element, and transforming each element integral
to an integral over a reference element on [−1, 1] having X as coordinate.
Chapters 1.4.4 and 1.4.5 explains the details.

However, there is one complicating factor arising here: we need to compute
the derivatives ϕ′

i(x) in the reference element. What we have on the refer-
ence element, is the expression ϕ̃r(X), r = 0, . . . , d. We can easily compute
dϕ̃r/dX, but what we need is dϕ̃r(X)/dx, which equals the desired factor
ϕq(e,r)(x) in the expressions for the matrix entries. By the chain rule we have
that

d

dx
ϕ̃r(X) =

d

dX
ϕ̃r(X)

dX

dx
.

From the mapping (1.58) it follows that

dX

dx
=

2

h
,

where h is the length of the current element. We hence have

dϕ̃r

dx
=

2

h

dϕ̃r

dX
. (2.61)
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The expressions for the entries in the element matrix and vector become

Ã(e)
r,s =

∫ 1

−1

dϕ̃r

dx

dϕ̃s

dx
det J dX =

∫ 1

−1

2

h

dϕ̃r

dX

2

h

dϕ̃s

dX

h

2
dX, (2.62)

b̃(e)r =

∫ 1

−1

f(x(X))ϕ̃r(X) det J dX =

∫ 1

−1

f(x(X))ϕ̃r(X)
2

2
dX . (2.63)

The specific derivatives of the basis functions with respect to X are easily
computed. For P1 (linear, d = 1) elements we get

ϕ̃0(X) =
1

2
(1−X), (2.64)

dϕ̃0

dX
= −1

2
, (2.65)

ϕ̃1(X) =
1

2
(1 +X), (2.66)

dϕ̃1

dX
=

1

2
. (2.67)

The results for P2 (quadratic, d = 2) elements become

ϕ̃0(X) =
1

2
(X − 1)X (2.68)

dϕ̃0

dX
=

1

2
(2X − 1) .ϕ̃1(X) = 1−X2 (2.69)

dϕ̃1

dX
= −2X .ϕ̃2(X) =

1

2
(X + 1)X

dϕ̃2

dX
=

1

2
(2X + 1) . (2.70)

Let us calculate the element matrix from the formula (2.62) in case of P1
elements:

Ã
(e)
0,0 =

∫ 1

−1

2

h

dϕ̃0

dX

2

h

dϕ̃0

dX

h

2
dX =

2

h

∫ 1

−1

(

dϕ̃0

dX

)2

dX =
2

h

∫ 1

−1

(

−1

2

)2

dX =
1

h
, Ã

(e)
0,1 =

2

h

∫ 1

−1

dϕ̃0

dX

dϕ̃1

dX
dX =

Ã
(e)
1,0 =

2

h

∫ 1

−1

dϕ̃1

dX

dϕ̃0

dX
dX =

2

h

∫ 1

−1

1

2
(−1

2
) dX = − 1

h
,

Ã
(e)
1,1 =

2

h

∫ 1

−1

dϕ̃1

dX

dϕ̃1

dX
dX =

2

h

∫ 1

−1

1

2

1

2
) dX =

1

h
.

These are valid expressions for any element but the first. For the first element,
local 0 is on the boundary where u is known, and the corresponding coefficient
c0 is left out of the global system. We therefore only have one active node in

the first element and consequently we form only the A
(0)
1,1 entry in the element

matrix, which is treated as a 1× 1 matrix.



2.1. Basic Principles 65

For the right-hand side we achieve these results:

b
(e)
0 =

∫ 1

−1

2ϕ̃0(X) det J dX = 2
h

2

∫ 1

−1

1

2
(1−X)dX = h,

b
(e)
1 =

∫ 1

−1

2ϕ̃1(X) det J dX = 2
h

2

∫ 1

−1

1

2
(1 +X)dX = h .

Also in the first element we compute only b
(0)
1 since the unknown associated

with local 0 does not enter the global linear system. For the last element,
e = N−1, we get an additional contribution from the boundary term bLϕ̃r(1)
(which corresponds to bLϕi(L), i = q(e, r), r = 0, 1):

b
(e)
0 = h+ bLϕ̃0(1) = h, b

(e)
1 = h+ bLϕ̃1(1) = h+ bL (2.71)

The various entries can be collected in a 2 × 2 element matrix and and
2–vector for all the internal elements (not having boundary nodes),

A(e) =
1

h

(

1 −1
−1 1

)

, b(e) = h

(

1
1

)

(2.72)

For the first element we have

A(e) =
1

h
(1), b(e) = h(1), (2.73)

while for the last element,

A(e) =
1

h

(

1 −1
−1 1

)

, b(e) =

(

h
h+ bL

)

. (2.74)

Assuming that all elements have the same length, we can now assemble
these element matrices and vectors into the global matrix and vector in the
linear system. We introduce a standard 1D mesh with nodes and elements
numbered from left to right. The nodes are then xi = ih, i = 0, . . . , N ,
h = L/N , and elements are Ω(e) = [xe, xe+1], e = 0, . . . , N . Here is the result
of applying the assembly algorithm from Chapter 1.4.4 to form the global
coefficient matrix

A =
1

h
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(2.75)
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The right-hand side becomes

b =
1

h







































2h
2h
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2h

h+ b0







































(2.76)

The unknown vector to be solved for is c = (c1, c2, . . . , cN )T .
Looking at the prodct Ac, we may write the equation system on the

following alternative form:

1

h
(−ci−1 + 2ci − ci+1) = 2h, i = 1, . . . , N − 1, (2.77)

with c0 = b0, and
1

h
(−cN−1 + cN ) = h+ bL (2.78)

for the last equation.
Let us look at what a finite difference discretization of (2.58) will look

like, using a standard second-order central difference for the second-order
derivative: −ui−1 + 2uj − ui+1

h2
= 2, i = 1, . . . , N − 1, (2.79)

where ui is the value of u at mesh point i. We have assumed N + 1 equally
spaced mesh points, with spacing h. From the boundary condition u(0) = b0,
u0 = b0. The condition u′(L) = bL is discretized by

uN+1 − uN−1

2h
= bL ⇔ uN+1 = uN−1 − 2hbL,

which can be inserted in the difference equation for i = N , yielding

−2uN−1 + 2uN

h2
=

1

h
2bL + 2,

which upon multiplication by h equals

1

h
(−uN−1 + uN ) = bL + h . (2.80)

Multiplying (2.79) by h reveals that the finite difference equations (2.79) and
(2.80) are identical to the finite element equations (2.77) and (2.78). Recall
that ci = u(xi) which is denoted by ui in the finite difference formulation.
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In this (simple) test problem all the finite element machinery ends up
with the same equations that a finite difference methods quickly provides.
The next example shows that with a slightly more complicated f(x) function,
the finite element and difference methods differ in the representation of f(x)
in the difference equations.

A nice feature in the present example is that the exact solution fulfills the
discrete equations, implying that the finite element or difference solution is
exact, regardless of h. This is easily proved in a sympy session:

>>> from sympy import *
>>> i, b_L, b_0, h, N = symbols(’i b_L b_0 h N’)
>>> L = N*h
>>> x = i*h
>>> u_i = -x**2 + (b_L + 2*L)*x + b_0
>>> u_im1 = u_i.subs(i, i-1)
>>> u_ip1 = u_i.subs(i, i+1)
>>>
>>> # General equation
>>> R = 1/h**2*(-u_im1 + 2*u_i - u_ip1) - 2
>>> R = simplify(R)
>>> print R
0
>>>
>>> # Right boundary equation
>>> R = 1/h**2*(-u_im1 + u_i) - b_L/h - 1
>>> R = R.subs(i, N)
>>> R = simplify(R)
>>> print R
0

2.2 Examples on 1D Finite Element Computations

Other ways of treating boundary conditions.
Next: non-uniform partition, give result and make exercise.
Next: variable coefficient, numerical integration
Then: gamle Exer 2.7 symbolic when the software is ready :-)
Compulsory exercise: wave equation with P1 and P2 elements.

2.2.1 Variational Problems and Optimization of Functionals

2.2.2 Differential Equation Interpretation of Approximation

Suppose we are given the (trivial) equation

u(x) = f(x), x ∈ Ω = [0, L], (2.81)

and think of it as a differential equation with a zero-th order derivative. We
then want to solve this equation . Applying the Galerkin method, we get the
variational formulation

(u, v) = (f, v) ∀v ∈ V . (2.82)
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There are no boundary conditions associated with (2.81) because it only
involves zero-th order derivatives. Using (2.82) for each of the basis functions
ϕi of V , we get

(u, ϕi) = (f, ϕi), i = 0, . . . , N, (2.83)

which, when u is expanded in basis functions, u =
∑N

j=0 cjϕj , leads to the
linear system

N
∑

j=0

(ϕi, ϕj)cj = (f, ϕi), i = 0, . . . , N . (2.84)

This is the same linear system as we derive when we seek a least-squares best
approximation u to f , the only difference being that we now start with an
equation (2.81) rather than an approximation problem.

Computation of (f, ϕi) =
∫

Ω
fϕidx depends, of course, on what f is.

However, using the Trapezoidal method of integration, we can get a simple
expression for (f, ϕi) when φi is a finite element basis function:

(f, ϕi) = hfi, (2.85)

if i is an internal node and h is the constant element length.
Applying finite element basis functions to compute the matrix entries

(ϕi, ϕj) leads to the following linear system:

h

6
(ui−1 + 4ui + ui+1) = hfi, i = 1, . . . , N − 1 . (2.86)

The first and last equation, corresponding to i = 0 and i = N is slightly
different, see Chapter 1.4.9.

The left-hand side of (2.86) can be manipulated to equal

h(ui −
1

6
(−ui−1 + 2ui − ui+1)) . (2.87)

Thinking in terms of finite differences and difference operators, this is nothing

but the standard discretization of h(u− h2

6 u′′). This implies that solving u = f
by the finite element method with P1 elements is equivalent to solving

u+
h2

6
u′′ = f, u′(0) = u′(L) = 0, (2.88)

by the finite difference method:

[u+
h2

6
DxDxu = f ]i . (2.89)

The finite difference method applied directly to (2.81) would have given ui =
fi. We therefore see that the finite element method introduce some kind of
smoothing (compared to the finite difference method) as the u term in the
equation is replaced by u− ku′′ for a small constant k = h2/6.
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Exercises to investigate this if f is rough. Also by exact integration of a
rough f . High freq sine.

Exercise: Computation of (f, ϕi) =
∫

Ω
fϕidx depends, of course, on what

f is. Some more insight into what the right-hand sidee looks like can be
obtained by replacing f by a finite element function which interpolates f .
That is, we expand f as f ≈ ∑j djϕj , and determine dj from the fact that
the expansion shall equal f at the nodes. Then dj = f(xj), which we denote
by fj , using finite difference notation. A similar notation is introduced for cj :
since cj = u(xj) we use uj for cj . The right-hand side of the equation system
becomes

(
∑

j

fjϕj , ϕi) =
N
∑

j=0

(ϕi, ϕj)fj .

This is the same form as the left-hand side. With Ai,j(ϕi, ϕj)

2.3 The Finite Element Method in 2D and 3D

The real power of the finite element method first becomes evident when
we want to solve partial differential equations posed on two- and three-
dimensional domains of non-trivial geometric shape. As in 1D, the domain
Ω is divided into ne non-overlapping elements. The elements have simple
shapes: triangles and quadrilaterals are popular in 2D, see Figures 2.1 and
2.2, while tetrahedra and box-shapes elements dominate in 3D. The approx-
imate solution u of the PDE is as usual expressed as u =

∑N
j=0 cjϕj , where

the ϕi functions, as in 1D, are polynomials over each element. The Galerkin
method or the method of weighted residuals are used, together with integra-
tion by parts, to transform the PDE problem to a variational formulation,
which then leads to a linear system of algebraic equations (if the PDE is
linear). The integrals in the variational formulation are split into contribu-
tions from each element, and these contributions are calculated by mapping
elements to a reference element.

We will illustrate the extension of the finite element method from 1D to
2D and 3D by invoking specific examples and from these arrive at a general
finite element algorithm applicable to PDEs in any dimension.

Our primary model problem will be the Poisson equation

−∇ · (α∇u) = f, in Ω, (2.90)

u = gE , on ∂ΩE (2.91)

−α
∂u

∂n
= gN , on ∂ΩN (2.92)

(2.93)

Here, u, α, f , gE , and gN are all functions of the spatial coordiantes xxx =
(x0, . . . , xd−1) where d here denotes the number of space dimensions. In 2D
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we will sometimes also use x and y instead of x0 and x1. The boundary ∂Ω
of the domain Ω is divided into two non-overlapping parts: ∂ΩD where u is
specified as the function gE , and ∂ΩN where the flux of u, α∂u/∂n is known.

−3 −2 −1 0 1 2 3
0

1

2

3

Fig. 2.1. Example of a 2D finite element mesh with quadrilateral elements.

2.3.1 Variational Formulation

2.4 Exercises

Exercise 2.1. Use a polynomial basis functions for problem (2.1.4).
For the model problem (2.1.4) with D = 0, use ϕi = xi+1(L − x), i =

0, . . . , N and derive the linear systems corresponding to the least-squares,
Galerkin, and collocation methods. ⋄
Exercise 2.2. Solve the linear system from Exer. 2.1.

Choose N = 0 in the linear systems derived in Exercise 2.1 and the solve
the systems. Compare the numerical and the exact solutions. ⋄
Exercise 2.3. Use integration by parts.

Formulate a Galerkin method for the model problem (2.1.4) by using
integration by parts as explained in Chapter 2.1.4. Apply the sine basis func-
tions (2.28) and demonstrate that the solution is equivalent to the case where
integration by parts is not used (see (2.36)). ⋄
Exercise 2.4. Extend the examples in Chap. 2.1.3 with u(L) = D.

Modify the computations in Chapter 2.1.3 for the case where u(L) =
D 6= 0. Use (2.50) and set up the general solutions corresponding to the
least-squares and Galerkin methods. Find the solution for N = 0 in the
collocation method. Compare the numerical and exact solutions in a plot. ⋄
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Fig. 2.2. Example of a 2D finite element mesh with triangular elements.

Fig. 2.3. Sketch of a typical piecewise linear basis function over a patch of linear
triangular elements.

illegal node

Fig. 2.4. Illustration of a hanging node, which is illegal unless the standard finite
element method is modified to treat such nodes.
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Fig. 2.5. Sketch of a two-dimensional, second-order triangular (P2) elements: (a)
affine mapping resulting in straight sides; (b) isoparametric mapping resulting in
sides with shapes of parabolas.
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Fig. 2.6. Sketch of a two-dimensional elements with straight sides: (a) standard
triangular P1 element with linear basis functions; (b) quadrilateral Q1 element
with bilinear basis functions and isoparametric mapping.



2.4. Exercises 73
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x

x

2
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Fig. 2.7. Sketch of a two-dimensional, second-order, quadrilateral elements with
isoparametric mapping: (a) 8 nodes; (b) 9 nodes.

Exercise 2.5. Use a nonzero boundary condition in Exer. 2.1.
Let u(L) = D in Exercise 2.1 and derive the linear systems in this case.

Find u(x) for N = 0 and compare with the exact solution. ⋄


