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Abstract Motivated by the problem of satellite gravity gradiometry, which is the
reconstruction of the Earth gravity potential from the satellite data provided in the
form of the second-order partial derivatives of the gravity potential at a satellite alti-
tude, we discuss a special regularization technique for solving this severely ill-posed
problem in a spherical framework. We are especially interested in the regularized collo-
cation method. As a core ingredient we present an a posteriori parameter choice rule,
namely the weighted discrepancy principle, and prove its order optimality. Finally,
we illustrate our theoretical findings by numerical results for the computation of the
Fourier coefficients of the gravitational potential directly from the noisy synthetic data.
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1 Introduction

Satellite missions, Gravity recovery and climate experiment (GRACE) [see, e.g.,
Tapley et al. (2005)] and Gravity field and steady-state Ocean Circulation Explorer
(GOCE) [see, e.g., Rebhan et al. (2000)] launched in 2005 and 2009 respectively, are
dedicated to measuring the Earth’s gravity field and modeling the geoid that allow us
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to increase our knowledge and reveal many fascinating things in studying dynamic
processes in the Earth’s interior, ocean circulation, etc. After collecting data from a
satellite orbit the following problem naturally arises: “How to transform the satellite
data into parameters of the gravitational field model?”

At this point it is worth to mention that, on the one hand, in the existing models, such
as Earth Gravity Model (EGM2008) (Pavlis et al. 2008), for example, the gravitational
potential is parametrized by the Fourier coefficients with respect to the spherical
harmonics up to some degree M . On the other hand, the satellite data collected during
a mission such as GOCE are given as the values of the second-order partial derivatives
of the gravitational potential calculated at the satellite orbit. Of particular interest,
from the mathematical point of view, is the use of the second-order radial derivatives,
which indeed can be found from the above mentioned values.

In the spherical framework, using the second-order radial derivatives on the orbital
sphereΩρ , one can relate the satellite data and the parameters of the gravity model by
means of the so-called gravity gradiometry equation with the operator A : L2(ΩR) →
L2(Ωρ)

Ax(t) :=
∫

ΩR

h(t, τ )x(τ )dΩR(τ ) = y(t), t ∈ Ωρ, (1)

where h(t, τ ) = 1
4πR

∂2

∂ρ2

[
ρ2−R2

(ρ2+R2−2tτ)3/2

]
, R is the radius of the Earth,ρ is the radius of

the satellite orbit, ΩR denotes the surface of the Earth, x is the gravitational potential
considered at the reference sphere ΩR , and y is its second-order radial derivative
derived from the satellite data.

Moreover, a straightforward calculation (Freeden 1999) shows that the operator A
admits the singular value decomposition

A =
∞∑

i=0

ai ui 〈vi , ·〉L2(ΩR)
, (2)

where

ui = ui (t) = 1

ρ
Yk, j

(
t

ρ

)
, vi = vi (τ ) = 1

R
Yk, j

( τ
R

)
,

i = j + k2, j = 1, 2, . . . , 2k + 1, k = 0, 1, . . . ,

here 〈·, ·〉L2(ΩR)
is the standard inner product in the Hilbert space L2(ΩR),

{
Yk, j

}
is a

system of spherical harmonics orthonormalized with respect to 〈·, ·〉L2(Ω1)
on the unit

sphere Ω1, and

ai =
(

R

ρ

)k
(k + 1)(k + 2)

ρ2 , (3)

i = j + k2, j = 1, 2, . . . , 2k + 1, k = 0, 1, . . . ,

are the singular values of the operator A.
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In view of the decomposition (2) the solution of the Eq. (1) has the form

x(τ ) =
∞∑

k=0

2k+1∑
j=1

x̂k, j
1

R
Yk, j

( τ
R

)
,

where

x̂k, j = 1

R

∫

ΩR

x(τ )Yk, j

( τ
R

)
dΩR(τ ) (4)

are the Fourier coefficients of the gravitational potential with respect to the spherical
harmonics.

At this point it should be obvious that the gravity gradiometry Eq. (1) relates the
satellite data y with the parameters of the gravity model, which as mentioned above,
are the Fourier coefficients.

In practice we are given just finite amount of points {τi }n
i=1 ⊂ Ωρ at which our

satellite data are provided. We will call these points as the collocation points or,
simply, nodes. It should be noted further that due to a measurement error the data
{y(τi )}n

i=1 are not available. Instead we are provided only with noisy measurements
yn = (y1, y2, . . . , yn) such that

|y(τi )− yi | ≤ εi , i = 1, 2, . . . , n, (5)

where εi , i = 1, 2, . . . , n, are data errors.
Thus, it is natural to consider a discretized and noisy version of the Eq. (1), that

can be formally written

Tn Ax = yn, (6)

where the operator Tn : L2(Ωρ) → R
n is such that

Tn f = ( f (τ1), f (τ2), . . . , f (τn)), ∀ f ∈ L2(Ωρ).

It is also worth to recall that the existing Earth gravity models are parametrized
by the finite number M of the Fourier coefficients (4), such that the Eq. (6) can be
discretized even further, namely we get

Tn AQM x = yn, (7)

where

QM =
M∑

k=0

2k+1∑
j=1

1

R
Yk, j

( ·
R

) 〈
1

R
Yk, j

( ·
R

)
, ·

〉
L2(ΩR)
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is the orthoprojector onto the finite-dimensional space spanned by the spherical har-
monics up to degree M , rank(QM ) = (M + 1)2.

At this point it is important to note that due to the nature of downward continuation
the original problem (1) is known to be severely ill-posed (Freeden and Pereverzev
2001; Bauer et al. 2007), and this ill-posedness is inherited by the Eq. (7) in the form
of the ill-conditioning of the corresponding linear system. Therefore, a regularization
technique should be employed for solving (7) (Engl et al. 1996).

Note also that the Eq. (7) can be seen as a result of a combination of the collocation
and the projection methods applied to the Eq. (1). The combination of these methods
was studied in Le Gia and Mhaskar (2006). However, in that article no regularization
was considered since the data y were assumed to be noise-free. Moreover, in contrast
to (3) the singular values of the corresponding operators in Le Gia and Mhaskar (2006)
were not assumed to decay exponentially.

In regularization theory the collocation method and the projection scheme have
been studied so far only separately. As to the collocation, it has been studied in Nair
and Pereverzev (2007), but the analysis considered there cannot be directly applied to
our problem since it corresponds to the case M = ∞ and the solution of the problem
(1) is provided in the form of the finite sum

∑n
i=1 ci h(τi , ·) that does not correspond

to any of the existing Earth gravity models.
As to the projection scheme, it has been studied extensively and we refer the reader,

for example, to Plato and Vainikko (1990); Mathé and Pereverzev (2006b) for more
details. However, in this method the orthoprojectors are applied to both sides of the
initial Eq. (1). Therefore, if we use this scheme directly in our case, we have to be
given the right-hand side of (1) in the form of the Fourier coefficients that requires
post-processing of the satellite data.

To the best of our knowledge, regularization of the Eq. (7) has not appeared in the
literature so far and, thus, theoretical and numerical investigations are needed.

The paper is organized as follows: in the next section we present a relation between
the collocation and the projection methods. In Sect. 3 we present a convergence analysis
of the regularized collocation for our problem. Section 4 is devoted to the analysis of
an a posteriori parameter choice rule, namely we present the weighted discrepancy
principle and show its order-optimality. Finally, in the last section we present some
numerical experiments confirming the theoretical results from previous sections.

2 A bridge between collocation and projection

We start with the observation that in view of (2) the Eq. (7) can be rewritten as

Tn PM Ax = yn, (8)

where

PM =
M∑

k=0

2k+1∑
j=1

1

ρ2 Yk, j

( ·
ρ

) 〈
Yk, j

( ·
ρ

)
, ·

〉
L2(Ωρ)

(9)

is an orthoprojector in L2(Ωρ).
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It is clear that the Eqs. (7), (8) should be considered in n-dimensional vector space
R

n , where many inner products and corresponding norms can be introduced. In general,
such inner products are defined as

〈u, v〉ω :=
n∑

i=1

ωn
i uivi , u, v ∈ R

n,

where ω = (ωn
1 , ω

n
2 , . . . , ω

n
n) ∈ R

n is a vector with positive components. Let us
denote by R

n
ω the vector space R

n that is equipped with the inner product 〈·, ·〉ω and

the corresponding norm ‖u‖ω := 〈u, u〉1/2
ω , u ∈ R

n .
As it has been already mentioned, the Eqs. (7), (8) are, in general, ill-conditioned,

and should be treated using a regularization method. Tikhonov-Phillips regulariza-
tion (Tikhonov 1963) is one of the most widely used methods for solving ill-posed
problems. In this case, an approximate solution of the Eqs. (7), (8) is defined as the
minimizer of the functional

Jα(x) = ∥∥Bn,M x − yn
∥∥2
ω

+ α ‖x‖2
L2(ΩR)

,

where Bn,M = Tn PM A = Tn AQM : L2(ΩR) → R
n
ω and α is the regularization

parameter.
The minimizer x = xα,δ of the functional Jα(x) can be written in the form

xα,δ = xα,δ(Bn,M ) = (α I + B∗
n,M Bn,M )

−1 B∗
n,M yn, (10)

where

B∗
n,M u =

M∑
k=0

2k+1∑
j=1

1

ρ2 Yk, j

(
t

ρ

) n∑
l=1

ωn
l Yk, j

(
τl

ρ

)
ul

is the adjoint of the operator Bn,M : L2(ΩR) → R
n
ω.

It is well-known [see, e.g., Groetsch (1990); Rajan (2003); Mathé and Pereverzev
(2006b)] that if regularization of the equation Ax = y is carried out by an approx-
imation of the form (α I + B∗ B)−1 B∗y then the quantity ‖A∗ A − B∗ B‖ plays a
crucial role, and one is interested in having it as small as possible. On the other
hand, if rank(A) = ∞ and rank(B) ≤ ν then from Pietsch (1980) it is known that
‖A∗ A − B∗ B‖ ≥ a2

ν+1(A), where aν+1(A) is the (ν + 1)-th singular value of the
operator A.

In our context, the operator A is given by the Eqs. (1) and (2), B = Bn,M with
rank(B∗

n,M Bn,M ) ≤ (M + 1)2, and the question is whether it is possible to choose a
vector of weights ω = (ωn

1 , ω
n
2 , . . . , ω

n
n) such that

∥∥A∗ A − B∗
n,M Bn,M

∥∥
L2(ΩR)→L2(ΩR)

= a2
(M+1)2+1, (11)

123



86 Int J Geomath (2014) 5:81–98

where a(M+1)2+1 is defined by (3) with i = (M +1)2 +1. The following lemma gives
a positive answer to this question.

Lemma 2.1 If the vector of positive weights ω = (ωn
1 , ω

n
2 , . . . , ω

n
n) is chosen in such

a way that a cubature formula

∫
Ωρ

f (ς)dΩρ(ς) ≈
n∑

i=1

ωn
i f (τi ) (12)

is exact for all spherical polynomials f of 3 variables up to degree 2M, then

∥∥A∗ A − B∗
n,M Bn,M

∥∥
L2(ΩR)→L2(ΩR)

= a2
(M+1)2+1. (13)

Proof From (2) and (9) it follows that

∥∥A∗ A − A∗ PM A
∥∥

L2(ΩR)→L2(ΩR)
= a2

(M+1)2+1. (14)

In view of the relation B∗
n,M Bn,M = A∗(Tn PM )

∗Tn PM A, it is enough to show that
under the condition of the lemma we have (Tn PM )

∗Tn PM = PM .
It is easy to check that

(Tn PM )
∗Tn PM f (t) =

M∑
k=0

2k+1∑
j=1

1

ρ2 Yk, j

(
t

ρ

) n∑
l=1

ωn
l Yk, j

(
τl

ρ

)

×
M∑
ν=0

2ν+1∑
μ=1

1

ρ2 Yν,μ

(
τl

ρ

) 〈
Yν,μ

( ·
ρ

)
, f (·)

〉
L2(Ωρ)

. (15)

Observe now that

M∑
ν=0

2ν+1∑
μ=1

1

ρ2 Yν,μ

(
τl

ρ

) 〈
Yν,μ

( ·
ρ

)
, f (·)

〉
L2(Ωρ)

= PM f (τl).

Keeping in mind that for k = 0, 1, . . . ,M , j = 1, 2, . . . , 2k + 1 the function
Yk, j (

τ
ρ
)PM f (τ ) is a spherical polynomial of degree not more than 2M and using the

exactness of the formula (12) for such polynomials we can continue as follows

n∑
l=1

ωn
l Yk, j

(
τl

ρ

) M∑
ν=0

2ν+1∑
μ=1

1

ρ2 Yν,μ

(
τl

ρ

) 〈
Yν,μ

( ·
ρ

)
, f (·)

〉
L2(Ωρ)

=
n∑

l=1

ωn
l Yk, j

(
τl

ρ

)
PM f (τl) =

〈
Yk, j

( ·
ρ

)
, f (·)

〉
L2(Ωρ)

,

k = 0, 1, . . . ,M, j = 1, 2, . . . , 2k + 1. (16)
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Combining upper Eqs. (15) and (16), we obtain the desired equality (Tn PM )
∗Tn PM

= PM that leads to the statement of the lemma. ��
Remark 2.2 For n large enough, one can find a wide variety of the formulas (12)
meeting the assumption of Lemma 2.1 [see, e.g., Xu (2003); Le Gia and Mhaskar
(2006)].

3 Regularization error bounds

Now we return to the discussion of regularization of the Eqs. (7), (8). We assume that
the initial Eq. (1) has a solution x = x∗. In view of the result by Mathé and Hofmann
(2008), without loss of generality, we can assume that there exists an increasing func-
tion ϕ : [

0, ‖A∗ A‖] → R
+ such that ϕ(0) = 0 and the smoothness of the solution x∗

is expressed in terms of the inclusion

x∗ ∈ Aϕ(H) = {
x : x = ϕ(A∗ A)v, ‖v‖ ≤ H

}
. (17)

It means that in terms of (2), (3) the solution x∗ admits the representation

x∗(τ ) =
∞∑

i=0

ϕ(a2
i )vi (τ ) 〈vi , v〉L2(ΩR)

,

where v is some function from L2(ΩR). In (17) the function ϕ is going under the name
of an index function or smoothness index, and supposed to be unknown.

Recall that instead of (1) we are given (7), (8) that needs to be treated by means
of regularization techniques, and we are going to use Tikhonov–Phillips method for
such treatment. In this case, one can use the function gα(t) = (α + t)−1 that meets
the inequalities

sup
0≤t≤‖A∗ A‖

|1 − tgα(t)| ≤ 1,

sup
0≤t≤‖A∗ A‖

√
t |gα(t)| ≤ 1/(2

√
α),

(18)

to present the approximate solution (10) given by Tikhonov-Phillips method in the
form xα,δ = gα(B∗

n,M Bn,M )B∗
n,M yn .

Then

x∗ − xα,δ = x∗ − gα(B
∗
n,M Bn,M )B

∗
n,M yn

= (I − gα(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗ − gα(B

∗
n,M Bn,M )B

∗
n,M yn

+gα(B
∗
n,M Bn,M )B

∗
n,M Bn,M x∗

= (I − gα(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗ + gα(B

∗
n,M Bn,M )B

∗
n,M (Bn,M x∗ − yn).

(19)
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Now we are going to estimate each term of (19). This will be done under the
following assumption.

Assumption 3.1 The index function ϕ from (17) is operator monotone on the interval
[0, 1] and such that ϕ2 is concave.

Recall (Nair and Pereverzev 2007) that a function ϕ is operator monotone on the
interval J ⊆ [0,∞) if for any pair of self-adjoint operators A, B with spectra in J ,
we have ϕ(A) ≤ ϕ(B) whenever A ≤ B. As usual, the partial ordering A ≤ B for
self-adjoint operators A, B on a Hilbert space X means that 〈Ax, x〉 ≤ 〈Bx, x〉 for
any x ∈ X .

Remark 3.2 Note that in view of (3), (14) and Lemma 2.1 the spectra of the operators
A∗ A, B∗

n,M Bn,M involved in our analysis are contained in [0, 1]. Therefore, it is not at
all restrictive to assume that ϕ is defined on the interval [0, 1]. Moreover, in Pereverzev
and Schock (1999) it has been shown that for the problem (1) the function ϕ(u) in (17)
cannot increase faster than log−μ ( 1

u

)
, for some μ > 0. The latter function is known

to be operator monotone on [0, 1], and its square is a concave function. Therefore, in
our context Assumption 3.1 does not pose any restriction.

Lemma 3.3 Assume that the condition of Lemma 2.1 is satisfied, as well as (17) and
Assumption 3.1. Then

∥∥(I − gα(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
L2(ΩR)

≤ C
[
ϕ(α)+ ϕ

(
a2
(M+1)2+1

)]
,

where C > 0 is some constant which does not depend on α,M, and ϕ.

The proof of Lemma 3.3 follows along the line of that of Lemma 1 by Nair and
Pereverzev (2007), where one needs to use Lemma 2.1 instead of Proposition 1 from
the mentioned paper. Therefore, we omit the proof of the result here.

Now we are going to derive an upper bound for the last term in (19). To obtain
this bound we need to estimate the noise level in the Eq. (6). The latter one can be
considered as a noisy version of the equation

Tn Ax = Tn y.

In view of (5), we have

∥∥Tn y − yn
∥∥
ω

= δ :=
(

n∑
i=1

ωn
i ε

2
i

)1/2

, (20)

where the quantity δ is calculated or estimated directly from the data errors εi and
used as a measure of the noise level in the Eqs. (7), (8). Now the estimation of the last
term in (19) is given by the following lemma.
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Lemma 3.4 Assume that the condition of Lemma 2.1 is satisfied, as well as (17) and
Assumption 3.1. Then the next inequality holds true

∥∥gα(B
∗
n,M Bn,M )B

∗
n,M (Bn,M x∗ − yn)

∥∥
L2(ΩR)

≤ C1 M7

√
αRρ

(
R

ρ

)M2

ϕ
(

a2
(M+1)2+1

)
+ δ

2
√
α
,

where C1 > 0 is some constant which does not depend on α,M, and ϕ.

Proof Using spectral calculus we may write

∥∥gα(B
∗
n,M Bn,M )B

∗
n,M (Bn,M x∗ − yn)

∥∥
L2(ΩR)

≤ ∥∥gα(B
∗
n,M Bn,M )B

∗
n,M

∥∥
Rn
ω→L2(ΩR)

∥∥Bn,M x∗ − yn
∥∥
ω

≤ 1

2
√
α

∥∥(Bn,M x∗ − yn)
∥∥
ω
.

The last norm can be bounded with the use of (20) as follows

∥∥Bn,M x∗ − yn
∥∥
ω

≤ ‖Tn AQM x∗ − Tn Ax∗‖ω + ∥∥Tn Ax∗ − yn
∥∥
ω

≤ δ + ‖Tn(A − AQM )(I − QM )x∗‖ω

= δ +
(

n∑
i=1

ωn
i |(A − AQM )(I − QM )x∗(τi )|2

)1/2

≤ δ + 2ρ
√
π max

t
(|(A − AQM )(I − QM )x∗(t)|).

Moreover, we observe that

|(A − AQM )(I − QM )x∗(t)| =
∞∑

k=M+1

ak

2k+1∑
j=1

1

ρ
Yk, j

(
t

ρ

)

×
〈

1

R
Yk, j

( ·
R

)
, (I − QM )x∗(·)

〉
L2(ΩR)

≤
⎡
⎣ ∞∑

k=M+1

2k+1∑
j=1

(
ak

ρ

)2

Y 2
k, j

(
t

ρ

)⎤
⎦

1/2

‖(I − QM )x∗‖L2(ΩR)
.

Due to Proposition 2 from Mathé and Pereverzev (2003b) one can write

‖(I − QM )x∗‖L2(ΩR)
≤ H

∥∥(I − QM )ϕ(A
∗ A)

∥∥
L2(ΩR)

≤ Hϕ
(
‖A(I − QM )‖2

L2(ΩR)

)
≤ Hϕ

(
a2
(M+1)2+1

)
. (21)
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Now using (3) and the well-known inequality
∣∣Yk, j (·)

∣∣ ≤ √
(2k + 1)/4π we may

continue

⎡
⎣ ∞∑

k=M+1

2k+1∑
j=1

(
ak

ρ

)2

Y 2
k, j

(
t

ρ

)⎤
⎦

1/2

≤ C̃

[ ∞∑
k=M+1

(
R

ρ

)2
√

k k2(2k + 1)

4πR2ρ4

]1/2

≤ C̃1

2
√
πRρ2

⎡
⎣

∞∫

M+1

(
R

ρ

)2
√

u

u3du

⎤
⎦

1/2

,

≤ C̃2

2
√
πRρ2

(
R

ρ

)M2

M7,

where C̃, C̃1 and C̃2 are some constants.
Hence,

∥∥Bn,M x∗ − yn
∥∥
ω

≤ C̃2 H

Rρ

(
R

ρ

)M2

M7ϕ
(

a2
(M+1)2+1

)
+ δ, (22)

and, finally, we obtain

∥∥gα(B
∗
n,M Bn,M )B

∗
n,M (Bn,M x∗ − yn)

∥∥
L2(ΩR)

≤ C1 M7

√
αRρ

(
R

ρ

)M2

ϕ
(

a2
(M+1)2+1

)
+ δ

2
√
α
.

��
Both Lemma 3.3 and Lemma 3.4 provide us with the following error bound.

∥∥xα,δ − x∗
∥∥

L2(ΩR)
≤ C

[
ϕ(α)+ ϕ

(
a2
(M+1)2+1

)]

+ C1 M7

√
αRρ

(
R

ρ

)M2

ϕ
(

a2
(M+1)2+1

)
+ δ

2
√
α
. (23)

Remark 3.5 Note that in the context of gravity gradiometry it is expected that in
(5) the data errors εi are of order 10−9(s−2) [see, e.g., Freeden (1999), Appendix B].
Moreover, using the cubature formula (12) it is obvious that the weightsωn

i are of order
1012. If so, the quantity δ2 from (20) is of order 10−6, and using (3) it is easy to check
that for any M the values of the quantities a2

(M+1)2+1
and M7

Rρ (
R
ρ
)M2

ϕ(a2
(M+1)2+1

)

do not exceed the value of such δ2. On the other hand, from (23) it is clear that to
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guarantee a reasonable approximation one has to choose α such that δ/
√
α < 1 or,

which is the same thing as α > δ2.
Thus, in the present context the error bound (23) can be reduced to the following

one

∥∥xα,δ − x∗
∥∥

L2(ΩR)
≤ C2

(
ϕ(α)+ δ√

α

)
, (24)

where the value of C2 does not depend on M, α and ϕ.

Following Mathé and Pereverzev (2003a), we consider now the function θ(α) =
ϕ(α)

√
α. Then the error bound (24) tells us that a choice of α = αopt = θ−1(δ),

which balances ϕ(α) with δ/
√
α, leads to an accuracy of order ϕ(θ−1(δ)), which is

optimal with respect to δ. Unfortunately, an a priori parameter choice α = αopt can
seldom be used in practice because the smoothness properties of the unknown solution
x∗ reflected in the function ϕ are generally unknown. On the other hand, the order of
accuracy O(ϕ(θ−1(δ))) can be considered as a benchmark for a posteriori parameter
choice strategies. In the next section we focus on the analysis of an adaptative parameter
choice rule that allows to achieve the optimal order of accuracy (benchmark) without
any a priori knowledge on the unknown solution.

4 A choice of the regularization parameter

As it has been mentioned in Mathé and Pereverzev (2006b), among the variety of
known a posteriori parameter choice stategies there are two methods which enjoy
the advantage of implementation simplicity. One of them is well-known discrepancy
principle (DP) and another one is general adaptation strategy (GAS), also known as
Lepskii-type balancing principle [Lu and Pereverzev (2013), Section 1.1].

Assume we are given an increasing geometric sequence of parameter values {αi }n
i=1.

DP begins from the largestαn and takes smaller and smaller valuesαn−1, αn−2, . . . , αk

until, for example,
∥∥Bn,M xα,δ − yn

∥∥
ω

≤ τδ, where τ is a design parameter, which is
at least two. Then the first satisfying value α = αk is the regularization parameter of
our choice.

At the same time, GAS operates in the opposite direction. Here we start
with the smallest value α1 and take larger and larger values of the parameters
α2, α3, . . . , α j , α j+1 until

∥∥xα j ,δ − xα j+1,δ

∥∥ > τδ/
√
α j+1. Then GAS suggests the

choice α = α j .
Thus, when applying GAS we start with the hardest regularized problem (10),

while DP allows us to begin with the easiest one, and move to the harder one only if
necessary.

However, it is known that DP does not provide the best order of accuracy for all
ill-posed problems for which Tikhonov–Phillips regularization allows us to obtain
the best order of reconstruction. Specifically, the best possible error of Tikhonov–
Phillips regularization is O(δ2/3), while in combination with the DP one can achieve
the accuracy O(δ1/2) at best due to the saturation effect. On the other hand, GAS is a

123



92 Int J Geomath (2014) 5:81–98

rule that allows us to reach the best order of accuracy for all problems that in principle
can be treated in an optimal way by Tikhonov–Phillips regularization.

In our case, it is necessary to remind that the problem (1) is believed to be severely
ill-posed. For such a problem an order of accuracy better than O(δ1/2) cannot be
reached in general (Pereverzev and Schock 2000). Therefore, it is natural to expect
that DP will not suffer from the saturation for our problem. Thus, the use of DP within
the framework of Tikhonov–Phillips regularization is reasonable for us.

As it was mentioned, DP can provide us with the best order of accuracy in the
case of severely ill-posed problems when Tikhonov–Phillips regularization is applied.
However, to the best of our knowledge, in the literature this statement has been proven
only for the case, when the data y in (1) are given in the image space of the operator
A. In our situation, the data are given not in L2 space, but in R

n , and in this section
we are going to prove that for this case DP also provides us with the best order of
accuracy indicated in the inequality (24).

Assume that using DP we have chosen the regularization parameter α = α∗ = αk .
In the present context this parameter α∗ satisfies the following inequalities

∥∥Bn,M gα∗(B
∗
n,M Bn,M )B

∗
n,M yn − yn

∥∥
ω

≥ τ1δ, (25)

∥∥Bn,M gα∗(B
∗
n,M Bn,M )B

∗
n,M yn − yn

∥∥
ω

≤ τδ, (26)

where τ, τ1 are some numbers such that 2 < τ1 < τ . The following theorem states
that for the regularization parameter α∗ Tikhonov–Phillips regularization provides us
with the solution xα∗,δ , realizing an accuracy of optimal order.

Theorem 4.1 Assume that the conditions of Lemma 3.4 are satisfied. If α = α∗ is
chosen according to (25), (26) then

∥∥x∗ − xα∗,δ
∥∥

L2(ΩR)
≤ C3ϕ(θ

−1(δ)),

where C3 > 0 is a constant which does not depend on M, α∗, and ϕ.

Proof We prove the theorem by considering two cases α∗ ≥ αopt and α∗ < αopt . Let
us first assume that α∗ ≥ αopt . It is easy to check that

Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

= (I − Bn,M gα∗(B
∗
n,M Bn,M )B

∗
n,M )y

n + (I − gα∗(Bn,M B∗
n,M )Bn,M B∗

n,M )

×(Bn,M x∗ − yn).

In view of (26), (18), (22), and Remark 3.5 we have

∥∥Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
ω

≤ ∥∥(I − Bn,M gα∗(B
∗
n,M Bn,M )B

∗
n,M )y

n
∥∥
ω

+ ∥∥Bn,M x∗ − yn
∥∥
ω

≤ τδ + 2δ. (27)
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Moreover, from (19), Lemma 3.4, and Remark 3.5 we have a bound

∥∥x∗ − gα∗(B
∗
n,M Bn,M )B

∗
n,M yn

∥∥
L2(ΩR)

≤ ∥∥(I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
L2(ΩR)

+ C2δ√
αopt

. (28)

From (21) and Remark 3.5 it follows that

∥∥(I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
L2(ΩR)

≤ ‖x∗ − QM x∗‖L2(ΩR)
+ ∥∥QM x∗ − gα∗(B

∗
n,M Bn,M )B

∗
n,M Bn,M x∗

∥∥
L2(ΩR)

≤ Hϕ(αopt )+ ∥∥QM x∗ − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M x∗

∥∥
L2(ΩR)

. (29)

In view of the decomposition (2) we may continue

∥∥QM x∗ − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M x∗

∥∥2
L2(ΩR)

=
(M+1)2∑

i=0

〈vi , x∗〉2
L2(ΩR)

(1 − gα∗(bi )bi )
2 =

(M+1)2∑
i=0

〈vi , x∗〉2
L2(ΩR)

(
α∗

α∗ + bi

)2

,

where bi are singular values of the operator B∗
n,M Bn,M .

Note also that for α∗ ≥ αopt it holds that

(
α∗

α∗ + t

)2

≤ 4

(
αopt

αopt + t

)2

+ t

αopt

(
α∗

α∗ + t

)2

. (30)

Using (30), Lemma 3.3, Remark 3.5, and (27) we obtain

(M+1)2∑
i=0

〈vi , x∗〉2
L2(ΩR)

(
α∗

α∗ + bi

)2

≤ 4
(M+1)2∑

i=0

〈vi , x∗〉2
L2(ΩR)

(
αopt

αopt + bi

)2

+
(M+1)2∑

i=0

〈vi , x∗〉2
L2(ΩR)

bi

αopt

(
α∗

α∗ + bi

)2

≤ 4
∥∥(I − gαopt (B

∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥2
L2(ΩR)

+ 1

αopt

∥∥∥(B∗
n,M Bn,M )

1/2(I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥∥2

L2(ΩR)

≤ 4
[
C2ϕ(αopt )

]2 + 1

αopt

∥∥Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥2
ω

≤ 4
[
C2ϕ(αopt )

]2 + δ2

αopt
(τ + 2)2 ≤ ϕ(αopt )

2(2C2 + τ + 2)2.
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Combining this bound with (29) and (28), we finally obtain

∥∥x∗ − gα∗(B
∗
n,M Bn,M )B

∗
n,M yn

∥∥
L2(ΩR)

≤ ϕ(αopt ) [3C2 + τ + 2 + H ]

≤ C3ϕ(αopt ) = C3ϕ(θ
−1(δ)).

Consider now the case α∗ < αopt . Recall that under our assumption, ϕ2 is concave.
From this it follows that

√
t/ϕ(t) is non-decreasing. Indeed, if t1 < t2 are some

positive numbers then for a concave function ϕ2 we may write

ϕ2(t1) = ϕ2
(

t2
t1
t2

)
= ϕ2

(
t2

t1
t2

+
(

1 − t1
t2

)
· 0

)

≥
(

t1
t2

)
ϕ2(t2)+

(
1 − t1

t2

)
ϕ2(0) = t1

t2
ϕ2(t2).

This means that t1/ϕ2(t1) ≤ t2/ϕ2(t2), when t1 < t2 or which is the same thing as√
t/ϕ(t) is non-decreasing.
Now we employ the fact [see, e.g., Lu and Pereverzev (2013), Proposition 2.7]

that for any non-decreasing function ψ : [0,∞) → [0,∞) such that t/ψ(t) is also
non-decreasing it holds

sup
t

|(1 − tgα(t))ψ(t)| ≤ ψ(α). (31)

Using Lemma 2.1 and the inequality (31) with ψ(t) = √
tϕ(t) and ψ(t) = √

t , we
obtain

∥∥Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
ω

≤ ∥∥Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )ϕ(B

∗
n,M Bn,M )v

∥∥
ω

+ ∥∥Bn,M (I − gα∗(B
∗
n,M Bn,M )B

∗
n,M Bn,M )(ϕ(A

∗ A)− ϕ(B∗
n,M Bn,M ))v

∥∥
ω

≤
∥∥∥(B∗

n,M Bn,M )
1/2(I − gα∗(B

∗
n,M Bn,M )B

∗
n,M Bn,M )ϕ(B

∗
n,M Bn,M )v

∥∥∥
L2(ΩR)

+
∥∥∥(B∗

n,M Bn,M )
1/2(I − gα∗(B

∗
n,M Bn,M )B

∗
n,M Bn,M )

∥∥∥
L2(ΩR)

× ∥∥(ϕ(A∗ A)− ϕ(B∗
n,M Bn,M ))v

∥∥
L2(ΩR)

≤ H
√
α∗(ϕ(α∗)+ ϕ(a2

(M+1)2+1)).

Then in view of (25), (22), and Remark 3.5, we can continue

2H
√
α∗ϕ(α∗) ≥ ∥∥Bn,M (I − gα∗(B

∗
n,M Bn,M )B

∗
n,M Bn,M )x∗

∥∥
ω

≥ ∥∥(I − Bn,M gα∗(B
∗
n,M Bn,M )B

∗
n,M )y

n
∥∥
ω

− ∥∥Bn,M x∗ − yn
∥∥
ω

≥ τ1δ − 2δ.

Thus,

δ√
α∗

≤ 2H

τ1 − 2
ϕ(α∗) ≤ 2H

τ1 − 2
ϕ(αopt ).
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Combining this inequality with (24), where α = α∗ < αopt , we finally arrive at the
bound that proves the statement of the theorem

∥∥x∗ − gα∗(B
∗
n,M Bn,M )B

∗
n,M yn

∥∥
L2(ΩR)

≤ C2ϕ(αopt )

(
1 + 2H

τ1 − 2

)

≤ C3ϕ(αopt ) = C3ϕ(θ
−1(δ)).

��

5 Numerical examples

In this section we are going to present some numerical experiments to verify the
analysis from the previous sections. Similar to Xu et al. (2006) in our experiments
we do not work with real data but do with artificially generated ones. In our tests we
consider the case when one is interested in reconstruction of the Fourier coefficients
with respect to the spherical harmonics up to degree M = 50, i.e., the total amount of
the Fourier coefficients to be reconstructed is N = (M + 1)2 = 2601.

We follow Bauer et al. (2007); Lu and Pereverzev (2010) and assume that the orbit
height is 400 km. In this case the decay character of the singular values of the operator
A is modeled as

ai = (1.06)−i , i = 0, 1, . . . ,M.

Note that such singular values lead us to a more ill-posed inverse problem than the
original one described by (2) and (3). Therefore, we can expect that our algorithm will
work well in real applications if it works in the experiments under consideration.

Our analysis from the previous sections shows that to reconstruct N = (M + 1)2

Fourier coefficients we need to satisfy the condition of Lemma 2.1. From the literature
it is known [see, Graf et al. (2009), Remark 2.2, for example] that the exactness of a
cubature formula for spherical polynomials up to degree 2M can be achieved only if it
has at least n = (M +1)2 nodes. But the positiveness of the weights is not guaranteed
in this situation, and in practice one needs to take the amount n of collocation points
which is much larger than (M + 1)2 to obtain the positive weights.

For our method, we will also follow Graf et al. (2009) and consider Gauss-Legendre
quadrature grid of collocation points where the positive quadrature weights are given
analytically. The number of nodes in this case is n = 2(M +1)2 and the corresponding
cubature formula is exact for all spherical polynomials of degree 2M as it is required
by Lemma 2.1.

The position of every node on the sphere is defined by a pair (θi ;φ j ), i =
0, . . . ,M, j = 0, . . . , 2M + 1, where θi ∈ [0, π) is the longitudinal direction and
φ j ∈ [0, 2π) is the latitudinal one. For the grid used in our experiments latitudinal
coordinates of the collocation points are φ j = jπ/(M + 1), j = 0, . . . , 2M + 1 and
longitudinal coordinates θi are the arc-cosines of the zeros of Legendre polynomial of
degree M + 1. The grid of the collocation points is shown on Fig. 1.
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Fig. 1 Gauss–Legendre quadrature grid of 51×102 collocation points on the unit sphere

At the same time, in attempt to reconstruct (M + 1)2 Fourier coefficients from the
amount of data smaller than n = 2(M +1)2 one can try to use the following approach,
which is, at first, estimate (M + 1)2 Fourier coefficients of the right-hand side y from
the available amount of collocation data and then apply the regularized projection
scheme, as it was mentioned in the introduction.

Theoretically, to estimate (M + 1)2 Fourier coefficients of the right-hand side y
we need the same amount n of collocation data. Then we can solve an interpolation
problem which has a unique solution. However, as it was mentioned in Keiner et al.
(2007), such interpolation problem may lead to an ill-conditioned matrix. To avoid
this, it is reasonable to consider the overdetermined case n > (M + 1)2 and solve the
corresponding least-squares problem. In our experiments we consider the case when
the amount of collocation data is in a range (M + 1)2 < n ≤ 2(M + 1)2.

We present results of numerical experiments which show that the amount of col-
location data n = 2(M + 1)2 = 5202 cannot be essentially reduced without a loss
of accuracy. To estimate the performance of our method, we conduct the experiments
in the following way. First, we generate some “exact solution” x∗ of our problem
(namely, N Fourier coefficients), then construct the operator Bn,M , which we apply to
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Table 1 Comparison of the regularized collocation and projection (after preprocessing) methods

n1 n2 max(εi ) α∗
∥∥xα,δ − x∗

∥∥ / ‖x∗‖

51 102 3.4887e−10 1.1790e−05 0.0019

101 101 3.0613e−10 9.5500e−06 0.0016

51 102 2.9917e−10 1.3100e−05 0.0020

50 102 3.0192e−10 1.3100e−05 0.0171

50 102 2.8035e−10 1.3100e−05 0.0377

51 100 2.9387e−10 1.3100e−05 0.0107

51 52 2.9882e−10 1.3100e−05 1.0123

51 51 3.2154e−10 1.3100e−05 1.0621

The last column contains the values of the relative error of the collocation method (the first two rows) and
the projection method (the other rows) after least-squares prepossessing of collocation data
n1 Number of latitude points, n2 number of longitude points, max(εi ) maximal data error corresponding
to noise level δ of 1 %, α∗ chosen regularization parameter

x∗ to obtain “satellite data” and, at the last stage of data generation, we spoil them by
adding a random noise. Finally, we reconstruct N Fourier coefficients from these noisy
data and compare the obtained regularized solution with the exact one. The Fourier
coefficients of the “exact solution” are uniformly distributed random values on the
interval (−1, 1).

Table 1 shows the performance of the regularized collocation method and the regu-
larized projection method based on different amount of the collocation data. To use the
projection scheme, the data were preprocessed by the least-squares method, as it was
described above. It is worth to mention that we also tried the weighted least-squares
method, as in Keiner et al. (2007), but for our problem this method did not provide us
with better results than the classical least-squares method with unit weights.

From Table 1 one can conclude that the number of collocation points, which guar-
antees the exactness of the cubature formula with positive weights for spherical poly-
nomials up to degree 2M , plays a crucial role in order to obtain a good reconstruction
of the spherical Fourier coefficients of the solution up to degree M . This conclusion
is in agreement with our theoretical analysis.
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