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Abstract

We discuss a new regularization scheme for reconstructing the solution of a
linear ill-posed operator equation from given noisy data in the Hilbert space
setting. In this new scheme, the regularized approximation is decomposed
into several components, which are defined by minimizing a multi-penalty
functional. We show theoretically and numerically that under a proper choice
of the regularization parameters, the regularized approximation exhibits the
so-called compensatory property, in the sense that it performs similar to the
best of the single-penalty regularization with the same penalizing operator.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we address the solution of a linear ill-posed problem
Ax =y, (1)

where A : X — Y is a bounded linear operator between Hilbert spaces X and Y with the non-
closed range R(A). We denote the inner product and the corresponding norm on the Hilbert
spaces by (-, -) and || - ||, respectively. In the following, we assume that the operator A is
injective and y belongs to R(A) such that there exists a unique solution x' € X of equation (1).

Moreover, typically (1) is only an idealized model in which noise has been neglected. In
reality,

s = Ax' +8, )
where £ €Y, ||€]] < 6,8 € (0, 1). Moreover, since it is assumed that R (A) is non-closed, the
solution x' does not depend continuously on data and can be reconstructed in a stable way
from ys only by means of a regularization method [8].

Tikhonov—Phillips (TP) regularization is proved to be efficient for such a reconstruction.
Recall that in this method, the regularized approximate solution x2 of (1) is defined as the
minimizer of the following functional:

TP, (x) := ||Ax — ys|I* + a[lx]1?, A3)
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with @ > 0 being a regularization parameter. Due to the simplicity and effectiveness of
the method, this classical approach is very attractive to users and the minimizer x3 can
be numerically found either by solving the corresponding system of linear equations or by
employing a suitable optimization tool.

At the same time, it is well known that the TP regularization suffers from a saturation
effect [27, 18]. More precisely, this regularization method cannot guarantee an accuracy better
than O (8%3) regardless of the smoothness of the solution X"

On the other hand, this order can be potentially improved if one employs the original
idea of Tikhonov [29] and changes the identity operator I in the penalty term in (3) for some
unbounded operator B. Then, the regularized solution x%’ g 18 defined as the minimizer of the
functional

Ts(x) = [|[Ax — ys|I* + BIIBx|? 4)

over the domain D(B) of the operator B.

In many practical applications, the operator B that influences the properties of the
regularized approximant is chosen as a differential operator.

It is worthwhile emphasizing that the superiority of (4) over (3) is theoretically justified
only under the assumption that the operators A and B are related by the so-called link condition.
In the simplest case, this presupposes that B is a densely defined self-adjoint strictly positive-
definite operator and for all x € X it holds

1B~ x|l < lAxIl < bIB x|, (&)

where s > 0 and b > 1 are some constants.

For more details, we refer to the classical paper [23]; see also [26, 22, 3] and references
therein.

It is clear that condition (5) is a serious restriction and, what is even more important,
the condition is sometimes hardly verifiable, as is the case, for instance, when Tikhonov
regularization is used for solving nonlinear ill-posed equations [25, 28, 12]. For example, in
[28] it is suggested to solve a nonlinear equation F (x) = ys iteratively by minimizing at each
iteration a functional of the form (4) with A = F’(x;) given as the Frechét derivative of F
calculated for the approximate solution x; constructed on the previous iteration. It is clear that
generally in such a situation the link condition (5) cannot be verified a priori.

Atthe same time, it may happen that the regularization (4) performs poorly when condition
(5) is violated. To exemplify these kinds of difficulties, we refer to the section with numerical
experiments and specifically to figure 2.

Thus, if condition (5) is not granted a priori, it is not clear, in general, which of the
regularization methods is more suitable for a problem at hand, since the TP method (3) may
not allow the accuracy of the best possible order, while the Tikhonov method (4) may fail
without the link condition (5).

This opens room to more sophisticated methods such as multi-penalty (MP) regularization
with a component-wise penalization, in which the following form of the regularization
functional is used:

(o, B u, v) = A+ v) — y5)1* + allull* + BlIBv|>. (6)

This form is inspired by the study [15] on the multiple kernel learning, where A is given as
the so-called sampling operator, and the penalization of the components u and v is performed
in different reproducing kernel Hilbert spaces. To the best of our knowledge, regularization
based on the minimization of the functional (6) has never been studied so far in the context of
regularization theory.
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At the same time, the idea of decomposing the solution into different components has
been very popular in imaging (see, e.g., [21, 31, 32]), where y; would be considered as a given
noisy image, while u and v would be respectively a cartoon representation and an oscillatory
component consisting of texture and noise. The difference between this context and the one
which is studied in this paper is that in imaging u is a priori assumed to contain the main
features of a real original image, and A = I. Therefore, the dependence of the results with
respect to parameters o and S is not too sensitive. In contrast, for a general operator A one
cannot say a priori which of the components, u or v, is more important, and it can be detected
only with a proper choice of the regularization parameters.

Note that the MP regularization is not a new topic in modern regularization theory, where
in the case of two penalties one usually deals with the minimization of the functional

W(a, B; x) := |Ax — ys]1* + ellx]|* + B Bx]|. (7)

Here, we may refer to the papers [2, 5, 7, 13, 17]. Our present study is stimulated by the
remark made in [17], where in numerical experiments the authors observed the compensatory
property of the MP regularization (7): this method performed similar to the best single-penalty
regularization (3) or (4). However, no theoretical justification of this effect has been provided.

The primary goal of this paper is to demonstrate theoretically the similar compensatory
property of the regularization (6) that will be done in the following section. In the final section
with numerical experiments, we illustrate the efficiency of the proposed approach equipped
with a heuristic parameter choice rule on a number of academic examples.

2. Convergence rates for multi-penalty regularization with component-wise penalization

As already mentioned in the introduction, the MP regularization could exhibit the
compensatory property, at least numerically. In this section, we provide a theoretical
justification of this property for the MP regularization (6). This will be done by analyzing
two cases separately. First, we consider the case when the link condition (5) is violated. As
follows from paper [19], in this situation one can still rely on the so-called source condition

X' = gp(A*A)g, lgll <R, (8)

where ¢ : [0, |A[|*] = [0, 1] is called an index function that is assumed to be continuous,
increasing and such that ¢ (0) = 0 and ﬁ is non-decreasing. Then, we analyze the case when
condition (5) is satisfied.

Recall that in the case when the link condition is violated, the TP regularization (3)
yields the maximal rate of accuracy O(8%?) that cannot be beaten in general regardless of the
smoothness of xt, whereas in the situation when a problem at hand meets the link condition,
the saturation effect can be postponed and, thus, better accuracy order may be achieved.

Before starting our analysis, we derive the formulas for the minimizers u), , and v}, p of
the functional ®(«, B; u, v). Using the standard technique of the calculus of variations, we
obtain the following system of equations for the minimizers:

A*A(u, g + 05 5) — A%ys +aud, 5 =0
A* A, 5 + V3 5) — A*ys + BB*V), 4 =0,
that allows the representation

) 5 = (el +A*A) ' (A*ys — A*AV) ), 9)

vy 5 = a(BB* + aA*A(al + A*A) ") T (@l + A*A) T A%ys, (10)

where I is the identity operator.
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Remark 1. Note that from the above system, it follows that ocugy g = ﬂBzvg’ p- This simple
relation is helpful in understanding the difference between the MP regularizations (6) and
(7). It tells us that if in (6) one of the regularization parameters, say «, is set to zero, then
the minimization of (6) is reduced to a least-squares problem ||[Au — ys|| — min regardless
of the other parameter. At the same time, in the case of (7) by setting one of the parameters
B or a to zero, we switch from a MP regularization to the single-penalty scheme (3) or (4).
This remark may be seen as an explanation why in (6) the compensatory property is achieved
when one of the regularization parameters is larger than 1, while for (7) this property was
numerically observed in [17] when both of the parameters o and f are small. Below, we
provide a theoretical justification of the compensatory property for the MP regularization (6).
In the case of (7), such a justification is still to be provided.

2.1. Error bound under violated link condition

We will follow the convention that the symbol ¢ denotes a number that does not depend on
o, B, 6 and may not be the same at different occurrences.

Theorem 1. Let condition (8) be satisfied. Then, for a sufficiently small o and B > 1 we have
the bound

8
I i+ k)] < (0@ + 2 ). an
In addition, if the parameter o is chosen as ctope = 0, 1(8), where 0,(t) = 0 (t)/t, then an
order optimal error bound
¥ 3 s -1
" = (o + V) | < c0(6,(®) (12)

is obtained.

Proof. Note that the bound (12) is a consequence of (11), and its optimality under condition
(8) is proven in [20]. Therefore, only (11) needs to be proven.
From (9) and (10), it follows that

X — () p+v) ) =x" — X + (al + A*A)TTARAY], 4 — V) 4.
where x} = (al + A*A)~!A*y; is the minimizer of the functional (3).
It is known [20] that

)
Ix' =2 < c((p(ot) + ﬁ)‘

Moreover, using spectral calculus and (10) we have
[ @I+ AmA) A A 5 — g 5| < ell @+ AT g 5] < o4
< ol (BB + aA*A(al + A"A) )7 [[ (@l + ATA) T A%y

In addition, for § > 1and 0 < & < gy 31_2H , the following bound holds true:
I(BB? + aA*A(al + A*A)"H 7| < B2
B — IB72||[|eA*A (el + A*A)~!|
B*Z
B —alB~2|

Then, from (8) and (10) it follows that
03,5 < 2lB7?|| (Il (@l + A*A) ' A*AxT|| + || (@] + A*A) 'A% )

< 2B (ux*n + %) <e (cp(a) + %) .

Summing up, we finally arrive at (11). ]
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2.2. Error bound under satisfied link condition

It is well known [18] that in the TP regularization, saturation occurs when in (8) the index
function ¢ (¢) tends to O faster than ¢. In this case, one can try to postpone saturation by using
penalization in terms of an operator B meeting the link condition (5).

In this subsection, we will assume that (5) is satisfied with s > % and, moreover, Bx'
is well defined as an element of X. To illustrate that this assumption is not so restrictive in
the present context, we consider the situation when A and B! have a common orthonormal
system {v,} in their singular-value decomposition, i.e.

A=) afve e BT =) biu o, (13)
k k

where {u;} is some other complete orthonormal system and {a; }, {b;} denote sets of eigenvalues
of the self-adjoint operators (A*A)!/? and B! correspondingly. Then, in view of (5) we have

ar=<by, k=12,.... (14)
From the source condition (8), it follows that in this situation the element

Bx' =Y b o(a}) (v ghvi
k

is well defined in X since ¢(¢) is assumed to go to zero faster than ¢, so that b,;lga(a,%) =

a,?”‘%p(a,%) is bounded for s > 1.

In this subsection, we assume that « > 1 and introduce a linear compact operator
Cy = (el + AA*)"12AB7.

From [19], it follows that for Bx" € X one can find an index function ¥ and g, € X such
that

Bx' = §(C;Ca)ga-
In the following, we will rely on the following assumption.

Assumption 1. Let A be a sufficiently large number and a € (1, A). Assume that there exist
a positive constant R and an index function  meeting A,-condition such that

Bx" = ¥ (C:Cy)gus llgell < R. (15)

The essence of assumption 1 is that in (15), the functions i and R are independent of «.
To illustrate that this assumption is really not restrictive, we again consider the operators (13).
The result of [19] ensures that for Bx" € X there are g € X and an index function 1 such that

Bx' =y (B~'A"AB g =Y v (aib}) (vi. &) i
k

Without loss of generality, we may assume that ¢ meets A,-condition. Then, as was observed,
for example in [20], for y € (0, 1) one can find a constant ¢ depending only on ¥ and y such
that ¢y (1) < ¥ (yt). Therefore, for & € (1, A) we have

2.2 aibf “ibi 2.2
ey (apby) < ¥ A+ AR 4 o < ¥ (apby)-
Consider now
v (aiby)
8=
a+a£

(vk,g)vk.

k
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It is clear that || g, || < |lgll/c and

Bx' = Z 4 <
that gives us (15) with a—mdependent Y and R. As a by product, we have
Range (v (C:C,)) = Range(y (B~'A*AB™")) = Range(y/ (B~ **?)).  (16)

) (Uka got)vk 1/f(C2Ca)ga

Theorem 2. Let the link condition (5) and assumption 1 be satisfied. Assume also that w{t) is
non-decreasing. Then, for o € (1, A) and sufficiently small B we have
| = (i + 02 )| < (BT (B) + 8 7). (17)
In addition, if Bopy is chosen such that B,y = 9_1 (8), where 0, (1) = ¥ (t)A/1, then
+ —l —1 ﬁ
[ = (e + V) | < ¥ (6, @) (6,7 (8)) ™ (18)
Proof. Keeping in mind that y; = Ax" + & and « > 1, we can deduce from (9) that
4 41l < [l (eI +A*A)*1A*A(x* — vy )l + (@l 4+ A*A) 'A% ||
S Y ey P .
xf va B 2[ x' = vy 4 5
Moreover, by the definition of the operator C,, we can rewrite (10) as follows:
vh 5 = aB (Bl 4 aB 'A% (al + AA*)'AB™") 7' BT (all + A*A) T A%ys
= aB~ (BT +aClCy) "' BT A* (o + AA*) ys
= aB ' (BL+aCiC,) "' C (al + AA™) /2 (AxT 4 &). (19)
Note that
f B f 0 0 s
”x - Ua,ﬂ” < HX - Ua,ﬂ” + ” Vo, ~ Va8 (20)

where vgqﬁ is given by (19) with & = 0.
Now, we are going to use the well-known interpolation inequality [16] of the form
P s
llxll < [1B= x| 7+ || Bx|| T+, 21

which is valid for s > 0 and x € Range(B™").

We will also use the fact (see, for example, [20]) that if fort € [0,d],d > 0, a function
@ (t) is continuous, increasing and such that ¢ (0) = 0, but W is non-decreasing, then for any
A € [0, 1] holds

A
sup 1-—— ()| < ¢(4). (22)

ref0,d] | A+ 1
Then, under the conditions of the theorem, from (19), (22) it follows that

|IB(x" = v )| = |Bx" — (Bl + aCC,) ™' CCuBx' |
-1
= ‘ (JI —~ (gﬂ + c;ca> c;@) Bx'
,3 -1
(H— (;uc;ca) CiC ) ¥ (CiCa)
< Rsup
t

<o)

I/f(t)
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Moreover, using the link conditions (5) and (22) we can continue as follows:

B2 = ol )| < 4B (B = B )|

o

-1
(al + AA")'2C, (11 — (’3}1 +C§Ca> CjCa) Bx'

< R(a + A2

—1
(11 - (ﬁﬂ + cac:;) caczi) Y (CC(CCH'
(07

B
« <cla+ A1y <é> \/E
o o

< R(a+ A1) sup | 5
t

tw(t)«/i

where we use (22) with ¢ (1) = ¥ (£)+/7.
Thus, we arrive at the bound

J = i) < e (£).
Applying the same argument to

—1
vy — vy =B" (éﬂ + c;;ca> Cr (ol + AA*) 12,
! ! o

we also have

ol + A4 28] < c%,

-1
|B(wS 5 — vl 4) < (’3 T+ c;ca> (C:C)'

o

-1
B~ (005 —v34)] <8 gﬂ + cac;> CoCh| < c8.

(ol +AA*)1/2(

Then, the interpolation inequality (21) gives us

1
¥ —vapl < IB7G"=vap)|™

BT =) < epsi ().

o

By — vl p)| ™ < esp.

1
|05 —vi sl <[B(vas—vap) ™

Combining the above estimations in (20) and recalling that ¢ > 1, we finally arrive at
1 B s
”xT_viB” < Hx)r_vg’ﬁ”+ ”vg’ﬁ—vg’ﬁ“ <c<182<1+n1//( >+5lg 2(1%))

a
< (BT Y (B) +6p7T)
that leads to (18) for B = Bop. O

Remark 2. Note that under the condition of theorem 2, the order of the error bound (18)
cannot be improved in general. For example, for ¥ (¢) = t” we have

(6, )(6;" (5))ﬁ — §amT (23)
At the same time, in view of (16) for the operators (13) and (14), assumption 1 means that
x' € Range(B~ PG+, (24)

On the other hand, it is known [23] that under the link condition (5), the solution
x" € Range(B™*) cannot be in general reconstructed in X from noisy data y; with the
order of accuracy better than 0(8/?), which for u = 2p(s+ 1) 4 1 coincides with the bound
(23) given in the considered case by theorem 2.
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3. Numerical examples

In this section, we present numerical experiments that illustrate the compensatory property of
the considered MP regularization (6). Recall that by this we mean that the method performs
similar to the best single-penalty regularization (3) or (4). At this point, it is also worthwhile to
mention that, in accordance with the analysis presented in the previous section, the method (9),
(10) exhibits the compensatory property when one of the regularization parameters is greater
than 1, independently of a noise level §. Therefore, to demonstrate the above-mentioned
feature, we will employ the so-called quasi-optimality criterion, which does not require any
knowledge of the noise level. This heuristic approach was originally proposed in [30] and has
been recently advocated in [14].

3.1. Quasi-optimality criterion
Recall that in the case of the method (3), the quasi-optimality criterion chooses a regularization
parameter o = «; from a set

Oy ={la=a;=aq,i=0,1,2,...,N}, ¢>1, (25)
such that

|

s s : 5 .

||xa1—xmi]“:mln{”xai—x ,l:1,2,...,N}.

In the similar way, one can apply the quasi-optimality criterion to a set of parameters
Py={B=p;=pop’j=0,1,2,....M},  p>1, (26)

and choose 8 = B; € Pfj[ such that

”'xaﬂkﬂ - xaﬁk—]vB || = min { ||x/53f,3 - x(sﬂjfqu ’ ] =12,..., M}

Note that in general, the quasi-optimality criterion can be used for choosing regularization
parameters in various regularization methods [1, 8]. The idea behind this heuristic approach
is based on the belief that the minimum of the distance between regularized approximate
solutions corresponding to two successive values of a regularization parameter will be attained
near the ‘cross-over point’ where an approximation error and a propagated data error have
about the same order of magnitude (see, e.g., [8, p 125]). For the MP regularization, the
quasi-optimality criterion can be implemented as follows. First, for every g8 = B; € Pfl we
choose o = oy = a(B;) from the set (25) such that

”xgl,ﬁj - xil—]»ﬁj H = min { ”xgi,ﬂ/ - xgi—]’ﬁj H’ i=12,..., N}’
where here and below xg‘ﬂ = ”i,ﬁ + vg‘ﬂ.
Next, we apply the quasi-optimality criterion to the sequence {xi( 8. /3,_} parametrized by

Bj € Pf,. More specifically, we select By € P/@ such that

Ixecs0.8 = Xagn g | = min {05 = s g | 7= 1.2, M}

Then, a regularized approximate solution xgq p of our choice is defined by (9) and (10) with
o =a(B) and B = fy.
3.2. Numerical illustrations and comparison: operators with known singular-value expansion

Similar to [1] in our first numerical experiment, we consider compact operators A and B~! that
are related as in (13). Note that the knowledge of the singular-value expansion of the operators
allows us to verify easily whether the link condition (5) is violated or not. In the first experiment,

8
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=0.00167, Max = 0.02276
MP ID@ME® OCOD OCIDOM@OD @ O @O © O e} o]
Min =0.0062, Max = 0.02468
TP — O COoO® O GO O D GIREND@OD OCKKIDAD @D @ OO0 [e]
Min =0.0014, Max = 0.022
Tikhonov DOCMEOOEIIRON0 D (@ O 00 GDCQm @O @O @ O | e} | e} |
0.005 0.01 0.015 0.02 0.025

Figure 1. Numerical illustration (first experiment). The figure presents REs (circles) for 100
simulations of ys with 1% noise.

the operators A and B~ are given as diagonal matrices of size n. The matrix corresponding to
the operator A has diagonal elements @ = k=", k = 1,2,...,n,n = 50, r = 3. Further, we
assume that the source condition (8) is satisfied with ¢(¢) = 7, p = 2, and the solution x" is
given in the form of the n-dimensional vector

x' = (A*A)%g, (27)
where g is a random vector whose components are uniformly distributed on [0, 1] and such
that || g|| = 10; here and below || - || means the standard norm in the n-dimensional Euclidean

space R". Then, the exact right-hand side is produced as y = Ax'.

Noisy data ys are simulated in the form ys = y 4+ &, where & = (SHE—H and € is another
random vector with uniformly distributed components. Both vectors g and € are generated
100 times, so that we have 100 problems of the form (1) with noisy data ys, and the noise level
8 is given as 8 = 0.01]|Ax" || that corresponds to 1% data noise.

In accordance with the theory, under the source condition (27), the TP regularization (3)
can suffer from saturation. On the other hand, this effect may be relaxed by using the Tikhonov
regularization (4) with a proper choice of a regularization operator B for which condition (5)
is satisfied. First, we choose the self-adjoint operator B such that the corresponding diagonal
matrix has the elements by, = by = k,k = 1,2, ..., n. For the considered A, the chosen
operator B satisfies (5) with s = 3. In the experiment, we use the quasi-optimality criterion as
the parameter choice rule with g = By = 107*, ¢ = p = 1.25 and N = M = 45, in the way
described above.

To assess the obtained results and compare the performance of the considered
regularization schemes, we measure the relative error (RE)

Jlx — x|
[l
for x = xJ g, x = x) and x = x} .

The results are displayed in figure 1, where each circle exhibits a RE in solving the
problems with one of 100 simulated data, for each of three regularization methods: the MP
regularization, the TP regularization and the Tikhonov regularization (Tikhonov). Note that
such a form of graphical illustration of the comparative performance of different regularization
algorithms is rather common (see, e.g., [11]). Moreover, in table 1 the statistical measures

9
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Min = 0.0037, Max = 0.0175
MP o
Min = 0.0037, Max = 0.0175
TPH o
Min = 0.0264, Max = 0.0377
Tikhonov [~ @O o]
| | | | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Figure 2. Numerical illustration (second experiment). The figure presents REs (circles) for
100 simulations of ys with 1% noise.

Table 1. Numerical illustration (first experiment). Statistical performance measures for the
regularized approximations xg. 8 %, x‘; 5 and 100 simulations of y; with 1% noise.

Mean RE  Median RE  Standard deviation RE ~ Mean parameter

x‘;,ﬁ 0.0071 0.0063 0.0036 a =6.02, 8 =0.002
x 0.0117 0.0117 0.0027 0.007
x/‘g’B 0.0072 0.0061 0.0035 0.002

Table 2. Numerical illustration (second experiment). Statistical performance measures for the
regularized approximations xg.ﬂ, %8, x%_b, and 100 simulations of ys with 1% noise.

Mean RE  Median RE  Standard deviation RE ~ Mean parameter

xfx,ﬂ 0.0118 0.0119 0.0029 a =0.0066, 8 = 12.1
x 0.0118 0.0119 0.0028 0.0066
ng 0.0319 0.0322 0.0028 0.0247

such as mean values, median values, standard deviation of the RE as well as mean values of
the regularization parameters are given for each of the methods.

The numerical results confirm the theoretical conclusion that the saturation of the method
(3) can be potentially relaxed by the use of method (4). Moreover, in the considered case the
MP method (9), (10) performs similar to method (4), as predicted by theorem 2.

On the other hand, if we consider the operator B, corresponding to the diagonal matrix
with elements

b—{k’ k=1,3,...,2j—1,
K= N1k, k=2.,4,...,2), j=n/2,

then, from figure 2 and table 2 we can see that the saturation cannot be relaxed by the
Tikhonov method (4) due to the fact that for the considered B the link condition (5) is violated

10
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(IB~*l =2 (m— 1) = 1 > ||A]]). At the same time, in both cases we can observe that the
MP regularization (6) with a proper choice of the regularization parameters demonstrates the
performance at the level of the best single-penalty regularization.

3.3. Numerical illustrations and comparison: first kind Fredholm integral equations

In this subsection, we are going to show that the proposed method exhibits similar performance
in a more general case, when the singular-value expansion of the operators is not known.
Similar to [17], we generate the test problems of the form (1) by using the functions shaw (n)
and ilaplace(n, 1) from the Matlab regularization toolbox [10]. These functions occur as the
results of a discretization of the first kind Fredholm integral equation of the form

b
/ k(s,t)f(t)dt = g(s), s € la,b], (28)

with a known solution f(¢). As in two previous experiments, the operator A and the solution
x' are given as an n x n-matrix and n-dimensional vector, respectively. The noisy data y;
are simulated 100 times in the same way as above, i.e. ys = Ax" + £ with the noise level §
corresponding to 1% of data noise.

Moreover, the penalizing operator is given as an n x n-matrix and defined as B = (D*D)'/2,
where

1 -1
-1 1

1 -1

is a discrete approximation of the first derivative on a regular grid with n points.

We perform an experiment with the function shaw(n) that is a discretization of
equation (28) with a = —n/2 and b = m/2. The kernel and the solution are
given as

. 2
k(s,t) = (cos(s) + cos(t))? <$> , u=m(sin(s) + sin(z)),

ft) = 26—6(t—().8)2 + e—2(r+o.5)2.

The corresponding equation (28) is discretized by a simple quadrature with n equidistant points.
Similar to [17], we take n = 100. This time the quasi-optimality criterion is implemented with
ap = 0.0001, By = 0.0005, g = 1.1 and p = 1.3, respectively.

The results are displayed in figure 3 and table 3.

In the last experiment, we consider the function ilaplace(n, 1) which occurs in a
discretization of the inverse Laplace transformation by means of the Gauss—Laguerre
quadrature with n knots and corresponds to equation (28) with a = 0,b = o0, k(s,t) =
e ™, f(t) = e /%, g(s) = (s+ 1/2)~'. We choose n = 100 and test the regularization
methods in combination with the quasi-optimality criterion, which is implemented with
ap = 0.0002, By = 0.0001 and g = 1.25, p = 1.3.

In figure 4, we show the REs produced by three regularization methods. Moreover, table 4
presents statistical information about the performance of the methods.

Again, the compensatory property of the MP regularization is observed even when it is
not known a priori whether or not the link condition (5) is satisfied.

Note that the mean values of the regularization parameters o and B indicated in
tables 3 and 4 can be used in constructing approximations x), 4, X3, x} 5 to shaw(100) and

11
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Figure 3. Numerical illustration for the function shaw (100). The figure presents REs (circles) for
100 simulations of ys with 1% noise.
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Figure 4. Numerical illustration for the function ilaplace (100, 1). The figure presents REs (circles)
for 100 simulations of ys with 1% noise.

Table 3. Numerical illustration for the function shaw (100). Statistical performance measures for
the regularized approximations xiy 8 xg, x% g and 100 simulations of ys with 1% noise.

Mean RE  Median RE  Standard deviation RE ~ Mean parameter

xgﬂ 0.1919 0.188 0.0374 a =0.00011, B = 13.89
X 0.1843 0.1957 0.0605 0.0014
x‘;,_B 0.5458 0.5538 0.0484 0.0019

ilaplace(100, 1) for any data y; with the same noise intensity § as in the above simulations.
By the way, such a choice of the regularization parameters is in the spirit of the approach
[6]. In figures 5 and 6, we display the shapes of the solutions to shaw(100) (figure 5)
and ilaplace(100, 1) (figure 6), as well as their regularized approximations x3 ,, x3, x

a.p X X8.B

corresponding to the mean values of @ and 8 from tables 3 and 4. These approximations have
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Figure 5. The representative fragments of the solution to shaw (100) and of its approximations
given by the TP method, the Tikhonov method and the MP regularization corresponding to the
mean values of the regularization parameters.

Table 4. Numerical illustration for the function ilaplace(100, 1). Statistical performance measures
for the regularized approximations x‘;_ 8 xg, x‘;, 5 and 100 simulations of y; with 1% noise.

Mean RE  Median RE  Standard deviation RE ~ Mean parameter

x‘;,ﬁ 0.1068 0.0767 0.103 a = 1.2037, B = 0.0066
x 0.1342 0.134 0.006 0.0014
x%’B 0.0575 0.0515 0.029 0.1138

been constructed for new sets of simulated data ys. As can be seen in the figures, the MP
regularization again performs similar to the best single-penalty regularization.

The presented MP regularization equipped with the quasi-optimality criterion can be used
for a more flexible numerical treatment of an ill-posed problem, when, on the one hand, an
additional penalizing operator B is used to relax the saturation effect, and, on the other hand,
a link condition (5) is not granted a priori, as is the case for noisy operators A, for example.
Moreover, the considered MP regularization may also be relevant in the situation when some
parts of data are more accurately known than others. Such a situation occurs, for example, in
geomathematics [9], and deserves further study.

Remark 3. It is clear that the quasi-optimality criterion is only one possible parameter choice
rule and it might not guarantee the optimal choice of the parameters. Indeed, in the experiments
it was observed that a proper choice of the sets Oy and PI@ is crucial for obtaining good
performance of the methods. We believe that a deeper study of this issue is important. Future
possible work in this direction is to consider a choice of the sets (25) and (26) using meta-
learning [4, 24], which proved to be an efficient method for dealing with problems of similar

type.
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Figure 6. The representative fragments of the solution to ilaplace(100, 1) and of its approximations
given by the TP method, the Tikhonov method and the MP regularization corresponding to the
mean values of the regularization parameters.
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