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Legendre polynomials as
a recommended basis for numerical differentiation

in the presence of stochastic white noise

Shuai Lu, Valeriya Naumova and Sergei V. Pereverzev

Abstract. In this paper, we consider the problem of estimating the derivative y0 of a func-
tion y 2 C 1Œ�1; 1� from its noisy version yı contaminated by a stochastic white noise and
argue that in certain relevant cases the reconstruction of y0 by the derivatives of the partial
sums of Fourier–Legendre series of yı has advantage over some standard approaches. One
of the interesting observations made in the paper is that in a Hilbert scale generated by the
system of Legendre polynomials the stochastic white noise does not increase, as it might
be expected, the loss of accuracy compared to the deterministic noise of the same intensity.
We discuss the accuracy of the considered method in the spaces L2 and C and provide a
guideline for an adaptive choice of the number of terms in differentiated partial sums
(note that this number is playing the role of a regularization parameter). Moreover, we dis-
cuss the relation of the considered numerical differentiation scheme with the well-known
Savitzky–Golay derivative filters, as well as possible applications in diabetes technology.

Keywords. Numerical differentiation, Legendre polynomials, stochastic white noise,
adaptive parameter choice, Savitzky–Golay method, diabetes technology.
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1 Introduction and brief overview

Numerical differentiation is known as a classical ill-posed problem [4, 11, 32].
It consists in approximating the derivative y0 of a function y, which is defined
and differentiable on, say, the interval Œ�1; 1�, from information about its noisy
counterpart

yı D y C ı�; (1.1)

where ı is a small positive number used for measuring noise intensity level, and �
is a noise element, which is assumed to be normalized somehow.

If � is supposed to be a continuous function on Œ�1; 1�, then the problem of
numerical differentiation is well studied (see, e.g., [15] and references therein).

At the same time, in classical regularization theory the problem of numerical
differentiation has been considered mostly within the Hilbert space setting, where
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2 S. Lu, V. Naumova and S. V. Pereverzev

� is assumed to belong to the Hilbert space L2 D L2.�1; 1/ of square integrable
functions, such that k�k � 1 and

ky � yıkL2 � ı: (1.2)

Then one is sometimes advised to find x.t/ D y0.t/ from the ill-posed integral
equation

Ax.t/ WD

Z t

�1

x.�/d� D yı.t/ � yı.�1/: (1.3)

Note that the above mentioned noise model do not cover the case of the so-
called random “white” noise, which is widely considered in statistical analysis
of physical measurements. Recall that this noise is assumed to be generated by an
L2-valued (weak) random variable � defined on an underlying probability space
.�;F ;P / such that � D �.!; t/, ! 2 �, t 2 Œ�1; 1�, is centered, has second weak
moments and for any g 2 L2 it holds

Eh�; gi WD

Z
�

h�.!; � /; gidP .!/

D

Z
�

Z 1

�1

�.!; t/g.t/dtdP .!/ D 0; (1.4)

Ejh�; gij2 D kgk2L2 : (1.5)

Note that random (stochastic) white noise � is not expected to belong to L2. In-
deed, for any orthonormal system ¹ekº1kD1 in L2 we have Ejh�; ekij

2 D 1, which
means that the expected value of the sum

Pn
kD1 jh�; ekij

2 tends to infinity as
n!1; whereas for any element of L2 such a sum should be bounded.

This last remark means that in the case of stochastic white noise �; instead of
complete data, generically expressed as yı ; we should limit ourselves to a finite
set of noisy Fourier coefficients

yık D hyı ; eki WD

Z 1

�1

yı.�/ek.�/d�; k D 1; 2; : : : ; N; (1.6)

with respect to some L2-orthonormal system ¹ekº1kD1; which is sometimes called
a design. Note that from (1.4), (1.5) it follows that the integrals (1.6) exist, at least
with probability one.

Remark that each design system ¹ekº potentially generates a variable Hilbert
scale ¹W  ¹ekºº which is a family of spaces

W  
¹ekº WD

´
y 2 L2 W kyk

2
 WD

1X
kD1

 2.k/jhek; yij
2 <1

µ
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Legendre polynomials for numerical differentiation problems 3

labeled by the so-called index functions  W Œ1;1/! .0;1/, as introduced in [9]
(see also, [18]). In particular, for the case of  .k/ D kr , r > 0, we obtain a com-
monly introduced Hilbert scale ¹W r¹ekºº, where r plays the role of a regularity
index [3].

Starting from the work [34] the concept of Hilbert scales ¹W r¹ekºº has been
used to quantify the ill-posedness of problems presented in the form of operator
equations Ax D yı : Such quantification is usually made when the design ¹ekº
generating a scale ¹W r¹ekºº consists of singular vectors of the operator A (see,
e.g., [16]).

It is known [13] that for numerical differentiation reduced to equation (1.3) such
design is formed by the functions

ek.t/ D e
I
k .t/ D 2

�1=4 sin
�

2

�
k C

1

2

�
.t C 1/; k D 1; 2; : : : ;

and

ek.t/ D Ne
I
k .t/ D 2

�1=4 cos
�

2

�
k C

1

2

�
.t C 1/; k D 1; 2; : : : :

Then the regularization of the problem (1.3) by means of the well-known spectral
cut-off scheme leads to an approximation of the derivative y0 by the derivative of
the n-th partial sum

SIn y.t/ D

nX
kD1

eIk .t/he
I
k ; yi

of Fourier series of y with noisy coefficients (1.6), i.e.,

y0.t/ �
d

dt
.SIn yı.t// WD

nX
kD1

�.2k C 1/

4
NeIk .t/he

I
k ; yıi:

From [24] it follows that for a function y 2 W r¹eI
k
º the error and the expected risk

of approximating y0 by d
dt
.SIn yı.t// can be estimated as follows: for deterministic

noise (1.1), (1.2) and n D cı�1=r we have



y0 � d

dt
.SIn yı.t//






L2

� ckykı
r�1
r ; (1.7)

while for stochastic white noise (1.1), (1.4), (1.5) and n D cı�
2

2rC1 it holds�
E





y0 � d

dt
.SIn yı.t//





2
L2

�1=2
� ckykı

r�1
rC1=2 ; (1.8)

where here and below we follow the convention that the symbol c denotes an
absolute constant, which may not be the same at different occurrences.
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4 S. Lu, V. Naumova and S. V. Pereverzev

For our further discussion it is important to note two things. First, for a function
y 2 W r¹eI

k
º the orders of the bounds (1.7), (1.8) with respect to ı cannot be,

in general, improved by using any other approximations based on noisy data yı .
Second, in (1.7), (1.8) the symbol kyk can mean both the norm of y in the space
W r¹eI

k
º and the norm of y 2 W r¹eI

k
º in the Sobolev space H r

2 D H
r
2 .�1; 1/;

where it is defined as usual

kykH r
2
WD

 
rX
iD0

ky.i/k2L2

!1=2
;

and the derivatives y.i/ are taken in the weak sense.
The bounds (1.7), (1.8) allow us to quantify the ill-posedness of numerical dif-

ferentiation of functions fromW r¹eI
k
º. Our quantification of ill-posedness is based

on the observation that a problem is well posed if and only if its solution can be
potentially approximated with an accuracy of order O.ı/ from data blurred by ad-
ditive noise of intensity ı. The higher the order of the best guaranteed accuracy
deviates from O.ı/ the more ill-posed a problem is, and the value of such a devi-
ation can be called the order of ill-posedness. Note that this is a bit different from
the notion of degree of ill-posedness coined by Wahba [34], since the latter one
may take values from Œ0;1/, while the order of ill-posedness varies from 0 (for a
well-posed problem) to 1 (for a severe ill-posed problem).

From (1.7), (1.8) it follows that the problem of approximating the first derivative
of a function y 2 W r¹eI

k
º from data yı blurred by deterministic noise (1.1), (1.2)

has the order of ill-posedness equal to 1
r

, while in the case of stochastic white noise
(1.1), (1.4), (1.5) this order is equal to 3

2rC1
. This means that in the Hilbert scale

of spaces W r¹eI
k
º the stochastic white noise increases the order of ill-posedness

of numerical differentiation compared to the deterministic noise of the same inten-
sity ı. We will show that in general such an increase is not inevitable.

Recall that the scale ¹W r¹eI
k
ºº naturally appears when the problem of numeri-

cal differentiation is reduced to the equation (1.3). Along this scale the regularity
index r coincides with the Sobolev differentiability, since

W r
¹eIk º � H

r
2 :

However, as we know from [23], this scale, as well as other Hilbert scales, does
not exhaust the whole Sobolev scale ¹H r

2 º naturally originated from the spaceH 1
2 ,

that is, the domain of the differentiation operator d
dt

, in which we are interested to
approximate.

For instance, as it follows from [5] (see Example 5 there), if the simple ana-
lytic function y.t/ D at C b is considered in a scale of spaces W  ¹eI

k
º, then its

derivative y0.t/ cannot be approximated from (1.1)–(1.3) in the space L2 with the
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Legendre polynomials for numerical differentiation problems 5

accuracy better than O.ı1=3/. In view of (1.7), such an accuracy corresponds to
the regularity index r D 2

3
in the scale ¹W r¹eI

k
ºº, while the considered function

has arbitrary high regularity (differentiability) in the Sobolev scale ¹H r
2 º:

To the best of our knowledge, in the case of L2-valued noise an error bound
of numerical differentiation in the Sobolev scale ¹H r

2 º has been obtained only
recently. Namely, in [36] the design ¹ekº consisting of Legendre polynomials

ek.t/ D Pk.t/ D

p
k C 1=2

2kkŠ

dk

dtk
Œ.t2 � 1/k�; k D 1; 2; : : : ; (1.9)

has been considered in approximating the derivatives of functions by the deriva-
tives of their partial sums of Fourier–Legendre series with noisy coefficients, i.e.

y0.t/ � Dnyı.t/ WD
d

dt

 
nX
kD1

yıkPk.t/

!
; (1.10)

where yı
k

are defined by (1.6) with ek D Pk , k D 1; 2; : : : .
Then under condition (1.2) for n D cı�1=r and any y 2 H r

2 ; r > 2; the fol-
lowing bound has been proven in [36]:

ky0 �DnyıkL2 � ckykH r
2
ı
r�2
r : (1.11)

At the same time, as we mentioned above, when dealing with the design (1.9) it
is natural to consider a variable Hilbert scale of spaces

W
 
2 WD W

 
¹Pkº WD

´
y 2 L2 W kyk

2
 WD

1X
kD0

 2.k/jhPk; yij
2 <1

µ
:

Note that if we denote by ¹W �
2 º the corresponding scale of spaces W  

2 with
 .k/ D k�, then the regularity index � along this scale will not coincide any
more with the guaranteed Sobolev differentiability of functions from H

�
2 , since

it is known from [26, 33] (see also [17]) that a space W �
2 can be identified with

weighted Sobolev space of functions y whose derivatives y.�/ may not belong
to L2, but Z 1

�1

jy.�/.t/j2.1 � t2/�dt <1:

So, a space W �
2 is essentially wider than a Sobolev space H�

2 , but nevertheless it
can be proven [14] that the derivatives of functions y 2 W �

2 can be approximated
from data yı satisfying (1.1) and (1.2) with the same order of accuracy as that
obtained in [36] forH�

2 . More precisely, for n D cı�1=� and any y 2 W �
2 it holds

ky0 �DnyıkL2 � ckyk�ı
��2
� ; (1.12)

where k � k� is the norm in W  
2 with  .k/ D k�.
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6 S. Lu, V. Naumova and S. V. Pereverzev

From (1.12) it follows that the order of ill-posedness of the problem of ap-
proximating the first derivative of a function y 2 W �

2 from noisy data (1.1), (1.2)
can be bounded by 2

�
. It is instructive to compare this bound with that previously

obtained forW r¹eI
k
º. But since the scales ¹W �

2 º and ¹W r¹eI
k
ºº are different, such

a comparison should be made provided that the functions fromW
�
2 have the same

Sobolev differentiability as those from W r¹eI
k
º: In [14] it has been observed that

W
�
2 � H

r
2 for r < �

2
; which can be seen as an estimation of the Sobolev differ-

entiability r guaranteed for all functions y 2 W �
2 :

Then we have 2
�
< 1
r

, and this may be interpreted as that under the same differ-
entiability r for functions y 2 W r¹eI

k
º the order of ill-posedness of approximating

the derivative y0 from noisy data blurred by the deterministic noise is, in general,
larger than for functions y 2 W �

2 :

In the present paper we observe another interesting feature distinguishing the
scale ¹W �

2 º from the traditional scale ¹W r¹eI
k
ºº. Namely, in the scale ¹W �

2 º the
stochastic white noise does not increase the loss of accuracy compared to the deter-
ministic noise of the same intensity ı; while for the scale of spaces W r¹eI

k
º such

a loss is well known (see (1.7) and (1.8)). This feature follows from an estimation
of the expected risk of numerical differentiation in the scales ¹W  

2 º obtained in
the next section. Moreover, in Section 3 we discuss a posteriori parameter choice
rule that automatically adjusts the value of the truncation level n to unknown index
function  , such that the chosen level n D nC gives a risk bound, which only by a
log-factor worse than the one obtained with the knowledge of  . In Section 4 we
consider an approximation of the derivative y0 from random noisy data in the space
of continuous functions and prove the corresponding risk bounds. The results of
Section 3 and 4 are based on the additional assumption that random white noise is
Gaussian. In the last section, we discuss the relation of the numerical differentia-
tion scheme (1.10) with the well-known Savitzky–Golay derivative filters [29] and
present numerical experiments with simulated data from diabetes technology.

2 Error bounds in L2

With the notions above we bound the expected risk of approximating the deriva-
tive y0 byDnyı.t/, see (1.10), by the sum of approximation and noise propagation
errors:

Eky0 �Dnyık
2
L2
D ky0 �Dnyk

2
L2
C EkDny �Dnyık

2
L2
: (2.1)

In this section we proceed similarly as in [14], providing first the estimates for
each of the error terms and then stating and proving our main theorem.

Since the approximation error ky0 �DnykL2 does not depend on the noise
model, we refer to [14] for the proof of the following estimate.
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Legendre polynomials for numerical differentiation problems 7

Lemma 2.1. For y 2 W  
2 the approximation error has the following bound, pro-

vided the integral below exists:

ky0 �DnykL2 � C

�“
�n

t�

 2.�/
dtd�

�1=2
kyk ; (2.2)

where �n D Œ0; n� � Œn;1� [ ¹.t; �/ W n � t � � <1º.
In cases  .k/ D k� and  .k/ D ekh, h > 0, the bound (2.2) reduces to the

following ones respectively:

ky0 �DnykL2 � cn
2��.� � 2/�1=2kyk�; � > 2; (2.3)

and

ky0 �DnykL2 � c

�
n3

h
C

1

h4

�1=2
e�nhkyk : (2.4)

Lemma 2.2. Under assumptions (1.1), (1.4) and (1.5) the following bound holds
true:

.EkDny �Dnyık
2
L2
/1=2 �

ı

2
n.n2 C 6nC 5/1=2: (2.5)

Proof. We will use the following representation of the derivatives of the Legendre
polynomials [20],

P 0k.t/ D 2
p
k C 1=2

.k�qk�1/=2X
iD0

p
2i C qk C 1=2P2iCqk .t/; (2.6)

where

qk D

´
0 if k D 2� C 1;
1 if k D 2�;

� D 0; 1; 2; : : : :

This representation leads to the following identities:

Dny.t/ �Dnyı.t/

D ı

nX
kD1

h�; Pki

.k�qk�1/=2X
iD0

2
p
k C 1=2

p
2i C qk C 1=2P2iCqk .t/

D ı

n�1X
jD0

Pj .t/

b.n�j�1/=2cX
iD0

2
p
j C 1=2

p
j C 2i C 3=2h�; PjC2iC1i; (2.7)

where we use the notation

bac D max¹n 2 Z W n � aº:

Then, keeping in mind the orthonormality of the system ¹Pj º, and the fact that
Ejh�; Pj ij2 D 1, while E.h�; Pj ih�; Pki/ D 0 for k ¤ j; we can derive the fol-
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8 S. Lu, V. Naumova and S. V. Pereverzev

lowing bound for the noise propagation error:

EkDny �Dnyık
2
L2
D 4ı2

n�1X
jD0

b.n�j�1/=2cX
iD0

.j C 1=2/.j C 2i C 3=2/

D 2ı2
n�1X
jD0

.j C 1=2/.nC j C 2/.b.n � j � 1/=2c C 1/

� ı2
n�1X
jD0

.j C 1=2/.nC j C 2/.n � j C 1/

D
1

4
ı2n2.n2 C 6nC 5/:

Now we will formulate the main result of this section that follows directly from
Lemmas 2.1, 2.2 and (2.1).

Theorem 2.3. Let assumptions (1.1), (1.4) and (1.5) be satisfied. Assume that
y 2 W

 
2 with  .k/ D k�: Then for � > 2 and n D cı�1=� we have

.Eky0 �Dnyık
2
L2
/1=2 D O.ı

��2
� /: (2.8)

If y 2 W  
2 with  .k/ D ekh, h > 0, then for n D c

h
log.1

ı
/ we obtain

.Eky0 �Dnyık
2
L2
/1=2 D O.ı log2 ı/: (2.9)

By comparing the present results (2.8), (2.9) with those for the deterministic
noise model [14] (see also (1.12)) we are able to conclude that in the scale of func-
tion spaces generated by the system of Legendre polynomials the stochastic white
noise does not increase the loss of accuracy compared to the deterministic noise of
the same intensity ı, as it was the case for the scale of spaces W r¹eI

k
º. This effect

deserves further study. Its ad hoc explanation is that this is because the Fourier–
Legendre coefficients of the noise propagation error (2.7) are correlated. Note that
in the case of orthonormal system ¹eI

k
º of the singular functions of the integration

operator (1.3), which are used for generating scale ¹W r¹eI
k
ºº, the corresponding

Fourier coefficients would be uncorrelated.

3 Adaptation to the unknown bound of the approximation error

It is obvious that the truncation level n in (1.10) plays the role of the regularization
parameter and, thus, need to be properly chosen. Note that the optimal choice of n
indicated in Theorem 2.3 can be realized only when the form of the smoothness
index function  .k/ and the noise intensity ı are known a priori. Since in reality
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Legendre polynomials for numerical differentiation problems 9

the form of the smoothness index function can be rather complex and, indeed, a
priori unknown, the truncation level n indicated in Theorem 2.3 is mainly of a
theoretical nature.

In this section we present a posteriori parameter choice rule that automatically
adjusts the value of the truncation level n to unknown smoothness index function
 .k/: Moreover, we are going to show and prove that the automatically chosen
truncation level n D nC provides a risk bound which is only by a log-factor worse
that the one obtained with the knowledge of the index function  .k/.

In the following, without loss of generality, we assume that the noise propa-
gation error is controlled by some known increasing continuous function � such
that

EkDny �Dnyık
2
L2
� �2.n/ı2: (3.1)

From Lemma 2.2 it follows that one may use �.n/ D 1
2
n.n2 C 6nC 5/1=2. With

the above observation, we restrict our attention to the finite set

N D ¹n W n D 1; 2; : : : ; N; N D b.��1.1=ı/cº

of possible truncation levels. Such choice is natural, since for n > b.��1.1=ı//c
the estimation for the noise propagation error (3.1) becomes trivial, i.e. O.1/:

At this point it is worth mentioning that due to the random nature of noise one
cannot conclude from (3.1) that the following estimation holds for all n 2 N :

kDny �DnyıkL2 � �.n/ı: (3.2)

Thus, one needs to use an additional assumption on the distribution of random
noise to be able to control noise propagation. One of the accepted assumptions is
that the stochastic white noise � is Gaussian. Under this assumption, we will see
in the sequel that for sufficiently large �, which does not depend on the truncation
level n, the estimation

kDny �DnyıkL2 � ��.n/ı (3.3)

holds with a large probability. From this representation it follows that � is a design
parameter and, moreover, is one of the key ingredients in the process of choosing
the optimal truncation level nC: Concerning the appropriate choice of this param-
eter, we refer to the work [1].

Note that if � is a Gaussian white noise, then in view of (2.7), (3.1) a normalized
difference

hn D
Dny �Dnyı

�.n/ı
(3.4)

is a Gaussian random variable in L2 with Ehn D 0 and Ekhnk2L2 � 1. Therefore,
the following lemma is a direct consequence of the concentration inequality, see
[12, p. 59].
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10 S. Lu, V. Naumova and S. V. Pereverzev

Lemma 3.1. The following probability estimate holds for all � > 0:

P

²
kDny �DnyıkL2

�.n/ı
> �

³
� 4 exp

�
�
�2

8

�
: (3.5)

As in [19] we define the notion of an admissible function that is though used to
bound the approximation error, but, as we will see later, is not involved in the a
posteriori choice of nC.

Definition 3.2. A function '.n/ D '.nI�; y; ı/ is said to be admissible for given
y; � and ı if the following holds:

(i) '.n/ is a non-increasing function on Œ1; N �,

(ii) '.N / < �.N/ı,

(iii) for all n 2 N ,
ky0 �DnykL2 � '.n/: (3.6)

For given �; y; ı the set of admissible functions is denoted by ˆ.�; y; ı/. In the
sequel, we always assume that the set ˆ.�; y; ı/ is not empty. From Lemma 2.1 it
follows that this is the case when ı is large enough (for negligible noise levels no
adaptation is required) and y 2 W  

2 , where  .k/ tends to infinity faster than k�,
� > 2. The latter assumption is not restrictive, since as we mentioned above, the
inclusion W �

2 � H
1
2 , which is necessary for considering y0 as an element of L2;

can be guaranteed for � > 2.

From (2.1), (3.1) and (3.6) it follows that for any n 2 N the expected risk of
approximating y0 by Dnyı.t/, see (1.10), has the following bound:

Eky0 �Dnyık
2
L2
� '2.n/C �2.n/ı2: (3.7)

In view of (3.7) the quantity

e.�; y; ı/ D inf
'2ˆ.�;y;ı/

min
n2N
¹.'2.n/C �2.n/ı2/1=2º

can be seen as the best error bound that can be guaranteed for approximation of
y0.t/ by Dnyı under the assumptions (1.1), (1.4), (1.5), and (3.1).

Now we are going to present an adaptive choice of the truncation level n D nC,
which is based on the so-called balancing principle that has been extensively stud-
ied recently (see, e.g., [7, 19] and references therein). This choice relies on the
most probable bound of the noise propagation error (3.3) and is read as follows:

nC D min¹n 2 N W kDnyı �DmyıkL2 � 4��.m/ı; m D n; : : : ; N º: (3.8)

Note that such adaptive choice of the truncation level nC does not depend on
the unknown '.n/, it actually depends only on yı , � and ı, which are assumed
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Legendre polynomials for numerical differentiation problems 11

to be known. Moreover, nC is well defined as the minimum over a finite set of
numbers, which is not empty since it contains at least n D N .

Hence, the main result of this section which is given below shows that the adap-
tively chosen truncation level nC provides a risk bound that only by a log-factor
worse than the one obtained with the knowledge of  .k/.

Theorem 3.3. Let the truncation level nC be chosen in accordance with (3.8) and
a design parameter � is chosen as � D 4

p
p ln��1.1=ı/ �

p
ln.1=ı/ with a con-

stant p chosen in such a way that the following equality holds,

211=2.��1.1=ı//�pC1 D ı2;

then

Eky0�DnCyık
2
L2
� c�

p
ln.1=ı/ inf

'2ˆ.�;y;ı/
min
n2N
¹.'2.n/C�2.n/ı2/1=2º; (3.9)

where � D max¹�.nC1/
�.n/

W n 2 N º.

Remark 3.4. The constant p, used for determining the design parameter �, can
be numerically calculated for given noise level, e.g., for ı D 10�6, p D 5:34, for
ı D 10�4, p D 5:50, and for ı D 10�2, p D 6:11.

Remark 3.5. The factor � in the error bound (3.9) can be easily found using the
bound of Lemma 2.2, for example, for our choice of �.n/ D 1

2
n.n2 C 6nC 5/1=2

we have � D
p
7:

Note that Theorem 3.3 can be proven similar to one in [2], but since our defini-
tion of the admissible function is different from that of [2], we present the proof
of the theorem for the sake of self-containedness.

Proof. First of all, recall that DnCyı D DnCyı.�.!// is a random element de-
fined on the probability space .�;F ;P / and

Eky0 �DnCyık
2
L2
D

Z
�

ky0 �DnCyık
2
L2
dP .!/: (3.10)

Let ' 2 ˆ.�; y; ı/ be any admissible function and let us temporarily introduce the
values

n0 D min¹n 2 N W '.n/ � �.n/ıº; (3.11)

n1 D arg min¹'.n/C �.n/ı W n 2 N º; (3.12)

and the random variable

„�;ı.!/ D max
n2N
khnkL2 ;

where hn is defined by (3.4).
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12 S. Lu, V. Naumova and S. V. Pereverzev

We divide the probability space � into two subspaces

�� D ¹! 2 � W „�;ı � �º; N�� D � n�� D ¹! 2 � W „�;ı > �º;

and decompose the expected risk (3.10) as follows:

Eky0�DnCyık
2
L2
D

Z
��

ky0�DnCyık
2
L2
dP .!/C

Z
N��

ky0�DnCyık
2
L2
dP .!/:

(3.13)
Similar to [2], we divide the proof of the theorem into two parts. The first one esti-
mates the behavior of the ky0 �DnCyıkL2 for “good” event ! 2 �� when the be-
havior of the random component kDmy �DnCyıkL2 can be controlled by (3.3).

The second part of the proof deals with the “bad” events when the stochastic
noise property produces results far away from the average.

Part 1 (“good” event ! 2 ��). First of all, we observe that

�.n0/ı � �.'.n1/C �.n1/ı/;

because either n1 � n0 � 1 � n0, so that by definition (3.11) we have

�.n0 � 1/ı � '.n0 � 1/

and

�.n0/ı D
�.n0/

�.n0 � 1/
�.n0 � 1/ı � �'.n0 � 1/ � �.'.n1/C �.n1/ı/;

or n0 � n1 in which case

�.n0/ı � �.n1/ı � �.'.n1/C �.n1/ı/:

Using the definition of n0 (3.11) we want to show that n0 � nC: Indeed, for any
m > n0 we obtain the following bound for the behavior of the random variable:

kDmyı �Dn0yıkL2 � ky
0
�DmyıkL2 C ky

0
�Dn0yıkL2

� '.m/C kDmy �DmyıkL2 C '.n0/

C kDn0y �Dn0yıkL2

� 2��.m/ı C 2��.n0/ı � 4��.m/ı:

This means that

n0 � nC D min¹n 2 N W kDnyı �DmyıkL2 � 4��.m/ı;

m D N;N � 1; : : : ; nC 1º:
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Legendre polynomials for numerical differentiation problems 13

Using the above observations for all ! 2 �� one can finally obtain

ky0 �DnCyıkL2 � ky
0
�Dn0yıkL2 C kDn0yı �DnCyıkL2

� '.n0/C ��.n0/ı C 4��.n0/ı

� 6��.n0/ı � 6��.'.n1/C �.n1/ı/:

Therefore, we getZ
��

ky0 �DnCyık
2
L2
dP .!/ � 36�2�2.'.n1/C �.n1/ı/

2

� 36�2�2.2'2.n1/C 2�
2.n1/ı

2/

D 72�2�2.'2.n1/C �
2.n1/ı

2/:

Part 2 (“bad” event ! 2 N��). For ! 2 N�� , using the assumption that

N D b��1.1=ı/c;

we have the following bound:

ky0 �DnCyıkL2 � ky
0
�DNyıkL2 C kDNyı �DnCyıkL2

� '.N /C kDNy �DNyıkL2 C 4��.N /ı

< �.N /ı C
kDNy �DNyıkL2

�.N /ı
.�.N /ı/C 4��.N /ı

�
kDNy �DNyıkL2

�.N /ı
C 5� � 6„�;ı :

Then using the Cauchy–Schwarz inequality one can estimate the second term
in (3.13) as follows:Z
N��

ky0 �DnCyık
2
L2
dP .!/ � 36

Z
N��

„2�;ıdP .!/

� 36

�Z
N��

„4�;ıdP .!/

�1=2�Z
N��

1dP .!/

�1=2
:

Now we provide separate estimations for each of the above integrals. Lemma 3.1
with � D � immediately givesZ

N��

1dP .!/ D P¹! 2 N��º � 4N exp
�
�
�2

8

�
: (3.14)
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14 S. Lu, V. Naumova and S. V. Pereverzev

Using Lemma 3.1 once again, we can estimate the tail distribution

G.�/ D P¹„�;ı.!/ > �º �
NX
nD1

P¹khnkL2 > �º � 4N exp
�
�
�2

8

�
;

and integrating by parts yieldsZ
N��

„4�;ıdP .!/ � �

Z 1
0

�4dG.�/

D ��4G.�/j10 C 4

Z 1
0

�3G.�/d�

D 2

Z 1
0

�2G.�/d�2

� 8N

Z 1
0

�2 exp
�
�
�2

8

�
d�2 D 29N:

Then a combination of the above inequalities gives us the following bound:Z
N��

„2�;ıdP .!/ � 211=2N exp
�
�
�2

16

�
� 211=2��1.1=ı/ exp�

16p ln��1.1=ı/
16

� 211=2.��1.1=ı//�pC1 D ı2:

Summing up all the estimations, we get

Eky0 �DnCyık
2
L2
� 72�2�2.'2.n1/C �

2.n1/ı
2/C 36ı2

� 108�2�2.'2.n1/C �
2.n1/ı

2/;

or that is the same,

.Eky0 �DnCyık
2
L2
/1=2 � 24

p
3�.'2.n1/C �

2.n1/ı
2/1=2

q
p ln��1.1=ı/

� c�
p

ln.1=ı/ min
n2N
¹.'2.n/C �2.n/ı2/1=2º:

This estimation holds true for an arbitrary admissible function ' 2 ˆ.�; y; ı/:
Therefore, we conclude that

.Eky0 �DnCyık
2
L2
/1=2 � c�

p
ln.1=ı/ inf

'2ˆ.�;y;ı/
min
n2N
¹.'2.n/C �2.n/ı2/1=2º:
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Legendre polynomials for numerical differentiation problems 15

4 Error bounds in the space of continuous functions

We first note the following property of the derivatives of the Legendre polynomials
[35], which will be useful below:

jP
.r/

k
.t/j � jP

.r/

k
.1/j D

.k C r/Š

2r.k � r/ŠrŠ

p
k C 1=2: (4.1)

At this point, we shall remind that the quality of the reconstruction of the deriva-
tive y0 from given noisy data depends on the balance between the approximation
error related to the smoothness of the function to be differentiated, and the noise
propagation error, which is related to the noise nature.

We will first provide the error bounds for the approximation error. These error
bounds have been obtained recently in [14] for approximating the derivative of a
function y 2 W  

2 from deterministic noise. We present them here for the sake of
completeness.

Lemma 4.1. For y 2 W  
2 the approximation error has the following bound:

ky0 �DnykC � c

�Z 1
n

t5

 2.t/
dt

�1=2
kyk : (4.2)

In cases  .k/ D k� and  .k/ D ekh, h > 0, from (4.2) we can derive the follow-
ing bounds respectively:

ky0 �DnykC � c
n3��
p
2� � 6

kyk�; � > 3; (4.3)

and

ky0 �DnykC � c

�
n5

h
C
n5

h6

�1=2
e�nhkyk : (4.4)

Next we provide and prove an explicit bound for the noise propagation error.

Lemma 4.2. Under the assumptions (1.1), (1.4) and (1.5) the following bound
holds true:

EjjDny �Dnyı jjC � cın
3
p

logn: (4.5)

Proof. Keeping in mind that

hPk; yıi D hPk; yi C ıhPk; �i; k D 1; 2; : : : ; n;

where hPk; �i D �k is a centered Gaussian random variable on a probability space
.�;F ;P /; the noise propagation error can be estimated as follows:

EkDny �DnyıkC � ıE







nX
kD1

�kP
0
k







C

: (4.6)
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16 S. Lu, V. Naumova and S. V. Pereverzev

In order to bound the right-hand side of (4.6), we will use Dudley’s theorem
[12, Theorem 11.17].

Note that

X D .Xt /t2T WD

nX
kD1

�kP
0
k.t/; T D Œ�1; 1�; (4.7)

is a zero mean Gaussian random process because it is a finite linear combination
of real-valued elements with Gaussian random coefficients �k D hPk; �i, E�k D 0
and E�2

k
D 1 for k D 1; 2; : : : ; n.

To employ Dudley’s theorem we define on T the metric dX induced by X as
follows:

dX .s; t/ WD .EjXs �Xt j
2/1=2 D

 
nX
kD1

jP 0k.s/ � P
0
k.t/j

2

!1=2
; s; t 2 T:

In view of (4.1) with r D 1 the diameter D D D.T / of T D Œ�1; 1� in this metric
admits the estimation

D D D.T / � 2

 
nX
kD1

jP 0k.1/j
2

!1=2
� c

 
nX
kD1

k5

!1=2
� cn3: (4.8)

Moreover, using the Mean Value Theorem and (4.1) with r D 2, we can bound
the distance dX .s; t/ by a multiple of js � t j:

dX .s; t/ �

 
nX
kD1

kP 00k k
2
C

!1=2
js � t j

D

 
nX
kD1

1

64
.k � 1/2k2.k C 1/2.k C 2/2.k C 1=2/

!1=2
js � t j

� cn5js � t j: (4.9)

Recall that the statement of Dudley’s theorem [12, Theorem 11.17] has the form

E sup
t2T

Xt � 24

Z 1
0

.logN.T; dX I "//1=2d";

where N.T; dX I "/ denotes the minimal number of "-balls in the metric dX re-
quired to cover T . From (4.9) one can conclude that

N.T; dX I "/ � cn
5 1

"
:
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Legendre polynomials for numerical differentiation problems 17

Then Dudley’s estimate yields

Ek
nX
kD1

�kP
0
kkC � c

Z D

0

�
log

n5

"

�1=2
d"

� c
p
D

�Z D

0

log
n5

"
d"

�1=2
D c
p
D.D log

n5

D
CD/1=2:

Combining this with (4.6)–(4.8) we get the statement of the lemma.

Now we summarize the above observations from Lemmas 4.1, 4.2 into the fol-
lowing convergence result.

Theorem 4.3. Let assumptions (1.1), (1.4) and (1.5) be satisfied. Assume that
f 2 W

 
2 with  .k/ D k�. Then for � > 3 and n D cı�1=� we have

Eky0 �DnyıkC D O
�
ı log1=2.1=ı/

���3
� : (4.10)

If f 2 W  
2 with  .k/ D ekh, h > 0, then for n D c

h
log.1=ı/ we obtain

Eky0 �DnyıkC D O
�
ı log7=2.1=ı/

�
: (4.11)

Note that the bounds (4.10), (4.11) are only by a logarithmic factor worse than
those obtained in [14] for the deterministic noise model (1.1), (1.2), that can be
seen as a reflection of stochastic nature of noise.

Note also that the risk bounds indicated in Theorems 2.3 and 4.3 are achieved
for the same order of the truncation level n D O.ı�1=�/; or n D O.h�1 log.1=ı//.
Therefore, one may expect that the truncation level n D nC chosen in accordance
with (3.8) is effective not only in L2-space, but also in the space of continuous
functions.

5 The relation to Savitzky–Golay method. Numerical examples

In 1964 Savitzky and Golay [29] provided a method for smoothing and differenti-
ation of data by least-squares technique. Since then the Savitzky–Golay approach
has been widely used, actually, the proposed algorithm is very attractive for its
exceptional simplicity and its ability of producing a significant improvement in
computational speed. Moreover, the paper [29] is one of the most cited papers
in the journal Analytical Chemistry and is considered by that journal as one of
its “10 seminal papers” saying “it can be argued that the dawn of the computer-
controlled analytical instrument can be traced to this article” [28].
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18 S. Lu, V. Naumova and S. V. Pereverzev

In this section we would like to discuss the relation between the considered
approach (1.10) and the well-known filtering technique [29]. As it will be shown
the approach (1.10) is very similar to the Savitzky–Golay method.

At the same time, it is worthwhile to mention that the Savitzky–Golay filter
produces excellent results provided that the degree of the polynomial n is cor-
rectly chosen [25]. However, this issue has not been well studied in the literature
and there is no general rule to advise the choice of the polynomial degree n. In
this situation and in view of the similarity between the approach (1.10) and the
Savitzky–Golay method the adaptive parameter choice rule (3.8) can be used for
addressing the above mentioned issue.

Moreover, we are going to demonstrate the superiority of the proposed algo-
rithm to finite-difference schemes which are commonly employed in a pointwise
estimate of the derivative.

5.1 Formulation of the Savitzky–Golay method

Savitzky–Golay filter approximates a derivative of the function by the derivative
of the polynomial of fixed degree n

y0.t/ � SGnyı.t/ WD
d

dt

nX
kD1

akt
k; (5.1)

where the coefficients .ak/nkD0 minimize the sum

IN .yı I .ak/
n
kD0/ D

1

N

NX
iD1

 
yı.ti / �

nX
kD0

akt
k
i

!2
(5.2)

for given noisy data .yı.ti //NiD1. For the sake of simplicity we assume for the
moment that .ti /NiD1 2 Œ�1; 1�, but in the numerical tests below the data points .ti /
are taken from other intervals, which are suitable for the considered application
and can be transformed to Œ�1; 1� by an appropriate change of variables.

Keeping in mind that the sum (5.2) is a discrete version of the integral

I.yı I .ak/
n
kD0/ D

Z 1

�1

 
yı.t/ �

nX
kD0

akt
k

!2
dt;

and the fact that for the latter one we have

min
.ak/

I.yı I .ak/
n
kD0/ D

Z 1

�1

 
yı.t/ �

nX
kD0

yıkPk.t/

!2
dt; (5.3)

the approximation SGnyı.t/ can be viewed as a discrete version of (1.10). More-
over, in the same spirit as the Savitzky–Golay method (5.1), (5.2), one can consider
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Legendre polynomials for numerical differentiation problems 19

another discrete version of (1.10) defined as

Dn;Nyı.t/ WD
d

dt

 
nX
kD1

akPk.t/

!
; (5.4)

where the coefficients .ak/nkD0 minimize the sum

QIN .yı I .ak/
n
kD0/ D

1

N

NX
iD1

 
yı.ti / �

nX
kD0

akPk.ti /

!2
:

In view of the similarity of all these three numerical differentiation schemes
(1.10), (5.1), (5.4), each of them can be treated as a perturbed version of the others,
and if this perturbation is assumed to be within the level of O.ın2/, which can be
expected since the values of IN .yı I .ak/nkD0/ and QIN .yı I .ak/nkD0/ at minimizers
approximate (5.3), then the rule (3.8) for the choice of n can be effectively applied
to the Savitzky–Golay method (5.1), as well as to its version (5.4).

5.2 Numerical examples

In the second part of this section we demonstrate how the proposed approach (5.4)
together with the adaptive parameter choice rule (3.8) can be effectively used to
improve the management of diabetes therapy by providing accurate predictions of
the blood glucose (BG) evolution.

Mathematically the problem of BG-prediction can be formulated as follows.
Assume that at the time moment t D t0 we are givenm preceding estimates yı.ti /,
i D 0;�1; : : : ;�mC 1, of a patient’s BG-concentration sampled correspondingly
at the time moments t0 > t�1 > t�2 > � � � > t�mC1 within the sampling horizon
SH D t0 � t�mC1. The goal is to construct a predictor that uses these past mea-
surements to predict BG-concentration as a function of time y D y.t/ for k sub-
sequent future time moments ¹tj ºkjD1 within the prediction horizon PH D tk � t0
such that t0 < t1 < t2 < � � � < tk .

There are several prediction techniques, and a variety of glucose predictors has
been recently proposed, see, for example, [21, 22, 27, 30, 31]. In this section we
discuss the predictors based on the numerical differentiation [8]. Such predictors
estimate the rate of change of BG-concentration at the prediction moment t D t0
from current and past measurements and a future BG-concentration at any time
moment t 2 Œt0; tk� is given as follows:

y.t/ D y0.t0/ � .t � t0/C yı.t0/; (5.5)

where t 2 Œt0; tk� and y0.t0/ is approximated by (5.4) from the given noisy data
.ti ; yı.ti //, i D 0; : : : ;�mC 1; SH D 30 (min), N D m D 7 and with the trun-
cation levels n 2 ¹1; 2; : : : ; N � 1º.
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20 S. Lu, V. Naumova and S. V. Pereverzev

To illustrate how these predictors work we use data set of 100 virtual subjects
which are obtained from Padova/University of Virginia simulator [10]. For each
in silico patient BG-measurements have been simulated and sampled with a fre-
quency of 5 (min) during 3 days. These simulated measurements have been cor-
rupted by random white noise with the standard deviation ı of 6 (mg/dL). We
perform our illustrative tests with data of the same 10 virtual subjects that have
been considered in [22, 30].

To quantify the clinical accuracy of the considered predictors, we use the Pre-
diction Error-Grid Analysis (PRED-EGA) [30], which has been designed espe-
cially for the blood glucose predictors. This assessment methodology records ref-
erence glucose estimates paired with the estimates predicted for the same mo-
ments. As a result, the PRED-EGA distinguishes Accurate (Acc.), Benign (Be-
nign) and Erroneous (Error) predictions in hypoglycemic (0–70 mg/dL), eugly-
cemic (70–180 mg/dL) and hyperglycemic (180–450 mg/dL) ranges. This stratifi-
cation is of great importance because consequences caused by a prediction error
in the hypoglycemic range are very different from ones in the euglycemic range.
We would like to stress that the assessment has been done with respect to the ref-
erences given as simulated noise-free BG-readings.

Table 1 demonstrates the performance assessment matrix given by the PRED-
EGA for 15 (min) ahead glucose predictions by the linear extrapolation predictors,
where the derivative is estimated by means of (5.4) with the truncation level chosen
in accordance with (3.8), operating on simulated noisy data with SH D 30 (min).

We also perform the comparison of the constructed predictors with the predic-
tors based on the linear extrapolation (5.5) considered in [21], where the derivative
is estimated by means of the one-sided finite-difference formula [6]

y0.t0/ �

�mC1X
iD0

ai

h
yı.ti /; (5.6)

where h D 5 (min), m D 7,

a0 D
49

20
; a�1 D �6; a�2 D

15

2
; a�3 D �

20

3
;

a�4 D
15

4
; a�5 D �

6

5
; a�6 D

1

6
:

The performance of the predictors (5.5), (5.6) is displayed in Table 2 below.
The comparison of both tables allows us to conclude that the predictors (5.4), (5.5)
with adaptively chosen truncation level (3.8) outperform the predictors (5.5), (5.6)
based on the one-sided finite-difference formula of a fixed order.
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Patient BG � 70 (mg/dL) (%) BG 70-180 (mg/dL) (%) BG � 180 (mg/dL) (%)
Vir. ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 � � � 99:88 0:12 � 100 � �

2 � � � 99:88 0:12 � � � �

3 � � � 99:88 0:12 � � � �

17 99:69 0:31 � 100 � � � � �

18 99:71 0:29 � 100 � � � � �

24 100 � � 99:81 0:19 � � � �

33 99:71 0:29 � 99:80 � 0:20 100 � �

34 99:60 0:40 � 95:32 4:18 0:50 57:14 42:86 �

42 100 � � 98:35 1:65 � 100 � �

47 99:73 0:27 � 96:88 2:92 0:21 100 � �

Avg: 99:78 0:22 � 98:98 0:93 0:091 91:43 8:57 �

Table 1. The performance assessment matrix given by the PRED-EGA for the linear
extrapolation predictors, where the derivative is found by (5.4) with a truncation
level chosen by the balancing principle (3.8), operating on simulated noisy data
with PH D 15 (min) and SH D 30 (min).

Patient BG � 70 (mg/dL) (%) BG 70-180 (mg/dL) (%) BG � 180 (mg/dL) (%)
Vir. ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 � � � 52:81 44:44 2:75 47:06 147:06 15:88

2 � � � 45:36 51:47 3:17 � � �

3 � � � 48:48 50:12 1:40 � � �

17 62:89 13:52 23:58 48:88 50:00 1:12 � � �

18 54:57 12:98 32:45 54:35 43:91 1:74 � � �

24 53:23 14:15 32:62 62:71 36:91 0:38 � � �

33 78:17 16:19 15:63 57:28 36:61 6:10 50:00 112:50 37:50

34 60:96 19:16 29:88 61:87 33:45 4:68 42:86 142:86 14:29

42 65:16 10:66 24:18 59:17 33:39 7:44 28:57 171:43 �

47 67:73 19:60 22:67 52:71 44:17 3:12 � 100:00 �

Avg: 63:25 10:89 25:86 54:36 42:45 3:19 33:70 54:77 11:53

Table 2. The performance assessment matrix given by the PRED-EGA for the pre-
dictors (5.5), (5.6), operating on simulated noisy data with PH D 15 (min).
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achieved in this paper can potentially be extended for solving other similar prob-
lems, such as interpolation or data fitting problems, especially in the case that
stochastic white noise is considered and noise also propagates with some index in
discretization. We plan to study this case in our future publications.
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