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Abstract

Background: Prediction of the future blood glucose (BG) evolution from continuous glucose monitoring (CGM)
data is a promising direction in diabetes therapy management, and several glucose predictors have recently been
proposed. This raises the problem of their assessment. There were attempts to use for such assessment the
continuous glucose-error grid analysis (CG-EGA), originally developed for CGM devices. However, in the CG-
EGA the BG rate of change is estimated from past BG readings, whereas predictors provide BG estimation ahead
of time. Therefore, the original CG-EGA should be modified to assess predictors. Here we propose a new version
of the CG-EGA, the Prediction-Error Grid Analysis (PRED-EGA).
Methods: The analysis is based both on simulated data and on data from clinical trials, performed in the
European FP7-project ‘‘DIAdvisor.’’ Simulated data are used to test the ability of the analyzed CG-EGA mod-
ifications to capture erroneous predictions in controlled situation. Real data are used to show the impact of the
different CG-EGA versions in the evaluation of a predictor.
Results: Using the data of 10 virtual and 10 real subjects and analyzing two different predictors, we demonstrate
that the straightforward application of the CG-EGA does not adequately classify the prediction performance. For
example, we observed that up to 70% of 20 min ahead predictions in the hyperglycemia region that are classified
by this application as erroneous are, in fact, accurate. Moreover, for predictions during hypoglycemia the
assessments produced by the straightforward application of the CG-EGA are not only too pessimistic (in up to
60% of cases), but this version is not able to detect real erroneous predictions. In contrast, the proposed mod-
ification of the CG-EGA, where the rate of change is estimated on the predicted BG profile, is an adequate metric
for the assessment of predictions.
Conclusions: We propose a new CG-EGA, the PRED-EGA, for the assessment of glucose predictors. The pre-
sented analysis shows that, compared with the straightforward application of the CG-EGA, the PRED-EGA
gives a significant reduction of the misclassification cases. A reduction by a factor of at least 4 was observed in
the study. Moreover, the PRED-EGA is much more robust against uncertainty in the input and references.

Introduction

Prediction of the future blood glucose (BG) evolution
from continuous glucose monitoring (CGM) data is a

promising direction in diabetes therapy management. The
importance of such prediction has been shown by several
applications.1,2 There are many possible prediction tech-
niques,3 and several glucose predictors have been recently
proposed.4–7 This raises the problem of their assessment.

Examples of the assessment metrics adopted in the litera-
ture include Clarke error grid analysis,5 mean relative abso-

lute deviation percentage,6,7 and the continuous glucose-error
grid analysis (CG-EGA),7,8 with CGM data serving as the
reference in all cases.

Simple illustration can demonstrate that among these
metrics the CG-EGA is the most sensitive in the recognition of
different prediction performances. It can be seen from Figure 1
where the horizontal line, paired with each of the other four
lines, stays for a prediction versus reference plots, such that
we have four performance configurations, which are, of
course, different from the clinical viewpoint. For example, the
prediction of a stable glucose concentration at the background
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of a fall in the hypoglycemic phase depicted in the left panel of
Figure 1 should be considered more dangerous than the same
prediction at the background of a recovery from the hypo-
glycemia shown in the right panel.

It is easy to check that for three assessment moments t - 10,
t, and t + 10 (in min), traced on Figure 1, the mean relative
absolute deviation percentage has the same value for all these
configurations, and the Clarke error grid analysis is also not
able to distinguish between them, indicating 67% in zone A
and 33% in zone B for all cases.

At the same time, only the CG-EGA provides different as-
sessment results for all performance configurations considered.

Namely, the predictions for the three moments traced in the
left panel of Figure 1 are assessed as follows: 100% of erroneous
predictions during hypoglycemia and 100% of benign errors
during normoglycemia for the plot ‘‘horizontal line versus in-
clined line’’; 50% of accurate and erroneous predictions during
hypoglycemia and 100% of benign errors during normoglyce-
mia for the plot ‘‘horizontal line versus curve-shaped line.’’

For the right panel of Figure 1 the CG-EGA yields 100% of
benign errors during hypo- and normoglycemia for the plot
‘‘horizontal line versus inclined line,’’ whereas for the plot
‘‘horizontal line versus curve-shaped line’’ the values are 50%
of accurate and benignly erroneous predictions during hypo-
glycemia and 100% of benign errors during normoglycemia.

At this point it is noteworthy that demonstrated sensitivity
in recognition of different prediction performances is due to
the fact that the CG-EGA accounts for direction and rates of
glucose change. Both of them are measured, in fact, by values
of time derivatives calculated at the assessment moments for
reference as well as for assessed glucose profile. Just the
knowledge of these values allows us to distinguish all per-
formance configurations in Figure 1. Therefore, only in the
ideal situation of continuous signal and thus perfect deriva-
tive would the CG-EGA be the ‘‘gold standard’’ error grid
analysis for the prediction assessment.

However, in practice the exact values of time derivatives
are not given but can only be estimated by means of ap-
proximate formulae, such as, for example, a backward dif-

ference, a forward difference, or the central difference, which
are well known and can be found in the Appendix.

Moreover, recall that the CG-EGA was originally devel-
oped for quantifying the accuracy of CGM devices,9,10 which
at an assessment time, say t = ti, do not provide any informa-
tion for the future time step t = ti + Dt, where Dt is a fixed
elapsed time between two successive CGM readings. There-
fore, in the original CG-EGA the rates of glucose change are
estimated backward in time.

In contrast, predictors provide a glucose estimation ahead
of time, and it paves a new way for estimating the rates of
glucose change. As a result, several versions of the CG-EGA
can be proposed for the prediction assessment.

The aim of this study is to analyze them with respect to
adequateness to judge upon the prediction accuracy and
to robustness to approximation and data errors. By resorting
to the analysis of the performance of a particular glucose
predictor on several simulated and clinical data sets, this work
shows that the straightforward application of the original CG-
EGA, as it was developed for CGM systems, does not ade-
quately classify the prediction performance. In contrast, a
proposed modification of the CG-EGA, where the rates of
change are estimated on predicted and reference profiles by
means of the central difference, is a very rigorous metric for
the prediction assessment.

We also argue that the conclusion that the proposed modi-
fication of the CG-EGA is more adequate in assessing glucose
predictors than the original CG-EGA, is general, and does not
depend on a particular predictor. To demonstrate this, we apply
the compared metrics to assess the performance of the simplest
glucose predictor known as ‘‘projection ahead’’ of the current
glucose trend.11 Then the assessment results support the con-
clusion made on the basis of the predictor that was used first.

Experimental Procedures

Versions of the CG-EGA for glucose predictors

Following the CG-EGA methodology9,10 to assess the ac-
curacy of a glucose predictor, one should record reference
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FIG. 1. Simple illustration demonstrating the sensitivity of the continuous glucose error grid analysis approach. CGM,
continuous glucose monitoring.
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glucose estimates paired with the estimates predicted for the
same moments and look at the two essential aspects of the
clinical accuracy: rate error grid analysis (R-EGA) and point
error grid analysis (P-EGA). The modifications of the CG-
EGA we consider are based on the same rate error grid and
point error grid as proposed for the assessment of CGM sys-
tems.9,10 The difference between these modifications is in the
way of estimating the rate of glucose change.

Let fXreference(ti), i¼ 1, 2, . . .g be glucose estimates that are
used as references in the prediction assessment. Using the
well-known approximate formulae presented in the Appen-
dix and assuming that the reference estimates are taken every
Dt = ti - ti - 1 min, one can estimate the reference rate of change
in one of the following ways:

X¢
reference(ti) �

Xreference(ti)�Xreference(ti� 1)

Dt
(1)

X¢
reference(ti) �

Xreference(tiþ 1)�Xreference(ti)

Dt
(2)

X¢
reference(ti) �

Xreference(tiþ 1)�Xreference(ti� 1)

2Dt
(3)

Let now X(t, s) be a predicted value of the glucose concen-
tration at time s (min) in the future, when the prediction is
made at time t < s. Then for a fixed prediction horizon PH a
predicted value of the glucose concentration Xpredicted(ti) for
the future time t = ti is given as Xpredicted(ti) = X(ti - PH,ti).

From a time series viewpoint each item of the reference time
series fXreference(ti), i¼ 1, 2, . . .g should be compared with
the corresponding item of the predicted time series
fXpredicted(ti), i¼ 1, 2, . . .g, and in a straightforward application
of the original CG-EGA to the prediction assessment the pre-
dicted rate of change is estimated backward in time as follows:

X¢
predicted(ti) �

Xpredicted(ti)�Xpredicted(ti� 1)

Dt

¼ X(ti�PH, ti)�X(ti� 1�PH, ti� 1)

Dt

(4)

and then plotted against the reference rate given by Eq. 1.
This version of the CG-EGA has been already used in the

literature for the assessment of the glucose predictors,7,8 and
we will refer to it as the Prediction-Error Grid Analysis
(PRED-EGA), version 0.

The other versions of the PRED-EGA, which we are going
to present, originate from the observation that for a fixed PH
all the predictors described in the literature3–7 can predict
not just the glucose concentration at time t = ti, but the whole
future glucose profile as a function of time Xpredicted(t) =
X(ti - PH,t) for t ‡ ti - PH. Then the predicted rate of change
X¢

predicted at t = ti can be estimated in accordance with the well-
known formulae as follows:

X¢
predicted(ti) �

X(ti�PH, ti)�X(ti�PH, ti� 1)

Dt
(5)

X¢
predicted(ti) �

X(ti�PH, tiþ 1)�X(ti�PH, ti)

Dt
(6)

X¢
predicted(ti) �

X(ti�PH, tiþ 1)�X(ti�PH, ti� 1)

2Dt
(7)

Thus, the three well-known approximate formulae for the first
derivative lead to three different versions of the PRED-EGA,
where the reference rate of change and its predicted coun-

terpart are estimated by the pairs of formulae Eqs. 1 and 5,
Eqs. 2 and 6, or Eqs. 3 and 7. In the following we will refer to
them as the PRED-EGA, versions 1, 2, and 3, respectively.

As we already mentioned, in practice CGM readings,
which are used for predictions and for references, are given
with a fixed elapsed time Dt. For several widely used
CGM sensors we have Dt = 5 (min). It means that in above-
mentioned formulae for rates of change the value of Dt cannot
be chosen at will. Therefore, the reliability and robustness of
these approximate formulae with fixed Dt should be tested
prior to using them on clinical data.

Such reliability and robustness tests can be made with
simulated data, which allow an accurate calculations of
X¢

reference(t) and X¢
predicted(t) at the assessment points t = ti,

i¼ 1, 2, . . .. In this controlled situation the accurate values of
X¢

reference (ti) and X¢
predicted(ti) can be used in the R-EGA that will

lead to the ideal version of the PRED-EGA, which has been
already characterized as the ‘‘gold standard’’ error grid
analysis for the prediction assessment. Comparing the as-
sessments provided by this ‘‘gold standard’’ metric with ones
given by the versions of the PRED-EGA described above, we
can determine the most adequate of them. Below we present
the results of such comparison.

Subjects and dataset

The dataset contains the data of 100 virtual subjects and 10
real subjects. The virtual subjects data are obtained from Pa-
dova/University of Virginia simulator.12 For each in silico
patient the CGM readings have been simulated and sampled
with a frequency of 1 min during 3 days. We perform our
reliability and robustness tests with data of 10 virtual subjects
provided by the Padova/University of Virginia simulator.12

Data of the first three subjects (Virtual ID 1, 2, and 3) have
been randomly chosen from 100 traces generated by the
simulator. The other seven data sets (Virtual ID 17, 18, 24, 33,
34, 42, and 47) have been chosen because they contain both
hypo- and hyperglycemic periods.

The data of 10 real subjects were collected during two
clinical trials (1A and 1B) that were performed in the Centre
d’Investigation Clinique du CHU de Montpellier, Mon-
tpellier, France within the framework of the European
FP7-project ‘‘DIAdvisor.’’ The subjects considered have been
diagnosed with type 1 diabetes and treated with insulin for at
least 12 months before the trials; their ages are between 18 and
70 years. During the study, the BG estimates were sampled
every 5 min using a CGM sensor. In the ‘‘DIAdvisor 1B’’ trial
such information was collected during 3 days, whereas in the
‘‘DIAdvisor 1A’’ trial it was done during 2 days. The patients
consumed three meals per day (40 g of carbohydrates at
breakfast, 70 g at lunch and dinner) and decided on their in-
sulin need according to the current BG level.

Glucose predictors used in the study

It is clear that a comparison of different versions of the
PRED-EGA can only be done on the basis of some glucose
predictor. In our study the role of such a basic predictor is
played by an algorithm, which is based on adaptive kernel
methods.13,14

The current version of the algorithm is portable from in-
dividual to individual without being readjusted. It was
trained on the data, which are not used in the present study.
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The performance of the current version of the algorithm has
been demonstrated recently in the presentation of the project
‘‘DIAdvisor.’’15 An input for the algorithm consists of six
CGM readings from the past 25 min. Note that in contrast to
some other studies,5,7,8 no data preprocessing/smoothing has
been made before applying our basic glucose predictor.

Moreover, to demonstrate that the conclusions of this study
are related not only with our basic predictor, we also analyze in
the Appendix the performance of the simplest glucose pre-
dictor, which is based on the linear extrapolation and uses the
current and 5-min-old CGM readings as the prediction input.

Results

Tests with simulated data against the ‘‘gold standard’’
PRED-EGA

As we already mentioned, to implement the ideal version of
the PRED-EGA, which will be used as the ‘‘gold standard’’
assessment metric, one should know accurate values of the
derivatives X¢

reference(t) and X¢
predicted(t) at the assessment points

t = ti, t¼ ti, i¼ 1, 2, . . . :
Such knowledge is available when one deals with simu-

lated data used as predictor inputs and references. Table 1
demonstrates the performance assessment matrix given by
the ideal version of the PRED-EGA for 20 min ahead glucose
predictions, when our basic predictor is applied to the set of

simulated data. The assessment matrix is presented in the
format that is usual for CG-EGA methodology.9

Note that even through the simulator can produce virtual
CGM readings every 1 min, in our tests we try to mimic the data
flow from some widely used CGM sensors, when a new
reading appears every 5 min and updates the prediction input.
It means that a new predicted glucose profile is produced every
Dt = 5 min, and all versions of the PRED-EGA (including the
‘‘gold standard’’) are applied to assess the predictions at time
moments ti = i · Dt, i¼ 1, 2, . . .. Moreover, in the PRED-EGA,
versions 0–3, the formulae Eqs. 1–7 are used with Dt = 5 (min).

In Tables 2 and 3 we present the performance assessment
matrices given by the PRED-EGA, versions 0 and 3, respec-
tively (for the sake of brevity we do not present here the
matrices given by other versions).

To quantify the differences in the assessment between the
‘‘gold standard’’ and other versions of the PRED-EGA, we use
one of usual matrix norms that measures the distance between
two (assessment) matrices {aij} and {bij}, i¼ 1, 2, . . . , 10,
j¼ 1, 2, . . . , 9, as follows;

jjfaijg�fbijgjj ¼ max

(X9

j¼ 1

jaij� bijj, i¼ 1, 2, . . . , 10

)

Here aij or bij is a percentage of accurate, benign, or erroneous
predictions indicated in the i-th row and j-th column of the

Table 1. The Performance Assessment Matrix Given by the ‘‘Gold Standard’’ Prediction-Error Grid Analysis

for the Basic Predictor Operating on Simulated Noise-Free Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

Virtual ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

1 — — — 100 — — 100 — —
2 — — — 100 — — 100 — —
3 — — — 100 — — — — —
17 100 — — 100 — — — — —
18 100 — — 100 — — — — —
24 100 — — 100 — — — — —
33 100 — — 94.84 5.15 — 100 — —
34 100 — — 96.98 3.02 — 100 — —
42 100 — — 100 — — 100 — —
47 100 — — 96.67 3.33 — 100 — —

BG, blood glucose.

Table 2. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 0,

for the Basic Predictor Operating on Simulated Noise-Free Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

Virtual ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

1 — — — 99.28 — 0.72 100 — —
2 — — — 100 — — 100 — —
3 — — — 100 — — — — —
17 100 — — 100 — — — — —
18 100 — — 100 — — — — —
24 100 — — 100 — — — — —
33 100 — — 99.4 — 0.6 100 — —
34 100 — — 97.48 2.52 — 57.14 42.86 —
42 100 — — 97.16 2.34 0.5 75 25 —
47 100 — — 96.03 3.34 0.63 100 — —

BG, blood glucose.
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corresponding assessment matrix (for example, for the matrix
in Table 3, a55 = 0).

In the present context the meaning of such distance is that
for each particular subject the differences in the prediction
assessment are summed up over glycemic regions, and then
for a group of subjects considered the largest such quantity is
taken as the distance between assessment matrices. It is clear
that the larger such distance is, the more difference in the
assessment is.

In the first row of Table 4 one can find the distances be-
tween the assessment matrices, produced by different ver-
sions of the PRED-EGA, and the matrix appearing as a result
of the assessment by means of the ‘‘gold standard’’ PRED-
EGA. From these distance values one can conclude that ver-
sions 2 and 3 are much closer to the ‘‘gold standard’’ than
version 0.

The first row of Table 4 is related with the situation, where a
virtual CGM device (the simulator) is assumed to provide
accurate (reference) glucose readings. A more realistic situa-
tion can be modeled by adding white noise to the simulated
readings and then by using them as predictor inputs and
references. In this way we can assess the effect of the noise on
the choice of the best version of the metric.

The prediction assessment matrices, produced in such a
situation by versions 0, 2, and 3 of the PRED-EGA, have been
calculated for the case when simulated CGM readings have
been corrupted by white noise with an SD of 6 (mg/dL). The
distances between these matrices and the assessment matrix
from Table 1 produced by the ‘‘gold standard’’ PRED-EGA are
presented in the second row of Table 4.

From Table 4 it follows that among the versions considered,
version 3 of the PRED-EGA is the most reliable and robust
because it stays closer to the ‘‘gold standard’’ for both noise-
free and noisy simulated data.

Assessment of the prediction from clinical data

In this section we compare the assessments provided by the
PRED-EGA version 3 for the performance of our basic pre-
dictor on data from two clinical trials with those that are
provided by the PRED-EGA version 0, and demonstrate that
the first ones are more adequate.

As reference and predictor inputs we use the BG estimates
provided every 5 min by CGM systems for five patients in-
volved in the ‘‘DIAdvisor 1A’’ trial (their ID start with the
letter A; the data were collected during 2 days) and for the
same number of patients taking part in the ‘‘DIAdvisor 1B’’
trial (ID numbers start with the letter B; the data were col-
lected during 3 days).

Prediction assessments given by the above-mentioned
versions of the PRED-EGA are presented in Tables 5 and 6.

Using the matrix distance defined above, we can observe
essential differences in assessments produced by the versions
of the PRED-EGA under study. For matrices from the Tables 5
and 6 this distance is equal to 256.81.

However, dealing with real clinical data one is not able to
implement the ideal version of the PRED-EGA and use it as
the ‘‘gold standard’’ for a comparison with other versions and
for making a conclusion about their adequateness.

At the same time, from extensive case analysis it turns out
that up to 70% of predictions in the range of hyperglycemia,
which are classified by the PRED-EGA version 0 as erroneous,
are, in fact, accurate, and they are properly classified as such
by the PRED-EGA version 3.

To illustrate this, let us closely look at the prediction as-
sessments for two representative subjects A 121 and A 131, for
which the difference between versions 0 and 3 is the most
visible.

From the first two rows of Table 7 one can see that for the
two patients considered version 0 failed in detection of erro-
neous predictions, whereas version 3 really detected them.

The situation is similar for the prediction assessment dur-
ing normo- and hypoglycemia.

Table 3. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 3,

for the Basic Predictor Operating on Simulated Noise-Free Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

Virtual ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

1 — — — 100 — — 100 — —
2 — — — 100 — — 100 — —
3 — — — 100 — — — — —
17 100 — — 100 — — — — —
18 100 — — 100 — — — — —
24 100 — — 100 — — — — —
33 100 — — 98.41 1.59 — 100 — —
34 100 — — 98.15 1.85 — 100 — —
42 100 — — 100 — — 100 — —
47 100 — — 98.33 1.67 — 100 — —

BG, blood glucose.

Table 4. Difference in the Assessment Between

the ‘‘Gold Standard’’ and Other Versions

of the Prediction-Error Grid Analysis Measured

in Terms of Distances Between Performance

Assessment Matrices

Version 0 Version 2 Version 3

Simulated noise-free data 86.72 6.35 7.13
Simulated noisy data 118.96 25.34 7.11
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As an example, we can present the assessments for another
two patients for whom the difference between versions 0 and
3 is again the most visible.

From the last two rows of Table 7 one can see that version 0
either misclassifies predictions as erroneous (subject B 130) or
is not able to detect really erroneous ones (subject B 136).
Typical examples are given in Figures 2 and 3.

One may think that the conclusion about the inadequate-
ness of the PRED-EGA version 0 for the assessment of
predictions is only true with respect to the basic predictor
used in the above study. To show that it is not the case, we
apply both versions 0 and 3 of the PRED-EGA to assess the
performance of the simplest glucose predictor, which is based
on the linear extrapolation of the current and past CGM val-
ues. Such a predictor is also known as ‘‘projection ahead’’ of
the current glucose trend.11

In Tables A1 and A2 of the Appendix we present the per-
formance assessment matrices (the distance between them is
equal to 299.63) given by the PRED-EGA versions 0 and 3 for
this predictor, when it operates on the same clinical data as
our basic predictor. These tables allow the same conclusion as
the analysis reported above for the basic predictor: namely,
for predictions during normo- and hyperglycemia, the as-
sessment given by the PRED-EGA version 0 is too pessimis-

tic—in the majority of cases (up to 70%) the predictions, which
are classified as erroneous or benignly erroneous, are, in fact,
accurate and properly classified in the PRED-EGA version 3.
Table A3 of the Appendix presents an example of this situa-
tion for a representative subject (A 121).

Moreover, for predictions during hypoglycemia the as-
sessment given by version 0 is not only too pessimistic, but
this version of the PRED-EGA is not able to detect real errors.
An example for a representative subject (A 103) is presented in
Table A3 of the Appendix.

In conclusion, independently of the predictor used, PRED-
EGA version 3 is the most accurate metric to assess predictor
performance.

Conclusions

The main message of this study is that the straightforward
application of the CG-EGA methodology in the form devel-
oped for quantifying the accuracy of CGM devices does not
adequately classify the performance of glucose predictors.

At the same time, several prediction-oriented modifications
of the CG-EGA can be proposed. In this study we have
analyzed them and suggested the most reliable and robust
one. We call this new version of the CG-EGA the ‘‘Prediction-

Table 5. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 0,

for the Basic Predictor Operating on Clinical Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

A 103 73.33 16.67 10 77.16 16.98 5.86 65.36 22.88 11.76
A 108 81.82 9.09 9.09 82.97 13.32 3.71 69.57 24.64 5.8
A 118 71.43 14.29 14.29 81.21 14.24 4.55 77.38 14.29 8.33
A 121 74.55 10.91 14.55 77.6 14.2 8.2 63.16 24.81 12.03
A 131 100 — — 61.63 27.91 10.47 70.73 17.42 11.85
B 112 66.67 15.15 18.18 67.97 22.55 9.48 48.56 31.69 19.75
B 125 30.77 23.08 46.15 56.42 33.49 10.09 59.35 26.71 13.95
B 130 77.27 11.36 11.36 72.35 21.84 5.80 82.69 12.5 4.81
B 133 100 — — 77.32 17.53 5.15 75.24 16.93 7.84
B 136 80 6.67 13.33 70.36 21.91 7.73 67.2 23.81 8.99

BG, blood glucose.

Table 6. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 3,

for the Basic Predictor Operating on Clinical Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

A 103 80 6.67 13.33 89.23 10.46 0.31 88.89 4.58 6.54
A 108 81.82 9.09 9.09 92.37 6.97 0.65 89.86 5.8 4.35
A 118 71.43 — 28.57 96.68 3.32 — 91.67 2.98 5.36
A 121 83.64 7.27 9.09 88.99 7.23 3.77 92.48 6.02 1.5
A 131 88.89 11.11 — 90.17 9.83 — 93.38 3.14 3.48
B 112 84.85 3.03 12.12 87.58 9.48 2.94 79.1 8.61 12.3
B 125 38.46 7.69 53.85 84.02 14.16 1.83 85.46 6.53 8.01
B 130 95.45 — 4.55 94.22 4.76 1.02 93.27 0.96 5.77
B 133 — 100 — 89.74 7.69 2.57 91.22 3.14 5.64
B 136 73.33 — 26.67 94.86 5.14 0 86.77 7.41 5.82

BG, blood glucose.
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Error Grid Analysis’’ (PRED-EGA, version 3) and recommend
it as one of the assessment tools of choice when measuring the
accuracy of glucose predictors.

At the same time, the goal of this article is also to attract
attention to the problem of the assessment of glucose pre-
dictors. In particular, another modifications of the CG-EGA
can be studied, where a dynamic zone adjustment in the
point-error grid is governed by the values of PHs.

Another direction of research is the study of a new index
that has been introduced recently for comparing CGM glu-
cose prediction algorithms.16

Table 7. Quantification of Erroneous Predictions

for Representative Subjects

Number of predictions
that are classified

as erroneous

Number of them
that are misclassified

as erroneous

ID Version 3 Version 0 Version 3 Version 0

A 121 2 16 0 12
A 131 10 34 0 24
B 130 2 5 0 3
B 136 4 2 0 0
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FIG. 2. A representative example of the accurate prediction during hypoglycemia, which is (bottom panel) properly
classified by the Prediction-Error Grid Analysis version 3 and (top panel) misclassified by the Prediction-Error Grid Analysis
version 0. BG, blood glucose; CGM, continuous glucose monitoring; P- and R-EGA, point and rate error grid analysis,
respectively.
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Appendix (Tables A1–A3)

Approximate formulae for the rate of change of f(t) (first
derivative)

A backward difference:

f ¢(t) � f (t)� f (t� h)

h
(A1)

A forward difference:

f ¢(t) � f (tþ h)� f (t)

h
(A2)

The central difference:

f ¢(t) � f (tþ h)� f (t� h)

2h
(A3)

where t is the assessment moment, h is the spacing, and f is a
function of time, which describes either a reference or an as-
sessed profile. Note that a proper choice of the spacing h can
make the formulae Eqs. A1–A3 robust against data noise,17,18

but because in practice a reference profile is given as a discrete
time series ff (ti), i¼ 1, 2, . . .gwith a fixed elapsed time Dt = ti -
ti - 1, one usually is forced to choose h = Dt.

(Tables A1–A3 follow /)
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Table A2. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 3,

for the Linear Extrapolation Predictor Operating on Clinical Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

A 103 80 10 10 84.66 10.74 4.6 76.47 13.07 10.46
A 108 54.55 27.27 18.18 88.7 9.35 1.96 71.01 21.74 7.25
A 118 85.71 14.29 — 92.17 4.82 3.01 88.1 5.36 6.55
A 121 68.97 22.41 8.62 84.44 9.52 6.03 77.44 18.05 4.51
A 131 77.78 11.11 11.11 79.89 13.79 6.32 87.11 6.97 5.92
B 112 75.76 9.09 15.15 82.03 12.42 5.56 66.12 14.29 19.59
B 125 23.08 38.46 38.46 70.4 20.63 8.97 77.84 11.98 10.18
B 130 79.55 4.55 15.91 83.05 13.56 3.39 87.5 6.73 5.77
B 133 — 100 — 86.93 9.55 3.52 83.86 10.44 5.7
B 136 53.33 6.67 40 88.21 8.72 3.08 80.42 14.29 5.29

BG, blood glucose.

Table A1. The Performance Assessment Matrix Given by the Prediction-Error Grid Analysis, Version 0,

for the Linear Extrapolation Predictor Operating on Clinical Data with a Prediction Horizon of 20 Min

BG £ 70 mg/dL BG 70–180 mg/dL BG ‡ 180 mg/dL

ID Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%) Accurate (%) Benign (%) Error (%)

A 103 60 33.33 6.67 61.85 29.85 8.31 53.59 28.1 18.3
A 108 36.36 45.45 18.18 60.35 33.55 6.1 59.42 27.54 13.04
A 118 57.14 42.9 — 50.45 42.9 6.65 52.98 35.71 11.31
A 121 49.12 38.6 12.28 61.9 28.57 9.52 46.62 39.85 13.53
A 131 33.33 55.56 11.11 46.82 37.57 15.61 56.45 32.06 11.5
B 112 60.61 21.21 18.18 49.35 39.87 10.78 39.75 38.93 21.31
B 125 23.08 38.46 38.46 40.99 44.59 14.41 44.91 38.32 16.77
B 130 45.45 36.36 18.18 51.02 40.14 8.84 63.46 28.85 7.69
B 133 100 — — 64.65 28.79 6.57 56.33 32.91 10.76
B 136 33.33 33.33 33.33 44.47 46.27 9.25 48.15 41.8 10.05

BG, blood glucose.

Table A3. Quantification of Erroneous Predictions Given by the Linear Extrapolation Predictor

for Representative Subjects

As erroneous As benign

ID Version 3 Version 0 Version 3 Version 0

A 121
Number of predictions that are classified 6 18 24 53
Number of them that are misclassified 0 12 4 37

A 103
Number of predictions that are classified 3 2 3 10
Number of them that are misclassified 0 1 0 7
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