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CONDITIONS ON OPTIMAL SUPPORT RECOVERY IN

UNMIXING PROBLEMS BY MEANS OF MULTI-PENALTY

REGULARIZATION

MARKUS GRASMAIR AND VALERIYA NAUMOVA

Abstract. Inspired by several real-life applications in audio processing
and medical image analysis, where the quantity of interest is generated
by several sources to be accurately modeled and separated, as well as by
recent advances in regularization theory and optimization, we study the
conditions on optimal support recovery in inverse problems of unmixing
type by means of multi-penalty regularization.

We consider and analyze a regularization functional composed of a
data-fidelity term, where signal and noise are additively mixed, a non-
smooth, convex, sparsity promoting term, and a quadratic penalty term
to model the noise. We prove not only that the well-established theory
for sparse recovery in the single parameter case can be translated to
the multi-penalty settings, but we also demonstrate the enhanced prop-
erties of multi-penalty regularization in terms of support identification
compared to sole ℓ

1-minimization. We additionally confirm and sup-
port the theoretical results by extensive numerical simulations, which
give a statistics of robustness of the multi-penalty regularization scheme
with respect to the single-parameter counterpart. Eventually, we con-
firm a significant improvement in performance compared to standard
ℓ
1-regularization for compressive sensing problems considered in our ex-
periments.

1. Introduction

In many real-life applications such as audio processing or medical im-
age analysis, one encounters the situation when given observations (most
likely noisy) have been generated by several sources ui that one wishes to
reconstruct separately. In this case, the reconstruction problem can be un-
derstood as an inverse problem of unmixing type, where the solution u†

consists of several (two or more) components of different nature, which have
to be identified and separated.

In mathematical terms, an unmixing problem can be stated as the solution
of an equation

Au† = y,

where u† =
∑L

i=1 ui, ui ∈ Vi and V1 + . . . + VL = R
N but 〈Vi, Vj〉 ≃ 0 for

i 6= j in the sense that

(1) |〈vi, vj〉| ≃ δij
1
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for all vi ∈ Vi and vj ∈ Vj, ‖vi‖ℓ2 = ‖vj‖ℓ2 = 1, i 6= j. In general, we are
interested to acquire the minimal amount of information on u so that we can
selectively reconstruct with the best accuracy one of the components uı̂, but
not necessarily also the other components uj for j 6= ı̂. In this settings, we
further assume that A cannot be specifically tuned to recover uı̂ but should
be suited to gain universal information to recover uı̂ by a specifically tuned
decoder.

A concrete example of this setting is the noise folding phenomenon aris-
ing in compressed sensing, related to noise in the signal that is eventually
amplified by the measurement procedure. In this setting, it is reasonable to
consider a model problem of the type

(2) A(u+ v) = y,

where v is the random Gaussian noise with variance σv on the original signal
u ∈ R

N and A ∈ R
m×N is the linear measurement matrix. Several recent

works (see, for instance, [1] and the references therein) illustrate how the
measurement process actually causes the noise folding phenomenon. To be
more specific, one can show that (2) is equivalent to solving

(3) Âu+ ω = y,

where ω is composed by i.i.d. Gaussian entries with distribution N(0, σω),
and the variance σω is related to the variance of the original signal by σ2

ω =
N
mσ2

v . This implies that the variance of the noise on the original signal is
amplified by a factor of N/m.

Under the assumption that A satisfies the so-called restricted isometry
property, it is known from the work on the Dantzig selector in [4] that one
can reconstruct u† from measurements y as in (3) such that

(4) ‖u− u†‖22 ≤ C22
(

(1 + k)
N

m
σ2
v

)

logN,

where k denotes the number of nonzero elements of the solution u. The es-
timate (4) is considered (folklore) nearly-optimal in the sense that no other
method can really improve the asymptotic error O(Nmσ2

v). Therefore, the
noise folding phenomenon may in practice significantly reduce the potential
advantages of compressed sensing in terms of the trade-off between robust-
ness and efficient compression (given by the factor N/m here) compared to
other more traditional subsampling methods [5].

In [2] the authors present a two-step numerical method which allows not
only to recover the large entries of the original signal u accurately, but
also has enhanced properties in terms of support identification over simple
ℓ1-minimization based algorithms. In particular, because of the lack of sep-
aration between noise and reconstructed signal components, the latter ones
can easily fail to recover the support when the support is not given a priori.
However, the computational cost of the second phase of the procedure pre-
sented in [2], being a non-smooth and non-convex optimization problem, is
too demanding to be performed on problems with realistic dimensionalities.
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It was also shown that other methods based on a different penalization of
the signal and noise can lead to higher support detection rate.

The follow up work [11], which addresses the noise folding scenario by
means of multi-penalty regularization, provides the first numerical evidence
of the superior performance of multi-penalty regularization compared to its
single parameter counterparts for problem (2). In particular, the authors
consider the functional

(5) Jp,q(u, v) := ‖A(u+ v)− y‖22 + α‖u‖pp +
(

β‖v‖qq + ε‖v‖22
)

,

here α, β, ε ∈ R+ may all be considered as regularization parameters of
the problem. The parameter ε > 0 ensures the ℓ2−coercivity of Jp,q(u, ·)
also with respect to the component v. In the infinite dimensional setting
the authors presented a numerical approach to the minimization of (5) for
0 ≤ p < 2, 2 ≤ q < ∞, based on simple iterative thresholding steps, and
analyzed its convergence.

The results presented in this paper are very much inspired not only by
the above-mentioned works in the signal processing and compressed sensing
fields, but also by theoretical developments in sparsity-based regularization
(see [8] and references therein) and multi-penalty regularization ([9, 10], just
to mention a few). While the latter two directions are considered separately
in most of the literature, there have also been some efforts to understand
regularization and convergence behavior for multiple parameters and func-
tionals, especially for image analysis [3, 12]. However, to the best of our
knowledge, the present paper is the first one providing a theoretical analysis
of the multi-penalty regularization with a non-smooth sparsity promoting
regularization term, and an explicit comparison with the single-parameter
counterpart.

1.1. Content of the paper. In Section 2 we concisely recall the pertinent
features and concepts of multi-penalty and single-penalty regularization. We
further show that ℓ1-regularization can be considered as the limiting case of
the multi-penalty one, and thus the theory of ℓ1-regularization can be ap-
plied to multi-penalty setting. In Section 3 we recall and discuss conditions
for exact support recovery in the single-parameter case. The main contribu-
tions of the paper are presented in Sections 4 and 5, where we extend and
generalize the results from the previous sections to the multi-penalty setting.
In Section 5 we also open the discussion on the set of admissible parameters
for the exact support recovery for unmixing problem in single-parameter as
well as multi-penalty cases. In particular, we study the sensitivity of the
multi-penalty scheme with respect to the parameter choice. The theoretical
findings and discussion are illustrated and supported by extensive numeri-
cal validation tests presented in Section 6. Finally, in Section 7 we compare
the performance of the multi-penalty regularization and its single-parameter
counterpart for compressive sensing problems.
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2. Multi-Penalty and Single-Penalty Regularization

We first provide a short reminder and collect some definitions of the stan-
dard notation used in this paper.

The true solution u† of the unmixing problem (2) is called k-sparse if
it has at most k non-zero entries, i.e., #I = #supp(u†) ≤ k, where I :=

supp(u†) :=
{

i : u†i 6= 0} denotes the support of u†.
We propose to solve the unmixing problem (2) with k-sparse true solution

using multi-penalty Tikhonov regularization of the form

(6) Tα,β(u, v) :=
1

2
‖A(u+ v)− y‖22 + α‖u‖1 +

β

2
‖v‖22 → min

u,v
,

the solution of which we will denote by (uα,β , vα,β). We note that we can,
formally, interpret standard ℓ1-regularization as the limiting case β = ∞,
setting

Tα,∞(u, v) :=

{

1
2‖Au− y‖22 + α‖u‖1 if v = 0,

+∞ if v 6= 0.

Obviously, the pair of minimizers of Tα,∞ will always be equal to (uα, 0),
where uα minimizes 1

2‖Au− y‖22 + α‖u‖1.

Definition 1. Let β ∈ R+ ∪{∞} be fixed. We say that a set S ⊂ R
N ×R

N

is a set of exact support recovery for the unmixing problem with operator
A, if there exists α > 0, such that supp(uα,β) = supp(u†) whenever the given

data y has the form y = A(u† + v) with (u†, v) ∈ S.
The parameters α > 0 for which this property holds are called admissible

for S.

Specifically, we will study for c > d > 0 the sets

(7) Sc,d,I :=
{

(u, v) ∈ R
N × R

N : supp(u) = I, inf
i∈I

|ui| > c, ‖v‖∞ < d
}

and the corresponding class

Sc,d,k :=
⋃

#I≤k

Sc,d,I .

The set Sc,d,I is a set of exact support recovery, if there exists some reg-
ularization parameter α > 0, such that we can apply multi-penalty regu-
larization with parameters α and β (or single-parameter ℓ1-regularization
with parameter α in case β = ∞) to the unmixing problem (2) and obtain
a result with the correct support, provided that the ℓ∞-norm of the noise is
smaller than d and the non-zero coefficients of u† are larger than c. Typical
examples of real-life signals that can be modeled by signals from the set
Sc,d,I can be found in Asteroseismology, see for instance [2].

We note that this class of signals is very similar to the one studied in [2].
The main difference is that we focus on the case where the noise v is bounded
only componentwise (that is, with respect to the ℓ∞-norm), whereas [2] deals
with noise that has a bounded ℓp-norm for some 1 ≤ p ≤ 2. Additionally,
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we allow the noise also to mix with the signal u† to be identified in the
sense that the supports of v and u† may have a non-empty intersection. In
contrast, the signal and the noise are assumed to be strictly separated in [2].

Throughout the paper we will several times refer to the sign function sgn,
which we always interpret as being the set valued function sgn(t) = 1 if t > 0,
sgn(t) = −1 if t < 0, and sgn(t) = [−1, 1] if t = 0, applied componentwise
to the entries of the vector uα.

We use the notation AI to denote the restriction of the operator A to the
span of the support of u†. Additionally, we denote by

J :=
{

i : u†i = 0}

the complement of I, and by AJ the restriction of A to the span of J . We
note that the adjoints A∗

I and A∗
J are simply the compositions of the adjoint

A∗ of A with the projections onto the spans of I and J , respectively.

As a first result, we show that the solution of the multi-penalty prob-
lem (6) simultaneously solves a related single-penalty problem.

Lemma 1. The pair (uα,β, vα,β) solves (6) if and only if

vα,β = (β +A∗A)−1(A∗y −A∗Auα,β)

and uα,β solves the optimization problem

(8)
1

2
‖Bβu− yβ‖

2
2 + α‖u‖1 → min

with

Bβ =
(

Id +
AA∗

β

)−1/2
A

and

yβ =
(

Id +
AA∗

β

)−1/2
y.

Proof. We can solve the optimization problem in (6) in two steps, first with
respect to v and then with respect to u. Assuming that u is fixed, the
optimality condition for v in (6) reads

(9) A∗(A(u+ v)− y) + βv = 0.

That is, for fixed u, the optimum in (6) with respect to v is obtained at

v(u) := (β +A∗A)−1(A∗y −A∗Au).

Inserting this into the Tikhonov functional, we obtain the optimization prob-
lem

1

2
‖A(u + v(u))− y‖22 + α‖u‖1 +

β

2
‖v(u)‖22 → min

u
.
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Using (9), we can write

1

2
‖A(u+ v(u)) − y‖22 =

1

2
〈A(u+ v(u)) − y,Au− y〉

+
1

2
〈A∗(A(u+ v(u))− y), v(u)〉

=
1

2
〈A(u+ v(u)) − y,Au− y〉 −

β

2
‖v(u)‖22.

Thus the optimization problem for u simplifies to

(10)
1

2
〈A(u+ v(u)) − y,Au− y〉+ α‖u‖1 → min

u
.

Now note that

A(u+ v(u)) − y = A(Id− (β +A∗A)−1A∗A)u− (Id−A(β +A∗A)−1A∗)y

= A(Id +A∗A/β)−1u− (Id +AA∗/β)−1y

= (Id +AA∗/β)−1(Au− y).

Inserting this equality in (10), we obtain the optimization problem

1

2

〈

(Id +AA∗/β)−1(Au− y), Au− y
〉

+ α‖u‖1 → min
u

,

which is the same as (8). �

Remark 1. As a consequence of Lemma 1, we can apply the theory of
ℓ1-regularization also to the multi-penalty setting we consider here. In par-
ticular, this yields, for fixed β > 0, estimates of the form

‖u† − uα,β‖1 ≤ C1,βα+ C2,β
‖yβ −Bβu

†‖22
α

provided that u† satisfies a source condition of the form B∗
βη ∈ ∂(‖u†‖1) with

|(B∗
βη)i| < 1 for every i 6∈ supp(u†), and the restriction of the mapping Bβ

to the span of the support of u† is injective (see [8]). Additionally, it is easy
to show that these conditions hold for Bβ provided that they hold for A and
β is sufficiently large.

3. Sets of Exact Support Recovery—Single-penalty Setting

The main focus of this paper is the question whether multi-penalty regu-
larization allows for the exact recovery of the support of the true solution u†

and how it compares to single-penalty regularization. Because, as we have
seen in Lemma 1, multi-penalty regularization can be rewritten as single-
parameter regularization for the regularized operator Bβ and right hand side
yβ, we will first discuss recovery conditions in the single-parameter setting.

In order to find conditions for exact support recovery, we first recall the
necessary and sufficient optimality condition for ℓ1-regularization:
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Lemma 2. The vector uα minimizes

Tα(u) :=
1

2
‖Au− y‖22 + α‖u‖1,

if and only if

A∗(Auα − y) ∈ −α sgn(uα).

Using this result, we obtain a condition that guarantees exact support
recovery for the single-penalty method:

Lemma 3. We have supp(uα) = I, if and only if there exists wα ∈ (R\{0})I

such that
A∗

I(AIwα − y) = −α sgn(wα),

‖A∗
J (AIwα − y)‖∞ ≤ α,

Proof. This immediately follows from Lemma 2 by testing the optimality
conditions on the vector uα given by (uα)i = (wα)i for i ∈ I and (uα)i = 0
else. �

Our main result concerning support recovery for single-parameter regu-
larization is the following:

Proposition 1. Assume that AI is injective and that

(11) ‖A∗
JAI(A

∗
IAI)

−1‖∞ < 1.

Then the set Sc,d,I defined in (7) is a set of exact support recovery for the
unmixing problem whenever
(12)

c

d
>

‖A∗
J (AI(A

∗
IAI)

−1A∗
I − Id)A‖∞‖(A∗

IAI)
−1‖∞

1− ‖A∗
JAI(A∗

IAI)−1‖∞
+ ‖(A∗

IAI)
−1A∗

IA‖∞.

Moreover, every parameter α > 0 satisfying

(13)
d‖A∗

J (AI(A
∗
IAI)

−1A∗
I − Id)A‖∞

1− ‖A∗
JAI(A∗

IAI)−1‖∞
≤ α <

c− d‖(A∗
IAI)

−1A∗
IA‖∞

‖(A∗
IAI)−1‖∞

is admissible on Sc,d,I .

Proof. First we note that the injectivity of AI implies that the mapping
A∗

IAI is invertible. Thus the condition (11) actually makes sense. More-
over, the inequality (12) is necessary and sufficient for the existence of α
satisfying (13).

Now let (u†, v) ∈ Sc,d,I and assume that α satisfies (13). We denote

s†i := sgn(u†i ), i ∈ I,

and define

wα := u†I + (A∗
IAI)

−1A∗
IAv − α(A∗

IAI)
−1s†.

Because ‖s†‖∞ = 1, it follows from the second inequality in (13) that

|(wα)i − u†i | ≤ ‖(A∗
IAI)

−1A∗
IA‖∞‖v‖∞ + α‖(A∗

IAI)
−1‖∞ < c ≤ |u†i |,
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and therefore

sgn(wα) = sgn(u†I) = s†.

Thus wα actually satisfies the equation

wα = u†I + (A∗
IAI)

−1A∗
IAv − α(A∗

IAI)
−1 sgn(wα)

= (A∗
IAI)

−1A∗
I(AIu

†
I +Av) − α(A∗

IAI)
−1 sgn(wα)

= (A∗
IAI)

−1A∗
Iy − α(A∗

IAI)
−1 sgn(wα),

and thus

A∗
I(AIwα − y) = −α sgn(wα),

which is the first condition in Lemma 3.
It remains to show that

‖A∗
J (AIwα − y)‖∞ ≤ α.

However,

A∗
J(AIwα − y) = A∗

J(AIwα −AIu
†
I −Av)

= A∗
J(AI(A

∗
IAI)

−1A∗
IAv −Av − αAI(A

∗
IAI)

−1s†),

and thus

‖A∗
J(AIwα − y)‖∞ ≤ d‖A∗

J (AI(A
∗
IAI)

−1A∗
I − Id)A‖∞

+ α‖A∗
JAI(A

∗
IAI)

−1‖∞.

Now the first inequality in (13) implies that this term is smaller than α.
Thus wα satisfies the conditions of Lemma 3, and thus supp(uα) = I. �

Remark 2. In the case where A = Id is the identity operator, the conditions
above reduce to the conditions that c > 2d and d ≤ α < c − d. Since ℓ1-
regularization in this setting reduces to soft thresholding, these conditions
are very natural and are actually both sufficient and necessary: Since the
noise may componentwise reach the value of d, it is necessary to choose a
regularization parameter of at least d in order to remove it. However, on
the support I of the signal, the smallest values of the noisy signal value are
at least of size c − d. Thus they are retained as long as the regularization
parameter does not exceed this value.

For more complicated operators A, the situation is similar, i.e., a too
small regularization parameter α is not able to remove all the noise, while
a too large one destroys part of the signal as well. The exact bounds for the
admissible regularization parameters, however, are much more complicated.
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4. Sets of Exact Support Recovery—Multi-Penalty Setting

We now consider the setting of multi-penalty regularization for the so-
lution of the unmixing problem. Applying Lemma 1, we can treat multi-
penalty regularization with the same methods as single-penalty regulariza-
tion. To that end, we introduce the regularized operator

(14) Aβ :=
(

I +
AA∗

β

)−1
A.

In particular, we have with the notation of Lemma 3 that B∗
βB = A∗

βA and
B∗

βyβ = A∗
βy.

As a first result, we obtain the following analogon to Lemma 3:

Lemma 4. We have supp(uα,β) = I, if and only if there exists wα ∈ (R \

{0})I such that

A∗
β,I(AIwα,β − y) = −α sgn(wα,β),

‖A∗
β,J (AIwα − y)‖∞ ≤ α,

Proof. Applying Lemma 2 to the single-penalty problem (8), we obtain the
conditions

B∗
β,I(Bβ,Iwα,β − yβ) = −α sgn(wα,β),

‖B∗
β,J(Bβ,Iwα,β − yβ)‖∞ ≤ α.

Now the claim follows from the equalities

B∗
β,IBβ,I = A∗

β,IAI , B∗
β,Iyβ = A∗

β,Iy,

B∗
β,IBβ,I = A∗

β,IAI , B∗
β,Iyβ = A∗

β,Iy.

�

Since the proof of Proposition 1 only depends on the optimality conditions
and the representation of the data as y = Au†+Av, we immediately obtain
a generalization of Proposition 1 to the multi-penalty setting.

Proposition 2. Assume that 0 < β < ∞ is such that

(15) ‖A∗
β,JAI(A

∗
β,IAI)

−1‖∞ < 1.

Then the set Sc,d,I is a set of exact support recovery for the unmixing problem
in the multi-penalty setting whenever

(16)
c

d
> ‖(A∗

β,IAI)
−1A∗

β,IA‖∞

+
‖A∗

β,J(AI(A
∗
β,IAI)

−1A∗
β,I − Id)A‖∞‖(A∗

β,IAI)
−1‖∞

1− ‖A∗
β,JAI(A∗

β,IAI)−1‖∞
.

Moreover, all the pairs of parameter (α, β) satisfying (16) and
(17)
d‖A∗

β,J (AI(A
∗
β,IAI)

−1A∗
β,I − Id)A‖∞

1− ‖A∗
β,JAI(A∗

β,IAI)−1‖∞
≤ α <

c− d‖(A∗
β,IAI)

−1A∗
β,IA‖∞

‖(A∗
β,IAI)−1‖∞

are admissible on Sc,d,I .
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Proof. The proof is analogous to the proof of Proposition 1. �

Remark 3. We note that the condition

‖A∗
JAI(A

∗
IAI)

−1‖∞ < 1

implies the analogous inequality for Aβ provided that β is sufficiently large.
Similarly, if α satisfies the conditions in Proposition 1 that guarantee admis-
sibility on Sc,d,I, the pair (α, β) will satisfy the conditions for admissibility
in Proposition 2 provided that β is sufficiently large. The converse, however,
need not be true: If the pair (α, β) is admissible for exact support recovery
on Sc,d,k with multi-penalty regularization, it need not be true that the single
parameter α is admissble for the single-penalty setting as well. Examples
where this actually happens can be found in Section 6 (see in particular
Table 1).

5. Admissible parameters

As a consequence of Propositions 1 and 2, we obtain that the condition

(18) sup
|I|≤k

‖A∗
β,JAI(A

∗
β,IAI)

−1‖∞ < 1

is sufficient for Sc,d,k to be a set of exact support recovery for the unmixing
problem, provided that the ratio c/d is sufficiently large; the condition for
the single-parameter case can be extracted from (18) by setting β = ∞, in
which case Aβ reduces to A.

Now define the signal-to-noise ratio of a pair (u, v) as

ρ(u, v) :=
inf

{

|ui| : i ∈ supp(u)
}

‖v‖∞
.

That is, ρ(u, v) is the ratio of the smallest significant value of the signal u,
and the largest value of the noise v. Denote moreover

R(β, k) := max
|I|≤k

{

‖A∗
β,J(AI(A

∗
β,IAI)

−1A∗
β,I − Id)A‖∞‖(A∗

β,IAI)
−1‖∞

1− ‖A∗
β,JAI(A∗

β,IAI)−1‖∞

+ ‖(A∗
β,IAI)

−1A∗
β,IA‖∞

}

.

Then the inequality (16) implies that multi-penalty regularization with pa-
rameter β allows for the recovery of the support of k-sparse vectors u from
data A(u+ v) provided the signal-to-noise ratio of the pair (u, v) satisfies

ρ(u, v) > Rβ,k.

Whenever the signal-to-noise ratio is larger than Rβ,k, we can recover the
support of the vector u with some regularization parameter α. There are,
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however, upper and lower limits for the admissible parameters α, given by
inequality (17). In order to visualize them, we consider instead the ratio

θ(α, v) :=
α

‖v‖∞
.

Defining

Θmin
β,k := max

|I|≤k

‖A∗
β,J(AI(A

∗
β,IAI)

−1A∗
β,I − Id)A‖∞

1− ‖A∗
β,JAI(A

∗
β,IAI)−1‖∞

and

Θmax
β,k (ϑ) := min

|I|≤k

ϑ− ‖(A∗
β,IAI)

−1A∗
β,IA‖∞

‖(A∗
β,IAI)−1‖∞

,

we then obtain the condition

(19) Θmin
β,k ≤ θ(α, v) < Θmax

β,k

(

ρ(u, v)
)

for exact support recovery. If the ratio θ(α, v) is smaller than Θmin
β,k , then it

can happen that some of the noise v is not filtered out by the regularization
method. On the other hand, if θ(α, v) is larger than Θmax

β,k

(

ρ(u, v)
)

, then

some parts of the signal u† might actually be lost because of the regulariza-
tion.

We note that the function Θmax
β,k is piecewise linear and concave, and

limϑ→∞Θmax
β,k (ϑ) = +∞. Thus the region of admissible parameters defined

by (19) is a convex and unbounded polyhedron. Moreover, we have that
Θmax

β,k (Rβ,k) = Θmin
β,k . Additionally, we note that the behaviour of the function

Θmax
β,k near infinity is determined by the term

Σβ,k := max
|I|≤k

‖(A∗
β,IAI)

−1‖∞.

If this value is small, then the slope of the function Θmax
β,k (ϑ) for large values

of ϑ is large, and thus the set of admissible parameter grows fast with
increasing signal-to-noise ratio. If, on the other hand, Σβ,k is large, then the
set of admissible parameters is relatively small even for large signal-to-noise
ratio. Thus Σβ,k can be reasonably interpreted as the sensitivity of multi-
parameter regularization with respect to parameter choice. The larger Σβ,k

is, the more precise the parameter α has to be chosen in order to guarantee
exact support recovery.

6. Numerical Validation

The main motive behind the study and application of multi-penalty regu-
larization is the problem that ℓ1-regularization is often not capable to iden-
tify the support of signal correctly (see [2] and references therein). Including
the additional ℓ2-regularization term, however, might lead to an improved
performance in terms of support recovery, because we can expect that the
ℓ2-term takes care of all the small noise components.
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In order to verify this observation, a series of numerical experiments was
performed, in which we illustrate for which parameters and Gaussian ma-
trices the conditions for support recovery derived in the previous section
were satisfied. In addition, we studied whether the inclusion of the ℓ2-term
indeed increases the performance.

In a first set of experiments, we have generated a set of 20 Gaussian ran-
dom matrices of different sizes and have tested for each three-dimensional
subspace spanned by the basis elements whether the condition (15) is sat-
isfied, first for the single-penalty case, and then for the multi-penalty case
with different values of β. The results for matrices of dimensions 30 times
60 and 40 times 80, respectively, are summarized in Table 1 and Figure 1.

As to be expected from the bad numerical performance of ℓ1-regularization
in terms of support recovery, the inequality (11) fails in a relatively large
number of cases, especially when the discrepancy between the dimension N
of the vectors to be recovered and the number of measurements m is quite
large. For instance, in the case N = 60 and m = 30, the condition most
of the time failed for more than half of the three-dimensional subspaces. In
contrast, the corresponding condition (15) for multi-parameter regulariza-
tion fails in the same situation only for about an eighth of the subspaces if
β = 1, and in even fewer cases for β = 0.1.

For other combinations of dimensionality of the problem and number of
measurements, the situation is similar. Introducing the additional ℓ2-penalty
term always allows for the exact support reconstruction on a larger number
of subspaces than single-penalty regularization. Additionally, the results
indicate that the number of recoverable subspaces increases with decreasing
β.

m = 30 Single-penalty Multi-penalty
N = 60 β = 10 β = 1 β = 0.1
Median 0.5425 0.3814 0.1214 0.0623
Mean 0.5559 0.3922 0.1225 0.0635

Std. deviation 0.05652 0.04142 0.01518 0.01083

m = 40 Single-penalty Multi-penalty
N = 80 β = 10 β = 1 β = 0.1
Median 0.2696 0.1523 0.0396 0.0256
Mean 0.2746 0.1547 0.0413 0.0262

Std. deviation 0.03060 0.01848 0.00659 0.00447
Table 1. Percentage of 3-sparse subspaces for which the
condition (15) failed. The condition was tested on samples
of 20 Gaussian random matrices of dimensions 30 times 60
(upper table) and 40 times 80 (lower table). Other combina-
tions of dimensionality and number of measurements showed
qualitatively similar results.
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Figure 1. Percentage of 3-sparse subspaces for which the
condition (15) failed. For each of the different settings the
condition has been tested on 20 Gaussian random matrices
for multi-parameter regularization with β = 0.1, β = 1 and
β = 10, and for single parameter regularization. Upper left:
Dimension 30 times 60. Upper right: Dimension 30 times 80.
Lower left: Dimension 40 times 60. Lower right: Dimension
40 times 80.

In the case where N = 80 and m = 60 (that is, we want to reconstruct 80-
dimensional vectors from 60 measurements), the sufficient condition (15) for
multi-penalty regularization was satisfied in our numerical experiments for
all 3-sparse subspaces for parameters β smaller than 5. In this situation, we
have therefore additionally computed the significant values Rβ,3 and Σβ,3,
that is, the minimal recoverable signal-to-noise ratio and the parameter
sensitivity for three-dimensional subspaces. The results of these numerical
experiments are shown in Table 2 and Figure 2.
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The results indicate that decreasing the regularization parameter β tends
to decrease the necessary signal-to-noise ratio Rβ,k as well. While a regu-
larization parameter β = 5 required always an unreasonably large signal-to-
noise ratio in order to guarantee the recoverability of the support, the ratios
for β = 0.5 or β = 0.1 turned out to be much more reasonable. However, the
results also showed that decreasing the regularization parameter need not
necessarily have a beneficial effect on the recoverability. For some matrices
it happened that the necessary signal-to-noise ratio Rβ,k increased while the
regularization parameter β was decreased (see Figure 2, left).

Additionally, the results indicate that the parameter sensitivity Σβ,k in-
creases considerably as β decreases (see Figure 2, right). As a consequence,
the range of admissible parameters α tends to be significantly smaller for
smaller β, and it can happen much more easily that the combined effect of
ℓ2 and ℓ1-regularization leads to a classification of signals as noise. While
multi-penalty regularization with a small parameter β might therefore lead
to a better necessary signal-to-noise ratio for recovery, it requires at the
same time a better balance between the two involved parameters α and β.

1 2 3 4 5 6 7 8 9 10

0.
5

1.
0

1.
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1 2 3 4 5 6 7 8 9 10
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Figure 2. Influence of the regularization parameter β on
the set of exact support recovery and the admissible param-
eters. Left: Logarithm of base 10 of the recoverable signal-
to-noise ratio Rβ,3 for different values of β. Right: The sen-
sitivity Σβ,3 for different values of β.
The dimension of the matrix is in all cases 60 times 80, and 20
Gaussian random matrices have been used for each parame-
ter β.

7. Applications. Numerical experiments

In order to support our theoretical findings even further, we present in
this section some statistical data obtained by solving series of compressive
sensing problems by means of multi-penalty and ℓ1-regularization. Similarly
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β
0.1 0.3 0.5 1 5

minimum 1.623 5.961 12.05 49.14 3599.3
Rβ,3 median 2.252 11.84 28.17 205.7 15041.4

maximum 5.546 262.5 302.85 6178.4 203621.6
minimum 31.07 13.35 9.379 6.517 3.793

Σβ,3 median 35.17 15.31 11.086 7.517 4.278
maximum 44.00 19.02 13.474 9.154 4.977

Table 2. Influence of the parameter β on the values of Rβ,k

and Σβ,k. The values have been computed for 20 Gaussian
random matrices of dimension 60 times 80 with k = 3.

to [11, 2] we consider in our numerical experiments the model problem of
the type

y = T (u† + v),

where T ∈ R
m×N is an i.i.d. Gaussian matrix, u† is a sparse vector and

v is a noise vector. The choice of T corresponds to compressed sensing
measurements [7].

In the experiments, we consider 30 problems of this type with u† randomly
generated, inf i∈I |u

†| > 1.5 and # supp(u†) = 7, and v is a random vector
whose components are uniformly distributed on [−1, 1], and normalized such
that ‖v‖∞ = 0.3. We also consider the Gaussian matrices of the size m = 50,
N = 100.

In order to approximate minimizers of the multi-penalty (6) and the cor-
responding single-penalty functional we use the iterative soft-thresholding
algorithm [6]. The regularization parameters α and β were chosen from the
grid Qk

α0
× Qk

β0
, where Qk

α0
:= {α = αi = α0k

i , α0 = 0.0002, k = 1.25, i =

0, . . . , 50}, and Qk
β0

:= {β = βi = β0k
i, β0 = 0.01, q = 1.15, i = 0, . . . , 30}.

For all possible combinations of (α, β) we run the iterative soft-thresholding

algorithm with fifty inner loop iterations and starting values u(0) = v(0) = 0.
In order to assess the obtained results, we compare the performance of

the considered regularization schemes. We measure the approximation error
(AE) by ‖u − u†‖2, as well as by the number of elements in the symmetric
difference (SD) #(supp(u)∆ supp(u†)). The SD is defined as follows: i ∈
supp(u)∆ supp(u†) if and only if either i /∈ supp(u) and i ∈ supp(u†) or
i ∈ supp(u) and i /∈ supp(u†).

For each problem we compute the best multi-penalty solution u† = u†(α, β)
meaning that no other pairs (α, β) ∈ Qk

α0
× Qk

β0
can improve the accuracy

of the algorithm. Simultaneously, for each problem from our data set we
compute the best mono-penalty solution u† = u†(α). Then, we compute the
mean value of the AE and SD. The respective results are shown in table 3.
Additionally, figure 3 shows an example of the typical results obtained for
single- and for multi-penalty regularization.
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AE SD α β
minimum 5.00 3 4.59

SP mean 11.21 6 5.74
maximum 13.74 8 11.21
minimum 1.05 1 3.67 0.76

MP mean 5.92 3 5.74 7.09
maximum 8.55 5 8.97 9.42

Table 3. For 30 problems for the solution of the single-
penalty (upper panel) as well as multi-penalty regularization
(lower panel) the minimum / maximum AE, SD and optimal
values of the regularization parameters are provided. The
mean values are also provided.
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Figure 3. The figure reports the results of two different
decoding procedures of the same problem, where the circles
represent the noisy signal and the crosses represent the orig-
inal signal. Upper figure: results with single-penalty regu-
larization. Lower figure: results with multy-penalty regular-
ization. Note that multi-penalty regularization allows for a
better reconstruction of the support of the true signal u†.
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