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Let f : ½�1;1� ! R be continuously differentiable. We consider the question of approximat-
ing f 0ð1Þ from given data of the form ðtj; f ðtjÞÞMj¼1 where the points tj are in the interval
½�1;1�. It is well known that the question is ill-posed, and there is very little literature
on the subject known to us. We consider a summability operator using Legendre expan-
sions, together with high order quadrature formulas based on the points tj’s to achieve
the approximation. We also estimate the effect of noise on our approximation. The error
estimates, both with or without noise, improve upon those in the existing literature, and
appear to be unimprovable. The results are applied to the problem of short term prediction
of blood glucose concentration, yielding better results than other comparable methods.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In the prediction of the blood glucose (BG) evolution in diabetes therapy management [11,13,23], several well-known
and highly used predictors are based on linear extrapolation of current blood glucose trends. In turn, this requires an
accurate approximation of the derivative of a function at the boundary point of an interval on which the BG-readings
are available. Similar problems arise also in other areas of high practical interest in industrial applications. For example,
the identification problem of the heat transfer function in the cooling process [6] relies on an accurate knowledge of the
derivatives of functions describing temperature at the boundary points. In image completion, one seeks to extend the
image data into a ‘‘hole’’ as a smooth function [2,4]. Clearly, this problem also requires an estimation of derivatives
of a function at the endpoint of the normal lines to the hole. In this paper, we are interested in proposing a method
for numerical differentiation which is especially suitable for short-term prediction of blood glucose levels based on pre-
vious data.

The problem of numerical differentiation is the following. Let f : ½�1;1� ! R be a continuously differentiable function and
ftjgM

j¼1 � ½�1;1�. Given information of the form fðtj; f ðtjÞÞgM
j¼1, find approximately the value of f 0ðtÞ. In practical problems, the

data is often noisy, or at least given up to a fixed accuracy d. This situation can be described by the so-called deterministic
noise model. In this model, the noise intensity level is measured by a small positive number d, and the available information
has the form fðtj; fdðtjÞÞgM

j¼1, where fd is a continuous function on ½�1;1� such that
verzyev).
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jf ðtjÞ � fdðtjÞj 6 d: ð1Þ
The problem of numerical differentiation is one of the classical ill-posed problems [5]. There are many papers spanning
several years of research describing various numerical and analytical methods to address this problem in different contexts
(for example, [3,12,25,17,30], just to mention a few). All these approaches differ greatly in implementation in dependence on
a noise model and available data. Most of these deal with the question when the point t–� 1. The question of approximating
f 0ð1Þ (alternately, f 0ð�1Þ) is not investigated to the same extent.

Recently, a one-sided backward difference scheme equipped with an adaptive choice rule for the number of nodes ftjg
[23] has been used to approximate the derivative at the boundary point with relevant application in diabetes technology.

In [27], Savitzky and Golay have proposed an approximation of f 0ðtÞ by the derivative of a polynomial of least square fit.
The degree of the polynomial acts as a regularization parameter. More specifically, for an integer parameter n P 1, one finds
coefficients a�k such that
XM

j¼0

ðfdðtjÞ �
Xn

k¼0

a�ktk
j Þ

2

¼ min
a0 ;���;an2R

XM

j¼0

ðfdðtjÞ �
Xn

k¼0

aktk
j Þ

2 !
ð2Þ
and takes
d
dt

Xn

k¼0

a�ktk

 !

as the approximation of f 0ðtÞ. This scheme could be easily applied for approximation of f 0ð1Þ, which is of our main interest in
the current paper.

However, in addition to the intrinsic ill-conditioning of numerical differentiation, the solution of the least square problem
as posed above involves a system of linear equations with the Hilbert matrix of order n, which is notoriously ill-conditioned.
Therefore, it is proposed in [16] to use Legendre polynomials rather than the monomials as the basis for the space of poly-
nomials of degree n. A procedure to choose n is given in [16], together with error bounds in terms of n and d which are opti-
mal up to a constant factor for the method in the sense of the oracle inequality.

In this paper, we propose two modifications of the approach [16]. Firstly, we propose the use of judiciously selected
weights in the least square method as in (2) except for the use of Legendre basis. Secondly, we avoid the use of least square
optimization altogether, using a summability method. We show that, by employing recent results [16] together with the
modifications, we derive a method that yields lower noise propagation error than in other approach considered in [16].

We demonstrate numerically that these modifications lead to a performance superior to the Savitzky–Golay method as
modified in [16] on a number of numerical examples.

In Section 2, we describe some background and notations. In particular, we elaborate on the choice of the weights as ex-
plained in Theorem 1. In Section 3, we develop our method, and prove the theoretical error bounds. An application to the
problem of short-term prediction of blood glucose is described in Section 4. The proofs of the results in Section 3 are given
in Section 5.

2. Background

The Legendre polynomials are defined by
PkðxÞ ¼
ð�1Þk

2kk!

d
dx

� �k

ð1� x2Þk; k ¼ 0;1; � � � ; x 2 ½�1;1�: ð3Þ
For integers k; m � 0, they satisfy the orthogonality relations [29, Eq. (4.3.3)]
Z 1

�1
PkðxÞPmðxÞdx ¼

2
2kþ1 ; if k ¼ m;

0; otherwise

(
ð4Þ
and the differential equation [29, Theorem 4.2.1]
2xP0kðxÞ � ð1� x2ÞP00kðxÞ ¼ kðkþ 1ÞPkðxÞ: ð5Þ
In this paper, if f : ½�1;1� ! R is twice differentiable, we denote
Dðf ÞðxÞ :¼ 2xf 0ðxÞ � ð1� x2Þf 00ðxÞ ð6Þ
and observe that
f 0ð1Þ ¼ 1
2

Dðf Þð1Þ: ð7Þ
The differential Eq. (5) can be rewritten in the form
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DðPkÞðxÞ ¼ kðkþ 1ÞPkðxÞ; x 2 ½�1;1�; k ¼ 0;1; . . . : ð8Þ
If f : ½�1;1� ! R is Lebesgue integrable, then it can be expanded formally in Legendre series
f 	
X

f̂ ðkÞðkþ 1=2ÞPk;
where
f̂ ðkÞ ¼
Z 1

�1
f ðtÞPkðtÞdt; k ¼ 0;1; . . . ; ð9Þ
are the Fourier–Legendre coefficients. We also introduce the Fourier partial sum operator that is given by
snðf ÞðxÞ ¼
Xn�1

k¼0

ðkþ 1=2Þf̂ ðkÞPkðxÞ; n ¼ 1;2; . . . : ð10Þ
In view of (5), the derivative f 0ð1Þ can be approximated by the derivative of the partial sums of the Fourier–Legendre series as
s0nðf Þð1Þ ¼
Xn�1

k¼0

ðkþ 1=2Þf̂ ðkÞP0kð1Þ ¼
1
2

Xn�1

k¼1

kðkþ 1=2Þðkþ 1Þf̂ ðkÞ: ð11Þ
Moreover, from (8) it also follows that the formal expansion of Dðf Þ is given by
Dðf Þ 	
X1
k¼0

kðkþ 1Þðkþ 1=2Þf̂ ðkÞPk: ð12Þ
In the paper [16], the authors considered the following modification of (11) for approximating f 0ðtÞ
DnfdðtÞ ¼
Xn�1

k¼0

ðkþ 1=2Þ�f dðkÞP0kðtÞ; ð13Þ
where �f dðkÞ are the approximations of f̂ ðkÞ and found by the method of least squares from given noisy data. The authors have
proved that the data noise propagates in the approximation Dn with an intensity Oðn3dÞ. At the same time, it is important to
mention that the noise model used in that paper is essentially different from the one considered in the current work. To be
more precise, in [16] the authors considered additive square summable noise or that is the same as L2-valued noise that is
well-accepted within the framework of the regularization theory.

One of our innovations in this paper is to use the quadrature formulas proposed in [20] with special weights instead of
least squares method in order to approximate the Fourier–Legendre coefficients. Such modification yields a lower noise
propagation rate, namely Oðn2dÞ, than the rate obtained in [16].

We review next the construction of these weights. The following discussion will involve many generic constants, whose
specific value is of no interest to us. Therefore, before proceeding further, we make the following convention.

Constant convention:
In the sequel, the symbols c; c1; . . . will denote generic constants independent of all the variables in the discussion, such as the

functions involved, or the degree of the polynomial. They may depend upon fixed parameters in the discussion, such as the function
h to be introduced later. Their values may be different at different occurrences, even within the same formula.

For each integer n P 1, let Cn ¼ ftMn ;n < tMn�1;n < � � � < t1;ng � ð�1;1Þ; tj;n ¼: cosðhj;nÞ; j ¼ 1; . . . ;Mn; h0;n ¼ 0; hMnþ1;n ¼ p.
Let
dn :¼ max
h2½0;p�

min
16j6Mn

jhj;n � hj:
For integer N P 1, we denote by PN the class of all algebraic polynomials of degree < N, and define P0 :¼ f0g. It is con-
venient to extend this notation to non-integer values of N by setting PN ¼ PbNc. The following theorem is a consequence of
[20, Theorem 4.1]:

Theorem 1. Let n P 1. There exists a constant a > 0 such that for Nn ¼ bad�1
n c, there exist real numbers fwj;ngMn

j¼1 with the
following properties:
XMn

j¼1

wj;nPðtj;nÞ ¼
Z 1

�1
PðtÞdt; P 2 P2Nn ; ð14Þ
and
 XMn

j¼1

jwj;nPðtj;nÞj 6 c
Z 1

�1
jPðtÞjdt; P 2 P2Nn : ð15Þ
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In [20], we have described a constructive procedure to obtain the weights fwj;ng. Note that in practice, taking
nM < b2�1Mc, where M is the number of given data points ftjg, one can always use least squares to solve an underdetermined
system of the form
XM

j¼1

wjPkðtjÞ ¼
2; if k ¼ 0;
0; if k ¼ 1; . . . ;2nM;

�
ð16Þ
to obtain the weights fwjg to satisfy
XM

j¼1

wjPðtjÞ ¼
Z 1

�1
PðtÞdt; P 2 P2nM : ð17Þ
Using the ideas in [7], it can be shown that the condition number of the Gram matrix involved in the least squares is of the
same order of magnitude as the constant c appearing in (15). In the sequel, we mainly use (17) for our analysis and numerical
experiments. We will also assume that
XM

j¼1

jwjPðtjÞj 6 A
Z 1

�1
jPðtÞjdt; P 2 P2nM ; ð18Þ
where the value of A depends only on the distribution of nodes ftjg.
Moreover, as it should be clear from the noise model (1) we will deal exclusively with the space of continuous functions

C ¼ C½�1;1� that is equipped with the uniform norm
kfkC :¼ max
x2½�1;1�

jf ðxÞj; f 2 C½�1;1�:
It is also convenient to introduce the error of the best approximation of f by algebraic polynomials
Enðf Þ :¼ min
P2Pn
kf � PkC :
3. Main results

First, we present the discrete analogue of (11), where the Fourier–Legendre coefficients are approximated from given
noisy data ffdðtjÞgM

j¼1 by means of a quadrature rule.
To be more precise, in general, if y ¼ fyjg

M
j¼1
� R is the given data, we define the Fourier–Legendre coefficients
~yðkÞ ¼
XM

j¼1

wjyjPkðtjÞ ð19Þ
and the discrete analog of the summability operator sn as
SnðyÞðxÞ ¼
Xn

k¼1

~yðkÞðkþ 1=2ÞPkðxÞ: ð20Þ
We will write f :¼ ðf ðt1Þ; . . . ; f ðtMÞÞ, and fd ¼ ðfdðt1Þ; � � � ; fdðtMÞÞ to denote the noise-free and noisy data respectively. On the
basis of the above observations, we derive the following result, where A is the constant defined in (18).

Theorem 2. Let f : ½�1;1� ! R, and Dðf Þ 2 C½�1;1�. Then
jf 0ð1Þ � S0nðfdÞð1Þj 6 cAn1=2 EnðDðf ÞÞ þ n2d
� �

: ð21Þ

The estimates in Theorem 2 can be improved further using summability methods. To describe this, we first make a

definition.
Definition 1. Let h : ½0;1Þ ! R be a compactly supported function.

(a) The summability kernel with filter h is defined by
Unðh; x; tÞ :¼
X1
k¼0

h
k
n

� �
ðkþ 1=2ÞPkðxÞPkðtÞ; n > 0; x; t 2 R: ð22Þ
(b) We define the summability operator corresponding to the filter h by
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rnðh; f ÞðxÞ :¼
Z 1

�1
f ðtÞUnðh; x; tÞdt ¼

X1
k¼0

h
k
n

� �
ðkþ 1=2Þf̂ ðkÞPkðxÞ ð23Þ
for all n > 0; f 2 L1½�1;1�, and x 2 R.
(c) We denote the discretization of the operator rn by
Snðh; yÞðxÞ :¼
XM

j¼1

wjyjUnðh; x; tjÞ ¼
X1
k¼0

h
k
n

� �
ðkþ 1=2Þ~yðkÞPkðxÞ; ð24Þ

y ¼ fyjg
M
j¼1
� R:
If yj ¼ f ðtjÞ; j ¼ 1; . . . ;M for a function f : ½�1;1� ! R, we overload the notation by writing Snðh; f Þ.

(d) The function h will be called a low pass filter if hðtÞ ¼ 1 for 0 6 t 6 1=2; h is non-increasing on ½1=2;1�, and hðtÞ ¼ 0 for
all t P 1.

We remark that since h is compactly supported, the apparently infinite sums in (22)–(24) are actually finite sums and the
parameter n serves as a regularization parameter.

The difference between the exact value of the derivative f 0ð1Þ and its estimate given by means of the discrete version of
the summability operator (24) can be presented as follows
jf 0ð1Þ � S0nðh; fdÞð1Þj 6 jf 0ð1Þ � S 0nðh; fÞð1Þj þ jS
0
nðh; fÞð1Þ � S 0nðh; fdÞð1Þj; ð25Þ
where the first term in the right-hand side is the approximation error, whereas the second term is the noise propagation
error.

The error bound on (25) is provided in the following theorem. It is shown in (28) that the use of the summability operator
removes the factor n1=2 in the estimate (21) of Theorem 2.

Theorem 3. Let h be a twice continuously differentiable low pass filter. Let f admit two derivatives such that Dðf Þ 2 C½�1;1�. Then
jf 0ð1Þ � S0nðh; fÞð1Þj 6 cAEn=2ðDðf ÞÞ: ð26Þ
Further, we have
jS0nðh; yÞð1Þj 6 Bn2 max
16j6M

jyjj; ð27Þ
with a positive constant B that depends only on the quantity A from (18).
Thus,
jf 0ð1Þ � S0nðh; fdÞð1Þj 6 cA En=2ðDðf ÞÞ þ n2d
� �

: ð28Þ
Remark 1. If f is analytic, then it is well known (e.g., [22, Chapter 9, Section 3]) that EnðDðf ÞÞ ¼ OðqnÞ for some q 2 ð0;1Þ.
Thus, in the absence of noise, the upper bound qn=2 in (28) is worse than the upper bound n1=2qn indicated in (21). For func-
tions of finite smoothness, both the bounds are of the same order of magnitude, but the summability method has other such
advantages as localized approximation properties.

The smoothness of the function is rarely known in advance. Wavelet-like expansions based on Legendre expansions in
particular are given in [20,8,21], where the terms of the expansion characterize the analyticity and various smoothness
parameters at different points of the interval. In future work we intend to investigate an algorithm that would allow an
adaptive choice of the method on the basis of the input data.
3.1. Adaptive parameter choice

In this section, we present an adaptive parameter choice rule for the method (24), as well as show its optimality up to a
constant factor in the sense of the oracle inequality. As already mentioned, numerical differentiation of noisy data is one of
the classical ill-posed problems [5] and, thus, a regularization mechanism is required. For instance, in Introduction we
have seen that the parameter n in (13) as well as in (24) serves as a regularization parameter and should be correctly
chosen depending on a noise level d and smoothness of the function to be differentiated. The importance of the proper
parameter choice for the numerical differentiation problem is, for example, explicitly illustrated by numerical examples
in [16].

Obviously, estimation (28) in Theorem 3 implies that increasing the values of n, the approximation error decreases. At the
same time, from (28) we observe that with increase of the n-value the noise propagates in data with the rate Oðn2dÞ. Thus,
one needs to find a balance between the approximation and the noise propagation errors. This is achieved by presenting the
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a posteriori parameter choice rule, which is based on the so-called balancing principle that has been extensively studied (see,
for example, [9,18] and references therein).

Definition 2. Following [18], we say that a function uðnÞ ¼ uðn; f ; dÞ is admissible for given f and d if the following holds

1. uðnÞ is a non-increasing function on ½1;nM �, where nM is the quantity involved in (16)–(18),
2. uðnMÞ < Bn2

Md,
3. 8n 2 f1; . . . ;nMg
jf 0ð1Þ � S0nðh; fÞð1Þj 6 uðnÞ: ð29Þ
For given f ; d the set of admissible functions is denoted by Uðf ; dÞ.
From (26), (28) and Definition 2 the difference between f 0ð1Þ and its approximation given by the Legendre filters can be

bounded as follows
jf 0ð1Þ � S0nðh; fdÞð1Þj 6 uðnÞ þ Bn2d: ð30Þ
We now present a principle for the adaptive choice of n ¼ nþ 2 ½1;nM� that allows us to reach the best possible error
bound up to some multiplier.

Theorem 4. Let n ¼ nþ be chosen as
nþ ¼minfn : jS0nðh; fdÞð1Þ � S0mðh; fdÞð1Þj 6 4Bm2d;m ¼ n; . . . ;nMg: ð31Þ
Then the following error bound holds true
jf 0ð1Þ � S0nðh; fdÞð1Þj 6 c inf
u2Uðf ;dÞ

min
n¼1;...;nM

fuðnÞ þ Bn2dg; ð32Þ
where the right-hand side is, up to a constant factor, the best possible error bound that can be guaranteed for the approximation
f 0ð1Þ within the framework of the scheme (24) under Assumption (1) and (27).

Note that Theorem 4 can be proven similar to the one in [23]. Thus, we omit the proof here and refer to the papers [18,23]
for more details.

Remark 2. In general, the bound for the noise propagation error in numerical differentiation by algebraic polynomials can
be, obtained in two steps. At first, we estimate the difference between polynomial approximants constructed for noisy and
noise-free data. Then using the inequality of the form
kP0nkC 6 n2kPnkC ; ð33Þ
where the estimate for kPnkC is obtained from the previous step, we estimate the difference between the derivatives of the
approximants. Since the nature of a noise prevents us from any assumption on the properties of polynomials, we need to use
the inequality of the form (33) that is valid for arbitrary polynomials of a degree n.

Therefore, within the framework of (1) one may not expect that the noise will propagate with the rate lower than n2. This
reasoning can be seen as support for the adequacy of the bound (28).
4. Numerical experiments

The main aim of this section is to discuss the performance of the method (24) equipped with the adaptive parameter
choice rule (31) in predicting the blood glucose (BG) evolution.

Mathematically the problem of the BG-prediction can be formulated as follows. Assume that at the time moment t ¼ t0

we are given m preceding estimates gdðtiÞ; i ¼ �mþ 1; . . . ;0, of a patient’s BG-concentration sampled correspondingly at the
time moments t0 > t�1 > t�2 > � � � > t�mþ1 within the sampling horizon SH ¼ t0 � t�mþ1. The goal is to construct a predictor
that uses these past measurements to predict the BG-concentration as a function of time g ¼ gðtÞ for k subsequent future
time moments ftjgk

j¼1 within the prediction horizon PH ¼ tk � t0 such that t0 < t1 < t2 < � � � < tk.
There are several prediction techniques, and a variety of the glucose predictors has been recently proposed, see, for exam-

ple, [24] and references therein. In this section we discuss the predictors based on the numerical differentiation [11]. Such
predictors estimate the rate of change of the BG-concentration at the prediction moment t ¼ t0 from current and past mea-
surements and the future BG-concentration at any time moment t 2 ½t0; tk� is given as follows
gðtÞ ¼ g0ðt0Þ � ðt � t0Þ þ gdðt0Þ; ð34Þ
where g0ðt0Þ is approximated from the given noisy data fðti; gdðtiÞÞg; i ¼ �mþ 1; . . . ;0; SH ¼ 30 (min), nM ¼ m ¼ 7. We have
chosen m ¼ 7, because for Dt ¼ 5 (min) the sampling horizon SH ¼ 30 ¼ 6Dt (min) has been suggested in [11] as the optimal
one for BG prediction.
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At this point it is important to stress the fact that to approximate the derivative g0ðt0Þ by means of (24) the given data
points ftig0

i¼�mþ1 should at first be transformed from the interval ½t�mþ1; t0� into the interval ½�1;1�. For this reason, a simple
linear transformation of the form
Table 1
The per
level ch

Patie

Vir.

1
2
3
17
18
24
33
34
42
47

Avg.
t�mþi # t̂i ¼ ð2
t�mþi � t�mþ1

t0 � t�mþ1
� 1Þ
maps each point from the original interval into t̂i 2 ½�1;1�; i ¼ 1;2; . . . ;m.
To employ now the method (24) we at first approximate the Fourier–Legendre coefficients of the function
fd ð̂tÞ ¼ gdðt�mþ1 þ 2�1SHð1þ t̂ÞÞ
by means of the quadrature rule (16). Once the vector of the quadrature weights ðwiÞ is determined we obtain the recon-
struction of the derivative of a function at the boundary point t̂ ¼ t̂m ¼ 1 by means of
Snðh; fdÞð1Þ ¼
d
dt̂

Xm

i¼1

wifd ð̂tiÞUnðh; t̂; t̂iÞ
 !�����

t̂¼1

; ð35Þ
where n 2 f1;2; . . . ;nMg is the adaptively chosen by means of the balancing principle and hðxÞ 2 Rþ is the filter function of
the form
hðxÞ ¼
1; x 2 ½0;1=2�;
exp � expð2=ð1�2xÞÞ

1�x

� 	
; x 2 ð1=2;1Þ;

0; x 2 ½1;1Þ:

8>><>>:

In order to apply the balancing principle (31), one at first needs to specify the value of the constant B that appears in the

estimate on the noise propagation error. This constant could be found as follows: we form a training set that consists of BG-
measurements of one patient and find a value of B that leads to a good performance of the principle (31) on simulated data.
Then this value of B is used for all other test cases. As a result of such an adjustment procedure, we have found B ¼ 0:004.

Once, the estimate (35) is calculated, we can construct the predictor (34) with
g0ðt0Þ 

2

t0 � t�mþ1
Snðh; fdÞð1Þ: ð36Þ
Recall that at the beginning we transformed the data points from the interval ½t�mþ1; t0� into the interval ½�1;1�, with (36) we
perform the inverse transformation.

To illustrate how these predictors work we use data set of 100 virtual subjects which are obtained from Padova/Univer-
sity of Virginia simulator [14]. For each in silico patient BG-measurements have been simulated and sampled with a fre-
quency of 5 (min) during 3 days. These simulated measurements have been corrupted by random white noise with the
standard deviation d of 6 (mg/dL). We perform our illustrative tests with data of the same 10 virtual subjects that have been
considered in [23,28].

To quantify the clinical accuracy of the considered predictors, we use the Prediction Error-Grid Analysis (PRED-EGA) [28],
which has been designed especially for the blood glucose predictors. This assessment methodology records reference glucose
estimates paired with the estimates predicted for the same moments. As a result, the PRED-EGA reports the numbers (in
percent) of Accurate (Acc.), Benign (Benign) and Erroneous (Error) predictions in hypoglycemic (0–70 mg/dL), euglycemic
(70–180 mg/dL) and hyperglycemic (180–450 mg/dL) ranges. This stratification is of great importance because consequences
caused by a prediction error in the hypoglycemic range are very different from ones in the euglycemic range. We would like
to stress that the assessment has been done with respect to the references given as simulated noise-free BG-readings.
formance assessment matrix given by the PRED-EGA for the linear extrapolation predictors, where the derivative is found by (35), (36) with a truncation
osen by the balancing principle (31), operating on simulated noisy data with PH ¼ 15 (min) and SH ¼ 30 (min).

nt BG 670 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG P180 (mg/dL) (%)

ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

– – – 99.88 0.12 – 100 – –
– – – 99.88 0.12 – – – –
– – – 99.88 0.12 – – – –
99.69 0.31 – 100 – – – – –
99.71 0. 29 – 100 – – – – –
100 – – 99.81 0.19 – – – –
99.71 0.29 – 99.21 0.79 – 100 – –
99.60 0.40 – 97.32 2.34 0.33 100 – –
100 – – 99.84 0.16 – 100 – –
99.47 0.53 – 98.13 1.67 0.20 100 – –

99.74 0.26 – 99.40 0.55 0.05 100 – –



Table 2
The performance assessment matrix given by the PRED-EGA for the linear extrapolation predictors, where the derivative is found by the modified version of the
Savitzky–Golay filtering technique with a truncation level chosen by the balancing principle (31), operating on simulated noisy data with PH ¼ 15 (min) and
SH ¼ 30 (min) [16].

Patient BG 670 (mg/dL) (%) BG 70–180 (mg/dL) (%) BG P180 (mg/dL) (%)

Vir. ID Acc. Benign Error Acc. Benign Error Acc. Benign Error

1 – – – 99.88 0.12 – 100 – –
2 – – – 99.88 0.12 – – – –
3 – – – 99.88 0.12 – – – –
17 99.69 0.31 – 100 – – – – –
18 99.71 0. 29 – 100 – – – – –
24 100 – – 99.81 0.19 – – – –
33 99.71 0.29 – 99.80 – 0.20 100 – –
34 99.60 0.40 – 95.32 4.18 0.50 57.14 42.86 –
42 100 – – 98.35 1.65 – 100 – –
47 99.73 0.27 – 96.88 2.92 0.21 100 – –

Avg. 99.78 0.22 – 98.98 0.93 0.091 91.43 8.57 –
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Table 1 demonstrates the performance assessment matrix given by the PRED-EGA for 15 (min) ahead glucose predictions
by the linear extrapolation predictors, where the derivative is estimated by means of (35), (36) with the parameter chosen in
accordance with (31), operating on simulated noisy data with SH ¼ 30 (min).

We perform the comparison of the constructed predictors with the predictors considered in [11,16], where the derivative
in (34) is estimated by means of the modified version of the Savitzky–Golay filtering technique [27], which is also based on
the differentiation of algebraic polynomials approximating the function that has to be differentiated. In our experiments, to
choose the degree of these polynomials we employ the balancing principle (see [16] for further details) in the same modi-
fication as above. The performance of such predictors is displayed in Table 2. The comparison of both tables allows us to con-
clude that the predictors (34)–(36) outperform the predictors based on the modified version of the Savitzky–Golay
technique.

As mentioned in Introduction, one could also consider one-sided finite difference formulas for approximating the deriv-
ative g0ðt0Þ. We do not do so here, since it is clearly demonstrated in [16] that the Savitzky–Goldy filtering technique already
yields superior performance than that obtained by the use of these formulas.

5. Proofs

We will organize the proofs of the results in Section 3 as follows. First, we prove a number of preparatory results, which
are independent of the data set and the choice of the weight functions. This is done in Section 5.1. The proofs of the results in
Section 3 are then completed in Section 5.2

5.1. Preparatory results

It is convenient to prove first the results preparatory for Theorem 3. The proof of Theorem 3 consists of three major steps.
The first step is to prove the analogues of the classical Favard and Bernstein inequalities. These inequalities are not new, but
we believe that the proofs presented in the current paper are new and interesting. The second step in the proof of Theorem 3
is to obtain a simultaneous approximation theorem. Finally, in Section 5.2, we will obtain an estimate on the norm and
approximation capabilities of the operators Sn. These three results will be combined to yield a proof of Theorem 3.

In order to prove the Favard and Bernstein type inequalities, we prove first the bounds and approximation properties of
the operators rn (23). To this end, for any sequence ðakÞ1k¼0 of real numbers we define Fejér summation
Fn ðakÞ1k¼0


 �
:¼ 1

n

Xn

m¼1

Xm�1

k¼0

ak ¼
Xn

k¼0

1� k
n

� �
ak:
We note the following simple proposition, obtained using a summation by parts arguments (cf. [02, Theorem 71, p. 128]).

Proposition 1. Let ðakÞ1k¼0 and ðhkÞ1k¼0 be real sequences with hk ¼ 0 for all sufficiently large k. Then
X1
k¼0

hkak ¼
X1
‘¼1

‘ðh‘þ1 � 2h‘ þ h‘�1ÞF‘ ðakÞ1k¼0


 �
: ð37Þ
In the sequel we abbreviate Fnðððkþ 1=2Þf̂ ðkÞPkÞ
1
k¼0Þ by Fnðf Þ.

The next well-known result [1,29] shows that the norms of the operators f # Fnðf Þ are bounded in n.
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Proposition 2. Let f 2 C. Then
kFnðf ÞkC 6 ckfkC ; n ¼ 1;2; . . . :
With the propositions above, we can now prove the following theorem that guarantees boundedness of the summability oper-
ator (23).
Theorem 5. Let h : ½0;1Þ ! 0R be twice continuously differentiable, and hðtÞ ¼ 0 if t P 1. Then for any f 2 C, the following holds
krnðh; f ÞkC 6 c max
t2½0;1Þ

jh00ðtÞjkfkC ; ð38Þ
Proof. We use Proposition 1 with hk ¼ hðk=nÞ and ak ¼ ðkþ 1=2Þf̂ ðkÞPk to obtain
rnðh; f Þ ¼
X1
k¼0

h
k
n

� �
f̂ ðkÞðkþ 1=2ÞPk ¼

X1
‘¼1

‘ðh‘þ1 � 2h‘ þ h‘�1ÞF‘ðf Þ:
Therefore, in view of Proposition 2, we deduce that
krnðh; f ÞkC 6 c
X1
‘¼1

‘ h
‘þ 1

n

� �
� 2h

‘

n

� �
þ h

‘� 1
n

� ����� ����kfkC : ð39Þ
We use Taylor’s theorem to estimate the sum above. Since h is supported on ½0;1�,
X1
‘¼1

‘ h
‘þ 1

n

� �
� 2h

‘

n

� �
þ h

‘� 1
n

� ����� ���� 6 max
t2½0;1Þ

jh00ðtÞj
Xnþ1

‘¼1

‘

n2 6 c max
t2½0;1Þ

jh00ðtÞj:
Together with (39), this leads to (38).
Remark 3. Theorem 5 was proved in [19] with the additional condition that h is a constant in a neighborhood of 0.
As a corollary of Theorem 5, we note the following [20, Proposition 3.1].

Corollary 1. Let h : ½0;1Þ ! 0R be twice continuously differentiable low pass filter and let f 2 C. Then the following statements
hold.

(a) For any P 2 Pn=2;rnðh; PÞ ¼ P.
(b) There exists c ¼ cðhÞ such that
Enðf Þ 6 kf � rnðh; f ÞkC 6 cEn=2ðf Þ: ð40Þ
With this preparation, we are ready to prove the following Favard and Bernstein estimates.

Theorem 6.

(a) Let f and Dðf Þ be continuous on ½�1;1�. Then
Enðf Þ 6
c

n2 EnðDðf ÞÞ; n P 1: ð41Þ
(b) Let n P 1 and P 2 Pn. Then
kDðPÞkC 6 cn2kPkC : ð42Þ
Proof. In this proof, let h : ½0;1Þ ! R be a fixed, twice continuously differentiable low pass filter, and n P 1 be an integer.
We first prove the part (b) of the theorem. Let h1;nðtÞ ¼ tðt þ 1=nÞhðtÞ. Since h is supported on ½0;1�, so is h1;n and
max
t2½0;1Þ

jh001;nðtÞj ¼max
t2½0;1�
jh001;nðtÞj 6 c; n P 1: ð43Þ
For any P 2 Pn we can use the representation
PðtÞ ¼
Xn�1

k¼1

P̂ðkÞðkþ 1=2ÞPkðtÞ:
Then using (8), (12) and the definition of hðtÞ we can express DðPÞ as follows
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DðPÞ ¼
Xn�1

k¼0

kðkþ 1Þðkþ 1=2ÞP̂ðkÞPk ¼
Xn�1

k¼0

h
k

2n

� �
kðkþ 1Þðkþ 1=2ÞP̂ðkÞPk ¼ 4n2

Xn

k¼0

h1;2n
k

2n

� �
ðkþ 1=2ÞP̂ðkÞPk

¼ 4n2r2nðh1;2n; PÞ:
Using Theorem 5 with h1;2n in place of h and (43), we obtain
kDðPÞkC ¼ 4n2kr2nðh1;2n; PÞkC 6 cn2 max
t2½0;1Þ

jh001;2nðtÞjkPkC 6 cn2kPkC :
This proves part (b).
To prove part (a), let gðtÞ ¼ hðtÞ � hð2tÞ. Then for any k P 0, and integers m P mþ 1 P 1, the following equality holds
Xm

‘¼mþ1

gðk2�‘Þ ¼
Xm

‘¼mþ1

hðk2�‘Þ �
Xm

‘¼mþ1

hðk2�‘þ1Þ ¼ hðk2�mÞ � hðk2�mÞ:
Consequently,
r2m ðh; f Þ � r2m ðh; f Þ ¼
Xm

‘¼mþ1

r2‘ ðg; f Þ:
In view of (40), it is clear that r2m ðh; f Þ ! f as m!1. Thus,
f � r2m ðh; f Þ ¼
X1
‘¼mþ1

r2‘ ðg; f Þ; ð44Þ
Now, let
g1;nðtÞ ¼
gðtÞ

tðt þ 1=nÞ ; t > 0; n P 1:
Since gðtÞ ¼ hðtÞ � hð2tÞ, and hðtÞ is supported on t 2 ½0;1� such that it is a constant for t 2 ½0;1=2�, it is clear that g is sup-
ported on ½1=4;1�. Moreover, g1;n is twice continuously differentiable on ½0;1Þ, and
max
t2½0;1Þ

jg001;nðtÞj < c; n P 1: ð45Þ
We note for any m P 1 and ‘ P mþ 1,
r2‘ ðg; f Þ ¼
X2‘
k¼0

g
k

2‘

� �
ðkþ 1=2Þf̂ ðkÞPk ¼

X2‘
k¼0

gðk2�‘Þ
kðkþ 1Þ kðkþ 1Þðkþ 1=2Þf̂ ðkÞPk

¼ 2�2‘
X2‘
k¼0

g1;2‘
k

2‘

� �
ðkþ 1=2Þ dDðfÞðkÞPk ¼ 2�2‘r2‘ ðg1;2‘ ;Dðf ÞÞ: ð46Þ
Therefore, from the estimates (40), (44), (46), (38), and (45), we conclude that
E2m ðf Þ 6 kf � r2m ðh; f ÞkC 6
X1
‘¼mþ1

kr2‘ ðg; f ÞkC ¼
X1
‘¼mþ1

2�2‘kr2‘ ðg1;2‘ ;Dðf ÞÞkC 6 ckDðf ÞkC

X1
‘¼mþ1

2�2‘
6 c2�2mkDðf ÞkC : ð47Þ
Since the sequence fEjðf Þg1j¼0 is non-increasing, this leads to the estimate
Enðf Þ 6 cn�2kDðf ÞkC ; n P 1: ð48Þ
Now, without loss of generality, we can choose R1 2 Pn so that kDðf Þ � R1kC 6 2EnðDðf ÞÞ. Since dDðfÞð0Þ ¼ 0, we may esti-
mate the first Fourier–Legendre coefficient R̂1ð0Þ of R1 such that
jR̂1ð0Þj ¼ jR̂1ð0Þ � dDðfÞð0Þj 6 Z 1

�1
jR1ðuÞ � Dðf ÞðuÞjdu 6 ckR1 � Dðf ÞkC 6 cEnðDðf ÞÞ:
We also define the polynomial R ¼ R1 � R̂1ð0Þ that satisfies R̂ð0Þ ¼ 0. Using the above estimations, it is easy to see that
kR� Dðf ÞkC 6 cEnðDðf ÞÞ. Let
P ¼
Xn�1

k¼1

kþ 1=2
kðkþ 1Þ R̂ðkÞPk
be a polynomial in Pn. Then it follows that DðPÞ ¼ R, and using (48), we obtain the following estimate
Enðf Þ ¼ Enðf � PÞ 6 cn�2kDðf � PÞkC ¼ cn�2kR� Dðf ÞkC 6 c1n�2EnðDðf ÞÞ:

The second step in our proof of Theorem 3 is the following simultaneous approximation theorem.
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Theorem 7. Let f and Dðf Þ be in C, and P 2 Pn;n P 1. Then
kDðf Þ � DðPÞkC 6 c En=2ðDðf ÞÞ þ n2kf � PkC

� �
: ð49Þ
Proof. Here h is a fixed function as in the proof of Theorem 6. It can be verified from (12) that Dðrnðh; f ÞÞ ¼ rnðh;Dðf ÞÞ. Since
rnðh; f Þ 2 Pn, we obtain from the Bernstein inequality 42, 40, and Favard inequality (41) that
kDðf Þ � DðPÞkC 6 kDðf Þ � Dðrnðh; f ÞÞkC þ kDðrnðh; f ÞÞ � DðPÞkC ¼ kDðf Þ � rnðh;Dðf ÞÞkC þ cn2krnðh; f Þ � PkC

6 c1En=2ðDðf ÞÞ þ cn2krnðh; f Þ � fkC þ cn2kf � PkC 6 c1En=2ðDðf ÞÞ þ c2n2En=2ðf Þ þ cn2kf � PkC

6 c1En=2ðDðf ÞÞ þ c3En=2ðDðf ÞÞ þ cn2kf � PkC
that implies (49).
Next, we prove some results preparatory for the proof of Theorem 2. The main difference here is that when we use the

operators snðf Þ, the analogue of Corollary 1 is weaker. The analogue of Corollary 1 is the following statement.

Proposition 3. Let f 2 C;n P 1.

(a) For any P 2 Pn; snðPÞ ¼ P.
(b) We have
ksnðf ÞkC 6 cn1=2kfkC : ð50Þ
Consequently,
Enðf Þ 6 kf � snðf ÞkC 6 cn1=2Enðf Þ: ð51Þ
Proof. Part (a) is clear from the definitions. To prove part (b), we take as the starting point the integral representation
snðf ÞðxÞ ¼
Z 1

�1
f ðtÞKnðx; tÞdt; x 2 R; ð52Þ
where the Christoffel–Darboux kernel Kn is defined by
Knðx; tÞ :¼
Xn

k¼0

ðkþ 1=2ÞPkðxÞPkðtÞ; x; t 2 R: ð53Þ
It is well known [26,15] that
max
x2½�1;1�

Z 1

�1
jKnðx; tÞjdt ¼ max

t2½�1;1�

Z 1

�1
jKnðx; tÞjdx ¼

ffiffiffiffiffiffi
2n
p

r
þ oðn�1=2Þ: ð54Þ
Together with (52), this leads to
ksnðf ÞkC 6 cn1=2kfkC : ð55Þ
The first inequality in (51) is clear. If P 2 Pn is arbitrary, we use part (a) and (50) to conclude that
kf � snðf ÞkC ¼ kf � P � snðf � PÞkC 6 cn1=2kf � PkC :
This leads to (51).
The analogue of Theorem 7 with Enðf Þ in place of En=2ðf Þ, and an extra multiplicative factor of n1=2 is the following.

Proposition 4. Let f and Dðf Þ be in C; n > 1, and P 2 Pn. Then
kDðf Þ � DðPÞk 6 cn1=2 EnðDðf ÞÞ þ n2kf � Pk
� �

: ð56Þ
The proof is verbatim the same as that of Theorem 7, except that snðf Þ is used in place of rnðh; f Þ, and the bounds on the norms
are used from Proposition 3 rather than Corollary 1. We omit this proof.
5.2. Proofs of the results in Section 3

In this section, we assume the set up as in Section 3. Thus, we assume that ftjgM
j¼1 � ½�1;1�, and an integer n P 1 and real

numbers wj are found so as to satisfy (16). We assume further that (18) is satisfied. As the final ingredient in the proof of
Theorem 3, we state the analogues of Theorem 5 and Corollary 1, proved in [20][Proposition 3.1].
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Proposition 5. Let h : ½0;1Þ ! R be twice continuously differentiable low pass filter, y ¼ ðy1; . . . ; yMÞ 2 RM, and f 2 C½�1;1�.

(a) We have
kSnðh; yÞkC 6 cAmax
16j6M

jyjj: ð57Þ

(b) For any P 2 Pn=2;Snðh; PÞ ¼ P.
(c) There exists c ¼ cðhÞ such that
Enðf Þ 6 kf � Snðh; f ÞkC 6 cAEn=2ðf Þ: ð58Þ
We are now in a position to prove Theorem 3.
Proof (Proof of Theorem 3). From (58) and (41), we obtain
kf � Snðh; f ÞkC 6 cAEn=2ðf Þ 6
cA
n2 En=2ðDðf ÞÞ:
Consequently, Theorem 7 implies that
kDðf Þ � DðSnðh; f ÞÞkC 6 cAEn=2ðDðf ÞÞ: ð59Þ
Since Dðf Þð1Þ ¼ 2f 0ð1Þ for any f (7), (59) implies (26).
In order to prove (27), we use (42) and (57) to deduce that
jS 0nðh; yÞð1Þj ¼ 1
2
jDðSnðh; yÞÞð1Þj 6 1

2
kDðSnðh; yÞÞkC ð60Þ

6 cn2kSnðh; yÞkC 6 cAn2 max
16j6M

jyjj: ð61Þ
The estimate (28) follows easily by applying (27) with y ¼ f � fd and using the resulting estimate together with (26) and
triangle inequality.

The proof of Theorem 2 is very similar. In place of Proposition 5, we need the following weaker analogue, which is proved
in exactly the same way. We will sketch the proof for the sake of completeness.

Proposition 6. Let y ¼ ðy1; . . . ; yMÞ 2 RM, and f 2 C½�1;1�.

(a) We have
kSnðh; yÞkC 6 cA
ffiffiffi
n
p

max
16j6M

jyjj: ð62Þ

(b) For any P 2 Pn; Snðh; PÞ ¼ P.
(c) We have
Enðf Þ 6 kf � Snðh; f ÞkC 6 cA
ffiffiffi
n
p

Enðf Þ: ð63Þ
Proof. In light of (18) and (54), we deduce that
jSnðyÞðxÞj ¼
XM

j¼1

wjyjKnðx; tjÞ
�����

����� 6 max
16j6M

jyjj
� �XM

j¼1

jwjjjKnðx; tjÞj 6 A max
16j6M

jyjj
� �Z 1

�1
jKnðx; tÞjdt 6 cAn1=2 max

16j6M
jyjj: ð64Þ
Next, let P 2 Pn. Using (14), valid for PKnðx; �Þ 2 P2n, we deduce that
SnðPÞðxÞ ¼
XM

j¼1

wjPðtjÞKnðx; tjÞ ¼
Z 1

�1
PðtÞKnðx; tÞdt ¼ snðPÞðxÞ ¼ PðxÞ:
This proves part (b).
The proof of part (c) is verbatim the same as that of Proposition 3(c).
We are now in a position to prove Theorem 2.

Proof (Proof of Theorem 2). The first part of this theorem is proved in exactly the same way as Theorem 3. From (63) and
(41), we obtain
kf � Snðf ÞkC 6 cAn1=2Enðf Þ 6
cAn1=2

n2 EnðDðf ÞÞ:
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Consequently, Proposition 4 implies that
kDðf Þ � DðSnðf ÞÞkC 6 cAn1=2EnðDðf ÞÞ: ð65Þ
Since Dðf Þð1Þ ¼ 2f 0ð1Þ for any f (7), (65) implies
jf 0ð1Þ � S0nðf Þð1Þj 6 cAn1=2EnðDðf ÞÞ: ð66Þ
We estimate jS0nðf Þð1Þ � S0nðfdÞð1Þj by (62). Together with (66), this estimate leads to (21).
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