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Abstract
Inspired by several recent developments in regularization theory, optimization,
and signal processing, we present and analyze a numerical approach to multi-
penalty regularization in spaces of sparsely represented functions. The sparsity
prior is motivated by the largely expected geometrical/structured features of
high-dimensional data, which may not be well-represented in the framework
of typically more isotropic Hilbert spaces. In this paper, we are particularly
interested in regularizers which are able to correctly model and separate the
multiple components of additively mixed signals. This situation is rather
common as pure signals may be corrupted by additive noise. To this end, we
consider a regularization functional composed by a data-fidelity term, where
signal and noise are additively mixed, a non-smooth and non-convex sparsity
promoting term, and a penalty term to model the noise. We propose and
analyze the convergence of an iterative alternating algorithm based on simple
iterative thresholding steps to perform the minimization of the functional. By
means of this algorithm, we explore the effect of choosing different regular-
ization parameters and penalization norms in terms of the quality of recovering
the pure signal and separating it from additive noise. For a given fixed noise
level numerical experiments confirm a significant improvement in perfor-
mance compared to standard one-parameter regularization methods. By using
high-dimensional data analysis methods such as principal component analysis,
we are able to show the correct geometrical clustering of regularized solutions
around the expected solution. Eventually, for the compressive sensing pro-
blems considered in our experiments we provide a guideline for a choice of
regularization norms and parameters.
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1. Introduction

1.1. Ill-posedness of unmixing problems

In several interesting real-life problems we do not dispose directly of the quantity of interest,
but only data from indirect observations are given. Additionally or alternatively to possible
noisy data, the original signal to be recovered may be affected by its own noise. In this case,
the reconstruction problem can be understood as an inverse problem, where the solution x†

consists of two components of different nature, the relevant signal and its noise, to be
separated.

Let us now formulate mathematically the situation so concisely described. Let  and 
be (separable) Hilbert spaces and  →T: be a bounded linear operator. For the moment
we do not specify T further. To begin, we consider a model problem of the type

= +( )y T u v , (1)† †

where u v,† † are the two components of the solution x† which we wish to identify and to
separate. In general, this unmixing problem has clearly an infinite number of solutions. In
fact, let us define the operator

  × → = +( )S S u
v T u v: , : ( ).

Its kernel is given by

  ξ ξ= ∈ × = − + ∈{ }( )S u
v v u Tker : , ker .

If T had closed range then S would have closed range and the operator

⎛
⎝⎜

⎡⎣ ⎤⎦
⎞
⎠⎟  ∼ × → ↦ +

∼
( )S S S u

v T u v:( ) ker , ( ),

would be boundedly invertible on the new restricted quotient space  × S( ) ker of the
equivalence classes given by

∼ ′
′

− ′ + − ′ ∈( )( )u
v

u
v

v v u u Tif and only if ( ) ( ) ker .

Unfortunately, even in this well-posed setting, each of these equivalence classes is huge, and
very different representatives can be picked as solutions. In order to facilitate the choice, one
may want to impose additional conditions on the solutions according to the expected
structure. As mentioned above, we may wish to distinguish a relevant component u† of the
solution from a noise component v†. Hence, in this paper we focus on the situation, where u†

can be actually represented as a sparse vector considered as coordinates with respect to a
certain orthogonal basis in , and v† has bounded coefficients up to a certain noise level
η > 0 with respect to the same basis. For the sake of simplicity, we shall identify below
vectors in  with their Fourier coefficients in ℓ2 with respect to the fixed orthonormal basis.
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Let us stress that considering different reference bases is also a very interesting setting when it
comes to separation of components, but it will not be considered for the moment within the
scope of this paper.

As a very simple and instructive example of the situation described so far, let us assume
  = = 2 and T = I is the identity operator. Under the assumptions on the structure of the
interesting solution = = +y x u v† † †, without loss of generality we write =u u( , 0)†

1
† for

= >R u 01
† and η= = >v v ymax {| |, | |} | | 01

†
2
†

2 . We consider now the following con-

strained problem: depending on the choice of >R 0, find ∈u v, 2 such that

 ∈ ∈ ∣ ∣ + =( )R u B R v B y u v y( ) ( ), subject to ,ℓ ℓ 2p q

where = ∞q , < <p0 1, and B R( )ℓr stands for the ball of radius R around 0 in ℓr.
Simple geometrical arguments, as illustrated in figure 1, yield to the existence of a special

radius η= >R R p* *( , ) 0 for which only three situations can occur

• If <R R* then problem  R( ) has no solutions.

• If >R R* then there are infinitely many solutions of  R( ) and the larger R is, the larger
is the set of solutions (in measure theoretical sense), including many possible non-sparse
solutions in terms of the u component.

• If =R R* there is only one solution for the problem  R( ), whose u† components are
actually sparse.

Hence, once the noise level η on the solution is fixed, the parameter >R 0 can be
actually seen as a regularization parameter of the problem, which is smoothly going from the
situation where no solution exists, to the situation where there are many solutions, going
through the well-posed situation where there is actually only one solution. In order to promote
uniqueness, one may also reformulate  R( ) in terms of the following optimization problem,
depending on >R 0 and an additional parameter β > 0:

Figure 1. Geometrical interpretation of the problem in 2D.
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 β β∥ ∥ + ∥ ∥ + =
∈

∈

( )

( )

R u v u v y, argmin subject to .
u B R

v B y

ℓ
p

ℓ
qopt

( ),ℓp

ℓq

p q

2

(Here and later we make an abuse of notation by assuming the convention that
∥ ∥ = ∥ ∥· ·ℓ

q
ℓq q

as soon as = ∞q .) The finite dimensional constrained problem  R( ) or

its constrained optimization version  βR( , )opt can be also recast in Lagrangian form as
follows:

 α β α β∥ + − ∥ + ∥ ∥ + ∥ ∥u v y u v( , ) argmin .
u v

ℓ ℓ
p

ℓ
q

,

2
p q2

Due to the equivalence of the problem  R( ) with a problem of the type  α β( , ) for

suitable α α= >R( ) 0, β β= >R( ) 0, we infer the existence of a parameter choice α β( *, *)

for which  α β( *, *) has actually a unique solution u v( , )† † such that = +y u v† †. For other
choices there might be infinitely many solutions (u, v) for which ∥ + − ∥ ⩾u v y 0ℓ

2
2

. While

the solution in 2 of the problem  R( ) follows by simple geometrical arguments, in higher
dimension the form  α β( , ) may allow us to explore solutions via a rather simple algorithm
based on alternating minimizations: We shall consider the following iteration, starting from

= =u v0(0) (0),

α

β

= ∥ + − ∥ + ∥ ∥

= ∥ + − ∥ + ∥ ∥

+

+ +

u u v y u

v u v y v

argmin ,

argmin .

n

u

n
ℓ ℓ

p

n

v

n
ℓ ℓ

q

( 1) ( ) 2

( 1) ( 1) 2

p

q

2

2

As we shall see in details in this paper, both these two steps are explicitly solved by means of
simple thresholding operations, making this algorithm extremely fast and easy to implement.
As we will show in theorem 2 of this article, the algorithm above converges to a solution of
 α β( , ) in the case of p = 1 and at least to a local minimal solution in the case of < <p0 1.
To get an impression about the operating principle of this alternating algorithm, in the
following, we present the results of representative two dimensional (2D) experiments.

1.2. An illustrative example in 2D

We fix =y (0.3, 1.35)T , and consider ⩽ <p0 2 in order to promote sparsity in u†, ⩾q 2 in
order to obtain a non-sparse v†.

First, consider the case p = 1. Due to the strict convexity of  α β( , ) for p = 1 and ⩾q 2,
the computed minimizer is unique. In figure 2 we visually estimate the regions of solutions for
u† and v†, which we define as

 
 

α β α β

α β α β

= >

= >

{ }
{ }

( )
( )

u u v

v u v

: , is the solution of ( , ), for , 0 ,

: , is the solution of ( , ), for , 0 ,

p q
u

p q
v

,
† † †

,
† † †

by ×- and *-markers respectively. Notice that this plot does not contain a visualization of the
information of which u† belongs to which v†. In the three plots for ∈ ∞q {2, 4, }, the above
sets are discretized by showing the solutions for all possible pairs
of α β ∈ = …i i, {0.1 · | 1, , 20}.

We immediately observe that the algorithm is computing solutions u v,† † in a certain
region which is bounded by a parallelogram. In particular, independently of the choice of q,
the solutions u† are distributed only on the upper and left-hand side of this parallelogram,
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while the solutions v† may be also distributed in its interior. Depending on the choice of q, the
respective regions seem to cover the lower right-hand ‘triangular’ part of the parallelogram,
having a straight (q = 2), or concave ( >q 2) boundary. In the case of = ∞q , all solutions can
be found on the right-hand and lower side of the parallelogram, which represents the limit of
the concave case.

To explain the above results, we have to give a detailed look at a single iteration of the
algorithm. As mentioned above, the algorithm is guaranteed to converge to the global
minimizer independently on the starting vector. Therefore, for simplicity and transparency we
choose = =u v 0.(0) (0) The case of p = 1 and = ∞q reveals the most ‘structured’ results in
terms of the region of solutions, namely piecewise linear paths. Thus, we consider this
parameter pair as a reference for the following explanations. In figure 3 we explicitly show the
first three iterations of the algorithm, as well as the totality of 13 iterations, setting α = 0.4
and β = 0.5. To get a better understanding of what the algorithm is doing, we introduce the
notion of solution path, which we define as the set of minimizers, depending on α and β
respectively

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

α α

β β

= = ∥ + − ∥ + ∥ ∥ >

= = ∥ + − ∥ + ∥ ∥ >

+

+ +

U u u u v y u

V v v v u y v

: ¯ ¯ argmin , 0 ,

: ¯ ¯ argmin , 0 .

p
n

u

n
ℓ ℓ

p

q
n

v

n
ℓ ℓ

q

1 ( ) 2

1 ( 1) 2

p

q

2

2

As we shall show in section 2.3, these sets can be described, explicitly in the case of p = 1 and
= ∞q , by simple thresholding operators = −α

+u y v( )n n( 1) 1 ( ) , and = −β
+ ∞ +v y u( )n n( 1) ( 1) ,

where  − = − −α
α
−{ }( )y v y v( ) : max 1 , 0 ( )n

i y v i i
n1 ( )

2 | |
( )

i i
n( ) , i = 1, 2, and

Figure 2. Estimated regions of solution for p = 1 and ∈ ∞q {2, 4, }.
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⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟



β

β

β

β

β

− =

− + − <

− − −

−

− < − −

−

− − −

− < − −

−

−

β

β

∞ +

+ +

+ +

+

+ +

+

+ +

+ +

− + − −
+

+

+ +

( )

( )

( )( )

( )( )

( )
( )

y u

y u y u

y u y u

y u

y u y u

y u

y u y u

y u y u

y u

y u

:

0
0

,

2,

sgn 2
,

2,

sgn 2
,

2,

sgn ,

sgn
,

else.

n

n n

n n

n

n n

n

n n

n n

y u y u
n

n

( 1)

1 1
( 1)

2 2
( 1)

1 1
( 1)

1 1
( 1)

2 2
( 1)

2 2
( 1)

1 1
( 1)

1 1
( 1)

2 2
( 1)

2 2
( 1)

1 1
( 1)

2 2
( 1)

2

2

1 1
( 1)

2 2
( 1)

n n
1 1

( 1)
2 2

( 1)

Figure 3. Behavior of the algorithm for p = 1, = ∞q , α = 0.4, β = 0.5. The solution
path for u and v is represented by the dashed and dotted line respectively.
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In figure 3 the solution paths +U n
1

1 and ∞
+V n 1 are presented as dashed and dotted lines

respectively. We observe the particular shape of a piecewise linear one-dimensional path.
Naturally, ∈+ +u Un n( 1)

1
1 and ∈+

∞
+v Vn n( 1) 1. In our particular setting, we can observe geo-

metrically, and also verify by means of the above given thresholding functions, that ∈u Un( )
1
1

for all ∈n . The detailed calculation can be found in appendix A. It implies that also the
limit has to be in the same set, and, therefore, the set of limit points is included inU1

1, which is
represented by a piecewise linear path between 0 and y.

While we have a well-shaped convex problem in the case of p = 1, the situation becomes
more complicated for <p 1 since multiple minimizers may appear and the global minimizer
has to be determined. In figure 4 again we visually estimate the regions of solutions u v( , )† †

with ×- and *-markers respectively. In the three plots for p = 0.5 and ∈ ∞q {2, 4, }, the
regions of solutions are discretized by showing the solutions for all possible pairs of
α β ∈ = …i i, {0.1 · | 1, , 40}. Compared to the results shown in figure 2, on the one hand,
the parallelogram is expanded and on the other hand, two gaps seem to be present in the
solution region of u†. Such behavior is due to the non-convexity of the problem. As an
extreme case, in figure 5 we present the same experiments only putting p = 0. As one can
easily see, the obtained results confirm the above observations. Note that in this limit case
setting, the gaps become so large, that the solution area of u† is restricted to three vectors only.

Owing to these first simple results, we obtain the following three preliminary
observations.

(1) The algorithm promotes a variety of solutions, which form a very particular structure.
(2) With decreasing p, and increasing q, the clustering of the solutions is stronger.
(3) The set of possible solutions is bounded by a compact set.

1.3. Multi-penalty regularization for unmixing problems

Inspired by this simple geometrical example of a 2D unmixing problem, in this paper we deal
with several aspects of optimizations of the type  α β( , ), recasting the unmixing problem (1)

Figure 4. Estimated regions of solution for p = 0.5, and ∈ ∞q {2, 4, }.
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into the classical inverse problems framework, where T may have non-closed range and the
observed data is additionally corrupted by noise, obtained by folding additive noise on the
signal through the measurement operator T, i.e.,

ξ= +y Tu ,†

where ξ = Tv† and η η∥ ∥ ⩽ ∈v , (0, 1).ℓ
†

2 Due to non-closedness of  T( ), the solution u†

does not depend anymore continuously on the data and can be reconstructed in a stable way
from y only by means of a regularization method [11].

On the basis of these considerations, we assume that the components u and v of the
solution are sequences belonging to suitable spaces ℓp and ∩=ℓ ℓ ℓq2 2 respectively, for

⩽ <p0 2 and ⩽ < ∞q2 . We are interested in the numerical minimization in ×ℓ ℓp 2 of the
general form of the functionals

 α β ε= ∥ + − ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥( )J u v T u v y u v v( , ): ( ) , (2)p q ℓ
p

ℓ
q

ℓ,
2 2

p q 2

where α β ε ∈ +, , , and p q, may all be considered regularization parameters of the
problem. The parameter ε > 0 ensures the ℓ2-coercivity of J u( , · )p q, also with respect to the
component v. We shall also take advantages of this additional term in the proof of lemma 7.

In this paper we explore the following issues:

• We propose an iterative alternating algorithm to perform the minimization of Jp q, by
means of simple iterative thresholding steps; due to the potential non-convexity of the
functional for < <p0 1 the analysis of this iteration requires a very careful adaptation of
several techniques which are collected in different previous papers of several authors
[2, 4, 6, 12] on a single-parameter regularization with a sparsity-promoting ℓp-
penalty, ⩽ <p0 2.

• Thanks to this algorithm, we can explore by means of high-dimensional data analysis
methods such as principle component analysis (PCA), the geometry of the computed
solutions for different parameters α β, and p q, . Additionally, we carefully estimate their

Figure 5. Estimated regions of solution for p = 0, and ∈ ∞q {2, 4, }.
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effect in terms of quality of recovery given y as the noisy data associated via T to sparse
solutions affected by bounded noise. Such an empirical analysis shall allow us to classify
the best recovery parameters for certain compressed sensing problems considered in our
numerical experiments.

The formulation of multi-penalty functionals of the type (2) is not at all new, as we shall
recall below several known results associated to it. However, the systematic investigation of
the two relevant issues indicated above, in particular, the employment of high-dimensional
data analysis methods to classify parameters and relative solutions are, to our knowledge, the
new contributions given by this paper.

Perhaps as one of the earliest examples of multi-penalty optimization of the type (2) in
imaging, we may refer to the one seminal work of Meyer [21], where the combination of two
different function spaces −H 1 and BV , the Sobolev space of distributions with negative
exponent −1 and the space of bounded variation functions respectively, has been used in
image reconstruction towards a proper recovery and separation of texture and cartoon image
components; we refer also to the follow up papers by Vese and Osher [26, 27]. Also in the
framework of multi-penalty sparse regularization, one needs to look at the early work on
signal separation by means of ℓ1-ℓ1 norm minimizations in the seminal papers of Donoho
et al on the incoherency of Fourier basis and the canonical basis [8, 10]. We mention also the
recent work [9], where the authors consider again ℓ1-ℓ1 penalization with respect to curvelets
and wavelets to achieve separation of curves and point-like features in images. Daubechies
and Teschke built on the works [21, 26, 27] providing a sparsity based formulation of the
simultaneous image decomposition, deblurring, and denoising [7], by using multi-penalty ℓ1-
and weighted-ℓ2-norm minimization. The work by Bredies and Holler [3] analyses the reg-
ularization properties of the total generalized variation functional for general symmetric
tensor fields and provides convergence for multiple parameters for a special form of the
regularization term. In more recent work [17], the infimal convolution of total variation type
functionals for image sequence regularization has been considered, where an image sequence
is defined as a function on a three dimensional space time domain. The motivation for such
kind of functionals is to allow suitably combined spatial and temporal regularity constraints.
We emphasize also the two recent conceptual papers [13, 22], where the potential of multi-
penalty regularization to outperform single-penalty regularization has been discussed and
theoretically proven in the Hilbert space settings.

The results presented in this paper are very much inspired not only by the above-
mentioned theoretical developments in inverse problems and imaging communities but also
by certain problems in compressed sensing [15]. In particular, in the recent paper [1] a two-
step method to separate noise from sparse signals acquired by compressed sensing mea-
surements has been proposed. However, the computational cost of the second phase of the
procedure presented in [1], being a non-smooth and non-convex optimization, is too
demanding to be performed on problems with realistic dimensionalities. In view of the results
in [22], the concept of the procedure described above could be profitably combined into
multi-penalty regularization of the type (2) with suitable choice of the spaces and parameters
and lead to a simple procedure which allows the numerical computation of the corresponding
solutions in a reasonable time. This procedure is presented throughout this paper. Of course,
the range of applicability of the presented approach is not limited to problems in compressed
sensing. Image reconstruction, adaptive optics, high-dimensional learning, and several other
problems are fields where we can expect that multi-penalty regularization can be fruitfully
used. We expect our paper to be a useful guideline to those scientists in these fields for a
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proper use of multi-penalty regularization, whenever their problem requires the separation of
sparse and non-sparse components.

It is worthwhile mentioning that in recent years both regularization with non-convex
constraints (see [4, 16, 18, 30, 31] and references therein) and multi-penalty regularization
([20, 22], just to mention a few) have become the focus of interest in several research
communities. While in most of the literature these two directions are considered separately,
there have also been some efforts to understand regularization and convergence behavior for
multiple parameters and functionals, especially for image analysis [3, 28]. However, to the
best of our knowledge, the present paper is the first one providing an explicit direct
mechanism for minimization of the multi-penalty functional with non-convex and non-
smooth terms, and highlighting its improved accuracy power with respect to more traditional
one-parameter regularizations.

1.4. Content of the paper

In section 2 we recall the main concepts related to surrogate functionals. Later we borrow
these concepts for the sake of minimization of the functional Jp q, . In particular, we split the
minimization problem into two subproblems and we propose an associated sequential algo-
rithm based on iterative thresholding. The main contributions of the paper are presented in
sections 3 and 4. In section 3 by greatly generalizing and adapting the arguments in
[2, 4, 6, 12] we show that the successive minimizers of the surrogate functionals defined in
section 2 indeed converge to stationary points, which under reasonable additional conditions
are local minimizers of the functional (2). We first establish weak convergence, but conclude
the section by proving that the convergence also holds in norm. In section 4 we open the
discussion on the advantages and disadvantages of different parameter α β, and p q, choices.
Inspired by the 2D illustrations in the introduction, we perform similar experiments but this
time for high-dimensional problems and provide an appropriate representation of high-
dimensional data by employing statistical techniques for dimensionality reduction, in parti-
cular, PCA [19]. Moreover, a performance comparison of the multi-penalty regularization
with its one-parameter counterpart is presented and discussed. As a byproduct of the results,
in this section we provide a guideline for the ‘best’ parameter choice.

2. An iterative algorithm: new thresholding operators

2.1. Notation

We begin this section with a short reminder of the standard notations used in this paper. For
some countable index set Λ we denote by Λ= ⩽ ⩽ ∞ℓ ℓ p( ), 0 ,p p the space of real sequences

= λ λ Λ∈u u( ) with (quasi-)norm

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑∥ ∥ = ∥ ∥ = < < ∞Λ

λ Λ
λ

∈

u u u p: : , 0 ,p ℓ
p

p

( )

1

p

and ∥ ∥ = λ Λ λ∞ ∈u u: sup | | and λ Λ∥ ∥ = ∈ ≠λu u: #{ | 0}0 as usual.
Until different notice, here we assume ⩽ <p0 2 and ⩽ ⩽ ∞q2 . Since for = ∞q the

penalty term ∥ ∥· ℓ
q

q
in (2) ‘equals’ infinity, as already done before we adopt the convention

that ∥ ∥ = ∥ ∥· ·ℓ
q

ℓq q
for = ∞q .

More specific notations will be defined in the paper, where they turn out to be useful.
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2.2. Preliminary lemma

We want to minimize Jp q, by the suitable instances of the following alternating algorithm: pick

up initial u v,(0) (0) and iterate

⎧
⎨⎪
⎩⎪

≈

≈

+

+ +

( )
( )

u J u v

v J u v

argmin ,

argmin , ,
(3)

n
u p q

n

n
v p q

n

( 1)
,

( )

( 1)
,

( 1)

where ‘≈’ stands for the approximation symbol, because in practice we never perform the
exact minimization. Instead of optimising Jp q, directly, let us introduce auxiliary functionals
J J, ,u

s
v
s called the surrogate functionals of Jp q, : for some additional parameter a let

= + ∥ − ∥ − ∥ − ∥J u v a J u v u a Tu Ta( , ; ) : ( , ) , (4)u
s

p q, 2
2 2

= + ∥ − ∥ − ∥ − ∥J u v a J u v v a Tv Ta( , ; ) : ( , ) . (5)v
s

p q, 2
2 2

In the following we assume that ∥ ∥ <T 1. This condition can always be achieved by
suitable rescaling of T and y. Observe that

∥ − ∥ − ∥ − ∥ ⩾ ∥ − ∥u a Tu Ta C u a , (6)2
2 2

2
2

∥ − ∥ − ∥ − ∥ ⩾ ∥ − ∥v a Tv Ta C v a , (7)2
2 2

2
2

for = − ∥ ∥C T(1 ) .2 Hence,

= ⩽J u v J u v u J u v a( , ) ( , ; ) ( , ; ), (8)p q u
s

u
s

,

= ⩽J u v J u v v J u v a( , ) ( , ; ) ( , ; ), (9)p q v
s

v
s

,

everywhere, with equality if and only if u = a or =v a. Moreover, the functionals decouple
the variables λu and λv so that the above minimization procedure reduces to component-wise
minimization (see [6], and sections 2.3.1, 2.3.2 below for more details).

Alternating minimization of (3) can be performed by minimizing the corresponding
surrogate functionals (4)–(5). This leads to the following sequential algorithm: pick up initial
u(0), v(0), and iterate

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎧
⎨⎪
⎩⎪
⎧
⎨⎪
⎩⎪

= =
= = … −

= =
= = … −

Λ

Λ

+

+ +
∈

+

+

+ +
∈

+ +

( )

( )

u u u

u J u v u l L

v v v

v J u v v l M

argmin , ; , 0, , 1

argmin , ; , 0, , 1

. (10)

n n L n

n l
u ℓ u

s n n l

n n M n

n l
v ℓ v

s n L n l

( ) ( , ) ( 1,0)

( 1, 1)
( )

( ) ( 1, )

( ) ( , ) ( 1,0)

( 1, 1)
( )

( 1, ) ( 1, )

2

2

The following lemma provides a tool to prove the weak convergence of the algorithm. It
is standard when using surrogate functionals (see [2, 6]), and concerns general real-valued
surrogate functionals. It holds independently of the specific form of the functional J ,p q, but
does rely on the restriction that ∥ ∥ <T 1.

Lemma 1. If J u v a( , ; )u
s and J u v a( , ; )v

s are given as in (4), (5), and the sequences u( )n( ) ,
v( )n( ) are generated by the algorithm in (10), then the sequences

+J u v J u v u( , ), ( , ; )p q
n n

u
s n n n

,
( ) ( ) ( 1) ( ) ( ) and + +J u v v( , ; )v

s n n n( 1) ( 1) ( ) are non-increasing as long as
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∥ ∥ <T 1. Moreover,

∥ − ∥ → ∥ − ∥ →+ +u u v v0, 0,n n n n( 1) ( )
2

( 1) ( )
2

for → ∞n .

Proof. Using (8) we have

= = +( ) ( ) ( )J u v J u v u J u v u, , ; , ; .p q
n n

u
s n n n

u
s n L n M n

,
( ) ( ) ( ) ( ) ( ) ( , ) ( , ) ( 1,0)

Since at this point the proof is similar for both u and v, for the sake of brevity, we
consider the case of Ju

s in detail only. By definition of +u n( 1,1) and its minimal properties in
(10) we have

⩾+ + +( ) ( )J u v u J u v u, ; , ; . (11)u
s n L n M n

u
s n n M n( , ) ( , ) ( 1,0) ( 1,1) ( , ) ( 1,0)

An application of (8) gives

⩾+ + + +( ) ( )J u v u J u v u, ; , ; .u
s n n M n

u
s n n M n( 1,1) ( , ) ( 1,0) ( 1,1) ( , ) ( 1,1)

Putting in line these inequalities we get

⩾ + +( ) ( )J u v J u v u, , ; .p q
n n

u
s n n M n

,
( ) ( ) ( 1,1) ( , ) ( 1,1)

In particular, from (11) and (6) we obtain

− ⩾ ∥ − ∥+ + + +( ) ( )J u v J u v u C u u, , ; .p q
n n

u
s n n M n n n

,
( ) ( ) ( 1,1) ( , ) ( 1,1) ( 1,1) ( 1,0)

2
2

By successive iterations of this argument we get

⩾

⩾

=

+ +

+ +

+

( ) ( )
( )
( )

J u v J u v u

J u v u

J u v

, , ;

, ;

, , (12)

p q
n n

u
s n n M n

u
s n L n M n L

p q
n L n M

,
( ) ( ) ( 1,1) ( , ) ( 1,1)

( 1, ) ( , ) ( 1, )

,
( 1, ) ( , )

and

∑− ⩾ ∥ − ∥+

=

−
+ + +( ) ( )J u v J u v C u u, , . (13)p q

n L n M
p q

n L n M

l

L
n l n l

,
( , ) ( , )

,
( 1, ) ( , )

0

1
( 1, 1) ( 1, )

2
2

By definition of +v n( 1,1) and its minimal properties

⩾+ + + +( ) ( )J u v v J v v v, ; , ; .v
s n L n M n

v
s n L n M n( 1, ) ( , ) ( 1,0) ( 1, ) ( , ) ( 1,1)

By similar arguments as above we find

⩾ =+ + + + + +( ) ( ) ( )J u v J u v v J u v, , ; , , (14)p q
n L n M

v
s n L n M n M

p q
n L n M

,
( 1, ) ( , ) ( 1, ) ( 1, ) ( 1, )

,
( 1, ) ( 1, )

and

∑− ⩾ ∥ − ∥+ + +

=

−
+ + +( ) ( )J u v J u v C v v, , . (15)p q

n L n M
p q

n L n M

l

M
n l n l

,
( 1, ) ( , )

,
( 1, ) ( 1, )

0

1
( 1, 1) ( 1, )

2
2

From the above discussion it follows that ⩾J u v( , ) 0p q
n n

,
( ) ( ) is a non-increasing

sequence, therefore it converges. From (13) and (15) and the latter convergence we deduce
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∑

∑

∥ − ∥ →

∥ − ∥ →

=

−
+ + +

=

−
+ + +

u u

v v

0,

0.

l

L
n l n l

l

M
n l n l

0

1
( 1, 1) ( 1, )

2
2

0

1
( 1, 1) ( 1, )

2
2

In particular, by triangle inequality and the standard inequality + ⩽ +a b a b( ) 2( )2 2 2 for
>a b, 0, we also have

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑

∑

∥ − ∥ = − ⩽ ∥ − ∥

⩽ ∥ − ∥ →

+ +

=

−
+ + +

=

−
+ + +

=

−
+ + +

( )u u u u u u

C u u 0.

n L n

l

L
n l n l

l

L
n l n l

L

l

L
n l n l

( 1, ) ( 1,0)
2
2

0

1
( 1, 1) ( 1, )

2

2

0

1
( 1, 1) ( 1, )

2

2

0

1
( 1, 1) ( 1, )

2
2

Here CL is some constant depending on L. Analogously we can show that

∑∥ − ∥ ⩽ ∥ − ∥ →+ +

=

−
+ + +v v C v v 0.n M n

M

l

M
n m n m( 1, ) ( 1,0)

2
2

0

1
( 1, 1) ( 1, )

2
2

Therefore, we finally obtain

∥ − ∥ = ∥ − ∥ →
∥ − ∥ = ∥ − ∥ →

+ + +

+ + +

u u u u

v v v v

0,

0.

n L n n n

n M n n n

( 1, ) ( 1,0)
2
2 ( 1) ( )

2
2

( 1, ) ( 1,0)
2
2 ( 1) ( )

2
2

□

2.3. An iterative algorithm: new thresholding operators

The main virtue/advantage of the alternating iterative thresholding algorithm (10) is the given
explicit formulas for computation of the successive v n( ) and u n( ). In the following subsections,
we discuss how the minimizers of J u v a( , ; )u

s and J u v a( , ; )v
s can be efficiently computed.

We first observe a useful property of the surrogate functionals. Expanding the squared
terms on the right-hand side of the expression (4), we get

⎡
⎣
⎢⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟∑

α Φ

α Φ

= ∥ − − − − ∥ + ∥ ∥ +

= − − − + + +
λ Λ

λ
λ

λ
∈

( )
J u v a u T y Ta Tv a u

u a T Ta T Tv T y u

( , ; ) *( )

* * * ,

u
s

p
p

p

2

2

1

2

1

and similarly for the expression (5) and ⩽ < ∞q2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎤
⎦
⎥⎥∑

β ε Φ

β ε Φ

= ∥ − − − − ∥ + ∥ ∥ + ∥ ∥ +

= − − − + + + +
λ Λ

λ
λ

λ λ
∈

( )
J u v a v T y Ta Tu a v v

v a T Ta T Tu T y v v

( , ; ) *( )

* * * ,

v
s

q
q

q

2

2

2
2

2

2
2

2

where the terms Φ Φ= a y v( , , )1 1 and Φ Φ= a y u( , , )2 2 depend only on a y v, , , and a y u, ,
respectively. Due to the cancellation of the terms involving∥ ∥Tu 2

2 and∥ ∥Tv ,2
2 the variables

λ λu v, in Ju
s and Jv

s respectively are decoupled. Therefore, the minimizers of
J u v a J u v a( , ; ), ( , ; )u

s
v
s for a and v or u fixed respectively, can be computed component-

wise according to
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⎡
⎣
⎢⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎤
⎦
⎥⎥

α λ Λ= − − − + + ∈λ
λ∈

( )u t a T Ta T Tv T y targmin * * * , , (16)
t

p*

2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎤
⎦
⎥⎥

β ε= − − − + + +λ
λ∈

( )v t a T Ta T Tu T y t targmin * * * * . (17)
t

q*

2
2

In the case = = =p p p0, 0.5, 1 and q = 2 one can solve (16), (17) explicitly; the
treatment of the case = ∞q is explained in remark 1; for the general case

< < < < ∞p q0 2, 2 we derive an implementable and efficient method to compute
u v,n n( ) ( ) from previous iterations.

2.3.1. Minimizers of Js
v u; v ; að Þ for a; u fixed. We first discuss the minimization of the

functional J u v a( , ; )v
s for generic a and u. For ⩽ < ∞q2 the summand in J u v a( , ; )v

s is
differentiable in λv , and the minimization reduces to solving the variational equation

ε β+ + = + − −λ λ λ λ
− [ ( )]v q v v a T y Tu Ta2(1 ) sgn ( ) 2 * .q 1

Setting ε= +λ λv v˜ : (1 ) and recalling that | · | is one-homogenous, we may rewrite the above
equality as

β
ε

+
+

= + − −λ
λ λ

λ

−

−

( ) [ ( )]v
q v v

a T y Tu Ta˜
2

sgn ˜ ˜

(1 )
* .

q

q

1

1

Since for any choice of β ⩾ 0 and any >q 1, the real function

β
ε

= +
+β ε −

−F x x
q

x x( )
2(1 )

sgn ( )q
q

q
, 1

1

is a one-to-one map from  to itself, we thus find that the minimizer of J u v a( , ; )v
s satisfies

ε= = + + − −λ λ β ε λ λ
− ( [ ( )] )v v S a T y Tu Ta(1 ) * , (18)q* 1

,

where β εS q
, is defined by

= ⩾β ε β ε
−( )S F qfor 2.q q

, ,
1

Remark 1. In the particular case q = 2 the explicit form of the thresholding function β εS ,
2 can

be easily derived as a proper scaling and we refer the interested reader to [6]. For = ∞q the
definition of the thresholding function as

 β ε= ∥ − ∥ + ∥ ∥ + ∥ ∥β ε
∞

∞x v x v v( ) argmin ,
v

, 2
2

2
2

for vectors ∈v x, M was determined explicitly using the polar projection method [14]. Since
in our numerical experiments we consider finite-dimensional sequences and the case = ∞q ,
we recall here β ε

∞
, explicitly for the case ε = 0 (in finite-dimensions the additional ℓ2-term

ε ∥ ∥v 2
2 is not necessary to have ℓ2-coercivity).

Let ∈x M and β > 0. Order the entries of x by magnitude such
that ⩾ ⩾ … ⩾x x x| | | | | |.i i iM1 2

(1) If β∥ ∥ <x 2,1 then  =β ε
∞ x( ) 0.,
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(2) Suppose β∥ ∥ >x 2.1 If β< −x x| | | | 2,i i2 1 then choose n = 1. Otherwise, let
∈ …n M{2, , } be the largest index satisfying

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ β⩾

−
−

=

−

x
n

x
1

1 2
.i

k

n

i

1

1

n k

Then

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟



∑ β= − = …

= = + …

β ε

β ε

∞

=

∞

( ) ( )

( )

x
x

n
x j n

x x j n M

( )
sgn

2
, 1, ,

( ) , 1, , .

i

i

k

n

i

i
i

,
1

,

j

j

k

j
j

These results cannot be in practice extended to the infinite-dimensional case because one
would need to perform the reordering of the infinite-dimensional vector in absolute values.
However, in the case of infinite-dimensional sequences, i.e., Λ∈x ℓ ( ),2 which is our main
interest in the theoretical part of the current manuscript, one can still use the results [14] by
employing at the first step an adaptive coarsening approach described in [5]. This approach
allows us to obtain an approximation of an infinite-dimensional sequence by its
N -dimensional counterpart with optimal accuracy order.

2.3.2. Minimizers of Js
u u; v ; að Þ for a; v fixed. In this subsection, we want to derive an

efficient method to compute u n( ). In the special case ⩽ <p1 2 the iteration u n( ) is given by
soft-thresholdings [6]; for p = 0 the iteration u n( ) is defined by hard-thresholding [2]. For the
sake of brevity, we limit our analysis below to the range < <p0 1, which requires a more
careful adaptation of the techniques already included in [2, 6]. The cases p = 0 and ⩽ <p1 2
are actually minor modifications of our analysis and the one of [2, 6]

In order to derive the minimizers of the non-smooth and non-convex functional
J u v a( , ; )u

s for generic a v, , we follow the similar approach as proposed in [4], where a
general framework for minimization of non-smooth and non-convex functionals based on a
generalized gradient projection method has been considered.

Proposition 1. For < <p0 1 the minimizer (16) for generic a v, can be computed by

λ Λ= + − − ∈λ α λ λ( [ ( )] )u H a T y Tv Ta* , , (19)p*

where the function  →αH :p obeys

⎪
⎪

⎧
⎨
⎩

τ

τ
=

⩽

⩾
α

α

α α
−( )

H x
x

F x x
( )

0, ,

( ), ,
p

p 1

∪ γ∈ ⩾α α{ } { }H x x( ) 0 .p

Here, α
−F x( ) ( )p 1 is the inverse of the function = +α

α −F t t t t( ) sgn ( )| | ,p p p
2

1 which is defined
on +, strictly convex and attains a minimum at >αt 0, and
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γ α τ γ α= − = = −
−

−α α α α
− −( ( )) ( ( ))p F

p

p
p1 , ( )

2

2 2
1 .( )p p p1 (2 ) 1 2

The thresholding function αH p is continuous except at τ= αx| | , where it has a jump
discontinuity.

The proof of the proposition follows the similar arguments presented in lemmas 3.10,
3.12 in [4] and, thus, for the sake of brevity, it can be omitted here. An illustrative explanation
of the thresholding function αH p for P ∈ 0, 0.15, 0.3, 0.45, 0.6, 0.9, 1 and α = 0.1 is depicted
in figure 6.

Remark 2. Since we consider the case p = 0.5 in our numerical experiments, we present here
an explicit formulation of the thresholding function αH1 2, which has been derived recently in
[29]. It is given by

⎧
⎨
⎪⎪

⎩
⎪⎪

α

α
=

⩽

⩾
α

α
−( )

H x
x

F x x

( )
0,

54

4
( ) ,

( ),
54

4
( ) ,

1 2

2 3

1 2 1 2 3

3

3

where

⎜ ⎟
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

π α= + −α
− −

( )F x x
x

( )
2

3
1 cos

2

3

2

3
arccos

8 3
.1 2 1 3 2

For solving the low-level minimization problems of (10), we can use an iterative
thresholding algorithm induced by (18) and (19). Thus, we can reformulate the above
algorithm in (10) by

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎧
⎨⎪

⎩⎪
⎧
⎨
⎪⎪

⎩
⎪⎪

ε

= =
= + − −

= … −

= =

= + + − −

= … −

λ α λ λ

λ β ε λ λ

+

+ + + +

+

+ + − + + + )(

( [ ( )] )

[ ( )]

u u u

u H u T y Tv Tu

l L

v v v

v S v T y Tu Tv

l M

* ,
0, , 1

(1 ) * ,

0, , 1

. (20)

n n L n

n l p n l n M n l

n n M n

n l q n l n n l

( ) ( , ) ( 1,0)

( 1, 1) ( 1, ) ( , ) ( 1, )

( ) ( , ) ( 1,0)

( 1, 1) 1
,

( 1, ) ( 1) ( 1, )

2.3.3. Specifying the fixed points. As the above algorithm may have multiple fixed points, it
is important to analyze those in more detail. At first, we specify what we understand as a fixed
point. Let us define the functions

=F u v J u v u( ¯, ¯) argmin ( , ¯; ¯), (21)u
u

u
s

=F u v J u v v( ¯, ¯) argmin ( ¯, ; ¯). (22)v
v

v
s
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Then we say that u v( *, *) is a fixed point for the equations (21) and (22) if

⎧
⎨⎪
⎩⎪

=

=

( )

( )

u F u v

v F u v

* *, * ,

* *, * .
(23)u

v

We define ix to be the set of fixed points for the equations (21) and (22).

Lemma 2. Define the sets Γ λ Λ= ∈ =λu: { : 0}0
* and Γ λ Λ γ= ∈ ⩾λ αu: { : | | }.1

* Then a

necessary and sufficient condition for a point u v( *, *) to be a fixed point of (21) and (22), i.e.,

∈u v ix( *, *) , is that
α λ Γ− − = ∣ ∣ ∈λ λ λ

−[ ( )] ( )T y Tv Tu
p

u u* * *
2

sgn * , if ,p* 1
1

or

τ λ Γ∣ − − ∣ ⩽ ∈λ α[ ( )]T y Tv Tu* * * , if .0

Proof. By proposition 1

λ Λ= + − − ∀ ∈λ α λ λ( [ ( )] )u H u T y Tv Tu* * * , .p* *

If =λu 0,* this equality holds if and only if τ− − ⩽λ αT y Tv Tu|[ *( * *)] | . Similarly for λ Γ∈ 1

we get

= + − −λ α λ λ
−( ) ( [ ( )] )u F u T y Tv Tu* * * ,p* 1 *

and by definition of αF p we have + =α λ
α

λ λ λ
− −F u u u u( ) ( sgn ( )| | ) .p p p1 *

2
* * 1 * Thus, the statement

of the lemma follows. □

2.3.4. Fixation of the index set Γ1. To ease notation, we define the operators
 Λ Λ→α ℓ ℓ: ( ) ( )p

2 2 and  Λ Λ→τ ℓ ℓ: ( ) ( )2 2 by their component-wise action





=

=
α λ α λ

τ λ β ε λ

( )
( )

u H u

v S v

( ) : ( ),

( ) : ( ),

p p

q
,

here τ = β
ε+ − .q

2(1 )q 1

At the core of the proof of convergence stands the fixation of the ‘discontinuity set’
during the iteration (19), at which point the non-convex and non-smooth minimization with
respect to u in (10) is transformed into a simpler problem.

Lemma 3. Consider the iterations

= + − −α
+ + + +( )( )u u T y Tv Tu*n l p n l n M n l( 1, 1) ( 1, ) ( , ) ( 1, )

and the partition of the index set Λ into

Γ λ Λ γ

Γ λ Λ

= ∈ ⩾

= ∈ =

λ α

λ

{ }
{ }

u

u

: ,

: 0 ,

n l n l

n l n l

1
, ( , )

0
, ( , )
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where τ γα α( , ) is the position of the jump-discontinuity of the thresholding function. For
sufficiently large ∈N (after a finite number of iterations), this partition fixes during the
iterations, meaning there exists Γ0 such that for all Γ Γ⩾ ∀ ⩽ =n N l L, , n l

0
,

0

and Γ Γ Λ Γ= =: .n l
1

,
1 0

Proof. By discontinuity of the thresholding function αH x( ),p each sequence component
satisfies

• =λu 0n l( , ) if λ Γ∈ ;n l
0

,

• γ⩾λ αu| |n l( , ) if λ Γ∈ .n l
1

,

Thus, γ− ⩾λ λ α
+u u| |n l n l( , 1) ( , ) if ∩λ Γ Γ∈ +n l n l

0
, 1

1
, , or ∩λ Γ Γ∈ + .n l n l

0
,

1
, 1 At the same

time, lemma 1 implies that

ϵ− ⩽ ∥ − ∥ ⩽λ λ
+ +u u u u ,n l n l n l n l( , 1) ( , ) ( , 1) ( , )

2

for sufficiently large ϵ⩾n N ( ). In particular, the last inequality implies that Γ0 and Γ1 must
be fixed once ϵ⩾n N ( ). □

Since ∈u ℓ( ) ,n l( , )
2 the set Γ1 is finite. Moreover, fixation of the index set Γ1 implies that

the sequence u( )n( ) can be considered constrained to a subset of Λℓ ( )2 on which the
functionals J v( · , )p q, and J v a( · , ; )u

s are differentiable.

3. Convergence of the iterative algorithm

3.1. Weak convergence

Given that λ Γ= ∈α λ α λ
−H u F u( ) ( ) ( ), ,p n p n( ) 1 ( )

1 after a finite number of iterations, we can use
the tools from real analysis to prove that the sequence u( )n( ) converges to some stationary
point. Notice that the convergence of the iterations of the type

=
=

+

+

( )
( )

u F u v

v F u v

, ¯ ,

¯, ,

n
u

n

n
v

n

( 1) ( )

( 1) ( )

to a fixed point u v( ¯*, ¯*) for any u v( ¯, ¯) and F F,u v given as in (21) has been extensively
discussed in the literature, e.g., [2, 4, 6, 14].

Theorem 1. Assume < <p0 1 and ⩽ < ∞q2 . The algorithm (10) produces sequences
u v( ), ( )n n( ) ( ) in ℓ2 whose weak accumulation points are fixed points of the equations (21)
and (22).

Proof. By lemma 3 the iteration step

= + − −λ α λ λ
+ + + +( [ ( )] )u H u T y Tv Tu*n l p n l n M n l( 1, 1) ( 1, ) ( , ) ( 1, )

becomes equivalent to the step of the form

λ Γ= + − − ∈λ α λ λ
+ + − + +( ) ( [ ( )] )u F u T y Tv Tu* , ,n l p n l n M n l( 1, 1) 1 ( 1, ) ( , ) ( 1, )

1

after a finite number of iterations and λ Λ Γ Γ= ∀ ′ ∈ =λ′
+ +u 0, .n l( 1, 1)

1 0
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From (12) and (14) we have

α α⩾ ⩾ ∥ ∥ ⩾ ∥ ∥( ) ( )J u v J u v u u, , ,p q p q
n n n

p
p n p

,
(0) (0)

,
( ) ( ) ( ) ( )

2

and

β ε ε⩾ ⩾ ∥ ∥ + ∥ ∥ ⩾ ∥ ∥+( ) ( )J u v J u v v v v, , .p q p q
n n n

q
q n n

,
(0) (0)

,
( 1) ( ) ( ) ( )

2
2 ( )

2
2

These mean that u( )n( ) and v( )n( ) are uniformly bounded in ℓ ,2 hence there exist weakly
convergent subsequences u( )n( )j and v( ).n( )j Let us denote by ∞u and ∞v the weak limits of the
corresponding subsequences. For simplicity, we rename the corresponding subsequences
u( )n( ) and v( ).n( ) Moreover, since the sequence J u v( , )p q

n n
,

( ) ( ) is monotonically decreasing and
bounded from below by 0, it is also convergent.

First of all, let us recall that the weak convergence implies component wise convergence,
so that → →λ λ λ λ

∞ ∞u u v v, ,n n( ) ( ) and → →λ λ λ λ
∞ ∞T Tu T Tu T Tv T Tv[ * ] [ * ] , [ * ] [ * ] .n n( ) ( ) ( ) ( )

By definition of +u n L( 1, ) and +v n M( 1, ) in (20), we have for n large enough

⎡
⎣⎢

⎤
⎦⎥

α λ Γ

= − + − − +

+ ∈
λ

λ

λ λ

+ − + − +

+ + −

( )( )

( )

u T y Tv T Tu u

p u u

0 2 * * 2

sgn , , (24)

n L n n L n L

n L n L p

( 1, 1) ( ) ( 1, 1) ( 1, )

( 1, ) ( 1, ) 1
1

⎡
⎣⎢

⎤
⎦⎥ ε

β λ Λ

= − + − − + +

+ ∈
λ

λ

λ λ

+ − + + − +

+ + −

( )( )

( )

v T y Tu T Tv v

q v v

0 2 * * (2 )

sgn , . (25)

n M n L n M n M

n M n M q

( 1, 1) ( 1, ) ( 1, 1) ( 1, )

( 1, ) ( 1, ) 1

By taking now the limit for → ∞n in (24) and (25), and by using lemma 1 we obtain

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

α λ Γ

ε β λ Λ

= − + − − + + ∈

= − + − − + + + ∈

λ
λ λ λ

λ
λ λ λ

∞ ∞ ∞ ∞ ∞ ∞ −

∞ ∞ ∞ ∞ ∞ ∞ −

( )
( )

( ) ( )

( ) ( )

u T y Tv T Tu u p u u

v T y Tu T Tv v q v v

0 2 * * 2 sgn , ,

0 2 * * (2 ) sgn , .

p

q

1
1

1

An application of lemma 2 implies = ∞ ∞u v u v( *, *) ( , ), i.e.,

λ Γ

ε λ Λ

= + − − ∈

= + + − − ∈
λ α λ λ

λ β ε λ λ

∞ ∞ ∞ ∞

∞ − ∞ ∞ ∞

( [ ( )] )

( [ ( )] )

u H u T y Tv Tu

v S v T y Tv Tu

* , .

(1 ) * , .

p

q

1

1
,

The argumentation holds true for every subsequences of u( )n( ) and v( ).n( ) □

Remark 3. The case = ∞q would need a special treatment due to lack of differentiability.
For simplicity we further assume that ⩽ < ∞q2 .

3.2. Minimizers of Jp;q

In this section we explore the relationship between a limit point u v( *, *) of the iterative
thresholding algorithm (10) and minimizers of the functional (2). We shall show that under
the so-called finite basis injectivity (FBI) property [4] the set of fixed points of the algorithm is
a subset of the set of local minimizers. We note that here again we provide the proof only for
the case < <p0 1, and we refer to [2] and [6] for the cases p = 0 and ⩽ <p1 2, which
follow similarly after minor adaptations.
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Theorem 2. Let T have the FBI property, i.e., T is injective whenever restricted to finitely
many coefficients. Let us denote  the set of local minimizers of Jp q, . Then we have the
following inclusion

 ⊂ix ,

where  ix is the set of fixed points for equations (21) and (22).

The rest of the subsection addresses the proof of theorem 2. In fact, we first show that the
choice of a sufficiently small ∈p (0, 1) guarantees that an accumulation point u v( *, *) is a
local minimizer of the functional with respect to u. A main ingredient in the proof of this fact
is the FBI property.

Proposition 2. Let T satisfy the FBI property. Then there exists ∈p* (0, 1) such that for

every < <p p0 * every accumulation point u v( *, *) of the sequence generated by the
algorithm (10) is a local minimizer of the functional Jp q, with respect to u, i.e.,

+ ⩾( ) ( )J u u v J u v* d , * *, * (26)p q p q, ,

for any Λ ϵ∈ ∥ ∥ ⩽u ℓ ud ( ), d2 2 1 for ϵ1 sufficiently small.

Proof. In the following, we denote by ΓJp q,
1 the restriction of the functional Jp q, to Γℓ ( ),2 1 i.e.,

 ∑α β ε= ∥ + − ∥ + + ∥ ∥ + ∥ ∥Γ

λ Γ
λ

∈
( )J u v T u v y u v v( , ): ( ) , (27)p q

p
q
q

,
2

2
21

1

and by Γ ΓJ J,u
s

v
s

, ,1 1
the corresponding surrogate functionals restricted to Γℓ ( )2 1 .

For the sake of simplicity, let us define

= =Γ ΓF u J u v F u J u v( ) ( , ), ( ) ( , ).p q p q, ,
1 1

We proceed with the proof of the lemma in two steps:

• We show that an accumulation point u v( *, *) is a local minimizer of ΓF u( ).1

• We show that u v( *, *) is a local minimizer of F u( ).

Let us for now consider the λu n( ) for λ Γ∈ ,1 i.e., γ⩾λ αu| |n( ) . Since u* is an accumulation

point for u( ),n( ) by theorem 1 it is also a fixed point. Taking into account the restriction to the
set Γ,1 by lemma 2 we get

α+ − + =λ λ λ
−

( )[ ( )]T Tv Tu y
p

u u* * *
2

sgn * 0.
p

*
1

As the functional ΓF u( )1 is differentiable on Γℓ ( )2 1 , we compute the Jacobian

α= + − +Γ −F u T Tv Tu y pu u( ) 2 *( ) ,p 21

for which holds = =ΓF u v v( *) 0, *1 . Since the mapping is smooth for all ≠λu 0, one can
check additionally that the Hessian matrix

α= − − ∣ ∣Γ − ( ) ( )F u T T p p u* 2 * (1 )diag * ,p2 21

is actually positive definite for <p p*: For z with ⊂z usupp ( ) supp ( *) we have the
following estimate

Inverse Problems 30 (2014) 125003 V Naumova and S Peter

20



 ∑α

α γ

= ∥ ∥ − −

⩾ − − ∥ ∥ = − ∥ ∥

Γ

λ Γ
λ λ

α

∈

−

−



( )

( )z F u z Tz p p u z

c p p z c p z

, * 2 (1 ) *

(1 ) ( ) , (28)

p

p

2 2
2

2

2
2
2

2
2

1

1

where c is the the smallest eigenvalue of T T* , which is positive due to the FBI property of the
operator T. Therefore, for all ∈ =p p p c(0, *), * min {1, }, the Hessian is positive definite
and thus u* is a local minimizer of ΓF .1

Next we show that u* is a local minimizer of the functional F(u) without the restriction
on the support of u*. For the sake of transparency, we shall write the restrictions Γ Γu u, *

1 1
and

Γud 1 meaning that Γ∈Γ Γ Γu u u ℓ, , d ( )*
2 11 1 1 , and Γud 0 meaning that Γ∈Γu ℓd ( ).2 00

The desired statement of the proposition follows if we can show that
+ ⩽ +Γ

Γ ΓF u u F u u( d ) ( * d ).*1
1 1 At this point it is convenient to write the functional

+F u u( * d ) with = −y y Tv¯ : * as


α α α β ε

+ = ∥ + + − ∥

+ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥

Γ Γ Γ Γ Γ

Γ Γ Γ

( )( )F u u T u u T u y

u u u v v

* d d d ¯

d d .p
p

p
p

p
p

q
q

* 2

2
2

1 1 1 0 0

1 1 0

Moreover, the inequality + ⩽ +Γ
Γ ΓF u u F u u( d ) ( * d )*1

1 1 can be written as

 α− ∥ ∥ ⩽ ∥ + + − ∥ − ∥ + − ∥Γ Γ Γ Γ Γ Γ Γ Γ Γ( ) ( )u T u u T u y T u u yd d d ¯ d ¯ .p
p * 2 * 2

0 1 1 1 0 0 1 1 1

By developing the squares, we obtain





α− ∥ ∥ ⩽ + − + ∥ ∥

= + − + ∥ ∥

Γ Γ Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ Γ Γ( )
( )
( )

u T u u y T u T u

T u u T u T u y T u

d 2 d ¯, d d

2 d , d d , ¯ d ,

p
p * 2

* 2

0 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0 0

for∥ ∥Γud 20 sufficiently small. One concludes by observing that for <p 1 the term∥ ∥Γud p
p

0

will always dominate the linear terms on the right-hand side of the above inequality. □

Proposition 3. Every accumulation point u v( *, *) is a local minimizer of the functional Jp q,

with respect to v, i.e.,

+ ⩾( ) ( )J u v v J u v*, * d *, * (29)p q p q, ,

for any Λ ϵ∈ ∥ ∥ ⩽v ℓ vd ( ), d2 2 2 for ϵ > 02 sufficiently small.

Proof. First of all, we claim that + − ⩾ ∥ ∥J u v v v J u v v v( *, * d ; *) ( *, *; *) d .v
s

v
s

2
2 Indeed, a

direct calculation shows that
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

 

∑ ∑

∑

∑

β ε

β ε

β ε

ε

β ε

+ −

= ∥ + + − ∥ + ∥ + ∥ + ∥ + ∥

+ ∥ ∥ − ∥ ∥ − ∥ + − ∥ − ∥ ∥ − ∥ ∥

= ∥ ∥ + ∣ + ∣ − ∣ ∣ + ∣ + ∣ − ∣ ∣

+ + −

⩾ + ∥ ∥ + + −

+ ∣ ∣ +

λ Λ
λ λ λ

λ Λ
λ λ λ

λ Λ
λ λ

λ Λ
λ λ

λ λ λ

∈ ∈

∈

∈

−

( )

( ) ( )

( )

J u v v v J u v v

T u v v y v v v v

v T v T u v y v v

v v v v v v v

v T T u v y

v v T T u v y

q v v v

*, * d ; * *, *; *

* * d * d * d

d d * * * *

d ( * d * ) ( * d * )

d [ *( ( * *) )]

(1 ) d d ([ *( ( * *) )]

sgn ( ) * 2 ).

v
s

v
s

q
q

q
q

q q

q

2
2
2

2
2 2 2

2
2

2
2 2 2

2
2

* 1 *

Since by (17) the term

β ε+ − + ∣ ∣ +λ λ λ λ λ
−T T u v y q v v v v[ *( ( * *) )] sgn ( ) * 2 , dq* 1 *

vanishes, the above claim follows. By using the above claim, we get that

+ = + − ∥ ∥ + ∥ ∥

⩾ + − ∥ ∥

⩾ =

( ) ( )

( )

( ) ( )

J u v v J u v v v v T v

J u v v v v

J u v v J u v

*, * d *, * d ; * d d

*, * d ; * d *

*, *; * *, * .

p q v
s

v
s

v
s

p q

, 2
2 2

2
2

,

□

With the obtained results we are now able to prove theorem 2. In particular, we shall
show that ⩽ + ⩽ + +J u v J u v v J u u v v( *, *) ( *, * d ) ( * d , * d ).p q p q p q, , , The first inequality has
been proven in proposition 3. We only need to show the second inequality.

Proof of theorem 2. Similarly as in proposition 2 we proceed in two steps. First we prove
that + ⩽ + +Γ ΓJ u v v J u u v v( *, * d ) ( * d , * d ).p q p q, ,

1 1 Since the functional ΓJp q,
1 is differentiable, a

Taylor expansion at +u v v( *, * d ) yields

+ + = + + +

+ +

Γ Γ Γ

Γ





( ) ( ) ( )

( )

J u u v v J u v v J u v v u

u J u v v u

* d , * d *, * d *, * d d

1

2
d *, * d d .

p q p q p q

p q

, , ,

2
,

1 1 1

1

Due to proposition 2, = =Γ Γ F u J u v( *) ( *, *) 0p q,
1 1 and the term

+ = ≈ΓJ u v v T T v( *, * d ) 2 * d 0.p q,
1 Thus,

− ∥ ∥ ∥ ∥ ∥ ∥ ⩽ +

= ⩽ ∥ ∥ ∥ ∥ ∥ ∥

ΓT v u J u v v u

T v T u T v u

2 d d ( *, * d )d

2 d , d 2 d d .

p q
2

2 2 ,

2
2 2

1

Moreover, we recall the estimate (28) of proposition 2. Choosing η ⩽ −
∥ ∥
c p

T2 2
and

η∥ ∥ = ∥ ∥v ud d2 2, and combining the above estimates together, we get
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⎡⎣ ⎤⎦η

+ + +

⩾ − ∥ ∥ ∥ ∥ ∥ ∥ + − ∥ ∥

⩾ − − ∥ ∥ ∥ ∥ ⩾

Γ Γ J u v v u u J u v v u

T v u c p u

c p T u

( *, * d )d
1

2
d ( *, * d )d

2 d d ( ) d

( ) 2 d 0,

p q p q,
2

,

2
2 2 2

2

2
2
2

1 1

and thus, + + ⩾ +Γ ΓJ u u v v J u v v( * d , * d ) ( *, * d ).p q p q, ,
1 1 The second part of the proof is

concerned with the inequality + + ⩾ +J u u v v J u v v( * d , * d ) ( *, * d )p q p q, , , which works in a
completely analogous way to the second part of the proof of proposition 2 and is therefore
omitted here. □

3.3. Strong convergence

In this subsection we show how the weak convergence established in the preceding sub-
sections can be strengthened into norm convergence, also by a series of lemmas. Since the
distinction between weak and strong convergence makes sense only when the index set Λ is
infinite, we shall prove the strong convergence only for the sequence v ,n( ) since the iterates
u n( ) are constrained to the finite set after a finite number of iterations.

For the sake of convenience, we introduce the following notation.

μ μ

η

= − = −

= − = + − −

+ + + + −

+ + ( )

v v v v

u u h v T y Tu Tv

*, *,

*, * * * * ,

n n n n M

n n

1 ( 1) 1 2 ( 1, 1)

1 ( 1)

where v* = w-lim →∞vn
n( ) and = →∞u u* lim .n

n( ) Here and below, we use w-lim as a
shorthand for weak limit. For the proof of strong convergence we need the following
technical lemmas.

Lemma 4. [6, 14] The operator τ v( ) is non-expansive,
i.e.,  ∥ − ∥ ⩽ ∥ − ∥τ τu v u v( ) ( ) .2 2

Lemma 5. Assume μ γ∥ ∥ >+n 1 2
2 for all n and for a fixed γ > 0. Then μ∥ ∥ →+T 0n 1 2 2

as → ∞n .

Proof. Since

 μ μ ε μ η
μ

− = + + − − −
−

τ τ
+ + − + +

+

[ ( ( ) ) ( )]h I T T T T h(1 ) * *

, (30)

n n n n

n

1 1 2 1 1 2 1

1 2

and

μ μ∥ − ∥ = ∥ − ∥ →+ + + + −v v 0, (31)n n n M n M1 1 2
2

( 1, ) ( 1, 1)
2

by lemma 1, we get the following

 

 

ε μ η μ

ε μ η μ

∥ + + − − − − ∥

⩾∣ + ∥ + − − − ∥ − ∥ ∥∣
→

τ τ

τ τ

− + + +

− + + +

h I T T T T h

h I T T T T h

(1 ) [ ( ( * ) * ) ( )]

(1 ) ( ( * ) * ) ( )
0. (32)

n n n

n n n

1 1 2 1 1 2

1 1 2 1 1 2
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By non-expansiveness of τ , we have the estimate

 μ η μ η∥ + − − − ∥ ⩽ ∥ − − ∥τ τ
+ + + +h I T T T T h I T T T T( ( * ) * ) ( ) ( * ) * .n n n n1 2 1

2
1 2 1

2

Consider now

μ η

μ η μ η

μ η μ η

μ δ δ
μ ϵ

∥ − − ∥

⩽ ∥ − ∥ + ∥ ∥ − 〈 − 〉

⩽ ∥ − ∥ + ∥ ∥ + ∥ − ∥ ∥ ∥

⩽ ∥ − ∥ + +
⩽ ∥ ∥ +

+ +

+ + + +

+ + + +

+

+

I T T T T

I T T T T I T T T T

I T T T T I T T T T

I T T C

( * ) *

( * ) * 2 ( * ) , *

( * ) * 2 ( * ) *

( * ) 2

, (33)

n n

n n n n

n n n n

n

n

1 2 1
2
2

1 2
2
2 1

2
2 1 2 1

1 2
2
2 1

2
1 2

2
1

2

1 2
2
2

1 2
2
2

for large enough n so that δ∥ − ∥ ⩽+u u* .n L( 1, )
2 The constant >C 0 is due to the

boundedness of μ∥ ∥+ .n 1 2 Due to estimate (33), we have

 μ η μ η

μ ϵ

μ ϵ

∥ + − − − ∥ ⩽ ∥ − − ∥

⩽ ∥ ∥ +

⩽ ∥ ∥ +

τ τ
+ + + +

+

+

h I T T T T h I T T T T( ( * ) * ) ( ) ! ( * ) *

¯.

n n n n

n

n

1 2 1
2

1 2 1
2

( 1 2)
2

( 1 2)
2

By assumption of the lemma there exists a subsequence μ +( )n 1 2k such that
μ γ∥ ∥ ⩾+n 1 2

2
k for all k. For simplicity, we rename such subsequence as μ +( )n 1 2 again. Then





ε μ η

ε
μ

ε
ϵ

+ ∥ + − −

− ∥ ⩽
+

∥ ∥ +
+

τ

τ

− + +

+

h I T T T T

h

(1 ) ( ( * ) * )

( )
1

1

1

1
¯.

n n

n

1 1 2 1

2
( 1 2)

2

For ϵ εγ⩽¯ we obtain

⎜ ⎟⎛
⎝

⎞
⎠

 ε μ η

ε
μ

ε
ε γ

ε
μ

ε
μ

μ

+ ∥ + − − − ∥

⩽
+

∥ ∥ +
+

+ −

⩽
+

∥ ∥ + −
+

∥ ∥

⩽ ∥ ∥

τ τ
− + +

+

+ +

+

h I T T T T h(1 ) ( ( * ) * ) ( )
1

1

1

1
(1 1)

1

1
1

1

1

.

n n

n

n n

n

1 1 2 1
2

( 1 2)
2

( 1 2)
2

( 1 2)
2

( 1 2)
2

Combining the above inequalities, we get

 

μ μ η

μ ε μ η

∥ ∥ − ∥ − − ∥

⩽ ∥ ∥ − + ∥ + − − − ∥τ τ

+ + +

+ − + +

I T T T T

h I T T T T h

( * ) *

(1 ) ( ( * ) * ) ( ) .

n n n

n n n

( 1 2)
2
2 1 2 1

2
2

( 1 2)
2
2 1 1 2 1

2
2

This implies from (32) that

⎡⎣ ⎤⎦μ μ η∥ ∥ − ∥ − − ∥ =
→∞

+ + +I T T T Tlim ( * ) * 0.
n

n n n( 1 2)
2
2 1 2 1

2
2
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Using (33) we get




μ μ η

μ μ ϵ

μ μ ϵ
μ ϵ

∥ ∥ − ∥ − − ∥

⩾∥ ∥ − ∥ − ∥ −

= ∥ ∥ − ∥ ∥ −
⩾∥ ∥ −

+ + +

+ +

+ +

+

I T T T T

I T T

T T T

T

( * ) *

( * )

2 *

.

n n n

n n

n n

n

( 1 2)
2
2 1 2 1

2
2

( 1 2)
2
2 1 2

2
2

1 2 2 1 2
2
2

1 2 2

This yields μ∥ ∥ →+T 0n 1 2 2 for → ∞n . □

Lemma 6. For = + − −h v T y Tu Tv* *( * *),

⎡⎣ ⎤⎦ ε μ μ∥ + + − − ∥ →τ τ
− + +( )h h(1 ) ( ) 0.n n1 1 2 1 2

2

Proof.

⎡⎣ ⎤⎦ 

 

 

 

ε μ μ

ε μ μ η ε μ

ε μ μ μ η

ε μ η μ

ε μ η

∥ + + − − ∥

⩽ ∥ + + − − − + − ∥

+ ∥ + + − + − − ∥

⩽ ∥ + + − − − − ∥

+ + ∥ + ∥

τ τ

τ τ

τ τ

τ τ

− + +

− + + + − +

− + + + +

− + + +

− + +

( )h h

h T T T T h

h h T T T T

h I T T T T h

T T

(1 ) ( )

(1 ) ( * * ) (1 ) ( )

(1 ) [ ( ) ( * * )]

(1 ) [ ( ( * ) * ) ( )]

(1 ) * ( ) ,

n n

n n n n

n n n n

n n n

n n

1 1 2 1 2
2

1 1 2 1 2 1 1 1 2
2

1 1 2 1 2 1 2 1
2

1 1 2 1 1 2
2

1 1 2 1
2

where we used the non-expansivity of the operator. The result follows since both terms in the
last bound tend to 0 for → ∞n because of (30), (31) and theorem 1. □

Lemma 7. If for some ∈a ℓ2 and some sequence v( ),n( ) − =→∞vw lim 0n
n( ) and

 ε∥ + + − − ∥ =τ τ→∞
− a v a vlim (1 ) [ ( ) ( )] 0,n

n n1 ( ) ( )
2 then red ∥ ∥ →v 0n( )

2

for → ∞n .

Proof. In the proof of the lemma we mainly follow the arguments in [6]. Since the sequence
v( )n( ) is weakly convergent, it has to be bounded: there is a constant K such that for all

∥ ∥ ⩽n v K, .n( )
2 Reasoning component-wise we can write <λv K| |n( ) for all λ Λ∈ .

Let us define the set Φ λ Λ= ∈ ⩾λa K{ : | | }0 and since Λ∈a ℓ ( ),2 this is a finite set. We
then have λ Φ Λ Φ∀ ∈ = ,1 0 that λa| | and +λ λa v| |n( ) are bounded above by K2 . Recalling the
definition of =β ε β ε

−S F( ) ,q q
, ,

1 we observe that for ⩾q 1 and ⩽x K| | 2 ,

β
ε

′ = + −
+

⩾β ε −
−( )F x

q q
x( ) 1

( 1)

2(1 )
1,q

q
q

, 1
2
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and therefore

⎡⎣ ⎤⎦ε

ε

ε ε

+ + −

⩽ + ∣ ′

⩽ + ∣ ′ ∣ ⩽ +

β ε λ λ β ε λ

β ε λ

β ε λ λ

−

−

−
−

−

( )
( )

( )
( )

S a v S a

S x v

F x v v

(1 ) ( )

(1 ) max ( )

(1 ) min ( ) ( ) (1 ) .

q n q

x

q n

x

q n n

1
,

( )
,

1
,

( )

1
,

1
( ) 1 ( )

In the first inequality, we have used the mean value theorem and in the second inequality we
have used the lower bound for ′β εF( )q

, to upper bound the derivative ′β εS( )q
, since

=β ε β ε
−S F( )q q

, ,
1. By subtracting λv| |n( ) from the upper inequality and rewriting

ε− + = ′ ⩽−( ) C1 (1 ) 11 , we have for all λ Φ∈ ,1 that

ε′ ⩽ − + + −λ λ β ε λ λ β ε λ
− ( )C v v S a v S a(1 ) ( ) (34)n n q n q( ) ( ) 1

,
( )

,

⎡⎣ ⎤⎦ε⩽ − + + −λ β ε λ λ β ε λ
− ( )v S a v S a(1 ) ( ) , (35)n q n q( ) 1

,
( )

,

by the triangle inequality which implies

⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦∑ ∑ ε⩽
′

− + + − → → ∞
λ Φ

λ
λ Φ

λ β ε λ λ β ε λ
∈ ∈

− ( )v
C

v S a v S a n
1

(1 ) ( ) 0, .n n q n q2
2

1
,

( )
,

1 1

On the other hand, since Φ0 is a finite set, and v( )n( ) tends to 0 weakly as n tends to∞, we
also obtain

∑ → → ∞
λ Λ

λ
∈

v n0 as .n( ) 2

□

Theorem 3. The algorithm (10) produces sequences u( )n( ) and v( )n( ) in Λℓ ( )2 that converge

strongly to the vectors u v*, * respectively. In particular, the sets of strong accumulation
points are non-empty.

Proof. Let u* and v* be weak accumulation points and let u( )n( )j and v( )n( )j be subsequences
weakly convergent to u* and v* respectively. Let us denote the latter subsequences u( )n( ) and
v( )n( ) again.

If μ +n 1 2 is such that μ∥ ∥ →+ 0,n 1 2
2 then the statement of the theorem follows from

lemma 1. If, instead, there exists a subsequence, denoted by the same index, that
μ γ∥ ∥ ⩾+n 1 2

2 , then by lemma 5 we get that μ∥ ∥ →+T 0n 1 2 . Subsequently applying
lemmas 6 and 7, we get μ∥ ∥ =+ 0,n 1 2

2 which yields a contradiction to the assumption. Thus,
by lemma 1 we have that v( )n( ) converges to v* strongly. The strong convergence of u( )n( ) is
already guaranteed by theorem 1. □

4. Numerical realization and testing

In this section, we continue the discussion started in the introduction on the geometry of the
solution sets for fixed p q, and regularization parameters chosen from the prescribed grids.
However, we not only extend our preliminary geometrical observations on the sets of
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computed solutions to the high-dimensional case, but also provide an a priori goal-oriented
parameter choice rule.

We also compare results for multi-penalty regularization with ⩽ ⩽ ⩽ ⩽ ∞p q0 1, 2
and the corresponding one-penalty regularization schemes. This specific comparison has been
motivated by encouraging results obtained in [13, 22] for the Hilbert space setting, where the
authors have shown the superiority and robustness of the multi-penalty regularization scheme
compared to the ‘classical’ one-parameter regularization methods.

4.1. Problem formulation and experiment data set

In our numerical experiments we consider the model problem of the type

= +( )y T u v ,† †

where ∈ ×T m N is an i.i.d Gaussian matrix, u† is a sparse vector and v† is a noise vector. The
choice of T corresponds to compressed sensing measurements [15]. In the experiments, we
consider 20 problems of this type with u† randomly generated with values on −[ 3, 3] and

=u# supp ( ) 7,† and v† is a random vector whose components are uniformly distributed on
−[ 1, 1], and normalized such that∥ ∥ =v 0.7,†

2 corresponding to a signal to noise ratio of ca.
10%. In our numerical experiments, we are keeping such a noise level fixed.

In order to create an experimental data set, we were considering for each of the problems
the minimization of the functional (2) for ∈p {0, 0.3, 0.5, 0.8, 1} and ∈ ∞q {2, 4, 10, }.
The regularization parameters α and β were chosen from the grid ×α βQ Qk k

0 0
, where

α α α α= = = = = = …αQ k k i: { , 0.0009, 1.25, 0, , 30}k
i

i
0 00

, and

β β β β= = = = = = …βQ k k i: { , 0.0005, 1.25, 0, , 30}k
i

i
0 00

. For all possible combinations
of p and q and α β( , ) we run algorithm (20) with number = =L M 20 of inner loop iterations
and starting values = =u v 0(0) (0) . Furthermore, we set ε = 0 since the additional term
ε ∥ ∥v 2

2 is necessary for coercivity only in the infinite-dimensional setting. Due to the fact that
the thresholding functions for ∈p {0.3, 0.8} are not given explicitly, we, at first, pre-
computed them on a grid of points in [0, 5] and interpolated in between, taking also into
consideration the jump discontinuity. Respectively, we did the same precomputations for

∈q {4, 10} on a grid of points in [0, 1].

4.2. Clustering of solutions

As we have seen in the introduction of this paper, the 2D experiments revealed certain regions
of computed solutions for u† and v† with very particular shapes, depending on the parameters
p and q. We question if similar clustering of the solutions can also be found for problems in
high dimension. To this end, the challenge is the proper geometrical representation of the
computed high dimensional solutions, which can preserve the geometrical structure in terms
of mutual distances. We consider the set of the computed solutions for fixed p and q in the
grid ×α βQ Qk k

0 0
as point clouds which we investigate independently with respect to the

components u† and v† respectively. As the solutions are depending on the two scalar para-
meters α β( , ), it is legitimate to assume that they form a 2d manifold embedded in the higher-
dimensional space. Therefore, we expect to be able to visualize the point clouds and analyze
their clustering by employing suitable dimensionality reduction techniques. A broad and
nearly complete overview although not extended in its details on existing dimensionality
reduction techniques as well as a MATLAB toolbox is provided in [23–25].
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For our purposes, we have chosen the PCA technique because we want to verify that
calculated minimizers u* and v* form clusters around the original solutions. In the rest of the
subsection, we only consider one fixed problem from the previously generated data set. In the
following figures, we report the estimated regions of the solutions u* and v*, as well as the
corresponding regularization parameters chosen from the grids ×α βQ Qk k

0 0
. We only present

feasible solutions, i.e., the ones that satisfy the discrepancy condition

⩽ ∥ + − ∥ <u u T u v y# supp ( *) # supp ( ), and ( * *) 0.1. (36)†
2

In figure 7 we consider the cases p = 0.5 and ∈q {2, 4}, and in figure 8 the corresponding
results for p = 0.3 and ∈q {2, 4} are displayed.

First of all, we observe that the set of solutions u* forms certain structures, visible here as
one-dimensional manifolds, as we also observed in the 2D experiments of the introduction.
Likewise, the set of solutions v* are more unstructured, but still clustered. The effect of
modifying q from 2 to 4 increases the number of feasible solutions according to (36).
Concerning the parameter p, by modifying it from 0.5 to 0.3, the range of αʼs which provide
feasible solutions is growing. Since it is still hard from this geometrical analysis on a single
problem to extract any qualitative information concerning the accuracy of the reconstruction,
we defer the discussion on multiple problems to the following subsection.

4.3. Comparison with the one-parameter counterpart

Motivated by some positive results [13, 22] showing the superiority of multi-penalty reg-
ularization against classical single-parameter regularization schemes in Hilbert spaces, in this
subsection we compare the performance of multi-penalty regularization and its one-parameter
counterpart, to which we further refer as mono-penalty minimization.

It is now well-established that a sparse solution can be reconstructed by minimizing the
functional of the type

α= ∥ − ∥ + ∥ ∥J u Tu y u( ): , (37)p p
p

2
2

with ∈p [0, 1]. A local minimizer αu p,
* of this functional can be computed by the iterations

= + − ⩾λ α λ λ
+u H u T y Tu n( [ *( )] ), 0,n p n n( 1) ( ) ( )

where αH p is the thresholding operator, defined as in proposition 1.
In order to assess the obtained results, we compare the performance of the considered

regularization schemes. We measure the approximation error (AE) by ∥ − ∥u u†
2, as well as

Figure 6. The thresholding function αH p for ∈p 0, 0.15, 0.3, 0.45, 0.6, 0.9, 1
and α = 0.1.
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the number of elements in the symmetric difference (SD) by Δu u#(supp ( ) supp ( ))† . The SD
is defined as follows: λ Δ∈ u usupp ( ) supp ( )† if and only if either λ ∉ usupp ( ) and
λ ∈ usupp ( )† or λ ∈ usupp ( ) and λ ∉ usupp ( )† .

Figure 7. Estimated regions of the regularization parameters (right panel) and the
corresponding solution u* (left panel) and v* (middle panel) for p = 0.5, and q = 2
(top), and q = 4 (bottom) repectively using PCA. The black crosses indicate the real
solutions.

Figure 8. Estimated regions of the regularization parameters (right panel) and the
corresponding solution u* (left panel) and v* (middle panel) for p = 0.3, and q = 2
(top), and q = 4 (bottom) repectively using PCA. The black crosses indicate the real
solutions.
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For each problem and each p q( , )-combination we compute the best multi-penalty

solution α β=u u* *( , ), meaning that no other pairs α β ∈ ×α βQ Q( , ) k k
0 0

can improve the
accuracy of the algorithm. Simultaneously, for each value of ∈p {0, 0.3, 0.5, 0.8, 1} and
each problem from our data set we compute the best mono-penalty solution. Then, for each
pair of p and q (multi-penalty) and for each p (mono-penalty), we compute the mean value of
the AE and SD. The respective results are shown in figure 9 on the left. We observe from
these results, that

• comparing only the multi-penalty schemes, the choice of q = 2 allows to achieve the
smallest AE, in general, followed by = ∞q and q = 4; in SD the best choice is also
q = 2, but followed first by q = 4 and then = ∞q ;

• AE for the mono-penalty approach is always larger than for the best multi-penalty
scheme, and this negative gap is even more significant in SD.

Figure 9. The left panel presents for each ∈p {0, 0.3, 0.5, 0.8, 1} the mean of the AE
(top) as well as the SD (bottom) for the solution u* for 20 problems for different
parameter values ∈ ∞q {2, 4, } as well as for the mono-penalty solution αu p, . For each
of the 20 problems and each pair (p, q), the best individual parameter pair α β( , ) was
chosen for comparison. On the right panel a colored bar indicates the empirical
probability of better performance by the multi-penalty approach in terms of AE (top)
and SD (bottom) with respect to the mono-penalty approach.
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Since mean value statistics can be corrupted by single large outliers, we provide an
additional more individual comparison of multi-penalty and mono-penalty minimization on
the right panel of figure 9. We compare problem-wise the values of AE and SD for each
multi-penalty solution with p and q and the respective mono-penalty solution. The colored bar
shows the relative number of problems for which multi-penalty minimization performed
better or equal than mono-penalty minimization. The results confirm the above stated inter-
pretation of the panel on the left. In particular multi-penalty minimization appears to be
particularly superior in terms of support recovery.

4.4. Goal-oriented parameter choice

In the previous sections, we provided a very detailed description of the iterative thresholding
algorithms for multi-penalty regularization with non-convex and non-smooth terms. How-
ever, till now we have not touched upon the topic on the parameters choice for the concrete
implementation of the presented algorithm. At the same time, from the extensive numerical
testing presented above, we have observed that, firstly, some p q( , )-combinations allow the
best performance according to the prescribed goal, and, secondly, due to the clustering of the
solutions the regularization parameters α β( , ) can be chosen a priori for any fixed p q, (see
again figures 7 and 8).

As it can be observed in the quality measures of figure 9 the performance of the method
depends on p and q: in fact, one can conclude that the minimization of (2) by means of
algorithm (20) performs unsatisfactory for the ‘classical’ choices p = 0 and p = 1 with respect
to both AE and SD. Our most relevant regularization is that multi-penalty regularization with

∈p (0, 1) and q = 2 performs best with respect to both the reconstruction accuracy and the
support reconstruction. The support reconstruction for ∈p (0, 1) and q = 4 is not sig-
nificantly worse than for q = 2. However, one can observe a very poor reconstruction
accuracy for q = 4 and this is even more relevant when p = 0 or p = 1. Multi-penalty

Figure 10. The twenty best pairs of regularization parameters for each problem from the
data set that for p = 0.3 and ∈ ∞q {2, 4, } allows for the best AE.

Figure 11. The twenty best pairs of regularization parameters for each problem from the
data set that for p = 0.3 and ∈ ∞q {2, 4, } allows for the best SD.
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regularization with ∈p (0, 1) and = ∞q performs reasonably but worse in terms of accu-
racy and support reconstruction than q = 2.

Very surprisingly for a fixed pair (p, q) there exist a large set of regularization parameters
α β( , ) which perform equally good in terms of AE and SD. In figures 10 and 11 we present
for each of the 20 problems from our data set the twenty best pairs of regularization para-
meters α β( , ) that allows for the best AE and SD with p = 0.3 and ∈ ∞q {2, 4, }. The visual
analysis presented in the figures shows the geometrical properties of the sets of the best
parameters, namely they lay within a cone, whose width is governed by p q, . Clearly, these
observations furnish a guideline for choosing in a stable way effective regularization
parameters.

4.5. Proposed guideline

The analysis presented here suggests to perform the following best practice, when it comes to
separate sparse solutions from additive noise in compressed sensing problems.

(1) Pick ∈p (0, 1) and q = 2;
(2) select regularization parameters α β( , ) from a feasible region of parameters for a specific

(p, q) pair (see figures 10 and 11);
(3) iterate (20) for = =u v 0(0) (0) and L M, chosen at will until the desired accuracy is

reached or the number of iterations exceeds some prescribed value.
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Appendix A. Calculation for 2D example

For representative purposes, we will show ∈u Un( )
1
1, for all ∈n . Without loss of generality,

we assume >y y2 1 and prove the above statement by induction. By definition ∈u U(1)
1
1. It

remains to show the induction step ∈ ⇒ ∈+u U u Un n( )
1
1 ( 1)

1
1. Then, the repeated application of

the induction step yields the statement.
If − ∈y v Un( )

1
1, then there exists an α̂ such that − = αy v y( )n( )

ˆ
1 and by a simple case-

by-case analysis, one verifies   = = ∈α α α α
+

+u y y U( ( )) ( )n( 1) 1
¯

1
¯

1
1
1. Thus, it remains to

show − ∈y v Un( )
1
1.

We know that by definition

− = − −β
∞( )y v y y u . (A.1)n n( ) ( )
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Since, by induction hypothesis, ∈u Un( )
1
1, there exists a γ such that = γu y( )n( ) 1 . We choose

an equivalent but more practical representation for elements inU1
1 by employing an additional

parameterization: there exist two cases:

(A) ⎜ ⎟⎛
⎝

⎞
⎠γ=u

0
ˇ

n( ) , for γ ∈ −y yˇ [0, ]2 1 ;

(B)
⎛
⎝⎜

⎞
⎠⎟

γ
γ= − +u

y y
ˆ

ˆ
n( )

2 1
, for γ ∈ yˆ [0, ]1 .

Each of these two cases has to be subdivided into sub-cases related to γ̂ and γ̌ . In the
following table we summarize all sub-cases, an equivalent formulation in terms of the defi-
nition of  −β

∞ y u( )n( ) , and the result of −y v n( ).

Case Equivalent formulation −y vn (by (A.1))

A.1 γ β> − +y yˇ 22 1
β− + − <y u y u| | | | 2n n

1 1
( )

2 2
( ) ⎛

⎝⎜
⎞
⎠⎟

y
y

1

2
A.2 γ β< − −y yˇ 22 1

β− < − −y u y u| | | | 2n n
1 1

( )
2 2

( )
⎜ ⎟⎛
⎝

⎞
⎠γ β+

0
ˇ 2

A.3 Else Else ⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

β γ

β γ

− + +

− +
− + +

y y

y y
y y

2 ˇ

2

( )
2 ˇ

2

1 2

2 1
1 2

B.1 γ β> −yˆ 41
β− + − <y u y u| | | | 2n n

1 1
( )

2 2
( ) ⎛

⎝⎜
⎞
⎠⎟

y
y

1

2
B.2 Else Else ⎛

⎝⎜
⎞
⎠⎟

γ β
γ β

+
− + +y y

ˆ 4
( ) ˆ 42 1

It remains to check for each case if the result of −y v n( ) is an element ofU1
1. Obviously in

the cases A.1 and B.1, it is true. For the other cases, we check if the result can be expressed in
terms of the above given practical representation of elements inU1

1. In case A.2, by definition
we have γ β⩽ + < −y y0 ˇ 2 2 1. In case A.3, it holds β γ β− − ⩽ ⩽ − +y y y y2 ˇ 22 1 2 1

and thus obtain by adding β− + +y y22 1 and division by 2 that ⩽ ⩽β γ− + +
y0

y y 2 ˇ

2 1
1 2 . In

case B.2, we immediately get γ β⩽ −yˆ 41 that γ β⩽ + ⩽ y0 ˆ 4 1. Thus, we have shown the
statement for all cases.
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