The CPU Usage Constraints in COMET

Stefano Di Alesio, Shiva Nejati
Certus Software V&V Centre
Simula Research Laboratory

Oslo, Norway

September 30, 2011

1 Introduction

In this document we discuss the structure of the constraint program we used to define the schedulability analysis
problem of our work [1]. This document contains only the first order logic formalizations for the single interval version
of our COMET program, as the ones for the multiple interval can be easily obtained by universally quantifying formulas
over the number of iterations. We will present the main part of the COMET code for both the single and the multiple
interval versions. Results will be presented for both the non-parallel and the parallel versions of our tool.

Outline The article is organized as follows. Section 2 and 3 respectively present the input values and the variables
used during our analysis. Section 4 presents an explanation of the constraints, their formalization in first order logic,
and the corresponding COMET code. Section 5 presents the objective functions our complete search. Section 6 discusses
the output of our tool.

2 Input values

In this section we describe the input values of our COMET program. Each input value belongs to a semantic set of
input values and is presented with:

e A natural language description
e Its COMET implementation code for the single interval version

e [ts COMET implementation code for the multiple interval version

General input data

e 1 denotes the number of threads.

int n 3;

int n 3;
e J denotes the set of threads.

range J = 0..n-1;

range J = 0..n-1;

e m denotes the number of activities.

int m 7,

int m 7;

e A denotes the set of activities.

range A 0..m-1;

range A 0..m-1;

e ¢ denotes the number of cores.

int c 1;

int c 1;

e T denotes the observation time interval.

range T;

// [...]

T = 0..max(j in J) (max_ialjl);
range T = 0..1000;

e i denotes the maximum number of iterations among each thread observed. i is defined only for the multiple
interval version.

int i = 3;

e K denotes the set of iterations. K is defined only for the multiple interval version.
range K = 0..i-1;

e cp denotes the (complete) solver used for solving the constraint optimization problem.
Solver<CP> cp();
Solver<CP> cp(Q);

Threads input data

e min_ia and max_ia respectively denote the minimum and maximum interarrival times for threads. —1 is set for
unknown values.

int min_ial[J] = [100, -1, 100];
int max_ial[J] = [100, -1, 100];

int min_ia[J] = [100, -1, 100];
int max_ial[J] = [100, -1, 100];

e min_r and max_r respectively denote the minimum and maximum release times for threads. —1 is set for
unknown values.

int min_r[J] = [0, O, 0];

int max_r[J] = [0, O, O];
int min_r[J] = [0, O, 0];
int max_r[J] = [0, O, 0];

e priority denotes the priority level (defined as an integer value) for threads.

int priorityl[J] [100, 100, 100];

int priority[J] [100, 100, 100];

Activities input data

e min_d and max_d respectively denote the minimum and maximum durations for activities.

int min_d[A] = [5, 2, 10, 2, 5, 5, 1];
int max_d[A] [10, 2, 20, 2, 5, 10 , 1];

(5, 2, 10, 2, 5, 5, 1];
[10, 2, 20, 2, 5, 10 , 1];

int min_d[A]
int max_d[A]

e thread denotes the thread of each activity.
int _thread[A] = [0, O, 1, 1, 1, 2, 2];
int _thread[A] = [0, O, 1, 1, 1, 2, 2];

e delay denotes the delay time of each activity.

int delay[A] (o, o, 0, 5, 20, 0, 0];

int delay[A] (o, o, 0, 5, 20, 0, 0];

e temporal_precedence denotes the temporal precedence matrix for activities. temporal_precedence is defined as
follows:

1 if al jt ag

temporal _precedence(ay, as) = ;
0 otherwise

int temporal_precedence[A, A] =
tto, 1, o, o, 0, 0, ol,

(o, o, o, 0, 0, 0, 01,
(o, o, o, 1, 0, 0, 01,
(o, o, o, 0o, 1, 0, 0,
(o, o, o, o, 0, 0, oI,
(o, o, o, 0o, 0, 0, 11,
[o, o, o, 0, 0, 0, 011;

int temporal_precedence[A, A] =
tto, 1, o, o, 0, 0, oJ,

(o, o, o, o, o, o, 0],
(o, o, o, 1, 0, 0, 01,
(o, o, o, 0, 1, 0, 01,
(o, o, o, 0, 0, o, 01,
(o, o, o, 0, 0, o, 11,
[0, o, 0, 0, 0, 0, 011;

e data_dependency denotes the data dependency matrix for activities. data_dependency is defined as follows:

1 ifa; <40
data_dependency(ay,as) = 1 =d 62
0 otherwise

int data_dependency[A, A] =

(o, o, o, 1, 0, 0, 01,
(o, o, o, 0, 0, 0, 01,
(o, o, o, 0o, 0, 0, 0,
(o, o, o, o, 0, 0, ol,
o, o, o, o, 0, 0, 11,
(o, o, o, 0, 0, o, 01,
(o, 0, 0, 0, 0, 0, 011;

int data_dependency[A, A] =

tto, o, o, 1, 0, 0, 01,
o, o, 0, 0, 0, 0, 01,
o, o, 0, 0, 0, 0, 01,
(o, o, 0, 0, 0, 0, 01,
(o, o, 0, 0, 0, 0, 11,
o, o, 0, 0, 0, 0, 01,
o, o, 0, 0, 0, 0, 011;

e Joop denotes the loop matrix for activities. loop is defined as follows:

1 if ap,...,aq represents a temporally ordered list of the activities of an infinite while loop

0 otherwise

loop(ag, aq) = {

loop is also only defined for the multiple interval version.

int loop[A, A] =

[fo, o, o, 0, o, 0, 01,
(o, o, 0, 0, 0, 0, 01,
(o, o, o, 0o, 0, 1, 0,
(o, o, o, 0o, 0, 0, oI,
o, o, o, o, 0, 0, oI,
o, o, o, o0, 0, o, 01,
[0, o, 0, 0, 0, 0, 011;

3 Variables

In this section we describe the variables of our COMET program. Each variable belongs to a semantic set of variables
and is presented with:

e A natural language description
e Its COMET implementation code for the single interval version

e Its COMET implementation code for the multiple interval version

Thread variables

e p denotes the period of each thread.
var<CP>{int} p[J](cp, T);
var<CP>{int} p[J](cp, T);

e 1 denotes the release time of each thread.
var<CP>{int} r[J](cp, T);
var<CP>{int} r[J](cp, T);

Activity variables

e cligible_for_execution denotes the earliest start time for each activity, regardless of the number of cores.
var<CP>{int} eligible_for_execution[A] (cp, T);
var<CP>{int} eligible_for_execution[A, K] (cp, T);

e start and end respectively denote the start time and end time for each activity.

var<CP>{int} start[A](cp, T);
var<CP>{int} end[A] (cp, T);

var<CP>{int} start[A, K] (cp, T);
var<CP>{int} end[A, K] (cp, T);

e active denotes the execution matrix for each activity. active is defined as follows:

1 if the activity a is running at the time point ¢

active(a,t) = {

0 otherwise
var<CP>{int} active[A, T](cp, 0..1);

var<CP>{int} active[A, T, Kl(cp, 0..1);

4 Constraints

In this section we describe the constraints of our optimization problem. Each constraint belongs to a semantic set of
constraints and is presented with:

e A natural language description
e A first order logic formalization
e [ts COMET implementation code for the single interval version

e [ts COMET implementation code for the multiple interval version

Well-formedness (sanity rules)

e Each activity must finish before the period of its corresponding thread elapses.

Va € A-end(a) < p(thread(a))

forall(a in A)
if (p[_thread[a]] != -1)
cp.post(end[a] <= p[_thread[all);

forall(a in A, k in K)
if (p[_thread[a]] != -1)
cp.post(endla, k] <= (k+1) * p[_thread[all);

e Each activity cannot start before its earliest start time.

Ya € A - eligible_for_execution(a) < start(a)

forall(a in A)
cp.post(eligible_for_execution[a] <= start[al);

forall(a in A, k in K)
cp.post(eligible_for_execution[a, k] <= startla, k]);

e The number of time points at which an activity is running is bounded by its min/max duration.

Va € A-min_d(a) < |d(a)| < maz_d(a)

forall(a in A)

cp.post(min_duration[a] <= sum(t in T) activela, tl);
forall(a in A)

cp.post(sum(t in T) activel[a, t] <= max_duration[a]);

forall(a in A, k in K)

cp.post(min_duration[a]l <= sum(t in T) activela, t, kl);
forall(a in A, k in K)

cp.post(sum(t in T) activela, t, k] <= max_duration[a]);

e An activity starts running at its start time, ends just before its end time, and does not run before its start time
or after its end time.

Vae A-VE0<t<T:
active(a, start(a)) = 1A
active(a, end(a) — 1) = 1A
(t < start(a) Vt > end(a)) = active(a,t) =0

forall(a in A)

cp.post(activela, start[al] == 1);
forall(a in A)

cp.post(active[a, end[a]l-1] == 1);
forall(a in A, t in T)

cp.post(t < start[a]l => activela, t] == 0);
forall(a in A, t in T)
cp.post(t > end[al-1 => activela, t] == 0);

forall(a in A, k in K)

cp.post(activel[a, start[a, k], k] == 1);
forall(a in A, k in K)
cp.post(activela, end[a, k]-1, k] == 1);

forall(a in A, t in T, k in K)

cp.post(t < startl[a, k] => activela, t, k] == 0);
forall(a in A, t in T, k in K)

cp.post(t > end[a, k]-1 => activela, t, k] == 0);

e The release time of each thread is bounded by its min/max values.

Vie J-minor(j) <r(j) <mazr(y)

forall(j in J)
cp.post(min_r[j] <= r[j]);
forall(j in J)
cp.post(r[jl <= max_r[jl);

forall(j in J)
cp.post(min_r[j] <= r[j]);
forall(j in J)
cp.post(r[j]l <= max_r[jl);

Loop Threads

e Consider activities af, ... ,alg representing the activities of iteration k of a thread. Then, for every iteration k,
we must have: start(aékH)) > end(a’;) + delay(a’;). The single-interval version obviously does not include this
constraint.

Val,ag €A -Vke K-
loop(ay,as) = start(ai, k + 1) > end(ag, k) + delay(az)

forall(al in A, a2 in A, k in K.getLow()..K.getUp()-1)
cp.post((looplal, a2] == 1) =>
start[al, k+1] >= end[a2, k] + delay[a2]);

Temporal Precedence

e For each a1,as € A s.t. a1 =X; a2, we have start(as) — end(ay) > delay(aq).

Vay,as € A- a1 <t ag = start(az) — end(a1) > delay(aq)

forall(al in A, a2 in A)
cp.post((temporal_precedencelal, a2] == 1) =>
(start[a2] - end[al] >= delaylall));

forall(al in A, a2 in A, k in K)
cp.post((temporal_precedencel[al, a2] == 1) =>
(start[a2, k] - end[al, k] >= delayl[all));

Synch/Asynch Communication

e For each a1,a2 € A st. a1 =<4 ag, if some conditions that we can statically verify [1] about synchronous
communication are met, we have start(az) > end(ay).

Vaj, a9 € A-ay =4 ag = start(az) > end(ay)
forall(al in A, a2 in A)

cp.post((data_dependency[al, a2] == 1) =>
(start[a2] >= end[all));

forall(al in A, a2 in A, k in K)
cp.post((data_dependencylal, a2] == 1) =>
(start[a2, k] >= end[al, k]));

Multi-Core

e The number of running activities at every time point is less than or equal to the number of cores.

Vi- 0<t<T = Zactive(a,t) <c
acA

forall(t in T)
cp.post(sum(a in A) activela, t] <= c¢);

forall(a in A, t in T)

cp.post(active_totalla, t] == sum(k in K) activela, t, k]);
forall(t in T)

cp.post(sum(a in A) active_totalla, t] <= c);

Scheduling Policy
e Each activity can potentially be preempted.

Ya € A - end(a) — start(a) > |d(a)

forall(a in A)
cp.post(end[a] - startl[a] >= sum(t in T) activela, tl);

forall(a in A, k in K)
cp.post(end[a, k] - startla, k] >= sum(t in T) activela, t, k]);

e The earliest time an activity a can start (eligible_for_execution(a) or efe(a) for short) is after the arrival time of
its corresponding thread and after the earliest termination time of all the activities preceding a. Here, preceding
includes both temporal precedence (=<;) and data dependency (<) orderings.

Va € A-efe(a) = max{r(thread(a)),
max{efe(ar) + |d(a1)| + delay(ar) - a1 = a},

gg)ﬁ{efe(al) +|d(a1)| : a1 2q a}}

forall(a in A)
cp.post(eligible_for_execution[al == max(
r[_thread[a]l],
max (
max(al in A) ((eligible_for_execution[al] +
(sum(t in T) activel[al, t]) + delayl[al]l) * temporal_precedencelal, al),
max(al in A) ((eligible_for_execution[al] +
(sum(t in T) activelal, t])) * data_dependencylal, al))));

forall(a in A, k in K)
{
if (p[_thread[al]l > 0)
cp.post(eligible_for_execution[a, k] == max(
pl_thread[al]l*k + r[_thread[al],
max (
max(al in A) ((eligible_for_executionfal, k] + (sum(t in T) activelal, t, k])
+ delay[all) * temporal_precedencelal, al),
max(al in A) ((eligible_for_execution[al, k] + (sum(t in T) activelal, t, k]))
* data_dependencylal, al))));
else
if (k==K.getLow())
cp.post(eligible_for_execution[a, k] == max(
r[_thread[al],
max (
max(al in A) ((eligible_for_execution[al, k] + (sum(t in T) activelal, t, k])
+ delaylal]l) * temporal_precedencelal, al),
max(al in A) ((eligible_for_execution[al, k] + (sum(t in T) activelal, t, k]))
* data_dependencylal, al))));
else
cp.post(eligible_for_execution[a, k] == max(
max(al in A : _thread[al]l==_thread[a]) (eligible_for_executionlal, k-1] +
sum(t in T) activelal, t, k-1] + delayl[all),
max (
max(al in A) ((eligible_for_execution[al, k] + (sum(t in T) activelal, t, k])
+ delay[al]l) * temporal_precedencelal, al),
max(al in A) ((eligible_for_execution[al, k] + (sum(t in T) activelal, t, k]))
* data_dependencylal, al))));

e At any time, if there are two activities that can be scheduled for parallel execution but only one is running, the
one that is not running has a lower priority.

Vag,a1 € AVt-0<t<T
(active(ag,t) = 0 A active(ay,t) =1 A

Z active(ag,t) = ¢ A
as€A
efe(ag) <t A

t > max{end(as) + delay(asz) : as <t ag} A
as €A

t > max{end(az) : az =q ap} A
as€A

end(ag) > t) =
priority(ag) < priority(ay)

forall(t in T, a0 in A, al in A)
cp.post(((active[a0, t] == 0) && (activelal, t] == 1)
&& ((sum(a2 in A) activel[a2, t]) == c)
&& (eligible_for_execution[a0] <= t)
&& (t >= max(max(a2 in A) ((end[a2] + delay[a2]) *
temporal_precedence[a2, a0]), max(a2 in A) (end[a2] * data_dependencyl[a2, a0])))

&& (end[al] > t))
=> (priority[_thread[all] >= priority[_thread[a0]]));

forall(t in T, a0 in A, al in A, kO in K, k1 in K)

if (p[_thread[a1]] != -1)
cp.post(((active[al, t, k0] == 0) && (activelal, t, k1] == 1)
&& ((sum(a2 in A) active_totall[a2, t]) == c)

&& (eligible_for_execution[aO, k0] <= t)

&& (t >= max(max(a2 in A) ((end[a2, kO] + delay[a2]) *
temporal_precedence[a2, a0]), max(a2 in A) (end[a2, kO] =*
data_dependency[a2, a0])))

&& (end[a0, kO] > t)

&& ((k1 + 1)*p[_thread[al]] - 1) >= (t + sum(a2 in A,
tl in t..((kl + 1)*p[_thread[al]l] - 1) : _thread[a2]==_thread[al])
activel[a2, t1, ki1]))

=> (priority[_thread[al]] >= priority[_thread[a0]]));

else
cp.post(((active[al, t, k0] == 0) && (activelal, t, k1] == 1)

&% ((sum(a2 in A) active_total[a2, t]) == c)

&& (eligible_for_execution[a0, k0] <= t)

&& (t >= max(max(a2 in A) ((end[a2, k0] + delay[a2])

* temporal_precedence[a2, a0]), max(a2 in A) (end[a2, kO] *
data_dependency[a2, a0]1)))

&& (end[a0, kO] > t))

=> (priority[_thread[al]] >= priority[_thread[a0]]));

5 Objective Functions

In this section we describe the objective functions of our optimization problem. Each objective function is presented
with:

e A natural language description
e A first order logic formalization
e Its COMET implementation code for the single interval version

e [ts COMET implementation code for the multiple interval version

Average CPU Usage The average CPU usage function fysqge is defined as the fraction between the sum of all the
time points where any activity is running and the total available time on the cores:

def ZaeA’teT active(a,t)

fusage - T % c

Our objective is to capture high usage of CPU, i.e. to maximize fysqge- The denominator of the fraction is a
constant value, so only the numerator is maximized.

maximize<cp>
sum(a in A, t in T) (activela, t])

maximize<cp>
sum(a in A, t in T) (active_totalla, t])

Makespan The makespan function fiqkespan is defined as the time it takes for all the activities in a set of threads
to terminate, counting from the arrival time of the first thread of the set:

def . .
fmakespan - r;leaj({end(a)} IJI1€151{T(])}

Our objective is to capture high values of makespan, i.e. to maximize fmakespan-

maximize<cp>
max(a in A)(end[al]) - min(j in J)(r[jl1)

maximize<cp>
max(a in A, k in K) (end[a, k]) - min(j in J) (r[j1)

6 Outputs

In this section we describe the output of our tool for both the non-parallel and the parallel single interval versions of
our tool. The output record is structured as follows:

e A time print reporting the start time of the computation
e The Input block showing a summary of the input data used during the computation, showing:

— The number of cores ¢
— The set of threads J
— The set of activities A
— The observation time interval T'
— The minimum and maximum interarrival time for each thread min_ta and maz_ia
— The minimum and maximum release time for each thread min_r and maz_r
— The priority for each thread priority
— The minimum and maximum duration for each activity min_d and max_d
— The thread for each activity job
— The delay for each activity delay
— The temporal precedence matrix temporal _precedence
— The data dependency matrix data_dependency
e The Output block showing a list of the feasible solutions found during the computation, ordered by their com-
putation time and thus by increasing values of the objective function. Each solution features:
— A time print reporting the time of the solution computation
— The period of each thread p
— The release time of each thread r
— The start time for each activity start
— The end time for each activity end
— The earliest execution time for each activity eligible_for_execution
— The delay for each activity delay

— The active matrix active, where only the time points t s.t. active(a,t) = 1 are shown and where each row
reports the duration of the corresponding activity

— The value the objective function has in the solution

e A time print reporting the end time of the computation

CPU Usage, Non-Parallel Version

Start: 16:58:43 W. Europe Daylight Time

.100
min_ia[100,50,100]
max_ia[100,100,100]
min_r[0,0,0]
max_r[0,0,0]
priority[100,100,100]

10

min_d4[5,2,10,2,5,5,1]

max_d[10,2,20,2,5,10,1]

job[0,0,1,1,1,2,2]

delay[(101) [0..100],(101) [0..100],(101) [0..100],(101) [0..100],
(101) [0..100], (101) [0..100], (101) [0..100]]

TP: anonymous[0,1,0,0,0,0,0]

TP: anonymous[0,0,0,0,0,0,0]
TP: anonymous[0,0,0,1,0,0,0]
TP: anonymous[0,0,0,0,1,0,0]
TP: anonymous[0,0,0,0,0,0,0]
TP: anonymous[0,0,0,0,0,0,1]
TP: anonymous[0,0,0,0,0,0,0]
DD: anonymous[0,0,0,1,0,0,0]
DD: anonymous[0,0,0,0,0,0,0]
DD: anonymous[0,0,0,0,0,0,0]
DD: anonymous[0,0,0,0,0,0,0]
DD: anonymous[0,0,0,0,0,0,1]
DD: anonymous[0,0,0,0,0,0,0]
DD: anonymous[0,0,0,0,0,0,0]

Output:

18:12:8 W. Europe Daylight Time

p[100, (51) [60..100],100]

r[0,0,0]

start[30,37,10,35,44,0,49]
end[35,39,30,37,49,10,50]
eligible_for_execution[0,5,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34] [5]

ACT: anonymous[37,38] [2]

ACT: anonymous([10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[35,36] [2]

ACT: anonymous[44,45,46,47,48] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[49] [1]

objective tightened to: 45

18:12:50 W. Europe Daylight Time

p[100, (51) [60..100],100]

r[0,0,0]

start[30,38,10,36,45,0,50]

end [36,40,30,38,50,10,51]
eligible_for_execution[0,6,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35] [6]
ACT: anonymous[38,39] [2]

ACT: anonymous([10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[36,37] [2]

ACT: anonymous[45,46,47,48,49] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[50] [1]

objective tightened to: 46

18:13:31 W. Europe Daylight Time

p[100, (50) [61..100],100]

r[0,0,0]

start[30,39,10,37,46,0,51]
end[37,41,30,39,51,10,52]
eligible_for_execution[0,7,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36] [7]

11

ACT: anonymous[39,40] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[37,38] [2]

ACT: anonymous[46,47,48,49,50] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[51] [1]

objective tightened to: 47

18:14:11 W. Europe Daylight Time

p[100, (49) [52..100],100]

r[0,0,0]

start[30,40,10,38,47,0,52]
end[38,42,30,40,52,10,53]
eligible_for_execution[0,8,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36,37] [8]
ACT: anonymous[40,41] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[38,39] [2]

ACT: anonymous[47,48,49,50,51] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[52] [1]

objective tightened to: 48

18:14:50 W. Europe Daylight Time

p[100, (48) [53..100],100]

r[0,0,0]

start[30,41,10,39,48,0,53]
end[39,43,30,41,53,10,54]
eligible_for_execution[0,9,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36,37,38] [9]
ACT: anonymous[41,42] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[39,40] [2]

ACT: anonymous[48,49,50,51,52] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[53] [1]

objective tightened to: 49

18:15:29 W. Europe Daylight Time

p[100, (47) [54..100],100]

r[0,0,0]

start[30,42,10,40,49,0,54]
end[40,44,30,42,54,10,55]
eligible_for_execution[0,10,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36,37,38,39] [10]
ACT: anonymous[42,43] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[40,41] [2]

ACT: anonymous[49,50,51,52,53] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[54] [1]

objective tightened to: 50

End: 7:32:53 W. Europe Daylight Time

Makespan, Non-Parallel Version

Start: 16:10:21 W. Europe Daylight Time

12

: 0..100
min_p[100,50,100]
max_p[100,100,100]
min_r[0,0,0]
max_r[0,0,0]
priority[100,100,100]
min_d4[5,2,10,2,5,5,1]
max_d[10,2,20,2,5,10,1]
_thread[0,0,1,1,1,2,2]
min_delay[0,0,0,3,15,0,0]
max_delay[0,0,0,7,25,0,0]
TP: anonymous[0,1,0,0,0,0,
TP: anonymous[0,0,0,0,0,0
TP: anonymous[0,0,0,1,0,0,
TP: anonymous[0,0,0,0,1,0,
TP: anonymous[0,0,0,0,0,0,
TP: anonymous[0,0,0,0,0,0
TP: anonymous[0,0,0,0,0,0
DD: anonymous[0,0,0,1,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0
0,0,0,0,0,0

- -
_— O O O O O
[o T o Y Y o e}

sV

O O O O O

DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
Output:

17:21:57 W. Europe Daylight Time

pl[100, (51) [50..100],100]

r[0,0,0]

start[30,37,10,35,44,0,49]

end[35,39,30,37,49,10,50]

eligible_for_execution[0,5,0,20,29,0,34]

delay[0,0,0,7,(11) [15..251,0,0]

ACT: anonymous[30,31,32,33,34] [5]

ACT: anonymous[37,38] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[35,36] [2]

ACT: anonymous[44,45,46,47,48] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[49] [1]

O O =

objective tightened to: 50

17:22:5 W. Europe Daylight Time

p[100, (50) [51..100],100]

r[0,0,0]

start[30,35,10,37,46,0,51]
end[35,37,30,39,51,10,52]
eligible_for_execution[0,5,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34] [5]

ACT: anonymous[35,36] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[37,38] [2]

ACT: anonymous[46,47,48,49,50] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[51] [1]

13

objective tightened to: 52

17:22:46 W. Europe Daylight Time

p[100, (49) [62..100],100]

r[0,0,0]

start[30,36,10,38,47,0,52]
end[36,38,30,40,52,10,53]
eligible_for_execution[0,6,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35] [6]
ACT: anonymous[36,37] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[38,39] [2]

ACT: anonymous[47,48,49,50,51] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[52] [1]

objective tightened to: 53

17:23:27 W. Europe Daylight Time

p[100, (48) [53..100],100]

r[0,0,0]

start[30,37,10,39,48,0,53]
end[37,39,30,41,53,10,54]
eligible_for_execution[0,7,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36] [7]
ACT: anonymous[37,38] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[39,40] [2]

ACT: anonymous[48,49,50,51,52] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[53] [1]

objective tightened to: 54

17:24:6 W. Europe Daylight Time

p[100, (47) [54..100],100]

r[0,0,0]

start[30,38,10,40,49,0,54]
end[38,40,30,42,54,10,55]
eligible_for_execution[0,8,0,20,29,0,34]
delay[0,0,0,7,(11) [15..25],0,0]

ACT: anonymous[30,31,32,33,34,35,36,37] [8]
ACT: anonymous[38,39] [2]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] [20]
ACT: anonymous[40,41] [2]

ACT: anonymous[49,50,51,52,53] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[54] [1]

objective tightened to: 55

End: 6:23:33 W. Europe Daylight Time

CPU Usage, Parallel Version

Start: 12:17:12 W. Europe Daylight Time

: 0..100
min_p[100,50,100]

14

max_p[100,100,100]
min_r([0,0,0]
max_r[0,0,0]
priority[100,100,100]
min_d4[5,2,10,2,5,5,1]
max_d[10,2,20,2,5,10,1]
_thread[0,0,1,1,1,2,2]
TP: anonymous[0,1,0,0,0,
TP: anonymous[0,0,0,0,0,
TP: anonymous[0,0,0,1,0,
TP: anonymous[0,0,0,0,1,
TP: anonymous[0,0,0,0,0,
TP: anonymous[0,0,0,0,0,
TP: anonymous[0,0,0,0,0
DD: anonymous[0,0,0,1,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0

-

O OO OO OO0 OO O OoOOo

-

DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,

O OO OOk OO OO O

[
[y Sy iy T iy

o O

Output:

12:19:9 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[6,33,11,31,38,0,43]
end[11,35,31,33,43,6,44]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[6,7,8,9,10] [5]

ACT: anonymous[33,34] [2]

ACT: anonymous([11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] [20]
ACT: anonymous[31,32] [2]

ACT: anonymous[38,39,40,41,42] [5]

ACT: anonymous[0,1,2,3,4,5] [6]

ACT: anonymous[43] [1]

objective tightened to: 41

12:19:14 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[9,36,14,34,41,0,46]
end[14,38,34,36,46,9,47]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13] [5]

ACT: anonymous[36,37] [2]

ACT: anonymous[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] [20]
ACT: anonymous[34,35] [2]

ACT: anonymous[41,42,43,44,45] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]
ACT: anonymous[46] [1]

objective tightened to: 44

12:23:2 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[9,37,15,35,42,0,47]
end[15,39,35,37,47,9,48]
eligible_for_execution[0,6,0,20,27,0,32]

15

delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14] [6]

ACT: anonymous[37,38] [2]

ACT: anonymous[15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] [20]
ACT: anonymous[35,36] [2]

ACT: anonymous[42,43,44,45,46] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[47] [1]

objective tightened to: 45

Output:

12:26:49 W. Europe Daylight Time

p[100, (51) [560..100],100]

r[0,0,0]

start[9,38,16,36,43,0,48]
end[16,40,36,38,48,9,49]
eligible_for_execution[0,7,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15] [7]
ACT: anonymous[38,39] [2]

ACT: anonymous[16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] [20]
ACT: anonymous[36,37] [2]

ACT: anonymous[43,44,45,46,47] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[48] [1]

objective tightened to: 46

12:30:31 W. Europe Daylight Time

p[100, (51) [60..100],100]

r[0,0,0]

start[9,39,17,37,44,0,49]
end[17,41,37,39,49,9,50]
eligible_for_execution[0,8,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous([9,10,11,12,13,14,15,16] [8]
ACT: anonymous[39,40] [2]

ACT: anonymous[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] [20]
ACT: anonymous[37,38] [2]

ACT: anonymous[44,45,46,47,48] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[49] [1]

objective tightened to: 47

12:34:9 W. Europe Daylight Time

p[100, (51) [60..100],100]

r[0,0,0]

start[9,40,18,38,45,0,50]
end[18,42,38,40,50,9,51]
eligible_for_execution[0,9,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15,16,17] [9]
ACT: anonymous[40,41] [2]

ACT: anonymous[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] [20]
ACT: anonymous[38,39] [2]

ACT: anonymous[45,46,47,48,49] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[50] [1]

objective tightened to: 48

12:37:43 W. Europe Daylight Time

16

p[100, (50) [51..100],100]

r[0,0,0]

start[9,41,19,39,46,0,51]

end[19,43,39,41,51,9,52]
eligible_for_execution[0,10,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15,16,17,18] [10]
ACT: anonymous[41,42] [2]

ACT: anonymous[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] [20]
ACT: anonymous[39,40] [2]

ACT: anonymous[46,47,48,49,50] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[51] [1]

objective tightened to: 49

13:17:19 W. Europe Daylight Time

p[100, (49) [52..100],100]

r[0,0,0]

start[10,42,20,40,47,0,52]
end[20,44,40,42,52,10,53]
eligible_for_execution[0,10,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19] [10]
ACT: anonymous[42,43] [2]

ACT: anonymous[20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39] [20]
ACT: anonymous[40,41] [2]

ACT: anonymous[47,48,49,50,51] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[52] [1]

objective tightened to: 50

End: 15:13:20 W. Europe Daylight Time

Makespan, Parallel Version

Start: 9:19:27 W. Europe Daylight Time

: 0..100
min_p[100,50,100]
max_p[100,100,100]
min_r[0,0,0]
max_r[0,0,0]
priority[100,100,100]
min_d4[5,2,10,2,5,5,1]
max_d[10,2,20,2,5,10,1]
_thread[0,0,1,1,1,2,2]
TP: anonymous[0,1,0,0,0,0,
TP: anonymous[0,0,0,0,0,0,
TP: anonymous[0,0,0,1,0,0,
TP: anonymous[0,0,0,0,1,0,
TP: anonymous[0,0,0,0,0,0,
TP: anonymous[0,0,0,0,0,0,
TP: anonymous[0,0,0,0,0,0
0,0,1,0,0
0,0,0,0,0
0,0,0,0,0
0,0,0,0,0
0,0,0,0,0

O O O O O

[

> H

DD: anonymous[0,0,0,1,0,
DD: anonymous[0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,
DD: anonymous[0,0,0,0,0,0,1

H

>

O O O O O
[o Y Y Tyt e |

17

DD: anonymous[0,0,0,0,0,0,0
DD: anonymous[0,0,0,0,0,0,0
Output:

9:21:29 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[7,34,12,32,39,0,44]

end[12,36,32,34,44,7,45]

eligible_for_execution[0,5,0,20,27,0,32]

delay[0,0,0,5,20,0,0]

ACT: anonymous[7,8,9,10,11] [5]

ACT: anonymous[34,35] [2]

ACT: anonymous[12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] [20]
ACT: anonymous[32,33] [2]

ACT: anonymous[39,40,41,42,43] [5]

ACT: anonymous[0,1,2,3,4,5,6] [7]

ACT: anonymous[44] [1]

]
]

objective tightened to: 45

9:21:31 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[8,35,13,33,40,0,45]
end[13,37,33,35,45,8,46]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[8,9,10,11,12] [5]

ACT: anonymous[35,36] [2]

ACT: anonymous[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] [20]
ACT: anonymous[33,34] [2]

ACT: anonymous[40,41,42,43,44] [5]

ACT: anonymous[0,1,2,3,4,5,6,7] [8]

ACT: anonymous[45] [1]

objective tightened to: 46

9:21:39 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[9,36,14,34,41,0,46]
end[14,38,34,36,46,9,47]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous([9,10,11,12,13] [5]

ACT: anonymous[36,37] [2]

ACT: anonymous[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] [20]
ACT: anonymous[34,35] [2]

ACT: anonymous[41,42,43,44,45] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]
ACT: anonymous[46] [1]

objective tightened to: 47

9:21:41 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[8,33,13,35,42,0,47]
end[13,35,33,37,47,8,48]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[8,9,10,11,12] [5]

ACT: anonymous[33,34] [2]

18

ACT: anonymous[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] [20]
ACT: anonymous[35,36] [2]

ACT: anonymous[42,43,44,45,46] [5]

ACT: anonymous[0,1,2,3,4,5,6,7] [8]

ACT: anonymous[47] [1]

objective tightened to: 48

9:21:49 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[9,34,14,36,43,0,48]
end[14,36,34,38,48,9,49]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous([9,10,11,12,13] [5]

ACT: anonymous[34,35] [2]

ACT: anonymous[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] [20]
ACT: anonymous[36,37] [2]

ACT: anonymous[43,44,45,46,47] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]
ACT: anonymous[48] [1]

objective tightened to: 49

9:23:50 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[10,35,15,37,44,0,49]
end[15,37,35,39,49,10,50]
eligible_for_execution[0,5,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[10,11,12,13,14] [5]

ACT: anonymous[35,36] [2]

ACT: anonymous[15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] [20]
ACT: anonymous[37,38] [2]

ACT: anonymous[44,45,46,47,48] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8,9] [10]
ACT: anonymous[49] [1]

objective tightened to: 50

9:29:21 W. Europe Daylight Time

p[100, (51) [50..100],100]

r[0,0,0]

start[9,36,16,38,45,0,50]
end[16,38,36,40,50,9,51]
eligible_for_execution[0,7,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15] [7]
ACT: anonymous[36,37] [2]

ACT: anonymous[16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] [20]
ACT: anonymous[38,39] [2]

ACT: anonymous [45,46,47,48,49] [5]

ACT: anonymous[0,1,2,3,4,5,6,7,8] [9]
ACT: anonymous[50] [1]

objective tightened to: 51

9:33:6 W. Europe Daylight Time

p[100, (50) [51..100],100]

r[0,0,0]

start[9,37,17,39,46,0,51]
end[17,39,37,41,51,9,52]

19

eligible_for_execution[0,8,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous([9,10,11,12,13,14,15,16] [8]

ACT: anonymous[37,38] [2]

ACT: anonymous[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] [20]
ACT: anonymous[39,40] [2]

ACT: anonymous[46,47,48,49,50] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[51] [1]

objective tightened to: 52

9:36:41 W. Europe Daylight Time

p[100, (49) [62..100],100]

r[0,0,0]

start[9,38,18,40,47,0,52]
end[18,40,38,42,52,9,53]
eligible_for_execution[0,9,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15,16,17] [9]
ACT: anonymous[38,39] [2]

ACT: anonymous[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] [20]
ACT: anonymous[40,41] [2]

ACT: anonymous[47,48,49,50,51] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[52] [1]

objective tightened to: 53

9:40:13 W. Europe Daylight Time

p[100, (48) [63..100],100]

r[0,0,0]

start[9,39,19,41,48,0,53]
end[19,41,39,43,53,9,54]
eligible_for_execution[0,10,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[9,10,11,12,13,14,15,16,17,18] [10]
ACT: anonymous[39,40] [2]

ACT: anonymous[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] [20]
ACT: anonymous[41,42] [2]

ACT: anonymous[48,49,50,51,52] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8] [9]

ACT: anonymous[53] [1]

objective tightened to: 54

9:58:19 W. Europe Daylight Time

p[100, (47) [564..100],100]

r[0,0,0]

start[10,40,20,42,49,0,54]

end [20,42,40,44,54,10,55]
eligible_for_execution[0,10,0,20,27,0,32]
delay[0,0,0,5,20,0,0]

ACT: anonymous[10,11,12,13,14,15,16,17,18,19] [10]
ACT: anonymous[40,41] [2]

ACT: anonymous[20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39] [20]
ACT: anonymous[42,43] [2]

ACT: anonymous[49,50,51,52,53] [5]

ACT: anonymous([0,1,2,3,4,5,6,7,8,9] [10]

ACT: anonymous[54] [1]

objective tightened to: 55

End: 12:14:8 W. Europe Daylight Time

20

References

[1] Shiva Nejati, Stefano Di Alesio, Mehrdad Sabetzadeh, Lionel Briand. ”Modeling and Analysis of CPU Usage in
Safety-Critical Embedded Systems to Support Stress Testing”, 2011

21

