
UNIVERSITY OF OSLO
Department of Informatics

Forward Error
Correction in
INSTANCE

Minna Kaisa
Juonolainen

Cand Scient Thesis

1.2.1999

ii

Foreword

This thesis is a part of my cand. scient. degree at the University of Oslo,
Department of Informatics. My advisor has been Dr. Sc. Thomas Plagemann
from the Center for Technology at Kjeller (UniK).

I wish to express my thanks to my advisor and Pål Halvorsen, who has
given me invaluable guidance. I also wish to thank April T. Stilley for kindly
consulting me in English grammar.

Oslo, February 1, 1999
Minna Kaisa Juonolainen

iii

iv

Abstract

Todays communication systems are inefficient due to redundant functions in
the protocol stack. Multimedia data requires even more effective processing
because of the real-time data restrictions for data transmission. The motiva-
tion in this thesis is to increase the efficiency of data communication systems
by removing the redundant error correction function from the protocol stack,
yet preserve the same level of reliability.

This thesis is one approach to the Intermediate Storage Node Concept
(INSTANCE) project. The goal of this thesis is to study the possibility of inte-
grating Forward Error Correction (FEC) mechanisms into Transport Protocols
(TPs) and Redundant Arrays of Inexpensive Disks (RAID) data storage sys-
tems. Both RAID and TP provide error correction for reconstruction of lost
data with the help of parity information. In this thesis we consider how mul-
timedia (e.g, video, audio, and text) data behave in integrated FEC in RAID
and TP.

The data distribution mechanism in RAID, called striping, is described to
clarify methods used in this approach. Stripes must be adjusted in such a
way that parity calculation products appropriate parity units for transmis-
sion. Another area which is addressed is how the striped data and redundant
information is adjusted in order to achieve a functional combination in TP.
The details we consider in this case basically concern the error coding algo-
rithm. The algorithms for calculating parity information are the same types
as in TPs. The tendency of congestion in a channel gives a guideline of how
much redundant information is appropriate to store on RAID. In addition, the
size of the data units for parity calculations influence disk access and data
transmissions.

The stored data type indicates the size of each read from the disks. The
studies show that the functionality of FEC in RAID and TP depends on the
relationship between stripe units and transmission data units.

The results from literature studies show that there is not only one appro-
priate solution to integrate the FEC mechanism to RAID and TP. The methods
used depend on many factors like user criteria, transmission channels, types
of data, and coding algorithms. In this thesis, we consider possibilities of
combining various schemes for RAID and TP to accomplish a feasible integra-
tion.

v

vi

Contents

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Problem Specification . 3
1.3 Method Specification . 4
1.4 Outline . 4

2 Overview of INSTANCE 7
2.1 A Traditional Approach to Data Communication 7
2.2 Integration of Redundancy in Protocol Stack 8

3 Errors in Distributed Systems 13
3.1 Definitions of Failures and Errors 13
3.2 Error Scenarios during Transmission and Storage of Digital Data 15

3.2.1 Errors in Storage of Data . 15
3.2.2 Errors in Transmission . 17
3.2.3 Error Correction in Transmission 19

4 Foundation of Forward Error Correction 21
4.1 Short Introduction to Forward Error Correction Coding 21
4.2 Mathematical Background for Coding Theory 22
4.3 Linear Block Codes . 24
4.4 Matrix Representations of Linear Block Codes 25
4.5 Linear Cyclic Block Codes . 27

4.5.1 Polynomial Representation of a Code 28
4.5.2 Reed-Solomon Coding . 29
4.5.3 Reed-Solomon Erasure Correcting Code 30

5 Redundant Arrays of Inexpensive Disks 33
5.1 Data Redundancy and Striping in RAID 34
5.2 Various RAID Organizations . 36

5.2.1 Zero Level RAID . 37
5.2.2 First Level RAID . 37
5.2.3 Second Level RAID . 38
5.2.4 Third Level RAID . 39

vii

5.2.5 Fourth Level RAID . 40
5.2.6 Fifth Level RAID . 41
5.2.7 Sixth level RAID . 42

5.3 Error Coding in RAID . 42
5.4 Related Work to RAID . 43
5.5 Comparison of Related Work . 49

6 Overview of Error Correction in Communication Protocols 51
6.1 Transmission Protocols and Error Correction 51
6.2 Forward Error Coding in Transmission 54

6.2.1 Related Work about FEC in Transmission 54
6.2.2 Summary of Related Work . 67

7 Integration of FEC into RAID and TP 71
7.1 Aspects About RAID . 73

7.1.1 The Parity Problem . 74
7.1.2 How to Avoid Parity Problems 76
7.1.3 RAID Level 6 and INSTANCE 78

7.2 FEC Cooperation in TP and RAID . 79
7.2.1 Redundant Data Calculations 79
7.2.2 Stripe Unit in Integrated FEC 81
7.2.3 An Approach to Bottlenecks in RAID 82
7.2.4 Network Loss Behavior and Stripe Units 82
7.2.5 Adaptive Systems in INSTANCE 84

8 Implementation and Tests 87
8.1 Test Environment . 87
8.2 Experiments and Observations . 89
8.3 Discussion . 92

9 Summary and Conclusions 95
9.1 Summary . 95
9.2 Conclusions . 96
9.3 Outlook . 97

A Da CaPo Modules 103
A.1 Sender Side FEC . 103
A.2 Receiver Side FEC . 108
A.3 M-killer Module . 116

viii

List of Figures

1.1 Problem specification area . 3

2.1 Traditional data storage to transmission arrangement 8
2.2 Data storage and transmission in INSTANCE 9
2.3 INSTANCE and forward error correction 10

3.1 Failure possibilities during storage of data 15
3.2 Congestion in the network . 18
3.3 Congestion in the router . 18
3.4 Error distribution in TDUs . 19
3.5 Error distribution alternatives . 19

4.1 Decoding and encoding . 22

5.1 Terminology . 34
5.2 RAID Level 0 . 37
5.3 RAID Level 1 . 38
5.4 RAID Level 2 . 39
5.5 RAID Level 3 . 39
5.6 RAID Level 4 . 40
5.7 RAID Level 5 . 41
5.8 RAID Level 6 . 42

7.1 Issues for discussion . 72
7.2 Problematic data striping . 74
7.3 Ideal solution for the parity problem 76
7.4 Proposal to solve a parity problem 76
7.5 P&Q redundancy and parity problem 78
7.6 Two parity units in one FEC block 80
7.7 Error distribution in fixed size TDUs 83
7.8 Packet Size and Block Size . 84

8.1 Three layer model of Da CaPo . 88
8.2 Test environment for FEC in Da CaPo 89
8.3 Further implementation proposal for FEC in Da CaPo 92

ix

x

List of Tables

4.1 An example of odd and even parity 24

5.1 RAID levels 1 - 4 . 36
5.2 RAID levels 5 and 6 . 37
5.3 Related work to RAID, articles 1 - 6 48

6.1 Related work, articles 1 - 9 . 69
6.2 Related work, articles 10 - 14 . 70

8.1 Results from test 1 . 90
8.2 Results from test 2 . 90
8.3 Results from test 3 . 91
8.4 Results from test 4 . 91

xi

xii

Chapter 1

Introduction

1.1 Motivation and Background

The Internet has become a popular medium, for both work and spare time.
New technologies and Internet services, such as, interactive Web-sites for
bank services, bookstores, and public services have been developed. All of
these new opportunities for Internet users and providers create higher de-
mands on Quality of Services (QoS). QoS represents a set of parameters that
indicate application requirements, as in multimedia, where two or more medi-
ums are offered for users. Multimedia usually consists of continuous media
like audio and video. The QoS for these types of media are for example: 1)
Transport Data Units (TDUs) must come in the right order, 2) audio data must
not be received earlier or later than the video, and 3) data transport must be
continuous, i.e., breaks in a movie are not accepted. We can reason that it is
a technical challenge to accomplish multimedia’s QoS.

At the same time as new services are offered, the amount of Internet users
increases rapidly. New technology has to solve the problems a large user
amount brings. For example, a popular Web-site provider or File Transfer
Protocol (FTP) server has to cope with many clients and high data traffic. The
bottleneck for these services will be the server that cannot answer the needs
of multiple clients. The bottleneck situation can worsen because of badly ar-
ranged data storage or unreliable data transmission.

Disks for storing data are remarkably larger in the status quo. However, in
data storage systems, the microprocessor performance has developed faster
than performance of disks. For example, large disks that are accessed fre-
quently are not effective in seeking and reading the data from the disk. This
leads to performance differences, since the quantity of disks is high, but the
quality of disks cannot meet the high performance of microprocessors. In
addition, large amounts of clients accessing a large disk simultaneously de-

1

velops bottlenecks. The solution for the performance gap is to arrange small
independent disks into a large logical unit to provide faster accesses to data.
One of these arrangements is called Redundant Arrays of Inexpensive Disks
(RAID). The seek and access time for data is shorter in smaller disks than in
large disks. The total seek time in RAID may not be less than in one large disk.
However, throughput in RAID is much better because of parallel accesses to
the disks. This is why RAID is an effective solution for storing large amounts
of data as one unit.

Another benefit that smaller disks have is that they are not as failure
prone as larger ones. The consequences of large disk failure is worse than
with small a disk. This is because, larger amounts of data can be lost simulta-
neously from a large disk, than from a small disk. Redundant data added to
the arrays of disks offers the ability to withstand the failure of a single disk.
Various methods for maintaining redundant data in RAID is one of the topics
in this thesis.

Since data storages have increased the amount of information, data trans-
missions are also increasing in size and frequency. On data transmission,
the development of physical media and different services has given new chal-
lenges in maintaining data reliability. There are several methods that are used
for gaining reliability in data transmission and data storage systems. One of
these methods is Forward Error Correction (FEC), which will be a central topic
in this thesis.

This thesis is a study in the INSTANCE project, a project that investigates,
how the efficiency of servers can be increased by integrating data manage-
ment systems and removing redundant functionality. The motivation in this
thesis is to find methods for integrating FEC in RAID and data transmission,
and to avoid the bottlenecks in data transmissions and storages. For exam-
ple, more reliable data transmissions and data storage systems are achieved
with FEC, which can provide more effective services for multiple clients. Data
transmission that is reliable enough without retransmissions of TDUs is ef-
fective enough for real-time data. A data storage system that is capable of
serving clients despite a disk crash provides an effective service for multime-
dia purposes, among others.

The goal is to propose a method for improving reliability of data trans-
mission from RAID to multiple clients. Comparisons of FEC methods in RAID
and in transmission medias are presented in this thesis. Methods that are
appropriate and suitable for both RAID and transmission of data are investi-
gated and evaluated. These investigations and evaluations are used as a basis
for experimental implementations and implementation plans.

2

1.2 Problem Specification

Server can create a bottleneck in data communication systems, especially
when many clients use the service that is expected to be reliable simultane-
ously. When problems occur in data transmission and many clients require
retransmissions of lost or erroneous data, the bottleneck problem accumu-
lates. Further, the problem is how to reduce the workload on a server, and
how to serve multiple clients which use the same server without remarkably
increasing the server’s work.

In INSTANCE we look at several approaches of solving this problem; and
in this thesis, one of these approaches is discussed. This approach is how to
reduce the server’s work by adding error correction to gain higher data reli-
ability.0 Reliability of data transmission is usually achieved by implementing
methods on the protocol stack at different levels. One example is retrans-
mission of the lost data. However, our motivation is to reduce the server’s
workload by leaving error correcting to the client.

INSTANCE

FEC

?

transport protocol

forward error correction

RAID

Figure 1.1: Problem specification area

Figure 1.1 contains fields of interest in relation to this thesis. The first
field is FEC. FEC is the method that uses redundant data for error correcting.
The second field is RAID. RAID is the data storage system that uses FEC in
recreating lost data after disk crashes. FEC is also used in transmission of
data to provide more efficient and reliable services. Transport Protocol is the
application that is used for transmitting data from RAID to the clients.

3

The question mark “?” in the figure points out the goal in this thesis: how
can we integrate FEC in RAID and the data transmission protocol? What do
they have in common and what methods are compatible when we want to in-
crease the efficiency of the client-server system? The main area in Figure1.1 is
described as INSTANCE since it is the project that studies methods to support
a higher number of clients concurrently with lower costs.

1.3 Method Specification

The basic method for this thesis is literature work. Several related works
that have proposed FEC in transmission have been investigated if they have
relevant information for the thesis. The mathematical background for FEC
has been clarified in order to understand the FEC solutions in the related
works. All relevant information is gathered and compared. Several methods
proposed in the related works are evaluated and compared to our goal.

Related works that propose various solutions for RAID are also intro-
duced. The RAID methods are evaluated in relation to INSTANCE and trans-
mission article information. The comparison of related works is the basis for
problem solving later on in this thesis.

Some experiments are executed for this thesis. The implementations of
the experiments are carried out in a test environment that consists of Dy-
namic Configuration of Protocols (Da CaPo) [20]. Da CaPo covers multiple
layers of the OSI reference model. Da Capo is used together with a simplified
FEC coding protocol in this thesis. Test results of the implementation are
evaluated. These results are used to explore the possibilities of accomplish-
ing the integration of FEC in RAID and TPs.

1.4 Outline

An outline of the rest of this thesis is given in this section. Chapter 2 gives an
introduction to INSTANCE. The description of INSTANCE allows a thorough
introduction of the motivation in this thesis.

Chapter 3 introduces failures and errors that may occur in data transmis-
sion and data storage systems, where the reasons for the most usual errors
are pointed out. In the data transmission part of this chapter, typical error
correcting methods are introduced.

To be able to understand how error coding is done, basics of coding the-
ory is given in chapter 4. This chapter also gives information which explains

4

why these particular methods in error correction coding are used. Chapter 4
presents some examples in theory of how it is possible to accomplish FEC in
computers.

Chapter 5 focuses on describing RAID. Several related works which pro-
pose new methods to improve the properties of RAID are introduced. Rele-
vant articles for our problem specification in relation to INSTANCE are evalu-
ated and compared in this chapter.

Chapter 6 gives an introduction to transmission protocols that are avail-
able or proposed in literature. We describe related works and approaches
that are relevant to this thesis. Chapter 5 and 6 can be read in an indepen-
dent order.

Chapter 7 compares and discusses the methods and information studied
in earlier chapters from 2 to 6. Ideas about how the methods proposed in
this paper would work adequately are pointed out.

Chapter 8 describes a simple test environment. Experiments and test re-
sults are evaluated. The evaluations of the simple experiments point out what
future work needs to be done in practice, in relation to the approach intro-
duced in this thesis.

Chapter 9 presents conclusions and future work.

5

6

Chapter 2

Overview of INSTANCE

This Chapter introduces the basics for the Intermediate Storage Node Con-
cept (INSTANCE) project. INSTANCE is a project at the University of Oslo,
Center for Technology at Kjeller (UniK). Methods of interest in this particu-
lar project include where servers are able to support large amount of clients
without considerably increasing the server-side work load and hardware re-
sources.

2.1 A Traditional Approach to Data Communication

INSTANCE studies how to avoid bottlenecks in data communication, espe-
cially in end-to-end protocols. With end-to-end protocols, we mean the upper
layers in a protocol stack. For example, in the OSI reference model, end-
systems have to handle all seven layers in sending and receiving data. Some-
times protocols in the protocol stack do the same type of work for data units
in their own layer. Services like buffer management and error correction is
done by data management systems and communication protocols.

Figure 2.1 shows a traditional approach for data storage and transmission
protocol arrangement. In this figure, the data storage system RAID, upper
layers of the protocol stack, and the host-to-network interface are presented.
The redundant service in this system is the error correction coding that exists
both in RAID and TP. Redundant work in protocol stacks causes ineffective-
ness, wasted processing time, and the production of unnecessary copies of
protocol data units. These pitfalls of redundancy can accumulate when the
server is accessed concurrently by many clients.

7

e.g RAID

application

end-to-end protocols

host-to-network interface

NETWORK

data management system

server

Figure 2.1: Traditional data storage to transmission arrangement

2.2 Integration of Redundancy in Protocol Stack

Layers in a protocol stack have to be optimized in a way that only one proto-
col does one type of job. However, protocol stack should give the same QoS
and functions as before optimizing; only redundant functionality is removed.
The possibilities of integrating the redundant FEC in RAID and FEC in TPs is
studied in this thesis. In the course of this thesis, the best combination of
protocols and methods to accomplish the integration of FEC is considered.

Figure 2.2 shows the integration method utilized in this thesis. In Fig-
ure 2.2, the oval around the layers of the protocol stack includes the data
management system, application, and end-to-end protocols. It is possible to
optimize services by integrating the redundant services in these three layers.
The number of accesses to different layers in the transport protocol stack
can be decreased with the Integrated Layer Processing (ILP) principle. ILP is
an implementation technique for data manipulation functions in communica-
tion protocols. INSTANCE focuses on servers which have applied ILP principle
in handling of the data management system, application and the remaining
communication protocols.

Figure 2.3 describes the end-to-end environment for this thesis. Coding
for restoring lost information after a disk crash is included in RAID systems.

8

e.g RAID

application

host-to-network interface

NETWORK

end-to-end protocols

data management system

server

Figure 2.2: Data storage and transmission in INSTANCE

Similar types of coding techniques, called FEC, are used in data transmission
for restoring lost TDUs. The coding techniques in RAID and data transmis-
sion are similar; only the target area where they are used is different. In both
target areas, the coding methods are used to restore lost data. Our motiva-
tion is to find methods of integrating the error coding in the following target
areas: data transmission and RAID. As shown in Figure 2.3, encoding exists
before RAID on the server side, and the decoder exists on the client-side.

Error coding is costly, because it is time demanding and uses processing
resources. The integration of error coding has many benefits. In INSTANCE,
the costly error coding would be available for both the data storage system
and for data transmission. This method would spare time and processing
efforts since the encoded data for transmission is made readily available on
disks. Should one disk from RAID fail, it has the same ability to recover from
disk crashes as a RAID without connection to data transmission with FEC.
This means that RAID would provide the same QoS also in INSTANCE. The
next example illustrates the benefits of this approach to INSTANCE.

For example, an intermediate node is used for Video on Demand (VoD)
services. Films are downloaded on RAID with the redundant information pro-
duced by an appropriate encoding method. This redundant information is
used to restore data on the disks, but it is also used for FEC in transmission.
Clients utilizing the intermediate node, in this case the VoD service, must

9

application

host-to-network interface

end-to-end protocols

data management system

NETWORK

server

client

FEC, forward error correction

e.g RAID + FEC

Figure 2.3: INSTANCE and forward error correction

also have the corresponding FEC system for data decoding. In the case of
TDU losses in transmission, the client is capable to recreate lost TDUs during
the decoding process.

The benefits in the example introduced are:

1. Many clients can utilize the same resources without redundant data en-
coding for transmission since the data is encoded only on RAID. This
means that the data is encoded only when data is changed on disks or
failure on a disk has occurred. Without integration of FEC, the data
would be encoded each time it is transmitted to the clients.

2. If the data storage units, blocks are adjusted to the size of TDUs, the
time for specific TDU size adjusting is spared. Error probability in these
indirect operations is also avoided.

3. The number of copy operations and the number of context switches is
reduced.

10

4. All of the benefits listed above enable several clients to access VoD ser-
vices without drastically increasing hardware resources or changes in
them. Also, the parallelity provided by the disk array offers the possi-
bility for multiple clients’ processes to access data effectively.

5. If TDUs are lost under data transmission, no time is used for retransmis-
sions because of FEC. This is a good quality especially for real-time data
transmissions, which do not tolerate transmission delays. This issue is
discussed in detail in Chapter 3.

In order to implement FEC integration, several issues are studied. For ex-
ample, what are the typical errors in RAID and data transmission and what
type of error coding is appropriate for correcting them? If a common de-
nominator is found for errors and coding in RAID and data transmission,
what is the criteria for them in our work? In the course of this thesis, is-
sues like error coding, failures, and techniques for error coding in RAID and
data transmission are studied in more detail. The problems that can occur
while implementing FEC integration and some methods to avoid them are
discussed.

11

12

Chapter 3

Errors in Distributed Systems

An overview of possible problem areas in digital transmission, storing, and
retrieval is given in this chapter. Definitions for failures and errors in dis-
tributed systems in general are also given. In the second section, we take a
closer look at the failures in storing and retrieval of data. The third section
describes failures and errors in data transmission. The last section briefly in-
troduces the most typical error correcting mechanisms in data transmission.

Digital information consists of strings of bits. Bits are represented in
binary format (i.e., 0’s and 1’s). It is inevitable that a physical device makes
mistakes in reading and writing bits, even if the systems are designed for very
high reliability. There is always a chance that a 1 can be interpreted as a 0,
or vice versa. When a bit is mistakenly interpreted, a bit error has occurred.
For example, large information systems, like distributed databases, have a
great amount of data in transactions and transmission lines. Therefore, they
have a larger risk of failure during interpretation. In the following section,
we describe reasons for these misinterpretations.

3.1 Definitions of Failures and Errors

When a malfunction occurs in a physical device, e.g., a broken line, we call it
a failure. The effects of such failures are often called faults. Faults are under-
stood to be a logical level problem. This means that the boolean value, which
is a bit in binary format, is misinterpreted. Faults become errors when they
are at the informational level, values attached to registers1, for example [37].
An error is a bit fail, or a bit with an unknown value in an unknown location.
An error that may be located in any position in a word and is permanent in
nature, is said to be a hard error, whereas erasure is an error with a known

1A special, high-speed storage area within the CPU. All data must be represented in a
register before it can be processed.

13

location [6].

There are several reasons for malfunctions and errors. One of the factors
that limits data communication performance is noise [32]. Noise comes from
unpredictable electrical signals introduced by equipment or natural distur-
bances. This means that noise interferes with the intended signals [30] and
generates errors. Different forms of noise are: thermal, crosstalk, intermod-
ulation, and impulsive noise .

Thermal noise, also called white noise, is present in electrical circuits,
for example, in the front end of the receiving equipment. Thermal noise is
caused by thermal agitation of electrons in a conductor [45]. Usually this type
of noise is not a problem. Such noise cannot be eliminated and can often be
heard as background noise in radios and telephones, for example.

Crosstalk can be experienced during telephone conversations. You can
probably hear another conversation during your own. Crosstalk can occur by
electrical coupling between a nearby twisted pair or coax cable lines carrying
multiple signals [45]. This type of noise does not cause trouble to digital data.
Crosstalk is therefore not discussed closer in this paper.

Intermodulation noise produces signals at a frequency that is the sum or
difference of the two original frequencies, or multiples of these frequencies.
Intermodulation noise is produced when some nonlinearity in the transmit-
ter, receiver, or intervening transmission system is present [45].

Impulsive noise occurs as short impulses or noise spikes of short dura-
tion and intersperses with short burst of errors. Impulsive noise consists of
randomly occurring unwanted signals. The source of this kind of noise can
be switching gear or thunderstorms, for example. Impulsive noise is not a
big problem for analog data, e.g., while using a telephone, it is possible to
understand the telephone conversation with small breaks caused by noise.
Unlike in analog data, this type of noise is the primary cause of errors in data
communication [30].

The last error source in transmission is attenuation. Attenuation is a re-
duction of strength in a signal, beam or wave during transmission. This is a
typical problem for analog transmission. Digital transmission does not have
this problem.

14

3.2 Error Scenarios during Transmission and Storage of Dig-
ital Data

Error control techniques become more important as systems are distributed
and large data amounts flow between them. In this section, we describe some
reasons for and consequences of the failures and errors which are pointed out
below. First, we give a preview of noise connected problems within database
systems. Second, we point out problems that can occur when transmitting
digital data.

3.2.1 Errors in Storage of Data

In this section, we consider same possible causes of disk failure. Failures can
occur during read and write operations on disks. Furthermore, aging of the
magnetic media causes damages gradually. Reading disks is unlikely to cause
permanent errors [13]. Therefore, we will concentrate on studying the other
factors which cause disk failures, and we will refer to Figure 3.1 as an exam-
ple of different failure situations. A scenario of disks arranged as an array
instead of one independent disk is shown in Figure 3.1. Spheres of failure
influence are marked off with dashed lines. Disk arrays will be discussed in
in greater detail in Chapter 5.

disk failure

system crash

media defects

READ WRITE

software crash
catastrophic failure

transient failures

Figure 3.1: Failure possibilities during storage of data

15

Hellerstein [22] points out 3 primary types of failures in magnetic disk
drives:

• Transient failures : As Figure 3.1 shows, transient failures affect read
and write situations. As introduced earlier on page 13 in this chapter, a
write operation can fail while interpreting bits in binary format, i.e., a 0
read as a 1 or vice versa. These are also called soft errors.

• Media defects : These failures are permanent. Hoverer, these errors are
usually detected during production at the factory. Media defects stand
outside of the system in Figure 3.1 because this type of failure is not
usually an issue in systems that are already in use.

• Catastrophic failures : These failures can be head crashes or failures
of the read/write or controller electronics failure. Catastrophic failures
usually cause unreadable bits, i.e., erasures. A catastrophic failure is
possible for one disk and in write/read situations for all of the disks in
a disk array.

Hellerstein [22] concludes that future I/O systems will contain a larger
number of disks. A larger number of disks has lower reliability. For example,
if we have one disk that has a 0,5 possibility of getting an error, then a system
of 100 disks has a 0,5*100 possibility of getting an error. Therefore, larger
systems are more unreliable.

Chen [13] mention that system crashes refer to any event such as a power
failure, operator error, hardware breakdown or software crash that can in-
terrupt an I/O operation to a disk array. As mentioned above, Hellerstein
concluded that we can say that disk arrays are more influenced by system
crashes than one single disk. As a result, data redundancy2 and error correc-
tion mechanisms become more relevant [35].

Although redundancy increases data integrity, it also leads to problem
situations such as inconsistent data when a software crash, i.e., malfunction
in software has occurred during writing to the disks. Software that interfere
with I/O operations can lead to inconsistency in redundant or original data,
e.g., states where redundant data is updated but the original data is not.

Environmental factors such as simultaneous power failures, can cause cor-
related disk failures. The age of the disks can cause correlated failures when
the disks age simultaneously. Old and unused disks are more prone to have
failures: older disks can get failures because of weariness, and new disks can
have undetected transient errors that can cause failures. These failures tend

2With redundancy we mean redundant data that is used to reconstruct original data after
failures in disk arrays. This topic is discussed closer in the chapter 4.

16

to happen closely together.

This chapter does not introduce error correcting mechanisms in data stor-
ages because we are basically interested in RAID and FEC. RAID uses redun-
dant information for recovering from a disk crash. This issue is discussed
closely in Chapter 5.

3.2.2 Errors in Transmission

Various transmission medias have their own typical error sources. A twisted
pair is sensitive for crosstalk. Analog transmissions, like telephone conversa-
tions, suffer from attenuation. This means that the signal has to be amplified
along its way on longer distances. Digital transmissions do not have this
problem. Signals can be regenerated, and the signals are quite resistant to
noise.

In wireless or satellite channels, errors will occur because of noise. An-
other drawback in satellite communication is attenuation by rain on links
operating on high frequencies. This will become a greater issue in the future,
as satellite and wireless communication becomes more widely used [1].

The next example illustrates why noise has become a problem area, espe-
cially when networks have increased their transmission speeds. On any given
transmission line, the higher the transmission speed, the more error-prone
the signal is. Loomis [30] illustrates this with an example:

“If data were transmitted at the rate of 150 bps, each bit would
last for about 6 µsec. For example, a noise burst of 2 µsec does
not affect the data. If the transmission speed were raised to 1200
bps, each bit would last for 0.8 µsec. A 2 µsec noise burst would
span then 2 1/2 bits. It is likely that one or more of the bits would
be corrupted.”

Fiber optics is not very sensitive to noise. In a modern fiber optic network,
the usual source of errors is not bit errors on the medium, but rather over-
runs in the receiver or congestion in the routers [50]. Congestion is created if
high speed channels exist with low speed channels. Jain [26] points out the
fact that high speed channels are usually more expensive in costs than low
speed channels, and are therefore shared. The higher the expense, the more
sharing, and therefore, more traffic on the channel.

TDU loss is a direct consequence of network congestion and/or bit errors
in the TDU header. Congestion can be understood as a temporary resource
overload. If we examine Figures 3.2 and 3.3, we notice that the router in the
network between the channels, i.e., transmission media, includes a buffer.

17

server client

buffer

transmission media

transmission media
database

swichbuffer

network

router

Figure 3.2: Congestion in the network

The task for a buffer is to store data from the channel where data proceeds
in queue. From the buffer, data is sent to the channel forwards to the next
node. If data has arrived at the receiver, then the data is removed from the
buffer and transfered to the upper layers.

buffer

node in network

output rateinput rate

inputrate > outputrate

Figure 3.3: Congestion in the router

Overflow can occur when for example, two data bursts arrive at the node
simultaneously and the data queue grows rapidly. When the output rate is
smaller than the input rate, TDUs can be discarded when the buffer does not
have enough capacity to receive data (see Figure 3.3). These discarded TDUs
can increase congestion because they have to be retransmitted and are load-
ing the network additionally. Synchronous overload occurs after an electrical
power failure, for example when all of the machines reboot, and perhaps con-
nect to a name server simultaneously. This can cause overload in the sender
[49].

Figure 3.4 shows two possibilities for error distribution during transmis-
sion. The first alternative in the figure shows TDU loss due to congestion.
Here, the lost TDUs are colored with grey. Consecutive TDU losses are typi-

18

alternative

alternative

lost TDUs

received TDUs

2

1

Figure 3.4: Error distribution in TDUs

cally caused by congestion. The second alternative in Figure 3.4 illustrates a
single TDU loss e.g., due to a bit error on the header field. This type of error
is not typical for optical fiber.

Congestion losses are the dominant form of error e.g., in ATM networks.
Since large TDUs are divided into smaller units, cells, for an ATM type of
network, one cell loss causes corrupted TDU. The whole TDU is therefore
discarded. Alternative 2 in Figure 3.5 shows the worst possible error distri-
bution possibility. In this alternative, all of the original TDUs are corrupted
and therefore discarded. However, since congestion is the dominant cause of
cell loss in ATM-type networks, alternative 1 is more likely to happen, where
four consecutive cells are lost. In this case, only two original TDUs are lost.
The error characteristics of ATM-type networks is an important point that is
taken into account when designing error correction. This issue will be dis-
cussed in Chapter 7.

Original

alternative

alternative

0

1

2

Figure 3.5: Error distribution alternatives

3.2.3 Error Correction in Transmission

Basic error detection and correcting mechanisms are introduce in this section.
These mechanisms are Automatic Repeat reQuest (ARQ), Cyclic Redundancy

19

Check (CRC) and FEC.

• Automatic Repeat reQuest (ARQ) is an error control mechanism for data
transmissions. Lost data is detected with sequence numbers and time-
outs. The communication about which TDUs are received or lost is ac-
complished with acknowledgments. If the acknowledgment back to the
sender is negative, lost TDUs are retransmitted. The two most common
strategies for retransmission are:

– Go-Back N scheme goes back to the lost TDU and restarts transmis-
sion from the lost TDU.

– In selective repeat, only the lost packets are retransmitted.

• Cyclic Redundancy Check (CRC) is an error-detection scheme that uses
redundant encoded bits (parity bits), and appends them to the digital
signal. The received signal is decoded and TDUs with errors are dis-
carded. For example, an ARQ system can be combined with CRC, if
error correction is required.

• FEC also uses encoded redundant information. This information is used
for reconstruction of lost TDUs. Therefore, retransmissions are not al-
ways necessary. However, the effect of the code is dependent on the
algorithm that is used in coding. This issue is discussed closer in Chap-
ter 4.

If an error has occurred during transmission, we can retransmit the orig-
inal TDUs to repair data. This takes more time (i.e., at least two round trips
+ time-outs) and, e.g., in real-time system retransmission is not the most ap-
propriate method to correct errors. Acknowledgments are crucial to the data
traffic in satellite communication, for example. Linder [29] points out that
ARQ based protocols give efficiency problems due to the long delay in the
sender-receiver control loop and the high amount of data in the pipe from
the sender to the receiver.

Errors usually occur as TDU loss and/or bit errors [27]. With CRC, we do
not know which cell is dropped or which cell includes one bit error or more.
Since CRC and ARQ are basically useful in error detection, FEC is attractive in
the systems where we want to avoid retransmissions of TDUs.

20

Chapter 4

Foundation of Forward Error
Correction

In this chapter, we introduce coding theory in areas that solve problems
among data integrity. One basic method is Forward Error Correction (FEC),
where redundant data is transmitted to allow reconstruction of lost data on
the receiver side. First, we give an overview of basic mathematical theory
behind FEC, and will focus on techniques that are used in RAID and transmis-
sion protocols.

The basics for reliable digital communication have been introduced by
Claude Shannon and Richard Hamming in the late 40’s. Shannon showed
how faster transmission is possible with error correcting systems. Error cor-
recting systems in data storage also helps to get the most out of the storage.
Hamming discovered and implemented a single-bit error correcting code.

4.1 Short Introduction to Forward Error Correction Coding

In this section, we give an overview of coding theory by using an example of
FEC in transmission of data. Error correcting code algorithms work in similar
ways for disk arrays and data transmission. Instead of transmitting data, the
erroneous disk is recovered inside the same system, i.e., disk array. More
about how FEC is arranged in disk arrays is discussed in Chapter 5.

FEC is used by communication devices where the receiver immediately
corrects errors that have been introduced to transmitted data. The transmit-
ter computes redundant information from the original data and adds it to the
data to be transmitted. There are two possibilities in transmitting redundant
data: either including it to the original data or sending it in its own units in
transmission. The received data is analyzed and possible errors are located
with the help of redundant data. If an error has occurred the receiver tries to

21

recreate the lost or erroneous data. After decoding, redundant information is
separated from the original data and the message is returned to its original
form.

Encoding and decoding are illustrated in figure 4.1. The symbols intro-
duced in the figure are also used later on in this chapter. This figure is illus-
trated according to [49].

message code word
received
codeword

2
m m

222
nn

decoded
result

associated E T D

Z Z Z Z

Figure 4.1: Decoding and encoding

E = encoding function where E : W → Zn
Z denotes for the group of natural numbers.
W = transmitted message
T = transmission where n = k + r , n is the total bits for codeword, k is information
digits and r is redundant information digits.
D = decoding function to remove the redundant information
D : Zn2 → Zm2 let n > m for m,n ∈ Z+

This thesis focuses on transmission of digital data. Therefore, n, k ∈ Z+. n
and k are elements of positive integers belonging to the group Z2 = {0,1}. It
is logical to have message length m = 8 bits, since strings of the signals, 0 or
1, have the length of one byte. m can also be a multiple of 8.

4.2 Mathematical Background for Coding Theory

Many error detecting and error correcting codes are based on certain types
of arithmetic. Sets of elements which are closed under specified operations1,
like fields, give an easy way to handle sets of elements. The properties for
different sets of elements are introduced next [21, 49].

• RING R is a nonempty set which is closed under binary operations ’+’
and ’·’ (R,+, ·). Finite rings are important in the theory of computer
science. (R,+) is an Abelian group and (R, ·) is closed under associative
operation ·.

• FIELD F is a commutative ring with unity, such that ∀x ∈ F, x ≠ z ⇒
x−1 ∈ F . Therefore, a field is a group with special rules. For example,

1An element belongs to a set if it belongs to the same set after operations.

22

Zn is a field if and only if n is prime. This leads to the observation that
for any prime p, (Zp,+, ·) is a finite field. From a mathematical point of
view, each bit or byte is an element in a finite field.

• GROUP is an nonempty set that involves only one closed binary opera-
tion ◦. (G,◦) is called a group.

Basic rules for groups are associativity, commutativity, and an element in
a set always has an additive inverse and an identity element.

Examples of these rules are :

• Associativity : if a, b,and c belong to a set then (a+ b)+ c = a+ (b+ c).
• 0 is the identity element if a+ 0 = 0+ a = a.

• The additive inverse of a is an element that produces 0 when added to
a.

• Commutativity is when a+ b = b + a.

Modulo − q addition forms a commutative group for all q ≥ 2 and multi-
plication forms a commutative group over the nonzero elements 1,2, . . . p − 1
for all prime values of p. Non prime numbers do not form a group.

We can define fields from groups. A set of elements is a Field F if and only
if [41]:

1. The elements in F form a commutative group addition.

2. The nonzero elements of F form a commutative group under multipli-
cation.

3. Multiplication distributes over addition.

The number of elements in a field is called the order of a field. In the
case of error coding, we are interested only in finite fields. Finite fields have
a finite number of elements. Finite fields based on modulo arithmetic are
restricted to have a prime number of elements. Finite fields are also called
Galois Fields GF(p). Where p stands for prime number and GF stand for Galois
Field by the French mathematician Evariste Galois (1811-1832). In his work
he showed how fields and polynomials are connected.

An extension field is a field F where F has a subgroup F’. F’ is a field under
inherited addition and multiplication. A binary extension field is a field that
contains 2m elements where each element has an m-bit binary value. It is
possible to define an extension field GF(2m) for any m ≥ 2. For example, the

23

binary extension field 23 has 23 = 8 elements. These rules are useful in e.g.,
decoding when we remember that the subfield always divides the extension
field.

The properties that are closed under certain operations are an advantage
when we operate with bits or bytes. For example, we know that operating
with only by adding sets together in coding session, the set stays the same. A
set of bits, 0’s and 1’s, is always a set of 0’s and 1’s after coding, not decimal
numbers, e.g..

4.3 Linear Block Codes

The blocks which consist of original information bits are usually called mes-
sage blocks. Linear block codes operate upon blocks with fixed-length. These
differ from convolutional codes that operate upon a continuous stream of
information bits [41].

All linear codes compute check symbols as a linear combination of data
symbols over a particular field. For binary codes, this means that, the field is
integers modulo 2. Therefore, check bits are computed as the exclusive-OR
of subsets of data bits.

We return to figure 4.1 that was presented earlier in this chapter. E and
D are functions of an (n,m) block code. The encoder accepts k information
bits from the information source and appends a set of r parity-check digits,
which are derived from the information digits e.g., by using XOR calculations.
The parity bit is added to every data unit. The parity bit for each unit is set
so that all bytes have either an odd number or an even number of set bits. An
example of odd and even parity is shown in Table 4.1.

Parity Data Data + Parity
Odd 1101 11010
Even 1101 11011

Table 4.1: An example of odd and even parity

A decoder operates on the received word to determine whether the in-
formation and check bits satisfy the encoding rules. XOR calculations with
parity bits are the easiest way to detect and correct one error. In the next
section, a method for more effective parity calculations is introduced.

24

4.4 Matrix Representations of Linear Block Codes

We use the definitions for encoding and decoding from Figure 4.1, and take a
look at how linear block codes can be represented as parity-check matrixes.
This is an easy example of coding and gives the basics for understanding
other coding methods too.

Any set of basic vectors for the subspace of GF(2)n (n - bits per codeword)
can be used as rows to form a matrix G called the generator matrix. G defines
the encoding function E. Encoding function E : Zm2 → Zn2 is given by an m× n
matrix G over Z2. The codeword that is going to be encoded is multiplied
with the generator matrix G.

A generator matrix is constructed with an identity matrix I and A, which
is an m × (m − n) matrix. An identity matrix is an m ×m matrix, where the
field element is one (1) in every entry of the main diagonal, and the field ele-
ment is zero (0) in every other matrix entry [8]. Matrix A consists of linearly
independent vectors in GF(p)n, each of length n. Encoding and decoding is
introduced in the next two examples 4.4.1 and 4.4.2.

Example 4.4.1

Let G be a 3× 6 generator matrix over Z2. G can be described as G = [I3 |
A], where identity matrix I3 is a 3 × 3 matrix and A consists of 3 k length
vectors of information bits ; [110], [011], and [101].

G =



1 0 0 : 1 1 0
0 1 0 : 0 1 1
0 0 1 : 1 0 1




If message w is to be send, then encoding for the message w is accom-
plished by E(w) multiplying w with the generator matrix. E(w) = wG. This
is done for each message in Zm2 and the code C will be in Zn2 . C = E(Zm2) ⊂ Zn2 .

The generator matrix G defines an encoding function E3
2 → E6

2 . In this
case, the encoding function adds 3 parity bits to the original message. We
have message w = (010) which is encoded in the following way:

E(010) =
[

0 1 0
]



1 0 0 : 1 1 0
0 1 0 : 0 1 1
0 0 1 : 1 0 1


 =

[
0 1 0 0 1 1

]

25

The encoded codeword is :[010011]
End of example 4.4.1.

Example 4.4.2

In decoding, we use associated parity check-matrix H. H is an (n−m)×n
matrix of the form [Atr | In−m]. Atr is A’s transponent in this example and
looks like this :

Atr =



1 0 1
1 1 0
0 1 1




We get H :

H =



1 0 1 : 1 0 0
1 1 0 : 0 1 0
0 1 1 : 0 0 1




If we use H to multiply received codeword (r) transponent r tr then we can
analyze the result and make judgments. E(w) = r if and only if H · r tr = 0.
With other words, if result is 0, i.e., a vector of zeros, we can assume that
the received message is unchanged. Other results than 0 give a syndrome. A
syndrome reveals the error pattern in the received word.

In our example, we receive a codeword r , where r = [110011]. We cal-
culate the syndrome of r for detecting errors. From calculations of the syn-
drome we get the following result:




1 0 1 : 1 0 0
1 1 0 : 0 1 0
0 1 1 : 0 0 1







1
1
0
0
1
1



= [110].

The result is not [000]. Thus, an error has occurred under transmission.
If we take a closer look at the calculation, we see that syndrome s is s = [110]
and it is the same as first column of H at the same time. This result gives us
information about where the error is located. We can determine that r is C by
changing the first component. C and r differ only in the first component. The
syndrome shows us the i’th column of the matrix H. In other words, the i’th
bit from codeword has changed. The next example points out the limitations
parity-check matrix coding has.
End of example 4.4.2.

26

Example 4.4.3

Assume that at most one in every eight bits contains an error (i.e., 0’s in-
terpreted as 1’s or vice versa) during transmission and as a result we get
two codewords which strongly resemble one another. It is impossible to de-
tect and correct the errors in a situation like this. If we have codewords
x = x1, x2...xn ∈ Zn2 and y = y1, y2...yn ∈ Zn2 , the distance between the two
codewords x and y is the number of components where xi 6= yi , for 1 ≤ i ≤ n.
For example, the Hamming distance between 1011101 and 1001001 is two.
End of example 4.4.3.

Definition 4.4.1 Hamming distance d(x,y) between two q’ary sequences x
and y of length n is the number of places in which they differ. The minimum
distance d∗, is the Hamming distance of the pair of codewords with smallest
Hamming distance (x, y, d∗) [49].

When one error occurs, the codeword is Hamming distance 1 from the
transmitted word. Hamming weight W(c) of the codeword c is equal to the
number of nonzero components in the codeword.

To detect more than one error or to correct an error, we need a code with
a distance of more than 3. If error occurs t-times and the distance from the
received word to every other codeword is larger than t, then the decoder will
correct errors properly [8]. In other words, 2t + 1 ≤ d∗, where d∗ is the
minimum distance.

As explained earlier in Example 4.4.2, from H · r tr we get a syndrome
which shows that the codeword is erroneous and where the error is located.
This depends on the minimum distance d∗ in the code. In Example 4.4.2, the
minimum distance is 3, d∗ = 3. We are able to correct single errors, because
d∗ ≥ 2t + 1.

Codes that correct all single errors, i.e., have d∗ ≥ 2t + 1, are called Ham-
ming codes [8]. Hamming codes also detect all single and double bit errors.

4.5 Linear Cyclic Block Codes

Cyclic codes are easy to encode and have a well-defined algebraic structure,
which has led to the development of very efficient decoding schemes. Bose-
Chaudhuri-Hocquenhem (BHC) codes are a subclass of binary cyclic codes and
are capable of correcting multiple errors [41].

27

4.5.1 Polynomial Representation of a Code

A polynomial can be represented as

f (x) = anxn + an−1xn−1 + . . .+ a1x1 + a0x0

where an is the leading coefficient if an ≠ 0. f (x) has degree n. Consider
polynomial a(x) = x3+x+1 which is an example of a polynomial over GF(2)
with degree 3. A polynomial over GF(2) has coefficients where each term is
either 1 or 0. The polynomial a(x) = x3+x+1 represents the message [1011]
in binary form.

Each element in GF(2) is it’s own inverse. This means that addition has
the same effect as subtraction. It is not possible to construct a GF(2m) us-
ingmodulo− 2m multiplication. This is possible with polynomial arithmetic.
Polynomials with prime field coefficients require only modulo arithmetic for
operating on these coefficients. These characteristics make implementing the
code easier.

Definition 4.5.1 An (n,m) linear block code C is a cyclic code if every cyclic
shift of a codeword in C is also a codeword in C [8].

A codeword can be represented as a polynomial:

C(x) = c0 + c1x+ c2x2 + · · · + cn−1xn−1.

Components of the codeword are symbols in GF(2). A linear code is a subset
of GF(qn). To identify parity bits and information bits, we can represent the
codeword like this :

C(x) = i1 + i2x+ · · · + imxm−1 + p1xm + · · · + prxn−1,

where i = information bits, p = parity bits, and r = n −m is the number of
parity bits.

BCH codes are generated by the generator polynomial g(x) [37]. g(x) has
to divide xn−1 (n = the degree of the polynomial). That is, every codeword C
is a multiple of the generator polynomial g(x).

A generator polynomial g(x) consists of minimum polynomials α, where
a minimum polynomial is an element of GF(2m) of order n. There are meth-
ods to calculate minimum polynomials by hand, but the easiest way is to use
prepared tables, e.g., [41]. Minimum polynomial α is primitive, and the root
is of order n = 2m − 1.

28

Example 4.5.1

A generator polynomial has the form: g(x) = α1(x)α3(x) . . . α2t−1(x). Where
α1 · · ·α2t−1 are minimum polynomials. m is the degree of a polynomial. For
m = 4, α3 +α2 +α = 1110 is in binary form and α+ 1 = 0011.
End of example 4.5.1.

A primitive polynomial is a prime polynomial over GF(q) having a primi-
tive element as a zero. Zero stands for root. If a(r) = 0 and r ∈ GF(q) and
(x − r) is a factor of f (x), then r is a root [37]. When a polynomial is not
divisible by any other polynomial of degree one throughm−1, it is said to be
irreducible. Any irreducible polynomial over GF(2) of degreem divides xn+1
if n = 2m − 1. If this value of n is the smallest positive integer for which p(x)
divides xn + 1 then p(x) is a primitive polynomial of degree m over GF(2).

A simple encoding rule [8] for polynomials is C(x) = i(x)g(x), where i(x)
are the information bits in polynomial form. In decoding, the received poly-
nomial r(x) is the sum of transmitted codeword polynomial c(x) and the
error polynomial e(x). Syndrome polynomial s(x) is calculated by dividing
r(x) by g(x).

Linear cyclic codes can be described as a matrix form with a set of tuples
like parity check codes. We can say that the generator polynomial g(x) is
equivalent to the generator matrix G. The parity check polynomial h(x) is
equivalent to the parity-check matrix H.

4.5.2 Reed-Solomon Coding

Reed-Solomon (RS) Coding is an error correction technique for data commu-
nication, storage systems, and mobile computing. As earlier discussed in
Chapter 3, bursts of errors are the most common errors in satellite commu-
nication and can cause consecutive TDUs losses in computer communication.
RS is suitable coding for surviving TDU losses because, unlike simple Ham-
ming codes, RS operates on blocks of multiple bit symbols rather than single
bits. With RS, we can compute multiple independent parities for the same set
of TDUs.

An RS code that is able to correct t-errors has the following parameters:

1. Block length : n = qm − 1

2. Number of parity-check digits : n−m = 2t

3. Minimum distance : d∗ = 2t + 1

29

Since one byte is 8 bits long, it makes sense that the finite field k is of
degree 8 over Z2, so that each element of k corresponds to a single byte [14].
Typically, RS code has symbol size m = 8, which means that the symbols are
elements of the Galois Field GF(28). The maximum codeword length will then
be 28 − 1 = 255. This corresponds to 235 message bytes, 20 bytes of coding
symbols, and the codeword is 255 bytes long [40].

In the next section, the work of McAuley [31] is studied. McAuley’s article
introduces Reed-Solomon coding in simplified form. This article is investi-
gated here, since it gives us basic information used later on in this thesis.

4.5.3 Reed-Solomon Erasure Correcting Code

It is preferable to choose the simplest FEC code that matches to the re-
quirements because coding uses processing time and reserves. Conventional
Reed-Solomon code is computationally demanding, therefore, simpler cod-
ing methods are suitable e.g., for broadband networks. McAuley describes a
simplified Reed-Solomon erasure correction coding architecture. This is a fre-
quently used coding algorithm, and it is presented in many variations among
many articles described in Chapter 6.

McAuley discusses why FEC is the best alternative for error correcting in
broadband communication and points out the main reasons. He mentions
three basic techniques which are the same as Carle [11] points out: 1) pure
ARQ, 2) pure FEC, 3) a hybrid method that utilizes both ARQ and FEC.

One of the main motivations behind FEC is that when the existing copper
circuit switched networks are replaced with broadband fiber optic networks,
the failures and errors also change to different types of errors. There will be a
reduction in link errors. In addition, in packet switched networks, cell losses
due to congestion are going to be the dominant error type. FEC is suitable
when a return channel for acknowledgments is not available or it is too slow.

McAuley compares FEC features to ARQ and concludes that in the in-
creased communication bandwidth, ARQ is not capable of meeting all of the
requirements. For example, it is difficult to manage large tables of retransmis-
sion timers. Real-time applications transmitting, e.g., over a transcontinental
link, do not approve the retransmission delay. ARQ also has problems with
supporting multicast when the number of receivers is large. This causes fur-
ther errors due to congestion that is caused by retransmissions. These are
the contentions why FEC is the best alternative for ARQ in broadband com-
munication.

30

McAuley presents block codes and convolutional codes briefly. The rea-
son why McAuley focuses on Reed-Solomon Erasure (RSE) code is that FEC
hardware is computationally demanding. McAuley’s proposal is capable of
detecting and correcting errors with the same parity information.

RSE code creates enough parity bits to enable the receiver to correct data
without retransmission. The same hardware can be used for encoding and
decoding. Unlike in conventional RS, the least significant k symbols of the
codeword are set equal to the k information symbols in RSE. This structure
of the codeword does not change the methods of how computing in encoding
and decoding is done. Compare the codeword representation in Section 4.5.1
on page 28.

Example 4.5.2 A codeword can be represented as a polynomial

C(x) = cn−1xn−1 + cn2xn−2 + · · · + ckxk + ik−1xk−1 + · · · + i0
where the information in m-bit numbers is represented as polynomials:

I(x) = ik−1xk−1 + ik−2xk−2 + ·· · + i0

End of example 4.5.2.

McAuley points out seven RSE characteristics: 1) In burst correcting, RSE
is capable of correcting burst up to the number of redundant symbols sent.
2) RSE can detect errors and correct erasures. The ability to do this is related
to the redundant information amount sent and received. 3) The amount of
redundancy and original data is possible to adapt to the current need in the
channel. 4) If the channel is reliable, redundant data can be minimized. 5)
Low latency in RSE is possible because decoding can begin as soon as one
block with symbols without errors is received. 6) High throughput over 1
Gbit/sec in 1 micron CMOS is possible. 7) RSE is not complex to implement.

McAuley mentions that less complex hardware implementations for er-
ror correction exist, such as Fire codes or interleaved convolutional codes.
However, either they require long latency or have modest burst correction
capabilities.

31

32

Chapter 5

Redundant Arrays of Inexpensive
Disks

Redundant Arrays of Inexpensive Disks (RAID) is a system where we can use
inexpensive smaller disks arranged like an array instead of one large disk.
RAID ideas are applicable to software implementations as well as hardware.
In this chapter, we introduce the basic ideas of RAID and how it is built up.
We give an overview of how error coding can be used with different RAID
systems, and we review failure possibilities in RAID. In the last section, some
articles among RAID are investigated. Related works concerning the issues of
interest in this thesis are considered.

One basic idea behind RAID is to connect multiple disks and program
them to operate as a single unit. As Chen [13] points out, microprocessor
performance has increased more than disk transfer rates, and it is assumed
it will continue with the same trend. Arranging smaller disk drives (e.g., disk
drives used with personal computers and micro computers) into an array
gives us the possibility of utilizing parallelism. We get higher transfer rates
because of multiple I/O capabilities, higher I/O rates, increased disk capac-
ity, and faster data access [4, 25]. Hellerstein [22] concludes that future I/O
systems will contain a large number of disks. Disk arrays not only improve
performance and add capacity, but also provide a level of redundancy1 to the
I/O path in the event of a drive failure [4]. This is the other basic idea in RAID,
which is discussed in the next Section.

1The term Redundant information means coded data that is used for checking and recon-
structing original data. The term parity check is used when coding is performed to produce
parity, for example XOR. The term check disk is used as a name for disks where the redundant
information is located.

33

5.1 Data Redundancy and Striping in RAID

The difference between disks arranged in parallel and RAID is that in RAID is
stored redundant data. With redundant information, we understand a copy
of a data element that is stored on another disk in the disk array. Redundant
data can also be generated by coding error control information, e.g., by sim-
ple XOR calculation. Coded redundant data is also called parity information.
As explained earlier in Chapter 5, this parity information can be used to re-
store original data. See closer description about parity connected with RAID
below and in Figure 5.1.

Striping, in which data is sequentially arranged over disks, can be utilized
in ordinary arrangement of parallel disks. In RAID, redundant information
can also be striped. RAID can be arranged in different ways where striping
and coding varies. This gives further divergence in performance and relia-
bility. Therefore, RAID has been classified in levels ranging from 0 to 6, in
order to distinguish between the different organizations. The terminology of
RAID is explained with the help of Figure 5.1 where RAID level 5 is used as
an example. All levels are explained in more detail later in this chapter.

a0 b0

P3

c0 d0 P0

e1

parity group

P4 b4 c4 d4

e2

e4

e3d3

d2

P1c1

P2

c3

b1

b2

a1

a2

a3

stripe unit stripe data unit parity unit

Figure 5.1: Terminology

Data Striping: Real-Time Encyclopedia [38] defines data striping as

“Segmentation of logically sequential data, such as a single
file, so that segments can be written to multiple physical de-
vices (usually disk drives) in a round-robin (algorithm in which

34

processes are activated in a fixed cyclic order) fashion. This
technique is useful if the processor is capable of reading or
writing data faster than a single disk can supply or accept it.
While data is being transferred from the first disk, the second
disk can locate the next segment.”

Striping means simply interleaving a body of data across two or more
disk drives. With only two drives, the first ”chunk” of data is written to
drive 1, the second chunk is written to drive 2, the third chunk is back
on drive 1, and so on.

Stripe: If we have 5 disks, for example, then a stripe is a set of 5 stripe units
which all have the same physical address on each disk.

Stripe unit: A unit of data which represents a group of logically contigu-
ous blocks that are placed consecutively on a single disk before placing
blocks on a different disk [28].

Parity and Data units: A parity unit is one stripe that includes only parity
information. A data unit includes only original information.

Parity group: a set of parity units and data units. Parity is computed from
the data units in the same group. A parity stripe can be understood as
a minimum set of data and parity stripes covering a given parity group
[28]. Coding theory for redundant data and parity has been explained
earlier in Chapter 5. Hamming coding and Reed-Solomon are examples
of codes used for calculating redundant data in RAID

Use of striping and storing of redundant data results in better data avail-
ability and the possibility of recovering from disk crashes. Parity check codes
can be used to improve integrity of data in RAID systems. This can be done by
calculating parity of data information in one stripe and adding calculated par-
ity information to a parity disk. Adding parity data to the disk array makes
it possible to recover easier and faster from disk failure, since missing data
can be reconstructed using parity information.

As an example, we can think of video-on-demand where each movie is
spread out over multiple drives. Disk management software places movies
on the magnetic disks and handles disk requests for the output stream [49].
Striping allows multiple I/O requests to be served in parallel because the
information is distributed across all disks. If one of the disks fails, it is
possible to reconstruct the movie segments on this disk with the help of
parity information.

35

5.2 Various RAID Organizations

In order to operate the various methods in the coding and striping, RAID has
been arranged into different levels ranging from level 0 to 6. The different
RAID levels are introduced in this section. An overview of the RAID levels is
given in Tables 5.1 and 5.2. These tables have been collected with the help
the following references: [2, 4, 25].

Level Striping and FEC Perform
ance Cost + -

0. Data Striping Block Interleaving,
no redundancy

high low • High performance ,
• No cost penalty
• No parity calculation

overhead is involved
• Very simple design
• Easy to implement

• No Fault Tolerance.
• Significantly reduced

data availability
• The failure of just one

drive will result in all
data in an array being
lost

1 . Transparent Disk
Mirroring / Shadowing
/ Duplexing

Duplicate of the data,
no redundancy

medium/
high

high • Excellent data availabil-
ity

• Higher read perform-
ance than a single disk

• Expensive - requires
twice the desired disk
space

• Moderately slower
write performance

2 . Striping and
Shadowing

Stripes data to a group of
disks using a bit stripe. A
Hamming code symbol
for each data stripe is
stored on the check disk.

high high • Excellent data availabil-
ity

• High performance
• “On the fly” data error-

correction

• Requires twice the
desired disk space

• no significant advan-
tages over RAID-3
architecture.

• requires very high
transfer rate require-
ment to justify

3 . Bit Interleaved Data
Striping with Parity
Checking

A striped parallel array
where data is distributed
by bit or byte.One drive in
the array provides data
protection by storing a
parity check byte for each
data stripe.

medium medium • Good data availability
• High performance for

transfer rate intensive
applications

• Cost effective - only 1
extra disk is required
for parity

• Disk failure has a low
impact on throughput

• Can satisfy only 1 I/O
request at a time

• Poor small, random I/O
performance

• Transaction rate equal
to that of a single disk
drive at best (if spindles
are synchronized)

4 . Block Interleaved
Data Striping with Par-
ity Checking, Inde-
pendent Data disks with
shared Parity disk

Parity is interleaved at the
sector or transfer level. Is
identical to RAID-3
except that large stripes
are used, so that records
can be read from any indi-
vidual drive in the array
apart from the parity drive.

medium medium • Good data availability
• High performance for

read operations
• Cost effective - only 1

extra disk is required
for parity

• Low ratio of ECC (Par-
ity) disks to data disks
means high efficiency

• Poor write performance
• Poor small, random I/O

performance
• Difficult and inefficient

data rebuild in the event
of disk failure

Level Striping and FEC Perform
ance Cost + -

Table 5.1: RAID levels 1 - 4

36

5 . Block Interleaved
Data Striping with Dis-
tributed Parity. Inde-
pendent Data disks with
distributed parity
blocks

Combines the throughput
of block interleaved data
striping of RAID-0 with
the parity reconstruction
mechanism of RAID-3
without requiring an extra
parity drive.Both parity
and data are striped
across a set of disks.

medium medium • Good data availability
• High performance in

request rate intensive
applications

• Cost effective - only 1
extra disk is required

• allows multiple concur-
rentread /write opera-
tions for improved data
throughput

• Low ratio of ECC (Par-
ity) disks to data disks
means high efficiency

• Poor write performance
• No performance gain

in data transfer rate
intensive applications

• Difficult to rebuild in
the event of a disk fail-
ure

• Most Complex control-
ler design

6 . P&Q redundancy
Independent Data disks
with two independent
distributed parity
schemes

The same method as in
level 5 but with double
parity , Reed-Solomon
Data is striped on a block
level across a set of drives,

medium high • An extremely high data
fault tolerance

• Can sustain two simul-
taneous drive failures

• Very bad write perform-
ance

• Requires N+2 drives to
implement, because of
second parity

Level Striping and FEC Perform
ance Cost + -

Table 5.2: RAID levels 5 and 6

5.2.1 Zero Level RAID

B

D E

A

G H

C

F

I

Figure 5.2: RAID Level 0

Raid level 0 is an array of non-redundant arrangement with block-level
striping. This means that data is interleaved across disks in blocks of arbi-
trary size rather than in bits [13]. As Figure 5.2 presents, a data (Data =
A+B+·· ·+H+ I) is broken down to smaller blocks and each block (A+B+
· · · +H + I) is written to a separate disk drive [2]. With this solution, we can
reach the best write performance; but without redundancy, any disk failure
will lead to data loss. This solution is not actually a true RAID because it is
not fault tolerant and has no parity calculation.

5.2.2 First Level RAID

At RAID level 1, we have one check disk for every data disk. This is an easy,
but expensive, way to arrange redundancy. All disks are duplicated as shown

37

in Figure 5.3. This is why RAID level 1 is also called mirroring. Mirroring
can be used e.g., in places like database systems where transaction rate is not
important but availability is [13, 25]. In mirroring, a single disk controller is
used, and when one disk partition fails, information from the other disks can
be used to continue the I/O operations.

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

Figure 5.3: RAID Level 1

In mirroring, when data is written, a duplicate of the data is made and
written to a check disk automatically. The nature of this arrangement allows
two reads or one write at the same time. Another method for RAID level 1
is duplexing. In duplexing, separate disk controllers are used, and when one
disk or controller fails, data from the other system can be used continually
[4]. This level is designed to protect against a single disk failure, not multiple
ones. If both the original and the copy fails, the data on these disks can be
lost.

5.2.3 Second Level RAID

The basic interest in second level RAID is to reduce overall cost. This RAID
level is also known as striping and shadowing. This RAID level is sometimes
referred to as RAID-0+1. One method used here for calculating parity infor-
mation is Hamming coding. The parity information is stored to check disks
[13]. Data is striped to groups or disks using byte striping [4].

At this level each data bit is written into data disks and each Hamming
coded word is recorded to the check disk [2]. This can be viewed from Figure
5.4, where Data = A1 + A2 + · · · + E2 + E3 designates data, and redundant
information located on the check disks is designated with eecA+· · ·+ eecE.
As shown in the figure, each write and read operation spans all drives. A
single check disk can detect one error, but if we want to correct errors we

38

D D

A2 A3

B2 B3

C2 C3

D2 D3

E3E2

A0

B0

C0

0

E0

A1

B1

C1

1

E1

eccA eccAeccA

eccB eccB eccB

eccC eccC eccC

eccD eccD eccD

eccE eccE eccE

Figure 5.4: RAID Level 2

have to have enough uncorrupted disks to locate the disk with error. Thus,
this level is rarely used [25].

5.2.4 Third Level RAID

D D

A2 A3

B2 B3

C2 C3

D2 D3

E3E2

A0

B0

C0

0

E0

A1

B1

C1

1

E1

PA

PB

PC

PD

PE

parity generator

Figure 5.5: RAID Level 3

Third level RAID interleaves data in a bit- or byte-wise order over disks
[13]. To tolerate single disk failures, one parity disk is added. As Figure 5.5
illustrates, every write has to access all of the data disks and the parity disk
[13]. To maintain data integrity with each write, a unique parity check is cal-
culated and written to the parity disk. The bottleneck of third level RAID is
the parity on a single drive [25].

Disk controllers can identify in which disk an error has occurred. In the
case of a read, parity information is checked. A disk array manager should

39

run a parity check daily and for example, after an abnormal shutdown, to
ensure that data and parity information are correct and to guarantee data
integrity.

Advantages at this level are high write and read data transfer rates [2, 4].
When one disk fails, data can be reconstructed while the system is function-
ing by reading parity and reading/writing to the other disk drives, as long as
the parity drive does not fail. If drive 1 fails, for example, we use drives 2,
3, 4 and the parity drive to restore drive 1. Therefore, availability of data is
good.

RAID level 3 is suited for large data objects but does not work well for
transaction processing systems [25]. RAID level 3 can satisfy only one I/O
request at a time, and parallel accesses therefore decrease data transfer time
for long sequential records [4].

5.2.5 Fourth Level RAID

D D

A2 A3

B2 B3

C2 C3

D2 D3

E3E2

A0

B0

C0

0

E0

A1

B1

C1

1

E1

PA

PB

PC

PD

PE

parity generator

Figure 5.6: RAID Level 4

The fourth RAID level has the same main idea as level 3, but instead of
striping data in bits or bytes, data is interleaved in blocks. When using large
stripe units, it is possible to read records from any drive in the array apart
from the parity drive. This means that independent reads are possible. As
Figure 5.6 presents, it is possible to have high read transfer rates, but writes
are slow. In Figure 5.6, data is denoted : Data = Ao +A1 + · · · + E1 + E2 + E3

and parity for A data blocks = PA. Parity for B, C,D and E is marked in the
same way as parity for A. A high read rate is feasible because multiple read
requests can be served parallel [4]. I/O requests need only to reference the
drive where the required data is stored.

40

Write operations at the fourth level are slow because the parity drive has
to be updated whenever data is written or modified. All other disks have
to be read for parity calculations also. Therefore, rebuilding of the data to
one parity disk is quite inefficient. This is the bottleneck of the RAID level 4
[2, 4, 13]. In the next section, we introduce the fifth RAID level, which has a
better solution for write updates.

5.2.6 Fifth Level RAID

A0

B1

parity generator

A1

A2

A3

P4

B0

B2

P3

B4

C0

C1

P2

C3

C4

D0

P1

D2

D3

D4

P0

E1

E2

E3

E4

Figure 5.7: RAID Level 5

The fifth RAID level, also called the Block-Interleaved Distributed-Parity,
cuts down the bottleneck problem mentioned in RAID level 4, because this
level does not have only one disk dedicated to parity. Parity information and
data are uniformly distributed over all disks and data blocks are much larger
than the average I/O size [4].

Parity is marked with an P in Figure 5.7(compare with the Figure 5.6). The
new parity for write is derived as: Pnew = Pold +Dold +Dnew . This means that
one update requires four disk accesses. This manner of updating is similar to
the fourth level. The bottleneck of this level is the updating of parity informa-
tion when many small writes occur. As Figure illustrates, parity distributing
is left-symmetric, i.e., parity is distributed symmetrically over disks from the
lower left to the upper right corner. In this parity arrangement, each parity
block is accessed separately. The advantage is the reduced possibility of disk
conflict while serving large requests [13].

The fifth RAID level provides a high level of fault tolerance because each
parity block contains information to reconstruct the information in the other
blocks of data. Parity data is never stored on the same drive as the data
it protects. This means that concurrent read and write operations can be
performed. RAID level 5 can survive even if one disk fails, but performance

41

falls below an acceptable level. The major performance weakness at this level
is therefore all of the small writes which must take place every time parity
information is updated [4, 13].

5.2.7 Sixth level RAID

A0

B1A1

A2

B0 C0

parity generator

PC

B2

PB

C1

C2

PA

D1

D2

D3PD

Q0

Q1

Q2

Q3

Figure 5.8: RAID Level 6

The sixth RAID level is also called P&Q Redundancy. P and Q denote er-
ror redundant information which is doubled compared to the fifth level. P
is parity information calculated vertically over one disk, and Q is parity in-
formation calculated horizontally over all disks. As shown in Figure 5.8,
Q0+·· ·+Q3 is Q redundancy, and PA+· · ·+PD is P redundancy. This means
that the sixth RAID level uses a second distributed parity scheme. None of
the parities are located in the disk they protect. Because of this structure,
the sixth RAID level can sustain performance through multiple simultaneous
drive failures [2]. P&Q redundancy resembles the fifth RAID level, and they
operate in a quite similar manner, but the difference is in the amount of disk
access required when parity information must be updated for both P&Q [13].

The sixth RAID level uses Reed-Solomon codes to achieve better recovery
from disk failures [13]. This implementation uses 24 bit symbols to provide
double-erasure correction for up to 13 data disks [19].

5.3 Error Coding in RAID

As discussed earlier in Chapter 3, the typical sources of failure for disks are
system crashes and individual disk crashes due to software errors or elec-
tricity problems, for example. Chen [13] describes how bit-interleaved disk
arrays are affected less by system crashes than block-interleaved disk arrays.

42

In bit-interleaved disk arrays, the inconsistent parity can only affect the data
that is currently being written. In a block interleaved disk array, an inter-
rupted write operation can affect the parity of other data blocks in a stripe
that is not written. System crashes can be similar to disk failures in the way
that modified parity stripes can be lost during a system crash. System crashes
can occur more frequently than disk failures. Recovery from a system crash
requires regeneration of the parity sectors that are known to be inconsistent.

Failures and errors do not always occur individually and by one at a time.
There is a possibility of having a disk crash and a system crash simultane-
ously. Disk failures at the same time as a system crash can cause an uncor-
rectable situation: a situation similar to two disk failures. To illustrate, P&Q
information is invalidated by a system crash. Therefore, parity protected
disk arrays are not necessarily better than conventional disks. However, P&Q
redundancy is useful against multiple correlated, i.e., simultaneous disk fail-
ures. Double disk failure or one disk failure together with bit errors are also
possible. In addition, it is not possible to avoid system crashes without in-
creasing performance expenses. Non-volatile storage for parity information
is one possibility which can be utilized to avoid loss of parity information.

The most common methods of coding in RAID are Hamming coding and
N+1 coding. Hamming coding is explained in Chapter 4.4, and N+1 parity
coding is described by Gibson [19] as follows:

“Each codeword contains one bit from each of N data disks and
one bit from a single redundant data, or parity disk. The value of
the bit from the redundant data disk is equal to the exclusive OR
of bits. Therefore if a disk is erased a single identified bit is lost
from each codeword. The value of the bit is the value necessary
to make the parity of the data bits equal to the value stored in the
parity disk.”

Which error coding we should choose depends on our goals. We might want
to have a solution which always has all data available and uses more disk
space, or we might want a solution which uses more complicated coding, less
place, and hence more time for error correction. If we use parity coding, it
becomes less costly than for example mirroring where more disks have to be
bought to ensure data integrity.

5.4 Related Work to RAID

In this Section, we investigate proposed RAID methods in related work and
evaluate whether or not they can be utilized in INSTANCE. A summary of

43

each article is presented in Table 5.3. The number of each article investiga-
tion refers to the number in this table.

The following papers have concentrated on improving the typical problem
areas for RAID e.g., bottleneck of parity disks or parity updating. The related
work about RAID propose new methods to improve RAID level 5 or to make
new techniques similar to level 5 as article number two does [47]. In article
number four [9], a method is proposed to decrease redundancy, yet still be
able to recover from two disk failures.

1. Hot mirroring : A method of hiding parity update penalty and degra-
dation during rebuilds for RAID 5

Mooi et al. [33], has combined two RAID levels for different needs in per-
formance and storage efficiency.

In this scheme the mirrored storage space is characterized by high per-
formance efficiency and low storage efficiency. The RAID level 5 region, is
characterized by low performance and high storage efficiency. Data blocks
migrate from and are mirrored to RAID level 5 and vice versa. In other words,
data is not constantly stored in one RAID level. This is done because access
frequency varies from time to time.

Comments: In concluding remarks for this article, we can point out that
the method introduced is not inside the range of the type of solution we are
looking for in this thesis. This is because mirroring without parity informa-
tion is not suitable for our error correcting goals in this thesis. However, the
basic idea of hot mirroring could be used with a slightly modified scheme.
For example, for different types of error scenarios and type of data we could
choose the RAID level with parity that is most appropriate. In another words,
more error prone transmissions and sensitive data are stored to the RAID
level that has better reliability or other features like FEC block size. How-
ever, the data should constantly be stored in one type of RAID level. This is
because the client that receives the data has to be aware which coding algo-
rithm and FEC block size is in question at the time.

2. Parity Logging Overcoming the Small Write Problem in Redundant
Disk Arrays

Stodolsky et al. [47], has a solution, parity logging, to the small write prob-
lem for RAID level 5. This article focuses on one special problem area. Parity
logging is proposed to resolved the small write bottleneck. In this method the
small updates that produce only small amounts of new parity are “logged”,
or stored until enough parity information is gathered for larger updates.

44

Comments: The article does not have relevance to INSTANCE if we con-
sider the FEC aspects in this thesis. The article does not propose any methods
e.g., for striping that could be utilized in INSTANCE. However parity logging
itself could be utilized as a method for better performance in RAID only.

3. Parity Declustering for Continuous Operation in Redundant disk Ar-
rays

Holland et al. [23], examines a parity-based redundancy scheme called
parity declustering. The method introduced by Holland et al. focuses on
how to keep RAID on-line during disk crash and reconstruction, and having
minimal impact on system performance. An airline reservation system is one
example of a system that has to be on-line continuously. The goal he has is
to minimize reconstructing time and minimize the affects of reconstructing.
An example of such an affect is a load imbalance during one disk crash when
all other disks besides the crashed disk are accessed.

In parity declustering the number of parity stripes, i.e., a logical array, is
arranged into a larger physical array. In a physical array one stripe is larger
than a stripe in logical array. With this arrangement, one stripe can include
several stripe units (data or parity units), from a logical array. The benefit
from this arrangement is that not every disk is involved in the reconstruction
of a parity stripe. Uninvolved disks stay idle during this time.

The parity declustering algorithm is suitable only for systems that have to
stay on-line. For other systems, the conventional method is more effective.

Comments: The idea of having RAID functioning on-line during disk fail-
ure is also interesting in INSTANCE. Since we intend to store multimedia data,
the continuity of data availability for transmission is important. The mini-
mizing of recovery time from disk crash also has a benefit in INSTANCE. The
algorithm for striping does not have an impact to the FEC requirements on
transmission. The redundant data is available in the disks as in conventional
RAID.

4. Fast, On-Line Failure Recovery in Redundant Disk Arrays

Holland et al. [24], introduces a disk oriented reconstruction algorithm in
his study. This method is investigated in two environments: RAID level 5 and
declustered parity. Declustered parity was first introduced by Holland et al.
[23].

The reconstruction process is associated with with one disk instead of

45

stripes. This means that as many reconstruction processes can be started as
there are disks. Unlike parity stripe oriented reconstruction algorithm, in a
disk oriented reconstruction algorithm, more than one stripe is buffered for
the reconstruction algorithm. This requires more buffer place than the con-
ventional parity stripe algorithm.

Comments: The method proposed by Holland et al. does not differ in
the requirements we have with our study in this thesis. Since this method is
an improvement on the parity declustering discussed, we come to the same
conclusions in the previous article investigation.

5. EVENODD: An Optimal Scheme for Tolerating Double Disk Failures
in RAID Architectures

Blaum et al. [9], introduced a coding method for RAID that tolerates dou-
ble disk failures.

The EVENODD algorithm can be implemented in software or in hardware
depending on the application. EVENODD can be used in other applications
where there it is necessary to correct two erased symbols with low complex-
ity. The scheme Blaum et al., used is implemented on RAID level 4. However,
it is possible to distribute parity to all disks, like in RAID level 5, to avoid the
write bottleneck that is typical for fourth level. He points out that EVENODD
can be implemented on standard RAID-5 controllers without any hardware
changes.

EVENODD is capable of correcting two disk failures, therefore it needs
two disks for redundant information. The calculations for parity are done
horizontally and diagonally with simple XOR calculations. This calculation
scheme has influence from the sixth level RAID introduced earlier in this
chapter. The example in the article is introduced with seven and five infor-
mation disks plus two parity disks. However, Blaum et al. points out that the
procedure also works for disks with arbitrary capacity.

Blaum et al., has compared EVENODD to traditional parity based schemes
and Reed-Solomon based schemes. The advantages of EVENODD are : 1) It is
possible to implement with standard parity hardware. 2) It is available in e.g.,
fifth RAID level. He points out that RS schemes require special hardware to
support a finite field type of computations.

Comments: This article is a good example of how reliability can be in-
creased without complicating the parity computation methods. However, in
this thesis, we have to consider how this method could be utilized in this
thesis. The parity calculation, whether it is XOR or RS, is not the first thing

46

we have to address: Determining which stripes are involved in parity calcula-
tions is even more important.

In our approach to INSTANCE, it is important that the parity data is also
easily accessed. As earlier explained in Chapter 4, the FEC block that is trans-
mitted over the channels has some requirements. Because of the receiver side
decoder, it is required that the coding environment does not change. In other
words, the receiver side needs to know the size of FEC block in the encoder,
and have the same coding method. This means that RAID cannot change
methods on the fly, even if it would create a more efficient storage system
and error recovery possibilities. The striping problematic is discussed closely
in Section 7.1.1.

6. Combined RAID 5 and Mirroring for Cost-Optimal Fault Tolerant
Video Servers

Biersack et al. [7], has proposed combining RAID level 5 and mirroring to
create an effective data storage system for multimedia purposes.

RAID level 5 and mirroring are combined in this solution. The new RAID
can be used for multimedia purposes. The reason for this arrangement is
that the RAID level 5 is not effective enough during the disk crash for a video
server. The services are reduced during the disk crash because of reconstruct-
ing processes. The reconstructing processes reduce the availability of data.

To avoid a reduction in service level, Biersack et al., has proposed two
classes of video objects: hot and cold. For example, hot video objects are
stored mirrored and cold video objects are stored on RAID level 5 style. The
logic behind this arrangement is that popular movies belong to the hot class,
and less popular movies are in the cold class.

The hot class movies are made easily available since the direct copy can
be sent to the client in case of a disk crash. The clients that access movies in
the cold class, must wait while reconstruction coding takes. However, the less
popular movies are not accessed as often and the process of reconstructing
does not include as many clients as in the hot class accesses.

Comments: The proposal to combine mirroring with the RAID level 5 is
an appropriate solution for video servers. However, in our approach, we need
to send redundant information in the transmission also. In mirroring, only
a copy of the original data is stored. Therefore, mirroring does not provide
parity information. For our purpose, this kind of arrangement is not suitable
because we need the parity information in transmission FEC.

47

NR FEC, Algorithm Problemarea RAID level Basic Idea Conclusion

1 • FEC not
explained

A method of hiding par-
ity update penalty and
degradation during
rebuilds for RAID 5

• mirrored
• level 5

Storage space is partitioned into
two regions:
• high performance and low

storage efficiency.
• RAID 5 region - low perform-

ance, highstorage efficiency

Hot block clustering in
hot mirroring achieves
higher performance
than conventional
RAID 5 arrays.

2 • XOR with some
modifications,
does not consider
more powerful
codes

To reduce the cost of
small writes.

Mirroring, floating
storage and level 5

Journaling techniques to reduce
the cost of small writes. Com-
paring mirroring, floating stor-
age and level5 with parity
logging

Better performance
than level 5.

3 • disk-oriented
reconstruction

• parallel stripe-
oriented

• XOR

Fast, On-Line Failure
Recovery.

• declustered parity
• raid level 5

Disk oriented reconstruction
instead of stripe oriented.

When utilizing arrays
excess disk bandwidth
they get improvement
in failure recovery time
with a small degrada-
tion in user response
time during failure
recovery.

4 • parity decluster-
ing

How to get higher user
throughput during
recovery and/or shorter
recover time.

• new scheme com-
pared to level 5
and mirroring

Declustered parity organization
for balancing cost against data
reliability and performance dur-
ing failure recovery. Reduces the
additional load during recon-
struction of disk.

Proposal improves
standard parity organi-
zation.

5 • EVENODD
• XOR

How to tolerate double
disk failures without a
lot of redundancy .

• extension of
level4

• can be done as
level 5

Simple parity scheme. (x2.
because of two parity disks)
Parity on the two last disks.
Capable of correcting two eras-
ures.

Advantage is that we
need only parity hard-
ware.

6 • combined parity
based (or level5
i.e RS) with mir-
roring

How to make a video
server tolerant against
all single disk failures.

• Level 5 + Mirror-
ing

When combining level 5 and
mirroring how to achieve 100%
service availability when operat-
ing with a failed disk with lowest
possible cost

Proposals for how to
gain I/O bandwidth dur-
ing failed disk opera-
tion is given.

NR FEC, Algorithm Problemarea RAID level Basic Idea Conclusion

Table 5.3: Related work to RAID, articles 1 - 6

The next two articles introduce other issues that include some informa-
tion related to our work:

Coding techniques for handling failures in large disk arrays

Gibson et al. [22] has discussed how parity calculations are done in one
dimension and in two dimensions. A typical two-dimensional method is
introduced in RAID level 6, where P&Q redundancy is calculated in a two-
dimensional way. Two-dimensional parity is correcting two erasures. Erasure
is used in this paper, because his failure model is erasure. Since disk con-

48

trollers identify the crashed disk, it is said to be erased.

Codes introduced by Gibson et al. are able to protect against catastrophic
disk failures e.g., head crashes or controller electronics failures. However,
the codes presented do not protect against data loss due to failure of power,
cabling, memory or processor.

Comments: This article introduces the idea behind the dimensions in par-
ity calculations and how they can be used. However, we cannot utilize the
benefits from two-dimensional parity in INSTANCE. Reasons for this are dis-
cussed in Chapter 7.

A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems

Plank [36] presents RS coding in RAID-like systems. With RAID-like sys-
tems, Plank means both network file systems and fast distributed checkpoint
systems as well as RAID. Planks also includes an introduction to the RS algo-
rithm and some good examples of it in practise in his paper. He also briefly
introduces some other coding methods, like one and two-dimensional parity.

Comments: This tutorial is easy to understand and gives a simplified ex-
planation of how RS coding can be implemented. This paper gives basic in-
formation directed towards the systems programmer. However, the reader
has to have some basic knowledge of coding theory.

5.5 Comparison of Related Work

A brief overview of the issues that were discussed in the last Section is given
here. Most of the related studies in RAID focus on reducing the affects of
the bottlenecks that are specific to each RAID level. These types of studies
do not usually have direct relevance to our work in this thesis. Some articles
create new methods by combining different RAID levels, like [7] and [33]. As
discussed earlier, these combined RAID systems are not appropriate in our
approach if they do not include parity information. These are the reasons
why these studies seldom have useful methods that can be utilized in this
thesis.

In INSTANCE, we must have a clear possibility to read the parity infor-
mation from the disks. This creates some restrictions to striping and to the
stripe units. Parity information has to be suitable for transmission protocols,
and the availability of parity information must not be prohibited. Some ad-
justable parity calculations like adaptive RAID methods, as in [33], are not

49

preferable due to transmission of parity information. Only methods such as
parity declustering, that do not interfere with requirements in in this thesis,
can be considered. These issues are elaborated in Chapter 7.

Usually, the related studies focus on the RAID levels that have the possi-
bility to be improved the most. Because of the typical bottlenecks with parity
disk, RAID levels two and four are not better solutions than RAID level 5. Be-
cause RAID levels one and three can be viewed as subclasses of RAID level 5,
it is natural that the studies concentrate on RAID level 5. This is a fact which
is also pointed out later in Chapter 7.

50

Chapter 6

Overview of Error Correction in
Communication Protocols

In this chapter, an overview of the possibilities to detect and correct errors in
data transmission are given. In the first section of this chapter, we introduce
various communication protocols and how they manage failures and error
situations. In the last section, an overview of error coding methods is given
by investigating related works among FEC in transmission. Each approach is
evaluated with respect to its capability to detect and correct errors.

6.1 Transmission Protocols and Error Correction

In computer networks, protocols are used to establish and maintain connec-
tions, or control connectionless traffic between applications. These applica-
tions can be located in the same network or distributed over several locations
in different networks. Among these protocols are Transmission Control Pro-
tocol (TCP), User Datagram Protocol (UDP), Asynchronous Transfer Mode -
Adaptation Layer (ATM - AAL), eXpress Transport Protocol (XTP), and Trans-
mission Protocol++ (TP++).

The demand for error correction is ruled by the QoS level needed in each
case where data is to transmitted. For example, consider transmitting of real-
time data: the transmission does not have to be fully reliable. Real-time data,
e.g., audio and video, only needs to get to the receiver in the right order and
without delays. Protocols that detect errors can be adequate for real-time
data transmission. As discussed earlier in Chapter 3, a telephone conversa-
tion is understandable even with small breaks caused by errors.

Protocols which are able to detect errors but cannot correct them are usu-
ally used for data transmissions that do not require guaranteed delivery. One
of these protocols is UDP which is a connectionless transport protocol. UDP

51

delivers data in less demanding applications and is used for data that does
not need highly guaranteed delivery because it provides very few error recov-
ery services. Data reliability is defined by the protocol, not by the application.
UDP can be used to distribute audio or video streams to several receivers si-
multaneously, but does not offer any error control other than checksum tests.

Checksums are computed for each frame. The simplest way is to use XOR
calculation to create parity bits. The checksum is calculated at the receiver
again. Incorrect parity reveals the corrupted data. In UDP, a packet, that fails
the checksum test is discarded with no retransmissions.

Some protocols provide better data integrity by requesting retransmission
of corrupted data. For example, XTP uses checksums and has the ability to
require retransmission if needed. XTP is a high performance transport pro-
tocol designed to meet the needs of distributed, real time, and multimedia
systems in both unicast and multicast environments [5]. XTP has the ability
to use burst and rate control dynamically. It can control the size of data to
be sent and how much data is sent at a time.

Error control, flow control, and rate control are each configured to the
needs of communication in XTP. XTP supports three types of error control:
1) the fully reliable mode, which is used in applications like file transmission,
2) UDP like unacknowledged services, and 3) fast negative acknowledgments
which also uses a fastnack option that identifies an out-of-sequence deliv-
ery immediately. Without the use of time-outs, missing data is retransmitted
immediately. XTP has another option when carrying digital voice and video.
This option is called noerror mode. This mode suspends the normal retrans-
mission scheme. The first packet is sent with a flag that instructs the receiver
to always report that no data has been lost. In XTP, a user is allowed to
define whether or not a transmission is acknowledged, and lost TDUs are re-
transmitted. Choices for retransmission in XTP are Go-Back N and selective
retransmission (see Section 3.2.3).

In XTP, detection of errors is accomplished by sequence numbers, length
field and checksums. XTP packets carry two checksums. XTP uses the two
checksums over the XTP packet contents to verify the integrity of the data
received through the network. Erroneous packets are discarded and retrans-
mitted.

Retransmissions are also used in TCP. Like XTP, TCP has both Go-Back
N algorithm for providing high data integrity. TCP is designed to be fully
reliable and to adapt to various properties of the Internet. TCP provides er-
ror free data transmission. This is achieved by using packet retransmission
which use the Go-Back N algorithm. This is why TCP is not capable of the

52

unrestricted flow that is needed in, for example, real-time systems. TCP uses
sliding window protocols, timers and checksums to provide reliability. For
example, congestion control is regulated by manipulating the window size.

Compared to TCP, XTP has many more possibilities for transmission of
data, but neither XTP nor TCP provide FEC for quick error recovery to gain
data integrity. At the present, it is more realistic to assume that the physical
transmission of data is basically reliable. This is why Strayer et al. [48], point
out that it is not very actual to have FEC system available in XTP. However,
XTP’s noerror mode is not adequate in all situations when transmitting real-
time data, especially if the channel has a tendency to become congested due
to low bandwidth or a high traffic rate. Protocols which can provide FEC are
of interest because of their relevance for INSTANCE. For example, TP++ and
AAL protocols have been examined with various FEC models.

Like XTP, ATM was designed to be suitable for fiber optic networks, which
are highly reliable. Therefore, error control is left to the higher layers [49],
e.g., for Adaptation Layer (AAL). Four protocols in the AAL layer AAL1, AAL2,
AAL3/4 and AAL5, are made to support various services for requirements.
For example, services supported by AAL 5 are: reliable, unreliable, unicast
and multicast. AAL 5 is capable of detecting lost, wrongly inserted or missing
cells with CRC. In addition to CRC, AAL has ARQ to guarantee data integrity.

So far, none of the discussed transport protocols in this chapter have FEC
as a standard. The next protocol introduced, TP++ [18], also has FEC as an
error correction method. TP++ is a transport protocol for multimedia ap-
plications that operate across heterogeneous high-speed networks. TP++ is
capable of carrying voice and video, small transactions in distributed systems
and larger amounts of data also. TP++ is designed to handle data loss caused
by congestion and packet disorder caused by multipath routing [18].

The FEC code used in TP++ is RSE code [31], which was introduced earlier
in Section 4.5.3. TP++ uses FEC for error correction and ARQ for retrans-
mission of lost data. The error detection code is calculated with the help of
polynomials using the parity principle. The minimum Hamming distance is
four, and the code is capable of detecting all errors that change less than four
bits [18]. In the next section, research and papers that combine FEC coding
with different transmission protocols are investigated.

53

6.2 Forward Error Coding in Transmission

The error correcting methods for transmission were briefly introduced in Sec-
tion 3.2.3. A closer examination of FEC coding was given in Chapter 4. Instead
of going back into detail concerning FEC correcting methods in transmission,
we investigate papers which describe FEC in action with transmission proto-
cols.

These articles study e.g., the flexibility of methods and possibilities to
combine FEC with other methods in transmission. The articles investigated
in this section are summarized in Tables 6.1 and 6.2. These tables give a
review to the main topics: in which environment and what problem areas are
solved with FEC.

6.2.1 Related Work about FEC in Transmission

The study of related work in this section are focused on: 1) environments, 2)
problem areas, 3) problem solving, 4) FEC coding methods, and 5) conclusions
that are described by authors. Whether or not the methods or design goals
proposed in the articles can be utilized in our approach are also discussed.

1. Reliable Broadband Communication Using a Burst Erasure Correcting
Code

McAuley discusses why the best alternative for error correcting in broad-
band communication is FEC and introduces the RSE coding method. This
work was investigated earlier in Section 4.5.3: therefore, only comments are
introduced here.

Comments: This article describes basic information about the error cor-
recting possibilities in current transport protocols. The focus rests on ATM
type networks. McAuley [31] compares ARQ to FEC and points out the major
benefits that FEC has. Further, McAuley specifies the recommended charac-
teristics in RSE and FEC on broadband channels. Since RSE coding technique
is widely used in other articles, we consider how it suits our purpose. There
are basically not any major hindrances preventing the integration of RSE in
RAID and TP. However, we have to consider some details like stripe size com-
pared to cell size; and how these details can be realized in implementation.
Further discussion about this issue is presented in Section 7.2.1.

54

2. Performance Evaluation of Forward Error Correction in an ATM En-
vironment

Biersack [6] has studied the performance of FEC in an ATM environment.
In this paper, he first gives an explanation of ATM and explains which the typ-
ical errors exist. These are bit and switching errors and cell losses. Switching
errors occur due to corrupted cell headers. Biersack points out that cell losses
due to congestion are more common than the other two types.

Because of the disadvantages ARQ has (e.g., not applicable for low latency
sensitive traffic), Biersack has studied FEC as an alternative for ARQ. Accord-
ing to Biersack, the use of FEC presents two effects in data transmission. The
first effect is unavoidable redundant information, also called overcode. The
second effect is an overall load due to increased overcode, which increases
the cell loss rate. These two antagonist effects are often a starting point for
further discussion and testing in many other studies. For example, how much
redundancy it is possible to add to the transmission before it causes conges-
tion and FEC becomes meaningless.

The algorithm used in Biersack’s experiments is RSE. Each decoded cell
includes a sequence number to be able to identify which cells are missing. A
characteristic of RSE is that original cells are not modified and are transmit-
ted regardless of redundant cells. Therefore, decoding delay is minimal if all
original cells are received. Biersack studied various traffic scenarios where
video (with a variable bit rate) or burst sources (bulk data or transactions) are
transferred either homogeneously or heterogeneously, i.e., video and bulk
data together. The heterogeneous scenario includes 24 video sources and
eight burst sources.

Biersack points out the performance of several scenarios and concludes
that the homogeneous scenarios were not effective with FEC. This is due to
findings from the video transmission scenario: the increased value in load
due to FEC also increases the block loss rate. When there were many FEC
sources the load was also increased. This causes an increase in the block loss
rate and gain becomes low or even negative.

In bulk data transmission, the high levels of overcode cause significant
cell loss rates and makes FEC ineffective. With other words, the cell loss rate
depends on the burst rate. This scenario has the same type of behavior in
gain as the video transmission scenario. Biersack recommends an ARQ based
loss recovery scheme for the retransmission of the lost messages. However,
Biersack found that FEC is effective for heterogeneous traffic scenarios and
that gain from the FEC sources varies with the load, the amount of over-code
and the relative number of sources using FEC. The cell loss rate and block

55

loss rate were moderate in the heterogeneous scenario. When the overcode
amount was high or the load was low, the block loss rate was lowest. How-
ever, increasing the amount of overcode beyond 20% from the original data
did not give better results.

Comments: Biersack presents basic facts and information about errors in
ATM type networks. The comparison of ARQ and FEC is also valuable when
designing TPs. Biersack has given useful scenario findings such as results
that give the limit for redundant code in transmission. These results can
help design the FEC code for RAID and TP. We have to address the problems
in choosing the parity information ratio to original data. This is because, we
have to avoid congestion and simultaneously increase TDUs in the transmis-
sion.

3. Forward Error Correction Control on AAL5 : FEC-SSCS

Kanai et al. [27], present a novel FEC model for ATM AAL called FEC-
Service Specific Converge Sublayer (FEC-SSCS). They introduce a FEC scheme
that uses variable size packets and can easily modify the redundant data
length, even during session.

The article compares TCP/IP packets to ATM cells and concludes that an
ATM type network is a kind of packet network. If TDU from TCP/IP net-
works is sent over an ATM type network, it is divided into smaller units:
cells. Therefore, one single cell loss can cause a retransmission of the whole
TDU. Kanai et al., point out, how serious a problem this is for high speed data
transmission services with small latency requirements. Especially in multi-
cast services, a packet error due to bit errors will linearly increase with the
number of receivers.

Kanai et al. mention other issues that can degrade performance in data
transmission. These are unexpected congestion and poor data transmission
performance for packet flow with a large delay and bandwidth product. Unex-
pected congestion happens when end-stations and switch nodes misbehave
or when traffic fluctuates. The motivation for the study in this paper is to
reduce the cell loss and the loss of larger TDUs in TCP/IP type networks at
the same time.

Kanai et al. also discuss where FEC should be located in the protocol
stack. The advantage of having FEC at the AAL level comes from the error
correcting capability in bit errors and cell loss. Modification of upper levels
is therefore unnecessary. If the FEC scheme was at the physical level, only bit
errors would be corrected, which would not be adequate. However, they point
out that this scheme could be applied at the application or physical level.

56

Kanai et al. describe sender and receiver behavior. They do not discuss
the FEC algorithm closely. However, they do mention that the error detec-
tion is done with CRC. If the detected error is located on redundant TDUs, no
further FEC calculations are made. Therefore, this method spares processing
time and effort because no unnecessary FEC calculations are performed.

In the performance evaluation, Kanai et al. found out that even if FEC does
cause some increased latency, the results are better with FEC than without.
Especially if a larger amount of redundant cells were used, they got better
latency characteristics even at large cell loss ratio. The efficiency was also de-
pendent upon the parity information ratio in the FEC scheme. However, the
network cell loss pattern gives a guideline for choosing the most appropriate
amount of parity information.

Comments: This article presents a good example of the dilemma which
can occur also in our approach. The dilemma is: how should the packet size
be adjusted to fit the transmission data units? In our approach the question
is: how should one adjust the stripe size to suit the TDU size in transmis-
sion? For example, the original TDU size can be equal to one stripe unit
in RAID. If large data units are used in RAID, we have to divide them into
smaller units for transmission. Therefore, this dilemma is comparable to the
dilemma introduced by Kanai et al. This issue will be discussed in greater
detail in Chapter 7. Another useful method proposed in this article is the use
of CRC to recognize lost cells. No processing time for FEC is used if all of the
cells are received.

4. A Cell Loss Recovery Method Using FEC in ATM Networks

Ohta and Kitami [34] propose a new cell loss recovery method to be ap-
plied to Virtual Paths (VP) of ATM networks. The problem area they preview
is cell loss due to congestion. They focus on consecutive cell discards. Ohta
and Kitami discuss the cell discard process and compare cell loss methods
applied to Virtual Circuits (VC) and VPs. They have proposed a method to
avoid discarding consecutive cells due to buffer overflow. They present two
approaches in cell loss recovery methods: End-to-End and Node-to-Node.

In the End-to-End approach, i.e., from terminal equipment to terminal
equipment, cell loss detection is accomplished using sequence number checks.
An FEC decoding/encoding delay is large with this method and requires an
installing processing circuit for each terminal. This is why Ohta and Kitami
introduce the Node-to-Node approach in their paper, which is described be-
low.

57

Effective cell loss detection is important in the Node-to-Node approach,
because lost cell position information transmission is required. This ap-
proach reduces the average decoding/encoding delay due to high speed pro-
cessing and allows VCs to share the FEC equipment. Because of the advan-
tages of the Node-to-Node approach, Ohta and Kitami introduce an efficient
cell loss detection and recovery method for VPs.

The calculation for FEC coding is based on a matrix where all cells belong-
ing to a specific VP are grouped. A single parity check code is applied with
erasure correction which minimizes encoding/decoding delays. A Cell Loss
Detection (CLD) cell is used to detect cell loss. CLD also has its own parity
cell. CLD cells and parity cells have the same VPI and length as data cells.
Original data remains unchanged.

Ohta and Kitami give a detailed description of the reconstruction of the
lost cells. Information fields that identify different cells, Cell Recognition Pat-
terns (CRP), are used in the coding of the cells. In original data regenerating,
modulo 2 calculation is used. If the result is 0, then no cells are missing.
Otherwise, the result is the value of the discarded cell.

The evaluation that Ohta and Kitami describe, is given for cell loss rate
improvement, reductions of bit error influence, and coding/decoding delay.
One of the interesting observations is that the encoding delay time is small
because cells do not have to be buffered. Only CRP’s and parity cells are
stored. They also noticed that large matrices were preferable if VP occupied
a large portion of its assigned transmission line capacity. In addition, they
point out how cell loss could be reduced with the methods for bit correction
mentioned above.

Comments: This article is not directly relevant to this thesis. This is
mainly because FEC in the VP’s only is not adequate. We need an FEC that is
possible to attach to the terminal equipment, i.e., RAID and receiver, and not
only to the VP. In addition, this article points out the problem how adding
redundant information to the transmission increases the risk of congestion
and thereby the loss of consecutive cells.

5. Adaptive Error Correction for ATM Communications using Reed-
Solomon Codes

Almulheim et al. [1], has experimented with Reed-Solomon coding to cor-
rect errors within ATM type networks.

Almuheim et al. point out that ARQ is not suitable for satellite links where
retransmissions are too expensive. They also refer to another study that ar-

58

gues for the advantages of FEC with multicast [31]. However, they remind
how conventional FEC [31, 34] can cause added processing overhead in ATM
communication. This is why they introduce a new FEC technique that is based
on RS codes.

Almuheim et al. have focused on RS coding that can adapt to the chan-
nel capacity and characteristics. This method can adapt to the requested
QoS level and adapt to the level of congestion and noise. In the adaptive RS
code they have three parameters instead of the conventional two. RS(n, k, l)
where n is original data + redundant data size. k refers to the redundant
data size and l is the measure of information symbols dropped from the
original RS(n, k). The reasoning behind this idea is to send only k − l cells.
This method has two two benefits. The first is increased protection against
errors, because the n to k ratio is relatively small. The second benefit is the
decreased congestion problem when less information is sent. Also, the end-
to-end delay associated with transmitting a block is reduced.

Almulheim et al. introduce the adaptive FEC. The algorithm in this code is
RS code which is similar to McAuleys[31] code. The performance analysis is
done by comparing the adaptive FEC to conventional FEC. One of the perfor-
mance measures was end-to-end delay encountered by a block of data. The
observation they made was that the conventional FEC had a stable end-to-end
delay, while the larger blocks of data in adaptive FEC had an effect delay. The
smaller the data block is, the larger l becomes. Therefore, end-to-end delay
decreases and correcting capability increases. The worst delay for an adap-
tive FEC was equivalent to the delay with conventional FEC. The conclusion
is that the versatile adaptive FEC can decrease the effect of congestion and
increase channel utilization.

Comments: In our approach to FEC, we use the parity information that
is encoded on the disks. Almulheim et al. propose an FEC method that can
adapt to the channel conditions. This is a good feature since we can reduce
the parity information send on the channel. Hoverer, the question is: is it
possible to encode the required amount of data in the RAID system in ad-
vance? Date encoded into RAID in advance would need complicated coding,
since the parity information would be updated whenever the channel capacity
changes. We can reason that this solution would cause a great deal of coding
effort in RAID. Therefore, RAID in INSTANCE prohibits the kind of adaptivity
that is described in this article.

6. Block Loss Reduction in ATM Networks

Srinivasan et al. [44] describe the metric block loss rate in real-time appli-
cations and high-level protocols e.g., IP that use ATM as a transport mecha-

59

nism. Srinivasan et al. point out why single cell loss from a consecutive ATM
block may cause the loss of the entire block. Srinivasan et al. have studied
two approaches to the block loss problem. The first method is to set high pri-
ority the types of messages that get through first. The motivation is to limit
cell loss for high priority customers at the expense of low priority customers.
The second method is to use FEC. The code utilized in this paper is the same
RS burst erasure code as McAuley [31] presented.

Srinivasan et al., introduce a hybrid block loss reduction scheme that uti-
lizes a selective discard mechanism, which is a system for discretionary se-
lection of the cells in the queue. Srinivasan propose a solution that combines
both of the approaches, priority and FEC. The cells are market with high or
low priority before they are sent to the channel. High priority means that
the session does not use FEC. High priority cells arriving to the full buffer
can push out cells with lower priority. High priority cells are lost only if the
buffer is filled with only high priority cells.

To avoid the problems in high traffic loads, Srinivasan et al. introduce
a buffer management policy called Adaptive Pushout (ADP). This policy ac-
counts for correlations in cell loss behavior. A low priority cell is dropped
from the full buffer if it is still possible to gather one FEC block. This method
works with principle which tells how many cells can be lost and yet code all
original data in one block with the help of redundant cells. The subsequent
cells from a block are discarded if too many cells are already lost, i.e., one
FEC block is lost.

According to Srinivasan et al., the best result in simulations were with 30%
redundant information when all sessions used FEC. This is because the cell is
lost only in unavoidable situations. They also observed that when the number
of sessions using FEC is larger, the cell losses do not occur consecutively, but
are spread out. This is exactly the improvement to the problem they focused
on in this paper.

Comments: The method Srinivasan et al. describes is useful for transmis-
sion with an extra quality guarantee if we want to have the choice to send data
with or without redundant information. Hoverer, the method ADP, proposed
by Srinivasan et al., is not relevant to the methods we are interested in RAID
and transmission. As earlier mentioned, an adaptive FEC coding method is
not the most appropriate choice for us.

60

7. Providing Support for Data Transfers in a New Networking Environ-
ment

Schatzmayr et al. [42] has pointed out the benefits of flexibility when
adapting different QoSs in networking environment. They introduce a new
transport protocol: RAPID. RAPID is capable of adapting to different user
needs in data transport and runtime environment facilities.

The reasoning behind the new transport protocol RAPID is the develop-
ment of physical mediums, large bandwidths and low noise levels. In addi-
tion, the emergence of multimedia applications with different requirements
than before is giving new challenges to transport protocols. Specifically,
the diversity of multimedia data characteristics requires adaptivity from the
transport protocol. These requirements can be e.g., desired error rate or tim-
ing constraints that are limiting retransmissions.

Schatzmayr et al. point out the typical problem areas in transmission that
are also discussed earlier in this chapter. If the network’s reliability degree
must be improved, four FEC algorithms can be introduced in the protocol.
These are algorithms from simple XOR type calculations to more complicated
RS coding. The idea with many different algorithm choices is that the sim-
plest algorithms are less bandwidth consuming schemes. The FEC algorithm
is processed in one processor. FEC and data transfer protocols can be pro-
cessed independently.

Comments: RAPID is able to adapt its mechanisms to different require-
ments. We could choose one of the FEC mechanisms and use it in our ap-
proach. However, it would be against the principles behind RAPID to tie up
the transport protocol to follow one profile. The basic idea of RAPID is the
adaptivity and the freedom to change the requirement profile. It is better to
have only one simple transmission protocol with FEC first, to see how the
integration of FEC with RAID work. Then it is reasonable to study whether
the transport protocol can be designed to be more flexible like RAPID is.

8. Adaptive Error Correction to Support Heterogeneous Multicast Groups

Dresler et al. [15] has proposed a method to combine IP with FEC. Because
TCP does not support real-time transmissions and multicast, they have con-
juncted IP with UDP. Since UDP and IP do not have error correction, FEC is
included.

For this purpose they propose Adaptive Layered FEC. Different streams
are sent for different receiver groups in this method. For example, one data
stream with FEC and another data stream without FEC. The receiver can de-

61

cide which receiver groups to join. Receivers can also change group if needed
due to channel conditions or FEC requirements.

The redundant information is computed from the user data in IP packets.
The most suitable coding for this purpose is XOR or RSE. It is possible to
adjust the amount of redundancy with actual code in RSE, which is a more
advanced code. Dresler et al. propose an RS(255,251) code where four redun-
dant packets are computed (see Section 4.5.2). They also point out that it is
possible to shorten the code class by adding virtual zero packets to the user
data before encoding takes place. By virtual packets they mean zero packets
that are not sent. The receiver reinserts zero packets before encoding. This
method has an advantage for transmissions that do not tolerate much of an
encoding/decoding delay such as audio and video transmissions.

Comments: Adaptive layered FEC is suitable for systems that can tolerate
some packet loss but not retransmission delay, like audio and video trans-
fers. Dresler et al., also propose a methods for less powerful receivers where
local retransmissions are used. This method is not considered in this thesis
and is thus, not described here. Hoverer, the idea of a receiver selecting the
an adequate group for the transmission type with or without FEC could be
utilized in INSTANCE. RAID systems can contain different types of data like
audio, video or text. It is not necessary to have full reliability for all types
of data in this case. Some receivers can afford longer delays or some packet
losses and can choose the appropriate receiver group. How this could be
implemented in INSTANCE is an interesting question. This will be discussed
further in Chapter 7.

9. Adaptable Error Control for Efficient Provision of Reliable Services
in ATM Networks

Carle [11] proposes two new ATM adaptation layer protocols for real-time
and multicast requirements. The motivation behind this research is to avoid
high cell loss rates and to design protocols for an adaptation layer that pro-
vides the necessary QoS needed.

The framework introduced by Carle is adaptable for cell loss rate. It
should be possible to choose a suitable error correcting scheme for each
cell loss rate in this framework. For light traffic and low cell loss rate, Re-
liable Lightweight Multicast Protocol (RLMCP) is proposed. Error correcting
is performed with retransmissions in this protocol. Retransmissions are per-
formed either with the go-back-N or the selective repeat method. It is possible
to change the frame size to suit different traffic loads. RLMCP does not have
FEC or checksums.

62

The Reliable Multicast ATM Adaptation layer (RMC-AAL) is proposed for
high cell loss rates. This protocol utilizes the benefits of ARQ and FEC.
This protocol has three schemes for error recovery. It uses either pure ARQ,
ARQ and FEC or only FEC. Carle proposes encoding and decoding that is ei-
ther done with XOR operations or with an algorithm that is based on Reed-
Solomon codes [31]. Carle describes a performance evaluation for simulating
multicasts and concludes how the results are useful for selection of an error
control scheme and for dimensioning of frame sizes.

Comments: The three possible schemes in RMC-AAL can be compared
to other protocols like XTP or TP++. However, Carle points out that TP++
does not have multicast possibilities. The protocols proposed in Carle’s pa-
per focus on the adaptivity of the systems. We can conclude with the same
comments regarding Schatzmayr et al. [42]. The method introduced by Carle
is quite specialized for different purposes that only small parts of it would
be appropriate to utilize. It is therefore easier to utilize simpler transmission
protocols for our purpose.

10. Priority Encoding Transmission

Albanese et al. [3] introduce a new method, Priority Encoding Transmis-
sion (PET), for transmitting data over lossy packet-based networks. The focus
in this paper is to find out how to avoid packet losses due to congestion and
buffer overflows.

In PET, a message is partitioned into segments. Each segment has a pri-
ority value that specifies the fractions of packets sufficient to decode it. For
example, in video multicasting, they show how priority values can be used.
The example describes how an MPEG stream consists of different types of
frames: I, P, and B-frames. A frame that has the highest priority I-frame
can be displayed independently. The next priority A-frame needs informa-
tion from the I-frame to be displayed properly. B-frames refer to the I and
A-frames.

Comments: This method is presented only briefly because it does not
have direct similarities to the FEC we are looking for. As we can understand,
this method includes the coding possibility directly into the packets. If we
weight the needs of our system including striping in RAID, the priority based
FEC can become complicated. The problem is how to separate different frame
types in RAID. Calculations for disk reconstruction can be difficult if different
types of frames are stored in their own stripes and are furthermore depen-
dent on each other. This method needs a careful storage plan for the different
types of frames. We can conclude that PET is not suitable for our purpose but
is more specialized for specific services.

63

11. A multicast Transport Protocol with Forward Error Correction for
Satellite Environments

Linder et al. [29] present a new transmission protocol for multimedia ap-
plications in satellite environments called the Restricted Reliable Multicast
Protocol (RRMP). This protocol is intented to be used for multimedia appli-
cations like video or voice conferences or electronic newspapers, that do not
need strict reliability, but do need some level of control of the lost packets.
This new protocol is mainly used for satellite communication, but it is also
suitable for heterogeneous networks.

The starting-point for this study is packet loss in satellite channels due
to noise. They point out how the signal is more error prone to bit failure in
longer distances because of long delays and weather conditions. They present
various error correction possibilities, like ARQ, that are dependent upon the
QoS offered by the transport layer or the network layer.

FEC code in satellite channels is typically convolutional code, such as
Viterbi code: however, the algorithm used in this paper is based on RSE code.
This code is able to correct as many erasures as the amount of redundant
information sent. To recover one lost Transport Data Unit (TPDU), they have
proposed an interleaving technique. This algorithm is based on the partition-
ing of a Transport Service Data Unit (TSDU) into segments and chunks and
interleaving them. This allows recovery of the complete TSDU if other TPDUs
are received completely. The knowledge of the beginning of the TSDU and
the position of the TPDU within the TSDU, is restored in the header of each
RRMP TPDU.

This method is capable of specifying the amount of redundant control in-
formation and does not have services like ARQ. Therefore, it does not need
a backward channel for acknowledgments. It is preferable for FEC to be dy-
namically adjustable, since changing weather conditions are the major error
source for satellite channels. The user is able to adjust the amount of data
compared to error correction information.

RRMP was tested with different TSDU sizes and error rates. Loss rates for
TPDUs and TSDUs as well as the number of corrected TSDUs were counted.
They found out that code with a large ratio of original data/redundant data is
not recommended for usage over satellite links. When they increased the TS-
DUs size, the losses of them increased. This was caused by increased length
of RRMP TPDUs sent. Their experiments show that the throughput with RRMP
is comparable to TCP on high delay channels: at the same time the redundant
information ratio was hold relatively low.

64

Comments: The method proposed by Linder et al. is specially suited for
multimedia, video conferencing, and satellite communication. However, the
interests in this thesis remain on protocols that do not use ARQ.

12. The case for FEC-Based Error Control for Packet Audio in the Inter-
net

Bolot and Vega-Garcia [10] describe a method to reconstruct lost audio
packets. The environment described in this paper is a network that does
not guarantee bandwidth or performance measurements and do not there-
fore support real-time applications. For example, networks such as Internet
do not provide support for real-time applications. The problem is how to
distribute real-time audio packets over these networks without packet losses.
Bolot et al. is especially interested in the transmission of audio data and min-
imizing the effect of delay jitter and packet loss. A method in which the ap-
plication adapts to the best effort service currently provided by the network
is proposed in this paper. Therefore, delay variance and loss characteristics
are guidelines for audio encoding/decoding adaptation.

Bolot and Vega-Garcia give an overview of several FEC possibilities. The
simplest way is to replace lost packets with silence. An even better solution
is to copy the previous packet. They also introduce the XOR operation that
can solve a single loss in one group of XORed packets. Redundant informa-
tion was obtained by using LPC, GSM or 2-bit ADPCM coding. For every lost
packet, the receiver waits for the next packet and uses this to reconstruct the
lost one. However, this method is capable of recovering only isolated errors.
To avoid this problem, they propose to add redundant information in packets
or packet repetition.

Bolot et al. observed how it is likely to have packet losses due to high
traffic at specific time within a twenty-four hour period, and what the length
of these loss periods. They found out that loss period is usually one or two
packets. Measurements in multicast are essentially the same as those for uni-
cast.

Comments: The method in which Bolot et al. propose coding for au-
dio combines two different types of coding: Linear Predictive Coding (LPC)
and Pulse Code Modulation (PCM). PCM is a speech compression and decom-
pression algorithm and LPC is a compression algorithm used for low bit rate
(2400 and 4800 bps) speech coding. These coding methods for audio are not
related for us because we want to find the most appropriate FEC method for
all data types, not only for audio data.

65

13. Reliable IP Multicast Communication over ATM Networks Using
Forward Error Correction Policy

Esaki and Fukuda [16] introduce problems and problem solving issues
among IP multicast. They give detailed description of packet error/loss prob-
abilities and how to better QoS with FEC. This paper focuses on the problems
that appear when trying to provide error free multicast and how to provide
a large scale multicast when there are many receivers, because error loss
probability is larger when the number of multicast receivers is large. Esaki
and Fukuda also present problems that arise when receivers and senders are
widespread.

The issue that is focused on in this paper is the increased probability
of observed packet error/loss. With observed packet error/loss they mean
accumulated IP packet errors or losses. The probability increases linearly ac-
cording to the number of destination processes. Esaki and Fukuda propose
an end-to-end based FEC policy in the ATM cell level as a solution for this
problem.

The remainder of this article discusses the performance evaluation of IP
multicast over ATM networks. They found out that applying FEC dramatically
reduces the IP packet error or loss probability. They also point out that the
FEC frame length should be aligned with the IP packet length. IP multicast
with an FEC policy is successful because the probability of retransmissions is
sufficiently small.

Comments: This paper shows that FEC with IP is possible and that it is
capable of providing reliable transmission for multicast also. The FEC code
utilized in this paper is RSE. This means that this code can offer reliabil-
ity with different protocol combinations. The ideas proposed by Esaki and
Fukuda merely show the way what the possibilities are for FEC in the proto-
col stack. The use of FEC in INSTANCE does not depend on the aspects that
were pointed out about multicast. We are not primarily interested in multi-
cast solutions.

14. Error Correcting Codes for Satellite Communication Channels

Chen and Rutledge [12] focused on FEC for satellite channels. The errors
they wish to correct are double bit errors, produced by the differential de-
coder. Because single bit errors are highly unlikely, the code does not correct
them. Chen and Rutledge carried out probability calculations from the error
patterns to find sufficient code.

Calculations to the theory of modulation are established in this paper.

66

They also give some information about how modulation techniques are con-
nected with FEC. They preview a Quadri-Phase-Shift Keying modulation (QPSK),
that is a modulation technique for satellite communication channels. A class
of code that suites this purpose are Convolutional codes, such as codes that
are based on the truncated parity check matrix.

Comments: This paper introduces the traditional method for FEC with
satellite communications. However, this method utilizes convolutional cod-
ing and is out of our interest range.

6.2.2 Summary of Related Work

We can recognize the difference between computer networks and telecom-
munication systems. FEC is traditionally used in telecommunication and ap-
plications for multicast. As Rizzo [39] emphasizes, the telecommunications
world was first in developing FEC policies. The interest is to correct relatively
short strings of bits and implement them dedicated hardware. The benefits
of redundant information can be achieved easily. It is also logical to use FEC
in telecommunication, as it is usually comprehended as non-reliable. FEC is
added for better QoS.

Related works often point out the basic reasons for the use of FEC. In
telecommunication, noise is the main cause for error. Noise that causes
packet losses in computer networks can be compared to congestion. ATM
networks experience three types of errors: a) bit errors which corrupt the
data portion of a the cell header, b) errors due to connected corruption of the
cell header, and c) cell loss due to congestion [6].

Many works emphasize how congestion in ATM communications is a sig-
nificant issue, as it can have a dramatic effect on critical or real-time data. Cell
loss due to congestion is the main problem in transmission. Therefore, most
of these articles focus on correcting only erasure and not occasional bit er-
rors. Since an ATM type network is usually used for real-time transmissions,
ARQ is not suitable as an error correction method. Therefore, among related
works, FEC often stands in focus as an error correcting method added to AAL.

One example of the use of FEC in telecommunications is satellite links.
The drawback for satellite channels is attenuation. However, this problem
can be solved with FEC. Unlike satellite links, analog links do not have the
same possibility for error correction. Another usage that the articles focus
on is FEC with multicast environment. FEC is in many cases combined with
ARQ. This proves to be effective method.

67

We can find some similarities with all research done in related work in
Chapter 6. Much of the research concentrates on ATM and improving the
capabilities of AAL5. Reed-Solomon is proposed in many ways to guarantee
data integrity. In their works, strategies to avoid unnecessary redundancy
with e.g., adaptivity with new methods are proposed [15, 27, 34, 42, 44].
Adaptivity was seen as a questionable feature for the use in this thesis. This
is basically because RAID includes FEC parity information.

Parity information in the approach for this thesis is not calculated only
for the needs of a receiver at any given point in time. Therefore, parity calcu-
lation updating for adaptive needs leads to complicated implementation for
RAID. The only possibility for adaptation in integrated FEC in RAID and TP, is
either to choose to send redundant data or not. In other words, the receiver
has the possibility to choose whether to receive redundant information or
not. However, if redundant data is not sent, we are forced to implement a
re-sending strategy for transmission. Retransmission of data is not the basic
idea in this thesis. Data transmission without FEC is suitable for channels
that are reliable enough. Otherwise, FEC is included in data transmission.

Another similarity besides adaptivity is the FEC code proposed in related
works. For example, Srinivasan [44] and Stoc [46], among others, have utilized
the same algorithm McAuley [31] described in his paper. McAuley’s code is
designed for burst erasure and has a simplified algorithm. This is originally
the code that is designed for the TP++ [18]. RSE coding is also a coding al-
gorithm worth consideration in this thesis. Referring back to Chapter 5, RS
is also used for error correction in RAID. The implementation possibilities
for RSE and RS are discussed more closely in Chapter 7. The useful methods
from the related work we can point out the two works [6, 31] which gives a
basic information about the FEC in data transmission.

We can summon from earlier comments that protocols which are designed
to be used in certain areas, like adaptivity and service diversity, are not suit-
able methods for integrated FEC in this thesis. One of the reasons is the data
type we wish to store on RAID. One single strictly specialized transmission
protocol is not capable of transmitting all data types. In addition, far devel-
oped adaptivity prohibits the parity functionality in RAID. When multimedia
is in question, we need a transmission protocol that is flexible in handling
many types of data or many TPs that are specialized in one data transmis-
sion type.

68

NR FEC Algorithm Error to
Correct Environment Basic Idea Conclusion Other Issues

1 Simplified Reed-
Solomon erasure cor-
rection code
RSE

Error detec-
tion and cor-
rection of
burst erasures
due to conges-
tion

broadband network
TP++

Tries to find out how
RSE works in a broad
band network.

Points out how to provide
adequate service with RSE
in broadband network,
and also describes weak
nesses of this solution.

hybrid scheme:
FEC + ARQ

2 Reed-Solomon burst
erasure correcting
code

burst eras-
ures, cell
loss

ATM-type network,
video

Original + redundant
decoded information is
sent to recover cell loss

The loss behaviour
depends on the statistics of
the source and the traffic
scenario

multiplex-
ing,traffic
scenarios,
congestion

3 CRC for header
detects errors, FEC
algorithm recovers
data part,
RS ?

bit and/or cell
loss

ATM, AAL
level

FEC scheme at cell level
instead of packet level.
Reduce data transmis-
sions -> CRC. Variable
length packets

Sufficient throughput and
latency performance with
reasonable transmission
overhead.

CRC,variable
length user
data,
multicast

4 CREG-VP, a consec-
utive cell loss recov-
ery method, parity,
dummy cells, matrix

cell loss
detection , lost
cell regenera-
tion

ATM, VPs
virtual paths

New cell loss recovery
method to be applied to
virtual paths, reducing
coding/decoding delays
and facility sharing.

This method reduces the
cell loss rates of virtual
paths in ATM networks.

multimedia,
B-ISDN, cell
discard process

5 Versatile FEC con-
trol, based on Reed-
Solomon codes

cell loss
detection , lost
cell
regeneration

ATM FEC that can be adapted
to the level of conges-
tion and noise.

Versatile FEC provides an
effective throughput
higher than with conven-
tional FEC.

real time data

6 Reed-Solomon ,
RSE ADP, adaptive
pushout mechanism:
buffer management

cell loss from
ATM block,
cingle loss
from IP data-
gram

ATM networks,
IP

Priority based cell dis-
carding and FEC,
How to avoid IP packet
losses.

ADP perform remarkably
well with FEC. ADP
account for correlations
between cell losses.

ATM networks
block loss rate

7 RAPID transport pro-
tocol, depends on
network’s error char-
acteristics: Reed-
Solomon , parity
XOR, XOR matrix

Depends on
type of envi-
ronment and
QoS

Does not depend on
one specific, ATM
AAL5

Flexibility to adapt dif-
ferent QoSs

Unidirectional data trans-
fer capability and the abil-
ity to adapt its mechanisms
profile to different trans-
port user needs and
runtime environment facil-
ities.

implementa-
tion aspects,
protocol archi-
tecture

8 XOR /RSE used in
Adaptive Layered -
FEC scheme.

packet losses realtime and non-
realtime IP multi-
cast

To combine IP multi-
cast with FEC, receiver
can choose to have FEC

AL-FEC can adapt dynam-
ically to the current net-
work situation or change
user preferences

subgrouping
for local error
recovery

9 XOR /RSE packet losses,
cell loss on
bursty chan-
nels

ATM,
Reliable Multicast
ATM AAL

Adaptable framework
for error control.

Performance evaluations
are useful for the selection
of the error control
scheme.

NR FEC Algorithm Error to
Correct Environment Basic Idea Conclusion Other Issues

Table 6.1: Related work, articles 1 - 9

69

10 Priority Encoding
Transmission PET

packet losses, packet based net-
works

Each packet has a prior-
ity value that determines
the fraction of encoding
packets sufficient to
recover that part. Many
priority levels.

The receiver is able to
recover the parts of the
message if a sufficient
fraction of the encoding
packets are received

MPEG

11 Restricted Reliable
Multicast Protocol
(RRMP),based on
RSE

packet losses Multimedia applica-
tions in satellite
communication but
also heterogenous
networks ATM and
LANs

FEC chunk sizes are
selectable among other
parameters for adapting
different networks

Many advantages,
e.g.,FEC used in RRMP
gains stability for the QoS
parameters, since lost data
can be reconstructed with-
out any retransmission.

12 e.g different XOR
methods

lost audio
packets

Real-time data and
audio transferred
over networks that
do not quarantee
QoS for them. IP /
UDP / RTP

Open loop error control
mechanism based on
forward error correction.
Adaptive audio coders/
decoders

Clearly adding redundant
information increases the
reward.

13 RSE packet error
and loss

ATM, IP, multicast The focus is on solving
the problem of accumu-
lated packet losses/
errors.

FEC dramatically reduces-
the IP packet error or loss
probability.

error detection
and correction
mechanisms

NR FEC Algorithm Error to
Correct Environment Basic Idea Conclusion Other Issues

14 convolutional
codes,viterbi

two bit errors;
single or dou-
ble

satellite channel,
DQPSK

Combining FEC with an
efficient modulation
technique.

FEC works well for satel-
lite channels.

NR FEC Algorithm Error to
Correct Environment Basic Idea Conclusion Other Issues

Table 6.2: Related work, articles 10 - 14

70

Chapter 7

Integration of FEC into RAID and
TP

In this chapter, issues to be considered when implementing integrated FEC
for RAID and TP are introduced. Questions about RAID in this context are
considered in the second section. We propose approaches to connect FEC in
RAID and TP in the last section.

Figure 7.1, represents questions that lead the way to the discussion issues
in this chapter. As Figure 7.1 shows, the main topics are written inside the
grey ovals. One central discussion area focuses on relations between trans-
mission, TDU size, FEC algorithm, and stripe unit. Another discussion con-
centrates on RAID. RAID levels in relation to file size, stripe unit, and number
of disks is shown in the Figure 7.1.

The questions placed between the “issue ovals”, in Figure 7.1, lead to many
approaches for using FEC schemes in INSTANCE. The main discussion topics
give rise to further questions like; How reliable systems do we want to build?
What kind of services do we wish to use? How large RAID do we wish to have
and how effectively does it survive disk crashes? In any case, all of the sys-
tems and methods we choose to use have to be capable of working together.
This means that whatever transport protocol is implemented, the FEC has to
be compatible with the error coding in RAID. Therefore, selecting the right
methods from FEC, RAID and transmission protocols is important. An end-
to-end protocol where both ends of the communicating system agree which
FEC is to be used must be built up. These and many other questions are dis-
cussed in the course of this chapter.

stripe unit

TDU size

file size• Is it possible to adjust the
file size to fit stripe unit or
stripe exactly?

• Do exactly fitted files leave
empty gaps on disks?

• How can we fill up possible
gaps?

RAID level

• Is there a suitable size for both
RAID stripe unit and transmission
data unit ?

number of the disks

• Is it possible to adjust the
amount of disks to fit the file-
size?

• How many disks do we need?

transmission

• What is the chosen trans-
port protocol ?

• What type of network?
• What is the FEC code in

RAID and TP ?
• What type of data do we

want to transmit ?
• How much redundant infor-

mation it is reasonable/pos-
sible to send?

• TDU is dependent on transport
protocol.

• What are the reasons to TDU loss
and errors ?

• Which RAID level is suitable
for our purpose?

• What factors affect in choos-
ing RAID level?

FEC

Figure 7.1: Issues for discussion

72

7.1 Aspects About RAID

There are many factors that influence the selection of the most appropriate
RAID level. For example, striping affects main memory requirements, latency,
and also throughput that can be achieved. However, in this section, we focus
on the basics, such as request size and the type of data stored, which directly
affect the choice of stripe unit and RAID level.

The best way to approach the question, “Which RAID level we should
choose?”, is to find out what type of data is to be stored. The most ap-
propriate RAID level choice gives the best benefits. We can take a look at the
Tables in Section 5.2, and use it as a guide in choosing a RAID level. The
disadvantages in the table are marked with ’-’, and the benefits with ’+’. As
we can deduce from Table 5.1, mirroring in level 1 does not have the parity
calculation for redundant data, therefore RAID level 1 is not a valid choice
for our purposes.

Including RAID level 1, we do not evaluate RAID level 2 and 4 as disk array
solutions for INSTANCE. RAID level 2’s weakness is high parity disk overhead.
RAID level 2’s parity disk overhead is improved on RAID level 3. Unlike RAID
level 2, level 3 has only one parity disk. In addition, RAID level 4 has one
parity disk. RAID level 4’s bottleneck is the parity disk. On RAID level 5, this
bottleneck is eliminated by distributing parity across disks. These are the
reasons why levels 2 and 4 are not better solutions than RAID level 5, there-
fore, it is neither advantageous to choose them nor discuss them further in
this context. Because levels 1 and 3 can be viewed as subclasses of level 5,
the choice of RAID level is guided by the parity group and stripe unit size.

Chen [13] has introduced two guidelines to choose the suitable parity
group size and stripe unit for a RAID system:

1. “If a parity group size of two is indicated, then mirroring is adequate.”
However, this small parity size is not appropriate for INSTANCE, since
we also need the proper parity for transmission of data.

2. “A stripe unit much smaller than the size of an average request may
indicate the use of level 3 RAID. ”

IBM has introduced two guidelines for choosing the suitable RAID level
[25]. The motivation for these guidelines is the type of data and how often it
is accessed:

1. Select RAID level 5 for applications that manipulate small amounts of
data, such as transaction processing applications.

73

2. Select RAID level 3 for applications that process large blocks of data.
RAID level 3 provides redundancy without the high overhead incurred
by mirroring in RAID level 1.

These two sets of guidelines are the main criteria for choosing the most
appropriate RAID level. We might have to compromise for the best RAID level
in our approach. The requirements and problems that transmission protocol
set to RAID level selecting are introduced in the following sections.

7.1.1 The Parity Problem

Data is striped over several disks in RAID, and parity information is calculated
from all disks that include user data. For example, Biersack [6] proposes that
redundant information be sent in transmission on its own units. Here, we
might run into a problem with the striping on RAID. This problem, which we
call the parity problem, is illustrated with the following simplified example in
Figure 7.2.

In Figure 7.2, P stands for parity. A, B, and C stand for original data, e.g.
movie files striped over several disks. Movie file A consists of data units A1 +
A2 + · · ·+ A6 + A7. Movie file B consists of data units B1 + B2 + · · · + B6 + B7.
Movie file C consists of data units C1 and C2. The parity is calculated over
all disks and stored to a separate parity disk in this example. Parity stripes
which include data units from two or several different movie files cause the
parity problem. This problem does not occur in conventional RAID systems
but only in the context of the FEC integration with TP.

A2 A3 A4 AP
A6

B6

B1
B5 BP

B7
B3

A1
A5
B2

A7
B4
C1 C2

ABP

BCP

Figure 7.2: Problematic data striping

Parity problems occur in particular when we want to get only a small
amount of information from the disks for transmission. For example, when
we read movie file “A” for transmission, we need to read the parity informa-
tion also. Since movie A’s parity calculation does not go even to one single
parity stripe, we have some irrelevant parity information on parity unit “ABP”.
The parity stripes that cause irrelevant parity information are marked with a
dashed line in Figure 7.2. Parity units “ABP” and “BCP” do not consists of

74

only one movie file information but of two. We transmit only one movie and
the relevant parity information for each client in data transmission.

One can interpret figure 7.2 that obtaining the right parity information
from the disks is problematic. The parity problem occurs if we want to trans-
mit, e.g., movie A. Movie A’s parity unit “ABP” also includes parity information
for data unit “B1’s” reconstruction. Therefore, this parity includes irrelevant
information for us, since we do not want to transmit movie file B. Assume we
have a coding method that is capable of correcting one lost TDU in an FEC
block. We remember from chapter 4 that an FEC block consists of all original
data and parity in one parity stripe. Assume that, “B1” is not send and “A5”
is lost in transmission. In this case, we lose the only possibility for encoding
the lost packet which had otherwise been possible if the FEC block was sent
completely.

We cannot possibly reconstruct lost TDUs with irrelevant parity informa-
tion that has been sent from parity disks to the receiver. The success of
encoding depends on the ratio of redundant data to original data. An FEC
block that is not transmitted completely, is not adequate for error correction
in case of TDU losses. A more concrete example of a parity problem is given
next.

For example, if an MPEG-2 movie video is about two hours long, then the
size of the file is about 3,6 Gbytes with MPEG-2, compressed 5 Mbytes/s.
The RAID is about 30 Gbytes. We can store about 8 MPEG-2 movies in one
30 Gbyte RAID. If we have striping unit size that is 512 bytes, then one
MPEG-2 movie creates 15625 data units plus the redundant parity units. If
we have five disk drives, then we have 6 Gbytes stored in each disk, e.g., like
in RAID level 5 in Figure 5.7. Since 6 Gbytes is used for parity, we have 4 ×
6 Gbytes for original data. If we stripe one movie over the four disks in 512
bytes stripes, then 15625 data units are not spread evenly on the four disks
(15625/4 = 3906.25). Hence, we have a similar situation to that shown in
Figure 7.2.

The parity problem becomes even worse if we have a large stripe unit and
small files, e.g. text files for WWW that are usually in Kbyte size only. This is
because small files seldom fill up one parity group in a large RAID that can
be greater than 70 disks. To be able to stripe small files over a large RAID
requires a small stripe unit. However, small stripe units can be inefficient
during reads. How the parity problem is avoided is discussed in the next sec-
tion.

75

B2B1 B3 B4 BP
APA4A3A2A1

D1
C1 C2

D2
C3
D3

C4
D4 DP

CP

Figure 7.3: Ideal solution for the parity problem

7.1.2 How to Avoid Parity Problems

An ideal solution for striping data could be represented as in Figure 7.3. The
files are equal in size in this figure. The stripes are calculated in such a way
that each parity stripe has data units from only one file. This means the num-
ber of disks is suitable for striping files evenly over all disks. For example,
a stripe unit is large enough to divide each file into five stripes. Assume the
RAID used here has six disks plus a parity disk. In this case, the stripe size
must be adjusted smaller, in a way that each file is divided into six stripes.
Or, if it is not appropriate to have a smaller stripe unit, we have to have a
RAID with five disks plus a parity disk. Another possibility is to use the vir-
tual parity striping method introduced by Holland et al. [23]. However, files
that are stored to a RAID are seldom equal in size in reality. Ideal striping
solution is therefore not always possible to achieved.

A1 A2 A3 A4 AP

A5 A6 Ax Ax AxP

B1 B2 B3 B4 BP
B5 B6 Bx BxPB7

Figure 7.4: Proposal to solve a parity problem

In the following section a solution for the parity problem is proposed. It is
illustrated in Figure 7.4. This proposal is based on the fact that movies or text
files are not always the same length or size. By defining the maximum size
for one file and arranging same type of files in one RAID, we can reduce the
effect of the parity problem. This arrangement is useful because it is unlikely
that one parity stripe includes information from only one movie. The remain-

76

der of a parity stripe that would not include the same file is, e.g. filled with
0’s. We call this method padding. The next example illustrates how padding
is done to avoid the parity problem.

In this example, two files are shown in Figure 7.4. The size of the files
differs by one stripe unit. The padded data units, i.e. data units filled with
0’s, are marked as “Ax” for file A, and “Bx” for file B. There are three data
units which do not include any data.

We can avoid extra work by not sending the padded information. This is
possible if the receiver knows how much data is coming and calculates the
last “missing” TDUs as zeros in the last FEC block. As discussed earlier in
this chapter, the receiver has to have a complete FEC block to recover from
TDU losses. In other words, the receiver has to receive a minimum amount
of TDUs that is equal to the amount of original TDUs in one coded block. If
the last received FEC block has more TDU losses than the code is capable of
correcting, the lost TDUs are assumed to be the “padded” TDUs. This mis-
interpretation can be responsible for some wrongly coded data in the end
of the data transmission. This can be avoided if the total size of each data
transmission is known to the receiver.

Because of the parity problem and padding, some space is wasted on
RAID. This is why it is preferable to adjust the RAID size to suit certain
amounts of files that are a maximum length. For example, count the aver-
age length of movies and store them to one RAID. Much longer and shorter
movies are stored on their own RAIDs.

Movies are quite easy to adjust on RAID. Movies usually consists of the
same types of data. For example, multimedia includes different types of data.
These files can differ greatly in size. However, they are accessed from the
RAID for the same data transmission. The selection of the RAID level and
stripe unit becomes easier if different types of data are each stored on sepa-
rate RAIDs.

We have to remember the guidelines given earlier in this section when de-
signing the stripe unit. For example, if we have text files for WWW, the file
sizes are small and many small reads are going to take place. In this situ-
ation, it is best to choose level 5 and adjust the stripe unit to have as few
empty data units, i.e. padding, as possible. Since data is written byte by byte
in RAID level 3, one might think it is easier to adjust smaller files on disks.
However, level 3 is not perfectly suitable for many small simultaneous reads
because it can satisfy only one I/O request at a time.

77

7.1.3 RAID Level 6 and INSTANCE

If we want to utilize better reliability in RAID and use P&Q parity, we might
think that we could use both parities. However, P&Q redundancy is not suit-
able for this purpose because of the way parities are calculated. Figure 5.8
shows that parity P is calculated vertically, whereas Q is calculated horizon-
tally [2]. Therefore, parity P is not a copy of parity Q, but a result of different
original data than parity P. This can cause the parity problem mentioned ear-
lier on page 7.1.1. Figure 7.5 shows the parity problem in P&Q redundancy.

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

1 2 3 4

P

P

P

P

Q

Q

Q

Q

A1 A2 A3

A4 A5

A6 B1

B2 B3

B4 B5 B6

Figure 7.5: P&Q redundancy and parity problem

We have two files “A” and “B” in Figure 7.5, which are striped over disks
on an array. To simplify the example, the files here are of equal size. Both
files are divided into six stripes: A = A1 + · · · + A6, B = B1 + · · · + B6. Parity
stripe for parity P is calculated horizontally and parity Q is calculated verti-
cally. This method of parity calculating is two-dimensional.

As we see from Figure 7.5, the parity Q, e.g. on disk 2, is calculated ver-
tically. This parity information is not calculated over only one file, e.g. file
A, but includes data units from file B also. In this case, the calculated parity
includes irrelevant parity information from file B. When we wish to transmit
only file A, we also transmit irrelevant parity information from file B. Two
dimensional parity is therefore not an appropriate method for INSTANCE be-
cause we want to send only one file and the corresponding parity information
at a time. P&Q is only useful if one sends for example original data with par-
ity P and use the extra parity Q for RAID security only, presuming that parity
P includes only relevant parity information.

78

7.2 FEC Cooperation in TP and RAID

There are various motivations to choose an algorithm and methods for error
correction in data transmission. Issues to be considered are for example, the
type of data to be transmitted, and channel capacity. Matching the require-
ments in RAID and data transmission together is a complicated task. This
task is discussed in the next five sections.

7.2.1 Redundant Data Calculations

The algorithm for redundant data calculations can be chosen by the require-
ments we set. Simple XOR calculations and Hamming coding are adequate for
RAID and data transmission if the RAID is not very large or the TDU loss rate
due to congestion on the channel is not high. It is possible to have one disk
crash/day or a week [22] if RAID is larger than 100 disks. This means that
the algorithm that produces more than one parity unit/parity stripe is needed
for RAID to be able to survive two simultaneous disk crashes. However, as
discussed in the earlier section, P&Q parity is not suitable for this purpose. In
addition, stronger calculations are needed if a channel is congestion prone.
RS and RSE are examples of codes that are frequently used for better data
integrity.

In related work investigations in Chapter 6, RSE code [31] was the most
frequently used correcting code. The authors agreed that conventional RS
coding is quite complicated to implement. This is the reason why conven-
tional RS is less attractive to use in error correcting. Coding and decoding
would take too much effort with RS. In addition, FEC is needed only for TDU
loss correcting when bit errors can be corrected with CRC.

Since RSE is adequate for transmission, we can evaluate the possibilities
for RSE in RAID also. Chen [13] mentions that in disk arrays, crashed disks
are recognized with disk drives. Therefore, the lost data is in a known loca-
tion. Also, Plank’s [36] failure model is erasure in RAID systems. However,
instead of RSE, Plank gives a detailed strategy of how to implement Reed-
Solomon coding called RS-Raid. The mathematical approach of RS in RAID
equals the RS codes introduced in transmission protocols.

Hellerstein et al. [22] and Blaum et al. [9], introduce binary linear codes
in a matrix form for more effective coding. Their proposals are based on par-
ity calculations with more than one dimension. The two-dimensional parity
calculation is done in a similar manner to RAID level 6. A two-dimensional
parity calculation method enables RAID to recover from two simultaneous
disk crashes. This is a desired quality in very large disk arrays where a disk
crash probability is higher. However, when we consider to combining this

79

method with transmission protocol, we meet the problem that was discussed
earlier in Section 7.1.3. This problem was that each parity which is calcu-
lated over one disk, i.e. one column, introduces parity information from data
that is irrelevant for data transmission. Irrelevant parity data prohibits the
receiver from reconstructing lost data.

The parity calculation must be arranged in another way to avoid the par-
ity problem and still have larger ratios of parity units in one FEC block. The
solution is to perform the parity calculation one-dimensionally. Figure 7.6
shows a situation where two parity units are calculated, e.g. with RS coding.
The arrows express the one dimensional parity calculation: one parity stripe
produces two parity units. These two parities are stored on two separate par-
ity disks: “4P” and “5P”. This method is realized as RAID level 3. However,
it is also possible to distribute parity as in RAID level 5. The distribution of
parity looks like RAID level 6.

1 2 3 4P 5P

Figure 7.6: Two parity units in one FEC block

As we can see from the Figure 7.6, the double parity information increases
the disk place requirement. If no more disks are introduced to the array, par-
ity uses space from the original data. In the solution where two separate
parity disks are provided, it is possible to survive two disk crashes. For ex-
ample, one data disk crash and a parity disk crash simultaneously can be
survived, because the parity information on the second parity disk is a copy
of the first one. This is a good quality, especially if the disk array is very large.
As discussed earlier, large disk arrays have a higher probability of having two
disk crashes simultaneously.

We can conclude that RSE coding is available both in RAID and transmis-
sion protocols. One-dimensional RS or RSE coding in RAID is also suitable
for use in INSTANCE. Plank [36] points out how small disk arrays are more
reliable than larger disk arrays, and need only simple coding, such as XOR or
Hamming coding to survive one disk crash. These parity calculating methods
are also suitable for data transmission if it is certain congestion on the chan-
nel is moderate. The congestion tendency in a data transmission channel is

80

also a guideline for redundant data ratios to original data in one FEC block.
Since we also have to be able to avoid congestion, the amount of redundant
information has to be reasonably small. The more redundant data that is
sent, the higher the risk to cause congestion.

As mentioned earlier, in Chapter 4, one FEC block consists of original
data and redundant data. If an FEC block is large, it has a higher probability
of losing more TDUs in one block than a small FEC blok. A large FEC block
size produces encoding and decoding delays, specially when recovering from
errors and decoding missing cells. The cause for delay on the receiver side is
due to the time the receiver waits for an entire FEC block for coding. However,
this is a smaller disadvantage than the retransmissions delay. These issue has
been studied in [6, 31, 34, 44].

7.2.2 Stripe Unit in Integrated FEC

There are many aspects that can be viewed when designing striping for RAID.
If we have many clients accessing a disk array containing data, for multi-
media purposes e.g., large block sizes are preferable. The total seek time is
shorter on large stripes, and faster for heavy traffic than with a small stripe
unit. However, a large block size might not always be the most appropriate
solution.

A large block size can cause a load imbalance when the most popular files
in a disk array are accessed, for example, when a large stripe unit is used to
stripe a popular movie file in a VoD system over a disk array. The stripes are
located on only a few disks because of the large stripe unit. Because of the
popularity of a particular movie, only a few disks in a disk array which con-
tain the movie are accessed frequently. This is the cause for load imbalance.
In addition, service time for the most heavily loaded disks increases. How-
ever, in this thesis, the aim is to stripe, a movie file, e.g., over parity stripes in
such a way that the parity group consists of only this movie file. In addition,
we avoid the parity problem presented in Section 7.1.1 by operating this way.

A stripe unit is also connected to different RAID levels. RAID level 5 uses
larger data blocks in striping, whereas RAID Level 3 takes the data and writes
it bit-by-bit or byte-by-byte in parallel to the data drives, plus one bit or byte
to the parity drive. The result is a disk array that works best with large block
transfers, but does not work well for transaction processing systems. RAID
level 3’s bottleneck is the parity drive. Because it is the only access to the
parity, the bottleneck is at its worst when small updates are made to the disk
array.

81

7.2.3 An Approach to Bottlenecks in RAID

We can not use existing RAID solutions because we need to read the parity
disk also in our approach to implementations. This also changes traditional
approaches to RAID bottlenecks. Bottlenecks for each RAID level were also
discussed in Chapter 5.

RAID level 3 has all parity information stored on one disk. Unlike in RAID
level 5, where parity information is distributed over all of the disks in the
disk array, the bottleneck for RAID level 3 is the parity disk. In our approach,
the parity disk maintains the bottleneck situation and becomes even worse
when the parity disk or disks are accessed for a read also.

A better solution in our approach is similar to RAID level 5 distribution of
parity information. The RAID level 3 bottleneck situation is better on RAID
level 5 because parity information is distributed over all of the disks and has
the possibility for parallel accessing.

7.2.4 Network Loss Behavior and Stripe Units

The loss behavior of a network gives us a guideline for choosing an appro-
priate FEC in transmission. For example, congestion losses are dominant in
ATM type networks. This means that the typical loss unit is a cell. From the
example introduced earlier in Section 3.2.2, we can conclude that single-bit
error detection is not useful in data transmission because noise impulses are
usually long enough to destroy more than one bit. Impulse noise duration is
not long enough to destroy voice data, but it is able to erase bits when data
transmission speed is high. Usually, a coding strategy is arranged to protect
against a particular error that is known to occur. Therefore, before we design
a transmission protocol it is important to understand the loss behavior of the
network.

Because of different needs in RAID and data transmission, the TDU size
in transmission is not always equal to the stripe unit in RAID. We are not
dependent on the TDU size when we make the decision of which RAID level
to choose. As presented earlier, the guidelines for choosing suitable a RAID
level do not directly have an effect on the transmission protocol structure.
However, we might have to divide larger stripe units into smaller TDUs for
transmission.

Can larger blocks of information and parity information divided into smaller
TDUs in transmission increase the possibility that we lose more TDUs from
FEC blocks? In other words, we have a situation where large TDUs are divided
into basic multiplexing blocks of the network [31] (cells). Figure 7.7 illustrates

82

the situation.

For example, we have stored movies that are large in size, usually in
Gbytes; the stripe units on a disk array are also relatively large. According to
the guidelines on page 73, large stripe units are the most appropriate when
we have large reads: in this case, one movie at the time. However, if real-time
data is transmitted along, e.g., an ATM type network, TDUs are divided into
smaller units. This is because an ATM cell size is only 53 bytes long.

Data is usually striped on larger blocks than 53 bytes. Figure 7.8 illus-
trates the situation where larger TDUs are divided into smaller units. This
situation is comparable to the problem area that Srinivasan et al. [44] point
out. This is when TCP/IP packets are transmitted through an ATM type net-
work.

Original

alternative

alternative

alternative

1

3

0

2

Figure 7.7: Error distribution in fixed size TDUs

Because a TCP/IP packet is larger than an ATM cell, the original packet
is divided into smaller units. For example, if one of the cells is lost during
data transmission, we are not able to reassemble the original IP packet. This
occurs specifically when one unit from the IP header field is lost. This type
of problem might be crucial to parity packets that are split into smaller units
because the probability of getting error rises each time we divide TDUs into
smaller units. The loss of smaller TDU units can cause FEC inefficiency. This
situation is illustrated in Figure 7.7 in alternative 2. Here, each original TDU
is lost because of losses on smaller TDU units. Lost TDUs are marked with
grey.

However, error possibilities are small in optical fibers. Therefore, we can
transmit large files without errors that occur in the way Figure 7.7 and al-

83

block > cell1

A

B

C

A

B

C

C

receiversender

3 cells

cell loss in transmission

A
B

Figure 7.8: Packet Size and Block Size

ternative 2 illustrate. The Bit Error Ratio (BER)1 on an optic fiber is 10−9.
A BER this low does not influence transmission. For example, entire video
files that are several Gbytes large, could be transmitted without a single er-
ror occurrence. In designing of the transmission protocol for INSTANCE, it is
presumed that the BER is low.

A more likely TDU loss scenario is shown in alternatives 1 and 3 in Figure
7.7. Lost TDUs are marked with grey. The first alternative shows a TDU
loss due to congestion: consecutive TDUs are discarded. Discarded TDUs
can naturally belong to one large original TDU or two. Alternative 3 shows
congestion losses with two consecutive TDU losses and one independent loss.
Independent losses happen seldom in optic fiber, though this possibility is
shown in this figure. We can conclude that even though the original TDUs
need to be divided into smaller units, we retain the ability to recover from
TDU losses with the help of FEC. The total amount of lost original TDUs is
not so high that it could prohibit TDU loss reconstruction at the receiver.

7.2.5 Adaptive Systems in INSTANCE

In computer communications, data traffic over channels is not constant but
changes, like rush hour in traffic. Varying channel conditions is the reason
why adaptable error correcting systems are attractive.

One point of view in related work investigated in Chapter 6 is to create
a method that can adapt to channel conditions or error tendencies. We can
utilize these methods in reads from RAID that are reduced to the minimum
when collecting redundant information for data transmission. For example,
[11] and [42] propose an adaptive FEC method for different requirements in
multimedia. Multimedia diversity creates an unique challenge for transport

1Bit Error Ratio (BER): The number of erroneous bits divided by the total number of bits
transmitted, received, or processed over some stipulated period [17].

84

protocols. Sources like [11, 15] have weighted also the flexibility in their pro-
posals. This is achieved usually with a possibility to choose whether to use
only CRC or FEC or both. This depends on what kind of criteria we wish to
have in INSTANCE.

The creation of an adaptive transmission protocol is complicated in our
approach, especially if the method does require changing the FEC algorithm
or the original-redundant data ratio. This is because it is preferable to have
the same original-redundant data ratio already coded on RAID. As discussed
earlier in the article investigation comments in Section 6.2.1, frequently changed
parity calculations are difficult to accomplish on RAID. In order to avoid the
parity problem, parity stripes are arranged with the help of padding. The par-
ity problem occurs if we want to change the amount of data units in parity
stripes. This means that each time we wish to change FEC block size or data,
we have to update the striping arrangement and padding. In other words, the
new striping arrangement in an adaptive FEC has to be parity problem free at
any given time.

In a case where adaptivity is attractive, we can decide if we read the redun-
dant data and transmit it or not. Also, FEC integrated with ARQ is suitable
if we want to send data to an application that can afford it or requires high
data integrity, e.g. file transfer systems for non-real-time systems. However,
this solution is not compatible because we wish to have an integrated FEC to
avoid retransmissions.

85

86

Chapter 8

Implementation and Tests

Simple experiments for FEC in INSTANCE are described in this chapter. In the
first section, an explanation of the implemented experiments is given. The
second section contains observations which are drawn from experiment re-
sults. In the last section issues for further work are presented. The questions
are answered: How can the implementations be improved? What observations
are interesting for further studies?

8.1 Test Environment

The test environment is Da Capo in this approach. Da Capo is a protocol
configuration tool. With Da CaPo, it is possible to have a simplified end-to-
end protocol environment that supports a broad range of various application
requirements. No unnecessary protocol functions are presented in the test
environment. These are the reasons why Da CaPo is used as a test environ-
ment in this thesis.

Da CaPo is a communication system that can be viewed in three layers.
These three layers are shown in Figure 8.1. Layer A can be understood as a
set of distributed applications. Layer C represents the services that the end-
to-end communication requires. Layer T represents the transport infrastruc-
ture. This layer offers the services that are comparable to the ATM adaptation
layer or TCP services. Da CaPo is used for simulating an end-to-end protocol
environment in a TCP/IP type network in the experiments.

It is possible to program various protocol functions like error and flow
control to layer C. A protocol mechanism specifies the rules for the func-
tions. The protocol mechanisms can be realized by modules in hardware
and/or software. We do not go into detail in describing how Da CaPo and the
A and T layers are programmed. Instead, we introduce how Da Capo is used in
the experiments in this thesis. We also describe the modules that were used

87

End-to-End
communication

support

Transport
infrastructure

Application

Transport

infrastructure

End-to-End
communication

support

Application

TT

C C

A A

Internett

Figure 8.1: Three layer model of Da CaPo

on the C layer. More detailed information about Da CaPo can be found at [20].

The modules that were used in the experiments were the m_killer mod-
ule and the FEC modules [43]. Layers with the m_killer and FEC modules are
shown in Figure 8.2. This figure shows how the modules are arranged in Da
CaPo. The arrows show the flow of TDUs from server to client.

We can simulate TDU losses with the m_killer module. The m_killer mod-
ule eliminates TDUs from the data flow. It is possible to define exactly which
TDUs are eliminated with the m_killer module. The user defines into an
m_killer file which TDUs are to be eliminated. Each time a TDU arrives from
the “A” module to the m_killer module, the m_killer file is read. By defin-
ing the TDU sequence numbers on an m_killer file, we can also control the
amount and frequency of TDU losses. As Figure 8.2 illustrates, the elimina-
tion of TDUs is done before sending the TDUs from the server to the client.
We can control the amount of lost TDUs in this manner. In addition, we know
how many TDUs are lost and how they are distributed in the data flow. The
testing and analyzing of the efficiency and work of FEC explicitly on the client
side is easier than in a normal data transmission situation.

FEC modules on the sender and receiver sides do the coding. FEC code
produces two redundant TDUs from each two consecutive original TDUs in
this experiment. In other words, the FEC block consists of four TDUs, where
two TDUs are original, and two TDUs are redundant. Recovery from TDU

88

FEC

m_killer

FEC

server client

C C

A

T

A

T

Figure 8.2: Test environment for FEC in Da CaPo

losses is possible if two TDUs are received from one FEC block. The redun-
dant TDUs are calculated by using simple XOR calculation. For example, the
first redundant TDU is simply generated by XORing the two original TDUs
together. If one of these three TDUs is lost in the data transmission, the lost
TDU is regenerated by XORing the two TDUs together. The FEC and m_killer
module are available in a Appendix A and A.3.

In addition to modules, some necessary conditions were defined for the
tests. During the tests, the test file size was constant. The TDU size was
153 Kbytes in all of the experiments. In addition, tests were performed at
the same point of time. Early morning was the most appropriate time for the
test, because the data traffic during mornings is usually much alike. Natu-
rally, some variation between different mornings can occur. Testing in the
afternoon could have given results that differ from testing executed in the
morning. All tests were performed with the same computers, which were
located in the same building and connected with 100 Mbit Ethernett using
TCP/IP protocol. The sending computer was SUNW, UltraSPARC-IIi, 300MHz
and 128 Mbytes memory. The receiving computer was the same type as the
sender, UltraSPARC, only slower 167 MHz with 192 Mbytes memory. The
sending and receiving machines were the same for each test; therefore, some
differences in the tests were avoided.

8.2 Experiments and Observations

Various error scenarios were simulated with the help of an m_killer module.
With the m_killer module it is possible to eliminate TDUs from data transmis-
sion. Since we know the FEC capability of the FEC code we use, it is possible
to simulate error scenarios. For example, if more than two TDUs are lost from

89

one FEC block, an unrecoverable TDU loss occurs. If we want to simulate one
TDU loss, because of congestion e.g., we have to eliminate at least three con-
secutive TDUs from one FEC block, with the m_killer module.

In the test, sending and receiving times were measured. TDUs killed with
the m_killer are shown in Tables 8.1, 8.2, 8.3, and 8.4. The row “lost pack-
ets” shows how many TDUs were lost, i.e., totally lost after decoding. The
row “modules” shows which modules were included in the test. The time
measured for sending and receiving is the total time for the sending and re-
ceiving process. Time was measured with a time function. The time function
is started when starting the sender and receiver process and stopped in the
end of the sender and receiver process. Because of this, some extra time is
used for the time function only, and some inaccuracy in the test results is
possible. Tests were executed several times, and an average time was calcu-
lated for each test scenario.

killed TDUs none
lost TDUs none
modules none

average send 6.705367 sec
average receive 6.765890 sec

Table 8.1: Results for test 1, without FEC and errors

Experiment 1. The first experiment was a test without modules. With
these experiment results, we were able to compare how much more time
sending and receiving takes when modules are included. The receiving time
is slightly more than the sending time due to slower receiver hardware.

killed TDUs none
lost TDUs none
modules FEC

average send 11.157779 sec
average receive 11.227418 sec

Table 8.2: Results for tests 2, without TDU losses

Experiment 2. In the second experiment, the FEC module was included.
Without the m_killer module, no TDU losses occurred. The reason for this
experiment was to find out how much more time FEC coding would take than
without it. As expected, the execution took slightly more time than in the

90

first experiment. The difference for execution time was on average five sec-
onds. This was not a surprising result, because FEC code produces redundant
TDUs, and transmission takes longer time. The receiving and sending times
were in the same ratio as in the first test: receiving took about 0.07 seconds
more time than the sending of data.

killed TDUs 90
lost TDUs none
modules FEC, killer

average send 11.250913 sec
average receive 11.327733 sec

Table 8.3: Results for test 3, with FEC, no TDU losses

Experiment 3. The third experiment also introduced the m_killer mod-
ule. The error distribution plan was that no TDU losses should occur de-
spite killed TDUs in the m_killer. As in the second experiment, FEC was able
to recover from TDU losses. There was a total of 90 eliminated TDUs in
the m_killer. However, all lost TDUs were recreated in decoding. The aver-
age sending and receiving times were not more than in the test without the
m_killer module. Therefore, we can conclude that the m_killer does not have
a big influence on sending times.

killed TDUs 180
lost TDUs 13
modules FEC, killer

average send 10.876759 sec
average receive 10.875771 sec

Table 8.4: Results for test 4, with FEC, lost TDUs

Experiment 4. The amount of eliminated TDUs is larger, 180 in this ex-
periment. In addition, the TDU loss distribution is arranged in the m_killer
in such a way that 13 TDUs are unrecoverable and lost. In other words, the
simulation of consecutive TDU losses produce 13 TDU losses despite FEC de-
coding. The average sending and receiving time in this experiment is even
less than in the other experiments with FEC. This can be explained by the
fact that the relatively large redundancy (almost a quarter) is reduced with
the m_killer. Therefore, transmission does not take as long as in the third
experiment, e.g., where larger amounts of data is in transmission.

91

8.3 Discussion

The experiments show that the test environment and FEC works. The results
were not surprising. It was, e.g., expected that data transmission with FEC
would use a slightly longer execution time than without the FEC. The FEC at
the receiver took slightly longer time if many TDU losses occurred. However,
the recovery from TDU losses is a greater benefit than the slight loss of time.

Integration of FEC in RAID and TP needs further studies and implementa-
tion of test scenarios. Figure 8.3 introduces a proposal for a test environment
structure. If we do not have the possibility to implement RAID for INSTANCE,
we can simulate the scenario. The encoding is executed before storing of data
to a file in this situation. This simulates the situation when RAID is included.
The encoded information is stored and sent through the sender side of Da
CaPo. At the sender side, an m_killer module is used, as in earlier experi-
ments. The receiver with the FEC module works in a similar manner as in the
earlier experiments and includes only the decoder module. However, we can
not utilize the FEC decoder module directly. A new module that is capable of
decoding without the encoder module in Da CaPo must be implemented.

m_killer

TT

C

A

FEC C

A

client

file (RAID)

FEC

server

stored data+

Figure 8.3: Further implementation proposal for FEC in Da CaPo

More than the new layer arrangements in the test environment should be
done. In addition, testing of a more appropriate FEC code for INSTANCE is
needed. The code used in these experiments produces as many redundant
TDUs as the original TDUs. This increases the network load a lot, and the
redundant information can cause congestion. This much redundancy is pur-

92

poseless, especially if the TDU loss ratio is small. Therefore, the original data
ratio to redundant data has to be larger.

Since the XOR code was used in this thesis, developing this further should
be considered. Simple XOR calculations are also used in transmission and
RAID in related work. However, Hamming coding and RS gives stronger cod-
ing and a larger scale of variation, e.g. in original and redundant data ratios.
As mentioned earlier in Chapter 7, RS or RSE code is one possibility. There
are many approaches to consider when we implement RS or RSE code for IN-
STANCE.

One of the approaches is how to implement RS or RSE for RAID. A one-
dimensional solution is appropriate. One likely implementation is to use the
typical block code ratios. This means the redundant data ratio to the original
data. The most usual symbol size is 8, or coefficient of 8, since one byte is
8 bits long. This was explained in Section 4.5.2. Different original data to
redundant data ratios would be interesting to experiment with when trying
to find out the limits of an appropriate and useful redundancy ratio with the
experiments.

In these tests, we have to consider the striping method of parity infor-
mation in reality. How do we arrange parity if the FEC algorithm produces
more than one unit of parity information to each FEC block? As in our simple
experiment, one FEC block includes two parity TDUs and two original data
TDUs. We can investigate further whether it is worth having more than one
parity unit in one FEC block. This means we have to find out the smallest
amount of redundant information necessary to avoid TDU losses.

In addition to channel condition aspects, we have to consider how much
disk space it is economically possible to reserve for parity information. We
also have to consider how to distribute parity over all disks. An easier way
might be to design RAID where parity information is not distributed, as on
RAID level 3. This arrangement can eliminate the problems of distributing
parity and can be easier in design. However, distinct parity disks can cause
bottleneck in each read, write, and parity updating situation. Since each read
also accesses parity disks, reads can also be the bottleneck for this type of
RAID. These aspects are worth testing and finding out which striping method
is most efficient.

Yet another approach to implementation is the analysis of tests. Because
the complexity of RS coding is discussed in relevant literature, it would be
interesting to measure the differences of some light weighted coding, such
as FEC used in earlier experiments: for example, how much effort the coding
itself takes in transmission compared to much simpler coding methods like

93

XOR.

We can conclude that further experiments have many subjects to be in-
vestigated. Further work issues include:

* Changes to the modules and the layer structure.

* Which channel conditions do we wish to simulate? If we have a channel
with a high congestion level, then we need more redundancy.

* How is striping arranged in RAID? Can we avoid the parity disk bottle-
neck by distributing redundant data?

* We wish to analyze whether the test scenarios are appropriate for mul-
timedia data.

We can find different approaches to further investigations. We can con-
centrate on one problem area at a time which can be efficiency or avoidance
of one particular bottleneck. Another approach is to try to implement the
most well-balanced system where all issues and problem areas are consid-
ered simultaneously.

94

Chapter 9

Summary and Conclusions

A summary of the most important issues in this thesis is given in this chapter.
The second section contains conclusions drawn from the research presented
in earlier chapters. Areas of further study are explained in the last section.

9.1 Summary

In this thesis, we have studied if it is possible to integrate FEC in RAID and
transmission protocols. The motivation for this method was to gain efficiency
by reducing redundant FEC functions in the protocol stack. We investigated
the typical errors in data storage systems and data transmissions first. We
found out that the most significant error in a data storage RAID was a disk
crash. RAID recovers from disk crashes with the help of redundant informa-
tion. It is also possible to recover TDU losses with redundant information in
data transmission. The most typical cause for TDU losses in data transmis-
sion was congestion. Bit errors were not to be considered in optical fiber links
because of the good quality of fiber optics and the low impact of bit errors to
the total transmission of data.

Second, error scenarios in RAID and data transmission were evaluated.
RAID and TP solutions were introduced, and methods of recovering from
their most common errors were studied. Background knowledge and related
work studies were the basis for further analysis in this thesis. The most
appropriate methods for integrated FEC in RAID and TP were introduced.
The problems with some solutions were described and a method to cope with
them was presented in Chapter 7.

95

9.2 Conclusions

We can conclude that the most appropriate methods of integrating FEC in
RAID and TP have many starting points. In particular, when the focus is
on storing and transmitting multimedia data which includes several types of
data like audio and video. Several data types make our task even more com-
plicated because of various QoS requirements for each type of data transmis-
sion. The dilemma can be divided into three parts:

1. Which type of RAID level is the most appropriate for the data we have?
How is striping arranged?

2. What characteristics do TPs have to have? What is the congestion level
on the data transmission channel?

3. What are the most appropriate methods we can choose from 1. and 2.
for the integration of FEC in RAID and TP? Which FEC algorithm should
be used?

The first point includes the criteria for which striping method we use. For
various types of data it is advantageous to store each type of data on its
own RAID, because we have to have access to the parity information that is
relevant each time. Using this method, the parity problem’s effects are also
minimized. This means that padding in parity stripes is minimized when
each file size closest to average is stored in separate disk arrays.

The preferred RAID level for many small reads is 5, and 3 for large disk
accesses. However, parity, striping and FEC algorithm arrangements may dif-
fer from the standard RAID levels in our approach. Therefore, the standard
RAID levels are only guidelines for evaluating suitable methods. For example,
we found out that the traditional bottlenecks for RAID were to be changed
because the parity information was also to be read, i.e., parity units are also
accessed for data transmission. Therefore, the most appropriate choice for
storing parity was to distribute it over all disks like in RAID level 5. By dis-
tributing parity, parallelity is gained. In addition, read and write bottlenecks
on separate parity disks are avoided.

The second point in our list includes the suitability of TP to transport
multimedia data. In this case, we do not require a retransmission possibility
from the transmission protocol. Basically the criteria for FEC in TP are based
on channel capacity and the amount of congestion on a channel. We found
out that the usual TDU loss amounts were about two consecutive TDUs at
a time. In addition to the channel error probability, we considered the disk
crash frequency. We found out that if disk array is large, greater than 100
disks [22], the probability of having two simultaneous disk crashes in a day

96

or a week was high.

We can conclude for the third point that the channel conditions and disk
array size give a guideline in choosing an error coding algorithm. We agreed
that simpler coding algorithms (e.g., XOR) and less redundancy is appropri-
ate for small RAIDs and on channels with low congestion. In large disk arrays
and high congestion levels during data transmission, it is preferable to use
RS or RSE algorithms for error correcting. However, the amount of redundant
information has influence on striping. More than one parity unit produced
by one parity stripe in an encoder also requires more disk space for parity.
The parity calculations are to be calculated one-dimensionally. Because of the
parity problem, two dimensional P&Q redundancy is not directly suitable to
be utilized in our approach. However, data transmission can utilize the hor-
izontally calculated parity without the parity problem. This is an approach
which is acceptable on channels with low congestion rates and disk arrays
with a high disk crash probability.

The adaptable FEC methods investigated in the related works for data
transmission were not considered suitable for our approach. The reason was
the use of parity information also in RAID. The change of FEC block size for
TP is complicated to accomplish in RAID. The updating of parity information
to agree with the requirements of data transmission, including the require-
ments for recovery from the disk crashes in RAID, is not considerable. Only
some ability to adapt in TP was considerable, like the option of whether to
send or not to send redundant information. This is acceptable on data trans-
missions that do not require reliable transmission.

The study of related work has not pinpointed TPs or RAID solutions that
are directly useful in our approach. However, related work shows that the
basics of FEC in transmission and RAID can be integrated. The protocol stack
has to be build up in a such way that real-time data QoSs are satisfied for
multimedia purposes. For example, ATM type networks and real-time data
requirements were approved to be functional with FEC in related work stud-
ies.

9.3 Outlook

In future experiments we should measure the impact of differences in 1) strip-
ing methods, 2) FEC algorithms, 3) amounts of parity information, and 4)
types of data. The test results should reveal if the entities of chosen methods
are the most appropriate ones. We wish to test a) transmission and receiving
times, b) latency, and c) error correcting capabilities in RAID and transmis-
sion. d) The error correcting capability in transmission during disk crash is

97

also one of the test interests.

Further work should give information on whether FEC integrated in RAID
and transmission protocol is an effective and functioning system. We should
investigate the profits this method may bring. Actual bottlenecks with the
system are revealed through tests: for example, pitfalls like data transmis-
sion overhead or reduced efficiency in data storage system.

Further research for this thesis includes an implementation of more ad-
vanced test scenarios (see Section 8.3) than represented in this thesis. Differ-
ences with various FEC algorithms should be studied. If possible, RAID with
various striping methods should be investigated. In addition, distribution of
the parity stripes has to be considered to avoid read and write bottlenecks. If
RAID is cannot be realized, it can be simulated with a conventional file sys-
tem.

98

Bibliography

[1] F. El-Guibaly A. Almulhem and T.A. Gulliver. Adaptive error-correction
for atm communications using reed-solomon codes. Proceedings of IEEE
SOUTHEASTON, pages 227–230, 1996.

[2] AC&CN, Raid Technology, 1998. http://www.raid-storage.com/
raid.html 17.7.1998.

[3] Albanese, Blomer, Edmonds, Luby, and Sudan. Priority encoding trans-
mission. IEEETIT: IEEE Transactions on Information Theory, 42, 1996.

[4] Hot Tech, 1998. http://www.aquanta.com/hot_tech/k3.html
17.7.1998.

[5] J.W. Atwood, O. Catrina, J. Fenton, and W.T. Strayer. Reliable multicast-
ing in Xpress transport protocol. Technical report, Department of Com-
puter Science, University of Virginia, 1993.

[6] E.W. Biersack. Performance evaluation of forward error correction in an
ATM environment. IEEE J. on sel. areas in commun., SAC-11, 4, 1994.

[7] E.W. Biersack and J. Gafsi. Combined RAID 5 and mirroring for cost
optimal fault-tolerant video servers. EURECOM, Sophia-Antipolis, France,
February 1998.

[8] R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley,
1984.

[9] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: an optimal scheme
for tolerating double disk failures in RAID architectures. Proceedings
of the 21st Annual International Symposium on Computer Architecture,
pages 245–254, April 18–21, 1994.

[10] J.-C. Bolot. Characterizing end-to-end packet delay and loss in the inter-
net. ACMM Multimedia systems, 1997.

[11] G. Carle. Adaptation layer and group communication server for reliable
multipoint services in ATM networks. Workshop on ATM Traffick Man-
agement, WATM’95, WG.6.2 Broadband Communication, Paris, 1995.

99

[12] C.L. Chen and R.A. Rutledge. Error correcting codes for satellite commu-
nication channels. IBM Journal of Research and Development, 20(2):168–
175, March 1976.

[13] P.M. Chen, E.L. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson. RAID :
High-performance, reliable secondary storage. ACM Computing Surveys,
26(2):145–185, June 1994.

[14] B.A. Cipra. The ubiquitous reed-solomon codes. SINEWS: SIAM News, 26,
1993.

[15] S. Dresler and M. Hoffmann. Adaptive error correction to support het-
erogenous multicast groups. Institute of Telematics, University of Karl-
sruhe, Zirkel 2, 76128 Karlsruhe, Germany.

[16] H. Esaki and T. Fukuda. Reliable IP multicast communication over ATM
networks using forward error correction policy. IEIEC, Transactions on
Communications, E78-B,12:1622–37, December 1995.

[17] Glossary of telecommunications terms, 1998. http://www.its.
bldrdoc.gov/fs-1037/ 17.7.1998.

[18] D.C. Feldmeier. An overview of the TP++ transport protocol project.
Computer Communications Recearch, Bellcore.

[19] G.A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Stor-
age. MIT Press, 1992.

[20] A. Gotti. The Da CaPo communication system. Technical report, Com-
puter Engineering and Networks Laboratory, Swiss Federal Institute,
Zurich, June 1998.

[21] R.P. Grimaldi. Discrete and Combinatorial Mathematics. Addison-Wesley,
1994.

[22] L. Hellerstein, G.A. Gibson, R.M. Karp, R.H. Katz, and D.A. Patterson. Cod-
ing techniques for handling failures in large disk arrays. Algorithmica,
12(2/3):182–208, August/September 1994.

[23] M. Holland and G.A. Gibson. Parity declustering for continuous opera-
tion in redundant disk arrays. Proceedings of the 5th International Con-
ference on Architectural Support for Programming Languages and Oper-
ating System (ASPLOS), 27,9:23–35, September 1992.

[24] M. Holland, G.A. Gibson, and D.P. Siewiorek. Fast, on-line failure recov-
ery in redundant disk arrays. Proceedings of the 23rd Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS ’93), pages 422–
431, June 1993.

100

[25] A practical quide to the ibm 7135 raid array, 1998. http:
//www.rs6000.ibm.com/resource/aix_resource/Pubs/redbooks/
htmlbooks/sg242565.00/rptgch1.html 16.7.1998.

[26] R. Jain. Myths about congestion management in high speed networks.
Technical Report 9809088, September 1, 1998.

[27] K. Kanai, R. Grueter, and K. Tsunoda et.al. Forward error correction
control on AAL 5:FEC-SSCS. IEEE International Conference on Communi-
cations, pages 384–91, 1996.

[28] Basic terminology, 1998. http://kwanwoo.postech.ac.kr/˜choety/
raid/cipark/node3.html 16.7.1998.

[29] H. Linder, I. Miloucheva, and H.D. Clausen. A multicast transport pro-
tocol with forward error correction for satellite environments. Madrid,
Spain, 1996.

[30] M.E.S. Loomis. Data Communications. Prentice Hall, 1983.

[31] A.J. McAuley. Reliable broadband communication using a burst erasure
correcting code,. Proc. ACM SIGCOMM ’90; (Special Issue Computer Com-
munication Review), pages 297–306, September 1990. Published as Proc.
ACM SIGCOMM ’90; (Special Issue Computer Communication Review).

[32] A.M. Michelson and A.H. Levesque. Error Control Techniques For Digital
Communication. Prentice Hall, 1985.

[33] K. Mooi and M. Kitsureqawa. Hot mirroring : A method of hiding par-
ity update penalty and degration during rebuilds for RAID 5. Sigmod
Record, 25:183–94, 1996.

[34] H. Ohta and T. Kitami. A cell loss recovery method using FEC in ATM
networks. IEEE Journal on selected areas in communications, 9:1471–83,
December 1991.

[35] D.A. Patterson and J.L. Hennessy. Computer Organization: The Hard-
ware/Software Interface. Morgan Kaufmann Publishers, 2929 Campus
Drive, Suite 260, San Mateo, CA 94403, USA, second edition, 1997.

[36] J.S. Plank. Tutorial on reed-solomon coding for fault-tolerance in RAID-
like systems. Technical Report UT-CS-96-332, Department of Computer
Science, University of Tennessee, July 1996.

[37] T.R.N. Rao and E. Fujiwara. Error-Control Coding for Computer Systems.
1989.

[38] Real-Time encyclopaedia, data striping, 1998. http://www.
realtime-info.be/encyc/techno/terms/75/22.htm 17.7.1998.

101

[39] L. Rizzo. Effective erasure codes for reliable computer communication
protocols. ACM, Computer Communication Review, 27, 2:24–36, 1997.

[40] D. Rodgers. Commquest multi-function cards offer new features. Techni-
cal report, SHF SATCOM Engineering for Advanced Communication Sys-
tems, Inc., in Arlington, VA., 1998.

[41] C. Britton Rorabaugh. Error Coding Cookbook, Practical C/C++ Routines
and recipes for Error Detection and Correction. McGraw Hill, 1996.

[42] R. Schatzmayr and R. Popescu-Zeletin. Providing support for data trans-
fer in a new networking environment. Lecture Notes in Computer Science,
882:241–255, 1994.

[43] K. Shamloo. Resource considerations for scalable multicast connections
over ATM, Cand. Scient. Thesis, University of Oslo, 1997.

[44] V. Srinivasan, A. Ghanwani, and E. Gelenbe. Block loss reduction in ATM
networks. Lecture Notes in Computer Science, 919:73–84, 1995.

[45] W. Stallings. Data and Computer Communications. Macmillan Pub. Co.,
NY, NY, 1985.

[46] T. Stock and X. Garcia. On the potentials of forward error correction
mechanisms applied to real-time services carried over B-ISDN. Lecture
Notes in Computer Science, 1044:107–14, 1996.

[47] D. Stodolsky, G. Gibson, and M. Holland. Parity logging overcoming the
small write problem in redundant disk arrays. Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages 64–
75, May 1993.

[48] T.W. Strayer, B.J. Dempsey, and A.C. Weaver. XTP – The Xpress Transfer
Protocol. Addison-Wesley Publishing Company, 1992.

[49] A.A. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[50] A.C. Weaver. The Xpress transfer protocol version 4. Technical report,
Department of Computer Science, University of Virginia, 1995.

102

Appendix A

Da CaPo Modules

The Da CaPo modules this appendix introduces are created by Roland Siposs
and are available at UniK. The sender FEC module (Appendix A.1) uses XOR
calculations to create two additional TDUs for each consecutive original TDU.
This means that one FEC block includes four TDUs; two original and two re-
dundant. The redundancy ratio is therefore high. The receiver FEC module
(Appendix A.2) inspects if TDUs are lost and recreates the lost TDUs with XOR
calculations. Because two additional TDUs are included in the data transmis-
sion, we are able to recover from two TDU losses in one FEC block.

The elimination of TDUs from the data transmission is accomplished with
the m_killer module (Appendix A.3). Elimination is accomplished before the
TDUs are sent from the sender to the receiver. The user decides which TDUs
are to be eliminated. The sequence numbers for these TDUs are defined in
the file m_killer.files. In this way, it is possible to control the error scenar-
ios to be simulated in data transmission. As explained earlier, congestion on
a channel can be simulated by eliminating consecutive TDUs from the data
transmission. One TDU is eliminated by defining three consecutive TDU se-
quences in the m_killer.files.

A.1 Sender Side FEC

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rm_types.h"
#include "ms_fec_matrix.h"
#include "m_fec_types.h"

typedef struct fec_prio1_s_kon{
int offset;
int state;

103

buf adata,aheader;
buf bdata,bheader;
buf cdata,cheader;
buf ddata,dheader;
unsigned char seqnr;
unsigned char dcba;

}Fec_prio1_s_desc;

char *fec_prio1_s_init(protocol_attr *pattr, int modnum)
/**/
{

Fec_prio1_s_desc *inst;

inst = (Fec_prio1_s_desc *) malloc(sizeof(Fec_prio1_s_desc));
inst->offset = pattr->m[modnum].headerpos[0].pos;
inst->state = M_DONE;
inst->adata = NULL;
inst->aheader = NULL;
inst->bdata = NULL;
inst->bheader = NULL;
inst->cdata = NULL;
inst->cheader = NULL;
inst->ddata = NULL;
inst->dheader = NULL;
inst->seqnr = 0;
inst->dcba = 0;
return (char *) inst;

}

int fec_prio1_s_exit(char *inst)
/******************************/
{

free(inst);
return 0;

}

void fec_prio1_s_request(char *inst,packet pd, int *status)
/***/
{

Fec_prio1_s_desc *ins;
int datalen, headerlen, i;
unsigned char *a, *b, *c, *d;
buf tmp;

#ifdef deb_fec
printf("--> fec_prio1_s_request\n");

#endif
ins = (Fec_prio1_s_desc *) inst;
if (ins->state == M_DONE){ /* state ok */

pd.header->data[ins->offset] = ins->seqnr++;
pd.header->data[ins->offset+1] = 0;
if ((ins->seqnr % PRIO_1_SETSIZE) == 1){

ins->adata = pd.data;

104

ins->aheader = pd.header;
ins->dcba = E1;
ins->state = M_DONE;

}
else if ((ins->seqnr % PRIO_1_SETSIZE) == 2){

ins->bdata = pd.data;
ins->bheader = pd.header;
datalen = ins->adata->len;
headerlen = ins->aheader->len;
/* Check, if packetsize is equal. Headerlength must be equal */
if (datalen > ins->bdata->len){

#ifdef deb_fec
printf("***--> b shorter than a!\n");

#endif
tmp = allocate(datalen);
memcpy(tmp->data,ins->bdata->data,ins->bdata->len);
memset(tmp->data + ins->bdata->len,0,datalen - ins->bdata-

>len);
/* Number of dummy bytes */
ins->bheader->data[ins->offset+1] = datalen - ins->bdata-

>len;
deallocate(ins->bdata);
ins->bdata = tmp;

}
else if (datalen < ins->bdata->len){

#ifdef deb_fec
printf("***--> a shorter than b!\n");

#endif
datalen = ins->bdata->len;
tmp = allocate(datalen);
memcpy(tmp->data,ins->adata->data,ins->adata->len);
memset(tmp->data + ins->adata->len,0,datalen - ins->adata-

>len);
/* Number of dummy bytes */
ins->aheader->data[ins->offset+1] = datalen - ins->adata-

>len;
deallocate(ins->adata);
ins->adata = tmp;

}
/* Create new packets c, d */
ins->cdata = allocate(datalen);
ins->cheader = allocate(headerlen);
ins->ddata = allocate(datalen);
ins->dheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;
c = ins->cdata->data;
d = ins->ddata->data;
for (i=0; i<datalen; i++){

*c++ = *a ˆ *b;
*d++ = *a ˆ ms_fec_mult_2_8_2[(*b)];
a++; b++;

}

105

a = ins->aheader->data;
b = ins->bheader->data;
c = ins->cheader->data;
d = ins->dheader->data;
for (i=0; i<headerlen; i++){

*c++ = *a ˆ *b;
*d++ = *a ˆ ms_fec_mult_2_8_2[(*b)];
a++; b++;

}
/* Overwrite one byte in c- and dheader to add seqnr. It’s is

not bad, because this byte is not important for a
reconstructed packet. */

ins->cheader->data[ins->offset] = ins->seqnr++;
ins->dheader->data[ins->offset] = ins->seqnr++;
ins->seqnr = ins->seqnr % PRIO_1_MAXSEQ;
ins->dcba |= (E2 + E3 + E4);
ins->state = M_READY;

}
else{ /* should never happen */

deallocate(pd.data);
deallocate(pd.header);

}
}
else{ /* wrong state => discard */

deallocate(pd.data);
deallocate(pd.header);

}
}

void fec_prio1_s_indication(char *inst,packet *pd, int *status)
/***/
{

Fec_prio1_s_desc *ins;

ins = (Fec_prio1_s_desc *) inst;
if (ins->state == M_READY){ /* state ok */

if (ins->dcba & E1){ /* send a */
#ifdef deb_fec

printf("--> fec_prio1_s_indication:Send a\n");
#endif
pd->data = ins->adata;
pd->header = ins->aheader;
ins->dcba ˆ= E1; /* delete bit for a */
ins->state = M_READY;
*status = DATA_OK;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:DATA_OK\n");
#endif

}
else if (ins->dcba & E2){ /* send b */

#ifdef deb_fec
printf("--> fec_prio1_s_indication:Send b\n");

#endif

106

pd->data = ins->bdata;
pd->header = ins->bheader;
ins->dcba ˆ= E2; /* delete bit for b */
ins->state = M_READY;
*status = DATA_OK;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:DATA_OK\n");
#endif

}
else if (ins->dcba & E3){ /* send c */

#ifdef deb_fec
printf("--> fec_prio1_s_indication:Send c\n");

#endif
pd->data = ins->cdata;
pd->header = ins->cheader;
ins->dcba ˆ= E3; /* delete bit for c */
ins->state = M_READY;
*status = DATA_OK;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:DATA_OK\n");
#endif

}
else if (ins->dcba & E4){ /* send d */

#ifdef deb_fec
printf("--> fec_prio1_s_indication:Send d\n");

#endif
pd->data = ins->ddata;
pd->header = ins->dheader;
ins->dcba = 0; /*reset */
ins->state = M_DONE;
*status = DATA_OK;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:DATA_OK\n");
#endif

}
else{

*status = NO_DT;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:NO_DT0\n");
#endif

}
} else{

*status = NO_DT;
#ifdef deb_fec

printf("--> fec_prio1_s_indication:NO_DT1\n");
#endif

}
}

107

A.2 Receiver Side FEC

#include <stdio.h>
#include <stdlib.h>
#include "rm_types.h"
#include "mr_fec_matrix.h"
#include "m_fec_types.h"

/*#define deb_fec*/

typedef struct fec_prio1_r_kon{
int offset;
int state;
int lost_count;
buf adata,aheader;
buf bdata,bheader;
buf cdata,cheader;
buf ddata,dheader;
unsigned char seqnr;
unsigned char setnr;
unsigned char dcba;
unsigned char seqcount;

}Fec_prio1_r_desc;

char *fec_prio1_r_init(protocol_attr *pattr, int modnum)
/**/
{

Fec_prio1_r_desc *inst;

inst = (Fec_prio1_r_desc *) malloc(sizeof(Fec_prio1_r_desc));
inst->offset = pattr->m[modnum].headerpos[0].pos;
inst->state = M_DONE;
inst->adata = NULL;
inst->aheader = NULL;
inst->bdata = NULL;
inst->bheader = NULL;
inst->cdata = NULL;
inst->cheader = NULL;
inst->ddata = NULL;
inst->dheader = NULL;
inst->setnr = 0;
inst->dcba = 0;
inst->seqcount = 0;
return (char *) inst;

}

int fec_prio1_r_exit(char *inst)
/******************************/
{

free(inst);
return 0;

}

108

void fec_prio1_r_request(char *inst,packet pd, int *status)
/***/
{

Fec_prio1_r_desc *ins;
int rem;
int datalen, headerlen, i;
unsigned char *a, *b, *c, *d;
buf tmp;

ins = (Fec_prio1_r_desc *) inst;
ins->seqnr = pd.header->data[ins->offset];
#ifdef deb_fec

printf("--> fec_prio1_r_request:%d\n",ins->seqnr);
#endif

if ((ins->state == M_DONE) && (ins->setnr <= (ins->seqnr /
PRIO_1_SETSIZE)) && !((ins->setnr == 0) && ((ins->seqnr /
PRIO_1_SETSIZE) == PRIO_1_MAXSET - 1))){

/* state ok and not a set, which is already through */
if (ins->seqcount == 0){ /* begin of new set */

ins->setnr = ins->seqnr / PRIO_1_SETSIZE;
rem = ins->seqnr % PRIO_1_SETSIZE;
ins->seqcount++;
if (rem == 0){

ins->dcba = E1;
ins->adata = pd.data;
ins->aheader = pd.header;

}
else if (rem == 1){

ins->dcba = E2;
ins->bdata = pd.data;
ins->bheader = pd.header;

}
else if (rem == 2){

ins->dcba = E3;
ins->cdata = pd.data;
ins->cheader = pd.header;

}
else{ /* rem == 3 */

ins->dcba = E4;
ins->ddata = pd.data;
ins->dheader = pd.header;

}
ins->state = M_DONE;

}
else if (ins->seqcount == 1){

if (ins->setnr == (ins->seqnr / PRIO_1_SETSIZE)){
/* the same set */
rem = ins->seqnr % PRIO_1_SETSIZE;
if (rem == 0){

ins->dcba |= E1;

109

ins->adata = pd.data;
ins->aheader = pd.header;

}
else if (rem == 1){

ins->dcba |= E2;
ins->bdata = pd.data;
ins->bheader = pd.header;

}
else if (rem == 2){

ins->dcba |= E3;
ins->cdata = pd.data;
ins->cheader = pd.header;

}
else{ /* rem == 3 */

ins->dcba |= E4;
ins->ddata = pd.data;
ins->dheader = pd.header;

}
if ((ins->dcba & E2) && (ins->dcba & E1)) ;
/* nothing to do */
else if ((ins->dcba & E3) && (ins->dcba & E1)){
/* reconstruct b */
#ifdef deb_fec

printf("***-> Reconsruct b, Case dcba = %d\n", ins->dcba);
#endif
datalen = ins->cdata->len;
headerlen = ins->cheader->len;
ins->bdata = allocate(datalen);
ins->bheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;
c = ins->cdata->data;
for (i=0; i<datalen; i++)

*b++ = *a++ ˆ *c++;
a = ins->aheader->data;
b = ins->bheader->data;
c = ins->cheader->data;
for (i=0; i<headerlen; i++)

*b++ = *a++ ˆ *c++;
deallocate(ins->cdata);
deallocate(ins->cheader);

}
else if ((ins->dcba & E3) && (ins->dcba & E2)){
/* reconstruct a */
#ifdef deb_fec

printf("***-> Reconsruct a, Case dcba = %d\n", ins->dcba);
#endif
datalen = ins->cdata->len;
headerlen = ins->cheader->len;
ins->adata = allocate(datalen);
ins->aheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;

110

c = ins->cdata->data;
for (i=0; i<datalen; i++)

*a++ = *b++ ˆ *c++;
a = ins->aheader->data;
b = ins->bheader->data;
c = ins->cheader->data;
for (i=0; i<headerlen; i++)

*a++ = *b++ ˆ *c++;
deallocate(ins->cdata);
deallocate(ins->cheader);

}
else if ((ins->dcba & E4) && (ins->dcba & E1)){
/* reconstruct b */
#ifdef deb_fec
printf("***-> Reconsruct b, Case dcba = %d\n", ins->dcba);
#endif
datalen = ins->ddata->len;
headerlen = ins->dheader->len;
ins->bdata = allocate(datalen);
ins->bheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;
d = ins->ddata->data;
for (i=0; i<datalen; i++)

*b++ = mr_fec_mult_2_8_142[*a++ ˆ *d++];
a = ins->aheader->data;
b = ins->bheader->data;
d = ins->dheader->data;
for (i=0; i<headerlen; i++)

*b++ = mr_fec_mult_2_8_142[*a++ ˆ *d++];
deallocate(ins->ddata);
deallocate(ins->dheader);

}
else if ((ins->dcba & E4) && (ins->dcba & E2)){
/* reconstruct a */
#ifdef deb_fec
printf("***-> Reconsruct a, Case dcba = %d\n", ins->dcba);
#endif
datalen = ins->ddata->len;
headerlen = ins->dheader->len;
ins->adata = allocate(datalen);
ins->aheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;
d = ins->ddata->data;
for (i=0; i<datalen; i++)

*a++ = *d++ ˆ mr_fec_mult_2_8_2[*b++];
a = ins->aheader->data;
b = ins->bheader->data;
d = ins->dheader->data;
for (i=0; i<headerlen; i++)

*a++ = *d++ ˆ mr_fec_mult_2_8_2[*b++];
deallocate(ins->ddata);

111

deallocate(ins->dheader);
}
else if ((ins->dcba & E4) && (ins->dcba & E3)){
/* reconstruct a,b */
#ifdef deb_fec

printf("***-> Reconsruct a,b, Case dcba = %d\n", ins->dcba);
#endif
datalen = ins->ddata->len;
headerlen = ins->dheader->len;
ins->adata = allocate(datalen);
ins->aheader = allocate(headerlen);
ins->bdata = allocate(datalen);
ins->bheader = allocate(headerlen);
a = ins->adata->data;
b = ins->bdata->data;
c = ins->cdata->data;
d = ins->ddata->data;
for (i=0; i<datalen; i++){

*b = mr_fec_mult_2_8_244[*c ˆ *d++];
*a++ = *b++ ˆ *c++;

}
a = ins->aheader->data;
b = ins->bheader->data;
c = ins->cheader->data;
d = ins->dheader->data;
for (i=0; i<headerlen; i++){

*b = mr_fec_mult_2_8_244[*c ˆ *d++];
*a++ = *b++ ˆ *c++;

}
deallocate(ins->cdata);
deallocate(ins->cheader);
deallocate(ins->ddata);
deallocate(ins->dheader);

}
ins->dcba = E2 + E1;
/* check a and b for dummy bits */
if (ins->aheader->data[ins->offset+1] != 0){

tmp = ins->adata;

ins->adata = allocate_piece(tmp,0,tmp->len -
ins->aheader->data[ins->offset+1]);

deallocate(tmp);
}
if (ins->bheader->data[ins->offset+1] != 0){

tmp = ins->bdata;
ins->bdata = allocate_piece(tmp,0,tmp->len -

ins->bheader->data[ins->offset+1]);
deallocate(tmp);

}
/* a and b are now available in their original size */
ins->setnr++;
/* all setnumbers < setnr are ignored from now on */

112

ins->setnr = ins->setnr % PRIO_1_MAXSET;
ins->seqcount = 0;
ins->state = M_READY;

}
else{ /* two different sets -> have to forget first */
ins->lost_count++;
printf("Packet_lost_count: %d\n" , ins->lost_count);
#ifdef deb_fec

printf("***-> Lost at least 1 Set
(More than 2 packets per set are lost) !\n");

#endif
/* remove old packet */
if (ins->dcba & E1){

deallocate(ins->adata);
deallocate(ins->aheader);

}
else if (ins->dcba & E2){

deallocate(ins->bdata);
deallocate(ins->bheader);

}
else if (ins->dcba & E3){

deallocate(ins->cdata);
deallocate(ins->cheader);

}
else if (ins->dcba & E4){

deallocate(ins->ddata);
deallocate(ins->dheader);

}
ins->dcba = 0;
/* begin of new set */
ins->setnr = ins->seqnr / PRIO_1_SETSIZE;
rem = ins->seqnr % PRIO_1_SETSIZE;
/* ins->seqcount stays 1 */
if (rem == 0){

ins->dcba = E1;
ins->adata = pd.data;
ins->aheader = pd.header;

}
else if (rem == 1){

ins->dcba = E2;
ins->bdata = pd.data;
ins->bheader = pd.header;

}
else if (rem == 2){

ins->dcba = E3;
ins->cdata = pd.data;
ins->cheader = pd.header;

}
else{ /* rem == 3 */

ins->dcba = E4;
ins->ddata = pd.data;
ins->dheader = pd.header;

}

113

ins->state = M_DONE;
}

}
else{ /* should never happen */

deallocate(pd.data);
deallocate(pd.header);

}
}
else{

/* wrong state or packet from a set which is already done */
deallocate(pd.data);
deallocate(pd.header);

}
}

void fec_prio1_r_indication(char *inst,packet *pd, int *status)
/***/
{

Fec_prio1_r_desc *ins;

ins = (Fec_prio1_r_desc *) inst;
if (ins->state == M_READY){ /* state ok */

if (ins->dcba & E1){ /* send a */
#ifdef deb_fec

printf("--> fec_prio1_r_indication:Send a\n");
#endif
pd->data = ins->adata;
pd->header = ins->aheader;
ins->dcba ˆ= E1; /* delete bit for a */
ins->state = M_READY;
*status = DATA_OK;
#ifdef deb_fec
printf("--> fec_prio1_r_indication:DATA_OK\n");
#endif

}
else if (ins->dcba & E2){ /* send b */

#ifdef deb_fec
printf("--> fec_prio1_r_indication:Send b\n");

#endif
pd->data = ins->bdata;
pd->header = ins->bheader;
ins->dcba = 0; /*reset */
ins->state = M_DONE;
*status = DATA_OK;
#ifdef deb_fec
printf("--> fec_prio1_r_indication:DATA_OK\n");
#endif

}
else{

*status = NO_DT;
#ifdef deb_fec
printf("--> fec_prio1_r_indication:NO_DT0\n");

#endif

114

}
} else{

*status = NO_DT;
#ifdef deb_fec

printf("--> fec_prio1_r_indication:NO_DT1\n");
#endif

}
}

115

A.3 M-killer Module

#include <stdio.h>
#include <stdlib.h>
#include "rm_types.h"

#define M_DONE 2
#define M_READY 8
#define K_FILE "m_killer.files"

/**
This module kills all the packets with the
sequencenumbers given in the
file "m_killer.files".

**/

typedef struct killer_m_kon{
int state;
int kilcount;
buf data,header;
unsigned char seqnr;

}Killer_m_desc;

char *killer_init(protocol_attr *pattr, int modnum)
/***/
{

Killer_m_desc *inst;

inst = (Killer_m_desc *) malloc(sizeof(Killer_m_desc));
inst->state = M_DONE;
inst->data = NULL;
inst->header = NULL;
inst->seqnr = 0;
return (char *) inst;

}

int killer_exit(char *inst)
/***************************/
{

free(inst);
return 0;

}

int found(unsigned char seqnr)
/****************************/
{

FILE *killfile;
int nr;

killfile = fopen(K_FILE,"r");
while (fscanf(killfile,"%d",&nr) != EOF){

if (nr == seqnr){

116

fclose(killfile);
return 1;

}
}
fclose(killfile);
return 0;

}

void killer_request(char *inst,packet pd, int *status)
/**/
{

Killer_m_desc *ins;

ins = (Killer_m_desc *) inst;
if (ins->state == M_DONE){ /* state ok */

if (!found(ins->seqnr)){
ins->data = pd.data;
ins->header = pd.header;
ins->state = M_READY;

}
else{

deallocate(pd.data);
deallocate(pd.header);

printf("***--> killer_request: Killed packet with seqnr %d\n",ins-
>seqnr);

ins ->kilcount++;
printf("Killed packets: %d\n", ins->kilcount);
ins->state = M_DONE;

}
ins->seqnr++;
ins->seqnr = ins->seqnr % 252;

}
else{ /* wrong state => discard */

deallocate(pd.data);
deallocate(pd.header);

}
}

void killer_indication(char *inst,packet *pd, int *status)
/**/
{

Killer_m_desc *ins;

ins = (Killer_m_desc *) inst;
if (ins->state == M_READY){ /* state ok */

pd->data = ins->data;
pd->header = ins->header;
ins->state = M_DONE;
*status = DATA_OK;

} else{
*status = NO_DT;

}
}

117

