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Abstract

The appearance of commodity multi-core processors, has spawned a wide interest in
parallel programming, which is widely-regarded as more challenging than sequential
programming. KPNs are a model of concurrency that relies exclusively on message
passing, and that has some advantages over parallel programming tools in wide use to-
day: simplicity, graphical representation, and determinism. Because of determinism, it
is possible to reliably reproduce faults, an otherwise notoriously difficult problem with
parallel programs. KPNs have gained acceptance in simulation and signal-processing
communities. In this thesis, we investigate the applicability of KPNs to implementing
general-purpose parallel computations for multi-core machines. In particular, we in-
vestigate 1) how KPNs can be used for modeling general-purpose problems; 2) how an
efficient KPN run-time can be implemented; 3) what KPN scheduling strategies give
good run-time performance.

For these purposes, we have developed Nornir, an efficient run-time system for exe-
cuting KPNs. With Nornir, we show that it is possible to develop a high-performance
KPN run-time for multi-core machines. We experimentally demonstrate that problems
expressed in the Kahn model resemble very much their sequential implementations,
yet perform much better than when expressed in the MapReduce model, which has
become widely-recognized as a simple parallel programming model. Lastly, we use
Nornir to evaluate several load-balancing methods: static assignment, work-stealing,
our improvement of work-stealing, and a method based on graph partitioning. The un-
derstanding brought by this evaluation is significant not only in the context of the Kahn
model, but also in the more general context of load-balancing (potentially distributed)
applications written in message-passing style.
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1. Introduction

We are witnessing a small technological revolution. As modern processors have reached
their power and frequency limits, the designers are turning to increasing the on-chip
parallelism. The trend began with the introduction of IBM’s dual-core POWER4 pro-
cessor [1, 2], followed by Intel’s hyperthreading. Intel and AMD have introduced dual-
and quad-core CPUs, making them today (2009) a commodity; on the high-end there is
Sun’s Niagara T2 chip [3] which is capable of supporting 8 hardware threads on each
of the 8 cores (64 threads in total). In order to reduce power dissipation, individual
cores are running on lower frequencies than that of their single-core predecessors. Con-
sequently, the sequential performance of individual cores is decreased, so developers
cannot any longer develop sequential applications and count on that they will execute
faster on future-generation CPUs. High-performance applications will therefore have
to be designed with parallelism in mind from the beginning. We thus need abstractions
that will ease development and modeling of parallel applications, as well run-time
environments that can efficiently support these abstractions.

1.1. Motivation

A historical study of programming languages reveals many attempts to define suitable
abstractions for parallel programming, such as futures [4] and monitors [5]. Despite re-
search efforts, lower-level programming languages, such as C and C++, have no support
for concurrency in the core language. Instead, they support concurrency only through
system libraries such as the pthread interface standardized by POSIX. These libraries
provide low-level synchronization primitives, such as mutexes, condition variables and
semaphores, so developers must themselves build higher-level abstractions. Further-
more, these primitives are hard to use correctly even for experienced programmers [6];
their incorrect use leads to problems such as deadlocks, race conditions, or priority in-
versions. Newer languages, however, do recognize concurrency as a first-class concept:
for example, Java uses the synchronized keyword to provide partial [7] support for
monitors, and C# uses the lock keyword for mutual exclusion.

A trait common to the above-mentioned mechanisms is that they are non-deterministic,
which may lead to the (most often) undesireable situation where the application’s
results may differ between runs with the same data. Because of non-determinism, these
mechanisms are hard and unintuitive to use – for example, many developers with little
experience in parallel programming expect that mutexes unblock waiting threads in
FIFO order, which is not so in most implementations. Non-determinism is also the
main cause that makes reproducing and correcting concurrency bugs so notoriously
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hard. Lee [6] therefore argues that, contrary to the today’s situation, deterministic
behavior should be default, and that non-deterministic behavior should be possible
when explicitly desired.

Industrial actors have met their needs for simplified concurrent and distributed pro-
gramming by developing their own solutions. Google has developed MapReduce [8],
Yahoo has developed Pig latin programming language [9], while Microsoft has devel-
oped Dryad [10], Cosmos and programming language Scope [11]. These systems are
developed with distributed, large-scale data analyses and transformations in mind.
Their common traits are the use of shared-nothing programming model, i.e., explicit
message-passing for communication between concurrent components, and that deter-
ministic behavior is default. These properties benefit program development in several
ways:

• Sequential coding of individual components. Processes are written in the usual se-
quential manner where synchronization is implicit in communication primitives
(message send and receive). Developers can thus reuse their existing expertise,
and need not worry about non-deterministic aspects of concurrent execution.

• Preserved composability. Determinism guarantees that connecting the outputs of
components computing functions f (x) and g(x) to the inputs of a component
computing function h(x, y) will result in h( f (x), g(x)). Thus, components can be
developed and tested individually, and later assembled into more complex pro-
grams.

• Transparent parallelization and distribution. The actual mechanisms for achieving
parallelization are hidden from developers. Components are written from scratch
in the message-passing model, so they can run unmodified on multi-core machines
or on large distributed clusters, perhaps under a different run-time.

• Reliable reproduction of program faults, an otherwise notoriously difficult problem
with concurrent systems, is possible when developers restrict themselves to the
deterministic subset of the framework. Of the above frameworks, Dryad supports
also non-deterministic constructs.

All of the above systems lack support for a feature that is actually very useful: feedback
loops in the application’s data path. In other words, these frameworks are designed
with one-pass data transformations in mind. On the other hand, there are many problems
where feedback loops in the data-path are essential. Examples of such programs are
video-encoding and iterative algorithms where the number of iterations cannot be
determined a priori, e.g., the k-means classification algorithm or N-body simulations.

The Kahn process network (KPN) model [12] is an asynchronous, deterministic, and
shared-nothing concurrent programming model that does support feedback loops. Thus,
along with the above properties, the Kahn model also provides additional flexibility. The
combination of asynchronous communication and support for feedback loops allow de-
velopers to express certain patterns, such as mutual recursion, which are not expressible
in systems without these properties.
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We know of only two other systems with support for feedback loops: IBM’s System S
and its programming language SPADE [13], which have been developed in parallel with
our work. However, information about its architecture and implementation is scarce,
and the system is not easily available. The other system is StreamIt [14], which is more
restricted than KPNs, as we shall explain in section 2.1.2.2.

1.2. Problem statement

Because of the properties mentioned above, KPNs are already used in embedded,
signal-processing and simulation domains [15, 16, 17, 18, 19, 20]. In this thesis, we
experimentally investigate their applicability to parallelizing general-purpose applica-
tions on multi-core, shared-memory machines. In particular, we address the following
questions:

1. How can we make an efficient run-time system for executing KPNs on multi-core
machines? (Distributed implementation is left for future work.)

2. Are KPNs applicable to parallelizing general-purpose applications and what is
the required effort of doing so?

3. What are the performance characteristics of applications implemented within the
KPN framework?

4. What is the effect of KPN scheduling policies on application performance?

Experimentation presupposes the existence of a run-time system for executing KPNs.
For answering the above questions, such system must fulfill several requirements. First,
it must support multiprocessing and run-time deadlock detection and resolution, which
is a “must-have” feature that enables execution of arbitrary KPNs (within the limits
of available memory). Second, it must support easy experimentation with low-level
mechanisms, such as scheduling and message-passing, so that their relative merits can
be easily judged. Third, it must support collection of detailed accounting data. Accounting
is necessary for quantifying overheads, as well as for implementing scheduling policies
that take into account more factors than just CPU consumption of individual KPs.
Fourth, it should efficiently support overdecomposed applications, i.e., those having more
many more Kahn processes (KPs) than CPUs. Efficient support for overdecomposition
enables fine-grained parallelism, which leads to transparent speedup on machines with
more CPUs.

1.3. Contributions

Since none of the existing KPN run-time implementations [20, 19, 15, 21, 22] satisfy all
of our requirements, we have implemented Nornir [23, 24, 25],1 which is a configurable,

1Nornir (pl.) spin the threads of fate at the foot of Yggdrasil, the tree of the world. [Source: Wikipedia]
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multi-platform and efficient run-time environment for executing KPNs on multi-core
machines. We have estimated that a clean-start implementation would not take consid-
erably longer time than implementing the missing functionality for an existing run-time.
A clean-start implementation also removes the risks of encountering bugs in a large and
unfamiliar code-base.

To answer the first question, we have used Nornir to evaluate performance character-
istics of message-passing and scheduling options. We have implemented an optimized
message-passing mechanism and found that its overheads are smaller by a factor of
1.7–1.9 than the overheads of POSIX message queues. We have also implemented a
user-space m:n KPN scheduler and found that its overheads are smaller by a factor of
up to 6.5 than the overheads of the kernel’s thread scheduler. We have measured that
the cost of a single message send/receive operation combined with a context switch
takes ∼ 0.8µs. Chapter 4 and section 5.2 extend the results published in [23].

To answer the second and third questions, we have first thoroughly analyzed the
MapReduce semantics and found that it can be easily implemented within the KPN
framework. We have then used Nornir to implement two real-world problems, word
frequency and k-means, as KPNs in two ways: one that “naturally” models the problem
and another that faithfully implements the MapReduce semantics. Our experiments
show that the “natural” KPN outperforms the “MapReduce” KPN by a factor of 2.95
– 6.74 on the word frequency application, and by a factor of 1.17 – 1.43 on the k-
means application. Furthermore, we have evaluated the “natural” solutions against
their counterparts in Phoenix [26], which is a MapReduce implementation optimized
for multi-core architectures. Experiments show that our “natural” solutions in Nornir
outperform the Phoenix solutions by factors of 2.65 – 2.76 and 1.28 – 1.75, respectively.
Sections 3.2, 3.3, and 5.1 extend the discussions and results published in [24].

Our case-studies are focused on MapReduce for several reasons. First, MapReduce is
a widely recognized “simple” framework for parallel programming, and many devel-
opers are already familiar with it. Second, many have reimplemented MapReduce for
different architectures [27, 26, 28, 29] and made it publicly available. The availability
Phoenix made it possible to put our results in perspective with similar research. We
have not focused on Dryad, Cosmos or System S because their models are already very
general and similar to KPNs – indeed, deterministic programs built for these systems2

are KPNs. Furthermore, very little information is available about these systems, and
they are not easily available to the general public, if at all.

To answer the fourth question, we have designed synthetic benchmarks and evalu-
ated their performance under the established work-stealing [30] scheduling algorithm,
and the algorithm proposed by Devine et al. [31, 32]. Devine’s algorithm is designed for
load-balancing of structured distributed applications, such as simulations. It attempts to
achieve load-balance across machines, while simultaneously reducing communication
volume between processes running on different machines and costs of process migra-
tion. We believe to be the first who have evaluated performance of load-balancing algo-
rithms based on graph partitioning, such as Devine’s, on unstructured workloads and

2Recall that Dryad supports also non-deterministic constructs.
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multi-core machines. Our results show that work-stealing has superior performance,3

and they uncover a serious problem with Devine’s algorithm on our workloads: large
variance of program running times, an aspect not discussed by Devine. We have also
investigated the scalability of the work-stealing algorithm along two axes: number of
KPs in the network and granularity of work division among them. Sections 4.2 and 5.3
extend the discussions and results published in [25].

During our research, we have also investigated two additional topics, not originally
addressed by our questions. First, we have devised two constructions, described in
section 3.4, that enable execution of KPNs by repeatedly iterating MapReduce com-
putations. The benefit of these constructions is that they provide a way of executing
KPNs in a distributed and fault-tolerant manner until such KPN run-time is devel-
oped. Furthermore, they are immediately implementable, as open-source MapReduce
implementations are readily available [27]. Second, we have found a simple modi-
fication to the work-stealing algorithm, described in section 4.2.2.4, that significantly
improves performance of some workloads. Performance comparison with the original
work-stealing algorithm is given in section 5.3.2.

1.4. Synopsis

This thesis is organized as follows. Chapter 2 gives background information. We
elaborate on forms of concurrency, formal models of parallel computation that are sim-
ilar to KPNs, and support for concurrency in programming languages. We also discuss
operating-system facilities related to KPN implementation: scheduling, communication
and synchronization mechanisms.

Chapter 3 is dedicated to modeling applications using KPNs. There, we describe the
KPN semantics, discuss existing KPN implementations and draw parallels with exist-
ing patterns. In particular, we focus on MapReduce [8] and show three different ways
of casting its semantics into the KPN framework. We then use the typical MapReduce
examples, word frequency and k-means, to show that they can be more naturally ex-
pressed in the KPN framework. Finally, we present two ways of executing general KPNs
by using iterative MapReduce computations, which might be useful where distribution
and fault-tolerance are needed.

In chapter 4 we describe Nornir implementation in depth, focusing on our imple-
mentation of m:n scheduling, load-balancing, message-passing and deadlock detection
mechanisms. We have implemented three load-balancing algorithms, static assign-
ment, work-stealing [30] and a method based on graph-partitioning devised by Devine
et al. [31, 32], which we have adapted to scheduling KPNs. The last method attempts
to achieve load-balance across CPUs, while simultaneously reducing communication
volume between KPs running on different CPUs and costs of KP migration. In chapter 4
we also describe Nornir’s accounting mechanisms, configuration options and discuss

3For simplicity of expression, we shall often talk about relative performance of scheduling algorithms.
By this, we will actually mean performance of applications running under the scheduling algorithms in
question.
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ideas that we have investigated and abandoned.
Chapter 5 is dedicated to performance evaluations. In the first part of the chapter,

we visit our case-study applications, word frequency and k-means, and show that
they indeed do perform better when modeled with KPNs than when modeled with
MapReduce. The second part of the chapter is dedicated to microbenchmarks. We first
describe our benchmark workloads, and then use them to investigate performance of
the KPN implementation options as well as the performance and scalability of Nornir
in the optimal configuration. In the third part of the chapter, we evaluate performance
of work-stealing and Devine’s load-balancing algorithms.

Chapter 6 summarizes the most important insights that we have gained through our
work and offers future research directions.

Finally, in order to make the thesis self-contained, we present in the appendices
topics that are relevant but not central to the thesis. In appendix A, we give elementary
definitions from graph theory and define the notion of a cut. In appendix B, we
survey problems and algorithms related to graph partitioning, which is a central part
of Devine’s load-balancing algorithm. Appendix C discusses non-uniform memory
architecture (NUMA) machines and presents some experimental results about NUMA
effects on the machine that we used to run the majority of our experiments. Appendix D
gives a complete listing for the k-means program implemented for Nornir. Unlike the
code snippets in the main body of the thesis, this listing shows aspects such as startup,
shutdown and creation of processes and channels.
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2. Background material

In this chapter, we survey existing tools for developing concurrent programs on two
levels. Section 2.1 is dedicated to high-level issues of developing concurrent programs,
i.e., abstractions, programming languages and frameworks. High-level support de-
pends on low-level mechanisms for scheduling, communication and synchronization.
These mechanisms, provided by the operating system, are described in section 2.2.

2.1. Parallel programming tools

A deep issue with parallel programming is that there is no universal way of converting
a sequential program into a concurrent or distributed implementation. Once converted,
a parallelized program often bears no resemblance to its sequential counter-part, but
certain patterns have nevertheless been observed. We begin our survey by explaining
two dichotomies: that between data- and task-parallelism, and that between shared-
state and message passing concurrency. As KPNs are a task-parallel model, we then
focus on existing tools for task-parallelism and relate them to the KPN model.

2.1.1. Dichotomies

The basis for the dichotomy between data and task parallelism is the question about how
a single sequential task can be split into multiple (semi-)independent tasks. Similarly,
the basis for the dichotomy between shared-state and message-passing parallelism is
the question about which mechanisms tasks use to communicate with each other.

2.1.1.1. Data vs. task parallelism

Data-parallel programs split the input data, while task-parallel programs split the al-
gorithm. Of course, this classification is somewhat fuzzy, and many programs fall
somewhere in between the two extremes. For example, it is easy to imagine splitting up
a complex algorithm into multiple independent tasks (task-parallelism), each of which
is internally data-parallel.

Data parallelism Data-parallel programs split the input data into many large chunks,
usually as many as there are CPUs. Each chunk is assigned to a dedicated CPU, as shown
in figure 2.1a, and all CPUs execute the same instruction sequence I. Furthermore, each
CPU is usually also equipped with a set of wide registers containing multiple data
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1 2 3 4

I I I I

(a) Data-parallelism: multiple CPUs perform
the same operation I over multiple disjoint data
chunks.

1 2 3 4

I1 I2 I3 I4

(b) Task-parallelism: multiple CPUs perform the
different operations over the same data chunk.

Figure 2.1.: Data and task parallelism on 4 CPUs.

items and vector instructions for operating on those registers; this is the so-called SIMD
architecture according to Flynn’s taxonomy [33]. For example, newer x86 processors
have been extended with SIMD aspects with the SSE instruction set and its successors,
which have introduced 128-bit registers and many new instructions. Different SSE
instructions interpret SSE registers differently: for example, a 128-bit register can be
interpreted as containing 16 8-bit integers or 4 32-bit integers. A single SSE instruction
operates on individual elements in parallel.

Task parallelism Task-parallel programs take the opposite approach, i.e., they split the
algorithm into sequential and concurrently running tasks that explicitly distribute work
among themselves. Each CPU executes a different instruction sequence, symbolized by
labels I1 . . . I4 in figure 2.1b. Unlike data-parallelism, where parallel operations are
independent, tasks in task-parallel programs must communicate with each other in
order to synchronize their activity. Communication may happen implicitly through
shared-memory accesses (symbolized by overlapping CPU regions in figure 2.1b), or
explicitly through message-passing.

Trade-offs The trade-offs between data-parallel and task-parallel approach to concur-
rency are manifested in two areas: ease of use and tool support.

We believe that task parallelism is easier to grasp because algorithms are most often
expressed imperatively, i.e., as a sequence of steps over a single data set. Imperative
description admits a natural decomposition into tasks by assigning each step to its own
task. Data parallelism most often requires that the algorithm is transformed into a
sequence of steps over multiple data sets. This transformation is algorithm-specific, and
the result is often radically different from the sequential algorithm. Typical examples
of data-parallel computations are the parallel prefix algorithm [34, 35] with its many
applications, and MapReduce [8] computations, which we will discuss later in this
thesis.

Despite being, in our opinion, conceptually harder to grasp and exploit, data paral-
lelism has some advantages. First, synchronous execution and absence of data-sharing
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between CPUs guarantee determinism and deadlock-freedom, and thus correctness
of the overall program. Second, hardware can support it much more efficiently than
task-parallelism, as witnessed by SIMD extensions to general-purpose CPUs as well as
modern graphics processors (GPU) that can run thousands of threads simultaneously,
provided that every thread executes the same code path. Each data-dependent branch
stalls the GPU and slows down the execution. Third, it needs minimal support from
the OS and minimal extensions to existing programming languages. In this respect, C
and C++ compilers have been extended in several ways:

• By adding SIMD data-types as well as functions that generate the underlying CPU
instructions.

• By extensions, such as CUDA [36] or OpenCL [37], which are used for program-
ming highly data-parallel architectures such as GPUs.

• The OpenMP [38] standard is especially suited for loop-level parallelism, but later
versions supports also task-level parallelism.

Despite being, in our opinion, conceptually easier to exploit, task-parallelism has also
some drawbacks. First, it does not restrict communication in any way, so developers
must be very careful to avoid problems like deadlocks, race-conditions and live-locks.
The latter two classes of problems are notoriously difficult to reproduce and debug.
Second, the abstractions and tools for exploiting task-parallelism are much more di-
verse and far less standardized, which can lead to interoperability problems when the
developer wishes to use several tools in the same program.

2.1.1.2. Shared-state vs. message-passing concurrency

In the vast majority of cases, the subtasks of a parallel program have some data-
dependencies, i.e., task A will have to wait for the result of task B before it can continue
with its own work. The waiting and communication of results can be accomplished
in two ways: by sharing state between tasks, or by sending messages. Unlike the
data-vs-task dichotomy, this one is much more crisp and it is rare to see an application
that uses both shared-state and message-passing. A possible scenario would involve a
distributed application that adapts to task placement: communication between tasks on
the same machine would use shared memory, while communication between tasks on
different machines would use more heavy-weight mechanisms, such as TCP/IP sockets.

Shared-state concurrency This is the most natural way of parallelizing imperative pro-
grams, i.e., programs that rely on mutation of values. The imperative paradigm encom-
passes procedural and object-oriented programming paradigms, which are today used
for most software development projects. With shared-state concurrency, an imperative
program is divided into tasks which are running within the same address space and
which communicate by modifying shared data structures. The tasks must carefully
use synchronization primitives, such as mutexes and condition variables, to coordinate
accesses to shared data.
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Message-passing concurrency Message-passing concurrency is common for implement-
ing distributed programs, where individual tasks are running in separate address
spaces. Communication is achieved by explicit calls to functions for sending and re-
ceiving messages; some programming languages support these operations through
special syntax. Synchronization between subtasks is achieved as a part of communica-
tion, by using blocking send and receive, or by using barriers [39]. Communication in
a message-passing application may be visualized by a graph, with vertices representing
tasks and (directed) edges representing communication between the tasks. If a program
can dynamically create or destroy processes, we say that the graph topology is dynamic
(as opposed to static topology). Section 3.2 describes some well-known message-passing
patterns.

Trade-offs The main advantage of shared-state concurrency are straightforward and
low-overhead communication between tasks: changing a memory location makes the
change visible to all tasks. This advantage is also its biggest drawback – it is easy to
make a change to a shared data structure without protecting the access by a mutex or
a similar mechanism. Not only are these mechanisms at a low leve of abstraction ,
but they are also non-deterministic: for example, many inexperienced developers are
surprised to find out that threads waiting on a mutex are not woken up in FIFO order.
Furthermore, the mutex state (locked or unlocked) has a dynamic scope, while modern
programming languages use static (lexical) scoping for variables. The static program
structure is therefore decoupled from its run-time behavior with respect to mutex state.
Thus, mutexes are a rather low-level mechanism that is error-prone and hard to use
even for experienced developers [6].

The main advantage of message-passing concurrency is that, unlike with shared-state
concurrency, arbitrary interference between tasks is not possible, because all communi-
cation is explicit. Another advantage of message-passing concurrency is the availability
of verification tools, such as SPIN [40], that can prove various assertions about program
behavior. Nevertheless, message-passing APIs, such as MPI [41], are very general in that
they offer facilities for direct point-to-point communication between tasks. The possibil-
ity of unrestricted asynchronous communication creates the possibility of interference
through sending messages to unintended recipient processes.

A disadvantage of message-passing concurrency, at least when used on a single multi-
core machine, are greater overheads of communication. These overheads generally
include dynamic memory allocation and/or copying of message contents. Furthermore,
broadcasting messages, which comes “for free” with shared-state concurrency, generally
incurs overheads proportional with the number of tasks.

2.1.2. Tool support for task parallelism

In section 2.1.1.1, we have briefly discussed existing tools for exploiting data-parallel
concurrency. We have also noted that tasks in a task-parallel program must coordinate
their actions by altering shared-state or by exchanging messages. This dichotomy is
used to structure the following discussion.
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2.1.2.1. Shared-state concurrency

We first review support for shared-state concurrency in major imperative programming
languages in use today – C, C++, Java and C#. For each of these, we describe the
support for concurrency in the core language and facilities available through libraries
and language extensions. Then, we discuss two abstractions – software transactional
memory (STM) [42] and futures [4] – which are today gaining ground in main-stream
programming.

C and C++ Even though they are two of the most widely used system programming
languages, their current standards define no support for concurrency whatsoever, i.e.,
all support is delegated to libraries. The volatile keyword is meant to be used with
variables that could be asynchronously changed, e.g., from interrupt handlers. How-
ever, the semantics of volatile variables is implementation-defined, and not all C and
C++ implementations define it to cover memory visibility issues (see appendix C). The
new C++ standard, still in the making at the time of writing this thesis, will support
concurrency by defining a memory model, atomic types with necessary operations, and
thread-local storage. Nevertheless, the bulk of concurrency support (threads, synchro-
nization primitives, futures) will remain at the standard library level.

Thus, C and C++ currently support concurrency by platform-specific APIs (e.g.,
POSIX and Win32), platform-independent wrappers such as glib [43], boost [44], thread-
ing building blocks [45] or language extensions such as OpenMP [38] or µC++ [46]. The
last three are also cross-platform and offer extensive feature sets.

Threading building blocks (TBB) is a C++ library that consists of several major com-
ponents: parallelized loop algorithms, pipelines, concurrent data structures, mutexes,
atomic operations, scalable memory allocator, and a task scheduler based on work-
stealing [30]. The task scheduler is used to implement parallelized loops and pipelines.
It implements a cooperative m:n scheduling model (see section 2.2.1) with tasks run-
ning until completion, and a load-balancing algorithm similar to work-stealing [47, 30].
The scheduler supports only fork and join operations, which order tasks in a strict
parent-child relationship.

TBB lacks condition variables or other similar mechanisms; the only event that a
task can wait on is termination of its child tasks, which makes it very cumbersome
to implement other common parallelism patterns such as producer-consumer.1 An
advantage of limiting the scheduler to fork-join patterns is that tasks do not need their
own stacks; instead they can borrow the stack from the thread in which they are currently
executing.

OpenMP, mentioned in section 2.1.1.1, supports also explicit task-parallelism from
version 3. It is an extensive standard that covers issues such as synchronization, atomic
operations, and memory visibility issues, which we explain in appendix C. Its task
model, however, supports only fork-join parallelism, so it has the same drawbacks as

1Indeed, the reference documentation [48] explicitly warns against using the producer-consumer pattern
because it is not guaranteed that producer and consumer will be executing concurrently.
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the TBB’s scheduler. Since OpenMP is abstract API specification, the implementation
details vary between platforms and compilers.
µC++ [46] extends the C++ language with a number of concurrent programming

concepts, such as coroutines [49], which are scheduled cooperatively, tasks, which run
in parallel and are scheduled preemptively, and monitors [5]. A µC++ program is
translated into regular C++ code and linked with a run-time library. Unlike TBB and
OpenMP, which support only fork-join concurrency, µC++ supports general concur-
rency patterns.

Java The Java language supports shared-memory concurrency through core language
and libraries. Unlike C and C++, the Java language defines a memory model with well-
defined semantics of volatile variables, which helps with implementing light-weight
concurrent algorithms. Task-parallelism is achieved with the help of the Thread class,
the Runnable interface and the synchronized keyword. The synchronized keyword
is used to define a monitor-like synchronization object [7] that can guard methods or
individual statement blocks. The synchronized keyword is always associated with an
object instance, which contains a mutex otherwise inaccessible to the application. The
synchronized keyword causes that the mutex is locked upon entry to the block, and
unlocked upon exit from the block. wait, notify and notifyAllmethods, which can be
used within synchronizedblocks and methods, provide functionality of condition vari-
ables [5]. Additional concurrent data structures, classes supporting programming with
futures, and other utility classes are provided in the java.util.concurrent package.

C# Similarly to Java, the C# language supports shared-memory concurrency through
core language and libraries of the .NET platform. As Java, C# defines a memory
model and introduces the volatile keyword with well-defined semantics. Unlike
Java’s synchronized keyword, C# uses the lock statement which can be used only on
statement-level. A number of utility classes related to threading, among them also a
Monitor class, are defined in System.Threading namespace of the standard library.

The C# language has been experimentally extended with concepts borrowed from join
calculus [50]. The extension introduces asynchronous methods (methods are by default
synchronous) and chords [51]. Asynchronous methods are queued for execution in
another thread and return no result. Chords consist of a header, which specify patterns
of method invocations containing at most one synchronous method, and a body, which
defines an action for the corresponding pattern. The action is executed only after all
methods in the header have finished execution. Completed asynchronous calls are
implicitly queued at the chord as long as there is no matching header. When multiple
queued calls of the same method match the same header, one of them is selected non-
deterministically. Similarly, if several different chords become runnable, only one is
selected for execution nondeterministically. Even a simple, single-threaded program
may behave non-deterministically, as demonstrated in [51].
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Futures Futures [4] are a construct that abstracts asynchronous function calls. A call to
a “future function” immediately returns an encapsulation of the result (“future”), while
the function continues to execute asynchronously. The returned future can be used to
test whether the evaluation has finished, query the return value of the computation, or
to cancel the computation. Querying the value returns immediately if the computation
has finished; otherwise, the caller is blocked until the result becomes available. Once the
computation has completed, its value is permanently remembered, i.e., further value
queries will not re-execute the computation.

Software transactional memory Wtih software transactional memory (STM) [42], opera-
tions over shared data, that would usually be protected by locks, are replaced with code
within an atomic {} block. The compiler and the run-time system work together to
guarantee that all memory operations in the atomic block either succeed or fail. Memory
accesses within atomic scope are replaced by calls into the run-time system which mon-
itors consistency of memory accesses, with memory writes being only tentative. When
an inconsistency is detected (e.g., when the run-time detects concurrent writes to same
location from concurrent atomic blocks), all but one transaction are aborted, and their
tentative modifications are discarded. When a transaction has successfully finished, its
tentative modifications are committed and made globally visible to all threads.

STM is a complex technology, and questions have been raised about whether the
advertised benefits of STM really do offset the additional complexity and performance
costs that it introduces [52, 53]. Nevertheless, it is a trend that has captured the attention
of some CPU-manufacturers, which have begun investigating methods for hardware-
assisted STM [54].

2.1.2.2. Message-passing concurrency

In this section, we first describe the message passing interface (MPI) [41], which is
used in languages that have no support for message-passing concurrency in their core,
such as C, C++, Java and C#. Then, we describe a number of languages that have
been designed with message-passing concurrency in mind, and whose design is often
based on some formal model of computation. We shall discuss Erlang [55], Occam and
Occam-π [56, 57], StreamIt [14] and SHIM [58], which are respectively based on the
formalisms of actors [59], communicating sequential processes [60] and π-calculus [61],
synchronous dataflow networks [62] and a restriction of Kahn process networks.

MPI The message passing interface (MPI) [41] has become the de facto standard for
implementing distributed applications with C, C++ and Fortran; bindings are available
also for Java and C#. The MPI standard is only an interface specification, with many
implementations, both commercial and free. Version 1.2 of the MPI standard, which is
most widely-used, provides process grouping, basic point-to-point communication as
well as more complex collective operations (e.g., broadcast or reduce). Basic data types
are automatically serialized for network transport, and the system can be extended to
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support serialization of user-defined data types. Version 2.1 adds many new features,
most significant being dynamic process management and parallel I/O. MPI thus defines
mechanisms, but does not endorse any particular concurrency model.

Erlang Erlang [55] is a pure functional programming language based on the Ahga’s
actor model [59]. Actors are computational agents which have a behavior and which
communicate with each other by sending messages via mailboxes. Sending a message
is possible only if the sender know the receiver’s address, which it can obtain either
by creating the other actor, or by receiving its address in a message. Message arrival
causes the actor’s behavior to be executed, and its execution must always specify a
new behavior, which will be used to process the next message. The only allowed side-
effects of the actor’s behavior are sending a finite number of messages to other actors,
or creating a finite number of new actors.

Erlang’s processes are restricted in their communication patterns in the same way as
Agha’s actors. However, unlike in the actor model, communication is order-preserving,
i.e., arriving messages are queued instead of being “thrown in a mailbox”. The receive
operation is blocking and introduces a new concept, pattern matching, where a process
gives a template consisting of values and variables. The receive operation dequeues the
first message with matching values and fills in the variables in the template with the
rest of message contents. Erlang programs are executed in virtual machine which very
efficiently implements its process model: message passing, context switch and process
creation take less than a microsecond, and each process initially consumes less than a
kilobyte of space. Thus, it is possible to concurrently run millions of processes with
little overhead [63].

Occam Occam [56] is an imperative programming language, developed by INMOS to
support programming their transputer CPUs, which is based on Hoare’s formalism of
communicating sequential processes [60] (CSP). A CSP program consists of sequential
processes running concurrently, which may communicate only synchronously through
message send and receive operations. In other words, communication succeeds only
when one process names another destination for output, and the other names the first
one as the source for input. The CSP language supports neither recursion nor dynamic
creation of processes, so the program code determines the upper bound on the number of
concurrently running processes. The language also contains several non-deterministic
constructs. Occam’s strict compile-time checks ensure that the processes can share data
only in the read-read mode, i.e., that no write is concurrent to another read or write.

The occam-π language [57] extends occam with support for describing changing
topologies and mobility of processes and data. The formal underpinnings of these
extensions are borrowed from Milner’s π-calculus [61], whose main constituents are
names, which represent communication links, and processes, which are built from
names according to the formal rules. The basic operations from which processes are built
are send, receive, nondeterministic choice of communication among several alternatives,
parallel composition and replication. As in the CSP formalism, communication between
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processes is synchronous.

StreamIt The StreamIt [14] programming language is based on an extension of the
synchronous dataflow [62] network model. Dataflow networks are a special case of
KPNs, where activation of a process, also called an actor,2 is controlled by a set of firing
rules. Dataflow networks are obtained when the following additional restrictions are
imposed on the Kahn model:

• The set of firing rules must be sequential, i.e., it must be possible to evaluate the
rules in a predefined order by using only blocking reads.

• Each actor firing is functional, i.e., the set of output tokens is a pure function of
the input tokens consumed in that firing.

Since actors are functional and execute atomically, i.e., they cannot be interrupted in
the middle of their execution, there is no need to save state between two firings of an
actor. Thus, the scheduler can schedule actor firings instead of full-fledged processes
and avoid the costs of context switch and storage reserved to hold the actor’s state (the
stack). A dataflow network is synchronous if, for every actor and for every of its inputs
and outputs, the number of consumed or produced tokens is constant and known a
priori.

A StreamIt program is described by a graph consisting of computational blocks
(filters) having a single input and output. Filters are combined into more complex
structures by composite blocks, which provide pipeline, split-join and feedback loop
structures. Filters must provide bounds on the number of produced and consumed
messages, so a StreamIt graph is actually a synchronous dataflow graph. This is ex-
ploited by the compiler which applies a number of optimizations [14] and produces a
schedule before generating C++ or Java code. The generated code has the ability to
run on a multi-core machine, or in a cluster, but the number of threads (or machines) is
specified statically at compile-time. However, StreamIt is a special-purpose language,
and there seems to be no way of using libraries of the target language, i.e., Java or C++.

SHIM SHIM [58] is a concurrent, asynchronous and deterministic model meant for de-
veloping embedded systems. The authors have taken a starting point in the KPN model,
and deliberately restricted it to support only synchronous (rendezvous) communication.
This choice eases scheduling, and programs are, by definition, always executable in
finite space because synchronous communication does not need buffering of messages.
In the same paper, Edwards et al. present algorithms for compiling programs written in
a simplistic language, TinySHIM, to single-threaded C code, or to synchronous digital
circuits.

2Not to be confused with Agha’s actors.
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2.1.3. Large-scale frameworks

Industrial actors have developed their own solutions for simplified distributed process-
ing of large data quantities, such as Google’s MapReduce [8], Yahoo’s Pig latin pro-
gramming language [9], Microsoft’s Dryad [10], Cosmos and programming language
Scope [11], and IBM’s System S and programming language SPADE [13].

Dryad, Cosmos and System S have many properties in common: all use directed
graphs to model computations, and execute them on a cluster of machines. In addition,
System S supports cycles in graphs, while Dryad supports non-deterministic constructs.
Thus, the deterministic subset of the Dryad system is also a subset of the KPN frame-
work, while the expresiveness of System S is equivalent to that of KPNs. However, not
much is known about these systems and their availability is limited.

MapReduce [8] has become one of the most cited paradigms for expressing parallel
computations. Unlike the above systems, which define task-parallel models, MapRe-
duce defines a data-parallel model based on keys and values. We shall describe MapRe-
duce semantics in section 3.3.1 in detail, where we shall also discuss its drawbacks: rigid
semantics and inability to model iterative algorithms; the latter being also a drawback
of Dryad and Cosmos. A paper by Lämmel [64] extensively analyzes MapReduce, the
related Sawzall language [65] and parallelization issues in the context of the Haskell [66]
programming language.

Google’s MapReduce implementation supports fault-tolerant distributed execution in
clusters. Others have reimplemented MapReduce for clusters (Hadoop [27]), multi-core
machines [26], the Cell BE architecture [28], and even for GPUs [29], which witnesses
about its popularity.

Pig latin [9] is a language for performing ad-hoc queries over large data sets, where
users specify their queries in an high-level language providing many features of SQL.
Unlike SQL, which relies on query optimizers for efficient execution, Pig latin allows
users to specify exactly how the query will be executed. In effect, users are constructing
a dataflow graph which is then compiled into a pipeline of MapReduce programs and
executed on a Hadoop cluster. All Pig latin operators are also implementable as Dryad
or System S operators, or as Kahn processes. Our experimental results (see section 5.1)
indicate that compiling Pig latin programs into one of these more flexible frameworks
would be advantageous for their performance.

2.2. Operating system facilities

In this section, we review OS mechanisms that are used for implementing concurrent and
distributed programs. We focus on processes and threads, which are used for exploiting
multiple CPUs, scheduling, communication and synchronization mechanisms. Our
presentation synthesizes the material that can be found in text-books on operating
systems [5] or in reference materials such as [67, 39, 68].
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2.2.1. Processes and threads

The operating system’s kernel handles scheduling of processes and threads. Each
process or thread has control flow independent of any other, so the kernel can execute
them concurrently on multiple CPUs, subject to scheduling policy.

Processes are independent of one another and do not share resources, such as ad-
dress space and file descriptors. This increases reliability because a crash of one process
will not affect any other. Reliability is reduced when processes use shared memory
segments (because a buggy process can corrupt shared data) or synchronization mech-
anisms (because crashing while holding a semaphore or a mutex prevents progress of
other processes). The main disadvantages of multi-process approach to concurrency,
in comparison with threads, are higher bookkeeping and context switching overheads.
For example, each process must have its own copy of page tables and file descriptor
tables, and each context switch implies an expensive TLB flush.

Threads correspond to independent control flows within the same process, so they ex-
ecute in the same address space and share all resources. Thus, communication through
shared data is simple as a variable or a dynamically-allocated block of memory has
the same address in every thread. Thus, pointer-based data structures can be shared
between threads without problems, as long as the accesses are properly synchronized.
Because threads share almost everything,3 they consume less OS resources. Also, con-
text switch between two threads of the same process incurs less overhead since threads
are running in the same address space, so the TLB flush is unnecessary. The main
disadvantage is reliability: a crash of one thread will crash the whole process, i.e., all
threads.

There are two possible designs of the threading model, 1:1 and m:n models. In the
1:1 model, each application thread has a dedicated kernel thread. The advantage of
this approach is simplicity of implementation (a large amount of code in the kernel
can be used to handle both processes and threads). The drawback is larger overhead
of context switch, which always requires kernel intervention. In the m:n model, a
user-mode library handles multiplexing of many threads over fewer kernel-level light-
weight processes. Even though the m:n model can handle a large number of threads
more efficiently than the 1:1 model (user-mode context switch is particularly cheap),
major operating systems have abandoned it in favor of the 1:1 model because the latter
is much simpler to implement correctly. The main implementation issues with the m:n
model are handling of signals and blocking system calls.

2.2.2. Scheduling

The basic task of the OS scheduler is to distribute CPU time among processes or threads.
The life-cycle of a process or a thread is depicted in figure 2.2. A process4 is created in

3Some system aspects are nevertheless private to each thread. For example, on POSIX platforms, each
thread has its own signal mask.

4For brevity, we will just write “process”. The same applies to threads.
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the ready state where it is eligible to be selected by the scheduler for dispatch on a CPU.
Once dispatched, it enters the run state from which it can either:

• Yield or be preempted, entering the ready state.

• Exit and release resources associated with it.

• Block and enter the sleep state.

Once blocked, the process is not eligible for dispatch on a CPU until another process
unblocks it, i.e., a process cannot unblock itself. After having been unblocked, the
process enters the ready state and is again eligible for dispatch.

run ready

sleep

block unblock

preempt/yield

dispatch

exit create

Figure 2.2.: Transitions between process and thread states. A sleeping process or thread
can be unblocked only by another, running process.

Schedulers may be either preemptive or cooperative. When running under a preemp-
tive scheduler, a process may be interrupted and descheduled (preempted) at any point
of its execution. Under a cooperative scheduler, a process must voluntarily give up the
CPU (yield) before another process or thread can be dispatched. While cooperative
scheduling is simpler to implement and simpler to reason about, its disadvantage is
that it cannot ensure fairness, so a run-away process that never yields can lock up the
whole system.5 Nevertheless, it was used in early multitasking operating systems such
as Windows 3.

The scheduling policy is the algorithm which selects which of the ready processes
and threads will run next; some typical examples are best effort, proportional-share
and real-time. A best effort policy tries to give every process an equal time-slice, but
may incorporate a number of heuristics that favors either interactive response time or
batch throughput of applications. Proportional-share policies are governed by weights
assigned to processes, with each process’s time-slice being proportional to the process’s
weight. Real-time policies are governed by deadlines or priorities associated with each
process. With a deadline-driven scheduler, a process declares its deadline and the sched-
uler guarantees that it will be dispatched in time to finish its work before the deadline
expires. Deadline-driven schedulers employ admission control mechanisms to ensure
that the CPU is not overbooked: they allow a new process to enter the system only if

5Hence the name: processes and threads must cooperate with each other to ensure global progress.
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there is sufficient capacity to satisfy its scheduling requirements. With a priority-based
scheduler, when a process of higher priority becomes runnable, it immediately preempts
a process of lower priority, which is again dispatched when all higher-priority pro-
cesses have blocked. Contention among processes of equal priority is usually resolved
either by FIFO or round-robin policy with a fixed time-slice. Priority-based policies
are widely available in POSIX operating systems such as Solaris and Linux, where the
sched_setscheduler system call can be used to set scheduling policy and priority of a
process. Setting a real-time policy requires administrator privileges because a run-away
real-time process can completely lock up a system, requiring a reboot to recover.

Applications may give affinity hints to the scheduler to tell it on which subset of CPUs
each thread will execute. Giving an affinity hint may improve performance on NUMA
systems, but it may also cause load-imbalance, leading to worse performance.

2.2.3. Inter-process communication

Different processes (but not threads) are running in separate address spaces and are
thus isolated from each other to a large degree.6 Yet, a limited and controlled form of
communication between processes can be advantageous, as witnessed by pipelines of
the UNIX shell. POSIX offers many inter-process communication mechanisms, which
we describe below.

2.2.3.1. Pipes

A pipe is a unidirectional channel created by the pipe system call, which allocates a
kernel buffer of fixed size and returns a pair of file descriptors, one for reading and the
other for writing. Since the pipe system call does not create a name in the file-system
for the pipe, i.e, the pipe is anonymous, it can be used only for communication between
processes in the parent-child relationship. This is possible because file descriptors are
inherited across fork calls.7

Pipes support only the byte stream abstraction, i.e., there are no message boundaries.
To transfer data through the pipe, a process uses the returned file descriptors with
read and write system calls in the usual way. Unlike files, whose size is known at all
times, the operating system cannot know how much data will be transfered through the
pipe. Thus, the writing process must explicitly signal the EOF condition to the reading
process, which it does by closing the pipe with the close system-call.

A process that reads from an empty pipe or writes to a pipe with not enough empty
space will block. However, POSIX mandates that writes of size less than PIPE_BUF
bytes, which must be at least 512, are atomic, i.e., they must be performed without the
data being interleaved with other writes. Writing to a closed pipe generates the SIGPIPE
signal by default; if this signal is explicitly ignored, the write system call returns with
the EPIPE failure code.

6Inadvertent interference may occur through the file-system.
7Though, some OS-es support sending file descriptors to unrelated processes through UNIX sockets.
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Named pipes have identical behavior to anonymous pipes; the only difference is in
the way they are created and opened. The mkfifo creates a named file of FIFO type in
the file-system, but it does not allocate any kernel buffers. Once created, a named FIFO
must be explicitly opened with the open system call, which will also allocate the FIFO’s
kernel buffer if the FIFO was previously unopened. The buffer is deallocated after the
last process has closed the FIFO.

2.2.3.2. Sockets

Sockets have been introduced in BSD UNIX family [68] as a general abstraction for
communication between processes. Sockets are the only POSIX mechanism that enables
communication between processes executing on different machines.

The socket system call takes domain, type and protocol parameters and creates a
bidirectional communication channel. Socket domain selects the protocol family that
will be used for communication. The most common domains in use today are PF_UNIX
which selects data transport on the local machine, PF_INET which selects the IPv4
network protocol, and PF_INET6which selects the IPv6 network protocol.

Socket type selects the transport semantics. The most common semantics today in
use are SOCK_STREAM which selects reliable, order-preserving byte-based transmission,
SOCK_DGRAM which selects unreliable transmission of datagrams, and SOCK_SEQPACKET
which selects reliable, order-preserving transport of datagrams.

Even though the details of creating sockets and establishing communication are dif-
ferent from pipes, the basic semantics of write and read system calls is very similar.
Additional, socket-specific system calls support the richer set of features offered by
different protocols and are accessible through functions such as sendto, recvfrom, and
setsockopt.

2.2.3.3. Message queues

Similarly to named pipes, SYSV and POSIX message queues, also known as mailboxes,
are used for communication between processes on the same machine. Although their
basic semantics is somewhat similar to that of pipes, it is sufficiently different to in-
troduce two new sets of functions. SYSV defines msgget, msgsnd, msgrcv and msgctl
functions, while POSIX defines mq_open, mq_send, mq_recv, mq_close and a number of
other functions.

The main difference between pipes or sockets and message queues is persistence.
Message queues and messages and messages in them persist until they are explicitly
destroyed or the system is rebooted. Specifically, closing a message queue will not
destroy it, even if no other process holds it open. In addition, SYSV and POSIX message
queues offer additional capabilities that are not available with pipes and sockets.

SYSV message queues support message type, which is an integer used to tag each
message. The tag can be used to instruct the msgrcv function to fetch messages in
several different ways.

• The first message in the queue, regardless of its type.
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• The first message having type being either equal or unequal to the specified type.

• The first message with lowest type which is less than or equal to the specified
type.

Message type can thus be used to implement message priorities or to multiplex several
logical message queues over one physical queue.

POSIX message queues support message priority, which is an integer used to tag
each message. The mq_receive does not take priority as an input argument; instead
it returns the oldest message with the highest priority, optionally also returning the
message priority. In addition, POSIX message queues can be configured to deliver an
asynchronous notification (signal) when a message arrives on an empty message queue.

2.2.3.4. Shared memory segments

The mechanisms described above make communication between processes possible
through kernel mediation. However, kernel involvement incurs overheads in two
ways:

• Through additional context switches and security checks if processes communi-
cate by frequently sending small messages.

• Through data copying between user and kernel buffers if processes transfer large
data volumes.

To avoid these overheads, processes can use shared-memory segments for communi-
cation. For both SYSV and POSIX shared memory, this entails two steps: creating or
opening the segment by using shmget or shmopen functions, and attaching it to its own
address space by using shmat or mmap functions.

Upon attach, the process may either let the kernel to choose the segment base address,
or it may specify one itself. In the former case, the segment may be attached at a different
address than in the other process(es), which is unsuitable for direct sharing of pointer-
based data structures. In the latter case, the kernel will return an error if the segment
cannot be attached at the specified address. This may happen, for example, when the
mapping would overlap with an already allocated virtual address range.

When a process does not need the segment any longer, it detaches it by using shmdt or
munmap functions. Like message queues, shared memory segments are also persistent,
i.e., the memory is not freed when a segment is detached by the last process. Destroying
a shared memory segment makes it inaccessible for futher open or attach operations,
but resources associated with it are actually deallocated only when after all processes
have detached it.

2.2.4. Process and thread synchronization

Synchronization primitives are used for two purposes: to enforce serial access to re-
sources that cannot be safely accessed in parallel, and to provide a mechanism for
waiting on events. On POSIX, both purposes can be achieved in several ways:
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• By placing synchronization objects provided by POSIX threads (mutexes, condi-
tion variables, spinlocks) into a shared memory segment and configuring them to
work across different processes.

• By using POSIX or SYSV semaphores,which can be used without setting up shared
memory between processes.

• Blocking communication over message queues and pipes can also be used as a
synchronization device.

In this section, we further discuss the advantages and disadvantages of the first two
classes of synchronization mechanisms.

2.2.4.1. Mutexes and condition variables

The disadvantage of using thread synchronization primitives between processes is
that they can be left in an inconsistent state when a process crashes, which hinders
correct functioning of other processes. Some operating systems, such as Solaris, provide
robust mutexes as extension. When a process holding a robust mutex dies, the mutex
is unlocked, and the next attempt to lock the mutex will acquire the mutex, but also
return a special error code to inform the acquiring process that the previous owner has
unexpectedly exited. This gives the new process an opportunity to repair the possibly
inconsistent state left by the exited process.

2.2.4.2. Semaphores

Unlike mutexes and condition variables, SYSV and POSIX semaphores do not require
that processes share a memory region. Like message queues and shared memory
segments, semaphores are also persistent. In addition, POSIX semaphores can be
created in a shared memory area and used for synchronization between threads or
processes. POSIX semaphores supports only the pure semaphore semantics [5]:

• A semaphore is initialized to a positive value.

• If incrementing the semaphore by one (sem_post) causes it to become greater than
zero, a process or thread blocked in the semaphore will become unblocked and
lock the semaphore.

• If a process or thread attempts to decrement by one (sem_wait) a zero-valued
semaphore, it will be blocked until the semaphore becomes positive.

SYSV semaphore sets offer greater flexibility, which makes it possible to implement
more complex synchronization patterns than with POSIX semaphores. Specifically, the
semop function can perform the following functions over a semaphore set:

• Atomically incrementing or decrementing a semaphore in the set by a value greater
than one.
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• Waiting that a semaphore in the set becomes zero.

• Per-operation undo flag: when a process terminates, the operation on the semaphore
will be automatically undone. Thus, if a process crashes while holding a semaphore,
the automatic undo will allow progress of other processes.

One semop call can perform multiple operations over several semaphores in the same
semaphore set, in which case all operations are performed atomically.

2.2.5. Deadlock detection

Operating systems have very limited support for deadlock detection – usually, only
simple cases are detected, such as thread attempting to lock a mutex that it itself has
already locked. Consequently, programs that need deadlock detection for more complex
situations must implement it themselves. For example, a thread might only try to lock a
mutex without blocking. If the mutex is unlocked, it will become locked and the operation
will succeed. However, if the mutex is already taken, the OS will return an error code
instead of blocking the thread. The thread has then an opportunity to check whether a
deadlock condition exists and if so, act accordingly on it.

2.3. Summary

In this chapter, we have surveyed high-level and low-level aspects of concurrent pro-
gramming.

In the first part of this chapter, we have explained the dichotomies between data-
and task-parallelism and shared-state and message-passing concurrency. We have ar-
gued that task-parallelism, which encompasses also KPNs, is easier to grasp than data-
parallelism because algorithms are expressed imperatively, so (groups of) individual
steps can be extracted to different tasks.

We have then reviewed tools for supporting task-level parallelism in shared-state
and message-passing concurrency models. On the shared-state concurrency side, we
have described concurrency support in C, C++, Java and C# programming languages,
and two programming techniques that are gaining ground in mainstream software
development – futures and software transactional memory. None of the described
mechanisms help with ensuring deterministic behavior, but we could have nevertheless
used µC++ to implement a KPN framework. However, µC++ must be translated from
an extended C++ language to standard C++, which introduces the risk of the translator
not supporting all C++ constructs. Furthermore, in order to perform all our evaluations,
we would have had to extend its rather large run-time support library with accounting
and new scheduling mechanisms.

Our survey of message-passing systems with semantics similar to that of KPNs has re-
vealed StreamIt [14] and SHIM [58], both of which adopt the process network paradigm.
StreamIt does support feedback loops in the computation graph, but it is based on a syn-
chronous dataflow network model, which result when further restrictions are imposed
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on the KPN model. In addition, StreamIt is a new language which is translated to Java
or C++, but provides no facilities to access libraries of the target language. SHIM [58]
is a concurrent model of computation inspired by KPNs, but whose authors explic-
itly reject asynchronous communication, even though it has several advantages over
synchronous communication, as argued by Agha [59]:

• Efficiency in execution by pipelining the actions to be performed.

• Synchronous communication can be defined in the framework of asynchronous
communication.

• A process may be required to send messages to itself, which would lead to deadlock
in the synchronous model. Worse, even mutual recursion is not possible with
synchronous communication.

They argue for their choice with simpler scheduling and with the fact that such programs
are executable in finite space, while the latter question is undecidable for the Kahn
model.

Erlang [55], occam [56] and occam-pi [57] languages are respectively based on the
Agha’s actors [59], Hoare’s communicating sequential processes [60] and Milner’s π-
calculus [61]. A common trait of these languages, as well as theories they are built of, is
that they are non-deterministic.

In the second part of this chapter, we have described operating system support for
implementing higher-level concurrency concepts. We have described the basics of
scheduling, focusing on the difference between processes and threads, and between 1:1
and m:n scheduling models. We have then described OS support for communication and
synchronization between processes and threads, as well as for deadlock detection. In the
context of implementing a KPN run-time, the existing scheduling and synchronization
mechanisms are functionally satisfactory. Communication mechanisms, on the other
hand, have several problems: they are a scarce resource, there is no support for deadlock
detection, and buffer capacity for some of them (e.g., pipes and POSIX message queues)
cannot be enlarged, which, as we will explain in the following chapter, is a necessary
feature for run-time deadlock resolution.
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3. Modeling with Kahn process networks

In this chapter, we describe KPN semantics in detail and discuss general approaches to
modeling parallel applications using KPNs. We relate KPNs to pipelines and MapRe-
duce [8], and show that both can be implemented within the KPN framework. We also
discuss the relative merits of KPN and MapReduce approaches to modeling parallel
applications using two canonical MapReduce examples, word frequency and k-means,
as case studies. Then, we demonstrate that KPNs can be simulated by iteratively execut-
ing MapReduce computations, thus establishing an isomorphism between KPNs and
iterative MapReduce. Finally, we present existing KPN implementations and discuss
their shortcomings.

3.1. Semantics of Kahn process networks

In this section, we describe in detail the operational semantics of KPNs and its con-
sequences, the most important of which is deterministic execution. We then discuss
KPNs with dynamic topologies and limitations of deterministic parallelism. Finally,
we discuss how to practically tackle the challenges posed by infinite channel capacities
assumed by the theoretical model.

3.1.1. Operational semantics

A Kahn process network [12] (KPN) consists of sequential processes connected with
unidirectional channels which together form a directed graph (see appendix A for a
review of graph theory). Each process runs asynchronously and independently of other
processes, and its state is inaccessible to other processes. Communication between
processes is possible only by sending and receiving discrete messages over channels.
Channels are unidirectional, reliable FIFO queues of infinite capacity that store messages.
A process may have multiple input and output channels, but each channel is connected
to exactly two processes – the sender on the one end of the channel and the receiver on
the other end.

In theory, it message is always possible to send a message because channels have
infinite capacities. A process may at any time attempt to receive a message from any
of its input channels, but if the channel is empty, the process becomes blocked until a
message arrives. Since testing for presence of messages on a channel is not allowed
and blocking receive is uninterruptible, a process may remain indefinitely blocked in
a receive operation. When all processes have become blocked, the KPN terminates.
In practice, computers have only a limited memory, so the assumption about infinite
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(a) Graphical representation of a KPN with in-
put channels (i1, i2), external output channel (o)
and an internal channel (i′1).

void times2(void)

{

while(true) {

n = recv(i1);

send(i1’, 2*n);

}

}

(b) Pseudo-code for the “×2” process.

void sum(void)

{

while(true) {

result = recv(i1’) +

recv(i2);

send(o, result);

}

}

(c) Pseudo-code for the “+” process.

Figure 3.1.: A KPN which calculates o = 2i1 + i2.

channel capacities is never fulfilled. A way of dealing with execution in constrained
space is investigated in section 3.1.5.

3.1.1.1. Example

Figure 3.1 illustrates a small KPN with two processes and four channels,which calculates
the formula o = 2i1 + i2. Here, i1 and i2 are external inputs from the environment to
the network, o is an external output from the network to the environment, and i′1 is an
internal channel, i.e., output from the “ × 2′′ process.1 The “×2” process multiplies its
input by 2 and sends it to the “+” process which sums values received at its inputs.

The pseudo-code for both processes is shown in figures 3.1b and 3.1c. The times2
process executes an infinite loop in which it receives an integer from channel i1, mul-
tiplies it by 2 and sends it to internal channel i′1. Similarly, the sum process executes
an infinite loop in which it receives the result of the times2 process on channel i′1 and
another integer on channel i2. Then, it sums the two values and sends the result to the
o channel.

3.1.1.2. Determinism

The restrictions which operational semantics places on processes may be summarized
as follows:

• A process may not access the state (code, data, program counter, etc.) of another
process.

1By “environment” we mean the larger context in which the KPN is executing. External channels could,
for example, represent the KP’s direct use of file-system or network.
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• The receive operation always blocks on an empty channel, and a blocked receive
cannot be interrupted.

• It is not allowed to test for the presence of messages on a channel.

As a consequence of these restrictions, the KPN behavior is deterministic: the history
of messages on channels is independent of the order in which ready processes are
scheduled. In other words, given the same input, the network will produce the same
sequence of message on all channels during every run.

3.1.1.3. Scheduling

Since KPNs are deterministic, they can be scheduled by any fair scheduling algorithm.
In this context, fairness is a rather weak requirement stating that execution of a ready
process must not be indefinitely postponed. With an unfair scheduler, the output of a
KPN will be correct, but it might be incomplete, i.e., the network might output fewer
messages than under a fair scheduler [12].

For example, consider again the network in figure 3.1, and suppose that an infinite
sequence of ones (1) arrives on both external input channels (i1 and i2). With fair
scheduler, each of the KPs will be scheduled infinitely often, and an infinite sequence
of messages with value 3 will be produced at the external output channel o. Now,
suppose that the scheduler is unfair and that, for some reason, it will execute the “+”
process only a finite number of times, for example 5. The output of the network will be
a finite sequence, consisting of exactly 5 of messages with the value 3. Thus, the output
messages are correct, but the output sequence is shorter than under a fair scheduler
(obviously, 5 < ∞).

3.1.2. Denotational semantics

As opposed to operational semantics, the denotational semantics describes a KPN with
a set of equations, as we have done in the example KPN of figure 3.1. Kahn conjectured
that the two semantics coincide if all processes in the network are continuous, a technical
condition which is easily met in practice. Intuitively, a process is continuous if it does
not consume infinite input before producing some output [12]. A formal treatment of
this topic is given in [69, 62], and proofs of Kahn’s conjecture can be found in [70, 71].

3.1.3. KPNs and coroutines

In another paper [72], Kahn developed a programming language based on processes
communicating via unidirectional channels and having the same restrictions as KPNs,
which ensure determinism. The language extends the process network model by defin-
ing a reconfiguration statement, which replaces a single node in the graph with several
nodes, i.e., a subgraph. Such reconfiguration is possible provided that input and output
channels of the subgraph can be appropriately spliced into the original graph.
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He also describes two modes of running a process network: a coroutine mode and a
parallel mode. In the coroutine mode, the execution is demand-driven with a single pro-
cess driving the whole network. In this mode, control transfers happen on send/receive
operations. Receive from an empty channel always yields to the sending process; send
to an empty channel yields to the receiving process only if it is waiting for a message
on that particular channel.

In the parallel mode, processes are running asynchronously, possibly on multiple
CPUs, and Kahn notes that in this mode, processes may perform computations that
are not needed for the final result. To counter this situation, he associates with each
channel C an integer AC, called the anticipation coefficient. In the presence of AC, the
send operation will suspend the sending process if the target channel contains AC, or
more, messages.

3.1.4. Limitations of determinism

Since KPNs are deterministic, they are unsuitable for modeling reactive systems, i.e.,
systems that must respond to asynchronous events, such as interrupts from external
devices or requests from multiple clients. Consider, for example, a disk scheduler with
two clients, as shown in figure 3.2. The scheduler (S) reads requests from two clients
along channels c1 and c2 in round-robin manner. After having read a request from
a client, it forwards the request to the disk device (D) along channel do. Then, the
scheduler waits for the completion message from the disk by reading from channel di.
When the completion message arrives, the scheduler forwards it to the output channel
O.

S

c1

c2

O

D

do

di

(a) Disk scheduler with two
clients (c1 and c2).

void scheduler(void)

{

for(i=0; i < 2; i = (i+1)%2) {

send(d_o, recv(c[i]));

send(out, recv(d_i));

}

}

(b) Pseudo-code for the disk scheduler process.

Figure 3.2.: A KPN modeling a disk scheduler (S) with two clients and a single output
(O) that handles replies for both clients.

The basic requirement on any scheduler is that all of its clients should eventually
be serviced. In the KPN model, this is achievable by periodically reading a request
from every client channel, as shown by the pseudo-code in figure 3.2b. However,
because message receive is blocking and uninterruptible, any of the following events
can severely degrade performance or even permanently block the scheduler and prevent
it from serving clients:
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void scheduler(void)

{

bool eof[2] = {false, false};

for(i=0; i < 2; i = (i+1)%2) {

if(!eof[i]) {

request = recv(c[i]);

if(request != EOF) {

send(d_o, request);

send(out, recv(d_i));

} else {

eof[i] = true;

}

}

}

}

Figure 3.3.: Disk scheduler implementing a protocol which ensures that the scheduler
will not become permanently blocked when one of its clients sends only a finite number
of requests. Compare the pseudo-code with that in figure 3.2.

• A client that issues a finite number of requests will permanently block the scheduler
after having sent its last request.

• A client that issues infrequent requests will delay servicing of other clients,causing
the disk to be idle much of the time.

• Hardware failure may cause disk operations take exceedingly long time or to
never complete. In the latter case, the scheduler becomes permanently blocked
on waiting for the completion message.

The first problem can be avoided by establishing a protocol between the scheduler
and its clients, where a client sends a special EOF message after the last request. After
having received an EOF message from a client, the scheduler will not try to receive
a request from that client again, and thus avoid becoming permanently blocked; this
behavior is depicted with the pseudo-code in figure 3.3.

The last two problems can be avoided only by introducing non-deterministic behavior.
This is achievable in a structured way by extending the operational semantics with
additional elements, such as non-deterministic merge, shown in figure 3.4. Unlike KPs,
which can wait for input only on a single input channel at a time, the non-deterministic
merge waits for input simultaneously on all of its inputs. As soon as a message arrives
to an input, it is immediately forwarded to the output. Other ways of introducing non-
determinism in the KPN semantics is by introducing m:1 channels (multiple senders to
one receiver), or non-blocking receive.
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M

Figure 3.4.: The nondeterministic merge operator is a structured way of introducing non-
determinism in a KPN. A message appearing on any input is immediately forwarded to
the output.

A B

c1

c2

(a) A part of a KPN where a
local deadlock occurs.

void A(void)

{

...

send(c1, data);

x = recv(c2);

...

}

(b) Pseudo-code for the A process

void B(void)

{

...

send(c2, data);

x = recv(c1);

...

}

(c) Pseudo-code for the B process

Figure 3.5.: A local deadlock occurs when A and B execute the shown code with both c1
and c2 are full. Dashed arrows denote connections to the rest of the network.

3.1.5. A practical problem: execution in limited space

The assumption about infinite channel capacities is clearly unrealistic because any KPN
implementation must run in a limited memory space. Real implementations assign finite
capacities to channels and redefine the send operation to block if the target channel is
full. With such modification of operational semantics, an artificial deadlock can occur at
run-time. This is a situation where a subset of processes is blocked in a deadlock cycle,
with at least one process being blocked on send. The deadlock is artificial because it
would not occur with non-blocking send, i.e., infinite channel capacities.

Figure 3.5 shows an example of artificial deadlock in a part of a larger network.
Processes A and B communicate with one another over channels c1 and c2 and with
the rest of the network over channels denoted by the dashed arrows. If both processes
happen to execute the code shown in the figure when both c1 and c2 are full, they will
deadlock.

The cycle of deadlocked processes in figure 3.5 consists only of processes blocked on
write. However, a cycle of processes in an artificial deadlock may consist of processes
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Figure 3.6.: A KPN with artificial deadlock cycle having one process blocked on read.
The letters by channels denote that a process is blocked on read or write on the respective
channel.

blocked on write or read, but with at least one process blocked on write,2 as demonstrated
by figure 3.6. Assuming all channels empty, the deadlock depicted in the figure can, for
example, occur as follows:

• Process 2 starts by reading from channel 1 → 2, and immediately blocks, so it
cannot read messages from channel 0→ 2, which would unblock 0.

• Process 1 starts by sending many messages to 0 and blocks because the channel
has reached its capacity. Since 1 has blocked, it cannot send a message to 2, which
would unblock it.

• Process 0 starts by sending many messages to 2 and blocks because the channel
has reached its capacity. Likewise, it cannot read messages from 1, which would
unblock it.

3.1.5.1. Run-time deadlock detection and resolution

Since each KP is in its computational power equivalent to a Turing machine, it is
impossible to statically compute channel capacities that are sufficiently large to ensure
that artificial deadlock cannot occur at run-time. Thus, execution of arbitrary KPNs in
limited space requires run-time detection and resolution of artificial deadlocks, which
was first addressed by Parks [69]. His algorithm resolves the deadlock only when a
global deadlock occurs, that is, when all processes in the network have become blocked.
If at least one process is found to be blocked on write, the deadlock must be artificial,
and it is resolved by increasing the capacity of the smallest full channel in the deadlock
cycle. Geilen and Basten [73] have noticed that an artificial deadlock may be local, i.e.,
involve only a part of the network, as is the case in our first example shown in figure 3.5.
Even though a local deadlock does not necessarily result in a global deadlock, it makes
scheduling unfair because the deadlocked processes will never again run, so the KPN
output will not be complete. They propose therefore a deadlock detection and resolution
algorithm that handles also local deadlocks and resolves them in two steps:

2Recall that it is blocking write that causes artificial deadlock. If all processes have become blocked on
read, that part of the network has terminated, i.e., the deadlock cannot be “resolved”.
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A B

c1

c2

c3

(a) The KPN.

void A(void)

{

while(1) {

send(c2, data);

send(c2, data);

send(c1, data);

x = recv(c3);

}

}

(b) Pseudo-code for the A process.

void B(void)

{

while(1) {

x = recv(c1);

x = recv(c2);

send(c3, data);

}

}

(c) Pseudo-code for the B process.

Figure 3.7.: An effective KPN that is not executable in finite space.

1. Finding the deadlock cycle by traversing the chain of blocked processes and
returning the full channel with smallest capacity.

2. Increasing that channel’s capacity by one and unblocking the sending process.

3.1.5.2. Effective networks

A real KPN implementation cannot execute an arbitrary KPN in a finite space even if
it implements a run-time deadlock detection and resolution algorithm. The simplest
example of such KPN consists of two processes, A and B, where A sends messages to B,
but B never reads them. In practice, it is reasonable to assume that each sent message is
eventually read; such networks are called effective [73].

However, not even all effective networks are executable in finite space, which is
demonstrated by the network shown in figure 3.7. A sends two messages over c2, then
it sends one message over c1 to signal B that it may proceed, and then it waits for a
message on c3 before continuing to send data over c2. B waits for a message on c1,
reads one message from c2 and signals to A over c3 that it may proceed. Thus, every
message sent on c2 is eventually consumed, but the number of messages on channel
c2 nevertheless grows without bound: whenever the two processes synchronize on c3,
two messages have been sent over c2, and only one has been received, thus an increase
of one message on c2 per loop iteration.

As explained in section 3.1.1, the KPN model assumes that processes are running
asynchronously. It is thus allowed that processes run at different speeds, and even that
the same process can run at different speeds at different times. This can happen, for
example, because processes are executed on different CPUs, or because the scheduler
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(a) switch (b) while

Figure 3.8.: Control structures realized as KPNs.

allocates a different time-slice to each process.3 A valid example for the claim that not
all effective networks are schedulable in finite space must account for the possibly that
processes may run at unequal and non-constant speeds. Consequently, we need two
channels from A to B to ensure that the number of messages on c2 grows without bound,
regardless of the relative speeds of the two processes.

3.2. Relation to known patterns

KPNs are more than just another way of expressing component composition; they
represent a full-fledged graphical programming language which can express control
structures such as multiple selection (see figure 3.8a), while loops (see figure 3.8b),
direct and even indirect function calls. Because communication and execution are
asynchronous, a large number of simple processes (fine granularity) may yield a greater
degree of parallelism at run-time, but fine granularity also presupposes an efficient
run-time environment that can support many processes.

However, modeling parallelism at very fine granularity is impractical for human
beings (a KPN may be generated by a code-generator such as [16, 74]), so we shall
focus on demonstrating how KPNs can model application-level parallelism at coarse
granularity. In general, this entails three steps:

1. Identifying independent subtasks, which will become KPs, and their correspond-
ing inputs and outputs.

2. Implementing KPs, possibly by “filling in the blanks” in off-the-shelf components,
such as sort and n-way merge.

3. Determining the KPN topology, i.e., number of KPs and connections between
them. The topology is largely dependendent on the previous steps.

We take a starting point in the well-known and established pipe abstraction and use
it to define the parallel pipeline abstraction. Later, in section 3.3, we will show that
MapReduce [8] is only a special case of a parallel pipeline.

3Frequency scaling on modern CPUs is yet another possible source of variation in execution speed.
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file split count sort stdout

Figure 3.9.: Pipeline which computes word frequency in a set of files.

3.2.1. Pipelines

The pipe abstraction was introduced during the early development of the UNIX op-
erating system [68], and its durability to present day witnesses about its versatility,
simplicity and usefulness. UNIX pipes allow a complex task to be expressed as a com-
position of sequential programs which read their input from the standard input stream
and write their output to the standard output stream. These two streams are usually
connected to the user’s interactive terminal, but they can be also redirected to a file or
another stream. The standard output stream of one process can be connected to the
standard input stream of another process by using the operating system object called a
pipe, which we have described in section 2.2.3. Connecting the processes in this way
creates a pipeline, an example of which is shown in figure 3.9. Besides simplicity, this
paradigm also draws its power from its extensibility because users can create their own
data-transformation programs and thus extend the set of built-in commands.

The pipeline in figure 3.9 shows how the task of finding most frequent words in a
collection of documents can be expressed as a sequential composition of three stages
performing smaller tasks: splitting the input into words, counting individual words,
and sorting the word-frequency pairs by decreasing frequency. The split stage reads
the input files, splits them into individual words, and outputs them, one word per
line, to its standard output. The count stage reads the words from its standard input
and maintains the number of occurrences for each word. When the count stage has
exhausted its input, it will output the word-frequency pairs to its standard output.
Finally, the sort stage reads those pairs, sorts them by frequency in decreasing order,
and outputs the sorted list to its standard output.

The arrows between split, count and sort stages in figure 3.9 represent pipes, which
transfer data between processes through memory buffers, i.e., without using temporary
files. The flow control which is needed to execute such construction in finite space
is managed by the operating system and is described in detail in section 2.2.3. The
execution flow of this pipeline corresponds exactly to the execution flow of the same
graph when viewed as a KPN. In other words, UNIX pipelines are KPNs, albeit with
restricted topology, with UNIX processes corresponding to Kahn processes, and pipes
corresponding to channels. However, as will be discussed later in this thesis, native
UNIX mechanisms are very inefficient, and a large part of our work is dedicated to
implementing better-performing mechanisms.

3.2.2. Parallel pipelines

The throughput of a pipeline is limited by the throughput of the slowest stage. When
sufficient computing resources are available, the throughput can be increased in two
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Figure 3.10.: Topology of a general parallel pipeline. The dashed arrows represent the
same “butterfly” (all-to-all) connectivity between every pair of adjacent intermediate
stages as between I1 and I2.

ways: by increasing the pipeline length, which also increases the latency of processing a
single data item, or by parallelizing one or more pipeline stages, which does not sacrifice
latency.

The latter approach yields the parallel pipeline construction, whose general topology
within the KPN framework is shown in figure 3.10. We can identify three types of
stages in the network: the splitter stage (S), the merge stage (M), and the intermediate
processing stages (I1 . . . In). The splitter stage obtains the data, splits it into chunks and
hands them off to the first processing stage (I1). The intermediate processing stages
perform the bulk of the work, with the last stage (In) producing the final output, which
is partitioned. The merge stage finally coalesces the partitioned output into a single
piece.

A processing stage is defined by the number of processes (e.g., I1 in figure 3.10 has
three processes) and the data transformation performed by each processes within the
stage. The number of outputs and inputs of each process in adjacent stages is constrained
so that every process in stage I j has as many outputs as there are processes in stage I j+1
and, vice-versa, every proceess in stage I j+1 has as many inputs as there are processes
in stage I j (see connections between I1 and I2 in figure 3.10). Every process in stage I j

is connected to every process in stage I j+1, so the total number of channels between the
stages is equal to the product of the number of processes in the two stages.

In section 3.3, we will encounter two concrete examples of a parallel pipeline. In both
examples, a parallel stage sends messages to workers in the next stage according to
the value of the data item in the message. Such partitioning is necessary both for load-
balancing and correctness, and would not be possible without the all-to-all connectivity
between stages. Nevertheless, the general topology of figure 3.10 may be simplified
when allowed by the semantics of adjacent stages, as has been done in figure 3.11c.

3.2.3. Distributed parallel pipeline

In section 3.3.1, we will show that MapReduce is only a special case of a parallel
pipeline. However, alongside of defining a parallel programming model, MapReduce
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provides also distributed execution, fault-tolerance and distributed file-system with
locality optimizations [75, 8].

These same elements can be used to provide distribution and fault-tolerance for par-
allel pipelines. As with MapReduce, distributed execution of a parallel pipeline would
be coordinated by a master process which would start worker processes of individ-
ual stages, know about connections between them and observe their status. Worker
processes of adjacent stages would communicate only by using the master process as
a relay, and never directly with each other. In this scenario, the exchanged messages
would typically be short, containing, for example, only locations of intermediate data
files in the global filesystem. Thus, as in MapReduce, the master process has complete
knowledge about remaining work of each worker and its status, so it can balance the
load, restart failed workers or start backup tasks.

Since channels backed by files on a distributed filesystem have virtually unlimited
capacity, worker processes will never block on send, so artifical deadlock cannot occur.
Therefore, remote unblocking of a process and a distributed deadlock detection and
resolution algorithm [22] are not necessary, which greatly simplifies the implementation.

3.3. Case studies

For a couple of years, Google’s MapReduce [8] implementation has been the most cited
approach for simple and high-level modeling of parallel and distributed computations.
There exist third-party MapReduce implementations that run on clusters [27], multi-
core machines [26], the Cell BE architecture [28], and even on graphics processors [29].
In this section, we show that MapReduce is only a special case of parallel pipeline, and
is thus fully embeddable in the KPN framework.

Furthermore, we use two real-world applications, word frequency and k-means, to
demonstrate that the rigid semantics of MapReduce incurs unnecessary overheads, and
that these tasks can be implemented more efficiently in the KPN framework. We do this
by implementing each application as a KPN in two different ways:

• The KPN-MR implementation builds a KPN that implements the exact MapRe-
duce semantics (see section 3.3.1 and figure 3.11a).

• The KPN-FLEX implementation builds a KPN where the topology and behavior
of processes is chosen to more naturally fit the given problem.

The results of our benchmarks, which are presented in section 5.1, show that KPN-
FLEX implementations outperform the KPN-MR implementations. The KPN-FLEX
implementations also outperform solutions implemented in Phoenix [26].

3.3.1. An analysis of MapReduce

In this section, we present the MapReduce semantics and show how it can be real-
ized with a parallel pipeline in three straightforward, but different ways. Then we
describe common data transformation stages (map, reduce, aggregate, sort) that the
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three MapReduce realizations rely on. Finally, we analyze the benchmarks used by
Phoenix [26]. Our analysis reveals that MapReduce solutions often perform more work
than necessary, which reduces performance.

3.3.1.1. Semantics

A MapReduce computation consists of two stages, Map and Reduce, which operate on
a set of key-value pairs [8]. The Map stage applies a user-supplied function to every
input key-value pair (k, v) (record). The result of this application is a set of intermediate
records {(k′, v′)}which are passed to the Reduce stage. The Reduce stage can start after
the Map stage has completely processed the input and generated the full output. The
Reduce stage reads the output of the Map stage and sorts4 the intermediate records on
the intermediate key k′, which also brings together records with identical keys. Then it
applies another user-supplied function on every group of values having the same key.
The result of this function is the final output record for the group of values in question.

A MapReduce computation can be executed in parallel by having multiple parallel
processes in each of the Map and Reduce stages. In this case, the Map stage is presented
with an already partitioned data set, and it generates a partitioned output that is sub-
sequently read by the processes in the Reduce stage. To ensure the correctness of the
computation, the processes in the Map stage must always send intermediate key-value
pairs with the same key to the same output partition.

3.3.1.2. Realization with parallel pipeline

Figure 3.11 shows three ways in which a MapReduce computation can be expressed
as a parallel pipeline which is, in turn, also a KPN. All three variants have the same
semantics, but they may have different run-time performance, depending on data set
size and distribution of input keys. Semantics of the parallel pipeline stages in the figure
is as follows:

Map As in MapReduce, the map stage applies a user-supplied function to to every
input key-value pair.

Reduce As in MapReduce, the reduce stage first reads the complete input from all
channels into a single array, sorts the array by the intermediate key and applies a
user-supplied reduce function to every group of records with identical keys.

Aggregate As the reduce stage, the aggregate stage reduces a list of key-value pairs
with the same key to a single value. The main difference is that the aggregate can
reduce its input incrementally. Unordered aggregate produces an unsorted output,
while ordered aggregate produces output sorted by the key.5

4The sorting step is the reason why Reduce must wait for Map completion – a sequence cannot be sorted
until all of its elements are known.

5Unordered aggregate would typically be implemented with a hash table, and ordered aggregate with a
balanced binary tree.
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Sort The sort stage reads the complete input from its input channel, sorts it by the key
using a user-supplied ordering relation, and outputs the sorted records.

S

map reduce

M

(a) KPN duplicating operation of the orig-
inal implementation described in [8].

S

map ordered
aggregate

M

(b) Implementation using ordered aggre-
gate.

S

map unordered
aggregate

sort

M

(c) Implementation using unordered aggregate and ex-
tra sort stage.

Figure 3.11.: MapReduce expressed as a parallel pipeline in three different ways, where
every stage may have multiple workers. The dashed arrows represent all-to-all connec-
tivity as detailed in figure 3.10.

When MapReduce is parallelized in one of the ways of figure 3.11, one must consider
how data is distributed from the split stage S to the map stage and from the map stage to
the subsequent stage (reduce or (un)ordered aggregate). Defining the first distribution
step is the developers’ responsibility; the usual approach is to evenly divide the input
data among the processes in the map stage. For the second distribution step, the choices
are more limited: the map stage must ensure that intermediate records having the same
key are sent to the same process in the subsequent stage. This ensures that each output
record is computable by a single worker process.

One aims to achieve approximately even distribution of workload over processes in
the subsequent stages. The usual approach is to send the intermediate record (k′, v′) to
the process determined by the formula h(k′) mod n where h is some hash function and
n is the number of processes in the subsequent stage.

Examples of using MapReduce for solving real problems are illustrated in sec-
tions 3.3.2 and 3.3.3. In section 3.3.2 we will also see that split (S) and/or merge (M)
stages of figure 3.11 can be omitted to avoid the overhead of merging the result of one
MapReduce computation, just to split it again for the next MapReduce.
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3.3.1.3. A critique of MapReduce

We, and others [76], have noticed that the MapReduce semantics does not match all prob-
lems, which may lead to unnaturally expressed solutions and decreased performance.6

We substantiate this claim with examination of the programs used to benchmark the
Phoenix MapReduce implementation [26]. Our findings are summarized in table 3.1,
where it can be seen that only 2 of the 8 benchmarks do not perform more work than
necessary. We shall use two of the Phoenix benchmark programs, word frequency and
K-Means, to illustrate that MapReduce is not an adequate implementation method, and
that the flexibility offered by KPNs can give significant performance advantages.

Word frequency Two MR instances are needed because of unneces-
sary sort on the wrong key in the first instance.

Reverse index Sort not needed.
Matrix multiply Artificial keys, sort not needed.
String match Sort not needed.
K-Means Sort not needed.
PCA Does not actually implement the full principal com-

ponent analysis. Two MapReduce instantiations; Re-
duce stage is not needed in either.

Histogram Map: counting color components in an image. Re-
duce: summing up.

Linear regression Sort not needed.

Table 3.1.: Phoenix bencmark programs.

3.3.2. Word frequency

As described in section 3.2.1, the word frequency program counts the number of occur-
rences of each word in a given text and outputs them sorted in the order of decreasing
frequency. The solution to this problem requires file I/O, which we have provided
through memory-mapped files. KPs can thus access the file contents by using pointers
instead of by using I/O functions.

3.3.2.1. KPN-MR solution

The KPN-MR solution closely follows the MapReduce solution presented in [26], which
needs two consecutive MapReduce instantiations to solve this task. In addition to
MapReduce computation stages, we have also introdced the split and merge process
(S and M in figure 3.12) whose task is to get data in to and out from the computation
stages.

6“When the only tool you have is a hammer, it is tempting to treat everything as if it were a nail.” –
Abraham Maslow in “The Psychology of Science.”
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The split process maps the input file into memory, divides it in chunks of equal
size while taking care of word boundaries, and sends them to workers in the first
computation stage. A file chunk is sent as a message containing a pair of pointers to the
region of the file that the worker will process.

The first Map stage (“split” in figure 3.12a) outputs (w, 1) pair for each word w in the
input file. The first Reduce stage (“sort, sum”) sorts those records to obtain a list of
pairs where identical words are grouped together. In other words, a list of the form

. . . (A, 1)(A, 1)(A, 1) . . . (V, 1)(V, 1) . . .

is obtained. The user-supplied reduce function is addition with initial value 0. Thus,
the Reduce stage simply sums the values (all of which are 1 in this case) over each group
of identical words, and outputs a list of word-frequency pairs (w, fw) sorted by the key
(word). For the above case, the output of the first MapReduce computation would be

. . . (A, 3) . . . (V, 2) . . .

However, we are not interested in the word frequencies sorted alphabetically, but ac-
cording to frequency in decreasing order. This is accomplished by another MapReduce
application. The user-supplied function in the second Map stage (“reverse”) reverses
the key and value in the input, so that (w, fw) is mapped to ( fw,w). The user-supplied
function to the second Reduce stage (“sort”) is identity, so the only effect of Reduce is
to sort the records in decreasing key order. Thus, a MapReduce solution of the word
frequency problem performs one unnecessary sort.

Finally, the merge process receives sorted results sets from individual workers in the
last computation stage and merges them into a single sorted result set.

3.3.2.2. KPN-FLEX solution

The KPN solution is a parallel pipeline consisting of two computation stages, as shown
in figure 3.12b. A worker in the count stage counts individual words in its assigned file
chunk. A worker in the sum-sort stage receives word frequencies from workers in the
count stage and sorts them according to decreasing frequency. We also need the split
and merge processes, which perform the same function as in the KPN-MR solution.

Figure 3.13 shows the code executed by the processes in the count stage.7 The
behavior method implements the count process. The process initially receives a text
chunk which is represented as a (start, end) tuple of pointers pointing into a memory-
mapped input file. The following while loop counts individual words in the text chunk
by repeatedly calling the parse_wordmethod. This method extracts the next word from
the text chunk and updates the word’s frequency stored in a hash table counts_. When
all words from the chunk have been counted, iterators to each (word, frequency) pair

7The code snippet uses the boost tuples library [44]. chunk is a 2-tuple consisting of two char* fields that
can be individually accessed by using the get<>() call. For example, get<0>(chunk) will access the
first of the two constituent pointers.
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(a) KPN that closely follows MapReduce operation. The number of processes in the second
map stage is equal to the number of processes in the first reduce stage.
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(b) KPN with optimized operation.

Figure 3.12.: KPNs for solving the word frequency problem.

in the hash table are sent to the sum-sort process. Finally, the eof_all() statement
sets an EOF indication on all output channels. EOF signaling is our extension to the
KPN framework, which does not alter its semantics, and which we shall describe in
section 4.3.

Sending iterators is an optimization that avoids copying individual hash table ele-
ments. Load-balancing is accomplished by sending each pair to the output obtained by
hashing the word and taking the result modulo the number of outputs. Since a hash
function will always return the same result for a given word, this ensures that the same
word and its partial frequency will be sent to the same process in the sum-sort stage.
A process in that stage receives partial word frequencies from all count processes and
maintains the total frequencies in another hash table. When all partial counts have been
received, the hash table contains correct word frequency for each word. The process
then copies the hash table into a vector, sorts it according to frequency in decreasing
order and outputs the (word, frequency) pairs to the merge process, which performs a
multi-way merge on the frequency field and produces the final result.

3.3.3. K-means

K-means is an algorithm used in data-mining applications. It is an iterative algorithm
for partitioning a given set of points in multi-dimensional space into k clusters, as
exemplified in figure 3.14. In each iteration, the algorithm examines every input point
and assigns it to the cluster whose center of gravity (centroid) is nearest to the point
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1 void count::parse_word(text_chunk &chunk)

2 {

3 char *b = get<0>(chunk), *e = get<1>(chunk);

4 char *w;

5

6 // Skip leading non-letters.

7 while((b < e) && !inword(*b)) ++b;

8

9

10 // Parse word and convert to uppercase

11 for(w = b; (w < e) && inword(*w); ++w)

12 *w -= ((*w >= ’a’) && (*w <= ’z’))*(’a’-’A’);

13

14 // Insert new word, or increase count

15 if(b != w) {

16 std::pair<count_hash::iterator,bool> rv =

17 counts_.insert(count_hash::value_type(

18 word(b, w), 1));

19 if(!rv.second)

20 ++rv.first->second;

21 }

22 get<0>(chunk) = w;

23 }

24

25 void count::behavior()

26 {

27 text_chunk chunk;

28 boost::hash<word> h;

29 count_hash::iterator it;

30

31 in(0).recv(chunk);

32 while(get<0>(chunk) != get<1>(chunk))

33 parse_word(chunk);

34 for(it = counts_.begin();

35 it != counts_.end(); ++it)

36 out(h(it->first) % out_count()).send(it);

37 eof_all();

38 }

Figure 3.13.: C++ code for the count stage of the word frequency program in KPN-FLEX
implementation. The lines in bold font are the only necessary additions to the sequential
version of the algorithm. For comparison, Google’s MapReduce solution of the word
frequency problem can be found in the appendix of [8].
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Figure 3.14.: Illustration of the k-means algorithm in a two-dimensional space. There are
two point clusters with 100 and 150 points, plotted as circles and triangles, respectively.
The large points filled with black represent the current centroid locations of each cluster.
Points filled with orange color will be reassigned to the other cluster.

being examined. In more detail:

1. Guess, e.g., by random placement, the initial centroid locations.

2. For each point p in the dataset, find the centroid c j which is nearest to p and assign
p to cluster j. The location of c j is not recomputed in this step.

3. After all points have been assigned to (possibly new) clusters, recalculate new
cluster centroids.

4. Repeat from step 2 as long as any of the centroids has moved by more than a
prespecified threshold.

3.3.3.1. KPN-MR solution

The KPN-MR solution closely follows the approach presented in [26]. We have also
introduced a new process which initializes and iterates the computation. This is the
I process, which is represented with two nodes in figure 3.15 to make the layout less
crowded.
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Figure 3.15.: KPNs for solving the k-means problem.

The I process consists of initialization and iteration phases. In the initialization phase,
the I process randomly generates n points to be classified and k points as the starting
centroids. It partitions the point vector into as many approximately equal parts as there
are worker processes in the next computation stage. Then, it sends a partition of the
point set a pair of (start, end) iterators to each worker, followed by the k centroids, each
in its own message.

In the iteration phase, the I process receives new centroid locations from the Reduce
stage and compares them with the current locations. If at least one centroid has moved,
it stores the new locations as the current locations and starts a new iteration by sending
the new locations to the workers in the Map stage.

The map stage finds the nearest mean ci for each point p and emits (i, p) as the interme-
diate key-value pair. The Reduce stage computes new mean values from the itermediate
key-value pairs. Since the MapReduce framework does not support modeling of iter-
ative algorithms, the solution in [26] repeatedly runs MapReduce until the algorithm
has converged. To avoid Nornir startup and shutdown costs, we have introduced the I
process described above.

3.3.3.2. KPN-FLEX solution

Figure 3.15b illustrates a KPN implementing the k-means algorithm. Edges with double
arrows represent two channels, one in each direction, with parallel channels carrying
messages of different types.

As in the KPN-MR solution, we also use the iteration process I to control the whole
algorithm. The KPN starts running with the initialization phase of the I process, which
is identical to that of the KPN-MR solution. The iteration phase is different, and we
shall describe it after having first described the algorithm executed by the worker KPs.

Figure 3.16 shows the code executed by the workers. A worker initially receives its
part of the point set and then enters the main loop. In the main loop, it receives on its
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input the current means and computes new cluster assignments for its part of the point
set. As a worker assigns a point to a cluster, it also updates the count and partial sum
of points belonging to that cluster. When a worker has processed all points, it sends the
counts and partial sums for each cluster to the I process.

In the iteration phase, the I process receives from each worker the partial sum and the
number of points for each cluster. Since mean is a linear operation, the I process can
now compute new location for all centroids. For a particular centroid c j, its location
is calculated by the formula c j = (

∑

i ci
j
)/(
∑

i ni
j
), where ci

j
and ni

j
are partial sums and

counts for cluster j sent by worker i. If at least one centroid has moved from its previous
location, the I process stores the new locations and begins another iteration of the
algorithm by distributing the new locations to workers.

Even though workers modify state that has physically originated from the I process,
the I process never inspects the original point set after having it distributed across
workers; it only uses partial sums of the centroids that arrive on the other channel. Thus,
determinism is preserved. The process of full ownership transfer could be enforced by
using a class such as auto_ptr, which is a part of the C++ standard library.

In figure 3.16, the additional code necessary to transform the sequential algorithm
into a Kahn process is shown in bold text. Note how this code resembles programming
with ordinary files: a process reads its input from input ports (files opened for reading)
one item at a time, does some processing, writes results to its output ports (files opened
for writing), and exits when EOF is detected on some input port (file).

3.4. Executing KPNs by iterative MapReduce

As mentioned in section 3.2.3, MapReduce not only defines a programming model,
but also handles distributed execution over a cluster of machines, fault-tolerance and
load-balancing. Nornir, on the other hand, runs only on a single, multi-core machine.
Since we do not know of a KPN run-time that supports distributed execution and fault-
tolerance, we have derived two constructions, neither of which we have implemented,
that use an iterative MapReduce computation to execute an arbitrary KPN.

In our descriptions, we omit the details of local deadlock detection in order to simplify
the presentations of our constructions. Also, it is not unrealistic to treat channels as if
they had infinite capacity, especially in our impure construction, since a distributed
MapReduce computation often uses a distributed file-system.

We present two constructions in which a MapReduce computation can execute an
arbitrary KPN:

• The pure construction exploits only the abstract MapReduce semantics, described
in section 3.3.1, without assuming any particular implementation details.

• The impure construction assumes that all Map and Reduce worker processes have
access to a global distributed file-system.

Both constructions share the common main idea: to handle KP code as data. The user-
supplied map and reduce functions host an embedded interpreter for the KP implemen-
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1 void kmeans::behavior()

2 {

3 size_t i;

4

5 // Receive the point set.

6 in1.recv(points_);

7

8 while(1) {

9 point_vec partial_sums(cur_means_.size(),

10 ZEROPOINT);

11

12 // New iteration: get recalculated means

13 for(i = 0; i < cur_means_.size(); ++i)

14 if(!in2.recv(cur_means_[i]))

15 return;

16

17 point_vec::iterator it;

18 for(it = get<0>(points_);

19 it != get<1>(points_); ++it)

20 {

21 // Recompute point’s cluster.

22 int c = std::min_element(

23 cur_means_.begin(), cur_means_.end(),

24 bind(&distance, *it, _1) <

25 bind(&distance, *it, _2))

26 - cur_means_.begin();

27

28 // Assign point to the new cluster and

29 // update cluster’s partial sum

30 it->c = c;

31 for(int k = 0; k < DIM; ++k)

32 partial_sums[c].v[k] += it->v[k];

33 ++partial_sums[c].c;

34 }

35

36 // Send partial sums to the I process.

37 for(i = 0; i < partial_sums.size(); ++i)

38 out.send(partial_sums[i]);

39 }

40 }

Figure 3.16.: C++ code for the worker processes of the k-means program in KPN im-
plementation. The lines in bold are the only necessary additions to the sequential
algorithm. When the I process sees that the algorithm has converged, it sets EOF status
on its channels, thus making other processes exit.
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Field Description
pid Globally unique ID for the KP.
chnid Mapping from local channel IDs, which are indices into the chnid

array, to global channel IDs.
chnbuf An array of references to buffers holding messages for each input

channel.
chnpid An array of receiving process IDs for each output channel.
seqno KP’s current sequence number.
blocked Flag signaling that the KP is blocked on receive.
send Implementation of the send primitive.
recv Implementation of the receive primitive.
data Context-dependent, see text.

Table 3.2.: Components of the KP state that are directly accessed by the host function.
The chnbuf and chnpid arrays are indexed by channel IDs local to the KP.

tation language. They receive the frozen interpreter’s state (which includes KP’s code
and data) and contents of input channels, and execute the KP in the hosted interpreter.
Interpreting the KP code will change its state, so the output of the Map and/or Reduce
stages is a modified KP state and the set of new messages sent over the KP’s outgoing
channels. Table 3.2 summarizes the KP state that is accessed by the Map and Reduce
functions.

The challenge is to cast the above high-level idea into a key-value paradigm enforced
by MapReduce. Our construction assumes that the implementation language for KPs
supports the following features:

• Coroutines [49] that can exit to the embedded interpreter while preserving the
complete call-stack.

• Save and restore of the interpreter’s state (which includes KP code, data, and
channel contents; see table 3.2 for details).

• The interpreter supports reading and defining of variables and functions directly
from the host function.

These assumptions are fulfilled by, for example, the Javascript language and its Rhino [77]
implementation, which is written in pure Java. It would thus fit nicely with the Hadoop
MapReduce implementation [27], which is open-source and also written in Java.

Both constructions also need a controller process, which creates the KPs and channels
between them, fills channel buffers with initial contents and creates KP states that will
be read by the first MapReduce iteration. Then, it enters a loop in which it repeatedly
executes a single MapReduce pass, where the result of the Reduce stage of the previous
pass is directly fed to the input of the Map stage in the next pass. At the end of each
iteration, the controller checks whether all KPs have become blocked on read, and if
so, terminates the execution. The controller process would also be the natural point for
performing detection and resolution of local deadlock.
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3.4.1. Pure solution

The pure solution uses solely the abstract MapReduce semantics, and does not rely on
any implementation details, such as the existence of external resources accessible to the
map and reduce functions, such as distributed file-system.

3.4.1.1. Keys and values

The first step in casting our idea into the MapReduce key-value paradigm is to assign
unique identifiers, e.g., positive integers, to processes and channels. Messages also need
to be tagged with sequence numbers to ensure that they are processed in the sending
order. The complete contents of the key-value records is thus

(pid, chnid, seqno, data)

where the first three fields are copied from the KP’s state (see table 3.2). The data and
seqno fields are interpreted according to the value of the chnid field:

• When chnid == 0, the data field contains the complete code and data belonging
to the KP having the given pid. The seqnofield contains the next sequence number
that will be used for messages sent by this KP.

• When chnid > 0, the record represents a message whose receiving process is
identified by pid. In this case, the chnidfield is the global ID of the target channel,
data is the actual message contents, and seqno is the message’s sequence number
which ensures correct ordering of messages on the channel.

3.4.1.2. Map stage

In this construction, the Map stage does not perform any computations. Its only function
is to distribute records across workers in the Reduce stage, ensuring that records with
the same pid field are sent to the same worker.

3.4.1.3. Reduce stage

The Reduce stage will first sort all input records according to the key, pid, thus grouping
together all records belonging to the same KP. The user-supplied reduce function is then
invoked with the list8 containing elements having the following structure:

(pid, chnid, seqno, data)

All elements in the list have the same pid value, i.e., they belong to the same KP. The
reduce function performs the following steps:

8“List” here does not presuppose any particular data structure; it merely denotes a “container whose
elements are are arranged in a strict linear order” [78], such as linked list or array.
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1. Lexicographically sorts the list of quadruples using chnid and seqno as the key.
This brings together all messages destined for the same channel, and arranges
them in the sending order.

2. Creates an interpreter instance that will execute the KP in question.

3. Loads the complete KP state into the interpreter. The KP state is encoded with
chnid==0, so it will be found at the front of the list.

4. Appends messages in the rest of the list to their destination channel buffers in the
KP state.

5. Defines send and recv functions as described below.

6. Executes the KP in the interpreter until the KP yields.

7. Emits the KP state as the last output record with chnid set to 0, seqno set to the
KP’s current sequence number and data filled in with the KP’s state. Existing
messages in channel buffers are not converted to individual records; they remain
encapsulated in the KP data.

One might think that the sorting in step 1 could be avoided by letting the Reduce
stage lexicographically sort its input using the triple (pid, chnid, seqno) as the key.
With this approach, each record belonging to the same KP would be processed by a
separate invocation of the reduce function. Since the state of the reduce function is not
preserved across invocations, it would be impossible to restore the full KP state in steps
3 and 4 and execute it afterwards. However, step 1 can be omitted if the MapReduce
implementation fulfills two conditions:

• Records output by the Reduce stage are not reordered.

• The sorting algorithm employed by the Reduce stage is stable.

A stable sorting algorithm preserves the relative order of elements with equivalent keys,
so messages destined for the same channel will already be in the sending order. Since
the KP state is output as the last record in step 7, step 3 will find the KP state at the back
of the list.

The send(lchnid, msg) statement sends data to the channel identified by the local
channel identifier, which is an index into the KP’s table of global channel IDs (see
table 3.2). The host will define the send function to perform the following steps:

1. Emit the output record9 with chnid set to the global channel ID, pid set to the
receiving KP ID, seqno set to the KP’s current sequence number, and data filled
in with the message data.

2. Increment seqno by 1.

9MapReduce allows generating multiple output records with the same key.
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3. If the KP has sent more than a preset number of messages in this execution, yield
(not block).

The last step ensures fairness towards other KPs, in case the same Reduce process will
execute several KPs.

The msg = recv(lchnid) statement receives data from the channel identified by the
local channel ID. Since the reduce function has filled the channel buffers before starting
the KP, the performed steps are straightforward:

1. If there are messages in the channel buffer, set the blocked flag to false, remove
message at the front of the specified channel and return it to the caller.

2. Set the blocked flag to true and yield.

3. When resumed, go to step 1.

3.4.2. Impure solution

In the impure variant, we assume that the user-supplied map and reduce functions
have access to a global distributed file-system, which will be used to buffer messages.
In this construction, the Map stage will allow processes processes to only send a message,
with the limit on the maximum number of sent messages per execution. Similarly, the
Reduce stage will allow processes to only receive a message. Such alternate scheduling
of KPs is clearly fair, so it guarantees that the KPN will be output-complete. It is also
advantageous because channel reads and writes are never concurrent, so the distributed
file-system does not need to implement special support for concurrent atomic reads and
writes.

3.4.2.1. Keys and values

To map the problem to the key-value paradigm of a MapReduce computation, we define
the record type that will be processed by the Map and Reduce stages:

(pid, state)

where pid is the unique KP ID, and state is the complete KP state, shown in table 3.2,
that is used to resume its execution. The data field contains the complete code and data
of the KP identified by pid.

3.4.2.2. Map stage

The Map stage allows the processes to only send messages. As soon as a process attempts
to receive a message, it will immediately yield. The user-supplied map function receives
the record defined above and proceeds with the following steps:

1. Defines the send function in the KP state to append the message to the target
channel file.
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2. Defines the recv function in the KP state to immediately yield control to the host
program.

3. Restores the context of the KP interpreter, opens the output channel files using
information from the KP state (see table 3.2), and executes the KP until it yields.

4. Closes the output channel files and outputs the KP’s state to the Reduce stage.

The send operation of step 1 shall yield (not block!) if the process sends more than
a preset number of messages without an intervening receive. This ensures fairness
towards other KPs, in case there are fewer Map workers than ready KPs.

3.4.2.3. Reduce stage

The Reduce stage allows processes to only receive messages. As soon as a process at-
tempts to send a message, it will immediately yield. The user-supplied reduce function
receives the process state as defined above and proceeds with the following steps:

1. Defines the send function in the KP state to immediately yield control to the host
program.

2. Defines the recv function in the KP state to read the next message from the channel
file.

3. Restores the context of the KP interpreter, opens the input channel files using
information from the KP state (see table 3.2), seeks each file to the record indicated
by the seqno field, and executes the KP until it yields.

4. Closes the input channel files. If the files have grown too large, they are truncated
at the beginning and seqno is set to 0.

5. Outputs the KP’s state as the final result of the MapReduce computation. The
result can be immediately fed to the input of the Map stage of the next MapReduce
run.

The recv operation sets the blocked flag and yields control if it encounters EOF on the
channel file. Otherwise, it sets the blocked flag to false and updates the seqno field
to point to the next record in the channel. Unlike with send, a KP does not need to
yield after receiving a preset number of messages without an intervening send. Any
physical channel realization will contain only a finite number of messages, so a KP must
eventually block on an empty channel. Fairness is thus automatically ensured.

3.5. Existing KPN implementations

Yapi [20], developed in C++, is aimed towards designing signal processing applications.
YAPI is not a pure KPN implementation since it extends the semantics by introducing the
channel selection operator, which introduces nondeterminism. With channel selection,
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a process may block on a set of channels until an action can be completed without
blocking on at least one of them. Furthermore, the user manual does not indicate that
detection and resolution of artificial deadlock is implemented.

The paper [20] gives very few implementation details, but the code can be downloaded
from http://y-api.sourceforge.net/. The code cannot be compiled without small
fixes, and it is unstable, i.e., it crashes on Linux even though Linux is one of supported
platforms. Further investigation revealed that Yapi implements m:n scheduler, and uses
setjmp and longjmp functions to perform context switching, which is not guaranteed
to work.10 Lastly, the code-base is too large for easy experimentation, which is one of
our requirements: YAPI has 120kB of source code, whereas our implementation has
only 50kB, which includes platform abstraction layer, artificial deadlock detection and
resolution, and two scheduling mechanisms (1:1 and m:n).

The process network frameworks developed by Evans et al. [22, 21]11 are another im-
plementation of KPNs in C++. One of their implementations supports also distributed
execution and deadlock detection and resolution algorithm [22]. However, their code
supports only the 1:1 scheduling model, and it would require substantial extensions to
introduce support for m:n scheduling. In fact, the m:n scheduler and the three schedul-
ing policies, described in the next chapter, comprise ∼ 50% of the complete Nornir’s
code-base.

Ptolemy II [19] is a simulation environment for prototyping and experimentation with
heterogeneous systems. It provides several computational models, among them also
KPNs, and supports their intermixing. A GUI for easy prototyping is also developed.
KPNs in Ptolemy II are built on Java threads and monitors. The amount of code that
the JVM consists of would make it prohibitively difficult to experiment with low-level
mechanisms, such as lightweight tasks.

The Sesame project [15] features an event-driven simulator of embedded systems,
which employs KPNs for application modeling and simulation. By collecting detailed
traces during a simulation run, it assists in matching an application to the given hard-
ware platform, or vice-versa. Since an event-driven simulation significantly slows down
execution, Sesame is not suitable for executing KPNs where performance is important.

3.6. Summary

In this chapter, we have examined modeling of parallel applications with KPNs. We
have demonstrated that a pipeline is a special case of KPN, and we have developed
a general KPN topology that implements a parallel pipeline. Each stage of a parallel
pipeline consists of several processes running in parallel, which increases the pipeline
throughput without sacrificing latency. We have also shown that the widely-used
MapReduce model of parallel computation is a special case of a parallel pipeline, which

10New linux C libraries make the jmp_buf structure truly opaque by xor-ing the contents with a per-
thread random constant. This could be probably disabled by the undocumented LD_POINTER_GUARD
environment variable on some Linux versions.

11The code is available at http://users.ece.utexas.edu/~bevans/projects/pn/
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consists of two stages whose behavior is prespecified to a great extent.
Because of its rigid semantics, MapReduce performs more work than necessary on

many problems. To see whether the modeling freedom allowed by KPNs brings any
real performance benefits, we have implemented the word frequency and k-means
applications within the KPN framework in two ways: the KPN-MR variant, whose
topology and operation closely follows the MapReduce abstract semantics described in
section 3.3.1, and the KPN-FLEX variant whose topology and operation is adapted to
each problem. Our experimental results, presented in detail in section 5.1, show that
the KPN-FLEX variant outperforms not only the KPN-MR variant, but it outpeforms
also their implementations in Phoenix.

Nornir runs only on a single, multi-core machine, while MapReduce implementations
are distributed over a cluster of machines, and also implement fault-tolerance. Since we
do not know of a KPN run-time that supports distributed execution and fault-tolerance,
we have derived two constructions, neither of which we have implemented, that use
an iterative MapReduce computation to execute an arbitrary KPN. Thus, a MapReduce
implementation can be used as an execution engine to provide distribution and fault-
tolerance for KPNs, until a true KPN run-time with these properties is developed.

Finally, we have reviewed several most complete existing KPN implementations:
Yapi [20], the process network frameworks by Evans et al. [22, 21], Ptolemy II [19] and
the Sesame project [15]. We have found that none of them completely satisfies the
requirements stated in section 1.2, so we had to implement Nornir, which design and
implementation is the topic of the next chapter.
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4. Nornir implementation

Nornir is our configurable run-time environment for executing KPNs, implemented
in C++. Although it is primarily targeted towards POSIX environments, it also exe-
cutes on newer Windows operating systems, but only in a subset of the configurations
supported under POSIX. Its design is greatly influenced by our requirements: support
for multiprocessing, easy experimentation with implementation techniques, support
for artificial deadlock detection, collection of run-time statistics and support for large
networks. The main components of Nornir are KP management and scheduling, load-
balancing, message-passing, deadlock detection and collection of detailed statistics
(accounting). Such decomposition is a natural consequence of the KPN model and our
requirements. The implementation of each component can be changed independently
of any other component, so it is easy to evaluate performance effects of each component
individually.

Nornir implements preemptive 1:1 and cooperative m:n scheduling models, which
have been described in the context of operating systems in section 2.2.2. With 1:1 model,
one OS thread is created for each KP. With m:n model, many KPs are time-multiplexed
over one OS thread, which we also call runner. In this chapter, we focus on the m:n
model since it is more complicated to implement (see figure 4.1).

Our prsentation proceeds on two parallel levels. On the higher level, we describe data
structures and algorithms that we have used in our implementation. On the lower-level,
our descriptions are also meant to expose important implementation details and to be
a guide to the Nornir source code.

4.1. Process management and scheduling

The process management and scheduling component (scheduler) orchestrates the whole
life-cycle of a KPN: the startup phase, the running phase and the shutdown phase. Its
role and operation is similar to that of regular OS schedulers introduced in section 2.2.2.
In the startup phase, the scheduler invokes the user-supplied root process which creates
KPs and channels. While the KPN is running, the scheduler balances the load by
choosing which KPs will be executed, when, and on which CPU. Also, all KP block and
unblock operations go through the scheduler, so it is able to keep track of the number
of ready processes in the KPN and shut down the KPN when this number reaches zero.
The scheduler is also a natural component for performing run-time deadlock detection
and resolution because an artificial deadlock can occur only after a KP blocks, an event
of which the scheduler is always “aware” of. In this section, we present the scheduler’s
main control-flow, i.e., startup, shutdown and management of the KP’s life-cycle which
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Figure 4.1.: KP scheduling: each runner has its own private run queue (small circles)
containing ready KPs (small black squares), and is executing at most one KP at any
given time. Runners are bound to different CPUs, so they never compete with each
other. Nevertheless, they compete with other threads and processes.

is the same as that of regular processes and threads (see figure 2.2). The other two
aspects related to scheduler’s operation, load-balancing and deadlock-detection, are
described in sections 4.2 and 4.4 respectively.

The m:n scheduler is cooperative, which means that a KP runs uninterrupted until
it exits or encounters a blocking point. In our implementation, the only potentially
blocking points are currently only message send and receive operations. Since KPs
may use all UNIX system calls, they can perform I/O in the usual way. Even though I/O
operations may block, they will not cause the calling KP to be block or yield. Instead, the
runner executing the KP will become blocked and thus unable to dispatch another KP.
This can be solved either by having dedicated runners for executing KPs that perform
I/O, or by using the POSIX asynchronous I/O API.

4.1.1. Data structures

The scheduler’s main data structures are contained in instances of the RTE and actor
classes. The RTE class contains data related to runners and methods for KPN creation,
startup, shutdown and blocking and unblocking KPs. The actor class is the interface
between the scheduler and user-provided KP code. As such, it contains some per-KP
data accessed by the scheduler and it provides the necessary glue code between the
user-provided KP code and the scheduler.

4.1.1.1. Runner data structures

The RTE class contains static data shared between all runners, while individual in-
stances of the RTE class contain data private to each runner. The number of runners is
chosen by the developer at KPN startup, usually less than or equal to the number of
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CPUs. The shared data includes:

• Synchronization objects for controlling access to the shared data and key for
accessing thread local storage data, where a pointer to runner’s private data is
stored.

• A vector of pointers to all instantiated runners, KPs, and channels (one vector for
each class).

• Blocking graph, which is used for deadlock detection.

• Immutable data related to load-balancing algorithms, such as KP and channel IDs.

• Detailed accounting information.

The data private to each runner includes a run-queue, the mutex protecting the run-
queue from concurrent accesses, a pointer to the currently running KP, and an instance
of a random number generator. The run-queue contains KPs that are ready to run, and
is organized as a doubly linked list of actor instances. The pointer to the currently
running KP is needed so that the KP can find the data needed to return to the scheduler
context when it is about to block or yield. The per-runner random number generator is
needed for scalability to multiple CPUs: during early stages of development we have
noticed that some implementations of the C standard library use a global state protected
with a mutex, which significantly decreased performance.

The RTE methods assign unique integer identifiers to each newly created KP or chan-
nel, which are respectively created by RTE::spawn and RTE::connect methods. The
identifiers start at 0 and increase by 1 for each new KP and for a channel connecting a
new, previously unconnected, pair of KPs.1 These IDs are used to map KPs and chan-
nels to vertices and edges of the load-balancing graph used by the graph-partitioning
scheduling policy that we describe later.

4.1.1.2. KP data structures

The actor class is the interface between the user-provided code defining the behavior
of a KP and the scheduler. The class contains the data needed for user-mode context
switch (described in the next section), and implements the trampoline code which
ensures correct startup and exit of the KP. This code is reused by KPs by deriving them
from the actor class, and by implementing their run-time behavior in the behavior
method. When this method exits, the trampoline code ensures proper return to the
scheduler, which cleans up the KP’s state and ensures that the KP will not be scheduled
again. Attempting to send a message to an exited KP will generate a run-time exception.

1In other words, multiple channels between the same pair of KPs will be assigned the same id.
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4.1.2. User-mode context switch

Context-switch is a mechanism that enables time-multiplexing of several KPs over
one OS thread (runner). Context-switch involves manipulation of low-level processor
state – most notably, program counter and stack pointer – which is not accessible from
high-level programming languages. Because of this, and because it is one of the most
performance-critical parts of the scheduler, it is implemented in assembly language and
thus inherently non-portable. Context-switch is usually performed by the OS kernel as
part of scheduling processes and threads. However, applications may also use context
switching in user-mode to implement “microtasks” (in our case, each KP is an individual
microtask) in order to gain efficiency or predictability. These microtasks are internal to
the application, i.e., invisible to the kernel, and cooperatively scheduled, which makes
them easier to reason about than preemptively scheduled threads.

4.1.2.1. Existing mechanisms

On POSIX systems, such as Linux and Solaris, the getcontext,makecontext,setcontext
and swapcontext functions can be used to manipulate contexts in user-space.2 How-
ever, they incur a large performance penalty because they save and restore the thread’s
signal mask, which requires an additional system call. Nevertheless, these functions are
a good fall-back solution for systems where user-mode context switch is complicated to
implement.

Some frameworks, e.g. YAPI [20], use setjmp and longjmp functions in a non-portable
manner by assuming a particular contents of the jmp_buf structure, even though the C
standard mandates that it must be treated as opaque. With this approach, the context
switch code must also be ported to a new combination OS and CPU architecture, but
this does not guarantee that the code will work. For example, newer versions of the
Linux C library obscure the contents of the jmp_buf structure by xor-ing its fields with a
thread-specific magic constant. When the fields are filled in with plain-text values, they
are “decrypted” to invalid values, whose loading into CPU registers causes program
crash.

The GNU Pth library [79] implements portable user-mode context switching by using
alternate signal stacks (set up by the sigaltstack function) to initialize the machine
context for a new thread. This library implements a full user-space thread package, but
also exposes raw context switch routines, e.g., pth_uctx_switch. The main drawback
of this approach is the high cost of setting up the context. The library will also use the
context faimily of functions on platforms that support them, which results in the same
drawbacks as explained above.

In section 2.1.2.1 we have described the threading building blocks library developed
by Intel. Its scheduler is not suitable for our purposes because it supports only fork-join
parallelism, which means that a task cannot block on events other than waiting for its
child tasks to finish. Processes in a KPN, on the other hand, are not arranged in a
hierarchy, and they must be able to wait on two events on channels: transition from

2A similar set of functions also exists on Windows: CreateFiber, DeleteFiber and SwitchToFiber.
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void *regs[30];

void *stack;

size_t stksz;

(a) Contents of the KP context
descriptor

stack

high addresses
psz

psz+stksz

(b) Layout of the KP’s stack.

Figure 4.2.: KP context descriptor and stack. psz is the system’s page size; the shaded
part of the stack is inaccessible to the KP so that stack overflow is detected. We assume
that the stack grows down, so the stack pointer (stack) is initialized to point to the
highest address.

empty to non-empty state, or transition from full to not-full state. Since neither of these
events coincides with KP exit, TBB’s scheduler is not suitable for running KPNs written
in a natural sequential style.3

4.1.2.2. Context-switch in Nornir

Because of drawbacks of existing user-mode context switch mechanisms described
in the previous section, we have implemented our own user-mode context switch
mechanism optimized for the AMD64 architecture. The KP’s context is stored in the
context descriptor structure, shown in figure 4.2, which is a part of the actor class. The
stack size is specified upon KP creation and cannot be changed afterwards. By default, a
stack size of 12kB is used, which is enough for processes that do not use deeply recursive
functions or large stack-allocated variables.

The register area stores registers necessary to resume the KP after it has been sus-
pended. Along with stack pointer and program counter registers, we store only those
registers that the calling convention mandates to be saved across function calls. This
does not include floating-point state on the AMD64 architecture, which speeds up the
context switch.

The platform-independent context manipulation routines are declared as follows:

void ctx_make(mctx_t *ctx, void(*start)(void*),

void *arg, size_t stksz);

void ctx_free(mctx_t *ctx);

void ctx_swap(mctx_t *octx, mctx_t *nctx);

If Nornir is configured to use the optimized context switch, the low-level function
ctx_init_internal and ctx_swap_internal are additionally defined. These functions
are written in assembler and are the only functions specific for the AMD64 architecture.

3Technically, it would be possible to rewrite each KP in a continuation-passing style, where a single
sequential control flow would be chopped up into multiple tasks at each (potentially) blocking call
(send or receive). This difficulty is common for programs written and event-driven style and has been
named stack ripping [80].
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The ctx_make function allocates the context descriptor and stack, which can be later
deallocated with the ctx_free function. ctx_make enlarges the specified stack size by
one page and allocates it using the mmap system call. Then it initializes the context
descriptor and stack as follows: the stack pointer is set to point to the end of the
allocated stack area (because the stack grows towards lower addresses on AMD64),
while the rest of the context is set up such that the first execution of the context behaves
as if entry(arg)were called.

Stack overflow is an undesirable event that may silently corrupt the state of the
program. In order to protect against stack overflow, ctx_make allocates an additional
page at the bottom of the stack, as illustrated in figure 4.2, and uses the mprotect system
call to make it inaccessible to the KP. If the KP tries to use more stack than has been
allocated, it will access this page, which will in turn generate a segmentation fault and
crash the program instead of silently corrupting the data.4

The ctx_swap function stores the context of the calling KP into the context structure
pointed to by the octx argument, and restores the new context from the nctx argument.
When nctxhas been restored, it will appear as if the ctx_swap function has just returned.

4.1.3. Control flow

Nornir is started by a call to the RTE::startmethod, which takes the pointer to the root
process as its only argument. The method reads the number of CPUs to use, scheduling
policy and default channel capacity from the KRTE_POLICY environment variable, which
is further explained in section 4.5. Then it proceeds to create runners, one for each CPU,
and sets their affinities so that each runner is bound to a different CPU. While the
affinity setting eliminates interference between Nornir’s threads, they will nevertheless
share their assigned CPU with other processes in the system, subject to standard Linux
scheduling policy.5

4.1.3.1. Startup

Each runner has the same startup procedure, which executes the following steps:

1. It initializes per-runner data structures (the run queue) and sets the thread-specific
data pointer to point to the runner instance.

2. It tests whether it is the first runner, and if so:

• It executes the root process, which creates the network, i.e., processes and
channels.

4Actually, it will invoke the SIGSEGV handler; if no handler is installed the program just crashes. In our
opinion, an early and visible program crash is much better than silent data corruption which might (or
might not) crash the program, and that at some place far from where the fault happened.

5It is difficult to have fully “idle” system because the kernel spawns some threads for its own purposes.
Using POSIX real-time priorities would eliminate most of this interference, but would not represent a
typical use-case.
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• If the graph-partitioning policy has been selected, it also performs the initial
partitioning and migrates KPs to their assigned runners.

This code section is protected by a single global mutex, and other runners are
waiting on the associated condition variable during this time.

3. The first runner signals the condition variable and unlocks the mutex. Now all
runners proceed together to enter the scheduling loop.

Using thread-specific data is the simplest way in which a KP can obtain a pointer to the
runner on which it is running. This pointer is needed in situations when a KP needs to
perform an action related to scheduling – yield, block itself, or unblock another KP.

4.1.3.2. Scheduling loop

The scheduling loop performs the following steps (see also figure 4.3):

1. It calls the policy method to choose the next process to dispatch [CHOOSE]. If
the policy method returns NULL, there are no more ready processes, so the runner
terminates [EXIT].

2. The runner’s current CPU usage is recorded [ACCT].

3. The selected process is dispatched on the CPU [KP].

4. The process has returned to the scheduler because it has blocked, yielded or exited.
The runner’s current CPU usage is again recorded [ACCT], and the difference
between this and previously recorded CPU usage is added to the KP’s CPU usage.

5. Depending on the reason for returning to the scheduler, the following is done
[HANDLE]:

• On yield, the process is inserted at the back of its runner’s queue.6

• On block, the process is blocking on a channel, and deadlock detection and
resolution has already been done. The mutex protecting the channel is un-
locked.

• On exit, the KP’s state (context descriptor and stack) is deallocated.

6. Go to step 1.

6As we shall explain later, we use mutexes to protect run-queues instead of a non-blocking queue
described in [47]. The latter does not support push-to-back, so yield would not be implementable.
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Figure 4.3.: Runner control flow. The dashed lines denote context switch to and from
a KP. The “?” denotes one of the three possible reasons for the KP returning to the
scheduler: yield, block or exit. The exact reason is determined by the HANDLE step.

4.1.3.3. Critical sections

Critical sections ensure that a piece of code that accesses shared data is executed by at
most one runner at any given time. A critical section is entered by locking the mutex
associated with data, and exited when the mutex is unlocked. The critical sections and
associated mutexes are as follows:

• A single mutex protecting the RTE startup.

• A single mutex protecting data structures related to graph partitioning.

• A per-runner mutex protecting its run-queue.

• A single mutex protecting the blocking graph (used for deadlock detection).

• A per-channel mutex protecting its internal buffers, blocking and unblocking of
KPs at its endpoints.

The first three types of mutexes are always accessed from a runner context and will block
the runner(s) attempting to access them when taken.

The last two types are always accessed from a KP context and use busy-waiting. A KP
always tries to acquire the mutex without blocking, and if the mutex is already taken,
the KP yields to another KP. This process repeats in a loop until the KP has succeeded in
acquiring the mutex. Busy-waiting thus allows a runner to execute another KP instead
of idling while waiting on the mutex to become unlocked.

Unlocking a busy-wait mutex does not affect the KP doing the unlocking. The un-
locking KP just continues to run, and the KPs which are trying to acquire that mutex
will run when chosen by the scheduler.

4.1.3.4. Termination

All runners share a counter that reflects the total number of ready KPs in the network.
The counter is set to 0 in the RTE::start function, it is incremented every time a KP is
spawned or unblocked, and decremented every time an KP blocks or exits. The counter
is incremented and decremented by using CPU’s atomic primitives, which eliminates
the need for a mutex. Since an exited or a blocked KP cannot unblock itself or any other
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KP, this counter is used as the global termination condition: when it has reached 0, all
runners will exit.

The RTE::finishmethod waits that all runners exit, cleans up the global state, and
writes the collected accounting data to the stream given as the argument, default being
standard output.

4.2. Load-balancing methods

The goal of load-balancing is to evenly distribute KPs, i.e., their CPU load, over runners
in order to minimize the total running time. Load-balancing, however, introduces
additional costs through three potential sources of run-time overheads:

• The overheads of tracking CPU consumption of individual KPs,

• the overheads of computing assignment of KPs to runners, and

• the overheads of migrating KPs to other runners.

We have implemented three different load-balancing methods in Nornir, each offering
different trade-offs between the above overheads and the expected run-time application
performance.

The first method, static assignment, is described in section 4.2.1. It relies on the
developer’s knowledge about average CPU consumption of KPs and lets the developer
assign KPs to runners during KPN construction. After the KPN has started, the KPs
will not be migrated to other CPUs. This is a very simplistic method, and it does not
incur any of the above-mentioned run-time overheads.

The second method, work stealing, is described in section 4.2.2. This is a widely used
load-balancing algorithm that does not need to track CPU consumption of individual
KPs, and that has minimal costs of computing new assignment of KPs to runners.
However, with fine-grained parallelism, it can incur significant overheads in terms of
KP migration.

The third method, graph partitioning, is described in section 4.2.3. In addition to dis-
tributing CPU load across runners, this method also attempts to reduce communication
between KPs executing on different runners and to reduce number of KP migrations.
This method needs to track CPU consumption of individual KPs as well as commu-
nication volume between each pair of KPs. Its cost of computing assignment of KPs
to CPUs is high, but the cost of KP migration on multi-core machines is lower than
with work-stealing, especially for fine-grained parallelism. We have implemented this
scheduling method to evaluate its applicability to distributed KPN run-times where
communication and KP migration are orders of magnitude higher than on multi-core
systems.

4.2.1. Static assignment

With static assignment, KPs are assigned and pinned to runners at KPN creation. Once
the KPN is running, KPs are never migrated to other runners. In other words, this is

63



not a dynamic load-balancing method, and it requires that developers correctly estimate
the average CPU consumption for each KP, so that they can evenly distribute the load
over runners. Profiling tools like cachegrind [81] may help with such estimations.

Of the three methods, this is the only method where a runner does not use busy-
waiting when it encounters an empty run-queue. Instead, it uses a semaphore to
count the number of ready KPs in its run-queue. Each time a KP is inserted into the
runner’s queue (because it has been spawned or unblocked), the semaphore’s value is
incremented. Similarly, when the currently running KP blocks, the semaphore’s value is
decremented. When a runner is about to dispatch a new KP, it will first try to decrement
the semaphore’s value; if there are no ready processes, the value will be 0, and the
runner will block.

Compared to busy-waiting, this scheme is friendlier towards non-dedicated environ-
ments, i.e., scenarios where Nornir runs along side of other applications. However,
when runners are rapidly switching between the running and sleep states, the overhead
of the kernel’s sleep/wakeup mechanism considerably degrades application perfor-
mance.

4.2.2. Work stealing

The work-stealing algorithm was first designed for scheduling fully-strict computa-
tions [82, 30], also called fork-join computations, but was subsequently extended to
handle arbitrary concurrent computations [47]. We first describe the algorithm and its
integration with Nornir, followed by a discussion of the algorithm’s potential unfairness
which may make it unsuitable for scheduling non-terminating KPNs. Then, we present
a simple modification to the original algorithm which significantly benefits a common
class of workloads without degrading performance of other regular workloads. These
workloads and evaluation results are given in section 5.3.2. Lastly, we define fully-
strict computations and present a summary of theoretical results derived by Blumofe et
al. [30, 47].

4.2.2.1. Algorithm description

Both work-stealing algorithms [30, 47] follow the same general idea. Each runner takes
ready KPs from the front of its own run-queue, and also puts unblocked KPs at the front
of its run-queue, as shown in figure 4.4. When the runner’s own run-queue is empty,
the runner enters a busy-waiting loop in which it chooses a random runner (“victim”)
and tries to steal a process from the back of its run-queue. The loop can finish in two
ways:

1. The victim’s run-queue is not empty, so the steal attempt succeeds and the stolen
KP is dispatched.

2. There are no more ready KPs, so the program is finished, and the scheduler exits.

If neither is the case, the runner calls the sched_yield function to yield before starting
the next loop iteration.
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CPU i CPU j

dispatch

unblock
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Figure 4.4.: Queue operations in work stealing. CPU i accesses its own queue only at
the front, while it steals KPs from other CPUs only from the back.

All queue operations have constant-time (O(1)) complexity in the uncontented case,
i.e., their running time is independent of the number of KPs in the queue. The early
algorithm [30] uses mutexes to protect the run-queues, so the complexity of queue
operations can become as bad as O(P), P being the number of runners. This happens in
the (unlikely) case where P−1 runners have empty run-queues and they simultaneously
choose the same runner as the victim.

The later algorithm [47] uses non-blocking algorithms to implement queue operations.
The worst case of P − 1 runners accessing the same run-queue can still occur, but the
contention is now handled in hardware. Depending on the machine’s bus architecture,
aborting memory accesses of the competing CPUs and notifying them about contention
may have sublinear complexity. A potential disadvantage of this algorithm is that the
non-blocking queue is implemented with fixed-size arrays, which limits the number of
processes that an application can create during its execution.

4.2.2.2. Integration with Nornir

As already mentioned in section 4.1.3.3, the run-queues in our scheduler are protected
with mutexes, which significantly simplifies the implementation. Furthermore, sup-
ported by the work of Saha et al. [83], we deemed that this will not significantly im-
pact performance of work-stealing on our target machine. More concretely, they have
reported that even a single queue protected by a single, central lock does not hurt per-
formance on up to 8 CPUs. This is clearly a less scalable architecture than ours, where
each CPU has its own queue protected with a dedicated mutex.

The LIFO way of accessing own run queues is contrary to the FIFO policy usually
used in OS schedulers, which have to be fair towards all jobs in the system. LIFO
policy is fair towards all terminating jobs and for certain non-terminating jobs (see the
next section for details). The reasons for accessing the run-queues in LIFO manner are
several [84]:

• It reduces contention by having stealing threads operate on the opposite end of
the queue than the thread they are stealing from.

• It works better for parallelized divide-and-conquer algorithms which typically
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generate large chunks of work early. Thus, the older stolen task is, the more likely
it is to provide large chunks of work to the stealing thread.

• Stealing a process also migrates its future workload because all processes spawned
or unblocked by the stolen process will execute on the same CPU.

• The last unblocked or spawned process will be first to execute on that CPU, which
helps to increase cache locality.

Contention is reduced only if an implementation uses a non-blocking queue imple-
mentation of [47], or two-lock queue such as that of Michael and Scott [85]. However,
because we have chosen to protect each run-queue with a mutex, and because KPNs are
static (i.e., new KPs are not created at run-time), Nornir does not benefit from the first
three advantages. Nevertheless, accessing run-queues in LIFO manner helps with in-
creasing locality in message-passing programs: since the arrival of a message unblocks
a KP, placing it at the front of the ready queue increases probability that the message
contents will remain in the CPU’s caches.

4.2.2.3. Fairness considerations

For jobs that terminate, the LIFO policy is fair: since a job terminates after all of its KPs
have terminated, every KP will eventually be run.

If we allow non-terminating, i.e., infinitely-running, jobs, it is possible to construct a
pathological case where LIFO policy is unfair and thus becomes unsuitable for execut-
ing KPNs. The simplest example consists of one runner thread and two cooperating
KPs that communicate only with each other, thus preventing other KPs from running.
Nevertheless, there exists a class of non-terminating jobs, called dynamically connected
systems [58], whose communication patterns guarantee fair execution even under an
unfair scheduling policy.

4.2.2.4. A simple improvement

When a KP is unblocked, the original work-stealing algorithm will insert it at front
of the run-queue belonging to the runner that executes the KP doing the unblocking.
We have modified this strategy so that a newly unblocked KP will be inserted at the
front of the run-queue belonging to the last runner that executed the KP. This strategy
actively distributes the work instead of making CPUs to look for more work. With this
modification, a KP can be migrated to another CPU only by being stolen, whereas in
the original algorithm it can be migrated by both being stolen and by being unblocked.
In section 5.3.2, we experimentally show that this modification leads to significant
performance improvements on certain workloads.

This modification also invalidates all of the previously stated reasons for accessing the
run-queues in LIFO manner. This raises a question, not investigated in this thesis, about
whether accessing the run-queues as LIFO has any advantages for scheduling KPNs,
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Figure 4.5.: Example of fork-join parallelism. Rectangles represent threads and circles
represent tasks within a thread, together with their computational cost. Downward
arrows denote forks, upward arrows denote joins, and horizontal arrows denote se-
quential execution of tasks within a thread. In this example, T1 = 31 (total amount of
work), and T∞ = 22 (length of the critical path).

and whether we should use the FIFO policy instead. Doing so would have at least one
advantage: unconditional guarantee of fair scheduling even for infinitely-running jobs.

We also note that this modification cannot be used if the run-queues use the non-
blocking queue of Blumofe et al. [47] because its design cannot handle concurrent
insertions at the front of the queue.

4.2.2.5. Theoretical results

A fork-join computation, sometimes also called a fully-strict computation, is a restricted
form of concurrency which is based on the fork and join primitives:

• The fork primitive spawns a new (child) thread.

• The join primitive suspends the calling thread (parent) until all of its children
have exited, after which the returned results are collected.

The threads in a fork-join computation are composed of smaller sequential tasks and
otherwise run to completion, without blocking at any point of their execution other
than join. Figure 4.5 shows a fork-join thread graph, which is is typical of recursive
divide-and-conquer algorithms. In a divide-and-conquer scheme, the parent divides
the input and merges the results received from children, both of which are usually cheap
operations, while the children perform the computationally most intensive parts of the
computation.

This restricted class of concurrent programs has received much attention because it
admits provably efficient schedules. It is thus employed by a number of libraries and
language extensions, such as Intel’s threading building blocks, Java fork-join frame-
work [86], KAAPI [87], or Cilk [82].

Several results have been proven for the work-stealing algorithm applied to schedul-
ing fully-strict computations on P dedicated CPUs with run-queues protected by mutexes.
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The results are characterized with the help of the following quantities. T1 is execution
time on one CPU (total amount of work), and T∞ is is the length of the critical path, i.e.,
the time spent in the non-parallelizable part of the code (see figure 4.5 for an example).
T∞ can be also interpreted as the program execution time on a hypothetical configura-
tion with infinitely many CPUs, or as the largest sum of task execution times along any
path in the task graph. In other words, T∞/T1 is the application’s average parallelism
level.

• The total expected delay caused by processors waiting on run-queue mutexes is
proportional with the total number of steal attempts M made by all processors. For
any ε > 0, the delay is bounded by O(M+P lg P+P lg(1/ε)) with probability ≥ 1−ε
(lemma 5 of [30]). This is a general result, not restricted to fully-strict computations.

• The expected running time of a fully-strict computation, including scheduling
overheads, is O(T1/P + T∞). For any ε > 0, the execution time is bounded by
O(T1/P + T∞ + lg P + lg(1/ε)) with probability ≥ 1 − ε (theorem 12 of [30]).

• The expected total increase in the program’s space usage is O(PT∞Sm) where Sm is
the size of the largest stack frame in the computation.7

The work-stealing algorithm was extended to use non-blocking run-queues, and the
analytical development was extended to cover non-dedicated environments and general
workloads [47]. They have proven that, when the scheduler yields between steal at-
tempts, the expected execution time is O(T1/PA + T∞P/PA), where PA is the average
number of CPUs on which the computation executes. For any ε > 0, the execution time
is bounded by O(T1/PA+ (T∞+ lg(1/ε))P/PA) with probability ≥ 1−ε. When PA = P, i.e.,
in a dedicated environment, the expected execution time simplifies to O(T1/P+ T∞), and
the probabilistic execution time bound simplifies to O(T1/P + T∞ + lg(1/ε)). Since the
authors consider general computations described as DAGs,8 instead of the restricted
class of fully-strict computations, no space bounds could be derived.

4.2.3. Graph partitioning

The work-stealing algorithm does not take into account the cost of communication be-
tween processes on different CPUs, nor does it account for the cost of process migration.
Load balancing methods based on graph partitioning try to find a good compromise
between three conflicting goals: even distribution of load across CPUs, infrequent KP
migrations, and small communication volume between KPs running on different CPUs.
The last two objectives are particularly interesting in distributed systems where com-
munication cost and KP migration between machines is orders of magnitude slower
than within a single machine.

7This theorem is given for completeness. Fork-join computations dynamically create new processes, so it
is important to show that a scheduling strategy will not cause excessive memory consumption. Since
we consider only static KPN topologies, this result is of little significance to us.

8In practice, no program can execute infinitely. Thus, even directed graphs containing cycles can be
algorithmically “unrolled” into DAGs.
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Figure 4.6.: Example communication graph. The processes have been partitioned into
two sets of weights 5 and 6, and the total cost of communication between the two
partitions is 4.

Load-balancing based on graph partitioning takes as input an undirected weighted
graph where vertices represent concurrently running processes and edges represent
communication between pairs of processes. The weights are assigned as follows:

• Vertex weight is proportional to the CPU requirements of the process.

• Edge weight is proportional to the total communication intensity (in both direc-
tions) between the two processes.

A partition of the vertex set into disjoint subsets corresponds to placing processes on
different machines or CPUs, as exemplified in figure 4.6. The total weight of edges be-
tween vertices in different partitions corresponds to the total amount of communication
across partitions, which is more costly than communication within a single partition.

Before reading the rest of this section, we encourage the reader to consult appendix A
for a review of basic graph-theoretic notions. For completeness, we also give a survey
of graph partitioning and related algorithms in appendix B.

4.2.3.1. Algorithm description

In Nornir, we follow the main idea of Devine et al. [31, 32]9 whose algorithm tries10 to
minimize the following objective function:

αtcomm + tmig

where α is a user-specified factor expressing a trade-off between communication and
migration costs. Their algorithm cannot be directly applied to the KPN graph because it
assumes a single communication path between two processes, whereas KPNs can have
several. Thus, the KPN graph must be transformed into another graph that is suitable
input to Devine’s algorithm. This graph, which we call rebalancing graph, is constructed
as follows:

9Their algorithm actually operates on hypergraphs, described in appendix A. Since graphs are sufficient
to model KPNs, we have simplified our description by restating their algorithm in terms of graphs.

10Finding a partition that actually does minimize the objective function is NP-hard and thus infeasible to
solve in realistic time, except for very small graphs. See appendix B for details.
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Figure 4.7.: An example of transforming a KPN into a rebalancing graph with α = 1.

1. The KP and channel accounting data is used to set weights on the original KPN
graph (figure 4.7a).

2. Edges between the same pair of nodes are collapsed into a single edge whose
weight is the sum of weights of constituent channels multiplied by α (figure 4.7b).

3. n new nodes u1 . . .un, one for each CPU, are introduced (drawn as squares in
figure 4.7c). These nodes are fixed to their respective partitions in the partitioning
process.

4. Fourth, if a node vi is associated with a task currently assigned to CPU k, a migration
edge is created between vi and uk; its weight is set to the cost of migrating data
associated with process vi (see figure 4.7d).

Applying a graph partitioning algorithm to the rebalancing graph yields the new as-
signment of KPs to runners.

Devine’s algorithm and our adaptiation take an existing assignment of KPs to runners
and produce a new assignment, which poses the problem of creating the initial assig-
ment. One possible approach is to let developers manually assign KPs to runners. We
have chosen an approach that relies on detection of load imbalance potentially created
during the initial assignment. Once detected, the rebalancing routine will be invoked
to equalize the load among CPUs.
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Since the initial assignment is performed at KPN startup, the CPU usage of KPs and
communication intensities over channels are unknown. We thus assume that all KPs use
the same amount of CPU time and that communication intensity over all channels is the
same. We then transform the KPN graph into an undirected graph as described above,
but stopping after collapsing edges (step 2). We then assign unit weights to vertices and
edges and invoke a graph partitioning algorithm to obtain the initial assignment.

4.2.3.2. Integration with Nornir

Devine et al. assume that the application itself invokes the load-balancing algorithm
when its work distribution has changed significantly. This approach works for certain
classes of applications, such adaptive simulations, that run in well-defined iterations.
These applications will invoke the load-balancing algorithm after every k’th iteration,
where k is specified by the developer. On the other hand, there are many applications,
e.g., case-studies presented in section 3.3, whose CPU usage patterns vary continuously.
Such applications would have to implement self-monitoring to decide when the load-
balancing algorithm should be invoked.

In order to free developers from providing each application with self-monitoring,
we have implemented a heuristic that attempts to detect load imbalance. The heuris-
tic is integrated with the scheduler’s main loop: it executes during the scheduler’s
[CHOOSE] step (see figure 4.3), where it monitors the idle time τ collectively accumu-
lated by all runners. When a runner attempts to dequeue a process while its run-queue is
empty, it updates the collective idle time and continues to check the run-queue, yielding
(sched_yield) between attempts. Whenever any runner succeeds in dequeuing a KP, it
resets τ to 0. However, if τ exceeds a threshold set by the developer, the load-balancing
algorithm is invoked. After the algorithm has finished, KP and channel accounting data
are reset to 0, in preparation for the next load-balancing.

After repartitioning, we avoid bulk migration of KPs because it would require locking
of all run-queues, migrating KPs to their new runners, and unlocking run-queues. The
complexity of this task would be linear in the number of ready KPs in the system,
so runners could be delayed for a relatively long time in dispatching ready KPs, thus
decreasing the total throughput.

Instead, KPs are only reassigned to their new runners by setting a field in their control
block (a part of the actor class), but without physically migrating them. Each runner
takes ready processes only from its own queue, and if the KP’s run-queue ID (set by
the rebalancing algorithm) matches that of the runner’s, the KP is run. Otherwise, the
KP is reinserted into the run-queue to which it has been assigned by the load-balancing
algorithm.

In our implementation, we have used the state-of-the-art PaToH library [88] for graph
and hypergraph partitioning, which is distributed in binary-only form. During our
experiments, we have experienced some issues with this library. Nornir measures
CPU consumption in nanoseconds, which quickly generates large CPU usage numbers.
PaToH, however, uses internally only 32-bit arithmetic. Therefore, it cannot handle
large vertex and edge weights, so it exits with an error message about detected integer
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overflow. We have first tried to solve this problem by dividing all vertex weights by the
smallest vertex weight. This approach did not work because of the large dynamic range
of vertex weights, so it would still happen that the resulting weights are too large. We
considered and tested two approaches of handling this situation:

• Run the partitioning algorithm more often, or

• scale down all vertex weights.

The first approach created large scheduling overheads and made it impossible to exper-
iment with infrequent repartitionings. We have therefore also implemented the other
option and used it for all experiments of chapter 5. Here, we have transformed ver-
tex weights using the formula w′ = w

1024 + 1 before handing them over to the graph
partitioner. This loss of precision, however, causes an a priori imbalance on input to
the partitioner, so the generated partitions have worse balance than would be achiev-
able if PaToH internally worked with 64-bit integers. This rounding error may have
contributed to the limited performance of scheduling based on graph-partitioning (see
chapter 5 for methodology and results), but we cannot easily determine to what degree.

4.3. Message passing

In the Kahn model, message-passing is the only means of communication between KPs.
As such, it must not only fulfill the Kahn semantics, but it should also be efficient.
The Kahn semantics requires that receiving a message from an empty channel shall
block the receiving process until a message arrives. Message sending should always
succeed without blocking, but such definition of the send operation would require
infinite channel capacities, which any real implementation obviously cannot provide.
We thus limit channel capacities and define the send operation to block when it tries
to send a message to a full channel; see section 3.1.5 for a full discussion of this issue.
The send and receive operations must be coordinated: when a KP receives a message
from a full channel, it must unblock the KP on the sending side (if it was blocked).
Similarly, when a KP sends a message to an empty channel, it must unblock the KP on
the receiving side (if it was blocked).

The message passing facility consists of the following classes: send_port, recv_port
and channel. All three classes are templates parametrized by the type of the message
that will be transfered over the channel (e.g., send_port<int>). This ensures compile-
time safety through strong typing – if the developer tries to send or receive a message
of a different type than the port has been instantiated with, the compiler will report an
error.11 These classes are respectively derived from the port_base and channel_base
classes. The base classes hold common bookkeeping data, independent of what type of
message will be transfered, which makes it easy to write code that treats all channels
uniformly when necessary, e.g., deadlock detection.

11Sending dynamically-typed messages over channels can nevertheless be achieved by using libraries
such as Boost.Variant [44].
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KPs do not use the channel class directly. They define instead instances of send_port
and recv_port classes, which ensure unidirectional communication. The ports are
connected together by the root process with the help of RTE::connectmethod, which
creates an instance of the channel class with the given initial capacity. The channel
class uses a circular buffer to store messages, and it defines only non-blocking send and
receive methods. Such abstraction allows us to easily change the transport mechanism
without having to modify the rest of the code, which allows easy experimentation with
different transport mechanisms, such as message queues or sockets.

Messages are sent by invoking send and recv methods on ports; these methods use
the channel’s non-blocking methods to implement the blocking semantics. The send
method accepts an optional data volume parameter, so the KP can provide accurate
information about the data volume sent over the channel to the graph partitioning
scheduling policy. The parameter’s default value is 1, which just counts the number of
messages transfered over the channel. The send and receivemethods use RTE::wait
to block the calling KP and RTE::signalmethod to unblock another KP.

We have also extended channels with support for EOF indication:12 the sender can call
the set_eof method to set the EOF status on a channel when it has no more messages
to send. After this, the receiver will be able to read the remaining buffered messages.
When these messages have been exhausted, the first call to recv method will return
falsewithout blocking and without changing the target message buffer; the second call
will block the receiver forever. Introducing EOF signaling has the significant advantage
of not having to designate a specific value of the type as EOF indication. Indeed, all
values of a type (e.g., int) might be meaningful in a certain context, so no value is
available for encoding the EOF message. In such cases, one would be forced to use
solutions that are more cumbersome to use and impose additional overhead, such as
dynamic memory allocation with NULL pointer value representing EOF.

As mentioned in section 4.1.3.3, the channel’s buffer is protected from concurrent
accesses by a busy-wait mutex. We have also considered to use spin-locks for protecting
the channels, but we have rejected this because the time to send or receive a message
is proportional with message size.13 Thus, if copying would take a long time, yielding
gives another KP a chance to do some useful work.

4.4. Deadlock detection

Channels in Nornir have finite capacites and send operation blocks on a full channel.
This modification of the Kahn semantics may lead to artificial deadlock, i.e., cause the
KPN to terminate earlier than with infinitely-sized channels; see section 3.1.5 for a full
discussion. To overcome the problem of artificial deadlock, we have implemented a

12EOF stands for end-of-file. We deemed the name appropriate since channels do resemble files to a certain
degree.

13Technically, spinlocks also use busy-waiting, but they are provided by the system and not integrated
with our scheduler. Spinlocks would thus have the same effect as blocking mutexes: a runner would
waste time in waiting for the spinlock to become unlocked, and would be unable to run another KP.
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simple centralized deadlock-detection and resolution algorithm based on a blocking
graph, also called the wait-for graph [5]. In the next two sections we describe the
blocking graph, prove a property of it that greatly simplifies the implementation, and
discuss integration of deadlock detection with Nornir.

4.4.1. Blocking graph

The deadlock detection and resolution algorithm is based on finding cycles in the
blocking graph. Vertices of the blocking graph correspond to KPs, while edges describe
the wait-for relationship between KPs. Whenever a KP p1 blocks on a channel with KP p2
on the other end, a directed edge (p1, p2) is added to the blocking graph.

The restrictions on communication patterns imposed by the Kahn model allows us
to prove the following fact about the shape of the blocking graph: every vertex in
the blocking graph has at most one outgoing edge, and the existence of a cycle in the
blocking graph is a sufficient condition for deadlock to exist. To prove this, we restate
the pertinent restrictions of the Kahn model:

1. A KP can block on at most one channel.

2. Channels are 1:1, i.e., there is exactly one KP at each end.

From these restrictions and the definition of the blocking graph, it follows that each
vertex can have at most one outgoing edge. The second restriction additionally implies
that a KP can be unblocked only by the KP it is waiting on. In other words, if a deadlock
occurs, it cannot be broken by KPs outside of the deadlocked cycle because they cannot
access the channels involved in the deadlock.14 Thus, all paths in the blocking graph
have the topology of either a simple line, or when a deadlock occurs, a ring. This
property greatly simplifies the implementation of the deadlock detection algorithm,
described in the next section.

4.4.2. Integration with Nornir

In the current implementation, the blocking graph is represented with a hash table that
uses actor pointers for keys and values. The data structure and the algorithm are
centralized and protected by a single mutex, as explained in section 4.1.3.3.

Deadlock detection is invoked from the RTE::waitmethod. Whenever KP p1 would
block on KP p2, either on send or receive, the algorithm starts following the path in
blocking graph starting from p2. As the algorithm iteratively follows the edges of the
blocking graph, it also remembers the smallest full channel along the path. This process
finishes with one of the following outcomes:

• The search ends at a KP p′ without an outgoing edge in the blocking graph.

• The search ends at a KP p′ which is waiting on p1, i.e., the edge (p′, p1) exists in the
blocking graph.

14In the more general communication model (m:1, 1:m, or m:n), this would not be the case.
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In the first case, no deadlock exists. The edge (p1, p2) is added to the blocking graph
and p1 is blocked. In the second case, a deadlock would occur if p1 were allowed to
block. Instead of just blocking p1, the algorithm first increases by one the capacity of the
smallest full channel in the cycle, as suggested by [73]. If this channel is the same that
p1 tried to send data to,15 p1 is resumed. Otherwise, p1 is blocked, the KP at the send
side of the enlarged channel is unblocked, and the corresponding edge removed from
the blocking graph.

Similarly, whenever the RTE::signalmethod unblocks a KP p, the entry with key p
is removed from the blocking graph.

4.5. Configurability and portability

Nornir’s implementation should be fully portable to POSIX operating systems, and it
is also partly portable to Windows OS. Load-balancing based on graph partitioning
(see section 4.2.3) does not work on Windows because the graph-partitioning library
we used, PaToH [88], is distributed only in binary form, but not for Windows. This
section describes the current configuration options for Nornir, and also discusses other
possible, but unimplemented, options.

4.5.1. Scheduling options

Nornir can be configured at compile-time to use either 1:1 or m:n scheduling. The 1:1
scheduler uses one kernel thread per KP, so all KPs are scheduled by the kernel’s default
preemptive scheduler. The m:n implementation uses user-space context switching to
time-multiplex m KPs over n kernel threads, where n is usually set to be equal to the
number of CPUs in the system. The m:n implementation is cooperative and supports
several scheduling algorithms, described in section 4.2. The scheduling algorithm is
selectable at run-time, before KPN startup.

When using the m:n scheduler, the context switch mechanism can be configured to
use our hand-optimized context switch written in assembler for the AMD64 architecture
or the swapcontext() family of functions (on POSIX). The latter is less efficient, but is
portable to different operating systems and processor architectures. Since Windows has
a more complex process/thread model than POSIX, we use the fibers API16 instead of
our own context switch, just to be on the safe side.

4.5.2. Accounting options

Accounting, i.e., collection of detailed performance statistics data, is a compile-time
option because it causes much extra overhead. The measured cost of [send→ context
switch → receive] transaction on the ring benchmark drops from ∼ 1.4µs to ∼ 0.8µs

15It is perhaps not obvious that in this case the process must have attempted to send to the channel. This
is so because the search for deadlocks considers only full channels, and a process cannot block by
attempting to read from a full channel.

16This is a set of functions analogous to POSIX context functions

75



when accounting is disabled (see section 5.2.3.2 for details). The largest overhead in
the accounting mechanism stems from the measurement of per-KP CPU time, which
requires a system call immediately before a KP is run, and immediately after a KP
returns to scheduler.

Accounting is available only in combination with the m:n scheduler. Since the 1:1
scheduler gives us no control over how and when individual KPs will be scheduled,17

much of the collected information is either not available (e.g., idle time, KP migrations)
or it cannot be put to good use (e.g., local and remote traffic). When enabled, the
accounting mechanism collects the following information:

• Real (wall-clock) and CPU (consumed CPU cycles) time used by Nornir, as well as
CPU time used only by KPs. The timer resolution is a few nanoseconds on Solaris
and Linux platforms.

• Idle time used by the Nornir. The idle time is the total real time that runners used
spinning in a loop, trying to acquire work.

• Number of context switches; each dispatch of a KP counts one.

• Number of stolen (for work-stealing policy) or migrated (for graph-partitioning
policy) KPs.

• Number of times a runner has encountered an empty queue, and the number of
steal attempts; both values are accumulated over all runners.

• Number of yields, which are caused by contention over busy-wait mutexes. As
explained in section 4.1.3.3, there are two sources of such contention: contention
over the mutex protecting a channel, and contention over the global deadlock-
detection mutex.

• Local and remote traffic, i.e., number of messages that have been sent to a process
on the same CPU or on another CPU, respectively.

• Number of deadlock detections that have been started, and the number of actual
deadlocks that have been resolved.

• Number of times the repartitioning routine was invoked; this is applicable only to
the graph-partitioning policy.

All accounting variables are accessed using CPU’s atomic instructions [5] which ensure
correct concurrent updates of shared variables without using mutexes. In addition
to the common test-and-set and compare-and-exchange [67] atomic instructions, the
AMD64 architecture can also perform various logical and arithmetic operations atomi-
cally. Thanks to these instructions, updating accounting data is not only free of mutexes,
but also efficient.18

17Recall that each KP corresponds to one OS-level thread in the 1:1 model, so it is also preemptively
scheduled.

18The compare-and-exchange instruction takes three operands: a memory address M, an old value O, and a
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4.5.3. Run-time options

Certain aspects of Nornir’s operation are configurable at run-time for practical reasons:
number of CPUs, scheduling algorithm, default channel capacity and whether deadlock
detection is enabled or disabled. The default channel capacity is used for all calls to the
RTE::connectmethod that do not explicitly specify capacity.

All of the above parameters are specified through KRTE_POLICY environment variable.
The following examples specifying two different run-time configurations:

KRTE_POLICY=4;WS,0;64

KRTE_POLICY=4;HP,128;-64

The first line specifies 4 CPUs,work-stealing policy (WS,0), default channel capacity of 64
messages, and deadlock detection is enabled. The second line specifies 4 runners, graph-
partitioning policy with idle time parameter τ = 128 (HP,128; see section 4.2.3.2 for
details), default channel capacity of 64 messages, and deadlock detection disabled (note
the negative default capacity). The repartitioning interval is automatically multiplied by
the number of CPUs to compensate for the fact that under load-imbalance conditions
the idle time accumulates more quickly with more CPUs.

4.5.4. Abandoned options

We have also experimented with preemptive scheduling implemented purely in user-
space as well as with zero-copy message passing. We have eventually abandoned both
ideas for reasons described below.

4.5.4.1. Preemptive scheduling

In the earliest stages of our work (not published), we have experimented with preemp-
tive, proportional-share scheduling. We have used POSIX timers and real-time signals
to implement preemption fully in user space. In our implementation, context switching
was done from the signal handler, which was made possible by setting up the signal
handler with the sigaction system-call with the SA_SIGINFO flag set. The kernel then
delivers the interrupted context as one of the signal handler’s arguments, and this con-
text can under some OS-es, e.g., Solaris,19 be used by the context functions described in
section 4.1.2.1.

However, such approach has a significant limitation: only a single KP has access to
the full POSIX API, while all other KPs are limited only to async-signal safe functions.
This limitation turned out to be too serious for many real-world applications, so we
have decided to support only cooperative scheduling mechanism instead. Cooperative

new value N. It performs the following operation atomically (pseudo-code): { if(*M==O) { *M = N;

return true; } return false; } Arithmetic operations using this instruction can be implemented
atomically, but looping is needed because the instruction fails in case of contention. AMD64 arithmetic
operations never fail when performed atomically.

19POSIX does not require that this works and a different approach is needed on Linux.
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scheduling does not conflict with our requirements, and it also significantly simplifies
the implementation.

4.5.4.2. Zero-copy message passing

Given that Nornir runs KPs in a shared address space, it is still possible that they modify
each other’s state and thus ruin the KPN semantics. To minimize the possibility of this
happening, there are two possibilities of implementing message passing:

• A message can be dynamically allocated and a pointer to it sent in a class that
implements move semantics (e.g., auto_ptr from the C++ standard library).

• A message can be physically copied to/from channel buffers which is, in our case,
done by invoking the copy-constructor.

We have initially implemented the first approach, which requires dynamic memory
(de)allocation for every send and receive operation, but is essentially zero-copy. We
have chosen to use the second approach in Nornir because measurements on Solaris
have shown that memory (de)allocation, despite having being optimized by using
Solaris’s umem allocator, has larger overhead than copying when messages are smaller
than ∼ 256 bytes.

4.6. Summary

In this chapter, we have presented implementation details of Nornir’s components:
KP scheduler, load-balancing algorithms, message passing, deadlock detection and
accounting mechanisms. Nornir should be portable to POSIX operating systems and
partly also to Windows. On Windows, the load-balancing algorithm based on graph
partitioning is not supported because the PaToH graph partitioner is distributed only in
binary form, but not for Windows. This limitation can be remedied by using a different
graph partitioning library.

The KP scheduler supports two scheduling models: the preemptive 1:1 model and
the cooperative m:n model. In the 1:1 model, there is a 1:1 correspondence between
KPs and OS-level threads, which are in turn scheduled by the underlying OS scheduler.
In the m:n model, many KPs are mapped over a single OS-level thread (runner) which
maintains an own run-queue of ready KPs. In the m:n model, context switching between
KPs is performed entirely in user-space. The user-mode context switch can use either the
OS-provided mechanisms (available both for POSIX and Windows), or our optimized
code (available only for AMD64 architecture on POSIX).

We have implemented three load-balancing methods: static assignment, work-stealing
and a method based on graph partitioning. The static assignment lets the developer
specify the runner on which each KP will execute. Once the KPN has started, KPs
will never be migrated to other runners. Work-stealing is a widely-used load-balancing
method, and we have also proposed an improvement that, as we will experimentally
show in the next chapter, leads to significant performance improvements on certain
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workloads. The last load-balancing method is based on graph partitioning, which tries
to reconcile three conflicting goals: good distribution of load across CPUs, low message
traffic between KPs executing on different runners, and infrequent KP migrations.

To enable execution in limited memory space, the message-passing mechanism im-
poses finite channel capacities and redefines the send operation to block on full channels.
This modification of Kahn semantics opens for the possibility of artificial deadlock, a
problem which we address by a centralized run-time deadlock detection and resolution
algorithm. This algorithm is based on maintaining a blocking graph (also called wait-for
graph) and using it to searching for cycles of blocked KPs.

Finally, we have equipped Nornir with extensive run-time accounting of various
performance data. This mechanism has high overheads, so it can be completely disabled
at compile-time. Furthermore, it is available only with the m:n scheduler because much
of the collected data is either not available or it cannot be put to good use with the 1:1
scheduler.

In the previous and this chapter we have discussed how KPNs can be used to model
parallel applications and how a KPN run-time can be implemented in practice. In the
next chapter, we will extensively evaluate performance of applications when expressed
as KPNs as well as performance of Nornir itself.
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5. Performance evaluations

In the previous chapter, we have presented implementation details of Nornir. In this
chapter, we will use Nornir for performance evaluations in three areas: applications,
microbenchmarks, and scheduling algorithms. To evaluate application performance,
we have used the word frequency and k-means problems introduced in section 3.3. For
microbenchmarking and evaluation of scheduling algorithms, we have designed and
implemented a set of synthetic workloads.

In section 5.1, we investigate the performance of the two case-study applications,word
frequency and k-means, introduced in section 3.3. We have implemented KPN-MR and
KPN-FLEX solutions for both applications (four programs in total) and compared their
relative performance. We have also compared performance of the four solutions with
their solutions in Phoenix [26].

In section 5.2, we describe our synthetic workloads, which we then use to evaluate
performance of KPN implementation options and scalability of Nornir. With the latter
evaluation, we want to find out how well Nornir scales along two dimensions: KPN
size (number of KPs), and parallelism granularity. We also investigate the effects of
parallelism granularity on deadlock detection and under which conditions, if at all,
centralized deadlock detection limits scalability.

Finally, in section 5.3, we use the same synthetic workloads to evaluate load-balancing
algorithms. We first evaluate performance of work-stealing and graph partitioning load-
balancing algorithms, where we focus on two main metrics: speedup and proportion
of local traffic in the total traffic. In addition, we investigate the running time variance
with the graph-partitioning algorithm. Then, we focus on quantifying the scalability of
the work-stealing method in terms of work amount per message, both with and without
our modification of section 4.2.2.4.

5.1. Application benchmarks

To evaluate whether the KPN models have any performance advantages over MapRe-
duce models, we have implemented the KPN-FLEX and KPN-MR variants of our case-
study applications described in section 3.3. We first evaluate performance of KPN-FLEX
and KPN-MR solutions for each of the two applications individually. Then, we compare
performance of all four KPN solutions against their Phoenix counterparts.

5.1.1. Methodology

We have configured Nornir to use the m:n work-stealing scheduler with deadlock
detection and detailed accounting enabled, and default channel capacity of 64 messages.
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The benchmarks have been compiled for 64-bit mode with GCC 4.3.2 and maximum
optimizations turned on (-m64 -O3 -march=opteron) and run on a 64-bit-bit AMD
Opteron on 2.6 GHz with 4 dual-core CPUs and 64 GB of RAM running Linux kernel
2.6.27.3. Our discussion of results is based on the average of 10 measurements.

In our evaluations, we compare the unoptimized (in terms of the number of exchanged
messages) KPN-FLEX implementation with the optimized KPN-MR implementation.
We have decided against optimizing the KPN-FLEX implementations because opti-
mizations would obscure similarity with the sequential algorithm and analogy with
files that we explained in section 3.3.3.2.

5.1.2. Word frequency

In this section, we evaluate performance of KPN-MR and KPN-FLEX solutions of the
word frequency application. Both solutions have been extensively described in sec-
tion 3.3.2.

The non-optimized KPN-MR implementation of the word frequency program was
slower by an order of magnitude than the optimized implementation for which we
present results here. In the non-optimized implementation, each key-value pair was
sent in its own message, and the number of sent messages was dominated by the total
number of words in the input file. In the optimized implementation, each worker (both
in Map and Reduce stages) dynamically allocates as many vectors as it has output
channels and uses them to store the output key-value pairs instead of sending them
to channels. Then, when the worker has processed the whole input, it sends to each
output a single message containing a pointer to the vector with the messages destined
for that channel.

We have run the word frequency program on the same dataset that is distributed
with Phoenix and used for Phoenix benchmarks; it consists of three files of sizes 10, 50
and 100MB respectively. Both implementations have been run on 1, 2, 4 and 8 CPUs
with the number of runners in each stage varying from 8 to 128 in steps of 8. Figure 5.1
shows running times of the KPN-FLEX and KPN-MR solutions for the three datasets.
The number of workers for the KPN-MR version is per stage, so there are four times as
many processes in total because there are 4 stages, as shown in figure 3.12a.

From figure 5.1 and table 5.1, we can see that the running time decreases as more CPUs
are used and that the KPN-FLEX version has several times better performance than the
KPN-MR version. With respect to the number of workers on 2 or more CPUs, the
situation is more complicated: for both implementations, the running time decreases as
the number of workers increases up to a certain point. Word frequency is both CPU- and
communication-intensive task (especially in the KPN-FLEX version) and having more
workers improves performance by more evenly distributing the load among CPUs and
reducing contention in the work stealing scheduler: the more processes there are in the
system, the smaller probability that a runner will need to steal a process from another
runner.

Furthermore, as described in section 4.3, processes acquire mutexes by busy-waiting
and yielding between successive attempts. When there are enough ready processes,
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Figure 5.1.: Running times of the word frequency program on 10, 50 and 100 MB data-
sets, using KPN-FLEX and KPN-MR solutions.
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Size KPN-MR KPN-FLEX
n t α n t α f

10/1 96 1.24 1.00 8 0.36 1.00 3.41
10/2 64 0.80 1.55 16 0.21 1.71 3.80
10/4 48 0.46 2.70 16 0.14 2.57 3.24
10/8 32 0.32 3.88 16 0.11 3.27 2.95
50/1 120 8.57 1.00 8 1.54 1.00 5.57
50/2 128 5.14 1.67 16 0.87 1.77 5.91
50/4 64 2.92 2.93 24 0.52 2.96 5.57
50/8 48 1.86 4.61 24 0.37 4.16 5.06
100/1 128 20.00 1.00 8 3.17 1.00 6.30
100/2 88 12.22 1.64 32 1.81 1.75 6.74
100/4 104 6.65 3.01 32 1.08 2.94 6.14
100/8 56 4.23 4.73 32 0.74 4.28 5.69

Table 5.1.: Word frequency experiment summary: number of workers n that achieves
the best running time t (in seconds), relative speedup over one CPU (α) and speedup
factor of KPN-FLEX over KPN-MR ( f ).

encountering a locked mutex will yield to another process which will be able to perform
some useful work. When the number of processes increases even more, the performance
starts dropping again for two reasons. First, the number of context switches increases,
which also indirectly degrades performance by increasing pressure on CPU caches.
Second, we believe that an even more important factor is contention over the single
deadlock detection mutex.

Table 5.1 shows a summary of results for each experiment configuration: the best
mean running time, the number of workers for which it has been achieved, and relative
speedup with respect to the case of one runner. The table reveals that KPN-MR and
KPN-FLEX implementations scale approximately logarithmically with the number of
CPUs: the program running time decreases approximately linearly with each doubling
of the number of runners. We believe that the speedup is sublinear because of two
factors: algorithmic complexity of sorting, which is O(n lg n), and the effects of deadlock
detection. We see also that KPN-FLEX is consistently faster than KPN-MR, by a factor
of 3 – 6.7, and the speedup is proportional with the problem size.

5.1.3. k-means

In this section, we evaluate performance of KPN-MR and KPN-FLEX solutions of the
k-means application. Both solutions have been extensively described in section 3.3.3.

We have optimized the KPN-MR variant of the k-means application in two ways: by
reducing the number of sent messages in the same way as for the word-frequency pro-
gram, and by introducing an additional process to iterate the MapReduce computation,
as explained in sections 3.3.3 and 3.3.3.1.
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Points Groups Iterations
A 100000 100 97
B 200000 50 140
C 200000 100 139

Table 5.2.: k-means problem sizes and number of iterations until algorithm converges.
The amount of work performed in each iteration is proportional to the product of the
number of points and groups.

The k-means program generates a number of 3-dimensional points with random
integer coordinates, all of which fall into the cube [0, 1000)3. The random number
generator is always initialized with the same seed, so each experiment run executes
the same number of iterations. We have measured performance of the program on the
three problem sizes shown in table 5.2, and on 1, 2, 4, and 8 CPUs. Since this is a CPU-
intensive benchmark with little communication, we have set the number of workers in
each stage to be equal to the number of runner threads; very little experimentation was
needed to establish that this was the optimal choice.

Again, the KPN-FLEX solution outperforms the KPN-MR solution, although the
speedup is not as drastic as in the word frequency example. The main reason for smaller
gain in speedup is that the KPN-MR solution of k-means does very little unnecessary
work, namely only sorting before computing the new means for the next iteration.
Nevertheless, the overhead of sorting accumulates over all iterations of the algorithm.
The speedup of the KPN-FLEX solution over KPN-MR is shown in Table 5.3. From the
table, we see that the KPN-FLEX speedup factor over KPN-MR is ∼ 1.2 for the problem
sizes A and C, and ∼ 1.4 for problem size B. Since KPN-MR is recalculating means in
parallel, this leads us to believe that the single I process which recalculates new means
is the bottleneck in the KPN-FLEX solution. Nevertheless, unlike the word frequency
example, the k-means program shows almost perfect linear scalability with the number of
CPUs.

5.1.4. Comparison with Phoenix

We have also compared the performance of our KPN-FLEX and KPN-MR implemen-
tations with Phoenix [26], which is a MapReduce implementation designed specifically
for multi-core machines. We have run Phoenix with its default settings which means
that it will use as many threads in each of the Map and Reduce stages as there are CPUs
on the machine. We have tried to run Phoenix with more than 8 workers in the Map
and Reduce stages and found that it decreased performance.

We had to compile Phoenix programs in 32-bit mode because the code contains non-
portable casts between pointers and integers. This is certainly to Phoenix’s advantage
because it allocates arrays of pointers, which would take twice as much space in the
64-bit mode used by our implementation. As a consequence, Phoenix experiences fewer
data cache and TLB misses in 32-bit mode than it would in 64-bit mode.
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Figure 5.2.: Benchmark results for the k-means program run on three different problem
sizes, implemented as KPN-MR and KPN-FLEX. KPN-FLEX solution has as many
worker process as the number of runners that were used in the benchmark. Similarly,
the KPN-MR solution has the same number of workers as CPUs in each stage.

Size KPN-MR KPN-FLEX
t α t α f

A/1 13.37 1.00 11.45 1.00 1.17
A/2 6.82 1.96 5.79 1.98 1.18
A/4 3.49 3.83 2.93 3.91 1.19
A/8 1.83 7.31 1.51 7.58 1.21
B/1 22.64 1.00 16.74 1.00 1.35
B/2 11.80 1.92 8.44 1.98 1.40
B/4 6.07 3.73 4.35 3.85 1.40
B/8 3.20 7.08 2.24 7.47 1.43
C/1 38.68 1.00 32.83 1.00 1.18
C/2 19.84 1.95 16.39 2.00 1.21
C/4 10.11 3.83 8.35 3.93 1.21
C/8 5.19 7.45 4.26 7.71 1.22

Table 5.3.: k-means experiment summary: mean running time (t), relative speedup over
one CPU (α) and and speedup factor of KPN-FLEX over KPN-MR ( f ).
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Size Phoenix KPN-MR KPN-FLEX
t (σ) t f t f

Word Frequency
10 0.30 (0.02) 0.32 0.94 0.11 2.73
50 0.98 (0.02) 1.86 0.53 0.37 2.65
100 2.04 (0.05) 4.23 0.48 0.74 2.76

k-Means
A 2.39 (0.05) 1.83 1.31 1.51 1.58
B 3.92 (0.21) 3.20 1.23 2.24 1.75
C 5.43 (0.22) 5.19 1.05 4.26 1.28

Table 5.4.: Mean running times in seconds (t) of the word frequency and k-means
programs for Phoenix, KPN-MR and KPN-FLEX; in case of KPNs, the smallest time on
8 CPUs is shown. σ is standard deviaton and f is speedup factor over Phoenix.

We have run Phoenix implementations of the word frequency and k-means programs
10 times on each problem size, and calculated the mean and standard deviation of the
running time. Table 5.4 compares these results with running times of KPN-MR and
KPN-FLEX solutions for the two applications. In the word frequency benchmark, the
KPN-MR program is consistently slower than Phoenix, by a factor of 1.06 on the 10MB
file, and by a factor of ∼ 2 on 50MB and 100MB files. This result is not very surprising
since Phoenix is optimized for running MapReduce programs, while our KPN runtime
assumes nothing about the network topology that will be run. However, the KPN-FLEX
program, by having the ability to use data structures that are more suited to the given
task (hash tables) and avoiding unnecessary work that MapReduce semantics requires
(extra sort), achieves ∼ 2.7 times better performance than Phoenix. Somewhat more
surprisingly, both our KPN-MR and KPN-FLEX solutions outperform Phoenix on the
k-means benchmark, by factors of 1.05 – 1.3 and 1.28 – 1.75, respectively. The KPN-
FLEX solution, again, performs better because it avoids doing unnecessary work. We
believe that the main reason for the unexpectedly good performance of the KPN-MR
solution is the avoidance of framework (de)initialization that Phoenix has to perform on
each iteration. Actually verifying this conjecture would entail implementing extensive
changes to Phoenix in order to make it support iterative MapReduce computations
without framework (de)initialization on each iteration.1

5.1.5. Conclusions

In this section, we have implemented the word frequency and k-means applications in
two variants. The KPN-FLEX variant implements a KPN suited to the problem, while
the KPN-MR variant implements a KPN that closely follows the MapReduce semantics.

1Implementing the opposite option – making KPN-MR solution go through framework (de) initialization
on each iteration – would answer the (pointless) question “How slow can KPN-MR run?”. Our
conjecture, however, actually asks the opposite question: “How fast could Phoenix run?”
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Our experiments have shown that KPN-FLEX outperform the KPN-MR variants by a
factor of 2.95 – 6.74 on the word frequency application, and by a factor of 1.17 – 1.43 on
the k-means application. Furthermore, the KPN-FLEX solutions outperform also their
Phoenix counterparts by factors of 2.65 – 2.76 and 1.28 – 1.75, respectively.

We can thus conclude that the flexibility of the KPN model gives developers an
opportunity to develop applications that perform better than when implemented in the
MapReduce model. The main reason for this is that the MapReduce model is rather
rigid, because it requires that the problem be cast into the key-value paradigm, which
often leads to unnecessary work at run-time (most notably, sorting). In the KPN model,
data representations, algorithms and workflow (reflected in the KPN graph) can be
freely matched to the problem at hand.

We have also made some conjectures about finer details of performance characteristics
that have emerged from our measurements: sublinear speedup of the word frequency
application as new CPUs are added, and the unexpected result of the KPN-MR solution
of k-means outperforming the Phoenix solution. We have not followed them up because
our main goal here was to evaluate two models of parallel programming – the performed
experiments have been sufficient to show that the more flexible KPN model, unlike the
MapReduce model, indeed does give many optimization opportunities.

5.2. Microbenchmarks

In this section, we evaluate performance of KPN implementation options and scalability
of Nornir. For this, we have designed and implemented a set of synthetic workloads
that we have used to perform two sets of experiments.

In the first experiment set, we have used these workloads to investigate the relative
performance of implementation options for scheduling and message-passing. We focus
on overheads of scheduling, scalability with the number of KPs, and performance of
message-passing. Since we have performed these experiments in the early development
stages, we ran them on a small dual-core machine.

For the second experiment set, we have configured Nornir to use our m:n scheduler
with the work-stealing scheduling algorithm and our optimized message transport
mechanism. With these experiments, we have evaluated scalability or Nornir along two
dimensions: parallelism granularity and effects of the centralized deadlock detection
algorithm on performance. We have compiled and run these experiments on the same
hardware and OS as described in section 5.1.1.

This section is organized as follows. We first describe our synthetic workloads, then
we proceed to present the results of each experiment set separately, and we conclude
with a summary of results and possible improvements to Nornir. Presentation in each
of the two experiment sections is organized similarly: we first describe the experimental
methodology, then we present results for each of the tested workloads, and conclude
with a discussion of the results.
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Figure 5.3.: KPN for the “ring” benchmark.
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Figure 5.4.: KPN for the “AES” benchmark.

5.2.1. Workloads

We have designed workloads to measure different aspects of Nornir, such as scheduling
and message-passing overheads and scalability with the KPN size. In most benchmarks,
KPs just consume CPU cycles. The exceptions are AES, which is both CPU- and memory-
intensive, and ring, where KPs do not perform any kind of processing over messages.

5.2.1.1. Ring

The ring KPN (see figure 5.3) is designed to measure message passing and scheduling
overheads, and is modeled after the lat_ctx benchmark from the lmbench suite [89].2 n
KPs, 0 . . . n−1, are connected into a ring topology, where each KP receives a message on
its input channel and immediately sends it to its output channel. KP 0 sends the initial
message (a single 32-bit integer) and measures the time that the message needs to make
m round-trips. In our case, we measure and report the duration of the composite [send
→ context switch → receive] transaction. Since the KPs perform no other work than
receiving and sending a message, the performance of the benchmark is limited by the
overheads of message-passing and scheduling.

5.2.1.2. AES

The AES KPN is designed to investigate performance of a typical embarrassingly parallel
workload. Embarrassingly parallel workloads can be divided into subtasks that can
execute completely independently of each other.

2The software can be downloaded at http://www.bitmover.com/lmbench
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The AES KPN (figure 5.4) consists of the source KP S and n worker KPs. The source
KP hands out equally-sized chunks of memory to n worker KPs, where each message
contains a pointer to the beginning of the memory chunk and its length. When a worker
receives a message, it encrypts the chunk with 128-bit AES algorithm in ECB mode and
sends the reply message back to the source KP.3 The source KP is the serial part of the
AES benchmark, but its CPU usage is negligibly small compared to that of workers. We
therefore expect that benchmark’s performance will increase proportionally with the
number CPUs used for execution.

The benchmark is configurable through the following parametrs:

• The base-2 logarithm b of the total memory block size that will be encrypted.

• The base-2 logarithm k of the chunk size.

• The number of encryption passes over each chunk.

A worker KP is created for each chunk, so there are n = 2b−k worker KPs in total.

5.2.1.3. H.264 encoder

The goal of the H.264 benchmark is to investigate performance of irregular KPNs based
on real-world applications. Our KPN representation of an H.264 video encoder (fig-
ure 5.5) is only a slight adaptation of the encoder block diagram found in [90], with each
functional unit being implemented as a KP.

The input video consists of a series of discrete frames, and the encoder operates on
small parts of the frame, called macroblocks, typically 16×16 pixels in size. The encoder
consists of “forward” and “reconstruction” datapaths which meet at the prediction
block (P). The role of the prediction block is to decide whether the macroblock will be
encoded by using intra-prediction (relative to macroblocks in the current frame Fn) or
inter-prediction (relative to macroblocks in the reference frame(s) Fn−1). The encoded
macroblock goes through the forward path and ends at the entropy coder (EC), which
is the final output of the encoder. The decision on whether to apply intra- or inter-
prediction is based on factors such as the desired bandwidth and quality. To be able
to estimate quality, the codec needs to apply transformations inverse to those of the
forward path, and determine whether the decoded frame satisfies the quality constraints.

Due to the complexity of developing a KPN-based implementation of an H.264 en-
coder, we have used an artificial workload consisting of loops that consume the amount
of CPU time which would be used by a real codec on average. To gather this data, we
have profiled x264 [91], an open-source H.264 encoder, with the cachegrind tool [81].
The profiling results are shown in table 5.5.

The benchmark program is configurable with the following parameters:

3ECB mode should never be used in production-level code. CTR mode, which is appropriate for produc-
tion uses, is also trivially parallelizable. It has practically the same performance characteristics as ECB
since it adds only a single operation – an integer increment – to the ECB mode.
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Figure 5.5.: H.264 block-diagram, adapted from the H.264 whitepaper [90]. Inputs to
the codec are current and reference frames (Fn and Fn−1). Since prediction (P), motion
compensation (MC) and motion estimation (ME) blocks are together using over 50% of
the total processing time and are perfectly parallelizable, we have parallelized each block
by dividing the work over n workers. The figure on the right exemplifies parallelization
of a single block.

Stage Time %
Choose inter-/intra-prediction (CIP) 8.08
Intra-analysis (IP) 5.02
Inter-analysis (MC+ME) 34.36
Prediction (P) 23.83
Macroblock encoding (T,Ti,Q,Qi) 8.69
Entropy encoding (EC) 6.72
Other, including reordering (R) 13.3

Table 5.5.: Cachegrind profiling data of x264, taken from [92].

• Amount of work performed for each input frame, so we can “encode” videos at
different frame-rates.

• Number of encoded frames.

• Number of workers in each of the three parallel stages.

The results obtained with this benchmark are a good performance indicator for the
implementation of Nornir itself. However, the artificial workload ignores other factors,
such as memory bandwidth usage and variation in processing time across frames, so it
cannot be used as a performance predictor for a real H.264 encoder implemented in the
KPN framework.

5.2.1.4. Random KPNs

Our motivation for using randomly generated KPNs, an example of which is shown in
figure 5.6, as a workload is two-fold. First, we wanted to simulate complex topologies
that might be generated by KPN generator tools [18, 17, 74]. Second, we wanted fine
control over parallelism granularity.
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Value l u T0

Real time 0.995662956 0.995982601 0.995822778
CPU time 0.995741274 0.995874908 0.995808091

Table 5.6.: CPU time used by T0 = 34500000 iterations of the loop from figure 5.7 on
machine described in section 5.1.1: 95% confidence interval [l, u] and mean T0.

A random KPN consists of a source KP, a number of intermediate KPs arranged in
nl layers (user specified) and a sink KP. The number of KPs in each layer is a uniform
random number between one and the user-specified maximum number, while the
degree of each node, and the number of layers between it and the target node are
geometrically distributed random numbers. The KPN may have additional back-edges
that create cycles, but each node is incident to at most one back-edge, be it outgoing or
incoming. KPs exchange messages containing a single integer that tells the receiving
KP how much CPU time it should use for that particular message. KPs use CPU time
by using the burn_cycles function, shown in figure 5.7, supplying the received integer
as the niter parameter. We have measured that T0 = 34500000 iterations of the loop
on machine described in section 5.1.1 uses approximately 1 second of CPU time; see
table 5.6 for more detailed statistics.

Parallelism granularity is controlled by three user-specified parameters, n, T and d,
where n is the number of messages, while T and d (work division factor) are scaling
constants determining work granularity. The source KP sends n messages, with each
message representing w = T/d CPU seconds; the CPU time is converted to the niter
parameter of function burn_cycles by formula wT0. If n and d are varied so that the
ratio n/d is held constant, the same amount of work is divided across a different number
of messages, with higher values of d representing finer parallelism granularity.

Every KP executes the following algorithm:

1. Set t← 0.

2. Read a message m from each of ni inputs and set t ← t + [m], where [m] denotes
the contents of message m (an integer).

3. t now contains the sum of all integer values received from every input channel.
Consume CPU time by calling burn_cycles(t).

4. Send a single message containing t/no units of work to each of no outputs. If t is
not divisible by no, the remainder is added to the message being sent to the last
channel.

5. If a KP has a back-edge, a message is sent or received, depending on the edge
direction, along that channel.

Messages received along back-edges are discarded and do not contribute to the net-
work’s workload; their sole purpose is to generate more complex synchronization
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Figure 5.6.: A random graph with 212 nodes, 333 edges and 13 cycles. The source node
is at the bottom, the sink node is at the top.
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void burn_cycles(unsigned niter)

{

volatile long a, b, tmp;

if(b == 0)

b = 17;

while(niter--)

tmp = a/b;

}

Figure 5.7.: Function that consumes amount of CPU time proportional to niter. Vari-
ables are deliberately used without initialization, and volatile prevents the compiler
from optimizing out the loop.

patterns. This algorithm preserves the total amount of work in the network, so the
workload w contained in a single message sent by the source KP will equal the value w
received by the sink KP. It is also worth noting that because of branching in the network,
many individual KPs will perform less than w units of work per message.

5.2.1.5. Pipeline

As random KPN, a pipeline consists of a source KP, a sink KP and a number of KPs in
between. Each KP, except source and sink, have one input and one output, and they
are are connected in a simple pipeline, resembling that of figure 3.9. The workload is
generated in the same way as for the random KPNs: the source KP sends n messages,
each representing T/d CPU seconds. Since there is no branching in the pipeline graph,
the work division factor d has an intuitive interpretation in this case: each KP in the
network uses exactly T/d CPU seconds for each received message.

5.2.2. Performance of implementation options

In section 2.2, we have reviewed OS mechanisms for scheduling, message-passing,
deadlock-detection and synchronization. The former three are the main ingredients of
a KPN run-time and the latter is a necessary implementation tool. While the native
scheduling and synchronization mechanisms are functionally satisfactory, the native
message-passing mechanisms have other problems besides unreliable support for dead-
lock detection. One problem is that they are a system-wide limited resource, so it would
not be feasible to use, for example, a separate pipe for each channel in a large KPN. One
could possibly multiplex several channels over a single OS resource, but this would
significantly complicate and slow down the implementation. Another problem is that
all system-provided communication mechanisms, except for possibly POSIX message
queues, require a system call for every send and receive operation, which incurs a
performance penalty, especially for small messages. We have decided to compare the
following orthogonal implementation options:
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• Our optimized m:n scheduling mechanism with static assignment of KPs to CPUs
(see section 4.2.1) against the OS’s native 1:1 thread scheduler.

• Our optimized zero-copy message-passing mechanism against POSIX message
queues (native transport).

In this evaluation, we have used the ring, AES and H.264 benchmarks.

5.2.2.1. Methodology

The experiments have been run on a 64-bit, dual-core AMD Athlon on 2.2 GHz with
2 GB of RAM running Solaris 10. The benchmarks were compiled with Sun’s C++
compiler (version 5.9, patch 124864-07 2008/08/22) for 64-bit mode and with maximum
optimizations turned on (-m64 -fast). All reported results are based on 10 consecutive
runs. In all configurations, collection of detailed accounting data was disabled, and
default channel capacity has been set to 64 messages. In this early set of experiments,
deadlock detection was enabled, but it was only partly implemented, so its overheads
had very little impact on measurements.

The main performance metric in our evaluations is the real (wall-clock) time measured
by a high-resolution timer. The wall-clock time metric is most representative because it
accurately reflects the real time needed for task completion, which is what the end-users
are most interested in. We have also measured system and user times (getrusage), but
we do not use them for evaluation because they do not reflect the reduced running
time with multiple CPUs, and because they do not take into account sleep time, which
significantly impacts the real running time.

5.2.2.2. Results

The plots and discussions below are based on the average of 10 measurements. We
have also computed the relative error of our measurements according to the formula
εr =

M−m
µ , where M is the maximum running time, m the minimum running time and µ

is the average running time for each set of 10 measurements.

Ring In the ring benchmark, only a single message is traveling through the network, so
every communication requires a context switch and synchronization with the next KP in
the ring. Because of frequent synchronization and context switching, the benchmark is
very sensitive to the assignment of KPs to CPUs. In these experiments,a good assignment
requires the least amount of inter-CPU synchronization and is achieved by distributing
n KPs into as many roughly equal groups as there are CPUs (say k) and assigning KPs
in the same group to the same CPU. For example, KPs 0, 1, . . . , bn/kc shall be assigned
to CPU 0. A bad assignment requires inter-CPU synchronization for every transaction
and is achieved by assigning KP i to CPU i mod k. With this benchmark, we evaluate
the impact of the following factors on performance:
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• Choice of the message transport mechanism: our optimized transport vs native
transport.

• Choice of the scheduling mechanism: our optimized m:n scheduler vs. the native
1:1 scheduler.

• Assignment of KPs to CPUs (good vs. bad).

The benchmark has been run for the number of KPs n varying from 10 to 1000 in
steps of 50. The number of round-trips m is set to m = b106/nc so that the total number
of [send→ context switch→ receive] transactions is constant and equal to 106. These
settings give a sufficiently long execution time and number of transactions to cancel out
the the noise of scheduling effects such as interrupt processing. Since dynamic memory
(de)allocation is an integral part of zero-copy message-passing, its costs are included in
the presented results. The largest relative error over all experiments is εr = 0.1.

Figure 5.8 shows the results of benchmarking three different configurations: native
scheduler with native transport (top), native scheduler with optimized transport (mid-
dle) and optimized scheduler with optimized transport (bottom). From the figure we
can draw several conclusions.

First, inter-CPU synchronization is expensive, which is confirmed by observing the
difference in running times of the benchmark with good and bad KP placement. We
believe that this is also the cause for the anomaly that can be seen in the bottom plot of
figure 5.8, where the running time increases as the number of KPs decreases below 100.

Second, the optimized transport is ∼ 1.7–1.9 times faster than the native transport;
the exact speedup is dependent on the workload, KP placement and message size. As
can be seen from figure 5.9, the copying semantics of the native transport causes it to
degrade in performance as message size grows above 256 bytes.

Third, our user scheduler performs best with a single runner because there is no
contention over channel locks and delays caused by sleeping on the semaphore. In
the configuration with optimized scheduler using two runners, optimized message
transport, and bad placement, it performs slightly worse than the native scheduler for
less than ∼ 100 KPs (compare the middle and bottom plot in figure 5.8). As the number
of KPs grows, it starts to outperform the native scheduler, whose performance becomes
worse while that of the optimized scheduler remains constant, and 1.25 times faster for
n = 1000 KPs. With good KP placement and n = 1000, our scheduler is 6.5 times faster
than the native scheduler, and achieves nearly the same performance as with a single
runner.

The last experiment (see figure 5.10) explores the optimal number of runners for the
optimized scheduler under load of 1000 KPs with good and bad placement. As expected,
the best running times are achieved for one and two runners since the machine has two
cores.

AES One of the requirements for our run-time is to enable overdecomposition without
incurring large performance penalty on compute-intensive tasks. We have thus used the
AES benchmark to determine how well Nornir supports overdecomposed applications.
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Figure 5.8.: Ring benchmark with different Nornir configurations and KP placement.
The “N/A” experiment has been run with only 1 runner.
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as in other experiments), good placement.
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Figure 5.10.: Running time of the ring benchmark with 1000 KPs and 1000 round-trips
under the optimized scheduler and transport with varying number of runners. The scale
on x-axis is not uniform.
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Figure 5.11.: Performance of AES encryption with native and optimized (2 runners)
scheduler. The number of workers increases to the right, as the chunk size decreases.

We have fixed the total memory block size to 228 bytes (256 MB, to avoid possible
swapping), and the number of encryption passes over each chunk to 8 (to achieve
sufficiently long running time). We have varied the base-2 logarithm of memory chunk
size, k, from 14 to 28. Since a worker KP is created for every chunk of memory, this
corresponds to n = 228−k KP workers in total. In the U/2/O configuration with optimized
transport and scheduler with 2 runners, KPs are assigned to CPUs in a round-robin
manner so that load is evenly distributed among CPUs.

Figure 5.11 shows the encryption throughput versus the number of workers; note
that the number of workers increases to the right, as the chunk size decreases. The 50% drop
in speed at n = 28 occurs because the task is serially executed on a single CPU. As the
number of KPs increases beyond 2048 (chunk size less than 217), the encryption speed
decreases, but much more sharply for the native scheduler. To ensure that this was not
caused by swapping, we monitored the system activity during the benchmark run with
the iostat tool, which reported no disk activity. We have observed the largest relative
error εr = 0.06.

Furthermore, when using the native scheduler with 16384 worker KPs, there are
approximately 25000 context switches, 35000 system calls and 30000 instruction TLB
misses per second.4 In contrast, the optimized scheduler with 16384 worker KPs has
< 500 system calls and context switches per second (which almost coincides with the
numbers on an idle system), and < 2000 instruction TLB misses per second (< 1000 on
an idle system). While we have not been able to find the exact causes of this behavior,
we believe, based on real-time monitoring by dtrace and truss, that they stem from the
combination of the (preemptive) native scheduler and lock contention. Whatever the

4We have used the cputrack program to program the CPU’s performance counters and report the results.
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Figure 5.12.: Performance of the H.264 encoder with native and optimized schedulers
and transport. Experiments with optimized scheduler used 1 and 2 runners.

root cause, it is obvious that the native scheduler has some trouble as the number of
threads increases beyond 2048, which indicates that our scheduler is better suited for
executing overdecomposed problems than the native OS scheduler.

H.264 We have configured the H.264 benchmark to “encoding” speed of approxi-
mately 25 fps in real-time and measured the time needed to “encode” 300 frames (12
seconds) in different Nornir configurations. For each configuration, the benchmark is
executed with 1, 100, 500 and 1000 workers in each of the P, MC and ME stages (up to
3000 additional workers in total). The largest observed relative error is εr = 0.03.

H.264 is computation-intensive benchmark with little communication in our imple-
mentation. From the results in figure 5.12 we can conclude that:

• Data dependencies in KPN prohibit linear scalability with the number of cores.

• Message transport (optimized vs. native on optimized scheduler) has no influ-
ence on running time because the workload is CPU-bound and few messages are
exchanged.

• With few KPs and little available parallelism, the native scheduler’s load-balancing
outperforms our static assignment of KPs

• When the application is overdecomposed and KPs are carefully placed, our sched-
uler performs as well as, or better than the native scheduler.
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5.2.2.3. Discussion

We have evaluated performance of message-passing and scheduling mechanisms in
their native (POSIX message queues and the native 1:1 scheduler) and optimized im-
plementation. Experiments using the ring, AES and H.264 benchmarks show that
our implementation makes significant scalability and performance improvements over
native mechanisms: in our tests, message transport is 1.7–1.9 times faster, and the
scheduler is up to 6.5 times faster.

Figures 5.11 and 5.12 show that the optimized scheduler scales much better with the
number of KPs than the native scheduler, even when the KPs are CPU-intensive. When
the number of workers in each of the P, MC and ME stages of the H.264 benchmark is
increased from 1 to 1000, our scheduler suffers a performance drop of ∼ 10%, while the
performance of the native scheduler is nearly halved.

However, the H.264 benchmark also shows that static assignment of KPs to CPUs is
not enough and that lack of load-balancing mechanisms hurts performance in situations
with few workers. In benchmark configuration with one worker, the native scheduler
achieved more than 50% higher “encoding” speed than with the optimized scheduler.

The main conclusion is thus that the m:n scheduling model is promising because it
has much lower overheads than the 1:1 model, but that it also needs to be supplemented
with dynamic load-balancing algorithms to be able to compete with performance of the
native scheduler.

5.2.3. Performance evaluation of Nornir

In the previous set of experiments, we have evaluated performance of various KPN
implementation options. We have found that the m:n scheduler combined with the
optimized zero-copy transport gives the best performance on many tasks, but that it
also needs dynamic load-balancing in order to be able to compete with the 1:1 scheduler
on irregular workloads. The experiments have also shown that the cost of message
copying is negligible as long as message size is less than 256 bytes.

Based on these findings, we have implemented two dynamic load-balancing methods
(work-stealing and a method based on graph partitioning, both described in section 4.2,
and we have replaced the zero-copy message transport with message copying. The
latter change eliminates the costs of dynamic memory (de)allocation on every receive
or send operation, which are higher than the costs of copying when messages are small.
Lastly, we have also fully implemented run-time deadlock detection and resolution
algorithm. For our tests, we have used the AES, H.264, random graph and pipeline
benchmarks. In evaluations presented in this section, we have only used the work-
stealing scheduler. Comparative evaluation of work-stealing and graph partitioning
load-balancing methods is the topic of section 5.3.
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5.2.3.1. Methodology

Nornir has been configured to use the m:n work-stealing scheduler with both deadlock
detection and detailed accounting enabled and a default channel capacity of 64 messages.
The benchmarks have been compiled and run on the same hardware and OS as described
at the beginning of section 5.1.1. As in the previous experiment set, our conclusions are
based on the average results of 10 consecutive runs.

Metrics As previously explained, an important metric is real (wall-clock) running
time. We have run benchmarks on 1, 2, 4, 6 and 8 CPUs, and for each number of
CPUs we have computed the speedup over 1 CPU. A speedup of an embarrassingly
parallel benchmark, such as AES or pipeline, that is significantly less than the number
of CPUs allocated to Nornir would indicate a possible performance problem in Nornir.
In the current Nornir implementation, the main potential source of possible scalability
problems is the centralized deadlock detection algorithm which starts whenever a KP
blocks on read or write. We have thus investigated the impact of deadlock detection rate,
i.e., the number of started deadlock detections per second, on speedup.

NUMA issues Since a context switch also switches stacks, it can be expected that cached
stack data will be quickly lost from CPU caches when there are many KPs in the network.
We have measured that the cost of re-filling the CPU cache through random accesses
increases by∼ 10% for each additional hop on our machine (see appendix C for pertinent
details about computer architecture). Due to an implementation detail of Nornir and
Linux’s default memory allocation policy, which first tries to allocate physical memory
from the same node from which the request came, all stack memory would end up
being allocated on a single node. Consequently, context switch cost would depend on
the node a KP is scheduled on. To average out these effects, we have used the numactl
utility to run benchmarks under the interleave NUMA (non-uniform memory access)
policy, which allocates physical memory pages from CPU nodes in round-robin manner.

Benchmark parameters The ring benchmark was configured with 1000 KPs and 1000
round-trips, totaling 106 [send→ context switch→ receive] transactions.

The H.264 benchmark was configured to “encode” 30 frames at rate of 1 frame per
second, with the number of workers in each parallelized stage varying from 1. . . 512 in
successive powers of two.

For AES, the total block size was set to 228 bytes (256 MB), and the chunk given to
each individual worker varied from to 217 to 228. In this benchmark, smaller chunks
correspond to a larger number of workers, since each worker operates on its own chunk.
Thus, as chunk size increases from 17 to 28, the number of workers decreases from 2048
to 1. The number of encryption passes over each chunk was set to 40.

We generated two random KPNs: the RND-A graph is a random graph consisting of
238 nodes and 364 edges in 50 layers; the RND-B graph is a random graph consisting of
212 nodes, 333 edges in 50 layers and 13 cycles; the pipeline graph consists of 50 stages.
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For all three graphs, we have set T = 1 and varied the work division factor d from 1
to 90000 (in unequal steps). We have set n = d, so the total amount of work generated
by the source was constant. Thus, 1 second of CPU time was split into up to 90000
messages, each carrying workload of 1/90000 CPU seconds. Because of branching in
the network, individual KPs in RND-A and RND-B networks may receive even smaller
work amounts.

5.2.3.2. Results

For each data point we have also investigated the relative error, which we have com-
puted according to the formula εr = u−l

2l , where u and l are the upper and lower bound
of the 95% confidence interval calculated by using the Student’s t-distribution with 9
degrees of freedom. We have computed the maximum εr over all combinations of work-
divisions and number of CPUs and found it to be rather small: 12% for the RND-B
benchmark and around 5% for other benchmarks except RND-A. Some experiments of
the RND-A benchmark have a large relative error: up to 88% on 4 CPUs and d = 90000.
For completeness, we show the box-and-whisekers plot5 of all RND-A running times
in figure 5.13. The figure reveals three general trends:

• Variance exhibits a sudden increase at a certain threshold value of d.

• The threshold value lowers as the number of CPUs increases.

• The variance increases with the running time.

General performance characteristics We have first run the ring benchmark only on 1
CPU to evaluate the performance of context switch and accounting mechanisms. Ta-
ble 5.7 shows 95% confidence intervals and relative error of the running time with
accounting enabled and disabled. The results show that the overheads of detailed
accounting almost double the cost of a single [send→ context switch→ receive] trans-
action for reasons described in section 4.5.2. Considering only mean values, Nornir
running on a single CPU can perform ∼ 1.2 · 106 transactions with accounting disabled,
and ∼ 7 · 105 transactions with accounting enabled. On multiple CPUs, the ring bench-
mark results depend heavily on the number of CPUs and scheduling policy, a topic
investigated in detail in section 5.3. Put in perspective with existing user-mode sched-
ulers, Saha et al. [83] have measured that their system uses 0.748µs for context switch
on 2.8GHz Xeon CPU. Our mean time is slightly higher because our machine is a bit
slower (2.6GHz), and because our transaction time also includes the cost of sending and
receiving a single 4-byte message.

Figures 5.14 to 5.18 show running time, speedup and deadlock detection rate on 1, 2,
4, 6 and 8 CPUs for the other five benchmarks. The best achieved speedups on 8 CPUs

5This is a standard way to show the distribution of a data set. The box’s span is from the lower to the
upper quartile, with the middle bar denoting the median. Whiskers extend from the box to the lowest
and highest measurements that are not outliers. Points denote outliers, i.e., measurements that are more
than 1.5 times the box’s height below the lower or above the upper quartile.
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Figure 5.13.: Distribution of RND-A running times on 1, 2, 4, 6, 8 CPUs.

Accounting Mean Low High εr (%)
Disabled 0.7979 0.6205 0.9752 28.58
Enabled 1.4238 1.3649 1.4826 4.31

Table 5.7.: Transaction time (in microseconds) for ring benchmark with 1000 workers
and 1000 round-trips with accounting enabled or disabled (106 transactions): mean,
confidence intervals and relative error of running time at 95% level. The results are
based on 10 measurements.

for pipeline, AES and H.264 benchmarks are 7.95, 7.46 and 2.73, respectively. All three
benchmarks share the same overall performance characteristics:

• The running time decreases with increasing number of runners.

• The speedup increases with increasing work division d, and remains constant after
d has passed a certain value.

Pipeline exhibits a sharp speedup for d = 10 (see figure 5.14), as this is already greater
than the number of CPUs in all experiments. Speedup continues to increase slightly up
to d = 10000 where it reaches its peak value of 7.95 on 8 CPUs, and starts decreasing
slightly for d > 20000. The slight increase in speedup as d increases from 10 to 10000
comes from better pipeline utilization; only at d = 10000 are all channels in the pipeline
are full most of the time. This decreases the frequency with which KPs block, which
in turn decreases contention over run-queues. The impact of the latter factor is further
investigated in section 5.3.2. At d ≥ 30000, the amount of useful computation per mes-
sage continues to decrease, while the number of sent messages increases proportionally.
The increase in the number of messages increases the frequency of deadlock detection,
while the simultaneous decrease in the amount of computation per message reduces the
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opportunity of overlapping useful computation with deadlock detection. The central-
ized deadlock detection algorithm thus starts being a serialization point, which affects
the speedup.

The AES speedup (see figure 5.15) reaches its peak when there are at least as many
chunks as runners, and remains constant up to 2048 workers. Speedup on 6 CPUs is
irregular and reaches its peak speedup at 256 workers (chunk size 220). Even though
AES is perfectly parallelizable, the peak speedup on 8 CPUs is 7.46, which is the smallest
speedup on 8 CPUs of all other benchmarks except H.264. However, AES is significantly
different in one way from other benchmarks in that it is both CPU and memory-intensive.
Given that it has been run under round-robin NUMA policy, we believe that the speedup
is limited by the machine’s memory architecture.

H.264 has a similar performance profile (see figure 5.16) as AES, including the more
irregular behavior on 6 CPUs, except that the peak achieved speedup on 8 CPUs is 2.73.
In this case, the limitation stems from data-dependencies in network, which limit the
available parallelism and, consequently, possible speedup.

Figures 5.17 and 5.18 show performance characteristics of the two random KPNs. Both
plots have a similar profile: speedup grows up to a certain value of d (1000 for RND-A,
100 for RND-B). The performance increases with increasing d because more messages
flow in the network, which increases parallelism. The peak achieved speedup for the
two graphs is 7.86 for RND-A and 7.9 for RND-B. When d increases beyond the optimal
value, the speedup drops sharply at d = 20000 for RND-A and d = 10000 for RND-B. An
exception is RND-A on 2 CPUs where speedup remains constant as d increases and on
4 CPUs where speedup drops gradually. The sharp drop in performance is caused by
the centralized deadlock detection mechanism, the overheads of which we investigate
further in this section.

Communication overheads In all previous benchmarks, the communicated messages have
been rather small (less than 32 bytes). We have used the same 50-stage pipeline to
study the impact of message size on performance. As previously, d messages have been
generated by the source KP, each containing 1/d seconds of CPU time. A noticable
slow-down (see figure 5.19) happens regardless of message size and only at d = 105,
which is equivalent to 10 µs of work per message, which is only 7 times greater than the
time needed for a single [send→ context switch→ receive] transaction. As expected,
the drop in performance at d = 105 is proportional with message size and the number
of sent messages. Somewhat more unexpectedly, the drop is also proportional with the
number of CPUs. Larger message sizes take more time to copy, which causes greater
contention over channel locks with increasing number of CPUs. This hypothesis is
confirmed by the spin rate, a value that is proportional with the time spent waiting on
channel locks.6

6Actually, it is proportional to the sum of spins on channel locks and spins on the deadlock detection
lock. Both graphs have the same profile, and the peak deadlock detection rate is ∼ 15000 per second.

105



P
ipeline running tim

e

W
ork division

Running time (s)

10 20 30 40

1

10

100

1000

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
o. of C

P
U

s

12468

P
ipeline speedup

W
ork division

Speedup

0 2 4 6 8

1

10

100

1000

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
o. of C

P
U

s

2468

P
ipeline deadlock detection rate

W
ork division

DD rate (1/s)

2000

4000

6000

8000

10000

12000

14000

1

10

100

1000

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
o. of C

P
U

s

12468

Figure
5.14.:Pipe

perform
ance

characteristics.

106



AES running time

Chunk size (log2)

R
un

ni
ng

 ti
m

e 
(s

)

20

30

40

50

60

70

17 18 19 20 21 22 23 24 25 26 27 28

No. of CPUs

1

2

4

6

8

AES speedup

Chunk size (log2)

S
pe

ed
up

0

2

4

6

8

17 18 19 20 21 22 23 24 25 26 27 28

No. of CPUs

2

4

6

8

AES deadlock detection rate

Chunk size (log2)

D
D

 r
at

e 
(1

/s
)

2000

4000

6000

8000

17 18 19 20 21 22 23 24 25 26 27 28

No. of CPUs

1

2

4

6

8

Figure 5.15.: AES performance characteristics.
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Figure 5.16.: H.264 performance characteristics.
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Figure 5.19.: Pipeline benchmark: effect of different message sizes (8,. . . ,2048) bytes
across three different work divisions (d).

Deadlock detection overheads Figures 5.14 to 5.18 also show the average number of
started deadlock detections per second for each of the five experiments. However,
a deadlock has actually never occurred in any of our experiments. The graphs have
two common features: the deadlock detection rate is proportional with work division
(consequently, also with the number of messages) and the number of CPUs. However,
they differ greatly in scale: the peak deadlock detection rate∼ 14000 for pipeline, ∼ 8000
for AES, ∼ 4000 for H.264, ∼ 200000 for RND-A and ∼ 300000 for RND-B.

The first three and the last two workloads differ in one key aspect. The deadlock
detection rate grows linearly with work division for the pipeline, AES and H.264 graphs,
and the RND-A graph on up to 2 CPUs. However, it exhibits a superlinear growth
for the RND-A graph on 4 CPUs and sudden jump on RND-A on 6 and 8 CPUs, as
well as on the RND-B graph for any number of CPUs. After the abrupt increase,
the deadlock detetction rate becomes quickly saturated and is inversely proportional
with the number of CPUs, which indicates that the centralized data structure causes
scalability problems. However, as can be seen from the figures, the central lock impacts
performance only when the deadlock detection rate becomes greater than ∼ 50000
started deadlock detections per second.

5.2.3.3. Discussion

We have used synthetic benchmarks to evaluate application performance and scalability
of Nornir. The benchmarks have been run on 1, 2, 4, 6 and 8 CPUs with work-stealing
scheduling algorithm and deadlock detection and accounting enabled. We have also
varied the work division factor d, which influences the total traffic volume and, in some
cases, also the number of KPs in the network.
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All benchmark programs, except H.264, have achieved a nearly linear speedup as
the number of CPUs has been increased. The H.264 benchmark achieved maximal
speedup of 2.73 on 8 CPUs, which is a consequence of limited parallelism available in
the network. The random graph benchmarks have also achieved a nearly 8-fold speedup
on 8 CPUs, but only up to a certain threshold value of d, above which the performance
dropped drastically; in certain cases the performance was worse than on 1 CPU. We
have determined that this degradation in performance is caused by frequent runs of
the deadlock detection algorithm: the performance on 8 CPUs drops when the number
of deadlock detections exceeds ∼ 50000 per second. The other three benchmarks have
not suffered any scalability problems despite the fact that they too had a rather high
deadlock detection rate on 8 CPUs: ∼ 14000 for pipeline, ∼ 8000 for AES and ∼ 4000 for
H.264.

We have also used the 50-stage pipeline to evaluate overheads of the copying message-
passing mechanism. We have found that scheduling overheads become visible when
the processing time per message drops below ∼ 10µs which is only 7 times greater than
the cost of a single transaction. Furthermore, message sizes up to 2048 bytes are handled
very efficiently: in the worst-case, the speedup with 2048-byte message, d = 100000 and
8 CPUs, is only ∼ 3.4% smaller than speedup for 8-byte messages and same d.

5.2.4. Conclusions

Our first set of experiments has shown that our message-passing and m:n scheduling
mechanisms have better performance and scalability than POSIX message queues and
the native 1:1 scheduler. Currently, the only advantage of the 1:1 scheduler seems to
be that it is friendlier towards other applications running on the same machine: when
there are fewer ready KPs than available CPUs, the kernel’s scheduler will automatically
free those CPUs for other applications. The m:n scheduler, on the other hand, loops
until a KP appears in its run-queue, which unnecessarily wastes CPU resources when
an application is in a phase where its average parallelism is less than the number of
runners. This problem can be addressed by adapting a dynamic parallelism estimation
mechanism [93] to Nornir’s cooperative scheduling mechanism.

Our second set of experiments has shown that Nornir scales well up to 8 CPUs,
despite our choice to use mutexes for protecting the scheduler’s run-queues, which we
have made to simplify our implementation. The benchmarks have also revealed that
centralized deadlock detection can severely hurt performance, which was manifested
only with the random graph benchmarks. An easy solution for this problem is to
select a higher default channel capacity for problematic work-loads (all benchmarks
were run with capacity of 64 messages), which will reduce the frequency of deadlock
detections, but may also increase memory consumption beyond acceptable levels.7 A
better, but harder, solution is to extend Nornir with a distributed deadlock detection and

7When all channels are initialized to default capacity of D messages, the memory space reserved for
channel buffers is equal to

∑

C D · s(C) where C runs over all channels and s(C) is the size of single
message carried by the channel.
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resolution algorithm, such as the one described in [22]. We suggest two other possible
improvements for the current implementation:

• Replacing channel’s busy-waiting mutexes with a refined locking strategy, or by
using single-producer, single-consumer lock-free FIFO queues [94].

• Using the lock-free dequeue of Blumofe et al. [47] for the work-stealing scheduler.

The first suggestion would reduce the number of context switches caused by con-
tention over channels, which would improve performance in two ways. First, overheads
of context switching, scheduling and contention over run-queues would be reduced.
Second, less obviously, avoiding a context switch also avoids a stack switch, which in
turn reduces pressure on data caches.

The refined locking strategy involved in the first suggestion combines busy-waiting
with spinning on the mutex. In this case, the mutex would be implemented as an integer
whose value would reflect whether the mutex is taken, and if so, the reason for it being
taken. There are only two such reasons:

• The channel’s capacity is being enlarged.

• The process on the other end is accessing the channel.

In the first case, all messages in the channel’s buffer must be copied to a new buffer.
Copying is a heavy-weight operation, so the KP trying to lock the mutex would use
busy-waiting. In the second case, the mutex will be held for a very short time if KPs
communicate mainly with small messages. The KP trying to lock the mutex would then
first spin on the mutex and yield if the mutex cannot be acquired after a preset number
of iterations. The number of iterations is determined according to the maximum size
M of “small” messages: copying M bytes or less should take less time than to yield to
another KP. Since the low-level context switch accesses two different machine contexts,
(see section 4.1.2.2), the lower bound on M in our implementation is M ≥ 64 bytes.8

The second suggestion would improve scheduler’s performance by eliminating wait-
ing on mutexes that protect runner’s queues. However, using this data-structure would
prevent us from implementing yielding, which is needed for busy-waiting mutexes,
as well as the improvement of the work-stealing algorithm that we described in sec-
tion 4.2.2.4.

We also deem that high contention over run-queues generally means that there is not
enough work in the whole application. This problem is better solved by reducing the
number of runners to match the application’s average parallelism level, or by using fine-
grained parallelism, thus increasing the number of KPs in the network and reducing
the probability of a runner finding its queue empty.

8Figure 4.2 suggests that 240 bytes are used for registers. First, the structure is overdimensioned and
padded to fit the cache line boundary. Second, only 8 64-bit registers must be saved and restored during
context switch on AMD64.
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5.3. Evaluation of load-balancing methods

In the first part of this section, we investigate the relative merits of the work-stealing
(WS) and graph-partitioning (GP) methods presented in section 4.2. As previously, our
metrics of interest are real (wall-clock) running time and speedup. We also introduce
a new metric that reflects the number of messages communicated between processes
assigned to the same CPU or to different CPUs. This metric is interesting for a pos-
sible future distributed version of Nornir because communication between processes
on different machines is orders of magnitude more expensive than within the same
machine.

In the second part of this section, we investigate the effects of contention over run-
queues on performance. We also evaluate our modified work-stealing algorithm, de-
scribed in section 4.2.2.4, against the original algorithm.

5.3.1. Comparison of work-stealing and graph-partitionin g

In this section, we present the results of our comparative evaluation of work-stealing
(WS) and graph partitioning (GP) load-balancing algorithms described in section 4.2.
Our motive for this study is to investigate whether the GP method can perform better
than WS on a multi-core machine, and if so, on which workloads. The GP algorithm
can potentially improve performance in two ways:

• By reducing migration of KPs between runners, thus also reducing contention
over run-queues.

• By reducing communication between KPs assigned to different runners, thus also
reducing contention over channels.

In our evaluation, we have used the ring, H.264, RND-A and RND-B benchmarks
described in section 5.2.1, as well as the MapReduce implementation of the k-means
algorithm described in section 3.3.3.

5.3.1.1. Methodology

Nornir has been configured to use the m:n work-stealing scheduler with deadlock
detection disabled, detailed accounting enabled, and default channel capacity of 64 mes-
sages. In order to obtain more general results, we have disabled deadlock detection
and checked that the benchmark did not terminate early due to unresolved artificial
deadlock. The benchmarks have been compiled and run on the same hardware and
OS as described in section 5.1.1. We have also taken care to account for NUMA is-
sues, as we have described in section 5.2.3.1. Our discussions are based on median of 9
measurements. The reasons for choosing median instead of mean are explained below.

Metrics In addition to real running time and speedup, we introduce two additional
metrics, local traffic ratio and message throughput, that we define with the help of traffic
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volume. We define the local traffic volume as the as the number of messages exchanged
between processes assigned to the same CPU at the time message was sent; remote
traffic volume is defined analogously. The local traffic ratio α and message throughput
β are calculated as

α =
l

l + r
β =

l + r

t

Here, l and r are local and remote traffic volume (l + r is thus the total traffic volume),
and t is the total running time.

Benchmark parameters In the ring benchmark, we used 1000 processes and 1000 round-
trips, totaling 106 [send→ context switch→ receive] transactions.

For the k-means benchmarks, we set the number of processes in each stage to 128,
and the workload consisted of 300000 randomly-generated integer points contained in
the cube [0, 1000)3 to be grouped into 120 clusters.

The H.264 benchmark was configured to “encode” 30 frames at rate of 1 frame per
second, with the number of workers in each parallelized stage varying over the set
{128, 256, 512}.

For the random KPN benchmarks we have used the same graphs in the same setup
as described in section 5.2.3.1.

In addition to the above parameters, the GP policy introduces the idle time parameter
τ, explained in section 4.2.3.2. We have varied τ over the set τ ∈ {8, 16, 24, . . . , 256} for
each combination of other parameters.

Presentation of results To simplify our presentations, we have computed the best value
of τ for each combination of the other parameters. However, we cannot simply select
the τ value whose result set, consisting of 9 measurements, has the lowest mean (or
median) running time. The reason is that consecutive runs of an experiment with the
same combination of d and τ can have high variance.

Thus, to choose the best τ for a given combination of other parameters, we compare all
result sets against each other and select the set s(τ) which compares smaller against the
largest number of other result sets. If we find several candidate result sets, we choose
the one corresponding to the smallest τ. Formally, we choose the best τ as follows:

τ = min(arg max
τ∈T
|{τ′ ∈ T : (τ′ , τ) ∧ (s(τ) < s(τ′))}|)

where |X| denotes the cardinality of set X, T = {8, 16, . . . , 256}, i.e., the set of τ values
for which we have run the experiments, and s(τ) is the result set for the given τ. To
compare two result sets, we have used the one-sided Mann-Whitney U-test [95]9 with
95% confidence level; whenever the test for s(τ) against s(τ′) reported a p-value less than

9Usually, the Student’s t-test is used. However, it makes two assumptions, for which we do not know
whether they are satisfied: 1) that the two samples come from a normal distribution 2) having the same
variance.
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Experiment t1 t2 t4 t6 t8

GP 1.43 1.65 1.78 1.58 1.71
WS 1.33 2.97 2.59 2.66 2.86

Table 5.8.: Summary of ring benchmark results with 1000 workers on 106 transactions.
tn is median running time on n CPUs.

0.05, we considered that the data set s(τ) comes from a distribution with stohastically
smaller [95] running time.

Once we have found the best τ for a given combination of other parameters, we have
to choose a single representative run for the given set. This run will be used to represent
not only the running time, but also other variables corresponding to that run, such as
traffic volume. In our case, we choose the run corresponding to the median running
time. This is also the reason for performing 9 measurements because the median of an
even number of points is defined as the average of the two middle values, so this would
generate artificial values.

5.3.1.2. Results

The ring benchmark measures scheduling and message-passing overheads of Nornir.
Table 5.8 shows the results for 1000 processes and 1000 round-trips, totalling 106 [send
→ context switch → receive] transactions. Under the GP policy, the median running
time shows little variation with the number of CPUS. Under the WS policy it drastically
increases when the number of CPUs increases from 1 to 2, after which it behaves
irregularly, and does not exhibit any increasing or decreasing trend. This increase in
running time is due to contention generated by additional CPUs trying to actively steal
work when there is none. Similarly, the GP policy exhibits little variance with the
number of CPUs because the CPUs are mostly accessing only their own run-queues. A
CPU accesses another CPU’s run-queue only to unblock the KP assigned to that CPU
by the partitioning algorithm.

The k-means program, which executes on a MapReduce topology, is an example
of an application that is hard to schedule with automatic graph partitioning. If the
idle time parameter τ is too low, repartitioning runs overwhelmingly often, so the
program runs several minutes, as opposed to 9.4 seconds under the WS method. When
the τ is high enough, repartitioning runs only once, and the program finishes in 10.2
seconds. However, the transition between the two behaviours is discontinuous, i.e., as
τ is gradually lowered, the behaviour abruptly changes from good to bad. Because of
this, we will not consider this benchmark in further discussions.

Figure 5.20 shows median absolute running times for the H.264, RND-A and RND-

B benchmarks. From the figure, it can be seen that the WS policy has the least median
running time for most workloads; it is worse than the GP policy only on the ring benchmark
(not shown in the figure; see table 5.8 instead) and the RND-B network when work
division is d ≥ 30000. At this point, performance of message-passing and scheduling
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becomes the limiting factor, so the running time increases proportionally with d. We
can also see that that the GP policy shows severe performance degradation on the H.264
benchmark as the number of workers and the number of CPUs increases. This is caused
by the limited parallelism available in the H.264 network; the largest speedup under
WS policy is ∼ 2.8. Thus, the runners accumulate idle time faster than load-balancing
is able to catch-up, so repartitioning and process migration frequently takes place (90 –
410 times per second, depending on the number of CPUs and workers). The former is
not only protected by a global lock, but its running time is also proportional with the
number of partitions (CPUs) and the number of nodes in the graph, as can be clearly
seen in the figure.

Figures 5.21, 5.22 and 5.23 show further data related to H.264, RND-A, RND-B bench-
marks: speedup relative to 1 CPU, local traffic ratio and message throughput. WS
achieves consistently better peak speedup than GP: at 512 workers for H.264, at d = 1000
for RND-A and d = 100 for RND-B. For the random KPNs, the speedup is linear in the
number of CPUs, and the speedup on H.264 is limited by data-dependencies in the
network.

By cross-referencing the speedup and local traffic ratio figures for the same d, we can
see that the GP speedup has no correlation with peaks and valleys of the local traffic
ratio, which constitutes over 70% of all message traffic on any number of CPUs. The
local traffic ratio decreases proportionally with the number of CPUs under WS, but it
shows only slightly decreasing trend under GP.

However, we can correlate the WS peak speedup and the lower knee of the message
throughput curve for both random graphs. For RND-B, which is the only benchmark
where GP has a (slight) advantage over WS, the message throughput under GP becomes
greater than throughput under the WS policy for d ≥ 30000. This coincides with upper
knee of the throughput curve and the point where speedup under GP speedup becomes
greater than WS speedup.

Figure 5.24 shows the relation between the local volume ratio and the number of
busy-wait loop iterations per second for RND-A and RND-B benchmarks; in the H.264
benchmark too few messages were exchanged for obtaining a meaningful result. Each
line corresponds to an experiment for a single work division factor and passes through
exactly two points. The left point corresponds to the lower ratio (WS policy), and the
right point to the higher ratio (GP policy). Since the total spin count is incremented each
time a KP encounters a locked mutex protecting a channel, the figure indicates that GP
reduces contention over channels.

Figure 5.25 uses the box-and-whiskers plot10 to show the distribution of running times
and number of repartitionings achieved for all benchmarked τ values of GP policy. The
plots show the running time and the number of repartitions for the RND-B benchmark
on 8 CPUs and d = 1000. From the graphs, we can observe several facts:

10This is a standard way to show the distribution of a data set. The box’s span is from the lower to the
upper quartile, with the middle bar denoting the median. Whiskers extend from the box to the lowest
and highest measurements that are not outliers. Points denote outliers, i.e., measurements that are more
than 1.5 times the box’s height below the lower or above the upper quartile.
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H.264 speedup over 1 CPU
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Figure 5.21.: H.264 speedup, local traffic ratio and message throughput.
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RND−A local volume ratio vs. contention
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Figure 5.24.: Correlation between the local volume ratio and contention on channels on
2, 4, 6 and 8 CPUs.

• WS has negligible variation in running time (the single line at τ = 0) in comparison
with GP.

• The number of repartitionings is inversely-proportional with τ, but no clear cor-
relation with either variance or median running times is apparent.

• When τ ≥ 72, the minimal running times under the GP policy show rather small
variation.

We have also investigated the relative performance of GP and WS policies, but now
considering the minimal real running amongst all GP experiments for all values of τ.
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RND−B distribution of running times
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Figure 5.25.: Illustration of GP variance in running time for RND-B on 8 CPUs and
d = 1000, which is one step past the WS peak speedup. x-axis is the value of the idle
time parameter τ for the GP policy. τ = 0 shows the results for WS.

The plots (not shown) are very similar to those of figures 5.22 and 5.23, except that GP
speedup is slightly (< 2% on 8 CPUs) larger.

5.3.1.3. Discussion

We have analyzed performance of graph-partitioning and work-stealing load-balancing
methods for executing various workloads. Our findings can be summarized as follows:

• WS gives best performance, with speedup proportional with the number of CPUs,
provided that there is enough parallelism in the network.

• GP and WS show similar patterns in running time, but GP never achieves the
same peak speedup as WS.

• There exists an optimal work division d at which the largest speedup is achieved;
this value is different for WS and GP.

• Increasing d beyond peak speedup leads to a sharp increase in message through-
put. This increase quickly degrades performance because message-passing and
context switch overheads dominate the running time.

• GP has large variance in running time; neither the median running time nor its
variance is correlated with the idle time parameter τ.

• GP achieves a greater proportion of local traffic than WS, and this ratio decreases
very slightly as the number of CPUs increases. The proportion of local traffic
under WS decreases as the number of CPUs increases.
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• We have not found any apparent correlation between message locality, which also
reduces contention over channels, and running time or speedup.

Regarding GP, there are two main obstacles that must be overcome before it can be
considered as a viable approach for scheduling general-purpose workloads on multi-
processor machines:

• Unpredictable performance, as demonstrated by figure 5.25.

• The difficulty of automatically choosing the right moment for rebalancing.

As our experiments have shown, monitoring the accumulated idle time over all CPUs
and triggering rebalancing after the idle time has exceeded a threshold is not a good
strategy. Thus, work-stealing should be the algorithm of choice for scheduling general-
purpose workloads. Graph partitioning should be reserved for specialized applications
using fine-grained parallelism, that in addition have enough knowledge about their
workload patterns so that they can “manually” trigger rebalancing.

5.3.2. Limits of work stealing

The previous evaluation has shown that work-stealing is superior to graph partitioning
scheduling algorithm on multi-core machines. In this section, we investigate the effects
of contention over run-queues on performance of the work-stealing algorithm. We have
evaluated both the original work-stealing algorithm, which we shall denote as WS-CUR,
and our modified work-stealing algorithm, described in section 4.2.2.4, which we shall
denote as WS-LAST.11

For this purpose, we have also designed a new synthetic benchmark, scatter/gather,
which will be central in our evaluations. This benchmark represents a pattern common
for embarrassingly parallel workloads, such as AES in ECB or CTR mode. The scat-
ter/gather topology also emerges when several MapReduce instances are executed such
that the result of the previous MapReduce operation is fed as the input to the next, as
was the case in the k-means application described in section 3.3.3.

5.3.2.1. Methodology

We have configured Nornir to use m:n work-stealing scheduler with deadlock detection
disabled, detailed accounting enabled, and default channel capacity of 64 messages. The
benchmarks have been compiled and run on the same hardware and OS as described
in section 5.1.1. The experiments have been run on 1 CPU, to obtain reference values,
and on 8 CPUs. We have chosen to skip the intermediate values because we are most
interested in performance characteristics of work-stealing on more CPUs. As previously,
we have also taken into account NUMA effects, and our discussions are based on median
of 9 measurements.
11These acronyms are also meant to be mnemonical: WS-CUR unblocks a KP to the current runner, which

is also the original (“current”) work-stealing algorithm. WS-LAST unblocks a KP to the last runner it
was running on before it blocked.
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Figure 5.26.: Worker processes connected in a scatter/gather topology to a central process.

Metrics As previously, our most important performance indicators are the real running
time and speedup. We also introduce a new metric, steal rate, which we define as the ratio
ni/t. Here, ni is the total number of steal attempts (both successful and unsuccessful)
performed by all runners during program execution, and t is the program’s running
(real) time.

Scatter/gather benchmark The scatter/gather network has a single central process (p0)
connected to n worker processes (see figure 5.26). p0 executes m rounds of the following
procedure. First, it sends to each worker a single message representing w = T/d
CPU seconds, where d is the work division factor. Upon receipt of a message, a
worker calls the burn_cycles function, shown in figure 5.7, with argument wT0, to
consume the specified amount of CPU time, and then it sends a reply message back to
p0; the T0 constant has been explained in section 5.2.1.4. In the meantime, p0 waits to
receive a reply from all workers, and then begins the next round of distributing work
to workers, thus acting as a barrier [39]. The total workload executed by the workers is
W = nmw = nmT/d CPU seconds.

5.3.2.2. Results

Our presentation of results is presented as a series of five experiments since each ex-
periment opened new questions that had to be explained. In the first experiment, we
have run all three benchmark programs (ring, pipeline and scatter/gather) under both
WS-CUR and WS-LAST policies. In the second and third experiment, we have run only
the scatter/gather benchmark because it was the only one from the first experiment that
exhibited behavior warranting further study. These experiments have revealed that
WS-CUR and WS-LAST exhibit the same qualitative behavior, so we have run the last
two experiments (fourth and fifth) using only the scatter/gather benchmark and only
WS-LAST algorithm.

Experiment 1 In this experiment, we have first run the ring benchmark with 50 and 1000
processes, and the number of round-trips has been adjusted so that the total number of
transactions is 106. The running times under of both configurations on 1, 2, 4, 6 and 8
CPUs under both scheduling algorithms are shown in table 5.9. From the table, we can
see that the running time with 1000 processes on one CPU under the same algorithm
is higher than with 50 processes. Since both scheduling algorithms use constant time
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Experiment t1 t2 t4 t6 t8

WS-LAST/50 0.87 3.00 4.53 6.42 8.44
WS-CUR/50 0.92 2.93 2.53 2.65 2.83
WS-LAST/1000 1.34 3.03 4.49 6.42 8.42
WS-CUR/1000 1.33 2.97 2.59 2.66 2.86

Table 5.9.: Summary of ring benchmark results with 50 and 1000 workers on 106 trans-
actions. tn is median running time on n CPUs.

to select a runnable process, and since both configurations perform the exact same
number of context switches, we believe that the increase is caused by lower-level issues
such as increased cache miss rate. At two or more CPUs, contention over run-queues
shadows these effects, so there is little difference between running times with 50 and
1000 processes under the same policy. On the other hand, there is a big qualitative
difference between WS-CUR and WS-LAST policies as the number of CPUs increases
beyond two. The running time of the benchmark under WS-CUR is relatively stable,
whereas it grows proportionally with the number of CPUs under the WS-LAST policy.

For the scatter/gather and 50-stage pipeline, we used T = 1 and we varied the work
division over the set d ∈ {100, 1000, 10000, 20000, . . . , 100000}, i.e., each message carries a
workload of 1/d CPU seconds. Additionally, in the scatter/gather benchmark, we varied
the number of workers over the set n ∈ {50, 250, 500, 750, 1000}, and we computed the
number of rounds as m = b50d/nc. In this way, the total amount of work distributed by
the central process was held constant at W = 50 CPU seconds.

Figure 5.27 shows speedup and steal rate for pipeline and scatter/gather benchmarks.
From the figure, we can observe that the pipeline benchmark has almost the same

performance characteristics, regardless of the scheduling strategy algorithm. The slight
increase in speedup as d reaches 10000 is due to better pipeline utilization, as has already
been explained in section 5.2.3.2.

The scatter/gather benchmark exhibits drastically different performance character-
istics: its performance starts degrading much more rapidly at d = 10000 under the
WS-CUR algorithm than under the WS-LAST algorithm. At d = 105, the speedup is
barely greater than 1 under the WS-CUR algorithm, but it is still above 4 under the
WS-LAST algorithm. We can also see that the sharp drop in speedup for the WS-CUR
algorithm coincides with the sharp rise in steal rate.

At d = 30000, the steal rate reaches saturation under the WS-CUR algorithm, but the
speedup continues to fall because each runner has to wait longer time before it gains
access to its own or another runner’s run-queue. At d = 30000, the waiting time is
∼ 4.5µs, while at d = 105, the waiting time is ∼ 5.75µs. This prolongation is caused
by two simultaneously interacting factors. First, p0 unblocks all workers, which the
WS-CUR algorithm places on the same runner (R0) where p0 is executing. When p0 has
blocked, all workers are in the run-queue belonging to R0, while run-queues of the other
runners are empty. Therefore, the other runners immediately begin stealing, and each
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Speedup for scatter/gather and pipeline
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Figure 5.27.: Scatter/gather and pipeline on 8 CPUs: speedup and steal rate vs. work
division.

must perform 7/2 = 3.5 steal attempts on average12 before it “hits” the (only) runner
having a non-empty run-queue, R0.

Second, as d increases, the useful work performed by each worker decreases. Since
each runner steals only a single process, they will engage in stealing more often. This
causes in turn greater contention over the run-queue belonging to R0, which delays
both R0 and other runners in dequeueing or stealing worker processes. As long as p0
has more work distribute, contention also delays R0 in enqueueing the workers.

We can also see that speedup of the scatter/gateher benchmarks increases with the

12(N−1)/2 in the general case, N being the number of CPUs. N−1 is used because a runner never attempts
to “steal” work from itself.
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Scatter/gather speedup
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Figure 5.28.: Scatter/gather on 8 CPUs: speedup and steal rate vs. number of workers.

number of workers, independently of work division and the work-stealing variant. The
largest increase in speedup is at the transition from 50 to 250 workers, and it coincides
with the drop in steal rate. Since 50 workers is already a much larger number than the
number of CPUs used in the experiment (8), we have designed another experiment to
find the causes of this behavior.

Experiment 2 In this experiment, we further investigate the relation between the num-
ber of workers and speedup, which is clearly visible in figure 5.27. We have fixed work
division to d = 10000, which corresponds to ∼ 100µs of processing time per message,
the number of rounds to m = 12500, and we have varied the number of workers over
the set n ∈ {8, 16, 32, 64, 128, 192, 256}. We have chosen these numbers based on the
results shown in figure 5.27. Work division d = 10000 is the critical value at which
speedup starts decreasing rapidly, yet it is still reasonably high. The number of rounds
m is adjusted so that the total amount of work performed by all workers for n = 8 is
at least 10 seconds. In general, the total workload in this benchmark can be calculated
as W = n · 12500 · T/104 = 1.25n CPU seconds, which also sets the lower bound for
running time on 1 CPU. Having more workers or rounds would lead to unreasonably
long running times because the number of rounds and work division are held constant.
This is unlike the previous experiment, where the number of rounds m was adjusted in
order to hold W constant.

In figure 5.28 we can see that speedup increases with the number of workers n; at
n = 256, WS-CUR has a speedup of 5.7, and WS-LAST has speedup of 7.6. The general
trend is that the rate of the increase diminshes with n, and that increasing n further
would not significantly affect speedup. Furthermore, as n increases, the difference in
speedup between the two algorithms also increases. We can also see that WS-CUR has
much larger steal rate than WS-LAST, and that the difference increases with n.
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Figure 5.29.: Scatter/gather on 8 CPUs: log2 of running time vs. work per message.

From these results we conclude that increasing the number of workers n, which also
increases the total work amount W, indeed does reduce contention over run-queues
and improves performance. However, the performance improvement with increasing
n is limited and did not meet our expectations. We thus conjecture that the key factor
in determining efficiency of WS on the scatter/gather benchmark is CPU time spent on
processing a single message. To validate this assumption, we have designed another
experiment.

Experiment 3 In this experiment, we investigate the relation between work per mes-
sage and speedup. We have fixed the number of rounds to m = 12500, varied the
number of workers over the set {16, 50, 250} and work per message over the set w ∈
{25, 50, 100, 200, 400, 800} microseconds. In terms of the scatter/gather benchmark de-
scription, we have fixed work division to d = 10000 and varied T, which was fixed to 1
in the previous experiments, over the set T ∈ {1/4, 1/2, 1, 2, 4, 8}.

We have first noticed that the total running time grows slower than linearly with each
doubling of work per message w until a certain threshold (see figure 5.29). The effect is
most visible at 16 workers, where we can observe that for T < 4, doubling its value leads
to an increase on y-axis which is less than 1. Since the y-axis shows the base-2 logarithm
of the running time, this means that a two-fold increase in w leads to a less than two-fold
increase in the running time. This is because CPUs start spending more time executing
useful work than spinning in the stealing loop. Under WS-CUR, the effect is visible for
all worker counts, while under WS-LAST, the effect is less pronounced at 50 workers
and almost non-existent at 250 workers.

Figure 5.30 shows the relation between speedup and CPU time per message. We can
see that both algorithms exhibit a significant performance improvement as T increases
from 25µs to 100µs, and this increase in performance is correlated with the drop in
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Figure 5.30.: Scatter/gather on 8 CPUs with 16 workers: speedup and steal rate vs. work
per message.

steal rate. Performance continues to increase as w grows towards 800µs per message,
but much more so for the WS-CUR algorithm than for the WS-LAST algorithm. In
other words, WS-LAST approaches the maximum speedup at lower values of w which
indicates that it is better suited for executing finely-grained parallel applications.

In this experiment, we have confirmed the conjecture from the previous experiment,
namely that the efficiency of work-stealing is dependent on processing time per message.
However, another anomaly has appeared: for w = 800µs, the speedup at 50 workers is
less than the speedup at 16 and 250 workers. This anomaly is the subject of the next
experiment.

Experiment 4 To investigate how the number of workers affects speedup, we have fixed
work division to d = 10000, work per message to w = 800µs, and varied the number of
workers from 16 to 48 i steps of 1. Figure 5.31 shows the real (wall-clock) running time
and speedup of WS-LAST on 8 CPUs.

The plots exhibit a distinct pattern: the running time increases step-wise with the
number of workers n, with jumps occurring when n mod 8 = 1. Likewise, the speedup
is worst when n mod 8 = 1 and best when n mod 8 = 0. The plots indicate that the
workers execute in batches. In each round, bn/8c batches are executed in which all 8
CPUs are busy executing workers. If n is not evenly divisible by 8, there will be an
overflow batch in which only n mod 8 CPUs are busy executing workers, while the other
CPUs are attempting to steal work from other CPUs. However, no additional work
exists because the central process (p0 in figure 5.26) starts a new round only after all
workers have processed their messages in the current round. Thus, the overflow batch,
if it occurs, stalls 8 − n mod 8 CPUs, which decreases the total speedup in proportion
with the number of the stalled CPUs.
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Figure 5.31.: Scatter/gather on 8 CPUs with 16–48 workers and T = 8: running time and
speedup under WS-LAST.

The above reasoning also implies that the workers are running in synchrony. If it were
otherwise, some CPU would finish executing its workers earlier, which would allow it
to steal workers from other CPUs and reduce the size of the overflow batch. Stalling
caused by the overflow batch would be reduced, if not eliminated, so the speedup
curve would not exhibit the sawtooth shape with period 8 (the number of CPUs), as it
does in figure 5.31. Thus, neither the delay caused by p0 while distributing work, nor
contention over run-queues are enough to disturb running in almost perfect lock-step.
This in turn implies that the total running time in each round used by p0 and the time
spent on stealing is negligible compared with work amount per message (800µs), i.e.,
both are very efficient.

In figure 5.31, we can also see that speedup maximums, achieved for n mod 8 = 0, are
relatively constant, while the speedup minimums, achieved for n mod 8 = 1, increase
with n. This is because the fraction of the total work W performed just by the overflow
batch decreases as n increases, which also decreases the time that the stalled CPUs spend
in waiting. Thus, the ratio of waiting time and the total running time decreases, which
leads to greater speedup.

Experiment 5 To investigate how amount of work per message affects speedup and
contention, we have fixed work division to d = 10000 and varied the number of workers
from 16 to 24 (corresponding to one period of figure 5.31) and w from 25 to 1600 µs per
message. We have not run the experiment with a larger number of workers because
figure 5.31 shows that speedup minimums become nearly 7 already at n = 41.

Figure 5.32 shows that we do not need to be particularly careful with choosing the
number of workers when T < 1 because the difference in speedup is small. When T ≥ 1,
it becomes more important to correctly choose the number of workers in order to avoid

131



Number of workers

S
pe

ed
up

4.5

5.0

5.5

6.0

6.5

7.0

7.5

16 17 18 19 20 21 22 23 24

T (100 us)

0.25

0.5

1

2

4

8

16

Number of workers

S
te

al
 r

at
e 

(1
/s

)

50000

100000

150000

200000

250000

300000

350000

16 17 18 19 20 21 22 23 24

T (100 us)

0.25

0.5

1

2

4

8

16

Figure 5.32.: Scatter/gather on 8 CPUs with 16–24 workers and varying work per message
T: speedup and spin rate under WS-LAST.

the effects of the overflow batch described in the previous experiment. At T = 1, the
speedup for n = 24 is 1.28 times grater than for n = 17; at T = 16, this factor becomes
1.39. Similarly, if T is held constant, increasing the number of workers can avoid the
performance loss caused by the overflow batch. In other words, the amount of work per
message and the number of workers should not be chosen independently if one aims to
achieve good performance. Larger work amounts per message give a better speedup,
but they are also more sensitive to the number of workers.

To confirm the hypothesis about workers running in synchrony which we made in
the previous experiment, we have modified the scatter/gather benchmark to perturb the
work amount T for each received message, thus obtaining the perturbed value T′. T′ is
obtained by T′ = αT, where α is a random number drawn from a uniform distribution
covering the interval α ∈ [1 − ι/2, 1 + ι/2]. Here, ι is the jitter amount; e.g., jitter of
20% corresponds to ι = 0.2. By drawing α from a symmetric interval centered at 1, we
achieve that the expected value of T′ equals T, so the total expected amount of CPU time
spent by workers will be the same as without perturbation.

Figure 5.33 show the effects of perturbing the work amount per message. We can
see that perturbation indeed does help to smooth out the sawtooth shape that was
so manifest in figure 5.32. It is, however, somewhat surprising that a relatively large
perturbation of 30% in each direction, i.e., ±60µs peak-to-peak, is needed to smooth
out the sawtooth shape. We can also see that perturbation can have either a positive
or negative effect on speedup. When n belongs to the lowest 1/4 of the sawtooth
period (n ∈ {17, 18}), a more uneven distribution of work across messages (larger ι)
gives better speedup than a more even distribution. Conversely, when n belongs to the
upper half-period of the sawtooth, larger ι gives worse speedup. n = 19 is the cross-
over point where speedup is independent of the jitter intensity. Thus, contrary to the
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Figure 5.33.: Scatter/gather on 8 CPUs with 16–24 workers with T = 2 and jitter of 0, 20,
40 and 60%: speedup and spin rate under WS-LAST.

“common wisdom” of evenly distributing work, this experiment shows that somewhat
uneven distribution of work might in certain cases achieve better speedup than even
distribution.

The results of this experiment are also significant in a wider context. For example,
common distributed MapReduce implementations [8, 27] will wait that all Map tasks
finish before starting Reduce tasks [96]. Similarly, when several MapReduce are chained
together, which is a common practice [9], the Map tasks of the next computation must
wait that all Reduce tasks of the current computation finish. In other words, there is
a barrier between each computation stage, which resembles our scatter/gather bench-
mark. The resemblance does not stop there, because the tasks run for approximately the
same duration, i.e., they execute in “waves” [96], which are analogous to our batches.
Thus we also recommend that MapReduce computations be configured so that the total
number of workers in each of Map and Reduce stages is divisible by the total number
of CPUs across all nodes involved in the computation.

5.3.2.3. Discussion

We have evaluated performance of the original work-stealing algorithm (WS-CUR) and
our modification (WS-LAST, described in section 4.2.2.4). The main goal was to un-
derstand the performance of WS under different workloads and different parallelism
granularities. In this respect, our evaluation complements the work of Saha et al. [83].
Even though they emphasize that fine-grained parallelism is important in large-scale
CMP design, they have not attempted to quantify parallelism granularity. By using a
cycle-accurate simulator, they investigated the scalability of work-stealing on a CPU
having up to 32 cores, where each core executes 4 hardware threads round-robin. Their
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main finding is that contention over run-queues generated by WS can limit, or even
worsen, application performance as new cores are added. They have found that appli-
cations perform better with static partitioning of load in such cases, but they have not
described the algorithm used for static partitioning.

We deem that their results do not give a full picture about WS performance, because
contention depends on three additional factors, neither of which is discussed in their
paper, and all of which can be used to reduce contention:

• Decreasing the number of CPUs to match the average parallelism available in the
application.

• Overdecomposing an application, i.e., increasing the total number of processes in
the system proportionally with the number of CPUs.

• Increasing the amount of work a process performs before it blocks again.

The average parellelism is a property intrinsic to the problem at hand and little can be
done to change it. Nevertheless, even if the number of CPUs is less than or equal than
the application’s average parallelism, the choice of other two factors can significantly
influence the overall performance. Our evaluations thus focus on determining how to
choose the number of processes and amount of work to achieve good scalability. In
our evaluations, we have used the “rule of thumb” that an application has satisfactory
performance on 8 CPUs if the speedup relative to the running time on 1 CPU is ≥ 7.

The ring benchmark is anomalous in that only a single process is running at any
moment, and that no work is performed per message. By executing this benchmark on
1 CPU, we have found that the median time of a single transaction is ∼ 0.9µs with 50
processes, and ∼ 1.3µs with 1000 processes. On several CPUs, there is a big qualitative
difference in performance between WS-CUR and WS-LAST. The transaction time under
WS-CUR jumps to ∼ 3µs on 2 CPUs and remains approximately constant on up to 8
CPUs. On the other hand, the transaction time under WS-LAST increases linearly with
the number of CPUs.

The 50-stage pipeline benchmark represents a common programming idiom. We
have found that the best speedup (almost 8 on 8 CPUs) is achieved when all the channels
in the pipeline are full, which minimizes the number of context switches. In this
benchmark, we have divided the total work amount (50 CPU seconds) into chunks as
small as 10µs, with only small performance degradation. The best speedup of 7.95
was achieved was achieved for work division of 100µs per message, which is also the
smallest chunk size that fills all channels. With work amount of 10µs per chunk the
speedup decreased to 7.76.

The scatter/gather benchmark represents another common programming idiom. The
performance of this pattern is hard to characterize, and we had to perform five different
experiments to fully understand it. There is a big qualitative difference between WS-
CUR and WS-LAST: as work per message w falls below 1000µs, both algorithms degrade
in performance, but WS-CUR much more so than WS-LAST. As w drops from 1000µs
to 100µs with 50 workers, the drops from 6.9 to 5.3 under WS-CUR, but much less,
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from 7.1 to 6.8 under WS-LAST. The trend continues: as w grows, the speedup under
WS-CUR appears to decay exponentially, but under WS-LAST it drops only linearly (see
figure 5.27). The same figure shows that speedup depends on the number of workers
n: there is a significant gain as n increases from 50 to 250, and somewhat smaller gain
as n increases towards 1000.

Further experiments have shown that the best speedup is obtained with relatively
large w ≥ 100µs, but that in those cases, n must be large or divisible by the number of
CPUs N (N = 8 in our case). When n is small (in our case, 16 – 24), and not divisible by
N, an uneven distribution of work may in some cases improve speedup. Also, WS-LAST
reaches the speedup plateau at larger work divisions than WS-CUR, which indicates
that WS-LAST is better-suited to fine-grained parallelism, at least with scatter/gather
workloads.

As expected, we have also observed a consistent inversely-proportional relationship
between speedup and the steal rate. On 8 CPUs, a satisfactory speedup (≥ 7) is obtained
as long as all CPUs together perform fewer than ∼ 105 steal attempts per second.

WS-CUR and WS-LAST have otherwise almost the same performance characteristics
for other workloads of section 5.2.1. Based on the above discussions, we give several
guidelines for using work-stealing scheduling algorithms on machines with up to 8
CPUs:

• WS gives good performance if each process performs at least 100µs (∼ 100 times
larger than transaction cost) of work, independently of the network topology,
between it is waken up and it blocks again.

• Alternatively, the rate of steal attempts, summed over all CPUs, should be held
under 105 per second. Depending on the network topology, this allows in some
cases even more fine-grained parallelism, down to 10µs of work per message.

• An unexpected result is that speedup of the scatter/gather topology is heavily
influenced by the number of worker KPs. We thus recommend that the number of
workers be made divisible by the number of CPUs in cases where they all perform
approximately equal amount of work.

Finally, another contribution of our experiments is demonstrating that work-stealing
can in certain scenarios perform worse than theoretical analyses indicate (see sec-
tion 4.2.2), even with many workers and coarse-grained parallelism. The scatter/gather
benchmark, an often-encountered type of workload, has proven to be especially elusive
to efficient scheduling with work-stealing. A simple modification (WS-LAST) of the
work stealing algorithm can bring significant performance benefits, without negative
impact on other workloads.

5.3.3. Conclusions

In this section, we have evaluated load-balancing algorithms based on work-stealing
and on graph partitioning. For the latter, we have adapted the algorithm of Devine
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et al. [31, 32] to KPNs and augmented it with a run-time heuristic that triggers load-
balancing when the idle time has exeeded a user-specified threshold. Algorithms based
on graph-partitioning are usually applied to structured applications, such as large-scale
simulations. Our work is the first evaluation of performance of such algorithms on less
structured workloads, such as KPNs, that we are aware of.

In the first set of experiments (section 5.3.1), we have compared performance of the
two algorithms on the synthetic workloads from section 5.2. This study has revealed
that graph partitioning significantly increases locality of message traffic, which also
decreases contention over channels. However, we found no correlation between local-
ity and speedup. Furthermore, application running times under Devine’s algorithm
have very large variance, as illustrated in figure 5.25. This makes it clearly unsuit-
able as a general-purpose load-balancing algorithm on multi-core machines. Because
of its inability to achieve consistent running times with the same workload, its use in
distributed systems with unstructured workloads is also questionable, as it is hard to
correlate resource allocation with expected speedup. We therefore recommend that
the work-stealing be used as a general-purpose load-balancing algorithm on multi-core
machines.

In the first set of experiments, we have also noticed that the achieved speedup under
work-stealing was related to parallelism granularity. In the second set of experiments
(section 5.3.2), we have further investigated this aspect. There, we have studied the orig-
inal work-stealing algorithm (WS-CUR) and our modified work-stealing (WS-LAST),
which we have described in section 4.2.2.4. In these experiments, we used the ring and
pipeline benchmarks from section 5.2, and scatter/gather that we designed just for this
experiment set. WS-CUR and WS-LAST have the same performance characteristics on
all workloads, except ring and scatter/gather benchmarks. On ring benchmark, WS-
CUR performs best, while on scatter/gather benchmark, WS-LAST performs best. On
8 CPUs, work-stealing achieves a speedup greater than 7 if each KP performs at least
100µs of work between it is unblocked and blocks again, and this result is independent
of KPN topology. Alternatively, the same speedup is achieved when the number of
steal attempts per seconds is held under 105.

5.4. Summary

In this chapter, we have examined performance of applications when implemented in
the KPN framework, low-level performance aspects of Nornir, as well as three schedul-
ing strategies. For the latter two evaluations, we have designed and implemented a set
of synthetic benchmarks which we have run in different Nornir configurations.

In all of our experiments, we have used a default channel capacity of 64 items.
We did not investigate lower or higher values because of their predictable impact
on performance. Lower values would increase scheduling and deadlock-detection
overheads relative to the total running time of the program, which might nevertheless
be justifiable in memory-constrained (embedded) systems.13 Higher values would

13Though, in a memory-constrained system, channel capacities would usually be carefully designed
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decrease overheads, so it would be harder to investigate their impact on the overall
performance.

To evaluate application performance, we have used the word-count and k-means
programs developed in chapter 3. We have compared their performance when running
on top of Nornir and Phoenix [26], which is optimized for multi-core CPUs. Our exper-
iments show that these applications run up to 2.7 and 1.7 times faster on Nornir than
on Phoenix. The main reason for this performance improvement is that the KPN frame-
work gives more flexibility in modeling application, which allows avoiding unnecessary
work.

The evaluation of implementation options shows that the m:n scheduler combined
with our optimized message-passing achieves better performance than the 1:1 scheduler
in combination with either POSIX message queues or our optimzied transport. Our m:n
scheduler is cooperative and performs context switch in user-space which significantly
reduces scheduling overheads: the ring benchmark runs up to 6.5 times faster than with
the 1:1 scheduler. Since communication is 1:1, it can be implemented more efficiently
than the general m:n semantics of POSIX message queues: our zero-copy message
transport has 1.7–1.9 less overhead than than POSIX message queues.

General performance evaluation of Nornir shows that the implementation scales well
with the number of CPUs, and that benchmarks with enough available parallelism
achieve almost an 8-fold speedup on 8 CPUs. Even though we have used mutexes to
protect the runner’s run-queues, we have noticed only very slight scalability problems
due to contention. On the other hand, our results indicate that the centralized deadlock
detection algorithm can severely degrade performance: our random graph benchmarks
indicate that the maximum feasible rate is ∼ 50000 started deadlock detections per
second on 8 CPUs. Thus, implementing a distributed deadlock detection mechanism,
such as the one described in [22], is the first step towards improving Nornir. In the
mean-time, negative impact of the centralized algorithm can be alleviated in two ways,
both of which reduce the frequency of deadlock detections: by increasing initial channel
capacities (they were set to 64 in our benchmarks), or by performing more work per
message, which effectively decreases the total message throughput.

We have also evaluated performance of three dynamic load-balancing strategies:
the original work-stealing algorithm (WS-CUR), work-stealing with our modification
described in section 4.2.2 (WS-LAST) and the method based on graph partitioning (GP)
described in section 4.2.3. These evaluations have been run with deadlock detection
turned off in order to obtain more general results. The most important results of our
evaluation can be summarized as follows:

• On a multi-core machine, work-stealing gives better speedup that GP for general-
purpose workloads. The main problem with GP is its unpredictable performace,
as demonstrated by figure 5.25.

• Work-stealing is sensitive to work division d (amount of CPU time used per
message), but also robust: performance degrades smoothly as d moves from the

instead of set to a default value.
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optimal value in either direction.

• WS-LAST and WS-CUR have practically the same performance characteristics,
except on two specific topologies: ring (where WS-CUR performs better, and GP
performs even better than WS-CUR) and scatter/gather (where WS-LAST performs
better).

• The number of workers n in the scatter/gather benchmark has a big influence on
speedup: the best speedup is obtained when n is divisible by the number of CPUs.

Our evaluation of the work-stealing algorithm thus complements the findings of Saha
et al. [83] who have not tried to relate work division with potential scalability problems
of the work-stealing algorithm.
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6. Conclusion and further directions

To reduce power consumption, modern CPUs run at lower frequencies than their pre-
decessors and compensate the reduced sequential performance with having more ex-
ecution units on the same chip. Existing applications will thus run slower on new
CPUs, unless they are redesigned to exploit the on-chip parallelism. Also, computing
requirements of new applications are constantly growing – examples are games, multi-
media transcoding and processing of large data amounts (stream processing). Parallel
programming techniques, however, have developed at a much slower pace, and most
parallel applications targeted towards workstation-class machines still use low-level
and non-deterministic mechanisms such as threads, mutexes and condition variables.

Even though industry-backed solutions such as MapReduce [8] and Dryad [10] have
been developed, they have two drawbacks in our context: they target large-scale dis-
tributed systems instad of multi-core machines, and they lack support for applications
with feedback loops in their data-path. Being able to model feedback loops is a “must
have” for a parallel programming framework as they appear quite often: the k-means
application and H.264 benchmark are realistic examples used in this thesis. We have
therefore proposed the use of Kahn process networks [12] (KPNs) as a one way of
addressing the disparity between recent hardware and software developments. Even
though KPNs offer a more flexible programming framework than existing frameworks,
they do not incur increased complexity on the developer. Indeed, many of their desir-
able properties are also shared by the other frameworks:

• Determinism guarantees that the program will behave identically on each exe-
cution. Potential problems can therefore be reliably reproduced, diagnosed and
fixed, which is an otherwise notoriously difficult with parallel and distributed
applications.

• Processes share no state; the only means of communication through explicit mes-
sage send and receive operations. This style of programming is analogous to
developing applications handling ordinary files or network communication.

• Processes are written in the usual sequential style. Developers can therefore
quickly become productive in the parallel programming domain using their ex-
isting knowledge.

• The assumptions underlying the KPN model are very general. Specifically, given
a distributed KPN run-time, it would be possible to execute unmodified application
in a parallel and distributed manner.
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Since none of the existing KPN run-time implementations [20, 19, 15, 21, 22] satisfied
our requirements stated in introduction, we have developed Nornir, a run-time environ-
ment for executing KPNs on multi-core machines. During implementation phase, we
have focused on configurability, portability, simplicity, and performance.1 These prop-
erties, together with collection of detailed run-time statistics, distinguish Nornir from
the mentioned existing KPN frameworks. Generality, including support for feedback
loops, and orientation towards efficiency on a single machine, distinguish Nornir from
frameworks described in the related work, such as Google’s MapReduce [8], Microsoft’s
Dryad [10], Cosmos with its programming language Scope [11] systems. IBM’s System
S with its programming language SPADE [13], which have been developed in parallel
with our work, seem to be the only existing system whose features come close to Nornir.
Very few details have been published about this system, and it is not available to the
general public.

6.1. Review of problem statement and contributions

Our initial idea has been to investigate how KPNs can be used to address the limitations
of existing frameworks. In section 1.2, we have therefore raised 4 research questions:

• How can we make an efficient run-time system for executing KPNs on multi-core
machines?

To answer this question, we have implemented Nornir, which is an implemen-
tation of a configurable, cross-platform, and efficient run-time environment for
executing KPNs. (See chapter 4.) Nornir is modular so that message-passing,
scheduling and load-balancing mechanisms can be replaced transparently to ap-
plications. Currently, Nornir offers the choice between 1:1 and m:n schedulers
and three different load-balancing algorithms; its m:n scheduler scales well with
the number of KPs and CPUs. We have measured that the cost of a single mes-
sage send/receive operation combined with a context switch in a KPN with 1000
KPs takes ∼ 0.8µs, which is comparable to other user-space scheduler implemen-
tations: Saha et al. [83] have measured the context switch cost of 0.748µs on a
machine slightly faster than ours.

• Are KPNs applicable to parallelizing general-purpose applications and what is
the required effort of doing so?

To answer this question, we have thoroughly analyzed the MapReduce model and
sample applications developed for Phoenix [26]. Our analyses have revealed that
many applications do not need all steps performed by MapReduce, and that their
performance could be improved by reimplementing them within the more flexible
KPN framework. This is especially important in the context of running on one
machine, where doing unnecessary work has much larger impact on performance

1Simplicity came first, though. We were guided by D. E. Knuth’s maxim “[. . . ] premature optimization
is the root of all evil.”
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than in a distributed scenario that MapReduce was designed for. We have also
devised three ways of implementing the MapReduce semantics within the KPN
framework.

• What are the performance characteristics of applications implemented within the
KPN framework?

To answer it, we have implemented the word-frequency and k-means applications,
which are canonical MapReduce examples, within the Nornir KPN framework in
two ways. The “natural” solution builds a KPN taking a starting point in the
sequential program, while the “MapReduce” KPN solves the problem by exactly
implementing the MapReduce semantics within the KPN framework. Our im-
plementations and benchmarks clearly demonstrate the advantages of using the
flexible KPN framework. Unlike MapReduce, the KPN model does not enforce the
key-value paradigm, so the implementations of individual KPs for each problem
resemble very much their sequential counterparts; the only differences are added
communication statements. Our benchmarks show that the “natural” KPN so-
lutions outperform their MapReduce solutions by a factor of 2.95 – 6.74 for the
word-frequency application and by a factor of 1.17 – 1.54 on the k-means ap-
plication. Our “natural” solutions also outperform their corresponding Phoenix
implementations by factors of 2.65 – 2.76 and 1.28 – 1.75, respectively. The vari-
ation in speedup is due to different problem sizes used for benchmarking the
applications.

• As part of answering the previous question, we have also designed a number of
synthetic workloads with adjustable parallelism granularity. Given the right gran-
ularity, which depends on the workload in question, all benchmarks except H.264
have achieved an 8-fold speedup on 8 CPUs. The reason for the limited speedup
of H.264 (which was 2.73) are data-dependencies in the KPN which limit the avail-
able parallelism in the KPN. These benchmarks, have also revealed a significant
bottleneck in the current Nornir implementation – centralized deadlock detec-
tion algorithm. As a short-term solution, we have proposed to use larger default
channel capacities (all our benchmarks used capacity of 64 messages); a long-term
solution is implementing a distributed deadlock detection algorithm [22].

• What is the effect of KPN scheduling policies on application performance?

To answer this question, we have implemented the work-stealing scheduling
algorithm [30], and a load-balancing algorithm by Devine et al. [31, 32]. The
latter algorithm is based on graph-partitioning and tries to reduce message traffic
between KPs on different CPUs as well as KP migration. This algorithm is usually
used for load-balancing structured computations in distributed systems, and we
believe to be the first to evaluate it using unstructured workloads and multi-
core machines. Our evaluations using synthetic benchmarks show that work-
stealing has clear advantage over Devine’s algorithm for scheduling workloads
on multi-core machines: applications never achieved as good speedup as with
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work-stealing, and in some cases it was much worse. We have also found a
serious problem with their algorithm applied to our workloads: large variance
of running times between consecutive runs of a single experiment, an aspect not
discussed by the authors. This finding is of significance also in the context of
distributed systems: it indicates that load-balancing based on graph partitioning,
which is a key ingredient in Devine’s algorithm, should be judiciously used with
unstructured workloads.

• As a part of answering the previous question, we have also found a simple im-
provement to the original work-stealing algorithm. This improvement signifi-
cantly benefits workloads of scatter/gather type, which are an important class of
workloads, with no ill effects on other workloads. Our experimental results have
shown that scatter/gather workloads can achieve worse speedup than predicted
by the theoretical analysis of the work-stealing algorithm; this happens when the
number of worker KPs is not divisible by the number of CPUs. We have also found
that in this case, an uneven distribution of load might actually have a beneficial
effect.

6.2. A critical review

A perfect work (masterpiece) is rarely found, and it is next-to-impossible to achieve
perfection in the limited time available for fulfilling a PhD degree. We have identified
certain limitations of our work, which addressing is left for future work.

We have run our benchmarks only machines with up to 8 cores. This, however, is not
our choice, but a consequence of circumstances – we do not have machines with more
cores in our lab.

We have chosen to using mutexes for protecting the run-queues in the work-stealing
algorithm instead of using the non-blocking dequeue of Blumofe et al. [47]. Our choice
was guided by our desire for simplicity, existing studies [83], and experience of others
who claim that “[. . . ] wait- and lock-free data structures are to be avoided as their
failure modes are brutal (livelock is much nastier to debug than deadlock), their effect
on complexity and the maintenance burden is significant, and their benefit in terms
of performance is usually nil” [97]. Furthermore, using the lock-free dequeue would
prevent us in implementing our modification to the work-stealing algorithm, so the
performance comparisons would not be performed on the same grounds.

We do not recommend general-purpose use of our heuristics for determining when to
rebalance the load for Devine’s load-balancing algorithm. Depending on the workload,
certain values of the idle time interval parameter τ can cause very frequent repartition-
ings and extreme degradation in performance. However, we had no existing work to
guide us, and it is impossible to know whether an idea is good until it is actually im-
plemented and tested. We are not aware of other attempts to apply Devine’s and other
load-balancing algorithms based on graph-partitioning to unstructured workloads on
multi-core machines.
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Many of our conclusions are based on synthetic workloads. The advantage of syn-
thetic workloads is that they make it easy to accurately control the actual workload and
to pinpoint potential performance problems. The disadvantage is that it is uncertain
how well they model actual applications, and that they model only one aspect, namely
CPU usage, while neglecting aspects such as memory access patterns. However, we
have used also real workloads, and one of our synthetic workloads, H.264 encoder,
bases its CPU usage patterns on data obtained by profiling.

6.3. Future directions

With our experimental studies, we have found and quantified some inefficiencies in
Nornir, and proposed improvements in section 5.2.4. Implementing these improve-
ments and evaluating their impact on performance, also on larger machines, is one
future direction that addresses the first two of the above limitations.

We judge the overall results presented in this thesis as positive, and we are consid-
ering to extend Nornir to support distributed execution and use it in the context of the
VERDIONE project [98], which requires a lot of computational resources for 3D video
processing. Distributed execution opens at least two new challenges: extending chan-
nels to simultaneously support multiple transport mechanisms (e.g., sockets alongside
of the existing mechanism), and implementing a distributed termination protocol [99].
For this application, we also envision a two-level load-balancing algorithm, where the
upper level would place KPs across machines according to their communication and
memory requirements, while the lower level would use work-stealing to schedule KPs
within one machine.

We have also noticed that Devine’s load-balancing algorithm does not faithfully
model NUMA architectures. The algorithm assumes that a process migrates to a new
node together with its data, but this is often not the case with applications executing
on shared-memory NUMA machines. Developing models that take into account also
the costs of a process accessing its own data is another direction for future research.
Although not so important for our tests, such models will become more important as
the number of cores in a computer system increases.

Our experimental evaluation of Devine’s algorithm reveals a great variability of run-
ning times between consecutive runs of the same experiment, a result that is also signifi-
cant for distributed systems. In this context, further investigation of Devine’s algorithm
with unstructured workloads is warranted because they have not discussed variance of
running time in their publications. Also, its unpredictable performance makes it hard
to estimate the application’s completion time and to provision resources accordingly.
Thus, we need dynamic load-balancing algorithms that balance load across CPUs and
minimze inter-CPU (or, in distributed scenario, inter-machine) traffic, but yielding more
predictable running times. Future research in this area includes two smaller problems:
developing graph-partitioning algorithms that produce stable results, and developing
better algorithms for detecting load-imbalance in an application on a small time-scale.
These research directions would address the third of the above limitations.
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Lastly, our investigation work-stealing algorithm performance has opened further
questions. Our modification of work-stealing invalidates all stated reasons for using
the LIFO policy for accessing the run-queues. It would thus be interesting to investigate
whether changing this to FIFO would have any performance impact. Also, the exper-
iments with the scatter/gather benchmark systematically achieve speedups lower than
those predicted by existing theoretical analyses (see section 4.2.2.5). Thus, it would be
interesting to repeat our experiments on machines with more cores to find the causes
of these discrepancies and possibly extend existing analytical developments. These
experiments would address the fourth of the above limitations.
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A. Review of graph theory concepts

To make the thesis self-contained, we give a short and rather informal overview of
elementary terms from graph theory. A much more comprehensive and rigorous intro-
duction may be found in [100].1

An undirected graph G is a pair G = (V,E) where V is the set of vertices and E is a set
of edges, where each edge connect exactly two vertices. Formally, an edge e ∈ E is a
two-element subset of V, i.e., e = {v j, vk} for some v j, vk ∈ V with v j , vk. For example,
the graph in figure A.1a has V = {v1, v2, . . . , v6} and E = {e1, . . . , e7} = {{v1, v2}, {v1, v3},
{v2, v3}, {v2, v4}, {v3, v6}, {v5, v6}, {v4, v5}}.

v1 v2

v3 v4

v5v6

e1

e2 e3 e4

e5

e6

e7

(a) Undirected graph U.

v1 v2

v3 v4

v5v6

e1

e2 e3

e4

e5

e6

e7

e8

e9

(b) Directed graph D.

Figure A.1.: Examples of graphs.

A directed graph G is defined similarly as undirected graph, except that E ⊆ V × V,
i.e., each edge is an ordered pair of vertices (v1, v2) with v1, v2 ∈ V; v1 is the source vertex
and v2 is the target vertex of the edge. For the graph in figure A.1b, V = {v1, v2, . . . , v6},
E = {e1, . . . , e10} = {(v1, v2), (v3, v1), (v2, v3), (v2, v4), (v3, v6), (v5, v6), (v5, v4), (v4, v2), (v4, v4)}.
The directedness of the graph is represented by the arrows from the source to the target
vertex on the edges.

An undirected graph may be represented as a directed graph where each undirected
edge is represented as two edges in opposing directions in the directed graph. For
example, e4 from graph in figure A.1a would be transformed into edges e4 and e8 in the
directed graph.

A path in a graph from vertex s to vertex e is an alternating list of vertices and edges,
starting with s and ending with e. If the graph is directed, then edges must be followed
in their directions. For example, v6, e6, v5, e7, v4 is a path from v6 to v4 graph U, but not

1The book is also available online at http://www.math.uni-hamburg.de/home/diestel/books/graph.
theory/index.html
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Figure A.2.: Example of a minimal-weight cut separating v1 and v6. The cut consists
of edges (v1, v2) and (v3, v5) (thick lines) and has weight of 3 + 2 = 5. The vertex set is
partitioned into parts S = {v1, v3} and T = {v2, v4, v5, v6}.

in graph D because there is no directed edge from v6 to v5. A loop is an edge which
connects the vertex to itself (v4).

A weighted graph has associated weights with edges, vertices, or both, i.e., weight is
a function wS : S → <, where S is V or E. Weight of the path is the sum of weights of
edges within the path. Weight of a subset of vertices V′ ⊆ V is the sum of weights of
individual vertices in V′.

Given a (directed or undirected) graph G = (V,E) and s, t ∈ V, an s-t cut is a subset
of edges C ⊂ E whose removal disconnets the vertices s and t. In other words, after
removing edges in C, the graph will have been partitioned into two components with
vertex sets S and T, such that s ∈ S, t ∈ T and such that there does not exist a path from
any vertex in S to any vertex in T, or vice-versa.

If the graph has weighted edges, a problem of particular importance for us is finding
an s-t cut C of minimal weight, i.e., a cut that minimizes the sum

∑

ei∈C
we(ei); note that

there may be several cuts with the same minimal weight. Figure A.2 shows an example
of a minimal-weight cut in a directed graph.

The concepts described for undirected graphs can be generalized to hypergraphs and
hyperedges. Formally, a hypergraph HG = (V,H) consists of the set of vertices V and set
of hyperedges H. Whereas an edge in a graph is a vertex subset with size of exactly 2,
each hyperedge h ∈ H in a hypergraph is a vertex subset of arbitrary size, i.e, h ⊆ V and
1 ≤ h ≤ |V|; this is awkward to visualize and we shall not attempt to do so in here. All
concepts described for graphs so far can be directly carried over to hypergraphs. Due
to their greater generality, there are several metrics which can be used to evaluate the
cost c of a cut; in this work we use the (k − 1)-metric:

c =
∑

hi∈H

wi(λi − 1)

where the sum is evaluated over all hyperedges, wi is the weight assigned to hyperedge
hi and λi is the number of different parts that the hyperedge spans. Note that the
hyperedge’s contribution to c is 0 if all of its vertices are contained in the same partition.
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B. Graph cuts and partitions

In section B.1 we describe approaches for solving the k-cut problem, which reduces
communication across partitions, but does attempt to make the vertex partition bal-
anced, i.e., such that all partitions are of approximately equal weight. In section B.2
we review graph bisection algorithms, which partition the graph into two parts of pre-
specified weight ratio and reduced cut size. In section B.3 we show how a bisection
algorithm can be used to partition a graph into k parts. Finally, in section B.4 we discuss
a graph mapping problem which is used in contexts wit nonuniform communication
costs between pairs of nodes in a distributed system.

B.1. The k-cut problem

The k-cut problem may be formally defined as follows. Given an undirected graph
G = (V,E) with non-negative edge weights, and an integer k, find a subset of edges of
minimum weight, S ⊆ E, whose removal leaves a graph with k connected components.
This problem is NP-hard for general graphs and arbitrary k, but polynomial algorithms
are known for fixed k:

• For general graphs an infeasible, though polynomial, algorithm of complexity
O(nk2

T(n,m)) is described in [101], where T(n,m) is the running time required to
find minimum (s, t) cut on a graph.

• An exact algorithm for planar graphs may be found in [102]; its complexity is
O(nck) for some constant c.

In the above descriptions we have used n = |V| and m = |E|; these short-hands shall be
used throughout this section.

B.1.1. Maximum flow and (2-)cut of a graph

Given two vertices s and t, a cut of the graph (V,E) is a subset of edges whose removal
partitions the graph into two components S ⊂ V and T ⊂ V such that s ∈ S and t ∈ T.
The “max-flow, min-cut” theorem [103, 104] states that the maximum amount of flow
through the network is equal to the capacity of a minimal cut. Consequently, an obvious
way of finding a minimal cut is to find the maximum flow in the graph.

The first maximal-flow algorithm was developed by Ford and Fulkerson [104] and
has a complexity of O(m f ) where f is the value of the maximal flow; note that the
algorithm is not polynomial because the running time depends on f . Polynomial-time
algorithms have followed: O(n3) algorithm of Edmonds and Karp [105], Dinic’s O(mn2)

157



algorithm [106], and O(n3) algorithm of Tarjan and Goldberg [107]. The running time of
the latter algorithm may be improved to O(nm log(n2/m)) by using a dynamic tree data
structure [108].

Recent research has developed algorithms that directly find the cut of a graph, thus
avoiding an intermediate max-flow computation. Stoer and Wagner [109] present a
simple minimum-cut algorithm with complexity of O(nm+n2 log n) when implemented
with the help of a Fibonacci heap [110].

B.1.2. Saran-Vazirani algorithm

Two simple and greedy approximation algorithms, “efficient” and “split”, for comput-
ing a k-cut of a graph are given in [111]. Both algorithms find a cut whose weight is
within a factor of 2 − 2/k of the optimal. By constructing a Gomory-Hu tree [112] using
the Tarjan’s max-flow algorithm, which is executed n−1 times, the “efficient” algorithm
achieves a running time of O(mn2 + n3+ε) for any ε > 0. Their “split” algorithm requires
O(kn) cut computations to find a k-cut.

B.2. Graph bisection

The goal of a graph bipartitioning (or bisection) algorithm is to partition the set of
vertices into two sets of given weight ratio, such that the cut weight is minimized.

B.2.1. KL heuristics

The first, and still one of the most cited bisection algorithms is that of Kernighan and
Lin (KL) algorithm [113], with complexity of O(n2 log n). The algorithm is designed for
graphs where all vertices have the same (unit) weight, and the quality of the approxi-
mated bisection is investigated empirically.

The algorithm is also applicable to graphs having vertices of weight w > 1. In this
case, each such vertex is converted to a cluster of w vertices of unit weight. These vertices
are then connected by edges of sufficiently high cost to form a complete graph, which
prevents them from being assigned to different parts. Obviously, this approach can
significantly increase the running time of the algorithm, since the complexity becomes
O(W2 log W) where W is the sum of all vertex weights.

To partition the graph into k > 2 parts, the algorithm is repeatedly applied to pairs
of vertex subsets starting from some initial partitioning into k parts. This increases the
algorithm’s complexity since there are

(k
2
)

pairs of subsets. Furthermore, this method
is limited to swapping vertices between two subsets at a time, whereas much better
results could be obtained by swapping vertices between 3, 4, or more sets at a time.
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B.2.2. FM heuristics

Fiduccia and Mattheyses (FM) heuristics [114] is an almost linear-time variant of the KL-
heuristics with running time O(Mn), M being the largest vertex weight in the graph.1

Unlike the KL-algorithm, which is based on swaps, FM-heuristics is based on vertex
moves. In addition, the algorithm is defined for hypergraphs, and it can handle vertices
of weights w > 1 without the need for introducing extra vertices.

The data structure used by the algorithm as presented by the authors is an array of
linked lists, with the array being indexed by vertex weight. Searching for the next-
lightest vertex, a step often executed by the algorithm, is therefore an O(M) operation.
Thus, the algorithm is slowed down in in presence of large vertex weights, but by a
smaller factor than the KL heuristics.

The array can be replaced by a balanced tree sorted by vertex weights. In this case,
the search for the next-lightest vertex is logarithmic in the number of different vertex
weights. Such data structure will also yield significant space savings when weights are
a sparse subset of the set {1, 2, . . . ,M}.

B.3. The k-partition problem

The graph partitioning problem may be formally defined as follows. Given an undi-
rected graph G = (V,E), where both edges and vertices have non-negative weights, and
an integer k, partition the vertex set into k disjoint subsets Si ⊂ V, 1 ≤ i ≤ k with the
following objective:

• The weights of Si should be as close to each other as possible, i.e.,
∑

1≤i< j≤k

|w(Si) − w(S j)|

should be minimized (it is also said that the partition is balanced).

• The total cost of the cuts
∑

1≤i< j≤k

Ci j

shold be minimized, where Ci j is the cost of the cut between Si and S j.

This problem is also NP-hard for general graphs, and it is, in a sense, even harder than
the k-cut problem because even finding good approximation solutions, also for planar
graphs, is NP-hard [115]. Therefore, a number of heuristics2 have been developed to
tackle the problem.

1Technically, it is trivial to modify the algorithm so that the running time is proportional to the difference
between the largest and smallest vertex weight.

2Approximation algorithms guarantee an upper bound on the discrepancy between the quality of ap-
proximate and optimal solution. Heuristic methods provide no such guarantees.
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B.3.1. Theoretical bounds

As already mentioned, even finding good approximations to the graph partitioning
problem is NP-hard. The problem is first generalized to finding a (k, ν) partition where
the graph is partitioned into k pieces of size at most νn

k , while minimizing the edge
weight between partitions.

The work of Even [116] defines a new problem, finding minimum capacityρ-separators,
that can be used for solving the partitioning problem. Their algorithm focuses on the
case ν ≥ 2 and it achieves an approximation ratio of O(log n).

A recent work [117] considers the (k, 1+ε) partitioning problem for arbitrary ε, where
two significant results are derived:

• The (k, 1) partitioning problem has no polynomial-time approximation within
finite approximation factor, unless P=NP.

• An algorithm which finds a partitioning where each component contains at most
(1 + ε)n

k nodes and cut weight at most O(log2 n/ε4) within the optimal.

However, for constant k, efficient approximation algorithms may exist, and one for the
(2, 1) partitioning problem is presented in [118]; their approximation is within O(log2 n)
within the optimal.

Saran and Vazirani [111] have also developed an algorithm for finding an approximate
solution to the graph bisection problem, whose running time is dominated by the time
needed to find the Gomory-Hu tree in the graph, which needs n − 1 cut computations.
Their approximation is within the factor of n/2 of the optimal solution, and when
extended in “a straightforward manner” to any fixed k, the approximation is within
the factor of k−1

k n within the optimal solution. Thus, as k grows, the quality of the
approximation worsens with the size of the graph.

B.3.2. Recursive bisection

By recursively applying a graph bisection algorithm with suitably specified ratios at
each step, a graph can be partitioned into any (not necessarily power of two) number of
parts. Figure B.1 exemplifies partitioning the graph into 5 parts via recursive bisection.
Each node in the tree represents a single partition and it is labeled with the fraction of
the total graph weight that it contains. Internal tree nodes represent applications of the
bisection algorithm, while the external nodes represent the final partitions.

B.3.3. Stochastic methods

Simulated annealing is an optimization method based on concepts of statistical mechanics
which postulate that a system tends to stabilize in a state having minimal energy. The
algorithm is in detail described in [119], where the authros show how it can be applied
to hard combinatorial optimization problems such as chip placement, wire routing and
the traveling salesman problem.
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Figure B.1.: Using recursive bisection to partition the whole graph, represented by the
root node, into 5 parts.

Genetic algorithms are based on the evolutional concept of “survival of the fittest”. The
problem is encoded into “gene sequences” which are then crossed and mutated over
many iterations. Bui and Moon [120] apply a hybrid genetic algorithm to the graph
partitioning problem and evaluate their approach on many types of graphs. Hybrid
genetic algorithms apply local improvement algorithms after each iteration; the authors
use a variant of Kernighan-Lin heuristics for that purpose.

The common feature of both algorithms is that they are probabilistic, so it is hard
to analyze their running time. Some timing measurements are given in [120] and
they indicate that the genetic algorithm would be too slow to be used for dynamic
reconfiguration of a running process network on a single machine.

B.3.4. Multilevel and greedy heuristics

Multilevel approaches [121, 122] first group vertices to build clusters which become
the vertices of a coarse graph. This process is repeated until a small enough graph is
obtained on which an existing partitioning procedure is applied. The graph is then
expanded until its original configuration, and at each step a refinement is applied.
Multilevel approaches are applicable to the generalized partitioning problem where
vertices are assigned a vector of weights, and partition weights are balanced with respect
to each weight.

Battiti and Bertossi [123] propose new heuristics for graph bisection, evaluate their
performance in detail, and compare with (at the time) state of the art libraries, such as
MeTis, Chaco, Scotch or Party. The min-max greedy heuristic proposed in the paper
executes on graphs with up to 5000 vertices in under 0.1 second of CPU time in most
cases, but it can take up to 0.8 seconds in rare cases. The other libraries execute the
same test in under 0.05 seconds, but the running time can increase up to 0.6 seconds in
rare cases. The tests have been run on AlphaServer 2100 with four 250 MHz CPUs (the
programs tested are not parallel, i.e., they were using only a single CPU).

161



B.4. Mapping problem

We have so far introduced the k-cut and k-partition problems. Heuristics that solve the k-
partition problem can be used for architectures where the communication cost between
any pair of CPUs has the same cost. However, there exist architectures, so-called NUMA
(non-uniform memory architecture), where this assumption does not hold. In a NUMA
system, each CPU (also called node) has some local memory, access to which takes least
time. Remote memory access, i.e. access to local memory of another node, takes time
proportional to the number of links connecting the two nodes. An example of such
architecture is AMD64 with HyperTransport bus, where 2n CPUs are connected into a
n-dimensional hypercube (see figure C.1 for n = 2).

After the tasks of the original process graph have been assigned to individual CPUs,
a link p between any pair of processes in the original process graph will have been
mapped to a link p′ in the target architecture graph. The goal is to place intensively
communicating processes onto nearby nodes, while preserving load-balance criterion
at the same time. If the target architecture graph is a complete graph on k nodes where
all nodes and all edges have equal individual weights, the mapping problem simplifies
to the k-partition problem discussed in the previous section. Such problem is solvable,
for example, by dual recursive bipartitioning as implemented in the Scotch library [124].

162



C. Computer architecture

There are three architecture factors that are visible to software in functional or non-
functional way, and which considerably increase programming complexity of modern
computer systems: the CPU’s memory consistency model, its cache hierarchy, and
possible NUMA architecture of the whole computer. These factors also blur the line
between shared-state and message-passing concurrency.

C.1. Memory subsystem

In a NUMA system (see figure C.1), each memory access is either local or remote. Local
memory bank(s) are directly accessible through the CPU’s data and address busses, so
access to them is fastest. Accesses to memory banks attached to other CPUs (remote
accesses) are transparently converted by the hardware into messages that are forwarded
across the interconnect bus. Thus, latency and bandwidth of remote memory accesses
is dependent on the path length between the initiating CPU and the target memory bank,
as well as current link utilizations along the path.

In addition, each CPU has a small amout of cache memory, organized in hierarchical
levels, which is many times faster than dynamic RAM. The level one (L1) cache is
smallest and fastest, often matching the speed of the CPU itself. If multiple CPUs have
a copy of the sama data piece in their caches, and some CPU modifies that data, the
other caches have to be invalidated. Early NUMA systems did not perform automatic

M M

M M
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4
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7

Figure C.1.: Example of a NUMA topology. M denote memory nodes, and 0–7 are are
CPUs in the system. Assuming that all communication paths have equal bandwidth
and latency, it takes CPU 0 twice as long to access 2’s local memory and three times as
long to access 6’s local memory than its own local memory.
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invalidation, which made them simpler to build, but more complex to program since
cache coherency protocols had to be implemented in software. Cache-coherent NUMA
architectures (ccNUMA) employ special protocols in hardware, e.g. MOESI [125], to
ensure that all CPUs see consistent memory state at all times. This greatly simplifies
the programming model, but also complicates the design. The work in this thesis is
aimed towards ccNUMA architectures, more specifically, towards the widely available
systems with AMD Opteron CPUs.

Modern CPUs introduce additional difficulty by introducing relaxed memory consis-
tency model [126]. To optimize memory accesses, they can buffer memory writes and/or
reorder memory reads and writes, which can cause incorrect functioning of various al-
gorithms on machines with multiple CPUs. The needed memory ordering is achievable
by using memory barrier instructions, which ensure that memory reads and writes are
performed in the program order.

The strongest consistency model is sequential consistency where all CPUs in the system
see changes to shared memory locations in the program order. The 64-bit AMD archi-
tecture which we used for our experiments uses processor consistency, which is a slightly
weaker model.

Many operating systems implement virtual memory which gives several benefits:

• Protection and isolation between processes,

• Illusion of larger memory than is physically installed,

• Reduced memory usage by sharing code and data, where applicable.

Mapping from virtual addresses to physical addresses is defined by page tables, which are
set up by the operating system; the mapping is at run-time performed by the memory
management unit (MMU). Since main memory is slow and address translation must
be performed for every memory access, MMU caches recent address translations in a
small dedicated cache called translation lookaside buffer (TLB). If a process accesses a
location that is not cached in a TLB, a TLB miss occurs. TLB misses are usually handled
automatically by hardware, and their cost is even more expensive than a data cache
miss. The performance degradation caused by TLB misses also limits the performance
of the OS scheduler, since the TLB must be flushed on each context switch to another
process. On CPU architectures that have tagged address spaces, the performance impact
of TLB flush is somewhat reduced.

C.2. Performance effects of memory organization

To experimentally evaluate effects of memory organization on performance, we have
performed a series of tests with different workloads. The experiments have been per-
formed on an otherwise idle 2.6 GHz 4-CPU AMD Opteron machine, with 2 cores
on each CPU, and 64 GB of RAM running linux kernel 2.6.27.3. The benchmark pro-
gram is single-threaded and has been compiled as 64-bit with GCC 4.3.2 and maximum
optimizations turned on (-m64 -O3 -march=opteron).
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The program is configurable to perform operations over a block of memory in either
sequential or random order. More specifically, the following parameters are config-
urable:

• Memory block size (fixed to 1 GB in all experiments).

• NUMA policy (allocation from a specified node, or interleaved over all nodes).

• Operation to perform (byte increment or AES encryption in ECB mode).

• Order of operations (sequential or randomized).

The program binds itself to run on node 0,1 allocates the specified amount of memory,
and fills it with zeros before starting the time measurement, which is necessary to
eliminate the effects of demand-paging. In the initial experiments, without prefilling
the memory block with zeros, we have measured that demand paging has prolonged
execution by an additional 1 second spent in the kernel. Filling the memory block with
zeros before starting the benchmarking loop has reduced the loop’s system time usage
to zero.

Then, since AES block size is 16 bytes, an identity permutation of 230/16 = 226

elements is generated; the whole array takes 256MB and is accessed sequentially. If
randomization has been selected, the array is permuted by the C++ standard library
function random_shuffle. Each program run always uses the same random seed, which
in turn generates the same random permutation.

The benchmarking loop operates over blocks of 16 bytes. In case of AES, the block is
ECB-encrypted in place. In case the increment operation has been selected, each byte
within the block is sequentially accessed and incremented by one in place.

Benchmark results are shown in figure C.2. The biggest difference for both operations
is between sequential and random access. Sequential access is automatically detected
by the hardware and triggers automatic data prefetching which hides any additional
latencies caused by the NUMA architecture.

With random accesses, every access to a new 16-byte block must fetch data from RAM,
which greatly increases execution time because RAM is many times slower than the
CPU. Compared to the best case (execution on node 0 and sequential access pattern), the
increment test became slower by a factor of 9.5 (memory on node 0) to 11.24 (interleaved
allocation), and the AES test became slower by a factor of 2.6 (memory on node 0) to
∼ 3.1 (memory on node 3). Thus, latency of access to remote memory increases by ∼ 9%
for each additional “hop”.

We initially expected that interleaved allocation will have no effect on performance
for sequential accesses, and somewhat better performance than that of the worst case
for random accesses (program executing on node 0 and accessing memory on node 3)
because only 1/4 of all memory accesses will be to node 3. However, we can see that,
contrary to the expectation, interleaved allocation has increased running time both for
the increment test with random access pattern as well as for the AES test with sequential

1That is, it may execute on any of the two cores.
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Figure C.2.: Execution time for sequential and randomized accesses, with memory fixed
on some node, or interleaved over all nodes. Access pattern is either (s)equential or
(r)andom, operation is (inc)rement or (aes), and the memory is either allocated from a
single node (0-3) or (i)nterleaved over all nodes.

access pattern. Since detailed study of computer architecture is out of the scope of this
thesis, we did not attempt to find the cause of these phenomena.
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D. A complete code example

For completeness, we give a complete listing of a sample Nornir application. The follow-
ing program implements the KPN-FLEX variant of the k-means benchmark described
in section 3.3.3.

#include <stdlib.h>

#include <string.h>

#include <algorithm>

#include <iostream>

#include <string>

#include <boost/bind.hpp>

#include <boost/lambda/lambda.hpp>

#include <boost/lambda/bind.hpp>

#include <boost/tuple/tuple.hpp>

#include <boost/tuple/tuple_io.hpp>

#include "kahn.h"

using std::cin;

using std::cerr;

using std::clog;

using std::endl;

using boost::get;

static const int GRIDSIZE = 1000;

static const int DIM = 3;

// Last element is count/class

struct point

{

int v[DIM];

int c;

};

static const point ZEROPOINT = { {0, 0, 0}, 0 };

std::ostream &operator<<(std::ostream &os, const point &p)

{

os << ’[’;

for(size_t i = 0; i < DIM; ++i)

os << p.v[i] << ’,’;

os << p.c << ’]’;

return os;

}
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typedef std::vector<point> point_vec;

typedef boost::tuple<point_vec::iterator,

point_vec::iterator> point_range;

//////////////////////////////////////////////////////////////////////////////

// PRODUCE/ITERATE.

class producer : public perun::actor

{

point_vec points_;

point_vec means_;

void fill(point_vec &pv, size_t n);

void distribute_means();

void partition();

size_t iterate();

protected:

virtual void behavior();

public:

std::vector<perun::send_port<point_range>*> out1;

std::vector<perun::send_port<point>*> out2;

std::vector<perun::recv_port<point>*> in;

producer(size_t nworkers, size_t npoints, size_t nmeans);

};

producer::producer(size_t nworkers, size_t npoints, size_t nmeans)

{

for(size_t i = 0; i < nworkers; ++i) {

out1.push_back(new perun::send_port<point_range>(this));

out2.push_back(new perun::send_port<point>(this));

in.push_back(new perun::recv_port<point>(this));

}

fill(points_, npoints);

fill(means_, nmeans);

}

void producer::behavior()

{

partition();

size_t niter = iterate();

for(size_t i = 0; i < out2.size(); ++i)

out2[i]->set_eof();

for(size_t i = 0; i < means_.size(); ++i)
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clog << means_[i] << endl;

clog << "NITER=" << niter << endl;

}

// Partition the work and send out initial means.

void producer::partition()

{

size_t chunk = points_.size() / out1.size();

point_vec::iterator b = points_.begin(), e;

for(size_t i = 0; i < out1.size(); ++i) {

e = (i != out1.size() - 1) ? b + chunk : points_.end();

out1[i]->send(point_range(b, e));

b += chunk;

}

distribute_means();

}

// Iterate until there is no change in the means.

size_t producer::iterate()

{

size_t niter = 0;

bool changed;

point p;

do {

++niter;

std::vector<point> new_means(means_.size(), ZEROPOINT);

for(size_t i = 0; i < in.size(); ++i) {

for(size_t j = 0; j < new_means.size(); ++j) {

if(!in[i]->recv(p))

abort();

for(int k = 0; k < DIM; ++k)

new_means[j].v[k] += p.v[k];

new_means[j].c += p.c;

}

}

changed = false;

for(size_t i = 0; i < new_means.size(); ++i)

for(int k = 0; k < DIM; k++)

if((new_means[i].v[k] /= new_means[i].c) != means_[i].v[k])

changed = true;

if(changed) {

means_.swap(new_means);

distribute_means();

}

} while(changed);
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return niter;

}

void producer::distribute_means()

{

for(size_t i = 0; i < out2.size(); ++i)

for(size_t j = 0; j < means_.size(); ++j)

out2[i]->send(means_[j]);

}

void producer::fill(point_vec &pv, size_t n)

{

pv.reserve(n);

while(n--) {

point p;

for(int i = 0; i < DIM; ++i)

p.v[i] = rand() % GRIDSIZE;

p.c = -1;

pv.push_back(p);

}

}

//////////////////////////////////////////////////////////////////////////////

// Computation of partial means

class kmeans : public perun::actor

{

point_range points_;

std::vector<point> cur_means_;

static int square(int x)

{ return x*x; }

static inline int distance(const point &p1, const point &p2);

protected:

virtual void behavior();

public:

perun::recv_port<point_range> in1;

perun::recv_port<point> in2;

perun::send_port<point> out;

kmeans(size_t nmeans) : cur_means_(nmeans),

in1(this), in2(this), out(this)

{ }

};

inline int kmeans::distance(const point &p1, const point &p2)
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{

int sum = 0;

for(int k = 0; k < DIM; ++k) {

int d = p1.v[k] - p2.v[k];

sum += d*d;

}

return sum;

}

void kmeans::behavior()

{

using boost::lambda::bind;

using boost::lambda::_1;

using boost::lambda::_2;

if(!in1.recv(points_))

abort();

while(1) {

point_vec partial_sums(cur_means_.size(), ZEROPOINT);

for(size_t i = 0; i < cur_means_.size(); ++i)

if(!in2.recv(cur_means_[i]))

goto exit;

for(point_vec::iterator it = get<0>(points_); it != get<1>(points_); ++it) {

int c = std::min_element(cur_means_.begin(), cur_means_.end(),

bind(&distance, *it, _1) < bind(&distance, *it, _2))

- cur_means_.begin();

it->c = c;

for(int k = 0; k < DIM; ++k)

partial_sums[c].v[k] += it->v[k];

++partial_sums[c].c;

}

for(size_t i = 0; i < partial_sums.size(); ++i)

out.send(partial_sums[i]);

}

exit:

return;

}

//////////////////////////////////////////////////////////////////////////////

// DRIVER

struct params

{

size_t nworkers;

size_t npoints;
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size_t nmeans;

};

static void bootstrap(params *p)

{

producer *pprod = new producer(p->nworkers, p->npoints, p->nmeans);

perun::RTE::spawn(pprod);

for(size_t i = 0; i < p->nworkers; ++i) {

kmeans *pk = new kmeans(p->nmeans);

perun::RTE::connect(*pprod->out1[i], pk->in1, 128);

perun::RTE::connect(*pprod->out2[i], pk->in2, 128);

perun::RTE::connect(pk->out, *pprod->in[i]);

perun::RTE::spawn(pk);

}

}

int main(int argc, char **argv)

{

params p = { 0, 100000, 100 };

unsigned ncpus;

if((argc != 5) && (argc != 3)) {

cerr << "USAGE: " << argv[0] << " NCPUS NWORKERS "

<< "[NPOINTS=" << p.npoints << "] "

<< "[NMEANS=" << p.nmeans << "]\n";

return 1;

}

ncpus = atoi(argv[1]);

p.nworkers = atoi(argv[2]);

if(argc == 5) {

p.npoints = atoi(argv[3]);

p.nmeans = atoi(argv[4]);

}

perun::RTE::start(ncpus, boost::bind(&bootstrap, &p));

perun::RTE::finish();

return 0;

}
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