
Hierarchical Temporal Memory for
Anomaly Detection in Videos

A biologically inspired machine learning
approach

Vladimir Monakhov

Thesis submitted for the degree of
Master in Informatics: Robotics and Intelligent

Systems
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Hierarchical Temporal Memory
for Anomaly Detection in

Videos

A biologically inspired machine learning
approach

Vladimir Monakhov

© 2022 Vladimir Monakhov

Hierarchical Temporal Memory for Anomaly Detection in Videos

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The use of video anomaly detection systems has gained traction for the
past few years. The current approaches use deep learning for performing
anomaly detection in videos, but this has multiple problems. For starters,
deep learning in general has issues with noise, concept drift, explainability,
and training data volume. Additionally, anomaly detection in itself is a
complex task and faces challenges such as unknowness, heterogeneity, and
class imbalance. Anomaly detection in deep learning is therefore mainly
constrained to generative models such as generative adversarial networks
and autoencoders due to their unsupervised nature, but even they suffer
from general deep learning issues and are hard to train properly. This
thesis instead looks to Hierarchical Temporal Memory (HTM) to perform
anomaly detection in videos, as it has favorable properties such as noise
tolerance and online learning which combats concept drift. This thesis
introduces Grid HTM, which is a HTM-based architecture specifically
for anomaly detection in complex videos such as surveillance footage.
Experiment results show that, with proper data and further refinements
Grid HTM can be used for anomaly detection in complex videos.

i

ii

Acknowledgments

I would like to thank my supervisors for their invaluable assistance and
guidance, as well as for answering emails quickly.

The research presented in this thesis has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is
financially supported by the Research Council of Norway under contract
270053.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 2
1.3 Limitations . 3
1.4 Contributions . 4
1.5 Research Methods . 5
1.6 Thesis Outline . 5

2 Deep Learning, Anomaly Detection, and Hierarchical Temporal
Memory 9
2.1 Deep Learning . 9

2.1.1 Perceptron . 9
2.1.2 Backpropagation . 11
2.1.3 Neural Networks . 11

2.1.3.1 Learning . 12
2.1.4 Convolutional Neural Networks 13
2.1.5 Generative Models . 14
2.1.6 Disadvantages of Deep Learning 15

2.2 Anomaly detection . 16
2.2.1 Deep Learning and Anomaly Detection 16
2.2.2 Smart Surveillance . 17

2.3 Hierarchical Temporal Memory 18
2.3.1 Structure . 18
2.3.2 Common Algorithms 20
2.3.3 Sparse Distributed Representation 20
2.3.4 Encoders . 22
2.3.5 Encoding Visual Data 23
2.3.6 Learning . 25

2.3.6.1 Spatial Pooler 27
2.3.6.2 Temporal Memory 28

2.3.7 Use Cases . 31
2.3.8 The Thousand Brains Theory 32
2.3.9 HTM Performance in Anomaly Detection 33

v

2.4 Ethical Considerations . 34
2.5 Summary . 34

3 Grid HTM 37
3.1 Introduction . 37
3.2 Improvements . 38

3.2.1 Invariance . 38
3.2.1.1 Aggregation Function 39

3.2.2 Explainability . 41
3.2.3 Flexibility and Performance 41
3.2.4 Reviewing Encoder Rules 41
3.2.5 Stabilizing Anomaly Output 44
3.2.6 Multistep Temporal Patterns 44

3.3 Implementation . 46
3.4 Biological Plausibility . 47
3.5 Use Cases . 47
3.6 Summary . 48

4 Experiments and Results 51
4.1 Bouncing Ball Experiment . 51

4.1.1 Data . 51
4.1.2 HTM . 52

4.1.2.1 Boosting . 52
4.1.2.2 Zero Permanence Decrement 53
4.1.2.3 Boosting and Zero Permanence Decrement . 54
4.1.2.4 Parameters 55

4.1.3 Grid HTM . 56
4.1.3.1 Results . 56
4.1.3.2 Parameters 56

4.1.4 Experiment Summary 59
4.2 Surveillance Experiment . 60

4.2.1 Results . 61
4.2.1.1 Road . 62
4.2.1.2 Frame Repeat 63
4.2.1.3 Points of Interest 66

4.2.2 Parameters . 68
4.2.3 Experiment Summary 70

4.3 Sperm Experiment . 71
4.3.1 Data . 71
4.3.2 Benchmark . 71
4.3.3 Results . 71
4.3.4 Use Cases . 72
4.3.5 Parameters . 73
4.3.6 Experiment Summary 75

4.4 Performance . 76
4.5 Summary . 76

5 Conclusion & Future Work 79

vi

5.1 Summary . 79
5.2 Contributions . 80
5.3 Future Work . 81

A Paper - Grid HTM: Hierarchical Temporal Memory for Anomaly
Detection in Videos 93

vii

viii

List of Figures

1.1 Publications Increase Comparison 2

2.1 The Original Perceptron . 10
2.2 MLP Example . 10
2.3 Neural Network Example . 11
2.4 Gradient Descent Comparison 12
2.5 Typical CNN Architecture . 13
2.6 GAN Example . 14
2.7 Dataset Volume Accuracy . 15
2.8 Grad-Cam Visualization . 16
2.9 GANomaly Visualization . 17
2.10 HTM Structure . 19
2.11 Comparison of Neurons . 20
2.12 SDR Semantic Comparison 21
2.13 Example SDR . 21
2.14 SDR False Positive Chance . 22
2.15 Cyclical Date Encoding . 23
2.16 Thresholding Example . 24
2.17 Feature Maps . 25
2.18 The HTM Pipeline . 26
2.19 SP and TM Responsibilities 26
2.20 Spatial Pooler Visualization 27
2.21 Spatial Pooler Workings . 28
2.22 Temporal Memory Visualization 29
2.23 Temporal Memory Workings 30
2.24 Visualization of Cell States . 30
2.25 Thousand Brains Visualization 32
2.26 Filter Concatenation . 33
2.27 Example Motion Frame . 34

3.1 Segmentation Result of Cars 37
3.2 SDR and SP Representation 38
3.3 Encoder Output Grid . 39
3.4 Aggregation Functions on Noise Data 40
3.5 Aggregation Functions on Clean Data 40
3.6 Distribution of Active Pixels 42
3.7 Example Grid HTM Output 43
3.8 Stabilizing Anomaly Output Visualization 1 44

ix

3.9 Stabilizing Anomaly Output Visualization 2 44
3.10 Comparison of a Moving Object in a High Framerate Video . 45
3.11 Contextual Loop Example . 45
3.12 Multistep Temporal Pattern Example 46
3.13 Grid HTM Environments . 47

4.1 Bouncing Ball Experiment . 51
4.2 Bouncing Ball Experiment Anomaly Score 52
4.3 Bouncing Ball Experiment Anomaly Score No Boosting . . . 53
4.4 Bouncing Ball Experiment Anomaly Score Zero Decrement . 54
4.5 Bouncing Ball Experiment Anomaly Score No Boosting Zero

Decrement . 54
4.6 Bouncing Ball Experiment Anomaly Score Grid HTM 56
4.7 Example Frames . 60
4.8 Example Segmentation of Cars and Persons 61
4.9 Grid HTM Anomaly Score Output 61
4.10 Segment Anomaly . 62
4.11 Car Driving Along Main Road 63
4.12 Frame Repeat Anomaly . 64
4.13 No Frame Repeat Anomaly 65
4.14 Frame Repeat No Multistep Temporal Pattern Anomaly . . . 66
4.15 Points of Interest . 67
4.16 First POI . 67
4.17 Second POI . 68
4.18 Sperm Example Frame . 71
4.19 Stationary Video Results . 72
4.20 Drifting Video Results . 73

x

List of Tables

4.1 SP Parameters . 55
4.2 TM Parameters . 55
4.3 Grid HTM specific parameters 57
4.4 SP Parameters . 58
4.5 TM Parameters . 58
4.6 Grid HTM specific parameters 69
4.7 SP Parameters . 69
4.8 TM Parameters . 70
4.9 Grid HTM specific parameters 73
4.10 SP Parameters . 74
4.11 TM Parameters . 74
4.12 Performance for each experiment 76

xi

xii

Chapter 1

Introduction

1.1 Background and Motivation

As the global demand for security and automation increases, many seek to
use video anomaly detection systems. In the US alone, the surveillance
market is expected to reach $23.60 Billion by 2027 [1]. Leveraging
modern computer vision, modern anomaly detection systems play an
important role in increasing monitoring efficiency and reducing the need
for expensive live monitoring. Their use cases can vary from detecting
faulty products on an assembly line to detecting car accidents on a highway,
and everything in between.

The most important component in video anomaly detection systems
is the intelligence behind it. The intelligence ranges from simple on-
board algorithms to advanced deep learning models, where the latter has
experienced increased popularity in the past few years, as can be seen in
Figure 1.1.

Yet despite major progress within the field of deep learning, there are still
many tasks where humans outperform deep learning models, especially in
anomaly detection where the nature of anomalies is typically difficult to
define. Deep learning approaches also perform poorly when dealing with
noise and concept drift.

The cause for the discrepancy lies in the difference between how humans
and deep learning models represent data and learn. Most deep learning
models use a dense representation of the data and apply back-propagation
in order to learn. Human learning happens in the neocortex, where
evidence points to that the neocortex uses a sparse representation and
performs Hebbian-like [3] learning. For the latter, there is a growing field
of biologically plausible machine learning, meaning that it is aligned with
the biological understanding of intelligence, dedicated to replicating the
inner mechanics of the neocortex, namely Hierarchical Temporal Memory
(HTM) theory. This theory outlines its advantages over standard machine
learning, such as noise-tolerance and the ability to adapt to changing data.

1

202120202019201820172016
Year

0

10000

20000

30000

40000

De
ep

 L
ea

rn
in
g
Pu

bl
ica

tio
ns

Deep Learning
Deep Learning Surveillance

0

100

200

300

400

500

600

700

De
ep

 L
ea

rn
in
g
Su

rv
ei
lla

nc
e
Pu

bl
ica

tio
ns

Figure 1.1: The increase in publications mentioning the terms "deep
learning" and "deep learning surveillance" [2].

With the advantages of HTM and the rise of video anomaly detection in
mind, a natural question one could pose is whether it is possible to apply
HTM for anomaly detection in videos. Combined with a lack of related
works, it is this very question that is the motivation behind this thesis.

1.2 Problem Statement

Based on the background and motivation, the problem statement can be
boiled down to a simple question: Is HTM viable for use in video anomaly
detection?

This thesis will introduce three different objectives that will help answer
the question and also showcase the performance of HTM. It will also cover
all required knowledge. The objectives are as follows:

1. Introduce HTM and give a deep understanding of the inner work-
ings, the strengths, and the weaknesses. While also being easy to
grasp for readers with a machine learning background.

2. Develop and outline a theoretically sound HTM architecture that can
be applied for anomaly detection in complex videos.

3. Perform experiments, discuss the results, and lay out potential future
work for the aforementioned HTM architecture. The experiments will
vary in difficulty, complexity, and will focus on different use cases.

2

1.3 Limitations

HTM is a complex topic not part of the curriculum in most educations,
if any at all. It is also based on neurological research, lending terms and
concepts from the biological field, which significantly raises the barrier to
entry for people with a machine learning background. The field also has a
low level of accessibility due to a lack of proper documentation and a high
reliance on the comparatively small HTM community. This makes learning
and understanding HTM a process which takes up a sizable chunk out of
the total time spent on this thesis. As such, this thesis will be relatively
limited in scope, and will therefore focus mainly on anomaly detection in
the context of surveillance.

Additionally, HTM for video anomaly detection [4] is a novel topic and is
therefore naturally limited on several fronts. One of the main limitations is
the lack of labeled anomaly data that suits the nature of HTM, because
most datasets are made for use with deep learning approaches. Deep
learning video datasets usually consist of many short segments whereas
HTM suitable video datasets would consist of continuous videos, which
was proven to be hard to come by during the work of this thesis. The main
experiment of this thesis will therefore focus on only one dataset, due to
the absence of suitable alternatives.

There is also a lack of works related to applying HTM on video-based
problems, as well as a lack of other methods that can be used for video
anomaly detection that are based on the same premises as HTM. This
means that there is a major lack of methods to use for the purpose of
benchmarking and comparison.

It should also be mentioned that the HTM theory described in this thesis
is not the first generation [5], which was probabilistic in nature. The
HTM theory described in this thesis is actually the third generation [6, 7],
which builds upon the second generation [8, 9]. The second generation is
often referred to as Cortical Learning Algorithms (CLA), which made the
move from probabilistic modelling to Sparse Distributed Representation.
The third generation builds upon the second generation by introducing
concepts such as sensorimotor inference and The Thousand Brains Theory.
The first generation had fundamentally different inner workings, but
shared a lot of the terms with the current generation. This has made
researching HTM challenging as there are many research papers published
that refer to the first generation.

Finally, it needs to be noted that Numenta, which is the company behind
HTM, is a private for-profit company. This means that it is in their best
interest to present HTM as a highly functional and powerful machine
learning algorithm. This can lead to unhealthy optimism, which has
caused minor complications during the work of this thesis. One should
therefore be critical when reading research papers from Numenta, and
always keep in mind that they might not only be research papers but may
also be marketing materials. It should also be mentioned that this thesis is

3

relying on the community fork [10] of HTM because Numenta has stopped
development on the original codebase.

1.4 Contributions

This thesis explores the use of HTM for anomaly detection in videos,
and introduces a new type of HTM architecture called Grid HTM, which
requires a vigorous understanding of HTM. The main contributions are
therefore achieved through the objectives introduced in Section 1.2. How
this thesis achieves those objectives is described below:

Objective 1 Introduce HTM and give a deep understanding of the inner
workings, the strengths, and the weaknesses. While also being easy to grasp for
readers with a machine learning background.

This objective is achieved in Chapter 2, where HTM is explained. This
chapter also acts as an organization of HTM related research, supported
with visualizations and a simpler language, making it easier for people
with a machine learning background to understand. It is also important
to mention that not only does this chapter include the main HTM research
published, but it also contains little tidbits of community research and ideas
which are otherwise hard to come by.

Objective 2 Develop and outline a theoretically sound HTM architecture that
can be applied for anomaly detection in complex videos.

This objective is achieved in Chapter 3, where Grid HTM is introduced. Not
only does it present a novel way to apply HTM on video-based problems,
it also uncovers the reasoning behind the design decisions that were made
as well as providing thorough analysis. This objective is further achieved
through the Grid HTM paper, which is a product of this thesis, and can be
found in Appendix A.

Objective 3 Perform experiments, discuss the results, and lay out potential
future work for the aforementioned HTM architecture. The experiments will vary
in difficulty, complexity, and will focus on different use cases.

This objective is achieved in Chapter 4, where three different experiments
are performed. The first experiment showcases that HTM and Grid HTM
can indeed perform anomaly detection on simple and clean videos. The
second experiment showcases the performance of Grid HTM on a complex
surveillance video, which shows promising results. The third experiment
showcases the ability of Grid HTM to detect segments in a video, where
noisy videos of sperm are used for increased challenge.

With the three objectives achieved, it is possible to answer the thesis
question: Is HTM viable for anomaly detection in videos? The
experiments show that with proper data and further refinements, Grid

4

HTM and other HTM based architectures can indeed be used as anomaly
detection systems for videos. However, as mentioned earlier, there is a
lack of approaches to compare against which makes it hard to quantify the
relative performance of Grid HTM.

Additionally, during the course of this thesis, a contribution has been made
to the HTM community in the form of uncovering and reporting a bug
related to the technical implementation of HTM [11]. It is also important
to reiterate that this thesis acts as a general guide to HTM from a machine
learning perspective, which is something that is sorely needed due to the
low accessibility of the HTM field.

Finally, the work done in this thesis has produced a paper which can be
found in Appendix A. The work, including the Grid HTM source code and
the various experiments, is publically available on GitHub [12].

1.5 Research Methods

Due to the novelty of this thesis, a single research method could not
be used. Instead, a combination of multiple research methods was
employed. For most of the thesis, due to the novelty and the lack of related
works, an exploratory research method [13] was used with the context of
answering the thesis question. The result of this exploratory method is Grid
HTM, which began from a simple starting point and was shaped through
exploring improvements and solutions to problems that arose.

For the surveillance experiment, a qualitative research method [14] was
used to determine the effectiveness of Grid HTM. This is due to the lack of
labeled data which made it hard to quantify, and that real life surveillance
examples are complex by nature. The result is that the effectiveness was
determined not through numbers, but through whether the results were
qualitatively reasonable.

As for the other experiments, a more quantitative research method [14] was
used. This was made possible in the bouncing ball experiment due to the
controlled nature of the experiment. In the sperm experiment, this was
made possible due to the use of a benchmark, which allowed for direct
comparisons.

1.6 Thesis Outline

This thesis consists of five chapters, where Chapter 1 and Chapter 2
are introductory and contain relevant background information for the
understanding of the proceeding chapters. Chapter 3 and Chapter 4
present the work done during this thesis. Chapter 5 summarizes this thesis
and presents areas in which there can be performed further work. More
details for each of the chapters, except this one, is presented below.

5

Chapter 2: Background

Chapter 2 covers the required knowledge for the proceeding chapters, as
well as a short section about ethical considerations. It is split up into
three parts. The first part covers deep learning and its history, and has
an increased focus on the parts of deep learning that are especially relevant
for this thesis, such as generative models.

The second part covers anomaly detection. More specifically, it covers
the definition, challenges, and recent work within anomaly detection. It
also discusses smart surveillance, which is a subset of anomaly detection
specifically meant for surveillance purposes.

The third and final part covers HTM theory. It starts off by introducing
the biological ties to HTM and the pipeline of an HTM model. This is
then proceeded by a detailed account of the inner mechanisms of an HTM
model and how learning is performed. It then finishes by introducing use-
cases, related work on the use of HTM for anomaly detection and how it
performs, and highlights similarities between recent developments within
HTM theory and recent developments within deep learning.

Chapter 3: Grid HTM

This chapter introduces Grid HTM, a novel HTM architecture for the
purpose of anomaly detection in videos, which is the main contribution
of this thesis.

Grid HTM is presented gradually as problems occur and have to be solved.
Some of these problems are invariance and unstable anomaly output. The
technicalities are explained with the help of figures and various analyses.
This architecture is then used in Chapter 4 when performing experiments.

Potential use cases are presented, such as reducing the need for expensive
live monitoring as well as anomaly data labeling. The biological plausibil-
ity is also briefly discussed, and concludes that Grid HTM may loosely be
considered a cortical region.

Chapter 4: Experiments and Results

This chapter presents three experiments that aim to explore the capabilities
and challenges of HTM and Grid HTM in the context of anomaly detection
in videos. The first experiment is a controlled experiment where a
computer-generated ball is bouncing with anomalies inserted. The aim of
this experiment is to test whether the capabilities of HTM apply for videos,
as well as the performance of Grid HTM on the same task.

The second experiment showcases the performance of Grid HTM on a
surveillance video with technical anomalies. Additionally, several key
points of interests and the respective outputs of Grid HTM are shown in
order to get a better understanding of its capabilities.

6

The third experiment further explores the ability of Grid HTM to detect
segments in videos, which was discovered in the previous experiment. The
videos that are used in this experiment are videos of sperm that contain
several segments.

Chapter 5: Conclusion and Further Work

In this chapter the thesis is summarized, and the thesis question presented
in Chapter 1 is answered along with potential further work, as well as the
main contributions of this thesis.

The contributions are presented as the description of how the various
objectives were achieved, as well as answering the thesis question. This
is a shorter version of the contributions mentioned in the introduction, and
is presented conclusively.

This chapter also presents potential future work, which is further divided
into sections focusing on different aspects such as datasets, Grid HTM,
HTM and deep learning, and general research progress.

7

8

Chapter 2

Deep Learning, Anomaly
Detection, and Hierarchical
Temporal Memory

Anomaly detection, which is often defined as detecting deviating data
points, and in which deep learning is an important component, has
seen an increase in popularity in the context of video anomaly detection
and surveillance systems. This chapter will therefore cover relevant
background information on deep learning, video anomaly detection, and
HTM theory. It will also briefly mention ethical considerations.

2.1 Deep Learning

As mentioned in the introduction, deep learning has seen increased
popularity in the past few years. Surprisingly enough, the field of deep
learning can be traced back to 1958 when the perceptron [15, 16] was first
introduced.

2.1.1 Perceptron

The perceptron [15, 16] was a machine learning algorithm that was based
on a simplification of the theory, at the time, about the inner workings of a
neuron. The perceptron consists of three parts; the inputs x, the weights w,
and the unit step activation function, which is shown in Figure 2.1.

The perceptron also requires a label y corresponding to the input x. The
perceptron predicts the label of the input x to be ŷ = sign(x ·w). If ŷ 6= y
then it updates the weights w = w + yx, otherwise it leaves w unchanged.
This is performed until the perceptron reaches convergence, which would
happen when all the inputs can be correctly classified. In other words, the
perceptron requires that the inputs are linearly separable.

As shown by Minsky and Papert [17], the perceptron was able to solve

9

1

x1

x2

xn

w1

w2

w3

wn

Output

.
.
.

Input Weights Summation Step Function

Figure 2.1: The original perceptron.

linearly separable problems such as the OR function, but was unable to
solve the XOR function. For the latter, it was theorized by others that
stacking perceptrons in multiple layers, known as a Multilayer Perceptron
(MLP), which is shown in Figure 2.2, would be able to solve more complex
problems such as the aforementioned XOR function [18].

Inpu t Layer

Hidden Layer

Ou tpu t Laye r

Figure 2.2: Example of a MLP, each node represents a perceptron.

Unfortunately, the work by Minsky and Papert [17] lead to the misconcep-
tion that a MLP would have the same limitations as a single perceptron,
and that further progress was impossible, which lead to the perceptron
and other neuron-based approaches being largely abandoned [18]. This
misconception, combined with a lack of computing power and no good ap-
proaches to train a MLP, lead to a decline in the research of neuron-inspired
approaches.

It was not until the late 1980s [18] that the MLP approach experienced a
revival, led by the increase in computational power and the introduction of
backpropagation by Rumelhart, Hinton, and Williams [19], which allowed

10

multilayer networks to be easily trained, and gave rise to modern neural
networks.

2.1.2 Backpropagation

Backpropagation [19], which is shorthand for "backward propagation of
errors", is a method for efficiently calculating the gradient of the error
function, so that it is possible to adjust each individual weight with the
purpose of lowering the error. The error function is a function that
quantifies the difference between a prediction and the corresponding label,
and is differentiable. An example of such an error function, is the Mean
Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

The result is that no longer did researchers have to manually engineer fea-
tures, but could instead apply backpropagation to have the neural network
automatically learn internal representations that expressed nontrivial fea-
tures. An example is that no longer did researchers have to use line de-
tection algorithms, instead the MLP could learn to represent a collection of
pixels as a line automatically.

2.1.3 Neural Networks

Modern MLP networks, often referred to as just "neural networks", are
similar to the MLP networks made in the 80s. The main difference is that
each neuron in a MLP can have an arbitrary activation function, such as
the sigmoid function and the Rectifying Linear Unit (ReLU) [20] function,
which adds nonlinearity into the neural network and allows it to solve
complex problems. They also contain more hidden layers, as seen in
Figure 2.3, hence the term deep learning.

Inpu t Layer

Hidden Layer 1 Hidden Layer K Hidden Layer L

Ou tpu t Laye r

Figure 2.3: Example of a neural network.

11

2.1.3.1 Learning

Neural networks use gradients to learn. The gradients are first calculated
using backpropagation which are then used to update the weights with
the goal of reducing the error. This can be achieved using gradient
descent, where one would calculate the gradient and descend towards the
optimum using the entire dataset, but this is computationally expensive.
An alternative is to use an optimizer such as Stochastic Gradient Descent
(SGD) [21], which calculates the gradient and descends using a random
subset of the dataset. A visual comparison between the two methods is
visualized in Figure 2.4:

Stochastic Gradient Descent Gradient Descent

Figure 2.4: Comparison between SGD and gradient descent. The green
dot in the middle represents the optimum.

Yet with all the advancements within the field of neural networks, it
still did not have the popularity that can be observed today. There are
several reasons for this, one of them arguably being the introduction of the
modern Support Vector Machine (SVM) [22], which overshadowed neural
networks [23].

The other reason is that neural networks did not have a lot of applications
at the time, this being due to a lack of invariances which caused poor
performance in machine vision, and no proper way to represent features
across time which caused poor performance in time-series modelling.
There was also a lack of regularization methods, which caused the models
to overfit and generalize poorly. Additionally, large networks suffered from
vanishing or exploding gradients [24].

In order to improve upon regularization, techniques such as Dropout [25],
Batch Normalization (BN) [26], and Data Augmentation [27] were intro-
duced. New neural network architectures were invented, such as the Au-
toencoder (AE) [28], that forces the model to construct an internal represen-
tation under constraints, which has a regularizing effect.

As for representing features across time, architectures such as Recurrent
Neural Networks (RNNs) [29, 30] were invented. Later, attention-
based [31] models, such as the Transformer [32] model, were introduced.

12

The vanishing and the exploding gradient problem was alleviated by
implementing, among other techniques, residual connections [33] between
layers.

2.1.4 Convolutional Neural Networks

In an attempt to solve the problems regarding invariance and to improve
the performance in machine vision tasks, Convolutional Neural Networks
(CNNs) were introduced by Lecun et al. [34] in 1998. A CNN offers several
properties that are useful, such as translational invariance [34]. These
properties stem from the three architectural ideas in a CNN:

• Local receptive fields

• Shared weights

• Spatial sub-sampling

Through the use of data augmentation, it is also possible to not only
improve the effectiveness of the aforementioned invariances, but to also
introduce a degree of rotational and scale invariance. A typical CNN
architecture is shown in Figure 2.5.

Figure 2.5: A typical CNN architecture used for classification.

However, the progress within the context of machine vision stagnated due
to a lack of computing power when training large models as well as a
lack of sufficiently large datasets. This stagnation lasted until 2012 when
AlexNet was introduced by Krizhevsky, Sutskever, and Hinton [35], which
marked a major turning point in the history of deep learning, as their
record-breaking results proved that deep learning was they way forward
for solving complex machine learning problems.

In addition to creating a unique CNN architecture, they also made it run
on a GPU and made the code publicly available. This was not the first
case of running deep learning on a GPU [36], but it can be argued that
it was this paper that popularized it. Using GPUs meant that a vast
amount of computational power, for the purpose of training deep learning
models, became unlocked. This also paved the way for frameworks such as
PyTorch [37] and Tensorflow [38], which have democratized deep learning
and made it into what it is today.

13

2.1.5 Generative Models

Some of the latest progress within deep learning can be attributed to
generative models, such as Generative Adversarial Networks (GANs) [39]
and Variational Autoencoders (VAEs) [40]. Generative models take some
input, and then generate realistic output. The input could be anything from
random noise to a real sample.

The idea is that generative models learn a distribution which describes
the data domain represented by the training data, and can then generate
synthetic data from that distribution by simply sampling it.

Generative models come in all shapes and sizes, but a standard GAN
usually consists of just a generator and a discriminator. The generator takes
some inputs (usually some random noise) and generates some samples.
The batch of generated samples are then combined with a batch of real
samples and mixed up. The discriminator then has to decide for every
sample whether it is real or generated. This is essentially a two-player game
in which the generator attempts to fool the discriminator. A typical GAN
pipeline is shown in Figure 2.6.

Discriminator

Generator

real/fake?

Noise

Training

Data

Generated Sample

Real Sample

Figure 2.6: Example of a GAN for generating images of cats.

In order to train the weights in such a configuration, the generator and
discriminator are trained in alteration. To train the discriminator, the
weights of the generator are fixed and backpropagation is performed using
the error based on whether the discriminator made the right prediction.
To train the generator, the weights of the discriminator are fixed and
backpropagation is performed using the error based on whether the
discriminator was fooled or not.

While the training method of a GAN is straight forward, actually training
a GAN well is hard and faces several challenges such as mode-collapse,
non-convergence, and instability [41, 42]. To alleviate these challenges,
modifications to the standard GAN have been proposed such as the
Wasserstein GAN [43] and the Unrolled GAN [44].

There also exists variations of the standard GAN for the purpose of
different types of generation. One example is the CycleGAN [45] which
makes it possible to perform domain translation, such as transforming a

14

horse in an image into a zebra, without paired data. Another example
is the Conditional GAN (CGAN) [46] in which both the generator and
discriminator are conditioned on some auxiliary information, which makes
it possible to generate data within a specific context. For instance, instead of
generating arbitrary human faces, a CGAN can generate faces of a specific
age.

2.1.6 Disadvantages of Deep Learning

A disadvantage for deep-learning models in general is that they are
susceptible to noise in the dataset [47, 48], which leads to decreased
classification accuracy and poor prediction results. Due to the nature
of training deep learning models, they are also in most cases not self-
supervised and therefore require constant tuning in order to stay effective
on changing data. Not to mention that they require a lot of data before they
can be considered effective, and that performance increases logarithmically
based on the volume of training data [49]. This is exemplified in Figure 2.7.

20

40

60

80

100

A
cc
u
ra
cy

101 102 103

Thousands of Samples

Figure 2.7: Logarithmic accuracy increase in relation to size of dataset.

Deep learning models also suffer from issues with out-of-distribution
performance, where a model might perform great on the dataset it is tested
on, but performs poorly when deployed in practical settings. This could
be caused by selection bias in the dataset or when there are differences
in the causal structure between the training domain and the deployment
domain [50]. There is also a lack of explainability.

As stated by Barredo Arrieta et al. [51], as "black-box" approaches such as
deep learning surged in popularity, many realized that they offered poor
explainability. While it is known how the models make their decisions,
their huge parametric spaces make it unfeasible to know why they make
those predictions. Combined with the vast potential that deep learning
offers in critical sectors such as medicine, has lead to an increase in focus
on developing approaches that offer explainability.

Approaches such as Grad-CAM [53] (see Figure 2.8) and Guided Backprop-

15

Figure 2.8: Grad-CAM visualization for the labels "dog" and "cat". Taken
from Gildenblat and contributors [52].

agation [54] offer improvements in that regard, but these approaches are
not made with generative models in mind. In fact, there are very few ex-
plainable AI approaches for generative models [51].

2.2 Anomaly detection

As reviewed by Pang et al. [55], anomaly detection is often defined as
detecting data points that deviate from the general distribution of the
data, this also often includes quantifying the level of deviation. Unlike
other problems within machine learning and statistics, anomaly detection
deals with unpredictable and rare events, therefore adding complexities to
problems. Some complexities are as follows:

• Unknowns Anomalies are associated with many unknowns which
do not become known until the anomaly happens. Michałowska et
al. [56] and Fan et al. [57] are works that address this.

• Rarity and class imbalance Anomalies are by definition rare in-
stances, which means that it becomes difficult to create a balanced
dataset. Devi, Biswas, and Purkayastha [58] review the current solu-
tions to this problem.

• Heterogeneity Anomalies can take form in many ways, and as
such one class of anomalies can be vastly different from another.
Approaches such as the one introduced by Datta, Muthiah, and
Ramakrishnan [59] have been proposed to alleviate the problem.

These complexities make it hard to apply traditional deep learning
methods for anomaly detection, because they are designed to be trained
with pairs of {input, label} in mind.

2.2.1 Deep Learning and Anomaly Detection

The current state-of-the-art algorithms for anomaly detection are numer-
ous, but the main approach is achieved by using deep learning [55]. As
previously mentioned, traditional deep learning approaches are hard to
apply for anomaly detection. Instead, a popular approach is to use gen-
erative deep learning models such as GANs [55, 60, 61] to generate syn-
thetic data and compare it to real data in order to detect anomalies. This
approach is based on the assumption that the model will only be able to

16

generate data similar to what it has been trained on, and therefore fail
when an anomalous event occurs. A variation of GAN which is specifically
designed for anomaly detection is GANomaly [60], shown in Figure 2.9,
which effectively compares image encoding latent space instead of image
distributions.

Encoder Generator

Discriminator

Encoderx z x' z'

Real/Fake?

Minimize

Difference

Figure 2.9: GANomaly [60], a variation of GAN for Anomaly detection.

The advantage is that GANs are generally good at generating realistic data,
especially when it comes to images. The disadvantage is that GANs are
very hard to train and may give suboptimal results given that they try to
generate good synthetic data rather than directly detect anomalies. The
training data also needs to contain all possible non-anomalous classes of
events, which may not be a realistic expectation.

Another common approach is using AEs, which aim to minimize the
reconstruction error from a learned feature representation space [62, 55,
61]. The assumption is that anomalies are more difficult to reconstruct than
normal data, hence the reconstruction error will be high and can therefore
be used as a metric to detect anomalies.

As previously stated, generative models suffer from a lack of explainabil-
ity, and since generative models make up most of the state-of-the-art ap-
proaches in anomaly detection, it is safe to say that there is a lack of ex-
plainability in the field of anomaly detection. There are also variations of
the aforementioned approaches, such as Adversarial AEs [63], but the core
idea is the same: To get an anomaly measure using some sort of generated
or reconstructed data.

2.2.2 Smart Surveillance

Smart surveillance, which is the use of automatic video analysis specifically
in surveillance, has seen rapid development since its inception. Zhu, Chen,
and Sultani [61] and Sreenu and Saleem Durai [64] present and summarize
recent progress for anomaly detection in video for surveillance purposes,
where the most promising methods are achieved by using convolutional
AEs and GANs. More specifically, memory augmented AEs [65] and future
frame prediction GANs [66] are some of the most promising approaches.
In general, the results show that the deep learning approaches have a
high degree of accuracy, and are consistently improving. This is not
surprising given that generative models are popular in anomaly detection,

17

as mentioned in Section 2.2.1.

The work by Zhu, Chen, and Sultani [61] also discusses problems
with using deep learning approaches for anomaly detection, and further
emphasizes the complexities mentioned in Section 2.2. One of the examples
that it uses is about a bicycle on campus being wrongly classified as an
anomaly, which is related to the aforementioned issue with the non-realistic
requirement that the training data must contain all possible classes of non-
anomalous events.

2.3 Hierarchical Temporal Memory

Today’s machine learning algorithms aim to solve complex problems by
simulating a substantial amount of mathematically defined neurons. These
neurons are vastly simplified compared to the neurons in the brain and
therefore do not have the complexity required to solve complex problems
with an accuracy and level of generalizability comparable to the brain.
Hawkins et al. [67] introduces HTM theory which aims to outline a machine
learning algorithm which works on the same principles as the brain,
meaning that it is biologically plausible, and therefore solves some of the
aforementioned issues.

The brain consists of layers that have been added throughout evolution.
The inner layers are responsible for primal intelligence such as hunger,
sex and instincts. HTM theory specifically aims to roughly simulate the
neocortex, which is the outer layer of the brain tasked with advanced logic.
It is important to note that HTM only attempts to estimate the activity in
the neocortex, unlike Spiking Neural Networks and others which aim to
accurately simulate the activity of the neocortex [68].

2.3.1 Structure

HTM aims to replicate the structure of the neocortex which is made up
of cortical regions. Cortical regions consist of cortical columns, where each
column is divided into layers height-wise. These cortical columns are made
up of mini-columns, which in turn are made up of neurons. Figure 2.10
visualizes the structure of a cortical region according to HTM theory.

There is still uncertainty regarding the purpose, and even the existence, of
each layer, but the following has been concluded [69, 70]:

L6 Deals with input information.

L5 Motor outputs to body.

L4 Sensorimotor inference.

L3 Temporal Memory.

L2 Connects to other cortical columns and performs voting.

L1 Connections to cortical regions further up.

18

Figure 2.10: Visualization of a cortical region structure in the neocortex
according to HTM theory.

Current HTM implementations only model cortical columns, and layer-
wise only L2/L3 but can be extended to model L4 as well [69].

Neurons in HTM theory are different from neurons in traditional machine
learning [71]. The term neuron in traditional machine learning is very
misleading and since it is mathematically derived, has actually very little
in common with a biological neuron. A biological neuron does not perform
back propagation but learns by strengthening and weakening inter-neural
connections (synapses), which is something that the HTM neuron attempts
to model through Hebbian-like learning. The difference is shown in
Figure 2.11.

The HTM neuron has three inputs [71]:

• Feedforward, which is the input data

• Context, which is data from neighboring neurons and acts as a
prediction mechanism for the next feedforward input

• Feedback, which is feedback from other neurons in the hierarchy and
acts as a prediction mechanism for a sequence of feedforward inputs

How this type of neuron operates in HTM implementations will be covered
in greater detail later in this section.

19

(a) Deep learning neuron
Feedback

Context

Feedforward

(b) Biological neuron

OR

OR

/

Feedback

Context

Feedforward

(c) HTM neuron

Figure 2.11: Comparison of neurons: Traditional Machine Learning (A),
Biological Neuron (B), HTM Neuron (C).

2.3.2 Common Algorithms

HTM theory states that there are common algorithms in the neocortex
and that vision, hearing and touch are not necessarily different problems,
but are at the core handled by the same common algorithms in the
neocortex. More specifically, the signals from hearing, touch, and vision
are all represented in the same format and processed by the same
common algorithm. HTM is therefore developed with the idea of common
algorithms in mind, which means that HTM networks should be able to
solve all kinds of logical tasks.

2.3.3 Sparse Distributed Representation

HTM theory introduces Sparse Distributed Representation (SDR) as a way
of representing data in HTM and can be thought of as a bit-array. Each bit
theoretically corresponds to a neuron in the neocortex and also represents
some semantic information about the current data. This opens up for all

20

kinds of mathematical operations, for instance it is possible to compare
the semantic similarities between two SDRs by simply performing a binary
AND operation, as seen in Figure 2.12.

Figure 2.12: Semantic similarities between the two SDRs A and B.

Observations of the brain has found that at any given point in time, a
small percentage of neurons are activated and an SDR aims to keep this
property by having a small percentage of bits be 1 at any given point. A
common value is 2% in order to mimic the sparsity of active neurons in the
neocortex. Having this property means that the chance of two bit-patterns
with different semantic meanings coinciding, for instance due to bit-flips
caused by noise in the data, is astronomically low and is what makes HTM
robust to noise. That being said, sparsity can be configured to be any value,
as seen in Figure 2.13.

Figure 2.13: Example representation of an SDR with a size of 64 and a
sparsity of ≈ 14.1%, visualized as a 2D grid.

The capacity of an SDR, e.g. how many unique patterns it can represent
given a size n and the number of active bits w, is expressed as:(

n
w

)
=

n!
w!(n− w)!

This would mean that given the properties of the SDR in Figure 2.13, it
could fit approximately 2.754× 1010 unique patterns. Similarly, the chance
of two random SDRs with the same parameters having all their active bits
overlap each other can be expressed as:

P(x = y) = 1/
(

n
w

)
In the example given in Figure 2.13, this would mean that the chance for
a complete overlap is approximately 3.631× 10−11, which shows how the
sparsity property makes the SDR robust to noise.

Furthermore, this noise robustness is still significant for impartial overlaps
defined by θ, e.g. θ = 0.3 means that only 30% of the active bits are required
to overlap in order to consider two SDRs as matching. Alternatively, one
can think of θ = 0.3 as 70% noise, meaning the chance of a random flip

21

occurring for every bit. The chance of a false positive, meaning that the two
SDRs accidentally match due to noise given a minimum overlap threshold
θ, is defined as:

|Ω(n, w, b)| =
(

w
b

)
×
(

n− w
w− b

)
P(n, w, θ) =

∑w
b=θw |Ω(n, w, b)|

(n
w)

Where |Ω(n, w, b)| is the number of possible patterns with b bits overlap.

Figure 2.14 shows the false positive chance given a fixed overlap threshold
θ = 0.3, by varying the size n and the number of active bits w in both SDRs.

64 500 1000 1500 2000
n

10−13
10−11
10−9
10−7
10−5
10−3
10−1

Fa
lse

 P
os
iti
ve

 C
ha

nc
e

θ=0.3
w=16
w=32
w=64

Figure 2.14: False positive chance of two SDRs with identical properties,
with a 30% overlap threshold.

2.3.4 Encoders

To convert real-world data into an SDR, there is a need for an encoder in the
pipeline. These encoders can be designed to take potentially any data and
convert it into an SDR with an arbitrary sparsity. Given the fact that they
may have an arbitrary sparsity, the output SDRs created by the encoder are
sometimes referred to as just binary arrays.

Writing an encoder is no easy task as it is important to keep semantic
similarities between values. This also means that the encoder is perhaps

22

the most important part of an HTM pipeline to get right as it is the part
that can limit the system the most. A biological example would be an eye
that takes in visual information and converts it into an SDR so that it can
be processed by the neocortex.

There are principles that should be followed in order to create a good
encoder:

• Semantically similar data should result in SDRs with overlapping
active bits

• The same input should always produce the same SDR

• The output must have the same dimensionality (total number of bits)
for all inputs

• The output should have similar sparsity (similar number of one-
bits) for all inputs and have enough one-bits to handle noise and
subsampling

As of now, there exists encoders for numbers, categories, geospatial
locations, and dates. Figure 2.15 shows a cyclical date encoding.

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Active Bit

Inactive Bit

Figure 2.15: Visualization of a cyclical date encoding, which is currently
encoding Thursday. Note that also Wednesday and Friday are included
in the encoding of Thursday in order to emphasize that Wednesday and
Friday are both equally distanced from Thursday.

Some applications may require anomaly detection on multiple values at
once, the correct approach then is to encode the values into SDRs one by
one and then concatenate them into a single SDR before passing it to the
HTM system.

2.3.5 Encoding Visual Data

Several approaches for encoding visual data have been proposed. An
example is a neuroscientifical approach which replicates how the eye
works [72], another example is the approach by Fallas-Moya and Torres-
Rojas [73] which uses Scale-invariant Feature Transform (SIFT) [74] to find
points of interest in images and encode that information as an SDR. A

23

simple threshold, as seen in Figure 2.16, can also be applied to extract
information into an SDR-friendly format.

Figure 2.16: Example thresholding on the Fashion MNIST dataset [75].

There are also deep learning approaches such as the one proposed by Zou
et al. [76] which uses a Convolutional Neural Network (CNN) as part of the
encoder. It creates an SDR by storing the top n-features in a feature map as
ones and set the rest to zeros in order to achieve binary values suitable for
the SDR.

There are several reasons why these approaches might not perform well in
videos. Keypoint detectors such as SIFT cause a lot of semantic noise due
to points shifting as lighting is changing, and the same object can therefore
shift from one pattern to a completely different pattern, when represented
as an SDR. The distribution of the points within a frame is also constantly
changing, which adds even more noise.

The reason for why a direct binary threshold encoding might not perform
well is due to the fact that it is neither position nor scale invariant and as
such breaks the first principle of creating a good encoder. For instance, if it
is desired that two pictures of the same object, but in different scales have
more or less the same semantic meaning, then a direct binary encoding is
not going to work. Direct binary threshold encoders also lead to loss of
information, and is hard to perform for complex objects.

An encoder which transforms convolutional feature maps into SDRs could
be the answer, but the issue is converting the dense representation of
the feature maps into SDRs. Directly encoding them into SDRs by
treating each value in the feature map as a float and converting it into its
own SDR quickly becomes intangible due to the processing and memory
requirements. Figure 2.17 shows only a small subset of all the feature
maps in a single convolutional layer, which highlights how intangible this
approach is.

Additionally, minor variations in the feature map would cause major
variations in the resulting SDR. Alternatively, one could follow Zou et
al. [76] and binary threshold the top-n features, but this leads to its own
problems such as loss of information and that the information contained in
the top-n features is often undefined in models trained for complex tasks.
It is also undefined what the top-n features represent when there are no
strong activations in the feature maps.

Seeing as there is currently no encoder that can produce sensible SDRs from

24

Figure 2.17: Select few feature maps in the 10th layer of ResNet18 [33]
trained on ImageNet [77].

high dimensional data such as videos, a natural conclusion to make is that
HTM should be applied differently, and that a new type of architecture
using HTM should be explored for this purpose.

2.3.6 Learning

Similar to the neocortex, HTM is designed to work on streaming data. It
does not operate with batches like traditional machine learning, but rather
with streaming data that may be changing over time.

The learning mechanism consists of two parts; the Spatial Pooler (SP)
and the Temporal Memory (TM) algorithm. The latter is also commonly
referred to as Sequence Memory. Together they make up multiple HTM
neurons.

The spatial pooler takes SDRs produced by the encoder, and uses Hebbian-
like learning to extract semantically important information into output
SDRs. These output SDRs usually have a fixed sparsity of about 2%
due to the fact that the spatial pooler aims to produce SDRs that have
similar sparsity to what has been observed in the neocortex, but this can
be configured at will and is dependent on the problem at hand.

The temporal memory algorithm, on the other hand, simulates the learning
algorithm in the neocortex. It takes the SDRs formed by the spatial pooler
and does two things:

• Learns sequences of SDRs formed by the spatial pooler

• Forms a prediction, in the form of a predictive SDR, given the context
of previous SDRs

A typical HTM pipeline can be seen in Figure 2.18.

This learning mechanism gives HTM systems the property of online

25

Figure 2.18: A typical HTM pipeline. A common next-step could be to
use a classifier to convert the predictive SDR into a classification.

learning, meaning they learn as they go. There is no batch training because
each input into the HTM system will update the system. The system
effectively builds a predictive model of the data and learns by trying to
minimize the error between the true values and the predicted values. This
means that the system will continuously adapt to a changing environment.

Feedback

Context

Feedforward

(a) Biological neuron

OR

OR

/

Feedback

Context

Feedforward

(b) HTM neuron

Figure 2.19: Biological neuron and HTM neuron, the colors show which
part the Spatial Pooler (SP) and the Temporal Memory (TM) covers.

Figure 2.19 shows that a spatial pooler combined with a temporal memory
forms the HTM neuron, where the color green indicates the responsibility
of the spatial pooler and blue indicates the responsibility of the temporal
memory.

26

2.3.6.1 Spatial Pooler

The spatial pooler consists of columns (more specifically, mini-columns),
where each column has a receptive field covering the input. In technical
implementations of spatial poolers, the columns exist in name only and
could be thought of as nodes instead. A column can cover parts of the
input or the entire input, the range being referred to as the potential
radius. During initialization, each column creates random connections to a
percentage of the bits in the input space within its receptive field, this gives
each column a unique potential pool when there are overlaps of receptive
fields caused by a large potential radius. This is visualized in Figure 2.20.

Figure 2.20: Visualization of the SP and the potential pool of one of its
columns.

Each connection is described using a permanence-value which can be
considered the "strength" of the connection, and it ranges between 0 and
1. During learning, the permanence value of the connections is increased
or decreased depending on whether the corresponding bit in the input is
active or inactive. When the permanence-value crosses above a stimulus
threshold, the connection will be considered "active".

The number of active connections for a given column is referred to as
overlap score. If a column has a high enough overlap score which crosses
the overlap score threshold, then the column will itself become active.
The reason behind locking activation behind a minimum overlap score
is to reduce the influence of noise in the input. Finally, out of all the
active columns, only the top n columns with the most overlap score will
be selected to be included in the SP output. The value n is chosen so
that the SP output has a specific sparsity. Only the selected columns are
allowed to learn (increase/decrease permanence). Figure 2.21 visualizes

27

the mechanism that determines the output in the SP.

1 1 0 0 01 0

00001

Input

Output

Figure 2.21: This figure illustrates how a spatial pooler works. All
connections are above the stimulus threshold. The receptive field is 3
bits wide for each column. Overlap score threshold is 1, and n = 1. Red
means inactive, green means active, and blue means active and selected.

Because only the active columns are allowed to learn, only a select few
columns who got lucky during the random initialization will dominate the
spatial pooler output and have a very high active duty cycle. Active duty
cycle measures how often a column is active and ranges from 0 (never) to 1
(always).

To counter dominating columns, the spatial pooler uses boosting. The
concept behind boosting is to "boost" the overlap score of underperforming
columns and lower the overlap score of overperforming columns. The
result is that more columns learn and contribute to the output, which
means that the spatial pooler can then process the input data with a finer
granularity. This is also a form of regularization. One has to be careful with
boosting, since it can cause instability in the spatial pooler output.

It is also possible to have topology in the output by selecting the columns
to be included in the output by their local neighborhood, instead of
comparing their overlap score globally.

All the aforementioned concepts are configurable in technical implementa-
tions.

2.3.6.2 Temporal Memory

The temporal memory consists of the columns that a spatial pooler outputs,
but treats them as actual columns instead of "nodes". These columns consist
of cells and can contain an arbitrary number of cells which defines the
capacity of contexts that the temporal memory can express. Each cell
in a column can connect to other cells in other columns using segments

28

(more specifically, distal dendrite segments), where each segment consists of
synapses connecting to other cells.

Essentially, it takes the "node" based representation of the SP output, and
turns it into a new representation which includes state, or context, from
previous time steps. It achieves this by only activating a subset of cells per
column, typically only one per column. This allows the temporal memory
to represent a pattern in multiple contexts. If every column has 32 cells and
the SP output has 100 active columns and only one cell per column is active,
then the TM has 32100 ways of representing the same input. The same input
will make the same columns active, but in different contexts different cells
in those columns will be active. This is visualized in Figure 2.22.

Figure 2.22: Visualization of the TM, with number of cells equal 4. Some
columns are bursting.

The temporal memory algorithm consists of two phases. The first phase is
to evaluate the SP output against predictions and choose a set of active
cells. It does so by looking at the active columns and the cells they
contain. If an active column contains predictive cells, then those cells are
marked as active. If an active column has no predictive cells, usually
caused by observing a new pattern for the first time, then the column
"bursts" by activating all the cells that the column contains (see Figure 2.23).
Otherwise, a cell is inactive.

At this point, the active cells represent the current input in the context of
previous input. For each active column we look at the segments connected
to the active cell(s). If the column is bursting we look at the segments that
contain any active synapses, if there is no such segment we grow one on
the cell with the fewest segments. On each of the segments that we are
looking at, we increase the permanence on every active synapse, decrease
the permanence on every inactive synapse, and grow new synapses to cells
that were previously active. The algorithm also punishes segments that
caused cells to enter predictive state, but which did not end up being active.

Since the TM can only grow synapses to cells that were active in the
previous timestep, the TM struggles to express sequences of patterns over
multiple timesteps, as has been discussed on HTM forums [78]. The
solution has been to also encode some temporal information, such as the
time of day [79, 78], so that it can use timestamps as anchor points for its
contexts.

The second phase is to form a prediction by putting cells into a predictive
state. For every segment on every cell, the number of synapses connected
to active cells are counted. If the number exceeds an activation threshold,

29

1 1 0 0 01 0

0001

1

1

0

0

0

0

0

0

0

0

0

Input

Output

Figure 2.23: Expanded SP example with TM component where the
number of cells is set to 3. The leftmost column is bursting (all 3 cells
activated in green) due to the active SP output and due to containing no
predictive cells.

then the segment is marked as active and all the cells connected to the
segment enter the predictive state. To summarize, a cell has three possible
states:

• Active, if the column is bursting or the cell was in a predictive state
in the previous time step and the column it belongs to is active.

• Predictive, if a connected segment is active, which is in turn
determined by the number of active synapses.

• Inactive, if none of the other states apply.

Figure 2.24 visualizes cells with different states in the TM.

Figure 2.24: Visualization of the TM and the three states. Active in green,
predictive in blue, and inactive in white.

One can configure how much the system can learn by setting the number
of cells and the values by which permanence should be increased or
decreased. If it is desired that the TM does not "forget" at all, then the
permanence value by which synapses are decremented can be set to 0. If it

30

is desired that the TM can only express patterns in the current context and
the context of the previous time step, then the number of cells can be set to
2.

Finally, the TM compares the predictions Pt−1 it made in the previous time
step with the actual pattern At in the current time step and calculates an
anomaly score:

anomalyScore =
|At − (Pt−1 ∩ At)|

|At|
Which is a normalized value from 0 to 1. If the anomaly score is 1, then
it means that none of the predicted columns matched the current active
columns of the spatial pooler. If it is 0, then it means that all predicted
columns matched the current active columns of the SP.

It is also possible to estimate the number of predictions being made by the
TM at any time [80]. This is done by counting the number of predictive
cells, and dividing them by the number of active bits required to express
a pattern. As an example, if sparsity is set so that patterns have 60 active
bits and the number of predictive cells is 120, then the estimated number of
predictions is given as

numPredictions =
predictiveCells

activeBits
=

120
60

= 2

This is only an estimation, in reality the two patterns may have overlapping
bits in their representations, and the number of active bits for each
representation may have minor deviations.

2.3.7 Use Cases

The general use case for HTM is to perform anomaly detection. More
specifically, Numenta has made example applications showcasing how
HTM can be used in practice [81]:

• Rogue Behavior Detection which models normal behavior and
detects anomalies, such as unusual use of files in a network [82].

• Geospatial Tracking which detects anomalies in the movement of
people, objects, or material, using speed and location data [83].

• Financial Monitoring which detects anomalies in publicly traded
companies by continuously modelling stock price, stock volume, and
Twitter activity [84].

There are other examples on the use of HTM for real world applications.
One of them is the work done by El-Ganainy et al. [85], which showcases
how HTM can be used to model medical streams in real time. Another
example is the work done by Osegi [86], which shows how HTM can be
used for forecasting electrical loads in power grids.

There are also applications that are actively used in production, such as the
model offered by cortical.io which builds upon HTM in order to perform

31

www.cortical.io

language analysis. This is made this possible by introducing Semantic
Folding and Semantic Fingerprinting [87].

2.3.8 The Thousand Brains Theory

One of the newest advancements in HTM theory is the introduction of
the Thousand Brains Theory. Hawkins et al. [7] introduces the Thousand
Brains Theory as a way of redefining hierarchy in the brain based on
recent neuroscientifical discoveries. Instead of our classical understanding
of hierarchy in deep learning where each layer takes simple features and
outputs complex features, we now have that every layer of the hierarchy
sees the input at once but at different scales and resolutions. The different
nodes in the hierarchy are now also connected and thus enable the network
to use all available views of the object in order to create an understanding
of that object.

To summarize, the object is learned by the brain using multiple models that
may rely on different inputs, the models then vote to reach a consensus on
what they are sensing. This is coincidentally similar to ensemble learning
such as Thambawita et al. [88]. Each model can be thought of as a mini-
brain, hence the name The Thousand Brains Theory.

(a) Classical Hierarchy (b) Hierarchy as in
the Thousand Brains
Theory

Figure 2.25: Comparison of classical hierarchy and the hierarchy intro-
duced by the Thousand Brains Theory.

This new type of hierarchy is also quite similar to some state-of-the-art
image recognition deep learning architectures such as InceptionNet [89]
(see Figure 2.26) and Feature Pyramid Networks [90], in the sense that they
apply different sized convolutional filters, where each filter can be thought
of as its own separate model, on the data and do predictions based on all
of them at once. This also ensures scale invariance of objects fed in to the
architecture.

32

Previous Layer

Filter Concatenation

1x1 conv 3x3 conv 5x5 conv 3x3 max pool

Figure 2.26: How the Inception [89] architecture uses multiple filters at
once.

While the Thousand Brains Theory is not yet technically implemented in
any way in a standard HTM model, it does show that recent developments
within deep learning for image analysis have similarities with HTM theory.

2.3.9 HTM Performance in Anomaly Detection

Knowing that deep learning approaches have a high degree of accuracy but
suffer from problems related to generalizability, adaptability, and noise it
stands to reason that HTM is a viable alternative for anomaly detection.

Ahmad et al. [79] explores the use of HTM for anomaly detection on low
dimensional data such as temperature data from an industrial machine.
The authors also discuss benchmarks for anomaly detection and compare
different methods. The results show that HTM is very capable of
performing anomaly detection, especially in a changing environment.
HTM is able to outperform other anomaly detection methods and has the
advantage of not requiring any per-problem parameter tuning.

For high-dimensional anomaly detection; Daylidyonok, Frolenkova, and
Panov [4] used a HTM system to find anomalous frames in videos of
motions, with an example shown in Figure 2.27. The anomalies were
artificially created by swapping certain frames between different motion
videos in the dataset. The results showed that the HTM system was able to
correctly detect some anomalies, but not an impressive amount.

One thing to note is that direct binary representations of the video frames
were used as SDRs, therefore no proper encoding was performed which
might have led to the poor results. This hints at the fact that HTM by itself
is not capable of handling high dimensional data, and is instead reliant
on an encoder to lower the dimensionality by extracting important spatial
features. This is an area in which more work needs to be done so that HTM
can perform better on complex problems. Alternatively, one should explore
new architectures using HTM.

33

Figure 2.27: Example motion frame the dataset used by Daylidyonok,
Frolenkova, and Panov [4].

2.4 Ethical Considerations

This thesis introduces an architecture for performing surveillance on
potentially a massive scale, and could for instance be tied to some sort
of social credit system. This raises ethical questions regarding mass
surveillance that highlight how the work done in this thesis can be misused.
Therefore, even if the work done in this thesis is nowhere near perfect and
far from ready to be used in production, one should still keep the ethical
aspects in mind when pursuing this type of research.

It should also be reiterated that HTM is the result of research from a private
company, which is why one should be extra critical of their work. Another
aspect is that unlike deep learning, which is democratized, HTM is still
very centralized. This means that Numenta has a lot of influence within
the development of HTM, which could be misused for the purpose of
promoting the goals of the company.

2.5 Summary

Deep learning can be traced back to the Perceptron which was a machine
learning model capable of solving linearly separable problems. Over time,
people theorized that stacking Perceptrons would give it the ability to solve
more complex problems. This was not possible before back propagation
was introduced. After that, deep learning evolved and new architectures
were invented. One of the main contribution is the introduction of
the CNN, which allowed deep learning approaches to achieve state-of-
the-art results for complex problems such as image classification. The
ability to train deep learning models on the GPU and the introduction of
frameworks caused deep learning to explode in popularity. One of the
latest advancements is the introduction of generative models, which can
be used for various purposes including generating realistic data. Deep
learning has several issues, such as lack of explainability, the need for a
lot of data, and poor out-of-distribution performance.

34

Anomaly detection is often defined as detecting data points that deviate
from the general distribution. Unlike most other problems in deep
learning, anomaly detection deals with unpredictable and rare events
which makes it hard to apply traditional deep learning for anomaly
detection. Popular approaches therefore often employ generative models,
that calculate an anomaly measure using generated or reconstructed data.
A subset of anomaly detection is smart surveillance, which is the use of
video analysis specifically in surveillance. Recent developments show that
generative models have a high degree of accuracy and are consistently
improving.

HTM theory introduces a machine learning algorithm which works on the
same principles as the brain and therefore solves some of the issues that
deep learning has. HTM is considered noise resistant and can perform
online learning, meaning that it learns as it observes more data. HTM
replicates the structure of the neocortex which is made up of cortical
regions consisting of cortical columns, which in turn are made of up
of mini-columns and then neurons. HTM neurons are more complex
than neurons in deep learning, and perform learning with Hebbian-like
learning. The data in an HTM is represented using an SDR, which is a
sparse bit array. An encoder converts real world values into SDRs. One
of the difficulties with HTM is making it work on visual data, where
creating a good encoder for visual data is still being researched. The
HTM learning mechanism consists of two parts, the spatial pooler and
the temporal memory. The spatial pooler learns to extract semantically
important information into output SDRs. The temporal memory learns
sequences of patterns of SDRs and forms a prediction in the form of
a predictive SDR. Research has shown that HTM is very capable of
performing anomaly detection on low-dimensional data and is able to
outperform other anomaly detection methods. However, related works
show that HTM struggles with higher dimensional data. Therefore, a
natural conclusion to make is that HTM should be applied differently, and
that a new type of architecture using HTM should be explored for the
purpose of video anomaly detection.

It is with the topics covered in this chapter in mind, as well as the
conclusion that there is a need for a new architecture so that HTM can be
applied for video anomaly detection, that this thesis introduces Grid HTM
in the next chapter. The next chapter will address the challenge regarding
handling higher dimensional data, and will describe the architecture in a
detailed way.

35

36

Chapter 3

Grid HTM

This chapter presents Grid HTM, which is the product of answering the
thesis question and is the main contribution of this thesis. The source code
for Grid HTM can be found on GitHub [12].

3.1 Introduction

This thesis explores a new type of architecture, named Grid HTM, for
anomaly detection in videos using HTM, and proposes to use segmenta-
tion techniques to simplify the data into an SDR-friendly format. These
segmentation techniques could be anything from simple binary threshold-
ing to deep learning instance segmentation. Even keypoint detectors such
as Oriented FAST and Rotated BRIEF (ORB) [91] could in theory be applied.
When explaining Grid HTM, the examples will be taken from deep learn-
ing instance segmentation of cars on a video from the VIRAT [92] dataset.
An example segmentation is shown in Figure 3.1.

Figure 3.1: Segmentation result of cars, which is suited to be used as an
SDR. Original frame taken from VIRAT [92].

The idea is that the SP will learn to find an optimal general representation
of cars. How general this representation is can be configured using the
various parameters, but ideally they should be set so that different cars will
be represented similarly while trucks and motorcycles will be represented
differently. An example representation by the SP is shown in Figure 3.2.

37

Figure 3.2: The SDR (left) and its corresponding SP representation
(right). Note that the SP is untrained.

The task of the TM will then be to learn the common patterns that the
cars exhibit, their speed, shape, and positioning will be taken into account.
Finally, the learning will be set so that new patterns are learned quickly, but
forgotten slowly. This will allow the model to quickly learn the norm, even
if there is little activity, while still reacting to rare anomalies. This requires
that the input is stationary, in our example this means that the camera is
not moving.

It is possible to split different segmentation classes into their respective
SDRs. This will give the SP and the TM the ability to learn different things
for each of the classes. For instance, if there are two classes "person" and
"car", then the TM will learn that it is normal for objects belonging to
"person" to be on the sidewalk, while objects belonging to "car" will be
marked as anomalous when on the sidewalk.

Ideally, the architecture will have a calibration period spanning several
days or weeks, during which the architecture is not performing any
anomaly detection, but is just learning the patterns.

3.2 Improvements

As it currently stands, the current architecture is nearly identical to the one
used by Daylidyonok, Frolenkova, and Panov [4], which was shown to not
be particularly effective, therefore multiple improvements are introduced
to increase effectiveness.

3.2.1 Invariance

One issue that becomes evident is the lack of invariance, due to the TM
learning the global patterns. Using the example, it learns that it is normal
for cars to drive along the road but only in the context of there being cars
parked in the parking lot. It is instead desired that the TM learns that it is
normal for cars to drive along the road, regardless of whether there are cars
in the parking lot.

This thesis proposes a solution based on dividing the encoder output into
a grid (see Figure 3.3), and have a separate SP and TM for each cell in the

38

grid. The anomaly scores of all the cells are then aggregated into a single
anomaly score using an aggregation function.

Figure 3.3: The encoder output divided into a grid.

3.2.1.1 Aggregation Function

Selecting the correct aggregation function is important because it affects the
final anomaly output. For instance, it might be tempting to use the mean
of all the anomaly scores as the aggregation function:

X : {x ∈ R : x ≥ 0}

anomScore =
∑

x∈X
x

|X|
However, this leads to problems with normalization, meaning that an
overall anomaly score of 1 is hard to achieve due to many cells having a
zero anomaly score. In fact, it becomes unclear what a high anomaly score
is anymore. Using the mean also means that anomalies that take up a lot
of space will be weighted more than anomalies that take up a little space,
which might not be desirable.

To solve the aforementioned problem and if the data has little noise, a
potential aggregation function could be the non-zero mean:

X : {x ∈ R : x > 0}

anomScore =

∑

x∈X
x

|X| if |X| > 0

0 otherwise

39

Meaning that only the cells with a non-zero anomaly score, denoted X,
will be contributing to the overall anomaly score which helps solve the
aforementioned normalization and weighting problem. On the other hand,
this will perform poorly when the architecture is exposed to noisy data
which could lead to there always being one or more cells with a high
anomaly score.

Noisy data

(a) Mean. (b) Non-zero mean.

Figure 3.4: How the two aggregation functions perform on the same
noisy data.

Clean data

(a) Mean. (b) Non-zero mean.

Figure 3.5: How the two aggregation functions perform on the same clean
data. The graphs show their respective anomaly score output.

Figure 3.4 illustrates the effect of an aggregation function for noisy data,
where the non-zero mean is rendered useless due to the noise. On the other
hand, Figure 3.5 shows how the non-zero mean gives a clearer anomaly
score when the data is clean. Especially regarding how, unlike the mean,
the non-zero mean has a clearly defined range between 0 and 1.

40

3.2.2 Explainability

Having the encoder output divided into a grid has the added benefit of
introducing a certain degree of explainability into the model. By using
Grid HTM it is now possible to find out where in the input an anomaly
has occurred by simply observing which cell has a high anomaly score.

It is also possible to estimate the number of predictions for each cell
which can be used as a measure of certainty, where fewer predictions
means higher certainty. Making it possible to measure certainty per cell
creates a new source of information which can be used for explainability or
robustness purposes.

These two properties show that Grid HTM offers vastly more explainability
than current state-of-the-art deep learning models for anomaly detection,
which could make it an attractive approach.

3.2.3 Flexibility and Performance

In addition, it is also possible to configure the SP and the TM in each
cell independently, giving the architecture increased flexibility. It is also
possible to use a non-uniform grid, meaning that some cells can have
different sizes. Last but not least, dividing the frame into smaller cells
makes it possible to run each cell in parallel for increased performance.

3.2.4 Reviewing Encoder Rules

That being said, a potential problem with the grid approach is that the
rules for creating a good encoder, mentioned in Section 2.3.4, may not be
respected and therefore should be reviewed:

• Semantically similar data should result in SDRs with overlapping
active bits. In this example, a car at one position will produce an SDR
with a high number of overlapping bits as another car at a similar
position in the input image.

• The same input should always produce the same SDR. The
segmentation model produces a deterministic output given the same
input.

• The output must have the same dimensionality (total number of
bits) for all inputs. The segmentation model output has a fixed
dimensionality.

• The output should have similar sparsity (similar amount of one-
bits) for all inputs and have enough one-bits to handle noise and
subsampling. The segmentation model does not respect this. An
example is that there can be no cars (zero active bits), one car (n active
bits), or two cars (2n active bits), and that this will fluctuate over time.

The solution for the last rule is two-fold, and consists of imposing a soft
upper bound and a hard lower bound for the number of active pixels

41

within a cell. The purpose is to lower the variability of the number of
active pixels, while also containing enough semantic information for HTM
to work:

• Pick a cell size so that the distribution of number of active pixels is as
tight as possible, while containing enough semantic information and
also being small enough so that the desired invariance is achieved.
The cell size acts as a soft upper bound for the possible number of
active pixels.

• Create a pattern representing emptiness for when there is nothing in
the input, where the number of active bits is similar to what can be
expected on average when there are cars inside a cell. This acts as a
hard lower bound for the number of active pixels.

There could be situations where a few pixels are active within a cell, which
could happen when a car has just entered a cell, but this is fine as long as it
does not affect the distribution too much. If it does affect the distribution,
which can be the case with noisy data, then an improvement would be to
add a minimum sparsity requirement before a cell is considered not empty,
e.g. less than 5 active pixels means that the cell is empty. In the following
example, the number of active pixels within a cell centered in the video was
used to build the distributions seen in Figure 3.6:

0 20 40 60
Number of Active Pixels

101

102

103

104

105

Fr
am

es

σ=3.78
Non-zero Mean

(a) Without empty pattern.

20 40 60
Number of Active Pixels

101

102

103

104

105

Fr
am

es

σ=1.41
Non-zero Mean

(b) With empty pattern and a mini-
mum sparsity requirement of 5.

Figure 3.6: Distribution of number of active pixels within a cell of size
12× 12.

With a carefully selected empty pattern sparsity, the standard deviation
of active pixels was lowered from 3.78 to 1.41. It is possible to automate
this process by developing an algorithm which finds the optimal cell size
and empty pattern sparsity which causes the least variation of number of
active pixels per cell. This algorithm would run as a part of the calibration
process.

The visual output resulting from these changes, which is an equally
important output as the aggregated anomaly score, can be seen in
Figure 3.7. Each individual "block" in the upper half of the image represents

42

a cell and its anomaly score using a color which varies from green (low
anomaly score) to red (high anomaly score). The individual blocks also
display the SP representation of the individual cell. The current frame
number is shown in the top right corner of the image. The bottom half
of the image shows the corresponding input frame for Grid HTM.

Figure 3.7: Example Grid HTM output and the corresponding input. The
color represents the anomaly score for each of the cells, where red means
high anomaly score and green means zero anomaly score. Two of the cars
are marked as anomalous because they are moving, which is something
Grid HTM has not seen before during its 300 frame long lifetime.

Since there are now cells that are observing an empty pattern for a lot of the
time in sparse data, boosting is recommended to be turned off, otherwise
the SP output for the empty cells would change back and forth in order to
adjust the active duty cycle.

43

3.2.5 Stabilizing Anomaly Output

Figure 3.8: High anomaly score when an empty cell (represented with an
empty pattern with a sparsity value of 5) changes to being not empty, as
something enters the cell.

Another issue with the grid based approach arises when a car first comes
into a cell. The TM in that cell has no way of knowing that a car is about
to enter, since it does not see outside its own cell, and therefore the first
frame that a car enters a cell will cause a high anomaly output. This is
illustrated in Figure 3.8 where it can be observed that this effect causes
the anomaly output to needlessly fluctuate. The band-aid solution is to
ignore the anomaly score for the frame during which the cell goes from
being empty to being not empty, which is illustrated in Figure 3.9. The
result of this change is that the anomaly output of each individual cell is
more stable and experiences less false positives.

Figure 3.9: In this case, the anomaly score is ignored (set to 0) for the
frame in which the cell changes state from empty to not empty.

A more proper solution could be to allow the TM to grow segments to the
TMs in the neighboring cells, but this is not documented in any research
papers and might also hinder invariance.

3.2.6 Multistep Temporal Patterns

Since the TM can only grow segments to cells that were active in the
previous timestep, as was mentioned in Section 2.3.6.2, it will struggle
to learn temporal patterns across multiple timesteps. This is especially
evident in high framerate videos, where an object in motion has a similar
representation at timestep t and t+ 1, as an object standing still. Figure 3.10
visualizes this phenomenon.

44

t t+1 t t+1

Figure 3.10: Comparison of a moving object (left) and a still object (right)
in a high framerate video. They are very similar and could actually end
up being represented identically by the SP.

This could cause situations where an object that is supposed to be moving,
suddenly stands still, yet the TM will not mark it as an anomaly due to
it being stuck in a contextual loop (see Figure 3.11). A contextual loop is
when one of the predictions at t becomes true at t + 1, and then one of the
predictions at t + 1 is almost identical to the state at t, which becomes true
if the object is not moving, causing the TM to enter the same state that it
was in at t.

t+1t

Prediction

Prediction

Figure 3.11: Example of a contextual loop.

A solution is to concatenate the past n SP outputs as input into the TM,
which is made possible by keeping a buffer of past SP outputs and shifting
its contents out as new SP outputs are inserted (see Figure 3.12). This
follows the core idea behind encoding time in addition to the data, which
makes time act as a contextual anchor. However, in this case there are
no timestamps that are suitable to be used as contextual anchors, so as a
replacement, the past observations are encoded instead. Parallels can be
drawn to the Transformer model, where a positional encoding is required
for it to learn order of sequences [32].

45

t t-1 t-2

Concatenate

SDR

t t-1 t-2

Concatenate

SDR

Figure 3.12: Example of concatenation with n = 3 when an object is
moving from left to right, compared to when an object is not in motion.
It can be observed that the SDRs are vastly different.

Concatenating past observations together will force the TM input to be
unique both when an object is in motion and when an object is still.
High framerate videos can benefit the most from this, and the effect
will be more pronounced for higher values of n. One could feed the
past n encoder outputs into the SP instead, but this will lead to a much
higher computational requirement, as well as make both the SP and TM
parameters to be dependent on n.

A potential side effect of introducing temporal patterns is that, because the
TM is now exposed to multiple frames at once, it will be more tolerant to
temporal noise. An example of temporal noise is when an object disappears
for a single frame due to falling below the classification threshold of the
deep learning segmentation model encoder. The reason for the noise
tolerance is that instead of the temporal noise making up the entire input
of the TM, it now only makes up 1

n of the TM input.

Adding support for multistep temporal patterns to the method used
by Daylidyonok, Frolenkova, and Panov [4], which is mentioned in
Section 2.3.9, could improve their results.

3.3 Implementation

This version of Grid HTM is implemented in Python using the community
fork of Numenta’s HTM codebase [10]. The reason for using the
community fork is that Numenta has stopped developing the original
codebase, and that the community codebase is more optimized and has
more features. There are other HTM implementations available [93, 94],
but these were not considered due to their low popularity meaning that
they have a higher chance of lacking features and containing bugs.

46

3.4 Biological Plausibility

One of the key principles of HTM theory is that it should be biologically
plausible [67]. Every development within HTM theory follows this
principle, and it should therefore be expected that Grid HTM does so as
well.

Remembering that a single HTM system can model a cortical column, as
stated in Section 2.3.1, means that each cell in the grid can be considered an
individual cortical column. The entire architecture can therefore be thought
of as a simplified cortical region, as visualized in Figure 2.10.

3.5 Use Cases

Figure 3.13: Examples of environments that Grid HTM could help
monitor. Images taken from the VIRAT [92] dataset.

The most intuitive use case is to use Grid HTM for semi-active surveillance,
where personnel only have to look at segments containing anomalies,
leading to drastically increased efficiency.

One example is making it possible to have an entire city, with environments
such as in Figure 3.13, be monitored by a few people. This is made possible
by making it so that people only have to look at segments that Grid HTM
has found anomalous, which is what drastically lowers the manpower
requirement for active monitoring of the entire city.

Grid HTM could also be used to help automate labeling of anomaly
datasets for deep learning. This would be similar to how deep learning
networks are used to help automate creating new labeled image datasets,
where the model proposes a label for an image, which is then further
refined by a human if needed.

47

3.6 Summary

This chapter proposes to use segmentation techniques as an encoder for
visual data. The resulting SDRs can then be parsed by Grid HTM, which is
essentially a collection of HTM models divided into a grid. The idea is that
the SP will find an optimal general representation of the objects represented
in the input SDRs. The task of the TM will be to learn the patterns that these
objects exhibit over time, such as position, speed, and shape. Ideally, the
architecture will have a calibration period where it will not do any anomaly
detection but will only learn the patterns.

The main reason for applying a grid, and using separate HTM models in
each cell, is to introduce a form of invariance within the frame. Another
benefit is that this introduces explainability into the architecture, meaning
that it is easy to know where in the frame the anomaly is. Finally, having
a grid means increased flexibility since the HTM models in each grid
can be configured independently as well as the possibility to run each
grid in parallel for increased performance. This chapter proposes to use
an aggregation function to combine all the anomaly outputs of each cell
in the grid into a single output for the entire architecture. This grid
based approach also makes sense from a biological perspective by loosely
resembling a cortical region.

With all the new changes made, it is important to review the rules for
creating a good encoder, and it becomes evident that the rule regarding
having a stable sparsity value is not followed. To address this, a pattern
representing emptiness is introduced in order to impose a lower bound for
sparsity, while the cell size itself acts as a soft upper bound for the number
of active pixels. Due to the possibility of a lot of cells seeing the same empty
pattern for long periods of time, it is recommended to disable boosting.

One of the issues with the introduction of a grid, is that the HTM models
in each cell can not see outside their own cell. This means that the HTM
models have no way of predicting that something is about to enter the cell,
which causes a spike in the anomaly score for the frame when something
enters the cell. A band-aid solution is to ignore the anomaly output during
the frame in which this happens.

An issue that occurs specifically for high framerate videos is that HTM
struggles to learn temporal patterns. It is suspected that this occurs due to a
contextual loop, in which predictions that predict themselves become true.
A solution is to concatenate the past SP outputs into a single SDR which
is then used as input into the TM. This will force the TM input, for when
an object is in motion and when an object is still, to be unique. A potential
side effect is that the architecture becomes more tolerant to temporal noise.

Grid HTM has several potential use cases, such as semi-active surveillance
in which an entire city can be monitored by a few persons. It can also
be used to help label anomaly datasets for use in training deep learning
anomaly detection models.

48

Now that Grid HTM has been introduced and explained, it is time to
observe how it works in practice. The next chapter will therefore perform
some proof-of-concept experiments and discuss the results.

49

50

Chapter 4

Experiments and Results

In this section, various experiments are performed in order to gauge the
effectiveness of Grid HTM. There are three experiments in total, and each
experiment covers a different use case. For the purpose of reproducibility,
each experiment also includes tables showing the parameters used.

4.1 Bouncing Ball Experiment

To give credibility to the approach mentioned in Chapter 3, a simple
experiment to test the capabilities of HTM and confirm that they apply on
a video is introduced.

4.1.1 Data

Figure 4.1: The bouncing ball experiment, and its three stages.

The video consists of a ball bouncing up and down until an anomaly occurs
in the form of a sudden introduction of a horizontal velocity. After a while
this horizontal velocity is set back to 0 and the ball is once again bouncing
up and down in-place. This is visualized in Figure 4.1.

51

4.1.2 HTM

The model used is a standard HTM model, which covers the entire input.
This is equivalent to a single cell in a Grid HTM.

Figure 4.2: The anomaly score in the bouncing ball experiment.

From Figure 4.2 it can be observed that HTM correctly detects anomalies
and quickly adapts to them. On the other hand, the result is not perfect
due to the minor oscillations close to (1) and the anomaly spikes towards
the end close to (2). While the imperfections are not major and can be
safely ignored, it is still important to understand their causes and what can
be done to improve upon them.

4.1.2.1 Boosting

The reason for the oscillations is due to the spatial pooler being dominated
by a lucky few columns. The solution is to enable boosting, as explained in
Section 2.3.6.1. This also helped with the spikes towards the end, as can be
seen in Figure 4.3.

52

Figure 4.3: Bouncing ball with boosting enabled.

4.1.2.2 Zero Permanence Decrement

The reason for the anomaly spikes towards the end is because the spatial
pooler has found an optimal representation when the ball is bouncing
freely, but when the ball stops and starts bouncing in-place the spatial
pooler ends up unlearning the old optimal representation while it learns
the new optimal representation. This causes a sudden minor change in the
SP output, which the TM reports as anomalous.

The solution is to set the value by which permanence is decreased by to
zero, effectively disabling the ability of the spatial pooler to "forget", as can
be seen in Figure 4.4. That being said, the ability to decrement permanence
is important in HTM systems, therefore disabling it is not always feasible.

53

Figure 4.4: Bouncing ball without the ability of the SP to "forget".

4.1.2.3 Boosting and Zero Permanence Decrement

Finally, for the sake of interest, the bouncing ball example was performed
with both boosting enabled and with zero permanence decrement. Results
can be seen in Figure 4.5.

Figure 4.5: Bouncing ball without the ability of the SP to "forget" and
with boosting enabled.

54

4.1.2.4 Parameters

Final list of parameters for reproducibility. For the plots, a moving average
of n = 100 was used to smooth the output. A lot of the parameters were
selected through trial-and-error, and for most of the parameters, a change
would lead to a minimal change in the results.

Parameter Value Notes

inputDimensions 120, 120 The shape of the input

columnDimensions 60, 60 The dimensions of the columns in the
spatial pooler

potentialPct 0.1 Percent of inputs within the receptive
field of a column that it can be connected
to

potentialRadius 120 Controls the size of the receptive field

localAreaDensity 0.02 Output SDR target sparsity

globalInhibition True Set to False to enable topology

wrapAround True Whether to wrap around the receptive
field when it is outside the input SDR

synPermActiveInc 0.1 Learning rate

synPermInactiveDec 0 Forgetting rate

stimulusThreshold 2 Controls noise tolerance

boostStrength 0.1

dutyCyclePeriod 250

seed 2

Table 4.1: SP Parameters

Parameter Value Notes

columnDimensions 60, 60 Must be same as the SP

predictedSegmentDecrement 0.003 Punishment forgetting rate

permanenceIncrement 0.1 Learning rate

permanenceDecrement 0.001 Forgetting rate

minThreshold 3 Controls noise tolerance

activationThreshold 5 Controls noise tolerance

cellsPerColumn 16 Contextual capacity

seed 2

Table 4.2: TM Parameters

55

4.1.3 Grid HTM

This is a very simple problem which does not require invariances, making
it unsuitable for Grid HTM. Grid HTM would be suitable if there were two
or more independent bouncing balls, due to its improved invariance. Still,
it is interesting to see how Grid HTM performs compared to normal HTM.

4.1.3.1 Results

0 5000 10000 15000 20000
Frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

An
om

al
y
Sc
or
e

Grid HTM Anomaly Score
Anomalies

Figure 4.6: Results when using Grid HTM

It can be observed in Figure 4.6 that Grid HTM performs worse than the
normal HTM, due to the more prominent anomaly score spikes seen in
Figure 4.5, but the result is still acceptable. This is to be expected since
this problem is not suited for Grid HTM, and that the parameters given in
Table 4.3, Table 4.4, and Table 4.5 are probably not optimal.

4.1.3.2 Parameters

The SP and TM parameters were selected so that they were as close as
possible to the normal HTM parameters. The non-zero mean was chosen
as the aggregation function, because there is no noise due to the controlled
environment. Again, a moving average of n = 100 was used to smooth the
anomaly score output in the plots. A lot of the parameters were selected
through trial-and-error, and for most of the parameters, a change would
lead to a minimal change in the results.

56

Parameter Value Notes

sp_grid_size (30, 30) Size of each cell in the grid,
affects invariance

tm_grid_size (15, 15) Dimension of the SDR that
each SP outputs, also the num-
ber of columns in the SP

min_sparsity 1 How many pixels for the grid
cell to be considered not empty,
here it is set to mimic normal
HTM

sparsity 28.27 Empty pattern active bits, here
it is the area of the bouncing
ball with r = 3

temporal_size 1 Size of the multistep temporal
pattern, 1 means it is effectively
disabled, it is disabled in order
to mimic normal HTM

Table 4.3: Grid HTM specific parameters

57

Parameter Value Notes

inputDimensions sp_grid_size

columnDimensions tm_grid_size

potentialPct 0.5 Percent of inputs within the
receptive field of a column
that it can be connected to,
increased in order to com-
pensate for the smaller po-
tential pool

potentialRadius 5 Controls the size of the re-
ceptive field

localAreaDensity 0.1 Output SDR target sparsity

globalInhibition True Set to False to enable topol-
ogy

wrapAround False Whether to wrap around the
receptive field when it is
outside the input SDR

synPermActiveInc 0.1 Learning rate

synPermInactiveDec 0.001 Forgetting rate

stimulusThreshold 2 Controls noise tolerance

boostStrength 0 Set to 0 to avoid instability
in empty cells

seed 2

Table 4.4: SP Parameters

Parameter Value Notes

columnDimensions tm_grid_size Same as the SP

predictedSegmentDecrement 0.003 Punishment forgetting rate

permanenceIncrement 0.1 Learning rate

permanenceDecrement 0.001 Forgetting rate

minThreshold 1 Controls noise tolerance

activationThreshold 1 Controls noise tolerance

cellsPerColumn 16 Contextual capacity

seed 2

Table 4.5: TM Parameters

58

4.1.4 Experiment Summary

This experiment is a controlled experiment involving a computer generated
ball bouncing up and down, and then introducing an anomaly in the form
of a change in horizontal velocity. Finally, the horizontal velocity is set back
to zero.

First the experiment is performed with a normal HTM model, and the
results show that it is capable of detecting the anomalies and quickly adapts
to them. The same experiment is then performed with Grid HTM. The
results show that Grid HTM is also capable of detecting the anomalies and
quickly adapts to them, however it performs slightly worse than normal
HTM. The reason is that Grid HTM is designed for more complex videos,
such as if there were multiple bouncing balls at once.

59

4.2 Surveillance Experiment

As stated earlier, one of the use cases of Grid HTM is anomaly detection in
complex videos. This example will show how Grid HTM could perform on
surveillance footage. The video to be used is part of the VIRAT [92] video
dataset, and was selected due to its long duration and stationary camera,
which is shown in Figure 4.7.

The downside is that the video does not contain any non-technical
anomalies, but consists of technical anomalies in the form of several
segments with sudden frame skips in between. There is also a synthetic
anomaly introduced in the form of a frame repeat lasting a couple of
seconds, essentially "freezing" time, in order to test whether Grid HTM is
able to understand how objects should be moving in time.

Figure 4.7: Example frames from the selected video.

As previously mentioned, both binary thresholding and deep learning
feature map extraction as encoders have their downsides. Therefore, this
thesis proposes to use a combination of both, a segmentation model which
can extract classes into their respective SDRs. Meaning that there could
be an SDR for cars and an SDR for persons (see Figure 4.8), that are then
concatenated before being fed into the system.

60

The segmentation model used is PointRend [95] with a ResNet101 [33]
backbone, pretrained on ImageNet [77], and implemented using Pixel-
Lib [96].

Figure 4.8: Example segmentation of cars and persons.

For the sake of simplicity, this experiment will focus only on the segmenta-
tion of cars.

While on the topic of segmentation, it is important to mention that the
segmentation model is not perfect and that there are cases where objects
are misclassified as well as cases where cars repeatedly go above and below
the confidence threshold.

4.2.1 Results

0 20000 40000 60000 80000 100000 120000 140000 160000
Frames

0.00

0.01

0.02

0.03

0.04

0.05

An
om

al
y
Sc

or
e

Grid HTM
Segments
Frame Freeze

Figure 4.9: Anomaly score output from Grid HTM.

It can be observed in Figure 4.9 that Grid HTM is detecting when segments
begin and end, however it is not possible to use a threshold value to isolate
them, and they also have vastly different anomaly scores compared to each
other. This is due to the way the aggregation function works, which means
that the anomaly output is dependent on the physical size of the anomaly.
It should also be noted that a moving average (n = 200) was applied to
smooth out the anomaly score output, otherwise the graph would be too
noisy.

61

With the aggregation functions presented in this thesis in mind, it is safe
to conclude that looking at the anomaly score output is meaningless for
complex data such as a surveillance video. This however does not mean
that Grid HTM is completely useless, and this can be observed by looking
at the visual output of Grid HTM. The visual output during which the first
segment anomaly occurs can be seen in Figure 4.10.

Figure 4.10: The first segment anomaly, which is marked with red text,
and the corresponding changes detected by Grid HTM.

Here it is observed that Grid HTM correctly marks the sudden change of
cars when the current segment ends and a new segment begins.

4.2.1.1 Road

In the original video, there is a road on which cars regularly drive. By
observing the visual output, it becomes evident that after some time, Grid
HTM has mostly learned that behavior and does not report those moving
cars as anomalies. This is shown in Figure 4.11.

62

Figure 4.11: Visual output during when a car is driving along the main
road.

4.2.1.2 Frame Repeat

To prove that Grid HTM has learned that cars on the road should be
moving, it is possible to look at the visual output during the period when
the video is repeating the same frame and observe if the architecture marks
the cars standing still on the road as anomalies.

63

Figure 4.12: Anomaly output during the repeating frame, the start of
the frame repeat is marked with red text. The blue circle highlights the
object of interest.

It can be observed in Figure 4.12 that the cars along the main road are not
marked as anomalies, but this could be attributed to the fact that there is
a crossing there and that cars periodically have to stop at that point to let
pedestrians cross.

On the other hand, when looking at the anomaly marked with a blue circle,
the car on the road in the parking lot is marked as an anomaly that increases
in severity as the time goes on during the frame repeat. The reason why
that car causes an anomaly is because, unlike the cars on the main road, a
car is rarely observed as standing still at that position.

To prove that the anomaly was actually directly caused by the repeating
frame, and not just due to repeating the anomaly in time, it should be
compared to the anomaly output if there was no repeating frame.

64

Figure 4.13: Anomaly output when there is no frame repeating, where
it should have repeated is marked in red. The blue circle highlights the
object of interest.

It can be observed in Figure 4.13 that the anomaly output is minor
compared to when there was a repeating frame, proving that the anomaly
was indeed a product of the repeating frame and that Grid HTM was able
to learn how objects should be moving in time.

Finally, it is interesting to look at how Grid HTM handles the repeating
frames without multistep temporal patterns, which is shown in Figure 4.14.

65

Figure 4.14: Anomaly output during the repeating frame, the start of
the frame repeat is marked with red text. The blue circle highlights the
object of interest. This time without multistep temporal patterns.

Unfortunately, simply disabling multistep temporal patterns without
adjusting the other TM parameters causes the same car to be marked as
an anomaly before and during the frame repeat. In fact, as mentioned in
Section 3.2.6, disabling multistep temporal patterns causes Grid HTM to
be less noise tolerant which causes a lot more anomalies to be wrongly
detected. This is evident in Figure 4.14, where a higher number of severe
anomalies can be observed compared to previous examples. This also
highlights how sensitive HTM can be regarding parameters.

4.2.1.3 Points of Interest

Finally, it is interesting to look the various anomaly score spikes and
observe in the visual output what caused them. The points of interest to
be explored are marked in Figure 4.15

66

2

1

Figure 4.15: Points of interests in the anomaly score output.

The first point of interest, which can be seen in Figure 4.16, showcases the
weakness of the aggregation function.

Figure 4.16: Visual output of the first point of interest.

It can be seen that the anomaly score output, which is shown at the very
bottom of each image, can be attributed to two occurrences. The first
occurrence is a physically big but low severity anomaly. The second

67

occurrence is a physically small but high severity anomaly. Despite the
two different anomalies, the anomaly score output is similar for both
occurrences.

The second point of interest, which can be seen in Figure 4.17, showcases
the importance of exposing HTM to all possible behaviors that are
considered not anomalous, which is one of the complexities mentioned in
Section 2.2.

Figure 4.17: Visual output of the second point of interest.

It can be observed that there are high anomaly outputs for cars entering
the parking lot from the left side of the frame. The high anomaly score is
caused by an insufficient number of previous observations of that behavior.

4.2.2 Parameters

Final list of parameters for reproducibility. As previously mentioned, a
moving average (n = 200) was used to smooth the output graph and make
it more readable. The mean was used as the aggregation function due to the
complex nature of the data. Most of the parameters were selected through
trial-and-error and are also exaggerated in order to compensate for the
relatively short video duration compared to what Grid HTM is designed
for.

68

Parameter Value Notes

sp_grid_size (32, 32) Size of each cell in the grid,
affects invariance

tm_grid_size (16, 16) Dimension of the SDR that
each SP outputs, also the num-
ber of columns in the SP

min_sparsity 10 How many pixels for the grid
cell to be considered not empty

sparsity 15 Empty pattern active bits

temporal_size 15 Size of the multistep temporal
pattern buffer

Table 4.6: Grid HTM specific parameters

Parameter Value Notes

inputDimensions sp_grid_size

columnDimensions tm_grid_size

potentialPct 0.2 Percent of inputs within the
receptive field of a column
that it can be connected to

potentialRadius 5 Controls size of the recep-
tive field

localAreaDensity 0.05 Output SDR target sparsity

globalInhibition True Set to False to enable topol-
ogy

wrapAround False Whether to wrap around the
receptive field when it is
outside the input SDR

synPermActiveInc 0.01 Learning rate

synPermInactiveDec 0.00001 Forgetting rate

stimulusThreshold 3 Controls noise tolerance

boostStrength 0 Causes instability in empty
cells

seed 2

Table 4.7: SP Parameters

69

Parameter Value Notes

columnDimensions tm_grid_size Same as the SP

predictedSegmentDecrement 0.001 Punishment forgetting rate

permanenceIncrement 0.01 Learning rate

permanenceDecrement 0.001 Forgetting rate

minThreshold 10 Controls noise tolerance

activationThreshold 10 Controls noise tolerance

cellsPerColumn 32 Contextual capacity

seed 2

Table 4.8: TM Parameters

4.2.3 Experiment Summary

This experiment showcases the performance of Grid HTM on complex
data, specifically a surveillance video of a parking lot. The video contains
technical anomalies in the form of segments, and also a synthetic anomaly
which is a period of repeating frames. Semantic segmentation was
performed in order to extract the cars in the frame into an SDR.

The results show that Grid HTM has the ability to react when segments
begin and end, as well as the ability to detect the repeating frames. It also
shows that the anomaly output, with the currently introduced aggregation
functions, cannot be used to reliably to threshold anomalies. Instead, one
can look at the visual output of Grid HTM. The visual output shows that
Grid HTM is able to detect the change in objects when a segment change
occurs.

Results also show that Grid HTM learns common patterns such as cars
driving on the main road, and does not report that behavior as anomalous.
It is also shown that Grid HTM can correctly detect the repeating frames,
and marks anomalous cars during the repeating frames with an increasing
severity. Finally, a couple of points of interests are shown that highlight
the weakness of the aggregation function and the importance of exposing
HTM to all possible behaviors not considered anomalous.

70

4.3 Sperm Experiment

As seen in the surveillance experiment, it seems Grid HTM can detect when
segments begin and end. This experiment will explore this ability in greater
detail.

4.3.1 Data

The dataset used is VISEM [97], a sperm dataset which consists of videos
that are made up of several segments. The sperm cells will be segmented
using a rough binary thresholding, as shown in Figure 4.18.

Figure 4.18: Example frame from a sperm video (left) and its correspond-
ing segmentation (right).

It is important to note that the data itself is noisy, and that it is not possible
for Grid HTM to learn any meaningful patterns. The individual videos are
also relatively short, which makes it even harder to learn any meaningful
patterns.

4.3.2 Benchmark

To ensure that HTM does not just react to the sudden change in pixels but
does something more, the L1 error will be used as a benchmark to compare
against:

Et = ∑ |Ft − Ft−1|

Where Ft denotes a segmented frame at time step t. The L2 error could
also have been used, but it would not matter since this experiment will be
comparing relative values.

4.3.3 Results

As seen in Figure 4.19, Grid HTM is able to outperform the L1 error
benchmark. This can be deduced from the more prominent changes in the
anomaly score, compared to the L1 error. The reason might be that even
though the data is very noisy, there is still something in it which makes Grid
HTM able to learn something general about the current state. This could for

71

instance be a single cell that is standing still or moving very slowly, which
Grid HTM anchors itself to and uses it to determine when segments start
and end.

Figure 4.19: Results on a stationary sperm video.

That being said, the parameters for Grid HTM were selected carefully to
achieve the results seen in Figure 4.19, and are dependent on the contents
of the data. Unfortunately, most of the videos in the dataset contain drift (in
other words, the video is not stationary), which makes Grid HTM useless.
This can be observed in Figure 4.20, where both Grid HTM and the L1 error
struggle. Just like in the stationary video, the change in the anomaly score
is more pronounced, but due to the drift in the video there is a constant
high anomaly output which makes it impossible to find a threshold value.
That being said, Grid HTM still outperforms the L1 score due to the more
prominent changes in the anomaly score.

4.3.4 Use Cases

The use case is to be able to use Grid HTM to detect segments and then
use a separate tool to extract each segment. This could be useful in data
processing, or even in streaming media services to automatically know
when cuts happen and could aid scene boundary detection systems [98].

72

Figure 4.20: Results on a sperm video with drift.

4.3.5 Parameters

The following parameters were used in this experiment. The main
difference from the surveillance experiment to note is the temporal size,
which has been disabled due to the nonexistent patterns in the data. Again,
the parameters were mostly selected through an educated trial-and-error
method.

Parameter Value Notes

sp_grid_size (16, 16) Size of each cell in the grid,
affects invariance

tm_grid_size (8, 8) Dimension of the SDR that
each SP outputs, also the num-
ber of columns in the SP

min_sparsity 1 How many pixels for the grid
cell to be considered not empty

sparsity 5 Empty pattern active bits

temporal_size 1 Size of the multistep temporal
pattern buffer

seed 2

Table 4.9: Grid HTM specific parameters

73

Parameter Value Notes

inputDimensions sp_grid_size

columnDimensions tm_grid_size

potentialPct 0.2 Percent of inputs within the
receptive field of a column
that it can be connected to

potentialRadius 5 Controls size of the recep-
tive field

localAreaDensity 0.1 Output SDR target sparsity

globalInhibition False Set to False to enable topol-
ogy

wrapAround False Whether to wrap around the
receptive field when it is
outside the input SDR

synPermActiveInc 0.01 Learning rate

synPermInactiveDec 0.001 Forgetting rate

stimulusThreshold 5 Controls noise tolerance

boostStrength 0 Causes instability in empty
cells

seed 2

Table 4.10: SP Parameters

Parameter Value Notes

columnDimensions tm_grid_size Same as the SP

predictedSegmentDecrement 0.003 Punishment forgetting rate

permanenceIncrement 0.01 Learning rate

permanenceDecrement 0.001 Forgetting rate

minThreshold 1 Controls noise tolerance

activationThreshold 3 Controls noise tolerance

cellsPerColumn 16 Contextual capacity

Table 4.11: TM Parameters

For the plots, a moving average with window size n = 100 was used
to smooth the lines and reduce noise in the output graph. Because the
data is noisy, the mean was used as the aggregation function. For binary
thresholding, a pixel value threshold of k = 200 was used.

74

4.3.6 Experiment Summary

This experiment explored the ability of Grid HTM to detect segments in
greater detail. The videos used were videos of swimming sperm cells,
and were segmented using a rough binary thresholding. The data is noisy
and short, and it is therefore not expected for Grid HTM to learn any
meaningful patterns. As a benchmark, the L1 error is employed.

The results show that Grid HTM outperforms the L1 error, presumably due
to it managing to find something among the noise to lock on to. For this
experiment, the parameters had to be carefully tuned to the content of the
data.

75

4.4 Performance

Table 4.12 shows the video frame size and the corresponding average
processing time per frame, for each experiment. Note that this is without
any parallelization, and with different SP, TM, and Grid HTM parameters
for each experiment.

Experiment Input Frame Dimension Frames Per Second

Bouncing Ball (120, 120) ≈ 200

Surveillance (416, 224) ≈ 13

Sperm (192, 72) ≈ 190

Table 4.12: Performance for each experiment

It should also be mentioned that the segmentation process is not considered
in the calculation of frames per second, but this should not matter that
much as the next frame can be segmented in parallel while Grid HTM
processes the current frame. The performance with the segmentation
process considered can therefore be expressed as:

FPS = min(GridHTM_FPS, Segmentation_FPS)

4.5 Summary

In this chapter, three different experiments were performed with the
purpose of gauging the effectiveness of HTM and Grid HTM on videos.
The experiments show that it is possible to apply Grid HTM for anomaly
detection in videos. It was also shown that for complex data, the anomaly
score output is not a good measure to use due to the noise and the influence
of the size of the anomalies.

The first experiment is a controlled experiment where a computer-
generated ball is bouncing with anomalies inserted. The aim of this
experiment is to test whether the capabilities of HTM apply for videos,
as well as the performance of Grid HTM on the same task. The results
confirm this, and show that the performance of Grid HTM is slightly worse
than that of normal HTM. This is to be expected since the data is very clean
and simple, whereas Grid HTM was designed with more complex data in
mind.

The second experiment showcases the performance of Grid HTM on a
surveillance video with technical anomalies. Additionally, several key
points of interests and the respective outputs of Grid HTM are shown
in order to get a better understanding of its capabilities. Results show
that Grid HTM is able to learn the norm in a complex surveillance video,
and is therefore able to detect anomalous events and where they occur in

76

the frame. An interesting discovery is the ability of Grid HTM to detect
segment changes. The results also show that the anomaly score output
cannot be relied upon for thresholding purposes, and that further work is
required in that area.

The third experiment further explores the ability of Grid HTM to detect
segments in videos, which was discovered in the previous experiment. The
videos that are used in this experiment are videos of sperm that contain
several segments. The results show that it outperforms the L1 benchmark
due to a more prominent change in anomaly score during segment changes.

77

78

Chapter 5

Conclusion & Future Work

5.1 Summary

Smart surveillance systems have seen increased demand in the past few
years. Modern smart surveillance systems depend on deep learning for
their intelligence. However, it has been shown that deep learning faces
several challenges. Some challenges are explainability, noise-tolerance,
training data volume, and concept drift. While there are works that attempt
to address these challenges, it is still important to look elsewhere for
learning algorithms which do not face those same issues. One of them
is HTM theory which introduces a learning algorithm that models the
learning mechanism in the neocortex.

Unlike deep learning, HTM works by using SDR to represent data and
learns through Hebbian-like learning. This gives it the property of noise-
tolerance and online learning, meaning it can handle concept drift. A
natural question to ask is whether it can be used for anomaly detection
in videos. It has been shown that HTM performs well in low-dimensional
data such as temperature data. However, it has also been shown that it
performs poorly in high dimensional data such as images and videos due
to the difficulty in converting that type of data to SDRs.

With that in mind, this thesis attempts to make it possible to conduct
anomaly detection in videos with the introduction of Grid HTM. Instead of
having a single HTM model run anomaly detection on videos, Grid HTM
divides the frames into a grid where each individual cell has its own HTM
model. This makes the entire system more invariant, gives it increased
flexibility, and increases explainability. The videos themselves can be
converted into SDRs using techniques such as deep learning segmentation
or binary thresholding.

This thesis then conducts three experiments, each aiming to prove different
aspects of HTM and Grid HTM. The first experiment is a simple video
of a bouncing ball, which intends to prove that a single HTM model can
perform anomaly detection on a simple and controlled video, it then does

79

the same but with Grid HTM instead to prove that it still works. The second
experiment aims to showcase the capabilities of Grid HTM on a complex
surveillance video. It shows that, given the limited and noisy data, Grid
HTM is able to learn the norm and backs it up with concrete examples. It
also showed that Grid HTM was able to detect video segments. The third
experiment explores the capability of Grid HTM for detecting segments
using a very noisy sperm video dataset.

5.2 Contributions

As introduced in Section 1.2, this thesis achieved three objectives that
would help answer the thesis question. The objectives and how they were
achieved are as follows:

Objective 1 Introduce HTM and give a deep understanding of the inner
workings, the strengths, and the weaknesses. While also being easy to grasp for
readers with a machine learning background.

This objective was achieved in Chapter 2, where HTM was explained. It
was explained in a straight-forward manner with references to detailed
figures. It first explained deep learning, its history and challenges. The
chapter then proceeded to introduce what anomaly detection is, and its
complexities. Then it introduced HTM and explained its inner workings,
and finished with a brief section about ethical considerations. The chapter
also highlighted the importance of the HTM community by including
information directly from community discussions.

Objective 2 Develop and outline a theoretically sound HTM architecture that
can be applied for anomaly detection in complex videos.

This objective was achieved in Chapter 3, where Grid HTM was intro-
duced. Grid HTM is essentially a grid-based architecture where each cell in
the grid contains its own HTM model, and has the purpose of performing
anomaly detection in videos. Challenges were overcome with the intro-
duction of concepts such as multistep temporal patterns, and the reasoning
behind design decision was provided. The chapter also made sure that
Grid HTM followed the rules that an HTM encoder should follow.

Objective 3 Perform experiments, discuss the results, and lay out potential
future work for the aforementioned HTM architecture. The experiments will vary
in difficulty, complexity, and will focus on different use cases.

This objective was achieved in Chapter 4, where three different experi-
ments were performed. The first experiment showcased that HTM and
Grid HTM can indeed perform on simple and clean videos. The second ex-
periment showcased the performance of Grid HTM on a complex surveil-
lance video, which showed promising results, but it was also shown that

80

the aggregation function needs more work. The third experiment show-
cased the ability of Grid HTM to detect segments in a video, on noisy
videos of sperm for an increased challenge, where it was shown that Grid
HTM managed to outperform the benchmark.

Now that the three objectives have been achieved, it is possible to answer
the thesis question: Is HTM viable for anomaly detection in videos? With
proper data and further improvements, such as the ones mentioned in
Section 5.3, the experiments show that Grid HTM and other HTM based
architectures could indeed be used for anomaly detection systems for
videos.

Additionally, this thesis has resulted in a paper which can be found in
Appendix A, and all the work done during this thesis is publically available
on GitHub [12].

5.3 Future Work

Seeing as this thesis presents a novel approach, there is naturally a lot of
future work that can be done.

Datasets

As mentioned in Chapter 1, one of the main limitations is the lack of
video datasets suited for anomaly detection by HTM. Therefore, the most
important future work would be to create such a dataset. The videos would
optimally be several days long and contain anomalies such as car accidents,
jaywalking, and other similar anomalous behaviors.

Grid HTM

For Grid HTM, more time should be spent exploring other aggregation
functions so that the aggregated anomaly score can be used more efficiently.
One could use deep learning for this purpose or perhaps use another layer
of HTM, the possibilities are endless.

Additionally, it would be a big benefit to create an algorithm which can
decide the parameters for each cell during the calibration phase. It is
also possible to improve explainability and robustness by implementing
a measure of certainty for each cell.

Depth vision or 3D vision should be experimented with, as the depth
information could be valuable for anomaly detection in surveillance. With
voxels, this could be used similarly to 2D segmentation, where there could
be an extra SDR for each layer of depth in the voxelized 3D image.

Finally, experiments should be performed to validate the possibility of
having the TM in each cell grow segments to neighboring cells in order
to solve the issue with unstable anomaly output, which was mentioned in
Section 3.2.5.

81

HTM and Deep Learning

Another important field to research is a tighter integration between
HTM and deep learning. This way it could be possible to leverage
the self-supervision and noise resilience property of HTM, together with
the powerful feature extraction and representation of deep learning
approaches. Effectively combining the best of both approaches while
eliminating the disadvantages that have been mentioned in Chapter 2.

Research Updates

HTM theory is in constant development, especially as the understanding
of the brain grows. Future work would therefore include keeping up to
date on the latest developments within HTM theory and neuroscientifical
research, and update the model and add new systems accordingly.

82

Bibliography

[1] Divyanshi Tewari. U.S. Video Surveillance Market by Component (So-
lution, Service, and Connectivity Technology), Application (Commercial,
Military & Defense, Infrastructure, Residential, and Others), and Cus-
tomer Type (B2B and B2C): Opportunity Analysis and Industry Forecast,
2020–2027. Online. Mar. 2019. URL: https://www.alliedmarketresearch.
com/us-video-surveillance-market-A06741.

[2] Web of Science. Online. Jan. 2022. URL: https ://www.webofscience .
com/wos/woscc/summary/f6ae0ce5- 4319- 416f- ab92- 08d042bc3871-
21874d31/relevance/1.

[3] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
Taylor & Francis, 2005. ISBN: 9781135631918. URL: https : / / books .
google.no/books?id=uyV5AgAAQBAJ.

[4] Ilya Daylidyonok, Anastasiya Frolenkova, and Aleksandr I. Panov.
“Extended Hierarchical Temporal Memory for Motion Anomaly
Detection.” In: Biologically Inspired Cognitive Architectures 2018. Ed.
by Alexei V. Samsonovich. Cham: Springer International Publishing,
2019, pp. 69–81. ISBN: 978-3-319-99316-4. DOI: 10.1007/978- 3- 319-
99316-4_10. URL: https://doi.org/10.1007/978-3-319-99316-4_10.

[5] Jeff Hawkins and Dileep George. “Hierarchical Temporal Memory
Concepts, Theory, and Terminology.” In: Technical Report. Numenta.
2006. URL: http ://diyhpl .us/~bryan/papers2/ai/ahuman- pdf - only/
hierarchical-temporal-memory/2006%20-%20Hierarchical%20Temporal%
20Memory.pdf.

[6] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. “A Theory of How
Columns in the Neocortex Enable Learning the Structure of the
World.” In: Frontiers in Neural Circuits 11 (2017). ISSN: 1662-5110. DOI:
10.3389/fncir.2017.00081. URL: https://www.frontiersin.org/article/10.
3389/fncir.2017.00081.

[7] Jeff Hawkins et al. “A Framework for Intelligence and Cortical
Function Based on Grid Cells in the Neocortex.” In: Frontiers in Neural
Circuits 12 (2019), p. 121. ISSN: 1662-5110. DOI: 10.3389/fncir .2018.
00121. URL: https://www.frontiersin.org/article/10.3389/fncir.2018.
00121.

83

https://www.alliedmarketresearch.com/us-video-surveillance-market-A06741
https://www.alliedmarketresearch.com/us-video-surveillance-market-A06741
https://www.webofscience.com/wos/woscc/summary/f6ae0ce5-4319-416f-ab92-08d042bc3871-21874d31/relevance/1
https://www.webofscience.com/wos/woscc/summary/f6ae0ce5-4319-416f-ab92-08d042bc3871-21874d31/relevance/1
https://www.webofscience.com/wos/woscc/summary/f6ae0ce5-4319-416f-ab92-08d042bc3871-21874d31/relevance/1
https://books.google.no/books?id=uyV5AgAAQBAJ
https://books.google.no/books?id=uyV5AgAAQBAJ
https://doi.org/10.1007/978-3-319-99316-4_10
https://doi.org/10.1007/978-3-319-99316-4_10
https://doi.org/10.1007/978-3-319-99316-4_10
http://diyhpl.us/~bryan/papers2/ai/ahuman-pdf-only/hierarchical-temporal-memory/2006%20-%20Hierarchical%20Temporal%20Memory.pdf
http://diyhpl.us/~bryan/papers2/ai/ahuman-pdf-only/hierarchical-temporal-memory/2006%20-%20Hierarchical%20Temporal%20Memory.pdf
http://diyhpl.us/~bryan/papers2/ai/ahuman-pdf-only/hierarchical-temporal-memory/2006%20-%20Hierarchical%20Temporal%20Memory.pdf
https://doi.org/10.3389/fncir.2017.00081
https://www.frontiersin.org/article/10.3389/fncir.2017.00081
https://www.frontiersin.org/article/10.3389/fncir.2017.00081
https://doi.org/10.3389/fncir.2018.00121
https://doi.org/10.3389/fncir.2018.00121
https://www.frontiersin.org/article/10.3389/fncir.2018.00121
https://www.frontiersin.org/article/10.3389/fncir.2018.00121

[8] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. “The HTM Spatial
Pooler—A Neocortical Algorithm for Online Sparse Distributed
Coding.” In: Frontiers in Computational Neuroscience 11 (2017). ISSN:
1662-5188. DOI: 10 . 3389 / fncom . 2017 . 00111. URL: https : / / www .
frontiersin.org/article/10.3389/fncom.2017.00111.

[9] Jeff Hawkins and Subutai Ahmad. “Why Neurons Have Thousands
of Synapses, a Theory of Sequence Memory in Neocortex.” In:
Frontiers in Neural Circuits 10 (2016). ISSN: 1662-5110. DOI: 10.3389/
fncir.2016.00023. URL: https://www.frontiersin.org/article/10.3389/
fncir.2016.00023.

[10] M. Otahal, D. Keeney, and D. McDougall. HTM.core implementation of
Hierarchical Temporal Memory. Online. 2019. URL: https://github.com/
htm-community/htm.core/.

[11] Vladimir Monakhov. SP Topology is weird when input width and height
are different. Online. Nov. 2021. URL: https : / / github . com / htm -
community/htm.core/issues/961.

[12] Vladimir Monakhov. Master Thesis. Online. 2022. URL: https://github.
com/vladim0105/MasterThesis/.

[13] Reva Brown. Doing Your Dissertation in Business and Management.
SAGE Publications Ltd, May 2006, pp. 38–50. DOI: 10 . 4135 /
9781849209069. URL: https://methods.sagepub.com/book/doing-your-
dissertation-in-business-and-management.

[14] S.A. McLeod. Qualitative vs. quantitative research. Simple Psychology.
July 2019. URL: www.simplypsychology.org/qualitative-quantitative.html.

[15] Frank Rosenblatt. “The perceptron: a probabilistic model for infor-
mation storage and organization in the brain.” In: Psychological re-
view 65.6 (Nov. 1958), pp. 386–408. ISSN: 0033-295X. DOI: 10 . 1037/
h0042519. URL: https://doi.org/10.1037/h0042519.

[16] Yoav Freund and Robert Schapire. “Large Margin Classification
Using the Perceptron Algorithm.” In: Machine Learning 37 (Feb. 1999),
pp. 277–296. DOI: 10.1023/A:1007662407062. URL: https://doi.org/10.
1023/A:1007662407062.

[17] Marvin Minsky and Seymour Papert. “Perceptrons.” In: MIT Press
(1969). URL: https://psycnet.apa.org/record/1969-35017-000.

[18] Mikel Olazaran. “A Sociological Study of the Official History of the
Perceptrons Controversy.” In: Social Studies of Science 26.3 (1996),
pp. 611–659. DOI: 10 . 1177/030631296026003005. URL: https : / /doi .
org/10.1177/030631296026003005.

[19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: Nature
323 (1986), pp. 533–536. DOI: 10 .1038/323533a0. URL: https : //doi .
org/10.1038/323533a0.

84

https://doi.org/10.3389/fncom.2017.00111
https://www.frontiersin.org/article/10.3389/fncom.2017.00111
https://www.frontiersin.org/article/10.3389/fncom.2017.00111
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.3389/fncir.2016.00023
https://www.frontiersin.org/article/10.3389/fncir.2016.00023
https://www.frontiersin.org/article/10.3389/fncir.2016.00023
https://github.com/htm-community/htm.core/
https://github.com/htm-community/htm.core/
https://github.com/htm-community/htm.core/issues/961
https://github.com/htm-community/htm.core/issues/961
https://github.com/vladim0105/MasterThesis/
https://github.com/vladim0105/MasterThesis/
https://doi.org/10.4135/9781849209069
https://doi.org/10.4135/9781849209069
https://methods.sagepub.com/book/doing-your-dissertation-in-business-and-management
https://methods.sagepub.com/book/doing-your-dissertation-in-business-and-management
www.simplypsychology.org/qualitative-quantitative.html
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://doi.org/10.1023/A:1007662407062
https://psycnet.apa.org/record/1969-35017-000
https://doi.org/10.1177/030631296026003005
https://doi.org/10.1177/030631296026003005
https://doi.org/10.1177/030631296026003005
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0

[20] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU).
Online. 2018. DOI: 10.48550/ARXIV.1803.08375. URL: https://arxiv.
org/abs/1803.08375.

[21] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. Online. 2016. DOI: 10.48550/ARXIV.1609.04747. URL: https :
//arxiv.org/abs/1609.04747.

[22] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.
“A Training Algorithm for Optimal Margin Classifiers.” In: New
York, NY, USA: Association for Computing Machinery, 1992. ISBN:
089791497X. DOI: 10.1145/130385.130401. URL: https://doi.org/10.
1145/130385.130401.

[23] L. Kuncheva. Pattern Recognition and Neural Networks. Lulu.com,
2019, p. 157. ISBN: 9780244232528. URL: https : / / books . google . no /
books?id=A8TKDwAAQBAJ.

[24] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependen-
cies with gradient descent is difficult.” In: IEEE Transactions on Neural
Networks 5.2 (1994), pp. 157–166. DOI: 10.1109/72.279181. URL: https:
//doi.org/10.1109/72.279181.

[25] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting.” In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. URL: http : / / jmlr . org / papers / v15 /
srivastava14a.html.

[26] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift.”
In: Proceedings of the 32nd International Conference on Machine Learning
(ICML). Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of
Machine Learning Research. Lille, France: PMLR, July 2015, pp. 448–
456. URL: https://proceedings.mlr.press/v37/ioffe15.html.

[27] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image
Data Augmentation for Deep Learning.” In: Journal of Big Data 6.60
(July 2019). ISSN: 2196-1115. DOI: 10.1186/s40537-019-0197-0. URL:
https://doi.org/10.1186/s40537-019-0197-0.

[28] Dana H. Ballard. “Modular Learning in Neural Networks.” In:
Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI). AAAI’87. Seattle, Washington: AAAI Press, 1987, pp. 279–
284. ISBN: 0934613427. URL: https : / /www . aaai . org /Library /AAAI/
1987/aaai87-050.php.

[29] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory.” In: Neural Computation 9.8 (1997), pp. 1735–1780. DOI: 10.1162/
neco.1997.9.8.1735. URL: https://doi.org/10.1162/neco.1997.9.8.1735.

[30] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. Online. 2014. DOI: 10.48550/ARXIV.
1412.3555. URL: https://arxiv.org/abs/1412.3555.

85

https://doi.org/10.48550/ARXIV.1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://books.google.no/books?id=A8TKDwAAQBAJ
https://books.google.no/books?id=A8TKDwAAQBAJ
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://www.aaai.org/Library/AAAI/1987/aaai87-050.php
https://www.aaai.org/Library/AAAI/1987/aaai87-050.php
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.1412.3555
https://doi.org/10.48550/ARXIV.1412.3555
https://arxiv.org/abs/1412.3555

[31] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate. Online.
2014. DOI: 10.48550/ARXIV.1409.0473. URL: https://arxiv.org/abs/
1409.0473.

[32] Ashish Vaswani et al. “Attention is All you Need.” In: Proceed-
ings of Advances in Neural Information Processing Systems (NIPS).
Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.
URL: https : / / proceedings . neurips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[33] Kaiming He et al. “Deep Residual Learning for Image Recognition.”
In: Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016, pp. 770–778. DOI: 10.1109/CVPR.
2016.90. URL: https://doi.org/10.1109/CVPR.2016.90.

[34] Y. Lecun et al. “Gradient-based learning applied to document
recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.
DOI: 10.1109/5.726791. URL: https://doi.org/10.1109/5.726791.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks.”
In: Proceedings of Advances in Neural Information Processing Systems
(NIPS). Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.,
2012. URL: https : / / proceedings . neurips . cc / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[36] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. “Large-Scale
Deep Unsupervised Learning Using Graphics Processors.” In: Pro-
ceedings of the 26th Annual International Conference on Machine Learn-
ing (ICML). ICML ’09. Montreal, Quebec, Canada: Association for
Computing Machinery, 2009, pp. 873–880. ISBN: 9781605585161. DOI:
10.1145/1553374.1553486. URL: https ://doi .org/10.1145/1553374.
1553486.

[37] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: Proceedings of Advances in Neural Informa-
tion Processing Systems (NIPS). Ed. by H. Wallach et al. Vol. 32. Curran
Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[38] Martin Abadi et al. “TensorFlow: A System for Large-Scale Machine
Learning.” In: 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Savannah, GA: USENIX Association, Nov.
2016, pp. 265–283. ISBN: 978-1-931971-33-1. URL: https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/abadi.

[39] Ian Goodfellow et al. “Generative Adversarial Nets.” In: Proceed-
ings of Advances in Neural Information Processing Systems (NIPS).
Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc.,
2014. URL: https : / / proceedings . neurips . cc / paper / 2014 / file /
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

86

https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/1553374.1553486
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[40] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2013. DOI: 10.48550/ARXIV.1312.6114. URL: https://arxiv.org/abs/
1312.6114.

[41] Divya Saxena and Jiannong Cao. Generative Adversarial Networks
(GANs): Challenges, Solutions, and Future Directions. 2020. DOI: 10 .
48550/ARXIV.2005.00065. URL: https://arxiv.org/abs/2005.00065.

[42] Haiyang Chen. “Challenges and Corresponding Solutions of Gener-
ative Adversarial Networks (GANs): A Survey Study.” In: Journal of
Physics: Conference Series 1827.1 (Mar. 2021), p. 012066. DOI: 10.1088/
1742 - 6596/1827/1/012066. URL: https : / /doi . org /10 . 1088/1742 -
6596/1827/1/012066.

[43] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
GAN. 2017. DOI: 10 .48550/ARXIV .1701 .07875. URL: https : //arxiv .
org/abs/1701.07875.

[44] Luke Metz et al. Unrolled Generative Adversarial Networks. 2016. DOI:
10.48550/ARXIV.1611.02163. URL: https://arxiv.org/abs/1611.02163.

[45] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks. 2017. DOI: 10 . 48550 /ARXIV . 1703 .
10593. URL: https://arxiv.org/abs/1703.10593.

[46] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial
Nets. 2014. DOI: 10.48550/ARXIV.1411.1784. URL: https://arxiv.org/
abs/1411.1784.

[47] Shivani Gupta and Atul Gupta. “Dealing with Noise Problem in Ma-
chine Learning Data-sets: A Systematic Review.” In: Procedia Com-
puter Science 161 (2019). The Fifth Information Systems International
Conference, 23-24 July 2019, Surabaya, Indonesia, pp. 466–474. ISSN:
1877-0509. DOI: https://doi .org/10.1016/j.procs.2019.11.146. URL:
https://www.sciencedirect.com/science/article/pii/S1877050919318575.

[48] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations. Online. 2019.
DOI: 10.48550/ARXIV.1903.12261. URL: https://arxiv.org/abs/1903.
12261.

[49] Chen Sun et al. Revisiting Unreasonable Effectiveness of Data in Deep
Learning Era. Online. 2017. DOI: 10.48550/ARXIV.1707.02968. URL:
https://arxiv.org/abs/1707.02968.

[50] Alexander D’Amour et al. Underspecification Presents Challenges for
Credibility in Modern Machine Learning. 2020. DOI: 10.48550/ARXIV.
2011.03395. URL: https://arxiv.org/abs/2011.03395.

[51] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI.” In: Information Fusion 58 (2020), pp. 82–115. ISSN:
1566-2535. DOI: https://doi.org/10.1016/j. inffus.2019.12.012. URL:
https://www.sciencedirect.com/science/article/pii/S1566253519308103.

87

https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.48550/ARXIV.2005.00065
https://doi.org/10.48550/ARXIV.2005.00065
https://arxiv.org/abs/2005.00065
https://doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://doi.org/10.48550/ARXIV.1611.02163
https://arxiv.org/abs/1611.02163
https://doi.org/10.48550/ARXIV.1703.10593
https://doi.org/10.48550/ARXIV.1703.10593
https://arxiv.org/abs/1703.10593
https://doi.org/10.48550/ARXIV.1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://doi.org/https://doi.org/10.1016/j.procs.2019.11.146
https://www.sciencedirect.com/science/article/pii/S1877050919318575
https://doi.org/10.48550/ARXIV.1903.12261
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1903.12261
https://doi.org/10.48550/ARXIV.1707.02968
https://arxiv.org/abs/1707.02968
https://doi.org/10.48550/ARXIV.2011.03395
https://doi.org/10.48550/ARXIV.2011.03395
https://arxiv.org/abs/2011.03395
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103

[52] Jacob Gildenblat and contributors. PyTorch library for CAM methods.
Online. 2021. URL: https://github.com/jacobgil/pytorch-grad-cam.

[53] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization.” In: Interna-
tional Journal of Computer Vision 128.2 (Oct. 2019), pp. 336–359. DOI:
10.1007/s11263-019-01228-7. URL: https://doi.org/10.1007%2Fs11263-
019-01228-7.

[54] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolu-
tional Net. Online. 2014. DOI: 10.48550/ARXIV.1412.6806. URL: https:
//arxiv.org/abs/1412.6806.

[55] Guansong Pang et al. “Deep Learning for Anomaly Detection.” In:
ACM Computing Surveys 54.2 (Apr. 2021), pp. 1–38. ISSN: 1557-7341.
DOI: 10.1145/3439950. URL: http://dx.doi.org/10.1145/3439950.

[56] Katarzyna Michałowska et al. “Anomaly Detection with Un-
known Anomalies: Application to Maritime Machinery.” In: IFAC-
PapersOnLine 54.16 (2021). 13th IFAC Conference on Control Applica-
tions in Marine Systems, Robotics, and Vehicles CAMS 2021, pp. 105–
111. ISSN: 2405-8963. DOI: https : / / doi . org / 10 . 1016/ j . ifacol . 2021 .
10 . 080. URL: https : / / www . sciencedirect . com / science / article / pii /
S2405896321014828.

[57] Wei Fan et al. “Using Artificial Anomalies to Detect Unknown and
Known Network Intrusions.” In: Knowledge and Information Systems 6
(Oct. 2001). DOI: 10.1007/s10115-003-0132-7. URL: https://doi.org/10.
1007/s10115-003-0132-7.

[58] Debashree Devi, Saroj K. Biswas, and Biswajit Purkayastha. “A
Review on Solution to Class Imbalance Problem: Undersampling
Approaches.” In: Proceedings of the 2020 International Conference on
Computational Performance Evaluation (ComPE). 2020, pp. 626–631.
DOI: 10.1109/ComPE49325.2020.9200087. URL: https://doi.org/10.
1109/ComPE49325.2020.9200087.

[59] Debanjan Datta, Sathappan Muthiah, and Naren Ramakrishnan.
Detecting Anomalies Through Contrast in Heterogeneous Data. Online.
2021. DOI: 10.48550/ARXIV.2104.01156. URL: https://arxiv.org/abs/
2104.01156.

[60] Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon.
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training.
Online. 2018. DOI: 10.48550/ARXIV.1805.06725. URL: https://arxiv.
org/abs/1805.06725.

[61] Sijie Zhu, Chen Chen, and Waqas Sultani. Video Anomaly Detection for
Smart Surveillance. Online. 2020. DOI: 10.48550/ARXIV.2004.00222.
URL: https://arxiv.org/abs/2004.00222.

88

https://github.com/jacobgil/pytorch-grad-cam
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007%2Fs11263-019-01228-7
https://doi.org/10.1007%2Fs11263-019-01228-7
https://doi.org/10.48550/ARXIV.1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://doi.org/10.1145/3439950
http://dx.doi.org/10.1145/3439950
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.080
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.080
https://www.sciencedirect.com/science/article/pii/S2405896321014828
https://www.sciencedirect.com/science/article/pii/S2405896321014828
https://doi.org/10.1007/s10115-003-0132-7
https://doi.org/10.1007/s10115-003-0132-7
https://doi.org/10.1007/s10115-003-0132-7
https://doi.org/10.1109/ComPE49325.2020.9200087
https://doi.org/10.1109/ComPE49325.2020.9200087
https://doi.org/10.1109/ComPE49325.2020.9200087
https://doi.org/10.48550/ARXIV.2104.01156
https://arxiv.org/abs/2104.01156
https://arxiv.org/abs/2104.01156
https://doi.org/10.48550/ARXIV.1805.06725
https://arxiv.org/abs/1805.06725
https://arxiv.org/abs/1805.06725
https://doi.org/10.48550/ARXIV.2004.00222
https://arxiv.org/abs/2004.00222

[62] Tung Kieu et al. “Outlier Detection for Time Series with Recurrent
Autoencoder Ensembles.” In: Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence (IJCAI). International
Joint Conferences on Artificial Intelligence Organization, July 2019,
pp. 2725–2732. DOI: 10.24963/ijcai.2019/378. URL: https://doi.org/10.
24963/ijcai.2019/378.

[63] Alireza Makhzani et al. Adversarial Autoencoders. 2015. DOI: 10.48550/
ARXIV.1511.05644. URL: https://arxiv.org/abs/1511.05644.

[64] G. Sreenu and M. A. Saleem Durai. “Intelligent video surveillance:
a review through deep learning techniques for crowd analysis.” In:
Journal of Big Data 6.1 (June 2019), p. 48. ISSN: 2196-1115. DOI: 10.1186/
s40537-019-0212-5. URL: https://doi.org/10.1186/s40537-019-0212-5.

[65] Dong Gong et al. Memorizing Normality to Detect Anomaly: Memory-
augmented Deep Autoencoder for Unsupervised Anomaly Detection. 2019.
DOI: 10.48550/ARXIV.1904.02639. URL: https://arxiv.org/abs/1904.
02639.

[66] Wen Liu et al. Future Frame Prediction for Anomaly Detection – A New
Baseline. 2017. DOI: 10.48550/ARXIV.1712.09867. URL: https://arxiv.
org/abs/1712.09867.

[67] J. Hawkins et al. “Biological and Machine Intelligence (BAMI).”
Initial online release 0.4. 2016. URL: https://numenta.com/resources/
biological-and-machine-intelligence/.

[68] Taki Hasan Rafi. A Brief Review on Spiking Neural Network - A Biological
Inspiration. Online. Apr. 2021. DOI: 10.20944/preprints202104.0202.v1.
URL: https://doi.org/10.20944/preprints202104.0202.v1.

[69] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. “Why Does the
Neocortex Have Columns, A Theory of Learning the Structure of the
World.” In: bioRxiv (2017). DOI: 10.1101/162263. URL: https://www.
biorxiv.org/content/early/2017/09/28/162263.

[70] MRaptor. Online. June 2016. URL: https://discourse.numenta.org/t/
htm-cheat-sheet/828.

[71] Jeff Hawkins and Subutai Ahmad. “Why Neurons Have Thousands
of Synapses, a Theory of Sequence Memory in Neocortex.” In:
Frontiers in Neural Circuits 10 (2016), p. 23. ISSN: 1662-5110. DOI: 10.
3389/fncir.2016.00023. URL: https://www.frontiersin.org/article/10.
3389/fncir.2016.00023.

[72] David McDougall (ctrl-z-9000-times). Online. Sept. 2019. URL: https:
//github.com/htm-community/htm.core/issues/259#issuecomment-
533333336.

[73] Fabian Fallas-Moya and Francisco Torres-Rojas. “Object Recognition
Using Hierarchical Temporal Memory.” In: Intelligent Computing
Systems. Ed. by Carlos Brito-Loeza and Arturo Espinosa-Romero.
Cham: Springer International Publishing, 2018, pp. 1–14. ISBN: 978-
3-319-76261-6. DOI: 10 . 1007 / 978 - 3 - 319 - 76261 - 6_ 1. URL: https :
//doi.org/10.1007/978-3-319-76261-6_1.

89

https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.48550/ARXIV.1511.05644
https://doi.org/10.48550/ARXIV.1511.05644
https://arxiv.org/abs/1511.05644
https://doi.org/10.1186/s40537-019-0212-5
https://doi.org/10.1186/s40537-019-0212-5
https://doi.org/10.1186/s40537-019-0212-5
https://doi.org/10.48550/ARXIV.1904.02639
https://arxiv.org/abs/1904.02639
https://arxiv.org/abs/1904.02639
https://doi.org/10.48550/ARXIV.1712.09867
https://arxiv.org/abs/1712.09867
https://arxiv.org/abs/1712.09867
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://doi.org/10.20944/preprints202104.0202.v1
https://doi.org/10.20944/preprints202104.0202.v1
https://doi.org/10.1101/162263
https://www.biorxiv.org/content/early/2017/09/28/162263
https://www.biorxiv.org/content/early/2017/09/28/162263
https://discourse.numenta.org/t/htm-cheat-sheet/828
https://discourse.numenta.org/t/htm-cheat-sheet/828
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.3389/fncir.2016.00023
https://www.frontiersin.org/article/10.3389/fncir.2016.00023
https://www.frontiersin.org/article/10.3389/fncir.2016.00023
https://github.com/htm-community/htm.core/issues/259#issuecomment-533333336
https://github.com/htm-community/htm.core/issues/259#issuecomment-533333336
https://github.com/htm-community/htm.core/issues/259#issuecomment-533333336
https://doi.org/10.1007/978-3-319-76261-6_1
https://doi.org/10.1007/978-3-319-76261-6_1
https://doi.org/10.1007/978-3-319-76261-6_1

[74] David G. Lowe. “Distinctive Image Features from Scale-Invariant
Keypoints.” In: International Journal of Computer Vision 60.2 (Nov.
2004), pp. 91–110. ISSN: 1573-1405. DOI: 10.1023/B:VISI.0000029664.
99615.94. URL: https://doi.org/10.1023/B:VISI.0000029664.99615.94.

[75] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. Online.
2017. DOI: 10.48550/ARXIV.1708.07747. URL: https://arxiv.org/abs/
1708.07747.

[76] Y. Zou et al. “Hierarchical Temporal Memory Enhanced One-Shot
Distance Learning for Action Recognition.” In: Proceedings of the 2018
IEEE International Conference on Multimedia and Expo (ICME). 2018,
pp. 1–6. DOI: 10 . 1109/ ICME .2018 . 8486447. URL: https : / /doi . org/
10.1109/ICME.2018.8486447.

[77] Jia Deng et al. “ImageNet: A large-scale hierarchical image database.”
In: Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2009, pp. 248–255. DOI: 10.1109/CVPR.
2009.5206848. URL: https://doi.org/10.1109/CVPR.2009.5206848.

[78] Oleg Iegorov. My analysis on why Temporal Memory prediction doesn’t
work on sequential data. Online. Dec. 2017. URL: https : / / discourse .
numenta . org / t /my - analysis - on - why - temporal - memory - prediction -
doesnt-work-on-sequential-data/3141.

[79] Subutai Ahmad et al. “Unsupervised real-time anomaly detection
for streaming data.” In: Neurocomputing 262 (2017). Online Real-Time
Learning Strategies for Data Streams, pp. 134–147. ISSN: 0925-2312.
DOI: https : / / doi . org / 10 . 1016 / j . neucom . 2017 . 04 . 070. URL: http :
//www.sciencedirect.com/science/article/pii/S0925231217309864.

[80] Sam Heiserman (sheiser1). Online. Jan. 2022. URL: https://discourse.
numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/9299.

[81] HTM Legacy Applications. Online. URL: https://numenta.com/machine-
intelligence-technology/applications/.

[82] Whitepaper: HTM for Rogue Behavior Detection. Online. URL: https :
/ / numenta . com / assets / pdf / whitepapers / Rogue % 20Behavior %
20Detection%20White%20Paper.pdf.

[83] Whitepaper: HTM for Geospatial Tracking. Online. URL: https : / /
numenta . com / assets / pdf / whitepapers / Geospatial % 20Tracking %
20White%20Paper.pdf.

[84] Github: HTM for Finance. Online. URL: https://github.com/numenta/
numenta-apps.

[85] Noha O. El-Ganainy et al. “On the Performance of Hierarchical
Temporal Memory Predictions of Medical Streams in Real Time.” In:
Proceedings of the 13th International Symposium on Medical Information
and Communication Technology (ISMICT). 2019, pp. 1–6. DOI: 10.1109/
ISMICT.2019.8743902. URL: https://doi.org/10.1109/ISMICT.2019.
8743902.

90

https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.48550/ARXIV.1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://doi.org/10.1109/ICME.2018.8486447
https://doi.org/10.1109/ICME.2018.8486447
https://doi.org/10.1109/ICME.2018.8486447
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141
https://discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141
https://discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141
https://doi.org/https://doi.org/10.1016/j.neucom.2017.04.070
http://www.sciencedirect.com/science/article/pii/S0925231217309864
http://www.sciencedirect.com/science/article/pii/S0925231217309864
https://discourse.numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/9299
https://discourse.numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/9299
https://numenta.com/machine-intelligence-technology/applications/
https://numenta.com/machine-intelligence-technology/applications/
https://numenta.com/assets/pdf/whitepapers/Rogue%20Behavior%20Detection%20White%20Paper.pdf
https://numenta.com/assets/pdf/whitepapers/Rogue%20Behavior%20Detection%20White%20Paper.pdf
https://numenta.com/assets/pdf/whitepapers/Rogue%20Behavior%20Detection%20White%20Paper.pdf
https://numenta.com/assets/pdf/whitepapers/Geospatial%20Tracking%20White%20Paper.pdf
https://numenta.com/assets/pdf/whitepapers/Geospatial%20Tracking%20White%20Paper.pdf
https://numenta.com/assets/pdf/whitepapers/Geospatial%20Tracking%20White%20Paper.pdf
https://github.com/numenta/numenta-apps
https://github.com/numenta/numenta-apps
https://doi.org/10.1109/ISMICT.2019.8743902
https://doi.org/10.1109/ISMICT.2019.8743902
https://doi.org/10.1109/ISMICT.2019.8743902
https://doi.org/10.1109/ISMICT.2019.8743902

[86] E. N. Osegi. “Using the hierarchical temporal memory spatial pooler
for short-term forecasting of electrical load time series.” In: Applied
Computing and Informatics 17.2 (Jan. 2021), pp. 264–278. DOI: 10.1016/
j.aci.2018.09.002. URL: https://doi.org/10.1016/j.aci.2018.09.002.

[87] Francisco De Sousa Webber. Semantic Folding Theory And its Applica-
tion in Semantic Fingerprinting. Online. 2015. DOI: 10.48550/ARXIV.
1511.08855. URL: https://arxiv.org/abs/1511.08855.

[88] Vajira Thambawita et al. DivergentNets: Medical Image Segmentation by
Network Ensemble. Online. 2021. DOI: 10 .48550/ARXIV.2107 .00283.
URL: https://arxiv.org/abs/2107.00283.

[89] Christian Szegedy et al. Going Deeper with Convolutions. Online. 2014.
DOI: 10.48550/ARXIV.1409.4842. URL: https://arxiv.org/abs/1409.4842.

[90] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection.
Online. 2016. DOI: 10.48550/ARXIV.1612.03144. URL: https://arxiv.
org/abs/1612.03144.

[91] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF.”
In: Proceedings of the 2011 International Conference on Computer Vision
(ICCV). 2011, pp. 2564–2571. DOI: 10.1109/ICCV.2011.6126544. URL:
https://doi.org/10.1109/ICCV.2011.6126544.

[92] Sangmin Oh et al. “A large-scale benchmark dataset for event
recognition in surveillance video.” In: Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2011,
pp. 3153–3160. DOI: 10.1109/CVPR.2011.5995586. URL: https://doi.
org/10.1109/CVPR.2011.5995586.

[93] Miroslav Kovar. Implementation of HTM Spatial Pooler algorithm in
CUDA. Online. 2018. URL: https://github.com/mirgee/sp_cuda.

[94] David Di Giorgio Jacob Everist. BrainBlocks. Online. 2020. URL: https:
//github.com/the-aerospace-corporation/brainblocks.

[95] Alexander Kirillov et al. PointRend: Image Segmentation as Rendering.
Online. 2019. DOI: 10.48550/ARXIV.1912.08193. URL: https://arxiv.
org/abs/1912.08193.

[96] Ayoola Olafenwa. Simplifying Object Segmentation with PixelLib Li-
brary. Online. 2021. URL: https://vixra.org/abs/2101.0122.

[97] Trine B. Haugen et al. “VISEM: A Multimodal Video Dataset of
Human Spermatozoa.” In: Proceedings of the 10th ACM on Multimedia
Systems Conference (MMSys). MMSys’19. Amherst, MA, USA: ACM,
2019. ISBN: 78-1-4503-6297-9. DOI: 10 . 1145 / 3304109 . 3325814. URL:
http://doi.acm.org/10.1145/3304109.3325814.

[98] Shixing Chen et al. Shot Contrastive Self-Supervised Learning for Scene
Boundary Detection. Online. 2021. DOI: 10.48550/ARXIV.2104.13537.
URL: https://arxiv.org/abs/2104.13537.

91

https://doi.org/10.1016/j.aci.2018.09.002
https://doi.org/10.1016/j.aci.2018.09.002
https://doi.org/10.1016/j.aci.2018.09.002
https://doi.org/10.48550/ARXIV.1511.08855
https://doi.org/10.48550/ARXIV.1511.08855
https://arxiv.org/abs/1511.08855
https://doi.org/10.48550/ARXIV.2107.00283
https://arxiv.org/abs/2107.00283
https://doi.org/10.48550/ARXIV.1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.48550/ARXIV.1612.03144
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.2011.5995586
https://doi.org/10.1109/CVPR.2011.5995586
https://doi.org/10.1109/CVPR.2011.5995586
https://github.com/mirgee/sp_cuda
https://github.com/the-aerospace-corporation/brainblocks
https://github.com/the-aerospace-corporation/brainblocks
https://doi.org/10.48550/ARXIV.1912.08193
https://arxiv.org/abs/1912.08193
https://arxiv.org/abs/1912.08193
https://vixra.org/abs/2101.0122
https://doi.org/10.1145/3304109.3325814
http://doi.acm.org/10.1145/3304109.3325814
https://doi.org/10.48550/ARXIV.2104.13537
https://arxiv.org/abs/2104.13537

92

Appendix A

Paper - Grid HTM: Hierarchical
Temporal Memory for
Anomaly Detection in Videos

The following paper was submitted to the 19th International Conference
on Content-based Multimedia Indexing (CBMI2022).

93

Grid HTM: Hierarchical Temporal Memory for Anomaly
Detection in Videos

Vladimir Monakhov
University of Oslo and SimulaMet

Norway

Vajira Thambawita
SimulaMet
Norway

Pål Halvorsen
SimulaMet and OsloMet

Norway

Michael A. Riegler
SimulaMet and UiT

Norway

ABSTRACT
The interest for video anomaly detection systems has gained trac-
tion for the past few years. The current approaches use deep learn-
ing to perform anomaly detection in videos, but this approach has
multiple problems. For starters, deep learning in general has issues
with noise, concept drift, explainability, and training data volumes.
Additionally, anomaly detection in itself is a complex task and faces
challenges such as unknowness, heterogeneity, and class imbal-
ance. Anomaly detection using deep learning is therefore mainly
constrained to generative models such as generative adversarial
networks and autoencoders due to their unsupervised nature, but
even they suffer from general deep learning issues and are hard
to train properly. In this paper, we explore the capabilities of the
Hierarchical Temporal Memory (HTM) algorithm to perform anom-
aly detection in videos, as it has favorable properties such as noise
tolerance and online learning which combats concept drift. We
introduce a novel version of HTM, namely, Grid HTM, which is
an HTM-based architecture specifically for anomaly detection in
complex videos such as surveillance footage.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
HTM, deep learning, surveillance, anomaly detection
ACM Reference Format:
Vladimir Monakhov, Vajira Thambawita, Pål Halvorsen, and Michael A.
Riegler. 2018. Grid HTM: Hierarchical Temporal Memory for Anomaly
Detection in Videos. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
As the global demand for security and automation increases, many
seek to use video anomaly detection systems. In the US alone, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

surveillance market is expected to reach $23.60 Billion by 2027 [1].
Leveraging modern computer vision, modern anomaly detection
systems play an important role in increasing monitoring efficiency
and reducing the need for expensive live monitoring. Their use
cases can vary from detecting faulty products on an assembly line
to detecting car accidents on a highway.

The most important component in video anomaly detection
systems is the intelligence behind it. The intelligence ranges from
simple on-board algorithms to advanced deep learning models,
where the latter has experienced increased popularity in the past
few years. Yet, despite the major progress within the field of deep
learning, there are still many tasks where humans outperform
models, especially in anomaly detection where the anomalies are
often undefined. Deep learning approaches also perform poorly
when dealing with noise and concept drift.

The cause for the discrepancy lies in the difference between
how humans and machine learning algorithms represent data and
learn. Most machine learning algorithms use a dense representation
of the data and apply back-propagation in order to learn. Human
learning happens in the neocortex, where evidence points to that
the neocortex uses a sparse representation and performs Hebbian-
style learning. For the latter, there is a growing field of machine
learning dedicated to replicating the inner mechanics of the neo-
cortex, namely Hierarchical Temporal Memory (HTM) theory [2].
This theory outlines its advantages over standard machine learning,
such as noise-tolerance and the ability to adapt to changing data.

With the advantages of HTM and the rise of video anomaly
detection in mind, a natural question one could pose is whether it is
possible to apply HTM for anomaly detection in videos. Combined
with a lack of related works, it is this very question that is the
motivation behind this paper. In this paper, we therefore propose
and evaluate Grid HTM which is a novel expansion of the base
HTM algorithm that allows for unsupervised anomaly detection in
videos.

2 BACKGROUND
Anomaly detection is often defined as detecting data points that de-
viate from the general distribution [3]. Unlike most other problems
in deep learning, anomaly detection deals with unpredictable and
rare events which makes it hard to apply traditional deep learn-
ing for anomaly detection. A subset of anomaly detection is smart
surveillance [4], which is the use of video analysis specifically in
surveillance.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Monakhov et al.

An issue for deep-learning models in general is that they are sus-
ceptible to noise in the dataset [5, 6], which leads to decreasedmodel
accuracy and poor prediction results. Due to the nature of training
deep learningmodels, they are also inmost cases not self-supervised
and therefore require constant tuning in order to stay effective on
changing data. In addition, they require a lot of data before they can
be considered effective, and performance increases logarithmically
based on the volume of training data [7]. Deep learning models
also suffer from issues with out-of-distribution generalization [8],
where a model might perform great on the dataset it is tested on, but
performs poorly when deployed in real life. This could be caused
by selection bias in the dataset or when there are differences in the
causal structure between the training domain and the deployment
domain [9]. Another challenge with deep learning models is that
they generally suffer from a lack of explainability [10]. While it is
known how the models make their decisions, their huge parametric
spaces make it unfeasible to know why they make those predic-
tions. Combined with the vast potential that deep learning offers
in critical sectors such as medicine, makes approaches that offer
explainability highly attractive.

The HTM theory [2] introduces a machine learning algorithm
which works on the same principles as the brain and therefore
solves some of the issues that deep learning has. HTM is considered
noise resistant and can perform online learning, meaning that it
learns as it observes more data. HTM replicates the structure of the
neocortex which is made up of cortical regions, which in turn are
made up of mini-columns and then neurons.

The data in an HTM model is represented using a Sparse Dis-
tributed Representation (SDR), which is a sparse bit array. An en-
coder converts real world values into SDRs, and there are currently
encoders for numbers, geospatial locations, categories, and dates.
One of the difficulties with HTM is making it work on visual data,
where creating a good encoder for visual data is still being re-
searched [11, 12, 13]. The learning mechanism consists of two parts,
the Spatial Pooler (SP) and the Temporal Memory (TM). The SP
learns to extract semantically important information into output
SDRs. The TM learns sequences of patterns of SDRs and forms a
prediction in the form of a predictive SDR. A research study [14] has
shown that HTM is very capable of performing anomaly detection
on low-dimensional data and is able to outperform other anomaly
detection methods. However, related works, such as Daylidyonok,
Frolenkova, and Panov [13], show that HTM struggles with higher
dimensional data. Therefore, a natural conclusion is that HTM
should be applied differently, and that a new type of architecture
using HTM should be explored for the purpose of video anomaly
detection and surveillance.

3 GRID HTM
This paper proposes and explores a new type of architecture, named
Grid HTM, for anomaly detection in videos using HTM, and pro-
poses to use segmentation techniques to simplify the data into an
SDR-friendly format. These segmentation techniques could be any-
thing from simple binary thresholding to deep learning instance
segmentation. Even keypoint detectors such as Oriented FAST and
Rotated BRIEF (ORB) [15] could in theory be applied. When ex-
plaining Grid HTM, the examples will be taken from deep learning

instance segmentation of cars on a video from the VIRAT [16]
dataset. An example segmentation is shown in Figure 1. The idea is

Figure 1: Segmentation result of cars, which is suited to be
used as an SDR. Original frame taken from VIRAT [16].

that the SP will learn to find an optimal general representation of
cars. How general this representation is can be configured using
the various SP parameters, but ideally they should be set so that
different cars will be represented similarly while trucks and motor-
cycles will be represented differently. An example representation
by the SP is shown in Figure 2.

Figure 2: The SDR (left) and its corresponding SP representa-
tion (right). Note that the SP is untrained.

The task of the TMwill then be to learn the common patterns that
the cars exhibit, their speed, shape, and positioning will be taken
into account. Finally, the learning will be set so that new patterns
are learned quickly, but forgotten slowly. This will allow the model
to quickly learn the norm, even if there is little activity, while still
reacting to anomalies. This requires that the input is stationary, in
our example this means that the camera is not moving.

It is possible to split different segmentation classes into their
respective SDRs. This will give the SP and the TM the ability to
learn different things for each of the classes. For instance, if there
are two classes "person" and "car", then the TM will learn that it
is normal for objects belonging to "person" to be on the sidewalk,
while objects belonging to "car" will be marked as anomalous when
on the sidewalk.

Ideally, the architecture will have a calibration period spanning
several days or weeks, during which the architecture is not per-
forming any anomaly detection, but is just learning the patterns.

4 IMPROVEMENTS
Daylidyonok, Frolenkova, and Panov [13] tested only the base HTM
version and showed that the algorithm cannot handle subtle anom-
alies, therefore multiple improvements needed to be introduced to
increase effectiveness.

Invariance. One issue that becomes evident is the lack of in-
variance, due to the TM learning the global patterns. Using the
example, it learns that it is normal for cars to drive along the road
but only in the context of there being cars parked in the parking
lot. It is instead desired that the TM learns that it is normal for cars

Grid HTM: Hierarchical Temporal Memory for Anomaly Detection in Videos Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

to drive along the road, regardless of whether there are cars in the
parking lot. We proposes a solution based on dividing the encoder
output into a grid and have a separate SP and TM for each cell in
the grid. The anomaly scores of all the cells are then aggregated
into a single anomaly score using an aggregation function.

Aggregation Function. Selecting the correct aggregation func-
tion is important because it affects the final anomaly output. For
instance, it might be tempting to use the mean of all the anomaly
scores as the aggregation function:

𝑋 : {𝑥 ∈ R : 𝑥 ≥ 0}

𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒 =

∑
𝑥 ∈𝑋

𝑥

|𝑋 |
Where 𝑋 denotes the set of anomaly scores 𝑥 from each individual
grid. However, this leads to problems with normalization, meaning
that an overall anomaly score of 1 is hard to achieve due to many
cells having a zero anomaly score. In fact, it becomes unclear what
a high anomaly score is anymore. Using the mean also means that
anomalies that take up a lot of space will be weighted higher than
anomalies that take up a little space, which might not be desirable.
To solve the aforementioned problem and if the data has little noise,
a potential aggregation function could be the non-zero mean:

𝑋 : {𝑥 ∈ R : 𝑥 > 0}

𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑆𝑐𝑜𝑟𝑒 =

∑
𝑥 ∈𝑋

𝑥

|𝑋 | if |𝑋 | > 0

0 otherwise
Meaning that only the cells with a strictly positive anomaly score,
will be contributing to the overall anomaly score which helps solve
the aforementioned normalization and weighting problem. On the
other hand, the non-zero mean will perform poorly when the archi-
tecture is exposed to noisy data which could lead to there always
being one or more cells with a high anomaly score. Figure 3 illus-

Noisy data

(a) Mean. (b) Non-zero mean.

Figure 3: Aggregation function performance on noisy data.

trates the effect of an aggregation function for noisy data, where
the non-zero mean is rendered useless due to the noise. On the
other hand, Figure 4 shows how the non-zero mean gives a clearer
anomaly score when the data is clean.

Explainability. Having the encoder output divided into a grid
has the added benefit of introducing explainability into the model.
By using Grid HTM it is now possible to determine where in the
input an anomaly has occurred by simply observing which cell has

Clean data

(a) Mean. (b) Non-zero mean.

Figure 4: Aggregation functions performance on clean data.

a high anomaly score. It is also possible to estimate the number of
predictions for each cell which can be used as a measure of certainty,
where fewer predictions means higher certainty. Making it possible
to measure certainty per cell creates a new source of information
which can be used for explainability or robustness purposes.

Flexibility and Performance. In addition, it is also possible
to configure the SP and the TM in each cell independently, giving
the architecture increased flexibility and to use a non-uniform grid,
meaning that some cells can have different sizes. Last but not least,
dividing the frame into smaller cells makes enables it to run each
cell in parallel for increased performance.

Reviewing Encoder Rules. A potential challenge with the grid
approach is that the rules for creating a good encoder, may not be
respected and therefore should be reviewed:

• Semantically similar data should result in SDRs with
overlapping active bits. In this example, a car at one posi-
tion will produce an SDR with a high amount of overlapping
bits as another car at a similar position in the input image.

• The same input should always produce the same SDR.
The segmentation model produces a deterministic output
given the same input.

• The output must have the same dimensionality (total
number of bits) for all inputs. The segmentation model
output has a fixed dimensionality.

• The output should have similar sparsity (similar num-
ber of one-bits) for all inputs and have enough one-
bits to handle noise and subsampling. The segmentation
model does not respect this. An example is that there can be
no cars (zero active bits), one car (𝑛 active bits), or two cars
(2𝑛 active bits), and that this will fluctuate over time.

The solution for the last rule is two-fold, and consists of imposing a
soft upper bound and a hard lower bound for the number of active
pixels within a cell. The purpose is to lower the variation of number
of active pixels, while also containing enough semantic information
for the HTM to work:

• Pick a cell size so that the distribution of number of active
pixels is as tight as possible, while containing enough se-
mantic information and also being small enough so that the
desired invariance is achieved. The cell size acts as a soft
upper bound for the possible number of active pixels.

• Create a pattern representing emptiness, where the number
of active bits is similar to what can be expected on average

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Monakhov et al.

when there are cars inside a cell. This acts as a hard lower
bound for the number of active pixels.

There could be situations where a few pixels are active within a
cell, which could happen when a car has just entered a cell, but this
is acceptable as long as it does not affect the distribution too much.
If it does affect the distribution, which can be the case with noisy
data, then an improvement would be to add a minimum sparsity
requirement before a cell is considered not empty, e.g. less than 5
active pixels means that the cell is empty. In the following example,
the number of active pixels within a cell centered in the video was
used to build the distributions seen in Figure 5:

0 20 40 60
Number of Active Pixels

101

102

103

104

105

Fr
am

es

σ=3.78
Non-zero Mean

(a) Without empty pattern.

20 40 60
Number of Active Pixels

101

102

103

104

105

Fr
am

es

σ=1.41
Non-zero Mean

(b)With empty pattern and amin-
imum sparsity requirement of 5.

Figure 5: Distribution of number of active pixels within a
cell of size 12 × 12.

With a carefully selected empty pattern sparsity, the standard de-
viation of active pixels was lowered from 3.78 to 1.41. It is possible
to automate this process by developing an algorithm which finds
the optimal cell size and empty pattern sparsity which causes the
least variation of number of active pixels per cell. This algorithm
would run as a part of the calibration process.

The visual output resulting from these changes, which is an
equally important output as the aggregated anomaly score, can be
seen in Figure 6 (for each cell red means higher anomaly score,
green lower anomaly score). Since there are now cells that are
observing an empty pattern for a lot of the time in sparse data,
boosting is recommended to be turned off, otherwise the SP output
for the empty cells would change back and forth in order to adjust
the active duty cycle.

Stabilizing Anomaly Output. Another issue with the grid
based approach is when a car first comes into a cell. The TM in that
cell has no way of knowing that a car is about to enter, since it does
not see outside its own cell, and therefore the first frame that a car
enters a cell will cause a high anomaly output. This is illustrated in
Figure 7 where it can be observed that this effect causes the anomaly
output to needlessly fluctuate. The band-aid solution is to ignore
the anomaly score for the frame during which the cell goes from
being empty to being not empty, which is illustrated in Figure 8. A
more proper solution could be to allow the TM to grow synapses
to the TMs in the neighboring cells, but this is not documented in
any research papers and might also hinder invariance.

Multistep Temporal Patterns. Since the TM can only grow
segments to cells that were active in the previous timestep, it will
struggle to learn temporal patterns across multiple timesteps. This
is especially evident in high framerate videos, where an object in

Figure 6: Example Grid HTM output and the corresponding
input. The color represents the anomaly score for each of the
cells, where red means high anomaly score and green means
zero anomaly score. Two of the cars aremarked as anomalous
because they are moving, which is something Grid HTM has
not seen before during its 300 frame (top right) long lifetime.

Figure 7: High anomaly score when an empty cell (repre-
sented with an empty pattern with a sparsity value of 5)
changes to being not empty, as something enters the cell.

Figure 8: The anomaly score is ignored (set to 0) for the frame
in which the cell changes state from empty to not empty.

motion has a similar representation at timestep 𝑡 and 𝑡 + 1, as an
object standing still.

This could cause situations where an object that is supposed to
be moving, suddenly stands still, yet the TM will not mark it as an
anomaly due to it being stuck in a contextual loop. A contextual
loop is when one of the predictions at 𝑡 becomes true at 𝑡 + 1, and
then one of the predictions at 𝑡 + 1 is almost identical to the state
at 𝑡 , which becomes true if the object is not moving, causing the
TM to enter the same state that it was in at 𝑡 . A solution is to
concatenate the past 𝑛 SP outputs as input into the TM, which is
made possible by keeping a buffer of past SP outputs and shifting its
contents out as new SP outputs are inserted. This follows the core
idea behind encoding time in addition to the data, which makes
time act as a contextual anchor. However, in this case there are no
timestamps that are suitable to be used as contextual anchors, so
as a replacement, the past observations are encoded instead.

Grid HTM: Hierarchical Temporal Memory for Anomaly Detection in Videos Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Concatenating past observations together will force the TM
input, for when an object is in motion and when an object is still,
to be unique. High framerate videos can benefit the most from this,
and the effect will be more pronounced for higher values of 𝑛.

A potential side effect of introducing temporal patterns, is that
because the TM is now exposed to multiple frames at once, it will
be more tolerant to temporal noise. An example of temporal noise is
when an object disappears for a single frame due to falling below the
classification threshold of the deep learning segmentation model
encoder. The reason for the noise tolerance is that instead of the
temporal noise making up the entire input for the TM, it now only
makes up 1

𝑛 of the TM input.
Use Cases. The most intuitive use case is to use Grid HTM

for semi-active surveillance, where personnel only have to look
at segments containing anomalies, leading to drastically increased
efficiency. One example is making it possible to have an entire city
be monitored by a few people. This is made possible by making it
so that people only have to look at segments that Grid HTM has
found anomalous, which is what drastically lowers the manpower
requirement for active monitoring of the entire city.

5 EXPERIMENTAL DETAILS AND RESULTS
As stated earlier, one of the use cases of Grid HTM is anomaly detec-
tion in surveillance, and we using a video from the VIRAT [16] video
dataset with long duration and a stationary camera, we demonstrate
our system. The video consists of technical anomalies in the form
of several segments with sudden frame skips in between. There is
also a synthetic anomaly introduced in the form of a frame repeat
lasting a couple of seconds, essentially "freezing" time, in order to
test whether Grid HTM is able to understand how objects should
be moving in time.

In this experiment, a segmentation model which can extract
classes into their respective SDRs is employed. Meaning that there
could be an SDR for cars and an SDR for persons, that are then
concatenated before being fed into the system. The segmentation
model used is PointRend [17] with a ResNet101 [18] backbone,
pretrained on ImageNet [19], and implemented using PixelLib [20].
For the sake of simplicity, this experiment will focus only on the
segmentation of cars. While on the topic of segmentation, it is
important to mention that the segmentation model is not perfect
and that there are cases where objects are misclassified as well as
cases where cars repeatedly go above and below the confidence
threshold.

0 20000 40000 60000 80000 100000 120000 140000 160000
Frames

0.00

0.01

0.02

0.03

0.04

0.05

An
om

al
y
Sc

or
e

Grid HTM
Segments
Frame Freeze

Figure 9: Anomaly score output from Grid HTM.

We can see in Figure 9 that Grid HTM is detectingwhen segments
begin and end, however it is not possible to use a threshold value
to isolate them, and they also have vastly different anomaly scores
compared to each other. This is due to the way the aggregation
function works, which means that the anomaly output is dependent
on the physical size of the anomaly. It should also be noted that a
moving average (𝑛 = 200) was applied to smooth out the anomaly
score output, otherwise the graph would be too noisy.

With the aggregation functions presented in this paper in mind,
it is safe to conclude that looking at the anomaly score output is
meaningless for complex data such as a surveillance video. This
however does not mean that Grid HTM is completely useless, and
this can be observed by looking at the visual output of Grid HTM.
The visual output during which the first segment anomaly occurs
can be seen in Figure 10. Here, it is observed that Grid HTM cor-
rectly marks the sudden change of cars when the current segment
ends and a new segment begins.

Figure 10: The first segment anomaly, which is marked with
red text, and the corresponding changes detected by Grid
HTM. The numbers beneath each frame represent the rel-
ative frame number and the current anomaly score respec-
tively.

In the original video, there is a road on which cars regularly
drive. By observing the visual output, it becomes evident that after
some time Grid HTM has mostly learned that behavior and does not
report those moving cars as anomalies. This is shown in Figure 11.

To prove that Grid HTM has learned that cars on the road should
be moving, it is possible to look at the visual output during the
period when the video is repeating the same frame and observe
if the architecture marks the cars standing still on the road as
anomalies. It can be observed in Figure 12 that the cars along the
main road are not marked as anomalies, but this could be attributed
to the fact that there is a crossing there and that cars periodically
have to stop at that point to let pedestrians cross.

On the other hand, when looking at the anomaly marked with
a blue circle, the car on the road in the parking lot is marked as
an anomaly that increases in severity as the time goes on during
the frame repeat. The reason why that car causes an anomaly is
because, unlike the cars on the main road, a car is rarely observed
as standing still at that position. To prove that the anomaly was
actually directly caused by the repeating frame, and not just due

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Monakhov et al.

Figure 11: Visual output when a car is driving along a road.

Figure 12: Anomaly output during the repeating frame, the
start of the frame repeat is marked with red text. The blue
circle highlights the object of interest.

to repeating the anomaly in time, it should be compared to the
anomaly output if there was no repeating frame. It can be observed

Figure 13: Anomaly output when there is no frame repeating,
where it should have repeated is marked in red. The blue
circle highlights the object of interest.

in Figure 13 that the anomaly output is minor compared to when
there was a repeating frame, proving that the anomaly was indeed

a product of the repeating frame and that Grid HTM was able to
learn how objects should be moving in time.

Finally, it is interesting to look at how Grid HTM handles the
repeating frames without multistep temporal patterns, which is
shown in Figure 14. Unfortunately, simply disabling multistep tem-

Figure 14: Anomaly output during the repeating frame, the
start of the frame repeat is marked with red text. The blue
circle highlights the object of interest. This time without
multistep temporal patterns.

poral patterns without adjusting the other TM parameters causes
the same car to be marked as an anomaly before and during the
frame repeat. In fact, as previously mentioned, disabling multistep
temporal patterns causes Grid HTM to be less noise tolerant which
causes a lot more anomalies to be wrongly detected. This is evident
in Figure 14, where a higher number of severe anomalies can be
observed compared to previous examples. This also highlights how
sensitive HTM can be regarding parameters. The working code for
Grid HTM and the parameters for the experiments conducted in
for this paper can be found on GitHub1.

6 CONCLUSION
We presented a novel method to perform anomaly detection in
videos. Experiments showed that the proposed Grid HTM can be
used for unsupervised anomaly detection in complex videos such
as surveillance footage. One of the most important future work
would be to create a dataset with videos that are several days long
and contain anomalies such as car accidents, jaywalking, and other
similar anomalous behaviors. For Grid HTM, more time can be
spent exploring other aggregation functions so that the aggregated
anomaly score can be usedmore efficiently. Additionally, it would be
a big benefit to create an algorithmwhich can decide the parameters
for each cell during the calibration phase. It is also possible to
improve explainability and robustness by implementing a measure
of certainty for each cell.

Finally, experiments should be performed to validate the possi-
bility of having the TM in each cell grow synapses to neighboring
cells in order to solve the issue with unstable anomaly output.
1https://github.com/vladim0105/GridHTM

Grid HTM: Hierarchical Temporal Memory for Anomaly Detection in Videos Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Divyanshi Tewari. 2019. U.S. Video Surveillance Market

by Component (Solution, Service, and Connectivity Tech-
nology), Application (Commercial, Military & Defense, In-
frastructure, Residential, and Others), and Customer Type
(B2B and B2C): Opportunity Analysis and Industry Forecast,
2020–2027. Online. (March 2019). https://www.alliedmarketresearch.
com/us-video-surveillance-market-A06741.

[2] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin. Biological
and Machine Intelligence (BAMI). Initial online release 0.4,
(2016). https : / /numenta .com/resources /biological - and-
machine-intelligence/.

[3] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton
Van Den Hengel. 2021. Deep Learning for Anomaly Detec-
tion. ACM Computing Surveys, 54, 2, (April 2021), 1–38. issn:
1557-7341. doi: 10.1145/3439950.

[4] Sijie Zhu, Chen Chen, andWaqas Sultani. 2020. Video Anom-
aly Detection for Smart Surveillance. Online. (2020). doi:
10.48550/ARXIV.2004.00222.

[5] Shivani Gupta and Atul Gupta. 2019. Dealing with Noise
Problem in Machine Learning Data-sets: A Systematic Re-
view. Procedia Computer Science, 161, 466–474. The Fifth
Information Systems International Conference, 23-24 July
2019, Surabaya, Indonesia. issn: 1877-0509. doi: https://doi.
org/10.1016/j.procs.2019.11.146.

[6] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking
Neural Network Robustness to Common Corruptions and
Perturbations. Online. (2019). doi: 10.48550/ARXIV.1903.
12261.

[7] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav
Gupta. 2017. Revisiting Unreasonable Effectiveness of Data
in Deep Learning Era. Online. (2017). doi: 10.48550/ARXIV.
1707.02968.

[8] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe
Xu, Han Yu, and PengCui. 2021. TowardsOut-Of-Distribution
Generalization: A Survey. (2021). doi: 10.48550/ARXIV.2108.
13624.

[9] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben
Adlam, BabakAlipanahi, Alex Beutel, Christina Chen, Jonathan
Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hor-
mozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan
Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Di-
ana Mincu, Akinori Mitani, Andrea Montanari, Zachary
Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Os-
borne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica
Schrouff,Martin Seneviratne, Shannon Sequeira, Harini Suresh,
Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Web-
ster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, and D.
Sculley. 2020. Underspecification Presents Challenges for
Credibility in Modern Machine Learning. (2020). doi: 10 .
48550/ARXIV.2011.03395.

[10] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier
Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard

Benjamins, Raja Chatila, and Francisco Herrera. 2020. Ex-
plainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Infor-
mation Fusion, 58, 82–115. issn: 1566-2535. doi: https://doi.
org/10.1016/j.inffus.2019.12.012.

[11] Y. Zou, Y. Shi, Y. Wang, Y. Shu, Q. Yuan, and Y. Tian. 2018.
Hierarchical Temporal Memory Enhanced One-Shot Dis-
tance Learning for Action Recognition. In Proceedings of the
2018 IEEE International Conference on Multimedia and Expo
(ICME), 1–6. doi: 10.1109/ICME.2018.8486447.

[12] David McDougall (ctrl-z 9000-times). 2019. Online. (Septem-
ber 2019). https://github.com/htm-community/htm.core/
issues/259#issuecomment-533333336.

[13] Alexei V. Samsonovich, editor. 2019. Extended Hierarchical
Temporal Memory for Motion Anomaly Detection. Biologically
Inspired Cognitive Architectures 2018. Springer International
Publishing, Cham, 69–81. isbn: 978-3-319-99316-4. doi: 10.
1007/978-3-319-99316-4_10.

[14] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha
Agha. 2017. Unsupervised real-time anomaly detection for
streaming data. Neurocomputing, 262, 134–147. Online Real-
Time Learning Strategies for Data Streams. issn: 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2017.04.070.

[15] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. 2011. ORB: An efficient alternative to SIFT or SURF.
In Proceedings of the 2011 International Conference on Com-
puter Vision (ICCV), 2564–2571. doi: 10 .1109/ICCV.2011.
6126544.

[16] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-
toor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee,
J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears,
Xioyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah,
Carl Vondrick, Hamed Pirsiavash, Deva Ramanan, Jenny
Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit Roy-
Chowdhury, and Mita Desai. 2011. A large-scale benchmark
dataset for event recognition in surveillance video. In Pro-
ceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3153–3160. doi: 10.1109/CVPR.
2011.5995586.

[17] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. 2019. PointRend: Image Segmentation as Rendering.
Online. (2019). doi: 10.48550/ARXIV.1912.08193.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep Residual Learning for Image Recognition. In Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 770–778. doi: 10.1109/CVPR.
2016.90.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In Proceedings of the 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 248–255. doi:
10.1109/CVPR.2009.5206848.

[20] Ayoola Olafenwa. 2021. Simplifying Object Segmentation
with PixelLib Library. Online. (2021). https://vixra.org/abs/
2101.0122.

	Abstract
	Acknowledgments
	Introduction
	Background and Motivation
	Problem Statement
	Limitations
	Contributions
	Research Methods
	Thesis Outline

	Deep Learning, Anomaly Detection, and Hierarchical Temporal Memory
	Deep Learning
	Perceptron
	Backpropagation
	Neural Networks
	Learning

	Convolutional Neural Networks
	Generative Models
	Disadvantages of Deep Learning

	Anomaly detection
	Deep Learning and Anomaly Detection
	Smart Surveillance

	Hierarchical Temporal Memory
	Structure
	Common Algorithms
	Sparse Distributed Representation
	Encoders
	Encoding Visual Data
	Learning
	Spatial Pooler
	Temporal Memory

	Use Cases
	The Thousand Brains Theory
	HTM Performance in Anomaly Detection

	Ethical Considerations
	Summary

	Grid HTM
	Introduction
	Improvements
	Invariance
	Aggregation Function

	Explainability
	Flexibility and Performance
	Reviewing Encoder Rules
	Stabilizing Anomaly Output
	Multistep Temporal Patterns

	Implementation
	Biological Plausibility
	Use Cases
	Summary

	Experiments and Results
	Bouncing Ball Experiment
	Data
	HTM
	Boosting
	Zero Permanence Decrement
	Boosting and Zero Permanence Decrement
	Parameters

	Grid HTM
	Results
	Parameters

	Experiment Summary

	Surveillance Experiment
	Results
	Road
	Frame Repeat
	Points of Interest

	Parameters
	Experiment Summary

	Sperm Experiment
	Data
	Benchmark
	Results
	Use Cases
	Parameters
	Experiment Summary

	Performance
	Summary

	Conclusion & Future Work
	Summary
	Contributions
	Future Work

	Paper - Grid HTM: Hierarchical Temporal Memory for Anomaly Detection in Videos

