
Automatic detection of events in

sports videos

Vinayak Parab

Supervisors:
Dr. Prof. Simon Ziegler
Dr. Prof. Franz Hollich

Thesis submitted for the degree of Master in

Big Data and business Analytics

18 credits

Department of Informatics

Faculty of Information, Media and Design

15th September 2021





Automatic detection of events in

sports videos

Vinayak Parab



© 2021 Vinayak Parab

Automatic detection of events in sports videos

https://moodle.hochschule-heidelberg.de/my/

https://moodle.hochschule-heidelberg.de/my/


Affidavit

I, Vinayak Sitaram Parab, Herewith declare:

• that I have composed the chapters for the Master Thesis for which I am named

as the author independently,

• that I did not use any other sources or additives than the ones specified,

• that I did not submit this work at any other examination procedure.

Signed:

Date:

i



Acknowledgment

I would like to thank my supervisors, Simon Ziegler, Franz Hollich, Pål Halvorsen

and Michael Riegler for their guidance and contributions, and Vajira Thambawita

for all the help along the way. I would also like to thank my family and my friend

Shubham Shinde for all the encouragement and patience throughout the process.

ii



Abstract

Numerous different approaches have been used to perform automatic event detection

in the past few years. For soccer games, a summarized clip comprises of game

highlights which covers the key moments in a soccer game. At present, to create

such game highlights, the sports events are manually annotated by human operators.

It is not feasible to annotate these events manually as it takes large amount of time

and human intervention. Recent research has shown that deep learning techniques

can be used to find these events without any human intervention. In order to avoid

computational complexity of training the deep learning networks with raw data,

most approaches use pre-computed features extracted from raw images for training

purpose.

This thesis presents a fine-tuned approach of a deep learning approach that

can automate the manual annotation of events in sports videos. We experiment

with pre-computed features extracted from single deep learning model and pre-

computed concatenated features extracted from multiple action recognition models

for the SoccerNet-v2 [17] dataset. We compare the results to state-of-the-art models

for the task of action spotting on the SoccerNet-v2 [17] dataset. We also analyze

the impact of fine-tuning the selected hyparparameters in the respective the deep

learning approaches.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, it is easily possible to get access to plethora of high-quality video content

through subscription-based streaming services like Netflix, Amazon, etc. In today’s

fast paced world, it is not easy to keep track of detailed information about everything

that is happening around the world. Due to this, creating a compact summary of

key events from a long untrimmed clip has gained lot of popularity. Soccer is the

most watched sport in the world and is enjoyed by its fans across the world [56].

In the FIFA world cup 2018, FIFA decided to use a video assistant referee system

(VAR) [67] which uses computer vision technology. VAR[67] assists the referee to

determine 4 different type of incidents that have been identified as game-changing

decisions. VAR [67] highlights the use of video summarization techniques. Today,

there are several companies who provide on-demand subscription-based live online

streaming services and video highlights which includes a short summarized clip of

key moments from the game. The content is consumed by the subscribers on their

computers and smartphone devices. In 2019, it was reported that 47.1% [4] of the

private households were estimated to have a computer at their home. In the year

2020, the total number of smartphone users worldwide crossed the figure of 3 billion

[52]. With increasing numbers of gadgets day by day, it is extremely crucial for these

companies that they ensure the timely distribution of sports events/highlights. For
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soccer or sports events in general, a summarized clip would comprise of highlights

such as goals, bookings, goal attempts and penalties. At present, to create such

game highlights, the sports events are manually annotated by human operators. It

is a tedious process to annotate these events manually. Automating the process of

annotation would have a large impact on the games played in the lower division of

the football hierarchy where the funds are limited.

Multiple different type of deep learning algorithms have been used to solve the

problem of automatic event detection. This thesis aims at developing a system that

can automate the manual annotation of events like tackles and other controversial

events in sports videos and at the same time is cost effective and scalable. Considering

the recent advancements in the field of Artificial Intelligence, a potential solution

could be to make use of a deep learning model given that it provides pre-built

packages/frameworks for analyzing digital images and videos. This data could be

further used for statistical analysis purpose, which in turn could provide more value

to fans, teams and broadcasters of the sport events.

1.2 Problem Statement

Our goal is to use a deep learning model and video processing techniques which will

detect and classify events like tackles, mistakes, etc. in soccer videos. The system

should be able to detect and classify the events correctly. The approach would be to

make use of a deep learning model which will generalize well for other sports events

and can be scaled easily if needed. The selected approaches were evaluated for the

task of action spotting. Action spotting provides a particular frame in a video along

with the timestamp at which an event has occurred. This thesis aims to answer the

question:

How to perform automatic detection of video events in sports videos?

Below objectives were defined based on the research question:

1. Research and develop novel approaches for action spotting and action classific-
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ation in soccer videos.

2. Analyze the performance of the approaches designed in step 1 using a

benchmark dataset like SoccerNet-v2 [17].

3. Perform a comparative study of the deep learning approaches proposed in the

above steps for the task of action spotting and compare their results to state-of-

the art architectures.

1.3 Scope and Limitations

There are multiple challenges involved with the task of automatic event detection and

recognition. One of the challenge is limited availability of datasets. During this thesis,

the recently published SoccerNet-v2 [17] will be used which is the extended version

of the SoccerNet dataset[32]. The extended version SoccerNet-v2 contains a total of 17

different classes that could be used for the task of action spotting. The scope is limited

to the task of action spotting wherein the final goal is to make use of a deep learning

model to predict a frame in a video along with its timestamp at which an event has

occurred. There are multiple traditional approaches involving traditional computer

vision techniques. However, the scope is limited to using deep learning models.

1.4 Research Method

A research problem could be tackled in multiple ways. The research method provided

in the Association for Computing Machinery’s (ACM) research methodology was

followed. In 1989 ACM’s Education Board released the report ’Computing as a

Discipline’ [19]. Below are the three paradigms on which our work is based on :

• Theory The theory paradigm is based on mathematics and comprises of four

steps adhered in the developing a coherent and a valid theory. These steps are

(i) Characterization of objects of study (definition), (ii) Hypothesization about

finding possible relationships among them (theorem), (iii) Discover whether

these relationships are true, and (iv) Interpretation of results. [19]
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• Abstraction The abstraction paradigm consists of experimental scientific method

and comprises of four steps. These steps are (i) Establishment an hypothesis,

(ii) Construction of a model for prediction purpose, (iii) Conceptualization of

an experiment and collecting the relevant data for it, and (iv) Inspection of the

results.

• Design The design paradigm design is based on engineering and comprises of

four steps followed to solve a given problem. These steps are (i) State the re-

quirements, (ii) State the specifications , (iii) Design and implement the desired

system (iv) Test the developed system.

Various approaches were researched and applied for soccer detection and analyzing

the results. The fine-tuned approaches were designed and validated against

SoccerNet-v2 dataset[17]. This supports the design paradigm well.

1.5 Main Contributions

The performance of deep learning approaches was assessed for understanding

the semantic context in a video input and the network was fine-tuned with the

selected hyperparameters to see if that improves the performance. The impact of

training these approaches was tested on features extracted from ResNet-152 and

pre-computed concatenated features obtained by concatenating the features from 5

different models as illustrated in 3.3. Following contributions were made in the

context of the thesis:

• Different machine learning approaches were researched for event detection and

various experiments were performed with the deep learning models selected

for these task of action spotting. These experiments were performed with

SoccerNet-v2[17] dataset which includes 17 different classes with 300k temporal

annotations over soccer broadcast videos. The existing models were fine-tuned

by optimizing the selected hyperparameters in 3.4. The selected deep learning

4



models were tested with pre-computed features concatenated from 5 different

3D convolution models along the feature dimension.

• The experiments were performed with 2 different deep learning models

on SoccerNet-v2 dataset [17].These approaches were tested for the task of

action spotting and the performance was assessed for several metrics like

accuracy,precision and average mAP. Different ablation studies were performed

with various hyperparameters some of the parameters were fine-tuned in the

deep respective models.

• The performance of the CALF method and the temporally aware pooling

method was compared on both set of features. It was observed that there was

no significant increase in the performance of the CALF method when trained

using both set of features. However, there was a significant increase of 2.5% for

the average mAP metric in the performance of the Temporally Aware Pooling

method when trained on concatenated pre-computed features as discussed in

3.4.

The experiments performed adhere to the information provided in the problem

statement 1.2. Additional experiments were performed by fine-tuning some of the

hyperparameters which help the selected deep learning approaches model the context

better.

1.6 Outline

Chapter 2 - Background In Chapter 2, all the relevant concepts and terminology

used in the field of machine learning and deep learning was described. Some of the

preeminent related work and state-of-the-art deep learning approaches relevant for

the task of event detection and action spotting were discussed.

Chapter 3 - Methodology In Chapter 3, the dataset was presented that will be used

during this thesis. Further, the pre-processing and actionness detection techniques

were discussed to filter out predictions below certain threshold. Multiple different

5



contextually aware deep learning approaches were discussed. Further, a detailed

explanation about the selected deep learning techniques was provided. Further,

the effect of using pre-computed concatenated features on the contextually-aware

approaches was discussed.

Chapter 4 - Experiments and Results In Chapter 4, the results of all the contextually

aware deep learning approaches were presented. Further, the effect of using pre-

computed concatenated features on these models was discussed. The results were

compared using different accuracy metrics and the performance of the different

models was evaluated with different hyperparameters settings.

Chapter 5 - Conclusion In chapter 5, a summary of this thesis and its contributions is

provided. Further, the possible future work with respect to the thesis was discussed.
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Chapter 2

Background

2.1 Introduction

The end goal is to present a scalable deep learning model which could be used to per-

form the task of action spotting in soccer broadcast videos. The selected deep learning

models are fed with pre-computed features extracted from various action recognition

models along with the labeled data and then model would detect and predict the

event and would also provide a point in time at which this event has occurred.

Our goal is to present a deep learning model that will automatically detect and

classify abnormal events in a video and also predict a point in time. In this chapter,

all the relevant terminology and concepts related to machine learning is explained.

The related works section provides brief information about all the the state-of-the-art

deep learning models and the datasets that have been used over the last few years.

2.2 Event definition

An event can be defined in numerous ways. An event can be defined as an activity

that occurs at a point in time. It is quite a natural task for humans to detect and

identify an event. However, different people could predict diverse start and end

points for the same event. In our case, it should not be a major roadblock as the

events are already tagged with the ground truth.
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2.3 Video annotations

Manual annotation of events in sports videos is an expensive and time consuming

process. The process requires the annotator to watch the entire soccer game and then

tag the events manually. Forzify tagging [29] lets the users create events by tagging

the events directly on the video stream. The tagging operation consist of two stages

ore levels. At the first level, the operator can monitor one or four simultaneous games,

where he has buttons for each team and an event it generated pressing the event type

for a team and can press the publish button. Then, a second level operator can fine-

tune the events with additional metadata, exact timestamps and quality assurance.

This two-step tagging process ensures the smooth tagging and distribution of video

events. The two-step tagging process is expensive, but if some part of this tagging

process could be automated the amount of human intervention could be reduced

which in turn could reduce the efforts required for manual tagging.

2.4 Action Recognition

Action recognition can be defined as the method of classifying an action in a video.

Action recognition is sometimes also referred to as Activity Recognition. In this case,

the input would be a trimmed video from the original untrimmed video. The end goal

is to determine the list of occurrences of different actions from the input. Classifying

actions come with numerous challenges the primary being the high computational

and storage costs. The task of action recognition is illustrated in Figure 2.1

Figure 2.1: Action Recognition. Reprinted from [57]
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2.5 Action Spotting

Action detection is the task of answering the question when a particular event has

occurred. Action spotting consists of finding the timestamp of an event in a video

clip [5]. This implies that there is a need to not only classify th event but also to

provide the timestamp at which it occurs. Below Figure 2.2 illustrates the temporal

localization of events.

Figure 2.2: The figure shows the start and end time for the long jump. Reprinted from

[5]

2.6 Machine Learning

Machine learning (ML) is a discipline of Computer Science which focuses on the use

of data learns a mapping between the input and the output. Machine learning is the

task of making a machine learn from input data and provide an output. The machine

does the complex task of finding the mapping between input and output without

being programmed.

2.6.1 Supervised Learning

Classification and regression algorithms are categorized as supervised learning

techniques. Supervised learning techniques are capable of learning a mappable
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function between the input and the output [2]. In case of classification and regression

algorithms, the machine tries to find the mapping between the provided input data

and the outputted data.

2.6.2 Unsupervised Learning

Clustering algorithms fall under the category of unsupervised learning techniques[2].

Unsupervised learning techniques learn are capable of learning from the data without

using the labels. Unlike classification algorithms, no classification is predicted

which implies that there is no specific way to compare model performance in most

unsupervised learning methods.[2]

2.6.3 Regression

Regression is a supervised machine learning algorithm. Regression is used to find

trends in the data. Regression is used for the estimation of relationships between

a dependent and one ore more independent variables[51]. The regression model

predicts a quantitative answer to a given input. The answer is often a continuous

number. For example, a regression model could predict the distance travelled by a

car given the speed and the time taken to travel the distance.

2.6.4 Classification

Classification falls under the category of supervised machine learning algorithms.

The classification model when trained with labeled data predicts an output class for

new unlabeled input data. The model performs the task of classifying an unlabeled

input data into a labeled data. A simple example could be to classify the image as dog

or cat given some input image. The below section distinguishes between three type

of classification problems.

1. Binary classification : The task of classifying the input data into one of the two

output classes is referred to as binary classification.

2. Multi-class classification : A Multi-class classification algorithm performs the
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task of classifying the input data into one of the given n number of classes. The

number of classes in this case is more than two.

3. Multi-label classification : Multi-label classification algorithm performs the

task of predicting multiple mutually non-exclusive classes [10].

2.6.5 Dataset

A dataset can be simply defined as a collection of multiple data points. In case of a

supervised machine learning algorithms, a dataset consists of data followed by the

respective class label of the data. The complete dataset can be divided into three sec-

tions for the purpose of training mainly: A training set, a validation set, and a test set.

Training set : The training set is used to train the model. This data is passed to the

supervised machine learning algorithm which extracts higher level and then eventu-

ally lower level features.

Validation set : The validation set is used to aid the model in computing the number

of hidden parameters.

Test set : The test set is used to evaluate the selected model on unseen data.

2.6.6 Overfitting

Overfitting is a concept in the field of statistics and data science, which occurs

when a statistical model fits exactly against the training data supplied to the model

[22]. Whenever overfitting occurs, the model outputs inaccurate predictions against

unseen input data. It is a crucial step to generalize a machine learning approach

which learns features from new data and predicts an output. This is illustrated in the

below Figure 2.3.
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Figure 2.3: The dotted line shows the underlying function. The leftmost image

illustrates underfitting, the middle image shows a good fit and the rightmost image

illustrates the scenario of overfitting. Reprinted from [46]

2.6.7 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique. PCA

is generally used to compress the dimensionality of large datasets. This could be

achieved in two ways. The first approach is feature extraction where some lesser

significant variables are eliminated from the data. The second approach is known as

feature extraction. In case of feature extraction ,n new variables are created where

n is equal to the number of original features in the dataset. After this, each of this

new variable is represented as the combination of the old variables. PCA does the

task of combining the input variables in an efficient way such that it drops the least

important variables but still keeping the most valuable variables [8].

2.7 Deep Learning

Deep learning simulates the behavior of a human brain to perform classification

and clustering with remarkable accuracy. Deep learning is the driving force behind
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majority of the applications based on Artificial Intelligence. One of the practical

applications of deep learning is artificial neural networks. A neural network

architecture consists of three or more than three hidden layers which are responsible

for finding out mapping between the provided input and output.

2.7.1 Neural Networks

Neural Network is the study of the internal architecture of the human brain in-

order to induce intelligence artificially on machines [21]. An artificial neural network

architecture consists of an input layer, one or more hidden layers, and an output layer.

Each node is connected to another and it has a certain weight and threshold associated

with it. The node of a neural network activates when its output is above a certain

threshold value. The out put of this layer is passed to the next layer. Or else, no data

is sent to the next layer of the network [21]. In the Figure 2.4, an architecture of a

neural network can be seen.

Figure 2.4: Neural Network architecture. Reprinted from [21]
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The accuracy of neural networks tend to increase with huge amount of training

data. However, it is the fine tuning of the various hyperparameters which enables us

to improve the accuracy of the these networks allowing us to perform various tasks

like classification and clustering at real time. Each individual node can be considered

as a statistical function like regression, composed of some input data, weights, a bias

(threshold) and an output. The formula would look like below:

m

∑
n=1

WiXi + bias = W1X1 + W2X2 + W3X3 + bias

Activation Function = f (x) =


1 if ∑ W1X1 + b >= 0

0 if ∑ W1X1 + b < 0

Once an input layer is decided, certain weights are assigned to it. These weights

aid the network in determining the most significant variables. A convolution

operation is performed and the output of which is sent to the next layer provided it

exceeds a certain threshold value. In case of supervised machine learning algorithms,

the accuracy of a model is evaluated using cost (loss) function as below:

Cost Function = MSE =
1
m

m

∑
n=1

(y− ŷ)2

where,

i - index value of the sample

y - ground truth label

y-hat - predicted label

m - number of samples

2.7.2 Gradient Descent

The ultimate goal is to minimize the value of our cost function to ensure correctness

of fit for test data input. The model adjusts its weights so as to minimize the value of

the cost function. In order to minimize the value of cost function, the model adjusts
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its weights and is also referred to as gradient descent. In the Figure 2.5, the point of

convergence can be seen where the cost function is at its minimum.

Figure 2.5: Gradient Descent. Reprinted from [21]

2.7.3 Convolutional Neural Networks

A convolutional neural network mainly consist of below layers:

• Convolutional layer

• Pooling Layer

• Fully Connected Layer

The convolutional layer is the core building block of a convolutional neural

network. Input data and feature maps are fundamental components required by a

Convolutional Neural Network[20]. The input image consist of 3 dimensions width,

height and depth- which correspond to RGB in an image. A dot product is calculated
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by applying the filter to an area of an image. The dot product is then fed into

an array of output. The filter repeats this process by sliding over the entire image

and calculates a dot product for each operation. The results of consecutive pooling

operations is known as feature map.

Figure 2.6: .Convolutional Neural Network

2.7.4 Transfer Learning

In case of transfer learning, a deep learning model is trained using a large and a

reliable dataset and the model and its weights are saved which could be later used

for a similar task with further training the model on some additional data. In case of

transfer learning, the weights and biases learned by some other model can be reused

for a similar task. In the Figure 2.7 it cab be seen how transfer learning benefits the

training of a deep learning model.
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Figure 2.7: Transfer Learning. Reprinted from [60]

2.7.5 Pre-computed features

Pre-computing is the process of storing the output of all the layers except the last

layer so that it could be used for some other task on the same dataset. It enables faster

training of a network as the network is not trained from scratch. Since only the last

layers change during the training and not the initial layers, input image data can be

converted into these feature vectors instead of training the network using raw input

images which saves us huge amount of computing power. In our case, pre-computed

features extracted from ResNet-152 will be used [35].

2.7.6 3D Convolution Operation

In the context of action spotting, the task is not only to detect and classify an event

but also capture the timestamp at which an event has occurred. Our network should

be capable of finding out spatial as well as temporal information. Both our objectives

can be achieved by using 3D convolution networks that are able to learn spatial as

well as temporal information. Figure 2.8 illustrates the 3D convolution operation.
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A video clip can be considered of the dimension C X T X H X W where, C - Number

of channels (RGB), T - Number of frames in a video, H - Height in pixels, W -Width

in pixels.

Figure 2.8: Illustrates 3D convolution operation where T = number of frames, W =

width, H = height

2.7.7 Residual Connections

When deeper networks start converging, a degradation problem has been exposed:

as the depth of the network increases, accuracy gets saturated and then the network

degrades rapidly[35]. Traditional convolutional neural network proposed an idea of

stacking a set of convolutional, pooling and an activation layer on top of each other.

However, it was observed that adding more layers to a suitably deep learning model

led to higher training error[35]. The degradation problem indicated that not all deep

learning models are similarly easy to optimize. In case of traditional convolutional

neural networks, there exists a direct mapping x -> y with a function H(x) between

the input x and output y (a set of stacked non-linear layers). However, in case of
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residual connections, a residual function can be defined using F(X) = H(x) - x which

can also be rewritten as H(x) = F(x) + x , where F(x) and x represents the stacked

non-linear layers and the identity function respectively. It is easier to optimize the

function F(x) = 0 rather than F(x) = x using a stack of non-linear functions. F(x) is

called residual function[35]. Comparison between a plain block and a residual block

is illustrated in Fig 2.9.

Figure 2.9: The image on left hand side illustrates the mapping between input and

output of a CNN and the image on right hand side illustrates the mapping between

input and output of a residual block

2.7.8 ResNet

Residual Networks, also known as ResNet is a neural network used as a backbone

for many computer vision tasks. Residual block is a basic building block of a ResNet

architecture. The fundamental breakthrough with the ResNet architectures was it

allowed us to train extreme deep neural networks successfully[36]. The ResNet

architectures consists of multiple residual blocks stacked side by side which makes

the network wider instead of deeper and makes it comparatively easier to optimize

than the deep CNNs [36]. In the below Figure2.10, an illustration of a residual block

can be seen.
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Figure 2.10: 3D Residual Block

’

2.7.9 Pooling

In case of Convolutional neural networks, a major problem with the output feature

maps is that they are sensitive to the location of the features in the input. Poling layers

in a CNN architecture provide an approach to down sample the feature maps [9]. The

pooling operation slides over the input and then applies either maximum or average

pooling to take out the maximum or the average value from the input feature map

respectively. In the Figure 2.11 below, illustration of pooling operation can be seen.

2.8 Actionness

Actionness can be used as a unit of measure to quantify the likelihood of containing

a generic action instance at a specific location. Wang et al. [70] proposed a novel

approach to perform actionness estimation and further demonstrated how to apply

actionness maps for action proposal generation and action detection. Figure shows

2.12 the actionness maps and actionness proposals for an image.
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Figure 2.11: Leftmost image illustrates max polling operation and the rightmost

image illustrates average pooling operation

Figure 2.12: Actionness maps and proposals. Reprinted from [70]
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2.8.1 Non maximum suppression

Most object detection algorithms use Non maximum suppression to trim down the

number of detected bounding boxes to only a few. Most algorithms use a windowing

technique in which thousands of windows of various sizes and shapes are created. To

obtain probability of each class, a classification algorithm is applied. It is necessary

to filter out the best predictions with the bounding boxes. NMS is the widely used

algorithm for this task [48]. An example of of how NMS works is illustrated in the

Figure 2.13.

Figure 2.13: Non Maximum Suppression. Reprinted from [53]

2.8.2 VLAD

Jégou et al. [39] proposed an efficient approach of of searching the most similar

images in a large image database. They proposed a descriptor, derived from

both BOF and Fisher kernel [47], that aggregates SIFT descriptors and produces a

compact image representation which was later coined as vector of locally aggregated

descriptors (VLAD). Principal component analysis can be performed to reduce the
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dimensions of VLAD without hindering the accuracy. VLAD is derived by extracting

a region from an image and defining it using the 128-D SIFT descriptor. Clustering

approach is used to assign the closest center of vocabulary size k to the descriptor.

The size of k is set to 64 or 256. The vector differences between descriptors and cluster

centers are assembled into a single k × 128 dimensional descriptor which is known as

VLAD [6].

2.8.3 Datasets

Majority of the deep learning algorithms require large and scalable datasets for

training. In order to perform tasks like action recognition and action localization,

one requires high-quality annotated data. It is a tedious and an expensive process

to annotate the data manually. During this thesis, pre-computed input features are

used as input data to feed to the network. However, it is a very complicated process

to manually annotate events in case of sports videos. It is beneficial to have such

large corpus of annotated high-quality datasets, which are considered as benchmark

datasets for various tasks in the field of video analysis.

Some of the early works that were used for the task of action recognition

included UCF101[58] and HMDB-51 [42]. Plethora of research has been done in

the field of action recognition recently and many different benchmark datasets have

been released over the past few years. Some of these datasets include Sports-1M

[40], YouTube-8M [3]. Another benchmark dataset called Kinetics-400 was initially

released which consisted 400 different classes. Later, two more extended versions

of the same dataset Kinetics-600 [13] and Kinetics-700 [14] were released with 600

and 700 different classes respectively. All of the above discussed became popular

with the tasks like action recognition and action localization because of the temporal

annotations provided in the dataset. Two more datasets THUMOS [38], ActivityNet

[24] and the challenges proposed by the authors became quite popular with the

community.

In soccer, a new dataset SoccerNet[32] was originally released in the year 2018.

Later, an extended version of this dataset called SoccerNet-v2 [17] was released in

the year 2020. This dataset comprises of 17 different classes with 300k temporally
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annotations within SoccerNet’s 500 untrimmed broadcast soccer videos. The authors

of the SoccerNet-v2 [17] also presented some baseline deep learning approaches to

test the dataset. The authors have also provided a set of pre-computed higher level

semantic features obtained from various action recognition models. The authors

have also provided reproducible code for some of the benchmark context aware deep

learning approaches.

2.9 Related works

There exists an extensive amount of literature on action recognition. In the section

below, some of the most recently published related work has been discussed.

Understanding a video is one of the challenging tasks in the field of computer vision

and numerous researchers have contributed to this field in the last few years. Action

recognition has been identified as one of the tasks which is used to classify short and

trimmed clips of a video. Considering the recent advancements in the field of artificial

intelligence, a deep learning model could be used to perform action recognition.

As majority of deep learning techniques require large number of data in order to

train the model, many efforts have been dedicated toward collection of large-scale

datasets. UCF101[58], HMDB[42] and YouTube-8m[3] datasets are used as benchmark

to measure performance in the field of action recognition and have made the action

recognition task more accessible.

Histogram of Gradients (HOG), Histogram of Flow (HOF), Motion Boundary

Histogram (MBH)[16], dense trajectories[69], [68] dominated the field of video

processing. In 2014, Karpathy et al.[40] studied various approaches to include the

temporal information while training a Convolutional Neural Network to speed up

the training process. They further studied the generalization performance of the

best designed model by retraining the top layers on the UCF101[58] dataset and

observed significant increase in the performance. Furthermore, Simonyan et al.[55]

introduced a Two-Stream Convolutional Neural Network (ConvNet) architecture,

which incorporates the spatial and the temporal networks. The architecture adheres

to the two-stream hypothesis[33]. The Two-Stream network mimics the functioning
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of a human visual cortex which contains two pathways: the ventral and the

dorsal stream which perform the tasks of object recognition and motion recognition

respectively. Extending this work further, Carreira et al. [12] introduced a novel two-

stream inflated 3D (ConvNet). The filters and pooling kernels of the architecture were

expanded into 3D, making it possible to learn spatio-temporal features. Feichtenhofer

et al.[27] proposed a novel approach with 3D convolution and Pooling. Having

seen the strong performance of the Two-stream Convolutional Networks, the Two-

Stream architecture was further extended with ST-ResNet[26], which added residual

connections[36] in the spatial and temporal streams. This approach was found to

steadily increase the spatio-temporal receptive field as the network grew deeper.

Wang et al.[54][71] proposed Temporal Segment Networks (TSN) proposed an

approach to train an action recognition model with limited number of training

data. TSN extracts short snippets / samples over a long video, where the samples

distribute uniformly along the temporal dimension. The final prediction is then

made by fusing the predictions from samples. Tran et al.[62] devised a new class

of deep learning model called C3D which was capable of learning spatial as well

as temporal features from the input. The Two-Stream Inflated 3D ConvNet (I3D)

[12] model was introduced along with the kinetics-400 [41] dataset. The reason

this two-stream architecture was called inflated is because the model possessed two

streams (one temporal and one spatial), and the spatial stream was pre-trained on the

ImageNet[18] dataset and further the 3D filters were inflated so that they could be

used for performing the 3D convolution operation.

To avoid relying on only RGB or optical flow as input, PoTion used a pose

detection algorithm [11], where an approach was proposed to detect the 2D pose of

multiple people inside an image. This algorithm achieved good results irrespective

of the number of people in the image. However, this approach was overly reliant on

the pose detection model results. Later, Tran et al.[61] introduced Res(2+1)D, which

separates the 3D convolution into 3 steps. It was easier for the network to model the

spatial and temporal context separately. Finally, Feichtenhofer [28] introduced the

SlowFast architecture.

THUMOS [38] challenge was introduced to serve as a benchmark for the task
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of action recognition. Prior to the THUMOS [38] challenege, action recognition,

including the THUMOS [38] challenge had mainly focused on the classification of

trimmed videos. To address the challenge of action recognition in untrimmed videos,

Shou et al.[54] proposed an approach based on three segment-based 3D ConvNets.

First, a proposal network identifies candidate segments in a long video that may

contain actions, a classification network to solve the one-vs-all action classification

problem and finally a localization network which fine-tunes the learned classification

network to localize each actions instance. They also proposed a novel loss function to

discover temporal overlap and achieve high localization accuracy.

Ekin et al. [23] introduced a novel framework for analysis and summarization of

the soccer videos. Tsagkatakis et al. [64] devised an approach to independently en-

code the spatial and the temporal features and fuse their features using Autoencoders.

They achieved high classification accuracy with limited number of data samples, by

leveraging pre-trained models with the fine-tuned fusion of the spatial and the tem-

poral features. Qiu et al.[49] proposed a new architecture named Pseudo-3D Residual

Net (P3D ResNet), by simulating 3 X 3 X 3 convolutions with 1 X 3 X 3 convolu-

tional filters on spatial domain plus 3 X 1 X 1 convolutions to construct temporal

connections on adjacent feature maps in time. They achieved clear improvements on

the classification task of Sports-1M [40] dataset. Zolfaghari et al. [75] put forward

a network architecture which takes long-term content into account and enables fast

per-video processing at the same time. Tran et al. [63] devised an approach to fac-

torize 3D convolution operation into spatial and temporal interactions. The authors

believed that it increased the accuracy of the network whilst saving training time.

Feichtenhofer[25] presented the X3D network which produced excellent results on the

2D image classification. X3D achieved state-of-the art performance with 4.8 and 5.5

times fewer multiply-additions and parameters for similar accuracy than the previous

work [25]. Wu et al. [72] proposed a multigrid method for efficiently training video

models. Training competitive deep video models are slower than training their coun-

terpart image models. The authors presented an approach to use variable mini-batch

sizes with different spatio-temporal resolutions that are varied as per the schedule.

They empirically demonstrated a general and robust grid schedule and tested this
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approach on different models (I3D, non-local, SlowFast) and achieved comparable

results to state-of-the-art models on benchmark datasets like Kinetics,Charades,etc

without any loss in accuracy. Brattoli et al. [7] presented an approach called Zero-

shot learning (ZSL) which trains the model once and generalizes well to new tasks

whose classes are not present in the original dataset. They used trainable 3D CNN

architecture to extract the visual features and achieved comparable results to state-of-

the art architectures.

The task of Action spotting was introduced in the SoccerNet[32] dataset. Action

spotting is the task of predicting a class and a point in time at which an event has

occurred. A benchmark dataset called SoccerNet[32] was introduced to make the

task of action spotting easier. The dataset is composed of 500 complete soccer games

from six major European leagues, spanning over a total duration of 764 hours. The

authors devised a baseline model which recorded a Average-mAP of 49.7%.

Cioppa et al.[15] proposed a novel Context-Aware loss function (CALF) . For the

task of action spotting, the loss function takes into account the set of events occur

surrounding an event. They evaluated their model against the benchmark SoccerNet

dataset and achieved an overall Average-mAP of 62.5%. The authors evaluated the

approach against the ActivityNet [24] dataset. Vats et al.[66] introduced a multi-

tower temporal convolutional network architecture for the task of action spotting.

They achieved an Average-mAP of 60.1%. Vanderplaetse el al. [65] introduced

a multi modal approach which takes into consideration the audio as well video

information for the task of action spotting. Action spotting is the task of finding

out the temporal anchors of the video events and classifying them. They evaluated

their neural network model against the benchmark SoccerNet dataset and observed

a Average-mAP score of 56.0% for the task of action spotting. Hurault et al. [37]

proposed a self-supervised pipeline which could detect and track soccer players

in low-resolution irrespective of the video recording conditions and without using

any manually annotated labeled data. Their model achieved competitive results in

comparison with the state-of-the architectures.

In the year 2020, Deliège et al. [17] proposed SoccerNet-v2, a novel large-scale

collection of manual annotations of the original SoccerNet [32] dataset. They released
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around 300k annotations within the SoccerNet’s 500 untrimmed soccer videos. They

introduced multiple challenges like action spotting, replay grounding and camera

shot segmentation,etc. along with reproducible benchmark results for each task.

Rongved et al. [45] presented a novel approach to tackle the task of action spotting

using 3D convolution models. Their goal was to create a model which would not only

yield accurate results but also can be used in a real-time setting. They evaluated the

model on three different datasets from SoccerNet [32], the Swedish Allsvenskan, and

the Norwegian Eliteserien. They achieved a relatively lower Average-mAP score of

32.0% on a small temporal window of 8 seconds.

Tomei et al.[59] proposed a novel approach for the task of action spotting which

could simultaneously predict the event label and its temporal offset using the same

underlying features. They proposed two novel strategies to enrich the training of the

deep learning model: the first one for data balancing and the second one for masking

ambiguous frames with randomly sampled background frames. When evaluated

against the benchmark SoccerNet dataset, they achieved competitive results to

state-of-the art models. Additionally, they fine-tuned the model with a strong 2D

convolutional backbone for feature extraction and further achieved Average-mAP

score of 75.1%. Giancola et al. [31] presented a novel pooling method to model

the temporal semantics in a soccer broadcast video for the task of action spotting.

Unlike the other pooling methods which consider the temporal information to pool

from, they split the context into two parts: context before the occurrence of action

and context after the action has occurred. They introduced a novel pooling method

called as NetVLAD which was able to learn the context in a feature space using a

clustering algorithm based approach. They trained and evaluated their novel pooling

method against the large -scale SoccerNet-v2 [17] dataset and reached Average-mAP

score of 53.4%. Mahaseni et al.[43] proposed an approach considering the long-range

dependencies between video frames for accurate event localization. The two-stream

CNN extracts spatio-temporal features and the dilated recurrent neural network

utilizes this information for the task of action spotting. After evaluating their model

on the SoccerNet [32] dataset, they observed Average-mAP score of 63.3%. Zhou et

al.[74] further presented an approach in which they released pre-computed features
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in which they concatenated the output features extracted from 5 different action

recognition models along the feature dimension.

2.10 Summary

In this section, all the relevant concepts and terminology required to understand

the thesis was presented. It included all the fundamental concepts with respect

to machine learning, deep learning and neural networks. The above section 2.9

presented the extensive amount of research that has been done in the past few years

and also presented their results with respect to different performance metrics. From

the above research it was discovered that automatic detection of events in sports

videos is an active area of research. Further, the benchmark datasets used for the

task of action recognition and action spotting were discussed, mainly the SoccerNet-

v2 [17] dataset.

Multiple different approaches that have been used in the past over the last few

years have been presented. These approaches were mainly focused on using machine

learning and deep learning techniques for the task of action recognition. When it

comes to the task of action spotting, it becomes comparatively difficult to model

the temporal context. Some of the early works include two-stream convolutional

neural network architectures introduced by Simonyan et al.[55] which incorporated

the spatial and temporal networks produced promising results. Further, Tran et al.[62]

introduced a family of ResNet 3D architectures which separated the 3D convolution

into two steps which was able to model the spatial and temporal context separately.

In 2020, an extended version of SoccerNet [32] dataset called SoccerNet-v2 was

released. Giancola et al. [31] presented deep learning approaches which were

able to model the temporal context in soccer broadcast videos using a clustering

algorithm based approach for pooling. Giancola et al [31] evaluated their deep

learning approach against the SoccerNet-v2 dataset and yielded comparable results

with the state-of-the-art architectures. Cioppa et al.[15] introduced a contextual loss

function which further improved the results on the task of action spotting. Zhou et al.

[74] presented an approach where the authors fine-tuned multiple action recognition
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models to extract high-level semantic features and also designed a transformer based

temporal detection module to locate the target events.

The above research shows that automatic detection of events is still an active area

of research. Considering most of the results presented in the above section yielded

promising results, not all of them can be used in real time setting considering it

needs to be highly accurate. After reviewing that most of the approaches use single

model features for this task, our experiments were conducted with concatenated

features[74].

30



Chapter 3

Methodology

For soccer events, a summarized clip comprises of sports events such as goals,

bookings, offside, penalties, etc. At present, the golden standard to create such

summarized events, the sports events are manually tagged by human operators.

Manual annotation of events consumes plenty of time and is a tedious process.

Automating this process would save huge amount of time and efforts. With the use

of deep learning approaches, automatic detection of sports events cane be performed.

Extensive amount of research has taken place in this field of video analysis for the

tasks such as action recognition and action localization. Action recognition and

localization is still an active area of research and various datasets have been released

over the years which are considered as benchmark datasets for the task of action

recognition. During this thesis, the deep learning approaches will be evaluated

against the benchmark SoccerNet-v2 [17] dataset. In addition, the experiments

were performed by using pre-computed features concatenated from 5 different 3D

convolution models as feature extractors.

In this section 3, the dataset is described in-detail along with the 17 classes

and the temporal annotations. In addition, it is further discussed how the

pre-computed concatenated features using the 3D convolution models as feature

extractors were extracted. Furthermore, the impact of using concatenated features

and the hyperparameter setting for modelling the temporal context is discussed.

Also, the implementation details about the contextually aware deep learning were
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provided. In the end, various evaluation metrics have been discussed to asses the

performance of the models.

3.1 Dataset description

The SoccerNet-v2 dataset presented by Giancola [17] was used for evaluating our

deep learning approaches. This dataset is majorly used for the task of action spotting.

The SoccerNet-v2 dataset is not only used to classify the events for action recognition

but also for temporal localization of events. The dataset consists of 550 games from

the major European soccer leagues. The dataset includes the data for three seasons

from 2014-2017. Table 3.1 shows the distribution of league games spanned across

multiple seasons. It includes the data from the major footballing European leagues

mainly: England (EPL), Spain (LaLiga), Germany (Bundesliga), France (Ligue 1), and

Italy (Serie A), and the UEFA Champions League. The distribution of league games

per league is illustrated in Table 3.1 below:

Field Name 14/15 15/16 16/17 Total

EPL 6 49 40 95

LaLiga 18 36 63 117

Ligue 1 1 3 34 38

Bundesliga 8 18 27 53

Seria A 11 9 76 96

UCL 37 45 19 101

Total 81 160 259 500

Table 3.1: Distribution of league games per league and season

The dataset is structured in a format where each folder contains two videos

each for the respective half of the game in MKV format and contains 764 hours of

untrimmed soccer broadcast videos. The authors of the dataset have also provided

the ground truth label data temporally annotated with timestamps of events in JSON

format. In addition to this, the authors have also provided pre-computed features by
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using various 3D convolution models as feature extractors. The dataset is split into

three parts: training, test and validation and each part covers 300,100 and 100 games

respectively. The networks have been trained using pre-computed features instead of

using the raw video clips to save computational complexity.

Figure 3.1: SoccerNet-v2 classes. Reprinted from SoccerNet-v2 [17]

The temporal annotations in SoccerNet-v2 are provided at the center of each

frame[17]. This gives us the exact timestamp of event to be predicted. The dataset

contains contains such 300000 temporally annotated events spanned across 500 soccer

broadcast games. Figure 3.2 shows the 17 different classes included in the dataset and

the Fig 3.1 illustrates the distribution of all the 17 classes in the dataset. The category

shown and unshown represents whether the event was visible in the video clip or

not.

Three different types of pre-computed features are provided along with the

SoccerNet-v2 dataset: C3D [62], I3D [12] and ResNet [35]. The models are tested using

ResNet-152 visual features. The ResNet-152 [35] model pre-trained on ImageNet [18]

as an image classifier is used as a feature extractor. These features are extracted at

2FPS. Further, dimensionality reduction is performed using PCA to compress the

dimension size to 512. The feature extractor pipeline is illustrated in Figure 3.3.

In addition to the pre-computed features provided by SoccerNet [32], pre-
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Figure 3.2: SoccerNet-v2 classes
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Figure 3.3: Feature extraction pipeline using ResNet model as backbone

computed concatenated features provided by Baidu [74] have been used. The selected

contextually aware deep learning approaches were fine tuned by optimizing some of

the hyperparameters of the model.

3.2 Model selection

The selected models should be fine tuned by optimizing the hyperparameters

and this section describes the models that were best suited for this task. The

models were further tested using concatenated pre-computed features from multiple

models. Hence, the below models were selected as per our needs for performing the

experiments:

• The model from Cioppa et al. [15] which proposed a novel loss function

for modelling the context in videos called Context-Aware Loss Function

(CALF).The context aware loss function was tested for the task of action

spotting.

• The temporally aware pooling model from Giancola et al.[31], which uses a

pooling method based on VLAD (vector of locally aggregated descriptors). The
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temporally aware pooling method was tested for the task of action spotting.

• The above specified models are further tested with input as pre-computed

features obtained by concatenating output features obtained by implementing

the approach proposed by Zhou et al.[74].

3.2.1 CALF method

Reason for model selection

The task of action spotting was introduced in the paper SoccerNet[32] where the

objective is retrieving the exact time when an event occurs in the given video

frame. Cioppa et al.[15] proposed a pipeline where they considered natural context

surrounding the actions and later they incorporated this knowledge into a novel loss

function that performs some temporal segmentation. Further, they design an action

spotting module to detect reactions based on this temporal information.

In order to observe difference in the performance of the models for action spotting

on soccer videos, the model was tested using concatenated pre-computed input

features from multiple 3D CNN models and pre-computed features from single

model like ResNet-152. The models were selected in such a way that they are able to

determine context in the given video clip. The Context Aware Loss Function (CALF)

model was proposed by Cioppa et al. [15] and is illustrated in Figure 3.4.

The CALF model proposed by Cioppa et al. [15] was among the top 5

contextually-aware deep learning approaches and yielded comparable results to

state-of-the-art for the task of action spotting. It was observed that the code was

publicly available for the above specified deep learning models which made it feasible

for us to fine-tune and use the baseline model for further training and testing our

code.

It was observed that the CALF method yielded comparable results to state-of-the-

art contextually aware deep learning approaches and as the code is publicly available

to implement the baseline model. It further allowed us to analyze the pooling tech-

nique and the loss function used in this approach and perform further analysis on

it.The model was further tested using concatenated features from multiple model as
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Figure 3.4: Contextually Aware Loss Function. Reprinted from Cioppa et al. [15]

input.

Description

The Context Aware Loss Function method also known as CALF was proposed by

Cioppa et al.[15]. For the task of action spotting, Cioppa et al. [15] introduced a novel

loss function. The function models the temporal context surrounding an event in-

stead of keeping a single frame as center of attention. Their network consisted of a

frame feature extractor module and a temporal CNN module which was responsible

for outputting the class feature vectors for each frame, a segmentation module fol-

lowed by an action spotting module. Figure3.5 illustrates the architecture of the loss

function.

To perform the task of action spotting, Cioppa et al.[15] developed a context-aware

loss for a temporal segmentation module, and a YOLO-like [50] loss for the action

spotting module. Annotations for the segmentation module and spotting module

are encoded. To train the network, the annotations are re-encoded in two different

ways: first with a time-shift encoding for the temporal segmentation loss, and then for
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Figure 3.5: Pipeline of Contextually Aware Loss Function. Reprinted from Cioppa et

al. [15]

computing the actual loss for the spotting module, YOLO-like encoding is performed

[15].

In order to calculate the time-shift encoding, the temporal context around each

action is split into multiple segments with respect to their distance from the action,

as illustrated in Figure 3.6. Frames that are far before, just before, just after and far

after action are grouped [15]. The segmentation scores are assigned by the temporal

segmentation module based on below concepts:

1. Far before spotting an action of some class, its occurrence can not be anticipated.

2. Just before the action occurs, its occurrence is uncertain. Hence, the score for

that class does not particularly point towards any direction.

3. Just after an action has happened, many visual cues suggest the detection of

action. hence, the score for that class imparts the presence of an action.

4. Far after an action, the score for that class should impart that no action is

occurring anymore. [15]

The loss function was designed in such a way that it leverages the temporal

context around the action spot where the temporal shift is 0 as illustrated in Figure
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Figure 3.6: Time-shift encoding used in the Conext-Aware Loss Function which

constitutes to action context slicing. Reprinted from Cioppa et al. []

3.4. All the frames except the frame at which action occurs have been assigned a

spotting annotation as 0. In order to differentiate between the frames they have been

assigned time-shift encoding as shown Figure 3.6 which makes the annotations richer.

The action context slicing is delimited by context slicing parameters as shown in the

Figure 3.6. The loss function is responsive to the positioning of the frames. Frames

which are far off from the point of action are heavily penalized. Frames which are

moderately closer to the occurring action are less penalized. Frames which are just

before the action occurs are not penalized to avoid providing misleading information

as it does not guarantee that an action has occurred. However, the frames which

are present just after an action occurs are heavily penalized which indicates the

occurrence of an action. the model is unsure of what action takes place before an

annotated event occurs and hence the model does not heavily penalize the frames

just before the action. Finally, the last two segments are the transition zones between

the two nearby segments to the event, and the two distant segments.

The network takes video as input and outputs an actionness prediction score for

each frame of the video. The model splits the videos into smaller chunks and for each

chunk the model tries to spot the actions. The actions are encoded in a YOLO-like

fashion [50] with a set of vectors one per action limited to five actions per chunk. In

the vectors, they encoded following three elements: 1) The presence or absence of
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actions 2) The locations within the chunk and 3) The class of the actions.

The ground truth vector encoding is illustrated in below Figure 3.7: The network

Figure 3.7: CALF ground truth encoding. Reprinted from [1]

predicts 5 action vectors per chunk as illustrated in Figure 3.8. They leveraged an

iterative one-to-one matching to pair each prediction with a ground-truth vector

based on which has the closest location in the chunk as illustrated in Figure 3.9.

The action spotting loss between the predictions and ground-truth vectors is the

computed as a weighted sum of squared errors. The spotting module uses the

previous contextual features and detects the detected action spots.

Figure 3.8: CALF Network predictions. Reprinted from [1]

Implementation

The baseline code supplied with the original model was used for training the CALF

[15] network. In order to perform our experiments for different configurations, an

Nvidia DGX-2 was used which comprises of 16 Nvidia Tesla V100 GPUs each having

a RAM of 32 Gigabytes which totals to a capacity of 512 Gigabytes.
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Figure 3.9: The spotting module performs iterative one-to-one matching between

ground truth labels and the network predictions based on which has the closest

location in the input chunk. Reprinted from [1]

The experiments were performed with ResNet-152 features and concatenated

input features that combine the features concatenated from multiple 3D convolution

models. The concatenated features were extracted by using an approach stated by

Zhou et al. [74]. The model was validated after every 20 epochs after training the

CALF method for 300 epochs. Non maximum suppression was applied to [48] the

predictions to filter our weak actionness proposals.

3.2.2 Temporally Aware pooling Method

Reason for model selection

In order to perform automatic detection of events in sports videos, a major task

consists in understanding the high-level semantic information in the sports videos.

Giancola et al. [31] proposed an analysis on action spotting in soccer broadcast videos,

which consisted of temporally localizing the important actions in a soccer videos.

They proposed a novel feature pooling method based on NetVLAD[31]. They named

the pooling method as NetVLAD++. The NetVLAD++pooling method was able to

determine temporal context in a soccer broadcast video. Majority of the deep learning

networks either use either max-pooling or average-pooling to pool over the features.

However, Giancola et al.[31] designed a pooling method which was able to determine
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the context before and after an action takes place. The NetVLAD pooling layer was

able to separate the past and future context from the frames in a soccer broadcast

video. The module then learns a set of vocabularies for the past and future context.

The authors stated that introducing such prior knowledge aids the pooling layer in

modelling the context in a better way[31].

NetVLAD++ [31] consists of two NetVLAD pooling layers one after and are re-

sponsible for pooling over the features in frames before and after the action occurs,

respectively. Injecting such temporal awareness brings a significant boost in the per-

formances in the SoccerNet-v2 benchmark. The NetVLAD++ pooling method [31]

not only introduced a novel pooling method which that learns a temporally-aware

vocabulary for past and future temporal context but also was efficient in in term of

memory and computational complexity.

NetVLAD

VLAD [6] forms the basis of NetVLAD [31] pooling layer. NetVLAD [31] provides a

generalized representation of VLAD.

VLAD learns codebook of k visual words computed with k-means clustering.

The VLAD method accepts a set of N D-dimensional features as input, a set of k

clusters centers with same dimension D as VLAD parameters, the output of the VLAD

descriptor V [31] defined as below:

V(j, k) =
m

∑
i=1

ak(xi)(xi(j)− ck(j))

where xi(j) and ck(j) are the j-th dimensions of the i-th descriptor and k-th cluster

center respectively. ak(xi) represents the hard assignment of the samples xi from its

closer center, i.e ak(xi)=1 if ck is the closest center of xi, otherwise it is assigned a value

of 0. normalization is performed on the vector V and then it is flattened into a vector

of dimension D X K.

To avoid hard assignment, the NetVLAD [31] pooling method introduced a novel

soft assignment âk(xi) for the samples (xi)
N
i=1, based on their distance from each
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cluster center.

âk(xi) =
e−α||xi−ck ||2

∑k
k′=1 e−α||xi−c′k ||2

The value of âk(xi) ranges between 0 and 1. The parameter α controls the softness of

the assignment. The above equation can be considered as softmax layer of a convo-

lutional layer for the input features parameterized by wk = 2αk and bk = -α||ck||2 [31].

Further, âk(xi) is defined as below:

âk(xi) =
ewT

k xi+bk

∑k′ e
wT

k′ xi+b′k

The values were substituted from the above equation into the VLAD formulation.

The NetVLAD features are defined as in equation below. The original VLAD optim-

izes only the cluster centers ck. NetVLAD method optimizes the values of wk,bk and

ck independently, where wk= 2ack and bk = -a||ck||2 [31].

âk(xi) =
ewT

k xi+bk

∑k′ e
wT

k′ xi+b′k
(xi)(xi(j)− ck(j))

Provided an temporal window in a video clip, the NetVLAD method is capable find-

ing out whether specific actions occur in the window or not. For inference purpose,

NetVLAD provides class-wise actionness scores by a sliding window approach and

further applies Non maximum suppression to filter out the actionness detections.

NetVLAD++

Giancola et al. [31] proposed a temporally aware pooling module called NetVLAD++.

The VLAD [6] and NetVLAD [31] modules do not consider the order of the frames in

a video, however treat the features as a set. For the task of action spotting, the frames

from the video can be ordered temporally and can be semantically disentangled into

past and future context.
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Cioppa et al. [15] argued that the contextual information before and after an ac-

tion occurs is different, yet it complements each other. In addition, Giancola et al.[31]

further argued that disparate actions might share similar vocabulary either before or

after an action occurs, but not both.For example, the semantic information obtained

before a goal is scored and a shot on goal is taken could be similar, representing

a lower level semantic concept of a player taking a shot on goal and a goalkeeper

catching the ball. Yet, these two actions represent different contextual semantics after

the action occurs, with the fans cheering when a goal is scored or express their dis-

appointment when the shot attempt is blocked by the goalkeeper respectively. The

amount of information to pool among the features before and after an action occurs

might contain different low-level semantics, helping the module in identifying lower-

level granular features. The architecture of NetVLAD and NetVLAD++ is illustrated

in the Figure 3.10. NetVLAD++ [31] learns two different pooling modules for the

frame features from the frames that occur before and an action occurs. The context

before and after an action occurs is defined as [−Tb, 0] and[0,Ta] respectively. Each

pooling module in NetVLAD++ amalgamates information from 2 subsets of features,

using Ka and Kb clusters for after and before clusters respectively [31]. NetVLAD++

is defined as:

V = ω(Vb, Va)

where ω represents the aggregation of Vb and Va that represent the NetVLAD pooled

features for the frames before and action occurs respectively.

Giancola et al. [31] further integrated their pooling module into an architecture

depicted in Figure 3.11. The architecture is based on a pre-trained frame encoder,

a dimensionality reduction module and a pooling module. The pooling module

uses sliding window approach to slide over the frames of a soccer video clip and

then creates actionness scores for each frame. Further, the task of action spotting is

performed using non maximum suppression as depicted in Figure 3.11.
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Figure 3.10: NetVLAD and NetVLAD++ pooling modules for action spotting.

reprinted from Giancola et al.[31]

Video encoding module

The network uses features extracted from SoccerNet-v2 [17] dataset using ResNet-152

[35] pre-trained on the ImageNet dataset [18]. These features are further used as input

for the remaining of the architecture.

Dimensionality reduction module

The dimension size of the SoccerNet-v2 [17] features is reduced from 2048 to 512

using a linear layer as illustrated in the Figure 3.11. The authors argued that having a

linear layer to reduce the size of features instead of PCA boosted the performance of

architecture [31].

Temporally aware pooling

Input video was divided into multiple window chunks each of T seconds. The

features are disentangled into before and after the center of the window frame. These

45



Figure 3.11: Action spotting architecture based on NetVLAD++ pooling module.

reprinted from Giancola et al.[31]

set of features are then pooled by the two NetVLAD [31] modules used for each

subsets.

Video classification

The network considers non-overlapping video chunks for classifying a video clip

using a sliding window of stride T seconds.

3.2.3 Implementation

The experiments were performed with ResNet-152 [36] features and concatenated

input features that combine the features concatenated from multiple 3D convolution

models. The concatenated features were extracted by using an approach stated by

Zhou et al. [74]. The network was fine-tuned by selecting an optimal value of

vocabulary size and number of clusters in the NetVLAD++ [31] pooling module.

In order to perform our experiments for different configurations, an Nvidia DGX-2
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was used which comprises of 16 Nvidia Tesla V100 GPUs each having a RAM of 32

Gigabytes which totals to a capacity of 512 Gigabytes.

The experiment was started with a learning rate of 10−3 for all variations of the

temporally aware pooling method that was decayed from a factor of 10 after the

validation did not improve for 10 consecutive epochs. The training is stopped once

the learning rate goes beyond 10−8. An Adam optimizer was used [31] with default

β parameters obtained from PyTorch.

3.3 Concatenated fine-tuned input features

During the training of a neural network, it performs the task of feature extraction and

computes the values of weights and biases to be passed to the next layer. In case

of a classification algorithm, the specified input data is initially passed to a feature

extractor module and then the computed outputted features are passed to a classifier

network which predicts the final class of the inputted data. When the input data

is large and is available in raw format, it is not feasible to train a neural network

from scratch as it consumes exceedingly large amount of processing power. In such

cases, pre-computed features were used. Pre-computed features are extracted by

removing the last classification layer of the network and by using the intermediary

features passed to the classification layer as an input for training some other neural

network. These features were extracted by using 5 different action recognition models

TPN [73], GTA [34], VTN [44], irCSN [63] and I3D-slow [28]. Semantic features of

videos were extracted from SoccerNet-v2 [17] dataset by fine-tuning each model as

feature-extractor. These feature-extractor models have already been trained for the

task of action recognition on large-scale video datasets. The argued stated that the

proposed feature combination would significantly improve the performance for the

task of action spotting. To perform the fine-tuning of the 5 action recognition models,

Zhou et al. [74] performed the training of the video snippets on the fine-tuned action

recognition models. Furthermore, the features were concatenated along the feature

dimension and are referred to as pre-computed concatenated features. Zhou et al.

[74] proposed a two-stage paradigm for the task of action spotting as illustrated
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in Figure 3.12. The performance of pre-computed concatenated features to pre-

computed single feature extractor approaches was compared and it was observed that

using pre computed concatenated features [74] slightly improves the performance of

the model along with the fine-tuning of the network.

Figure 3.12: Two-stage paradigm for the task of action spotting. Reprinted from [74]

The temporal pyramid network (TPN) [73] can assimilate visual information

of different speeds at feature level, and can be efficiently integrated with 2D or

3D backbone networks. The network was trained on Kinetics-400 dataset [41]

with a ResNet-101 as backbone and achieved top-1 accuracy of 78.9%. The global

temporal attention (GTA) mechanism proposed in [34] incorporates global spatial

and temporal interactions in a disjoint fashion [74]. GTA achieves top-1 accuracy

of 79.8% on Kinetics-400 dataset [41], with a SlowFast-R101 backbone. Transformer

based network forms the basis for the video transformer network (VTN) [44]. VTN

comparatively trains faster than 3D CNN networks and when trained on Kinetics-

400 dataset [41] can achieve top-1 accuracy of 78.6%. Tran et al. proposed proposed a

new network named interaction-reduced channel-separated convolutional networks

(irCSN) [63] which segments 3D convolutions further into channel interactions and
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spatio-temporal interactions. The network was trained on Kinetics-400 dataset [41]

and achieved top-1 accuracy of 82.6%. The I3D-Slow network operates at lower frame

rate and captures spatial semantics using a SlowFast framework [28]. The network

is further pre-trained with OmniSource [5] dataset and can achieve top-1 accuracy

of 80:4% when trained on Kinetics-400 [41]. Below Table 3.2 summarizes the video

action recognition models used for extracting the semantic features.

Architecture Backbone Dimension Pre-trained on

TPN [73] ResNet50/101 2048 Kinetics-400

GTA [34] ResNet50 2048 Kinetics-400

VTN [44] ViT-Base 384 Kinetics-400

irCSN [63] ResNet152 2048 IG65M + Kinetics-400

I3D-Slow [28] ResNet101 2048 OmniSource

Table 3.2: Video action recognition models for extracting semantic features

3.4 Fine-tuning of hyperparameters

Choosing optimal hyperparameters is a crucial step for a machine learning/ deep

learning algorithm. Without the correct set of hyperparameters, the model could

either overfit or underfit to the provided training data. In this section, the selected

hyperparameters chosen for fine-tuning the temporally aware pooling method are

discussed.

3.4.1 CALF

The Context aware loss function proposed by Cioppa et al. [15] was tested on features

extracted from ResNet [35] alone and then further on concatenated pre-computed

input features as proposed by Zhou et al. [74]. The performance of the model was

tested for the task of action spotting. The CALF method was tested with different

configurations of chunk size and receptive field of input. The chunk size is defined

as the size of the number of consecutive video frames that are fed to the network in

seconds. The receptive field is defined as a temporal receptive (in seconds) which
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affects the results for a frame more than any other unit of the network. The results

with ResNet features and concatenated input features for the context aware loss

function method are presented in 4.

3.4.2 Temporally aware pooling method

The temporally aware pooling method also known as NetVLAD ++ proposed by

Giancola et al.[31] was tested on features extracted from ResNet [35] and then on

concatenated pre-computed input features as proposed by Zhou et al. [74]. The

performance of the temporally aware pooling method was tested for the task of action

spotting. It was believed that fine-tuning the parameters vocabulary size, number of

clusters in the NetVLAD++ pooling module would improve the performance for the

task of action spotting. NetVLAD++ pooling module takes N number of features as

input each of dimension D and outputs K clusters each of dimension D. Each cluster

is then assigned a vocabulary. The NetVLAD++ pooling module disentangles the

context in the video into two parts before and after action occurs as illustrated in

Figure 3.10. It was believed that increasing the number of clusters in the pooling

method would result in assigning more vocabulary to the clusters which in turn

would help the pooling method model the context better. The results with ResNet

features and concatenated input features for the temporally aware pooling method

are presented in the Table.

3.5 Evaluation metrics

A deep learning model can be evaluated against multiple evaluation metrics. The task

typically involves training a deep learning model with some input data, then using

the trained model to make predictions on a validation dataset not seen by the model

before and comparing the predictions made by the model with the ground truth la-

bels. In case of a classification algorithm, evaluation metrics involve comparing the

label of the expected class to the predicted class label. Sometimes, a single metric

could be misleading and will often cover only a fraction of what is to be understood

about the performance of the model. Precision and recall are two very important per-
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formance metrics for computing the performance of a model. Precision calculates the

number times an accurate prediction of a class occurs per a false prediction of that

class [30]. Recall is nothing but the percentage of the data belonging to a particular

class which the model correctly predicts as belonging to that class [30]. To calculate

the performances of the tested models, standard metrics like accuracy, precision and

recall have been used. A True Positive is a prediction when the model predicts the

correct class, a False Positive(FP) when the model predicts an incorrect class, a True

Negative (TN) when the model correctly rejects a class, and a False negative(FN) when

the model incorrectly rejects a class. This calculation is defined in the Table 3.3 and is

also referred to as a Confusion Matrix.

Actually Positive Actually Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False negative (FN) True Negative (TN)

Table 3.3: Confusion Matrix

Accuracy

Accuracy is defined as the number of correct predictions divided by the total number

of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision

Precision calculates the number times an accurate prediction of a class occurs per a

false prediction of that class [30].

Precision =
TP

TP + FP

Recall

Recall is the percentage of the data belonging to a particular class which the model
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correctly predicts as belonging to that class [30].

Recall =
TP

TP + FN

For each class, it is considered as a a one-vs-all binary classification problem. The

prediction is considered as a true positive only if it falls within a certain tolerance of δ

of the ground truth label with a confidence equal to or higher than our set threshold

value.

|gt
time − ptime| <

δ

2

where,

gt
time is the ground truth spot in seconds

ptime is the predicted spot in seconds

The equation specified is used above to create pairs of ground truth spots and pre-

dicted spots. Predictions that do not fall under the tolerance of δ are considered as

False Positive. If no prediction is made for the given ground truth spot, the it is con-

sidered as a False Negative. The calculation of average precision is illustrated in the

Figure 3.13.

For example, the two ground truth events are shown in 3.13 and a certain interval is

defined in the range of δ. If the prediction falls within the defined interval δ around

the ground truth then, it is considered as a True Positive. The range for the interval

δ is defined from 5-60 seconds. For example, when δ is 5 seconds, no prediction falls

within the interval of 5 seconds. This implies that there are 2 False Positives as there

is no prediction that falls within the time interval denoted by arrows and there are

2 False Negatives as there is no prediction that falls inside the time interval. When

δ is 10 seconds, there is 1 prediction that falls within the range of the ground truth.

However, the other prediction does not fall within the time interval which implies

that there is 1 False positive and one False Negative. Similarly, when δ is 15 seconds,

both the predictions fall within the time interval which implies that there are 2 True

Positives. In this case, the count of the values in the confusion matrix will change de-
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Figure 3.13: Average mAP calculation

pending on the value of δ. For each class based on some threshold confidence score,

the values of the confusion matrix are calculated. The predictions that are above the

threshold are filtered out. The values of precision and recall per class for the respect-

ive δ and threshold confidence score are calculated. Later, the area under the curve on

the precision-recall plot is computed which gives the average precision for each class.

The value of average precision is calculated for each δ value. The average precision

value for each class is calculated and then mean value is calculated of all the average

precision values termed as average mAP.

3.6 Summary

In this chapter, the context aware deep learning approaches were discussed and

compared using pre-computed single model input features and pre-computed

concatenated input features for the task of action spotting on the SoccerNet-v2

dataset. Firstly, the SoccerNet-v2 dataset was introduced and it was further discussed

how the pre-computed features were obtained for the dataset. Further, the selected

deep learning approaches were discussed in the context of action spotting. The

first model proposed a novel Context Aware Loss Function for the task of action

spotting. This model was tested using pre-computed single model input features
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and pre-computed concatenated input features. The second model proposed a novel

pooling method called NetVLAD++ which takes chunks of videos as input and splits

the context into before and after an event occurs and then creates clusters out of

feature space using k-means clustering and assigns a vocabulary to each cluster. This

model was further tested using pre-computed single model input features and pre-

computed concatenated input features. Finally, the evaluation metrics like precision,

recall and average mAP were presented to evaluate the performance of the selected

deep learning approaches.
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Chapter 4

Experiments and Results

In Chapter 3, the deep learning approaches were tested using pre-computed features

extracted from single model backbones and by concatenating the pre-computed

features extracted by combining the features of 5 different models concatenated along

the feature dimension. The models were tested using the pre-computed features for

the task of action spotting using the SoccerNet-v2 dataset. Multiple experiments were

performed on the CALF model with different values of chunk size and tolerance δ.

The temporally aware pooling method was tested using single model pre-computed

features and by concatenating the pre-computed features extracted by combining the

features of 5 different models. further experiments were performed on this model

using different values of window size, number of clusters in the pooling method and

vocabulary size.

The preliminary experiments performed on the models were presented followed

by the experiments performed by fine-tuning with the respective hyperparameters of

the models. For the preliminary experiments, the validation set was used to obtain the

presented results. Some additional hyperparameters and factors which could affect

the results were discussed in this section 4.

4.1 CALF method

Some preliminary experiments were performed to determine the best hyperpara-

meter setting for the CALF method. The results of the preliminary experiments were

55



discussed in the section 4.

4.1.1 Chunk size and receptive field for CALF

The CALF model was trained with pre-computed ResNet-152 features and pre-

computed concatenated features. Results for different hyperparameter setting for the

parameters chunk size and receptive field were discussed in this section. The model

was tested on the validation set and results were extracted for chunk sizes of 60,120

seconds and receptive field of 40,20 seconds respectively.

Features Chunk Size Receptive Field Average mAP

ResNet-152 Features 120 40 0.4160

ResNet-152 Features 60 20 0.3933

Table 4.1: Results on validation set for 2 different configurations of the CALF model

trained with single ResNet-152 model as feature extractor backbone. The best score

for on the average mAP evaluation metric is highlighted in bold.

The baseline implementation of the CALF method was tested with two different

configurations. It can be observed from Table 4.1 that for average mAP, the model

with Chunk size of 120 seconds and Receptive field of 40 seconds yield the best results

of 41.60 % for the average mAP metric. It was observed that the configuration with

Chunk Size of 60 and Receptive field of 20 produced a average mAP score of 39.33 %.

4.1.2 Concatenated features on CALF Method

The baseline implementation of the CALF method was tested with two different

configurations with the concatenated pre-computed features extracted from 5

different models as shown in Table 3.2.

It cane be observed from Table 4.2 that for average mAP, the model with Chunk

size 120 and Receptive field of 40 yield the best results of 41.83% for the average mAP

metric. It was observed that the configuration with Chunk Size of 60 and Receptive
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Features Chunk Size Receptive Field Average mAP

Concatenated Features 120 40 0.4183

Concatenated Features 60 20 0.3976

Table 4.2: Results on validation set for 2 different configurations of the CALF model

trained with concatenated pre-computed features extracted from models shown in

Table 3.2. The best score for on the average mAP evaluation metric is highlighted in

bold.

field of 20 produced a average mAP score of 39.76 %. It can be observed from the

results presented above that there was no significant increase in the score of average

mAP metric when the network was trained with pre-computed concatenated features.

4.2 Temporally Aware pooling method

4.2.1 Window and vocabulary size for temporally aware pooling method

The experiments for the temporally aware pooling method were performed with

ResNet-152 and pre-computed features. Results with different hyperparameter

setting for the parameters window sizes and vocabulary sizes are discussed in this

section.The models were tested with a constant window size of 15 and vocabulary

sizes of 16, 32, 64 respectively.

Features Window Size Vocabulary Size Average mAP

ResNet-152 Features 15 16 0.4738

ResNet-152 Features 15 32 0.4916

ResNet-152 Features 15 64 0.5338

Table 4.3: Results on validation set for 3 different configurations of the temporally

aware pooling method trained with single ResNet-152 model as feature extractor

backbone. The best score for on the average mAP evaluation metric is highlighted

in bold.

The temporally aware pooling method when trained with ResNet-152 features
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yielded the best results of 53.38% for average mAP when the window size is 15 and

vocabulary size is 64. It was observed that the performance of the model increases

with the increase in vocabulary size. The method achieves average mAP of 47.38%

and 49.16% when the vocabulary size is 16 and 32 respectively.

4.2.2 Concatenated features on Temporally Aware Pooling method

The experiments for the temporally aware pooling method were performed with pre-

computed concatenated features extracted from multiple action recognition models

as feature extractor. The models were tested with a constant window size of 15 and

vocabulary sizes of 16, 32, 64 respectively.

Features Window Size Vocabulary Size Average mAP

Concatenated Features 15 16 0.4668

Concatenated Features 15 32 0.5149

Concatenated Features 15 64 0.5587

Table 4.4: Results on validation set for 3 different configurations of the temporally

aware pooling method trained with concatenated pre-computed features extracted

from models shown in Table 3.2. The best score for on the average mAP evaluation

metric is highlighted in bold.

The temporally aware pooling method when trained with pre-computed concat-

enated features yielded the best results of 55.87% for average mAP metric for window

size 15 and vocabulary size 64. It was observed that the performance of the model in-

creases with the increase in vocabulary size. The method achieves average mAP of

46.68% and 51.49% when the vocabulary size is 16 and 32 respectively.

4.2.3 Class-wise score of average mAP for CALF method

In this section, class-wise results for the CALF method are discussed.
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ResNet-152 Features Concatenated Features

Chunk Size=

120 and

Receptive

Field = 40

Chunk Size=

60 and

Receptive

Field = 20

Chunk Size=

120 and

Receptive

Field = 40

Chunk Size=

60 and

Receptive

Field = 20
Penalty 0.3960 0.3852 0.3982 0.3821

Kick-off 0.3607 0.3688 0.3711 0.3539

Goal 0.7015 0.6384 0.6989 0.6898

Substitution 0.4985 0.5432 0.4722 0.4839

Offside 0.2915 0.3169 0.3021 0.2934

Shots on

target

0.2377 0.2269 0.2236 0.2269

Shots off

target

0.2670 0.2587 0.2656 0.2434

Clearance 0.5190 0.4958 0.5088 0.5069

Ball out of

play

0.6640 0.5678 0.6736 0.6452

Throw-in 0.5975 0.5587 0.5139 0.6054

Foul 0.5463 0.5143 0.5425 0.5149

Indirect

free-kick

0.4091 0.4136 0.4014 0.3917

Direct

free-kick

0.4403 0.4321 0.4406 0.3961

Corner 0.7260 0.7110 0.7019 0.6787

Yellow card 0.4095 0.3698 0.3854 0.3566

Red card 0.0077 0.0064 0.0096 0.0081

Yellow->red

card

0.0 0.0001 0.0019 0.0

Table 4.5: Class-wise average mAP scores for CALF method.
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4.2.4 Class-wise results of average mAP for temporally aware pooling

method

ResNet-152 Features Concatenated Features

Window

= 15 and

Vocabu-

lary Size

= 16

Window

= 15 and

Vocabu-

lary Size

= 32

Window

= 15 and

Vocabu-

lary Size

= 64

Window

= 15 and

Vocabu-

lary Size

= 16

Window

= 15 and

Vocabu-

lary Size

= 32

Window

= 15 and

Vocabu-

lary Size

= 64
Penalty 0.7312 0.7518 0.7945 0.7215 0.7526 0.8141

Kick-off 0.6115 0.6192 0.6132 0.6158 0.6512 0.6736

Goal 0.6912 0.7069 0.7318 0.7149 0.7236 0.7528

Substitution 0.6512 0.6452 0.6907 0.6473 0.6599 0.6669

Offside 0.3691 0.3626 0.3808 0.3752 0.3769 0.4264

Shots on target 0.3525 0.3641 0.3895 0.3632 0.3845 0.3912

Shots off target 0.3971 0.3941 0.4093 0.3987 0.4150 0.4136

Clearance 0.5692 0.5639 0.5774 0.5631 0.5741 0.5636

ball out of play 0.6856 0.6912 0.7048 0.6852 0.7136 0.7159

Throw-in 0.6628 0.6841 0.6880 0.6741 0.6698 0.6963

Foul 0.5983 0.5868 0.6363 0.5839 0.6041 0.6123

Indirect free-

kick

0.4123 0.3952 0.4443 0.4269 0.4123 0.4681

Direct free-

kick

0.5743 0.5816 0.5882 0.5921 0.5836 0.6012

Corner 0.7739 0.8012 0.8034 0.7843 0.8036 0.8144

Yellow card 0.5046 0.5163 0.5685 0.5382 0.5521 0.5569

Red card 0.0232 0.0319 0.0374 0.0016 0.0313 0.0383

Yellow->red

card

0.0123 0.0145 0.0528 0.0496 0.0419 0.0521

Table 4.6: Class-wise average mAP scores for Temporally Aware Pooling method. The

best score for on the average mAP evaluation metric is highlighted in bold.
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4.3 Discussion

In the previous sections, results from our experiments for action spotting with pre-

computed ResNet-152 features and pre-computed concatenated features extracted

from multiple action recognition approaches were presented.

CALF

It was observed that the CALF method achieved the best results when trained on

pre-computed concatenated features and when the chunk size is 120 and receptive

field is 40. It was observed that there was only an improvement of 0.15% on the aver-

age mAP score on fine-tuning and training with pre-computed concatenated features.

The class-wise results were illustrated in Table 4.5. The best average mAP score for

each class is highlighted in bold in Table 4.5.

Temporally Aware Pooling

It was observed that the Temporally Aware Pooling method achieved the best results

when trained on pre-computed concatenated features and when the window size is

15 and Vocabulary size is 64. It was observed that there was only an improvement of

nearly 2.5% on the average mAP score on fine-tuning and training with pre-computed

concatenated features. It was observed the average mAP score significantly increased

when trained with pre-computed concatenated features. It was further observed that

it also benefited when the vocabulary size is increased to 64. The class-wise results

were illustrated in Tabletable:TAP class-wise.

4.4 Summary

In this chapter, our results for the task of action spotting on the SoccerNet-v2 dataset

[17] were presented. First, the results of the preliminary experiments that were done

during the hyperparameter selection in Section 3.4 were presented.Further, the results

of using ResNet-152 [35] and pre-computed concatenated features [74] on the CALF

[15] and temporally aware pooling method [31] were presented. The best performing
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configurations for both the models were discussed and the class-wise results were

presented.
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Chapter 5

Conclusion

Today, the sports events are manually annotated by human operators. It is a tedious

process to annotate these events manually. Automating the process of annotation

would have a large impact on the games played in the lower division of the

football hierarchy where only limited funds are available. Multiple different type of

deep learning algorithms have been used to solve the problem of automatic event

detection. Majority of the deep learning approaches proposed in the last decade

only use features pre-computed features from a single deep learning model as feature

extractor backbone. In this thesis, the deep learning approaches were tested by fine-

tuning some of the hyperparameters of the model. The models were further with

pre-computed features from 5 different deep learning models as feature extractor

backbones.

Our results indicated that deep learning models benefited when tested on

concatenated pre-computed features from multiple deep learning models as feature

extractor backbones. For the best performing spotting model, the average mAP was

nearly 2.5% better with concatenated pre-computed features than with single model

feature extractor backbones. There was a significant increase in the average precision

for some classes when the pre-computed concatenated features were used over the

features from a single model. In total, it was observed that the models were benefited

by using concatenated features over features extracted from single model like ResNet-

152.
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5.1 Main Contributions

The performance of selected aware deep learning approaches was tested for the task

of action spotting, as described in 1.2. Following contributions were made to the

thesis:

• Multiple different machine learning approaches were researched and tested for

the task action spotting. These experiments were conducted with SoccerNet-

v2[17] dataset which includes 17 different classes with 300k temporal annota-

tions over soccer broadcast videos. The selected deep learning models were

further trained with pre-computed features concatenated from 5 different mod-

els.

• The experiments were performed with 2 different deep learning models on

SoccerNet-v2 and the performance was analyzed on the test split of the dataset.

Multiple configurations of the selected deep learning approaches were tested

with various hyperparameters.

• The performances of the selected deep learning approaches were compared

using pre-computed concatenated features to pre-computed single feature

extractor approaches.There was no significant increase in the performance

of the CALF method. However, it was observed that using pre-computed

concatenated features improved the performance of the temporally aware

pooling model with approximately 2.5% in the average mAP metric.

The results presented in the thesis provide provide valuable to gain insight into

using pre-computed concatenated features for training the networks. Additional

experiments were performed by fine-tuning some of the hyperparameters which help

the aware deep learning approaches model the context better.

5.2 Future Work

To continue the work with pre-computed concatenated features extracted from mul-

tiple action recognition models as feature extractor backbones, there are other deep
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learning approaches which do not rely on the concept of semantic modelling. It

would be beneficial to observe how well the models generalize to using different

sports datasets. Further, it would be beneficial to apply this approach of concaten-

ating the input features extracted from multiple models to other sports as well.
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Appendix A

Project Code Base

The following link contains implementation of the deep learning models in python

language.

• https://drive.google.com/drive/folders/15QJLU3Iq2fnjhAK6cy7xs6psg5RF8hY9?usp=

sharing
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