
Next Generation Broadcasting System for

Arena Sports : A Football Stadium Scenario

by

Vamsidhar Reddy Gaddam

Doctoral Dissertation submitted to

the Faculty of Mathematics and Natural Sciences

at the University of Oslo

in partial fulfilment of the requirements for

the degree of Philosophiae Doctor

Abstract

Current multimedia applications are getting more user-centric by provid-

ing the user control over the content. Panorama video is becoming increas-

ingly popular in that context, and we present an end-to-end real-time system

called Bagadus to interactively zoom and pan into high-resolution panoramic

videos. Bagadus integrates a sensor system, an event annotation system, and

a video processing system using a video camera array. In this these, we focus

mainly on the video capturing, user interaction and video delivery parts of

Bagadus.

First, we look into the creation of the panorama video using multiple

cameras, and we discuss several system-level details in implementing a real-

time panorama pipeline. The developed pipeline creates a panorama of the

size 4096 × 1680 pixels at 50 frames per second in real-time. Further, the

panorama video is used to provide virtual pan-tilt-zoom services to the user,

i.e., we present a design and implementation of a virtual viewer capable of

providing interactive services in real-time.

Moreover, we argue that the energy spent in designing autonomous cam-

era control systems is not spent in vain. We present a real-time virtual

camera system that can create smooth camera motion. Similar systems are

frequently benchmarked with the human operator as the best possible refer-

ence; however, we avoid a priori assumptions in our evaluations. Our main

question is simply whether we can design algorithms to steer a virtual cam-

era that can compete with the user experience for recordings from an expert

operator with several years of experience? In this respect, we present two

low-complexity servoing methods that are explored in two user studies. The

results from the user studies give a promising answer.

i

We also discuss the challenges involved in delivering such interactive ser-

vices to a large number of users. One of the major challenges involved in

Bagadus is the overhead to transfer a full quality panorama to the client,

where only a part of the panorama is used to extract a virtual view. Thus, a

system should maximize the user experience and at the same time minimize

the bandwidth required. In this regards, we apply tiling to deliver different

qualities of different parts of the panorama. Tiling has traditionally been

applied to delivery of very high-resolution content to clients, and here, we

apply similar ideas in a real-time interactive panoramic video system. A

major challenge is movement of such a virtual view, where clients’ regions of

interest change dynamically and independently from each other. We show

that our algorithms, which progressively increases quality towards the point

of the view, manage to (i) reduce the bandwidth requirement and (ii) provide

a similar Quality of Experience (QoE) compared to a full panorama system.

Bagadus was originally designed and implemented with soccer as a use

case. The importance of winning has increased the role of performance analy-

sis in the sports industry, and this underscores how statistics and technology

keep changing the way sports are played. Thus, this is a growing area of in-

terest, both from a computer system point of view, in managing the technical

challenges, and from a sport performance view, in aiding the development of

athletes. The Bagadus prototype is currently installed and in use, at Alfheim

Stadium and at Ullevaal stadium in Norway.

Acknowledgements

Several people deserve a thank you from me, for helping me out in the process

of this thesis. A lot of them are not named here, so I would start by thanking

them.

Today, I am what I am because of two important people: my mom and

my dad. They taught me a lot of things and pushed me to reach my full

potential at every wake of my life.

PhD is a hard process, during that I had several ups and downs. The

media group has helped me to stay up and running. The person that I prob-

ably shared the most time and my office with is Preben. Michael, Ragnhild,

Konstantin, Marcus and Viviane deserve a special mention for all the energy

they spent on me. I would also like to thank Andreas, Kristian and Haakon

for making my stay at Simula enjoyable.

My mentors, as well as supervisors, stayed patient with me all along. It

is hard to differentiate between Prof. P̊al and his clones some times, but

I would thank them all for always being actively there for any supervision

task - be it writing or discussing. Carsten provided valuable insights and

profound conversations about anything under the sun.

My PhD time could have been worse if not for Johannes who constantly

handled my BS and is always up for any activity. The tango group who

managed to keep me sane during umpteen days of geek and craziness also

deserves my gratitude.

Keeping the best for the last, she took care of me and she showed me a

direction in life. It is only her love that changed me from “young, stupid and

lost” to just “young and stupid”. Thank you very much Lena.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Limitations . 5

1.3 Research Method . 5

1.4 Contributions . 7

1.5 Organisation . 10

2 Background 13

2.0.1 Role of Video in Analysis 14

2.1 Bagadus – The Basic Idea . 15

2.1.1 The Subsystems . 15

2.1.2 Interaction Between Subsystems 17

2.2 Related Interactive Systems in Research 18

2.3 Summary . 19

3 Panorama Video Capture 21

3.1 Panorama Frame Generation 22

3.1.1 Theory . 22

3.1.2 Full Panoramas . 23

3.1.3 Partial Panorama . 24

3.1.4 Related Work . 26

3.2 Bagadus Setup . 31

3.3 Serial Panorama Pipeline Implementation - Version 1 32

3.3.1 Time Synchronization 32

3.3.2 Components . 35

v

3.3.3 Evaluation & Results 35

3.4 Parallel Real-Time Pipeline - Version 2 36

3.4.1 Components . 36

3.4.2 Evaluation & Results 39

3.4.3 Exposure Synchronization 42

3.5 Parallel Real-Time Pipeline with Upgraded Setup - Version 3 . 49

3.5.1 Upgraded Setup . 49

3.5.2 Key Differences to Old parallel pipeline 50

3.5.3 Debayering . 52

3.5.4 High Dynamic Range (HDR) 58

3.6 Discussion . 65

3.7 Summary . 66

4 Virtual View 67

4.1 Pan-Tilt-Zoom (PTZ) Camera 68

4.2 Related Work . 69

4.3 Theory for Virtual View . 71

4.3.1 Projective Camera . 72

4.3.2 Ray Tracing . 74

4.4 Implementation . 79

4.4.1 Video Handling . 79

4.4.2 Version CPU: Serial Implementation 80

4.4.3 Version GPU1: Parallel Real-Time Implementation . . 80

4.4.4 Version GPU2: Parallel Pipelined Implementation . . . 81

4.4.5 Performance . 82

4.5 Summary . 84

5 Visual Servoing 87

5.1 Related Work . 89

5.2 Approaches for Automatic Camera Control 90

5.2.1 Models for Pan and Tilt 91

5.2.2 Models for Zoom . 94

5.3 Objective Analysis . 95

5.3.1 Execution Time . 96

5.3.2 Pan/Tilt Models . 96

5.3.3 Zoom Models . 101

5.3.4 Conclusion . 101

5.4 Subjective Analysis . 102

5.4.1 Pairwise Comparison Method 103

5.4.2 Evaluation Metric . 103

5.4.3 Study 1: Camera Controls 104

5.4.4 Study 2: Man vs. Machine 108

5.4.5 Conclusion . 110

5.5 Discussion . 112

5.6 Summary . 113

6 Tiling 115

6.1 Scaling Costs . 115

6.1.1 Server Side . 115

6.1.2 Client Side . 118

6.1.3 Summary . 119

6.2 Introduction to Tiling . 119

6.3 Related Work . 120

6.4 Implementation . 123

6.4.1 Server Side . 123

6.4.2 Client Side . 124

6.5 Tile Selector Approaches . 126

6.5.1 Binary . 127

6.5.2 Rescaled . 128

6.5.3 Prediction . 129

6.5.4 Pyramid . 130

6.6 Experimental Setup . 130

6.6.1 Paths . 132

6.7 QoE Evaluation Metrics . 134

6.7.1 PSNR . 136

6.7.2 SSIM . 136

6.7.3 OpenVQ . 136

6.7.4 Missing Pixel Percentage 137

6.7.5 Pixel Histogram . 137

6.8 Subjective Evaluation . 137

6.8.1 Design of the User Study 137

6.8.2 Performance of Evaluation Metrics 139

6.9 Results . 141

6.9.1 Bandwidth . 141

6.9.2 Quality . 144

6.10 Discussion . 146

6.11 Summary . 148

7 Conclusion 149

7.1 Summary & Contributions . 149

7.2 Future Scope . 151

7.3 Concluding Remarks . 153

A Publications 175

A.1 Journal Articles . 175

A.1.1 . 175

A.1.2 . 176

A.1.3 . 177

A.1.4 . 178

A.2 Conference Publications . 178

A.2.1 . 178

A.2.2 . 180

A.2.3 . 180

A.3 Technical Demos . 181

A.3.1 . 181

A.3.2 . 182

A.3.3 . 182

B [Journal] Bagadus: An Integrated Real-Time System for Soc-

cer Analytics 185

C [Journal] Processing Panorama Video in Real-Time 209

D [Journal] The Cameraman Operating My Virtual Camera is

Artificial: Can the Machine Be as Good as a Human? 231

E [Journal] Tiling in Interactive Panoramic Video: Approaches

and Evaluation (Under Review) 253

F [Conference] Automatic exposure for panoramic systems in

uncontrolled lighting conditions: a football stadium case study.267

G [Conference] Interactive Zoom and Panning from Live Panoramic

Video 279

H [Conference] Tiling of Panorama Video for Interactive Vir-

tual Cameras: Overheads and Potential Bandwidth Require-

ment Reduction 287

I [Demo] Be Your Own Cameraman: Real-Time Support for

Zooming and Panning into Stored and Live Panoramic Video295

J [Demo] Automatic Real-Time Zooming and Panning on Salient

Objects from a Panoramic Video 301

K [Demo] Scaling Virtual Camera Services to a Large Number

of Users 305

List of Figures

1.1 An overview of traditional broadcast. 2

1.2 User interaction with content in well-spread technologies. . . . 3

1.3 The panorama video with the marked region of interest is

shown together with the generated virtual camera, empha-

sizing that the extracted area is not a simple crop from the

high-resolution panorama video. It is generated by a perspec-

tive reprojection and hence we cannot achieve it by a simple

rectangular cropping. 4

1.4 An overview of the organisation of the dissertation. 10

2.1 Overall Bagadus architecture. 16

2.2 Bagadus System currently in use at the Ullev̊al stadium by

the Norwegian National Team. 17

3.1 Spherical and Cube projections. 24

3.2 Cylindrical and Perspective projections. 24

3.3 Uneven sampling in the case of a perspective panorama when

compared to the cylindrical projection. 25

3.4 Two possible situations for recording a scene using multiple

cameras. (a) represents a case where the cameras are trans-

lated, and (b) is the case where the cameras are rotated. . . . 27

3.5 Views from each camera for a perfectly synchronized exposure

after the debarrel step. 33

3.6 Camera Hardware 6-pin interface. 34

3.7 Simple serial process to build a panorama. 35

3.8 Result of Version-1 pipeline. 36

xi

3.9 The parallel and distributed processing implementation of the

stitching pipeline. 37

3.10 Stitcher comparison - improving the visual quality with dy-

namic seams and color correction. 40

3.11 The processing performance of the parallel and distributed

processingpipeline. 41

3.12 Artifacts observed due to color correction occassionally. 43

3.13 Pilot camera approach. 46

3.14 Panorama generated using different approaches under different

light conditions . 47

3.15 Generated panoramas under equal ligthing conditions 48

3.16 Views from each camera for a perfectly synchronized exposure. 50

3.17 Real-Time Pipeline with Upgraded Setup 51

3.18 A bayer pattern . 52

3.19 Visual assessment of zippering and false colors. 57

3.20 Input images for the HDR processing. 59

3.21 Results of the user study . 62

3.22 Visual quality after HDR for the different algorithms using the

input images in figure 3.20. 63

3.23 Execution times (ms) of the various modules in different con-

figurations. 64

3.24 Execution times (ms) of the HDR module in different config-

urations. 64

4.1 Panorama video with labeled ROI (left) and the virtual camera

generated (right). It can be observed that it is not a simple

crop from the bigger video. 68

4.2 A physical PTZ camera and its capabilities [67]. The sphere

around the camera shows the range of the pan and tilt angles.

The size of the projection determines the field of view and thus

the zoom. 69

4.3 The intersection of the ray from the virtual view with the unit

cylinder. 72

4.4 The pipeline using opengl when the panorama frame is available. 73

4.5 Cylinder using the gluCylinder primitive of OpenGL Utility

Library. The cylinder is sliced only to 10 slices vertically and

10 slices horizontally to emphasize the way it is constructed. . 74

4.6 The intersection of the ray from the virtual view with the unit

cylinder. 75

4.7 Examples of outputs using different interpolation algorithms. . 77

4.8 Frame quality and execution time for the interpolation algo-

rithms. 78

4.9 The basic building blocks of the virtual viewer system. 79

4.10 The fully pipelined parallel system. Each module runs in it’s

own thread with producer/consumer pattern. 81

4.11 Performance of each module in the pipeline on a desktop and

a laptop. The red line on the top shows the deadline for real-

time performance at 30 fps. 83

4.12 Execution times for various sizes of virtual camera. 84

5.1 Two modes of new interaction that can be provided to user can

be seen here. The manual mode provides user the option to

steer the camera manually and the guided operation provides

a set of features to chose from, for example a ball or a player.

Once a feature is selected, the system automatically creates

the smooth motion following the feature. 88

5.2 The virtual camera operation mainly involves in deciding the

angles around y and x axes. The field of view is then deter-

mined by the focal length, which decides how zoom of the out-

put view. The interesection of x and z axes with the panorama

texture are marked with stars. The projection details from the

panorama are presented in figure 4.3. 90

5.3 Ball position plotted against frame number for one of the 500-

frame segment from a match. It can be observed that using

exactly the data, one will get a noisy output. 92

5.4 Toggle zoom assignment. 96

5.5 Schmitt trigger and adaptive trigger plots for 300 frame seg-

ment along with the plots from human operated camera for

the panning angle. 97

5.6 Schmitt trigger and adaptive trigger plots for 300 frame seg-

ment along with the plots from human operated camera for

the tilt angle. 98

5.7 The calculated trajectories for various acceleration values in

the Schmitt trigger case. Here, x is 0.0001 rad
s2

. 98

5.8 The trajectories for various max velocities in the Schmitt trig-

ger case. Here, x is 0.01 rad
s

. 99

5.9 Effect of varying stop-acceleration on the trajectories in Schmitt

trigger case. Here, x is 0.001 rad
s2

. 100

5.10 Effect of window size selected for smoothing on the trajectories

using the adaptive trigger. The window size is in number of

frames. 100

5.11 Smooth zoom and toggle zoom plots along with the plots from

human operated camera for 300 frame segment. 101

5.12 Visual outline of the steps presented in the user study. Partic-

ipants started with the questionnaire and instructions, before

moving on to the soccer sequences. These were introduced by

two practice trials, followed by the full study. Each pairwise

comparison was separated by a 2-second fixation interval and

terminated in a response session. 106

5.13 Frequency distribution portraying the number of times one

stimulus was preferred over its contrast, accumulated across

users. For example, in the first line, we see that 25 persons

have preferred the Adaptive/Toggle over Schmitt/Toggle in

all four repetitions. The maximum count of 4 corresponds to

the number of repetitions for each pair of videos. Stimulus

contrasts are sorted according to Friedman rank scores and

plotted symmetrically. 107

5.14 Frequency distribution portraying the number of times one

stimulus was preferred over its contrast, accumulated across

users. The maximum count of 4 corresponds to the number of

repetitions. Stimulus contrasts are sorted according to Fried-

man rank scores and plotted symmetrically. 110

6.1 Multiple virtual views may be generated from the same panorama

video. The virtual views can either be processed at the client-

or the server side. The client side (blue) shows that the en-

tire panorama video must be transmitted over the network,

whereas the server-side approach (red) process first and then

transmits only the finished virtual view video. (Note that the

zoomed views are not rectangular crops as in this figure.) . . . 116

6.2 Using tiling on the panorama with tiles in different quality. . . 120

6.3 At the server side, we divide the generated panorama video into

8x8 tiles, and then encode each tile in different qualities. The

client retrieves tiles in qualities based on the current position of

the virtual camera (high quality tiles for the virtual view and low

quality (red) tiles outside the field of view). 123

6.4 The architecture of a client supporting tiling. 124

6.5 Sample output frame from the decoder module. 125

6.6 Extract from the frame in figure 6.5 to show the difference in tile

qualities. 125

6.7 Tiled binary. 128

6.8 Thumbnail. 128

6.9 Predicted. 129

6.10 Pyramid. 131

6.11 Pipeline differences: original vs. tiled panorama. 131

6.12 Number of tiles used along time, out of 64 possible, per frame in

sequences of 12-second durations at 4 pre-determined time instants. 133

6.13 Same frame at different zoom levels. 135

6.14 Number of times a metric had the least divergence from the user

input in each task of the experiments among OpenVQ, PSNR and

SSIM. 140

6.15 Example of severe differences within a frame (319), leading to sim-

ilar PSNR values. 140

6.16 Different variation over the quality metrics across the 12 second

clips. For reference, the average of each metric across the 12-second

duration is also presented in parenthesis for each approach. . . . 142

6.17 A boxplot of the bandwidth consumed in (KB/s) for different ap-

proaches over 2.834 seconds(47 min) representing the first half of

a game. 143

6.18 Bandwidth profile for 90 seconds duration in the middle of s4. . . 143

6.19 Measured variation across 90 seconds at 1000 seconds into the soc-

cer game for s4. 145

6.20 Number of used tiles across 90 seconds at 1000 seconds into the

soccer game for s4. 146

6.21 Pixel histogram across 90 seconds along with the average percent-

ages for each level in the parenthesis. 147

List of Tables

3.1 Basler acA1300 Camera. 32

3.2 Kowa 3.5mm Lens. 32

3.3 Camera pin assignments. 34

3.4 Profiling of the stitching pipelines (in ms per frame). 36

3.5 Basler acA2000 Camera. 50

3.6 Azure 8mm Lens. 50

3.7 Summary of each algorithms visual performance. We rank the

selected algorithms based on the best and worst within each

category. 58

3.8 Summary of each algorithms performance. Execution time is

measured with a 2040× 5400 resolution image. 59

4.1 Time taken for rendering a viewport with varying the number

of stripes on the cylinder. 74

4.2 Configuration for Desktop and Laptop hardware used. 83

5.1 Non-parametric statistics for the number of times a stimulus

combination was preferred over its contrasts, averaged across

participants and sorted according to the Friedman rank score.

Wilcoxon signed-rank test indicates statistically significant dif-

ferences between stimuli, these are reported in relation to the

lower ranked stimulus (the row above). Non-significant con-

trasts are labelled ns, while non-applicable comparisons are

marked with a hyphen (-). 108

5.2 Additional statistics to provide further insight into the distri-

bution of the data collected from two user studies. 111

xvii

6.1 Estimated GPU resource requirements for 100,000 concurrent

users. 117

6.2 Statistics for the tiles. All values are in KB/s. 132

6.3 Paths: sequences of PTZ operations. 133

6.4 Labelling of approaches for analysis. 133

6.5 Size of the data for a soccer video of 6297 seconds using different

tile granularity when compressing each tile with CRF values of 21,

24, 30, 36 and 48 on 1 second segments. In comparison, the size of

the non-tiled panorama using the same segment length is 7.3 GB. 143

6.6 Average percentage of Missing pixels measurements over the entire

first half of the game. 146

Chapter 1

Introduction

I just grew up watching a lot of

movies. I’m attracted to this

genre and that genre, this type

of story, and that type of story.

As I watch movies I make some

version of it in my head that

isn’t quite what I’m seeing -

taking the things I like and

mixing them with stuff I’ve

never seen before.

Quentin Tarantino

The 1936 Summer Olympics in Berlin mark the beginning of live broad-

cast of sports events. Ever since, the technologies in broadcast have seen a

myriad of changes, improving the quality of broadcast several-fold. Figure 1.1

shows a typical broadcasting scenario. A typical workflow involves recording

the action at an event from several viewpoints using several cameras. Then,

a director takes control to create a unique stream, switching content from

several sources, which later is broadcasted to the user receiving the stream

on the other end. Over the time, we have seen better and faster cameras,

better tools for directors, better networks to support high-quality content

delivery and better screens to display the content. However, the power of a

1

2 Chapter 1. Introduction

user, for example the young Tarantino, to interact directly with the content

has remained the same - still a user is a mere observer. Some experiments

have tried to provide multiple contents between which the user can switch.

But, the interaction is still limited, and the experiments were not successful.

Cable Network

Camera 1

Camera n

Director

Viewers

Figure 1.1: An overview of traditional broadcast.

On the other hand, the growing availability of high-speed Internet ac-

cess and processing power on small devices has gone along with a growth in

interactive and immersive multimedia applications. Providing users an op-

portunity to interact and immerse themselves in an environment enriches the

user experience. Several applications have emerged where users can navigate

virtual worlds. Often, the content for the virtual worlds is created by artists.

The worlds are carefully created in a photorealistic manner to preserve the

real world experience. Figure 1.2a demonstrates an example of such virtual

environment, it can be seen that even though a lot of effort is placed in the

creation of the environment, it nevertheless feels artificial.

In this regard, image-based rendering has helped interaction go a long

way. For example, Google’s Streetview is one of the well-known and fre-

quently used applications that provides a nice interactive way to navigate

through the streets. The content for Streetview is carefully captured and

managed by Google. On the other hand, Microsoft’s Photosynth provides

users a web-platform to interact with user uploaded content. Figure 1.2

shows screenshots of Streetview and Photosynth. The idea is to provide the

1.1. Problem Statement 3

(a) Virtual Environ-
ment. (b) Google Streetview.

(c) Microsoft Photo-
synth.

Figure 1.2: User interaction with content in well-spread technologies.

ability to interact to the user using simple interfaces like a mouse or a key-

board or even using gyroscope on the cell phone. However, these services are

limited to a single texture image that is loaded over time depending on the

interaction.

Only recently, some people have ventured to replace the panoramic tex-

ture image with a video panorama in a similar interaction. An example from

our system is presented in figure 1.3. Here, an example frame from a 50fps

panorama video is presented along with the virtual camera that every user

can control personally. However, the challenges in providing such a service

with current technology are several. In this thesis, we add the component of

live real-time to the interaction and explore the feasibility of such a service

using soccer as a case study.

1.1 Problem Statement

Being able to provide tele-presence to individuals is a much desired technol-

ogy. The dropping costs of different sensors and rising processing power make

it easy to play with real-time (audio-visual-physical) data collected from a

real scenario. However, there are several limitations in making the service

available to a lot of users. Using a panorama video of a soccer stadium as a

real-world scenario, our main question being pursued in this dissertation is

as following:

4 Chapter 1. Introduction

ADSC workshop – March 2014 University of Oslo

Spatial freedom

Figure 1.3: The panorama video with the marked region of interest is shown
together with the generated virtual camera, emphasizing that the extracted
area is not a simple crop from the high-resolution panorama video. It is
generated by a perspective reprojection and hence we cannot achieve it by a
simple rectangular cropping.

What are the challenges involved in designing and devel-

oping live interactive video services to a large number of

concurrent users?

We divided the main problem into the following research tasks that are

tackled individually:

• Explore efficient and synchronized multi-camera capture, and panorama

representations of video data from a soccer stadium to allow for live

interaction.

• Explore the design of a basic interaction functionality and how that

can be efficiently implemented on different devices.

• Explore efficient ways for a human to interact with the video streams

on top of the basic interaction. Research higher level abstractions that

1.2. Limitations 5

can be provided using a machine so that the interaction requires less

work from the human-side.

• Explore the costs of providing this service, for both provider and the

user, to several concurrent users. Explore ways to minimize the costs

without altering the user experience.

1.2 Limitations

Even though the motivation of this thesis is to explore the services to a large

number of concurrent users, due to several constraints like monetary cost and

time, we have not experimented with this in the real world with the volume of

users that is typical for a soccer game. We have limited our scaling solution

to merely extending our framework improving already available large-scale

solutions without large-scale testing.

We do not consider the audio component in this thesis. Even though the

audio from a live sports event helps immensely to capture and carry over

the emotions at the stadium, we have focussed only on the visual part of the

broadcasting pipeline. This is largely due to the fact that the visual compo-

nent plays a much bigger role in perception. Similar concepts, like capturing

multiple signals and providing an interactive interface, can be extended to

the audio component as well, but we did not venture into that domain.

1.3 Research Method

The final report [24] of the ACM Task Force on the Core of Computer Science

gives a detailed description on how research in computer science can be orga-

nized. The main paradigms as discussed in the report are Theory, Abstrac-

tion and Design. Furthermore, the report identifies 9 subareas in the field

of computer science. This thesis fits quite well into the Human-Computer

Communication subarea, where the fundamental questions according to the

report are [as quoted] :

6 Chapter 1. Introduction

“What are efficient methods of representing objects and automat-

ically creating pictures for viewing? What are effective methods

for receiving input or presenting output? How can the risk of mis-

perception and subsequent human error be minimized? How can

graphics and other tools be used to understand physical phenom-

ena through information stored in data sets?”

Even though the thesis works with practical system aspects making pro-

totypes and running real-world experiments in soccer stadiums, thus trivially

falling into the Design category, we still touch upon the Abstraction element

in a fair amount of detail. The following defines the different research cate-

gories and provides how this thesis fits with all elements of Human-Computer

Communication sub area:

Theory A research work that characterizes objects of study, finding pat-

terns among the objects and verifying those using theoretical proof methods.

In the Theory category, the report suggests touching upon elements like 2D,

3D geometries, color theory, linear algebra etc.

In virtual camera design and panorama creation, we explore the 3D ge-

ometry of a cylinder and perspective cameras. However, we do not cover any

theoretical proofs in the thesis, and hence, we do not touch upon the Theory

category.

Abstraction The hypothesis is verified using experiments and the data

collected. However, the models are iteratively modified depending on the

results from the experiments. In the Abstraction category, the report em-

phasizes on algorithms for various operations on images.

We explore ray-tracing in the creation of virtual camera. We perform

several image processing operations both in the panorama creation and in

virtual camera creation. Furthermore, during the user-interface stage, we

study the effect of variables on the human experience. For achieving this,

we developed multiple user studies to evaluate the system. These studies fall

under the Perceptual Psychology domain. Even though there is a mention of

1.4. Contributions 7

psychological studies in the report in regards to user-studies, it is unclear if

perceptual psychology is covered in this topic of the report.

Design The engineering aspect of the research, that leads to design and

development of system capable of realizing the theoretical ideas. Testing of

the system also falls into this category. The Design category touches upon

implementation of graphics algorithms, utilizing multiple architectures and

use of displays.

All the theory and algorithms proposed in the dissertation are imple-

mented into a real world system. The system uses multiple architectures and

provide a real-world use case.

Apart from the above-mentioned elements, we also handle the idea of

remote user - implying the addition of Computer Networks element to the

Human-Computer Communication subarea.

1.4 Contributions

The single most important outcome of this dissertation is the working proto-

type of the live interactive video system running at Alfheim football stadium

in Tromsø (used by Tromsø IL, elite club) and at Ullevaal stadium in Oslo

(used by the Norwegian National team).

From the technical point of view, there are several contributions from the

dissertation. The contributions are covered in detail later in the chapters,

however, they are briefly listed as follows:

• The challenges involved in making a visually pleasing panorama auto-

matically from a real-world outdoor stadium are several. We managed

to generate a seamless panorama video from multiple cameras in real-

time at 50fps including features like HDR, synchronized capture and

dynamic seam to solve challenging light conditions. In the process, we

have made several contributions towards real-time panorama creation

on a distributed panorama video pipeline.

8 Chapter 1. Introduction

• We present a virtual Pan-Tilt-Zoom (PTZ) camera in order to extract

an interactive personalized virtual view from a panorama video in real-

time. We present different approaches for virtual camera extraction

using heterogeneous architecture and speeding it up using a parallel

architecture. Even on a commodity laptop hardware, we are able to

achieve speeds up to 300 fps for extraction of the virtual view.

• We developed methods for automatically steering the PTZ camera to

user’s requirements. In this mode of interaction, the user can request to

follow the ball or a player or a group of players and the system will au-

tomatically generate a virtual camera that smoothly pans/tilts/zooms

according to the request.

• We also present valuable results from a subjective user study using

the full pair-wise comparison tests to judge the performance of the

automatic operation in comparison to an experienced human operator.

• A high resolution panorama video requires large bandwidth. We exper-

imented with a DASH-based spatially segmented streaming approach

to reduce the bandwidth required by splicing the panoramic video into

tiles. We also demonstrate that, by fetching the appropriate quality

tiles in relation to the user interaction, the quality of experience is not

compromised, but the bandwidth consumption is greatly reduced.

In addition, the author has supervised several master students and pub-

lished several papers (not all are included in the Appendix). The list of

publications grouped with category is as following:

Journal Two papers (Appendix B [138] and Appendix D [40]) that are pub-

lished in ACM Transactions on Multimedia Computing, Communications,

and Applications (TOMM), and one paper (Appendix C [137]) published in

International Journal of Semantic Computing (IJSC) contribute to this the-

sis. Apart from these, the work done during this dissertation has contributed

to several other journal publications [84, 139], which are not included in the

thesis.

1.4. Contributions 9

Conference Three conference papers that were published during the course

of the PhD contribute to this thesis. In chronological order, they are pub-

lished at SPIE Electronic Imaging 2014 (Appendix F [41]), ACM NOSS-

DAV 2014 (Appendix G [42]) and Picture Coding Symposium 2015 (Ap-

pendix H [46]). Apart from these, the work done during this dissertation has

contributed to other conference papers [143, 151], that are not included in

this thesis.

Demo Three demos were presented at ACM Multimedia Systems Con-

ference 2014 (Appendix I [45]), ACM Multimedia Conference 2014 (Ap-

pendix J [43]) and ACM Multimedia Systems Conference 2015 (Appendix K [44]).

Poster Two posters were presented at IEEE International Symposium on

Multimedia 2014 [83] and at ACM Multimedia [76]. However, these are not

included in this thesis.

Dataset We also provide the dataset recorded during the official game

between Tromsø IL and Tottenham Hotspur for other researchers as a dataset

paper [114] published in ACM Multimedia Systems 2014 . However, this is

not included in this thesis.

Over the thesis, we are going to touch upon several related works and the

state-of-the-art. Due to the number of fields a real-time live interactive video

delivery system touches upon, there is a large amount of work published.

However existing systems either (i) lack the real-time requirment, (ii) deal

with only parts of such an interactive system, or (iii) do not elaborate on

the system level details. Hence this thesis, detailing the challenges, research,

development and evaluation of Bagadus system, extends the state-of-the-art

by providing a comprehensive yet detailed journey into the world of real-time

live interactive video delivery systems for sports. Finally, the entire code is

made available as an open-source project [134]. This allows anyone to use

the code and replicate our system for research purposes.

10 Chapter 1. Introduction

1.5 Organisation

Figure 1.4 presents the overview of the organisation of the thesis. In a nut-

shell, the thesis touches upon all aspects of the pipeline from the cameras at

the stadium to the user’s display devices.

DeliveringCapturing
Presentation

Interface

Presentation

Interface

Presentation

Interface

Presentation

Interface

Figure 1.4: An overview of the organisation of the dissertation.

Chapter 2 initially provides the background and motivation for the work

done during the dissertation. Then, we briefly present the related works in

the field of interactive video services. It must be noted that each chapter

individually delves into the state-of-the-work in the corresponding research

areas.

The Capturing module of our pipeline is handled in Chapter 3. In this

chapter, we present details about the panorama capture system. The chapter

touches upon problems like synchronization in a multi-camera system, chal-

lenging light conditions in outdoor stadium, and how we met the real-time

1.5. Organisation 11

processing requirements using a distributed pipeline.

Chapter 4 handles the details about Presentation module in the pipeline.

In this chapter, we explore the details performing real-time projections from

the captured panorama texture onto a cylinder on GPUs. This operation

plays a crucial role in realizing the pan-tilt-zoom virtual camera.

The Interface module provides an abstraction layer to the user in order to

manipulate the PTZ camera based on the preference. The user can request

the system to provide a virtual view that follows the ball (or players) and

the system automatically creates a smooth movement for the virtual camera.

Chapter 5 presents details on how this interaction is achieved. In this chapter,

we also perform user studies to understand the effect of various parameters

on human interaction.

The Delivering module of our pipeline is responsible for delivering the

interaction services to several concurrent users. Chapter 6 presents the main

motivation of research in delivery stage i.e., why delivery can be challenging,

and a few solutions to tackle the problem of high bandwidth usage.

Chapter 7 concludes the dissertation by summarizing the work . We also

open up a discussion about open issues and further possible directions.

Chapter 2

Background

My definition of an expert in

any field is a person who knows

enough about what is really

going on to be scared.

PJ Plauger

The interest in sports analysis systems has recently increased a lot, and it

is predicted that sports analytics will be a real game-changer, i.e., “statistics

keep changing the way sports are played — and changing minds in the indus-

try” [31]. To the best of our knowledge, the coach of a sports team appreciates

input from several sources that helps in the analysis of the performance of

both the team and individual players. In the area of soccer, several systems

enable trainers and coaches to analyze the game play in order to improve the

performance. However, the analysis currently involves large components of

manual work. Some systems, like the Cairo’s VIS.TRACK [14] using global

positioning and ZXY Sport Tracking [162] using radio frequency, help in cap-

turing player performance measurements. These systems, using the collected

data, can further present player statistics, including speed profiles, accumu-

lated distances, fatigue, fitness graphs and coverage maps, in many different

ways like charts, 3D graphics and animations.

13

14 Chapter 2. Background

2.0.1 Role of Video in Analysis

Traditionally, soccer games were recorded for viewing and archival purposes.

However, the recent interest in sport analysis has put more use to the videos.

The Norwegian national soccer team head coach said :

“Research has shown that immediate feedback in the form of im-

ages has proven to be most effective” - translated from Norwegian

“Forskning har vist at umiddelbar feedback i form av bilder har

vist seg å være mest effektiv”

- Per-Mathias Høgmo speaking about Bagadus [107].

In the recent times, videos are not only used to replay the instances for

training purposes but also for both extracting game patterns from the video

and embedding analysis meta-data along with the videos for further usage.

For instance, in Interplay-sports [68], video-streams are manually analyzed

and annotated using a soccer ontology classification scheme. ProZone [116]

automates part of the annotation process using video-analysis software. In

particular, it quantifies player movement patterns and characteristics like

speed, velocity and position of the athletes, and is successfully used at sev-

eral stadiums, for example, Old Trafford in Manchester and Reebook Stadium

in Bolton [129]. Similarly, STATS SportVU Tracking Technology [135] uses

video cameras to collect the positioning data of the players within the playing

field in real-time. This is further compiled into player statistics and perfor-

mance. Camargus [15] provides a very nice video technology infrastructure,

but lacks other analytics tools.

The existing systems are offline when it comes to video consumption, and

can deliver different types of reports some time after the game or training

sessions. To improve game analytic systems, video that replays real game

events immediately becomes increasingly important. However, the integra-

tion of the player statistics systems and video systems still requires a large

amount of manual labor. For example, events tagged by coaches or other

human expert annotators must be manually extracted from the videos, often

requiring hours of work in front of the computer. Furthermore, connecting

2.1. Bagadus – The Basic Idea 15

the player statistics to the video also requires some manual work. One re-

cent example is the Muithu system [73], which integrates coach annotations

with related video sequences, but the video must be manually transferred

and mapped to the game timeline.

As we have seen earlier, there exist several tools for soccer analysis. How-

ever, to the best of our knowledge, there does not exist a system that fully

integrates all the features, like video data, event data and player data. In

this regards, we have earlier presented [52] and demonstrated [128] a concept-

system called Bagadus. This system integrates a camera array video capture

system with the ZXY Sport Tracking system for player statistics and a sys-

tem for human expert annotations. Bagadus allows the game analytics to

automatically playback a tagged game event or extract a video of events ex-

tracted from the statistical player data, for example all sprints at a given

speed. Using the exact player position provided by sensors, a trainer can

also follow individuals or groups of players, where the videos are presented

either using a stitched panorama view or by switching cameras. Our ear-

lier work [52,128] demonstrated the integrated concept, but did not have all

operations in real-time, in particular the video operations.

2.1 Bagadus – The Basic Idea

Bagadus system is built in cooperation with the Tromsø IL soccer club and

the ZXY sport tracking company. A brief overview of the architecture and

interaction of the different components is given in figure 2.1. The Bagadus

system is divided into three different subsystems.

2.1.1 The Subsystems

The video subsystem consists of multiple small shutter-synchronized cam-

eras that record a high resolution video of the soccer field. They cover the

full field with sufficient overlap to identify common features necessary for

camera calibration and image stitching. Furthermore, the video subsystem

supports two different playback options. The first allows playback of video

16 Chapter 2. Background

October 2011 University of Oslo

Second Alfheim Setup

synchronized
camera array

sensors

expert
annotations

antenna

antenna

antenna

antenna

panorama
pipeline

single camera
pipeline

video
system

analytics system

sensor system

user interaction
& retrieval

Offline mode

Online (live) mode

Panorama view

Camera switching view

Figure 2.1: Overall Bagadus architecture.

that switches between streams delivered from the different cameras, either

manually selecting a camera or automatically following players based on sen-

sor information. The second option plays back a panorama video stitched

from the different camera feeds. The cameras are calibrated in their fixed

position, and the captured videos are each processed and stored using a

capture–debarrel–rotate–stitch–encode–store pipeline.

To identify and follow players on the field, we use a tracking (sensor)

subsystem. Tracking people visually by means of camera arrays has been

an active research topics for several years [9, 25, 32, 62, 63, 89, 92, 96] . The

accuracy of such systems has improved greatly, but the accuracy reported

in the literature is usually around 60% for large arena sports. Therefore,

for stadium sports, an interesting approach is to use sensors on players to

capture the exact position. In this area, ZXY Sport Tracking [162] provides

such a sensor-based solution that provides player position information.

The third component of Bagadus is an analytics subsystem. Coaches

have for a long time analyzed games in order to improve their own team’s

game play and to understand their opponents. Traditionally, this has been

2.1. Bagadus – The Basic Idea 17

done by making notes using pen and paper, either during the game or by

watching hours of video. Some clubs even hire one person per player to

describe the player’s performance. To reduce the manual labor, we have im-

plemented a subsystem that equips members of the trainer team with a tablet

(or even a mobile phone), where they can register predefined events quickly

with the press of a few buttons or provide textual annotations. In Bagadus,

the registered events are stored in a database, and can later be extracted

automatically and shown along with a video of the event. In figure 2.2, the

head coach can be seen using Bagadus app during a training session and the

events are immediately played back on the big screen at the stadium.

(a) Bagadus on big screen. (b) App used by the head coach.

Figure 2.2: Bagadus System currently in use at the Ullev̊al stadium by the
Norwegian National Team.

2.1.2 Interaction Between Subsystems

Bagadus implements and integrates the subsystems to support our arena

sports analytics application scenario. The main novelty of our approach is the

combination and integration of subsystems to enable automatic presentation

of video events based on the sensor and analytics data that are synchronized

with the video system. We can follow single players and groups of players in

the video, and retrieve and playback the events annotated by expert users.

Thus, in the offline mode, Bagadus for example is able to automatically

present a video clip of all the situations where a given player runs faster

than 10 meters per second or when all the defenders were located in the

18 Chapter 2. Background

opponent’s 18-yard box (penalty box). Thus, where people earlier used a huge

amount of time for analyzing the game manually, Bagadus is an integrated

system where the capturing of tracking data, retrieval of analytics data, and

the synchronization with video are automatically managed. Bagadus can

receive expert annotated events from the team analytics team and enable

an immediate playback during a game or a practice session, however the

video subsytem is not functional in real-time. In this thesis, we explore the

challenges involved in making the video subsystem real-time and in addition

improve the quality of the video significantly.

2.2 Related Interactive Systems in Research

Several research groups have experimented with creating interactive video

systems in sports scenarios. In this section, we discuss about a few such

systems with the emphasis on video, not analytics.

In [4], Ariki et al. presented a system that can be considered as a simpler

case of the Bagadus system. They recorded the videos using a HD camera.

They present Region-Of-Interest (ROI) by cropping a rectangular selection

in the video. They perform processing of captured videos to estimate ball

position and player positions. Then, they perform situation recognition based

on the estimated positions using some simple rules. After this, they create

a ROI path with a fixed set of rules. In addition to this, they also devised

another set of rules for user preference.

Yokoi et al. [158] were active in virtual camera research a decade ago.

They explore the simple scenario of a lecture hall. They used an HD video

camera to capture the high resolution and crop the ROI from that video.

In this work, they explored different approaches for operating the ROI that

automatically follows the presenter in a lecture hall. They performed a small

user study from 20 students and evaluated their algorithms.

Carr et al. [18] present a hybrid system using both a robotic PTZ camera

and a virtual camera generated from panorama. They evaluated their system

comparing it to a human operated one as benchmark. Their motivation was

to get as close to the human operator as possible.

2.3. Summary 19

Chen and De Vleeschouwer [21] performed an automatic production plan-

ning over multiple cameras. They used several cameras located around a

basketball stadium to capture the action from different points. Then, by

analysing the game, they generate a single broadcast by combining different

streams from different views along the time axis.

Mavlankar et al. [98] explored the field of interactive region of interest

streaming from the network optimization side. Their work initially involved

lecture videos and later extended to a soccer stadium. The panorama used

in their work is a perspective panorama.

Ooi et al. [104] have explored two approaches for supporting ROI stream-

ing from high resolution videos. In one approach, they split the video into

pre-determined tiles and the other is where only the macro-blocks required

for the ROI are transferred to the client. From this work, they have later

provided several contributions regarding mobile devices [90], quality assess-

ment [146], wireless networks [51] and crowdsourcing [16].

The research systems presented above provide proof-of-concept for differ-

ent areas of live interactive video service. However, the need for immediate

feedback and real-time performance have led us to develop the Bagadus sys-

tem to a fully functional working prototype.

2.3 Summary

In this chapter, we briefly introduced the scope of Bagadus system and other

similar existing research systems. However, related work is being touched

upon in the chapters wherever necessary. The area of interactive video deliv-

ery is quite broad, and there are several works that focus and deal with parts

of the challenge. We implement, study and evaluate different components

together from systems point of view in this thesis. In the next chapters, we

delve deeper into parts of the video system that can provide interactive visual

experience in real-time, and we also consider the network performance.

Chapter 3

Panorama Video Capture

There is nothing insignificant in

the world. It all depends on the

point of view.

Johann Wolfgang von Goethe

In Bagadus, we aim to capture everything happening all the time from one

viewpoint, i.e., we aim for a field of view of the entire soccer field. However,

it can be challenging for one camera to capture such large spaces at a high

resolution. A panorama can be used to capture a large scene with a wide

field of view. Usually, panoramas are captured using multiple images that

cover parts of the same scene. This can be primarily achieved by using the

same camera that pans across the scene, or using multiple cameras pointed

at different parts of the scene. In both cases, all the cameras are at the same

point (viewpoint). The former case has the limitation of recording only a

panorama image. In Bagadus, we would like to record a panorama video and

so we use multiple cameras, each pointed towards different parts of the field.

In total, they cover the entire field and have some overlap among the images

of the adjacent cameras.

A lot of work has gone into automatic alignment of multiple cameras for

panorama stitching. However, the Bagadus system has a static camera setup.

This fact makes it possible to avoid recalibration of the camera setup and use

only a static mapping from each camera space to a panorama space. How-

21

22 Chapter 3. Panorama Video Capture

ever, apart from the alignment problem, a panorama capture poses several

other problems like temporal synchronization between the cameras, exposure

matching, parallax, dynamic range and high throughput. A further require-

ment for a real-time system is that all of the processing must happen within

the time limits of the target framerate.

The research problem is to find an efficient way to solve the above chal-

lenges related to real-time panorama video capture. Using multiple cameras,

heterogenous processing and efficient panorama representations, we aim to

tackle the above presented challenges. We present and discuss theory and

ideas, show the development of multiple versions and present respective ex-

perimental results and shortcomings. Finally, we present the system that is

capable of recording and delivering a 4k panorama video at 50fps.

Most of the content of this chapter is extracted from papers [41] (Ap-

pendix F), [143], [138] (Appendix B), [114] and [76]. It is organized and

modified to present the pipeline to reflect its development through multiple

versions while gaining increasingly better insight.

3.1 Panorama Frame Generation

In Bagadus, we capture the field using multiple cameras. When a scene is

captured using multiple cameras, we have some overlap between the cameras

and the switch from the image of one camera to the next is not smooth. One

can deliver the frames from individual cameras by switching the cameras.

However, this kind of delivery provides a hard transition from one camera

to the other one. So, we explored some options to map the camera frames

into one single representation. In this regard, the obvious choice is to create

a panorama.

3.1.1 Theory

In this section, we refer to the location of the camera setup as the viewpoint

and the view of interest, football stadium in the case of Bagadus, as the

scene. When using a single viewpoint, the scene that one observes can be

3.1. Panorama Frame Generation 23

efficiently stored into a single representation. In this regards, there are two

major possibilities, the complete and the partial panoramas. We provide a

brief introduction to the theoretical concepts of panorama in this section. In

all the cases described here, the panorama is rolled onto a plane and stored

as a 2D image.

3.1.2 Full Panoramas

When the whole scene around one point needs to be captured, two common

approaches are employed. One approach is to project the scene onto a sphere

around the camera, and the other is to project the scene onto a cube. This

imples that 360o along both the horizontal and vertical directions are cap-

tured. Figure 3.1 demonstrates this using an example texture from the soccer

field.

Spherical Panorama

A spherical projection provides the most compact form to capture the scene.

This implies that the redundancy in the data is quite low, if not zero. How-

ever a spherical panorama introduces the non-linear projections and thus

curving straight lines. Figure 3.1a shows an example sphere with a panorama

texture.

Cube Panorama

A 6-faced cube representation is commonly used to represent a scene. This is

a commonly used technique in games and other VR applications. The cube

representation is a linear transformation per face from scene. This ensures

that the straight lines remain straight in each face. However, the cube is

not the most compact representation, which implies that for the same scene

a cube representation will require more data than the spherical panorama.

Figure 3.1b shows an example of cube representation. In the figure, the faces

are made discontinous to demonstrate the advantage of cube representation:

the texture can, intrisically, be stored as 6 rectangular images unlike the

sphere case , where explicit unrolling must be done.

24 Chapter 3. Panorama Video Capture

(a) Sperical Panorama. (b) Cube Panorama.

Figure 3.1: Spherical and Cube projections.

3.1.3 Partial Panorama

When the scene being captured does not pan 360o horizontally and vertically,

there are other ways to capture the panorama that are similar to the full

panoramas. In this regard, there are two most common ways of capturing

the scene. The first is a cylindrical panorama and the second is a perspective

panorama. Figure 3.2 shows an example of partial panoramas.

(a) Cylindrical Panorama. (b) Perspective Panorama.

Figure 3.2: Cylindrical and Perspective projections.

Cylindrical Panorama

A cylindrical panorama is formed by projecting the scene onto a cylindrical

surface. This kind of panorama is most ideal when the horizontal field of

view is large and vertical field of view is limited. The projection onto a

3.1. Panorama Frame Generation 25

cylinder ensures that the vertical lines remain straight and non-linearity is

introduced only horizontally. Figure 3.2a shows an example of cylindrical

panorama. It can be seen that the actual texture is partial, not covering the

whole cylinder, because the football field only has 160o field-of-view in our

case.

Perspective/Rectilinear Panorama

A perspective panorama, also known as rectilinear or planar panorama, is

simply the projection of the scene onto a pin-hole camera. Most images

captured with a camera resemble a perspective panorama. However, a wide

field-of-view perspective panorama is not trivially captured from a single

camera. The advantage of using a perspective panorama is that straight

lines remain straight. However, a perspective panorama has the problem of

uneven sampling, the far-end of the field is compressed and the near-end is

elongated. This can be observed in the figure 3.2b. This uneven sampling

gets worse as the field-of-view increases.

Considering the figure 3.3, a slice along the XZ plane is presented for

both the cylindrical and the perspective panoramas. One can observe that

if the field-of-views, θ1 = θ2 = θ3, then it ensures that the arc lengths,

C1 = C2 = C3 on the cylinder. However, the line lengths, P1 = P2 = P3 does

not hold. This creates uneven sampling problems giving more samples for

the same angle in the extremes and less in the middle.

θ1
θ2 θ3

C1

C2 C3

P1 P2 P3

Figure 3.3: Uneven sampling in the case of a perspective panorama when
compared to the cylindrical projection.

26 Chapter 3. Panorama Video Capture

3.1.4 Related Work

The field of panorama images is a well established one. One of the oldest

works in panorama can date back to 18th century. However, the use of

machines to assemble photographs into a panorama image is only a couple

of decades old. There is a lot of research that went into this in tackling

different problems. For example, Szeliski et al. [141] present various ways to

make panoramas. This work can be considered as an introductory tutorial

for panorama creation.

Peleg et al. [113] discuss about stitching panoramas. Their premise is

that of a moving single camera that is following some sort of panning motion.

The two scenarios of panning are illustrated in figure 3.4. In the first case,

the camera translates and in the second case, there is a rotation around

the same point. However, they argue that this action cannot be perfect

when performed mechanically. So, they propose a general manifold based

stitching. In this work, instead of using a planar projection or a cylindrical

projection, they make a projection depending on the camera. However, they

do not go to the end of tracking the camera, instead they count on the errors

in motion to be low and create the manifold by simple projections. After

the alignment process, they stich the images together and blend them for

photometric inconsistencies at the edges.

Xu et al. [157] proposed a panoramic video capture system using a few

HD video recorders attached to a wooden planck. They move the capture

system around thus capturing a pre-defined view-point change too. Their

approach employs a color correction approach and motion blur detection.

The recorded panorama videos are merely displayed on wide displays.

Brosz et al. [10] propose interesting ways to make a panorama defined by

shapes. They argue that the parametric forms like cylinder, sphere or cube

suffer from problems like irregular sampling when a panorama is changed

from one format to the other. Instead, the authours want to make a general

shaped panorama and sample only on the angles. They then create profiles

for the surface, which are used to define the arbitrarily shaped surfaces.

This method is interesting in computer generated panoramas and the work

3.1. Panorama Frame Generation 27

Scene Scene

O1 O3O2 O

C2 C3C1 C1

C2
C3

Ci – Camera index

Oi – Camera projection centers

Flat projection surface

Curved projection surface

(a) (b)

Figure 3.4: Two possible situations for recording a scene using multiple cam-
eras. (a) represents a case where the cameras are translated, and (b) is the
case where the cameras are rotated.

is constrained to those. However, they do not present any results from a real

world scenario.

Bradley et al. [7] write about something that looks like Google Street

View. They use a 6-camera Point Grey Ladybug system to capture the

panoramas indoors. They capture panoramas and store them along with their

location of capture. They provide an interface where the user can navigate an

indoor space by moving around and looking around. The moving is performed

by loading the new panoramas from the new location and looking around

is simulated by 6-face cube projection. The approach is simple and uses

images, not videos. They do not really talk about the system-level details like

performance. Their example is from indoor data collection. All the challenges

like moving subjects, occlusion and other panorama-related challenges are

not discussed.

Jogan et al. [72] talk about an interesting method where they use panora-

mas for matching. They use a set of pre-captured panoramas and reduce the

localization task to identifying the best match in the set. However, they do

28 Chapter 3. Panorama Video Capture

not perform a simple correlation because that cannot be robust to noise and

occlusion. They use eigen images to create a set of hypotheses as subsets

of images points. The paper is interesting in terms of how panoramas can

be used. Another work about using panoramas in an interesting way is pre-

sented by Hermans et al. [54]. They talk about showing objects on a static

panorama scene and let users interact with them.

Wai-Kwan et al. [142] speak conceptually about a system that is capable

of live capturing, rendering and presentation of the panorama. There is no

discussion about the resolution of the panorama. Their major contribution

is the cockpit, which is a curved projection system-based display. The work

lacks discussion on details of the system. However, they mention a few system

level aspects such as time taken by each of the modules.

Kimata et al. [77] set out a framework that is similar to Bagadus. How-

ever, they consider the challenge of virtual view extraction as simple crop.

They create panoramic video from multiple cameras. They encode it using

MVC for supporting tiles. Then, the corresponding tiles are fetched and

displayed. However, the results demonstrated show that the setup is an

experimental prototype rather than a working system.

Foote et al. [39] propose flycam, which is a cheap way of recording a

panoramic video. They use a few cameras to capture the scene and stitch to

a panorama. They talk about a virtual camera, but this is not perspective-

corrected. They use simple cropping to get a region from the panorama.

They also discuss controlling this virtual camera, by using motion analy-

sis automatically. For the movement, they use a heuristic with an inertial

momentum to smooth jitter and slowly pan the virtual camera.

Au et al. [5] present ztitch, an app that can make panorama images on

a cell phone. They have an interesting approach, however their competitor,

Photosphere has better version. This app runs on Windows Mobile unlike

Photosphere. One can capture a few images using cell phone by pointing the

camera in different directions. Then the images are stitched together using

the input from the user. The user can manually drag the images around to

help with the stitching process. After the alignment, the images are blended

together to remove the seams.

3.1. Panorama Frame Generation 29

Qi et al. [117] talk about a way to make seamless scenes with realistic

conditions. Their main application scenario is teleconferencing. In telecon-

ferencing, there can be two situations, as seen in figure 3.4 to use multiple

cameras. The first scene would help to maintain a face-to-face angle with

the camera if the cameras are placed infront of people. However, this would

introduce large parallax as the cameras are away from each other. The sec-

ond scene avoids parallax, however they argue that they suffer from lack of

the direct face-to-face perspective affecting the quality of teleconferencing.

They use slightly displaced cameras to capture multiple images. Then, they

generate intermediate views from the captured images to help the process

of mosaic stitching. Finally, they perform the panorama stitching with all

the images as source. Figure 3.4 shows the different scenarios of recording a

scene using multiple cameras.

Agarwala et al. [3] present an interesting approach to make long panora-

mas from a moving camera, where the view point is panned across the scene.

The typical application is on streets. In short, they take a video travelling

in a straight line of the street. This will give a lot of images panning the

street. Their goal is to stitch these images into one seamless panorama that

doesnt suffer from perspective distortions. The main constraint is that they

want to keep an orthographic projection vertically and perspective projective

horizontally, we refer the actual paper to the reader for more details on this

constraint. They achieve this in several steps. The first is a preprocessing

step, where they estimate the camera position for each image. Then, they

compensate for exposure variations in the same step. The next task is to

figure out a dominant scene plane. Figuring this out automatically is not

trivial. For this, they make the 3D scene along with camera pose estimation

and then do a Principal Component Analysis (PCA) on camera viewpoints.

Here, they also provide for user input to correct the surface plane. Then the

viewpoint selection is performed. The task is defined as finding which source

image contributes to the current pixel on a panorama. They formulate this

as a Markov Random Field (MRF) and solve it. There are three terms in

the objective function, the first one is to make sure that the viewpoint is

approximately infront of the object. The second term is to ensure smooth

30 Chapter 3. Panorama Video Capture

transition between different regions of the panorama. The final term is to

make sure that photometrically the panorama is close to the average image

of the sequence. After the optimization,the user can provide input to the

process where the solution can be refined for different constraints. The view

selection is refined by picking which viewpoint should contribute to the re-

gion. Sometimes seams go through objects, creating unwanted artifacts, but

these can be avoided by letting the user draw strokes to make sure that no

seam passes through the stroke. This is not straight-forward, as a stroke from

one viewpoint must be transformed to the other viewpoints. For this, they

use homography from one image to the other to transform the stroke place

on image to the other image. The final input mode is for inpainting, this is

a common input for removing objects that lie off the dominant plane. Their

results are impressive, but there are a lot of limitations to automatically

achieving this task due to the involvement of the user in the process.

Carr et al. [17] present a portable system that is similar to Bagadus. How-

ever, their stitching happens on the client side. Also, they make it robust to

movements between the cameras, which implies re-estimation of homography.

The system they propose captures images from multiple cameras and stores

them on the disk. They have an interesting approach for doing this. Their

server figures out region of interest by analysing the image and then crops

the image outside the region of interest. Then, a resampling is performed to

match the resolution of the display device. Further, all these cropped regions

are transmitted to client. On the client, the images are aligned and stitched

together to form a mosaic. The alignment is performed by perspective trans-

formation. The main limitation of their system is that they expect the user

to provide point-correspondences between the views. This is a drawback, be-

cause if the user is expected to provide correspondence, the idea of automatic

alignment is defeated.

Eden et al. [35] talk about making HDR panoramas, where their solution

is quite elegant in terms of initial constraints. They start with the a really

challenging problem of using images captured by amateur photographers.

This implies that their solution should handle highly varying exposures be-

tween images and also that the images are not perfectly aligned. They pro-

3.2. Bagadus Setup 31

pose to build a good panorama that has sufficiently high dynamic range and

wide field-of-view. They work in radiance space to handle the varying dy-

namic range. In order to achieve this, they perform geometric alignment

and radiometric alignment. Further, they do a two-pass selection process,

where a reference panorama is created from the aligned inputs in the first

pass. A cost function is defined so that it incorporates the data priors and

smoothness priors, which is then minimized using graph-cut. After the two-

pass process, they perform blending to create a smooth image. The output

image is impressive, however, considering all the optimization processes, the

computational cost of such an approach is quite high.

Apart from the above works, there are a few works that deal with small

details of panorama stitching at a theoretical level. McMillan et al. [100]

talk about plenotic modeling. Migliorati et al. [102] talk about interpolation

adapted to the movement of the camera and the objects. Junhong et al. [48]

mentions an interesting way to stitch panorama images using 2 homographies

between the same images, instead of the classical way of using 1 homography.

Lin et al. [88] propose an interesting approach where instead of using a single

homography, they use a smooth affine to stitch the panorama. Ioana et

al. [131] propose an interesting way of stitching two images with photometric

inconsistencies into one good-looking panorama. From the works mentioned

in this section, we use theoretical concepts from Szeliski et al. [141] regarding

panorama stitching. However, when it comes to system-level aspects, there

is a lack of detailed research in the field.

In summary, there exists a lot of related work, but none addresses the

issues of a complete real-time panorama pipeline. Hence, we describe our

work in the next sections.

3.2 Bagadus Setup

The video capture system consists of a few cameras to cover the entire field

and processing machines to further process the captured data. The system is

designed to record all parts of the field from one vantage point at all times.

We initially built a system with 4 cameras which we upgraded to 5 cameras

32 Chapter 3. Panorama Video Capture

with a better design. In this chapter, we use the term ‘old system’ to refer to

the 4-camera setup and ‘new system’/‘system’ to refer to the 5-camera setup.

The new system is the system currently in use. However, a significant initial

design and development took place with the old system. A major point to

be noted in this chapter is that results may not be presented for both the

setups in all experiments. This is due to the fact that some experiments were

run only during the development of the framework and when the framework

was adopted to the new system, these experiments were not re-run.

In order to realize the construction of a panorama video, we built a

panorama pipeline. The pipeline consists of components performing pri-

marily three operations - capturing, processing and storing.

3.3 Serial Panorama Pipeline Implementation

- Version 1

The old system is shown in Figure 3.5a. The cameras are placed on one end of

a recording stand. This stand is also used by the professional TV broadcasters

to record the games. Hence this ensures that the recording happens from the

same view-point as professional broadcaster’s. The 4 cameras and lenses used

in the setup are all the same and their details are presented in Table 3.1 and

Table 3.2. The output from the cameras is presented in the Figure 3.5.

Manufacturer Basler
Model acA1300-30gc
Sensor format 1/3”
Pixels 1296× 966
Frame Rate 30

Table 3.1: Basler acA1300 Camera.

Manufacturer Kowa
Model LM4NCL
Focal Length 3.5 mm
Aperture F1.4 - F32

Table 3.2: Kowa 3.5mm Lens.

3.3.1 Time Synchronization

When the camera frames are placed next to each other, like in the case

of panorama, the temporal synchronization becomes a key issue. The hu-

3.3. Serial Panorama Pipeline Implementation - Version 1 33

(a) Old Camera System Setup.

(b) Camera 1. (c) Camera 2. (d) Camera 3. (e) Camera 4.

Figure 3.5: Views from each camera for a perfectly synchronized exposure
after the debarrel step.

man eye can easily notice differences in frames captured at different time

instances when placed next to each other. Initially, we have observed that

just triggering cameras to operate at a specific frame-rate is prone to cause

synchronization errors as there are several independent clocks and they are

bound to drift with respect to each other. Hence, we decided to use hard-

ware trigger, using which we inform all the cameras when to capture a frame

continously. The cameras are equipped with such an interface. Figure 3.6

shows the 6-pin interface of the cameras used in the Bagadus system.

Table 3.3 gives an overview of the purpose of each pin. The pins 1, 3, 5

and 6 are used for power and ground purposes as can be seen in the table.

Pin 2 takes input from an external trigger device depending on the mode set

in the camera. Pin 4 gives out the status of the shutter(open/close) in case

it needs to be used in other control mechanisms. The input pin can be used

to convey mainly two things, when to make an exposure and also how long.

However, we use the camera’s internal metering abilities, meaning that we

only trigger the camera when a frame needs to be captured.

34 Chapter 3. Panorama Video Capture

Figure 3.6: Camera Hardware 6-pin interface.

Pin Designation
1 +12V DC Camera Power
2 I/O Input 1
3 Not Connected
4 I/O Out 1
5 I/O Ground
6 DC Camera Power Ground

Table 3.3: Camera pin assignments.

To achieve a good time synchrony among multiple sub-systems in the

Bagadus system, we use a Network Time Protocol (NTP) server at University

of Tromsø. A small program delivers a single time-sync packet containing the

frame-rate once every second to an Arduino that resides close to the camera

setup. The Arduino delivers a trigger signal to all five cameras using its I/O

pins i.e., it sends 1
frameRate

Hz signals. The Arduino’s timing is reset by every

packet from the server hence keeping the drift to less than 1 second in the

worst case. This leads to a synchronized trigger among multiple cameras

down to a frame level and if there is time drift between the cameras, it is

reset every second. The panorama-recording machines use the same NTP

server and so, a time stamp on the final output panorama video file contains

all the information required to synchronize with other sub-systems later on.

3.3. Serial Panorama Pipeline Implementation - Version 1 35

3.3.2 Components

Figure 3.7 presents the image with different processing modules of the pipeline.

We have earlier discussed about synchronized capture from multiple cameras.

Initially, the frames are captured in YUV format and then converted to RGB

because of the limitation enforced by OpenCV. In Version 1, we relied on off-

the-shelf video processing libraries. OpenCV [8] is one of the most used and

well maintained video processing libraries available. However, several pro-

cessing modules in OpenCV require the image to be in RGB format, and

hence, we had to add the extra step. Then, the frames are corrected for

barrel distortion, because of the wide angle lens used.

YUV to RGB Debarrel Stitching RGB to YUV Encoder

Figure 3.7: Simple serial process to build a panorama.

Once the frames are corrected for barrel distortion, they are sent into the

warping module which uses pre-estimated homography between the panorama

plane and each of the image planes to project the images onto the panorama

plane. Once the warping is performed, the images are stitched together to

form one complete panorama.

Once the stitching is complete, the panorama is converted back to YUV

format so that it can be stored using H.264. We used x264 library to encode

the panorama video in YUV420 format.

3.3.3 Evaluation & Results

An example panorama output from version-1 is shown in figure 3.8. Initially,

we performed a few experiments to understand the costs of each module in

the panorama pipeline. We performed all these operations on CPU in a serial

fashion. Table 3.4 presents the time taken for each stage of the pipeline. In

total, an average of 1.1 seconds is required per frame from the camera to

the encoded panorama file. Obviously, this is much longer than the real-time

36 Chapter 3. Panorama Video Capture

requirement of 33 ms for a 30 fps video. Furthermore, even if the components

would run in parallel, we can see that the stitching module takes the most

time. Hence, in the next implementation (version 2), we decided to parallelize

the pipeline to achieve real-time performance.

Figure 3.8: Result of Version-1 pipeline.

Process Time (ms)
RGB to YUV 4.9

Debarrel 17.1
Stitch 974.4

YUV to RGB 28.0
Write 84.3
Total 1109.0

Table 3.4: Profiling of the stitching pipelines (in ms per frame).

3.4 Parallel Real-Time Pipeline - Version 2

The experiments for version-1 displayed some severe processing overheads

with respect to generating a 30 fps panorama video in real-time. In this

section, we address this by implementing the modules in a parallel pipeline.

There are many ways to parallelize such a pipeline on both CPUs and other

offloading devices. Other research [136] shows great potential of GPUs, and

next, we therefore offload compute-intensive parts of the pipeline to a modern

GPU. The pipeline is illustrated in figure 3.9.

3.4.1 Components

As shown in figure 3.9, the pipeline has been greatly modified compared to

version-1 in figure 3.7, to both improve the picture quality and the processing

3.4. Parallel Real-Time Pipeline - Version 2 37

Figure 3.9: The parallel and distributed processing implementation of the
stitching pipeline.

speed. The parallel pipeline is separated into two main parts, one part run-

ning on the CPU and the other part running on a GPU. Several of the CPU

modules in the pipeline is the same as in the non-real-time loop. The Cam-

Reader, Converter, Debarreler, SingleCamWriter and PanoramaWriters are

based on the same design as version-1, but are running in their own threads

and with an updated version of the x264 encoder in version-2. Compared to

version-1, the Controller module is new and is responsible for initializing the

pipeline, synchronizing the different modules, handling global errors, frame

drops and transferring data or data pointers between the different modules.

The Controller also checks the execution speed. If an earlier step in the

pipeline runs too slow, and one or more frames have been lost from the cam-

eras, the controller tells the modules in the pipeline to skip the delayed or

dropped frame, and reuse the previous frame.

The Debarreler module is the same as the serial implementation and we

have opted to use the OpenCV code for it, as the component is already

capable of performing in real-time. However, by using this component, we

again are restricted to the usage of RGB color space in the pipeline. Hence,

we require the color space converters at both the ends.

A Background subtractor module is running both on the CPU and on the

GPU. This module is new in the pipeline and is responsible for determining

which pixels of a video belong to the foreground and which pixels belong

38 Chapter 3. Panorama Video Capture

to the background. The background subtractor can also get input from the

ZXY sensor tracking sub-system (Section 2.1.1) to improve the performance

and precision. Even though we have enhanced the background subtraction

with sensor data input, there are several implementation alternatives. When

determining which algorithm to implement, we evaluated two different alter-

natives, i.e., Zivkovic [159, 160] and Kaewrakulpong [74]. Both algorithms

use a Gaussian Mixture Model (GMM), are implemented in OpenCV and

have shown promising results in other surveys [13]. In the end, Zivkovic

provided the best accuracy which is important for our scenario and it was

therefore selected.

There are also several modules that are running primarily on the GPU.

The Uploader and Downloader are managing the data flow to and from the

GPU. The Uploader transfers RGB frames and the background subtraction

player pixel maps from the CPU to the GPU for further processing. The

downloader transfers back the stitched video in YUV 4:2:0 format for encod-

ing. Both modules use double buffering and asynchronous transfers.

The main parts of the panorama creation are performed by the Warper,

Color-corrector and Stitcher modules running on the GPU. The warper mod-

ule warps the camera frames and the foreground masks from the background

subtractor module to fit the common panorama plane. Here, we used the

Nvidia Performance Primitives library (NPP) for an optimized implementa-

tion. The Color-corrector is, in this implementation, added to the pipeline

because we experimented with the exposure synchronization (section 3.4.3)

at the same time as building this pipeline. During the synchronization exper-

iments, to generate a best possible panorama video, we correct the colors of

all the frames to remove color disparities. This operation is performed after

the images are warped. The reason for this is that locating the overlapping

regions is easier with aligned images, and the overlap is also needed when

stitching the images together. The implementation is based on the algorithm

presented in [155], which has been optimized to run in real-time with CUDA.

The stitcher module is similar to the homography stitcher in the loop

implementation, where a seam is created between the overlapping camera

frames. Our previous approach uses static cuts for seams, which means that a

3.4. Parallel Real-Time Pipeline - Version 2 39

fixed rectangular area from each frame is copied directly to the output frame.

Static cut panoramas are very fast, but can introduce graphical errors in the

seam area, especially when there is movement in the scene as illustrated in

figure 3.10a. Thus, to make a better visual result, a dynamic cut stitcher is

introduced. This module now creates seams by first creating a rectangle of

adjustable width over the static seam area. Then, it treats all pixels within

the seam area as graph nodes. Each of these edges’ weights are calculated by

using a custom function that compares the absolute color difference between

the corresponding pixel in each of the two frames we are trying to stitch.

The weight function also checks the foreground masks from the Background

subtractor to see if any player is in the pixel, and if so it adds a large weight

to the node. We then run a simplified version of the Dijkstra graph algorithm

(only going up in the image) on the graph to create a minimal cost route

from the bottom of the image to the end at the top. An illustration of how

the final seam looks can be seen in figure 3.10b, where the seams without

and with color correction are shown in figures 3.10c and 3.10d respectively.

3.4.2 Evaluation & Results

To evaluate the processing performance of the parallel pipeline implemen-

tation, we used a single computer with an Intel Server Adapter i350-T4 for

connecting the four cameras with Gigabit ethernet, an Intel Core i7-3930K

six core processor with 32GB RAM and a single Nvidia GeForce GTX Titan

graphics processor.

The overall performance of the parallel pipeline is shown in figure 3.11a.

The CPU modules are marked in blue, and the GPU modules are marked in

green. The Uploader and Downloader module run both on the CPU and the

GPU, but we have chosen to mark them as CPU modules, since they both

are controlled by the CPU.

Images from all four cameras are asynchronously transfered to the GPU as

soon as the debarreling is complete. The number of threads and blocks on the

GPU is automatically adjusted by the number of cores available on the GPU.

The modules executing on the GPU are synchronized with barriers; when one

40 Chapter 3. Panorama Video Capture

(a) The original fixed cut stitch with a
straight vertical seam.

(b) The new dynamic stitch with color
correction.

(c) Dynamic stitch with no color cor-
rection. In the left image, one can see
the seam search area between the red
lines, and the seam in yellow. In the
right image, one clearly sees the seam,
going outside the player, but there are
still color differences.

(d) Dynamic stitch with color correc-
tion. In the left image, one can see
the seam search area between the red
lines, and the seam in yellow. In the
right image, one cannot see the seam,
and there are no color differences mak-
ing it seemless.

Figure 3.10: Stitcher comparison - improving the visual quality with dynamic
seams and color correction.

module finishes, the next is started. Data is stored in global memory, and

pointers to the data are transfered between the different modules. When

processing is finished on the GPU, data is asynchronously transfered back to

the CPU for encoding and writing to disk.

In figure 3.11a, we can see that when executing the whole pipeline, all

modules perform well below the real-time threshold running concurrently on

the same machine. Note that the reader module is limited by the cameras

3.4. Parallel Real-Time Pipeline - Version 2 41

(a) The processing performance of the different pipeline modules
running concurrently on the same machine.

(b) Pipeline write differences (showing times for 1000 frames).
Note that the delayed start of panorama writes is caused by the
frame delay buffer implemented in the uploader module.

Figure 3.11: The processing performance of the parallel and distributed pro-
cessingpipeline.

which produce a new frame every 33 ms. Also, the modules run in a pipelined

fashion. Thus, since all modules perform better than the 33 ms threshold

while sharing the resources, we are able to deliver panorama frames in real-

time. It must be noted that the real-time execution of the entire pipeline

is only guaranteed if all the modules running concurrently perform with in

33 ms. It can be possible for each of the modules running independently

using all the resources of a machine to perform in real-time, however in such

a case, the pipeline is not guaranteed to execute in real-time. This is further

demonstrated by measuring the differences between the single camera writes

and the difference between the panorama writes. In figure 3.11b, we present

the write differences between the frames, and we observe that a new frame is

42 Chapter 3. Panorama Video Capture

output every 33 ms, i.e., equal to the input rate of the cameras. These results

show that our parallel and distributed processing implementation executes

in real-time on a single off-the-shelf computer.

3.4.3 Exposure Synchronization

The ideal solution to ensure the photometric continuity would be to use

the same physical camera and the same exposure settings throughout the

panorama capture. However, when capturing panoramic videos, it is only

possible to use the same physical camera if one uses a reflective sphere,

but this approach results in reduced resolution because of limitations of a

single video camera. When an array of multiple cameras produces images

that are not captured using similar exposure parameters, there will be visual

differences between adjacent camera images. Often this is overcome by color

correction approaches, which handle the images post-recording.

Xu et al. [156] provide a good performance evaluation of several color

correction approaches. Color correction approaches can be divided into two

broad categories - parametric and non-parametric approaches. Any of the

approaches can be further classified into global and local. A global approach

is where the color transfer is assumed to be from an entire source image to

an entire destination image, whereas, the local approaches apply the color

transfer locally to parts of the image. The parametric approaches assume that

there is a color transfer model and attempt to estimate the model parameters

that are later used to transfer the color. The non-parametric approaches

mostly rely on Look-Up Tables (LUT) between the color values.

Ibrahim et al. [66] provide an interesting approach for selecting the ref-

erence for color correction. They propose an automatic reference for color

correction in panoramic video stitching. They design a cost function as sum

of normalized transformed grayscale values over all channels in each image.

Then the image with the least cost is selected. By doing this, the gain and

offset in the color values are minimized. For the color correction itself, they

employ a simple parameterized transform. However, there is no discussion

about how flicker is avoided in the case of a video. There is a discussion

3.4. Parallel Real-Time Pipeline - Version 2 43

on performance. However the reported results are from MATLAB and only

numbers for estimating the reference image are presented - not the total time

taken for color correction.

Xiong et al. [155] proposed an elegant color correction approach which

applies a color transform that is optimized over all the images to minimize

drastic changes per image. The advantage of the approach is its low compu-

tational complexity. They employ their approach for mobile devices, however

low computation complexity is also useful in case of real-time requirement in

a panoramic video stitching.

Nevertheless, even though color correction approaches can provide good

results in panorama images, they can introduce artifacts like flicker and un-

natural colors when it comes to the stitched videos. Figure 3.12 shows one

such effect. Here it can be seen that the color correction is trying to achieve

a seamless field but instead introduces an unnatural green in the whole of

the right part of the panorama. In a constrained space like a sports stadium,

this problem can be handled even before the videos are captured.

Figure 3.12: Artifacts observed due to color correction occassionally.

Another challenge to handle the changing light conditions is to understand

the light that is coming from the scene. In this respect, we use the internal

metering mechanism to estimate the exposure parameters. The region of

interest that is considered for metering can be modified for each camera.

We make use of this functionality in the three exposure setting approaches

described here. It must also be noted that, as far as we know, there exists

no publications where the exposures are synchronized before recording the

44 Chapter 3. Panorama Video Capture

videos. A common approach is to fix the exposures, but such an approach

would fail when the light conditions change.

Approaches

Independent Metering This is the most trivial approach for an auto-

matic exposure system. In this approach, we use the fact that the football

field provides a nice surface for metering. Since our target space is confined

to a football stadium, we can use the green surface of the football field to

evaluate the exposure parameters. Initially, a manual selection of metering

region is selected per camera, and the cameras are driven to make an auto-

matic exposure. The internal mechanism decides on a specific exposure value

and gain to achieve a pre-defined gray value for the average of all the pixels

from the metering region. An upper limit can be imposed on the exposure

time to force the camera to use a higher gain in case of low light, instead of

increasing the exposure time.

Pairs Metering This approach can be considered as a special case of the

Independent metering presented above. In this approach, we exploit the fact

that the adjacent cameras have an overlapping region. Therefore, camera

pairs are formed that have defined regions of interest pointing to the same

physical space on the field. The selection of the regions of interest is per-

formed manually to minimize the effect of the players. Then, the cameras are

operated independently to perform automatic exposure, but the metering is

based on the selected patches that are overlapped. Since the camera pairs

are physically close to each other, the directional reflections have minimum

effect on the exposure. However, the first camera pair and the second pair

are at a distance of 4m from each other.

Pilot Camera Approach In this approach, there is a pilot camera that

functions in auto-exposure mode, and the pilot camera’s exposure parameters

are transfered to the other cameras. Let the m cameras be named Cj where

j ∈ [1,m], and Cp be the pilot camera. Let ej and gj be the exposure time

and gain of camera Cj.

3.4. Parallel Real-Time Pipeline - Version 2 45

Then, given ep and gp from the pilot camera, which operates in auto

exposure mode, we need to compute ej and gj for the rest of the cameras.

Furthermore, let Tj be the transformation function from the pilot camera to

camera Cj. Then,

(ej, gj) = Tj(ep, gp). (3.1)

The transformation function depends on the relation of camera Cj to the

camera Cp. In an ideal situation, where the cameras are all identical and

have exactly the same settings for aperture and focal length, Tj is an identity

function. However, this is not the case because physically different cameras

do not have identical spectral response curves thus leading to difference in

exposures. Other factors that can cause differences are the imperfections in

adjustment of the aperture size, because they are physically adjusted by ro-

tating the aperture rings on the camera in the Bagadus system. The cameras

need a prior calibration step to estimate the corresponding transformation

functions.

The general processing flow is presented in figure 3.13. There are two

types of threads that are running concurrently: one is for controlling and

communicating with the pilot camera, and the other type is for the rest of

the cameras. All these threads have a synchronization barrier at the end

of every frame. Periodically, the pilot camera thread sends a trigger to the

pilot camera to make an auto exposure and lock the exposure settings until

the next trigger. In figure 3.13, this can be seen before acquisition of frame

n. After the exposure, the exposure parameters ep and gp are transferred

back to the controlling machine. These parameters are communicated to

other threads which in turn transfer these individually to the other cameras

applying the appropriate transformation before setting the exposure on the

corresponding camera.

It can be observed that the frames n of the other cameras are not synchro-

nized in exposure with the pilot camera, but we have observed empirically

that the light conditions change slowly over the period of the exposure up-

dating trigger. One more important detail is that the frame rate sets a hard

upper bound on the execution time and thus on exposure time too. The for-

46 Chapter 3. Panorama Video Capture

Figure 3.13: Pilot camera approach.

mulation of the transformation function cannot guarantee this because one

of the transformations can demand a higher exposure time than the upper

limit. This can occur especially, when the rest of the cameras have lower

response to light than the pilot camera. This problem can be handled in two

ways: one way is to embed this property into the transformation function by

placing an upper bound, the other way is to handle it in the driver before

setting the camera parameters. We found that the driver solution is safer

and more robust to further changes in the algorithm.

Results

In this section, we present some experimental results showing the visual

differences between the approaches and the importance of a synchronized

exposure when generating panorama images or video frames. The panorama

images presented here for each approach are to emphasize the different light-

ing conditions. First, we present images recorded during different lighting

conditions that emphasize the differences in the approaches in figure 3.14.

Then, we also show the results using the three approaches from the same

match in the same lighting condition for a fair comparison in figure 3.15.

Figure 3.14a shows a scenario where there is snow around the football

field. The metering system has to compensate for this and make a good choice

3.4. Parallel Real-Time Pipeline - Version 2 47

(a) Independent metering approach in a snow condition.

(b) Pairs metering approach under a partially cloudy sky.

(c) Pilot camera approach under an overcast sky.

Figure 3.14: Panorama generated using different approaches under different
light conditions

of exposure values. The influence of snow can be observed in the independent

metering approach. The problem is that the exposures are different in each

of the cameras, even though each of the images is well exposed, they are not

synchronized introducing large visual differences in the generated panorama

image.

Figure 3.14b shows the pair metering approach in one of the possible light

conditions, i.e., when the sky is partially cloudy. In this approach, a clear

difference can be seen at the center of the field due to the pairwise exposure

settings. However, the left and the right camera-pairs (using the same region

of interest for metering) of the panorama are perfectly seamless.

Figure 3.14c shows the pilot camera approach using another lighting con-

dition where there is an overcast sky. Here, it can be observed from the

figure that the exposure in the whole of the panorama is perfectly synchro-

nized as there are no visual differences between the different parts in the

stitched image. There is no specific color-correction applied when stitching

the panorama.

In the next experiment, we present frames using the three approaches dur-

48 Chapter 3. Panorama Video Capture

ing a similar time period for comparison (figure 3.15). This is also one of the

hardest light conditions to handle, when there is direct sun on the stadium

and the roof of the stands cast a sharp shadow in the middle of the field. In

such a case, the camera’s dynamic range is insufficient to capture variation

in the light and dark areas. It can be observed that the first and second

(independent and pair) approaches provide rather similar result whereas the

third (pilot camera) approach provides a seamless result. This similarity be-

tween the first two approaches has been observed in different light conditions

as well. These results therefore confirm the previous results showing the im-

portance of a synchronized exposure for multi-camera generated panorama

images.

(a) The independent metering approach.

(b) The pairs metering approach.

(c) The pilot camera approach.

Figure 3.15: Generated panoramas under equal ligthing conditions

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 49

3.5 Parallel Real-Time Pipeline with Upgraded

Setup - Version 3

The previous section discusses the real-time panorama video creation pipeline

for the old camera setup. The changes introduced in the new camera setup

(from section 3.5.1) affect the pipeline. In this section, we discuss the changes

made to the pipeline in terms of added and removed components from the

old pipeline. The implementation details are not highlighted, as the new

pipeline retains much of the old pipeline in terms of implementation. Only

the key differences are highlighted in this section.

3.5.1 Upgraded Setup

The distance between the optical centers of the old camera setup can cause

huge ghosting problems when players run from one camera view to the next

one. Moreover the resolution of the panorama in the old setup is much lower

than the sum of number of pixels from 4 cameras because of the large overlap

among the cameras due to use of wide-angle lenses. Hence we focussed on

these issues and decided to use better cameras (2046 × 1086 pixels) and

narrower lens (8mm). Table 3.5 and Table 3.6 provide the details about the

new camera and lens respectively. To further improve the vertical resolution

of the panorama, the cameras are rotated by 90 degrees because the cameras

have approximately twice as many pixels horizontally as that are vertically.

We tackled the problem of ghosting by bringing the cameras close to each

other and arranging them in a fashion that their optical centers coincide as

shown in figure 3.16a. The output from the new cameras is presented in the

Figure 3.16.

One other advantage of the new cameras is that they can capture at 50fps.

However, the Gigabit interface is not capable of transferring the full resolu-

tion at 50 fps when sent in multiple color channels. The cameras capture in

a Bayer pattern which, is a single channel from which multiple color channels

are interpolated on the camera. We instead perform this interpolation out-

side the camera, so that we reduce the bandwidth required on the Gigabit

50 Chapter 3. Panorama Video Capture

(a) New Camera System Setup.

(b) Camera 1. (c) Camera 2. (d) Camera 3. (e) Camera 4. (f) Camera 5.

Figure 3.16: Views from each camera for a perfectly synchronized exposure.

interface. However, we faced new challenges because of double the amount

of data to be processed and adding further processing steps to the pipeline.

So, we decided to distribute the pipeline on several machines.

Manufacturer Basler
Model acA2000-50gc
Sensor formate 2/3”
Pixels 2046× 1086
Frame Rate 50

Table 3.5: Basler acA2000 Camera.

Manufacturer Azure
Model 0814M5M
Focal Length 8 mm
Aperture F1.4 - F32

Table 3.6: Azure 8mm Lens.

3.5.2 Key Differences to Old parallel pipeline

The new camera and lens system has practically no barrel distortion in the

image. A line of length 2048 pixels deviates by 1 pixel atmost from the

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 51

straight line. This enables us to remove the debarreling step from the old

pipeline. Moreover, the exposure synchronization is also constructed into

the pipeline, and hence, the color correction component, which was optional

in the parallel pipeline version-2, is now completely removed from the new

pipeline.

Furthermore, the new cameras enable capturing video at 50 fps at full

resolution. However, the Gigabit interface limits the possibility to only a

single 8-bit channel. Hence, we use the Bayer format to retrieve color data

using only the bandwidth used for a single 8-bit channel but at full resolution

and at 50fps. This introduces a need for debayering filter in the pipeline. In

addition, we added a High Dynamic Range (HDR) module to the pipeline to

handle challenging light conditions.

Another key difference to the earlier pipeline is that the new pipeline runs

in a distributed fashion as seen in figure 3.17. We use different machines to

capture the frames from the cameras, the frames are then transferred to a

processing machine and then the processing machine stitches the panorama.

However, transferring raw frames from one machine to other machine re-

quires high bandwidth and low latency to perform in real-time. To enable

this, we used hardware from Dolphin Interconnect [33]. The adapters enable

communication between multiple machines using PCI Express.

Processing machine

Dolphin Consumers
Dolphin Consumers
Dolphin Consumers
Dolphin ConsumersDolphin

Consumers

 Recording machine

Camera ReaderCamera Reader Dolphin Producers
Camera Reader Dolphin Producers

Camera ReaderCamera ReaderCamera
Readers

Event
Client

Event
Server

Frame
Synchronization

Bayer
Converter HDR Stitcher

GPU
Downloader

X264
Encoder Disk

 Recording machine

Camera Reader Dolphin Producers
Camera
Reader

Dolphin
Producer

Event
Client

 Recording machine

Camera ReaderCamera Reader Dolphin Producers
Camera Reader Dolphin Producers

Camera ReaderCamera ReaderCamera
Readers

Event
Client

Dolphin
Producers

Dolphin
Producers

CPU

GPU

Control

Ethernet

PCI-E

GPU
Uploader

Figure 3.17: Real-Time Pipeline with Upgraded Setup

52 Chapter 3. Panorama Video Capture

3.5.3 Debayering

When an image is captured in color on a sensor, it is challenging to build a

sensor that is capable of recording all color values in a single pixel. Therefore,

most modern color sensors use a simple intensity sensor along with a Color

Filter Array (CFA) to capture a color image. The most common pattern for

a CFA is Bayer. An example of a Bayer pattern is presented in figure 3.18.

Here one can observe that, at each pixel position, only one of the three

colors is recorded. The pattern is then used to interpolate all the three color

channels at every pixel. This process is called debayering.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3.18: A bayer pattern

Several debayering algorithms exist in the literature, e.g., [2, 20, 56, 79,

91, 94, 101], and below we have selected algorithms that we deemed most

promising considering our real-time requirements. We will be referring to

figure 3.18 in example equations, identifying each pixel with a number and

each color value with R, G or B, for example, R1 is the top-left corner pixel.

Bilinear Interpolation This uses the average value of the two or four

nearest neighbour pixels of the specific color, e.g.,

B8 =
B7 +B9

2
B13 =

B7 +B9 +B17 +B19

4
(3.2)

It is generally considered the cheapest of the acceptable algorithms, often

used in real-time video systems due to its low complexity. Therefore, we have

included this as our baseline algorithm.

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 53

Smooth Hue Transition This is a two pass algorithm [23] that first uses

bilinear interpolation to reconstruct the green channel. The second pass uses

the relation between the green channel and the red/blue channel within a

pixel to reconstruct the remaining channels, e.g.,

B13 =
G13

4

(
B7

G7
+
B9

G9
+
B17

G17
+
B19

G19

)
(3.3)

This utilizes the principle that the difference between two channels within

a pixel only changes gradually and rapid transitions cause visual artifacts.

High-Quality Linear Interpolation This is a single pass algorithm [94]

that performs bilinear interpolation, but uses the color information already

present in the pixel to correct the result, e.g.,

∆r = R13− R3 +R11 +R15 +R23

4
(3.4)

G13 =
G8 +G12 +G14 +G18

4
+

∆r

2
(3.5)

If the interpolated red value differs significantly from the real red value,

there is likely a significant change in luminosity in this pixel.

Edge Directed Interpolation This is a two pass algorithm [2] that tries

to avoid interpolating across edges, averaging two widely different values.

It uses the laplacian, i.e., the divergence of the gradient between enclosing

pixels, of the green channel and the gradient of the red or blue channel to

determine the presence of an edge when reconstructing the green channel.

The horizontal gradient is determined by

Grad13H = |G12−G14|+ |2R13−R11−R15| (3.6)

and the vertical similarly. The algorithm performs linear interpolation of

either the two enclosing vertical samples, or horizontal, depending on the

smallest gradient. When interpolating the red and blue channel, it performs

linear interpolation with the correction from [94].

54 Chapter 3. Panorama Video Capture

Homogeneous Edge Directed Interpolation This is a three pass algo-

rithm, designed as a simplification of the adaptive homogeneity directed de-

mosaicking algorithm [56]. When interpolating in only one direction it may

be visually apparent if single pixels choose a different direction compared

to neighbouring pixels. This algorithm therefore computes the directional

gradients in the first pass, before selecting the direction based on the local

directional preference in a second pass. The final pass for interpolating the

red and blue channel is equal to that of the edge directed.

Weighted Directional Gradients This is a two pass algorithm [91] that

uses a weighted average of pixels in four directions in the initial green in-

terpolation, weighted based on the inverse gradient in its direction. The

algorithm determines the value contribution G of each direction right/left-

/up/down, and its weight α. For example, the right direction of pixel 7 is

determined by

Gr = G8 +
B7−B9

2

αr =
1

|G6−G8|+ |G8−G10|+ |B7−B9|+ |G2−G4|+|G12−G14|
2

(3.7)

similarly for each direction. The final green value can be computed by

G7 =
αlGl + αrGr + αuGu + αdGd

αl + αr + αu + αd
(3.8)

This is performed similarly when interpolating the red and blue channel,

while then also taking advantage of having the full green channel. It performs

a similar directional weighted average independently for each channel.

Implementations

To improve performance, the algorithms above have been implemented on

CUDA and optimized for the Kepler architecture. We have set focus on

optimizing the algorithms for execution speed, not memory requirement.

The algorithms are all implemented using the same base principles, as

they are primarily differentiated by the number of required passes and the

number of pixel lookups per pass. Every kernel is executed with 128 threads

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 55

per CUDA block, the minimum required to allow maximum occupancy on

the Kepler architecture. Every active kernel is also able to achieve more

than 95% occupancy. The initial Bayer image is bound to a two-dimensional

texture, giving us the benefit of two-dimensional caching when performing

multiple texture lookups per pixel. The use of textures is essential, as many of

the algorithms would be difficult to implement with good memory coalescing

using the GPU’s global memory.

In most kernels, we tried to perform as few texture lookups as possible

and to rely on temporary storage when using the same pixel multiple times.

However, with the original weighted directions, this increased the local regis-

ter requirements for each thread, reducing the number of concurrent threads

that could execute. Instead, we observed better results when performing

duplicate texture lookups.

Most of the algorithms utilize multiple passes, most commonly, an initial

green pass followed by one red and blue pass. These are implemented in

nearly the same way, using a temporary texture with two bytes per pixel,

for saving the green value and either a red, blue or empty value. Using a

single texture for this provides much better data locality and cache efficiency,

increasing performance significantly over using two separate textures. In

order to write the temporary values, we utilize surface memory in CUDA.

The homogeneous edge directed algorithm uses two passes to interpolate

the green channel. In the first pass, the green value is computed both based

on the horizontal and the vertical interpolation method. Additionally, we

calculate the directional preference. These values, along with the original

red/blue value is written to surface memory with 4 bytes per pixel. It proved

faster to keep this data localized in one array, despite having to perform nine

texture lookups when we determine the localized directional homogeneity.

The original weighted directional gradients approach uses two passes to

interpolate the red and blue channels. The second pass fully interpolates

the red and blue pixels, leaving the green pixels untouched. This data is

then used in the third pass to complete the remaining red and blue values.

This implementation uses a full four bytes per pixel to ensure data locality

for the final pass, but this may not be ideal. It is generally considered more

56 Chapter 3. Panorama Video Capture

efficient to use four bytes per pixel instead of three, due to memory alignment,

but in our case, we have only half the pixels carrying three values and the

other half (green pixels) carrying a single value. We opted to implement two

variations of this algorithm, the original and a modified version that borrows

the constant hue correction-based approach of the edge directed algorithms.

When implementing the kernels it was essential to avoid branching code,

based on the color of each pixel. A naive approach would run the kernel

on each pixel and perform one of four branches, depending on the color of

that pixel. Because each branching operation within a single thread warp

must be executed by all threads in that warp, it would be guaranteed that at

least half of the executing threads would idle due to branching. Instead, our

kernels process 2× 2 pixels in each iteration. This introduces zero branching

as a result of selecting pixels. These four pixels also need to access a lot of

the same pixels, so we load these at once for local computations.

Experimental Results

To compare the different algorithms and implementations, we performed a

number of experiments that we will present in this section.

Visual Quality We evaluated the visual quality of each algorithm by sub-

sampling existing images, imposing the bayer pattern, and see how accurately

the image can be reconstructed. When reconstructing the images, we typ-

ically see interpolation artifacts, primarily in the form of false colors and

zippering along edges. The zippering stems primarily from the green inter-

polation, while false colors typically stem from the red and blue interpolation.

However, since most algorithms use the green channel when interpolating red

and blue, incorrect green interpolation is normally the prime cause of false

colors for these algorithms. Figure 3.19 shows how each algorithm handles a

region prone to false colors.

Peak signal-to-noise ratio (PSNR) is a simple metric for evaluating im-

age reconstruction. We computed the PSNR of each of the reconstructed

images, filtering away homogeneous areas that rarely produce visible errors

with an edge detection filter. Although PSNR can yield inconsistent results

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 57

(a) Original. (b) Bilinear. (c) Smooth hue transition. (d) High-quality linear.

(e) Edge directed. (f) Homogeneous edge di-
rected.

(g) Weighted directions
original.

(h) Weighted directions
modified.

Figure 3.19: Visual assessment of zippering and false colors.

with many image transformations, we saw a very strong correlation between

the PSNR and the visual result. High PSNR in the green channel was com-

mon in those algorithms that avoided zippering artifacts and maintained the

greatest level of detail. Low PSNR in the red and blue channel normally

meant a high level of false colors. In table 3.7, we observe a summary of

the visual assessment of the implemented algorithms. We see that the best

performing algorithms all use the same, simple final pass for interpolating

the blue and red channels. This shows that if the green channel is accurately

reconstructed, we can use the concept of constant hue to reconstruct the

more sparsely sampled channels.

58 Chapter 3. Panorama Video Capture

Algorithm
PSNR

Zippering
False colors

Green Red/blue Frequency Intensity

Bilinear 28.43 23.51 Very strong Very high Very strong

Smooth hue transition 28.43 27.07 Very strong High Strong

High-quality linear 34.44 29.67 Strong High Strong

Edge directed 35.61 34.62 None Very low Strong

Homogeneous edge directed 36.22 34.89 None Very low Strong

Weighted directions original 37.97 31.02 Very weak Medium Medium

Weighted directions modified 37.97 36.25 Very weak Low Weak

Table 3.7: Summary of each algorithms visual performance. We rank the
selected algorithms based on the best and worst within each category.

Performance The primary requirement in our real-time panorama system

is the overall execution time of the algorithm. The algorithms presented have

quite a varying degree of computational complexity, but this is not necessarily

the only requirement for performance efficiency. Table 3.8 shows the mean

execution time of each algorithm for two different GPUs.

We see that most algorithms are nearly equally fast, and all algorithms

are within our 20 ms real-time limit on a GTX680. The original weighted

directions proved extremely inefficient, due to its slow red and blue channel

interpolation. However, we saw that our modified algorithm produced better

visual results at a lower processing cost. The execution time seems to be

primarily determined by the number of texture lookups required, with an

added penalty for each pass. An exception appears to be the second pass of

the smooth hue transition, which is slowed down by having to perform four

divisions per pixel.

3.5.4 High Dynamic Range (HDR)

An example of challenging light conditions can be seen in figure 3.20. Here,

we can see that the harsh sun-lit and the shadow regions provide a lot of

contrast that it becomes impossible to capture details in both regions using

the same exposure. This is mainly caused by the dynamic range of an image.

We consider these images as Low Dynamic Range (LDR) input images and

we desire to fuse them into a High Dynamic Range (HDR) image where all

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 59

Algorithm Quadro K2000 (µs) GTX680 (µs)

Bilinear 5516 929

Smooth hue transition 10183 1979

High-quality linear 6370 1073

Edge directed 10941 2025

Homogeneous edge directed 20029 3184

Weighted directions original 49212 9061

Weighted directions modified 19052 3094

Table 3.8: Summary of each algorithms performance. Execution time is
measured with a 2040× 5400 resolution image.

the details are preserved in a single image.

(a) Low exposure. (b) High exposure.

Figure 3.20: Input images for the HDR processing.

An HDR image can be created by a process called radiance mapping,

where multiple LDR images of the same scene are fused together. The fused

image as such cannot be displayed using the conventional devices, so a com-

pression of the dynamic range is performed where we try to preserve details

in all regions and to maintain a local contrast, i.e., giving a visually pleasing

result. This process is called tone mapping. For the rest of the paper, we

refer to the final output of tone mapping as the HDR image. We explored

three approaches for radiance mapping, and three for tone mapping. We

chose radiance mappers based on the criterion that they must merge multi-

ple exposures. For the tone mappers, we picked a representative subset: one

60 Chapter 3. Panorama Video Capture

very simple to serve as easy comparison to others, one global and one local

tone mapper. After extensive material research, we picked algorithms that

provided the most pleasing results in a small user study.

Radiance Mappers

Debevec One of the most cited approaches is presented by Debevec et

al. [30], where the authors try to recover HDR radiance maps from pho-

tographs. It performs an estimation of camera response function and then a

weighted selection process where the information is extracted from the mid-

tone regions of different exposures. We made a GPU implementation for the

second step alone, since the first step needs to be performed once in a lifetime

for a camera.

Robertson Similar to Debevec, Robertson et al. [126] proposed a two-step

mapping with similar modules. However, they introduced a more extensive

approach for recovering the camera response function. Thus, the significant

changes are only to the offline step of the algorithm.

Tocci As opposed to the previous approaches, Tocci et al. [144] proposed

a solution that consists of a single online step. The main assumption is

that unless close to saturation in intensity, the preferred output pixels are

those from the high exposures. Therefore, they introduce an approach that

takes saturated pixels from the neighbourhood into consideration. Since

this approach requires fetching the same pixels by different threads with 2D

locality, we use the GPU’s texture memory to exploit the spatial caching

feature.

Tone Mappers

Ward Ward et al. [149] proposed an approach where a global scale factor

is applied to each pixel, which is dependent on, among other parameters, the

average brightness of the input image. A parallel reduction approach [53] for

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 61

calculating the average over an entire image was implemented as part of our

GPU implementation.

Larson This algorithm proposed by Larson et al. [85] performs tonal com-

pression by creating a look-up table per frame to represent a desired his-

togram. Unlike a simple histogram equalization, the target histogram is

computed taking human contrast sensitivity into account.

Reinhard Reinhard et al. [121] try to emulate a technique called ”dodging

& burning” [1]. This approach relies on the information from local neighbour-

hood for tonal compression. Adaptive Gaussian kernels are employed along

different dimensions to average the exposure value, the adaptive nature is

that the size of these kernels depends on the local contrast changes.

Experimental Results

The computer used for the experiments has a six-core Intel Core i7-3930K at

3.2 GHz with 32 GB quad-channel DDR3 memory and an Nvidia GeForce

GTX 680 graphics processing unit with 3GB memory based on the Kepler

architecture. The HDR module can be seen as part of the processing pipeline

in figure 3.17. We show some experiments regarding quality and performance

of the HDR module in the pipeline.

Visual Quality In this section, we provide a subjective assessment of the

different configurations of our implemented radiance and tone mappers. The

input images displayed in figure 3.20 show a small part of our panorama

frames to highlight details. Then, the output of all possible combinations

can be seen in figure 3.22.

We performed a limited user study to assess the quality of the different

configurations of algorithms. Here, we asked 12 participants to rate videos

obtained by combining the different algorithms. Several emerging patterns

can be observed from the results shown in Figure 3.21. The first concerns

the choice of tone-mappers. The average score achieved by Robertson’s is

62 Chapter 3. Panorama Video Capture

● ●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

1

2

3

4

5

6

7

8

S
co

re

AlgorithmsFigure 3.21: Results of the user study

higher than for the other tone-mappers in every combination with radiance-

mappers. A second, less clear trend can be observed for the radiance-

mappers. Debevec’s always scores similar or higher than the other proposed

radiance-mappers when combined with different tone-mappers.

Execution Time We accomplished real-time performance on all algorithms

except with Reinhard’s tone mapper. The multiple FFTs for applying the

Gaussian kernels in this algorithm are performed per frame. Although we use

the highly optimized CUFFT library provided by Nvidia [109], the multiple

FFTs still turned out to be a bottleneck. Furthermore, Reinhard is consum-

ing a lot of memory. For each stored Gauss-kernel, approximately 126 MB

have to be allocated. Furthermore, the combination Tocci - Larson tends to

miss the real-time dead-line occasionally.

A detailed listing of execution times can be found in Figure 3.23. We also

executed only the HDR modules without interference from other modules.

Those execution times can be seen in Figure 3.24.

3.5. Parallel Real-Time Pipeline with Upgraded Setup - Version 3 63

(a) Debevec - Ward. (b) Debevec - Larson. (c) Debevec - Reinhard.

(d) Robertson - Ward. (e) Robertson - Larson. (f) Robertson - Reinhard.

(g) Tocci - Ward. (h) Tocci - Larson. (i) Tocci - Reinhard.

Figure 3.22: Visual quality after HDR for the different algorithms using the
input images in figure 3.20.

Each of the modules contains several kernels. The scheduling of these

kernels on the GPU is managed by CUDA. So, it must be noted that the

execution times include the overheads created by scheduling. It can be seen

that the execution times of other modules fluctuate when different HDR

algorithms are employed. This is from the fact that CUDA schedules the

64 Chapter 3. Panorama Video Capture

Figure 3.23: Execution times (ms) of the various modules in different config-
urations.

Figure 3.24: Execution times (ms) of the HDR module in different configu-
rations.

kernels from these modules in different ways depending on the requirements of

different modules. The GPU used in our experiments are capable of executing

up to 16 kernels concurrently.

Summary

We believe that using Debevec’s radiance mapper paired with Larson’s tone

mapper is the best approach taking the visual quality and execution overhead

into account. Although Reinhard’s tone mapper shows promising results, we

could not make it pass the real-time requirements, and it also consumed a

lot of memory on the GPU thus affecting other components of the pipeline.

Tocci’s radiance mapper proved to be too complex to be parallelized effi-

3.6. Discussion 65

ciently using CUDA. Also, in our case, it produced undesirable artifacts.

Lastly, Robertson’s radiance mapper also proved to be very good, but the

higher dynamic range it produced caused worse results when tone-mapped.

The HDR module provides useful results when the light conditions are so

severe that the normal video is rendered useless.

3.6 Discussion

In this chapter, we have explored our system used for real-time panorama

video recording. Initially, we describe the evolution of our camera setup and

how the upgraded camera setup helped to increase the visual quality of the

panorama output.

Later, we provide an extensive discussion about the panorama creation

itself. Our initial experiments suggested that real-time performance by pro-

cessing on CPU alone might not be achievable. Then, we described our

first real-time pipeline with the initial camera setup. In this pipeline, we

addressed the performance and the quality of the output panorama.

When the camera setup is upgraded, we introduced new challenges in the

processing. We used distributed processing as a way of solving the processing

challenges. Furthermore, we introduced debayering and HDR modules to the

new pipeline. These are well studied to provide a good quality panorama and

also the real-time performance.

In the Bagadus system, we use the tracking information for two opera-

tions. One is during the creation of the panorama to assist the background

detection. The location of players can help the background detection process

to reduce the noise by providing regions of interest around the players. The

second place where the tracking data is used, is during the retrieval. Chap-

ter 5 details on using the tracking data to automatically create videos for the

user based on their preference of player.

It must be noted that, we attempted to gain the best performance and

high resolution panorama output using the cameras that were available dur-

ing the development of the project. However, the progress in camera tech-

nology is quite rapid. Our research results can easily be extended to the new

66 Chapter 3. Panorama Video Capture

higher resolution cameras. Moreover, we already introduced the concept for

distributed processing, which can be used to extend the number of cameras

as well.

3.7 Summary

Even with the new camera technologies, capturing a high quality panorama

video at high framerate and high resolution, and making it available to be

consumed in real-time with constant delay is still a demanding task. We

have developed an inexpensive system using multiple cameras and commod-

ity hardware for processing. In this chapter, we have gone through the devel-

opment of the panorama capture system in detail. We also briefly mentioned

the tracking sub-system used to capture player tracking data. In the next

chapters, we elaborate on ways to use the captured panorama data to provide

live interactive video services to a user. The next chapter focuses on creation

of virtual PTZ cameras on a client device without much processing power

using the high resolution panorama created using the pipeline version-3 in

this chapter.

Chapter 4

Virtual View

Virtual reality is a self-created

form of chosen reality.

Therefore, it exists.

Joan Lowery Nixon

Exploring virtual environments has been a well-established topic in the

graphics community. Some often used applications include games, and virtual

tours of museums, stadiums and other building interiors. Until recently, most

of these scenes were created by designers manually. However, using real-world

captured scenes to build the virtual world becomes more popular, and in this

regard, the most common applications now are using panoramic images as a

scene. We would like to explicitly mention that we are not creating any 3D

information from the football field.

In this chapter, the problem is to find efficient ways of extracting a per-

sonalized view of the soccer field by controlling their own virtual camera

Using the cylindrical panorama from chapter 3 as an intermediate represen-

tation, our system aims to generate an arbitrary virtual camera view from

the position of the camera array. As shown in figure 4.1, the virtual camera

view is corrected to a perspective view very similar to that of a physical

camera. The user has the full freedom to pan, tilt and zoom.

This chapter is an extension of [42] (Appendix G) and [45] (Appendix I).

67

68 Chapter 4. Virtual View

Figure 4.1: Panorama video with labeled ROI (left) and the virtual camera
generated (right). It can be observed that it is not a simple crop from the
bigger video.

4.1 Pan-Tilt-Zoom (PTZ) Camera

With the advent of technology advancements in control technology and the

low costs of camera units, a type of cameras have emerged called Pan-Tilt-

Zoom (PTZ) cameras. The cameras have exactly the functionalities men-

tioned in the name. They are fixed at one point called viewpoint, and it

remains the same during the entire operation. However, they can be re-

motely operated to follow and focus on interesting parts of the scene. They

provide high resolution images of the target while keeping the entire space

reachable. These devices are widely used in surveillance. Figure 4.2 presents

an example of a PTZ camera along with the possible space that can be cap-

tured. It must be noted that the PTZ cameras usually have freedom to

capture any limited part of that space, but not the entire space.

Inspired from the physically moving PTZ cameras, a virtual PTZ camera

can be realized. The functionality of a virtual PTZ camera remains similar

to that of the actual PTZ camera. However, the operations are performed

virtually on an ultra high-resolution image. Often, these are used to reduce

the bandwidth of transmitted footage by cropping only the interesting parts

of the image.

In the previous chapter, we discussed various possibilities to capture a

wide field-of-view image and we ended up with a distributed video processing

pipeline running in real-time generating a cylindrical panorama video. All

methods introduce some kind of distortion to the captured high resolution

4.2. Related Work 69

Figure 4.2: A physical PTZ camera and its capabilities [67]. The sphere
around the camera shows the range of the pan and tilt angles. The size of
the projection determines the field of view and thus the zoom.

image. A physically moving PTZ camera does not introduce any distortion

to the image. Hence, a certain amount of processing is required to replicate

the behaviour of the actual PTZ camera but using the wide field-of-view

frames. This chapter describes our realization of the virtual PTZ camera,

and the next section touches upon some previous work in that regards.

4.2 Related Work

The process of using one video and applying geometric transformations on

the video to produce another video is a well studied field. The geometrical

transformations are applied in a way that the pixel grid is modified, not just

the intensity of each pixel.

One of the most common places where this is required is video retargeting,

trying to adjust the video to displays having other aspect ratios. However,

fitting a video to arbitrary sized screen is prone to introduction of distortions.

Wolf et al. [153] discuss interesting approaches for retargeting. They perform

the retargeting in two steps. The first step is to assign saliency to each pixel

in the frame, and then a remapping is performed where the importance of the

70 Chapter 4. Virtual View

pixels was taken into consideration. They include face detection and motion

analysis into their saliency calculcations.

When wide field-of-view images are recorded, they provide the opportu-

nity to record a large part of the scene into one flat image. However, there are

distortions introduced into the image, and when they are displayed on a com-

mon rectangular display, the distortions look unrealistic with straight lines

curved. This is a common problem that several wide-angle presentations suf-

fer from. Carroll et al. [19] investigate approaches for reprojecting the wide-

angle images into images that look good with perspective view. The straight-

forward perspective tranformation introduces skewed angles when the image

is wider than 100 degrees in field-of-view. They propose a semi-automatic

process where the user can specify the straight lines that need to remain

straight in the final output. This input is used along with the image content

to create a smooth mapping. They present interesting results which take

a wide-angle image as an input and generate a natural looking perspective

image.

Zorin et al. [161] show an intersting approach to correct perceptual distor-

tions caused by the perspective in the pictures. They propose to decompose

the viewing transformation and then optimize the transforms by using the

image content. They demonstrate impressive results using their framework.

However, the proposed framework is applied only for pictures, and it cannot

be trivially extended to videos.

Xinding et al. [140] present a similar system as Bagadus, which they use

for lectures. However, the Region Of Interest (ROI) is simply a part of a

high resolution rectangular video. This kind of ROI requires nothing but

a simple cropping operation. The work mainly focuses on the tracking of

the target (the speaker in a lecture) using a Kalman filter to steer the ROI

automatically. In chapter 3, we saw that using a perspective panorama, like

Xinding et al. do in [140], introduces uneven sampling distortion to the

video.

Grunheit et al. [50] talk about a remote streaming system with panoramic

view where not all of the panorama information is fetched. They propose an

MPEG-4 based system where they fetch only the parts of the panorama

4.3. Theory for Virtual View 71

that are used, along with some extra information to support free navigation.

Their work does not provide any consideration for the non-linearities that

most panoramas provide. Heymann et al. [55] extend the previous system

and introduce the idea of using a head-mounted dispaly. However, much of

the technical aspects are similar to the previous system. They add interaction

of 3D objects to the panoramic scene. The work still restricts to intra-frame

coding only in support of random access to the frames. However, the loss

in compression efficiency is quite high with such a constraint, which will be

explored in greater detail in chapter 6.

Several other works exist that try to handle the problem of creating a

perspectively correct image from a distorted one as a reprojection problem.

Hughes et al. [64] discuss about various distortion correction algorithms from

fish-eye wide angle lens. However, our case is not that of presenting the whole

wide-angle image onto the screen, but rather an extracted view controlled by

the user.

Some works [4, 18, 38, 98, 140] exist where video textures are used. How-

ever, the resolution is limited, and the experience is still experimental. Re-

search topics have evolved in order to solve problems that stem from an

attempt to have a high resolution panorama video as the texture for virtual

environments. Different works have focussed on different problems arising

from implementing a real-time interactive virtual viewer system. However,

no work has focussed on the system aspects of the virtual viewer i.e., real-

time performance, processing on different architectures, scaling to several

users etc. In this chapter, we therefore discuss how we realized the virtual

viewer in Bagadus, the challenges we faced in realizing it and then provide

some experimental results.

4.3 Theory for Virtual View

When it comes to creating the virtual view, the main goal is to assume that

there is a 3D cylinder where the panorama is rolled as texture and then

operate a pin-hole camera at the origin of the cylinder as shown in figure 4.3.

There are two common ways of realizing this operation. One is to project the

72 Chapter 4. Virtual View

3D cylinder onto a projection plane and display the result. The second one

is to trace the ray passing through each pixel on the virtual view to extract

the texture from the location of the intersection of the ray with the cylinder.

Next, we describe both approaches and evaluate them.

Figure 4.3: The intersection of the ray from the virtual view with the unit
cylinder.

4.3.1 Projective Camera

The first approach is to model a cylinder in 3D space and then perform a

pin-hole camera projection. The output of the projection is then displayed

on the screen. The pin-hole camera is placed at the origin of the cylinder, and

then panning and tilting operations are performed as rotation of the camera

around different axes. The zoom is defined by the field-of-view, which is

decided by the surface area on the cylinder spanned by the image plane

(dotted plane) as seen in figure 4.3.

To implement such a projective camera, we can use OpenGL, which is

the standard library for high performance graphics applications. OpenGL

4.3. Theory for Virtual View 73

provides an efficient way to use the GPU to render scenes by allowing us to

define the graphics pipeline. Many GPUs support OpenGL, thus leading to

portable graphics implementations.

OpenGL allows us to define objects in 3D space and extract the projec-

tions onto different camera models. The OpenGL Utility Library (GLU) is

a library built on top of OpenGL and provides several drawing primitives to

the user. We used the gluCylinder and gluQuadric to draw the cylindri-

cal texture in 3D space. Then, a viewport for the virtual view of the size

(w, h) is set. A perspective view is then extracted from the viewport which

is then presented on the screen. The implementation for virtual viewer using

OpenGL is illustrated in figure 4.4

Create
Texture memory

&
Cylinder Object

Update Texture
With

Panorama Frame

Project the
3D Objects

Create the
viewport

Viewer Loop

Figure 4.4: The pipeline using opengl when the panorama frame is available.

Internally, gluCylinder works by slicing the cylinder into vertical and

horizontal stripes and considering each stripe as a rectangle. Figure 4.5

shows an example image of the cylinder object. In the figure, the cylinder is

made up of 10 horizontal and 10 vertical slices to demonstrate how it is being

constructed. However, in a real world scenario, the cylinder is built using one

horizontal slice and about 10000 vertical slices. The reason for keeping only

one horizontal slice is that, the image is simply split into vertical lines for

each column in the image. In our prototype, we experimented using different

number of slices, and table 4.1 shows the time taken for rendering the view by

varying the number of slices. We emphasize that, to our limited knowledge,

gluCylinder only allows for 360o cylinder even though the football field

only occupies approximately 160o. Due to this high overhead and waste of

resources using a projective camera, we evaluate an alternative approach

74 Chapter 4. Virtual View

using ray-tracing.

Figure 4.5: Cylinder using the gluCylinder primitive of OpenGL Utility Li-
brary. The cylinder is sliced only to 10 slices vertically and 10 slices horizon-
tally to emphasize the way it is constructed.

Type Horizontal Time(µs)
1 10 2892
2 50 3026
3 400 3012
4 1000 2968
5 5000 2906
6 10000 2993

Table 4.1: Time taken for rendering a viewport with varying the number of
stripes on the cylinder.

4.3.2 Ray Tracing

Ray tracing is a fairly common technique of tracing the path of light through

the pixels on the image plane. In our case, the operation is to fetch the pixels

of the image formed on the camera from the cylindrical texture. This can be

better seen in figure 4.6.

4.3. Theory for Virtual View 75

p

s

T

X

Y

Z

C

Figure 4.6: The intersection of the ray from the virtual view with the unit
cylinder.

A pin-hole camera for a point projection from a 3D point P to image

point q can be written in the following manner:

λq = [K|03]

[
R 0

03 1

][
0T3 −C
0 1

]
P (4.1)

where R is the general (3× 3) 3D rotation matrix as a function of θx, θy and

θz, the rotation angles around the x, y and z axes, respectively. C represents

the center of the camera, which is located at the center of the cylinder in

our case as shown in figure 4.6. K is the camera intrinsic matrix built with

focal length(f), scaling factor(s), width of virtual camera(w) and height of

virtual camera(h) as in equation 4.2.

K =

−f 0 w/2

0 −sf h/2

0 0 1

 (4.2)

R is the 3D rotation matrix defined as product of the rotation matrices

for each axis like in equation 4.3. Rx, Ry and Rz are the three rotation

matrices and they are defined in equations 4.4, 4.5 and 4.6.

76 Chapter 4. Virtual View

R = RxRyRz (4.3)

Rx =

1 0 0

0 cos(θx) sin(θx)

0 −sin(θx) cos(θx)

 (4.4)

Ry =

cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

 (4.5)

Rz =

cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

 (4.6)

C =

0

0

0

1

(4.7)

Let p be the current pixel. Then, we need to find the ray that passes from

the camera center C to the pixel p. The ray can be represented by:

s = λR−1K−1p (4.8)

The intersection of this ray with the unit cylinder gives us the exact position

on the cylindrical texture. The intersection point can be found as follows:

Tx =

(
Wp

FOV

){
arctan

(−s(1)

s(3)

)}
+
Wp

2
(4.9)

Ty =

(
1

2
− s(2)√

s(1)2 + s(3)2

)
Hp (4.10)

where Wp, Hp and FOV are the width, height and the field of view of the

panoramic texture, respectively. (Tx, Ty) are the coordinates on the unrolled

4.3. Theory for Virtual View 77

cylindrical texture.

(a) Nearest neighbour. (b) Bilinear. (c) Bicubic.

Figure 4.7: Examples of outputs using different interpolation algorithms.

When the computation of the ray intersections is performed with floating

point accuracy, the intersections on the panorama image cannot be gauran-

teed to be at integer points, which is the default sampling due to finite pixel

size. However, this is a really common problem in inverse mapping and has

been solved in image processing. We explored three solutions to this. Fig-

ure 4.7 shows the effect of the three interpolations assuming we only have

the intensity values at the 16 black points at the center of each square in

figure 4.7a.

Nearest Neighbor

The most trivial solution is to round off the floating point values to the

nearest integers and extract the pixels from the corresponding locations.

However, this method introduces strong aliasing/blocky artifact. Figure 4.7a

shows an emphasized effect of using the nearest neighbor.

Bilinear

Bilinear interpolation uses the four nearest neighbours to the point and then

uses linear interpolation among the points to estimate the intensity value

at the floating point position. This reduces the blocky artifact significantly.

However, it assumes a strong linearity, and this can easily be seen in fig-

ure 4.7b. It is natively supported on most GPUs.

78 Chapter 4. Virtual View

Bicubic

The bicubic interpolation works by estimating the intensity on a cubic spline

that is passing through 16 points around the floating point. This inter-

polation provides much smoother output compared to bilinear or nearest

neighbour as can be seen in figure 4.7c. However, it comes with an added

computation cost as it is not supported on GPUs natively.

Performance

Interpolation trades computing time for smoothness and sharpness. Fig-

ure 4.8 presents a highly zoomed frame using the three different interpolation

modes with the kernel execution time for each of these approaches.

When it comes to visual quality, the nearest neighbour interpolation per-

forms the worst and causes strong aliasing effect leading to the blocky nature

of the output image as can be seen in figure 4.8a. A certain amount of block-

iness can also be observed in the linear interpolation output. However, the

overall image is quite smooth as can be seen in figure 4.8b. The bicubic inter-

polation outputs the smoothest image output and the least blocky output as

seen in figure 4.8c. Thus, as it can be seen in the figure, bicubic interpolation

seems to provide the best visual quality at the cost of a higher execution time.

However, we pay less than 3.5ms, which is far below the real-time threshold

and therefore, choose the higher image quality. Next, we investigate using

the ray-tracing approach in the actual system implementation.

4.4 Implementation

In order to implement all the theory presented above, we built a system in

several steps. The basic building blocks remain the same from a theoretical

point of view. However, there are big differences in the implementations.

Figure 4.9 shows the basic steps in the virtual viewer system. The first task

is to fetch the video files from a network. Then, the files must be decoded

to extract individual panorama frames, which are then used for rendering

the virtual views. The user controls are captured from an input device that

4.4. Implementation 79

(a) Nearest neighbour
(2916 us).

(b) Bilinear
(2840 us).

(c) Bicubic
(3242 us).

Figure 4.8: Frame quality and execution time for the interpolation algo-
rithms.

determines the virtual view parameters : pan, tilt and zoom.

Fetch
Video
Files

Decode
Video

Frames

Rendering
Virtual view

User Controls

Output View

Figure 4.9: The basic building blocks of the virtual viewer system.

In this section, we will briefly go through the chronological development

of the system from the basic serial implementation to the parallel pipelined

implementation. We use libcurl for fetching the video files from the server.

For decoding the video, we use libav. We use openGL for the rendering of

the image onto the screen. For the GPU processing itself, we use CUDA.

80 Chapter 4. Virtual View

4.4.1 Video Handling

For streaming, we use HTTP segment streaming (with plans for adaptive

HTTP streaming, see chapter 6). The segments of the panoramic videos are

served by an Apache server along with a manifest file. The manifest file is

used to inform the clients when the next file is ready for download. The

viewer checks the manifest file periodically and downloads the next segment

when it is ready.

As soon as the panoramic video segment is transferred, it is kept ready

for processing. This process runs in the background without blocking either

the display thread or the user input thread.

4.4.2 Version CPU: Serial Implementation

As the name says, this implementation is a completely serial one. Every step

of the figure 4.9 happens in a single thread. The decoding, may use multiple

threads, but this is managed internally by libav. A straightforward imple-

mentation of the renderer for CPUs is to loop through all the pixels in the

virtual view and find the positions where the rays land on the panoramic

texture. The heavy operations include an inverse tangent and a square root

in every pixel calculation. Since the operations are well suited for paralleliza-

tion, we could have used the CPU’s vector instructions like MMX, SSE and

AVX, but the modern GPUs have even greater potential, so next, we have

ported the program to a GPU.

4.4.3 Version GPU1: Parallel Real-Time Implementa-

tion

In figure 4.9, all blocks can function in a pipelined manner and in this section,

we present a first version of a parallel multi-threaded implementation achiev-

ing real-time performance on the GPU. In this implementation, we use one

thread to perform the fetching operations because network operations can

have latency and it can affect the playback of the virtual view if the files are

not available in time. The user controls also are run in a seperate thread.

4.4. Implementation 81

The main thread still performs the decoding, rendering of the virtual view

and displaying on the screen.

A simple port of the rendering module (version GPU1) using CUDA

performs the calculation of the ray intersection and fetching of the corre-

sponding pixel from the panorama on the GPU. So, the videos are decoded

on the CPU, the frames are transferred to the GPU, and calculations and

fetching operations are performed on the GPU. Since it is possible to ren-

der OpenGL textures written by an NVidia CUDA kernel directly from the

GPU to the screen using CUDA/OpenGL interoperability, this implementa-

tion uses that feature. An OpenGL texture is defined in advance and bound

to the screen buffer. When the ray calculation and pixel fetching operations

are complete, the output is not transferred to the host, but written to the

bound OpenGL texture buffer on the GPU. Then, this texture is displayed

directly on the screen, saving the transfer overhead from device to the host.

In addition, most CUDA enabled devices support hardware accelerated linear

interpolaton from CUDA textures. We use these textures instead of global

memory on the GPU to further increase the performance.

4.4.4 Version GPU2: Parallel Pipelined Implementa-

tion

On top of the improvements in version GPU1 implementation, we made a

completely pipelined implementation (version GPU2). Figure 4.10 presents

all the stages of the pipeline. Each of these modules is designed using a

producer/consumer pattern. They each run in their own thread and com-

municate with each other using data queues. The key idea is that all the

modules perform at their peak performance when there is a task and push

the output to the queue connecting the next module.

One can observe that even the GPU part of the pipeline is split into

multiple threads. The reason for this is that the several operations on GPU

can be performed concurrently, and CUDA allows for that using streams. A

Stream is defined as a sequence of operations that execute in issue-order

on the GPU. Hence, assigning operations to different streams can enable

82 Chapter 4. Virtual View

File Manager Decoder Renderer User Input

Output View

GPU
Uploader

GPU Manager

Figure 4.10: The fully pipelined parallel system. Each module runs in it’s
own thread with producer/consumer pattern.

concurrency in operations. In our case, the next decoded frame is transfered

to GPU while the GPU extracts the virtual view from the previous panorama

frame.

4.4.5 Performance

The two reasons that we preferred the ray-tracing approach to the openGL are

performance and control of the pipeline. The main tasks, once the panorama

frame is decoded, are transfer of the frame to GPU and rendering of the

virtual view based on the input pan-tilt-zoom parameters.

From table 4.1 presented earlier, we can see that the rendering time for

openGL is about 3ms, and from figure 4.8, the ray-tracing approach also

takes around 3ms irrespective of the interpolation performed. However, the

transfer of panoramic image texture varies significantly between the openGL

and CUDA approaches because of the size of the texture. As previously men-

tioned, the panorama frames are encoded using H.264 using YUV 422 planar

packing. When working with CUDA, we just need to transfer the YUV

422 texture to the GPU and internally work with YUV 422. However, the

opengGL requires RGB textures. This has two disadvantages, i.e, one is the

overhead of conversion from YUV to RGB and the other is that RGB data

4.4. Implementation 83

requires 1.5 times larger memory than YUV 422 data.

In our experiments, we found that the time taken for transferring a tex-

ture to GPU using openGL is approximately 26ms, whereas, the time taken

for transferring YUV 422 data to GPU using CUDA is approximately 3.6ms.

Moreover, the CUDA transfers can execute concurrently with computation on

the device, thus providing more window for the real-time execution. Due to

this, we based the implementation on ray-tracing.

Property Desktop Laptop
CPU i7-2600 i7-2620M

CPU Cores 8 4
CPU Clock 1600 MHz 800 MHz

CPU Memory 8G 4G
GPU GeForce GTX 460 NVS 42000M

GPU Cores 336 48
GPU Memory 1G 1G

GPU Clock 1300 MHz 1480 MHz
CUDA version 5.0 5.5

Table 4.2: Configuration for Desktop and Laptop hardware used.

Furthermore, we experimented with two machines using the virtual viewer.

One machine was a desktop and the other was a laptop. Table 4.2 presents

the configuration of the machines. Figure 4.11 shows the performance of

each module on the two devices. It can be seen that even on a small laptop,

the performance is better than real-time. The most time consuming task is

decoding. We can also see that the performance of the decoding module can

be improved by using multiple threads. However, even then the decoding

module becomes the bottleneck for the pipeline. Assigning more threads to

a single module will decrease the performance of the pipeline because, when

the threads exceed the number of cores, there is a lot of context switching

overhead.

Most of the performance measures provided in this section are for a

Full HD resolution, but the resolution of the virtual camera varies with the

viewing device. Figure 4.12 therefore demonstrates the effect of the size on

the kernel execution time of the final generation of the zoomed image (note

84 Chapter 4. Virtual View
Sheet2

Page 1

Decoding (1 thread)
Decoding (2 threads)

Decoding (3 threads)
Decoding (4 threads)

GPU Upload
Renderer

Display

0

5000

10000

15000

20000

25000

30000

35000

Desktop

Laptop

Module

T
im

e
 (

u
s)

Figure 4.11: Performance of each module in the pipeline on a desktop and a
laptop. The red line on the top shows the deadline for real-time performance
at 30 fps.

the microsecond scale). It can be seen that the time taken by the kernel

drops significantly as the size of the virtual view decreases. This suggests

that there is potential to perform in real-time using even less powerful GPUs

that are common in the recent mobile devices.

Figure 4.12: Execution times for various sizes of virtual camera.

4.5 Summary

In this chapter, we have presented a system for real-time interactive zoom

and panning of panorama viewo used in a soccer stadium scenario. Based on

4.5. Summary 85

video streams from five stationary 2K cameras, processed and stitched into

high resolution panorama video, we are able to support any free view angle

from the position of the camera array, i.e., an interactive virtual camera able

to present an extracted, perspective corrected personalized view to the users.

We have presented two possibilties in terms of realizing the virtual camera

given the pan-tilt-zoom parameters. One way is by modelling a 3D cylinder in

space and projecting it onto a virtual camera. The first approach is realized

using the off-the-shelf graphics library OpenGL. The second way is to perform

ray tracing from the virtual camera and find intersection on the panorama

texture rolled onto a 3D cylinder. This approach is realized by programming

the GPU using CUDA. By experiments, we concluded that the CUDA approach

provides us with better performance and even more opportunities for tuning.

We performed experiments on a commodity desktop hardware and a lap-

top hardware. The results show that real-time performance is only con-

strained by the video decoding time, but on the tested hardware, real-time

performance was achieved for all configureations and tested resolutions (up

to 1080p HD).

In this chapter, the operation of the virtual camera is restricted to manual

control. However, during an actual 90 minute football match that can be

tiring. Hence, the next chapter (chapter 5) covers different approaches on

how the virtual camera can be operated automatically to follow interesting

features like a ball or a specific player. Moreover, at the moment, the system

demands a large network bandwidth due to the full resolution panorama

video. Even though the panoramic video is compressed using H.264, saving

quite a lot of space, the network overhead is still high. Hence, we explore a

few approaches of saving the bandwidth in chapter 6.

Chapter 5

Visual Servoing

In the previous chapter, we have described how a virtual camera can be gen-

erated in real-time for every individual client. The previous chapter focused

on the system aspects of the virtual camera, and the operation of virtual

camera is limited to manual control. In a real-world scenario, like that of

a football game, even though manual camera control is a desireable and

exciting feature for a short period, it is not practical during an actual 90

minute game. Normally, a user expects to follow the game rather than use

her attention to steer the virtual camera during the entire game.

In that regard, it can be beneficial to additionally provide a higher level

abstraction for the user interaction instead of a manual operation. Figure 5.1

illustrates two scenarios. In the manual operation scenario, the user can steer

the virtual camera. In the guided scenario, a user merely requests the client

device to operate the virtual camera automatically depending on the user’s

interests. For example, a user can request the device to automatically steer

the virtual camera to follow the ball, a particular player or even a group

of players. Such a request can be quite useful for coaches to observe the

performance of players. The task of the device then becomes to provide

a smooth operation that is similar to that of being provided by a human

camera operator with several years of experience.

In lose terms, such automatic camera operations can be considered as a

problem of visual servoing. Visual servoing is a technique using feedback

87

88 Chapter 5. Visual Servoing

Manual
Operation

Guided
Operation

Final Output

Figure 5.1: Two modes of new interaction that can be provided to user
can be seen here. The manual mode provides user the option to steer the
camera manually and the guided operation provides a set of features to chose
from, for example a ball or a player. Once a feature is selected, the system
automatically creates the smooth motion following the feature.

information from multiple sensors to control the physical motion of a robot

with a possibility of the camera on the robot [93]. However, in our case, it

is not a real physical camera that is being operated. This problem is also

different from the control theory of the camera based tracking, because often

such systems feed the final output to a machine. In such a scenario, the most

efficient form of tracking can be the one where the target is at the center of

the image frame at all times. However, in our system, the final viewer is

a human and placing the feature, for example the ball, in the center of the

image is not the most ideal form of presenting football videos.

This chapter presents a few approaches to achieve this along with a sub-

jective study to compare the machine to a human operator. This chapter

can be considered as an extension of [40] (Appendix D). In addition to the

football scenario, we experimented with these approaches for surveillance ap-

plications. In this regards, we presented a demo at ACM Multimedia [43]

(Appendix J).

5.1. Related Work 89

5.1 Related Work

Some previous works have focussed on virtual servoing in sports scenarios,

and here we provide some examples.

In [4], Ariki et al. present a simple system that is capable of automatically

providing ROI from a high resolution overview video. They use a Schmitt

window based steering. They perform a small-scale user study based on 15

users.

In [18], Carr et al. present a hybrid system using both a robotic PTZ

camera and a virtual camera generated from a panorama. They evaluate

their system comparing it to a human-operated one as benchmark. Their

motivation is to get as close to the human operator as possible. Even though

this work was a really thorough work dealing with automatic virtual cameras,

they fix the focal length and the tilt angle limiting the movement to only

panning of the virtual camera.

Daigo et al. [27] present a system for automatic panning based on audience

face direction. Their main hypothesis is that the direction of the scorers in

the game has a great impact on understanding where the action happens on

the court. The face detection is performed by template matching. As an idea

it is interesting, however the complexity of their approach makes it hard for

real-time operations.

Dearden et al. [29] present a system that learns from the movement of a

trained camera operator. They propose a workflow for learning the camera

movement from the videos recorded during a professional football game. In

their approach, they initially extract the pitch region information using his-

togram based pitch identification. Then, the player positions are estimated

using simple morphological operations and particle filters. Further, they use

the Kanade-Lucas-Tomasi (KLT) optical flow to estimate the camera move-

ment from the video. Then, a model is learnt roughly based on k-Nearest

Neighbour (kNN). The authors demonstrate the camera movement model

only in simulations. Moreover, the player position estimation is also reported

to be inaccurate, estimating only some players on the field not all of them.

It can be seen that the virtual camera control in most cases is handled as a

90 Chapter 5. Visual Servoing

reduced problem limiting it to only panning motion. However, it is common

to see pan, tilt and zoom operations in a football broadcast. In the next

section, we provide details of our approaches on automatically controlling

the virtual camera.

5.2 Approaches for Automatic Camera Con-

trol

Figure 5.2: The virtual camera operation mainly involves in deciding the
angles around y and x axes. The field of view is then determined by the focal
length, which decides how zoom of the output view. The interesection of x
and z axes with the panorama texture are marked with stars. The projection
details from the panorama are presented in figure 4.3.

To operate the virtual camera, we are operating in 3D space with the

origin on the axis of the cylinder for all the movements. Here, we let θx be the

angle along the pan direction (horizontal), θy be the angle in the tilt direction

5.2. Approaches for Automatic Camera Control 91

(vertical), and f be the focal length, i.e., these three variables are used and

changed to control the virtual camera. A ray pointing at (θx, θy) = (0, 0)

meets the panorama image at the center. Figure 5.2 presents a cylindrical

texture rolled on a 3D cylinder and the corresponding pin-hole camera. It

can be easily observed that any rotation around the y-axis contributes to

panning and the x-axis contributes to tilting. The rotation around the z-axis

corresponds to action of rolling. However, we do not use this action in a

football scenario.

Furthermore, let the feature point on the panorama be sp = (θpx, θ
p
y), and

let the current state at of the camera be ci = (θix, θ
i
y, f

i) where previous

states are denoted ci−1, ci−2, Here it must be noted that translation is

also possible, however, we fix the camera viewpoint at one location and only

allow for pan, tilt and zoom operations. Then, the problem of operating the

virtual camera can be formulated as:

ci = F (si+lp , si+l−1
p , si+l−2

p , ..., ci−1, ci−2, ...), (5.1)

where l is the future data fetched by simply delaying l units of time. The

models that we developed for controlling the virtual camera handle the state

variables independently. There are two models for controlling the angles,

and the focal length is controlled depending on the current position of the

center of the virtual camera on the panorama, where we also investigate two

models.

5.2.1 Models for Pan and Tilt

Figure 5.3 shows the position of the ball across 500 frames in the panorama

panning space (θx). Assigning θx to the the ball position would lead the

virtual camera to be centered on the ball in each frame. We can observe that

the signal varies in a non-smooth fashion. It is not a pleasant experience to

watch such a video where the camera is centered on the ball every frame.

The main constraint that we have while selecting the models for smoothing

the input signal, is that the computational complexity should be really low.

This ensures that there is no significant additional overhead on the client

92 Chapter 5. Visual Servoing

side. Even though Extended Kalman Filters and other non-linear regression

methods provide superior smoothing abilities, they come with a big cost

of high computational complexity. Hence, we have used two very simple

models for the pan/tilt operations, i.e., a Schmitt trigger and an Adaptive

trigger. The pan and tilt angle movements are computed independently in

our calculations. However, the changes in tilt angles are penalized more than

the pan angles because panning is usually more natural than tilting a camera

in wide field of view situations. The analysis in this chapter is performed

on pan angles even though the tilt angle is also modified for the camera

operation. An example for changes in tilt angle can be seen in figure 5.6.

Figure 5.3: Ball position plotted against frame number for one of the 500-
frame segment from a match. It can be observed that using exactly the data,
one will get a noisy output.

Schmitt Trigger

Schmitt Trigger [130] is a traditional signal stabilizing filter that has been

used in Electrical Engineering and other fields for several years. It offers

a simple and reliable way to stabilize an input signal thus allowing us not

to spend more computational power in operating the virtual camera. We

5.2. Approaches for Automatic Camera Control 93

modified Schmitt Trigger so as to provide a smoother movement by adding

an acceleration α to it. Algorithm 1 presents this approach. For the Schmitt

trigger to function, we define an imaginary window (characterized by θt)

inside the virtual view. When the target point is inside the window, the

virtual view is quickly brought, yet smoothly to avoid abrupt movements, to

a stop by using a deceleration αstop. Once the target point goes outside the

window, we provide an acceleration α, to the virtual view so that we reach

the target. The sign of α depends on the current velocity of the feature point

and the virtual camera. The acceleration is added only when the velocity

is less than the maximum velocity δθmax.The velocity and acceleration of a

variable θ are written as δθ and δ2θ, respectively.

Algorithm 1 Schmitt Trigger

1: (θ0
x, θ

0
y)← (θpx, θ

p
y)

2: while running do
3: if θp is outside θt then
4: if δθp > δθi−1 then
5: δ2θ ← α //Accelerate in the positive direction
6: else
7: δ2θ ← −α //Accelerate in the negative direction
8: end if
9: else

10: δ2θ ← αstop //Bring the movement to stop but smoothly
11: end if
12: end while

Adaptive Trigger

The adaptive trigger is designed to adaptively estimate the required velocity

of the virtual camera. We compute the movement of the camera in a two

step smoothing process. We use a running weighted mean smoothing at

both steps. Another key difference, compared to the Schmitt trigger, in this

model is the use of future data. By delaying the system by 1 second, we

have “future data” for about 1 second. The windows for the regression are

smaller than the fetched future data because of the second level smoothing.

94 Chapter 5. Visual Servoing

For a given variable x, let S(x) be the smoothed value. Algorithm 2 describes

this approach. When computing the target velocities, the gradient is taken

over smoothed positions because the noise gets amplified with a gradient. τ

is a threshold for removing small variations in position that are caused by

small jerky motions. These jerky motions create a small average velocity

over multiple frames. This is similar to Schmitt Trigger, except that the τ

is applied to the speed instead of position. We preferred to keep the camera

static rather than subjecting it to a really slow movement.

Algorithm 2 Adaptive Trigger

1: (θ0
x, θ

0
y)← (θpx, θ

p
y)

2: while running do
3: δθs = δ(S(θ)) //Initial velocity calculation
4: if δθs > τ then
5: δθst = δθs //Thresholding
6: else
7: δθst = 0
8: end if
9: δθ = S(δθst) // Final velocity estimation

10: end while

5.2.2 Models for Zoom

The zoom is controlled by modifying the focal length (f), the virtual view is

zoomed in by increasing f . In the current system, we developed two models

to change f , smooth zoom and toggle zoom.

Smooth Zoom

The smooth zoom imitates the nature of the physical zoom that is obtained

by smoothly controlling the zoom ring on the recording camera. We modelled

a quadratic function in the current camera position coordinates such that f

increases when the position approaches the goal posts or the other end of the

field from the camera setup:

f i = λ0 + λ1(θix − θx0)2 + λ2(θiy − θy0)2 (5.2)

5.3. Objective Analysis 95

where λ1 and λ2 are the parameters that control the effect of pan and

tilt angles, respectively. θy0 is used to offset the curve so that the function

increases over all the tilt angles. θx0 is set to 0, because the function should

be increasing from the center of the field as we move towards the goals.

Because, it is usually preferred to have a zoomed in view closer to the goals

and an overview close to the midfield line. λ0 is the zero order offset. The

function for focal length is smooth, hence, there are no abrupt shifts between

zoom levels. All the parameters are empirically selected. However, selecting

these parameters varies for different installations and experiments needed to

be performed to obtain visually pleasing results.

Toggle Zoom

The toggle zoom mode was developed to imitate the immediate switch in

zoom levels, similar to directors cutting over between different cameras in

the stadium. We picked a rather simple model for creating this effect. The

panorama is partitioned into several zones and a focal length is assigned

per zone. The zones can be seen in figure 5.4. They are selected based on

two major factors, proximity to goal and proximity to the camera. It can

be assumed that close to the goal posts, the virtual view is preferred to be

zoomed in. However, in the middle of the field, an overview is better because

one can observe the game better. Since, it is not possible to have the same

size along the entire center line, because the camera is located at one end of

the center line. The zoom factor is selected based on how far the view is from

the camera position. If the view is too close to the camera position, then the

view should be zoomed out and vice verca. The view simply changes from

one zoom level to the other one without smooth transition.

5.3 Objective Analysis

In the models that we presented in the previous section, there are several

parameters influencing the behaviour of the automatic pan, tilt and zoom

operations. In this section, we present a brief analysis on how those pa-

96 Chapter 5. Visual Servoing

Figure 5.4: Toggle zoom assignment.

rameters affect the results. In order to compare with a human operator, we

requested two individuals to perform the camera steering using a joystick.

One individual is an expert camera-man with several years of recording expe-

rience who got used to operating the virtual camera using a joystick by doing

several training attempts. In the experimental results presented below, the

results from that individual are labelled ”expert”. The second individual,

termed ”novice”, has a lot of experience to use the joystick from gaming.

However, he lacks experience with broadcast video recording.

First, we analyse the effect of two models used for panning and tilting

on the angles of the virtual camera. Then, we analyse the zoom models

comparing them to the human operators.

5.3.1 Execution Time

The average execution times per frame for the Schmitt trigger and adaptive

trigger to find the virtual camera positions are around 2µs and 30µs, re-

spectively. Even though they differ significantly, the absolute values are still

negligible, compared to other parts of the pipeline and far below the 20 ms

(50 fps) real-time threshold.

5.3.2 Pan/Tilt Models

Figure 5.5 illustrates the panning angles for a 300 frames segment for camera

movements that try to follow the ball and ball position, where we see the pan

angle (in radians) of the virtual view generated by both machine and human

5.3. Objective Analysis 97

operations. In other words, if the curves are close, they capture more or less

the same view. The lagging nature of the Schmitt trigger and the human

operators can be observed in the figure owing to the fact that, they recieve

the ball position as it happens and the next camera position is computed

based on the previous ball position. On the other hand, the adaptive model

has access to “future data”. Figure 5.6 shows a similar image but for the tilt

angle (in radians). We can see that the variation in panning angle is much

higher due to the nature of the football game. So in the following, we perform

objective analysis only on the panning angle, but the same observations are

valid for tilt angle as well.

Figure 5.5: Schmitt trigger and adaptive trigger plots for 300 frame segment
along with the plots from human operated camera for the panning angle.

Schmitt Trigger - Analysis

There are three control parameters in the Schmitt trigger case, the accelera-

tion, maximum velocity and the deceleration. Figure 5.7 displays the angles

for different accelerations over 300 frames. It can be observed that higher

acceleration tends to get the camera center closer to ball position quickly,

but a problem is that it can introduce uneasiness in watching because the

camera speeds rather quickly and unnaturally.

98 Chapter 5. Visual Servoing

Figure 5.6: Schmitt trigger and adaptive trigger plots for 300 frame segment
along with the plots from human operated camera for the tilt angle.

Figure 5.7: The calculated trajectories for various acceleration values in the
Schmitt trigger case. Here, x is 0.0001 rad

s2
.

Figure 5.8 demonstrates the effect of varying the maximum velocity over

300 frames. When the ball moves really quickly, the curves in the plot show

that the higher the maximum velocity, the closer they get to the slope re-

quired. However, this creates an undesired effect of overshooting irrespective

of the quick deceleration. For example, consider the case of 0.25x and 4x

5.3. Objective Analysis 99

Figure 5.8: The trajectories for various max velocities in the Schmitt trigger
case. Here, x is 0.01 rad

s
.

which are two extremes. Between 0 and 150 frames, one can observe that

the 0.25x is far from the original ball position compared to the 4x. However,

once the ball changes the direction, the 4x trajectory shoots off, and it takes

time before the virtual camera position comes close to the ball position. This

happens because of the constant acceleration. Considering this tradeoff, we

can observe that 2x trajectory performs the best in this scenario.

Moreover, figure 5.9 demonstrates the effect of the deceleration on the

virtual camera movement. The trade-off here is between an appearance of

a mechanical stop to a swinging effect. Both the velocity and acceleration

effects can be seen in the plots.

Adaptive Trigger - Analysis

In the adaptive trigger, we have two control parameters. One is the window

size and the other is thresholding for clipping. The thresholding for clipping

only eliminates small jerky movements, it is empirically chosen and it’s plots

do not provide great variation. Figure 5.10 demonstrates the effect of the

window size on the panning variable. The window size is varied between 5,

10, 15 and 20 frames. A scene of 300 frames, where there are atleast a few

changes in the ball direction, is picked. The exact field of view depends on

100 Chapter 5. Visual Servoing

Figure 5.9: Effect of varying stop-acceleration on the trajectories in Schmitt
trigger case. Here, x is 0.001 rad

s2
.

the current focal length. However, as a rule of thumb, anything inside 0.2-0.5

radians from the center of the virtual camera can be assumed to be inside

the field of view.

Figure 5.10: Effect of window size selected for smoothing on the trajectories
using the adaptive trigger. The window size is in number of frames.

5.3. Objective Analysis 101

5.3.3 Zoom Models

Since the calculation of zoom is a closed form expression over the current

viewing position, the execution time is really low. Figure 5.11 provides plots

from the different zoom models and the human operators over a 300 frames

segment. Since the position is dependent on the pan/tilt model chosen, both

curves are calculated using the adaptive trigger. It can be observed that

the machine-generated zoom curves show noticeable similarity to the expert

controlled camera, irrespective of the simplicity in the models.

Figure 5.11: Smooth zoom and toggle zoom plots along with the plots from
human operated camera for 300 frame segment.

5.3.4 Conclusion

The objective analysis shed some light upon how different parameters affect

the trajectory of the virtual camera. This provides us a basis for tuning the

parameters for best visual appearance within each approach. However, the

most important factor in deciding the quality of an appraoch is the viewer.

The next section, therefore describes an experiment and results taking the

user into consideration.

102 Chapter 5. Visual Servoing

5.4 Subjective Analysis

In the development of a user-centered system, subjective feedback from a

representative group is essential for a successful outcome. However, users

are not always able to express what they want and need. Fortunately, useful

experimental approaches have been adapted and extended by researchers in

the field of multimedia; a comprehensive overview of these methods is pro-

vided by the ITU [69,70]. For instance, Quality of Experience (QoE) studies

aim at assessing cognitive, emotional and/or behavioural responses to dif-

ferent aspects of multimedia systems [154]. Particular attention has been

devoted to the perception of video quality and the detection of visual arti-

facts [36,49,105]. QoE research is also bringing behavioural experiments out

of the laboratory [28,105]. While controlled experimental settings are neces-

sary to isolate factors of interest from the influence of external variables, this

type of control becomes less pertinent when considering the great variations

inherent in multimedia content. Furthermore, by presenting multimedia se-

quences on the platforms where they are normally enjoyed, the results can

be generalised to real-life scenarios with less restrictions.

An additional benefit of removing laboratory settings is access to a larger

pool of participants. Running laboratory experiments is time-consuming for

researchers and participants alike, hence bringing the experiment to the par-

ticipant could increase the likelihood that an individual would consent to

participate. Using mobile devices, multimedia researchers can collect results

that represent the platform the content was designed for [28,105], while at the

same time allowing recruitment of potential volunteers in central locations.

Moreover, the use of online surveys and tests is also becoming more com-

mon [22]. The use of crowdsourcing and other online recruitment schemes

offers even more flexibility than mobile test devices, but this flexibility comes

at a cost. With participants left unobserved, the experimenter has no guar-

antee that the task is completed diligently. Consequently, online testing may

add concerns to the validity of results [132]. However, larger numbers of par-

ticipants and stimulus repetitions, combined with the exclusion of outlying

scorers, may alleviate some of these concerns.

5.4. Subjective Analysis 103

Since the user experience with the system is dependent on many factors

outside video quality, the task of evaluating the system could quickly become

a daunting one. In the current context, camera zoom, pan and tilt movements

must be evaluated alongside the action of the game itself, the panaroma view,

and the visual quality artifacts that occur sporadically. To ease the burden

of separating the factors of interest from these and other distractions, we

decided to perform a pairwise comparison test [70] to contrast the different

combinations of camera movements, two by two. When asked to select one

of two versions of the same sequence, participants are presented with a task

that is comparatively simpler than subjective ratings of sequences. Seeing

how pairwise comparisons only require decisions on one’s preference, this test

is a good alternative when exposing participants to unfamiliar stimuli and

situations [86].

5.4.1 Pairwise Comparison Method

User preference for transient variables, such as camera movement and zoom,

is deemed to be highly subjective and to depend on the presented sequence.

To avoid subjective ratings that may vary more between presentations than

between our experimental variables, we decided to use pairwise comparisons,

as recommended by the ITU [70]. Hence, each sequence was presented twice

in a row, with only our variables of interest changing between presentations.

In the first study, we evaluate the automatic approaches against each other

to figure out the preference of the viewer among the automatic approaches.

Then we evaluate the best of the automatic approaches against the human

operated virtual camera.

5.4.2 Evaluation Metric

Each user is shown the same pair in different orders 4 times. The user

decides which video provides a more pleasing experience. In order to figure

out whether the users’ preferences are consistent with their own choices across

experiments and whether some approaches are consistenly performing better

than others in several users’ point of view, we performed several standard

104 Chapter 5. Visual Servoing

tests in statistics. Due to the uncontrolled nature in our data collection, we

constrained ourselves to analyse the data only using non-parametric tests.

The three notable ones are as following:

Parametric Statistics This test simply reports mean and standard de-

viation regarding each option. Further inferences can be made from the

assumption of a normal distribution. However, we restricted ourselves to

simply reporting the metrics and did not infer using these statistics.

Friedman Rank Test This is a commonly used non-parametric statistical

test to detect inconsistencies among repeated experiments and corresponding

choices. The test computes ranks for each stimulus and depending on how

well spaced the ranks are, one can study the consistency in the choices.

Here, the significance is tested by comparing to the (χ2(k)) distribution for k

degrees of freedom. In our case, high values indicate high level of signifance.

Wilcoxon Signed-Rank Test This is another commonly used non-parametric

statistical test to asses whether the mean ranks of the stimuli differ. In addi-

tion this test also allows for computation of the effect size which is essentially

the rank correlation.

5.4.3 Study 1: Camera Controls

Because the system aims to provide users with the best possible experience,

we need user feedback in order to establish the most preferable parameters

for camera movements and zooming. We therefore conducted a user study

to compare center trigger and adaptive camera movements, as well as toggle

and smooth camera zooms.

Participants A total of 49 users, 42 men and 7 women, participated in the

first study. They were aged between 20 and 40 years, with an average of 27

years. Participants were presented with the opportunity to enter a lottery

for a chance to win a small prize.

5.4. Subjective Analysis 105

Stimuli and procedure All soccer sequences were derived from the same

international league match, recorded in 2013. While the ITU [70] recom-

mends a duration of approximately 10 seconds for pairwise comparisons of

video presentations, we placed higher priority in ensuring that the soccer se-

quences contained more than one example of pan, zoom and tilt movements.

Due to this, we extended the set sequence duration to 15 seconds. Auto-

mated camera movements were implemented subsequently, making sure that

each movement and zoom contrast was presented four times. Each soccer

sequence was therefore presented twice, separated by a two-second inter-

val showing a fixation point on a black background. Stimuli contrasts were

paired up so that either the camera movement or the camera zoom approach

differed between the first and the second presentation. Although each paired

contrast was presented four times, new soccer sequences were included for

every pairwise comparison. Thus, participants watched 16 unique sequences,

selected as the most suitable excerpts, where there are atleast a few passes,

from the entire soccer match.

As stated above, we conducted the study using an online web-form so

participants could complete it at their convenience. The paired video pre-

sentations were grouped in two stimuli blocks, with every contrast repeated

twice within a block. Stimuli were counterbalanced with reverse-order for

half of the contrasts, before they were randomised within each block. We

created four randomised versions of the study, so that the random order

varied between participant groups. In order to control whether subjective

preferences depended on soccer viewing experience, we introduced the study

with two questions to assess soccer interest and dedication; we also collected

details on age and gender. Participants received no information on the cam-

era implementations, instead they received instructions to select the version

they preferred. Following the questionnaire and instructions, we included

two practice trials to get participants acquainted with the task, which were

succeeded by the 16 pairwise comparisons.

106 Chapter 5. Visual Servoing

Questionnaire Instructions Pairwise comparison, separated by fixation interval Response

Figure 5.12: Visual outline of the steps presented in the user study. Partic-
ipants started with the questionnaire and instructions, before moving on to
the soccer sequences. These were introduced by two practice trials, followed
by the full study. Each pairwise comparison was separated by a 2-second
fixation interval and terminated in a response session.

Results

With every contrast repeated four times, the preference scores for the differ-

ent conditions were added up for every participant. This resulted in individ-

ual counts the four combinations of camera movements and camera zooms,

ranging from 0 to 4. In order to identify and weed out outlying preference

counts, we also calculated the difference in scores between paired stimuli.

This resulted in four mean differences, and we used the average of these

to identify any scores that fell more than two standard deviations from the

mean. Accordingly, we identified and excluded data from two participants,

whose mean difference scores of zero indicated that they were unable to dis-

tinguish between stimuli. For the main analysis, we collapsed preference

scores across stimulus combinations to obtain the overall number of times

each camera mode was preferred by an individual. With two contrasts re-

peated four times for every camera mode, the highest possible preference

count comes to 8. The degrees of freedom for the distribution are found

according to the number of choices available. A Friedman rank test was used

to analyse the preference counts from the remaining our 47 participants, re-

vealing a significant effect of our camera implementations (χ2(3) = 72.73).

To further explore the difference between stimulus combinations, we also

ran three Wilcoxon signed-rank tests and calculated effect sizes from these.

Results from the analyses are presented in table 5.1. Furthermore, we also

explored the individual contrasts with a Friedman rank test, again revealing

5.4. Subjective Analysis 107

a significant overall effect (χ2(7) = 162.33). These results are illustrated in

figure 5.13, listed according to their Friedman rank scores.

0 10 20 30 40 50

Schmitt/Toggle > Adaptive/Toggle

Schmitt/Toggle > Schmitt/Smooth

Schmitt/Smooth > Adaptive/Smooth

Adaptive/Toggle > Adaptive/Smooth

Schmitt/Smooth > Schmitt/Toggle

Adaptive/Smooth > Schmitt/Smooth

Adaptive/Smooth > Adaptive/Toggle

Adaptive/Toggle > Schmitt/Toggle

Frequency of preference counts

0 1 2 3 4

Figure 5.13: Frequency distribution portraying the number of times one stim-
ulus was preferred over its contrast, accumulated across users. For example,
in the first line, we see that 25 persons have preferred the Adaptive/Tog-
gle over Schmitt/Toggle in all four repetitions. The maximum count of 4
corresponds to the number of repetitions for each pair of videos. Stimulus
contrasts are sorted according to Friedman rank scores and plotted symmet-
rically.

From the collapsed preference counts and the ranking scores presented

in the first part of table 5.1, the adaptive trigger movement combined with

the smooth focal zoom emerges as the preferred camera implementation.

Although not significantly different from the third rank, the adaptive trig-

ger remained the preferred choice over the Schmitt trigger, ranking second

when combined with the toggle focal zoom. These trends are also evident

when looking at the ranked individual contrasts in figure 5.13. The adaptive

trigger movement is preferred over Schmitt alternative for the vast major-

ity of presentations, just as the smooth focal is the predominantly preferred

zoom option over the toggle focal. In short, the opinions of 47 users clearly

108 Chapter 5. Visual Servoing

Results from Study 1
Stimulus Friedman Wilcoxon Effect
combination rank score signed-rank test size
Schmitt/Toggle 1.32 - -
Schmitt/Smooth 2.47 <.001 - 0.51
Adaptive/ Toggle 2.74 ns - 0.14
Adaptive/Smooth 3.47 <.001 - 0.39

Results from Study 2
Stimulus Friedman Wilcoxon Effect
combination rank score signed-rank test size
Novice 1.31 - -
Expert 2.24 <.001 - 0.52
Adaptive/ Toggle 2.99 <.001 - 0.41
Adaptive/Smooth 3.46 <.021 - 0.28

Table 5.1: Non-parametric statistics for the number of times a stimulus com-
bination was preferred over its contrasts, averaged across participants and
sorted according to the Friedman rank score. Wilcoxon signed-rank test indi-
cates statistically significant differences between stimuli, these are reported
in relation to the lower ranked stimulus (the row above). Non-significant
contrasts are labelled ns, while non-applicable comparisons are marked with
a hyphen (-).

demonstrate the preference for the adaptive trigger and smooth focal camera

implementation.

5.4.4 Study 2: Man vs. Machine

Following the results from Study 1, we established that users prefer the cam-

era movement combination with adaptive trigger pan and smooth focal zoom.

However, an important challenge for such an automated system is to pro-

vide a viewing experience that can compete with a soccer match filmed by

a manually operated camera. Hence, the second user study compares user

preferences for the two highest ranked automated camera implementations

with that of two human operators.

Participants With 14 females and 23 males, we collected data from 37

participants, none of whom had taken part in Study 1. Their ages spanned

from 21 to 71 years, with an average of 29 years. Every participant was

provided with the opportunity to sign up for a lottery that offered small

prizes to be won.

5.4. Subjective Analysis 109

Stimuli and procedure To compare automated camera movements with

manual camera operations, we selected the two best-preferred stimulus com-

binations from Study 1. In so doing, we re-used half of the stimuli from

the first user study and compared these to sequences with recorded camera

movements. To record the camera movements, we invited an expert and a

novice camera operator to watch the same soccer match. The expert was

an experienced camera operator from a Scandinavian broadcaster, whereas

the novice had experience with camera-view operations within games. After

receiving instructions on how to move and zoom with the virtual camera us-

ing a joystick, the operators embarked upon the task of following the match

by keeping the ball and action in focus. From their recordings, we selected

20 expert and 20 novice 15-second excerpts to contrast with the automated

sequences. For further verification of the preference ratings from Study 1, we

also contrasted the automated sequences with each other. Moreover, we con-

trasted the expert and novice recordings to see whether preferences differed

between the two.

Study 2 proceeded in the same manner as Study 1, described in sec-

tion 5.4.3. The only procedural distinction between the two studies is the

inclusion of more stimuli, resulting in 24 pairwise comparisons.

Results

Response data from Study 2 are re-structured and analysed the same way

as described for Study 1 in section 5.4.3, again with 2 outliers detected and

excluded. For this analysis, we collapsed preference scores across stimulus

combinations to obtain the overall number of times each camera mode was

preferred by an individual. With two contrasts repeated six times for ev-

ery camera mode, the highest possible preference count comes to 12. With

the Friedman rank test indicating significant differences between the col-

lapsed preference counts (χ2(3) = 56.73), we again followed up with Wilcoxon

signed-rank tests. Results from these analyses are included in table 5.1. A

second Friedman rank test revealed significant differences also between the

individual contrasts (χ2(11) = 177.15), the ranked preference counts for these

110 Chapter 5. Visual Servoing

are portrayed in figure 5.14.

0 5 10 15 20 25 30 35

Novice > Adaptive/Toggle

Novice > Adaptive/Smooth

Expert > Adaptive/Smooth

Novice > Expert

Adaptive/Toggle > Adaptive/Smooth

Expert > Adaptive/Toggle

Adaptive/Toggle > Expert

Adaptive/Smooth > Adaptive/Toggle

Expert > Novice

Adaptive/Smooth > Expert

Adaptive/Smooth > Novice

Adaptive/Toggle > Novice

Frequency of preference counts

0 1 2 3 4

Figure 5.14: Frequency distribution portraying the number of times one stim-
ulus was preferred over its contrast, accumulated across users. The maximum
count of 4 corresponds to the number of repetitions. Stimulus contrasts are
sorted according to Friedman rank scores and plotted symmetrically.

5.4.5 Conclusion

First and foremost, the results from Study 2 suggest that users tend to prefer

automated over manual camera movements. Of course, the quality of manual

controls is only as good as the operator and the joystick based operation. It

must also be noted that the quality of the manual operation might vary in the

real physical camera motion scenario. We considered this possible limitation

and took precautions by including two camera operators, one expert and one

novice. The higher ranking of the expert over the novice operator exempli-

5.4. Subjective Analysis 111

fies the importance of the camera man’s expertise. Despite our precautions,

we cannot ascertain that users will prefer the automatic camera operations

over any camera operator. However, considering the significant differences

and the magnitudes of effect sizes for the presented conditions, the results

show that our system is capable of outperforming the two human operators.

Specifically, a consistent trend can be observed for both the collapsed pref-

erence counts (table 5.1) and the individual contrasts (figure 5.14), where

the automated camera movements are chosen over the manual operations in

the majority of presentations. Furthermore, the higher rank for the adap-

tive/smooth over the adaptive/toggle combination reflects the results from

Study 1. As a final note to the subjective studies, we would like to em-

phasize that the experiments were conducted online. This implies a rather

uncontrolled experiment setup including factors like video playout quality,

user display quality and the general settings in which the experiment is per-

formed. Hence, we would like to emphasize that the subjective studies merely

suggest feasibility of creating an automatic control and we do not draw any

significant conclusions from the collected data.

Results from Study 1
Stimulus Parametric statistics Percentiles
combination Mean Std. dev. 25th 50th 75th

Schmitt/Toggle 1.77 1.40 1 2 3
Schmitt/Smooth 4.00 1.25 3 4 5
Adaptive/ Toggle 4.36 1.10 3 4 5
Adaptive/Smooth 5.87 1.56 5 6 7

Results from Study 2
Stimulus Parametric statistics Percentiles
combination Mean Std. dev. 25th 50th 75th

Novice 2.60 2.06 1 2 4
Expert 5.37 1.68 4 5 7
Adaptive/ Toggle 7.43 1.67 6 7 8
Adaptive/Smooth 8.60 2.09 7 9 10

Table 5.2: Additional statistics to provide further insight into the distribution
of the data collected from two user studies.

In addition to the non-parametric tests, means and standard deviations

are presented in table 5.2 to provide further insight into the distribution of

scores.

112 Chapter 5. Visual Servoing

5.5 Discussion

Bagadus system aims to provide live interactive video services to football

viewers. In cases where manual control of the virtual camera is desired, the

system simplifies significantly. On the other hand, a viewer following a game

might be interested in interaction but at a higher level. The viewer might

place a request to the client to follow the ball/a single player or a collection

of players. In such a case, the client has to provide an aesthetically pleasing

virtual camera based on the position data from the ball and players. Even a

coach is greatly advantaged by such a system, he/she can instantly request

multiple virtual cameras focussing on different features. For example, one

for the ball, one for a recently injured player, one for a recently exchanged

player and one for the defense. So, building the entire system and a subjec-

tive evaluation of the results provides better overview of the challenges and

possibilities in comparison to a theoretical evaluation.

In the two user studies, we have explored and analysed user preferences for

automated and manual camera movements. The first study established that

the average user prefers the adaptive trigger movement over the Schmitt trig-

ger and the smooth focal zoom over the toggle; implications of these findings

are discussed below. From the second user study, we found that the average

user maintains the same preference for the adaptive trigger and the smooth

focal zoom when compared to a human-operated camera. While this find-

ing is specific to the current context and may not reflect the performance of

all camera operators, the subjective preference for automated camera move-

ments suggests a positive user experience with our system. Overall, the

presented results are promising for the future acceptance and use of our sys-

tem.

The user preferences between the toggle and smooth zoom is slightly am-

biguous. From the user study, it is clear that the smooth zoom is preferred,

but toggle zoom provides the advantage to switching to an overview imme-

diately. This when combined with smooth zoom for smaller ball changes can

provide a nice aesthetic, yet functional camera motion that can keep the ball

in field of view. Moreover, the zoom model currently is based only on the

5.6. Summary 113

position of the ball on the panorama. This can be significantly improved

by incorporating game context into the model. Some of the things can be

velocity of the ball, player arrangement and special events (penalty, corner

or throw-in).

Furthermore, it must be noted that this study focuses on one of the several

points from where the action is captured on the soccer field. When it comes

to capturing from one point in live, the camera man has little freedom in

the grammar [111] of the video. In an actual broadcast, the producer mixes

several streams together and this is where the grammar come into place.

Moreover current day’s visual tracking algorithms’ recall is not practically

applicable to real-life scenarios. Owing to this, we still have a large manual

component when it comes to estimating the ball position. We are currently

exploring algorithms based on multi-sensor data to track the ball with a high

recall rate. When we track the ball successfully, we will be able to provide

a complete system functional in real-time. However, we do have an accurate

tracking of the player positions, meaning that the system can easily follow a

single player or a group of players.

5.6 Summary

In this chapter, we presented approaches to steer the virtual camera and

performed objective analysis on them. We studied the preferences of users

among automatic approaches and also the human operated camera. We

concluded that the simple automatic approaches have the potential to provide

movement that is on par with a human operator - i.e., a user can specify

something to track (and, if tracking data for this object is available), the

system is able to generate a pleasant experience for the users within the

system’s real-time requirements.

To be able to get such an experience in the described version of the

system, we need to transfer the entire panorama video and some tracking

meta data to the client. The network does not pose any serious problems

on the metadata, but the panorama video needs high throughput. The next

chapter therefore addresses this problem using video tiling and DASH-like

114 Chapter 5. Visual Servoing

techniques to reduce the bandwidth requirement and provide a good user

experience.

Chapter 6

Tiling

The previous chapters explore the details of providing a live interactive cam-

era services to clients. However, one of the major challenges in providing

such services is to provide it to several concurrent users. In this chapter, we

explore the costs of scaling such services to a large number of users. Initially,

we present the costs of using the client as a thin client and as a device capa-

ble of doing more than just playing the video. We then solve the problem of

transferring panoramic video to clients with a bandwidth constraint at the

client side. This chapter is an extension and reorganization of content from

papers [46] (Appendix H) and [47] (Appendix E).

6.1 Scaling Costs

There are two ways of providing virtual camera services over the network to

users. The virtual view extraction can happen in two different places, using

the principles presented in the previous chapters, either on the server or the

client side. In this chapter, we explore the costs of both approaches.

6.1.1 Server Side

One approach is to perform the perspective projection on the server, then

encode the output video, and transfer the encoded stream to the client. The

job of the client in this case is simply to decode a video. It must be noted

115

116 Chapter 6. Tiling

	 	 network	

client side

server side

CLIENT SIDE:
Sending entire panorama
to client where the virtual view
is processed

SERVER-SIDE:
Processing the panorama

on the server side and sending
only the virtual view to client

Figure 6.1: Multiple virtual views may be generated from the same panorama
video. The virtual views can either be processed at the client- or the server
side. The client side (blue) shows that the entire panorama video must be
transmitted over the network, whereas the server-side approach (red) process
first and then transmits only the finished virtual view video. (Note that the
zoomed views are not rectangular crops as in this figure.)

that the tasks mentioned before could be different for each instance of the

client. This way of realizing the system is shown by the red lines in figure 6.1.

In this scenario, the server-side processing becomes a large bottleneck as

it must not only generate the virtual view, but it must also encode the video

for compression for every individual client. This implies that every client con-

nected to the server has its instance of virtual view generation and encoding

running on the server. To be able to serve more streams from a single server,

we experimented with a hardware-based video encoder implementation. Sev-

eral modern multi-core architectures include a programmable hardware video

6.1. Scaling Costs 117

encoder (i.e., Intel QuickSync, AMD VCE and Nvidia NVENC). In our ex-

periments, we used the second generation of hardware NVENC hardware

encoder1 from Nvidia [108] found in the Maxwell GPU architecture.

The GPU we use in our experiments is an Nvidia GeForce GTX 750 Ti.

This GPU is based on the first generation Maxwell GM107 architecture. The

GPU can encode 16 full HD (1920 × 1080) video streams at 30 frames per

seconds [108]. Experiments showed that this was the limiting factor in how

many unique views we could create in real-time due to the optimizations on

virtual view generation from chapter 4. This implies that if we want to pro-

vide a service to 100,000 concurrent users, we would require clusters totaling

about 6,250 GPUs in 2015. Such an initial installation costs about 937,500

USD merely for the GPUs. Running such a system continuously accounts,

according to a simple lab measurement measuring the power consumption

of a single GPU, for 0.227 MW of power consumption for GPUs alone. In

table 6.1, a few estimates of number of GPUs cost and power consumed by

GPUs are presented for different resolutions when requested by all 100,000

clients. Note that this number may be reduced further with lower resolu-

tions, but our currently used version of NVENC is limited to 32 sessions per

process. Managing multiple processes creates a significant overhead, but this

will likely be solved in a future driver update, which is why we do not include

lower numbers.

Resolution # GPUs Cost Power
1080p 6250 937,500 USD 227 KW
720p 3125 468,750 USD 102 KW

Table 6.1: Estimated GPU resource requirements for 100,000 concurrent
users.

1NVENC is a fully dedicated hardware video encoder which does not use the 3D engine
on the GPU, leaving it free to perform other compute tasks. The encoder supports reso-
lutions up to 4096x4096 (4K resolution) at 30 frames per second, and can encode multiple
streams in parallel. Support for advanced parts of the H.264 standard such as MVC, B-
frames and CABAC entropy coding are also present. The encoder API has several presets
defined for different encoding scenarios. We use the high performance (HP) preset for our
experiments.

118 Chapter 6. Tiling

6.1.2 Client Side

In Chapter 4, we introduced the virtual camera idea, where the extraction

of the virtual view was performed on the client side as shown by the blue

lines in figure 6.1. This approach requires the entire panorama video to be

transferred to the client. The panorama texture is then used to create the

virtual views on the client device itself. Since the process is client side, the

user interaction is instant, i.e., the view is changed already in the next frame.

However, even though this approach reduces the computational requirement

on the server side, it demands for large bandwidths per user.

In our current setup, the average size of each 3-second segments of the

panorama video is approximately 2.1 MB. The bandwidth requirement for

the client becomes about 5.7 Mbps merely for the transfer of the panorama

video (the segment size depends on multiple factors, e.g., weather condi-

tions, GOP structure). Even though this number is feasible on broadband

networks, we still have some time to go to achieve these rates on shared

mobile networks [110]. In addition processing the panorama video on small

mobile devices can also be a challenging task. This is, however, changing as

modern GPUs are included in modern mobile devices, too. Moreover, these

numbers are estimated for a panoramic texture that is of the size 4096×1680.

In future systems, it will be desirable and feasible to get a much higher res-

olution panorama to provide a higher quality zoom. Even though cache

servers at different locations reduce high bandwidth requirement out of the

panorama servers, for example using CDN-like infrastructures, the last-mile

to the client still poses a huge problem in delivering the entire panorama at

high quality.

Even after the panorama is successfully transferred, the client needs to

process it so that a virtual view can be extracted. Earlier, we demonstrated

that this can be accomplished in real-time on commodity graphics hardware

in Chapter 4. It must be noted that when the virtual view is extracted on the

client-side, it need not be further encoded. It can be displayed directly on

the screen from the GPU. However, it must be noted that our experiments

are performend on desktop hardware and the implications of doing the same

6.2. Introduction to Tiling 119

on mobile hardware might be different. Power consumption will become a

priority alongside the real-time performance.

6.1.3 Summary

The server-side approach, where we process all the information on the server

and transfer only the virtual view encoded into H.264 to the client, runs

quickly into problems when scaling to a large number of users. However, the

server-side approach implies that the client device just needs to be a thin

client device that can simply decode an H.264 stream and display it on a

screen. The client-side approach demands more processing from the client

device and has an increased bandwidth requirement for smooth virtual view

experience.

Recently we have seen that the client devices’ capabilities have extended

beyond just acting as a thin client. Clients are equipped with the processing

power to perform more than just decoding. Hence, we chose the client side

approach. However, an important cost that we have seen previously is the

bandwidth. On the other hand, the entire panorama is not required to extract

the virtual view. So, we used tiling to reduce the bandwidth costs.

6.2 Introduction to Tiling

When splitting te panorama into multiple smaller pieces using tiling, we

divide the panorama into a collection of tiles that are of equal spatial size

as we can see in figure 6.2. We then store these tiles in different qualities

like segments in a HAS-type of solution. When the user is viewing a specific

region on the panorama, she will only request the tiles corresponding to those

regions in high quality and the rest in low quality. Our hypothesis is that we

can design a scheme where we potentially save bandwidth and not interfere

with the viewing experience of the user.

Figure 6.2 shows the basic idea of tiling. One can see that the virtual view

is showing the area around the left goal post. The panorama is divided into

8× 8 tiles. The tiles required for extracting virtual view are colored and the

120 Chapter 6. Tiling

Cutting Edge 2014

Bandwidth challenge: tiling approach

57 kbps 189 kbps 684 kbps

Figure 6.2: Using tiling on the panorama with tiles in different quality.

rest are not. The figure also presents a tile in multiple qualities. For efficient

encoding, the tiles must be encoded in segments similar to DASH. Usually,

the advantage of having longer segments is that the number of intra encoded

frames can be limited to one per segment and thus high encoding efficiency.

However, the disadvantage is that one cannot update the quality of a tile

during the segment and has to wait until the end of the segment. There,

it becomes extremely important to decide which tiles to fetch depending on

the user operation of virtual camera. In the following sections, we discuss

related works, our implementation and tile selection approaches. Later on,

we discuss evaluation metrics and evaluate various tile selection strategies.

6.3 Related Work

A considerable amount of research has been aimed at the delivery of person-

alized views to users, addressing both the problems of regions-of-interest and

the scalability of distribution. In this section, we give a brief introduction.

Only a few works [77,106] discuss the distribution of live panorama video

and even those lack a complete evaluation. Most industry projects transfer

the entire panorama before starting the interaction, leading to a not true-live

6.3. Related Work 121

component. However, YouTube 360 has just released the first 360o videos

that deliver 4-sided cube-panorama videos stitched into a single video stream

and allow pan and tilt operations (no zoom) in the Chrome browser.

Streaming Options. Tiled video can be processed into an individual

stream for each viewer on the server side [90], but this approach does not

scale to a large number of concurrent viewers who can chose individual views.

All distributed tiling systems face the challenge of user interaction that

changes the user’s view rapidly, requiring new tiles between two consecutive

frames. Users can notice a delayed reaction to their interaction within a few

milliseconds [118]. To avoid this latency, tiling systems that extract views

on the receiver side choose to retrieve all tiles (within interaction range) at

all times, but at a less than perfect quality to save bandwidth.

HTTP Adaptive Streaming (HAS) is well-suited for this multi-quality

delivery because it can deliver multiple quality levels to large audiences with

the help of standard Web caches to increase scalability. However, retrieval

decisions can only been made on segment boundaries, which means that

visual quality can be reduced for several frames after user interaction affects

the required tiles.

Faster quality improvement could be achieved by downloading a higher

quality version of a segment that comes into visual range, decode it, skip

frames that have already been played out at low quality, and continue with

high-quality frames. The technique puts sudden high demands on download

bandwidth and decoding. Alternatively, Scalable Video Coding (SVC) Mid

Grain Scalability (MGS) could be combined with HAS [145]. Quality could

be increased by retrieving an enhancement layer, which puts less load on

bandwidth, and allows the receiver to improve frame quality immediately

after skipping to the correct frame in the enhancement layer. However, an

H.264 SVC-encoded video has 10% bandwidth overhead per enhancement

layer compared to a non-scale video of the same quality [81].

Push-based streaming systems are an alternative because they can encode

each tile as a continuous stream. Solutions that require multicast [61, 99]

cannot be used on a large scale due to the lack of IP multicast. But also

in a unicast solution, a push server can respond to a receiver’s request for

122 Chapter 6. Tiling

higher quality within one Round-Trip Time (RTT) of a user request. One

method works by updating Session Description Protocol (SDP) [127], which

can switch the unicast delivery of layers on and off, but of course, the SVC

overhead mentioned above applies here as well. An even faster method is

based on Real-time Transport Protocol (RTP) [150], which can send a bit-

rate request and instruct the server to send new Intra frame as soon as

possible. This option is interesting, as it works either with SVC (suffer-

ing the mentioned overhead), with non-layered codecs but live encoding (or

transcoding) at the sender, or a set of parallel streams where switching is

supported through SI/SP frames [75]. The overhead of the SI/SP method

lies between the other two approaches. All of these RTP-based methods

have in common that packet loss can occur, and it is therefore today usual

to use MPEG 2-TS packaging [57], but this in itself incurs a 20% bandwidth

overhead [125]. However, DASH-like Apple HLS uses MPEG2-TS as well.

Considering that all of the approaches demand that the base-layer qual-

ity of all reachable tiles is streamed at all times, the bandwidth overhead

of the various alternatives to HAS seemed too large for our scenario. We

have therefore chosen a HAS with 1-second segments and discuss the quality

implications of the qualities switching delay below.

Tiling Approaches Using HAS. Even though not directly related to

the cylindrical/spherical panorama systems that provide free PTZ camera

movement, there are some works [26,51,78,90,98,119] that provide an approx-

imate interaction. [98] discuss tiling in interactive panorama video. However,

their panorama is a perspective one and the virtual camera performs merely

cropping, which is identical to cropping from a high-resolution video. Simi-

larly, [90] provide zoomable playout on mobile devices for bigger resolution

videos. [51] present an approach for the zoomable video where the tiles are

optimally selected and sent from the server side. [146] performed a user study

to determine the effect of tiling on the zoomable video presentation. Except

for [98], these works do not support a completely random PTZ camera. [78]

present a similar system where the tiles are encoded at multiple qualities and

retrieved depending on the current view, however they do not discuss smooth

random movement. Their interface is similar to that of a zoomable video,

6.4. Implementation 123

where you can pick a portion of the entire video presented in a thumbnail and

that part is cropped from the full resolution and presented. [26] present a

tiled-streaming system where PTZ operations are performed simply as crop-

ping of a high resolution video. Hence, to our knowledge, our work is the

first to handle the problem of tiling and discuss its trade-offs in the context

of a random PTZ camera on a cylindrical panorama texture.

6.4 Implementation

The tiling generation and retrieval operations are highlighted in figure 6.3.

All components run in real-time, and the user can thus control the virtual

camera during a live stream.

created panorama

retrieved tiles

generated virtual view

57 kbps

189 kbps

684 kbps

server side: panorama generation and tile encoding

client side: tile retrieval and view extraction

Figure 6.3: At the server side, we divide the generated panorama video into 8x8
tiles, and then encode each tile in different qualities. The client retrieves tiles in
qualities based on the current position of the virtual camera (high quality tiles for
the virtual view and low quality (red) tiles outside the field of view).

6.4.1 Server Side

The idea for the server is a simple HAS like video server. As described in

section 3.5.1, the cylindrical panorama images are generated from five 2K

cameras whose the shutters and exposures are perfectly synchronized and

the seams are calculated dynamically for every frame. Then, for the tiling,

the panorama frames are divided into 64 tiles (8x8), and one video stream

is generated for each tile. Each video tile is encoded into 1-second segments

124 Chapter 6. Tiling

at multiple qualities (and bit rates) using libav and x264. Each tile can then

be requested individually by client using HAS.

6.4.2 Client Side

Once the tiles with multiple qualities are available on the server, the client

fetches tiles and generates the virtual view from the retrieved panorama.

The task of the client is to retrieve high-quality tiles for the virtual view and

lower quality tiles for the surrounding tiles. It can be seen in figure 6.2 that

the high quality tiles are required only in the colored area. Thus the client

is able to supply the user with a high quality virtual view, while at the

same time trying to save bandwidth compared to the full quality panorama

retrieval approaches discussed in the previous section.

However, the system must fetch, spatially, every tile in the panorama

video, whatever might be the quality. In this way, the system can still pro-

vide data if the user interactively moves the virtual camera in contrast to

presenting black areas or a static image if none of the surrounding tiles are

retrieved at all. To accomplish this, the client is designed as shown in fig-

ure 6.4. There are four major components in the client system, (i) a File

Manager, (ii) a Decoder, (iii) a Renderer and (iv) a Tile Selector.

Network

File
Manager

Decoder

Tile Selector

Renderer

Output
View

UI
Controls

Tilemap

Panoramaframes

Figure 6.4: The architecture of a client supporting tiling.

File Manager. The File Manager component is responsible for request-

6.4. Implementation 125

ing appropriate tiles in a given quality from the server (determined by the

Tile Selector described below). The H.264 byte stream corresponding to the

tiles is transferred as fetched and forwarded straight to the Decoder module

instead of saving it as a local file, thus bypassing the disk.

Figure 6.5: Sample output frame from the decoder module.

Figure 6.6: Extract from the frame in figure 6.5 to show the difference in tile
qualities.

Decoder. Once the tiles are available from the File Manager, the Decoder

module starts decoding frames and pushing them to a common panorama

texture. Since the tiles are spatially independent of each other, this process

is heavily parallelizable. The operations are frame-synchronized to avoid

placing a frame from two different tiles at different time instants into the

same panorama frame. Figure 6.5 shows an example frame2 where one can

observe that the panorama frame is reconstructed from different quality tiles.

2Due to possibly limited resolution of printers, it is recommended to analyze the images
on screen.

126 Chapter 6. Tiling

Renderer. As soon as a panorama frame is decoded, it is pushed to the

rendering module. This module is responsible for creating the virtual views

using the PTZ parameters from the user’s requirement of the virtual camera

direction. In addition, it provides user interaction or virtual view controls.

In most interactive systems, the functionality of the Renderer is limited to

this. However, in order to support tiling, we need to save the information

of the panorama parts that are currently being viewed. This information is

transferred to the Tile Selector module which again uses the information to

select the tile qualities for the next iteration. Figure 6.6 shows an example

virtual view.

Tile Selector. Once a frame is displayed, the panorama location from

where the current view is extracted is transferred to the Tile Selector from

the Renderer. This information plays a crucial role in selecting the next tile

set. The most complex component is the Tile Selector, because tiles must be

retrieved in order to have a high quality view, but still at the lowest possible

bandwidth, i.e., high quality tiles in the colored area of figure 6.2, low in the

grey area, where the complicating factor is the unknown movement of the

interactive view during the segment.

Finally, it important to point out that all these modules need to perform

in real-time to provide a smooth interactive experience to the user while

keeping the bandwidth consumption at a minimum required level. One can

observe that this can be challenging task at the Decoder module, where

several videos are expected to be decoded concurrently in real-time and also

frame-synchronized.

6.5 Tile Selector Approaches

There are several possibilities as to how retrieval of tiles can be achieved.

Here, we present a few schemes considered in this thesis.

As described before, the Tile Selector is responsible for determining ap-

propriate qualities (and bitrates) for the different tiles and adapt according

to the viewer interaction. It must be mentioned here that the tile selection

approaches only aim at reducing bandwidth and maximizing the quality of

6.5. Tile Selector Approaches 127

the view at the same time, however, extensive work has been done before to

adapt the quality to the network and CPU conditions. This kind of opti-

mizations is out of the scope for this thesis. Instead, we aim at optimizing

the quality for user interaction.

Let Q = {q0, q1, . . . , qn−1} be the set of n available quality levels and Ti be

the tile quality at tile i, then the problem can be written as a simple labeling

problem in equation 6.1. The quality levels are in a decreasing order where

q0 is the highest quality tile.

Ti = q where q ∈ Q (6.1)

There are several ways to perform this labeling, which will ultimately in-

fluence the bandwidth consumed and the user experience of the system. A

binary tile occupancy map, containing information on which tiles are cur-

rently used to generate the virtual view, is used in the labeling process. The

binary occupancy map has Bi = 1 at tile i when the view needs pixels from

the tile i on the panorama, for example the color and grey scale tiles corre-

spond to the 1 and 0 in the map, respectively, in figure 6.2. Even using the

same binary occupancy map, there are several ways to select a tile quality,

and below we briefly outline some of the algorithms evaluated in this study.

The three first algorithms make a binary decision between a predefined, yet

configurable, high or low quality. The last approach allows for a gradual

(multi-level) decrease of quality depending on the importance of a tile.

6.5.1 Binary

The binary approach is a simple approach, where high quality is assigned to

the required tiles and low quality to the ones that are not required (figure 6.7).

Using the binary occupancy map described above, this becomes rather trivial.

Hence, the binary approach can be formulated as following:

Ti =

qh if Bi = 1

ql else
(6.2)

128 Chapter 6. Tiling

where l > h. The inequality is the only requirement, however, the choice of

exact quality levels can be considered tuning.

Figure 6.7: Tiled binary.

6.5.2 Rescaled

As seen in section 6.3, a commonly used approach for tiling is to send a

low quality base thumbnail video and provide only the required high quality

tiles [51, 98] (figure 6.8). To create the thumbnail video, the source video is

down-scaled and stored. During the process of virtual view generation, the

pixels from the available high quality tiles are used. For the pixels where

the high quality data is missing, the thumbnail video is up-scaled and used,

which can be considered as low quality tiles.

Figure 6.8: Thumbnail.

6.5. Tile Selector Approaches 129

6.5.3 Prediction

When a user moves the virtual camera, there is a chance that the view will be

generated by some low quality tiles since the tile quality is only changed at

the segment boundary. In order to lower the probability that this occurs, it

is beneficial to try to predict future movements and retrieve a higher quality

tile if there is a high probability that the user moves the view into a tile

(figure 6.9, i.e., similar to the tiled binary, but where the high quality area

is enlarged according to the prediction). In this respect, it is beneficial to

predict the path across several frames in future. There are several models

available for prediction. However, to keep the comparison to the state-of-

the-art consistent, we used the Auto Regressive Moving Average (ARMA)

prediction [98]. Here, let θt be the position and δθt be the velocity of the

view at time instant t. The velocity at the current instant is estimated as,

δθt = αδθt−1 + (1− α)(θ − θt−1) (6.3)

Then, the future position at t+ f is estimated as

θ̂t+f = θt + fδθt (6.4)

where f is the number of frames predicted in future. This can be used straight

away to figure out a future binary occupancy map. This map can be used in

any of the approaches mentioned here. But for the sake of comparison, we

use the Predictive approach only with the Rescaled approach.

Figure 6.9: Predicted.

130 Chapter 6. Tiling

6.5.4 Pyramid

The pyramid is a scheme, where we chose qualities with a gradually decreas-

ing quality according to the distance from the virtual camera (figure 6.10).

Here, we introduce the term priority (pi) that varies in [0, 1] , where 0 means

highly important to 1 least important. Depending on the importance, we

fetch the corresponding quality. But there is another catch. If we just decide

on the importance, we might end up fetching high quality for a lot of tiles for

a zoomed-out virtual view. Here, the maximum quality level (qmax) comes

into picture. This quantity depends on the number of high priority tiles. We

select qH as the quality level to be used when all the tiles are used for the

virtual view.

qmax = (

∑
i∈T bi
N

)qH (6.5)

Ti =

qmax if bi = 1

qmax + pi(n− qmax − 1) else
(6.6)

After qmax is calculated, we count the occupancy of the neighbourhood and

then assign that as its pi as shown in equation 6.7. As one can observe, there

are several tuning parameters. One is the qH , which determines the quality

at a certain zoom level. The second is the selection of the neighbourhood

itself, which can be determined by the weights αj. We can either make the

weights isotropic or anisotropic. Given the fact that one is more prone to

pan than to tilt, anisotropic weights can lead to similar performance as the

isotropic one while consuming less bandwidth.

pi = 1−
∑

j∈N αjbij∑
j∈N αj

(6.7)

6.6 Experimental Setup

The problem of bandwidth reduction is a strict trade-off of two conflicting

constraints. One constraint is the bandwidth itself, which can be measured

6.6. Experimental Setup 131

Figure 6.10: Pyramid.

straight away as the rate of data transferred. The second constraint is the

quality of experience, which is not trivial to measure. When developing

approaches, we need to consider how well the approaches are performing

with respect to these constraints and which approaches provide the best

trade-off between bandwidth consumption and quality. We compare the two

different pipelines in figure 6.11, and we use the final output (the rendered

virtual view) for comparison. In the tiling pipeline, we first create the tiles

in different qualities, then fetch tiles in different qualities and then the view

is rendered. Whereas, the original pipeline is directly sent to the virtual

viewer and the view is rendered. We do not use high-quality tiles in the

original pipeline, because high-quality tiles are transcoded from the original

panorama.

original
panorama

virtual view
from tiled
panorama

virtual view
from original
panorama

panorama
transfer

tile
retrieval

Figure 6.11: Pipeline differences: original vs. tiled panorama.

We assessed the quality selection schemes described in section 6.5 by com-

paring their performance on the entire first half of a soccer game (approx-

132 Chapter 6. Tiling

q0 q1 q2 q3 q4

Mean (all tiles) 21.0 14.8 7.4 4.7 3.0
Std dev. (all tiles) 9.8 6.8 4.1 2.4 0.9

Mean (corner tile) 9.5 8.0 4.5 3.1 2.5
Std dev. (corner tile) 1.4 1.1 0.3 0.07 0.03

Mean (center tile) 33.2 22.4 10.4 6.0 3.6
Std dev. (center tile) 9.6 6.7 3.4 1.8 0.9

Mean (Panorama) 1344.4 944.2 476.3 301.6 191.8
Std dev. (Panorama) 110.1 62.0 21.1 11.4 6.1

Table 6.2: Statistics for the tiles. All values are in KB/s.

imately 47 minutes). We used five quality levels with increasing Constant

Rate Factor (CRF) values, the levels along with the CRF values are q0(21),

q1(24), q2(30), q3(36) and q5(48). Table 6.2 presents statistics regarding the

tiles over the period of 47 minutes. The corner tile refers to the left hand

upper most tile and the center tile refers to the tile approximately in the

center of the field. We also present the bandwidth statistics for the entire

panorama if it were to be fetched in a single quality. It is a rather challenging

task to compress the data for 47 minutes into a few values. However, we can

observe the general trend in the table. The corner tiles, where there is no

activity and mostly black pixels, are best compressed. Whereas, the tiles in

the center, where most of the action takes place, occupy the most bandwidth.

We can also observe that even though at individual tile level, the standard

deviation is about 50% of the mean, at the level of panorama, the standard

deviation is significantly low (less than 10%).

For the investigation, we compared the quality of four pre-generated se-

quences of PTZ operations, called paths (s1 − s4). We created four paths

whose pan/tilt operations follow the general soccer game flow, but the zoom

varies as described and labeled in table 6.3. The quality selection methods

were labeled as shown in table 6.4.

6.6.1 Paths

In order to study the effectiveness of the approaches, we tested all the ap-

proaches using the same paths and studied various costs. The path classes

6.6. Experimental Setup 133

Label Path
s1 The virtual camera is severely zoomed-in
s2 The zoom is at a medium level
s3 An overview video where the view is zoomed-out
s4 A dynamic zoom factor depending on the situation

Table 6.3: Paths: sequences of PTZ operations.

Label Approach
l1 Binary with q0 and q4
l2 Binary with q1 and q3
l3 Rescaled with no prediction
l4 Rescaled with 100 frames prediction
l5 Pyramidal with isotropic weights
l6 Pyramidal with anisotropic weights
l7 Pyramidal with isotropic weights (different parameters)
l8 Full Panorama input (no tiling)

Table 6.4: Labelling of approaches for analysis.
Sheet1

Page 1

0

10

20

30

40

50

60

s1

s2

s3

s4

Frame Numbers

U
s

e
d

 T
ile

s

Figure 6.12: Number of tiles used along time, out of 64 possible, per frame in
sequences of 12-second durations at 4 pre-determined time instants.

are as follows:

• Zoomed-in Class (s1): In this class, the viewer is assumed to be inter-

ested in zoomed-in sections of the panorama. For example, the scenario

where the viewer is following a player closely.

134 Chapter 6. Tiling

• Zoomed-out Class (s2): In this class, the viewer is assumed to be in-

terested in the watching the game at a zoomed-out level. For example,

the viewer is interested in following the general game-play.

• Medium-zoomed Class (s3): In this class, the viewer is assumed to

be watching the game at a medium zoom level. An example scenario

would be to follow the defense of a specific team.

• Random zoom Class (s4): In this class, the viewer has full freedom to

control the zoom to whatever level she wishes. This can be a scenario

where the viewer picks the zoom depending on the game play.

Figure 6.13 presents examples of shots in each class. The same frame

is viewed for different PTZ selections. The number of tiles being used is

different for each view.

6.7 QoE Evaluation Metrics

To be able to evaluate different strategies, it is beneficial to understand the

effect of the approaches on video quality. There are several metrics that

are commonly used in estimating the quality of experience. However, most

metrics are not suitable for truly understanding the quality.

The challenge for well studied objective metric scenarios has so far been to

match subjective viewing experiences for videos of finite duration (8-12 sec-

onds). Objective methods that try to solve this challenge and that have

undergone rigorous independent testing [12] are meant for constant-quality

videos (with uniform disturbances). They can estimate QoE if degradation

in a video spans several frames and work well for individual HAS segments.

However, they may not be suitable when the user is presented with a view

that is stitched from several independently adapting HAS video tile (most

recent ITU-T standard was published after this research). In this scenario,

only parts of the video suffer from distortion and there are updates that can

instantly change the degradation.

6.7. QoE Evaluation Metrics 135

(a) Zoomed in. (b) Medium zoomed.

(c) Zoomed out. (d) Random zoomed.

Figure 6.13: Same frame at different zoom levels.

To compare the quality selection schemes in our paper, we have there-

fore conducted a user study to assess whether the image similarity met-

ric SSIM [147] or OpenVQ, an independent implementation of a perceptual

video quality metric described in ITU-T J.247 [71, Annex B], provide good

estimates of subjective quality assessment. All user study experiments are

performed using 12-second excerpts from the 4 sequences mentioned in ta-

ble 6.3. We should explicitly mention that the subjective experiments are

conducted only to study whether the objective metrics perform on par with

what human subjects think of the videos in our exact usage scenario. Even

though it can be tempting to analyse the input from the users to evaluate

the tiling approaches, we do not perform such an analysis because correct

practices in crowdsourcing for subjective studies are still under heavy debate

in the research community.

136 Chapter 6. Tiling

6.7.1 PSNR

A commonly used measure in evaluating video qualities is PSNR. As [152]

explains, it is solely a pixel difference metric, and quite unrelated to subjec-

tive experience. Already [95] explained its limits, while [65] have clarified

that it can predict human preference in one particular case: when the same

content has been encoded with different compression strengths.

6.7.2 SSIM

The Structured Simularity Index (SSIM) [147] is a metric for assessing differ-

ences between images. It is supposed to model human subjective experience

quite well, but [34] have demonstrated that this fails for a variety of possi-

ble image degradations. In spite of this, SSIM is even used for estimation

the quality of video. x264 makes encoding decisions based on it, and [148]

construct a video quality assessment tool based on it.

6.7.3 OpenVQ

Perceptual Evaluation of Video Quality (PEVQ) is a full-reference algorithm

that outputs mean opinion scores (MOS) as an objective video quality met-

ric. After evaluation by the Video Quality Experts Group (VQEG), it has

become part of the standard ITU-T J.247 [71]. Out of all candidates, PEVQ

achieved the best error rate with respect to subjective studies conducted by

two independent institutes.

Unfortunately, PEVQ is not freely available for researchers, so we used

OpenVQ, which is based on J.247 Annex B, but not a one-to-one implementa-

tion of PEVQ. The patented temporal alignment has been dropped, because

neither HAS nor RTP-based streaming suffer from temporal misalignment.

Furthermore, flaws in the formulas in J.247 Annex B force a rather loose in-

terpretation. The dataset used for evaluating J.247 candidates is not publicly

available, but with a ground truth of ICCRyN datasets [6,112,115], OpenVQ

achieves results close to those reported for PEVQ in J.247.

6.8. Subjective Evaluation 137

6.7.4 Missing Pixel Percentage

Mavlankar et al. [98] introduce the notion of missing-pixel percentage to

evaluate the accuracy of their prediction and thus the quality of the virtual

view. A missing pixel is a pixel in the virtual view where the corresponding

high quality panorama data is not available for rendering. A percentage of

missing pixels can be calculated against the total number of pixels in the

virtual view. The average percentage of missing pixels across several seconds

is used to evaluate various approaches in [97].

6.7.5 Pixel Histogram

In the previous tiling approaches [51, 97], where the selection is mostly a

binary process using either a high quality tile or a low quality thumbnail, the

missing pixel percentage can contain a lot of information about the quality.

But, we also include three pyramidal approaches in the evaluation and they

use multiple quality levels. Hence, we propose using a Tile Histogram. In a

frame of the output virtual view, we count the percentage of pixels fetched

from each tile.

6.8 Subjective Evaluation

As mentioned in section 6.5, we have tiled videos following a HAS model.

An adaptation decision for each tile is made once a second. We do not aim

at generating a single quality value for an entire 47-minute testcase, because

we have not found any valid basis for doing so in the literature. Instead,

we verify how well the above objective metrics describe user experience on a

second-by-second basis.

6.8.1 Design of the User Study

We compared the results of the objective metrics with subjective evaluations

across a range of tiling approaches. The user study was designed to inves-

tigate two aspects of the subjective perception of quality. We consider the

138 Chapter 6. Tiling

noticeability of quality distortions and the experienced annoyance related,

but distinct. We ran two consecutive experiments, one to address the detec-

tion of tiling distortions, and one to address the annoyance resulting from the

distortions. In addition, we included five-point absolute category ratings for

subjective assessments of overall video quality, adhering to ITU-T P.911 [70].

In both experiments, participants watched sequences with durations of

12 seconds extracted from the sequences described at the beginning of sec-

tion 6.7. These were originally chosen as representations of different football

scenarios and hence provided variety to participants and served to increase

generality. Since all sequences included pre-recorded camera panning and

zooming movements, our final stimulus collection contained sequences with

frequent tile shifts and varying changes in compression rate and video qual-

ity. In the detection experiment, we instructed participants to pay attention

to the quality of the presented sequences and to push down the spacebar the

moment they noticed a change for the worse, holding it down for the entire

duration of the quality drop. The annoyance experiment followed the same

procedure, only changing the instructions to ask participants to push down

the spacebar while they experienced annoyance due to low video quality. At

the end of each sequence, participants rated the overall video quality on a

5-point scale ranging from ”bad” to ”excellent”.

In order to secure a sufficient number of participants, we recruited crowd-

sourcing workers. This approach requires some extra methodological consid-

erations due to challenges that concern lack of task adherence and compre-

hension, and in turn, reduced data consistency [11,58–60,80,120,122]. Thus,

we initially conducted 3 pilot studies to ensure that the experiments were pre-

sented in a succinct, but understandable, format. The first was completed

by colleagues and students, the following two on crowdsourceing platforms

Microworkers and Crowdflowers. Following each pilot, we adapted the ex-

periments according to the received feedback. For the final study, we used

Microworkers and collected data from different participants. Although we

implemented quality measures such as gold samples and majority votes, the

highly subjective nature of the task did not allow more than the most basic

automatic filtering to exclude non-complying individuals. We excluded only

6.8. Subjective Evaluation 139

participants who failed to complete the experiment, and on manual inspec-

tion removed participants who had obviously attempted to circumvent the

experimental tasks, altogether 15%. In total 246 participants completed the

annoyance experiments and 242 participants completed the detection (no-

ticeability) experiments. We employed a strategy where a key is generated at

the end of the experiment individually for each participant. However, some

participants managed to find flaws in our key-generation program and recieve

a key without having to record response for all sequences. These are verified

by running through all the input data and verifying individually whether

a response has been recorded for all sequences after completion of the ex-

periments. All other potential exclusion criteria were found to potentially

exclude valid human perceptions as well. In this respect, Riegler et al. [123]

provide an indepth discussion about various filtering approaches and their

weaknesses on this specific dataset.

We then calculated the agreement between participants’ quality ratings

for each sequence using Fleiss Kappa [37]. Because this statistic depends on

the number of raters and comparisons [133], we consider it in the context of

the possible minimum and maximum values, which are established at −0.80

and 1. For the detection experiment, inter-rater agreements varied between

0.22 and 0.37 across the different sequences and quality conditions. The

annoyance experiment yielded values between 0.24 and 0.39. With respect to

the arguably subjective and variable measures of detection and annoyance,

we judge these positive agreement scores as indications that participants

adhered to the task at hand.

6.8.2 Performance of Evaluation Metrics

The analysis of user studies for perception is always challenging, especially

when the users are expected to provide time-varying input. For example, our

study aims at recording perception differences among users, but records also

response time differences between them. Some techniques exist to over-come

this like Dynamic Time Warping, which takes two signals that are assumed

to be similar. However, due to the weakness of such assumptions, we ignored

140 Chapter 6. Tiling

response times and averaged user inputs across all users.

The results of our user study show a reasonably strong relation between

the user input and OpenVQ, but also SSIM. We used Kullback-Leibler-

divergence (KLD) [82] to estimate the information loss in approximating

subjective results with the objective metrics, and KLD stays below 0.05 for

path s1 and below 0.01 for the other paths. Figure 6.14 shows that both

OpenVQ and SSIM can be closer to the average subjective ratings than

PSNR.
Sheet1

Page 1

ae1 ae2 de1 de2
0

2

4

6

8

10

12

14

16

SSIM

PSNR

OpenVQ

Experiment

N
u

m
b

e
r

o
f t

im
e

s
w

ith
 le

a
st

 K
L

D

Figure 6.14: Number of times a metric had the least divergence from the user
input in each task of the experiments among OpenVQ, PSNR and SSIM.

Although PSNR is unsuitable as a metric of visual quality (also quite

easily shown to fail in the case where high- and low-quality tiles are merged

into a single view like in figure 6.15), we present also PSNR results because

they expose unexpected properties of the 1-second video segments. The

PSNR results in figure 6.16a exposed regular severe degradation of the last

frame in each 1-second segment. Although this is not noticable to a human

observer even when single-stepping through the video, it is clear evidence

of problems in ffmpeg or the way in which we use it. On visual inspection,

stepping through each frame, we have not found any noticeable degradation.

In conclusion, we use SSIM and OpenVQ metrics to further analyse the tiling

approaches.

6.9. Results 141

(a) l3s4 - PSNR: 30.39. (b) l7s4 - PSNR: 30.89.

Figure 6.15: Example of severe differences within a frame (319), leading to similar
PSNR values.

6.9 Results

In this section, we mostly discuss the sequence s4 which is representative of

the real-life virtual camera operation. However, using the other sequences

we can observe zoom specific results. For example, s1 consumes the least

amount of bandwidth due the required low number of tiles. We can also

observe from s3 that when the user is interested in overview of the field,

there is no need to fetch highest quality tiles.

6.9.1 Bandwidth

A simple way to determine the cost of network delivery is to measure the

bandwidth. The most commonly used measurement is the average bandwidth

along the entire run. Figure 6.17 presents a box-plot of each approach using

different paths for the first half of the game. However, the interactive services

can have different bandwidth requirements at different instances. Therefore,

we use the running bandwidth profile to evaluate the performance of the

approaches. Figure 6.18 shows the bandwidth profile for all approaches for

a 90-second duration at 1000 seconds into the game. We can observe that

there is some correlation with the number of tiles used at that time instant,

which can be seen in figure 6.20.

142 Chapter 6. Tiling
Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
20

22

24

26

28

30

32

34

36

38

40

l7s4 (34.29)
l6s4 (34.23)
l5s4 (34.29)
l4s4 (32.71)
l3s4 (31.73)
l2s4 (34.21)
l1s4 (32.09)

Time (s)

P
S

N
R

 (
dB

)

(a) PSNR.
Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
0.7

0.75

0.8

0.85

0.9

0.95

1

l7s4 (0.91)

l6s4 (0.92)

l5s4 (0.92)

l4s4 (0.92)

l3s4 (0.91)

l2s4 (0.91)

l1s4 (0.90)

Time (s)

S
S

IM

(b) SSIM.
Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

l7s4 (4.37)

l6s4 (4.36)

l5s4 (4..37)

l4s4 (3.69)

l3s4 (3.5)

l2s4 (4.34)

l1s4 (3.77)

Time (s)

D
M

O
S

(c) OpenVQ.

Figure 6.16: Different variation over the quality metrics across the 12 second
clips. For reference, the average of each metric across the 12-second duration is
also presented in parenthesis for each approach.

The methods are tuned to provide similar bandwidth with slight varia-

tions depending on the number of tiles used. However, it is quite evident

that the approaches using highest quality tiles wherever required will have

high bandwidth usage when a lot of tiles are used in the view. This can be

6.9. Results 143Sheet1

Page 1

l1s1l2s1l3s1l4s1l5s1l6s1l7s1l8s1 l1s2l2s2l3s2l4s2l5s2l6s2l7s2l8s1 l1s3l2s3l3s3l4s3l5s3l6s3l7s3l8s1 l1s4l2s4l3s4l4s4l5s4l6s4l7s4l8s1
0

200

400

600

800

1000

1200

1400

Row 5709

Row 5708

Row 5707

Row 5706

Mode

B
a

n
d

w
id

th
(K

B
/s

)

Figure 6.17: A boxplot of the bandwidth consumed in (KB/s) for different ap-
proaches over 2.834 seconds(47 min) representing the first half of a game.

Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

l1s4

l2s4

l3s4

l4s4

l5s4

l6s4

l7s4

l8

Time(s)

B
an

dw
id

th
 (

K
B

/s
)

Figure 6.18: Bandwidth profile for 90 seconds duration in the middle of s4.

Tiles Total out21 out24 out30 out36 out48
2x2 17G 7.5G 5.0G 2.2G 1.2G 528M
4x4 18G 7.7G 5.3G 2.5G 1.5G 821M
8x8 23G 8.7G 6.4G 3.7G 2.4G 1.8G

Table 6.5: Size of the data for a soccer video of 6297 seconds using different tile
granularity when compressing each tile with CRF values of 21, 24, 30, 36 and 48
on 1 second segments. In comparison, the size of the non-tiled panorama using
the same segment length is 7.3 GB.

seen in the great bandwidth requirement for l1, l3 and l4. However, over the

144 Chapter 6. Tiling

long run of the random zoom sequence (s4), which is probably most repre-

sentative of a real scenario, the bandwidth consumption for all approaches is

quite similar. For an estimate of the costs on the server side, we present the

total disk space occupied by the tiled segments in table 6.5. Irrespective of

the approach, it can be observed that the bandwidth savings are quite high,

sometimes reducing the requirements to 25% of the full panorama. Hence, it

becomes important to evaluate the approaches in terms of subjective quality.

6.9.2 Quality

So far, no approach exists that can provide the best visual quality and low

bandwidth usage at the same time during the entire virtual view operation.

From figure 6.19, we can observe that all methods suffer from quality degra-

dation at times. However, some approaches, especially the pyramidal ones,

can provide decent bandwidth savings and also acceptable quality most of

the time. The predictive approach is functional and provides improvement

only when the actual positions match the predicted ones. However, with

a completely random operation, this can be challenging even with sophisti-

cated algorithms. Moreover, the prediction algorithms seem to be the most

expensive on bandwidth. However, not all high quality tiles fetched are used

for extraction of the virtual view.

In figure 6.19, we can see that a value of 0.93 for SSIM and 4.5 for DMOS

runs along the time with drops depicting the quality changes during the

virtual camera movement. These values imply that the visual quality of the

tiled virtual view is on par with the original. Even in the drops, we observe

that the pyramidal approaches perform better than the others. However,

SSIM and OpenVQ are full-reference quality measures, which implies that

the evaluation can only be carried out with the presence of the high-quality

virtual view. However, there are ad-hoc measures that one can collect in the

background without much resource consumption and that can provide some

insight into the quality of a virtual view.

Mavlankar et al. [97] provide evaluation results also as average percentage

of missing pixels for a 480×240 cropped view of 2560×704 pixels panorama.

6.9. Results 145Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

D
M

O
S

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

l8s4

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

D
M

O
S

(a) OpenVQ variation. Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0.7

0.75

0.8

0.85

0.9

0.95

1

l8s4

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

S
S

IM

(b) SSIM variation.

Figure 6.19: Measured variation across 90 seconds at 1000 seconds into the soccer
game for s4.

This 6.7% ratio is equivalent to using 4 tiles in a 64 tiled panorama (s1

from figure 6.12), in which case the average percentage of missing pixels of

around 20%, from table 6.6, is coherent with their results. From table 6.6,

146 Chapter 6. TilingSheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Time (s)

U
s

ed
 T

ile
s

Figure 6.20: Number of used tiles across 90 seconds at 1000 seconds into the
soccer game for s4.

Label/Sequence s1 s2 s3 s4
l3 20.22 10.20 2.60 9.44
l4 18.20 8.56 1.94 6.53

Table 6.6: Average percentage of Missing pixels measurements over the entire
first half of the game.

we can also observe that the missing pixel percentage varies depending on

the zoom. An example profile of a pixel histogram is plotted in figure 6.21.

One can observe some correlation between the pixel histogram profile and

the variations in quality observed from OpenVQ or SSIM. Ad-hoc metrics

like these can be used as reference to check the quality on the fly during the

process. However, full-reference metrics provide the most accurate insights

into the quality variations.

6.10 Discussion

The study presented uses HAS as the delivery method for tiled panorama

video. From the analysis of quality metrics and bandwidth profiles for dif-

ferent movement path of a virtual camera, we make several observations for

the various approaches. We find that the pyramidal approaches provide a

stable quality across different zoom factors and random movements, i.e., it

6.10. Discussion 147Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

q0 (0.08)

q1 (81.72)

q2 (3.47)

q3 (14.27)

q4 (0.44)

Time (s)

P
er

ce
nt

a
ge

 o
f p

ix
el

s
(%

)

Figure 6.21: Pixel histogram across 90 seconds along with the average percentages
for each level in the parenthesis.

is a good tradeoff between bandwidth savings and perceived video quality.

When only a little portion of the panorama is used, we find that the rescaling

approaches take up the least bandwidth, but the loss in quality is significant.

The prediction results are not especially impressive when using a general pre-

diction algorithm, and Mavlankar et al. [97] found that even context-based

prediction does not lead in much improvement.

The adaptation strategies evaluated in this paper try to adapt the qual-

ity of a tile according to the movement of the view in order to have as good

quality as possible in the area of the panorama used by the virtual camera

to generate the view. There are, however, numerous works that similarly

try to optimize the quality of traditional (non-panoramic) HAS streaming

according to available resources. Clients of all major HAS variants, i.e., Ap-

ple HLS, Microsoft Smooth Streaming and DASH, have algorithms trying

to have a high, stable quality. Additionally, researchers have presented ap-

proaches trying to optimize the segment retrieval, e.g., according to buffer

occupancy [124] and consistent visual quality [87]. However, including this in

the current study is out of the scope, but it is an interesting topic to pursue

in the future combining optimal tile quality according to both the virtual

view and the available resources.

We have also explored and analysed the effect of different segmented

148 Chapter 6. Tiling

streaming approaches on the quality for arena sport scenario, where the

movement on the field is small compared to the entire field. It would be

definitely interesting to explore them in different scenarios like the ones with

details but static and details with large movements. However, these scenarios

may require different treatment to achieve a good tradeoff between quality

and bandwidth usage.

6.11 Summary

We have presented multiple approaches for tiling that can exploit the coding

efficiency of H.264 to reduce bandwidth requirements for an interactive live

PTZ system. We have evaluated the approaches using several methods and

compared these methods for their closeness to subjective perception.

Based on our experimental results, we provide several conclusions. Over-

all, our results prove that pyramidal approaches reduce the bandwidth re-

quirement and at the same time provides a similar QoE compared to a full-

quality, non-tiled panorama system. Furthermore, utilizing the CRF param-

eter of H.264 provides better bandwidth savings and better visual quality

compared to up-scaling a thumbnail video when the panoramic system is

static and the movement in the scene is little compared to the scene itself.

This is a rather common scenario for arena sports like Rugby, Soccer, Hockey,

Cricket etc. Since a subjective study is a time-consuming and expensive way

to evaluate the approaches, objective evaluation is a good alternative. We

conclude that traditional evaluation methods will fail to correlate well with

the subjective assessment of the experience, and a new metric, OpenVQ,

closely capture subjective ratings.

Both the approaches and evaluation methods can be used with other

interactive live PTZ camera systems as well. However, the tiling approaches,

especially the quality levels, will require some parameter tuning specific to

the application to gain optimal performance.

Chapter 7

Conclusion

The growing availability of high-speed Internet access has gone along with a

growth in interactive and immersive multimedia applications, and panoramic

video is a feature that is becoming more and more popular in various scenarios

for its ability to increase immersion. We have designed and implemented a

system called Bagadus in this context and used soccer as a case study. Sports

like soccer have always provided opportunities for innovation in broadcasting.

The challenges in providing interactive experiences in broadcasting to a large

audience span several fields. One such challenge is to provide a real-time

pannable and zoomable virtual camera to several thousands or even millions

of users.

7.1 Summary & Contributions

Originally, Bagadus system was envisioned in the scope of soccer analytics.

In this thesis, We mainly focussed on the video components of the system.

We aimed at improving quality of the captured video, providing new ways

of interacting with the broadcast and handling the challenges in real-time

delivery of the interactive services. As a result, the single most important

outcome of this dissertation is the working prototype of the live interactive

video system running at Alfheim soccer stadium in Tromsø (used by Tromsø

IL, a Norwegian elite club) and at Ullevaal stadium in Oslo (used by the

149

150 Chapter 7. Conclusion

Norwegian National team).

From the technical point of view, there are several contributions from

the dissertation. The contributions are covered in detail in the chapters,

however, they are briefly listed as follows:

• The challenges involved in making a visually pleasing panorama auto-

matically from a real-world outdoor stadium are several. We managed

to generate a seamless panorama video of size 4096 pixels from multi-

ple cameras in real-time at 50fps including features like HDR, synchro-

nized capture and dynamic seam to solve challenging light conditions.

In the process, we have made several contributions towards real-time

panorama creation on a distributed panorama video pipeline.

• We present a virtual Pan-Tilt-Zoom (PTZ) camera in order to extract

an interactive personalized virtual view from a panorama video in real-

time. We present different approaches for virtual camera extraction

using heterogeneous architecture and speeding it up using a parallel

architecture. Even on a commodity laptop hardware, we are able to

achieve speeds up to 300 fps for extraction of the virtual view.

• We developed methods for automatically steering the PTZ camera to

user’s requirements. In this mode of interaction, the user can request to

follow the ball or a player or a group of players, and the system will au-

tomatically generate a virtual camera that smoothly pans/tilts/zooms

according to the request using the data from the tracking subsystem.

• We also present valuable results from a subjective user study using

the full pair-wise comparison tests to judge the performance of the

automatic operation in comparison to an experienced human operator.

• A high resolution panorama video requires large bandwidth. We exper-

imented with a DASH-based spatially segmented streaming approach

to reduce the bandwidth required by splicing the panoramic video into

tiles. We also demonstrate that, by fetching the appropriate quality

tiles in relation to the user interaction, the quality of experience is not

compromised, but the bandwidth consumption is greatly reduced.

7.2. Future Scope 151

In addition, the author has supervised several master students and pub-

lished several papers (not all are included in the thesis). In particular, the

thesis has contributed to six journal papers [40, 47, 84, 137–139], five con-

ference papers [41, 42, 46, 143, 151], four technical demos [43–45, 103], two

posters [76, 83], and one dataset paper [114].

Over the thesis, we touched upon several related works and the state-

of-the-art. Due to the number of fields a real-time live interactive video

delivery system touches upon, there is a large amount of work published.

However, existing systems either (i) lack the real-time requirment, (ii) deal

with only parts of such an interactive system, or (iii) do not elaborate on

the system level details. Hence this thesis, detailing the challenges, research,

development and evaluation of Bagadus system, extends the state-of-the-art

by providing a comprehensive yet detailed journey into the world of real-time

live interactive video delivery systems for sports. Finally, the entire code is

made available as an open-source project [134]. This allows anyone to use

the code and replicate our system for research purposes.

7.2 Future Scope

There are several places where further efforts can improve and extend the

Bagadus system’s capabilities. These include both extensions to functionalit

and improvements to the technical solutions. Listing all is out of scope, but

here we give some examples.

For example, the audio component has not been taken into consideration

so far. However, audio plays an important role in the experience of a sports

event. A similar approach, as in this thesis, could be followed for audio in

terms of capturing, presenting and delivering it to the audience. In addition,

multimodal data introduces further interesting challenges, like for example

synchronization between different data streams.

We implemented the virtual viewer client for desktops and laptops. It

would be interesting to take a step further and develop a similar service for

mobile devices like cell-phones or tablets. This would introduce interesting

research topics about the power consumption.

152 Chapter 7. Conclusion

During the development of Bagadus system, a startup company (Forzasys

AS) focussing on enabling users to create playlists from their favorite matches

has been established. However, creation of highlights and such playlists can

involve a lot manual work. Some researchers have focussed on automatically

extracting highlights using several image processing techniques [4,21,27,68,

103]. An interesting approach in settings like Bagadus, where the camera

system is fixed and undergo minimal changes over time, would be to train

a neural network that could automatically extract highlights. The accuracy

and efficiency of such a network can benefit greatly from the fact that the

videos are very similar in nature.

When we discuss the compression of panorama video, we use off-the-

shelf H.264 encoding. However, H.264 is aimed at encoding general videos

with great compression rate and low loss in quality. The H.264 performs

a great job because the videos generated from Bagadus are mostly static

with only a small percentage of pixels containing movement of the players.

However, recent interest in VR applications definitely require further study

and research into encoding of panoramic videos.

One field which we have not touched upon during the work in this thesis

is compressed domain processing. The main data communication happens in

compressed domain due to the size of raw data in videos. However, most

processing happens after the video data is uncompressed. A major drawback

of this is seen in the tiling chapter, where the amount of processing power

required to decode several tiles in real-time is huge. In this regard, it can

be beneficial to explore approaches to assemble a tiled video in compressed

domain.

We discuss greatly about technologies enabling interaction with the videos.

However, we only demonstrate simple use cases of such interaction. However,

several interfaces can be designed using the frameworks developed in this the-

sis that suit the needs the users. There are several advancements in getting

user input, like gesture recognition technology, haptic sensors, inertial motion

sensors. Further work can explore using such sensor technologies to interact

with the panorama video data in different ways.

An extension of the Bagadus-like systems in other domains, for example,

7.3. Concluding Remarks 153

in medical field where a lot of data is generated during a diagnosis, would

be very interesting. It can be beneficial to take the integration ideas from

Bagadus and apply in such a system to save time for experts analysing the

diagnosis data or to achieve tele-diagnosis.

7.3 Concluding Remarks

Finally, virtual reality is slowly emerging as a powerful field in several areas

like medicine, sports, defense, survelliance and entertainment. In this the-

sis, we have researched enabling real-time interactivity in the broadcast of

soccer videos. This led us on an interesting journey with a lot of challenges,

approaches to solve them, and further new ways to go.

Bibliography

[1] A. Adams and R. Baker. The print. Little, Brown, 1983.

[2] J. Adams. Design of practical color filter array interpolation algorithms

for digital cameras .2. In Proceedings of the IEEE International Con-

ference on Image Processing, volume 1, pages 488–492 vol.1, Oct 1998.

[3] A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, and R. Szeliski. Pho-

tographing long scenes with multi-viewpoint panoramas. ACM Trans-

actions on Graphics, 25(3):853–861, July 2006.

[4] Y. Ariki, S. Kubota, and M. Kumano. Automatic production sys-

tem of soccer sports video by digital camera work based on situation

recognition. In Proceedings of the IEEE International Symposium on

Multimedia, pages 851–860, 2006.

[5] A. Au and J. Liang. Ztitch: A mobile phone application for immersive

panorama creation, navigation, and social sharing. In Proceedings of

the IEEE International Workshop on Multimedia Signal Processing,

pages 13–18, Sept 2012.

[6] F. Boulos, W. Chen, B. Parrein, and P. Le Callet. Region-of-interest

intra prediction for H.264/AVC error resilience. In Proceedings of the

IEEE International Conference on Image Processing, pages 3109–3112,

2009.

[7] D. Bradley, A. Brunton, M. Fiala, and G. Roth. Image-based navi-

gation in real environments using panoramas. In Proceedings of the

155

156 Bibliography

IEEE International Workshop on Haptic Audio Visual Environments

and their Applications, pages 3 pp.–, Oct 2005.

[8] G. Bradski. Opencv library. Dr. Dobb’s Journal of Software Tools,

2000.

[9] W. Brendel, M. Amer, and S. Todorovic. Multiobject tracking as max-

imum weight independent set. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1273–1280, June

2011.

[10] J. Brosz and F. Samavati. Shape defined panoramas. In Proceedings

of the International Conference on Shape Modeling, pages 57–67, June

2010.

[11] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-

N. Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi,

B. Lawlor, P. Le Callet, S. Möller, F. Pereira, M. Pereira, A. Perkis,

J. Pibernik, A. Pinheiro, A. Raake, P. Reichl, U. Reiter, R. Schatz,

P. Schelkens, L. Skorin-Kapov, D. Strohmeier, C. Timmerer, M. Varela,

I. Wechsung, J. You, and A. Zgank. Qualinet White Paper on Defi-

nitions of Quality of Experience, Mar 2013. Qualinet White Paper on

Definitions of Quality of Experience Output from the fifth Qualinet

meeting, Novi Sad, March 12, 2013.

[12] K. Brunnstrom, D. Hands, F. Speranza, and A. Webster. VQEG val-

idation and ITU standardization of objective perceptual video quality

metrics. IEEE Signal Processing Magazine, 26(3):96–101, 2009.

[13] S. Brutzer, B. Hoferlin, and G. Heidemann. Evaluation of background

subtraction techniques for video surveillance. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages

1937–1944, 2011.

[14] Cairos technologies. VIS.TRACK, 2013.

http://www.cairos.com/unternehmen/vistrack.php.

Bibliography 157

[15] Camargus. Premium Stadium Video Technology Inrastructure, 2013.

http://www.camargus.com/.

[16] A. Carlier, V. Charvillat, W. T. Ooi, R. Grigoras, and G. Morin.

Crowdsourced automatic zoom and scroll for video retargeting. In Pro-

ceedings of the ACM International Conference on Multimedia, pages

201–210, New York, NY, USA, 2010. ACM.

[17] P. Carr and R. Hartley. Portable multi-megapixel camera with real-

time recording and playback. In Proceedings of the Digital Image Com-

puting Techniques and Applications, pages 74–80, 2009.

[18] P. Carr, M. Mistry, and I. Matthews. Hybrid robotic/virtual pan-tilt-

zom cameras for autonomous event recording. In Proceedings of the

ACM International Conference on Multimedia, pages 193–202, 2013.

[19] R. Carroll, M. Agrawal, and A. Agarwala. Optimizing content-

preserving projections for wide-angle images. ACM Transactions on

Graphics, 28(3):43:1–43:9, July 2009.

[20] E. Chang, S. Cheung, and D. Y. Pan. Color filter array recovery using a

threshold-based variable number of gradients. In Proceedings of SPIE,

Sensors, Cameras, and Applications for Digital Photography, volume

3650, pages 36–43, 1999.

[21] F. Chen and C. De Vleeschouwer. Personalized production of basketball

videos from multi-sensored data under limited display resolution. Com-

puter Vision and Image Understanding, 114(6):667–680, June 2010.

[22] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei. A crowdsourceable

QoE evaluation framework for multimedia content. Proceedings of the

ACM International Conference on Multimedia, pages 491–500, 2009.

[23] D. Cok. Signal processing method and apparatus for producing inter-

polated chrominance values in a sampled color image signal, Feb. 1987.

US Patent 4,642,678.

158 Bibliography

[24] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and

P. R. Young. Computing as a discipline. Communications of the ACM,

32(1):9–23, Jan. 1989.

[25] D. Culibrk, O. Marques, D. Socek, H. Kalva, and B. Furht. A neural

network approach to bayesian background modeling for video object

segmentation. In Proceedings of the International Conference on Com-

puter Vision Theory and Applications, pages 474–479, 2006.

[26] L. D’Acunto, J. Redi, and O. Niamut. icacot-interactive camera-based

coaching and training. In Proceedings of the 3rd Workshop on Interac-

tive Content Consumption, 2015.

[27] S. Daigo and S. Ozawa. Automatic pan control system for broadcasting

ball games based on audience’s face direction. In Proceedings of the

ACM International Conference on Multimedia, pages 444–447, 2004.

[28] T. De Pessemier, K. De Moor, I. Ketykó, W. Joseph, L. De Marez, and

L. Martens. Investigating the influence of QoS on personal evaluation

behaviour in a mobile context. Multimedia Tools and Applications,

57(2):335–358, Jan. 2012.

[29] A. Dearden, Y. Demiris, and O. Grau. Learning mod-

els of camera control for imitation in football matches.

https://spiral.imperial.ac.uk:8443/handle/10044/1/12720.

[30] P. E. Debevec and J. Malik. Recovering high dynamic range radiance

maps from photographs. In Proceedings of the Annual Conference on

Computer graphics and interactive techniques, pages 369–378. ACM,

2008.

[31] P. Dizikes. Sports analytics: a real game-changer, 2013.

http://web.mit.edu/newsoffice/2013/sloan-sports-analytics-

conference-2013-0304.html.

[32] B. H. Do and S. C. Huang. Dynamic background modeling based on

radial basis function neural networks for moving object detection. In

Bibliography 159

Proceedings of the IEEE International Conference on Multimedia and

Expo, pages 1–4, July 2011.

[33] Dolphin Interconnect. Dolphin Interconnect PCI Express, 2013.

http://www.dolphinics.no.

[34] R. Dosselmann and X. Yang. A comprehensive assessment of the struc-

tural similarity index. Signal, Image and Video Processing, 5(1):81–91,

2011.

[35] A. Eden, M. Uyttendaele, and R. Szeliski. Seamless image stitching

of scenes with large motions and exposure differences. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

volume 2, pages 2498–2505, 2006.

[36] M. C. Q. Farias, J. M. Foley, and S. K. Mitra. Detectability and an-

noyance of synthetic blocky, blurry, noisy, and ringing artifacts. IEEE

Transactions on Signal Processing, 55(6):2954–2964, June 2007.

[37] J. L. Fleiss. Measuring nominal scale agreement among many raters.

Psychological bulletin, 76(5):378, 1971.

[38] E. Foote, P. Carr, P. Lucey, Y. Sheikh, and I. Matthews. One-man-

band: A touch screen interface for producing live multi-camera sports

broadcasts. In Proceedings of the ACM International Conference on

Multimedia, pages 163–172, 2013.

[39] J. Foote and D. Kimber. Flycam: practical panoramic video and auto-

matic camera control. In Proceedings of the IEEE International Con-

ference on Multimedia and Expo, volume 3, pages 1419–1422 vol.3,

2000.

[40] V. R. Gaddam, R. Eg, R. Langseth, C. Griwodz, and P. Halvorsen. The

cameraman operating my virtual camera is artificial: Can the machine

be as good as a human? ACM Transactions on Multimedia Computing,

Communications, and Applications, 11(4):56:1–56:20, June 2015.

160 Bibliography

[41] V. R. Gaddam, C. Griwodz, and P. Halvorsen. Automatic exposure

for panoramic systems in uncontrolled lighting conditions: a football

stadium case study. In Proceedings of SPIE The Engineering Reality

of Virtual Reality, volume 9012, pages 90120C–90120C–9, 2014.

[42] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat,

C. Griwodz, and P. Halvorsen. Interactive zoom and panning from live

panoramic video. In Proceedings of the ACM International Workshop

on Network and Operating System Support for Digital Audio and Video,

pages 19:19–19:24, 2014.

[43] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, and

P. Halvorsen. Automatic real-time zooming and panning on salient

objects from a panoramic video. In Proceedings of the ACM Inter-

national Conference on Multimedia, pages 725–726. ACM, November

2014.

[44] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz,

P. Halvorsen, and D. Johansen. Scaling virtual camera services to a

large number of users. In Proceedings of the ACM International Con-

ference on Multimedia Systems, pages 93–96, New York, NY, USA,

2015. ACM.

[45] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V. Charvil-

lat, C. Griwodz, D. Johansen, and P. Halvorsen. Be your own camera-

man: Real-time support for zooming and panning into stored and live

panoramic video. In Proceedings of the ACM Conference on Multimedia

Systems, pages 168–171. ACM, March 2014.

[46] V. R. Gaddam, H. B. Ngo, R. Langseth, C. Griwodz, D. Johansen,

and P. Halvorsen. Tiling of panorama video for interactive virtual

cameras: Overheads and potential bandwidth requirement reduction.

In Proceedings of the IEEE Picture Coding Symposium, pages 204–209,

May 2015.

Bibliography 161

[47] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen. [in re-

view]tiling in interactive panoramic video: Approaches and evaluation.

IEEE Transactions on Multimedia.

[48] J. Gao, S. J. Kim, and M. Brown. Constructing image panoramas using

dual-homography warping. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 49–56, June 2011.

[49] L. Goldmann, F. D. Simone, F. Dufaux, T. Ebrahimi, R. Tanner, and

M. Lattuada. Impact of video transcoding artifacts on the subjective

quality. In Proceedings of the International Conference on Quality of

Multimedia Experience, pages 52–57, Trondheim, 2010.

[50] C. Grunheit, A. Smolic, and T. Wiegand. Efficient representation and

interactive streaming of high-resolution panoramic views. In Proceed-

ings of the IEEE International Conference on Image Processing, vol-

ume 3, pages III–209–III–212 vol.3, 2002.

[51] R. Guntur and W. T. Ooi. On tile assignment for region-of-interest

video streaming in a wireless lan. In Proceedings of the ACM Interna-

tional Workshop on Network and Operating System Support for Digital

Audio and Video, pages 59–64, 2012.

[52] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. Kristensen, A. Eichhorn,

M. Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz,

and D. Johansen. Bagadus: An integrated system for arena sports

analytics a soccer case study. In Proceedings of the ACM International

Conference on Multimedia Systems, pages 48–59, Mar. 2013.

[53] M. Harris. Optimizing parallel reduction in cuda. NVIDIA Developer

Technology, 2:45, 2007.

[54] C. Hermans, C. Vanaken, T. Mertens, F. Van Reeth, and P. Bekaert.

Augmented panoramic video. Computer Graphics Forum, 27(2):281–

290, 2008.

162 Bibliography

[55] S. Heymann, A. Smolic, K. Mueller, Y. Guo, J. Rurainsky, P. Eisert,

and T. Wiegand. Representation, coding and interactive rendering of

high-resolution panoramic images and video using mpeg-4. In Proceed-

ings of Panoramic Photogrammetry Workshop, 2005.

[56] K. Hirakawa, S. Member, and T. W. Parks. Adaptive homogeneity-

directed demosaicing algorithm. IEEE Transactions on Image Pro-

cessing, 14:360–369, 2005.

[57] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP Payload

Format for MPEG1/MPEG2 Video. RFC 2250 (Proposed Standard),

Jan. 1998.

[58] T. Hoßfeld, M. Hirth, J. Redi, F. Mazza, P. Korshunov, B. Naderi,

M. Seufert, B. Gardlo, S. Egger, and C. Keimel. Best practices and

recommendations for crowdsourced qoe - lessons learned from the qua-

linet task force crowdsourcing, Oct 2014.

[59] T. Hoßfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and

P. Tran-Gia. Best practices for qoe crowdtesting: Qoe assessment with

crowdsourcing. IEEE Transactions on Multimedia, 16(2):541–558, Feb

2014.

[60] T. Hoßfeld, C. Keimel, and C. Timmerer. Crowdsourcing quality-of-

experience assessments. Computer, 47(9):98–102, Sept 2014.

[61] K. A. Hua, Y. Cai, and S. Sheu. Patching: a multicast technique for

true video-on-demand services. In Proceedings of the ACM Interna-

tional Conference on Multimedia, pages 191–200, 1998.

[62] S. C. Huang. An advanced motion detection algorithm with video

quality analysis for video surveillance systems. IEEE Transactions on

Circuits and Systems for Video Technology, 21(1):1–14, Jan 2011.

[63] S. C. Huang and B. H. Chen. Highly accurate moving object detec-

tion in variable bit rate video-based traffic monitoring systems. IEEE

Bibliography 163

Transactions on Neural Networks and Learning Systems, 24(12):1920–

1931, Dec 2013.

[64] C. Hughes, M. Glavin, E. Jones, and P. Denny. Review of geometric

distortion compensation in fish-eye cameras. In Proceedings of the Irish

Signals and Systems Conference, pages 162–167, June 2008.

[65] Q. Huynh-Thu and M. Ghanbari. Scope of validity of PSNR in im-

age/video quality assessment. Electronics Letters, 44(13):800–801,

2008.

[66] M. Ibrahim, R. Hafiz, M. Khan, Y. Cho, and J. Cha. Automatic ref-

erence selection for parametric color correction schemes for panoramic

video stitching. In Advances in Visual Computing, volume 7431 of

Lecture Notes in Computer Science, pages 492–501. 2012.

[67] Indumos. Indumos, 2013. http://www.indumos.su/images/upload/en/71/ptz140-

camera-ptz.jpg.

[68] Interplay sports. The ultimate video analysis and scouting software,

2013. http://www.interplay-sports.com/.

[69] ITU-R. BT.500-11. Methodology for the subjective assessment of the

quality of television pictures, 2002.

[70] ITU-T. P.911. Subjective audiovisual quality assessment methods for

multimedia applications, 1998.

[71] ITU-T. J.247: Objective perceptual multimedia video quality measure-

ment in the presence of a full reference, 2008.

[72] M. Jogan and A. Leonardis. Robust localization using panoramic view-

based recognition. In Proceedings of the IEEE International Conference

on Pattern Recognition, volume 4, pages 136–139 vol.4, 2000.

[73] D. Johansen, M. Stenhaug, R. B. A. Hansen, A. Christensen, and P.-M.

Høgmo. Muithu: Smaller footprint, potentially larger imprint. In Pro-

164 Bibliography

ceedings of the IEEE International Conference on Digital Information

Management, pages 205–214, Aug. 2012.

[74] P. Kaewtrakulpong and R. Bowden. An improved adaptive background

mixture model for realtime tracking with shadow detection. In Pro-

ceedings of Workshop on Advanced Video Based Surveillance Systems,

pages 135–144, 2001.

[75] M. Karczewicz and R. Kurceren. The SP- and SI-frames design for

H.264/AVC. IEEE Transactions on Circuits and Systems for Video

Technology, 13(7):637–644, 2003.

[76] L. Kellerer, V. R. Gaddam, R. Langseth, H. Stensland, C. Griwodz,

D. Johansen, and P. Halvorsen. Real-time hdr panorama video. In

Proceedings of the ACM International Conference on Multimedia, pages

1205–1208, New York, NY, USA, 2014. ACM.

[77] H. Kimata, M. Isogai, H. Noto, M. Inoue, K. Fukazawa, and N. Mat-

suura. Interactive panorama video distribution system. In Proceedings

of the IEEE Technical Symposium at ITU Telecom World, pages 45–50,

Oct 2011.

[78] H. Kimata, D. Ochi, A. Kameda, H. Noto, K. Fukazawa, and A. Ko-

jima. Mobile and multi-device interactive panorama video distribution

system. In Proceedings of the Global Conference on Consumer Elec-

tronics, pages 574–578, Oct 2012.

[79] R. Kimmel. Demosaicing: image reconstruction from color ccd samples.

IEEE Transactions on Image Processing, 8(9):1221–1228, Sep 1999.

[80] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with

mechanical turk. In Proceedings of the ACM Conference on Human

Factors in Computing Systems, pages 453–456, 2008.

[81] C. Kreuzberger, D. Posch, and H. Hellwagner. A scalable video coding

dataset and toolchain for dynamic adaptive streaming over HTTP.

Bibliography 165

In Proceedings of the ACM International Conference on Multimedia

Systems, pages 213–218, 2015.

[82] S. Kullback and R. A. Leibler. On information and sufficiency. The

annals of mathematical statistics, pages 79–86, 1951.

[83] R. Langseth, V. Gaddam, H. Stensland, C. Griwodz, and P. Halvorsen.

An evaluation of debayering algorithms on gpu for real-time panoramic

video recording. In Proceedings of the IEEE International Symposium

on Multimedia, pages 110–115, Dec 2014.

[84] R. Langseth, V. R. Gaddam, H. K. Stensland, C. Griwodz,

P. Halvorsen, and D. Johansen. An experimental evaluation of debay-

ering algorithms on gpus for recording panoramic video in real-time.

International Journal of Multimedia Data Engineering and Manage-

ment, 6:1–16, 07/2015 2015.

[85] G. W. Larson, H. Rushmeier, and C. Piatko. A visibility matching tone

reproduction operator for high dynamic range scenes. IEEE Transac-

tions on Visualization and Computer Graphics, 3(4):291–306, 1997.

[86] J.-S. Lee, L. Goldmann, and T. Ebrahimi. Paired comparison-based

subjective quality assessment of stereoscopic images. Multimedia Tools

and Applications, 67(1):31–48, 2012.

[87] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Stream-

ing video over HTTP with consistent quality. In Proceedings of the

ACM International Conference on Multimedia Systems, pages 248–258,

2014.

[88] W.-Y. Lin, S. Liu, Y. Matsushita, T.-T. Ng, and L.-F. Cheong.

Smoothly varying affine stitching. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 345–352,

June 2011.

166 Bibliography

[89] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classification and

tracking from real-time video. In Proceedings of the IEEE Workshop

on Applications of Computer Vision, pages 8–14, Oct 1998.

[90] F. Liu and W. T. Ooi. Zoomable video playback on mobile devices by

selective decoding. In Proceedings of the Pacific-Rim Conference on

Multimedia, 2012.

[91] W. Lu and Y.-P. Tan. Color filter array demosaicking: new method

and performance measures. IEEE Transactions on Image Processing,

12(10):1194–1210, Oct 2003.

[92] L. Maddalena and A. Petrosino. A self-organizing approach to back-

ground subtraction for visual surveillance applications. IEEE Trans-

actions on Image Processing, 17(7):1168–1177, July 2008.

[93] E. Malis, F. Chaumette, and S. Boudet. 2d visual servoing. IEEE

Transactions on Robotics and Automation, 15(2):238–250, Apr 1999.

[94] H. S. Malvar, L. wei He, and R. Cutler. High-quality linear interpo-

lation for demosaicing of bayer-patterned color images. In Proceedings

of the IEEE International Conference on Speech, Acoustics, and Signal

Processing, 2004.

[95] J. L. Mannos and D. J. Sakrison. The effects of a visual fidelity criterion

of the encoding of images. IEEE Transactions on Information Theory,

20(4):525 – 536, 1974.

[96] A. Manzanera and J. C. Richefeu. A new motion detection algorithm

based on Σ − ∆ background estimation. Pattern Recognition Letters,

28(3):320–328, Feb. 2007.

[97] A. Mavlankar and B. Girod. Pre-fetching based on video analysis for

interactive region-of-interest streaming of soccer sequences. In Proceed-

ings of the IEEE International Conference on Image Processing, pages

3061–3064, Nov 2009.

Bibliography 167

[98] A. Mavlankar and B. Girod. Video streaming with interactive

pan/tilt/zoom. In M. Mrak, M. Grgic, and M. Kunt, editors, High-

Quality Visual Experience, Signals and Communication Technology,

pages 431–455. 2010.

[99] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered

multicast. ACM Computer Communication Review, 26:117–130, 1996.

[100] L. McMillan and G. Bishop. Plenoptic modeling: An image-based

rendering system. In Proceedings of the Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 39–46, New York,

NY, USA, 1995. ACM.

[101] D. Menon, S. Andriani, and G. Calvagno. Demosaicing with direc-

tional filtering and a posteriori decision. IEEE Transactions on Image

Processing, 16(1):132–141, 2007.

[102] P. Migliorati, F. Pedersini, L. Sorcinelli, and S. Tubaro. Semantic seg-

mentation applied to image interpolation in the case of camera panning

and zooming. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, volume 5, pages 25–28 vol.5,

April 1993.

[103] A. Mortensen, V. R. Gaddam, H. K. Stensland, C. Griwodz, D. Jo-

hansen, and P. Halvorsen. Automatic event extraction and video sum-

maries from soccer games. In Proceedings of the ACM International

Conference on Multimedia Systems, pages 176–179. ACM, March 2014.

[104] K. Q. M. Ngo, G. Ravindra, A. Carlier, and W. T. Ooi. Supporting

zoomable video streams with dynamic region-of-interest cropping. In

Proceedings of the ACM International Conference on Multimedia Sys-

tems, page 259, New York, New York, USA, 2010. ACM Press.

[105] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. l. Halvorsen. Flicker

effects in adaptive video streaming to handheld devices. In Proceedings

of the ACM International Conference on Multimedia, pages 463–472,

Scottsdale, 2011.

168 Bibliography

[106] O. Niamut, J. Macq, M. Prins, R. Van Brandenburg, N. Verzijp, and

P. Alface. Towards scalable and interactive delivery of immersive me-

dia. In Proceedings of the New European Media Summit, pages 69–74,

2012.

[107] NRK. Hogmo mapping players with video surveillance, 2015.

http://www.nrk.no/sport/fotball/hogmo-kartlegger-spillerne-med-

videoovervaking-1.12018111.

[108] NVIDIA. NVIDIA - NVIDIA hardware video encoder.

http://developer.download.nvidia.com/compute/nvenc/v4.

0/NVENC_AppNote.pdf, 2014.

[109] NVIDIA. NVIDIA - cuFFT. https://developer.nvidia.com/cufft,

2015.

[110] Ookla. Household download index.

http://www.netindex.com/download/, 2014.

[111] J. Owens. In J. Owens, editor, Television Sports Production (Fourth

Edition). Focal Press, Boston, fourth edition edition, 2006.

[112] S. Pechard, M. Carnec, P. Le Callet, and D. Barba. From SD to HD

television: Effects of H.264 distortions versus display size on quality

of experience. In Proceedings of the IEEE International Conference on

Image Processing, pages 409–412, 2006.

[113] S. Peleg and J. Herman. Panoramic mosaics by manifold projection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 338–343, Jun 1997.

[114] S. A. Pettersen, D. Johansen, H. Johansen, V. Berg-Johansen, V. R.

Gaddam, A. Mortensen, R. Langseth, C. Griwodz, H. K. Stensland,

and P. Halvorsen. Soccer video and player position dataset. In Pro-

ceedings of the ACM International Conference on Multimedia Systems,

pages 18–23, New York, NY, USA, 2014. ACM.

Bibliography 169

[115] Y. Pitrey, U. Engelke, M. Barkowsky, R. Pépion, and P. L. Callet.

Aligning subjective tests using a low cost common set. In Proceedings of

Conference on Quality of Experience for Multimedia Content Sharing,

2011.

[116] Prozone. Prozone Sports – Introducing Prozone Performance Analysis

Products, 2013. http://www.prozonesports.com/products.html.

[117] Z. Qi and J. R. Cooperstock. Overcoming parallax and sampling den-

sity issues in image mosaicing of non-planar scenes. In Proceedings of

the British Machine Vision Conference, September 2007.

[118] K. Raaen, R. Eg, and C. Griwodz. Can gamers detect cloud delay?

In Proceedings of the International Workshop on Network and Systems

Support for Games, pages 1–3, 2014.

[119] J. Redi, L. D’Acunto, and O. Niamut. Interactive uhdtv at the com-

monwealth games: An explorative evaluation. In Proceedings of the

ACM International Conference on Interactive Experiences for TV and

Online Video, pages 43–52, 2015.

[120] J. A. Redi, Y. Zhu, H. de Ridder, and I. Heynderickx. Visual Sig-

nal Quality Assessment: Quality of Experience (QoE), chapter How

Passive Image Viewers Became Active Multimedia Users, pages 31–72.

2015.

[121] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic

tone reproduction for digital images. ACM Transactions on Graphics,

21(3):267–276, 2002.

[122] F. Ribeiro, D. Florencio, and V. Nascimento. Crowdsourcing subjective

image quality evaluation. In Proceedings of the IEEE International

Conference on Image Processing, pages 3097–3100, 2011.

[123] M. Riegler, V. R. Gaddam, M. Larson, P. Halvorsen, and C. Griwodz.

Crowdsourcing as self fulfilling prophecy: Influence of discarding work-

170 Bibliography

ers in subjective assessment tasks. In Proceedings of 14th International

Workshop on Content-based Multimedia Indexing, 2016.

[124] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen.

Video streaming using a location-based bandwidth-lookup service for

bitrate planning. ACM Transactions on Multimedia Computing, Com-

munications and Applications, 8(3), 2011.

[125] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen. Low overhead

container format for adaptive streaming. In Proceedings of the ACM

International Conference on Multimedia Systems, pages 193–198, 2010.

[126] M. A. Robertson, S. Borman, and R. L. Stevenson. Estimation-

theoretic approach to dynamic range enhancement using multiple ex-

posures. Journal of Electronic Imaging, 12(2):219–228, 2003.

[127] J. Rosenberg and H. Schulzrinne. An offer/answer model with session

description protocol (SDP). RFC 3264 (Proposed Standard), June

2002.

[128] S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz,

D. Johansen, and P. Halvorsen. Bagadus: An integrated system for soc-

cer analysis (demo). In Proceedings of the the International Conference

on Distributed Smart Cameras, Oct. 2012.

[129] V. D. Salvo, A. Collins, B. McNeill, and M. Cardinale. Validation of

Prozone: A new video-based performance analysis system. Interna-

tional Journal of Performance Analysis in Sport, 6(1):108–119, June

2006.

[130] O. H. Schmitt. A thermionic trigger. Journal of Scientific Instruments,

15(1):24, 1938.

[131] I. Sevcenco, P. Hampton, and P. Agathoklis. Seamless stitching of im-

ages based on a haar wavelet 2d integration method. In Proceedings of

the IEEE International Conference on Digital Signal Processing, pages

1–6, July 2011.

Bibliography 171

[132] W. R. Shadish, T. D. Cook, and D. T. Campbell. Statistical conclusion

validity and internal validity. In Experimental and Quasi-Experimental

Designs for Generalized Causal Inference, chapter 2, pages 33–63. Cen-

gage Learning, 2 edition, 2002.

[133] J. Sim and C. C. Wright. The kappa statistic in reliability studies:

use, interpretation, and sample size requirements. Physical therapy,

85(3):257–268, 2005.

[134] Simula. Bagadus repository. https://bitbucket.org/mpgs/bagadus,

2014.

[135] Stats Technology. STATS — SportVU — Football/Soccer, 2013.

http://www.sportvu.com/football.asp.

[136] H. K. Stensland, H. Espeland, C. Griwodz, and P. Halvorsen. Tips,

tricks and troubles: Optimizing for cell and gpu. In Proceedings of the

International Workshop on Network and Operating Systems Support

for Digital Audio and Video, pages 75–80, New York, NY, USA, 2010.

ACM.

[137] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss,

H. K. Alstad, C. Griwodz, and P. Halvorsen. Processing panorama

video in real-time. International Journal of Semantic Computing,

08:209–227, 2014.

[138] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss,

H. K. Alstad, A. Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk,

C. Griwodz, P. Halvorsen, M. Stenhaug, and D. Johansen. Bagadus:

An integrated real-time system for soccer analytics. ACM Transactions

on Multimedia Computing, Communications and Applications, 2014.

[139] H. K. Stensland, M. A. Wilhelmsen, V. R. Gaddam, A. Mortensen,

R. Langseth, C. Griwodz, and P. Halvorsen. Using a commodity hard-

ware video encoder for interactive applications. International Journal

of Multimedia Data Engineering and Management (IJMDEM), 6:17–

31, 07/2015 2015.

172 Bibliography

[140] X. Sun, J. Foote, D. Kimber, and B. Manjunath. Region of interest

extraction and virtual camera control based on panoramic video cap-

turing. IEEE Transactions on Multimedia, 7(5):981–990, 2005.

[141] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mo-

saics and environment maps. In Proceedings of the Annual Confer-

ence on Computer Graphics and Interactive Techniques, pages 251–258.

ACM, 1997.

[142] W.-K. Tang, T.-T. Wong, and P.-A. Heng. A system for real-time

panorama generation and display in tele-immersive applications. IEEE

Transactions on Multimedia, 7(2):280–292, April 2005.

[143] M. Tennøe, E. O. Helgedagsrud, M. Næss, H. K. Alstad, H. K. Stens-

land, V. R. Gaddam, D. Johansen, C. Griwodz, and P. Halvorsen.

Efficient implementation and processing of a real-time panorama video

pipeline. In Proceedings of the IEEE International Symposium on Mul-

timedia, pages 76–83, 2013.

[144] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen. A versatile HDR video

production system. ACM Transactions on Graphics, 30(4):41, 2011.

[145] I. Unanue, I. Urteaga, R. Husemann, J. D. Ser, V. Roesler, A. Ro-

driguez, and P. Sanchez. A tutorial on H.264/SVC scalable video cod-

ing and its tradeoff between quality, coding efficiency and performance.

In Recent Advances on Video Coding, pages 3–26. Intech, 2011.

[146] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan. Mixing tile

resolutions in tiled video: A perceptual quality assessment. In Proceed-

ings of the International Workshop on Network and Operating Systems

Support for Digital Audio and Video, pages 25:25–25:30, 2014.

[147] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image

quality assessment: From error visibility to structural similarity. IEEE

Transactions on Image Processing, 13(4):600–612, 2004.

Bibliography 173

[148] Z. Wang, L. Lu, and A. C. Bovik. Video quality assessment based on

structural distortion measurement. Signal Processing: Image Commu-

nication, 19(2):121–132, Feb. 2004.

[149] G. Ward. A contrast-based scalefactor for luminance display. Graphics

gems IV, pages 415–421, 1994.

[150] S. Wenger, U. Chandra, M. Westerlund, and B. Burman. Codec control

messages in the RTP audio-visual profile with feedback (AVPF). RFC

5104 (Proposed Standard), Feb. 2008.

[151] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, A. Mortensen,

R. Langseth, C. Griwodz, and P. Halvorsen. Using a commodity hard-

ware video encoder for interactive video streaming. In Proceedings of

the IEEE International Symposium on Multimedia, 2014.

[152] S. Winkler. Digital Video Quality: Vision Models and Metrics. Wiley,

2005.

[153] L. Wolf, M. Guttmann, and D. Cohen-Or. Non-homogeneous content-

driven video-retargeting. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1–6, Oct 2007.

[154] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. M. Sheppard, and

Z. Yang. Quality of experience in distributed interactive multimedia

environments: Toward a theoretical framework. In Proceedings of the

ACM International Conference on Multimedia, pages 481–490, Beijing,

2009.

[155] Y. Xiong and K. Pulli. Color correction for mobile panorama imag-

ing. In Proceedings of the ACM International Conference on Internet

Multimedia Computing and Service, pages 219–226, 2009.

[156] W. Xu and J. Mulligan. Performance evaluation of color correction

approaches for automatic multi-view image and video stitching. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 263–270, 2010.

174 Bibliography

[157] W. Xu and J. Mulligan. Panoramic video stitching from commodity

hdtv cameras. Multimedia Systems, 19(5):407–426, 2013.

[158] T. Yokoi and H. Fujiyoshi. Virtual camerawork for generating lecture

video from high resolution images. In Proceedings of the IEEE Inter-

national Conference on Multimedia and Expo, July 2005.

[159] Z. Zivkovic. Improved adaptive gaussian mixture model for background

subtraction. In Proceedings of the IEEE International Conference on

Pattern Recognition, pages 28 – 31 Vol.2, aug. 2004.

[160] Z. Zivkovic and F. van der Heijden. Efficient adaptive density estima-

tion per image pixel for the task of background subtraction. Pattern

Recognition Letters, 27(7):773 – 780, 2006.

[161] D. Zorin and A. H. Barr. Correction of geometric perceptual distortions

in pictures. In Proceedings of the Annual Conference on Computer

Graphics and Interactive Techniques, pages 257–264, 1995.

[162] ZXY. ZXY Sport Tracking, 2013. http://www.zxy.no/.

Appendix A

Publications

Four journal articles, three peer-reviewed conference publications and three

technical demos are included in the thesis. This appendix contains abstracts

of each publication, as well as the contribution of the author of this thesis.

A.1 Journal Articles

A.1.1

Title: Bagadus: an Integrated Real-Time System for Soccer Analytics

Authors: H. K. Stensland, V. R. Gaddam, M. Tennøe, E. O. Helgedagsrud,

M. Næss, H. K. Alstad, A. Mortensen, R. Langseth, S. Ljødal, Ø.

Landsverk, C. Griwodz, P. Halvorsen, M. Stenhaug and D. Johansen

Published: ACM Transactions on Multimedia Computing, Communica-

tions, and Applications (TOMCCAP), 2014

Abstract: The importance of winning has increased the role of performance

analysis in the sports industry, and this underscores how statistics and

technology keep changing the way sports are played. Thus, this is a

growing area of interest, both from a computer system view in man-

aging the technical challenges and from a sport performance view in

aiding the development of athletes. In this respect, Bagadus is a real-

time prototype of a sports analytics application using soccer as a case

study. Bagadus integrates a sensor system, a soccer analytics annota-

175

176 Appendix A. Publications

tions system, and a video processing system using a video camera array.

A prototype is currently installed at Alfheim Stadium in Norway, and

in this article, we describe how the system can be used in real-time to

playback events. The system supports both stitched panorama video

and camera switching modes and creates video summaries based on

queries to the sensor system. Moreover, we evaluate the system from a

systems point of view, benchmarking different approaches, algorithms,

and trade-offs, and show how the system runs in real time.

Contributions: The author has contributed in developing the image pro-

cessing algorithms in the panorama pipeline. He also actively partici-

pated in the design of various components of the pipeline. The author

also contibuted to the paper writing process.

A.1.2

Title: Processing Panorama Video in Real-Time

Authors: H. K. Stensland, V. R. Gaddam, M. Tennøe, E. O. Helgedagsrud,

M. Næss, H. K. Alstad, C. Griwodz, P. Halvorsen, and D. Johansen

Published: International Journal of Semantic Computing (IJSC), 2014

Abstract: There are many scenarios where high resolution, wide field-of-

view video is useful. Such panorama video may be generated using

camera arrays where the feeds from multiple cameras pointing at dif-

ferent parts of the captured area are stitched together. However, pro-

cessing the dierent steps of a panorama video pipeline in real-time is

challenging due to the high data rates and the stringent timeliness re-

quirements. In our research, we use panorama video in a sport analysis

system called Bagadus. This system is deployed at Alfheim stadium

in Tromsø, and due to live usage, the video events must be generated

in real-time. In this paper, we describe our realtime panorama system

built using a low-cost CCD HD video camera array. We describe how

we have implemented different components and evaluated alternatives.

The performance results from experiments ran on commodity hardware

with and without co-processors like graphics processing units (GPUs)

show that the entire pipeline is able to run in real-time.

A.1. Journal Articles 177

Contributions: The author has contributed in developing the image pro-

cessing algorithms in the panorama pipeline. He also actively partici-

pated in the design of various components of the pipeline. The author

also contibuted to the paper writing process.

A.1.3

Title: The Cameraman Operating My Virtual Camera Is Artificial: Can

The Machine Be As Good As A Human?

Authors: V. R. Gaddam, R. Eg, C. Griwodz, and P. Halvorsen

Published: ACM Transactions on Multimedia Computing, Communica-

tions and Applications (TOMCCAP), 2015

Abstract: In this article, we argue that the energy spent in designing au-

tonomous camera control systems is not spent in vain. We present a

real-time virtual camera system that can create smooth camera motion.

Similar systems are frequently benchmarked with the human operator

as the best possible reference; however, we avoid a priori assumptions

in our evaluations. Our main question is simply whether we can design

algorithms to steer a virtual camera that can compete with the user

experience for recordings from an expert operator with several years

of experience? In this respect, we present two low-complexity servoing

methods that are explored in two user studies. The results from the

user studies give a promising answer to the question pursued. Further-

more, all components of the system meet the real-time requirements

on commodity hardware. The growing capabilities of both hardware

and network in mobile devices give us hope that this system can be de-

ployed to mobile users in the near future. Moreover, the design of the

presented system takes into account that services to concurrent users

must be supported.

Contributions: The author has designed and implemented the algorithms.

He also implemented the user-studies. He contributed to the writing

process.

178 Appendix A. Publications

A.1.4

Title: [In Review]Tiling in Interactive Panoramic Video: Approaches and

Evaluation

Authors: V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen

In Review: IEEE Transactions on Multimedia (T-MM), 2016

Abstract: Interactive panoramic systems are currently on the rise. How-

ever, one of the major challenges involved in such a system is the over-

head to transfer a full quality panorama to the client where only a

part of the panorama is used to extract a virtual view. Thus, a system

should maximize the user experience and at the same time minimize

the bandwidth required. In this paper, we apply tiling to deliver differ-

ent qualities of different parts of the panorama. Tiling has traditionally

been applied to delivery of very high-resolution content to clients, and

here, we apply similar ideas in a real-time interactive panoramic video

system. A major challenge is movement of such a virtual view, where

clients regions of interest change dynamically and independently from

each other. We show that our algorithms, which progressively increases

quality towards the point of the view, manages to (i) reduce the band-

width requirement and (ii) provide a similar QoE compared to a full

panorama system.

Contributions: The author has designed and implemented the algorithms.

He also implemented the user-studies. He contributed to the writing

process.

A.2 Conference Publications

A.2.1

Title: Automatic Exposure for Panoramic Systems in Uncontrolled Lighting

Conditions: a Football Stadium Case Study

Authors: V. R. Gaddam, C. Griwodz, and P. Halvorsen

Published: SPIE Electronic Imaging (EI), 2014.

A.2. Conference Publications 179

Abstract: One of the most common ways of capturing wide field-of-view

scenes is by recording panoramic videos. Using an array of cameras

with limited overlapping in the corresponding images, one can gener-

ate good panorama images. Using the panorama, several immersive

display options can be explored. There is a two fold synchronization

problem associated to such a system. One is the temporal synchro-

nization, but this challenge can easily be handled by using a common

triggering solution to control the shutters of the cameras. The other

synchronization challenge is the automatic exposure synchronization

which does not have a straight forward solution, especially in a wide

area scenario where the light conditions are uncontrolled like in the

case of an open, outdoor football stadium.

In this paper, we present the challenges and approaches for creating a

completely automatic real-time panoramic capture system with a par-

ticular focus on the camera settings. One of the main challenges in

building such a system is that there is not one common area of the

pitch that is visible to all the cameras that can be used for metering

the light in order to find appropriate camera parameters. One approach

we tested is to use the green color of the field grass. Such an approach

provided us with acceptable results only in limited light conditions.A

second approach was devised where the overlapping areas between ad-

jacent cameras are exploited, thus creating pairs of perfectly matched

video streams. However, there still existed some disparity between dif-

ferent pairs. We finally developed an approach where the time between

two temporal frames is exploited to communicate the exposures among

the cameras where we achieve a perfectly synchronized array. An anal-

ysis of the system and some experimental results are presented in this

paper. In summary, a pilot-camera approach running in auto-exposure

mode and then distributing the used exposure values to the other cam-

eras seems to give best visual results.

Contributions: The author has designed and implemented the algorithms

into the system. He contributed to the writing process.

180 Appendix A. Publications

A.2.2

Title: Interactive Zoom and Panning From Live Panoramic Video

Authors: V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvil-

lat, C. Griwodz, and P. Halvorsen.

Published: ACM Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV), 2014.

Abstract: Panorama video is becoming increasingly popular, and we present

an end-to-end real-time system to interactively zoom and pan into high-

resolution panoramic videos. Compared to existing systems using per-

spective panoramas with cropping, our approach creates a cylindrical

panorama. Here, the perspective is corrected in real-time, and the re-

sult is a better and more natural zoom. Our experimental results also

indicate that such zoomed virtual views can be generated far below

the frame-rate threshold. Taking into account recent trends in device

development, our approach should be able to scale to a large number

of concurrent users in the near future.

Contributions: The author has desgined and implemented the virtual viewer.

He has also contributed to the writing process.

A.2.3

Title: Tiling of Panorama Video for Interactive Virtual Cameras: Overheads

and Potential Bandwidth Requirement Reduction

Authors: V. R. Gaddam, H. B. Ngo, R. Langseth, C. Griwodz, D. Jo-

hansen, and P.Halvorsen

Published: IEEE Picture Coding Symposium (PCS), 2015.

Abstract: Delivering high resolution, high bitrate panorama video to a large

number of users introduces huge scaling challenges. To reduce the

resource requirement, researchers have earlier proposed tiling in order

to deliver different qualities in different spatial parts of the video. In

our work, providing an interactive moving virtual camera to each user,

tiling may be used to reduce the quality depending on the position of

the virtual view. This raises new challenges compared to existing tiling

A.3. Technical Demos 181

approaches as the need for high quality tiles dynamically change. In this

paper, we describe a tiling approach of panorama video for interactive

virtual cameras where we provide initial results showing the introduced

overheads and the potential reduction in bandwidth requirement.

Contributions: The author has designed and implemented the tiling in the

virtual viewer. He also contributed to the writing process.

A.3 Technical Demos

A.3.1

Title: Demo: Be Your Own Cameraman: Real-Time Support for Zooming

and Panning Into Stored and Live Panoramic Video

Authors: V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V.

Charvillat, C. Griwodz, D. Johansen, and P. Halvorsen

Published: ACM International Conference on Multimedia Systems (MM-

Sys), 2014.

Abstract: High-resolution panoramic video with a wide field-of-view is pop-

ular in many contexts. However, in many examples, like surveillance

and sports, it is often desirable to zoom and pan into the generated

video. A challenge in this respect is real-time support, but in this demo,

we present an end-to-end real-time panorama system with interactive

zoom and panning. Our system installed at Alfheim stadium, a Nor-

wegian premier league soccer team, generates a cylindrical panorama

from five 2K cameras live where the perspective is corrected in real-time

when presented to the client. This gives a better and more natural zoom

compared to existing systems using perspective panoramas and zoom

operations using plain crop. Our experimental results indicate that vir-

tual views can be generated far below the frame-rate threshold, i.e., on

a GPU, the processing requirement per frame is about 10 milliseconds.

The proposed demo lets participants interactively zoom and pan into

stored panorama videos generated at Alfheim stadium and from a live

2-camera array on-site.

182 Appendix A. Publications

Contributions: The author has implemented the virtual viewer. He also

contributed to the writing process.

A.3.2

Title: Demo: Automatic Real-Time Zooming and Panning on Salient Ob-

jects From a Panoramic Video

Authors: V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, and

P. Halvorsen

Published: ACM International Conference on Multimedia (MM), 2014.

Abstract: The proposed demo shows how our system automatically zooms

and pans into tracked objects in panorama videos. At the conference

site, we will set up a two-camera version of the system, generating live

panorama videos, where the system zooms and pans tracking people

using colored hats. Additionally, using a stored soccer game video

from a five 2K camera setup at Alfheim stadium in Tromsø from the

European league game between Tromsø IL and Tottenham Hotspurs,

the system automatically follows the ball.

Contributions: The author has implemented the algorithms for controlling

the virtual camera. He also contributed to the writing process.

A.3.3

Title: Demo: Scaling Virtual Camera Services to a Large Number of Users

Authors: V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, D.

Johansen, and P. Halvorsen

Published: ACM International Conference on Multimedia Systems (MM-

Sys), 2015.

Abstract: By processing video footage from a camera array, one can easily

make wide-field-of-view panorama videos. From the single panorama

video, one can further generate multiple virtual cameras supporting

personalized views to a large number of users based on only the few

physical cameras in the array. However, giving personalized services

to large numbers of users potentially introduces both bandwidth and

A.3. Technical Demos 183

processing bottlenecks, depending on where the virtual camera is pro-

cessed.

In this demonstration, we present a system that address the large cost

of transmitting entire panorama video to the end-user where the user

creates the virtual views on the client device. Our approach is to di-

vide the panorama into tiles, each encoded in multiple qualities. Then,

the panorama video tiles are retrieved by the client in a quality (and

thus bit rate) depending on where the virtual camera is pointing, i.e.,

the video quality of the tile changes dynamically according to the user

interaction. Our initial experiments indicate that there is a large po-

tential of saving bandwidth on the cost of trading quality of in areas

of the panorama frame not used for the extraction of the virtual view.

Contributions: The author has implemented tiling into the virtual viewer.

He also contributed to the writing process.

Appendix B

[Journal] Bagadus: An

Integrated Real-Time System

for Soccer Analytics

[Authors:] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. O. Helgedagsrud,

M. Næss, H. K. Alstad, A. Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk,

C. Griwodz, P. Halvorsen, M. Stenhaug and D. Johansen

[Published:] ACM Transactions on Multimedia Computing, Communica-

tions, and Applications (TOMCCAP), 2014

185

14

Bagadus: An Integrated Real-Time System for
Soccer Analytics

HÅKON KVALE STENSLAND, VAMSIDHAR REDDY GADDAM, MARIUS TENNØE,
ESPEN HELGEDAGSRUD, MIKKEL NÆSS, HENRIK KJUS ALSTAD, ASGEIR MORTENSEN,
RAGNAR LANGSETH, SIGURD LJØDAL, ØYSTEIN LANDSVERK, CARSTEN GRIWODZ, and
PÅL HALVORSEN, University of Oslo and Simula Research Laboratory
MAGNUS STENHAUG and DAG JOHANSEN, University of Tromsø

The importance of winning has increased the role of performance analysis in the sports industry, and this underscores how
statistics and technology keep changing the way sports are played. Thus, this is a growing area of interest, both from a computer
system view in managing the technical challenges and from a sport performance view in aiding the development of athletes. In
this respect, Bagadus is a real-time prototype of a sports analytics application using soccer as a case study. Bagadus integrates
a sensor system, a soccer analytics annotations system, and a video processing system using a video camera array. A prototype
is currently installed at Alfheim Stadium in Norway, and in this article, we describe how the system can be used in real-time to
playback events. The system supports both stitched panorama video and camera switching modes and creates video summaries
based on queries to the sensor system. Moreover, we evaluate the system from a systems point of view, benchmarking different
approaches, algorithms, and trade-offs, and show how the system runs in real time.

Categories and Subject Descriptors: H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems—
Video

General Terms: Experimentation, Measurement, Performance
Additional Key Words and Phrases: Real-time panorama video, system integration, camera array, sensor tracking, video anno-
tation, sport analytics, soccer system

ACM Reference Format:
Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad,
Asgeir Mortensen, Ragnar Langseth, Sigurd Ljødal, Øystein Landsverk, Carsten Griwodz, and Pål Halvorsen. 2014. Bagadus:
An integrated real-time system for soccer analytics. ACM Trans. Multimedia Comput. Commun. Appl. 10, 1s, Article 14 (January
2014), 21 pages.
DOI: http://dx.doi.org/10.1145/2541011

1. INTRODUCTION

Sport analysis has become a large industry, and a large number of (elite) sports clubs study their game
performance, spending a large amount of resources. This analysis is performed either manually or
using one of the many existing analytics tools. In the area of soccer, several systems enable trainers

This work has been performed in the context of the iAD Centre for Research-Based Innovation (project number 174867) funded
by the Norwegian Research Council.
H. K. Stensland’s (corresponding author) email: haakonks@ifi.uio.no.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2014 ACM 1551-6857/2014/01-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2541011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:2 • H. K. Stensland et al.

and coaches to analyze the game play in order to improve the performance. For instance, in Interplay
Sports [2013], video streams are manually analyzed and annotated using a soccer ontology classifi-
cation scheme. ProZone [2013] automates some of the manual annotation process by video-analysis
software. In particular, it quantifies player movement patterns and characteristics like speed, velocity,
and position of the athletes, and it has been successfully used at, for example, Old Trafford in Manch-
ester and Reebook Stadium in Bolton [Salvo et al. 2006]. Similarly, STATS SportVU Tracking Tech-
nology [Stats 2013] uses video cameras to collect the positioning data of the players within the playing
field in real time. This is further compiled into player statistics and performance. Camargus [2013]
provides a very nice video technology infrastructure but lacks other analytics tools. As an alternative
to video analysis, which often is inaccurate and resource hungry, both the Cairo’s VIS.TRACK [Cairos
Technologies 2013b] and ZXY Sport Tracking [ZXY 2013] systems use global positioning and radio-
based systems for capturing performance measurements of athletes. Thus, these systems can present
player statistics, including speed profiles, accumulated distances, fatigue, fitness graphs and coverage
maps, in many different ways, such as charts, 3D graphics, and animations.

To improve game analytics, video that replays real game events becomes increasingly important.
However, the integration of the player statistics systems and video systems still requires a large
amount of manual labor. For example, events tagged by coaches or other human expert annotators
must be manually extracted from the videos, often requiring hours of work in front of the computer.
Furthermore, connecting the player statistics to the video also requires manual work. One recent ex-
ample is the Muihtu system [Johansen et al. 2012], which integrates coach annotations with related
video sequences, but the video must be manually transferred and mapped to the game timeline.

As these examples show, there exist several tools for soccer analysis. However, to the best of our
knowledge, there does not exist a system that fully integrates all these features. In this respect, we
have presented earlier [Halvorsen et al. 2013] and demonstrated [Sægrov et al. 2012] a system called
Bagadus. This system integrates a camera array video capture system with the ZXY Sport Tracking
system for player statistics and a system for human expert annotations. Bagadus allows the game
analytics to automatically play back a tagged game event or extract a video of events extracted from
the statistical player data, for example, all sprints at a given speed. Using the exact player position
provided by sensors, a trainer can also follow individuals or groups of players, where the videos are
presented either using a stitched panorama view or by switching cameras. Our earlier work [Halvorsen
et al. 2013; Sægrov et al. 2012] demonstrated the integrated concept but did not have all operations,
like generation of the panorama video, in real time. In this article, we present enhancements providing
live, real-time analysis and video playback by using algorithms to enhance the image quality, parallel
processing, and offloading to co-processing units like GPUs. Our prototype is deployed at Alfheim
Stadium (Tromsø IL, Norway), and we use a dataset captured at a Norwegian premier league game to
demonstrate our system.

The remainder of the article is structured as follows. Next, in Section 2, we give a brief overview of
the basic idea of Bagadus and introduce the main subsystems. Then, we look at the video-, tracking-,
and analysis-subsystems in more detail in Sections 3, 4, and 5, respectively. Then, we briefly explain
the case study at Alfheim Stadium in Section 6. Section 7 provides a brief discussion of various aspect
of the system before we conclude in Section 8.

2. BAGADUS – THE BASIC IDEA

Interest in sports analysis systems has recently increased a lot, and it is predicted that sports ana-
lytics will be a real game-changer, that is, “statistics keep changing the way sports are played—and
changing minds in the industry” [Dizikes 2013]. As already described, several systems exist, some for
a long time, already providing game statistics, player movements, video highlights, etc. However, to a
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:3

Fig. 1. Overall Bagadus architecture.

large degree, the existing systems are offline systems, and they require a large portion of manual work
to integrate information from various computer systems and expert sport analytics. In this respect,
Bagadus is a prototype that aims to fully integrate existing systems and enable real-time presentation
of sport events. Our system is built in cooperation with the Tromsø IL soccer club and the ZXY Sport
Tracking company for soccer analysis. A brief overview of the architecture and interaction of the dif-
ferent components is given in Figure 1. The Bagadus system is divided into three different subsystems
which are integrated in our soccer analysis application.

The video subsystem consists of multiple, small, shutter-synchronized cameras that record a high
resolution video of the soccer field. They cover the full field with sufficient overlap to identify common
features necessary for camera calibration and image stitching. Furthermore, the video subsystem sup-
ports two different playback options. The first allows playback of video that switches between streams
delivered from the different cameras, either manually selecting a camera or automatically following
players based on sensor information. The second option plays back a panorama video stitched from
the different camera feeds. The cameras are calibrated in their fixed position, and the captured videos
are each processed and stored using a capture–debarrel–rotate–stitch–encode–store pipeline. In an of-
fline mode, Bagadus allows a user to zoom in on and mark player(s) in the retrieved video on the fly
(see Figure 1), but this is not yet supported in the live mode used during the game.

To identify and follow players on the field, we use a tracking (sensor) subsystem. In this respect,
tracking people through camera arrays has been an active research topic for several years. The accu-
racy of such systems has improved greatly, but there are still errors. Therefore, for stadium sports, an
interesting approach is to use sensors on players to capture the exact position. In this area, ZXY Sport

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:4 • H. K. Stensland et al.

Tracking [ZXY 2013] provides such a sensor-based solution that provides player position information.
Bagadus uses this position information to track players, or groups of players, in single camera views,
stitched views, or zoomed-in modes.

The third component of Bagadus is an analytics subsystem. Coaches have for a long time analyzed
games in order to improve their own team’s game play and to understand their opponents. Tradition-
ally, this has been done by making notes using pen and paper, either during the game or by watching
hours of video. Some clubs even hire one person per player to describe the player’s performance. To
reduce the manual labor, we have implemented a subsystem that equips members of the trainer team
with a tablet (or even a mobile phone), where they can register predefined events quickly with the
press of a button or provide textual annotations. In Bagadus, the registered events are stored in an
analytics database and can later be extracted automatically and shown along with a video of the event.

Bagadus implements and integrates many well-known components to support our arena sports ana-
lytics application scenario. The main novelty of our approach is then the combination and integration
of components enabling automatic presentation of video events based on the sensor and analytics data
that are synchronized with the video system. This gives a threefold contribution: (1) a method for spa-
tially mapping the different coordinate systems of location (sensor) data and video images to allow
for seamless integration; (2) a method for recording and synchronizing the signals temporally to en-
able semantic extraction capabilities; and (3) the integration of the entire system into an interactive
application that can be used online and offline.

Thus, in the offline mode, Bagadus will, for example, be able to automatically present a video clip of
all the situations where a given player runs faster than 10 meters per second or when all the defenders
were located in the opponent’s 18-yard box (penalty box). Furthermore, we can follow single players
and groups of players in the video and retrieve and play back the events annotated by expert users.
Thus, where people earlier used a huge amount of time analyzing the game manually, Bagadus is an
integrated system where the required operations and the synchronization with video is automatically
managed. In the online mode, Bagadus receives expert annotated events by the team analytics team
and enables immediate playback during a game or a practice session.

3. VIDEO SUBSYSTEM

To be able to record high-resolution video of the entire soccer field, we have installed a camera array
using small industry cameras which, together, cover the entire field. The video subsystem then ex-
tracts, process, and delivers video events based on given time intervals, player positions, etc. There are
two versions of the video subsystem. One non-real-time system and one live real-time system. Both the
video subsystems support two different playback modes. The first mode allows the user to play video
from the individual cameras by manually selecting a camera or by automatically following players.
The second mode plays back a panorama video stitched from the four camera feeds. The non-real-time
system plays back recorded video stored on disks, and because of the processing times, it will not be
available before the match is finished. The live system, on the other hand, supports playing back video
directly from the cameras, and events will be available in real time.

3.1 Camera Setup

To record high-resolution video of the entire soccer field, we have installed a camera array consisting
of four Basler industry cameras with a 1/3-inch image sensor supporting 30fps and a resolution of
1280 × 960. The cameras are synchronized by an external trigger signal in order to enable a video-
stitching process that produces a panorama video picture. For a minimal installation, the cameras are
mounted close to the middle line under the roof covering the spectator area, that is, approximately
10 meters from the side line and 10 meters above the ground. With a 3.5mm wide-angle lens, each
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:5

Fig. 2. Camera setup at Alfheim Stadium.

camera covers a field-of-view of about 68 degrees, that is, all four cover the full field with sufficient
overlap to identify common features necessary for camera calibration and stitching (see Figure 2).

The cameras are managed using our own library, called Northlight, to manage frame synchroniza-
tion, storage, encoding, etc. The system is currently running on a single computer with an Intel Core
i7-3930K @ 3.2GHz and 16GB memory. Northlight integrates the SDK provided by Basler for the cam-
eras, video encoding using x264, and color-space conversion using FFmpeg.

3.2 Digital Zoom

Bagadus supports digital zooming on tracked players, where the tracked player is kept in the center of
the image while zooming in. An important operation here is interpolation, where we use known data
to estimate values at unknown points when we resize or remap (i.e., distort) the image. In this respect,
we have compared four different interpolation algorithms, that is, nearest neighbor, bilinear, bicubic,
and Lanczos interpolation. In image processing, bicubic interpolation is often chosen over bilinear in-
terpolation or nearest neighbor in image resampling when speed is not an issue. Lanczos interpolation
has the advantages of bicubic interpolation and is known to produce sharper results than bicubic inter-
polation. In Bagadus, our initial tests show that the average interpolation times per frame are 4.2ms,
7.4ms, 48.3ms, and 240ms for nearest-neighbor, bilinear, bicubic, and Lanczos interpolation, respec-
tively [Halvorsen et al. 2013]. Due to our time constraints, we use nearest-neighbor interpolation.

3.3 Stitching

Tracking game events over multiple cameras is a nice feature, but in many situations, it may be desir-
able to have a complete view of the field. In addition to the camera selection functionality, we therefore
generate a panorama picture by combining images from multiple trigger-synchronized cameras. The
cameras are calibrated in their fixed position using a classical chessboard pattern [Zhang 1999], and
the stitching operation requires a more complex processing pipeline. We have alternative implemen-
tations with respect to what is stored and processed offline, but in general, we must (1) correct the
images for lens distortion in the outer parts of the frame due to a fish-eye lens; (2) rotate and morph
the images into the panorama perspective due to different positions covering different areas of the
field; (3) correct the image brightness due to light differences; and (4) stitch the video images into a
panorama image. Figure 3 shows the process of using four warped camera images into a single large
panorama image. The highlighted areas in the figure are the regions where the cameras overlap.

After the initial steps, the overlapping areas between the frames are used to stitch the four videos
into a panorama picture before storing it to disk. We first tried the open-source solutions given by com-
puter vision library OpenCV, which are based on the automatic panoramic image stitcher by Brown
and Lowe [2007], that is, we used the auto-stitcher functions using planar, cylindrical, and spheri-
cal projections. Our analysis shows that neither of the OpenCV implementations are perfect, having
large execution times and varying image quality and resolutions [Halvorsen et al. 2013]. The fastest

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:6 • H. K. Stensland et al.

Fig. 3. The stitching process. Each image from the four different frames are warped and combined into a panorama.

Fig. 4. The Bagadus single-threaded processing loop stitching implementation.

algorithm is the spherical projection, but it has severe barreling effects, and the execution time is
1746ms per frame—far above our real-time goal. Therefore, a different approach called homography
stitching [Hartley and Zisserman 2004] has been selected, where we use a homography given by the
projective geometry translating ZXY’s coordinate system to pixel coordinates.

3.4 Non-Real-Time Processing Loop Implementation

As a first proof-of-concept prototype [Halvorsen et al. 2013], we implemented the stitching operation as
a single-threaded sequential processing loop, as shown in Figure 4(a), that is, processing one frame per
loop iteration. As seen in the figure, it consists of four main parts. One preprocessing part that reads
video frames from either disk or cameras converts the video from YUV to RGB, which is used by the
rest of the pipeline and debarreling to remove any barrel distortion from the cameras. For this version
of the system, the debarreling functions in OpenCV is used. The next part is the primary stitching
part using the homography-based stitching algorithm to stitch the four individual camera frames into
a 7000×960 panorama frame. As we can observe from Figure 4(b), this is the most resource-demanding
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:7

Fig. 5. The parallel and distributed processing implementation of the stitching pipeline.

part of the system. After the stitching, the postprocessing is responsible for converting the video back
from RGB to YUV due to lacking support for RGB in the x264 video encoder. The single-threaded loop
means that all the steps are performed sequentially for one set of frames before the next set of frames
is processed. The performance is presented in Figure 4(b), and the total execution time per panorama
frame exceeds 1100ms on average. In order to meet our 30fps requirement, our next approach improves
the performance by parallelizing and distributing the operations in a processing pipeline and offloading
several steps onto a GPU.

3.5 Real-Time Parallel and Distributed Processing Implementation

The previous sections displayed some severe processing overheads with respect to generating a 30fps
panorama video in real time. In this section, we address this by implementing the modules in a parallel
pipeline in contrast to the loop previously described, and we offload compute-intensive parts of the
pipeline to a modern GPU, as seen in Figure 5.

3.5.1 Implementation. Figure 5 shows that the parallel pipeline is separated into two main parts:
one part running on the CPU, and the other part running on a GPU. Several of the CPU modules
in the pipeline are the same as in the non-real-time loop. The CamReader, Converter, Debarreler,
SingleCamWriter, and PenoramaWriters are based on the same design, but are now running in their
own threads and with an updated version of the x264 encoder. The controller module is new and is
responsible for initializing the pipeline, synchronizing the different modules, handling global errors
and frame drops, and transferring data or data pointers between the different modules. The controller
also checks the execution speed. If an earlier step in the pipeline runs too slow, and one or more frames
have been lost from the cameras, the controller tells the modules in the pipeline to skip the delayed or
dropped frame and reuse the previous frame.

A background subtractor module is running both on the CPU and on the GPU. This module is
new in the pipeline and is responsible for determining which pixels of a video belong to the fore-
ground and which pixel belong to the background. The background subtractor can also get input from
the ZXY sensor system to improve the performance and precision. Even though we have enhanced
the background subtraction with sensor data input, there are several implementation alternatives.
When determining which algorithm to implement, we evaluated two different alternatives, that is,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:8 • H. K. Stensland et al.

those of Zivkovic [2004] and Zivkovic and van der Heijden [2006] and those of KaewTraKulPong and
Bowden [2001]. Both algorithms uses a Gaussian mixture model (GMM), are implemented in OpenCV,
and have shown promising results in other surveys [Brutzer et al. 2011]. In the end, Zivkovic provided
the best accuracy, which is important for our scenario, and it was therefore selected.

There are also several modules that are running primarily on the GPU. The Uploader and Down-
loader are managing the dataflow to and from the GPU. The Uploader transfers RGB frames and
the background subtraction player pixel maps from the CPU to the GPU for further processing. The
Downloader transfers back the stitched video in YUV 4:2:0 format for encoding. Both modules use
double-buffering and asynchronous transfers.

The main parts of the panorama creation is performed by the warper, color-corrector, and stitcher
modules running on the GPU. The warper module warps (as previously described) the camera frames
and the foreground masks from the background subtractor module to fit the common panorama plane.
Here, we used the Nvidia Performance Primitives library (NPP) for an optimized implementation.
The Color-corrector in this implementation is added to the pipeline because it is nearly impossible to
calibrate the cameras to output the exact same colors because of the uncontrolled lighting conditions.
This means that, to generate a best-possible panorama video, we correct the colors of all the frames to
remove eventual color disparities. This operation is performed after the images are warped. The reason
for this is that locating the overlapping regions is easier with aligned images, and the overlap is also
needed when stitching the images together. The implementation is based on the algorithm presented
in Xiong and Pulli [2009], which has been optimized to run in real-time with CUDA.

The stitcher module is similar to the homography stitcher in the loop implementation, where a seam
is created between the overlapping camera frames. Our previous approach uses static cuts for seams,
which means that a fixed rectangular area from each frame is copied directly to the output frame.
Static cut panoramas are very fast but can introduce graphical errors in the seam area, especially
when there is movement in the scene, as illustrated in Figure 6(a). Thus, to make a better visual
result, a dynamic cut stitcher is introduced. This module now creates seams by first creating a rect-
angle of adjustable width over the static seam area. Then, it treats all pixels within the seam area as
graph nodes. Each of these edges’ weights are calculated using a custom function that compares the
absolute color difference between the corresponding pixel in each of the two frames we are trying to
stitch. The weight function also checks the foreground masks from the background subtractor to see
if any player is in the pixel, and if so, it adds a large weight to the node. We then run a simplified
version of the Dijkstra graph algorithm (only going up in the image) on the graph to create a min-
imal cost route from the bottom of the image to the end at the top. An illustration of how the final
seam looks can be seen in Figure 6(b), while the seams without and with color correction are shown in
Figures 6(c) and 6(d).

3.5.2 Execution Time Evaluation. To evaluate the processing performance of the parallel and dis-
tributed processing pipeline implementation, we used a single computer with an Intel Server Adapter
i350-T4 for connecting the four cameras with gigabit ethernet, an Intel Core i7-3930K six-core proces-
sor with 32GB RAM, and a single Nvidia GeForce GTX Titan graphics processor.

The overall performance of the parallel pipeline is shown in Figure 7(a). The CPU modules are
marked in blue, and the GPU modules are marked in green. The uploader and downloader module run
both on the CPU and the GPU, but we have chosen to mark them as CPU modules, since they both are
controlled by the CPU.

Images from all four cameras are asynchronously transfered to the GPU as soon as they are avail-
able. The number of threads and blocks on the GPU is automatically adjusted by how many cores are

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:9

Fig. 6. Stitcher comparison: improving the visual quality with dynamic seams and color correction.

available on the GPU. The modules executing on the GPU synchronize with barriers: when one module
finishes, the next will be stared. Data is stored in global memory, and pointers to the data are trans-
fered between the different modules. When processing is finished on the GPU, data is asynchronously
transfered back to the CPU for encoding and writing to disk.

We can see that when executing the whole pipeline, all modules perform well below the real-time
threshold. Note that the reader module is limited by the cameras which produce a new frame every
33ms. Remember that all these modules run in parallel, sharing the processing elements. Thus, since
all modules perform better than the 33ms threshold, we are able to deliver panorama frames in real
time. This is further demonstrated by measuring the differences between the single camera writes and
the differences between the panorama writes. In Figure 7(b), we present the write differences between
the frames, and we observe that a new frame is output every 33ms, that is, equal to the input rate of

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:10 • H. K. Stensland et al.

Fig. 7. The processing performance of the parallel and distributed processing pipeline.

the cameras. These results show that our parallel and distributed processing implementation executes
in real time on a single off-the-shelf computer.

4. TRACKING SUBSYSTEM

Tracking people through camera arrays has been an active research topic for several years, and many
approaches have been suggested (e.g., [Ben Shitrit et al. 2011; Berclaz et al. 2011; Jiang et al. 2007;
Xu et al. 2004]). The accuracy of such tracking solutions vary according to scenarios and is con-
tinuously improving, but they are still giving errors, that is, both missed detections and false posi-
tives [Ben Shitrit et al. 2011]. Often these approaches perform well in controlled lighting conditions,
like indoor sport arenas, but the widely varying light conditions in an outdoor stadium provide bigger
challenges.

For stadium sports, an interesting approach is to use sensors on players to capture the exact position.
ZXY Sport Tracking [ZXY 2013] provides such a solution, where a sensor system submits position and
orientation information at a maximum accuracy error of about one meter at a frequency of 20Hz. As
indicated in Figure 1, the players wear a data chip with sensors that sends signals to antennas located
around the perimeter of the pitch. The sensor data is then stored in a relational database system. Based
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:11

on these sensor data, statistics like total length run, number of sprints of a given speed, foot frequency,
heart rate, etc., can be queried in addition to the exact position of all players at all times. Due to the
availability of the ZXY system at our case study stadium, Bagadus uses the sensor system position in-
formation to extract videos of, for example, particular players, and the rest of the system can be used to
extract time intervals of the video (e.g., all time intervals where player X sprints towards his own goal).

The ZXY sensor belt is worn by all the players on TIL (the home team); it is voluntary for the visiting
team to use the sensor belts. If they choose to use the belts, they will have access to the data recorded
during the match. The belts are small and compact and do not disturb the players during the match;
they are also approved by FIFA for use during international matches.

Although the amount of data generated by the position sensors is small compared to video, a game
of 90 minutes still produces approximately 2.4 million records. Nevertheless, as we show later in Sec-
tion 6, we still have reasonable response times from when we send a complex database query until the
video starts to play the corresponding query result events.

4.1 Mapping Sensor Positions to Image Pixels

The ZXY system reports the players’ positions on the field using the Cartesian coordinate system. In
order to locate a player in the video, we need a transformation from the sensor coordinates to the image
pixels for all valid pixel coordinates in a video frame. In this respect, we calculate a 3×3 transformation
matrix using fixed known points on the field, as shown in Figure 8(a). Then, using the homography
between two planes, each plane can be warped to fit the other, as shown in Figures 8(c) and 8(d), using
camera 2 as an example. The accuracy of the mapping is fairly good, that is, only in the outer areas of
the image where debarreling have changed some pixels can we see a very small deviation between the
planes. However, if we look at the mapping to the stitched image in Figure 8(b), the accuracy is reduced
due to imperfections in the image processing when debarreling and, in particular, when warping and
rotating. Nevertheless, at the distance between the cameras and the players, the accuracy seems to be
good enough for our purposes (though inaccuracies in the mapping might also contribute to inaccurate
tracking, as shown later).

In order to have a system where the players are tracked in real time, the ZXY (x, y) → pixel(u, v)
mapping using the 3 × 3 matrix must be fast. A profile of the system when tracking all 22 soccer
players indicates that about 7.2–7.7 microseconds are consumed for this operation, that is, coordinate
translation is hardly noticeable compared to the other components in the system.

4.2 Automatic Camera Selection

As shown in Figure 2, the four cameras cover different parts of the field. To follow a player (or group
of players) and be able to automatically generate a video selecting images across multiple cameras, we
also need to map player positions to the view of the cameras. In this respect, we use the same mapping
as described in Section 4.1, using our own transformation matrix for each camera. Selecting a camera
is then only a matter of checking if the position of the player is within the boundaries of the image
pixels. When tracking multiple players, we use the same routine and count the number of tracked
players present in each camera and select the camera with the most tracked players.

5. ANALYTICS SUBSYSTEM

To improve a team’s performance and understand their opponents, coaches analyze the game play in
various ways. Traditionally, this has been done by making notes using pen and paper, either during
the game or by watching hours of video. To reduce the manual labor, we have, in close colaboration
with the coach-team, developed Muithu, a novel notational analysis system [Johansen et al. 2012] that

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:12 • H. K. Stensland et al.

Fig. 8. Pixel mapping between the video images and the ZXY tracking system.

is non-invasive for the users, mobile, and lightweight. A cellular phone is used by head coaches during
practice or games for annotating important performance events. A coach usually carries a cellular, even
during practice. Thus, to avoid any extra coach devices, the cellular is used in the notational process
as a notational device. Input is given using the tile-based interface shown in Figures 9(b) and 9(c),
and Figure 9(a) illustrates use of the system by a coach during a recent game in the Norwegian elite
division. Our experience indicates that this simple drag-and-drop user interaction requires in the order
of 3 seconds per notational input. All the events in the app can be custmized by the coaches, and
the number of input notations for a regular 90-minute elite soccer game varies slightly over different
games, but for the 2012 season, the average is in the order of 16 events per game [Johansen et al. 2012].

In order to be usable during a game, the user interface of Muithu has to be easy to use and fast. It
is therefore based on managing tiles in a drag-and-drop fashion, and it can be easily configured with
input tiles and hierarchies of tiles. In the case study described in Section 6, one preferred configuration
pattern for general practice is to have a two-layer hierarchy, where the root node is a number or all
of the players involved. The next layer is a set of 3–4 training goals associated with each individual
player. By simply touching the picture of a player on a tile, his specific training goals appear on adjacent

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:13

Fig. 9. Operation of the mobile device during a game (a). Select a player (b) and drag the image tile to the appropriate event
type (c) to register an event.

Fig. 10. An example of notations captured during a game (time axis in HH:MM after game start). Observe that offensive
notations are displayed above the timeline, defensive notations below.

tiles. Dragging the face tile over one of these goal tiles is then sufficient for capturing the intended
notation.

For heated game purposes, a simpler configuration is preferred: typically one tile for offensive and
one for defensive notations (see Figure 9(c)). Using this interface as an example, Figure 10 depicts the
distribution of such notations during a home game in September 2012.

Recall of performance-related events without any observation aids is traditionally problematic in
soccer, but the recall abilities of the head coaches using Muithu have improved rapidly approaching
almost 1 (100%). A small but fundamental detail is the use of hindsight recording, which implies that
the coach observes an entire situation and determines afterwards whether it was a notable event
worth capturing. By tagging in retrospect, the coach essentially marks the end of a notable event, and
the system finds the start of the sequence by a preconfigured interval length. This simple yet not so
intuitive approach has reduced the number of false positives, that is, increased precision dramatically.

Only those events tagged by the head coaches are retrieved for movement patterns, strategy, and
tactics evaluation. The key to this process is that the video footage is automatically retrieved from the
video system when the event is selected in the video playout interface. This scales both technically and
operationally, which enables expedited retrieval. The video sequence interval according to the recorded
event time-stamp is a configuration option easy to change, but operational practice has shown that an
interval around 15 seconds is appropriate for capturing the event on video. It is also possible to adjust
this interval, both when the event is created and during playback.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:14 • H. K. Stensland et al.

Fig. 11. The offline Linux interface (tracking three players in camera-switching mode).

Fig. 12. Example query.

6. ALFHEIM STADIUM CASE STUDY

We have a prototype installation at Alfheim Stadium in Tromsø (Norway). The interface of the of-
fline prototype [Halvorsen et al. 2013]1 is shown in Figure 11, where we can follow and zoom in on
particular player(s) and play back expert-annotated events from the game in panorama video- and
camera-switching mode.

In the offline mode, the system has support for generating automatic summaries, that is, selecting
multiple time intervals and playing it out as one video (not yet integrated into the user interface).
This means that the game analytics, for example, may perform queries against the ZXY database
and get the corresponding video events. An example could be to see “all the events where defender
X is in the other team’s 18-yard box in the second half”. In this example, the position and corre-
sponding time of player X in the former example is returned by the pseudo-query shown in Figure 12.
Here, the player is located within the [0.0, 16.5] in the x-coordinate and [17.5, 50.5] on the y-axis (using
the metric system) defining the 18-yard box. The returned time stamps and positions are then used
to select video frames (selecting the correct camera or the panorama picture) which are automatically
presented to the user. Extracting summaries like the preceding example used to be a time-consuming

1A video of the (offline) Linux-based system is available at http://www.youtube.com/watch?v=1zsgvjQkL1E. At the time of the
submission, we have not been able to make a video of the online system.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:15

Table I. Latency Profiling (in ms) of the Event Extraction Operation Using
ZXY and the Video System

Operation Mean Minimum Maximum Standard deviation

Query received 2.7 1.5 5.3 0.38
Query compiled 4.9 2.9 7.8 0.61
First DB row returned 500.4 482.4 532.1 5.91
First video frame displayed 671.2 648.0 794.6 8.82

Fig. 13. The online HTML5 interface used for expert annotated events. Here the events are sorted by player and then time.

and cumbersome (manual) process. Bagadus, on the other hand, automates the video generation. For
instance, the response time of returning the resulting video summary from the preceding query was
measured to be around 671ms (see Table I for more detailed statistics). Note that this was measured
on a local machine, that is, if the display device is remote, network latency must be added. The SQL
queries are made for expert users. We have also implemented a number of predefined queries that are
availible in the user interface.

As shown in the online mode HTML5 interface in Figure 13, we can in a similar way extract video
events based on expert annotations. Events may be tagged through a Web interface or using the mo-
bile phone sending an HTTP POST command, and all annotated events from the analytics subsystem
then appear in the list of events. Using a standard Web browser, the corresponding videos start by
clicking on the event title. Thus, the integration of subsystems enable event playout during a game or
a practice session.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:16 • H. K. Stensland et al.

Fig. 14. Lighting challenges at Alfheim Stadium. Comparison between Bagadus and two professional Norwegian broadcasters.
(The images are from the same game but different situations during the game.)

7. DISCUSSION

Performance analysis of athletes in the sports industry is a growing field of interest. In the context
of computer systems managing the technical challenges, there are numerous issues that must be ad-
dressed to provide real-time operations. In this respect, our Bagadus soccer analysis application in-
tegrates a sensor system, soccer analytics annotations, and video processing of a video camera array.
There exist several components that can be used, and we have investigated several alternatives in our
research. Furthermore, by providing a parallel video-processing pipeline distributing load on multiple
CPUs and GPUs, Bagadus supports analysis operations at 30fps. Note, however, that our prototype
aims to prove the possible integration at the system level with real-time performance, rather than be-
ing optimized for optimal resource utilization, that is, there are several areas with potential for further
optimizations.

For example, most stitching processes assume the pinhole camera model where there is no image
distortion because of lenses. In our work, we have observed that a camera can be calibrated to minimize
lens distortion caused by imperfections in a lens but making a perfect calibration is hard. This makes
finding a homography between planes difficult and error-prone, which affects the stitched result.

Another problem we have identified is parallax errors. In this respect, OpenCV’s auto-stitcher has
functionality for selecting seams at places where parallax errors are less obvious. However, when
stitching video recorded from cameras capturing the field from the same position but with different
angles (requiring rotation and warping), parallax errors will become prominent. Such problems arise
because the centers of the projection of different cameras are not aligned well enough. We are look-
ing at solutions to eliminate this problem: one of the most interesting solutions is the arrangement of
cameras over cross, such as each camera capturing one side of the field, similar to Fehn et al. [2006].

Furthermore, the stitching itself can be moved from a homography-based stitching with dynamic
seams to avoid moving objects to more advanced warping techniques, like the one mentioned in Lin
et al. [2011]. A rather intriguing challenge would be to incorporate such a process into Bagadus and
perform this approach in real time, too. Moreover, we have later found several promising alternative
algorithms in the area of video processing (vision) (e.g., [Lin et al. 2011; Jin 2008; Li and Du 2010;
Ozawa et al. 2012]), and there is also scope for further improvement in color correction [Xiong and
Pulli 2010], since the exposure times and other parameters across the cameras may vary.

A major challenge is managing variations in lighting conditions. In most weather conditions, our
current setup works fine, but our main challenge here is a low and bright sun. The visual quality is
exceptional when it is partly or completely cloudy, but the striking difference between the amount of
light available from highlights and shadows during a clear day leaves us with a choice of having a good
dynamic range in only one region. An example from Alfheim Stadium is shown in Figure 14. When
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:17

there are intensely bright and dark areas in the image (Figure 14(a)), most cameras have problems
creating a representative image. Particularly, in our Alfheim case study, the location of the stadium
is only 2,271km from the North Pole (69.6489986◦N). The sun is significant lower on the sky than
most of the habitable world, resulting in challenges, as shown in the figure. In such a case, aiming for
good quality in highlights leads to loss of details in shadows. Our system currently lacks the ability to
make an appropriate decision which often depends on the events on the field. Professional broadcasters
also experience these problems, but they have people manning cameras (and thus also the exposure
settings) as well as a someone controlling the live broadcast who also can perform manual adjustments
(Figures 14(c) and 14(b)).

Our system needs to handle this without human interaction and in real time. The problem is related
to suboptimal auto-exposure and insufficient dynamic range on the camera sensors. Improvements can
be achieved several ways. In this respect, one could solve common auto-exposure problems as proposed
in Kao et al. [2011] and use real-time assembling of high-dynamic-range (HDR) video by using low-
dynamic-range images [Ali and Mann 2012; Guthier et al. 2012]. Investigations of such approaches are
currently ongoing.

The GPU implementation has been tested on an Nvidia GeForce Titan (GK110) GPU with compute
3.5 capabilities and has been profiled with Nvidia’s Visual Profiler to investigate the possibilities of
scaling the pipeline to more cameras with higher resolution. Currently, we are only using a small
portion of the available PCI Express bandwidth between the CPU and the GPU. Our uploader uses
737MB/sec, and our downloader uses 291MB/sec. The theoretical bidirectional bandwidth of a 16-lane
PCI Express 3.0 link is 16GB/sec. The real-time pipeline uses seven kernels running concurrently
on the GPU. These seven kernels have an average compute utilization of 14.8% on this GPU. The
individual CUDA kernels are also not optimized for the architecture used in our benchmarks, since
the priority was to get the entire pipeline in real time. There is therefore a lot of potential on the GPU
for scaling the pipeline to a larger number of cameras with higher resolution.

In our case study, we have analyzed data and retrieving video from only one game. However, we have
shown earlier how one could search for events and generate video summaries on-the-fly in terms of a
video playlist [Johansen et al. 2009] over large libraries of video content. In the used test scenario, there
are events identified from multiple subcomponents, for example, the sensor system and the annotation
system. In many cases, it would be valuable to be able to search across all the metadata and also across
games. This is a feature we are currently adding, that is, the underlying video system fully supporting
the video extraction, but the interface has not yet been implemented.

The design of Bagadus having three tightly integrated, but still separate subsystems, enables easy
subsystem replacement. For example, we have used ZXY to track players, providing some extra nice
features (heart rate, impact, etc.). However, tracking players (or, generally, objects) through video anal-
ysis is a popular research area (e.g., both in sports [Fehn et al. 2006; Yongduek et al. 1997; Iwase
and Saito 2004; Kang et al. 2003] and surveillance [Fuentes and Velastin 2006; Chen et al. 2011;
Siebel and Maybank 2002]). Thus, the Bagadus idea should easily be transferable to arenas where
the sensor system is unavailable or to other arena sports, like ice hockey, handball, baseball, tennis,
American football, rugby, etc. Similarly, video-processing components can easily be replaced to match
other codec’s and other filters or to suit other end devices and platforms. Equally, the annotation sys-
tem can be replaced (or expanded) to retrieve metadata of events from other sources, like on-the-fly
live text commentaries found in newspapers and online TV stations, like we did in our DAVVI sys-
tem [Johansen et al. 2009].

One engineering challenge in systems like Bagadus is time synchronization at several levels. First,
to be able to stitch several images to a panorama image, the shutters must be synchronized at the sub-
millisecond level, that is, as the players are moving fast across cameras, imperfect synchronization

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:18 • H. K. Stensland et al.

Fig. 15. An example of when the tracking box fails to capture the tracked player. Even though our analysis of the system
indicates very infrequent errors, it may be various reasons for failed tracking, for example, both clock skew, sensor system
accuracy, and coordinate mapping.

would lead to massive pixel offsets across camera perspectives resulting in severely blurred composite
images of players. This is currently solved using an external trigger box (i.e., embedded trigger con-
troller based on an ATMega16 microcontroller) which sends an input signal to the camera’s electronic
shutter. Another observed challenge in this respect is that the clock in the trigger box drifts slightly
compared to our computer clocks depending on temperature (which changes a lot under the harsh
outdoor conditions in northern Norway). While the shutters across cameras remains in sync, a drift-
ing clock leads to slight variations in frame rate of the captured video. Similarly, Bagadus integrates
several subsystems running on different systems. In this respect, the clock in the ZXY system also
slightly drifts compared to the clock in our video capture machines (which will be potentially solved
when we switch ZXY to the same NTP server). So far, these small errors have been identified, but since
we alleviate the problem in our video player by fetching a couple of seconds more video data around a
requested event time stamp, the effects have been small. Another more visible (still very infrequent)
effect of time skew is that the box-marker marking the players in the video gives small misplacement
errors, as shown in Figure 15. However, the bounding box is slightly larger compared to the personob-
ject itself. This means that the player is usually contained in the box, even though not exactly in the
middle. At the current stage of our prototype, we have not solved all the synchronization aspects, but
it is subject to ongoing work.

The ZXY’s tracking system installed at Alfheim Stadium has a maximum accuracy error of one
meter (their new system reduces this error down to a maximum of 10 centimeters). This means that if
a player is at a given position, the measured coordinate on the field could be ± one meter. This could
give effects like those shown in Figure 15, but for the practical purposes of our case study, it has no
influence on the results.

The players are tracked as described using the ZXY Sport Tracking system. Another issue which
is not yet included in Bagadus is ball tracking, that is, a feature that could potentially improve the
analysis further. Even though ball tracking is not officially approved by the international soccer as-
sociations due to the limited reliability and failure to provide 100% accuracy, there exist several ap-
proaches. For example, Adidas and Cairos Technologies have tried to put sensors inside the ball, that
is, using a magnetic field to provide pinpoint accuracy of the ball’s location inside the field [McKeegan
2007; Cairos Technologies 2013a]. Other approaches include using multiple cameras to track the ball.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:19

Hawk-Eye [2013] is one example which tries to visually track the trajectory of the ball and display a
record of its most statistically likely path as a moving image. Nevertheless, ball tracking in Bagadus
is a future feature.

This article presents Bagadus in the context of sports analysis for a limited user group within a
team. However, the applicability we conjecture is outside the trainer and athlete sphere, since we have
a potential platform for next-generation personalized edutainment. We consider use case scenarios
where users can subscribe to specific players, events, and physical proximities in real time. For in-
stance, when the main activity is around the opponent goal, a specific target player can be zoomed
into. Combine this with commonplace social networking services, and we might have a compelling
next-generation social networking experience in real time.

8. CONCLUSIONS

We have presented a real-time prototype of a sports analysis system called Bagadus targeting auto-
matic processing and retrieval of events in a sports arena. Using soccer as a case study, we described
how Bagadus integrates a sensor system, a soccer analytics annotations system, and a camera ar-
ray video processing system. Then, we showed how the system removes the large amount of manual
labor traditionally required by such systems. We have described the different subsystems and the
possible trade-offs in order to run the system in real-time mode. Compared to our initial demonstra-
tor [Halvorsen et al. 2013], the improved processing pipeline parallelizing the operational steps and
distributing workload to both CPUs and GPUs enables real-time operations, and the picture qual-
ity has been improved using dynamic seams and color correction. Furthermore, we have presented
functional results using a prototype installation at Alfheim Stadium in Norway. Bagadus enable a
user to follow and zoom in on particular player(s), playback events from the games using the stitched
panorama video and/or the camera switching mode, and create video summaries based on queries to
the sensor system.

Finally, there are still several areas for future improvements, for example, in the areas of image
quality improvements handling a wide range of lighting conditions, performance enhancements as our
profiling results show that we can optimize the resource utilization further and subjective user evalu-
ations. All these areas are subjects for ongoing work, for example, we are testing algorithms discussed
in Section 7 for improving the image quality, we are evaluating higher-resolution cameras like the 2K
Basler aca2000-50gc, and we are further optimizing and distributing algorithms onto multiple cores
and offloading calculations to GPUs for speed improvements and better utilization of both cores and
buses.

ACKNOWLEDGMENTS

The authors also acknowledge support given by Kai-Even Nilssen and Håvard Johansen who have been
helpful with the practical installation at Alfheim, the coaches in TIL (Per-Mathias Høgmo and Agnar
Christensen) who have given feedback on the functionality of the system, and Rune Stoltz Bertinussen
for taking player photos.

REFERENCES

Mir Adnan Ali and Steve Mann. 2012. Comparametric image compositing: Computationally efficient high dynamic range imag-
ing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 913–916.

Horesh Ben Shitrit, Jerome Berclaz, Francois Fleuret, and Pascal Fua. 2011. Tracking multiple people under global appearance
constraints. In Proceedings of the IEEE International Conference on Computer Vision (CCV). 137–144.

Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. 2011. Multiple object tracking using k-shortest paths
optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9, 1806–1819.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

14:20 • H. K. Stensland et al.

Matthew Brown and David G. Lowe. 2007. Automatic panoramic image stitching using invariant features. Int. J. Comput.
Vision 74, 1, 59–73.

S. Brutzer, B. Hoferlin, and G. Heidemann. 2011. Evaluation of background subtraction techniques for video surveillance. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1937–1944.

Cairos Technologies. 2013a. Goal Line Technology (GLT) system. http://www.cairos.com/unternehmen/gltsystem.php.
Cairos Technologies. 2013b. VIS.TRACK. http://www.cairos.com/unternehmen/vistrack.php.
Camargus. 2013. Premium Stadium Video Technology Inrastructure. http://www.camargus.com/.
Chao-Ho Chen, Tsong-Yi Chen, Je-Ching Lin, and Da-Jinn Wang. 2011. People tracking in the multi-camera surveillance system.

In Proceedings of the 2nd International Conference on Innovations in Bio-inspired Computing and Applications (IBICA). 1–4.
Peter Dizikes. 2013. Sports analytics: A real game-changer. http://web.mit.edu/newsoffice/2013/sloan-sports-analytics-

conference-2013-0304.html.
Christoph Fehn, Christian Weissig, Ingo Feldmann, Markus Muller, Peter Eisert, Peter Kauff, and Hans Bloss. 2006. Creation

of high-resolution video panoramas of sport events. In Proceedings of the 8th IEEE International Symposium on Multimedia
(ISM). 291–298.

Luis M. Fuentes and Sergio A. Velastin. 2006. People tracking in surveillance applications. Image Vision Comput. 24, 11,
1165–1171.

Benjamin Guthier, Stephan Kopf, and Wolfgang Effelsberg. 2012. Optimal shutter speed sequences for real-time HDR video. In
Proceedings of the IEEE International Conference on Image Systems and Techniques (IST). 303–308.

Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexander Eichhorn, Magnus Stenhaug, Stian Dahl,
Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Carsten Griwodz, and Dag Johansen. 2013. Bagadus: An integrated
system for arena sports analytics a soccer case study. In Proceedings of the 4th ACM Multimedia Systems Conference (MMSys).
48–59.

R. I. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision 2nd Ed. Cambridge University Press.
Hawk-Eye. 2013. Football::Hawk-Eye. http://www.hawkeyeinnovations.co.uk/page/sports-officiating/football.
Interplay Sports. 2013. The ultimate video analysis and scouting software. http://www.interplay-sports.com/.
Sachiko Iwase and Hideo Saito. 2004. Parallel tracking of all soccer players by integrating detected positions in multiple view

images. In Proceedings of the 7th International Conference on Pattern Recognition (ICPR). 751–754.
Hao Jiang, Sidney Fels, and James J. Little. 2007. A linear programming approach for multiple object tracking. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Hailin Jin. 2008. A three-point minimal solution for panoramic stitching with lens distortion. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 1–8.
Dag Johansen, Håvard Johansen, Tjalve Aarflot, Joseph Hurley, Åge Kvalnes, Cathal Gurrin, Sorin Sav, Bjørn Olstad, Erik

Aaberg, Tore Endestad, Haakon Riiser, Carsten Griwodz, and Pål Halvorsen. 2009. DAVVI: A prototype for the next gen-
eration multimedia entertainment platform. In Proceedings of the 17th ACM International Conference on Multimedia (MM).
989–990.

Dag Johansen, Magnus Stenhaug, Roger Bruun Asp Hansen, Agnar Christensen, and Per-Mathias Høgmo. 2012. Muithu:
Smaller footprint, potentially larger imprint. In Proceedings of the 7th International Conference on Digital Information Man-
agement (ICDIM). 205–214.

P. Kaewtrakulpong and R. Bowden. 2001. An improved adaptive background mixture model for realtime tracking with shadow
detection. In Proceedings of the Video-Based Surveillance Systems. 135–144.

Jinman Kang, Isaac Cohen, and Gerard Medioni. 2003. Soccer player tracking across uncalibrated camera streams. In Proceed-
ings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveil-
lance (VS-PETS). 172–179.

Wen-Chung Kao, Li-Wei Cheng, Chen-Yu Chien, and Wen-Kuo Lin. 2011. Robust brightness measurement and exposure control
in real-time video recording. IEEE Trans. Instrument. Measur. 60, 4, 1206–1216.

Jubiao Li and Junping Du. 2010. Study on panoramic image stitching algorithm. In Proceedings of the 2nd Pacific-Asia Confer-
ence on Circuits, Communications and Systems (PACCS). 417–420.

Wen-Yan Lin, Siying Liu, Y. Matsushita, Tian-Tsong Ng, and Loong-Fah Cheong. 2011. Smoothly varying affine stitching. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 345–352.

Noel McKeegan. 2007. The Adidas intelligent football. http://www.gizmag.com/adidas-intelligent-football/8512/.
Tomohiro Ozawa, Kris M. Kitani, and Hideki Koike. 2012. Human-centric panoramic imaging stitching. In Proceedings of the

Augmented Human International Conferences Series (AH). 20:1–20:6.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Bagadus • 14:21

Prozone. 2013. Prozone Sports – Introducing Prozone performance analysis products. http://www.prozonesports.com/
products.html.

Simen Sægrov, Alexander Eichhorn, Jørgen Emerslund, Håkon Kvale Stensland, Carsten Griwodz, Dag Johansen, and Pål
Halvorsen. 2012. Bagadus: An integrated system for soccer analysis (demo). In Proceedings of the 6th International Conference
on Distributed Smart Cameras (ICDSC).

Valter Di Salvo, Adam Collins, Barry McNeill, and Marco Cardinale. 2006. Validation of Prozone: A new video-based performance
analysis system. Int. J. Perform. Anal. Sport 6, 1, 108–119.

Nils T. Siebel and Stephen J. Maybank. 2002. Fusion of multiple tracking algorithms for robust people tracking. In Proceedings
of the 7th European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science, vol. 2353, Springer-Verlag,
Berlin Heidelberg, 373–387.

Stats. 2013. STATS—SportVU—Football/Soccer. http://www.sportvu.com/football.asp.
Yingen Xiong and Kari Pulli. 2009. Color correction for mobile panorama imaging. In Proceedings of the 1st International

Conference on Internet Multimedia Computing and Service (ICIMCS). 219–226.
Yingen Xiong and Kari Pulli. 2010. Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans.

Consumer Electron. 56, 2.
Ming Xu, James Orwell, and Graetne Jones. 2004. Tracking football players with multiple cameras. In Proceedings of the

International Conference on Image Processing (ICIP). 2909–2912.
Sunghoon Choi Yongduek, Sunghoon Choi, Yongduek Seo, Hyunwoo Kim, and Ki sang Hong. 1997. Where are the ball and

players? Soccer game analysis with color-based tracking and image mosaick. In Proceedings of the 9th International Conference
on Image Analysis and Processing (ICIAP). Lecture Notes in Computer Science, vol. 1311, Springer-Varlag, Berlin Heidelberg,
196–203.

Zhengyou Zhang. 1999. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the 7th
IEEE International Conference on Computer Vision (ICCV). 666–673.

Z. Zivkovic. 2004. Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the 17th Interna-
tional Conference on Pattern Recognition (ICPR). 28–31. Vol. 2.

Zoran Zivkovic and Ferdinand van der Heijden. 2006. Efficient adaptive density estimation per image pixel for the task of
background subtraction. Pattern Recog. Lett. 27, 7, 773–780.

ZXY. 2013. ZXY Sport Tracking. http://www.zxy.no/.

Received May 2013; revised August 2013; accepted October 2013

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

Appendix C

[Journal] Processing Panorama

Video in Real-Time

[Authors:] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. O. Helgedagsrud,

M. Næss, H. K. Alstad, C. Griwodz, P. Halvorsen, and D. Johansen

[Published:] International Journal of Semantic Computing (IJSC), 2014

209

Processing Panorama Video in Real-time

Håkon Kvale Stensland*, Vamsidhar Reddy Gaddam,
Marius Tennøe, Espen Helgedagsrud, Mikkel Næss,

Henrik Kjus Alstad, Carsten Griwodz and Pål Halvorsen

University of Oslo/Simula Research Laboratory
Oslo, Norway

*haakonks@ifi.uio.no

Dag Johansen

University of Troms�

Troms�, Norway

There are many scenarios where high resolution, wide ¯eld of view video is useful. Such pano-

rama video may be generated using camera arrays where the feeds from multiple cameras
pointing at di®erent parts of the captured area are stitched together. However, processing the

di®erent steps of a panorama video pipeline in real-time is challenging due to the high data rates

and the stringent timeliness requirements. In our research, we use panorama video in a sport
analysis system called Bagadus. This system is deployed at Alfheim stadium in Tromsø, and due

to live usage, the video events must be generated in real-time. In this paper, we describe our real-

time panorama system built using a low-cost CCD HD video camera array. We describe how we

have implemented di®erent components and evaluated alternatives. The performance results
from experiments ran on commodity hardware with and without co-processors like graphics

processing units (GPUs) show that the entire pipeline is able to run in real-time.

Keywords: Real-time panorama video; system integration; camera array.

1. Introduction

A wide ¯eld of view (panoramic) image or video is often used in applications like

surveillance, navigation, scenic views, educational exhibits and sports analysis. Here,

video feeds are often captured using multiple cameras capturing slightly overlapping

areas, and the frames are processed and stitched into a single unbroken frame of the

whole surrounding region. To prepare the individual frames for stitching and ¯nally

generating the panorama frame, each individual frame must be processed for barrel

distortion, rotated to have the same angle, warped to the same plane and corrected

for color di®erences. Then, the frames are stitched to one large panorama image,

where the stitch operation also includes searching for the best possible seam in the

overlapping areas to avoid seams through objects of interest in the video. Finally, the

panorama frame is encoded to save storage space and transfer bandwidth and,

International Journal of Semantic Computing
Vol. 8, No. 2 (2014) 209–227

°c World Scienti¯c Publishing Company

DOI: 10.1142/S1793351X14400054

209

written to disk. As several of these steps include direct pixel manipulation and

movement of large amounts of data, the described process is very resource hungry.

In [30], we described our implementation of a real-time panorama video pipeline

for an arena sports application called Bagadus [11, 28], and this is an extended

version providing more details. In our panorama setup, we use a static array of low-

cost CCD HD video cameras, each pointing at a di®erent direction, to capture the

wide ¯eld of view of the arena. These di®erent views are slightly overlapped in order

to facilitate the stitching of these videos to form the panoramic video. Several similar

non-real-time stitching systems exist (e.g. [23]), and a simple non-real-time version of

this system has earlier been described and demonstrated at the functional level [11,

26]. Our initial prototype is the ¯rst sports application to successfully integrate per-

athlete sensors [17], an expert annotation system [16] and a video system, but due to

the non-real-time stitching, the panorama video was only available to the coaches

some time after a game. The ¯rst prototype also did not use any form of color

correction or dynamic seam detection. Hence, the static seam did not take into

account moving objects (such as players), and the seam was therefore very visible.

Fig. 1. Overall system architecture.

210 H. K. Stensland et al.

However, new requirements like real-time performance and better visual quality have

resulted in a new and improved pipeline. Using our new real-time pipeline, such

systems can be used during the game. A brief overview of the architecture and

interaction of the di®erent components is given in Fig. 1. In this paper we will focus

on the details of the whole pipeline from capturing images from the cameras via

various corrections steps for panorama generation to encoding and storage of both

the panorama video and the individual camera streams on disks. We describe how we

have evaluated di®erent implementation alternatives (both algorithms and imple-

mentation options), and we benchmark the performance with and without using

graphics processing units (GPUs) as an co-processors. We evaluate each individual

component, and, we show how the entire pipeline is able to run in real-time on a low-

cost 6-core machine with a GPU, i.e. moving the 1 frame per second (fps) system to

30 fps enabling game analysis during the ongoing event.

The remainder of the paper is structured as follows. We give a brief overview of

the basic idea of our system in Sec. 2, and then we analyze the state of the art in

Sec. 3 to see if systems exist that meet our requirements. Then, we describe and

evaluate our real-time panorama video pipeline in Sec. 4. Various aspect of the

system are discussed in Sec. 5 before we ¯nally conclude the paper in Sec. 6.

2. Our Sports Analysis Systems

Today, a large number of (elite) sports clubs spend a large amount of resources to

analyze their game performance, either manually or using one of the many existing

analytics tools. For example, in the area of soccer, several systems enable trainers and

coaches to analyze the gameplay in order to improve the performance. For instance,

Interplay-sports, ProZone, STATS SportVU Tracking Technology and Camargus

provide very nice video technology infrastructures. These systems can present player

statistics, including speed pro¯les, accumulated distances, fatigue, ¯tness graphs and

coverage maps using di®erent charts, 3D graphics and animations. Thus, there exist

several tools for soccer analysis. However, to the best of our knowledge, there does

not exist a system that fully integrates all desired features in real-time, and existing

systems still require manual work moving data between di®erent components. In this

respect, we have presented Bagadus [11, 26], which integrates a camera array video

capture system with a sensor-based sport tracking system for player statistics and a

system for human expert annotations. Our system allows the game analytics to

automatically playout a tagged game event or to extract a video of events extracted

from the statistical player data. This means that we for example can query for all

sprints faster than X or all situations where a player is in the center circle. Using the

exact player position provided by sensors, a trainer can also follow individuals or

groups of players, where the videos are presented either using a stitched panorama

view of the entire ¯eld or by (manually or automatically) switching between the

di®erent camera views. Our prototype is currently deployed at an elite club stadium.

We use a dataset captured at a premier league game to experiment and to perform

Processing Panorama Video in Real-time 211

benchmarks on our system. In previous versions of the system, the panorama video

had to be generated o®line, and it had static seams [11]. For comparison with the new

pipeline presented in Sec. 4, we next present the camera setup and the old pipeline.

2.1. Camera setup

To record the high resolution video of the entire soccer ¯eld, we have installed a

camera array consisting of four Basler industry cameras with a 1/3-inch image

sensors supporting 30 fps at a resolution of 1280� 960. The cameras are synchro-

nized by an external trigger signal in order to enable a video stitching process that

produces a panorama video picture. The cameras are mounted close to the middle

line (see Fig. 2), i.e. under the roof of the stadium covering the spectator area

approximately 10 meters from the side line and 10 meters above the ground. With a

3.5mm wide-angle lens, each camera covers a ¯eld-of-view of about 68 degrees, and

the full ¯eld with su±cient overlap to identify common features necessary for camera

calibration and stitching, is achieved using the four cameras. Calibration is done via

a classic chessboard pattern [33].

2.2. The o®line, static stitching pipeline

Our ¯rst prototype focused on integrating the di®erent subsystems. We therefore did

not put large e®orts into real-time performance resulting in an unoptimized, o®line

panorama video pipeline that combined images from multiple, trigger-synchronized

cameras as described above. The general steps in this stitching pipeline are: (1)

correct the images for lens distortion in the outer parts of the frame due to a wide-

angle ¯sh-eye lens; (2) rotate and morph the images into the panorama perspective

caused by di®erent positions covering di®erent areas of the ¯eld; (3) rotate and stitch

the video images into a panorama image; and (4) encode and store the stitched video

to persistent storage. Several implementations were tested for the stitching operation

such as the OpenCV planar projection, cylindrical projection and spherical projec-

tion algorithms, but due to the processing performance and quality of the output

image, the used solution is a homography based algorithm.

Fig. 2. Camera setup at the stadium.

212 H. K. Stensland et al.

The ¯rst step before executing the pipeline, is to ¯nd corresponding pixel points in

order to compute the homography between the camera planes [12], i.e. the head

camera plane and the remaining camera planes. When the homography is calculated,

the image can be warped (step 2) in order to ¯t the plane of the second image. The

images must be padded to have the same size, and the seams for the stitching must be

found in the overlapping regions (our ¯rst pipeline used static seams). Figure 3 shows

the four rotated, wrapped and stitched images. The whole process of stitching the

images is described in [28]. We also calculate the homography between the sensor

data plane and the camera planes to ¯nd the mapping between sensor data coordi-

nates and pixel positions.

As can be seen in the ¯gure, the picture is not perfect, but the main challenge is

the high execution time. On an Intel Core i7-2600 @ 3.4GHz and 8GB memory

machine, the stitching operation consumed 974ms of CPU time to generate each

7000� 960 pixel panorama image [11]. Taking into account that the target display

rate is 30 fps, i.e. requiring a new panorama image every 33ms, there are large

performance issues that must be addressed in order to bring the panorama pipeline

from a 1 fps system to a 30 fps system. However, the stitching operations can be

parallelized and parts of it o®loaded to external devices such as GPUs, which, as we

will see in Sec. 4, results in a performance good enough for real-time, online pro-

cessing and generation of a panorama video.

3. Related Work

Real-time panorama image stitching is becoming common. For example, many have

proposed systems for panorama image stitching (e.g. [6, 14, 19–21]), and modern

operating systems for smart phones like Apple iOS and Google Android support

generation of panorama pictures in real-time. However, the de¯nition of real-time is

not necessarily the same for all applications, and in this case, real-time is similar to

`̀ within a second or two". For video, real-time has another meaning, and a panorama

picture must be generated in the same speed as the display frame rate, e.g. every

33ms for a 30 frame-per-second (fps) video.

One of these existing systems is Camargus [1]. The people developing this system

claim to deliver high de¯nition panorama video in real-time from a setup consisting

of 16 cameras (ordered in an array), but since this is a commercial system, we have no

insights to the details. Another example is Immersive Cockpit [29] which aims to

generate a panorama for tele-immersive applications. They generate a stitched video

Fig. 3. The homography-based panorama image stitched from four cameras.

Processing Panorama Video in Real-time 213

which capture a large ¯eld-of-view, but their main goal is not to give output with

high visual quality. Although they are able to generate video at a frame rate of about

25 fps for 4 cameras, there are visual limitations to the system, which makes the

system not well suited for our scenario.

Moreover, Baudisch et al. [5] present an application for creating panoramic

images, but the system is highly dependent on user input. Their de¯nition of real

time is `̀ panorama construction that o®ers a real-time preview of the panorama while

shooting", but they are only able to produce about 4 fps (far below our 30 fps re-

quirement). A system similar to ours is presented in [4], which computes stitch-maps

on a GPU, but the presented system produces low resolution images (and is limited

to two cameras). The performance is within our real-time requirement, but the

timings are based on the assumption that the user accepts a lower quality image than

the cameras can produce.

Haynes [3] describes a system by the Content Interface Corporation that creates

ultra high resolution videos. The Omnicam system from the Fascinate [2, 27] project

also produces high resolution videos. However, both these systems use expensive

and specialized hardware. The system described in [3] also makes use of static

stitching. A system for creating panoramic videos from already existing video clips is

presented in [7], but it does not manage to create panorama videos within our

de¯nition of real-time. As far as we know, the same issue of real-time is also present in

[5, 13, 23, 31].

In summary, existing systems (e.g. [7, 13, 23, 29, 31]) do not meet our demand of

being able to generate the video in real-time, and commercial systems (e.g. [1, 3]) as

well as the systems presented in [2, 27] do often not ¯t into our goal to create a system

with limited resource demands. The system presented in [4] is similar to our system,

but we require high quality results from processing a minimum of four cameras

streams at 30 fps. Thus, due to the lack of a low-cost implementations ful¯lling our

demands, we have implemented our own panorama video processing pipeline which

utilize processing resources on both the CPU and GPU.

4. A Real-Time Panorama Stitcher

In this paper, we do not focus on selecting the best algorithms etc., as this is mostly

covered in [11]. The focus here is to describe the panorama pipeline and how the

di®erent components in the pipeline are implemented in order to run in real-time. We

will also point out various performance trade-o®s.

As depicted in Fig. 4, the new and improved panorama stitcher pipeline is sep-

arated into two main parts: one part running on the CPU, and the other running on a

GPU using the CUDA framework. The decision of using a GPU as part of the

pipeline was due to the potential high performance and the parallel nature of the

workload. The decision of using the GPU for the pipeline has a®ected the architec-

ture to a large degree. Unless otherwise stated (we have tested several CPUs and

GPUs), our test machine for the new pipeline is an Intel Core i7-3930K, i.e. a 6-core

214 H. K. Stensland et al.

processor based on the Sandy Bridge-E architecture, with 32GB RAM and an Nvidia

GeForce GTX 680GPU based on the GK104 Kepler architecture.

4.1. The Controller module

The single-threaded Controller is responsible for initializing the pipeline, synchro-

nizing the di®erent modules, handling global errors and frame drops, and transferring

data between the di®erentmodules. After initialization, it will wait for and get the next

set of frames from the camera reader (CamReader) module (see below). Next, it will

control the transfers of data from the output bu®ers ofmoduleN to the input bu®ers of

moduleN þ 1. This is done primarily by pointer swapping, and withmemory copies as

an alternative. It then signals all modules to process the new input and waits for them

to¯nish processing.Next, the controller continues looping bywaiting for the next set of

frames from the reader. Another important task of the Controller is to check the

execution speed. If an earlier step in the pipeline runs too slow, and one or more frames

has been lost from the cameras, the controllerwill tell themodules in the pipeline to skip

the delayed or dropped frame, and reuse the previous frame.

4.2. The CamReader module

The CamReader module is responsible for retrieving frames from the cameras. It

consists of one dedicated reader thread per camera. Each of the threads will wait for

the next frame, and then write the retrieved frame to a output bu®er, overwriting the

previous frame. The cameras provide a single frame in YUV 4:2:2 format, and the

retrieval rate of frames in the CamReader is what determines the real time threshold

for the rest of the pipeline. As described above, the camera shutter synchronization is

controlled by an external trigger box, and in our current con¯guration, the cameras

deliver a frame rate of 30 fps, i.e. the real-time threshold and the CamReader pro-

cessing time are thus 33ms.

4.3. The Converter module

The CamReader module outputs frames in YUV 4:2:2 format. However, the stitching

pipeline requires RGBA internally for processing, and the system therefore converts

frames from YUV 4:2:2 to RGBA. This is handled by the Converter module using

1) CamReader
2) Converter

YUV422=>RGBA
3) Debarreler 5) Uploader

5) Uploader 6) Background-
subtractor 9) Stitcher 10) Converter

RGBA=>YUV420

6) Background-
subtractor 11) Downloader

11) Downloader

12) Panorama-
Writer

GPU
CPU

4) SingleCam-
Writer

Controller

Player coordinate
database (ZXY)

8) Color-corrector7) Warper

Fig. 4. Panorama stitcher pipeline architecture. The orange and blue components run in the CPU and

the green components run on the GPU.

Processing Panorama Video in Real-time 215

®mpeg and swscale. The processing time for these conversions on the CPU, as seen

later in Fig. 11, is well below the real-time requirement, so this operation can run as a

single thread.

4.4. The Debarreler module

Due to the wide angle lenses used with our cameras in order to capture the entire

¯eld, the images delivered are su®ering from barrel distortion which needs to be

corrected. We found the performance of the existing debarreling implementation in

the old stitching pipeline to perform fast enough. The Debarreler module is therefore

still based on OpenCVs debarreling function, using nearest neighbor interpolation,

and is executing as a dedicated thread per camera.

4.5. The SingleCamWriter module

In addition to storing the stitched panorama video, we also want to store the video

from the separate cameras. This storage operation is done by the SingleCamWriter,

which is running as a dedicated thread per camera. As we can see in [11], storing the

videos as raw data proved to be impractical due to the size of uncompressed raw

data. The di®erent CamWriter modules (here SingleCamWriter) therefore encode

and compress frames into 3 seconds long H.264 ¯les, which proved to be very e±-

cient. Due to the use of H.264, every SingleCamWriter thread starts by converting

from RGBA to YUV 4:2:0, which is the required input format by the x264 encoder.

The threads then encode the frames and write the results to disk.

4.6. The Uploader module

Due to the large potential of parallelizing the panorama workload and the high

computing power of modern GPUs, large parts of our pipeline run on a GPU. We

therefore need to transfer data from the CPU to the GPU, i.e. a task performed by

the Uploader module. In addition, the Uploader is also responsible for executing the

CPU part of the BackgroundSubtractor (BGS) module (see Sec. 4.7). The Uploader

consists of a single CPU thread, that ¯rst runs the player pixel lookup creation

needed by the BGS. Next, it transfers the current RGBA frames and the corre-

sponding player pixel maps from the CPU to the GPU. This is done by use of double

bu®ering and asynchronous transfers.

4.7. The BackgroundSubtractor module

Background subtraction is the process of determining which pixels of a video that

belong to the foreground and which pixels that belong to the background. The

BackgroundSubtractor module, running on the GPU, generates a foreground mask

(for moving objects like players) that is later used in the Stitcher module later to

avoid seams in the players. Our BackgroundSubtractor can run like traditional

systems searching the entire image for foreground objects. However, we can also

216 H. K. Stensland et al.

exploit information gained by the tight integration with the player sensor system. In

this respect, through the sensor system, we know the player coordinates which can be

used to improve both performance and precision of the module. By ¯rst retrieving

player coordinates for a frame, we can then create a player pixel lookup map, where

we only set the players pixels, including a safety margin, to 1. The creation of these

lookup maps are executed on the CPU as part of the Uploader. The BGS on GPU

then uses this lookup map to only process pixels close to a player, which reduces the

GPU kernel processing times, from 811.793 microseconds to 327.576 microseconds on

average on a GeForce GTX 680. When run in a pipelined fashion, the processing

delay caused by the lookup map creation is also eliminated. The sensor system

coordinates are retrieved by a dedicated slave thread that continuously polls the

sensor system database for new samples.

Even though we enhance the background subtraction with sensor data input,

there are several implementation alternatives. When determining which algorithm to

implement, we evaluated two alternatives: Zivkovic [34, 35] and KaewTraKulPong

[18]. Even though the CPU implementation was slower (see Fig. 5), Zivkovic pro-

vided the best visual results, and was therefore selected for further modi¯cation.

Furthermore, the Zivkovic algorithm proved to be fast enough when modi¯ed with

input from the sensor system data. The GPU implementation, based on [25], proved

to be even faster, and the ¯nal performance numbers for a single camera stream can

be seen in Fig. 5. A visual comparison of the unmodi¯ed Zivkovic implementation

and the sensor system-modi¯ed version is seen in Fig. 6 where the sensor coordinate

modi¯cation reduce the noise as seen in the upper parts of the pictures.

Fig. 5. Execution time of alternative algorithms for the BackgroundSubtractor module (1 camera

stream).

(a) Unmodi¯ed Zivkovic (b) Player sensor data modi¯cation of Zivkovic

Fig. 6. Background subtraction comparison.

Processing Panorama Video in Real-time 217

4.8. The Warper module

The Warper module is responsible for warping the camera frames to ¯t the stitched

panorama image. By warping we mean twisting, rotating and skewing the images to

¯t the common panorama plane. Like we have seen from the old pipeline, this is

necessary because the stitcher assumes that its input images are perfectly warped

and aligned to be stitched to a large panorama. Executing on the GPU, the Warper

also warps the foreground masks provided by the BGS module. This is because the

Stitcher module at a later point will use the masks and therefore expects the masks to

¯t perfectly to the corresponding warped camera frames. Here, we use the Nvidia

Performance Primitives library (NPP) for an optimized implementation.

4.9. The Color-corrector module

When recording frames from several di®erent cameras pointing in di®erent direction,

it is nearly impossible to calibrate the cameras to output the exact same colors due to

the di®erent lighting conditions. This means that, to generate the best panorama

videos, we need to correct the colors of all the frames to remove color disparities. In

our panorama pipeline, this is done by the Color-corrector module running on the

GPU.

We choose to do the color correction after warping the images. The reason for this

is that locating the overlapping regions is easier with aligned images, and the overlap

is also needed when stitching the images together. This algorithm is executed on the

GPU, enabling fast color correction within our pipeline. The implementation is based

on the algorithm presented in [32], but have some minor modi¯cations. We calculate

the color di®erences between the images for every single set of frames delivered from

the cameras. Currently, we color-correct each image in a sequence, meaning that

each image is corrected according to the overlapping frame to the left. The algorithm

implemented is easy to parallelize and does not make use of pixel to pixel mapping

which makes it well suited for our scenario. Figure 7 shows a comparison between

running the algorithm on the CPU and on a GPU.

4.10. The Stitcher module

Like in the old pipeline, we use a homography based stitcher where we simply create

seams between the overlapping camera frames, and then copy pixels from the images

based on these seams. These frames need to follow the same homography, which is

Fig. 7. Execution time of color correction.

218 H. K. Stensland et al.

why they have to be warped. Our old pipeline used static cuts for seams, which means

that a ¯xed rectangular area from each frame is copied directly to the output frame.

Static cut panoramas are faster, but can introduce graphical errors in the seam area,

especially when there are movement in the scene (illustrated in Fig. 8).

To make a better seam with a better visual result, we therefore introduce a

dynamic cut stitcher instead of the old static cut. The dynamic cut stitcher creates

seams by ¯rst creating a rectangle of adjustable width over the static seam area.

Then, it treats all pixels within the seam area as graph nodes. The graph is directed

from the bottom to the top in such a way that each pixel points to the three adjacent

ones above (left and right-most pixels only point to the two available). Each of these

edge's weight are calculated by using a custom function that compares the absolute

color di®erence between the corresponding pixel in each of the two frames we are

trying to stitch. The weight function also checks the foreground masks from the BGS

module to see if any player is in the pixel, and if so it adds a large weight to the node.

In e®ect, both these steps will make edges between nodes where the colors di®ers and

players are present have much larger weights. We then run the Dijkstra graph

Fig. 8. Stitcher comparison ��� improving the visual quality with dynamic seams and color correction.

The ¯rst image shows the original stitch [11] with a ¯xed cut stitch with a straight vertical seam. The
middle image shows a dynamic stitch with no color correction. The embedded thumbnail shows the seam.

The bottom image shows a dynamic stitch with color correction, i.e. resulting in that the seam is no longer

visible.

Processing Panorama Video in Real-time 219

algorithm on the graph to create a minimal cost route from the start of the o®set at

the bottom of the image to the end at the top. Since our path is directed upwards, we

can only move up or diagonally from each node, and we will only get one node per

horizontal position. By looping through the path, we therefore get our new cut o®sets

by adding the node's horizontal position to the base o®set.

An illustration of how the ¯nal seam looks can be seen in bottom image in Fig. 8,

where the seams without and with color correction are shown in the embedded

thumbnails. Timings for the dynamic stitching module can be seen in Fig. 9. The

CPU version is currently slightly faster than our GPU version (as searches and

branches often are more e±cient on traditional CPUs), but further optimization of

the CUDA code will likely improve this GPU performance. Note that the min and

max numbers for the GPU are skewed by frames dropping (no processing), and the

initial run being slower.

4.11. The YuvConverter module

Before storing the stitched panorama frames, we need to convert back from RGBA to

YUV 4:2:0 for the H.264 encoder, just as in the SingleCamWriter module. However,

due to the size of the output panorama, this conversion is not fast enough on the

CPU, even with the highly optimize swscale. This module is therefore implemented

on the GPU. In Fig. 10, we can see the performance of the CPU based implemen-

tation versus the optimized GPU based version.

Nvidia NPP contains several conversion primitives, but not a direct conversion

from RGBA to YUV 4:2:0. The GPU based version is therefore ¯rst using NPP to

convert from RGBA to YUV 4:4:4, and then a self written CUDA code to convert

from YUV 4:4:4 to YUV 4:2:0.

4.12. The Downloader module

Before we can write the stitched panorama frames to disk, we need to transfer it back

to the CPU, which is done by the Downloader module. It runs as a single CPU thread

Fig. 9. Execution time for dynamic stitching.

Fig. 10. Execution time for RGBA to YUV 4:2:0 conversion.

220 H. K. Stensland et al.

that copies a frame synchronously to the CPU. We could have implemented the

Downloader as an asynchronous transfer with double bu®ering like the Uploader, but

since the performance as seen in Fig. 11 is very good, this is left as future work.

4.13. The PanoramaWriter module

The last module, executing on the CPU, is the Writer that writes the panorama

frames to disk. The conversion from RGBA to YUV has already been done on the

GPU, so the only steps the PanoramaWriter needs to follow, is to ¯rst encode the

input frame to H.264, and then write the result to disk as three second H.264 video

¯les.

4.14. Pipeline performance

In order to evaluate the performance of our pipeline, we used an o®-the-shelf PC with

an Intel Core i7-3930K processor and an nVidia GeForce GTX 680 GPU. We have

benchmarked each individual component and the pipeline as a whole capturing,

processing and storing 1000 frames from the cameras.

In the initial pipeline [11], the main bottleneck was the panorama creation

(warping and stitching). This operation alone used 974ms per frame. As shown by

the breakdown into individual components' performance in Fig. 11, the new pipeline

has been greatly improved. Note that all individual components run in real-time

running concurrently on the same set of hardware. Adding all these, however, gives

times far larger than 33ms. The reason why the pipeline is still running in real-time is

because several frames are processed in parallel. Note here that all CUDA kernels are

executing at the same time on a single GPU, so the performance of all GPU modules

are a®ected by the performance of the other GPU modules. On earlier GPUs like the

GTX 280, this was not allowed, but concurrent CUDA kernel execution was intro-

duced in the Fermi architecture [24] (GTX 480 and above). Thus, since the

Fig. 11. Improved stitching pipeline performance, module overview (Nvidia GeForce GTX 680 and Intel
Core i7-3930K).

Processing Panorama Video in Real-time 221

Controller module schedules the other modules according to the input rate of 30 fps,

the amount of resources are su±cient for real-time execution.

For the pipeline to be real-time, the output rate should follow the input rate, i.e.

deliver all output frames (both 4 single camera and 1 panorama) at 30 fps. Thus, to

give an idea of how often a frame is written to ¯le, Fig. 12 shows individual and

average frame inter-departure rates. The ¯gures show the time di®erence between

consecutive writes for the generated panorama as well as for the individual camera

streams. Operating system calls, interrupts and disk accesses will most likely cause

small spikes in the write times (as seen in the scatter plot in Figs. 12(a) and 12(b)),

but as long as the average times are equal to the real-time threshold, the pipeline can

be considered real-time. As we can see in Figs. 11, 12(c) and 12(d), the average frame

inter-arrival time (Reader) is equal to the average frame inter-departure time (both

SingleCamWriter and PanoramaWriter). This is also the case testing other CPU

frequencies and number of available cores. Thus, the pipeline runs in real-time.

As said above and seen in Figs. 12(a) and 12(b), there is a small latency in the

panorama pipeline compared to writing the single cameras immediately. The total

panorama pipeline latency, i.e. the end to end frame delay from read from the camera

(a) SingleCamWriter inter-departure time (b) Inter-departure time of PanoramaWriter.

The inter-departure frames delayed by ¯ve

seconds due to the two second safety
bu®er in CPU/GPU transfer and the

three second delay of the sensor data

(c) Core count scalability (d) Core frequency scalability

Fig. 12. Inter-departure time of frames when running the entire pipeline. In a real-time scenario, the

output rate should follow the input rate (given here by the trigger box) at 30 fps (33ms).

222 H. K. Stensland et al.

until written to disk, is equal to 33ms per sequential module (as long as the modules

perform fast enough) plus a 5 second input bu®er (the input bu®er is because the

sensor system has at least 3 second latency before the data is ready for use, and we

have added a 2 second bu®er for GPU processing). The 33ms are caused by the

camera frame rate of 30 fps, meaning that even though a module may ¯nish before

the threshold, the Controller will make it wait until the next set of frames arrive

before it is signaled to re-execute. This means that the pipeline latency is 5.33 seconds

per frame on average.

5. Discussion

Our soccer analysis application integrates a sensor system, soccer analytics anno-

tations and video processing of a video camera array. There already exist several

components that can be used, and we have investigated several alternatives in our

research. Our ¯rst prototype aimed at full integration at the system level, rather than

being optimized for performance. In this paper, however, our challenge has been of an

order of magnitude harder by making the system run in real-time on low-cost, o®-

the-shelf hardware.

The new real-time capability also enables future enhancements with respect to

functionality. For example, several systems have already shown the ability to serve

available panorama video to the masses [13, 23], and by also generating the pano-

rama video live, the audience can mark and follow particular players and events.

Furthermore, ongoing work also include machine learning of sensor and video data to

extract player and team statistics for evaluation of physical and tactical perfor-

mance. We can also use this information to make video playlists [15] automatically

giving a video summary of extracted events. Due to limited availability of resources,

we have not been able to test our system with more cameras or higher resolution

cameras. However, to still get an impression of the scalability capabilities of our

pipeline, we have performed several benchmarks changing the number of available

cores, the processor clock frequency and GPUs with di®erent architecture and

compute resources. Figure 13a shows the results changing the number of available

cores that can process the many concurrent threads in the CPU-part of pipeline

(Fig. 12(c) shows that the pipeline is still in real-time). As we can observe from the

¯gure, every component runs in real-time using more than 4 cores, and the pipeline as

a whole using 8 or more cores. Furthermore, the CPU pipeline contains a large, but

con¯gurable number of threads (86 in the current setup), and due to the many

threads of the embarrassingly parallel workload, the pipeline seems to scale well with

the number of available cores.

Similar conclusions can be drawn from Fig. 14 where the processing time is re-

duced with a higher processor clock frequency, i.e. the pipeline runs in real-time

already at 3.2GHz, and there is almost a linear scaling withCPU frequency (Fig. 12(d)

aNote that this experiment was run on a machine with more available cores (16), each at a lower clock

frequency (2.0GHz) compared to the machine installed at the stadium which was used for all other tests.

Processing Panorama Video in Real-time 223

shows that the pipeline is still in real-time). Especially the H.264 encoder scales very

good when scaling the CPU frequency. With respect to the GPU-part of the pipeline,

Fig. 15 plots the processing times using di®erent GPUs.

The high-end GPUs GTX 480 and above (Compute 2.x and higher) all achieve

real-time performance on the current setup. The GTX 280 is only compute 1.3 which

does not support the concurrent CUDA kernel execution in the Fermi architecture

[24], and the performance is therefore slower than real-time. As expected, more

powerful GPUs reduce the processing time. For now, one GPU ful¯lls our real-time

requirement, we did therefore not experiment with multiple GPUs, but the GPU

processing power can easily be increased by adding multiple cards. Thus, based on

these results, we believe that our pipeline easily can be scaled up to both higher

numbers of cameras and higher resolution cameras.

Fig. 13. Core count scalability.

Fig. 14. CPU frequency scalability.

Fig. 15. GPU comparison.

224 H. K. Stensland et al.

6. Conclusions

In this paper, we have presented a prototype of a real-time panorama video pro-

cessing system. The panorama prototype is used as a sub-component in a real sport

analysis system where the target is automatic processing and retrieval of events at a

sports arena. We have described the pipeline in detail, where we use both the CPU

and a GPU for o®loading. Furthermore, we have provided experimental results

which prove the real-time properties of the pipeline on a low-cost 6-core machine

with a commodity GPU, both for each component and the combination of the dif-

ferent components forming the entire pipeline.

The entire system is under constant development, and new functionality is added

all the time, e.g. camera-array-wide synchronized automatic exposure [8], interactive

zoom and panning [9, 10], extended search functionality [22] and scaling the pano-

rama system up to a higher number of cameras and to higher resolution cameras [9].

So far, the pipeline scales nicely with the CPU frequencies, number of cores and GPU

resources. We plan to use PCI Express-based interconnect technology from Dolphin

Interconnect Solutions for low latency and fast data transfers between machines.

Experimental results in this respect is though ongoing work and out of scope in this

paper.

Acknowledgments

This work has been performed in the context of the iAD centre for Research-based

Innovation (project number 174867) funded by the Norwegian Research Council.

Furthermore, the authors also acknowledge the support given by Kai-Even Nilssen

for practical assistance with respect to the installation at Alfheim stadium.

References

[1] Camargus ��� Premium Stadium Video Technology Infrastructure, http://www.
camargus.com/. [Online; accessed 01-March-2013.]

[2] Live ultra-high resolution panoramic video, http://www.fascinate-project.eu/index.
php/tech-section/hi-res-video/. [Online; accessed 04-March-2012.]

[3] Software stitches 5k videos into huge panoramic video walls, in real time, http://www.
sixteen-nine.net/2012/10/22/software-stitches-5k-videos-huge-panoramic-video-walls-
real-time/, 2012. [Online; accessed 05-March-2012.]

[4] M. Adam, C. Jung, S. Roth and G. Brunnett, Real-time stereo-image stitching using
GPU-based belief propagation, 2009, pp. 215–224.

[5] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyttendaele, C. Pal and R. Szeliski, An
exploration of user interface designs for real-time panoramic photography, Australasian
Journal of Information Systems 13(2) (2006) 151.

[6] M. Brown and D. G. Lowe, Automatic panoramic image stitching using invariant fea-
tures, International Journal of Computer Vision 74(1) (2007) 59–73.

[7] D.-Y. Chen, M.-C. Ho and M. Ouhyoung, Videovr: A real-time system for automatically
constructing panoramic images from video clips, in Proc. CAPTECH, 1998, pp. 140–143.

Processing Panorama Video in Real-time 225

[8] V. R. Gaddam, C. Griwodz and P. Halvorsen, Automatic exposure for panoramic sys-
tems in uncontrolled lighting conditions: A football stadium case study, in Proc. SPIE/
IS&T Electronic Imaging ��� the Engineering Reality of Virtual Reality, 2014,
pp. 90120C–90120C-9.

[9] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat, C. Griwodz and
P. Halvorsen, Interactive zoom and panning from live panoramic video, in Proc.
NOSSDAV, 2014, pp. 19:19–19:24.

[10] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V. Charvillat, C. Griwodz,
D. Johansen and P. Halvorsen, Be your own cameraman: Real-time support for zooming
and panning into stored and live panoramic video, in Proc. MMSys, 2014, pp. 168–171.

[11] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn, M. Stenhaug,
S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz and D. Johansen, Bagadus: An
integrated system for arena sports analytics ��� a soccer case study, in Proc. MMSys,
2013, pp. 48–59.

[12] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge
University Press, 2003).

[13] K. Huguenin, A.-M. Kermarrec, K. Kloudas and F. Taiani, Content and geographical
locality in user-generated content sharing systems, in Proc. NOSSDAV, 2012, pp. 77–82.

[14] J. Jia and C.-K. Tang, Image stitching using structure deformation, IEEE Transactions
on Pattern Analysis and Machine Intelligence 30(4) (2008) 617–631.

[15] D. Johansen, H. Johansen, T. Aar°ot, J. Hurley, Å. Kvalnes, C. Gurrin, S. Sav,
B. Olstad, E. Aaberg, T. Endestad, H. Riiser, C. Griwodz and P. Halvorsen, DAVVI: A
prototype for the next generation multimedia entertainment platform, in Proc. ACM
MM, 2009, pp. 989–990.

[16] D. Johansen, M. Stenhaug, R. B. A. Hansen, A. Christensen and P.-M. Høgmo, Muithu:
Smaller footprint, potentially larger imprint, in Proceedings of the IEEE International
Conference on Digital Information Management, 2012, pp. 205–214.

[17] H. D. Johansen, S. A. Pettersen, P. Halvorsen and D. Johansen, Combining video and
player telemetry for evidence-based decisions in soccer, in Proceedings of the Interna-
tional Congress on Sports Science Research and Technology Support, 2013, pp. 197–205.

[18] P. KaewTraKulPong and R. Bowden, An improved adaptive background mixture model
for real-time tracking with shadow detection, in Video-Based Surveillance Systems
(Springer, 2002), pp. 135–144.

[19] A. Levin, A. Zomet, S. Peleg and Y. Weiss, Seamless image stitching in the gradient
domain, Computer Vision ��� ECCV 2004, 2004, pp. 377–389.

[20] Y. Li and L. Ma, A fast and robust image stitching algorithm, in Proc. WCICA 2 (2006)
9604–9608.

[21] A. Mills and G. Dudek, Image stitching with dynamic elements, Image and Vision
Computing 27(10) (2009) 1593–1602.

[22] A. Mortensen, V. R. Gaddam, H. K. Stensland, C. Griwodz, D. Johansen and P. Hal-
vorsen, Automatic event extraction and video summaries from soccer games, in Proc.
MMSys, 2014, pp. 176–179.

[23] O. A. Niamut, R. Kaiser, G. Kienast, A. Kochale, J. Spille, O. Schreer, J. R. Hidalgo,
J.-F. Macq and B. Shirley, Towards a format-agnostic approach for production, delivery
and rendering of immersive media, in Proc. MMSys, 2013, pp. 249–260.

[24] nVIDIA. Nvidia's next generation CUDA compute architecture: Fermi. http://www.
nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute Architecture
Whitepaper.pdf, 2010. [Online; accessed 08-March-2013].

[25] V. Pham, P. Vo, V. T. Hung et al., GPU implementation of extended gaussian mixture
model for background subtraction, in IEEE International Conference on Computing

226 H. K. Stensland et al.

and Communication Technologies, Research, Innovation and Vision for the Future,
2010, pp. 1–4.

[26] S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, D. Johansen and
P. Halvorsen, Bagadus: An integrated system for soccer analysis (demo), in Proc.
ICDSC, 2012, pp. 1–2.

[27] O. Schreer, I. Feldmann, C. Weissig, P. Kau® and R. Schafer, Ultrahigh-resolution
panoramic imaging for format-agnostic video production, in Proceedings of the IEEE
101(1) (2013) 99–114.

[28] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad, A.
Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk, C. Griwodz, P. Halvorsen, M. Sten-
haug and D. Johansen, Bagadus: An integrated real-time system for soccer analytics,
Transactions on Multimedia Computing, Communications and Applications 10(1s)
(2014) 14:1–14:21.

[29] W.-K. Tang, T.-T. Wong and P.-A. Heng, A system for real-time panorama generation
and display in tele-immersive applications, IEEE Transactions on Multimedia 7(2)
(2005) 280–292.

[30] M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad, V. R. Gaddam, H. K. Stensland, C.
Griwodz, D. Johansen and P. Halvorsen, E±cient implementation and processing of a
real-time panorama video pipeline, in Proc. ISM, 2013, pp. 76–83.

[31] C. Weissig, O. Schreer, P. Eisert and P. Kau®, The ultimate immersive experience:
Panoramic 3d video acquisition, Advances in Multimedia Modeling, LNCS Vol. 7131
(Springer, 2012), pp. 671–681.

[32] Y. Xiong and K. Pulli, Color correction for mobile panorama imaging, in Proc. ICIMCS,
2009, pp. 219–226.

[33] Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, in
Proceedings of the IEEE International Conference onComputer Vision, 1999, pp. 666–673.

[34] Z. Zivkovic, Improved adaptive gaussian mixture model for background subtraction, in
Proc. ICPR 2 (2004) 28–31.

[35] Z. Zivkovic and F. van der Heijden, E±cient adaptive density estimation per image
pixel for the task of background subtraction, Pattern Recognition Letters 27(7) (2006)
773–780.

Processing Panorama Video in Real-time 227

Appendix D

[Journal] The Cameraman

Operating My Virtual Camera

is Artificial: Can the Machine

Be as Good as a Human?

[Authors:] V. R. Gaddam, R. Eg, C. Griwodz, and P. Halvorsen

[Published:] ACM Transactions on Multimedia Computing, Communications

and Applications (TOMCCAP), 2015

231

56

The Cameraman Operating My Virtual Camera is Artificial: Can
the Machine Be as Good as a Human?

VAMSIDHAR REDDY GADDAM, RAGNHILD EG, RAGNAR LANGSETH,
CARSTEN GRIWODZ, and PÅL HALVORSEN, Simula Research Laboratory
and University of Oslo

In this article, we argue that the energy spent in designing autonomous camera control systems is not
spent in vain. We present a real-time virtual camera system that can create smooth camera motion. Similar
systems are frequently benchmarked with the human operator as the best possible reference; however,
we avoid a priori assumptions in our evaluations. Our main question is simply whether we can design
algorithms to steer a virtual camera that can compete with the user experience for recordings from an
expert operator with several years of experience? In this respect, we present two low-complexity servoing
methods that are explored in two user studies. The results from the user studies give a promising answer
to the question pursued. Furthermore, all components of the system meet the real-time requirements on
commodity hardware. The growing capabilities of both hardware and network in mobile devices give us hope
that this system can be deployed to mobile users in the near future. Moreover, the design of the presented
system takes into account that services to concurrent users must be supported.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: Multimedia
Information Systems—Video

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Interactive immersion, panorama video, zoom, panning, real-time, visual
servoing, virtual camera, quality of experience, user studies

ACM Reference Format:
Vamsidhar Reddy Gaddam, Ragnhild Eg, Ragnar Langseth, Carsten Griwodz, and Pål Halvorsen. 2015. The
cameraman operating my virtual camera is artificial: Can the machine be as good as a human? ACM Trans.
Multimedia Comput. Commun. Appl. 11, 4, Article 56 (April 2015), 20 pages.
DOI: http://dx.doi.org/10.1145/2744411

1. INTRODUCTION

Improvements in communications and processing power provide opportunities to ex-
plore groundbreaking systems in interactive immersive applications. For example, in
scenarios like surveillance and sports, high-resolution wide field-of-view panoramic
video has become popular. Stitched panorama videos generated from a camera array
that covers an entire field can be used to support virtual views through zoom and pan
operations. In turn, individual users can interactively control their own virtual camera.
We have created a prototype system that provides an immersive experience using a
soccer stadium as a case study. The strength of the system lies in complete automa-
tion of several steps that are currently considered to be superior when operated by a
human. In this respect, a user can function as his or her own cameraman. However, in

This work has been performed in the context of the iAD center for Research-based Innovation (project number
174867) funded by the Norwegian Research Council.
Author’s address: V. R. Gaddam; email: vamsidhg@ifi.uio.no.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.
2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1551-6857/2015/04-ART56 $15.00
DOI: http://dx.doi.org/10.1145/2744411

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:2 V. R. Gaddam et al.

many situations it may be desirable to allow the system to automatically operate the
cameras, for instance when following the ball or a particular player in a soccer scenario.

Most commonly seen broadcast is usually of high profile games. In such games,
the financial resources can make several simultaneous high quality capture systems
possible. However, most soccer games at different levels of profession do not qualify
for such high production qualities. In such cases, there are typically 2-3 simultaneous
video streams that are switched. Considering a few games,1 it can be observed that the
camera operator majorly works with pan-tilt-zoom operations for capturing the game
from a single viewpoint. Thus, our main research question in this article is whether a
machine-generated virtual camera can provide a viewing experience that is at least as
good as a human-generated one, under similar conditions?

Many researchers have looked at similar challenges [Ariki et al. 2006; Carr et al.
2013; Chen and De Vleeschouwer 2010] from a broad point of view, but focussing on
different details of such systems. Our overall goal is to facilitate personal interaction
rather than consider the users as passive observers, which is typically the case in
traditional uni-stream broadcasts. This personal interaction could involve the manual
control of the virtual camera or the decision to allow automatic tracking of objects. One
way to provide an interactive presence in the stadium is to deliver video in which a
user can pan, tilt and zoom from a given viewpoint, the position of the cameraman.
Ideally, if a user was present at the stadium, these camera movements are the degrees
of freedom he or she should have without moving. However, when scaling such a system
to several users, the delivery part is constrained to be independent from the capturing
part (no physically moving cameras based on user needs). In this article, we briefly
show how the panorama is generated and how the virtual view is extracted from the
panorama. Then, we present different ways to automatically control the zoom, pan and
tilt. Finally, we perform a 2-step user study where the first step focuses on comparing
different algorithms for servoing the virtual camera and the second step evaluates
the machine generated movements against those generted by human operators. We
analyse the user studies aiming to answer the question whether a machine has the
potential to be as good as a human operator, and the answer is promising.

The remainder of the article is organized as follows. Section 2 briefly outlines some of
the many related works in relevant intersection areas. Then, Section 3 introduces our
system, before we look into the details of the automatic camera control algorithms in
Section 4. In Section 5, we present experimental results on the technical implementa-
tion, and Section 6 encompasses the user studies that evaluate manual and automatic
camera controls. Finally, we discuss the results and implications in Section 7 before we
conclude the article in Section 8.

2. RELATED WORK

Our system contains many integrated components. In this section, we briefly describe
the ones we found most similar and closely relate to our approach.

Ren et al. [2010] provide details about an 8-camera system that is able to keep
track of players using hypothesis from the multiple views. However, the scope of their
paper is limited to extracting the position information. Several free-viewpoint systems
[Carranza et al. 2003; Debevec et al. 1996; Grau et al. 2004; Kanade et al. 1997] exist
to provide the viewer with the power to change the view point to the desired one
smoothly. However, all those have limited challenges due to the fact that they are
made indoors. Outdoor sports provide ample number of challenges to reuse the same
techniques in terms of space, illumination changes and uncontrolled conditions. Thus

1http://www.youtube.com/watch?v=E8jSOv8Ch5s - [10:00 - 11:00]
http://www.youtube.com/watch?v=FEM0dY8c0co.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:3

the depth based image rendering techniques [Papadakis et al. 2010; Grau et al. 2007]
still widely suffer to achieve the production quality. This can be seen in the recent
work by Goorts et al. [2014]. However, impressive the functionality is to a researcher,
the visual quality is still far from delivery to general audience. Hence we looked at
single view-point approach.

First, generating a panorama video has by itself several challenges, and extensive
amounts of literature is available for panorama creation. A well-known example is
the panoramic capture system that was used to record a world cup match during
FIFA World Cup 2006 [Fehn et al. 2006]. Similar works include [Xu and Mulligan
2013; Gaddam et al. 2014a; Carr and Hartley 2009] where the authors emphasize
on engineering challenges related to a system for recording panoramic videos. Never-
theless, recent approaches prove that panorama video can be generated in real time
[Gaddam et al. 2014b], then the challenge remains to extract virtual views from the
panorama.

Using a panoramic texture for an immersive feeling is also a researched topic [Jenkin
et al. 1998; Chen 1995], also in different applications areas (e.g., lecture videos [Yokoi
and Fujiyoshi 2005; Sun et al. 2005; Ahmed and Eades 2005]). Some works also describe
manually controlled virtual cameras generated from panoramic videos with emphasis
on human-centered interfaces [Foote et al. 2013], network performance [Mavlankar
and Girod 2010] and over-all system aspects [Gaddam et al. 2014b].

Automation of camera control at several levels has also been explored before. For
example, Wang et al. [2004] provided a multilevel framework to automatically generate
replays from just one camera. Dearden et al. [2007] provide an evolving system that
learns from the movement of a trained camera operator. Several works focused solely
on control theory of virtual cameras from multiple cameras [Lipski et al. 2009; Christie
et al. 2005; Hutchinson et al. 1996]. Though these are interesting approaches, we want
to build an entire system that extracts a virtual view from a high-resolution panorama
controlled either by the user or a machine operated cameraman in real time. The idea
is to put together these different components and bridge the gap so as to make these
components function in coherence.

We are definitely not the first to explore such ideas. For example, Ariki et al. [2006]
provided a prototype where they used clipping on a portion of an HD recording as a
means of creating a virtual camera. They generate the virtual camera motion automat-
ically based on situation recognition from the game. Their user study focuses more on
learning the effect of various evaluation criteria like naturality in zooming, panning,
shot size, duration, video quality and intelligibility on the audience preferences. This is
probably the closest and a simpler version of our work. Furthermore, Carr et al. [2013]
presented a hybrid system using both a robotic PTZ camera and a virtual camera gen-
erated from panorama. They evaluated their system comparing it to a human operated
one as benchmark. Their motivation is to get as close to the human operator as possi-
ble. Even though a really thorough work dealing with automatic virtual cameras, they
fixed the focal length and the tilt angle subjecting to less exposure to scrutiny by the
viewers about the short-comings from changing these variables. Similarly, Chen and
De Vleeschouwer [2010] performed an automatic production planning over multiple
cameras. They employed an individual stimulus rating based evaluation system which
cannot be directly used for comparing different variables. Both of these works focus on
basketball as their case study, which has a much more limited field size compared to a
soccer field, giving smaller panning requirements.

However, the main focus of these investigations is whether the perceived experience
from a automatically controlled virtual view can match the one generated by a human.
We try to learn from the existing approaches and design a system for automatic control
of a virtual view extracted from a high-resolution, wide field-of-view panorama video

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:4 V. R. Gaddam et al.

Fig. 1. The camera array captures videos from the individual cameras, each with its own spatial coverage.
The idea is to have the cameras in the center of a virtual cylinder where every source image is considered
a (cropped) plane, tangential to the cylinder and orthogonal to the camera’s viewing axis. Each pixel of the
cylinder is then computed as the (interpolated) pixel value of the ray from the camera center through the
pixel intersecting the image plane.

and evaluate it. But we do not use the human operator as a benchmark, instead as a
competitor in our evaluations.

3. SYSTEM SETUP

Our solution is composed of a sensor system to capture player positions, a mobile-
phone-based expert annotation system to tag events live, and a camera-array-based
video system to generate a wide field-of-view panorama video in real time [Halvorsen
et al. 2013]. The current prototype is deployed and running in an elite club stadium.

Because the main focus of this article is the video system, we first describe the
generation of the panorama video before we describe how the system enables individual
users to control their own virtual camera.

3.1. Panorama Recording System

To capture the visual sequences and generate a real-time panorama video [Tennøe et al.
2013], we use a distributed recording system. Five Basler cameras capture videos at a
1086 × 2046 pixel resolution, arranged as illustrated in Figure 1. Recording machines
thereafter transfer the captured raw video data over a PCIe-based high-speed intercon-
nect network to a panorama processing machine. To give a higher vertical resolution,
the cameras are rotated 90 degrees. Moreover, the frequent changes in the outdoor light
conditions require auto-exposure to be performed on the center camera at fixed inter-
vals, with the resulting exposure parameters broadcasted to the other camera readers.
The model in Figure 1 portrays how the processing machines warps the frames onto a
cylinder and then stitches the cylindrical panorama, with the seams calculated dynam-
ically for each frame in order to avoid the ghosting artifact of the moving objects (the
players and the ball). The resulting stitched videos have output frames of 4096 × 1680
pixel resolution, as seen on the right of Figure 1. Finally, the processing machines
encode the panoramic video in H.264, making it available for HTTP streaming.

3.2. Virtual View Generation

A pinhole camera model is applied to generate a virtual view [Gaddam et al. 2014b]
of the field of interest, with pixels fetched from the panoramic texture. The reprojec-
tion onto the virtual camera plane preserves a perspective nature of the output view,
where the straight lines remain straight, irrespective of any distortions introduced dur-
ing stitching. The perspective nature is accomplished using the pin-hole-based point
projection from a 3D point P to an image point q, which can be written as follows:

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:5

Fig. 2. Virtual view generated from re-projection. The panorama video with the marked region of interest
is shown together with the generated virtual camera, emphasizing that the extracted area is not a simple
crop from the high-resolution panorama video.

λq = [K|03]

[
R 0

03 1

] [
0T

3 −C

0 1

]
P, (1)

where R is the general (3 × 3) 3D rotation matrix as a function of θx, θy and θz, the
rotation angles around the x, y and z axes, respectively. Moreover, K is the camera
intrinsic matrix built with focal length (f). Then, if p is the current pixel, we need to
find the ray (s) that passes from the camera center C to the pixel p:

s = λR−1K−1 p. (2)

Then, the intersection point of this ray with the unit cylinder gives us the exact position
on the cylindrical texture:

Tx =
(

Wp

FOV

) {
arctan

(−s(1)
s(3)

)}
+ Wp

2
(3)

Ty =
(

1
2

− s(2)√
s(1)2 + s(3)2

)
Hp. (4)

Here, the point (Tx, Ty) represents the coordinates on the unrolled cylindrical tex-
ture as described before, and Wp, Hp and FOV correspond to the width, height and
field-of-view of the panoramic texture, respectively. When these calculations are per-
formed with subpixel accuracy, the intersection will not necessarily land at one pixel.
Consequently, an interpolation may be required from the surrounding pixels, which
we manage using bicubic interpolation [Gaddam et al. 2014b]. Depending on the re-
quested output resolution, the entire virtual camera frame is generated in about 10 ms.
An example of a generated view is included in Figure 2.

In the current setup, the client controls and generates the virtual view using a client
program. This program fetches the decoded video segments, before the final virtual

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:6 V. R. Gaddam et al.

view is controlled either manually or guided by the orchestrating program. The latter
is achieved using position data, in this scenario, the position of the ball or the selected
players, with either object tracking [Kaiser et al. 2011; Xu et al. 2005; Yu et al. 2003]
or available sensor data.

In the current context, we have applied automatic tracking and we describe in this
article key approaches for virtual camera movements. By doing this, we seek to mini-
mize computational expenses, thus enabling the client to run on devices with different
capabilities, ranging from high-capacity desktop machines to mobile phones.

4. APPROACHES FOR AUTOMATIC CAMERA CONTROL

To operate the virtual camera automatically, we are operating in 3D space with the
origin on the axis of the cylinder for all the movements. Here, we let θx be the angle
along the pan direction, θy be the angle in the tilt direction, and f be the focal length,
that is, these three variables are used and changed to control the virtual camera. A ray
pointing at (θx, θy) = (0, 0) meets the panorama image at the center.

Furthermore, let the feature point on the panorama be sp = (θ p
x , θ

p
y), and let the

current state of the camera be ci = (θ i
x, θ

i
y, f i) where previous states are denoted

ci−1, ci−2, Then, the problem of operating the virtual camera can be formulated
as

ci = F
(
si+l

p , si+l−1
p , si+l−2

p , . . . , ci−1, ci−2, . . .
)
, (5)

where l is the future data fetched by simply delaying l units of time. The broadcast
can be slightly delayed from real-time and this is quite a common phenomenon with
delays attributing to delays in channel, direction process etc. However, the processing
in our system is automatic and strictly real time, we can introduce an artificial delay to
provide some future data to the servoing algorithms. This helps us keep the causality
of the system, because in reality, the future data has already been captured. The
models that we developed for controlling the virtual camera handle the state variables
independently. There are two models for controlling the angles and the focal length is
controlled depending on the current position of the center of the virtual camera on the
panorama.

4.1. Models for Pan and Tilt

We have used two different models for the pan/tilt operations, that is, a Schmitt trigger
and an Adaptive trigger. The pan and tilt angle movements are assumed to be inde-
pendent. However, the changes in tilt angles are penalized more than the pan angles
because panning is usually more natural than tilting a camera in wide field of view
situations.

4.1.1. Schmitt Trigger. The concept of a schmitt trigger is to stabilize noisy input data.
We modified it so as to provide a smoother movement by adding an acceleration α.
For the schmitt trigger to function, we define an imaginary window[characterized by
θ t] inside the virtual view. When the target point is inside the imaginary window, the
system is brought quickly, yet smoothly, to rest by using an acceleration αstop. Once
the target point goes outside the window, we provide an acceleration α, to the view so
that we reach the target. The sign of α depends on the current velocity of the feature
point and the virtual camera. The acceleration is added only when the velocity is less
than the maximum velocity δθmax. Algorithm 1 presents this approach. The velocity
and acceleration of a variable θ are written as δθ and δ2θ , respectively.

4.1.2. Adaptive Trigger. The adaptive trigger is designed to adaptively estimate the
required velocity of the virtual camera. We smooth the movement of the camera in a

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:7

ALGORITHM 1: Schmitt Trigger
1: if θ p is outside θ t then
2: if δθ p > δθ i−1 then
3: δ2θ ← α
4: else
5: δ2θ ← −α
6: end if
7: else
8: δ2θ ← αstop
9: end if

two step smoothing process. We use a running weighted mean smoothing at both steps.
Another key difference in this model is the use of future data. By delaying the system
by 1 second, we have future data for about 1 second. The windows for the regression are
smaller than the fetched future data because of the second level smoothing. For a given
variable x let S(x) be the smoothed value. Algorithm 2 describes this approach. When
computing the target velocities, the gradient is taken over smoothed feature positions
because the noise get amplified with a gradient. τ is a threshold for removing small
variations in position that are caused by small jerky motions. These jerky motions
create a small average velocity over multiple frames. We preferred to keep the camera
static rather than subjecting it to a really slow movement.

ALGORITHM 2: Adaptive Trigger
1: (θ0

x , θ0
y) ← (θ p

x , θ p
y)

2: while running do
3: δθ s = δ(S(θ))
4: if δθ s > τ then
5: δθ st = δθ s

6: else
7: δθ st = 0
8: end if
9: δθ = S(δθ st)

10: end while

4.2. Models for Zoom

The zoom is controlled by modifying f accordingly, the virtual view is zoomed by
increasing f . In the current system, we developed two models to change f depending
on where the virtual view is looking at. With our knowledge from different broadcasts,
we wanted to find out the preference of audience for these two commonly used zoom
mechanisms.

4.2.1. Smooth Zoom. This is to imitate the nature of the physical zoom that is ob-
tained by smoothly controlling the zoom ring on the recording camera. We modelled
a quadratic function in the current camera position coordinates such that f increases
when the position approaches the goal posts or the other end of the field from the
camera setup.

f i = λ0 + λ1
(
θ i

x − θx0
)2 + λ2

(
θ i

y − θy0
)2

, (6)

where λ1 and λ2 are the parameters that control the effect of pan and tilt angles
respectively. θy0 is used to offset the curve so that the function is an increasing one over
all the tilt angles. θx0 is set to 0, because the function should be increasing from the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:8 V. R. Gaddam et al.

Fig. 3. Toggle zoom assignment.

Fig. 4. Total execution time per frame in milliseconds.

center of the field as we move towards the goals. λ0 is the zero order offset. All these
parameters are empirically selected.

4.2.2. Toggle Zoom. This mode was developed to imitate the immediate switch in zoom
levels. We picked a rather simple model for creating this effect. The panorama is
partitioned into several zones and a focal length is assigned per zone. The zones can
be seen in Figure 3.

5. EXPERIMENTAL RESULTS

To make an objective evaluation of the system, we have performed different sets of tests.
The first set of tests evaluates the real-time properties of the virtual view generation.
The rest of the experiments evaluate camera movements.

5.1. Execution Overhead

We have earlier proved that the given system can provide panorama video in real-
time [Gaddam et al. 2014b], and in the context of generating a virtual view, we have
tested three different implementations: 1) a CPU version just looping through all the
pixels per frame; 2) a straight forward GPU port; and 3) an optimized GPU imple-
mentation where the system renders OpenGL textures written by an NVidia CUDA
kernel directly from the GPU to the screen. The total per frame execution times for
a virtual camera with full HD resolution on an Intel i7-2600 CPU with an Nvidia
GeForce GTX 460 GPU is shown in Figure 4. Both GPU versions easily reach the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:9

Fig. 5. Core execution times for various resolutions.

Fig. 6. Schmitt trigger and adaptive trigger plots for 300 frame segment along with the plots from human
operated camera.

real-time requirements of 25 frames per second with an average of 13 and 10 millisec-
onds, respectively.

Now, not all receivers require a full HD video. In this respect, we have also evaluated
the impact of interpolation and ray intersection costs depending on the size, that is, the
only parts that varies with the output resolution. The results are shown in Figure 5.
In short, the size of the output is negligible.

5.2. Pan/Tilt Models

The execution times for the Schmitt trigger and adaptive trigger are around 2μs and
30μs, respectively. Even though they differ by several orders, the absolute values are
still negligible. Figure 6 provides a 300 frames segment for camera movements and
ball position, where we see the pan/tilt angle (in radians) of the virtual view generated
by both machine and human operations. In other words, if the curves are close, they
capture more or less the same view. The causal nature of the Schmitt trigger and the
human operators can be observed in the figure owing to the fact that, they get the ball
position as it happens. On the other hand, the adaptive model has access to a small
future data.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:10 V. R. Gaddam et al.

Fig. 7. Smooth zoom and toggle zoom plots along with the plots from human operated camera for 300 frame
segment.

Fig. 8. The calculated trajectories for various acceleration values in the Schmitt trigger case.

5.3. Zoom Models

Since the calculation of zoom is a closed form expression over the current viewing
position, the execution time is really low. Figure 7 provides plots from the different
zoom models and the human operators over a 300 frames segment. Since the position
is dependent on the pan/tilt model chosen, both curves are calculated using the adaptive
trigger. It can be observed that the machine generated zoom curves show noticeable
similarity to the expert controlled camera, irrespective of the simplicity in the models.

5.4. Schmitt Trigger—Analysis

There are three control parameters in the Schmitt trigger case. The acceleration, max-
imum velocity and the stopping-acceleration. Figure 8 displays the curves angle curves

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:11

Fig. 9. The trajectories for various max velocities in the Schmitt trigger case.

Fig. 10. Effect of varying stop-acceleration on the trajectories in Schmitt trigger case.

for different accelerations over 300 frames. It can be observed that higher acceleration
tends to get the camera center closer to ball position quickly, but a problem is that it
also introduces uneasiness in watching.

Figure 9 demonstrates the effect of varying the maximum velocity over 300 frames.
When the ball moves really quickly, the curves in the plot show that the higher the
maximum velocity, the closer they get to the slope required. However, this creates an
undesired effect of overshooting irrespective of the quick deceleration.

Moreover, Figure 10 demonstrates the effect of the stop acceleration on the virtual
camera movement. The trade-off here is between an appearance of a mechanical stop
to a swinging effect. Both the velocity and acceleration effects can be seen in the plots.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:12 V. R. Gaddam et al.

Fig. 11. Effect of window size selected for smoothing on the trajectories using the adaptive trigger.

5.5. Adaptive Trigger—Analysis

In the adaptive trigger, we have two control parameters. One is the window size and
the other is thresholding for clipping. The thresholding for clipping only eliminates
small jerky movements, so it is empirically chosen and it’s plots do not provide great
variation. Figure 11 demonstrates the effect on window size on the panning variable.
The window size is varied between 5, 10, 15, and 20 frames. A scene of 300 frames
where there are enough changes in the ball direction is picked. The exact field of view
depends on the current focal length. However, as a rule of thumb, anything inside
0.2–0.5 radians from the center of the virtual camera can be assumed to be inside the
field of view.

6. USER STUDIES

In the development of a user-centered system like ours, subjective feedback is essential
to select the approaches giving the best quality of experience (QoE). Several exper-
imental approaches [ITU-T 1998; ITU-R 2002] have been adapted and extended by
researchers in the field of multimedia. Such QoE studies aim to assess, for example,
behavioural responses to different aspects of multimedia systems [Wu et al. 2009],
and particular attention has been devoted to the perception of video quality and the
detection of visual artifacts [Farias et al. 2007; Goldmann et al. 2010; Ni et al. 2011].
To perform our assessment experiments, we have taken advantage of the flexibility
of online tests which lately have become common [Chen et al. 2009]. Furthermore,
since the user experience with the system is dependent on many factors outside video
quality, we decided to introduce a pairwise comparison test [Lee et al. 2012; Ni et al.
2011] to contrast the different combinations of camera movements, two by two. When
asked to select one of two versions of the same sequence, participants are presented
with a task that is comparatively simpler than subjective ratings of sequences. Seeing
how pairwise comparisons only require decisions on one’s preference, this test is a good
alternative when exposing participants to unfamiliar stimuli and situations [Lee et al.
2012].

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:13

Fig. 12. Visual outline of the steps presented in the user study. Participants started with the questionnaire
and instructions, before moving on to the soccer sequences. These were introduced by two practice trials,
followed by the full study. Each pairwise comparison was separated by a 2-second fixation interval and
terminated in a response session.

6.1. Study 1: Camera Controls

Because the system aims to provide users with the best possible experience, we need
user feedback in order to establish the most preferable parameters for camera move-
ments and zooming. We therefore conducted a user study to compare center trigger
and adaptive camera movements, as well as toggle and smooth camera zooms.

6.1.1. Method. User preference for transient variables, such as camera movement and
zoom, is deemed to be highly subjective and to depend on the presented sequence. To
avoid subjective ratings that may vary more between presentations than between our
experimental variables, we decided to use pairwise comparisons, as recommended by
the ITU [ITU-T 1998]. Hence, each sequence was presented twice in a row, with only
our variables of interest changing between presentations as shown in Figure 12.

Participants. A total of 49 users, 42 men and 7 women, participated in the first study.
They were aged between 20 and 40 years, with an average of 27 years. Participants
were presented with the opportunity to enter a lottery for a chance to win a small prize.

Stimuli and Procedure. All soccer sequences2 were derived from the same inter-
national league match, recorded in 2013. While the ITU [ITU-T 1998] recommends
a duration of approximately 10 seconds for pairwise comparisons of video presenta-
tions, we placed higher priority in ensuring that the soccer sequences contained more
than one example of pan, zoom and tilt movements. Due to this, we extended the set
sequence duration to 15 seconds. Automated camera movements were implemented
subsequently, making sure that each movement and zoom contrast was presented four
times. Each soccer sequence was therefore presented twice, separated by a two-second
interval showing a fixation point on a black background. Stimuli contrasts were paired
up so that either the camera movement or the camera zoom approach differed between
the first and the second presentation. Although each paired contrast was presented
four times, new soccer sequences were included for every pairwise comparison. Thus,
participants watched 16 unique sequences, selected as the most suitable excerpts from
the entire soccer match.

As stated before, we conducted the study using an online web-form so participants
could complete it at their convenience. The paired video presentations were grouped
in two stimuli blocks, with every contrast repeated twice within a block. Stimuli were
counterbalanced with reverse-order for half of the contrasts, before they were ran-
domised within each block. We created four randomised versions of the study, so that

2For a visual appreciation of the different approaches, two video sequences are included as examples for each
of the different automatic and manual camera modes. These are attached with the submission.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:14 V. R. Gaddam et al.

Table I.
Parametric and non-parametric statistics for the number of times a stimulus combination was preferred over its
contrasts, averaged across participants and sorted according to the Friedman rank score. Wilcoxon signed-rank
test indicates statistically significant differences between stimuli, these are reported in relation to the lower ranked
stimulus (the row above). Nonsignificant contrasts are labelled ns, while non-applicable comparisons are marked
with a hyphen.

Results from Study 1
Stimulus Parametric statistics Percentiles Friedman Wilcoxon Effect
combination Mean Std. dev. 25th 50th 75th rank score signed-rank test size
Schmitt/Toggle 1.77 1.40 1 2 3 1.32 − −
Schmitt/Smooth 4.00 1.25 3 4 5 2.47 <.001 −0.51
Adaptive/Toggle 4.36 1.10 3 4 5 2.74 ns −0.14
Adaptive/Smooth 5.87 1.56 5 6 7 3.47 <.001 −0.39
Results from Study 2
Stimulus Parametric statistics Percentiles Friedman Wilcoxon Effect
combination Mean Std. dev. 25th 50th 75th rank score signed-rank test size
Novice 2.60 2.06 1 2 4 1.31 − −
Expert 5.37 1.68 4 5 7 2.24 <.001 −0.52
Adaptive/Toggle 7.43 1.67 6 7 8 2.99 <.001 −0.41
Adaptive/Smooth 8.60 2.09 7 9 10 3.46 <.021 −0.28

the random order varied between participant groups. In order to control whether sub-
jective preferences depended on soccer viewing experience, we introduced the study
with two questions to assess soccer interest and dedication; we also collected details
on age and gender. Participants received no information on the camera implementa-
tions, instead they received instructions to select the version they preferred. Following
the questionnaire and instructions, we included two practice trials to get participants
acquainted with the task, these were succeeded by the 16 pairwise comparisons.

6.1.2. Results. With every contrast repeated four times, the preference scores for the
different conditions were added up for every participant. This resulted in individ-
ual counts the four combinations of camera movements and camera zooms, rang-
ing from 0 to 4. In order to identify and weed out outlying preference counts, we
also calculated the difference in scores between paired stimuli. This resulted in four
mean differences, and we used the average of these to identify any scores that fell
more than two standard deviations from the mean. Accordingly, we identified and
excluded data from two participants, whose mean difference scores of zero indicated
that they were unable to distinguish between stimuli. For the main analysis, we col-
lapsed preference scores across stimulus combinations to obtain the overall number
of times each camera mode was preferred by an individual. With two contrasts re-
peated four times for every camera mode, the highest possible preference count comes
to 8. A Friedman rank test was used to analyse the preference counts from the re-
maining 47 participants, revealing a significant effect of our camera implementations
(χ2(3) = 72.73). To further explore the difference between stimulus combinations, we
also ran three Wilcoxon signed-rank tests and calculated effect sizes from these. In
addition to the non-parametric tests, parametric means and standard deviations are
included to better highlight the distribution of scores. Results from the analyses are
presented in Table I. Furthermore, we also explored the individual contrasts with
a Friedman rank test, again revealing a significant overall effect (χ2(7) = 162.33).
These results are illustrated in Figure 13, listed according to their Friedman rank
scores.

From the collapsed preference counts and the ranking scores presented in the first
part of Table I, the adaptive trigger movement combined with the smooth focal zoom

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:15

Fig. 13. Frequency distribution portraying the number of times one stimulus was preferred over its con-
trast, accumulated across users. For example, in the first line, we see that 25 persons have preferred the
Adaptive/Toggle over Schmitt/Toggle in all four repetitions. The maximum count of 4 corresponds to the
number of repetitions for each pair of videos. Stimulus contrasts are sorted according to Friedman rank
scores and plotted symmetrically.

emerges as the preferred camera implementation. Although not significantly differ-
ent from the third rank, the adaptive trigger remained the preferred choice over the
Schmitt trigger, ranking second when combined with the toggle focal zoom. These
trends are also evident when looking at the ranked individual contrasts in Figure 13.
The adaptive trigger movement is preferred over Schmitt alternative for the vast ma-
jority of presentations, just as the smooth focal is the predominantly preferred zoom
option over the toggle focal. In short, the opinions of 47 users clearly demonstrate the
preference for the adaptive trigger and smooth focal camera implementation.

6.2. Study 2: Man vs. Machine

Following the results from Study 1, we established that users prefer the camera move-
ment combination with adaptive trigger pan and smooth focal zoom. However, an
important challenge for such an automated system is to provide a viewing experience
that can compete with a soccer match filmed by a manually operated camera. Hence,
the second user study compares user preferences for the two highest ranked automated
camera implementations with that of two human operators.

6.2.1. Method. The second user study was conducted as a pairwise comparisons test,
with the same setup used for Study 1.

Participants. With 14 females and 23 males, we collected data from 37 participants,
none of whom had taken part in Study 1. Their ages spanned from 21 to 71 years, with
an average of 29 years. Every participant was provided with the opportunity to sign up
for a lottery that offered small prizes to be won.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:16 V. R. Gaddam et al.

Stimuli and Procedure. To compare automated camera movements with manual
camera operations, we selected the two best-preferred stimulus combinations from
Study 1. In so doing, we re-used half of the stimuli from the first user study and
compared these to sequences with recorded camera movements. To record the camera
movements, we invited an expert and a novice camera operator to watch the same
soccer match. The expert was an experienced camera operator from a Scandinavian
broadcaster, whereas the novice had experience with camera-view operations within
games. After receiving instructions on how to move and zoom with the virtual camera
using a joystick, the operators embarked upon the task of following the match by
keeping the ball and action in focus. From their recordings, we selected 20 expert and
20 novice 15-second excerpts to contrast with the automated sequences. For further
verification of the preference ratings from Study 1, we also contrasted the automated
sequences with each other. Moreover, we contrasted the expert and novice recordings
to see whether preferences differed between the two.

Study 2 proceeded in the same manner as Study 1, described in Section 6.1.1. The
only procedural distinction between the two studies is the inclusion of more stimuli,
resulting in 24 pairwise comparisons.

6.2.2. Results. Response data from Study 2 were restructured and analysed the same
way as described for Study 1 in Section 6.1.2, again with 2 outliers detected and
excluded. With the Friedman rank test indicating significant differences between
the collapsed preference counts (χ2(3) = 56.73), we again followed up with Wilcoxon
signed-rank tests. Results from these analyses are included in Table I. A second Fried-
man rank test revealed significant differences also between the individual contrasts
(χ2(11) = 177.15), the ranked preference counts for these are portrayed in Figure 14.

First and foremost, the results from Study 2 reveal that users clearly prefer
automated over manual camera movements. Of course, the quality of manual controls
is only as good as the operator. We considered this possible limitation and took
precautions by including two camera operators, one expert and one novice. The higher
ranking of the expert over the novice operator exemplifies the importance of the camera
man’s expertise. Despite our precautions, we cannot ascertain that users will prefer
the automatic camera operations over any camera operator. However, considering the
significant differences and the magnitudes of effect sizes for the presented conditions,
the results show that our system outperforms the two human operators. Specifically,
a consistent trend can be observed for both the collapsed preference counts (Table I)
and the individual contrasts (Figure 14), where the automated camera movements are
chosen over the manual operations in the majority of presentations. Furthermore, the
higher rank for the adaptive/smooth over the adaptive/toggle combination reflects the
results from Study 1.

7. DISCUSSION

The motivation behind designing and developing such a system lies in providing an
interaction to the user. In cases where manual control of the virtual camera is desired,
the system simplifies significantly. On the other hand, a viewer following a game might
be interested in interaction but at a higher level. The viewer might place a request
to the client to follow the ball/a single player or a collection of players. In such a
case, the client has to provide an aesthetically pleasing virtual camera based on the
position data from the ball and players. Even a coach is greatly advantaged by such
a system, he/she can instantly request multiple virtual cameras focussing on different
features. For example, one for the ball, one for a recently injured player, one for a
recently exchanged player and one for the defense. So, building the entire system and
a subjective evaluation of the results proved to be mandatory.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:17

Fig. 14. Frequency distribution portraying the number of times one stimulus was preferred over its contrast,
accumulated across users. The maximum count of 4 corresponds to the number of repetitions. Stimulus
contrasts are sorted according to Friedman rank scores and plotted symmetrically.

In the two user studies, we have explored and analysed user preferences for auto-
mated and manual camera movements. The first study established that the average
user prefers the adaptive trigger movement over the Schmitt trigger and the smooth
focal zoom over the toggle; implications of these findings are discussed further on. From
the second user study, we found that the average user maintains the same preference
for the adaptive trigger and the smooth focal zoom when compared to a human-operated
camera. While this finding is specific to the current context and may not reflect the
performance of all camera operators, the subjective preference for automated camera
movements suggests a positive user experience with our system. Overall, the presented
results are promising for the future acceptance and use of our system.

The user preferences between the toggle and smooth zoom is slightly ambiguous.
From the user study, it is clear that the smooth zoom is preferred, but toggle zoom
provides the advantage to switching to an overview immediately. This when combined
with smooth zoom for smaller ball changes can provide a nice aesthetic, yet func-
tional camera motion that can keep the ball in field of view. Moreover, the zoom model
currently is based only on the position of the ball on the panorama. This can be sig-
nificantly improved by incorporating game context into the model. Some of the things
can be velocity of the ball, player arrangement and special events (penalty, corner or
throw-in).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:18 V. R. Gaddam et al.

Furthermore, it must be noted that this study focuses on one of the several points
from where the action is captured on the soccer field. When it comes to capturing from
one point in live, the camera man has little freedom in the grammar of the video. In an
actual broadcast, the producer mixes several streams together and this is where the
grammar come into place.

In future, we are aiming to improve several components of the system. We are cur-
rently working on capturing High Dynamic Range (HDR) panoramic videos to handle
the loss of details in shadows on sunny days. We are also investing our energy into
developing the client on a mobile platform, which has its own challenges concerning
the bandwidth and power consumption.

Moreover current day’s visual tracking algorithms’ recall is not practically applicable
to real-life scenarios. Owing to this, we still have a large manual component when it
comes to estimating the ball position. We are currently exploring algorithms based
on multi-sensor data to track the ball with a high recall rate. When we track the
ball successfully, we will be able to provide a complete system functional in real time.
However, we do have an accurate tracking of the player positions, meaning that the
system easily can follow a single player or a group of players.

8. CONCLUSION

In our research, we have shown that a single camera-array generated panorama video
can support an arbitrary number of virtual views, which are generated locally on the
client device. In many scenarios, users will want to control and interact with their
own virtual camera, whereas other situations require higher levels of abstraction. In
order to generate video streams that incorporate automated camera movements while
satisfying user expectations, we have explored machine-controlled camera modes ver-
sus human camera operators in two separate user studies. In the first, we explored
automatic movement approaches and established that the best-preferred mode com-
bines smooth focal zoom with adaptive trigger movements. The second study compared
machine and human generated camera movements, with results that promise well for
future acceptance of a machine controlled cameraman. However, It must be noted that
we are not claiming a system that is capable of exceeding a human operator. The re-
search outcomes here do not guarantee an assertion that a machine can beat a human.
The study merely points at the one of the several possible positive futures in the current
context and scenario. There are several many variables and a long way to generalize
and extend this to the entire broadcasting paradigm. Our ongoing work include both
improved object tracking and further parallelization; most importantly though, we aim
to further improve the automated camera movements.

REFERENCES

Adel Ahmed and Peter Eades. 2005. Automatic camera path generation for graph navigation in 3D.
In Proceedings of the Asia-Pacific Symposium on Information Visualisation. 27–32. http://dl.acm.org/
citation.cfm?id=1082315.1082320

Y. Ariki, S. Kubota, and M. Kumano. 2006. Automatic production system of soccer sports video by digital
camera work based on situation recognition. In Proceedings of the IEEE International Symposium on
Multimedia. 851–860. DOI:http://dx.doi.org/10.1109/ISM.2006.37

Peter Carr and Richard Hartley. 2009. Portable multi-megapixel camera with real-time recording and play-
back. In Proceedings of the Conference on Digital Image Computing: Techniques and Applications. 74–80.
DOI:http://dx.doi.org/10.1109/DICTA.2009.62

Peter Carr, Michael Mistry, and Iain Matthews. 2013. Hybrid robotic/virtual pan-tilt-zom cameras for au-
tonomous event recording. In Proceedings of the ACM Multimedia Conference. 193–202.

Joel Carranza, Christian Theobalt, Marcus A. Magnor, and Hans-Peter Seidel. 2003. Free viewpoint video of
human actors. ACM Trans. Graph. 22, 3, 569–577. DOI:http://dx.doi.org/10.1145/882262.882309

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Can the Machine Be as Good as a Human? 56:19

Fan Chen and Christophe De Vleeschouwer. 2010. Personalized production of basketball videos from multi-
sensored data under limited display resolution. Computer Vision Image Understanding 114, 6, 667–680.
DOI:http://dx.doi.org/10.1016/j.cviu.2010.01.005

Kuan-Ta Chen, Chen-Chi Wu, Yu-Chun Chang, and Chin-Laung Lei. 2009. A crowd-sourceable QoE evalu-
ation framework for multimedia content. In Proceedings of the ACM Multimedia Conference. 491–500.
DOI:http://dx.doi.org/10.1145/1631272.1631339

Shenchang Eric Chen. 1995. QuickTime VR: An image-based approach to virtual environment navigation.
In Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive
Techniques. 29–38. DOI:http://dx.doi.org/10.1145/218380.218395

Marc Christie, Rumesh Machap, Jean-Marie Normand, Patrick Olivier, and Jonathan Pickering. 2005. Vir-
tual camera planning: A survey. In Smart Graphics, Lecture Notes in Computer Science, vol. 3638,
40–52. DOI:http://dx.doi.org/10.1007/11536482 4

A Dearden, Y Demiris, and O Grau. 2007. Learning models of camera control for imitation in football matches.
In Proceedings of the Artificial and Ambient Intelligence Symposium. 227–231.

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. 1996. Modeling and Rendering Architecture from
Photographs: A hybrid geometry- and image-based approach. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH’96). ACM, New York, 11–20.
DOI:http://dx.doi.org/10.1145/237170.237191

Mylène C. Q. Farias, John M. Foley, and Sanjit K. Mitra. 2007. Detectability and annoyance of syn-
thetic blocky, blurry, noisy, and ringing artifacts. IEEE Trans. Signal Process. 55, 6, 2954–2964.
DOI:http://dx.doi.org/10.1109/TSP.2007.893963

Christoph Fehn, Christian Weissig, Ingo Feldmann, Markus Muller, Peter Eisert, Peter Kauff, and Hans
Bloss. 2006. Creation of high-resolution video panoramas of sport events. In Proceedings of the IEEE
International Symposium on Multimedia. 291–298. DOI:http://dx.doi.org/10.1109/ISM.2006.55

Eric Foote, Peter Carr, Patrick Lucey, Yaser Sheikh, and Iain Matthews. 2013. One-man-band: A touch screen
interface for producing live multi-camera sports broadcasts. In Proceedings of the ACM Multimedia
Conference. 163–172. DOI:http://dx.doi.org/10.1145/2502081.2502092

Vamsidhar Reddy Gaddam, Carsten Griwodz, and Pål Halvorsen. 2014a. Automatic exposure for panoramic
systems in uncontrolled lighting conditions: a football stadium case study. In Proceedings of SPIE: The
Engineering Reality of Virtual Reality. 90120C–90120C–9. DOI:http://dx.doi.org/10.1117/12.2040145

Vamsidhar Reddy Gaddam, Ragnar Langseth, Sigurd Ljødal, Pierre Gurdjos, Vincent Charvillat, Carsten
Griwodz, and Pål Halvorsen. 2014b. Interactive Zoom and Panning from Live Panoramic Video. In
Proceedings of the ACM International Workshop on Network and Operating Systems Support for Digital
Audio and Video. Article 19. DOI:http://dx.doi.org/10.1145/2578260.2578264

Lutz Goldmann, Francesca De Simone, Frederic Dufaux, Touradj Ebrahimi, Rudolf Tanner, and Mauro
Lattuada. 2010. Impact of video transcoding artifacts on the subjective quality. In Proceedings of the
International Workshop on Quality of Multimedia Experience. 52–57.

Patrik Goorts, Steven Maesen, Maarten Dumont, Sammy Rogmans, and Philippe Bekaert. 2014. Free view-
point video for soccer using histogram-based validity maps in plane sweeping. In Proceedings of the
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Appli-
cations. 378–386.

O. Grau, T. Pullen, and G. A. Thomas. 2004. A combined studio production system for 3-D capturing of
live action and immersive actor feedback. IEEE Trans. Circuits Syst. Video Technol. 14, 3, 370–380.
DOI:http://dx.doi.org/10.1109/TCSVT.2004.823397

O. Grau, G. A. Thomas, A. Hilton, J. Kilner, and J. Starck. 2007. A robust free-viewpoint video system for sport
scenes. In Proceedings of the 3DTV Conference. 1–4. DOI:http://dx.doi.org/10.1109/3DTV.2007.4379384

Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexander Eichhorn, Magnus
Stenhaug, Stian Dahl, Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Carsten Griwodz, and Dag
Johansen. 2013. BAGADUS: An Integrated system for arena sports analytics – A soccer case study. In
Proceedings of the ACM Multimedia Conference. 48–59.

S. Hutchinson, G. D. Hager, and P. I. Corke. 1996. A tutorial on visual servo control. IEEE Trans. Rob.
Automation 12, 5, 651–670. DOI:http://dx.doi.org/10.1109/70.538972

ITU-R. 2002. BT.500-11. Methodology for the subjective assessment of the quality of television pictures.
https://www.itu.int/dms pubrec/itu-r/rec/bt/R-REC-BT.500-11-200206-SIIPDF-E.pdf.

ITU-T. 1998. P.911. Subjective audiovisual quality assessment methods for multimedia applications.
https://www.itu.int/rec/T-REC-P.911-199812-1/en.

Michael Jenkin, James Elder, and Greg Pintilie. 1998. Loosely-coupled telepresence through the panoramic
image server. In Vision Interface: Real World Applications of Computer Vision.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

56:20 V. R. Gaddam et al.

R. Kaiser, M. Thaler, A. Kriechbaum, H. Fassold, W. Bailer, and J. Rosner. 2011. Real-time person tracking
in high-resolution panoramic video for automated broadcast production. In Proceedings of the European
Conference on Visual Media Production. 21–29. DOI:http://dx.doi.org/10.1109/CVMP.2011.9

Takeo Kanade, Peter Rander, and P. J. Narayanan. 1997. Virtualized reality: Constructing virtual worlds
from real scenes. IEEE MultiMedia 4, 1, 34–47. DOI:http://dx.doi.org/10.1109/93.580394

Jong-Seok Lee, Lutz Goldmann, and Touradj Ebrahimi. 2012. Paired comparison-based subjective qual-
ity assessment of stereoscopic images. Multimedia Tools Appl. 67, 1, 31–48. DOI:http://dx.doi.org/
10.1007/s11042-012-1011-6

Christian Lipski, Christian Linz, Kai Berger, and Marcus Magnor. 2009. Virtual video camera: Image-
based viewpoint navigation through space and time. In Proceedings of the ACM SIGGRAPH In-
ternational Conference on Computer Graphics and Interactive Techniques. Article 93. DOI:http://dx.
doi.org/10.1145/1599301.1599394

Aditya Mavlankar and Bernd Girod. 2010. Video streaming with interactive pan/tilt/zoom. In
High-Quality Visual Experience, Marta Mrak, Mislav Grgic, and Murat Kunt (Eds.), 431–455.
DOI:http://dx.doi.org/10.1007/978-3-642-12802-8 19

Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and Pål Halvorsen. 2011. Flicker effects
in adaptive video streaming to handheld devices. In Proceedings of the ACM Multimedia Conference.
463–472.

N. Papadakis, A. Baeza, I. Rius, X. Armangue, A. Bugeau, O. D’Hondt, P. Gargallo, V. Caselles, and S. Sagas.
2010. Virtual camera synthesis for soccer game replays. In Proceedings of the Conference on Visual
Media Production. 97–106. DOI:http://dx.doi.org/10.1109/CVMP.2010.20

Jinchang Ren, Ming Xu, James Orwell, and GraemeA. Jones. 2010. Multi-camera video surveillance for real-
time analysis and reconstruction of soccer games. Machine Vision Appl. 21, 6, 855–863. DOI:http://dx.
doi.org/10.1007/s00138-009-0212-0

Xinding Sun, J. Foote, D. Kimber, and B. S. Manjunath. 2005. Region of interest extraction and virtual camera
control based on panoramic video capturing. IEEE Trans. Multimedia 7, 5, 981–990. DOI:http://dx.
doi.org/10.1109/TMM.2005.854388

Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad, Håkon Kvale Stensland, Vamsidhar
Reddy Gaddam, Dag Johansen, Carsten Griwodz, and Pål Halvorsen. 2013. Efficient implementation and
processing of a real-time panorama video pipeline. In Proceedings of the IEEE International Symposium
on Multimedia.

Jinjun Wang, Changsheng Xu, Engsiong Chng, Kongwah Wah, and Qi Tian. 2004. Automatic replay
generation for soccer video broadcasting. In Proceedings of the ACM Multimedia Conference. 32–39.
DOI:http://dx.doi.org/10.1145/1027527.1027535

Wanmin Wu, Ahsan Arefin, Raoul Rivas, Klara Nahrstedt, Renata M. Sheppard, and Zhenyu Yang. 2009.
Quality of experience in distributed interactive multimedia environments: Toward a theoretical frame-
work. In Proceedings of the ACM Multimedia Conference. 481–490.

M. Xu, J. Orwell, L. Lowey, and D. Thirde. 2005. Architecture and algorithms for tracking football play-
ers with multiple cameras. In IEE Proc. Vision Image Signal Process. 152, 2, 232–241. DOI:http://dx.
doi.org/10.1049/ip-vis:20041257

Wei Xu and Jane Mulligan. 2013. Panoramic video stitching from commodity HDTV cameras. Multimedia
Systems 19, 5, 407–426. DOI:http://dx.doi.org/10.1007/s00530-013-0316-2

T. Yokoi and H. Fujiyoshi. 2005. Virtual camerawork for generating lecture video from high resolution
images. In Proceedings of the IEEE International Conference on Multimedia and Expo. DOI:http://dx.
doi.org/10.1109/ICME.2005.1521532

Xinguo Yu, Changsheng Xu, Hon Wai Leong, Qi Tian, Qing Tang, and Kong Wah Wan. 2003. Trajectory-
based ball detection and tracking with applications to semantic analysis of broadcast soccer video. In
Proceedings of the ACM Multimedia Conference. 11–20. DOI:http://dx.doi.org/10.1145/957013.957018

Received July 2014; revised November 2014; accepted February 2015

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 4, Article 56, Publication date: April 2015.

Appendix E

[Journal] Tiling in Interactive

Panoramic Video: Approaches

and Evaluation (Under Review)

[Authors:] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen

[In Review:] IEEE Transactions on Multimedia (T-MM), 2016

253

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 1

Tiling in Interactive Panoramic Video:
Approaches and Evaluation

Vamsidhar Reddy Gaddam, Michael Riegler, Ragnhild Eg, Carsten Griwodz, Pål Halvorsen

Abstract—Interactive panoramic systems are currently on the
rise. However, one of the major challenges involved in such a
system is the overhead to transfer a full quality panorama to the
client where only a part of the panorama is used to extract a
virtual view. Thus, a system should maximize the user experience
and at the same time minimize the bandwidth required. In this
paper, we apply tiling to deliver different qualities of different
parts of the panorama. Tiling has traditionally been applied to
delivery of very high-resolution content to clients, and here,
we apply similar ideas in a real-time interactive panoramic
video system. A major challenge is movement of such a virtual
view, where clients’ regions of interest change dynamically and
independently from each other. We show that our algorithms,
which progressively increases quality towards the point of the
view, manages to (i) reduce the bandwidth requirement and (ii)
provide a similar QoE compared to a full panorama system.

Index Terms—Multimedia system, tiling, user studies, video,
panorama.

I. INTRODUCTION

The role of videos in the Internet got more and more
important in the last years. YouTube and Netflix are alternately
mentioned as the sources of most Internet traffic [1], and
also other big companies like Facebook integrate videos and
sharing of them in their services [2]. The commercial use
of video streaming in the Internet has not only led to a
proliferation, but also to the user expectation of high-quality
videos, and the service providers fulfil them. YouTube users
can already watch videos in 4k. The adoption of these high
resolutions means that the classical video streaming challenge,
the availability of bandwidth, persists in spite of growing
capacities [3].

A virtual view on a mobile phone

The movable non-rectangular area
used to generate the virtual view

Fig. 1: The re-projected virtual view, and the panorama video
with the marked region of interest.

A special case among high-resolution videos are panoramic
videos. They have uses in video surveillance, sports analysis,
robotics, etc. They differ from other video application in their

Manuscript received April 19, 1988; revised February 31, 1982.

user interaction, because most of the time, users watch only a
sub-section of the entire video. A large number of panorama
solutions exist, including research prototypes and commercial
products, but their potential is still largely unexplored and
delivery techniques not yet perfected like for example in [4–7].

Panoramic video is usually created from multiple cameras
that cover a wide field of view and are stitched into one high-
resolution frame. Users are then commonly given the oppor-
tunity to access narrower views extracted from the panorama
using pan-tilt-zoom (PTZ) operations. This means that each
user controls one virtual camera (or more) interactively to
create a view. Since panoramas created by stitching multi-
ple camera view are typically cylindrical panoramas like in
figure 1, which can provide a roughly uniform distribution of
pixels to all angle recorded in the panorama, even panning
operations amount of more complex operation than a plain
cropping.

Furthermore, in systems with a high number of users, the
virtual view is usually generated on the client side due to
allow the system to scale and keep interaction latency low.
The downside of this approach is that the entire panorama
must be delivered to the client at all times because the
user can perform PTZ operations at any time. Obviously, the
delivery of a full-quality high-resolution panorama video is
(excessively) costly in terms of bandwidth. In an example
installation where we generate a 4096x1680 x264-encoded
panorama video, the average bandwidth requirement was about
9.5 Mbps. Moreover, since only parts of the panorama are used
for the virtual view extraction (see figure 1), sending the full-
quality panorama at all times wastes bandwidth.

To reduce the waste, but keep the user’s quality of ex-
perience (QoE) high, we present an analysis of options and
propose a solution that combines tiling and HTTP adaptive
streaming (HAS). This is done in three main steps. (i) Using
ideas from region-of-interest streaming and retrieving higher
quality in the areas of the full panorama currently used for
the virtual view, we analyze and discuss the trade-offs. (ii) We
conduct a subjective study to validate objective quality metrics
for our scenario and then use the latter to investigate the trade-
off between video quality and bandwidth for several adaptation
strategies. Finally, (iii) we present a possible solution for
transferring a high quality panoramic video cost effective and
in a high quality to the user. Our experimental results show that
our approach reduces the bandwidth requirement and provides
a similar Quality of Experience (QoE) compared to a full
panorama system.

The rest of the paper is organized as follows. First, the
state-of-the-art is discussed in the section II. In the following

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 2

section III, a detailed overview of the system is given. After
that, quality selection approaches are discussed in section IV.
This is followed by presenting the evaluation methods in
section V and the results of the evaluation in section VI. The
discussion about the outcome of the paper can be found in
section VII. Finally, conclusions are given in section VIII.

II. RELATED WORK

Panoramas can be divided broadly into two groups, i.e.,
complete panoramas that span 360o around at least one axis
and partial panoramas with less angular coverage. When it
comes to complete panoramas, a cube-panorama is a standard
format. They consist of 4-6 images with 90o field of view
put next to each other. The format is convenient because
it allows the creation of virtual views with only one linear
transformation (homography) for each side of the cube. Its
deficiency is that the number of pixels representing a viewing
direction varies strongly between the center and the corner
of a cube side. A cylindrical (spherical) panorama can also
be used for a complete panorama. It reduces the pixel density
problem, but requires the computation a homography for every
column of pixels (every pixel) to project from the panorama
onto a virtual view. For both cases, a compact representation is
crucial wherever many users interact with the panorama video
at the same time over the network. The affect storage space
and memory usage as well, which may also be a performance
concern.

Panorama Systems. Panorama systems that allows a user
PTZ operations on a virtual camera have been developed both
in research [4–12] and industry [13, 14].

PTZ cameras existed for a long time on static panoramic
images and are quite commonly used in services like street
maps and photosynth. However, the afore-mentioned systems
deliver video experiences with similar interface. This adds a
lot of challenges to the systems and several other dimensions
to the problem of interactive experience.

[8] and [4] present a system for live/real time production of
broadcast video using PTZ cameras. [8] specifically focus on
efficient interfaces to create a live virtual camera for a single
producer. [10] discuss virtual PTZ cameras to control/steer a
robotic PTZ camera. The advantage of using a robotic PTZ
camera is that it can use optical zoom and hence, provide
high resolutions even at higher focal lengths. However, using
a robotic PTZ camera exclusively limits the number of users
that can control the camera to one.

[11] used virtual PTZ cameras to follow the speaker in lec-
ture recording. Also [15] focus specifically on lecture videos.
At an abstract level, indoor applications are similar to outdoor
ones where the interactive experiences is concerned. The
photometric challenges in outdoor applications are, however,
not comparable to those of indoor scenes due to variable
lighting and greater depths, and can affect the user experience
drastically. [16] provide a good way of recording outdoor
panoramas using HDTV cameras. Some works [17, 18] look
at the system aspects of panorama capture systems.

Only a few works [18, 19] discuss the distribution of
the live panorama video and even those lack a complete

evaluation. Most industry projects transfer the entire panorama
before starting the interaction, thus leading to a not true-
live component. However, YouTube 360 has just released the
first 360o videos that deliver 4-sided cube-panorama videos
stitched into a single video stream and allow pan and tilt
operations (no zoom) in the Chrome browser.

Streaming Options. Tiled video can be processed into an
individual stream for each viewer on the server side [20], but
this approach does not scale to a large number of concurrent
viewers who can chose individual views. In the latter case, the
tiles that cover the user’s view are delivered and processing
occurs on the receiver side. We are not aware of a discussion
of the options for this.

All distributed tiling systems face the challenge of user
interaction that changes the user’s view rapidly, requiring new
covering tiles between two consecutive frames. Users can
notice a delayed reaction to their interaction within a few
milliseconds [21]. To avoid this latency, tiling systems that
extract views on the receiver side choose to retrieve all tiles
(within interaction range) at all times, but at a less than perfect
quality to save bandwidth.

HAS is well-suited for this multi-quality delivery because it
can delivery multiple quality levels to large audiences with the
help of standard Web caches to increase scalability. However,
retrieval decisions can only been made on segment boundaries,
which means that visual quality can be reduced for several
frames after user interaction affects the required tiles.

Faster quality improvement could be achieved by down-
loading a higher quality version of a segment that comes
into visual range, decode it, skip frames that have already
been played out at low quality, and continue with high-quality
frames. The technique puts sudden high demands on download
bandwidth and decoding. Alternatively, Scalable Video Coding
(SVC) Mid Grain Scalability (MGS) could be combined
with HAS [22]. Quality could be increased by retrieving an
enhancement layer, which puts less load on bandwidth, and
allows the receiver to improve frame quality immediately
after skipping to the correct frame in the enhancement layer.
However, an H.264 SVC-encoded video has 10% bandwidth
overhead per enhancement layer compared to a non-scale
video of the same quality [23].

Push-based streaming systems are an alternative because
they can encode each tile as a continuous stream. Solutions
that require multicast [24, 25] cannot be used on a large
scale due to the lack of IP multicast. But also in a unicast
solution, a push server can respond to a receiver’s request
for higher quality within one RTT of a user request. One
method works by updating SDP [26], which can switch the
unicast delivery of layers on and off, but of course, the SVC
overhead mentioned above applies here as well. An even faster
method is based on RTP [27], which can send a bit-rate request
and instruct the server to send new Intra frame as soon as
possible. This option is interesting, as it works either with SVC
(suffering the mentioned overhead), with non-layered codecs
but live encoding (or transcoding) at the sender, or a set of
parallel streams where switching is supported through SI/SP
frames [28]. The overhead of the SI/SP method lies between
the other two approaches. All of these RTP-based methods

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 3

have in common that packet loss can occur, and it is therefore
today usual to use MPEG 2-TS packaging [29], but this in
itself incurs a 20% bandwidth overhead [30].

Considering that all of the approaches demand that the base-
layer quality of all reachable tiles is streamed at all times, the
bandwidth overhead of the various alternatives to HAS seemed
too large for our scenario. We have therefore chosen a HAS
with 1-second segments and discuss the quality implications
of the qualities switching delay below.

Tiling Approaches Using HAS. Even though not di-
rectly related to the cylindrical/spherical panorama systems
that provide free PTZ camera movement, there are some
works [20, 31–33] that provide an approximate interaction.
[31] discuss tiling in interactive panorama video. However,
their panorama is a perspective one and the virtual camera
performs merely cropping, which is identical to cropping
from a high-resolution video. Similarly, [20] provide zoomable
playout on mobile devices for bigger resolution videos. [32]
present an approach for the zoomable video where the tiles
are optimally selected and sent from the server side. [34]
performed a user study to determine the effect of tiling on the
zoomable video presentation. Except for [31], these works do
not support a completely random PTZ camera. [33] present a
similar system where the tiles are encoded at multiple qualities
and retrieved depending on the current view, however they
do not discuss smooth random movement. Their interface is
similar to that of a zoomable video, where you can pick a
portion of the entire video presented in a thumbnail and that
part is cropped from the full resolution and presented. Hence,
to our knowledge, our work is the first to handle the problem
of tiling and discuss its trade-offs in the context of a random
PTZ camera on a cylindrical panorama texture.

III. SYSTEM OVERVIEW

Our panorama system is currently running live at two dif-
ferent locations. The tiling generation and retrieval operations
are highlighted in figure 2. All components run in real-time,
and the user can thus control the virtual camera during a live
stream.

Server Side. Cylindrical panorama images are generated
from five 2K cameras whose the shutters and exposures are
perfectly synchronized. The seams are calculated dynamically
for every frame. The frames are divided into 64 tiles (8x8),
and one video stream is generated for each tile. Each video
tile is encoded into 1-second segments at multiple qualities
(and bit rates) using libav and x264. Each tile can then be
requested individually by client using HAS.

Client Side. Once the different quality tiles are made
available on the server, the client fetch tiles and generate the
virtual view from the retrieved panorama. The task of the client
is to retrieve high quality tiles for the virtual view and lower
quality tiles for the surrounding tiles. Thus the client is able to
supply the user with a high quality virtual view video, while
at the same time trying to save bandwidth compared to the
full quality panorama retrieval approaches discussed in the
previous section.

However the system must fetch, spatially, every tile in the
panorama video, whatever might be the quality. This way, the

created	 	 panorama	

netwo
rk	

retrieved	 0les	

generated	 virtual	 view	

57	 kbps	

189	 kbps	

684	 kbps	

server	 side:	 panorama	 genera0on	 and	 0le	 encoding	

client	 side:	 0le	 retrieval	 and	 view	 extrac0on	

Fig. 2: At the server side, we divide the generated panorama video
into 8x8 tiles, and then encode each tile in different qualities. The
client retrieves tiles in certain qualities based on the current position
of the virtual camera (full quality tiles for the virtual view and low
quality (red) tiles outside the field of view).

Network

File
Manager

Decoder

Tile Selector

Renderer

Output
View

UI
Controls

Tilemap

Panoramaframes

Fig. 3: The architecture of a client supporting tiling.

system can still provide data if the user interactively moves the
virtual camera compared to presenting black areas or a static
image if none of the surrounding tiles are retrieved at all. To
accomplish this, the client is designed as shown in figure 3.
There are four major components in the client system, (i) a
File Manager, (ii) a Decoder, (iii) a Renderer and (iv) a Tile
Selector.

File Manager. The File Manager component is responsible
for requesting appropriate tiles in a given quality from the
server (determined by the Tile Selector described below). The

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 4

byte stream is transferred as fetched and forwarded straight to
the Decoder module instead of saving it as a local file, thus
bypassing the disk.

Fig. 4: Sample output frame from the decoder module.

Decoder. Once the tiles are available from the File Manager,
the Decoder module starts decoding frames and pushing it
to a common panorama texture. Since the tiles are spatially
independent of each other, this process is heavily paralleliz-
able. The operations are, frame-synchronized to avoid placing
a frame from two different tiles at different time instants
into the same panorama frame. Figure 4 shows an example
frame1 where one can observe that the panorama frame is
reconstructed from different quality tiles.

Renderer. As soon as a panorama frame is decoded, it is
pushed to the rendering module. This module is responsible
for creating the virtual views using the PTZ parameters. In
addition, it provides User Interaction or virtual view controls.
In most interactive systems, the functionality of the Renderer
is limited to this. However, in order to support tiling, we
need to save the information of the panorama parts that are
currently being viewed. This information is transferred to the
Tile Selector module which again uses the information to
select the tile qualities for the next iteration.

Tile Selector. Once a frame is displayed, the panorama
location from where the current view is extracted is transferred
to the Tile Selector from the Renderer. This information plays
a crucial role in selecting the next tile set. Finally it important
to point out that all these modules need to perform in real-time
to provide a smooth interactive experience to the user while
keeping the bandwidth consumption at a minimum required
level. One can observe that this can be challenging task at the
Decoder module, where several videos are expected to be de-
coded concurrently in real-time and also frame-synchronized.

IV. QUALITY SELECTION APPROACHES

As described before, the Tile Selector is responsible for
determining appropriate qualities (and bitrates) for the differ-
ent tiles, and adapt according to the viewer movement. Let
Q = {q0, q1, . . . , qn−1} be the set of n available quality
levels and Ti be the tile quality at tile i, then the problem
can be written as a simple labelling problem in equation 1.
The qualities are in a decreasing order where q0 is the highest
quality tile.

Ti = q where q ∈ Q (1)

1Due to possibly limited resolution of printers, it is recommended to analyze
the images on screen.

There are several ways to perform this labelling, which will
ultimately influence the bandwidth consumed and the user
experience of the system. A binary tile occupancy map,
containing information on which tiles are currently used to
generate the virtual view, is used in the labelling process. The
binary occupancy map has Bi = 1 at tile i when the view
needs pixels from the tile i on the panorama. Even using
the same binary occupancy map, there are several ways to
select a tile quality, and below we briefly outline some of the
algorithms evaluated in this study. The three first algorithms
make a binary decision between a predefined, yet configurable,
high or low quality. The last approach allows for a gradual
(multi-level) decrease of quality depending on the importance
of a tile.

A. Binary

Fig. 5: Tiled binary.

The binary approach is a sim-
ple approach where high quality is
assigned to the required tiles and
low quality to the ones that are
not required (figure 5). Using the
binary occupancy map described
above, this becomes rather trivial.
Hence, the binary approach can be
formulated as following:

Ti =

{
qh if Bi = 1

ql else
(2)

The only requirement in this case is to have l > h. However,
the choice of exact quality levels can be considered as tuning.

B. Rescaled

Fig. 6: Thumbnail.

A commonly used approach in
research in terms of tiling is to
send a low quality base thumb-
nail video and provide only the
required high quality tiles [31,
32] (figure 6). To create the
thumbnail video, the source video
is down-scaled and stored. During
the process of virtual view gen-
eration, the pixels from the available high quality tiles are
used. For the pixels where the high quality data is missing,
the thumbnail video is up-scaled and used, which can be
considered as low quality tiles.

C. Prediction

Fig. 7: Predicted.

When a user moves the virtual
camera, there is a chance that the
view will be generated by some
low quality tiles since the tile qual-
ity is only changed at the segment
boundary. In order to lower the
probability that this occurs, it is
beneficial to try to predict future
movements and retrieve a higher

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 5

quality tile if there is a high probability that the user moves
the view into this tile (figure 7, i.e., similar to the tiled binary,
but where the high quality area is enlarged according to the
prediction). In this respect, it is beneficial to predict the path
across several frames in future. There are several models
available for prediction. However, to keep the comparison to
the state-of-the-art consistent, we used the Auto Regressive
Moving Average (ARMA) prediction [31]. Here, let θt be the
position and δθt be the velocity of the view at time instant t.
The velocity at the current instant is estimated as,

δθt = αδθt−1 + (1− α)(θ − θt−1) (3)

Then, the future position at t+ f is estimated as

θ̂t+f = θt + fδθt (4)

where f is the number of frames predicted in future. This can
be used straight away to figure out a future binary occupancy
map. This map can be used in any of the approaches mentioned
here. But for the sake of comparison, we use the Predictive
approach along with the Rescaled approach [31].

D. Pyramid

Fig. 8: Pyramid.

The pyramid is a complex
scheme where we chose qualities
intelligently with a gradually de-
creasing quality according to the
distance from the virtual camera
(figure 8). Here, we introduce the
term priority (pi) that varies in
{0, 1}, where 0 being highly im-
portant to 1 being least important.
Depending on the importance, we fetch the corresponding
quality. But there is another catch. If we just decide on the
importance, we might end up fetching high quality tiles for a
lot of tiles for a zoomed-out virtual view. Here, the maximum
quality level (qmax) comes into picture. This quantity depends
on the number of high priority tiles. We select qH as the quality
level to be used when all the tiles are being used for the virtual
view.

qmax = (

∑
i∈T bi
N

)qH (5)

Ti =

{
qmax if bi = 1

qmax + pi(n− qmax − 1) else
(6)

After qmax is calculated, we count the occupancy of the neigh-
bourhood and then assign that as its pi as shown in equation 7.
As one can observe there are several tuning parameters. One is
the qH , which determines the quality at a certain zoom level.
The second is the selection of the neighbourhood itself which
can be determined by the weights αj . We can either make the
weights to be isotropic or anisotropic. Given the fact that one
is more prone to pan than to tilt, anisotropic weights can lead
to similar performance as the isotropic one while consuming
less bandwidth.

pi = 1−
∑

j∈N αjbij∑
j∈N αj

(7)

V. EVALUATION METHODS

The problem of bandwidth reduction is a strict trade-off of
two conflicting constraints. One constraint is the bandwidth
itself, which can be measured straight away as the rate of data
transferred. The second constraint is the quality of experience,
which is not trivial to measure. When developing approaches,
we need to consider how well the approaches are performing
with respect to these constraints and which approaches provide
the best trade-off. We compare the two different pipelines in
figure 9, and we use the final output (the rendered virtual view)
for comparison.

original
panorama

virtual view
from tiled
panorama

virtual view
from original
panorama

panorama
transfer

tile
retrieval

Fig. 9: Pipeline differences: original vs. tiled panorama.

We assessed the quality selection schemes described in
section IV by comparing their performance on the entire first
half of a soccer game (approximately 47 minutes). We used
five quality levels with increasing Constant Rate Factor (CRF)
values, the levels along with the CRF values are q0(21),
q1(24), q2(30), q3(36) and q5(48). For the investigation, we
compared the quality of four pre-generated sequences of PTZ
operations, called paths. We created four paths whose pan/tilt
operations follow the general soccer game flow, but whose
zoom varies as described and labelled in table I. The quality
selection methods were labelled as shown in table II.

Label Path
s1 The virtual camera is severely zoomed-in
s2 The zoom is at a medium level
s3 An overview video where the view is zoomed-out
s4 A dynamic zoom factor depending on the situation

TABLE I: Paths: sequences of PTZ operations

Label Approach
l1 Binary with q0 and q4
l2 Binary with q1 and q3
l3 Rescaled with no prediction
l4 Rescaled with 100 frames prediction
l5 Pyramidal with isotropic weights
l6 Pyramidal with anisotropic weights
l7 Pyramidal with isotropic weights (different parameters)
l8 Full Panorama input (no tiling)

TABLE II: Labelling of approaches for analysis

A. Quality metric

The challenge for objective video quality metrics has so far
been to match subjective viewing experiences for videos of
finite duration (8-12 seconds). Objective methods that try to
solve this challenge and that have undergone rigorous indepen-
dent testing [35] are meant for constant-quality videos (with
uniform disturbances). They can estimate QoE if degradation
in a video spans several frames and work well for individual
HAS segments. However, they may not be suitable when the
user is presented with a view that is stitched from several
independently adapting HAS video tile. In this scenario, only
parts of the video suffer from distortion and there are updates
that can instantly change the degradation.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 6

To compare the quality selection schemes in our paper, we
have therefore conducted a user study to assess whether the
image similarity metric SSIM [36] or OpenVQ, an independent
implementation of a perceptual video quality metric described
in ITU-T J.247 [37, Annex B], provide good estimates of
subjective quality assessment. All user study experiments are
performed using 12-second excerpts2 from the 4 sequences
mentioned in table I. Sheet1

Page 1

0

10

20

30

40

50

60

s1

s2

s3

s4

Frame Numbers

U
s

e
d

 T
ile

s

Fig. 10: Total number of tiles used, out of 64 possible, per frame in
sequences of 12-second durations at 4 pre-determined time instants.

OpenVQ: Perceptual Evaluation of Video Quality (PEVQ)
is a full-reference algorithm that outputs mean opinion scores
(MOS) as an objective video quality metric. After evaluation
by the Video Quality Experts Group (VQEG), it has become
part of the standard ITU-T J.247 [37]. Out of all candidates,
PEVQ achieved the best error rate with respect to subjective
studies conducted by two independent institutes.

Unfortunately, PEVQ is not freely available for researchers,
so we used OpenVQ, which is based on J.247 Annex B,
but not a one-to-one implementation of PEVQ. The patented
temporal alignment has been dropped, because neither HAS
nor RTP-based streaming suffer from temporal misalignment.
Furthermore, flaws in the formulas in J.247 Annex B force
a rather loose interpretation. The dataset used for evaluating
J.247 candidates is not publicly available, but with a ground
truth of ICCRyN datasets [38–40], OpenVQ achieves results
close to those reported for PEVQ in J.247.

SSIM: The Structured Similarity Index (SSIM) [36] is a
metric for assessing differences between images. It is supposed
to model human subjective experience quite well, but [41] have
demonstrated that this fails for a variety of possible image
degradations. In spite of this, SSIM is even used for estimation
the quality of video. x264 makes encoding decisions based on
it, and [42] construct a video quality assessment tool based on
it.

PSNR: A commonly used measure in evaluating video
qualities is PSNR. As [43] explains, it is solely a pixel
difference metric, and quite unrelated to subjective experience.
Already [44] explained its limits, while [45] have clarified that
it can predict human preference in one particular case: when
the same content has been encoded with different compression
strengths.

2The same sequences are attached along with the paper, however com-
pressed due to the limitation on space.

B. Assessing objective metrics

The measure that we require differs from the ground truths
that have been used in assessing current video quality metrics.
As mentioned in Section V-A, we have tiled videos following
a HAS model. An adaptation decision for each tile is made
once a second. We do not aim at generating a single quality
value for an entire 47-minute test case, because we have not
found any valid basis for doing so in the literature. Instead,
we verify how well the above objective metrics describe user
experience on a second-by-second basis.

1) Study design: We compared the results of the objective
metrics with subjective evaluations across a range of tiling
approaches. The user study was designed to investigate two
aspects of the subjective perception of quality. We consider
the noticeability of quality distortions and the experienced
annoyance related, but distinct. We ran two consecutive exper-
iments, one to address the detection of tiling distortions, and
one to address the annoyance resulting from the distortions. In
addition, we included five-point absolute category rating scales
for subjective assessments of overall video quality, adhering
to ITU-T P.911 [46].

In both experiments, participants watched sequences with
duration of 12 seconds extracted from the sequences de-
scribed at the beginning of section V. These were originally
chosen as representations of different football scenarios and
hence provided variety to participants and served to increase
generality. Since all sequences included pre-recorded camera
panning and zooming movements, our final stimulus collection
contained sequences with frequent tile shifts and varying
changes in compression rate and video quality. In the detection
experiment, we instructed participants to pay attention to the
the quality of the presented sequences and to push down the
spacebar the moment they noticed a change for the worse,
holding it down for the entire duration of the quality drop.
The annoyance experiment followed the same procedure, only
changing the instructions to ask participants to push down the
spacebar while they experienced annoyance due to low video
quality. At the end of each sequence, participants rated the
overall video quality on a 5-point scale ranging from ”bad” to
”excellent”.

In order to secure a sufficient number of participants, we
recruited the help of crowdsourcing workers. This approach
requires some extra methodological considerations due to
challenges that concern lack of task adherence and com-
prehension, and in turn, reduced data consistency [47, 48].
Thus, we initially conducted 3 pilot studies to ensure that the
experiments were presented in a succinct, but understandable,
format. The first was completed by colleagues and students,
the following two on crowdsourcing platforms Microworkers
and Crowdflowers. Following each pilot, we adapted the
experiments according to the received feedback. For the final
study, we used Microworkers and collected data from a total of
200 different participants. Although we implemented quality
measures such as gold samples and majority votes, the highly
subjective nature of the task did not allow more than the most
basic automatic filtering to exclude non-complying individuals.
We excluded only participants who failed to complete the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 7

experiment, and on manual inspection removed participants
who had obviously attempted to circumvent the experimental
tasks, altogether 15%. All other potential exclusion criteria
were found to potentially exclude valid human perceptions as
well.

We then calculated the agreement between participants’
quality ratings for each sequence using the Fleiss Kappa
statistic [49]. Because this statistic depends on the number
of raters and comparisons [50], we consider it in the context
of the possible minimum and maximum values, which are
established at −0.80 and 1. For the detection experiment,
inter-rater agreements varied between 0.22 and 0.37 across
the different sequences and quality conditions. The annoyance
experiment yielded values between 0.24 and 0.39. With respect
to the arguably subjective and variable measures of detection
and annoyance, we judge these positive agreement scores as
indications that participants adhered to the task at hand.Sheet1

Page 1

ae1 ae2 de1 de2
0

2

4

6

8

10

12

14

16

SSIM

PSNR

OpenVQ

Experiment

N
u

m
b

e
r

o
f t

im
e

s
w

ith
 le

a
st

 K
L

D

Fig. 12: Number of times a metric had the least divergence from the
user input in each task of the experiments among OpenVQ, PSNR
and SSIM.

(a) l3s4 - PSNR: 30.39 (b) l7s4 - PSNR: 30.89

Fig. 13: Example of severe differences within a frame (319), leading
to similar PSNR values.

2) Performance of Evaluation Metrics: The analysis of user
studies for perception is always challenging, especially when
the users are expected to provide time-varying input. For
example, our study aims at recording perception differences
among users, but records also response time differences be-
tween them. It may be possible to counteract this by assuming
that users’ opinions correlate and maximizing cross-correlation
by time-shifting all inputs. However, due to the weakness of
this assumption, we ignored response times and averaged user
inputs across all users.

The results of our user study show a reasonably strong
relation between the user input and OpenVQ, but also SSIM.
We used Kullback-Leibler-divergence (KLD) [51] to estimate

Sheet1

Page 1

l1s1l2s1l3s1l4s1l5s1l6s1l7s1l8s1 l1s2l2s2l3s2l4s2l5s2l6s2l7s2l8s1 l1s3l2s3l3s3l4s3l5s3l6s3l7s3l8s1 l1s4l2s4l3s4l4s4l5s4l6s4l7s4l8s1
0

200

400

600

800

1000

1200

1400

Row 5709

Row 5708

Row 5707

Row 5706

Mode

B
a

n
d

w
id

th
(K

B
/s

)

Fig. 14: A boxplot of the bandwidth consumed in (KB/s) for different
approaches over 2.834 seconds(47 min) representing the first half of
a game. Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

l1s4

l2s4

l3s4

l4s4

l5s4

l6s4

l7s4

l8

Time(s)
B

an
dw

id
th

 (
K

B
/s

)

Fig. 15: Bandwidth profile for 90 seconds duration in the middle of
s4.

the information loss in approximating subjective results with
the objective metrics, and KLD stays below 0.05 for path s1
and below 0.01 for the other paths. Figure 12 shows that both
OpenVQ and SSIM can be closer to the average subjective
ratings3.

Although PSNR is unsuitable as a metric of visual quality
(also quite easily shown to fail in the case where high-
and low-quality tiles are merged into a single view like in
figure 13), we present also PSNR results because they expose
unexpected properties of the 1-second video segments. The
PSNR results in figure 11a exposed regular severe degradation
of the last frame in each 1-second segment. Although this is
not noticeable to a human observer even when single-stepping
through the video, it is clear evidence of problems in ffmpeg
or the way in which we use it.

VI. EVALUATION RESULTS

In this section, due to space limitations, we mostly discuss
about the s4 sequence which is representative of the real-life
virtual camera operation. However, using the other sequences
we can observe zoom specific results. For example, s1 con-
sumes least amount of bandwidth due the required low number
of tiles. We can also observe from s3 that when the user is
interested in overview of the field, there is no need to fetch
highest quality tiles.

A. Bandwidth

A simple way to determine the cost of network delivery
is to measure the bandwidth. The most commonly used
measurement is the average bandwidth along the entire run.

3Standalone HTML/JS plots for each study are attached to the paper for
reference. Any recent web browser can be used to explore them.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 8

Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
20

22

24

26

28

30

32

34

36

38

40

l7s4 (34.29)
l6s4 (34.23)
l5s4 (34.29)
l4s4 (32.71)
l3s4 (31.73)
l2s4 (34.21)
l1s4 (32.09)

Time (s)

PS
N

R
 (

dB
)

(a) PSNR

Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
0.7

0.75

0.8

0.85

0.9

0.95

1

l7s4 (0.91)

l6s4 (0.92)

l5s4 (0.92)

l4s4 (0.92)

l3s4 (0.91)

l2s4 (0.91)

l1s4 (0.90)

Time (s)

S
S

IM

(b) SSIM

Sheet1

Page 1

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

l7s4 (4.37)

l6s4 (4.36)

l5s4 (4..37)

l4s4 (3.69)

l3s4 (3.5)

l2s4 (4.34)

l1s4 (3.77)

Time (s)

D
M

O
S

(c) OpenVQ

Fig. 11: Different variation over the quality metrics across the 12 second clips. For reference, the average of each metric across the 12-second
duration is also presented in parenthesis for each approach.

Figure 14 presents a box-plot of each approach using different
paths for the first half of the game. However, the interactive
services can have different bandwidth requirements at different
instances. Therefore, we use the running bandwidth profile
to evaluate the performance of the approaches. Figure 15
shows the bandwidth profile for all approaches for a 90-second
duration at 1000 seconds into the game. We can observe that
there is some correlation with the number of tiles used at that
time instant, which can be seen in figure 17.

Tiles Total out21 out24 out30 out36 out48
2x2 17G 7.5G 5.0G 2.2G 1.2G 528M
4x4 18G 7.7G 5.3G 2.5G 1.5G 821M
8x8 23G 8.7G 6.4G 3.7G 2.4G 1.8G

TABLE III: Size of the data for a soccer video of 6297 seconds
using different tile granularity when compressing each tile with CRF
values of 21, 24, 30, 36 and 48 on 1 second segments. In comparison,
the size of the non-tiled panorama using the same segment length is
7.3GB.

The methods are tuned to provide similar bandwidth with
slight variations depending on the number of tiles used.
However, it is quite evident that the approaches using highest
quality tiles wherever required will have high bandwidth usage
when a lot of tiles are used in the view. This can be seen in
the great bandwidth requirement for l1, l3 and l4. However,
over the long run of the random zoom sequence (s4), which is
probably most representative of a real scenario, the bandwidth
consumption for all approaches is quite similar. For an estimate
of the costs on the server side, we present the total disk space
occupied by the tiled segments in table III. Irrespective of the
approach, it can be observed that the bandwidth savings are
quite high, sometimes reducing requirements to 25% of the
full panorama. Hence, it becomes important to evaluate the
approaches for quality.

B. Quality

So far, no approach exists that can provide best visual
quality and low bandwidth usage at the same time during
the entire virtual view operation. However, some approaches,
especially the pyramidal ones, can provide decent bandwidth
savings and also acceptable quality most of the times. From
figure 16, we can observe that all methods suffer from quality
degradation at times. The predictive approach is functional and
provides improvement only when the actual positions match
with the predicted positions. However, with a completely ran-
dom operation, this can be challenging even with sophisticated
algorithms. Moreover, the prediction algorithms seem to be the

Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Time (s)

U
s

ed
 T

ile
s

Fig. 17: Number of used tiles across 90 seconds at 1000 seconds
into the soccer game for s4.

most expensive on bandwidth. However, not all high quality
tiles fetched are used for extraction of the virtual view.

In figure 16, we can see that a value of 0.93 for SSIM and
4.5 for DMOS runs along the time with drops depicting the
quality changes during the virtual camera movement. These
values imply that the visual quality of the output tiled virtual
view is on par with the original. Even in the drops, we
observe that the pyramidal approaches perform better than
the others. However, SSIM and OpenVQ are full-reference
quality measures, which implies that the evaluation can only
be carried out with the presence of the high-quality virtual
view. However, there are ad-hoc measures that one can collect
in the background without much resource consumption and
that can provide some insight into the quality of a virtual
view.

Furthermore, [31] introduce the notion of missing-pixel
percentage to evaluate the accuracy of their prediction and thus
the quality of the virtual view. A missing pixel is a pixel in the
virtual view where the corresponding high quality panorama
data is not available for rendering. A percentage of missing
pixels can be calculated against the total number of pixels
in the virtual view. The average percentage of missing pixels
across several seconds is used to evaluate various approaches
in [52]. However, in the previous tiling approaches [32, 52],
where the selection is mostly a binary process using either a
high quality tile or a low quality thumbnail, the missing pixel
percentage can contain a lot of information about the quality.
But, we also include pyramidal approaches in the evaluation
and they use multiple quality levels. Hence, we propose using
a Tile Histogram. In a frame of the output virtual view, we
count the percentage of pixels fetched from each tile.

[52] provide evaluation results also as average percentage
of missing pixels for a 480×240 cropped view of 2560×704
pixels panorama. This 6.7% ratio is equivalent to using 4
tiles in a 64 tiled panorama (s1 from figure 10), in which

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 9

Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

D
M

O
S

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

l8s4

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

D
M

O
S

(a) OpenVQ variation

Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0.7

0.75

0.8

0.85

0.9

0.95

1

l8s4

l7s4

l6s4

l5s4

l4s4

l3s4

l2s4

l1s4

Time (s)

S
S

IM

(b) SSIM variation
Fig. 16: Measured variation across 90 seconds at 1000 seconds into the soccer game for s4

Label/Sequence s1 s2 s3 s4
l3 20.22 10.20 2.60 9.44
l4 18.20 8.56 1.94 6.53

TABLE IV: Average percentage of Missing pixels measurements
over the entire first half of the game Sheet1

Page 1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

q0 (0.08)

q1 (81.72)

q2 (3.47)

q3 (14.27)

q4 (0.44)

Time (s)

P
er

ce
nt

a
ge

 o
f p

ix
el

s
(%

)

Fig. 18: Pixel histogram across 90 seconds along with the average
percentages for each level in the parenthesis

5

case the average percentage of missing pixels of around
20%, from table IV, is coherent with their results. From
the table IV, we can also observe that the missing pixel
percentage varies depending on the zoom. An example profile
of a pixel histogram is plotted in figure 18. One can observe
certain correlation between the pixel histogram profile and the
variations in quality observed from OpenVQ or SSIM. Ad-hoc
metrics like these can be used a reference to check the quality
on the fly during the process. However, full-reference metrics
provide the most accurate insights into the quality variations.

VII. DISCUSSION

The study presented in this paper uses HAS as the delivery
method for tiled panorama video, although this is not the
only option. The QoE provided by systems that can adapt
visual quality within a single RTT should be explored as well.
However, as we discussed in section II, there is a consid-
erable bandwidth penalty associated with push-based unicast
solutions. Nevertheless, multicast is not widely available, and
we have therefore investigated a HAS-based approach.

From the analysis of quality metrics and bandwidth profiles
for different movement path of a virtual camera, we make
several observations for the various approaches. We find that

pyramidal approaches provide a stable quality across different
zoom factors and random movements, i.e., it is a good tradeoff
between bandwidth savings and perceived video quality. When
only a little portion of the panorama is used, we find that the
rescaling approaches take up the least bandwidth, but the loss
in quality is significant. The prediction results are not specially
impressive when using a general prediction algorithm, and [52]
found that even context-based prediction does not lead in much
improvement.

The adaptation strategies evaluated in this paper try to adapt
the quality of a tile according to the movement of the view
in order to have as good quality as possible in the area of
the panorama used by the virtual camera to generate the
view. There are, however, numerous works that similarly try
to optimize the quality of traditional (non-panoramic) HAS
streaming according to available resources. Clients of all major
HAS variants, i.e., Apple HLS, Microsoft Smooth Streaming
and DASH, have algorithms trying to have a high, stable
quality. Additionally, researchers have presented approaches
trying to optimize the segment retrieval, e.g., according to
buffer occupancy [53] and consistent visual quality [54].
However, including this in the current study is out of the
scope of this paper, but it is an interesting topic to pursue
in the future combining optimal tile quality according to both
the virtual view and the available resources.

We have also explored and analysed the effect of different
segmented streaming approaches on quality for arena sport
scenario where the movement on the field is little compared
to the entire field. It would be definitely interesting to explore
them in different scenarios like the ones with details but static
and details with large movements. However, these scenarios
may require different treatment to achieve a good tradeoff
between quality and bandwidth usage.

VIII. CONCLUSION

We have presented multiple approaches for tiling that can
exploit the coding efficiency of H.264 to reduce bandwidth
requirements for an interactive live PTZ system. We have
evaluated the approaches using several methods and compared
these methods for their closeness to subjective perception.

Based on our experimental results, we provide several con-
clusions. Overall, our results prove that pyramidal approaches

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 10

reduce the bandwidth requirement and at the same time
provides a similar QoE compared to a full-quality, non-tiled
panorama system. Furthermore, utilizing the CRF parameter
of H.264 provides better bandwidth savings and better visual
quality compared to up-scaling a thumbnail video when the
panoramic system is static and the movement in the scene is
little compared to the scene itself. This is a rather common sce-
nario for arena sports like Rugby, Soccer, Hockey, Cricket etc.
Since a subjective study is a time-consuming and expensive
way to evaluate the approaches, there is a rise in objective
evaluation. We conclude that traditional evaluation methods
will fail to correlate well with the subjective assessment of
the experience, and a new metric, OpenVQ, closely capture
subjective ratings.

Both the approaches and evaluation methods can be used
with other interactive live PTZ camera systems as well.
However, the tiling approaches, specially the quality levels,
will require some parameter tuning specific to the application
to gain optimal performance. Finally, we provide an open-
source implementation of the OpenVQ estimation tool for
further usage by researchers.

REFERENCES

[1] Statista, “Top 10 Internet Traffic Services,” 2015,
http://www.statista.com/chart/1620/top-10-traffic-hogs/.

[2] Hypebot, “Video Wars Youtube versus Facebook,” 2015,
http://www.hypebot.com/hypebot/2015/03/the-video-
wars-youtube-vs-facebook.html.

[3] J. Sanchez-Hernandez, J. Garcia-Ortiz, V. Gonzalez-
Ruiz, and D. Muller, “Interactive streaming of sequences
of high resolution jpeg2000 images,” Multimedia, IEEE
Transactions on, vol. 17, no. 10, pp. 1829–1838, Oct
2015.

[4] W.-K. Tang, T.-T. Wong, and P.-A. Heng, “A system
for real-time panorama generation and display in tele-
immersive applications,” Multimedia, IEEE Transactions
on, vol. 7, no. 2, pp. 280–292, April 2005.

[5] S. Tzavidas and A. Katsaggelos, “A multicamera setup
for generating stereo panoramic video,” Multimedia,
IEEE Transactions on, vol. 7, no. 5, pp. 880–890, Oct
2005.

[6] H.-Y. Shum, K.-T. Ng, and S.-C. Chan, “A virtual re-
ality system using the concentric mosaic: construction,
rendering, and data compression,” Multimedia, IEEE
Transactions on, vol. 7, no. 1, pp. 85–95, Feb 2005.

[7] Q. Zhao, L. Wan, W. Feng, J. Zhang, and T.-T. Wong,
“Cube2video: Navigate between cubic panoramas in real-
time,” Multimedia, IEEE Transactions on, vol. 15, no. 8,
pp. 1745–1754, Dec 2013.

[8] E. Foote, P. Carr, P. Lucey, Y. Sheikh, and I. Matthews,
“One-man-band: A touch screen interface for producing
live multi-camera sports broadcasts,” in Proc. of ACM
MM, 2013, pp. 163–172.

[9] C. Fehn, C. Weissig, I. Feldmann, M. Muller, P. Eisert,
P. Kauff, and H. Bloss, “Creation of high-resolution
video panoramas of sport events,” in Proc. of IEEE ISM,
Dec. 2006, pp. 291 –298.

[10] P. Carr, M. Mistry, and I. Matthews, “Hybrid robotic/vir-
tual pan-tilt-zom cameras for autonomous event record-
ing,” in Proc. of ACM MM, 2013, pp. 193–202.

[11] X. Sun, J. Foote, D. Kimber, and B. Manjunath, “Region
of interest extraction and virtual camera control based
on panoramic video capturing,” IEEE Transactions on
Multimedia, vol. 7, no. 5, pp. 981–990, 2005.

[12] W.-K. Tang, T.-T. Wong, and P.-A. Heng, “A system
for real-time panorama generation and display in tele-
immersive applications,” IEEE Transactions on Multime-
dia, vol. 7, no. 2, pp. 280–292, April 2005.

[13] Camargus, “Premium Stadium
Video Technology Infrastructure,”
https://www.youtube.com/watch?v=SO32pEgCeDI.

[14] Teamcoco, “Conan 360: The New Angle on Late Night,”
2014, http://teamcoco.com/360.

[15] T. Yokoi and H. Fujiyoshi, “Virtual camerawork for
generating lecture video from high resolution images,”
in Proc. of IEEE ICME, July 2005.

[16] W. Xu and J. Mulligan, “Panoramic video stitching from
commodity hdtv cameras,” Multimedia Systems, vol. 19,
no. 5, pp. 407–426, 2013.

[17] P. Carr and R. Hartley, “Portable multi-megapixel camera
with real-time recording and playback,” in Proc. of
DICTA, 2009, pp. 74–80.

[18] H. Kimata, M. Isogai, H. Noto, M. Inoue, K. Fukazawa,
and N. Matsuura, “Interactive panorama video distribu-
tion system,” in Proc. of ITU Telecom World, Oct 2011,
pp. 45–50.

[19] O. Niamut, J. Macq, M. Prins, R. Van Brandenburg,
N. Verzijp, and P. Alface, “Towards scalable and inter-
active delivery of immersive media,” in Proc. of NEM
Summit, 2012, pp. 69–74.

[20] F. Liu and W. T. Ooi, “Zoomable video playback on
mobile devices by selective decoding,” in Proc. of PCM,
2012.

[21] K. Raaen, R. Eg, and C. Griwodz, “Can gamers detect
cloud delay?” in Proc. of NetGames, 2014, pp. 1–3.

[22] I. Unanue, I. Urteaga, R. Husemann, J. D. Ser, V. Roesler,
A. Rodriguez, and P. Sanchez, “A tutorial on H.264/SVC
scalable video coding and its tradeoff between quality,
coding efficiency and performance,” in Recent Advances
on Video Coding. Intech, 2011, pp. 3–26.

[23] C. Kreuzberger, D. Posch, and H. Hellwagner, “A scal-
able video coding dataset and toolchain for dynamic
adaptive streaming over HTTP,” in Proc. of ACM MM-
Sys, 2015, pp. 213–218.

[24] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
driven layered multicast,” ACM CCR, vol. 26, pp. 117–
130, 1996.

[25] K. A. Hua, Y. Cai, and S. Sheu, “Patching: a multicast
technique for true video-on-demand services,” in Proc.
of ACM MM, 1998, pp. 191–200.

[26] J. Rosenberg and H. Schulzrinne, “An offer/answer
model with session description protocol (SDP),” RFC
3264 (Proposed Standard), Jun. 2002.

[27] S. Wenger, U. Chandra, M. Westerlund, and B. Burman,
“Codec control messages in the RTP audio-visual profile

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 9, SEPTEMBER 2014 11

with feedback (AVPF),” RFC 5104 (Proposed Standard),
Feb. 2008.

[28] M. Karczewicz and R. Kurceren, “The SP- and SI-frames
design for H.264/AVC,” IEEE TCSVT, vol. 13, no. 7, pp.
637–644, 2003.

[29] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar,
“RTP Payload Format for MPEG1/MPEG2 Video,” RFC
2250 (Proposed Standard), Jan. 1998.

[30] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen,
“Low overhead container format for adaptive streaming,”
in Proc. of ACM MMSys, 2010, pp. 193–198.

[31] A. Mavlankar and B. Girod, “Video streaming with inter-
active pan/tilt/zoom,” in High-Quality Visual Experience,
ser. Signals and Communication Technology, 2010, pp.
431–455.

[32] R. Guntur and W. T. Ooi, “On tile assignment for region-
of-interest video streaming in a wireless LAN,” in Proc.
of NOSSDAV, 2012, pp. 59–64.

[33] H. Kimata, D. Ochi, A. Kameda, H. Noto, K. Fukazawa,
and A. Kojima, “Mobile and multi-device interactive
panorama video distribution system,” in Proc. of GCCE,
Oct 2012, pp. 574–578.

[34] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan,
“Mixing tile resolutions in tiled video: A perceptual
quality assessment,” in Proc. of NOSSDAV, 2014, pp.
25:25–25:30.

[35] K. Brunnstrom, D. Hands, F. Speranza, and A. Webster,
“VQEG validation and ITU standardization of objective
perceptual video quality metrics,” IEEE Signal Process-
ing Magazine, vol. 26, no. 3, 2009.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image quality assessment: From error visibility
to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[37] ITU-T, “J.247: Objective perceptual multimedia video
quality measurement in the presence of a full reference,”
2008.

[38] Y. Pitrey, U. Engelke, M. Barkowsky, R. Pépion, and
P. L. Callet, “Aligning subjective tests using a low cost
common set,” in Proc. of EuroITV QoEMCS, 2011.

[39] F. Boulos, W. Chen, B. Parrein, and P. Le Callet,
“Region-of-interest intra prediction for H.264/AVC error
resilience,” in Proc. of ICIP, 2009, pp. 3109–3112.

[40] S. Pechard, M. Carnec, P. Le Callet, and D. Barba, “From
SD to HD television: Effects of H.264 distortions versus
display size on quality of experience,” in Proc. of ICIP,
2006, pp. 409–412.

[41] R. Dosselmann and X. Yang, “A comprehensive assess-
ment of the structural similarity index,” Signal, Image
and Video Processing, vol. 5, no. 1, pp. 81–91, 2011.

[42] Z. Wang, L. Lu, and A. C. Bovik, “Video quality
assessment based on structural distortion measurement,”
Signal Processing: Image Communication, vol. 19, no. 2,
pp. 121–132, Feb. 2004.

[43] S. Winkler, Digital Video Quality: Vision Models and
Metrics. Wiley, 2005.

[44] J. L. Mannos and D. J. Sakrison, “The effects of a visual
fidelity criterion of the encoding of images,” IEEE T.

Inform. Theory, vol. 20, no. 4, pp. 525 – 536, 1974.
[45] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of

PSNR in image/video quality assessment,” Electronics
Letters, vol. 44, no. 13, pp. 800–801, 2008.

[46] ITU-T, “P.911: Subjective audiovisual quality assessment
methods for multimedia applications,” Geneva, pp. 1–46,
1998.

[47] F. Ribeiro, D. Florencio, and V. Nascimento, “Crowd-
sourcing subjective image quality evaluation,” in Prof. of
ICIP, 2011, pp. 3097–3100.

[48] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user
studies with mechanical turk,” in Proc. of CHI, 2008, pp.
453–456.

[49] J. L. Fleiss, “Measuring nominal scale agreement among
many raters.” Psychological bulletin, vol. 76, no. 5, p.
378, 1971.

[50] J. Sim and C. C. Wright, “The kappa statistic in reliability
studies: use, interpretation, and sample size require-
ments,” Physical therapy, vol. 85, no. 3, pp. 257–268,
2005.

[51] S. Kullback and R. A. Leibler, “On information and
sufficiency,” The annals of mathematical statistics, pp.
79–86, 1951.

[52] A. Mavlankar and B. Girod, “Pre-fetching based on video
analysis for interactive region-of-interest streaming of
soccer sequences,” in Proc. of ICIP, Nov 2009, pp. 3061–
3064.

[53] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and
P. Halvorsen, “Video streaming using a location-based
bandwidth-lookup service for bitrate planning,” ACM
TOMCCAP, vol. 8, no. 3, 2011.

[54] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and
D. Oran, “Streaming video over HTTP with consistent
quality,” in Proc. of ACM MMSys, 2014, pp. 248–258.

Appendix F

[Conference] Automatic

exposure for panoramic

systems in uncontrolled lighting

conditions: a football stadium

case study.

[Authors:] V. R. Gaddam, C. Griwodz, and P. Halvorsen

[Published:] SPIE Electronic Imaging (EI), 2014.

267

Automatic exposure for panoramic systems in uncontrolled
lighting conditions: a football stadium case study.

Vamsidhar Reddy Gaddam, Carsten Griwodz, P̊al Halvorsen

University of Oslo and Simula Research Laboratory, Norway

ABSTRACT

One of the most common ways of capturing wide field-of-view scenes is by recording panoramic videos. Using an
array of cameras with limited overlapping in the corresponding images, one can generate good panorama images.
Using the panorama, several immersive display options can be explored. There is a two fold synchronization
problem associated to such a system. One is the temporal synchronization, but this challenge can easily be
handled by using a common triggering solution to control the shutters of the cameras. The other synchronization
challenge is the automatic exposure synchronization which does not have a straight forward solution, especially
in a wide area scenario where the light conditions are uncontrolled like in the case of an open, outdoor football
stadium.

In this paper, we present the challenges and approaches for creating a completely automatic real-time
panoramic capture system with a particular focus on the camera settings. One of the main challenges in building
such a system is that there is not one common area of the pitch that is visible to all the cameras that can be
used for metering the light in order to find appropriate camera parameters. One approach we tested is to use
the green color of the field grass. Such an approach provided us with acceptable results only in limited light
conditions.A second approach was devised where the overlapping areas between adjacent cameras are exploited,
thus creating pairs of perfectly matched video streams. However, there still existed some disparity between
different pairs. We finally developed an approach where the time between two temporal frames is exploited to
communicate the exposures among the cameras where we achieve a perfectly synchronized array. An analysis
of the system and some experimental results are presented in this paper. In summary, a pilot-camera approach
running in auto-exposure mode and then distributing the used exposure values to the other cameras seems to
give best visual results.

Keywords: Automatic exposure, Panoramic video systems, Real-time, Football

1. INTRODUCTION

Capturing panoramic textures has become a popular research area. Using multiple cameras instead of one wide-
angle camera provides a higher resolution for large field-of-view textures where such panoramic images or frames
again can be used in several different ways. For example, Mavlankar et al.1 used a perspective panorama video
as an intermediate representation and crop out regions of interest for an immersive presentation. Carr et al.2

demonstrated a similar system, but using a robotic camera to follow the players in the game aesthetically. More
traditional uses include image viewers3 that can provide detailed presence.

In this respect, several researchers have focused on stitching multiple images together to produce one seamless
panorama. However, often they are more focused on aligning the images properly than controlling the capture
mechanism. The stitching and alignment tutorial by Szeliski4 provides an overview of the state-of-the art
approaches in stitching. For example, Agarwala et al.5 introduced an interesting approach for stitching panoramic
video textures from a single panning video camera and automatic alignment. One later example is given by Brown
et al.6 who proposed a fully automatic approach for aligning and stitching panoramic images using SIFT features.
All these approaches employ computationally expensive global optimization schemes to estimate and achieve the
perfect alignment in any sort of camera movements. But, when the motivation of the system is to record a
panoramic video, it is more convenient to have a rigid camera array. In such a configuration, the cameras can
be manually calibrated well in advance, eliminating the need for such complicated algorithms. Moreover, when

Contact author: Vamsidhar Reddy Gaddam, E-mail: vamsidhg@ifi.uio.no

a real-time constraint is present, one cannot afford to use the computing resources to align every single frame of
the panoramic video.

One of the major things that contribute to the visual quality of a panorama is the color difference between
multiple images. Such differences can stem from several factors like inter-camera differences and the amount of
light in each image. The ideal case would be to use the same physical camera and the same exposure settings
through out the panorama capture. However, when capturing panoramic videos, it is only possible to use the
same physical camera if one uses a reflective sphere, but this approach can result in reduced resolution. When an
array of multiple cameras produces images that are not captured using similar exposure parameters, there will be
visual differences between adjacent camera images. Often this is overcome by color correction approaches, which
handle the images post-recording. Xu et al.7 provide a good performance evaluation of several color correction
approaches. Xiong et al.8 proposed an elegant color correction approach which applies a color transform that
is optimized over all the images to minimize drastic changes per image. Ibrahim et al.9 provide an interesting
approach for selecting the reference for color correction.

Nevertheless, even though color correction approaches can provide good results in panorama images, they
can introduce artifacts like flicker and unnatural colors when it comes to the stitched videos. This problem can
be handled even before the recording of the videos in a constrained space like a sports stadium. In this paper, we
therefore propose a novel approach to record panorama videos that do not require any additional color correction
step. We developed and implemented several approaches using industrial cameras to record videos of a football
stadium. The best results come from an approach where the time between two temporal frames is exploited to
communicate the exposure setting from a pilot camera among all the other cameras. An in-depth analysis of our
system and the experimental results are presented in this paper.

The rest of the paper is organized as follows: Section 2 provides a brief description of the real-world scenario
that we explored and some of the challenges involved. A detailed description of the panorama capture system
and various approaches for controlling the exposure are presented in section 3, and some preliminary results are
shown in section 4. In section 5, we provide some discussions and conclude the paper in section 6.

2. SCENARIO

Figure 1: System overview

We have a prototype system10–12 for capturing panorama videos that is used to display events and videos in
an immersive fashion in a football (soccer) analysis scenario. In addition to a sensor subsystem and an event
annotation subsystem, we have a panorama video subsystem that consists of four cameras (recently upgraded
to five). The whole system is installed at Alfheim stadium in Tromsø, North of Norway. Figure 1 shows an
overview of the entire system.

The video subsystem performs two major tasks: Video capture and panorama stitching. The real-time
stitching pipeline is described in detail by Tennøe et al.13 The video capture system is responsible for the
synchronization of frames, driving the cameras and tranfering of video data from the cameras to the processing
system. We use industrial cameras (acA 1300-30gc) manufactured by Basler supporting a frame rate upto 30
frames per second and a resolution of 1280 × 960. The lenses are of 3.5mm and are manufactured by Kowa.
Moreover, the cameras are controlled by individual threads which also collect the video data from the cameras,
and the time (shutter) synchronization is achieved by building a custom trigger box∗. Furthermore, the cameras
are placed on one side of the football stadium at an elevation of 10 m from the field. The cameras cover the
entire field with sufficient overlap between adjacent cameras, i.e., figure 2 shows the four views captured from
the four cameras. It can be observed that there is significant overlap between the cameras that can be used for
stitching.

(a) Camera 1 (b) Camera2

(c) Camera 3 (d) Camera 4

Figure 2: Views from each camera for a perfectly synchronized exposure

There are several challenges in designing and implementing such a panorama video system. In the context of
the camera setting challenges addressed in this paper, the main problem is that its an outdoor stadium where
the light is not controlled. Furthermore, the cameras are looking at the entire field, but there is no place on the
entire field that can be used for metering for all the cameras. One general assumption that can be made is that
the green grass can be used for metering. However, grass has a directional reflectivity which means that the
light seen from different angles can vary quite a bit. The lighting also changes during the game due to frequently
changing weather conditions and movement of the sun. Thus, configuring the cameras with the appropriate
settings is a big challenge.

In the current scenario using several cameras to generate a panorama video, the aperture must be kept
constant to avoid changing depth of field. This means that the only parameters that one can (or should) control
are the exposure time and the gain. However,we do not have full freedom in controlling both these parameters.
The electric gain introduces noise in the system, so the highest image quality is achieved when the gain is as
low as possible. The exposure time has an upper limit both because it can cause motion blur during the game

∗Hardware design and software open sourced at https://bitbucket.org/mpg_code/micro-trigger-box

and also because there is a hard limit set by the frame rate. So a priority based estimation must be used which
changes the exposure time until it reaches the threshold and then modify the gain if the exposure needs more
compensation.

Furthermore, due to the difficult lighting conditions, it is not sufficient to set the exposure parameters before
the game manually. You cannot select a small patch on the grass for metering because players can pass through
it and affect the measurement. To address this challenge, we next present and evaluate three approaches for
automatically synchronizing the exposure to the cameras.

3. AUTOMATIC EXPOSURE APPROACHES

A main challenge in a video system generating panorama video from a camera array is to handle an array-wide
automatic camera exposure. In this respect, we use the internal metering mechanism to estimate the exposure
parameters. The region of interest that is considered for metering can be modified for each camera. We make
use of this functionality in the three exposure setting approaches described here.

3.1 Independent metering

This is the most trivial approach for an automatic exposure system. In this approach, we use the fact that the
football field provides a nice surface for metering. Since our target space is confined to a football stadium, we
can use the green surface of the football field to evaluate the exposure parameters. Initially, a manual selection of
metering region is selected per camera, and the cameras are driven to make an automatic exposure. The internal
mechanism decides on a specific exposure value and gain to achieve a pre-defined gray value for the average of
all the pixels from the metering region. An upper limit can be imposed on the exposure time to force the camera
to use a higher gain in case of low light, instead of increasing the exposure time.

3.2 Pairs metering

This approach can be considered as a special case of the Independent metering presented above. In this approach,
we exploit the fact that the adjacent cameras have an overlapping region. Therefore, camera pairs are formed
which have defined regions of interest that points to the same physical space on the field. The selection of the
region of interests are performed manually to minimize the effect from the players or other elements on the field.
Then the cameras are run independently to perform automatic exposure but metering based on the selected
patches that are overlapped. Since the camera pairs are physically close to each other, the directional reflections
will have minimum effect on the exposure. But the first camera pair and the second pair are at a distance of 4m
from each other.

3.3 Pilot camera approach

In this approach, there is a pilot camera which functions in auto-exposure mode where the pilot camera’s exposure
parameters are transfered to the other cameras. Here, let the m cameras be named Cj where j ∈ [1,m], and Cp

be the pilot camera. Let ej and gj be the exposure time and gain of camera Cj .

Then, given ep and gp from the pilot camera which operates in auto exposure mode, we need to compute ej
and gj for the rest of the cameras. Furthermore, let Tj be the transformation function from the pilot camera to
camera Cj . Then,

(ej , gj) = Tj(ep, gp). (1)

The transformation function depends on the relation of camera Cj to the camera Cp. In an ideal situation
where the cameras are all identical and have exactly the same settings for aperture and focal length, Tj will be
identity function. However, this is not the general case because physically different cameras do not have identical
spectral response curves thus leading to difference in exposures. Other factors that can cause differences are the
imperfections in adjustment of the aperture size. Generally, the cameras need a prior calibration step to estimate
the corresponding transformation functions.

The general processing flow is presented in figure 3. There are two types of threads that are running concur-
rently, i.e., one is for controlling and communicating with the pilot camera, and the other type is for the rest of

Control
 Threads

Auto-exposure
signal

Frame n-1 Frame n-1

Frame n

Frame n+1

Frame n

Frame n+1

Non-synchronized
Exposure

Exposure
parameters

Figure 3: Pilot camera approach

the cameras. All these threads have a synchronization barrier at the end of every frame. Periodically, the pilot
camera thread sends a trigger to the pilot camera to make an auto-exposure signal and lock the exposure until
the next trigger. In figure 3, this can be seen before acquisition of frame n. After the exposure, the exposure pa-
rameters ep and gp are transferred back to the controlling machine. These parameters are communicated to other
threads which in turn transfer these individually to the other cameras applying the appropriate transformation.

It can be observed that the frames n of the other cameras are not synchronized in exposure with the pilot
camera, but we have observed empirically that the light conditions change slowly over the period of the exposure
updating trigger. One more important detail is that the frame rate sets a hard upper bound on the execution
time and thus on exposure time too. The formulation of transformation function cannot guarantee this because
one of the transformations can demand a higher exposure time than the upper limit. Especially, when the
cameras have lower response to light than the pilot camera. This problem can be handled in two ways. One
way is to embed this property into the transformation function by placing an upper bound. The other way is
to handle it in the driver before setting the camera parameters. We found that the driver solution is safer and
more robust to further changes in the algorithm.

4. EXPERIMENTS

We will show stitched panorama to demonstrate the visual effect easily. The panorama images presented here
for each approach are to emphasize the different lighting conditions. The first sections present images recorded
during different lighting conditions that emphasize the differences in the approaches. Section4.4 shows the result
using the three approaches from the same match in the same lighting condition for a fair comparison.

4.1 Independent metering

Figure 4: Panorama generated using Independent metering approach in a snow condition.

Figure 4 shows one of the light conditions, where there is snow around the football field. The metering system
has to compensate for this and make good choice of exposure values. The influence of snow can be observed in
the independent metering approach. But the problem is that the exposures are different in each of the cameras,
even though each of the images are well exposed, they are not synchronized.

4.2 Pairs metering

Figure 5: Panorama generated using Pairs metering approach under a partially cloudy sky.

In this approach a clear difference can be seen at the center of the field. But the left two and the right two
parts of the panorama are perfectly seamless. Figure 5 shows one of the possible light conditions. It is when the
sky is partially cloudy.

4.3 Pilot camera approach

Figure 6: Panorama generated using the pilot camera approach under an overcast sky.

Figure 6 shows another lighting condition where there is an overcast sky. But it can be observed from the figure
that the exposure in the whole of the panorama is perfectly synchronized. There is no specific color-correction
applied when stitching the panorama.

4.4 Comparison

In this section we present frames using the three approaches during similar time period for comparison. This
is also one of the hardest light conditions to handle, when there is direct sun on the stadium and the stands
cast a shadow. In such a case, the camera’s dynamic range is insufficient to capture variation in the light and
dark areas. It can be observed that the first and second approach provide rather similar result where as the
third approach provides a seamless result. This similarity between the first two approaches has been observed
in different light conditions as well.

Figure 7: Generated panorama recorded using Independent metering approach

Figure 8: Generated panorama recorded using Pairs metering approach

Figure 9: Generated panorama recorded using Pilot camera approach

5. DISCUSSION

The approaches perform varyingly depending on the lighting conditions. In several situations the first two
approaches provide similar results owing to the large overlap between adjacent pairs. The third approach always
provides seamless panoramic video. But all three approaches fail to provide a visually pleasing output in the
case of high contrast. This is more of a lack in the dynamic range of the cameras than the shortcoming of the
approach itself.

Figure 10: Artifacts observed due to color correction occassionally

We initially employed a color correction component in our stitching pipeline. As mentioned earlier, applying
color correction to every frame that is estimated according to the current frames introduces unwanted artifacts.
Figure 10 shows one such effect. Here it can be seen that the color correction is trying to achieve a seamless
field but instead introduces an unnatural green in the whole of the right part of the panorama. This can be
avoided using only correction in the luminance component, but this cannot provide a seamless scene in the target
areas[on the field].

The system can be easily extended to accommodate other interesting functionalities like capturing of high
dynamic range videos by making multiple exposures. The pilot camera approach can be configured such that two

kinds of exposures are performed every alternating frame. One exposure to capture the details in the highlights
region and the other to capture the details in shadow region. Then the video can be formed by fusing these two
exposures appropriately.

6. CONCLUSION

In this paper, we present an elegant approach for controlling the exposure of a multi-camera array such that we
get a uniform exposure across the captured panorama. This approach can be scaled to several cameras. We also
presented results from the experiments performed from a real setup in a football stadium. An outdoor stadium
provided us with plenty of challenges, where the light is essentially uncontrolled. We also discuss the applications
of panorama to show the motivation for an automated exposure control system.

Later, we provided some examples on how this system can be extended to handle more challenging conditions.
The limited dynamic range of the camera need not effect the overall dynamic range of the captured panorama.
There are several methods that exist for doing this for an individual camera or one static panoramic image. We
provide a way to extend it to panoramic videos.

ACKNOWLEDGMENTS

This work has been performed in the context of the iAD center for Research-based Innovation (project number
174867) funded by the Norwegian Research Council.

REFERENCES

[1] Mavlankar, A. and Girod, B., “Video streaming with interactive pan/tilt/zoom,” in [High-Quality Visual
Experience], Mrak, M., Grgic, M., and Kunt, M., eds., Signals and Communication Technology, 431–455,
Springer Berlin Heidelberg (2010).

[2] Carr, P., Mistry, M., and Matthews, I., “Hybrid robotic/virtual pan-tilt-zom cameras for autonomous event
recording,” in [Proc. of ACM MM], 193–202 (2013).

[3] Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. F., “Capturing and viewing gigapixel images,” ACM
Trans. Graph. 26 (July 2007).

[4] Szeliski, R., “Image alignment and stitching: A tutorial,” Found. Trends. Comput. Graph. Vis. 2, 1–104
(Jan. 2006).

[5] Agarwala, A., Zheng, K. C., Pal, C., Agrawala, M., Cohen, M., Curless, B., Salesin, D., and Szeliski, R.,
“Panoramic video textures,” ACM Trans. Graph. 24, 821–827 (July 2005).

[6] Brown, M. and Lowe, D. G., “Automatic panoramic image stitching using invariant features,” International
Journal of Computer Vision 74, 59–73 (Aug. 2007).

[7] Xu, W. and Mulligan, J., “Performance evaluation of color correction approaches for automatic multi-view
image and video stitching,” in [Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on], 263–270 (2010).

[8] Xiong, Y. and Pulli, K., “Color correction for mobile panorama imaging,” in [Proc. of ICIMCS], 219–226
(2009).

[9] Ibrahim, M., Hafiz, R., Khan, M., Cho, Y., and Cha, J., “Automatic reference selection for parametric color
correction schemes for panoramic video stitching,” in [Advances in Visual Computing], Lecture Notes in
Computer Science 7431, 492–501, Springer Berlin Heidelberg (2012).

[10] Sægrov, S., Eichhorn, A., Emerslund, J., Stensland, H. K., Griwodz, C., Johansen, D., and Halvorsen, P.,
“Bagadus: An integrated system for soccer analysis (demo),” in [Proc. of ICDSC], (Oct. 2012).

[11] Halvorsen, P., Sægrov, S., Mortensen, A., Kristensen, D. K., Eichhorn, A., Stenhaug, M., Dahl, S., Stens-
land, H. K., Gaddam, V. R., Griwodz, C., and Johansen, D., “Bagadus: An integrated system for arena
sports analytics – a soccer case study,” in [Proc. of ACM MMSys], 48–59 (Mar. 2013).

[12] Stensland, H. K., Gaddam, V. R., Tennøe, M., Helgedagsrud, E., Næss, M., Alstad, H. K., Mortensen,
A., Langseth, R., Ljødal, S., Landsverk, Ø., Griwodz, C., Halvorsen, P., Stenhaug, M., and Johansen,
D., “Bagadus: An integrated real-time system for soccer analytics,” ACM Transactions on Multimedia
Computing, Communications and Applications (TOMCCAP) (2014).

[13] Tennøe, M., Helgedagsrud, E., Næss, M., Alstad, H. K., Stensland, H. K., Gaddam, V. R., Johansen, D.,
Griwodz, C., and Halvorsen, P., “Efficient implementation and processing of a real-time panorama video
pipeline,” in [Proc. of IEEE ISM], (Dec. 2013).

Appendix G

[Conference] Interactive Zoom

and Panning from Live

Panoramic Video

[Authors:] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvil-

lat, C. Griwodz, and P. Halvorsen.

[Published:] ACM Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV), 2014.

279

Interactive Zoom and Panning from Live Panoramic Video

Vamsidhar Reddy Gaddam1, Ragnar Langseth1, Sigurd Ljødal1, Pierre Gurdjos2,
Vincent Charvillat2, Carsten Griwodz1, Pål Halvorsen1

1Simula Research Laboratory & University of Oslo, Norway
2Universite de Toulouse, France

1{vamsidhg, ragnarla, sigurdlj, griff, paalh}@ifi.uio.no
2{pgurdjos, vincent.charvillat}@enseeiht.fr

ABSTRACT
Panorama video is becoming increasingly popular, and we
present an end-to-end real-time system to interactively zoom
and pan into high-resolution panoramic videos. Compared
to existing systems using perspective panoramas with crop-
ping, our approach creates a cylindrical panorama. Here, the
perspective is corrected in real-time, and the result is a bet-
ter and more natural zoom. Our experimental results also
indicate that such zoomed virtual views can be generated far
below the frame-rate threshold. Taking into account recent
trends in device development, our approach should be able
to scale to a large number of concurrent users in the near
future.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: [Distributed applications]

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
panorama video, zoom, panning, real-time

1. INTRODUCTION
The growing availability of high-speed Internet access has

gone along with a growth in interactive and immersive mul-
timedia applications, and panoramic video is a feature that
is becoming more and more popular in various scenarios for
its ability to increase immersion. We look at it in the context
of arena sports like soccer, which have always provided op-
portunities for innovation in broadcasting. The challenges in
providing interactive experiences in broadcasting to a large
audience span several fields. One such challenge is to pro-
vide a real-time pannable and zoomable virtual camera to
several thousands or even millions of users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
NOSSDAV’14, March 19 – 21 2014, Singapore, Singapore
Copyright 2014 ACM 978-1-4503-2706-0/14/03 ...$15.00.
http://dx.doi.org/10.1145/2578260.2578264

This type of challenges has attracted the attention of sev-
eral researchers [10, 12, 3, 5, 8, 4, 13]. For example, Carr et
al. [5] demonstrated recently a hybrid robotic/virtual cam-
era for event recording. It uses a robotic camera to follow
features and assist a virtual camera. Such a system can
provide a smooth and aesthetic camera, but it is restricted
to one virtual camera per a robotic camera. So, in case
of a multi-user system, all clients receive the same video.
Furthermore, Mavlankar et al. [8] describe a pan-tilt-zoom
streaming system, but the system presented merely crops
from a larger video. For a large space like a soccer stadium,
such a system introduces widely varying quality from one
end to the other end. If the perspective nature is main-
tained (straight lines remain straight) in the panorama, a
large amount of redundant data is transferred on the close
end.

To provide a better perceived quality when zooming and
panning into a panorama video and keep redundant data
transfer low, we present a system that uses a cylindrical
panorama as an intermediate representation. The approach
followed by us to create the intermediate representation is
one of the numerous choices available. Then, a virtual view
is generated where the perspective of the delivered video is
corrected before it is presented to the client. The client has
full freedom to pan, tilt and zoom using the system, and the
system supports several algorithms for pixel interpolation.
Furthermore, in order to support a large number of concur-
rent users, we aim for a lightweight system to generate the
views in real-time. Therefore, we have implemented several
versions running on both CPUs and GPUs, and we discuss
the system’s ability to scale to a large number of users –
both to spectators within a stadium as well as users outside.

Furthermore, we generate a virtual view frame in about
10 ms on a GPU, and our system supports real-time in-
teractions. If processed on the server side, we support a
limited number of users per machine. However, taking into
account existing work to transfer panorama video in real-
time [6] and the fact that GPUs are becoming a commodity
also on mobile phones, we work on an adaptation of our sys-
tem that creates the virtual camera on the client side. This
system will trade bandwidth for server processing power by
broadcasting the panorama video to all clients instead of
computing and transmitting a personalized view for each
client.

The rest of our paper is organized as follows: Section 2
briefly describes the example soccer scenario with our real-
world installation. In section 3, we describe our system,
and we present our experiments and evaluation results in

section 4. Section 5 provides some discussions before we
conclude the paper in section 6.

2. EXAMPLE SCENARIO
Our prototype is currently installed at Alfheim, a soccer

stadium in Tromsø, Norway. In this scenario, we use the
panorama video in a sport analysis system [7, 9] where video
events must be generated in real-time. The camera array
is integrated with a player-position sensor system and an
expert annotation system. The integrated system enables
users to search for events, follow one or more players in the
video, and automatically query for video summaries.

Figure 1: Generated panorama video.

The scenario poses an array of challenges. To stitch the
individual cameras into a panorama video (see figure 1), the
camera shutters must be synchronized. This was accom-
plished by building a custom trigger box1. The cameras
must again be synchronized with the sensor system to cor-
rectly identify the corresponding video frames and sensor
records [7]. Furthermore, the high-rate video streams must
be transferred and processed in real-time [11].

Even though the system was originally meant for the coac-
hes, a lot of this functionality is also interesting for outside
users. Our goal is to enable spectators in the stadium and
supporters at home to use a part of the system with indi-
vidual videos. This means that every user must be able to
interact with the system in real-time to generate their own
personal view from a single viewpoint.

Until recently, our virtual views were limited to cropping
and scaling. For a better user experience, we need perspec-
tive correction, and to scale the system up to thousands of
spectators in a stadium, we need a scalable way of generating
and delivering the individual views.

3. SYSTEM OVERVIEW
Our system is divided into a panorama generation part

and a video delivery part, which supports user-controlled
interactive virtual cameras. A sketch of our system is given
in figure 2. In this section, we describe these two parts.

network	

processing	
machines	

capture	 	
machines	

five	 2K	
cameras	

Ethernet	 	
links	

PCIe	
	 interconnect	 	
network	

real-‐<me	 panorama	 genera<on	 real-‐<me	 virtual	 camera	 video	 delivery	

Figure 2: Setup.

1Hardware design and software open sourced at
https://bitbucket.org/mpg_code/micro-trigger-box

3.1 Real-time Panorama Video Capture
As we have earlier described the real-time version of the

panorama video pipeline [11], we only highlight the changes
made to increase the resolution (better and more cameras)
and to distribute the capture and processing.

The capture pipeline (left-most part of figure 2) consists
of several sub-components. First, we have a camera reader
that fetches raw video frames from the (frame-synchronized)
cameras over a point-to-point Ethernet network. Depending
on the chosen output format from the cameras, we have a de-
bayering component interpolating the frames from a Bayer
pattern to full YUV 4:2:2 used later in the pipeline. To move
data to the panorama processing machine, we use a Dolphin
high-speed interconnect component transferring the uncom-
pressed video data from the recording machines to the sin-
gle processing machine. On the processing machine, we first
have a frame synchronizer, which retrieves a full set of syn-
chronized frames from the separate camera streams. It deliv-
ers each set of frames to the panorama stitcher, which gener-
ates cylindrical panorama frames. Finally, we have a video
encoder, which encodes the panorama video in H.264 for
immediate delivery to clients and for storage for on-demand
operations.

3.1.1 Video Capture
To capture the entire soccer field, we use five Basler in-

dustry vision cameras [2], each of which delivers a maximum
resolution of 2046×1086 pixels at 50 frames per second over
Gigabit Ethernet. We use an 8mm lens [1] with virtually
no image distortion, allowing us to bypass the lossy debar-
reling step of our previous pipeline [11]. To maximize the
panorama resolution, the cameras are rotated by 90° (see fig-
ure 3), giving a vertical field-of-view (fov) of 66°. Further-
more, the cameras are mounted in a circular pattern, i.e.,
pitched, yawed and rolled to look directly through a point
5cm in front of the lenses, in an attempt to reduce parallax
effects. As a result of this, only minor adjustments are re-
quired before the images can be stitched together. The video
capture system also determines the required exposure, which
requires frequent changes due to quickly changing light con-
ditions outdoors. Auto-exposure is performed on the center
camera once every 4 seconds , and the camera reader module
broadcasts the resulting exposure parameters to the other
camera readers.

Figure 3: Mounted camera array

3.1.2 Distributed Processing
The new setup requires many more resources (particularly

bandwidth) per camera, and we therefore had to distribute
capturing as shown in figure 2. To transfer the video streams
to the panorama processing machine, a single gigabit Eth-
ernet network is insufficient. We therefore use Dolphin In-
terconnect cards, which use PCIe as the interconnect pro-
tocol and allow for ultra-low latency Direct Memory Access
(DMA) across several machines. We transfer each frame

with a single DMA transfer at a rate of 19.41 Gbps and a
total latency of 1.26 ms per frame.

3.1.3 Cylindrical Projections
Our new pipeline generates a cylindrical stitched panorama

as shown in figure 1. The idea is to have the cameras in the
center of a virtual cylinder where each source image can be
considered a (cropped) plane that is tangential to the cylin-
der and orthogonal to its camera’s viewing axis. Each pixel
of the cylinder is then computed as the (interpolated) pixel
value of the ray from the camera center through the pixel
intersecting the image plane.

The radius (r) of the cylinder is determined by the width
(Ws) of the source images and its field of view (fov):

r =
Ws

2 ∗ tan(fov
2

)
(1)

The viewing axes of the cameras form a plane L (orthogonal
to the rotation axis of the cylinder). The angle between the
viewing axes of two neighbouring cameras is ≈ 28.3°, with
the 0°angle assigned to the center camera. For brevity, we
say also that the angle α of a camera is the angle α of its
corresponding source image. The unrolled cylinder forms
a Cartesian coordinate system, where (0, 0) corresponds to
the intersection of the center camera’s viewing axis with the
cylinder and the X axis corresponds to the intersection of L
and the cylinder.

Every pixel coordinate (Tx, Ty) on the unrolled cylinder
determines the corresponding horizontal (θ) and vertical (φ)
angles of a ray from the camera center through this coordi-
nate.

θ =
Tx

r
and φ = arctan

(
Ty

r

)
(2)

To determine the pixel(s) in the source image for every
pixel (Tx, Ty), the source image with the closest α value to
θ is selected and α is subtracted, essentially centering the
coordinate system on that camera’s viewing axis. Then, the
point x′, y′, z′ in 3D space where the ray intersects the image
plane is determined by:

z′ = r and x′ = tan(θ) ∗ z′ (3)

y′ = tan(φ) ∗
√
z′2 + x′2 (4)

This relationship is visualized in figure 4.
This algorithm requires each image to be perfectly aligned

and rotated. The camera mount seen in figure 3 provides a

Figure 4: Creating panorama pixels from a captured image

good alignment, but there are small deviations that must be
corrected. A small per-camera vertical correction is easily
applied with no additional complexity. For each source im-
age, a standard rotational matrix is created to compensate
for rotation around the camera’s x, y and z axis.

The Cartesian coordinates of the pixels on the cylinder are
multiplied with this rotational matrix, rotating the cylinder
before we project onto it. Then we can find θ and φ based
on the new coordinates:

θ = arctan
(x
z

)
and φ = arctan

(
y ∗ sin(θ)

x

)
(5)

The computational complexity of equations in 5 is signifi-
cantly greater than that of eq. 2.

3.2 Live Panoramic Zoom and Panning
Using the cylindrical panorama as an intermediate repre-

sentation, our system can generate an arbitrary virtual cam-
era view from the position of the camera array. The user has
the full freedom to pan, tilt and zoom. As shown in figure 5,
the virtual camera view is corrected to a perspective view
very similar to that of a physical camera.

Figure 5: Panorama video with labeled ROI (left) and the
virtual camera generated (right). It can be observed that it
is not a simple crop from the bigger video.

This enables the virtual camera video delivery part shown
on the right in figure 2. It consists of fetching and decoding
the panoramic video file, creating the virtual camera and
handling user input. The implementation uses one thread
for most of the process including decoding the current frame,
moving the data from host to device, creation of the virtual
camera and rendering the texture onto a display. Fetching of
video segment data and user input are handled by different
threads.

3.2.1 Video Handling
For streaming, we use HTTP segment streaming (with

plans for adaptive HTTP streaming). The segments of the
panoramic videos are served by an Apache server along with
a manifest file. The manifest file is used to inform the clients
when the next file is ready for download. The viewer checks
the manifest file periodically and downloads the next seg-
ment when ready.

As soon as the panoramic video segment is transferred,
it is kept ready for processing. This process runs in the
background without blocking either the display thread or the
user input thread. At the moment, the system demands a
large network bandwidth due to the full resolution panorama
video. Nevertheless the panoramic video is compressed using
H.264, saving quite a lot of space.

3.2.2 Virtual Camera
Panning and zooming are performed by a virtual perspec-

tive camera. The cylindrical panoramic texture generated as

p

s

T

X

Y

Z

Figure 6: The intersection of the ray from the virtual view
with the unit cylinder

described in section 3.1.3 is viewed through a virtual camera
and the output is rendered on the screen.

When we use the virtual camera, the operation is to fetch
the pixels of the image formed on the camera from the cylin-
drical texture. This can be better seen in figure 6.

A pin-hole camera for a point projection from a 3D point
P to image point q can be written in the following manner:

λq = [K|03]

[
R 0
03 1

] [
0T
3 −C
0 1

]
P (6)

where R is the general (3× 3) 3D rotation matrix as a func-
tion of θx, θy and θz, the rotation angles around the x, y and
z axes respectively and K is the camera intrinsic matrix
built with focal length(f).

Let p be the current pixel. So we need to find the ray that
passes from the camera center C to the pixel p. The ray can
be represented by:

s = λR−1K−1p (7)

Then the intersection of this ray with the unit cylinder gives
us the exact position on the cylindrical texture. The inter-
section point can be found as follows:

Tx =

(
Wp

FOV

){
arctan

(−s(1)

s(3)

)}
+
Wp

2
(8)

Ty =

(
1

2
− s(2)√

s(1)2 + s(3)2

)
Hp (9)

where Wp, Hp and FOV are the width, height and the field
of view of the panoramic texture respectively. (Tx, Ty) are
the coordinates on the unrolled cylindrical texture as de-
scribed in section 3.1.3. When these calculations are per-
formed with sub-pixel accuracy, it is not necessary that the
intersection always lands at one pixel. So there is a need
for interpolation from the surrounding pixels. A few ex-
perimental results are presented in the next section in this
respect.

3.2.3 Implementations
A straightforward implementation (CPU) of such a viewer

is to loop through all the pixels in the virtual view and find
the positions where the rays land on the panoramic tex-
ture. The heavy operations include an inverse tangent and
a square root in every pixel calculation. Since the opera-
tions are well suited for parallelization, we have ported the
program to a GPU.

A simple port (GPU1) using CUDA performs the calcu-
lation of the ray intersection and the fetching of the cor-
responding pixel on the GPU. So, in the initial implemen-
tation the videos are decoded on the CPU, the frames are

transferred to the GPU, and calculations and fetching oper-
ations are performed on the GPU. Then the virtual image
is created and transferred to the host for displaying/storing
purposes.

Since it is possible to render OpenGL textures written
by an NVidia CUDA kernel directly from the GPU to the
screen, the current implementation (GPU2) uses that fea-
ture. A texture area is defined in advance and bound to
the screen buffer. When the fetching operations are com-
plete, the output is not transferred to the host, but written
to the bound texture buffer on the GPU. Then this texture
is displayed directly on the screen, saving the transfer over-
head from device to the host. Other optimizations of GPU2
include the use of CUDA texture buffers instead of global
memory on the GPU for the panorama frames to speed up
the fetching operations owing to hardware-accelerated inter-
polation.

3.2.4 Operation
The user can pan, tilt or zoom using the virtual camera.

When the panning operation is performed, θx is modified.
θy is modified when a tilting operation is performed on the
camera. The zoom is realized by modifying the focal length
f of the virtual camera.

4. EXPERIMENTS
To test our prototype, we have performed a number of

experiments during the development of the system. In this
section, we present the results.

4.1 Real-time generation of panorama video
We have earlier shown that we are able to generate pano-

rama video in real-time [11], and we therefore do not focus
our evaluation on this part of the system. However, we have
replaced the four 1K-cameras with five 2K-cameras, i.e., gen-
erating more than the double number of pixels. Neverthe-
less, using the setup in figure 2 distributing the capturing
and processing, we are still able to process the panorama
frames in real-time, i.e., generating a 25 fps video live. In
average, we are able to generate the frames in 34.58 ms on an
Intel i7 CPU, and we are currently working towards deliver-
ing a higher frame rate. In this respect, the only bottleneck
is the processing. To deliver higher rates over the 1 Gbps
Ethernet link, the cameras must use a Bayer representation
which must be converted to YUV on the host, and at higher
frame rates, both the stitcher and x264 encoder may be-
come bottlenecks. We are therefore currently moving the
new pipeline back to the GPU we had in [11], but for our
current 25 fps prototype, the current setup is sufficient for
real-time panorama generation.

4.2 Zooming and panning
After the panorama video has been generated, it is ready

for consumption by local or remote clients. The video must
be retrieved, processed for zooming and panning and pro-
cessed for scaling (interpolation).

4.2.1 Video Download
First, the video must be fetched to the processing machine

of the client. The time taken for downloading is measured
and the results for a few video segments are presented in
figure 7. Each of the segments has a playout duration of

3 seconds and varying file size. The experiments are per-
formed using three different networks: 1) All on the same
machine using localhost; 2) Client and server on the same
local network; and 3) Client is 1.500 km avay from the server
over a wide-area network. Figure 7 shows the average times
taken for 23 files and their sizes in the background to illus-
trate the effect of the sizes. The plot also demonstrates a
horizontal cut-off line which is the limit for smooth playout.

Usually, we run the system over the norwegian research
backbone network (Uninett with 19 hops). We have, how-
ever, also tested it locally. It can be observed that even
when the client and server are separated by a real network,
which is subject to unknown traffic shaping and congestion
on the Tromsø side, the client is still able to perform close
to the smooth playout. Of course, this varies depending on
the bandwidth available to the client. Since the client side
processing is pipelined, only one segment buffer is required
to make this run in real-time – if the segments can be down-
loaded in real-time. By applying adaptive HTTP streaming
(we expect that this is feasible when the GPU port of the
new server pipeline is complete), we will be able to overcome
this bottleneck at the price of reduced quality.

Figure 7: A plot showing various times taken

4.2.2 Comparison of implementations
In section 3.2.3, we described three different implementa-

tions of the computation and rendering of the virtual cam-
era. The average execution time for each of these approaches
is presented in table 1. The experiments were performed on
a machine with an Intel i7-2600 CPU and an Nvidia GeForce
GTX 460 GPU. The time is observed for the same video seg-
ment in all three cases and for a virtual camera with Full HD
resolution (1920× 1080). The time also includes the decod-
ing time of the panorama frame and all transfers between
host and GPU.

Approach Average variance
CPU 255.7 35.8
GPU1 13.3 2.6
GPU2 10.1 3.2

Table 1: Execution time per frame (ms).
The unoptimized (no multi-threading or SIMD instruc-

tions) CPU implementation is not fast enough to provide
the full frame rate of 25 fps. A straight-forward GPU im-
plementation reduces the computation time drastically.

4.2.3 Interpolation comparison
Since the panorama is rendered on a cylinder, pixel inter-

polation is required for every virtual camera independent
of zoom or pan setting. Interpolation trades computing

time for smoothness and sharpness, and we tested three ap-
proaches: nearest neighbour, bilinear and bicubic. Figure 8
presents a highly zoomed frame in the three different modes
with the kernel execution time for each of these approaches.

As it can be seen in the figure, bicubic interpolation seems
to provide the best visual quality at the cost of a higher exe-
cution time. However, we pay less than 3.5ms and choose the
higher image quality. Furthermore, CUDA supports an op-
timized linear interpolation on some hardware, which could
be used as an alternative.

(a) Nearest neigh-
bour (2916 us).

(b) Bilinear
(2840 us).

(c) Bicubic
(3242 us).

Figure 8: Execution time for the interpolation algorithms

4.2.4 Size of virtual view
Most of the performance measures provided in this section

are for a Full HD resolution, but the resolution of the virtual
camera varies with the viewing device. Figure 9 therefore
demonstrates the effect of the size on the kernel execution
time of the final generation of the zoomed image (note the
microsecond scale). As can be seen in the plot, the reso-
lution has negligible impact on performance (as the whole
panorama video has to be moved to the GPU anyway).

Figure 9: Execution times for various sizes of virtual camera

5. DISCUSSIONS

5.1 Panoramic stitching
In the current system, panoramic stitching is performed

using a static lookup table. Each pixel in the output pano-
rama is mapped to a pixel in one of the source images. At
runtime, the pixels are merely interpolated, both from the
cylindrical warp and the down-sampled chroma channels in
the YUV 4:2:2 pixel format.

We intend to move this module to GPU, and re-introduce
dynamic seam-finding [11]. The dynamic seam can be de-
termined at runtime, and pixel values dynamically chosen
from one of two lookup tables in the overlapping region of
the source images.

5.2 Scalability
Even though the generation of each frame is fast, the

scalability of the system depends on where the video for
the virtual camera is generated. By running everything
on the sender side, we have the advantage of supporting
light client devices and reducing the bandwidth required of
the client’s access network. This option, however, requires
large amounts of processing power, as well as network band-
width on the server side, i.e., the scalability is limited on
the server side. On the other hand, by transferring the
panorama video to the client device, our servers can eas-
ily support a large number of clients at the cost of client
processing and a distribution infrastructure that can deliver
the panorama stream (broadcast, multicast, caches, proxies,
P2P, ...). Since the current trend is to equip even mobile
phones with powerful CPUs and GPUs, we consider the sec-
ond option most promising. The benefit of this is partic-
ularly visible in our chosen scenario of delivering personal-
ized panning and zooming to the spectators in the stadium,
where broadcast support is feasible, while the limited wire-
less spectrum prevents the delivery of individual streams.

5.3 Ongoing work
Such a system, even though it provides an interactive way

to control the virtual camera, is not practical if the user is
really meant to perform pan and zoom operations manually
during the entire game. So, we are currently working on
providing a virtual camera based on a request from the user.
For example, the user will have the ability to select the main
feature of interest, such as the ball, a specific player or a
group of players. The challenge then is to create an aesthetic
and smooth virtual camera on the client based on meta-
information such as player and ball positions. Naturally,
this must be done on the client in real-time to maintain our
scalability goals.

We are currently experimenting with different approaches
for generating a virtual view that follows a feature point aes-
thetically and smoothly. Our preliminary prototype seems
to follow the ball well2 (note that finding the position of the
ball is out of the scope of this paper).

6. CONCLUSION
In this paper, we have presented a system for real-time

interactive zoom and panning of panorama video used in a
soccer stadium scenario. Based on video streams from five
stationary 2K cameras, processed and stitched into a high-
resolution panorama video, we are able to support any free
view angle from the position of the camera array, i.e., a vir-
tual camera. The unoptimized running prototype is able to
generate one frame of the virtual camera from the panorama
image in less than 10 ms on a commodity computer with a
standard GPU. Thus, it can easily be scaled to support many
concurrent users. If the processing is performed on the client
device, at the cost of transferring the panorama video, any
number of virtual cameras can be supported, i.e., all users
may have their own virtual view.

There are a number of open challenges that are currently
under investigation. We aim for more efficient implemen-
tations to reduce the resource consumption further, and we
investigate more efficient algorithms for following a player
or the ball smoothly.

2See http://www.youtube.com/watch?v=554RjEEtw3o

Acknowledgments
This work has been performed in the context of the iAD cen-
ter for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council. Furthermore,
the authors also acknowledge the support and hardware given
by Dolphin Interconnect Solutions.

7. REFERENCES
[1] Azure-0814m5m.

[2] Basler aca2000-50gc.

[3] Y. Ariki, S. Kubota, and M. Kumano. Automatic
production system of soccer sports video by digital
camera work based on situation recognition. In Proc.
of ISM, pages 851–860, 2006.

[4] P. Carr and R. Hartley. Portable multi-megapixel
camera with real-time recording and playback. In
Proc. of DICTA, pages 74–80, 2009.

[5] P. Carr, M. Mistry, and I. Matthews. Hybrid
robotic/virtual pan-tilt-zom cameras for autonomous
event recording. In Proc. of ACM MM, pages 193–202,
2013.

[6] R. Guntur and W. T. Ooi. On tile assignment for
region-of-interest video streaming in a wireless lan. In
Proc. of NOSSDAV, pages 59–64, 2012.

[7] P. Halvorsen, S. Sægrov, A. Mortensen, D. K.
Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H. K.
Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen. Bagadus: An integrated system for
arena sports analytics – a soccer case study. In Proc.
of ACM MMSys, pages 48–59, Mar. 2013.

[8] A. Mavlankar and B. Girod. Video streaming with
interactive pan/tilt/zoom. In M. Mrak, M. Grgic, and
M. Kunt, editors, High-Quality Visual Experience,
Signals and Communication Technology, pages
431–455. Springer Berlin Heidelberg, 2010.

[9] S. Sægrov, A. Eichhorn, J. Emerslund, H. K.
Stensland, C. Griwodz, D. Johansen, and
P. Halvorsen. Bagadus: An integrated system for
soccer analysis (demo). In Proc. of ICDSC, Oct. 2012.

[10] X. Sun, J. Foote, D. Kimber, and B. Manjunath.
Region of interest extraction and virtual camera
control based on panoramic video capturing. IEEE
Transactions on Multimedia, 7(5):981–990, 2005.

[11] M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad,
H. K. Stensland, V. R. Gaddam, D. Johansen,
C. Griwodz, and P. Halvorsen. Efficient
implementation and processing of a real-time
panorama video pipeline. In Proc. of IEEE ISM, Dec.
2013.

[12] J. Wang, C. Xu, E. Chng, K. Wah, and Q. Tian.
Automatic replay generation for soccer video
broadcasting. In Proc. of ACM MM, pages 32–39,
2004.

[13] M. Wieland, R. Steinmetz, and P. Sander. Remote
camera control in a distributed multimedia system. In
B. Wolfinger, editor, Innovationen bei Rechen- und
Kommunikationssystemen, Informatik aktuell, pages
174–181. Springer Berlin Heidelberg, 1994.

Appendix H

[Conference] Tiling of

Panorama Video for Interactive

Virtual Cameras: Overheads

and Potential Bandwidth

Requirement Reduction

[Authors:] V. R. Gaddam, H. B. Ngo, R. Langseth, C. Griwodz, D. Jo-

hansen, and P.Halvorsen

[Published:] IEEE Picture Coding Symposium (PCS), 2015.

287

Tiling of Panorama Video for Interactive Virtual
Cameras: Overheads and Potential Bandwidth

Requirement Reduction

Vamsidhar Reddy Gaddam∗§, Hoang Bao Ngo∗, Ragnar Langseth†, Carsten Griwodz∗,
Dag Johansen‡ and Pål Halvorsen∗

∗Simula Research Laboratory & University of Oslo, Norway
†ForzaSys AS, Norway

‡UiT The Arctic University of Norway, Norway
§vamsidhg@ifi.uio.no

Abstract—Delivering high resolution, high bitrate panorama
video to a large number of users introduces huge scaling
challenges. To reduce the resource requirement, researchers have
earlier proposed tiling in order to deliver different qualities in
different spatial parts of the video. In our work, providing an
interactive moving virtual camera to each user, tiling may be used
to reduce the quality depending on the position of the virtual
view. This raises new challenges compared to existing tiling
approaches as the need for high quality tiles dynamically change.
In this paper, we describe a tiling approach of panorama video
for interactive virtual cameras where we provide initial results
showing the introduced overheads and the potential reduction in
bandwidth requirement.

Keywords—Panorama, Virtual Camera, Bandwidth, Real-time
Systems, Video

I. INTRODUCTION

High-resolution, wide field-of-view video has lately re-
ceived an increased attention in various scenarios like surveil-
lance, sports and health care. For instance, in sports, many
game analysis systems provide camera arrays where individual
camera images are stitched together to cover the entire field.
From the panorama video, one can further generate virtual
cameras supporting personalized views which are zoomed,
panned and tilted. One example is given in figure 1 where a
virtual camera allows an individual user to interactively control
an own personalized view, i.e., extracting pixels from parts of
the stitched panorama video such that the area extracted is not
a simple crop from the high-resolution panorama.

In this context, we have earlier presented the Bagadus
system [1] where we generate panorama videos of a soccer
stadium in real-time from which individual users can be their
own cameraman and interactively control their own virtual
view [2]. Furthermore, in our earlier version [2], the system
streamed the cylindrical panorama video to the remote clients
which extracted a perspective-corrected camera view on the
client side. However, popular soccer games may attract large
numbers of concurrent users, e.g., during the 2014 FIFA World
Cup, their web player had about 24 million unique users [3]. As
the bandwidth requirement for streaming the entire, full-quality
panorama is rather high, we therefore have a large challenge
in providing real-time virtual camera services in such scales.

We are soon demonstrating [4] an early prototype as a
proof-of-concept. In this paper, we have extended this work,
and we analyze the overheads and potentials of such a solution.
In this paper, we present the costs of tiling approaches and the
potential bandwidth savings exploiting multi-quality encoding.
The contributions in this paper are two-fold. Our key novelty
theoretically lies in changing constant rate factor (CRF) instead
of the size of the video tiles in order to change the quality.
To realize this idea practically, we present the architecture of
a real system that can support tiling. Furthermore we evaluate
trade-offs with respect to added overheads, like increased pro-
cessing and storage space, and reduced bandwidth requirement.
Depending on the zoom and panning actions of the user, the
results indicate that there is a large potential for reducing the
transfer cost by trading quality in the areas of the panorama
that are most likely unused.

The rest of this paper is organized as follows: Section II
describes the costs of scaling virtual views to several users. We
briefly present our novelty in contrast to the state-of-the-art in
section III. We then provide a brief description and evaluation
of our system in sections IV and V, respectively. Then, we
conclude our paper and present the prospective direction in
section VI.

II. THE COSTS OF VIRTUAL VIEWS

Our system generates a cylindrical panorama video in real-
time from which individual virtual views can be generated and

Fig. 1: The re-projected virtual view. The panorama video
with the marked region of interest is shown together with the
generated virtual camera.

interactively controlled with full freedom to pan, tilt and zoom
into the panorama video [2]. When it comes to delivering video
to the client, we have explored two possibilities with respect
to creating virtual views.

Initially, our system transfers the entire panoramic video
and generates the virtual views on the client [2]. This gives
cheap processing requirements on the server-side at the cost
of very high bandwidth requirements on the client-side. In our
example system installed at Alfheim stadium, the average size
of each 1-second segment of the the 4096 × 1680 panorama
video (figure 1) is approximately 1.25 MB1. This means that
the bandwidth requirement for each client becomes about 10
Mbps merely for the transfer of the panorama video, and
in future systems, a much higher resolution panorama may
be desirable to support better digital zoom. Then, after the
panorama is successfully transferred, the client needs to pro-
cess it so that a virtual view can be extracted. Using commodity
graphics hardware, the virtual view can be extracted in real-
time regardless of the size of the view [2]. Thus, the client
devices easily manage the processing load, but the bandwidth
requirement is quite high as mentioned above.

An alternative approach is to generate the virtual views on
the server and only stream the generated video to the client,
i.e., as a traditional streaming case. Thus, in this approach, the
re-projection is performed on the server side. This approach
requires nothing more than a browser that is capable to
play a video on the client device, i.e., it severely reduces
the computational load and the bandwidth requirements on
the clients. However, the processing cost on the server-side
becomes huge as additional encoding must be performed per
stream, and it quickly becomes a large bottleneck. We have
made a few experiments using the second generation hardware
from Nvidia. Our experiments show that the GeForce GTX 750
Ti GPU can encode 16 full HD video streams at 30 frames per
seconds [5]. We also found that this was the limiting factor in
the number of unique views we could create in real-time. This
implies that if we want to provide a service to say 100,000
concurrent users, we would require a cluster totaling to about
6,250 GPU devices. Such an initial installation costs, at the
time of writing, about 937,500 USD merely for the GPUs.

Owing to the challenges mentioned above, no straightfor-
ward solution is going to work well for scaling our system
to large numbers of concurrent users. However, the HTTP
streaming solutions have proved to scale well from a sending-
side point of view using for example CDNs. We have therefore
adopted this approach, i.e., using a client side generated virtual
view where the panorama is tiled to save bandwidths in areas
not used for the virtual view extraction.

III. RELATED WORK

Based on the decision in the previous section, to generate
virtual views on the client side, the challenge is to reduce the
cost of streaming a complete panorama video to each user.
In this respect, researchers in the multimedia community have
for some time analyzed region-of-interest streaming solutions.
For example, tiling is discussed in [6], [7], [8], [9], [10].
Furthermore, [11], [12], [13], [14], [15] extensively address

1This size depends on the lighting and weather conditions.

the problem of automatically generating personalized content,
and [16] discusses plain cropping.

The works related to tiling can be broadly classified into
two scenarios, the server side generation [6], [8], [9], [10]
and the client side generation [17], [7]. The former emphasize
on reducing the through-put on the server side because their
processing happens on server and the video is merely trans-
ferred to the client for display. The latter works with a client
which decodes and assembles tiles. However, the idea in both
the scenarios is to downsample the panorama into multiple
lower resolutions and transfer only the additional info when
it is required. This approach has traditionally been used to
reduce the number of samples in a signal. We exploit the fact
that the panoramic camera systems in scenarios like sports
and surveillance are most likely to be static. In the case of a
static scene with some local movement in small regions H.264
CRF provides a more efficient compression than downscaling
the video. Figure 2 demonstrates2 the key difference from the
existing work in tiling and the strength in our assumption. By
using tiles encoded using different CRF, we can allow for better
quality yet compressing to the same extent as the downsampled
version.

(a) CRF varied - 158 kbps (b) Down scaled - 157 kbps

Fig. 2: Two output frames are presented to show the key
difference between our method and other common approaches.
The loss in sharpness due to down-scaling can be observed.

Similar to many other approaches, our solution is based
on dividing the panorama into tiles as shown in figure 3, each
encoded as an adaptive HTTP stream using for example HLS.
A client retrieves segments in high quality for segments being
used for the virtual camera, and the rest of the tiles are retrieved
in lower quality depending on the strategy used. In contrast
to, for example, [18], [9] retrieving only tiles in the region of
interest, we need to retrieve all tiles since the virtual camera
moves and at least low quality data needs to be available if
the user zooms out or moves quickly.

Another difference is that the tiles fetched do not follow a
strict logic apart from being in the neighborhood of the current
tiles. In [10], for instance, all the tiles are being fetched, but
the reduction in quality is reflected by salience. Moreover, the
non-linear nature of a panorama-virtual view transformation
introduces further complexities in the approach. For example,
in figure 4, it can be seen that the collection of required tiles do
not form any simple shape like a rectangle or a square, e.g., as
used in [16]. This poses different challenges than the ones that
are being tackled in for example [7] where the panning and

2Due to possible poor quality of printers, it is recommended to analyze the
images on screen.

processing	
machine	

capture	 	
machines	

cameras	
created	 panorama	

generated	 1les	

netwo
rk	

retrieved	 1les	
generated	
	 virtual	 view	

panorama	 and	 1le	 genera1on	 virtual	 viewer	

Fig. 3: The generated cylindrical panorama video is tiled and encoded in multiple qualities on the server side. The client side
uses the current position of the virtual camera to retrieve full quality tiles for the virtual view and low quality (red) tiles outside
the field of view of the virtual camera.

tilting correspond to strictly navigating the panorama along
the horizontal and vertical directions respectively. Lack of this
adds complexity on the tile retrieval strategy. In addition to tak-
ing into account available network bandwidth and client device
resources (as usually done for one stream), the quality adaption
strategy must also coordinate the tile qualities according to the
dynamic position of the virtual camera.

Cutting Edge 2014

Bandwidth challenge: tiling approach

57 kbps

189 kbps

684 kbps

Fig. 4: Dividing the panorama video into 8x8 tiles, and
encoding each tile in different quality

IV. SYSTEM OVERVIEW

Figure 3 shows the high level architecture of our system.
The fundamental requirement for a smooth interactive playout
is that the processing on the server and the client side must be
performed within a strict real-time deadline.

A. Server-side

As one can see in figure 3, the creation of tiles and
encoding them in multiple qualities are done on the server
side. For the encoding, we use libav and x264. The qualities
are determined by modifying the CRF from the highest to the
lowest quality. Unlike constant quantization parameter (CQP),
where it compresses every frame in a video by the same
amount, the compression rate of each frame in CRF is decided
by motion. It takes into account how the human eye perceives
information of still and moving objects. Thus, we get better
quality even with less bitrate in the encoded videos.

T1 Tn-1Tn-2Tn-3T4T3T2 Tn

GPU

T1 Tn-1Tn-2Tn-3T4T3T2 Tn

Network

Feedback
Module

virtual
view

Fig. 5: The architecture on the client side to support tiling.
The bottom array of tiles is the one that is being used to
display the current view, the top array contains the tiles that are
being fetched in a quality depending on the current viewing
parameters.

B. Client-side

One of the key contributions lie in the system implementa-
tion, where we present a working prototype for a virtual viewer
using tiling. Figure 5 shows the architecture of our system. A
tile manager fetches the appropriate quality tile at a position on
the panorama, then it decodes the tile-segment and creates the
corresponding part of the panorama frame. This manager runs
concurrently in multiple threads, because there is no overlap
between tiles. Once an entire panorama frame is decoded, it
is transmitted to the GPU where the virtual view extraction
takes place as mentioned in [2]. The view information is passed
into the Feedback Module where quality selection is performed
based on the currently viewed region on the panorama.

We implemented a simple feedback scenario where the
next tile is fetched in either high or low quality depending
on the current view. A greedy binary scheme where the high
quality (bh) is fetched even if one pixel from the tile is in the
current virtual view and low quality (bl) otherwise. Due to the

pipelined nature of the client and the finite size of each video
segment, there is a latency of one segment size in updating the
tile. However, this can be taken care of by employing some
sort of prediction strategies [17].

V. EVALUATION

For the sake of evaluation, we created several paths in dif-
ferent classes. The paths belong to different classes depending
on their zoom levels. The reason for doing this is to evaluate
the acceptance of different qualities and potential bandwidth at
different zooms. We selected four zoom scenarios and recorded
multiple paths in each of these scenarios mimicking a user
that is trying to follow the game. The scenarios are zoomed-
in (ZI), zoomed-out (ZO), medium-zoomed (ZM) and random
zoom (ZR). The only difference is that in the first three
scenarios the user has limited/no control over the zoom factor,
and in the last scenario the user has full freedom to change
the zoom factor. Apart from the zoom factor, the user is free
to pan and tilt as she/he wishes in all the scenarios. We divide
the panorama into 8 × 8 tiles and each tile is encoded into 5
different qualities ranging from highest to lowest [0 to 4]. We
present results for selecting [bh = 0, bl = 4] and [bh = 2,
bl = 3] in this paper3. An example of the output can be seen
in figure 6. It can be observed that even though some parts
of the panorama have extremely poor quality, the virtual view
does not show the distortion.

Fig. 6: Reconstructed panorama from multi-quality tiles and
the corresponding virtual view. The poor quality in some areas
of panorama does not affect the quality of the virtual view.

For performance measurements, we used two machines,
both equipped with an Intel Core i7-4770, 8GB RAM and
SSD harddisk, one as client and the other as server. In general
one can expect a machine of higher capabilities on the server
side and of lower capabilities on the client side.

A. Reduced bandwidth

It can be observed in figure 7 that there is a significant
reduction in bandwidth required to perform the virtual view

3Videos: http://home.ifi.uio.no/vamsidhg/pv2015/

Fig. 7: The bandwidth during a 30 second virtual-view op-
eration. The zoom-scenarios are zoomed-in (ZI), zoomed-out
(ZO), medium-zoomed (ZM) and random zoom (ZR). 04
implies highest-lowest quality and 23 implies medium-low
quality. As a reference, the plot also includes the results for
the full panorama. The legend is equal for all figures.

operation by using tiling. The reduction in bandwidth is of
course dependent on the number of tiles that are required in
high quality, i.e., the plot shows that most bandwidth is saved
when the user is zoomed in compared to the case of zoomed
out. However, it must be noted that it is a simple binary scheme
of selecting high(bh)/low(bl) quality depending only on the
current viewing region. The bandwidth also varies depending
on the values chosen for bh and bl.

B. Increased storage

The idea of delivering tiles at multiple qualities certainly
comes with a cost of storage on server side. However, with the
current costs of storage the increase is not that significant.The
total size of full quality panorama video for 5 minutes is
362.5 MB, and the sum total for the tiles is 983.1 MB (398.2
MB, 281.9 MB, 145.2 MB, 92.0 MB and 58.4 MB for each
individual quality), i.e., tiling gives approximately a 3× storage
requirement storing all the tiles in multiple qualities compared
to the single full quality panorama.

C. Server-side processing

Our tiling component is still a prototype, and we have
only tested a few different approaches on how to encode
tiles efficiently. The first approach was to encode each tile
sequentially, i.e., each tile is encoded into different qualities
completely (figure 4) before we start with the next tile. The
libav tools will optimize the encoding by using several threads
on each tile. Thus, we can use the CPU efficiently. The
second approach is parallelization where we encode several
tiles concurrently.

In figure 8, we can observe a huge difference between
sequential encoding of tiles and encoding a full panorama.
However, it must be noted that the full panorama encoding
happens only for one quality but the other measurements in-
clude the time taken for all 5 qualities. Hence, the comparision
is between encoding 1 video at 4096×1680 to encoding 8×8

Fig. 8: The time to partition and encode the tiles of the full
panorama into 5 different qualities using multiple threads. The
encoding of a full panorama video in full quality is included
as a reference.

tiles, each in 5 different qualities - in total 320 video streams at
512×210 resolution. Even when libav is free to spawn multiple
threads to encode for each tile, we would have to create
several new threads to encode a tile and terminate them before
continuing to the next, thus resulting in a huge overhead. We
have also performed a second test using completely sequential
encoding, i.e., one thread without libav optimization. As can
be seen in figure 8, there is a noticeable difference when using
optimization from libav.

Instead of letting libav spawn threads for every tile, we
created a thread pool of encoding workers and let each thread
in that pool run concurrently on different tiles. we experi-
mented with different number of threads in the thread pool. Our
experimental results (figure 8) display a convex curve between
the 1 thread and 64 threads performance with the 4 threads
as the best case. In our case with a 4-core CPU, this result
is expected since encoding is CPU bound. When using only
1-3 threads, we are not utilizing the 4-core CPU efficiently.
Using more than 4 threads gives a lot of context-switching.
Both scenarios increase the processing time compared to the
4-thread approach.

Obviously, the performance between multiple threads dif-
fers based on the CPU used for encoding. With the hardware
we used for these experiments, we have not succeeded to fulfill
the real-time requirement of encoding the tiles under 1 second.
However the processing requirement has upper bounds and
does not depend on the number of users. Hence, this will not
pose further scaling issues.

D. Client-side processing

As the complexity in figure 5 suggests and figure 9 reflects,
there is a significant overhead in decoding the tiles. The tiling
approach requires the tiles to be decoded across the entire
panorama. This increases complexity of the viewer from the
non-tiling case of decoding 1 video to decoding 64 videos
simultaneously and still keeping the framerate. However the
total resolution of the panorama frame that is being decoded
does not change, it is just divided among 64 parts. We again
used libav to decode the videos in both cases. One serious
limitation of libav is that there is a global context that serializes
several calls to the library at the process level. Another
overhead in the tiling approach comes from the feedback

Fig. 9: Time to decode one frame using multiple threads in
tiling case in comparison with the full panorama. The real-
time 30fps deadline is marked as dashed line.

module. On average, about 15 ms per frame are spent on the
feedback module to decide the upcoming tile qualities.

E. Quality

(a) Full Pano. Data: 10425 kbps (b) Full Pano. Data: 10425 kbps

(c) binary - bh = 0 and bl = 4
SSIM: 0.9807 Data: 2912 kbps

(d) binary - bh = 0 and bl = 4
SSIM: 0.9088 Data: 6575 kbps

(e) binary - bh = 2 and bl = 3
SSIM: 0.9574 Data: 2566 kbps

(f) binary - bh = 2 and bl = 3
SSIM: 0.9433 Data: 3154 kbps

Fig. 10: Different qualities of output virtual view.

One basic requirement of tiling should be that quality of
experience should not be altered heavily even with reduction
in bandwidth. However, we do not perform any subjective
studies for this paper. We intend to perform user studies to
evaluate different tiling approaches in the future. Figure 10
presents objective quality results from using two approaches,
[bh = 0, bl = 4] and [bh = 2, bl = 3] for tiling. The
sizes of data downloaded during the operation of 30 seconds
for each approach are also presented in the figure. It can be

seen that the quality is different depending on the zoom factor
and the approach selected. The first column presents a case
where most tiles in the view are from bh quality input and
the second column presents one of the worst case scenarios
where about 30% of the pixels in the view are from bl quality
tiles. The SSIM values from figure 10 suggest that bh requires
to be highest quality when the view is a really zoomed-in
view, but even an average quality bh tile can work for a
zoomed-out view. On the basis of these results we argue that a
more inclusive strategy can be designed to maximize viewing
experience and reduce the required bandwidth. In general, the
choice of CRF variation across the tiles provides superior
image quality at the same bit-rate as can be seen in figure 2.

F. Segment duration

The segment duration plays an important role in deciding
the size of each file and hence the bandwidth. In the current
tiling system, we chose the segment duration to be one second
each, but in the non-tiled version we use 3 second segments.
In general, the segmentation approach implies that each seg-
ment contains at least one I-frame each. Thus, increasing
the segment duration to 3 seconds reduces the size of files
significantly, but the tradeoff is that this increases the overall
quality adaption latency in the system to at least 3 seconds.

VI. CONCLUSIONS

We have presented a system for real-time interactive zoom-
ing and panning of a tiled panorama video enabling every user
to be her or his own cameraman [2]. To reduce the per-user
bandwidth requirement, the idea is that the quality changes in
different parts of the panorama video when moving the virtual
camera, i.e., retrieving good quality for the used tiles and lower
quality in the rest of the video. Furthermore, we have evaluated
the costs of the tiling approach and the potential bandwidth
savings exploiting multi-quality encoding. Depending on the
zoom and panning actions of the user, the results indicate
that there is a large potential for reducing the transfer cost
by trading quality in areas of the panorama not used for the
extraction of the virtual view.

There is still unfinished work as the algorithm deciding
the tile quality is very basic, but we are looking at better
approaches, e.g., having a degrading quality depending on
the view focus and the distance to the view, predicting the
movement of the virtual camera (e.g., following the ball). We
are also investigating approaches to distribute the server-side
processing as it is far from the real-time requirement. However,
we have earlier demonstrated that the GeForce GTX 750 Ti
GPU can encode 16 full HD video streams at 30 frames per
seconds [5], but our tiling system must be ported for new
experiments.

REFERENCES

[1] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. Kristensen, A. Eichhorn,
M. Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen, “Bagadus: An integrated system for arena sports analytics
– a soccer case study,” in Proc. of ACM MMSys, Mar. 2013, pp. 48–59.

[2] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat,
C. Griwodz, and P. Halvorsen, “Interactive zoom and panning from live
panoramic video,” in Proc. of ACM NOSSDAV, 2014, pp. 19:19–19:24.
[Online]. Available: http://doi.acm.org/10.1145/2578260.2578264

[3] Fédération Internationale de Football Association, “2014 FIFA World
Cup breaks online streaming records,” http://www.fifa.com/aboutfifa/-
organisation/news/newsid=2401405/, last accessed: 2014-12-19.

[4] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, D. Johansen,
and P. Halvorsen, “Scaling virtual camera services to a large number
of users[accepted],” in Proc. of ACM MMSys, 2015.

[5] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, P. Halvorsen,
and C. Griwodz, “Performance and Application of the NVIDIA
NVENC H.264 Encoder,” http://on-demand.gputechconf.com/-
gtc/2014/poster/pdf/P4188 real-time panorama video NVENC.pdf,
last accessed: 2014-12-19.

[6] R. Guntur and W. T. Ooi, “On tile assignment for region-of-interest
video streaming in a wireless LAN,” in Proc. of NOSSDAV,
2012, p. 59. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2229087.2229105

[7] A. Mavlankar and B. Girod, “Video streaming with interactive
pan/tilt/zoom,” in High-Quality Visual Experience, ser. Signals and
Communication Technology, M. Mrak, M. Grgic, and M. Kunt,
Eds., 2010, pp. 431–455. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-12802-8 19

[8] K. Q. M. Ngo, R. Guntur, and W. T. Ooi, “Adaptive encoding
of zoomable video streams based on user access pattern,” in Proc.
of MMSys, 2011, p. 211. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1943552.1943581

[9] A. Shafiei, Q. M. K. Ngo, R. Guntur, M. K. Saini, C. Pang, and
W. T. Ooi, “Jiku live,” in Proc. of ACM MM, 2012, p. 1265. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2393347.2396434

[10] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan, “Mixing
tile resolutions in tiled video: A perceptual quality assessment,”
in Proc. of NOSSDAV, 2013, pp. 25:25–25:30. [Online]. Available:
http://doi.acm.org/10.1145/2578260.2578267

[11] F. Chen and C. De Vleeschouwer, “Personalized production of
basketball videos from multi-sensored data under limited display
resolution,” Comput. Vis. Image Underst., vol. 114, no. 6, pp. 667–680,
Jun. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2010.
01.005

[12] N. Babaguchi, Y. Kawai, and T. Kitahashi, “Generation of personalized
abstract of sports video,” in Proc. of ICME, Aug 2001, pp. 619–622.

[13] R. Kaiser, M. Thaler, A. Kriechbaum, H. Fassold, W. Bailer, and
J. Rosner, “Real-time person tracking in high-resolution panoramic
video for automated broadcast production,” in Proc. of CVMP, 2011,
pp. 21–29.

[14] X. Sun, J. Foote, D. Kimber, and B. Manjunath, “Region of interest
extraction and virtual camera control based on panoramic video cap-
turing,” IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 981–990,
2005.

[15] R. Xu, J. Jin, and J. Allen, “Framework for script based virtual directing
and multimedia authoring in live video streaming,” in Proc of MMM,
Jan 2005, pp. 427–432.

[16] R. Heck, M. Wallick, and M. Gleicher, “Virtual videography,”
ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 3, no. 1, pp. 4–es, Feb. 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1198302.1198306

[17] A. Mavlankar and B. Girod, “Pre-fetching based on video analysis
for interactive region-of-interest streaming of soccer sequences,” in
Proc. of ICIP, Nov. 2009, pp. 3061–3064. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5414201

[18] M. Inoue, H. Kimata, K. Fukazawa, and N. Matsuura, “Interactive
panoramic video streaming system over restricted bandwidth network,”
in Proc. of ACM MM, 2010, p. 1191. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1873951.1874184

Appendix I

[Demo] Be Your Own

Cameraman: Real-Time

Support for Zooming and

Panning into Stored and Live

Panoramic Video

[Authors:] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V.

Charvillat, C. Griwodz, D. Johansen, and P. Halvorsen

[Published:] ACM International Conference on Multimedia Systems (MM-

Sys), 2014.

295

Be Your Own Cameraman:
Real-Time Support for Zooming and Panning into

Stored and Live Panoramic Video

Vamsidhar Reddy Gaddam1, Ragnar Langseth1, Håkon Kvale Stensland, Pierre Gurdjos2,
Vincent Charvillat2, Carsten Griwodz1, Dag Johansen3, Pål Halvorsen1

1Simula Research Laboratory & University of Oslo, Norway
{vamsidhg, ragnarla, haakonks, griff, paalh}@ifi.uio.no

2Universite de Toulouse, France
{pgurdjos, vincent.charvillat}@enseeiht.fr

3Univerity of Tromsø, Norway
dag@cs.uit.no

ABSTRACT
High-resolution panoramic video with a wide field-of-view
is popular in many contexts. However, in many examples,
like surveillance and sports, it is often desirable to zoom and
pan into the generated video. A challenge in this respect is
real-time support, but in this demo, we present an end-to-
end real-time panorama system with interactive zoom and
panning. Our system installed at Alfheim stadium, a Nor-
wegian premier league soccer team, generates a cylindrical
panorama from five 2K cameras live where the perspective
is corrected in real-time when presented to the client. This
gives a better and more natural zoom compared to existing
systems using perspective panoramas and zoom operations
using plain crop. Our experimental results indicate that vir-
tual views can be generated far below the frame-rate thresh-
old, i.e., on a GPU, the processing requirement per frame is
about 10 milliseconds.

The proposed demo lets participants interactively zoom
and pan into stored panorama videos generated at Alfheim
stadium and from a live 2-camera array on-site.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video; I.4.9
[Applications]: Video

General Terms
Experimentation, Performance

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

MMSys’14, March 19-21, 2014, Singapore, Singapore
ACM 978-1-4503-2705-3/14/03.
http://dx.doi.org/10.1145/2557642.2579370

Keywords
demonstration, panorama video, zoom, panning, real-time

1. INTRODUCTION
Panoramic video is becoming increasingly more popular

in various scenarios. In the context of arena sports like soc-
cer, it provides opportunities for innovation in broadcasting
and in the area of game analysis. For example, based on a
camera array covering the whole field, virtual views can be
supported by zooming and panning into a stitched panorama
video, e.g., allowing individual users to interactively control
his or her own virtual camera. This type of challenges has
attracted researchers’ attentions for more than a decade [15,
17, 5, 7, 11, 6, 18], but often the zoom is made by simple
cropping, or it does not scale. As can be seen in the litera-
ture, the challenges in providing such interactive experiences
to a large audience span several fields, and one such chal-
lenge is to provide a real-time pannable and zoomable virtual
camera to several thousands or even millions of users.

In this respect, we present an end-to-end real-time system
to interactively zoom and pan into high-resolution panoramic
videos. In contrast to many existing systems supporting
zoom by cropping into a perspective panorama video, our
system uses cylindrical panorama as an intermediate repre-
sentation. Here, the perspective of the virtual view is cor-
rected in real-time, and the result is a better and more nat-
ural zoom. The client has full freedom to pan, tilt and zoom
into the panorama video using the system. The system sup-
ports (live switching between) several algorithms for pixel in-
terpolation. Furthermore, our experimental results indicate
that such zoomed virtual views can be generated far below
the frame-rate threshold where an unoptimized GPU imple-
mentation generates a virtual view frame in about 10 ms.
Thus, taking into account recent trends in device develop-
ment, our approach should be able to scale to a large num-
ber of concurrent users in the near future to spectators and
fans both within the stadium as well as outside. Inside the
stadium, the Cisco connected stadium solution [4] already
in use in more than 200 venues world-wide can be used to

168

processing	
machine	

capture	 	
machines	

five	 2K	
cameras	

two	 2K	
cameras	

captured	 panorama	 at	 	
Al8eim	 stadium	

store	 to	 disk	

Figure 1: Demonstration setup

broadcast the panorama video to the spectators, and for
users at home, there exist several scalable streaming solu-
tions like segmented HTTP streaming [3, 13] or panorama
video transfers in real-time [9].

In this demonstration, we present two versions of our sys-
tem. The first is a demonstration which uses a recorded five
2K-camera panorama video from Alfheim stadium where the
current prototype is installed. The second demonstration
is a live, scaled down version1 of the system with two 2K
cameras zooming into live recorded video at the conference
venue. The motivation is to provide a hands-on experience
of such a system. The demo will allow users to interact with
the virtual camera in both stored and live scenes.

2. SYSTEM OVERVIEW
The system presented in this demo is part of a larger sys-

tem where the current prototype is running at Alfheim sta-
dium in Tromsø. This system has been presented before [10,
14], but without the possibility to interactively zoom an pan
into a high-resolution panorama.

2.1 System Setup
The relevant part of the system in this context is divided

into a panorama generation part and a video delivery part,
which supports our user-controlled interactive virtual cam-
eras. A sketch of our system is given in figure 1. In this
section, we describe these two parts.

2.1.1 Real-time Panorama Video Capture
To capture the entire soccer field, we use five Basler in-

dustry vision cameras [2], each of which delivers a maximum
resolution of 2046×1086 pixels at 50 frames per second over

1The live 2-camera setup is due to hardware constraints
bringing equipment to the conference venue. The five cam-
era version requires several recording machines and a pro-
cessing machine. A live view from the camera setup at
Alfheim stadium could be possible, but as we sometimes
have bandwidth problems over the 19-hop Tromsø-Oslo link,
we expect an even lower available bandwidth from Tromsø
to Singapore.

Gigabit Ethernet. We use an 8 mm lens [1] with virtually
no image distortion, allowing us to bypass the lossy debar-
reling step of our previous real-time pipeline [16]. To max-
imize the panorama resolution, the cameras are rotated by
90° (see figure 2), giving a vertical field of view of 66°. Fur-
thermore, the cameras are mounted in a circular pattern.
This means that they are pitched, yawed and rolled to look
directly through a point 5 cm in front of the lenses, in an
attempt to reduce parallax effects. As a result of this, only
minor adjustments are required before the images can be
stitched together. The video capture system also determines
the required exposure, which requires frequent changes due
to quickly changing light conditions outdoors. In this re-
spect, auto-exposure is performed on the center camera once
every 4 seconds, and the camera reader module broadcasts
the resulting exposure parameters to the other camera read-
ers.

Figure 2: Mounted camera array

After the generation of the panorama video, it is encoded
and compressed using x264. At the moment, with a focus
on video quality, the system still demands a large network
bandwidth to the full resolution panorama video. However,
there are large potentials for trading of quality for lower
bandwidth requirements (but an investigation of this is out
of scope for this demonstration).

2.1.2 Live Panoramic Zoom and Panning
To deliver a virtual camera to clients, the panorama video

is delivered to the client device. Currently, we use HTTP
segment streaming (no quality adaption at the time of writ-
ing, but it can easily be added in the future). The segments
of the panoramic videos are served by an Apache server along
with a manifest file. The manifest file is used to inform the
clients when the next file is ready for download. In case
of live streaming, the viewer checks the manifest file peri-
odically and downloads the next segment when ready. As
soon as the panoramic video segment is transferred, it is de-
coded for processing by the multi-threaded client process.
The downloading thread runs in the background without
blocking either the display thread or the user input thread.

Using the cylindrical panorama as an intermediate rep-
resentation, our system then generate an arbitrary virtual
camera view from the position of the camera array. All
the details of the pixel calculations are out of scope of this
demonstration description (see [8]), but the main operation
is to find the pixels of the virtual camera image from the
cylindrical texture as shown in figure 3. A pin-hole camera
model is used, and the a point projection from a 3D point to
an image point is calculated using a 3D rotation matrix as
a function of the rotation angles around the x, y and z axes.
A particular pixel is then found by calculating the ray that
passes from the camera center to the pixel. The intersection
of this ray with the cylinder gives the exact position on the
cylindrical texture. Finally, since there is sub-pixel accu-

169

p

s

T

X

Y

Z

Figure 3: The intersection of the ray from the virtual view
with the unit cylinder of the panorama image.

racy of the intersection calculation, the used pixel value is
calculated using interpolation of all the surrounding pixels.

The user has the full freedom to pan, tilt and zoom, being
his or hers own camera-man2. The virtual camera view is
corrected to a perspective view very similar to that of a
physical camera as shown in figure 4.

Cylindrical	 panorama	

Virtual	 camera	

Figure 4: The virtual camera is generated from the region
of interest marked in the panorama video. Note that it is
not a simple crop from the bigger video.

2.2 System Performance
We have earlier shown that our system can generate pano-

rama video in real-time using four 1K cameras [16]. Going
for higher resolution, we have now distributed the capture
and processing of five 2K cameras, and we are able to gen-
erate the panorama frames in 34.58 ms on an Intel i7 CPU.
This is below our 25 fps threshold. The generated video can
either be stored to disk or forwarded directly to connected
client devices.

When presented to the user, the zooming and panning op-
erations can be performed on both the sender and receiver
side. In the current setup, we as explained above transmit
the panorama video to the display device like a laptop. Here,
the zoom and pan operations are executed where the per-
spective is corrected from the cylindrical panorama in real-
time. We use the GPU on the client side, and each frame for
virtual camera view with Full HD resolution (1920 × 1080)
can be generated in about 10 milliseconds on a machine with
an Intel i7-2600 CPU and an Nvidia GeForce GTX 460 GPU

2An example video using the known ball position, where the
virtual camera-man is following the ball is shown here:
http://www.youtube.com/watch?v=554RjEEtw3o

– again, far below the target 25 fps requirement. This time
is dependent of the output resolution, and going for a mobile
phone resolution it can be further reduced by a millisecond
or two, e.g., about 1.5 milliseconds for iPhone 4 and 5.

3. DEMONSTRATION
In this demo, we present a system for real-time interactive

zooming and panning of panorama video. The general setup
is shown in figure 1. We use two types of panorama input.
We use stored panorama video captured in the Alfheim soc-
cer stadium (the European League game between Tromsø IL
and Tottenham Hotspurs) [12]. The video was recorded us-
ing five 2K industrial cameras, and processed and stitched
in a distributed system. We also use a live system using
2 cameras on site to generate the panorama video. Both
the stored-video and the live-video demos work in real-time,
and the user interactions have a very low delay from com-
mand to visual response – thus, a user can be his or her own
cameraman!

Acknowledgments
This work has been performed in the context of the iAD cen-
ter for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council. Furthermore,
the authors also acknowledge the support and hardware given
by Hugo Kohmann and Roy Nordstrøm in Dolphin Intercon-
nect Solutions.

4. REFERENCES
[1] Azure-0814m5m.

http://www.azurephotonicsus.com/products/azure-
0814M5M.html.

[2] Basler aca2000-50gc.
http://www.baslerweb.com/products/ace.html?model=173.

[3] SmoothHD. http://www.smoothhd.com, 2009.

[4] Sports & Entertainment – Cisco Connected Stadium,
2013.
http://www.cisco.com/web/strategy/sports/index.html.

[5] Y. Ariki, S. Kubota, and M. Kumano. Automatic
production system of soccer sports video by digital
camera work based on situation recognition. In Proc.
of ISM, pages 851–860, 2006.

[6] P. Carr and R. Hartley. Portable multi-megapixel
camera with real-time recording and playback. In
Proc. of DICTA, pages 74–80, 2009.

[7] P. Carr, M. Mistry, and I. Matthews. Hybrid
robotic/virtual pan-tilt-zom cameras for autonomous
event recording. In Proc. of ACM MM, pages 193–202,
2013.

[8] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos,
V. Charvillat, C. Griwodz, and P. Halvorsen.
Interactive zoom and panning from live panoramic
video. In Proc. of ACM NOSSDAV, Mar. 2014.

[9] R. Guntur and W. T. Ooi. On tile assignment for
region-of-interest video streaming in a wireless lan. In
Proc. of NOSSDAV, pages 59–64, 2012.

[10] P. Halvorsen, S. Sægrov, A. Mortensen, D. K.
Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H. K.
Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen. Bagadus: An integrated system for

170

arena sports analytics – a soccer case study. In Proc.
of ACM MMSys, pages 48–59, Mar. 2013.

[11] A. Mavlankar and B. Girod. Video streaming with
interactive pan/tilt/zoom. In M. Mrak, M. Grgic, and
M. Kunt, editors, High-Quality Visual Experience,
Signals and Communication Technology, pages
431–455. Springer Berlin Heidelberg, 2010.

[12] S. A. Pettersen, D. Johansen, H. Johansen,
V. Berg-Johansen, V. R. Gaddam, A. Mortensen,
R. Langseth, C. Griwodz, H. K. Stensland, and
P. Halvorsen. Soccer video and player position
dataset. In Proc. of ACM MMSYS, Mar. 2014.

[13] R. Pantos (ed). HTTP Live Streaming.
http://www.ietf.org/internet-drafts/draft-pantos-http-
live-streaming-10.txt,
2013.

[14] H. K. Stensland, V. R. Gaddam, M. Tennøe,
E. Helgedagsrud, M. Næss, H. K. Alstad,
A. Mortensen, R. Langseth, S. Ljødal, O. Landsverk,
C. Griwodz, P. Halvorsen, M. Stenhaug, and
D. Johansen. Bagadus: An integrated real-time
system for soccer analytics. ACM Trans. Multimedia
Comput. Commun. Appl. (TOMCCAP),
10(1s):14:1–14:21, Jan. 2014.

[15] X. Sun, J. Foote, D. Kimber, and B. Manjunath.
Region of interest extraction and virtual camera
control based on panoramic video capturing. IEEE
Transactions on Multimedia, 7(5):981–990, 2005.

[16] M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad,
H. K. Stensland, V. R. Gaddam, D. Johansen,
C. Griwodz, and P. Halvorsen. Efficient
implementation and processing of a real-time
panorama video pipeline. In Proc. of IEEE ISM, Dec.
2013.

[17] J. Wang, C. Xu, E. Chng, K. Wah, and Q. Tian.
Automatic replay generation for soccer video
broadcasting. In Proc. of ACM MM, pages 32–39,
2004.

[18] M. Wieland, R. Steinmetz, and P. Sander. Remote
camera control in a distributed multimedia system. In
B. Wolfinger, editor, Innovationen bei Rechen- und
Kommunikationssystemen, Informatik aktuell, pages
174–181. Springer Berlin Heidelberg, 1994.

171

Appendix J

[Demo] Automatic Real-Time

Zooming and Panning on

Salient Objects from a

Panoramic Video

[Authors:] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, and

P. Halvorsen

[Published:] ACM International Conference on Multimedia (MM), 2014.

301

Automatic Real-Time Zooming and Panning on Salient
Objects from a Panoramic Video

Vamsidhar Reddy Gaddam, Ragnar Langseth, Håkon Kvale Stensland,
Carsten Griwodz, Pål Halvorsen, Øystein Landsverk

Simula Research Laboratory & University of Oslo, Norway
{vamsidhg, ragnarla, haakonks, griff, paalh, oystesla}@ifi.uio.no

ABSTRACT
The proposed demo shows how our system automatically
zooms and pans into tracked objects in panorama videos.
At the conference site, we will set up a two-camera version
of the system, generating live panorama videos, where the
system zooms and pans tracking people using colored hats.
Additionally, using a stored soccer game video from a five
2K camera setup at Alfheim stadium in Tromsø from the
European league game between Tromsø IL and Tottenham
Hotspurs, the system automatically follows the ball.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video; I.4.9
[Applications]: Video

General Terms
Experimentation; performance

Keywords
Demonstration; panorama video; zoom; panning; real-time;
tracking

1. INTRODUCTION
In several fields, especially in surveillance and sports, Pan-

Tilt-Zoom (PTZ) cameras have gained popularity with their
ability to use the camera sensor efficiently. Yet, one problem
that a physically moving system inherently has is that it
does not capture and store the data that is not currently in
it’s field of view. Here, we present a system that generates
panorama video in real-time, and we introduce a virtual PTZ
camera system extracting data from the panorama that is
capable of following targets in real-time.

Such a system can be useful when multiple PTZ cam-
era views are demanded for multiple targets. In order to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
MM’14, November 3–7, 2014, Orlando, Florida, USA.
ACM 978-1-4503-3063-3/14/11.
http://dx.doi.org/10.1145/2647868.2654882

two	 2K	
cameras	

liv
e	
st
re
am

s	

on
-‐d
em

an
d	
	

st
re
am

	

captured	 panorama	 at	 	
Al6eim	 stadium	 using	

five	 2K	 cameras	

Figure 1: Demonstration setup

keep the costs low, it is useful to use the same camera setup
to create multiple camera views. Several panoramic cap-
ture systems have been demonstrated before with different
shortcomings like ease of mobility [2], cost [5] and manual
input [1].

In this demonstration, we present two versions of our sys-
tem. The first demonstration is a live, scaled down version
of our sport stadium system using two 2K cameras zoom-
ing into live recorded video at the conference venue. A
few funny colored hats are provided to users that act like
targets. Then, the system will be able to track and zoom
into the desired target automatically in real-time. The sec-
ond is a demonstration that uses a recorded five 2K-camera
panorama video from Alfheim stadium where our current
prototype is installed. The demo will allow users to interact
with the virtual camera in both stored and live scenes.

2. SYSTEM OVERVIEW
The system presented in this demo is part of a larger sys-

tem where the current prototype is running at Alfheim sta-
dium in Tromsø. This system has been presented before [4,
3], but without the possibility to automatically zoom and
pan into a high-resolution panorama tracking selected ob-
jects.

The relevant part of the system in this context is divided
into a panorama generation part, the object-tracking part
and a video delivery part. The delivery side of the system
supports both user-controlled interactive and automatically
tracking virtual cameras. A sketch of our system is given in
figure 1, and in the subsections below, we give more details
of the different components of our system.

2.1 Real-time Panorama Video Capture
To generate a live panorama video, we use two 2K Basler

industry vision cameras each of resolution 2046 × 1086 pix-

725

els along with 8 mm lenses. The cameras are shutter syn-
chronized using our custom trigger solution. A recording
machine grabs the frames, aligns them and stitches into a
cylindrical panorama. The system automatically avoids ef-
fects due to parallax by finding dynamic seams that do not
pass through moving objects.

Furthermore, to capture the entire soccer field, we use
the same Basler cameras. To maximize the panorama res-
olution, the cameras are rotated by 90°, giving a panorama
video of 4450x2000. Moreover, the cameras are mounted in
a circular pattern. This means that they are pitched, yawed
and rolled to look directly through a point 5 cm in front
of the lenses reducing the parallax effects, and the capture
system also dynamically determines the required exposure
depending on changing light conditions. After the genera-
tion of the panorama video, it is encoded and compressed
using x264. At the moment, with a focus on video qual-
ity, the system still demands a large network bandwidth to
the full resolution panorama video. However, there are large
potentials for trading of quality for lower bandwidth require-
ments.

2.2 Live object tracking
In the current setup, the object tracking module is a

stand-alone program to support later improvements like dis-
tributed processing and multi-sensor fusion. The current
tracker is a relatively simple tracking by detection. The ma-
jor requirement is to be able to track objects introduced or
disappeared during the process.

First, an adaptive background subtraction is performed,
where the background is updated at regular intervals. Then,
color-thresholding followed by object detection leads to a
position of objects of different color. Once the positions for
a video segment are succesfuly found, the position data is
made available to the viewer which is described next. Even
though this process currently shares the same resources as
the stitching process, tracking is acheived with an average
execution time of 7 ms per frame.

2.3 Live Automatic/Manual virtual viewer
Once the panoramic videos are encoded, they are made

available to the client program running the virtual camera
via HTTP segment streaming along with the position data if
available. The client has two modes, an automatic mode and
a manual mode. The manual mode allows the user to inter-
act with the virtual camera, where one can pan/tilt/zoom
manually into the live stream.

More importantly in this demo, the automatic mode fol-
lows a few heuristics to keep the demanded target in the
virtual view yet provide a smooth video. The zoom for the
on-site demo is set to be fixed because of the unknown 3D
structure of the area, whereas in the soccer field the zoom
variable also changes depending on the ball position in the
field.

In addition to the virtual view, a preview window is pre-
sented where the portion of panorama that is being fetched,
corrected for a perspective view and displayed is highlighted.
This preview window proves to be a rather useful feature
when developing the servoing algorithms. In addition, it
also demonstrates that the virtual view is not a simple crop
from the panorama video.

All the processing except for downloading and decoding
the video frame happens on a GPU to utilize the parallel

processing power. The client has been tested on both Mac
and PC with different capabilities. Nevertheless the aver-
age processing time is approximately 12 ms per frame on
commodity graphics hardware.

Cylindrical	 panorama	

Virtual	 camera	

Cylindrical	 panorama	

Virtual	 camera	

Figure 2: The virtual camera is generated from the region
of interest marked in the panorama video. Note that it is
not a simple crop from the bigger video.

3. DEMONSTRATION
In this demo, we present a system for real-time interac-

tive zooming and panning of panorama video. The general
setup is shown in figure 1. We use two types of panorama
input. We use a stored panorama video captured in the
Alfheim soccer stadium, i.e., the European League game be-
tween Tromsø IL and Tottenham Hotspurs. The video was
recorded using five 2K industrial cameras, and processed
and stitched in a distributed system. We also use a live sys-
tem using two 2K cameras on site to generate the panorama
video. Both the stored-video and the live-video demos work
in real-time where the system zooms and pans into tracked
objects, i.e., the ball in the soccer game and people wearing
colored hats in the live panorame video1.

Acknowledgments
This work has been performed in the context of the iAD cen-
ter for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council.

4. REFERENCES
[1] P. Carr and R. Hartley. Portable multi-megapixel

camera with real-time recording and playback. In Proc.
of DICTA, pages 74–80, 2009.

[2] P. Carr, M. Mistry, and I. Matthews. Hybrid
robotic/virtual pan-tilt-zom cameras for autonomous
event recording. In Proc. of ACM MM, pages 193–202,
2013.

[3] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos,
V. Charvillat, C. Griwodz, and P. Halvorsen.
Interactive zoom and panning from live panoramic
video. In Proc. of ACM NOSSDAV, Mar. 2014.

[4] P. Halvorsen, S. Sægrov, A. Mortensen, D. K.
Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H. K.
Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen. Bagadus: An integrated system for arena
sports analytics – a soccer case study. In Proc. of ACM
MMSys, pages 48–59, Mar. 2013.

[5] O. Schreer, I. Feldmann, C. Weissig, P. Kauff, and
R. Schafer. Ultrahigh-resolution panoramic imaging for
format-agnostic video production. Proceedings of the
IEEE, 101(1):99–114, Jan 2013.

1http://home.ifi.uio.no/vamsidhg/acmdemo.mp4

726

Appendix K

[Demo] Scaling Virtual Camera

Services to a Large Number of

Users

[Authors:] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, D.

Johansen, and P. Halvorsen

[Published:] ACM International Conference on Multimedia Systems (MM-

Sys), 2015.

305

Scaling Virtual Camera Services to a Large Number of
Users

Vamsidhar Reddy Gaddam1,∗, Ragnar Langseth1, Håkon Kvale Stensland1,
Carsten Griwodz1, Dag Johansen2, Pål Halvorsen1

1Simula Research Laboratory & University of Oslo, Norway
2University of Tromsø, Norway

∗vamsidhg@ifi.uio.no

ABSTRACT
By processing video footage from a camera array, one can
easily make wide-field-of-view panorama videos. From the
single panorama video, one can further generate multiple
virtual cameras supporting personalized views to a large
number of users based on only the few physical cameras
in the array. However, giving personalized services to large
numbers of users potentially introduces both bandwidth and
processing bottlenecks, depending on where the virtual cam-
era is processed.

In this demonstration, we present a system that address
the large cost of transmitting entire panorama video to the
end-user where the user creates the virtual views on the
client device. Our approach is to divide the panorama into
tiles, each encoded in multiple qualities. Then, the panorama
video tiles are retrieved by the client in a quality (and thus
bit rate) depending on where the virtual camera is point-
ing, i.e., the video quality of the tile changes dynamically
according to the user interaction. Our initial experiments
indicate that there is a large potential of saving bandwidth
on the cost of trading quality of in areas of the panorama
frame not used for the extraction of the virtual view.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video; I.4.9
[Applications]: Video

General Terms
Experimentation; measurement; performance

Keywords
Interactive immersion; panorama video; zoom, panning; real-
time; virtual camera, video streaming
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

ACM MMSys’15, Mar 18-20, 2015, Portland, OR, USA
ACM 978-1-4503-3351-1/15/03
http://dx.doi.org/10.1145/2713168.2713189.

1. INTRODUCTION
There exist many types of panorama solutions where high-

resolution, wide field-of-view video is captured and streamed
in real-time. For example, in arena sports like soccer, Amer-
ican football and ice-hockey, many game analysis systems
provide camera arrays where individual camera images are
stitched together to cover the entire field. Then, to focus
on parts of the area, it is often desirable to zoom and pan
into the generated video. Figure 1 demonstrates an exam-
ple output of such a system. In this case, a virtual camera
is generated by extracting pixels from parts of the stitched
panorama video allowing individual users to interactively
control an own personalized view. However, these types of
systems also give interesting opportunities for innovation in
broadcasting scenarios where large number of fans and sup-
porters would like to generate their own camera view of the
event.

ADSC workshop – March 2014 University of Oslo

Spatial freedom

Figure 1: The panorama video with the marked region of
interest is shown together with the generated virtual camera,
emphasizing that the extracted area is not a simple crop
from the high-resolution panorama video. It is generated by
a perspective reprojection and hence we cannot achieve it
by a simple rectangular cropping.

We have earlier described the Bagadus system [8, 15] gen-
erating panorama videos of a soccer stadium in real-time.
Additionally, we have presented how individual users can
be his own cameraman [5, 6] by extracting a zoomed and
panned video from the panorama video, for example fol-
lowing a particular player. Here, the system streamed the
cylindrical panorama video to the remote clients which ex-
tracted a perspective-corrected camera view on the client
side. However, popular soccer games often attract millions
of concurrent users. For example, during the 2014 FIFA

93

World Cup in Brazil, the web player and app had during
the 56 games streamed video to about 24 million unique
users [4]. If we additionally take into account the potential
number of TV viewers, e.g., 909.6 million television viewers
tuned in to at least one minute of the 2010 FIFA World Cup
final at home [11], we definitely have a large challenge in pro-
viding real-time virtual camera services in such a scale us-
ing our previous approach of sending the entire, full-quality
panorama to every user.

There are generally two approaches to manage the virtual
camera. The first as we have presented earlier where the
entire panorama is sent over the network and the virtual
view is extracted at the client side. The second alternative
performs the generation of the view from the panorama on
the server side sending only the virtual view video over the
network. Thus, the trade-off on the server-side is between
processing and outgoing bandwidth, and vice-verse on the
client side.

In general, the de facto streaming approach using seg-
mented, adaptive HTTP streaming has proven to scale well.
We have therefore adopted this solution in our system, and
in this demonstration, we present a system where the panorama
video is divided into tiles, i.e., each encoded in multiple qual-
ities (and thus bit rate). Then, the panorama video tiles are
retrieved by the client in a quality depending on the cur-
rent position and the behaviour of the virtual camera, i.e.,
the video quality of the tile changes dynamically according
to the user interaction, and the panorama is restored on
the client side with different qualities in different areas of a
frame.

Our initial experiments indicate that there is a large po-
tential for saving bandwidth on the cost of trading quality
in areas of the panorama frame not used for the extraction
of the virtual view. The proposed demonstration therefore
shows how the client performs and how the quality of the
extracted view and the panorama video changes when the
virtual camera moves to another region of interest.

2. THE COSTS OF VIRTUAL VIEWS
We have earlier presented our approach for generating the

high resolution cylindrical panorama videos in real-time [8].
We have also demonstrated that these video can be used to
generate individual personalized virtual views of the game [5].
When it comes to delivering video to the client, we have
explored two possibilities with respect to creating virtual
views.

Our initial approach is to transfer the entire panoramic
video and generate the virtual views on the client. This gives
cheap processing requirements on the server-side at the cost
of very high bandwidth requirements. In our example sys-
tem installed at Alfheim stadium, the average size of each
25-fps 3-second segment of the the 4096 × 1680 panorama
video is approximately 2.1 MB1, i.e., the bandwidth require-
ment for each client becomes about 5.7 Mbps merely for the
transfer of the panorama video, and in future systems, a
much higher resolution panorama is desirable. Then, after
the panorama is successfully transferred, the client needs to
process it so that a virtual view can be extracted. Earlier
we demonstrated that this can be accomplished in real-time
on commodity graphics hardware [5], and figure 2 demon-

1This number depends on the lighting and weather condi-
tions, but the given number works well as an example.

strates the performance as a function of output resolution.
These values are computed for extraction of virtual view on
a GPU. Thus, the bandwidth requirement is quite high, but
processing wise, the client devices manage the load.

Figure 2: Execution times for various sizes of virtual camera
on GTX 460

An alternative approach is to generate the virtual views on
the server and only stream the generated virtual view video
to the client. Thus, in this approach, the reprojection is
performed on the server side. This approach requires noth-
ing more than a browser that is capable to play a video on
the client device, i.e., it severely reduces the computational
load and the bandwidth requirements on the clients. How-
ever, the processing costs on the server-side are huge, and
it quickly becomes a large bottleneck as not only must we
generate the virtual view, but we must also encode the video
for compression. We have made a few experiments using the
second generation hardware from Nvidia [14]. Our experi-
ments show that the GeForce GTX 750 Ti GPU can encode
16 full HD video streams at 30 frames per seconds [14]. Ex-
periments showed that this was the limiting factor in how
many unique views we could create in real-time. This im-
plies that if we want to provide a service to say 100,000 con-
current users, we would require a cluster totaling to about
6,250 GPU devices. Such an initial installation costs at the
time of writing about 937,500 USD merely for the GPUs.

Owing to the challenges mentioned above, no straight for-
ward solution is going to work well for scaling our system to
large numbers of concurrent users. However, as the HTTP
streaming solutions have proved to scale well from a sending-
side point of view using for example CDNs, we have looked
at solutions for the first approach – client side generated
virtual views.

3. SYSTEM OVERVIEW
Based on the decision in the previous section, the chal-

lenge is to reduce the cost of streaming a complete panorama
video to every users. In this respect, researchers in the mul-
timedia community have for some time analyzed region-of-
interest streaming solutions. For example, tiling is discussed
in [3, 2, 7, 12, 13, 16, 18]. Furthermore, [1, 10, 17, 19] exten-
sively address the problem of automatically generating per-
sonalized content, and [9] discusses plain cropping. However,
our target is a large scale solution scaling the delivery using
modern HTTP streaming where each user independently in-
teracts with the system to have a personalized view using
zoom, pan and tilt, i.e., the entire panorama must be re-
trieved and the quality of the tiles are based on the per user
interaction.

94

Similar to many other approaches, our solution is based
on dividing the panorama into tiles as shown in figure 3,
each encoded as an adaptive HTTP stream using for ex-
ample HLS. A client retrieves segments in as high quality
as possible for segments being used for the virtual camera,
and the rest of the tiles are retrieved in decreasing lower
quality depending on the distance to the edge of the virtual
camera image. In contrast to for example [16] retrieving
only tiles in the region of interest, we need to retrieve all
tiles since the virtual camera moves and at least low quality
data needs to be available if the user zooms out or moves
quickly. Another difference is that the tiles fetched do not
follow a strict logic apart from being in the neighborhood
of the current tile. In [18], for instance, all the tiles are
being fetched, but the reduction in quality is reflected by
salience. Moreover, the non-linear nature of a panorama-
virtual view transformation introduces further complexities
in the approach. For example, in figure 3 it can be seen that
the collection of required tiles do not form any simple shape
like a rectangle or a square, e.g., as used in [9]. This poses
different challenges than the ones that are being tackled in
for example [12] where the panning and tilting corresponds
to strictly navigating the panorama along the horizontal and
vertical directions respectively. Such an approach adds com-
plexity on the tile retrieval strategy as the quality adaption
strategy not only must take into account available network
bandwidth and client device resources (as usually done for
one stream), but it must also coordinate the tile qualities
according to the dynamic position of the virtual camera.

Figure 3: Example of panorama tiling (320x256px)

4. EVALUATION

Cutting Edge 2014

Bandwidth challenge: tiling approach

57 kbps 189 kbps 684 kbps

Figure 4: Tiles in different quality

Above, we said that the full quality panorama video re-
quired about 5.6 Mbps. If we divide the panorama in 8 × 8

tiles as shown in figure 4 with the given tile qualities (and bi-
trates), a complete full-quality panorama requires 8.6 Mbps
due to the loss of compression across tile boundaries. How-
ever, if the user zooms as shown in the figure requiring only
full quality for 10 of the tiles (the colored tiles used for the
virtual view), the respective bandwidth requirements of the
panorama decreases to 3.2 and 2.0 Mbps when using the
middle and low quality for rest of the tiles (gray).

Figure 5 shows an example of how our virtual viewer
works. It can be observed that the virtual view presents
no loss in quality. However, the parts of panorama that are
not being shown in the virtual view are fetched in the low-
est possible quality. This phenomenon is quite evident in
the preview image.

Figure 5: An example of a multi quality tiled-panorama and
the virtual view that is extracted from it. The quality of the
panorama is quite poor in the areas that are not being shown
to the user. However if the user decides to pan quickly, she
still gets a reliable low quality video instead of a black patch.

Such a system comes with a rather interesting trade-off
with respect to the segment size. A segment of 3 seconds
compared to 3 segments of 1 second each has a certain ad-
vantage in the encoded file-size due to the reduction in the
number of I-frames. However, the segment size also deter-
mines how quickly a tile can change it’s quality. Our initial
experiments showed that this trade-off is an interesting one
to study. Since the virtual camera moves, it is hard to see
the differences of lower quality tiles if the levels are not too
far apart. However, the user interaction with in a 3-second
period can be assumed completely random and it cannot
benefit from the predictive model as much as a 1-second
segment could.

5. DEMONSTRATION
In this demo2, we present a system for real-time interac-

tive zooming and panning of panorama video using video
from real-world installations in two Norwegian soccer sta-
diums. We show how the quality changes of different parts
of the panorama video when moving the virtual camera.

2http://home.ifi.uio.no/vamsidhg/mmsysDemo

95

We also show that if there are large differences between the
quality layers, reduced quality is noticeable when quickly
moving the virtual camera, but if the layers are carefully
selected, but still saving bandwidth, it might be hard to see
the quality differences due to the view movement. Thus, the
tiling approach has potential to greatly reduce the required
bandwidth of a scenario where every user is his or her own
cameraman [6].

Acknowledgments
This work has been performed in the context of the iAD cen-
ter for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council.

6. REFERENCES
[1] N. Babaguchi, Y. Kawai, and T. Kitahashi. Generation

of personalized abstract of sports video. In Multimedia
and Expo, 2001. ICME 2001. IEEE International
Conference on, pages 619–622, Aug 2001.

[2] F. Chen and C. De Vleeschouwer. Personalized
production of basketball videos from multi-sensored
data under limited display resolution. Comput. Vis.
Image Underst., 114(6):667–680, June 2010.

[3] E. Foote, P. Carr, P. Lucey, Y. Sheikh, and
I. Matthews. One-man-band: A touch screen interface
for producing live multi-camera sports broadcasts. In
Proc. of ACM MM, pages 163–172, 2013.

[4] Fédération Internationale de Football Association.
2014 FIFA World Cup breaks online streaming
records. http://www.fifa.com/aboutfifa/organisation/-
news/newsid=2401405/,
2014.

[5] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos,
V. Charvillat, C. Griwodz, and P. Halvorsen.
Interactive zoom and panning from live panoramic
video. In Proc. of ACM NOSSDAV, pages
19:19–19:24, 2014.

[6] V. R. Gaddam, R. Langseth, H. K. Stensland,
P. Gurdjos, V. Charvillat, C. Griwodz, D. Johansen,
and P. Halvorsen. Be your own cameraman: Real-time
support for zooming and panning into stored and live
panoramic video. In Proc. of ACM MMSys, pages
168–171, 2014.

[7] R. Guntur and W. T. Ooi. On tile assignment for
region-of-interest video streaming in a wireless LAN.
In Proceedings of the 22nd international workshop on
Network and Operating System Support for Digital
Audio and Video - NOSSDAV ’12, page 59, New York,
New York, USA, 2012. ACM Press.

[8] P. Halvorsen, S. Sægrov, A. Mortensen, D. K.
Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H. K.
Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen. Bagadus: An integrated system for
arena sports analytics – a soccer case study. In Proc.
of ACM MMSys, pages 48–59, Mar. 2013.

[9] R. Heck, M. Wallick, and M. Gleicher. Virtual
videography. ACM Transactions on Multimedia
Computing, Communications, and Applications,
3(1):4–es, Feb. 2007.

[10] R. Kaiser, M. Thaler, A. Kriechbaum, H. Fassold,
W. Bailer, and J. Rosner. Real-time person tracking in

high-resolution panoramic video for automated
broadcast production. In Proc. of CVMP, pages
21–29, 2011.

[11] KantarSport. 2010 FIFA World Cup South Africa -
Television Audience Report.
http://www.fifa.com/mm/document/affederation/tv/-
01/47/32/73/2010fifaworldcupsouthafrica-
tvaudiencereport.pdf,
2010.

[12] A. Mavlankar and B. Girod. Video streaming with
interactive pan/tilt/zoom. In M. Mrak, M. Grgic, and
M. Kunt, editors, High-Quality Visual Experience,
Signals and Communication Technology, pages
431–455. 2010.

[13] K. Q. M. Ngo, R. Guntur, and W. T. Ooi. Adaptive
encoding of zoomable video streams based on user
access pattern. In Proceedings of the second annual
ACM conference on Multimedia systems - MMSys ’11,
page 211, New York, New York, USA, 2011. ACM
Press.

[14] NVIDIA. NVIDIA - NVIDIA hardware video encoder.
http://developer.download.nvidia.com/compute/

nvenc/v4.0/NVENC_AppNote.pdf, 2014.

[15] S. Sægrov, A. Eichhorn, J. Emerslund, H. K.
Stensland, C. Griwodz, D. Johansen, and
P. Halvorsen. Bagadus: An integrated system for
soccer analysis (demo). In Proc. of ICDSC, Oct. 2012.

[16] A. Shafiei, Q. M. K. Ngo, R. Guntur, M. K. Saini,
C. Pang, and W. T. Ooi. Jiku live. In Proceedings of
the 20th ACM international conference on Multimedia
- MM ’12, page 1265, New York, New York, USA,
2012. ACM Press.

[17] X. Sun, J. Foote, D. Kimber, and B. Manjunath.
Region of interest extraction and virtual camera
control based on panoramic video capturing. IEEE
Transactions on Multimedia, 7(5):981–990, 2005.

[18] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan.
Mixing tile resolutions in tiled video: A perceptual
quality assessment. In Proceedings of Network and
Operating System Support on Digital Audio and Video
Workshop, NOSSDAV ’14, pages 25:25–25:30, New
York, NY, USA, 2013. ACM.

[19] R. Xu, J. Jin, and J. Allen. Framework for script
based virtual directing and multimedia authoring in
live video streaming. In Multimedia Modelling
Conference, 2005. MMM 2005. Proceedings of the 11th
International, pages 427–432, Jan 2005.

96

