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Abstract-English
Recent advancements in technology have made artificial intelligence (AI) a popular tool in

the medical domain, especially machine learning (ML) methods, which is a subset of AI.

In this context, a goal is to research and develop generalizable and well-performing ML

models to be used as the main component in computer-aided diagnosis (CAD) systems.

However, collecting and processing medical data has been identified as a major obstacle

to produce AI-based solutions in the medical domain. In addition to the focus on the

development of ML models, this thesis also aims at finding a solution to the data deficiency

problem caused by, for example, privacy concerns and the tedious medical data annotation

process.

To accomplish the goals of the thesis, we investigated case studies from three differ-

ent medical branches, namely cardiology, gastroenterology, and andrology. Using data

from these case studies, we developed ML models. Addressing the scarcity of medical

data, we collected, analyzed, and developed medical datasets and performed benchmark

analyses. A framework for generating synthetic medical data has been developed using

generative adversarial networks (GANs) as a solution to address the data deficiency prob-

lem. Our results indicate that our generated synthetic data may be a solution to the

data challenge. As an overarching concept, we introduced the DeepSynthBody as a basis

for structured and centralized synthetic medical data generation. The studies presented

in the thesis, such as generating synthetic electrocardiograms (ECGs), gastrointestinal

(GI)-tract images and videos with and without polyps, and sperm samples, showed that

DeepSynthBody can help to overcome data privacy concerns, the time-consuming and

costly data annotation process, and the data imbalance problem in the medical domain.

Our experiments showed that our generative models generate realistic synthetic data pro-

viding comparable results to experiments using real data to tackle the identified problems.

The final DeepSynthBody framework is available as an open-source project that allows

researchers, industry, and practitioners to use the system and contribute to future devel-

opments.
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Abstract-Norwegian

Teknologiske fremskritt har gjort kunstig intelligens til et populært verktøy innen me-

disin. Spesielt metoder innen maskinlæring, en underkategori av kunstig intelligens, er

mye brukt. Et mål i denne fobindelse er å utvikle gode, generaliserbare modeller for

bruk i systemer for datamaskinassistert-diagnose, men en stor utfordring her er innsam-

ling og behandling av medisinske data p̊a grunn av for eksempel personvernhensyn og

kostbare annoteringsprosesser. Denne oppgaven fokuserer derfor b̊ade p̊a utvikling av

maskinlæringsmodeller og å finne en løsning p̊a problemet med manglende medisinske

data.

For å n̊a oppgavens mål har vi undersøkt tre forskjellige medisinske eksempler, nem-

lig kardiologi, gastroenterologi og andrologi. Ved hjelp av data fra disse medisinske

omr̊adenehar vi utviklet maskinlæringsmodeller. For å løse mangelen p̊a medisinsk data,

har vi samlet inn, analysert og utviklet medisinske datasett, og vi har utført referanseanal-

yser. I tillegg, et rammeverk for generering av syntetiske medisinske data er utviklet ved

hjelp av “generative adversarial networks” for å løse problemet med datamangel, hvor

resultatene v̊are indikerer at slike genererte data kan være en mulig løsning. Som et

overordnet konsept introduserer vi DeepSynthBody som grunnlag for strukturert og sen-

tralisert generering av syntetisk medisinsk data. Studiene presentert i oppgaven, slik

som generering av syntetiske elektrokardiogram, bilder og videoer fra tarmsystemet og

sædprøver, viser at DeepSynthBody kan bidra til å overvinne personvernproblemer, re-

dusere tid og ressursbruk innen dataanmerkingsprosessene, og utjevne problemene med

data ubalanse innen det medisinske domenet. V̊are eksperimenter viser at vi kan generere

realistiske syntetiske data som gir sammenlignbare resultater med eksperimenter hvor

man bruker reelle data. Det endelige DeepSynthBody-rammeverket er tilgjengelig som et

åpent kildekode-prosjekt som gjør det mulig for b̊ade forskere og industri å bruke systemet

og å bidra til fremtidig utvikling.
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Chapter 1

Introduction

“The data-driven world will be always on, always tracking, always monitor-

ing, always listening and always watching – because it will be always learn-

ing”(Rydning [1]).

Artificial intelligence (AI) has become a popular tool in most of the leading industries,

for example, financial service [2, 3], manufacturing [4, 5], media and entertainment [6, 7],

transportation [8, 9], and healthcare [10, 11]. As a result, AI interacts more closely with

the day-to-day life of people. While AI has many definitions, the main goal of AI today is

to enable faster, more reliable, and more accurate data analysis. Additionally, AI applies

to tasks that humans cannot proceed with, such as operations in space, in deep oceans,

or deep underground. These AI applications are successful due to improvements in ma-

chine learning (ML) algorithms [12] used in AI, particularly deep learning (DL) [13], and

tremendous advances in computational hardware running the compute-heavy ML algo-

rithms, such as deep neural networks (DNNs). Despite such advancements, the algorithms

need data to learn. The limited availability of data to train the ML algorithms [14, 15] is

crucial in developing successful AI solutions in all domains. The interconnections between

the terminology, AI, ML, and DL used in this section are depicted in Figure 1.1.

With the success of applying AI as a tool in the leading industries, using AI in the med-

ical domain has received more attention in the recent decade, such as the news headings1

and quotes2 about AI and medicine presented in Figure 1.2. The news shows contradic-

tory ideas about AI in medicine, such as some believe that AI will replace human doctors

1https://futurism.com/ai-medicine-doctor
2https://news.harvard.edu/gazette/story/2020/11/
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Chapter 1. Introduction

Machine Learning
(ML)
"Machine learning is a branch of
artificial intelligence (AI) and
computer science which focuses
on the use of data and algorithms
to imitate the way that humans
learn, gradually improving its
accuracy" 

Artificial
Intelligence (AI)
"Artificial intelligence
leverages computers and
machines to mimic the
problem-solving and
decision-making
capabilities of the human
mind"

Deep Learning
(DL)
Deep learning is a subset of
ML. They attempt to
simulate the behavior of the
human brain-allowing it to
"learn" from large amounts
of data.

Figure 1.1: Definitions [16] and relations between AI, ML and DL.

and others believe that AI will “just” become a supportive tool for human doctors. Nev-

ertheless, it seems like many believe that AI will become more popular in the coming

years. Thus, applying AI in medicine is important because it may directly affect humans’

personal lives, and successful medical systems directly correlate with life expectancy and

quality. Therefore, producing AI systems with reliability and integrity is important in the

medical domain. To understand applying AI in medicine for developing computer-aided

diagnosis (CAD) systems, we should understand the complete medical AI pipeline. A

simplified version of this pipeline is depicted in Figure 1.3 with four steps: (I) collecting

data, (II) annotating data using experts, (III) applying ML methods, and (IV) final prod-

uct and explainable artificial intelligence (XAI). These four steps are discussed further in

the next section.

1.1 Background and Motivation

AI-based solutions are used in the medical domain for different purposes, such as to

develop treatment protocols, drugs, personalized medicine, patient monitoring systems,

robotics, and diagnosis processes [11]. Among these, AI-based diagnosis processes or CAD

systems [17] got more attention from AI researchers. CAD systems aid doctors as the

“second opinion” to finalize decisions.

6



1.1. Background and Motivation

Figure 1.2: Some quotes and headings about AI and medicine in news articles

In this regard, we started to research ML-based solutions for CAD systems by following

the above four steps pipeline to help medical experts more correctly and efficiently detect

anomalies in medical data from real examinations to save lives ultimately. The goals were

to both address large miss-rates [18, 19, 20] and observer variations [21, 22]. The process of

researching and developing ML solutions is presented using Step III (Figure 1.3). However,

we soon realized a considerable lack of medical data to develop good ML models in the

domain for various reasons, increasing the importance of the first two steps in Figure 1.3.

Therefore, we have studied how datasets should be collected, composed, and published

7



Chapter 1. Introduction

Collecting data Annotating data
using experts

Applying
machine learning

methods

Final product and
XAI

Figure 1.3: The main four steps of applying ML solution in the medical domain.

as open datasets. Within the three years of Ph.D. time, a total of seven datasets [23,

24, 25, 26, 27, 28, 29] were successfully collected and published. Medical experts have

labeled or annotated data (Step II) in these datasets, but not all the datasets because the

annotation process is costly and time-consuming. For example, our gastrointestinal (GI)-

tract dataset [23] has labeled images and pixel-wise annotated polyp images performed

by experienced colonoscopists. However, the biggest part of the GI-tract dataset is still

unlabelled data because of the costly and time-consuming data annotation process. We

analyzed three branches in medicine, gastroenterology, andrology, and cardiology in parallel

to the data collection process. The main motivation for choosing different domains was

to show that our methods can work on different problems (are generalizable) and to

produce ML-based CAD solutions to help experts by providing more efficient and accurate

automated assistance for their tasks.

The gastroenterology branch investigated classification models [30, 31, 32, 33, 34] to

classify GI-tract findings and segmentation models [35, 36] to segment polyp regions.

When producing these ML solutions, we identified that generalizability is one of the main

issues for classification and segmentation due to the lack of labeled and annotated data to

train ML models. The classification models introduced in our studies [30, 31] showed good

performance when the validation and testing data are a subset of the same dataset used to

prepare the training dataset. However, the performance of the best models showed poor

performance for completely new datasets collected from different hospitals. The problem

was caused as a result of the over-fitting [37]. In addition to the data bias problem, we also

identified that an imbalanced number of images of different classes makes less accurate

ML models. Detailed discussion on this issue can be found in [31], where we analyzed

and experimented with different datasets. Similar to the classification models, polyp

segmentation models show poor performance due to small datasets to train segmentation

models. We tried to solve the problem by introducing a novel data augmentation method

8



1.1. Background and Motivation

called PYRA3 [36] and a novel segmentation model called DivergentNets [35]. However, we

had only small datasets to train segmentation models compared to the training datasets

used in classification models. Due to the time-consuming and costly pixel-wise image

annotation process, researchers or data providers usually provide only small segmentation

datasets for medical image segmentation tasks. The medical image annotation process

is more challenging than the general image annotation process because experts of the

specific medical domain should perform these manual segmentations or review them.

These experts are often rare or do not have much time.

In addition to providing ML solutions in gastroenterology, we have investigated ML

solutions [38, 39, 40] to predict motility and morphology level of sperm samples which

are videos recorded using microscopic analysis. These research works are considered un-

der the andrology branch. The proposed models show acceptable performance, but those

performance values were insufficient to use the solution practically. By researching ML

solutions to predict motility and morphology levels of sperm samples, we identified a

possibility of improving our models if we could prepare pixel-wise annotated datasets to

perform segmentation before predicting morphology and motility levels. However, per-

forming pixel-wise annotations for a sperm-like medical dataset is a complicated problem

for experts because of having hundreds of sperms in a single frame of the dataset. A

possible solution is annotating sperms using an unsupervised way and processing those

annotated sperm samples to find motility and morphology levels.

In cardiology, we built an electrocardiogram (ECG) analysis system [41] using ML

models to predict the properties of ECGs. This experiment used a big ECG dataset to

train the ML models and showed that the ML models could outperform experts’ analyses.

Unfortunately, the dataset used to train our models is a private dataset, and publishing

them to reproduce our solutions is not possible due to privacy concerns. In this context,

we noticed that there should be a way for omitting privacy concerns. In this ECG study,

we have presented an explainable AI mechanism called Grad-CAM [42] to find the most

important regions for DNNs to predict the properties of ECGs. However, we could use

only the explainable methods that do not expose the real dataset to the public because

of privacy concerns. Suppose we have a method to omit and work around the privacy

concerns. In that case, we can use any explainable method which uses the real dataset,

3https://vlbthambawita.github.io/PYRA/
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Chapter 1. Introduction

for example, to explain using examples [43].

The success of AI solutions in medicine is highly dependent on the data to train the

AI algorithms. However, collecting and sharing medical data is harder than other general

data because of the privacy restrictions attached to the medical data. The collection

of medical data (Step I) is presented using the first box in Figure 1.3. If the training

data cannot provide useful information to AI algorithms, the algorithms become less

accurate and generalizable. Therefore, medical data is essential for developing successful

AI solutions. However, medical data collection and preparation are not straightforward.

The unrolled cumbersome internal process of Step I is presented in the first seven steps

depicted in Figure 1.4, as discussed by Willemink et al. [44]. However, following these

steps is a complex task because of privacy concerns such as ethical approval and data

de-identification process, in addition to the data preparation process. Medical data need

post prepossessing because the raw medical data producing from medical instruments

are not designed for sharing. Many research discusses the protection of digital data in a

learning health system [45], the privacy of big medical data [46, 47, 48], and balancing

health data access and privacy [49]. These research discussions show the importance

of considering privacy rules and regulations with health data. As a result, the privacy

restrictions applied with the medical data make the process in Step I harder and slow

down the whole pipeline depicted in Figure 1.3.

The rules and regulations for producing open access medical data vary from country

to country and region to region according to data protection regulations introduced in the

specific regions. For example, Norway should follow the rules given by the Norwegian data

protection authority (NDPA) [50] and enforce the personal data act [51] in addition to

following general data protection regulation (GDPR) [52], which is the common guideline

for European countries. While there is no central level privacy protection guideline in the

US like GDPR in Europe, rules and regulations in the US are coming through other US

privacy laws, such as Health Insurance Portability and Accountability Act (HIPAA) [53]

and California Consumer Privacy Act (CCPA) [54]. In Asian counties, they follow their

own rules country-wise, such as Japan’s Act on Protection of Personal Information [55],

South Korea’s Personal Information Protection Commission [56], and the Personal Data

Protection Bill in India [57]. If researchers can perform research with these privacy re-

strictions, the papers published are often theoretical methods only. As a consequence, the
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Figure 1.4: Medical data preparation process as discussed in [44]
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results of those studies are not reproducible, and fair and correct comparisons between

methods are hard to achieve. All these consequences are due to a lack of available data

and sharing restrictions. Furthermore, universities or other research institutes that use

medical domain data for teaching purposes use the same medical domain datasets for

years, which affects the quality of education. Therefore, data sharing restrictions result-

ing from privacy protocols are identified as one of the main problems and obstacles, and

we have researched to address this challenge in this thesis.

In addition to the privacy concerns, the cost of medical domain experts for extracting

useful information from medical data is another obstacle to producing big datasets, which

are helpful for AI. This stage is presented as the second box in Figure 1.3 and task number

8 in Figure 1.4. For example, to train the most common supervised ML techniques, ground

truth data are needed. In other words, annotated datasets are essential. Because of this

necessity of annotated data, new companies and job opportunities are opened to perform

data annotations for datasets used to train AI algorithms [58, 59]. For example, the pricing

list in Google for annotating datasets is presented in Table 1.1. However, medical data

annotation (or producing ground truth) is not easy as making ground truth for general

datasets. Medical data annotation is more challenging than other general data annotations

because only the experts in the medical domain can perform the annotations fully trustable

in terms of correctness. If the data annotation by experts is impossible, the experts should

do at least a review process to make the annotations trustable before using them in AI

algorithms. The importance of having accurate annotations from experts for medical data

is, for example, discussed by Yu et al. [60] using a mandible segmentation dataset of CT

images. Because only the medical experts can accurately do the medical data annotation

process, the expert annotation process becomes expensive. Additionally, this annotation

process takes considerable time to produce ground truth data precisely [44], consuming

time that clinicians usually rather spend on treating patients.

The third step in Figure 1.3 represents applying ML methods after collecting medical

data and annotating the data using domain experts. However, due to privacy protocols

and the aforementioned complex data retrieval and annotation problems, researchers and

industry, who apply ML solutions for medical data, do not have access to open-access

expert-annotated datasets. Because of this limited data problem, the models become less

reliable [31] (due to poor generalizability) and have fewer functionalities such as limited
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Table 1.1: Google labelling cost (to date: 05-05-2021). [61]

Data type Objective Unit Tier 1 Tier 2

Image

Classification Image $35 $25
Bounding box Bounding box $63 $49
Segmentation Segment $870 $850
Rotated box Bounding box $86 $60
Polygon/polyline Polygon/Polyline $257 $180

Video
Classification 5sec video $86 $60
Object tracking Bounding box $86 $60
Event Event in 30sec video $214 $150

Text
Classification 50 words $129 $90
Entity extraction Entity $86 $60

interpretability [62]. These limitations and our own experience of developing ML models

for CAD systems emphasize the requirement of having an alternative fast track to getting

medical data into the third step (Step III) of applying ML.

The fourth step in Figure 1.3 represents the final stage of producing products using

ML to use in clinical settings. In this stage, explaining the prediction results (XAI) is an

important step because it is the only step in which one can convince doctors to accept

decisions made by ML solutions. Explanation by example is currently a preferred XAI

method by non-experts [63]. Privacy issues can limit these XAI functionalities, such as

explaining DL solutions by examples [64] when the example data is restricted to publish.

In summary, the problems related to collecting and processing medical data can be

identified as a major bottleneck to produce enough open-access medical data for devel-

oping well-performing ML solutions for CAD systems. The privacy concerns with the

medical data and the costly and time-consuming medical data annotation process are two

reasons for the data deficiency problem. In addition, we identified that a lack of true-

positive data compared to true-negative data in the medical domain, giving large class

imbalances, is a problem for producing AI-based systems. In this regard, this thesis focus

on producing well-performing ML models for CAD systems after finding a way to tackle

the data deficiency problem by generating synthetic data using a new concept and the

framework named DeepSynthBody.
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1.2 Research Question and Objectives

The main overall goal of our research is to investigate and develop accurate, generalizable,

and well-performing ML models for CAD systems for biomedical applications assisting

doctors in clinical practice. In this thesis, we have a particular focus on the problems

and challenges coming from medical data. These challenges of collecting and processing

medical data, identifying that the lack of medical data due to, for example, privacy issues,

resource-consuming data annotation processes, and data imbalance problems are major

obstacles for AI-based medical technology research and development. Therefore, we focus

on researching a way to address the data deficiency problem in the medical domain while

researching and developing well-performing and generalizable ML models for CAD systems

for selected three domains as case studies. The overall research question for this study

therefore is:

What are the problems that emerge from data in computer-aided

diagnosis systems, and how can these problems be tackled?

After identifying the research question, we have defined the objectives of this thesis

as follows:

• Main objective: Research and develop ML models which are the main component

of CAD systems for different medical applications, focusing on the problems of

limited availability of biomedical data.

• Sub-objective I: Research and develop ML models for CAD systems to assist

doctors.

• Sub-objective II: Collect, research and develop datasets to develop ML models

for CAD systems for biomedical applications.

• Sub-objective III: Research and develop benchmark analysis with the medical

datasets to identify the problems for producing well-performing ML solutions in the

medical domain.

• Sub-objective IV: Research and develop deep generative adversarial networks

(GANs) that can produce synthetic data to address the data deficiency problem,

the major obstacle for developing medical AI-based solutions.

14
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This thesis has used three different medical case studies for Sub-objective I, Sub-

objective III, and Sub-objective IV. The medical fields chosen are cardiology, gastroen-

terology, and andrology. We chose these three domains since they are diverse from each

other in terms of data. In Sub-objective II, we have introduced additional datasets in ad-

dition to the main three case studies as its main goal is collecting and developing medical

datasets.

1.3 Scope and Limitations

This research was started to developing well-performing and generalizable ML models for

CAD systems to assist doctors. However, the early identification that the medical data

is a major obstacle for developing ML models, solving the data deficiency problem in

the medical domain became another objective of this thesis. Therefore, in this thesis,

two major development streams can be seen. One is developing ML models for CAD

systems, and one is researching and developing GANs to overcome the data deficiency

problem. As the main finding of this thesis, we could introduce a novel concept and the

framework based on GANs to tackle the data deficiency problem. The framework has

been demonstrated with a few selected case studies as a proof of concept. However, the

novel concept and the framework are not limited to the presented case studies. All other

possible research areas using our concept and framework are discussed in the future work

section.

In this thesis, three types of datasets were used. In particular, we have used ECG

signals, GI images, and a sperm video dataset as case studies that cover three different

medicine branches: gastroenterology, andrology, and cardiology. These three datasets

were selected because they were the initial studies used to develop ML models for CAD

systems. Additionally, the same datasets were used as proof of concept to demonstrate

the potentials of the new concept and the framework introduced as a solution to the

data deficiency problem in the medical domain. It is worth mentioning that the new

concept is also developed as a big open-source project planning to have contributions

worldwide. Therefore, all the case studies and experiments were performed just to prove

the new concept. The ECG dataset covers biomedical signal data in the selected case

studies, while the GI image datasets cover biomedical images. The sperm dataset is
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related to medical video data as well as medical images. In addition to time restriction,

the scope of this study is limited to selected data formats such as one-dimensional (1-D),

two-dimensional (2-D), and three-dimensional (3-D) because of limited access to other

types of medical data such as magnetic resonance imaging (MRI), which are considered

four-dimensional (4-D) with a temporal dimension.

The proposed concept consists of a four-step pipeline. These are collecting real data

and analysis, developing generative models, generating synthetic data, and explainable

DeepSynth AI and DeepSynth Explainable AI. While the thesis covers the first three, the

most important steps, data handling, applying GANs, and producing synthetic data via

the end functionalities, the last step of researching explainability is not investigated due to

time limitations and is regarded as an important future research direction. Additionally,

we have published an online platform for the concept. This online platform will be changed

in the future as a result of improvements over time.

1.4 Research Methodology

In computer science, it is harder to practice traditional research methodology followed

by classic sciences as described by Dodig-Crnkovic [65] because computer science can be

identified as a combination of various scientific disciplines. In sciences, we can identify

three paradigms, theory, abstraction, and design [66]. Generally, the theory is for math-

ematical sciences. The abstraction or modeling is for natural sciences. The design or

experimentation is for engineering. However, it is not easy to explicitly map computer

science for one of these three paradigms. While these three are inseparable from computer

science, they are distinct from each other. Therefore, we define this thesis work in each

of the above paradigms as follows.

• Theory: Major elements of the theory of the concept introduced in this thesis

consist of the major theories related to AI presented in the report [66] produced by

ACM and IEEE task force. This report has introduced four steps to developing a

coherent, valid theory in any science. They are:

1. Characterize objects of study (definition).

2. Hypothesize possible relationships among them (theorem).
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3. Determine whether the relationships are true (proof).

4. Interpret results.

In this regard, we have introduced our main objective and four sub-objectives to

research ML models for CAD systems in the medical domain and a novel concept to

overcome the data deficiency problem. We hypothesize that generative models can

generate synthetic data to overcome the data deficiency problem of developing ML

models in the medical domain. Using three different case studies, we have presented

the performance of our ML models. Moreover, using the same case studies, we

proved how to use GAN-generated synthetic data to solve the data obstacles in the

medical domain.

• Abstraction (modeling): is defined based on the experimental scientific meth-

ods. In the ACM report, they have described four stages for investigations of phe-

nomenons such as:

1. Form a hypothesis.

2. Conduct a model and make a prediction.

3. Design an experiment and collect data.

4. Analyze results.

According to this modeling paradigm, deep generative models can be identified as

the main component of modeling our hypothesis. Under different medical data

formats, we analyzed generative models and collected synthetic data. To find the

best generative models for generating synthetic data, we have studied them qualita-

tively and quantitatively using experimental prototypes. Not only deep generative

models, but we have also experimented with baseline experiments and benchmark

experiments, which were performed to develop experimental prototype ML models

for CAD systems.

• Design: In this paradigm, four stages can also be identified to build a system to

solve a specific problem. They are

1. State requirements.

2. State specifications.
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3. Design and implements the system.

4. Test the system.

The medical data was identified as a key requirement to research and design well-

performing ML models for CAD systems. Therefore, we collected real medical

datasets and developed synthetic medical datasets. Then, we designed ML models

using the real medical datasets and the synthetic medical datasets. Moreover, a

complete framework to generate synthetic data in the medical domain was intro-

duced and implemented. We have tested our ML models and GANs introduced in

the framework using three different case studies.

1.5 Contributions

The research in this thesis contributes to medical AI technology aimed to assist clinicians

in their daily work, improving the quality of the health care systems. We started to

research and develop ML models for CAD systems using small existing datasets and col-

lecting our medical datasets, where the developed models performed very well. However,

the major challenge identified was the data deficiency problem, where dataset develop-

ment was cumbersome due to various reasons. This challenge then becomes the major

challenge addressed in this thesis while still developing ML models.

In particular, in this thesis, four sub-objectives were introduced to accomplish the

main objective, which aims to develop ML models for CAD systems to assist doctors in

improving the efficiency of diagnosis. These four sub-objectives were initiated to develop

well-performing ML models and solve the data deficiency problem of the current applied

machine learning pipeline used in the medical domain, as depicted in Figure 1.3. We

started researching and developing ML models for CAD systems to achieve Sub-objective

I. Then, in Sub-objective II, collecting data was initiated after finding that data is an

important factor for achieving Sub-objective I. Then, the performing benchmark experi-

ments are mainly used to achieve Sub-objective III to study the medical datasets to un-

derstand the related problems to research and address in Sub-objective IV. Sub-objective

IV was achieved by experimenting and investigating GANs to generate synthetic data to

overcome the data deficiency problem in the medical domain. Figure 1.5 shows all the

contributions via these four sub-objectives and the main objective. Some contributions
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Paper I
Paper II
Paper III
Paper IV
Paper V
Paper VI
Paper VII
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Paper IX
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Paper XVI
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Paper XXVII

Paper XX
Paper XXI
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Figure 1.5: Paper-wise contribution to all objectives.

can be identified through two or more objectives, while all the contributions are directly

attached to achieve the main objective.

The following bullet points show all contributions to sub-objectives and the main ob-

jective. These contributions include dataset papers, ML-based CAD models or benchmark

papers, and GAN-related papers can be found. The dataset paper, HyperKvasir [23]4,

got much attention from the research community within a short period because of the

richness of data diversity. Not only that, the results of most benchmark papers were

within the top 5%. For example, we won 1st place for the EndoCV grand challenge5

2021. Similarly, GAN-based experiments also became popular within a short period in

the research community because of the competitiveness of the presented qualitative and

quantitative results of novel methods used to generate synthetic data. For example, The

DeepFake ECG paper was read by many people within a few days after publishing the

4https://www.nature.com/articles/s41597-020-00622-y/metrics
5https://endocv2021.grand-challenge.org/
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pre-print, and it became a part of news heading about recent developments of interests

in cardiovascular medicine6. The following section discusses all the contributions toward

the objectives of this thesis. The main objective is discussed at the end of the following

list to emphasize how sub-objectives contribute to accomplishing the main objective.

• Sub-objective I: The main focus of this sub-objective is to research and develop

well-performing ML models for CAD systems to assist doctors. As case studies,

we have selected three branches of medicine. These are cardiology, gastroenterol-

ogy, and andrology. In gastroenterology, images collected from colonoscopies were

the main data stream to apply ML algorithms which are the core algorithms in

CAD systems. In different timeline stages, several classification models [30, 31] and

segmentation models [35, 36] were researched and implemented for the gastroenterol-

ogy branch under this thesis. In addition to real data, we used synthetic data with

segmentation models [67] to predict polyps in GI-tract data. Similarly, ML-based

regression models were investigated and developed for the andrology branch [38, 39,

40, 68]. For the cardiology branch, an ML-based ECG analysis system [41] was re-

searched and implemented. Moreover, all the dataset papers [23, 24, 25, 26, 27, 28,

29] introduced ML models as baseline experiments which can be considered initial

models for developing CAD systems.

• Sub-objective II: The main task of this sub-objective is to collect and produce

medical datasets, which is identified as the main bottleneck for developing ML-

based CAD systems. Moreover, these datasets are the main assets for initiating

the novel concept and the corresponding framework, DeepSynthBody, introduced in

this thesis. Different types of real medical datasets [23, 24, 25, 26, 27, 28, 29] were

collected and published to the research community with the baseline experiments

under this thesis to accomplish the sub-objective I. All the datasets contribute to

designing ML models for CAD systems (sub-objective I) because of the baseline

experiments introduced in every dataset paper.

In addition to our datasets, two additional datasets were used from outside of the

dataset contributions. One is an ECG dataset, which is a private medical signal

dataset. The second one is a sperm dataset [69] which represents sperm video data.

6https://www.medpagetoday.com/cardiology/
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The additional datasets were selected to design ML models for CAD systems in

completely two different branches: cardiology and andrology. At the end of the

thesis, we showed using synthetic datasets to overcome the data deficiency problem.

These synthetic datasets consist of a synthetic ECG dataset [70], a synthetic GI-

tract landmark dataset [71] and, a synthetic polyp dataset [67] generated using

the GAN models introduced as a result of our new concept and the corresponding

framework.

• Sub-objective III: Initially, we focused on designing generalizable ML models,

which are the core of CAD systems to achieve Sub-objective I. Later, we identified

that the medical data deficiency in training ML models should be tackled. We have

performed benchmark analyses with selected three medical datasets to investigate

the data-related problems and investigate them. As a result, a set of benchmark

articles for the selected datasets as case studies were published to achieve the bench-

mark analysis objective (Sub-objective III). These benchmark analyses helped to

identify the problems of designing ML models. Additionally, these benchmark ex-

periments give preliminary knowledge about medical datasets, which we will use to

generate synthetic data to achieve Sub-objective IV. Different types of quality con-

trol benchmark analysis with the GI-tract data [32, 33] were performed to support

this objective. Moreover, we can consider the ML models [30, 31, 36, 35] introduced

in Sub-objective I as benchmark analysis studies for Sub-objective III because they

are correlated with each other. Similarly, the ECG analysis [41] and sperm anal-

yses [38, 39, 40, 68] experiments were considered benchmark analyses to identify

data-related problems to address using synthetic data. Without having benchmark

analysis or baseline experiments, it is not recommended to researching GANs for

the new framework because data problems related to a medical dataset cannot be

identified without benchmark analysis. We have also performed benchmark analysis

with synthetic data [67, 72, 73] to identify the usability of synthetic data instead of

real medical data.

• Sub-objective IV: Research and developing GANs is the core of the DeepSynth-

Body concept [71] (www.deepsynthbody.org) proposed as a solution to the data

deficiency problem identified and investigated in this thesis. We started investigat-

ing possibilities of using GANs with GI-tract data such as prepossessing GI tract
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images using a GAN [72, 73] to fill blank regions and to predict blurry pill cam video

frames using a GAN [74], which can predict the future frames for given input frames

to solve the data problems of developing ML models. These experiments gave the

basic understanding of how GANs use in the medical domain and how hard it of

producing synthetic data in the medical domain. Then, an advanced GAN exper-

iment, namely Pulse2pulse [70], which can generate synthetic 12-leads 10-seconds

ECG indistinguishable from real ECGs was introduced to overcome the data sharing

problem as a result of privacy issues. Ultimately, we proved that our synthetic ECG

dataset shows very close characteristics to the real data distribution [70].

Moreover, to address the costly and time-consuming expert’s data annotation pro-

cess, we experimented and introduced novel pipelines [75] of GAN architectures

using GI-tract dataset to generate synthetic polyp data from the clean colon to

overcome data imbalance problems in the medical domain, such as having more true-

negative samples compared to true positive samples. Furthermore, we researched

and presented a new pipeline to generate synthetic polyp data with the correspond-

ing mask from a single polyp image [67], namely SinGAN-Seg, and showed that

generated synthetic medical data is a solution to overcome data problems in the

medical domain. Additionally, we investigated the usability of GANs to produce

synthetic sperm data [76] instead of blurry-looking sperm video samples to have

a better quality data stream for training AI-based sperm analysis systems in the

future. To get active contributions of performing GAN-related research to produce

synthetic data from non-computer science people, we have proposed a tool [77] to

run GAN experiments without writing a single line of code.

• Main-objective: The final objective was to connect these all together and produce

well-performing and more accurate ML models for CAD systems to assist doctors for

efficient diagnosis by addressing the data deficiency problem. The initial ML models

designed to achieve the Sub-objective I showed the effects of the data deficiency

problem in the medical domain. Then, we collected, researched, and developed

datasets (real and synthetic) to develop ML models for biomedical applications. In

Sub-objective III, benchmark analyses were performed to identify the data problem

to be addressed. We proposed the new concept and the corresponding framework,

DeepSynthBody, based on GANs as a solution to the data deficiency problem in the
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medical domain (Sub-objective IV). Finally, we published our solution as an open-

source project for getting more collaborations worldwide at www.deepsynthbody.

org.

As described above, our research addresses the stated objectives. Then, regarding the

overall research question, what problems emerge from data in computer-aided diagnosis

systems, and how can these problems be tackled? We first identified the problems and

proposed the DeepSynthBody concept to tackle them. As the problems, we could iden-

tify that data to train ML models in the medical domain is lacking due to several data

preparation problems, such as privacy concerns and the costly and time-consuming data

annotation process. Then, this data deficiency problem causes generalisability issues and

performance issues for ML models, which are the core algorithms used in CAD systems.

To answer the data deficiency problem, we have experimented and developed synthetic

data and showed that generated synthetic data could solve the data deficiency problem in

the medical domain because synthetic data can address some of the restrictions emerging

from privacy issues coming with sensitive data. We also show that synthetic data is an

alternative way to prepare data and corresponding segmentation masks for the costly and

time-consuming real data annotation process.

In addition to the main contributions aligning to this thesis work, the author con-

tributed as a development team member of the Norwegian “Smittestopp” app, which was

developed to trace Covid-19 contacts. Algorithms to find contacted regions of interest

using GPS coordinates were investigated under this Covid-19 app development project.

Moreover, several master students were supervised, and they successfully completed their

master’s degrees with good grades and publications [24, 72, 73, 74], which were great

contributions to the GAN development stage of DeepSynthBody. Not only these, the

author contributed to a research study [78], which was focused on detecting soccer events

from video clips, but this study is out of the scope of the thesis.

1.6 Outline

Our initial contributions were focused on designing ML models for CAD systems to aid

doctors by achieving the Sub-objectives I and II. However, the data-related problems of

the current pipeline of applying ML motivated us to find a new way to overcome the data
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deficiency problem in the medical domain. Therefore, this thesis mainly focuses on de-

signing a novel concept, DeepSynthBody, and the corresponding framework introduced to

bypass the data-related problems such as privacy-related problems with medical data and

resource-consuming medical data annotation process. To discuss, research, and present

the DeepSynthBody concept, we organized the thesis as follows:

• Chapter 2: Related Work - gives more required background knowledge to follow this

thesis. In this chapter, the basic knowledge about ML concepts and corresponding

references used in designing CAD systems are given. Then, deep generative models

and the state-of-the-art GANs are discussed with greater details to give enough

knowledge to understand the new concept introduced in this thesis. Additionally,

similar frameworks to DeepSynthBody and other studies about synthetic medical

data generations are discussed.

• Chapter 3: DeepSynthBody - In this chapter, the DeepSynthBody concept, which is

the new concept introduced in this thesis to overcome the data deficiency problem,

is formalized by developing the corresponding framework. The theoretical behavior

of the framework is discussed in this chapter with four main sections, which are

collecting real data and analysis, developing GANs, producing DeepSynth data, and

explainable DeepSynth AI and DeepSynth explainable AI of this framework. The

first three sections are explained using three case studies of ECG data, GI-tract data,

and sperm data. These use cases are discussed with the significant findings, which

were identified as the most influenced results for the success of DeepSynthBody.

Under the collecting of real data and analysis, data collection procedures and analy-

sis procedures are discussed. Then, the core of this framework, GAN development, is

discussed in developing GANs. In the same section, a novel tool, namely GANEx,

used to performing GAN experiments, is introduced. The process of producing

Python package index (PyPI) packages is explained using the use case studies in

the same section. The website www.deepsynthbody.org, which is the online plat-

form of this concept, is introduced in the third section. Finally, the optional step,

explainable DeepSynth AI and DeepSynth explainable AI, are discussed theoreti-

cally.

• Chapter 4: Discussion and Conclusion - discusses limitations, other advanced func-
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tionalities, which can be researched with DeepSynthBody as future directions, and

the conclusion about how the DeepSynthBody concept and its formal DeepSyn-

thBody framework help to overcome the data deficiency problem related to the

development process of ML models for CAD systems.

• Appendix A: All the papers counted as contributed under this thesis are listed here

with the publication details and corresponding contribution statements.
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Related Work

This chapter covers the basic concepts of this thesis and a literature review to discuss

similar research directions and their limitations. We give appropriate knowledge to un-

derstand the development of ML models forCAD systems with limited medical data. The

first section provides an overview of medical datasets. Then, the common ML solutions

used in medicine are discussed with the corresponding evaluation criteria because they

are the basics for developing CAD systems. Afterward, GANs are introduced with their

theoretical background because GAN is the basic model used to generate synthetic data

to overcome the data deficiency problem, which is identified as a major problem in the

medical domain. Finally, a review and discussion about previous studies, which use a

similar direction to DeepSynthBody to address the lack of medical data, is provided.

2.1 Medical Data

Data is the most important factor for developing AI solutions [79, 80, 81], and it cannot

be separated from the field of AI. In this regard, medical datasets are the key to develop

successful ML solutions in the medical domain for CAD systems. Therefore, AI researchers

try to collect as much as possible medical data from data providers such as hospitals or

medical research institutions. As a result, many public repositories are available for

medical data, and a few of them are shown in Table 2.1. As we can see in the table,

some medical repositories have a specific type of medical data like NITRC, while some

collect all types of data, such as the UC Irvine machine learning repository. However,

most datasets in these repositories are smaller than general datasets such as Imagenet [82]

27



Chapter 2. Related Work

Table 2.1: Sample data repositories with various medical data. Some of the data reposito-
ries have specific type of data. Some of them have data collections from multiple domains
including the medical domain.

Repository Link to access Description

The cancer
imaging archive
(TCIA)

https://www.

cancerimagingarchive.

net/

A large archive of medical images of
cancers.

NeuroMorpho NeuroMorpho.Org Digitally reconstructed neurons
from vaiours animal types. Human
is included as one type.

NeuroImaging
Tools and
Resource Col-
laboratory
(NITRC)

https://www.nitrc.

org/

Neuroinformatics data, from MR,
PET/SPECT, CT, EEG/MEG, op-
tical imaging, clinical neuroimaging.

OpenNEURO https://openneuro.

org/

Sharing MRI, MEG, EEG, iEEG,
ECoG, and ASL data.

PhysioNet https://physionet.

org/

A repository for Physiologic Signals.

OSF.io https://osf.io/ Open datasets from all the domains
including the medical domain.

The UC Irvine
Machine Learn-
ing Repository

https://archive.ics.

uci.edu

Open access datasets from many do-
mains including the medical domain.

Registry of
Open Data on
AWS

https://registry.

opendata.aws/

Open access datasets from many do-
mains including the medical domain.

IEEE DataPort https://

ieee-dataport.org/

Datasets from different domains
around 25 categories defined by
IEEE DataPort such as Biomedi-
cal and Health Sciences , Biophysi-
ological Signals, Environmental and
more other general categories includ-
ing health data.

because, for example, collecting medical datasets should follow specific protocols to avoid

privacy restrictions, and annotating medical data is costly and time-consuming.

Medical data have different formats, which vary from a simple single value to advanced

multi-dimensional data types such as two-dimensional (2-D), three-dimensional (3-D), and

four-dimensional (4-D). Multi-dimensional data has more than one value to represent a

single data point. Visual representations of sample biomedical data with various data

formats are depicted in Figure 2.1. Figure 2.1(A) represents a simple 1-D ECG signal,

and Figure 2.1(B) shows an image (2-D) taken from an endoscopy. Some medical data
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Real ECG

(A) - An ECG signal [41] (B) - An endoscopy image [23]

(C) - An MRI representation [83] (D) - A digitally reconstructed neuron [84]

Figure 2.1: Visual representations of different types of biomedical data.

cannot be simply presented in a 2-D plane and need software tools to get actual 3-D

visualizations such as an MRI as depicted in Figure 2.1(C), and a digitally reconstructed

neuron depicted in Figure 2.1(D). Therefore, considering data formats is important in

developing ML solutions, such as deep generative models, which will be discussed in later

sections.

Medical datasets, which can be either public or private, are the foundation for devel-

oping ML models for CAD systems to assist doctors. Therefore, collecting medical data

is identified as a key step for the thesis. As a result, several datasets [23, 24, 25, 26, 27,

28, 29] were published. More details about these datasets are discussed in Section 3.1.1.

In DeepSynthBody, which is the novel concept introduced to overcome the data-related

problems faced during the development stage of ML solutions, all the medical datasets

had to be categorized to make a clear data organization process for the contributors and
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Table 2.2: Sample datasets for the 11 categories of the biological anatomy classification.
These datasets were selected randomly using Google search. These datasets are selected
from the outside of the dataset contributions introducing under this DeepSynthBody
study.

Data class Sample datasets

Cardiovascular Cardiac MRI dataset [88], ECG data [89]
Digestive Endoscopy dataset [90, 91], Capsule endoscopy [92]
Endocrine Hyperspectral imaging [93], Thyroid ultrasound image [94]

Integumentary Skin lesions [95], Skin image dataset (melanomas) [96]
Lymphatic CT lymph nodes [97], Lymphography Data Set [98]
Muscular MRI of muscles of the hand [99], Full body data with muscle [100]
Nervous Brain activity fMRI data [101], PET-MR Dataset [102]
Urinary Kidney dataset [103], CI images kidney stones [104]

Reproductive Human sperm images [105], Embryo dataset [106]
Respiratory Chest X-ray data [107], Chest CT datast [108]

Skeletal Bone X-ray dataset [109], Knee MRIs [110]

the end-users of the framework. For this, a biological anatomy classification [85] (11

categories) was used to classify most of the medical datasets (except genome data [86,

87] which is related to the full human body. The genome data will be considered for the

DeepSynthBody framework in the future. Table 2.2 presents the 11 classes selected as our

classification and corresponding example open-access datasets. These example datasets

indicate that most of the data can be classified into these 11 categories.

Even if publicly available, medical datasets can come with other challenges that need

to be taken into account. One challenge is the sizes and distributions of medical datasets.

If the sizes of these datasets are limited, such as having few data samples, then it directly

affects the final performance of ML models. Similarly, if a dataset is imbalanced such

as one class has more data and another class is lacking data, then it also affects the

performance of the ML models [111, 112, 113, 114]. Despite these problems, privacy

concerns of the medical data [115], containing information about patients, is another

problem. These privacy concerns directly cause problems for publishing the medical data

because medical dataset publishers should follow all the protocols related to publishing

medical datasets, as discussed in Section 1.1. In addition to the privacy concerns, making

the ground truth data for the medical data is costly and time-consuming. In the medical

domain, experts (medical doctors) should perform the data annotation process. Therefore,

one of the goals of this thesis is to overcome the data annotation problem and introduce

an efficient way to produce medical datasets with ground truth to train ML solutions,
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i.e., both reducing the need for medical experts to produce ground truths and bypassing

the privacy challenges.

2.2 Machine Learning in Medicine

Different types of ML algorithms are applied to medical data. When researchers and other

medical data providers publish datasets to train ML models, they have intended goals to

achieve using the datasets. For example, when GI-tract polyp datasets are published

with the corresponding ground truth masks [116, 117, 118], the main goal of the datasets

is to train ML models to perform polyp segmentation tasks. Therefore, baseline exper-

iments (experimental results coming with dataset papers) and benchmark experiments

(experiments performing to achieve the best results compared to the state-of-the-art per-

formance) of a particular dataset are essential to know the capabilities of the ML models

trained using the dataset and identify the related practical problems, for example, the

generalizability issue of an ML model trained using a single dataset. The baseline and

benchmark results coming from ML models can be used to identify the limitations of

datasets. For example, suppose every machine learning model shows poor performance

for a specific class of a data classification problem. In that case, the problem might be

with the data of the particular class. In this regard, this thesis discuss baseline exper-

iments and benchmark experiments. The baseline experiments are discussed with our

dataset papers [23, 24, 25, 26, 27, 28, 29], and the benchmark experiments are discussed

in our benchmark articles [30, 38, 39, 40, 68, 41, 36, 32, 33, 35, 34].

Most of the ML models trained with medical data can be classified into a regression

task [119, 120, 121], classification task [122, 123], detection task [124, 125] or segmentation

task [126, 127]. These tasks depend on medical datasets and their intended purposes. ML

models trained to solve regression tasks want to predict continuous values (parameters)

for a given input data such as numerical input, images, or video inputs. For example,

predicting motility or morphology level, which are percentage values, of a sperm sample

given as a video is a regression model. In the classification task, ML models need to

predict class labels of input data, such as predicting the GI-tract landmark for a given

image captured from an endoscopy. In detection tasks, ML modules focus on predicting

bounding boxes for regions of interest on images or videos (normally, videos are processed
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frame by frame, and this video processing also can be considered as image processing),

i.e., predicting polyps in an image of GI-tract. Advanced segmentation tasks perform

pixel-wise predictions to mark the region of interest, and this task gives greater details

than all other three tasks, for example, predicting the exact regions of polyps using the

pixel-wise classification of a GI-tract image. These ML methods have specific evaluation

methods based on the objectives.

Evaluating ML models have to be performed properly, which means evaluation pro-

cesses should reflect the real performance of ML models. For example, data leakage

problems [128] should be avoided, the generalizability of ML models should be tested

using cross-dataset evaluations, and multiple evaluation metrics should be calculated to

show the performance from different perspectives. Otherwise, researchers may produce

inefficient solutions which cannot be applied in practical scenarios. According to the

type of the ML task, the evaluation methods should be selected. A summary of these

evaluation methods is presented in Table 2.3.

One of our studies [31] discusses the importance of evaluating ML models with multi-

ple evaluation metrics and cross datasets for producing better generalizable ML solutions.

In addition to the cross dataset evaluations, we have discussed problems of current ar-

ticles with incomplete evaluation metrics using a literature review of polyp classification

as a case study [33]. To overcome this incompleteness of the evaluation results, we have

introduced an online tool called MediMetric1, which can be used to get complete evalu-

ation metrics from the incomplete evaluation metrics for binary classification tasks. The

evaluation performance of ML models can be found in baseline experiments, which come

with dataset papers, and benchmark papers, which aim to produce state-of-the-art results

for a particular dataset. In this thesis, these baseline results and benchmark results are

essentials to develop ML solutions to achieve our Sub-objective I and develop DeepSyn-

thBody, which is the main solution introduced in this thesis to achieve Sub-objective IV.

Therefore, contributions of ML methods with corresponding evaluations are presented in

our series of benchmark articles [30, 38, 39, 40, 68, 41, 36, 32, 33, 35, 34] in addition to

the evaluations presented in our dataset publications [23, 24, 25, 26, 27, 28, 29].

1https://medimetrics.no/
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Machine learning (ML) type Evaluation method

Regression R Squared (Coefficient of Determination), mean square
error (MSE) or root-mean-squared error (RMSE), mean
absolute error (MAE)

Classification Accuracy, F1, Recall (sensitivity), Precision, Matthews
correlation coefficient (MCC)

Detection Intersection over union (IOU), Precision, Recall
Segmentation IOU(Jaccard index) , F1-score (dice coefficient)

Table 2.3: Example evaluation methods using for the most common ML methods applied
with medical data.

2.3 Generative Adversarial Networks

In the above section, regression, classification, detection, and segmentation models known

as discriminative models were discussed. As a mathematical definition, the discriminative

models capture the conditional probability, for example, p(Y |X), in which X represents

data instances and Y represents a set of corresponding labels. In this section, genera-

tive models are discussed. These generative models are the most important ML model

used in DeepSynthBody, which is introduced as a solution to overcome the data defi-

ciency problem. Generative models learn joint probability distribution compared to the

conditional probability of discriminative models. In the formal definition of generative

models, they capture the joint probability p(X, Y ) if both data instances (X) and labels

(Y ) exist. Otherwise, the generative models capture only data distribution p(X). There

are several types of generative models. Autoregressive models, variational autoencoders

(VAEs), Latent Dirichlet Allocation (LDA), Hidden Markov Model, Gaussian Mixture

Model, Bayesian Network, VAE, and generative adversarial network (GAN) are a few of

them. Among these generative models, two deep generative models, namely VAE [129]

and GAN [130], have become popular in the recent research studies [131, 132, 133] of

generating synthetic data.

VAE [129] consists of two networks, namely encoder and decoder networks. The basic

architecture diagram is illustrated in Figure 2.2 with the basic elements. In the training

stage, the encoder converts input data into a latent space represented using mean (µx) and

standard deviation (σx). Then, in the inference stage, only the decoder generates data

by sampling the latent vector from the latent space. However, the main disadvantage

of using VAEs to generate synthetic data is generating blurry output [134]. In synthetic
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μx

σx

X - input data

Sampling

X' - generated data

Encoder (e) Decoder (d)

Figure 2.2: Basic architecture of a VAE.

medical data generations, every feature is essential. Therefore, GANs were selected to

use as the main generative models to generate synthetic data in this thesis because of

high-quality feature-rich generation capabilities. In contrast, GANs are harder to train

than VAEs [135].

The basic GAN architecture introduced in 2014 by Ian et al. [130] consists of two

DNNs. One is called the generator, and the second one is called the discriminator. The

generator’s main task is to generate synthetic data by taking a random noise vector as

input. The noise vector can be sampled from any statistical distribution, such as nor-

mal distribution or Gaussian distribution. Then, the discriminator learns to distinguish

generated data from the real data, used to train the GAN architecture. In the training

process, the generator and the discriminator are leaning together, which results in a Nash

equilibrium [136] problem. If successfully trained, the generator can generate realistic

synthetic data samples, which can fool the discriminator. This process is illustrated in

Figure 2.3. The objective function (loss function) used in this vanilla GAN architecture is

presented in Equation 2.1. However, not every GAN architecture uses the same objective

function to optimize the training process. The most common loss functions are summa-

rized in a large study about GAN architectures done by Lucic et al. [137]. Using the most

appropriate loss function to generate realistic synthetic data with a stable training process

or investigating novel loss functions for a GAN is another important factor in generating

realistic synthetic data. Therefore, studying and having comprehensive knowledge about

GANs and the corresponding loss functions is essential before developing GANs to gen-

erate synthetic data. Otherwise, synthetic data generated from GANs will not cover the

real distribution of the training data [138], or the mode collapse behavior [139] of GANs
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Figure 2.3: A simple representation of the vanila GAN architecture.

may cause.

minGmaxDV (D,G) = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

After the vanilla GAN, it became one of the trending fields in DL, and different

GAN versions for different purposes were published. A summary of the most popular

GAN architectures is shown in Table 2.4. For producing better quality synthetic medical

data for the DeepSynthBody, the contributors should use the most appropriate GAN

architecture. A literature review or preliminary experiments should be conducted to

determine the best fitting GAN architecture for a given problem. Good knowledge about

the state-of-the-art GANs methods is important for finding a better GAN model for

generating synthetic data. In this thesis, novel GANs [70, 75, 67] and modified versions of

different GAN architectures [72, 73, 74, 76] were researched and developed. More details

about these GANs are presented in Chapter 3.

Not only the designing and implementation of GANs is essential, but also evaluating

them. Evaluation of GANs is an active research area by itself. GAN evaluation is not

well-defined in terms of how to measure the quality of the generated synthetic data.

Theoretically, GANs should produce synthetic data which looks like real data from the

whole distribution of the real data used to train the GANs. To measure the performance of

GANs, qualitative and quantitative evaluation metrics were introduced in several research

papers. Table 2.5 shows standard GAN evaluation metrics presented in the paper [150].

In the synthetic data generation process, the evaluation process plays a significant role

in finding suitable GANs to produce synthetic data to replace the real medical data. For

example, evaluation metrics can compare two or more GAN models developed for the
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Table 2.4: A little from the most popular GAN architectures and their main functionali-
ties. More about other GAN architectures can be found in [140, 141, 142]

GAN name Description

Vanila GAN architecture [143] This is the first GAN architecture introduced in 2014.
This is capable of generating low resolution images
but they are noisy.

Pix2pix [144] This is a conditional GAN GAN architecture. This
model convert an input image from one domain to
an output image in another domain. The training
process need paired images from two domain which
have one to one mapping.

CycleGAN [145] This paper present a similar mechanism to the
Pix2pix implementation. However, the CycleGAN
does not need paired training data, then the model
can be train using unpaired two datasets from two
different domains. Cycle consistency loss was intro-
duced in this study.

StyleGAN, StyleGANv2 [146] This GAN architecture is capable of generating re-
alistic high-resolution images and the GAN can be
controlled to change high-end features as well as fine
features. The major drawback of this GAN is, a large
training dataset is required to train the model. How-
ever, recent advancements introduced to data aug-
mentation method [147] with GANs shows that lim-
ited datasets are enough to train new GAN models.

BigGAN [148] This is another GAN architecture which can gener-
ate high-resolution images with high fidelity. A large
dataset is required to train BigGAN also, but the
quality of generated samples are high.

SinGAN [149] This GAN architecture is trained using a single im-
age and then, synthetic data is generated similar to
the local and global features of training images but
different from the training images. As use cases, gen-
erating high-resolution images, image editing , har-
monization and making animations are focused.

same purpose. However, evaluating GAN models developed by different developers is

not an easy task until a common reference calculates evaluation metrics. Therefore, in

this thesis, we recommend using qualitative and quantitative criteria to understand the

quality of the generated synthetic data.
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Table 2.5: A few of GAN evaluation metrics. The complete list of these evaluation metrics
and corresponding details with the original references can be found in [150]

GAN evaluation type Metircs

Qualitative
Average Log-likelihood
Coverage Metric
Inception Score (IS)
Modified Inception Score (m-IS)
Mode Score (MS)
AM Score
Fréchet Inception Distance (FID)
Maximum Mean Discrepancy (MMD)
The Wasserstein Critic

Quantitative
Nearest Neighbors
Rapid Scene Categorization
Preference Judgment
Mode Drop and Collapse
Network Internals

2.4 Synthetic Data in Medicine

Researchers have experimented with GAN in the medical domain for different purposes.

In most cases, GAN models have been used as augmentation techniques to increase the

size of the medical datasets [151, 152, 153]. Some of them have focused on improving

classification [151], detection [154, 155], or segmentation [156] performance using synthetic

data generated by GANs. Besides increasing or augmenting data, special types of GANs

can perform medical segmentation tasks [157, 158] and generate super-resolution images

to make a precise medical diagnosis [159]. AsynDGAN [160], introduced by Chang et

al., is another GAN architecture focusing on solving privacy concerns by distributing

discriminator networks among data providers to train a GAN architecture.

To the best of our knowledge, there is no other similar concept proposed like the Deep-

SynthBody concept, which focuses on producing synthetic medical data for the whole

human body to solve the data deficiency problem in the medical domain by addressing,

for example, privacy concerns and overcome costly and time-consuming medical data an-

notation processes. However, few studies developed frameworks to solve privacy concerns

of the medical data. The closest framework similar to DeepSynthBody is Synthea2 [161]

which was developed to generate synthetic electronic health records (EHR). Synthea is

2https://synthetichealth.github.io/synthea/#technology-landing
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also running as an open-source project to get contributions from other researchers. This

framework focus on generating synthetic EHR to free the medical data from legal, privacy,

security, and intellectual property restrictions. Although Synthea focuses its primary

goal on producing privacy restriction-free synthetic EHR, which is one of the primary

goals of DeepSynthBody, significant differences can be found between Synthea and Deep-

SynthBody. For example, DeepSynthBody focuses on building a synthetic human body

model, while Synthea focuses on making synthetic patient records using synthetic EHRs,

which are text-based medical records. Pre-generated records can be downloaded from the

Synthea website3. The DeepSynthBody concept is not targeting text-based EHR gener-

ations like Synthea. Our main focus is on generating realistic medical data similar to

the medical data collected from medical instruments used to examine patients, such as

biomedical signals and biomedical images.

Moreover, DeepSynthBody provides an advanced well-defined flow from data collection

to the end of synthetic data generations focusing on much more advanced additional

objectives. These additional objectives provide synthetic data with annotations, define

a novel model for the human body, and provide a restriction-free GAN repository for

generating synthetic medical data. Additionally, the DeepSynthBody concept publishes

GAN models instead of pre-generated synthetic data for the end-users.

Anonymization through data synthesis using generative adversarial networks (ADS-

GAN) [162] is another framework to generate synthetic EHR datasets. This framework

provides pre-trained GANs to generate synthetic EHR records. Their generation method

is based on conditional-GAN, which means to generate synthetic data, real data values

should be available. Therefore, they propose to have a trusted intermediate partner to

generate synthetic EHR data from real data records. In comparison, DeepSynthBody

does not need any intermediate partner because of the in-house GAN training capability

introduced in the framework with the corresponding tools. In addition, DeepSynthBody

focuses on diverse, complex medical data types compared to normal EHR data considered

in the ADS-GAN study.

SynSigGAN [163] was developed by Hazra and Byun to generate privacy restriction-

free biomedical signals. However, despite the results in the paper, the GAN is not avail-

able in public to generate synthetic data. Similarly, different generative models for dif-

3https://synthea.mitre.org/downloads
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ferent types of medical datasets can be found, such as synthetic embryo images [164]

and COVID-19 X-ray images [165]. The study of synthesis of COVID-19 chest X-rays

shows improvement for ML models used to detect Covid-19 when this synthetic data is

used with real data to train the ML model. They also discuss how GAN is used for

anonymization. The improvement achieved for the performance motivated us to make a

formal framework for synthetic data in the medical domain. DeepSynthBody provides a

framework and infrastructure that can share these anonymized data generators compared

to the above solutions.

2.5 Summary

Medical data is the key to apply AI solutions in medicine. Therefore, there are many

public repositories, which are collecting medical data and share them with researchers.

These medical data have different formats. However, the sizes of the datasets are not

enough to train a generalizable and well-performing ML model. The sizes of datasets are

limited in the medical domain due to, for example, privacy restrictions and the costly and

time-consuming data annotation process. These data deficiency problem motivated us

to find a solution to tackle the problems. Identifying the correct organ system, the data

source, and the medical data formats are essential for developing ML models for CAD

systems, such as deep generative models used in our DeepSynthBody concept.

Applying ML techniques and finding suitable models to get better predictions are

the main tasks for developing AI-based CAD systems for medical scenarios. The main

ML methods include regression, classification, detection, and segmentation. Different ML

methods have implicit evaluation techniques, and following them strictly to evaluate ML

models is required to find accurate and generalizable AI solutions. Producing ML solu-

tions for baseline experiments or benchmark analyses can give a first idea about a medical

dataset and the quality of dataset’s content. Additionally, baseline experiments are nec-

essary for analyzing the quality of synthetic data, which will be be used as alternatives.

To generate synthetic data, we selected GANs as the core generative model in this

thesis because of the ability of GANs to generate synthetic data with rich features. How-

ever, training GANs is more challenging than training other generative models. Therefore,

having a good understanding of GAN types and their evaluation methods are important
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factors in implementing good generators that can produce synthetic data for solving the

data deficiency problem associated with developing ML models for medical CAD systems.

Our proposed DeepSynthBody is a novel concept and a framework addressing the

data deficiency problem identified while developing ML models for CAD systems to assist

doctors. In this chapter, existing frameworks were explored with similar directions as

DeepSynthBody. Most of the solutions focus on text-based EHRs. Our solution, namely

DeepSynthBody is designed to generate all the medical data coming through medical in-

struments except text-based medical data. While some solutions need a third-party data

handler to maintain privacy concerns, the DeepSynthBody concept proposes a mecha-

nism to design GANs in-house of the medical data providers. In the next chapter, the

DeepSynthBody concept and the corresponding framework are introduced with three case

studies.
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DeepSynthBody

In this section, the flow of the DeepSynthBody concept [71], which is the main solution

discussed in this thesis to overcome the data deficiency problem, is introduced. The whole

framework is discussed under four major steps: collecting real data and analysis, devel-

oping generative models, creating DeepSynth data, and explainable DeepSynth AI and

DeepSynth Explainable AI. The first section is further divided into two, collecting real

data and analyzing real data to discuss the real data collection process and the process of

analyzing them, respectively. Under the second step, namely developing generative mod-

els, three sub-section are discussed. These are designing generative models and evaluation,

publishing deep generative models, and developing a tool called GANEx to perform GAN

experiments. In the third section, creating DeepSynth Data is discussed. At the end

of the chapter, explainable DeepSynth AI and DeepSynth explainable AI is presented,

followed by a summary.

We have developed this framework to tackle the data deficiency problem identified

as a major bottleneck to develop AI-based CAD systems in medicine. The main focus

of the DeepSynthBody concept is producing synthetic medical data to overcome barriers

attached with medical data, such as privacy concerns, the costly and time-consuming

medical data annotation process, and the data imbalance problem in the medical domain.

The DeepSynthBody concept is not limited to achieve the primary objectives, but it

opens new research directions such as finding a synthetic model to define the human

body. Additionally, DeepSynthBody can be considered a modern repository to store

medical data without any privacy concerns. It can be used as a medical data compression

method to store big datasets in limited spaces.
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Figure 3.1: Complete framework of DeepSynthBody. Reference for the figure: [71]

An overview of the DeepSynthBody framework is shown in Figure 3.1. There are four

major steps namely:

I. collecting real data and analysis.

II. developing generative models.

III. producing deep synthetic data.

IV. explainable DeepSynth AI and DeepSynth explainable AI.

The right-side top arrow in Figure 3.1, Restricted access, represents the flow having

privacy-related restrictions. The Open access arrow represents the open access flow of

synthetic data generated to replace real private datasets. These steps are discussed in

detail in the following sections.

3.1 Step I: Collecting Real Data and Analysis

Step I in Figure 3.1 is collecting real data and analysis. In this step, real medical data are

collected and analyzed for the later steps in DeepSynthBody. Real medical data can be

either public or private. If data is private, this Step I should be completed by authorized

data providers. If data is public, anyone who wants to contribute to this framework can

complete this step. The three sub-processes, data classification, annotation and labeling,

and analysis, are discussed separately to simplify the process of the step. The two types
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of research contributions can be identified in this step. They are publishing open access

medical datasets with baseline experiments and performing benchmark experiments of

medical data.

3.1.1 Collecting Real Data

Medical datasets are the key to initiate the DeepSynthBody framework. Hospital and

medical research institutions are the sources for collecting real medical data. These med-

ical data come from different sources, such as ECG machines [166], X-ray machines [167],

endoscopy machines [168], MRI machines [169], and various other advanced types of ma-

chinery collecting human body data. In this thesis, the medical data collection process

was performed continuously to achieve Sub-objective II, which also contributes to the

data collection process of DeepSynthBody. As a result, seven open datasets were pub-

lished. The datasets collected in this thesis are tabulated in Table 3.1 with additional

two datasets used as case studies. These additional two datasets were not published as

dataset papers of this thesis, but we have used them to have different case studies in the

later stages of this thesis.

The first three datasets presented using bolded text in Table 3.1 were the selected three

datasets. The first dataset is an ECG dataset, but it is restricted for public use because

of privacy restrictions. HyperKvasir [23] is the largest public GI-tract dataset consisting

of images and videos collected from real endoscopy examinations. This GI-tract dataset

consists of polyp images with the corresponding annotations done by experts, unlabelled

images, and a set of images belongs to 23 classes. VISEM [69] (sperm video data) was not

collected as a part of the thesis, but the dataset is considered as one of the case studies.

We have selected this dataset to represent the video data type in our experiments.

The fifth and the sixth in Table 3.1 are two other GI-tract datasets related to Hyper-

Kvasir. These are the Kvasir-Capsule [27] and Kvasir-instruments [29] datasets. Kvasir-

Capsule consists of images and video data collected from capsule endoscopy. This dataset

has 47, 238 labeled images, 43 labeled videos, 4, 694, 266 unlabeled images and, 74 un-

labeled videos. By comparing the number of labeled and unlabeled images and videos,

we understand the capabilities of this dataset for supervised and unsupervised machine

learning techniques. However, this dataset does not have any segmented GI-tract images.

In contrast to this, Kvasir-instruments is a segmentation dataset with manually annotated
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segmentation masks of endoscopic tools. The dataset has 590 images with corresponding

mask images of the segmented tools. Providing fewer images with this dataset indicates

how hard it is to prepare this type of segmentation dataset with the help of medical

experts. So, finding an alternative way to prepare segmentation datasets with medical

datasets is important.

The PMData [25] dataset contains general life-logging data and sport activity data.

Fitbit versa 2 fitness smartwatch was used to collect sensory data for this dataset. There-

fore, the participants of this data collection process were encouraged to wear the watch as

much as possible. In addition to this sensor data, all the participants were asked to record

their daily activities and fitness levels, such as sleep hours, the mood of the person, etc., in

PMSys sports logging app1. Furthermore, a Google form was used to collect another set

of data: demographic data, food images including drinking, and weights. While this type

of data collection is not directly connected with any pure medical data, such as collecting

images and signals of the human body using medical instruments, these data are impor-

tant to know the relationship between daily life and health problems. However, collecting

these types of daily activities is challenging, and careful de-identification is needed before

publishing data to the public.

PSYKOSE [26] is a motor activity dataset collected from 22 schizophrenia patients

and 32 healthy control persons. All the motor activities were collected for an average

of 12.7 days using a wrist-worn actigraph device2. In addition to the motor activity

data, demographic data and the data about medical assessments are given. This kind of

detests is essential for predicting the health states and performance outcome of a person.

However, motor activity data and the corresponding demographic data are susceptible to

privacy. Additionally, collecting health data with multiple sources for the same person

is important because finding correlations among health data and other factors such as

motor activity can lead researchers to discover hidden behaviors of our human body.

HTAD [28] presents a dataset with wrist-accelerometer data and sound data for the

four most common daily activities of human life. These activities are sweeping, brushing

teeth, washing hands, and watching TV. Fining the pattern of these kinds of activities

can lead to finding new research directions such as assistive technology for older people.

Not only as assistive technology, identifying unique patterns of sensor data corresponding

1https://forzasys.com/pmsys.html
2Actiwatch, Cambridge Neurotechnology Ltd, England, model AW4

44



3.1. Step I: Collecting Real Data and Analysis

to specific health conditions such as mental disorders can lead to treat such patients.

However, collecting data about daily routines has a significant impact on privacy concerns.

Therefore, these kinds of datasets are scarce, and publishing them needs a careful de-

identification process. Otherwise, reaching a way to produce similar synthetic data can

lead to share data without privacy concerns.

Toadstool [24] dataset has sensor data collected through an Empatica E4 wristband

while a set of people are playing Super Mario Bros. In addition to the sensor data, videos

captured during the playtime of the game were included. The data was collected from 10

participants of different ages, sex, and different experience levels. Toadstool looks like a

non-medical dataset. However, finding correlations between sensor data and game playing

patterns will encourage researchers for new areas like health conditions and game playing.

Monitored heart rate and facial expression captured during the playtime can be used to

find hidden correlations. While many people can collect this data type, data sharing is not

as straightforward as a lack of privacy-preserving data sharing mechanisms. Therefore,

we made this dataset to perform research to find suitable data sharing techniques and find

a way to produce synthetic data alternatives to replace these advanced data collection

processes.

The raw medical data should be classified using data classification methods introduced

in DeepSynthBody. First, we have to identify the organ systems which we use as a

biological classification method.
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3.1. Step I: Collecting Real Data and Analysis

Biological Data Classification

The second row and the third row of Figure 3.1 represent the data classification methods.

First, all medical data are classified into 11 categories [85] based on the anatomy of the

human body, as presented in the second row of the figure. Then, all data are classified

using data formats as represented in the third row. This biological classification was

introduced to sort the data in a biological way to identify data using the organ systems

of the human body. Then, the data format classification is applied as a supporting

classification layer for developers who contribute to developing GANs to generate synthetic

data.

The biological categories are cardiovascular, digestive, endocrine, integumentary, lym-

phatic, muscular, nervous, urinary, reproductive, respiratory, and skeletal. All the input

medical data from various sources are considered through one of these categories (see the

second column of Table 3.1). For example, ECG data, GI-tract data, and sperm data can

be classified under the cardiovascular, digestive, and reproductive categories, respectively

(the first three datasets in Table 3.1). If data cannot be considered for only one cate-

gory, then the data can be classified under several categories. For example, PMData [25],

PSYKOSE [26], and Toadstool [24] are classified as multi-classes according to biological

categories in Table 3.1. It is essential to identify the correct biological class for data

coming from various data sources to find the final categories in DeepSynthBody.

Data Dimension Classification

In addition to the biological classification, the medical data can be further classified using

data dimensionality [170, 171]. In this classification, all data formats are classified into

four classes, 1-D, 2-D, 3-D, and N-dimensional (N-D), for where N > 3. In the Deep-

SynthBody framework, data dimensionality means data dimensions coming through data

sources (medical devices), but not the data dimensions used in data processing techniques.

The third column of Table 3.1 presents this classification for our dataset contributions.

Considering the dimensionality of real data is important because the dimensions of the

real data increase the complexity of generative models (GANs) implementing in later sec-

tions (Step II) to generate synthetic representations for the real data. Additionally, data

dimensionality decides which GAN architectures to use in Step II: developing generative

models.
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For the 1-D data format, biosignals (biomedical signals) collected from the human

body are considered in this framework. Well-known biosignals are Electroencephalogram

(EEG), Electrocardiogram (ECG), Electromyogram (EMG), Mechanomyogram (MMG),

Electrooculography (EOG), Galvanic skin response (GSR), and Magnetoencephalogram

(MEG). The ECG dataset, PSYKOSE [26] dataset, and HTAD dataset [28] are identified

as the datasets with 1-D data format in our dataset contributions in Table 3.1.

On the other hand, medical imaging techniques [172, 173, 174] are commonly used to

visualize human body organs, functions, and states for assisted diagnosis and treatment

suggestions. Radiography, magnetic resonance imaging, nuclear medicine, ultrasound,

elastography, photoacoustic imaging, tomography, functional near-infrared spectroscopy,

and magnetic particle imaging are few examples of medical imaging data. Various tech-

nologies produce different types of medical images. In DeepSynthBody, medical imaging

data is considered under three data format categories: 2-D, 3-D, and N-D, based on the

dimensionality of the data obtained. For example, images collected from video cameras

can be considered under the 2-D data type. Similarly, videos can be identified as a 3-D

data type when the time (represented as consecutive video frames) is considered as the

third dimension. However, some data sources produce 3-D data in a spatial domain, e.g.,

MRI data. However, this type of 3-D data can be classified into 4-D (into N-D because

N > 3) when the source produces a series of 3-D data points along the time. In addition

to 4-D data, some data sources have 5-D data [175], which are considered under the N-D

data category. For example, dynamic MRI data with additional information layers such

as tracking information has a 5-D data format. Under this definition, all real data sources

are identified through 1-D, 2-D, 3-D, or N-D classes.

The data format classifications for the datasets collected under this thesis are presented

in the third column of Table 3.1. In this table, multiple data format classifications can

be seen for some datasets when the datasets have different types of data. The ECG

dataset, which is not public, has the 1-D data format per channel as they received from

the data source, and one sample has eight channels in total. While the original data

format is 1-D, these ECG samples can be processed as 2-D as well by combining multiple

channels together. However, we consider the data format of the original data source as the

data format classification to simply this classification. In contrast to this ECG dataset,

HyperKvasir [23], Kvasir-Capsule [27] have two different types of data formats. They are
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2-D and 3-D. The images collected from endoscopy or capsule endoscopy are considered

as 2-D data format. The videos collected from the same instruments are classified as 3-D.

These data formats are important to process the data in later steps.

For example, designing image generators are easier than designing video generative

models because video generators should consider temporal features compared to consid-

ering spatial features of images in the image generators. VISEM [69] dataset has only

video data as the main data format, while ground truth data is presented using tabular

data. On the other hand, PMData [26] and HTAD [28] data were considered as 1-D data

because the main data format coming from the data collection instruments are signals.

Toadstool dataset [24] has signals and videos, which means 1-D and 3-D data. Data

coming from the Empatica E4 wristband, which was used to collect the players’ physi-

ological data streams, is considered 1-D data. The videos recorded from the computer

which was used to play the game are considered as the 3-D data format. However, these

are the format of raw data. In contrast to raw data formats, one can process these data

with a different format; for example, video data can be processed as images if temporal

information is unimportant.

The data format classification is done for only the development purpose. This format

classification is important only for developers to find proper ML models such as classi-

fication, detection, segmentation, and generative models, which are compatible with the

dataset.

Data Annotation Classification

After collecting medical data and classifying them according to DeepSynthBody classifica-

tion, the data can be further categorized into two categories: (i) data without annotations

(or labels) and (ii) data with annotations. This classification is represented in the fourth

row of Figure 3.1. In this step, whether the data was labeled by experts or not is con-

sidered. Generally, most of the data coming from medical systems do not have expert

annotations or labels, which are essential to training supervised ML algorithms. Advanced

deep generative models such as conditional generative models [175] can be developed if

the medical datasets have ground-truth data annotated by medical experts. The con-

ditional generative models take labels (or other kinds of annotations such as pixel-wise

classification) as input parameters and produce synthetic data conditioning on the input
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annotations. While one of the primary objectives of DeepSynthBody is to reduce an-

notation cost and time required from experts, conditional GANs should be investigated.

Therefore, producing annotated medical data by experts in this stage can help to train

deep generative models to overcome the problem of medical data annotations.

Annotations or labels of medical data are different from dataset to dataset. Gener-

ally, medical datasets have continuous numerical values, discrete numerical values, class

labels, coordinates such as bounding boxes or pixel-wise classifications (e.g., segmented

mask). Medical experts can use different kinds of tools for annotating different types of

ground truths. These tools may vary from simple image viewers to advanced AI-aided

image mask generation tools or expensive medical data analysis tools [176, 177, 178].

However, an expert in the medical domain must operate these tools. While some tools

can suggest or predict similar types of annotations, the experts should confirm the final

annotations, which will be used as ground truth data for ML algorithms. This expert

annotation process needs the medical experts’ valuable time, which is costly. Therefore,

the DeepSynthBody framework targets handling this problem also.

As explained above, if experts annotations are available, the annotations can be used

to train advanced generative models such as conditional GANs. Therefore, experts’ anno-

tations were collected for most of the data sets tabulated in Table 3.1. The HyperKvasir

dataset [23] consists of image labels and pixels-wise annotations (segmentation masks)

for a part of this big dataset. Providing image labels is easier than providing segmen-

tation masks, which represent pixel-wise annotations. Experts’ knowledge was used in

both annotation processes, but the segmentation annotation process took more time as

expected than classifying into the labels. The HyperKvasir dataset consists of unlabeled

data, images and videos also. In this context, this dataset can be classified as a dataset

with and without data annotations.

The Kvasir-Capsule dataset [27] has labels for the images and the videos. However, in

the current version of this dataset, there is not data with pixel-wise annotations. However,

classification labels assigned by experts are used to prepare the labeled data. In addition to

these labeled images and videos, the rest of the unlabeled images and videos were included

without ground truth data because labeling them all is the costly and time-consuming

task. If an alternative way to prepare labeled or annotated datasets automatically can be

researched, then the expensive and time-consuming medical data annotation process can
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be avoided.

In addition to the above GI-tract datasets, the Kvasir-instrument [29] dataset consists

of only pixel-wise segmented images, which include instruments used in the colonoscopy

examinations and operations. Therefore, this dataset can be identified as a dataset with

annotated data. On the other hand, datasets [24, 25, 26, 28] collected through smart

watch sensors or special wearable sensors can be considered datasets with annotations

because manually identified events were reported in these datasets.

Selecting Case Studies

From the datasets presented in Table 3.1, only three different medical datasets were

selected for case studies in this thesis, i.e., representing the various data types supported

by our framework. They are an ECG signal dataset, a GI-tract image dataset, and a

sperm video dataset. The ECG dataset is not published as a dataset paper. Therefore,

this restricted ECG dataset is a perfect example for our Sub-objective IV, which focuses on

generating synthetic data instead of the real dataset. On the other hand, the GI-tract [23]

dataset is the largest image dataset published under this thesis, and this dataset represents

biomedical images. The third dataset is an open-access video dataset [69]. This sperm

dataset was selected because of the video data format, and the dataset represents another

organ of the human body, while this dataset was not published as a contribution of this

thesis. In this section, we discuss the three case studies with comprehensive details.

The ECG dataset is restricted, and only authorized people can access it. As a

result, a dataset paper cannot be published. This dataset represents the biomedical

signal data format which is considered under cardiovascular class and 1-D data format in

DeepSynthBody. In this dataset, each ECG signal consists of readings from eight channels

called in the cardiovascular context as channels I, II, V1, V2, V3, V4, V5, V6 for 10-

sec long duration. The eight readings can be converted to 12-leads ECGs mathematically

by calculating missing leads III, aVR, aVL, and aVF using the following equations 3.1.

The sample rate is 500 per ECG sample. Then, there are 5000 data points per lead. A
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Real ECG

Figure 3.2: A sample of 12-leads 10-sec real ECG. Figure reference: [41]

sample from this dataset is depicted in Figure 3.2.

III = II − I

aV R = −0.5× (I + II)

aV L = I − 0.5× II

aV F = II − 0.5× I

(3.1)

These ECG signals have been collected from two populations. One population is

the Danish General Suburban Population Study (GESUS) [179] which consists of 8, 939

samples, and the other one is the Inter99 study [180] (CT00289237, ClinicalTrials.gov)

consists of 6, 667 samples. In total, there are 15, 606 ECG samples. All the collected ECGs

were analyzed using a well know ECG analysis system named MUSE [181]. These MUSE

reports are used as ground truth for this ECG dataset, and the reports contain important

characteristics of ECG signals. The important characteristics of a single ECG pulse are

depicted in Figure 3.3. According to the MUSE reports, all the ECGs are classified under

four main classes as tabulated in Table 3.2. Other important ECG properties collected

from the MUSE system are discussed in the benchmark paper [41].

The HyperKvasir dataset [23] consists of labeled images, segmented polyp images,

and unlabelled images and videos. The labeled images consist of 10, 662 images under 23

classes. In the segmented polyp images, there are 1000 polyp images and corresponding

ground truth masks annotated by experts. The unlabelled images have 99, 417 images,

and there are 374 videos with 30 different classes. This dataset represents the biomedical
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Figure 3.3: The common ECG characteristics. Reference for the image: [182]

Table 3.2: Different classes identified using the MUSE system analysis. Bold numbers
represent “Normal” category ECGs which are going to be used as training data for GAN
models used in later stages of DeepSynthBody. Reference for the table: [70]

Category GESUS dataset int99 dataset Total

Normal 3558 3675 7233
Otherwise Normal 2370 1536 3906
Abnormal ECG 2118 905 3023
Borderline ECG 893 526 1419

Total 8939 6642 15581

imaging data format considered under digestive class and 2-D and 3-D data formats in

DeepSynthBody. However, the labeled images, the segmented images, and the unlabelled

images are used as case studies in this thesis, and it means, only 2-D data format is

considered.

The labeled 23 classes and the number of images per class are illustrated in the graph in

Figure 3.4. These images and corresponding class labels were used in baseline experiments

performed for the dataset paper [23]. Then, unlabelled GI-tract images of the HyperKvasir

dataset, as depicted in Figure 3.5, were used to train a GAN in developing generative
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Figure 3.4: The 23 classes of the HyperKvasir dataset and the number of iamges per
class. The light blue bars represent classes under upper GI-tract and the dark blue bars
represent lower GI-tract images. Reference for the plot: [23]

Figure 3.5: Sample images from unlabelled folder from HyperKvasir dataset. Reference
for the image: [23].

models of DeepSynthBody. Polyp images and corresponding masks from the segmentation

data folder are illustrated in Figure 3.6. The polyp data was used to train a GAN model,

which was developed to show the possibility of using GANs as an alternative method

for the costly and time-consuming data annotation process performed by domain experts.

More details about the whole HyperKvasir dataset are presented in our dataset paper [23].

The VISEM dataset introduced by Haugen et al. [69] has 85 sperm videos recorded

from sperm samples collected from different participants. The sperm video dataset con-

sists of analysis data reports produced by experts in the domain of sperm analysis. The

sperm dataset is classified under the reproductive system, and it covers the 3-D data

format. Example frames extracted from the videos of this dataset are illustrated in Fig-

ure 3.7. Different density amounts of sperm counts are shown in this figure from left

to right with low-density to high-density, respectively. The collected analysis reports at-

tached with the sperm dataset give information about the morphology and motility level
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3.1. Step I: Collecting Real Data and Analysis

Figure 3.6: Sample images and corresponding masks from HyperKvasir dataset. Reference
for the image: [23]

Figure 3.7: Sample frames extracted from different sperm videos from the sperm dataset
(VISEM) [69].

Figure 3.8: An illustration showing important sperm quality measurements. Reference
for the figure: [183].

of the 85 sperm samples. Figure 3.8 shows the common quality measurements performing

in sperm analysis. They are counting sperms, finding abnormal sperms (sperm morphol-

ogy level), and finding abnormal movements of sperms (motility level), as illustrated in

Figure 3.8 from left to right. Then, the main goal of this dataset is to predict the values

in the analysis report automatically using ML techniques. More details about the sperm

dataset can be found in the original dataset paper [69].
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3.1.2 Analysis of Real Data

Performing benchmark analysis of real medical data is an important step in the Deep-

SynthBody framework because it gives the initial understanding and inherited challenges

about the datasets incoming to use the framework. Generally, baseline experiments and

corresponding results are presented through dataset papers. However, benchmark exper-

iments are the only source to know statistics about the private medical datasets when

publishing dataset papers are not allowed because of privacy restrictions. Moreover,

advanced analyses are performed in benchmark studies that focus on developing ML

solutions rather than publishing datasets. Therefore, this section discusses benchmark

analysis details of the selected datasets. The selected datasets are the ECG dataset [41],

HyperKvasir dataset [23] and sperm dataset [69].

Electrocardiogram (ECG) Signal Analysis

The ECG benchmark analysis study [41] conducted under this thesis has two objectives.

One is to predict ECG properties (see Figure 3.3), namely QT-interval, PR-interval, QRS-

duration, heart-rate, J-point elevation, T-wave amplitude, and R-peak amplitude using

regression ML methods. The second objective is to predict a person’s sex (gender) from

ECG signals using ML methods used for classification.

Using 12-leads 10-sec format or median ECGs produced from 12-leads ECGs can be

used to predict regression values of the ECGs. The median ECG is a normalized single

beat version of the long ECGs. Therefore, both types of input formats, 12-leads 10-

sec, and the median format were evaluated as inputs to our ML models used to predict

the properties of the ECGs. For each property of ECGs, separate ML models were

implemented using convolutional neural network (CNN) techniques. On the other hand, to

predict the sex, only the median ECGs were used because we needed to find the correlation

between interval-specific features. Medical people are not interested in rhythm-based sex

prediction.

All the CNNs were trained and evaluated using five-fold cross-validation to perform

a better generalizable evaluation. Quantitative evaluations have been done using MAE

and RMSE. In addition to evaluating models’ predictions, the GradCAM [42] approach

was applied to explain the predictions from CNNs. More details about this ECG analysis

and benchmark results can be found in the full article [41]. Referring to this benchmark
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3.1. Step I: Collecting Real Data and Analysis

analysis is the only way to understand this dataset because of the restrictions on sharing

the real dataset. However, the methods are not reproducible because the dataset is

restricted. The capabilities of DeepSynthBody to solve such privacy issues are discussed

in later sections.

Gastrointestinal-tract Image Analysis

For GI-tract benchmark analysis, several experiments were performed for two different

types of tasks, classification and segmentation. Under the initial objectives, we performed

these experiments to develop ML models for CAD systems to assist doctors. However,

under DeepSynthBody, the main goal of these experiments was changed to benchmark

analysis. The summary of all the GI-tract analyses performed for the thesis is tabulated

in Table 3.3. Some of the GI-tract analyses [30, 36, 35] have been performed as a part

of competitions such as MedicoTask [184] and EndoCV-20213 grand challenge, which has

used similar GI-tract data to HyperKvasir data [23] used in this thesis. Participating in

competitions and solving the tasks given by the organizers helps to make benchmarks and

analyze them globally with other participants of the competitions. Our initial objective

was to produce well-performing ML models for CAD systems to assist doctors. However,

the participating competitions and providing well-performing solutions such as the win-

ning solution [35] provided to the EndoCV-2021 make them popular and get researchers’

awareness to enhance them.

Moreover, the cross-data evaluations performed in our paper [31] show the data-bias

problem occurred due to training ML models using a single training dataset. This gen-

eralizability issue occurs due to the lack of diverse medical datasets. This medical data

shortage is identified as the main research question of this thesis. Additionally, in this

study, the requirement of fair evaluations using multiple metrics such as accuracy, recall,

precision, F1, MCC, and specificity were discussed when the cross dataset evaluations are

performed as proof of generalizability.

Not only producing benchmark results, but proper evaluation criteria used to analyze

them are essential. Therefore, an online calculator4 [33] to calculate proper evaluation

metrics for binary classification models was implemented with given proper guidelines

using the GI-tract images classification as a case study. Using this tool, researchers (or

3https://endocv2021.grand-challenge.org/
4https://medimetrics.no/medimetrics/
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other users of this tool) can calculate evaluation metrics for their studies and calculate

missing metrics of other relevant studies that need to be compared. This tool makes a

common platform for comparing studies fairly.

The performance of an ML model can depend on the resolution of input images to

CNNs. Therefore, another investigation [32] was conducted to find the correlations be-

tween input resolutions and output performance using GI-tract images. Two different

CNNs models (ResNet-152 [185] and Densenet-161 [186]) to classify 23 classes of the

labeled folder in the HyperKvasir dataset [23] were investigated and presented the impor-

tance of having high resolutions images for CNNs.

A total of six benchmark analyses have been performed in this thesis to achieve Sub-

objective III using the GI-tract datasets. The six models consists of four classifications [30,

31, 36, 32, 33], and two segmentation tasks [36, 35]. However, in this section, we considered

all these implementations as benchmark analyses because our Sub-objective III is not

producing ML models for CAD systems but investigate the data-related problems. These

benchmark evaluations and corresponding results using the GI-tract data can be found

in original articles tabulated in Table 3.3.

Sperm Video Analysis

According to the data and ground truth provided in the sperm dataset [69], the intended

research work is to predict the morphology and motility level of the sperm samples in the

dataset. The prediction of morphology and motility levels were identified as regression

problems. The summary of all the studies conducted using this sperm dataset for this

thesis is tabulated in Table 3.4.

We have performed three studies [38, 39, 40] using different pre-processing techniques

and various types of CNNs. The main objective was to predict the morphology and

motility levels of the sperm videos, which contain recorded videos of microscopic sperm

analyses. Dense-optical flow [189] and Lucas-Kanade’s algorithm [191] to predict sparse

optical flow were investigated as pre-processing techniques for the study [38]. In addition

to the optical flow extractions, stacked gray-scale video frames as input were tested.

Moreover, video frames were reshaped to vertical frames and stacked to prepare new data

structures to compress multiple video frames into one. This new structured data were

also investigated in the study [38].
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Table 3.3: GI-tract analysis done for producing baseline results and benchmark results.
Two-type of analysis and different type of ways to produce baseline and benchmark results
are tabulated here. These analysis results are relevant to the layer of collecting real data
and analysis of DeepSynthBody.

Study Analysis type Description

[30] Classification Two CNNs are presented in this study to classify 16
classes of GI-tract finding given in the dataset of Medi-
coTask 2018 [184].

[31] Classification This study shows the importance of performing cross-
dataset evaluations because training ML models using
small datasets shows the data-bias behaviours [187].

[33] Classification Importance of fair evaluations of the predictions from
ML solutions is discussed in this study. Therefore, an
online tool to produce proper evaluation results is pre-
sented and published with this paper. The tool can help
researchers to evaluate classification models. The study
was validated using a review of studies of GI-tract anal-
ysis.

[32] Classification These studies show the effect of the resolutions of the in-
put images using with CNNs. The importance of having
high-resolution medical images is emphasised in these
studing using GI-tract images as case study data.

[36] Segmentation The data augmentation method (PYRA) introduced in
this study discuss how grid-like augmentation can im-
prove the generalizability of polyp segmentation. This
the segmentation solution proposed to the benchmark
challenge in the Medico task at MediaEval 2020 [188].

[35] Segmentation The winning solution of EndoCV2021 is presented in
this paper. Participating competitions and producing
ML solutions for them help to figure out limitations and
challenges of real medical data sources.

The dense-optical flow extractions with different amounts of frame strides were in-

vestigated in our study [39] for the sperm benchmark analysis problem in MedicoTask

2019 [190]. The stride amount is the gap between video frames extracted to calculate the

dense-optical flow. The three-fold cross-validation with ResNet-34 [185] was performed to

evaluate the models. For the same task, an auto-encoder-based solution was presented as

a new submission [40]. In the second solution, auto-encoders were used to extract tempo-

ral information from stacked input video frames. The extracted temporal features act as

images to CNNs to predict morphology and motility levels of the sperm videos. The ex-

tracted features are not readable to humans. However, CNNs trained using these features

could learn to predict the morphology and the motility levels of the sperm samples.
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Table 3.4: Summary of real sperm data analysis. Predicting motility and morphology
is the main research problem with this dataset. The analysis type of this dataset is
regression.

Study Analysis type Description

[38] Regression Four type of pre-processing techniques were experi-
mented to predict morphology and motility level of the
sperm videos.

[39] Regression Using the Dense-optical flow [189] algorithm, the videos
were pre-processed before passing them into CNN ar-
chitectures to predict morphology and motility levels.
This implementation was submitted to MedicoTask-
2019 [190].

[40] Regression Auto-encoders were used to extract temporal features
into 2D spatial domain and the featured were anal-
ysed using CNNs tp predict morphology and motility
levels of perm samples. The solution was proposed for
MedicoTask-2019 [190].

[68] Regression A challenge named BioMedia organised for the ACM
Multimedia grand challenge 2020. Participants were
asked to develop ML solutions to predict morphology
and motility levels automatically.

These benchmark results show how difficult to predict the motility and morphology

levels only using a small dataset. The results of these experiments reflect the quality of

the dataset and also the requirements to improve it. More details about these benchmark

analyses performed for the sperm dataset can be accessed from the original papers [38,

39, 40].

3.2 Step II: Developing Generative Models

Step II is the core step of the DeepSynthBody framework. This step is two folds. First one

is designing generative models and finding the best models using evaluation processes. The

second is publishing the best generative models to the end-users who need synthetic data.

Different GAN types and the evaluation methods used to evaluate deep generative models

are discussed followed by the methods for publishing GAN models in the DeepSynthBody

framework for the end-users.
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3.2.1 Generative Model Design and Evaluation

Designing and evaluating GANs for generating synthetic data is the first process in Step II,

developing generative models. After collecting and analyzing real medical datasets in Step

I, GANs should be investigated to generate synthetic data to achieve the sub-objective

III. Sub-objective III focuses on generating synthetic data to overcome the medical data

deficiency problem which is the major obstacle for developing AI-based solutions in the

medical domain.

The three datasets, analyzed in the data analysis stage, the ECG dataset, the GI-tract

dataset, and the sperm dataset, were used as case studies. Comprehensive details of the

designing GANs are discussed in this section because the GAN designing and getting

state-of-the-art performances are essential for DeepSynthBody as it is the core of this

framework. In addition to the GANs design methodology, a novel tool named “GANEx”,

a graphical user interface (GUI)-based GAN training tool, was introduced. A summary

of all GAN-related studies performed for this thesis is summarized in Table 3.5.

Generating Synthetic electrocardiogram Signals

The ECG dataset discussed in our benchmark paper [41] would be a popular dataset for

the people doing ECG analysis if it is not a private dataset. Unfortunately, many datasets

like this are hidden from researchers as a result of privacy concerns. Therefore, GANs for

generating synthetic ECGs were developed in this thesis to generate synthetic ECG data

to share public instead of the restricted real dataset.

The first GAN architecture to generate synthetic ECG data was inspired by the Wave-

GAN [192] architecture introduced by Donahue, McAuley, and Puckette. The original

WaveGAN was developed to generate synthetic music. Therefore, in the first stage, the

WaveGAN architecture was modified to generate ECG signals having a shape of 8×5000,

which is the shape of eight-leads 10s long ECG samples of the dataset, and it was named

WaveGAN*. Then, generated samples from WaveGAN* were analyzed qualitatively and

quantitatively. The qualitative analysis was done by inspecting 12-leads plots, and for

quantitative analysis, the evaluation reports collected from the MUSE system were used.

According to the results, WaveGAN* had to be improved further to get better synthetic

ECGs. Therefore, a novel architecture named Pulse2pulse [70], inspired by the UNet

architecture [193], was introduced for the DeepSynthBody framework in this thesis.
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Study Task of GANs Description

[70] Generate syn-
thetic ECG

A novel GAN architecture called Pulse2pulse was intro-
duced to generate synthetic 10s long ECGs with eight-
leads to overcome privacy issues of the real dataset.

[72, 73] Pre-process
input data

GAN architectures were experimented to fill a part of
GI-tract images, which is the green box appeared at
the bottom right corner of the images in HyperKvasir
dataset [23].

[74] Generate syn-
thetic video
frames

A GAN architecture named Vid2pix with a 3D CNN
were investigated to generate synthetic Pilcam video
frames [27] for time step t+1 conditioning on time steps
t, t− 1, t− 2.

[67, 75] Generate syn-
thetic images
with corre-
sponding ground
truth mask

GAN architectures were experimented to generate syn-
thetic polyp images and corresponding ground truth
mask as proof of concepts to solve privacy issues and
medical data annotation cost problem.

[76] Generate syn-
thetic painting
to sperm video
frames

A GAN model was experimented to generate a painting
like spots instead of sperms in a sperm video frame.
This study was focused to generate sperm locations in
a synthetic paintings for simple sperm analysis.

[77] A tool to pre-
from GAN ex-
periment

GANEx is a tool with a GUI to perform series of GAN
experiments for non-computer science people who want
to produce data to DeepSynthBody.

Table 3.5: Summary of GAN-related experiments preformed under this thesis.

ECGs from the Normal ECG category of the dataset were used to train both GAN

architectures because the Normal ECG category is the biggest population of the dataset

(refer the Table 3.2). The discriminator used for both GAN architectures was adapted

from the discriminator introduced in WaveGAN [192]. The modified WaveGAN generator,

Pulse2pulse generator, and discriminator used for both GAN networks are illustrated in

Figure 3.9. The complete architecture details are discussed in the full paper [70].

For both models, WaveGAN* and Pulse2Pulse, the best checkpoints were found us-

ing MUSE analysis reports collected from generated 10, 000 ECGs per checkpoint from

every 500 epochs. Then, the two best checkpoints of WaveGAN* and Pluse2pluse were

evaluated further for better understanding before publishing them to the end-users of

DeepSynthBody. Five main properties of an ECG, namely RR, P duration, QT interval,

QRS duration, and PR interval, were selected to compare the distributions of the selected

best checkpoints. The distribution plots are illustrated in Figure 3.10. The blue color

dots represent real normal ECG samples, and orange color dots represent generated ECG
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(a) WaveGAN* generator.
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(c) Architecture of the discriminator used for both generators.

Figure 3.9: Model architectures of the generators and the discriminator used to generate
synthetic ECGs. WaveGAN* uses a 1D noise vector with 100 points. Pulse2Pulse uses a
2D noise vector with size of 8× 5000. Reference for the figure: [70].

samples from WaveGAN* and Pulse2pulse.

Comparing distributions of ECG properties, WaveGAN* shows less accurate distribu-

tion overlaps with the distributions of real data compared to Pulse2Pulse. This difference

can easily be noticed from the row presenting correlations between PR interval and other

properties. Also, WavGAN* generated faulty synthetic ECG samples making more “nan”

values in the MUSE analysis report than Pulse2Pulse. The MUSE algorithms give “nan”

values when the algorithm cannot predict the specific property of an ECG. These statis-

tical comparisons are discussed in our full paper [70].

After finding that the novel Pulse2Pulse architecture can generate better quality syn-

thetic ECGs than WaveGAN*, a large synthetic ECG dataset with 150, 000 samples was

generated using the best checkpoint of Pulse2Pulse. Then, the synthetic dataset was an-

alyzed using the MUSE system to predict the properties of the ECGs. From the MUSE
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(a) From WaveGAN*. (b) From Pulse2pulse.

Figure 3.10: Comparisons of MUSE predictions using characteristic distribution plots.
Blue color plots represent real normal ECG distributions. Orange color plots represents
distribution of fake ECGs generated by WaveGAN* and Pulse2pulse respectively in Figure
3.10a and Figure 3.10b. The “nan” values of the selected five features of “Normal ECG”s
were converted into 0 to identify predicted “nan” values by the MUSE system.

analysis report, the most important nine properties, namely RR, Ventricular Rate, pdur,

QT interval, QRS duration, PR interval STJ V5, RPeakAmp V5, and TPeakAmp V5,

were further analyzed statistically, and the collected results are tabulated in Table 3.6 to

compare with the real Normal ECG data statistics.

Table 3.6 presents statistics collected from three datasets for the selected parameters.

First, statistics about the real ECG data (filtered “Normal” ECGs), used to train the

GAN models are tabulated. Then, statistics about all the generated 150, 000 ECGs and

statistics about filtered “Normal” ECGs (121977) from 150, 000 ECGs were tabulated. To

achieve sub-objectives II and IV, collecting and developing medical data and developing

generative models to generate synthetic data, the synthetic ECGs should have similar

characteristics as real ECGs. According to the results presented in Table 3.6, the synthetic

ECGs show similar statistical properties to real ECGs, such as equal or very close mean

and std values for ventricular rate and QT interval. To present the qualitative properties

of synthetic ECGs generated from Pulse2pulse, Figure 3.11 shows two synthetic ECG

samples identified as “Normal” according to the MUSE report. Additionally, the 150, 000

synthetic ECG dataset and the filtered 121977 “Normal” ECGs can be downloaded with
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Table 3.6: Comparison of MUSE analysis reports’ statistics for selected ECG properties.

Real 150k All Normal (121977)

Mean Std 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

RR 866 90 670 1000 870 91 667 1000 870 87 682 1000
VentricularRate 70 8 60 90 70 8 60 90 70 8 60 88
pdur 105 12 82 130 118 17 84 152 117 17 86 152
Q TInterval 395 21 352 436 395 21 354 436 395 20 354 434
QRSDuration 90 9 74 110 93 10 78 114 92 9 78 112
P RInterval 156 19 120 198 159 18 124 194 158 17 124 192
STJ V5 2 27 -44 58 16 36 -54 92 18 33 -44 87
RPeakAmp V5 1287 402 600 2163 1272 404 561 2114 1276 370 615 2031
TPeakAmp V5 343 137 126 664 360 141 141 678 364 134 151 668
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Figure 3.11: 12-leads plots of fake ECG samples from the novel ECG generator introduced
in this study: Pulse2pulse.

the corresponding MUSE reports from https://osf.io/6hved/.

In summary, we could see that our Pulse2Pulse generates realistic synthetic data with

very close properties to the real dataset. Then, these generated synthetic ECGs can be

used to share to the public instead of the real dataset with privacy concerns.
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Generating Synthetic gastrointestinal-tract Images

The HyperKvasir dataset [23] is used as the main case study to experiment with GANs

for GI-tract data. Additionally, the Kvasir-Capsule [27] dataset is used. Using these

datasets, several GANs were developed to investigate how GANs can generate synthetic

medical image data, in this case, GI-tract images.

Several preliminary experiments were performed to use GANs to fill missing parts

of GI-tract images [72, 73] and predict future frames of the Pilcam videos of GI-tract

videos [74]. The studies [72, 73] focused on removing green boxes that appeared in GI-tract

images by generating synthetic filling using GANs. Sample GI-tract images with green

boxes are presented in Figure 3.16. The green box removing process is a preprocessing

step to prepare GI-tract images for other ML models. Then, the main goal of this study

is to find the effect of removing green boxes that appeared in the GI-tract images on the

HyperKvasir dataset by replacing the green box with a generated realistic replacement.

In the preliminary experiment [74], a GAN was researched and developed to generate

synthetic video frames for capsule endoscopy (pill cam) videos [27]. The GAN architecture

experimented for the video generations process has used 3D CNN to predict future frames

of the videos to extend the available real dataset to improve the dataset. Then, the goal

of improving data is to improve the performance of other machine learning algorithms

which use extended synthetic videos.

The generative models discussed with the preliminary experiments have given the

foundation to build other GANs discussing in this section. However, quantitative and

qualitative analyses show that the performance of these preliminary experiments was not

enough for solving Sub-objective II by generating synthetic medical data. Still, exper-

iments discussed in studies [72, 73] are contributed to Sub-objective III of this thesis.

Therefore, those GAN architectures were excluded from the final DeepSynthBody plat-

form until improving these using future research works.

Another three advanced GAN architectures were investigated with the HyperKvasir

dataset after the foundation analysis from preliminary studies [72, 73, 74]. These three

studies, namely GI-StyleGAN [71], SinGAN-polyp-augmentation [67], and Polyp-inpainting [75],

were conducted as proof of concepts to mainly address Sub-objective IV, which focus on

generating synthetic medical data to solve the data deficiency problem in the medical

domain. These three studies and corresponding contributions to the sub-objectives are
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GAN for GI tract

To solve privacy issues
(sub-objective III)

To reduce annotation cost
(sub-objective IV)

GI-StyleGAN SinGAN-polyp-augmentation Polyp-inpainting

Figure 3.12: Different type of GANs for generating synthetic GI-tract findings for different
purpose.

depicted in Figure 3.12.

The GI-StyleGAN experiment presented in the concept paper of this thesis [71]

used StyleGAN-v2 introduced by Karras et al. [194] with the unlabelled data folder of the

HyperKvasir dataset to generate synthetic GI-tract images. The main objective of this

experiment was to achieve Sub-objective II and IV, which are collecting and developing

medical datasets and researching and developing GANs to generate synthetic data. All the

unlabelled images (around 100, 000) from HyperKvasir were used to train the StyleGAN-

v2 model because the model is prone to a large training dataset. Pytorch implementation

of StyleGAN-v25 was trained 10, 000, 000 steps for more than eight days to get good out-

put. In this training process, checkpoints were saved after every 1000, 000 steps (not using

epochs) to check the progress of the quality of generated GI images and Frechet incep-

tion distance (FID) values introduced by Heusel et al. [195] were calculated to find the

best checkpoint. The calculated FID values from different feature layers, namely 64: first

max-pooling features, 192: second max-pooling features, 768: preaux classifier features,

and 2048: final average pooling features, are tabulated in Table 3.7. Randomly picked

synthetic colon images are presented in Figure 3.13. The presented images show that the

StyleGAN implementation is capable of generating realistic synthetic colon images. This

colon StyleGAN is not only for generating random images, but it can generate interpo-

lated images between two randomly generated images, as depicted in Figure 3.14. This

5https://github.com/lucidrains/stylegan2-pytorch
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Table 3.7: FID scores calculated from different checkpoints of StyleGAN trained for gen-
erating GI-tract findings.

chk point FID 64 FID 192 FID 768 FID 2048

0 39.1090 189.4938 2.6159 342.0751
100 1.7710 8.3480 0.3030 58.9490
200 1.6616 8.0271 0.2977 59.7215
300 1.6575 7.8310 0.2671 52.6597
400 1.2801 6.1183 0.2429 48.5694
500 1.2262 5.8759 0.2372 49.3512
600 1.5974 7.4586 0.2626 52.9441
700 1.3826 6.5063 0.2363 46.2668
800 1.1938 5.9112 0.2312 46.7931
900 0.6537 3.0260 0.2017 44.3310

1000 0.8736 4.2926 0.1980 41.2039

Figure 3.13: Style-GAN generated random gastrointestinal-tract findings.

functionality introduced in the vanilla implementation of StyleGAN [196] can generate

synthetic data as needed for end-users. This particular generative model can be used

to achieve the sub-objective II and IV, aiming to develop medical datasets and solve

privacy concerns by generating synthetic medical data.

Generating synthetic data with corresponding ground truth is challenging than gen-

erating random synthetic data samples solely. However, generating both synthetic data

and ground truth is essential to overcome the data deficiency problem to achieve sub-

objectives II and IV. We can use synthetic data to replace the costly and time-consuming

medical data annotation process, which is identified as one of the reasons causing the data

deficiency problem. We can generate both synthetic data and the corresponding ground
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Figure 3.14: First five samples generated with 200 interpolation steps for two different
random seeds. First and second row represent the two different random seeds. [71]

truth using GANs to solve the problem.

The polyp inpainting GAN [75], capable of generating synthetic polyps on clean

colon images, is another study performed with GI data. This gan was researched and

developed as the first solution to overcome the data annotation problem, as presented

using the third leaf node of Figure 3.12. In this experiment, image inpainting using

generative multi-column CNN presented by Wang et al. [197] was studied, researched, and

developed to do polyps inpainting for non-polyp images using given masks that represent

regions of interest to have polyps. However, the available polyp data in the polyp datasets

are not enough to train the GAN from scratch. Therefore, the inpainting GAN model

was trained from clean colon image folders as the first step. The clean colon image folders

have enough images identified as non-disease images by experts to train a DL model.

After training with the clean colon data, the model was retrained using polyp data and

corresponding masks using the transfer learning mechanism [198] to generate polyps on

clean colon images for given masks. This training process is illustrated in Figure 3.15

according to the steps discussed in the original publication [75].

After the training process, the polyp inpainting GAN can convert clean colon images

into corresponding polyp images using given masks. Therefore, this inpainting GAN

can generate synthetic polyp datasets with the masks of the polyp regions. Then, the

inpainting GAN can be used as a solution to achieve Sub-objective IV by producing

synthetic data as alternatives to the resource-consuming medical data annotation process.

The inpainting GAN can generate synthetic polyps for given random polyp masks without

any aid from experts. Therefore, we can use this type of GANs to generate synthetic true
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Figure 3.15: Steps of the polyp inpainting training process as discussed in [75]. Generative
multi-column convolutional neural networks (GMCNN) [197] is the core network in this
process.

positive data from true negative data, which are common and easy to find. We showed

that synthetic polyps show visual properties also indistinguishable from real samples for

the domain experts.

A qualitative analysis was done using a survey with medical experts to evaluate the

quality of the synthetic polyps generated from the polyp inpainting GAN. Using the polyp

inpainting GAN, synthetic polyps were generated and analyzed by domain experts. The

experts analyzed five synthetic and five real polyps samples. The samples used for a

questionnaire are presented in Figure 3.16. In this questionnaire, experts were asked to

discriminate synthetic polyps from real polyps and give a confidence score for the particu-

lar selection. Two experts, three non-experts and three internal medicine residents (total

is eight) have participated in this questionnaire. The summary of the results collected

from this questionnaire is presented in Table 3.8. Finally, the proposed GAN architecture

can generate synthetic polyp image conditioned on a clean colon image and a random

mask representing a polyp region. The polyp inpainting GAN shows that modified GAN

architectures can generate synthetic data with corresponding masks, usually prepared by

experts manually, which is a costly and time-consuming task. More details about this

polyp inpainting GAN can be found in our original paper [75]. However, this inpainting
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Figure 3.16: Polyp inpainted samples from polyp inpainting gan. The first row illustrates
input images. The images in the second row represent input masks used with input
images. The third row represents the output images from the polyp inpanting GAN.

Table 3.8: Overview of obtained results from all 8 readers (2 experts - EE and 3 non-
experts - NE, 3 internal medicine residents - IM) for discriminating real and inpainted
polyps.

Reader TP FN FP TN Accuracy

EE1 3 4 2 1 0.4
EE2 3 5 2 0 0.3
NE1 2 1 3 4 0.6
NE2 3 2 2 3 0.6
NE3 4 2 1 3 0.7
IM1 4 2 1 3 0.7
IM2 4 3 1 2 0.6
IM3 4 1 1 4 0.8

GAN is not suitable for a privacy-preserving data sharing technique because the non-polyp

regions are identical to the real clean colon images.

SinGAN-Seg [67] was investigated in this thesis to achieve sub-objectives III and

IV. The SinGAN-Seg implementation was inspired by the original SinGAN introduced

by Rott Shaham, Dekel, and Michaeli [149]. The vanilla SinGAN learns from a single

image and generates synthetic samples similar to the pixel distribution of the image used

to train it. The original paper presents different applications such as paint to image,
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Figure 3.17: A representation of the four-channels SinGAN training step.

super-resolution, editing images, harmonization, and generating animations using a single

image. In our SinGAN study [67], the original SinGAN was changed to input four channels

containing the input image and its ground truth mask. Then, the modified SinGAN was

named SinGAN-Seg because it has a generated synthetic image and its ground truth

mask (segmentation mask). So, SinGAN-Seg is a modified version of SinGAN to perform

the novel application that generates random images and the corresponding segmentation

masks. This SinGAN-Seg was introduced in this thesis to address the sub-objectives III

and IV. The complete training process of SinGAN-Seg is depicted in Figure 3.17.

The SinGAN-Seg architectures were trained using the 1000 polyps images of the Hy-

perKvasir dataset. Then, 1000 different checkpoints were generated to replace the 1000

polyp images to demonstrate the capabilities of novel sinGAN-Seg to solve privacy con-

cerns and resource-consuming medical data augmentation process. Synthetic polyp images

and corresponding ground truth masks generated automatically using SinGAN-Seg are

depicted in Figure 3.18. The first column of the figure presents real images and corre-

sponding masks of polyp regions, annotated by experts manually. Other columns present

generated synthetic polyps and generated masks from SinGAN-Seg learned from the in-

put image of the first column. While the training data consists of only polyp images,

SinGAN-Seg can generate non-polyp images as presented in the 3rd and 4th rows in Fig-

ure 3.18. This novel SinGAN-Seg implementation contributed to sub-objectives I, II, III,

and IV by presenting a well-performing polyp segmentation model, generating realistic

synthetic polyps and corresponding ground truth masks to replace private medical data,

and tackling costly and time-consuming medical data annotation process.
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Figure 3.18: Sample real images and corresponding SinGAN generated synthetic GI-tract
images with corresponding masks. The first column is illustrated with real images and
masks. All other columns represent randomly generated synthetic data from SinGANs
which were trained from the image on the first column.
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After generating synthetic polyp images and corresponding maks using our SinGAN-

seg, the global features of the synthetic images look awkward because of the unrealistic

texture of synthetic images (see Figure 3.18). As a solution to this, the style-transfer

algorithm [199] was used to transfer styles from the training image to generated synthetic

images. More details about this style-transfer method can be seen in our paper [67].

In summary, we could generate realistic synthetic GI tract images in three ways. The

StyleGAN model can generate random synthetic GI-tract landmarks that are indistin-

guishable from real samples. The polyp inpainting GAN can generate synthetic polyp

images by converting a true-negative sample into a true positive sample. The qualitative

analysis shows that domain experts also cannot differentiate between real and synthetic

samples generated from this polyp inpainting GAN. Synthetic data generated from polyp

inpainting GAN addresses data imbalance problems. SinGAN-Seg is another GAN ar-

chitecture that is capable of generating synthetic polyps and ground truth masks. This

GAN can be used to overcome the costly and time-consuming medical image annotation

process, which experts usually do.

Generating Synthetic Sperm Video

Synthetic sperm data generation is another area considered as a case study. However,

limited data and time constraints were barriers to producing successful GAN architectures

that can be plugged in to the DeepSynthBody framework. However, we performed several

experiments using SinGAN to generate painting-like sperm video frames [76] to represent

the real sperm data because SinGAN learns from a single image it does not need large

datasets.

We used vanilla SinGAN [149] to experiment with the sperm dataset to perform unsu-

pervised sperm segmentation to achieve Sub-objective IV. In this case, the data deficiency

problem will be solved by reducing the annotation cost of medical data. In this task, Sin-

GAN was used to track the locations of sperms in an unsupervised way. The complement

operation of the paint-to-image operation introduced in the original SinGAN, image-to-

paint, was investigated to generate sperm sample-like paintings to represent sperm loca-

tions with a clear background. To achieve this, the SinGAN model was trained from a

sperm-like picture. Sample training images investigated to train SinGANs are depicted in

Figure 3.19. Then, video frames were input into the pre-trained SinGAN using different
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Figure 3.19: Sperm like paintings used to train SinGANs to generate sperm tracking. The
last two images have same dot patterns except the background colour.

scale levels as introduced in the original SinGAN implementation. Results were analyzed

qualitatively with different input scales. Generated sperm-like paintings from real sperm

images can be used to identify sperm locations using this method.

Sample synthetic sperm paintings to represent real sperm sample images are depicted

in Figure 3.20. However, the quality of synthetic sperm video frames generated from

our SinGAN is not enough for publishing in DeepSynthBody. The results implies that

future experiments are required with different GAN architectures and high-quality sperm

datasets. A successful GAN architecture to produce sperm like painting can be used

to overcome the Sub-objective IV because synthetic sperm like painting can be used for

sharing data when privacy concerns are there and, the synthetic sperm like painting is

an alternative representation for real sperm video frames which are hard to analyze by

experts.
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In summary, we developed a GAN architecture, based on the SinGAN architecture

to generate synthetic sperm data to replace real data. We have generated painting-like

sperm images that can measure the quality of the sperm sample. Moreover, this GAN

could tract sperm locations using white dots in an unsupervised way. Therefore, usual

image processing techniques (without DL) can be used to analyze the sperm samples

easily.

3.2.2 Publishing Deep Generative Models

After researching and developing GANs which can generate synthetic data to overcome

privacy issues and the costly and time-consuming medical data annotation process, these

deep generative models should be published to the end-users. Therefore, the contributors

who are developing GANs in DeepSynthBody should have a common platform to share

them. As a platform to share the final GAN models with the end-user in this initial stage,

the PyPI was selected. Therefore, all the developments were done in the most popular

programming language, Python [200], because PyPI is for Python.

The joy of coding Python should be in seeing short, concise, readable classes

that express a lot of action in a small amount of clear code, not in reams of

trivial code that bores the reader to death. – Guido van Rossum (creator of

Python)

First, the contributors who develop GANs can publish their work as an individual

package in PyPI. Then, the PyPI package can be included as a sub-module in the main

PyPI called deepsynthbody. In cases where PyPI does not work, authors of GAN models,

which will be connected with our framework, can share the checkpoints of their deep

generative models with corresponding source codes with the main contributors of the

framework. If any of these options do not work, researchers can publish only synthetic

data in any public data repository, and the corresponding links can be connected to the

DeepSynthBody. However, in the latter case, the end-users cannot control the synthetic

data generation process.

The flow of PyPI packages is depicted in Figure 3.21. The figure shows how individual

PyPI packages are contributing to the main Python package, deepsynthbody. First, GAN

developers should produce python packages for individual GAN trained for a specific real
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pip install deepsynth-gitract pip install deepsynth-{}

pip install deepsynthbody

deepsynthbody.digestive.gitract.{functions}(*param)

deepsynthbody.{system}.{sub-system}.{functions}(*param)

Figure 3.21: The flow of python packages which act as sub-modules of DeepSynthBody
framework. The figure reference: [71]

dataset. After training a GAN to produce realistic synthetic data, the GAN can be used

as a replacement to the real dataset used to train the GAN. Then, a python package with

functionalities to generate synthetic data and the best checkpoints of the GAN model

should be packaged into a python package independently. This individual independent

python package development process was introduced to reduce the development overhead

of the main python package. Finally, these individual packages are connected to the main

deepsynthbody package according to the human body categorization introduced in Step

IV of the framework (see Figure 3.1).

As a proof of concept, two Python packages were developed following the above

criteria. First, a python package named deepfake-ecg6 (pip install deepfake-ecg)

was published to generate synthetic data from the best checkpoint of the pre-trained

Pulse2Pulse [70] ECG GAN. Second, for generating synthetic GI-tract images using

the StyleGAN implementation introduced in the paper [71], a python package called

deepsynth-gitract7 was published. These packages were developed independently from

the deepsynthbody package. After publishing the individual packages, they have been

connected to the deepsynthbody8 main package.

3.2.3 A Tool to Experiment with Generative Adversarial Net-

works: GANEx

The DeepSynthBody framework should interact with medical data providers to collect

deep generative models,. However, the main challenge is all medical data providers do not

have ML programmers who can perform GAN experiments to produce generative models.

6https://pypi.org/project/deepfake-ecg/
7https://pypi.org/project/deepsynth-gitract/
8https://pypi.org/project/deepsynthbody/
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Figure 3.22: The FastGAN library [77] introduced to connect multi-disciplinary user to
DeepSynthBody framework.

Additionally, data providers may not have the authority to share the data with interme-

diate partners to develop GANs. In this context, GANEx (GAN Experimenter) [77] is

a tool introduced in this thesis to overcome the barrier of performing GAN experiments

by one who does not have a deep understanding of ML or DL. This tool makes a bridge

between DeepSyntBody and multi-disciplinary medical data providers.

GANEx consists of two main components: a FastGAN library and a GUI. The Fast-

GAN library is a high-level GAN library, which provides functionalities to create pre-

defined GANs, train GANs and analyze them through a high-end abstract layer called

FastGAN Runner, as depicted in Figure 3.22. Using this FastGAN library as the backend,

the GUI has been developed to interact with the backend. The GUI of GANEx provides

functionalities to create GAN projects, experiments using a predefined collection of GANs

provided from the FastGAN library. Then, using the same GUI, users can run and ana-

lyze series of GANs using their datasets without writing a single line of code. The whole

process of the GUI is illustrated as a flow diagram in Figure 3.23. After completing the

GAN training process, the users have GAN checkpoints, which can be shared to generate

synthetic data without any privacy concerns.
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Figure 3.23: GUI flow of GANEx which is a tool to handle GAN experiments for non
computer science users of DeepSynthBody.

The sample screenshots of the tool are presented in Figure 3.24. Training progress, a

setting page of hyperparameters, and generated sample synthetic data from the CelebA

dataset [201] are given in the figure. The given screenshots show how the tool manages

every GAN training step without programming (coding). GANEx was developed as a sup-

porting tool to achieve the main objective, which focusing on combing all sub-objectives

together to make the functional full framework DeepSynthBody. In addition to this GAN

tool, deepsynthbody.org is hosted as the main website to achieve the main objective.

The website is for both contributors and end-users of the DeepSynthBody framework.
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Figure 3.24: Sample screenshots of the GANEx GUI showing user friendly GUI design
which can be handled by non computer science multi-disciplinary people. Top-left: is
showing a screenshot of GAN project management window which shows the summary
of all experiments saved in GANEx. Top-middle: is showing a screen shot taken from
real-time analysis of a GAN experiment using generator loss and discriminator loss. Top-
right: is showing the window of GANEx which gives functionalities to users to change
configuraions of GANs. Bottom: is showing GAN generated sample analyser which has
functionalities to produce histogram and heat maps of images.
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3.3 Step III: Producing DeepSynth Data

Producing DeepSynth data in Step III is presented in the big picture of DeepSynthBody

in Figure 3.1. In other words, this is the layer for the end-users who want to generate

synthetic data. This Step III has a flow similar to Step I, but the objectives are slightly

different. In Step I, the categorization is used to classify input data, while Step III uses

the same categorization to generate synthetic data. The data annotation layer presented

in Step I was replaced with two new data generation processes: unconditional and con-

ditional. As the final layer of Step III, synthetic data generation functionalities are used

instead of the real data analysis in Step I.

We use the same 11 categories in Step III as used in Step I to generate synthetic data

for the end-users. Step III is the output layer of the DeepSynthBody pipeline. We further

split the 11 categories into four categories based on the data dimensionality (1-D, 2-D,

3-D, and N-D) as discussed in Section 3.1.1. The data dimension layer decides the data

output format when there are multiple data formats to generate synthetic data. For ex-

ample, MRI data can be generated as images (2-D) or volume data (3-D) if both formats

are available at DeepSynthBody. In addition, the end-users can decide that the genera-

tion process is either unconditional or conditional if both options are available. Several

generative models can exist in this framework for a specific generative task (e.g., two

different conditional GAN models to generate synthetic ECGs). If more than one model

exists, the end-users can choose one for their specific application based on the benchmark

reports or using their own qualitative and quantitative comparisons. Similarly, multiple

GANs can be used together to generate diverse data distributions because different GAN

models may have different data distributions based on the training data used to train

them. The website named deepyynthbody.org is an online platform for providing all the

information about functionalities and their usage to the end-users of the DeepSynthBody

concept [71].

The website deepsynthbody.org links the researchers and the end-users. The main

purpose of this online platform is to connect everything to achieve the main objective.

Sample screenshots of the current website are given in Figure 3.25. This site provides

the necessary information to contributing to DeepSynthBody and the end-users of this

concept. However, the content of this site is subject to change based on new contributions

and user experiences. Like the contents, the functional flow of the site is also subject to
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Figure 3.25: Sample screenshots of deepsynthbody.org.

import deepsynthbody

deepsynthbody.cardiovascular.ecg.generate

("number of ECG to generate",

"Path to generate",

"start file ids from this number",

"device to run")

Listing 1: The generative function to generate synthetic ECGs that are 10s long and
having 8-leads.

change to give better user experiences in the future. At the moment, two functionalities

to generate synthetic data are presented on the website. One is for generating synthetic

ECGs, and others for generating synthetic GI-tract data.

Abstract functions to generate synthetic ECGs were implemented as presented in

Listing 1. Using this generation function, the end-users of DeepSynthBody can generate

an unlimited number of 8-leads 10-sec long ECGs, which are convertible to 12-leads ECGs.

However, this ECG generative model does not generate ground truth properties such as

PR interval, QT interval, heart rate, and other properties discussed in the ECG analysis

paper [41]. Suppose the end-users are interested in pre-analyzed ECGs. In that case, the

generated ECGs can be analyzed using the MUSE system or the pre-generated dataset

from the best checkpoint of Pulse2Pulse, and the corresponding MUSE analysis report can

be downloaded here: https://osf.io/6hved/ as presented in our ECG GAN paper [70].

Similarly, the end-users can generate an unlimited number of GI-tract images us-
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import deepsynthbody.digestive.gitract as gi

>> help(gi.generate)

'''

Help on function generate in module

deepsynthbody.digestive.gitract.functions:

generate(name, result_dir, checkpoint_dir, num_img_per_tile,

num_of_outputs, trunc_psi=0.75, **kwargs)

Generate deepfake Gastrointestinal tract images.

Keyword arguments:

name -- Any name to keep trac of generations

result_dir -- A directory to save output

checkpoint_dir -- A directory to download pre-trained checkpoints

num_img_per_tile -- Number of images per dimenstion of the grid

num_of_outputs -- Number of outputs to generate

trunc_psi -- value between 0.5 and 1.0 (default 0.75)

'''

>> gi.generate("test_data", "./result_dir", "./checkpoints",

num_img_per_tile = 1,

num_of_outputs= 10, trunc_psi=0.75)

Listing 2: Random GI-tract image generation function using StyleGAN.

ing the function presented in Listing 2. In addition to the main generation function,

an additional generation function, originally discussed in the vanilla implementation of

StyleGANv2 [194], was presented to generate intermediate generations using interpola-

tions between two random points of synthetic generations. This function is presented in

Listing 3.

3.4 Step IV: Explainable DeepSynth AI and Deep-

Synth Explainable AI

Step IV in the framework, namely explainable DeepSynth AI and DeepSynth XAI, is

introduced to embed explainability and transparency into all other layers. This layer

covers an essential concept to explain our deep generative models to increase trust and

enable deeper failure analysis. Additionally, it allows another way to explain other ML

methods using synthetic examples when the data restrictions are applied with real medical
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import deepsynthbody.digestive.gitract as gi

>> help(gi.generate_interpolation)

'''

Help on function generate_interpolation in module

deepsynthbody.digestive.gitract.functions:

generate_interpolation(name, result_dir, checkpoint_dir,

num_img_per_tile, num_of_outputs, num_of_steps_to_interpolate,

save_frames, trunc_psi=0.75, **kwargs)

Generate deepfake Gastrointestinal tract images.

Keyword arguments:

name -- Any name to keep trac of generations

result_dir -- A directory to save output

checkpoint_dir -- A directory to download pre-trained checkpoints

num_img_per_tile -- Number of images per dimenstion of the grid

num_of_outputs -- Number of outputs to generate

num_of_steps_to_interpolate -- Number of step between

two random points

save_frames -- True if you want frame by frame,

otherwise .gif will be generated

trunc_psi -- value between 0.5 and 1.0 (default 0.75)

'''

>> gi.generate_interpolation("test_data", "./result_dir",

"./checkpoints",

num_img_per_tile=1,

num_of_outputs=1,

save_frames=True,

num_of_steps_to_interpolate=100,seed=100)

Listing 3: The interpolation function to generate random images between two points of
generation.
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data.

If additional explanations are available to explain the synthetic data generation pro-

cess before using the synthetic data to replace real medical data, the trust of the end-users

to use synthetic data can be improved. Therefore, DeepSynthBody introduces eXplain-

able DeepSynth Artificial Intelligence (XSAI). XSAI’s primary goal is to explain deep

generative models [202, 203] to increase understanding of the generative process and the

quality of the generated data.

On the other hand, in the medical domain, XAI should be applied in increasing trust

to accept solutions from ML models that generally perform classification, detection, and

segmentation. While XSAI discusses the explainability of generative models, deep syn-

thetic data can be used to support the XAI of other ML models. This functionality is

discussed under DeepSynth XAI (SXAI). In this context, the main goal is not to explain

the deep generative models but rather to explain other ML models used to classify, detect

and segment medical data using synthetic data as examples. This DeepSynth XAI can

overcome the privacy issues occurring when real data is used to explain ML models. For

example, when researchers cannot explain their ML models by examples because the real

data is restricted to share, they can use synthetic examples to explain their models with

less concern about the privacy restrictions.

Both XSAI and SXAI concepts are discussed in the theoretical model. However, this

explainable layer is a value-added layer to the DeepSynthBody framework. Therefore,

Step IV is an optional step, and as a result, the DeepSynthBody framework functions

without these XSAI and SXAI implementations. In this regard, we keep these options for

future research works.

3.5 Summary

The DeepSynthBody concept was introduced in this thesis as the main solution to the data

deficiency problem, which was identified during researching and developing ML models

for CAD systems to assist doctors (Sub-objective I). The concept and the corresponding

framework were discussed in four steps. These are, collecting real data and analysis,

developing generative models, producing deep synthetic data, and explainable DeepSynth

AI and DeepSynth explainable AI. In this chapter, these four steps were discussed one by
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one with the corresponding contributions.

Medical data is the core of any ML solution. Therefore, we successfully collected and

published seven dataset papers [23, 24, 25, 26, 27, 28, 29] to achieve Sub-objective II.

Additionally, these datasets are required data to initiate DeepSynthBody. The datasets

were classified according to the novel classification protocol introduced using the biological

organ classification and the data dimension classification. Since analyzing the four steps

with all types of medical data is impractical, an ECG signal dataset, a GI-tract image

dataset, and a sperm video dataset were analyzed as case studies.

The ECG dataset is private, and it is not shareable. Therefore, this dataset was used

as a case study to show how synthetic data is shared instead of a real dataset, which

has privacy restrictions to share. A benchmark experiment was performed to understand

the ECG dataset and implemented a novel GAN architecture, Pulse2Pluse, to generate

realistic synthetic data. The Pulse2Pulse can generate synthetic 12-leads, 10-sec ECGs

as alternative data to represent the restricted ECG data. The results show that synthetic

ECGs generated from Pulse2Pulse are preserving the quality of the real dataset.

The GI-tract dataset was used as case studies to implement synthetic image genera-

tors to demonstrate synthetic medical image data sharing to avoid privacy concerns and

present the capabilities of using synthetic data to solve the costly and time-consuming

medical data annotation process. The deepsynth-gi generator using StyleGAN-v2 was im-

plemented to generate synthetic GI-tract data. Additionally, the image inpainting GAN

and SinGAN-Seg were demonstrated as solutions to the resource-consuming medical data

annotation process.

The sperm dataset was analyzed, and SinGAN was investigated to perform an un-

supervised medical video annotation process. The SinGAN functionality of converting

paint-to-image was reversed and used as image-to-paint to accomplish this unsupervised

sperm localization mechanism to use as another implementation to prove the capability of

DeepSynthBody to use as an alternative data provider for the costly and time-consuming

medical data annotation process. These sperm analysis experiments are in the early

stage. Therefore final version of synthetic sperm generations will not be available at

deepsynthbody.org until the GAN can produce quality output that can be published

for the end-users of DeepSynthBody. Other than this synthetic sperm generator, the

end-users of the DeepSynthBody can access both the synthetic ECG generator and the
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GI-tract image generator via deepsynthbody.org.

Overall, we could generate synthetic data using three different case studies represent-

ing other data formats, such as signals, images, and videos. In most cases, we have

generated realistic-looking synthetic data that can be replaced for real data with privacy

restrictions. Moreover, we showed that GANs could generate synthetic data with ground

truths to overcome the costly and time-consuming data annotation process. Furthermore,

we presented how to convert true negative data into true positive data using GANs to ad-

dress the data imbalance problem. Presented qualitative and quantitative analyses imply

that synthetic data can overcome the data deficiency problem in the medical domain.

Explainable DeepSynth AI and DeepSynth explainable AI were introduced as an op-

tional step in this framework, and therefore, contributors can decide that they are fol-

lowing this step or not. This functionality was kept for future research. However, adding

explainability to generative models used in this framework can improve the trust of the

end-users to use the synthetic data.
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Discussion and Conclusion

The main objective of this thesis is to research and develop generalizable, accurate and

well-performing ML models which can be used in CAD systems to aid doctors by detecting

more anomalies to save lives ultimately. However, we identified that the lack of medical

data is a major problem in the current pipeline of applying ML methods in the medical

domain. Therefore, we have defined several objectives to find a way to overcome the

data deficiency problem in applying ML solutions in the medical domain. As a result, we

introduced a novel concept and the corresponding framework, DeepSynthBody, to bypass

the data deficiency problem.

In this thesis, the main research question stated was “What are the problems that

emerge from data in computer-aided diagnosis systems, and how can these

problems be tackled?”. To address the research question, we have researched and ana-

lyzed ML models used in CAD systems. To support it, we collected and investigated the

real medical datasets, researched and developed benchmark analysis to identify the data

problems to be addressed. We could identify that data deficiency is the main problem

in the medical domain. This problem has occurred due to privacy concerns, the time-

consuming and costly data annotation, and the data imbalance problem in the medical

domain. To overcome these problems, we researched and developed a GAN-based concept

and a framework to tackle the data deficiency problem in the medical domain, namely

DeepSynthBody. In the DeepSynthBody solution, the main focus is to overcome the data

deficiency problems using synthetic medical data. We show that synthetic data can over-

come the data deficiency problem by omitting privacy concerns, generating synthetic data

with ground truth and generating synthetic data to overcome data imbalance problems
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by converting true negatives to true positives.

To achieve the main objective, seven datasets [23, 24, 25, 26, 27, 28, 29], 12 bench-

mark analysis studies and ML models to use with CAD systems [30, 31, 38, 39,

40, 68, 41, 36, 32, 33, 35, 34] and eight GAN studies [72, 73, 77, 74, 70, 67, 75, 76,

71] were published to cover all the sub-objectives and finally achieve the main objective

and answer the research question. Some of these papers contribute to multiple objec-

tives, while others contribute to only a single objective. These contribution overlaps are

illustrated in Figure 1.5 in Section 1.5.

4.1 Contributions and Discussions

The main focus of our research, in general, is to find generalizable and well-performing ML

models, which are the main component of CAD systems to assist doctors, and this thesis

address several of the challenges arising in this context. In particular, we have focused

on researching ML models for CAD systems with special attention to the challenges

medical data scarcity introduces. To accomplish this, Sub-objective I was introduced.

However, the data deficiency problem was identified as a significant barrier to achieve

the sub-objective I. Therefore, this thesis also introduced sub-objectives II, III, and IV to

research and develop medical datasets, research and establish benchmarks to identify the

data problems, and research and develop GAN-based frameworks to generate synthetic

data as the solution. Sub-objective I and Sub-objective III are overlapped greatly because

designing ML models for CAD systems consists of implicit benchmark analysis and vice-

versa. Finally, we achieved Sub-objective IV by introducing the novel DeepSynthBody

concept and the corresponding framework. Three different medical branches, gastroen-

terology, andrology, and cardiology, were used as the case studies for sub-objectives I, II,

III, and IV:

• Sub-objective I: The main focus of this sub-objective is to research and develop

well-performing ML models for CAD systems to assist doctors. As case studies, we

have selected three branches of medicine. In gastroenterology, images collected from

colonoscopies were the main data stream to apply ML algorithms which are the core

algorithms in CAD systems. Several classification models [30, 31] and segmentation

models [35, 36] were researched and implemented for the gastroenterology branch
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under this thesis in different stages of the timeline. Not only using real data, but

also synthetic data was used with segmentation models [67] used to predict polyps

in GI-tract data. Similarly, ML-based regression models were investigated and de-

veloped for the andrology branch [38, 39, 40, 68]. For the cardiology branch, an

ML-based ECG analysis system [41] was researched and implemented. Moreover,

all the dataset papers [23, 24, 25, 26, 27, 28, 29] introduced ML models as baseline

experiments considered as initial models for developing CAD systems.

• Sub-objective II: The main task of this sub-objective is to collect and produce

medical datasets. Collecting medical data and producing baseline results to under-

stand the data is the first step of developing CAD systems. Therefore, different

types of medical datasets [23, 24, 25, 26, 27, 28, 29] representing different types

of human body organs were collected and published with the baseline experiments.

While all the datasets contribute to the main objective, the GI-tract dataset [23]

was selected to use as one of the case studies for other sub-objectives because of the

data diversity and a large amount of data. Despite our dataset contributions, two

additional datasets were used as the case studies. They are an ECG dataset, which

is a private medical dataset representing biomedical signal, and a sperm dataset rep-

resenting video data. The additional datasets were selected to research and develop

ML models for CAD systems in the initial stage. Later, these additional dataset

were used to maintain the diversity of the case studies used as proof of concepts.

From the perspective of DeepSynthBody, which is the solution introduced in this

thesis to overcome the data deficiency problem, this data processing step is an in-

house step if the datasets are private. In this thesis, one private dataset and two

public datasets were used to prove the concept of DeepSynthBody. For further

investigating the concept’s possibilities, experimenting with new medical data types

can be started with public datasets with other data types, which were not covered

in this thesis. At the end of the successful implementation of DeepSynthBody, we

could introduce synthetic datasets, such as synthetic ECGs, synthetic polyps, and

the corresponding ground truth masks, and randomly generated synthetic GI-tract

landmarks to support the main objective.

• Sub-objective III: The selected datasets were used to design generalizable and
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well-performing ML models for CAD systems in our Sub-objective I. However, af-

ter identifying the data problems of the ML-based CAD system designing process,

we re-analyzed the process of designing ML models as benchmark analysis to in-

vestigate the data deficiency problem to be addressed in Sub-objective IV. Under

Sub-objective I, different types of ML solutions for CAD systems were investigated

under the three different selected medical branches, gastroenterology [30, 31, 36, 32,

33, 35], andrology [38, 39, 40, 68], and cardiology [41]. However, all findings were

considered as benchmark articles under new Sub-objective III as well because these

studies reflect the real problems associated with the medical data.

A set of benchmark articles for the selected datasets as case studies were published to

achieve the benchmark analysis objective (Sub-objective III). While all the datasets

should have benchmark analysis results, we chose the same three datasets selected

in Sub-objective I, as case studies to achieving Sub-objective III. They are the ECG

data, the GI-tract dataset, and the sperm dataset. Then, different types of bench-

mark analysis experiments done for developing ML models for CAD systems in

Sub-objective I with the GI-tract data [30, 31, 36, 32, 33, 35] were re-considered

to support this objective. Similarly, the ECG analysis [41] and sperm analysis [38,

39, 40, 68] experiments were investigated again as benchmark analyses for identi-

fying the data-related problems to address experimenting GANs. Without having

benchmark analysis, it is not recommended to research GANs under this DeepSyn-

thBody framework because the end-user of the DeepSynthBody framework will not

have results to compare the quality of synthetic data coming from this framework in

addition to understanding the data-related problems. In these benchmark analyses,

we contributed to organizing a competition, namely BioMedia 2020 [68], and partic-

ipated in a competition, namely EndoCV 2021 [35], to maintain higher standards for

the benchmark results. A detailed analysis of GI tract landmark classification was

performed within the benchmark analyses to introduce proper generalizable analyses

using cross datasets of GI data [31]. As a result of the cross dataset evaluation, we

further discussed proper evaluation mechanisms and guidelines for binary classifica-

tion of medical data in our Medimetrics1 [33], an open-access tool for fair evaluations

among different research findings. Furthermore, the effect of image resolution [32]

1https://medimetrics.no/medimetrics/
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was investigated to show that high-resolution data can improve the performance of

ML models using the GI-tract data as the case study.

• Sub-objective IV: In this sub-objective, the main purpose is to generate synthetic

medical data to overcome privacy-related problems, the time-consuming and costly

medical data annotation process, the data bias problem in the medical domain, and

the medical data imbalance problem. Before studying synthetic data generation

experiments, we investigated possible use cases of GANs with GI-tract data. One

study has investigated to preprocessing GI tract images using a GAN [72, 73] to

fill green regions of endoscopic images. Another study was performed to predicting

blurry pill cam video frames using a GAN [74]. The later GAN experiment shows

that the GAN can predict the fifth frame for the given four input frames of a pill

cam endoscopic video. These experiments helped us to get a basic understanding

of GANs in the medical domain.

Then, advanced GAN experiments to overcome the privacy issues were researched

and developed. The privacy concerns were identified as one of the major issues

that caused the data deficiency problem in the medical domain. The private ECG

dataset was investigated and successfully published a novel GAN architecture called

Pulse2Pulse [70], which can generate synthetic 12-leads 10-seconds long ECGs indis-

tinguishable from real ECGs. Not only this ECG generation GAN, we investigated a

GI-tract image generation in the concept paper [71], which introduced the DeepSyn-

thBody concept. The synthetic GI-tract data generator introduced in the concept

paper showed how to generate controllable synthetic data as an alternative to real

medical image data if the real datasets have privacy concerns.

Not only privacy concerns, but the results collected from the ECG generation and

GI-tract image generation experiments show that synthetic data can represent the

real data distributions. Remarkably, the synthetic ECGs clearly show the exact dis-

tribution of the properties of the real dataset used to train the Pulse2Pulse GAN.

Besides generating the synthetic samples within the distribution, the generated syn-

thetic data can cover untouched regions of the real data distribution. For more

information about the distribution overlap between the real and the synthetic data,

refer to the original article of Pulse2Pulse [70]. Similar to the synthetic ECGs, the

synthetic GI-tract images shows realistic GI-tract landmark within the generated
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images. Then, these GANs are an indication that synthetic data can be used to

generate uniform data distributions or missing data.

Furthermore, under this objective, to introduce an alternative method for the costly

and time-consuming expert’s data annotation process, we researched and developed

novel pipelines of GAN architectures using two case studies, the GI-tract dataset [23]

and the sperm dataset [69]. In one study, the GI-tract dataset was used to train

a GAN to generate synthetic polyp data from clean colon images [75]. This study

also contributed to the data imbalance problem in the medical domain because the

pipeline introduced in this study converts a real clean colon image (true-negative

sample) into a synthetic polyp image (true-positive sample). In another study,

SinGAN-Seg, synthetic polyp data were generated with the corresponding mask

from a single polyp image [67]. In the SinGAN-Seg study, an unlimited number

of synthetic samples can be generated with the corresponding segmentation masks

of polyps. This GAN can solve the time-consuming and costly data annotation

process by generating synthetic data and the corresponding segmentation masks

automatically. Moreover, we show that generated synthetic samples can improve

the performance of polyp segmentation algorithms used in CAD systems when the

manually annotated dataset is small. Additionally, we have investigated the usabil-

ity of GANs to produce synthetic sperm data [76] instead of blurry-looking sperm

video samples to have better quality assessments.

In this thesis, we researched an unsupervised way to segment sperms using a GAN-

based model. The results showed promising directions of converting real sperm

video frames into synthetic clear video frames with sperm locations, which can be

used to analyze the sperm samples in future studies. This sperm study also a proof

for using GANs to overcome the time-consuming and costly data annotation process

in the medical domain.

In addition to generating synthetic data with segmentation masks representing the

most advanced ground truth type, which is pixel-wise classification, all other ground

truth generations, such as continuous values, class labels, and bounding boxes, can

be explored and considered to overcome the data deficiency problem using GANs as

explored under Sub-objective IV. For example, conditional GANs generating syn-

thetic medical data using simple numerical values as input conditions can make
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synthetic datasets with numerical ground truth data. Similarly, using class labels

as input to GANs can produce synthetic datasets with the corresponding class la-

bels. Moreover, bound box ground truth, one of the famous medical image analysis

techniques, can be made using similar conditional GANs.

Finally, we formalized the GAN development process using the novel concept and

the framework called DeepSynthBody to overcome the data deficiency problem. In

this framework, we pipeline the synthetic data generation process in the medical

domain using four steps. Developers who are researching GANs and end-users who

need synthetic data can use our framework via www.deepsynthbody.org. In this

framework, we encouraged to publish generative models as PyPI package instead of

publishing pre-generated billions of synthetic data samples. This encouragement is

a trade-off because it has advantages and disadvantages. Pre-trained GAN models

need less space than publishing pre-generated data is an advantage. If pre-trained

GANs are conditional GANs, then the end-users can generate synthetic data as they

needed. This custom data generation is another advantage. The main disadvantage

of using pre-trained models instead of pre-generated synthetic data is the repro-

ducibility of research works performed using privately generate synthetic datasets.

However, publishing the synthetic datasets used to perform the research in other

public data repositories can solve this problem. Therefore, overall we recommend

publishing pre-generated GAN models instead of pre-generated datasets.

• Main-objective: The final objective was to connect all sub-objectives to produce

well-performing and more accurate ML models for CAD systems to assist doctors in

efficient diagnoses by addressing the data deficiency problem. The initial ML models

designed to achieve the Sub-objective I showed the effects of data deficiency problems

in the medical domain. Then, we collected, researched, and developed datasets

(real and synthetic) for developing ML models for CAD systems for biomedical

applications. In Sub-objective III, benchmark analyses were performed to identify

the data problem to be addressed using GANs. Then, we proposed DeepSynthBody,

which is based on GANs to address the data deficiency problem in the medical

domain (Sub-objective IV). Finally, we published our solution as an open-source

project for getting more collaborations worldwide at www.deepsynthbody.org.

Generated synthetic ECG data show that our concept can avoid the privacy concerns
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in the medical domain. We proved the usability of synthetic ECG data qualitatively

and quantitatively in our DeepFake ECG paper [70]. Moreover, synthetic polyp

generation studies [67, 75] showed that the data imbalance problem and the time-

consuming and costly data annotation problem can be solved using synthetic data.

Additionally, SinGAN-Seg [67] showed performance improvements when synthetic

datasets are used instead of small real datasets. Ultimately, we could show that

the main-objective is achievable using the novel concept and the corresponding

framework, namely DeepSynthBody, introduced in Sub-objective IV and achieving

other three sub-objectives I, II, and III.

By achieving the four sub-objectives, we reached our main objective: research and

develop ML models for CAD systems for different medical applications focusing on the

problems of limited availability of biomedical data. Finally, we showed that the research

question, “What are the problems that emerge from data in computer-aided

diagnosis systems, and how can these problems be tackled?” could be answered

using our novel concept called DeepSynthBody. Now the concept is public. All the

necessary infrastructure of the DeepSynthBody framework is ready for contributions from

researchers who can provide deep generative models to this framework to make a fully

functional open-source DeepSynthBody. This concept will open a new era for open science

in the medical domain. For contributions, researchers can visit our online platform:

www.deepsynthbody.org.

4.2 Ethical Consideration

Medical data collected from one patient, one hospital, one region, or one human race

to train and develop ML models used in CAD systems can lead to ethical problems

because the models based on this data can make biased predictions. Therefore, researchers

should pay more attention to this problem in their research. For example, when an ML

model is trained from a patient’s data, then the model should consider the patient’s

anonymity and confidentiality. In this regard, we have maintained all the participants’

anonymity and privacy for our data collections by de-identifying data samples, thus,

making it impossible to connect the data to real persons. Furthermore, we combined

data collected from several hospitals to avoid patient bias problems and hospital bias
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problems. However, to avoid the race and country bias problems, a more extensive data

collection should be performed. Collecting data in the medical domain is challenging due

to privacy concerns, the costly and timely medical data annotation process, and data

bias problems. The DeepSynthBody concept can address these problems by omitting

anonymization and confidentiality concerns (privacy concerns) by generating synthetic

data with ground truths, and generating synthetic data by converting true negatives to

true positives.

Although DeepSynthBody is created to solve the data problems in the medical domain,

the ethics of synthetic data, which is the core of the concept, is a critical topic. Deep

Fakes [204], a popular topic in synthetic data generation, can fool people by generating

realistic-looking face images and videos. In this context, Deep Fakes are sometimes used

to make fake news about famous people. While some of these Deep Fakes are used to

entertain society, others are purposely harming both people and the society.

The same problems may happen with synthetic data in the medical domain. Some

possibilities are that someone can generate fake medical reports with generated realistic-

looking medical images and videos, etc. People may use these fake reports to cheat their

companies to get social benefits such as additional money. This kind of circumstance

cannot be avoided, and making a fully secure link with hospitals to get approval can be

a solution. Another ethical issue arises with converting true negatives into true positives.

Somebody can argue that this is not an ethical procedure because one converts healthy

medical data to unhealthy data. However, if true positives are not identified using a real

name, we believe that this conversion is ethical.

In sum, we believe that the possible negative effects of synthetic data in the medical

domain are outweighed by the positive aspects. We presented in this thesis how to use

synthetic data to share private datasets in order to avoid privacy concerns. Furthermore,

we showed that synthetic data is a possible solution to overcome the data bias problems.

For example, we converted non-polyp images into polyp images. In other words, we

converted true negative samples into true positives. A similar mechanism can overcome

the data imbalance problems by converting data from one racial background to another

racial background to avoid ethical issues related to imbalanced data. Moreover, ground

truth data in the medical domain can raise ethical issues due to differences from an expert

to another expert who performs the ground truth preparation process. These differences
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affect the final performance of the ML models trained from the data. The ML models,

in some way, reflect the skills of the person who prepared the ground truth data. In

this context, we have proposed a way to generate synthetic data with the corresponding

ground truth. Therefore, experts’ knowledge can be used to verify the ground truth rather

than preparing ground truths which have differences from one expert to another. Overall,

we can see that synthetic data in medicine can rather help to solve ethical issues than

producing new ones. Nevertheless, like for all research where humans are involved, one

needs to be very careful and sensitive in addressing ethical questions for each specific

medical application area where synthetic data might be used.

4.3 Future Works

Our solution, DeepSynthBody, which was introduced to tackle the data deficiency problem

for developing ML models for CAD systems in the medical domain, can be improved in

different ways from Step I to Step IV. In Step I, many datasets from different organ

systems have been collected. However, in this thesis, only one dataset from the data

collection was investigated with additional two datasets from the outside of our data

collection. Therefore, benchmark studies and GAN experiments should be performed with

the rest [24, 25, 26, 27, 28, 29] of our data collection. In addition to the collected datasets,

other open-access datasets can be used as case studies, such as, MRI datasets representing

4-D datatype, which was not considered in this thesis. In Step II, the evaluation process

of benchmark results can be improved by introducing a common guideline to measure the

performance of detection and segmentation ML models such as MediMetrics [33], which

was introduced to improve the quality of evaluations used with binary classifications.

The GAN models used for the three case studies, which used ECG dataset, GI-tract

dataset, and sperm dataset as main data sources, can be further improved. For example,

Pulse2Pulse [70] can be enhanced by adding conditional input such as ECG properties.

Additionally, continuous ECG pulse generation can be researched with a modified version

of the Pulse2Pulse generator by conditioning on the first half of ECGs as input to the

generator. Moreover, GI-tract style GAN [71] can be improved using conditional-GANs

of GI-tract images to generate specific landmarks of GI-tract. However, the main chal-

lenge for training conditional GANs for generating synthetic GI-tract images is a lack of
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labeled GI-tract images. In this case, researchers can experiment with transfer learning

mechanisms for GAN training [205, 206]. Further investigations with SinGAN-Seg and

polyp inpainting GANs can improve the quality of the synthetic data generated from

these GANs, i.e., adding super-resolution GAN [207] to the pipeline of synthetic polyp

image generation. In the end, we have considered three branches of medicine, cardiology,

gastroenterology, and andrology. Other branches of medicine should be considered in fu-

ture research to build the complete DeepSynthBody, and ML models for CAD systems to

assist doctors.

The GANEx [77] tool can be further improved with several functionalities. For

GANEx, we can introduce functionalities to publish checkpoints of trained GAN archi-

tectures directly into the DeepSynthBody framework. In this functionality, the submitted

checkpoint can be reviewed by computer science experts of the future community of the

framework before merging them into the final deepsynthbody package. Adding these

kinds of functionalities can help non-computer science people to publish their GAN mod-

ules without any coding burdens. Additionally, integrating interaction between GANEx

and the online platform can introduce real-time performance comparisons, such as qual-

itative comparisons for synthetic images, if there are two or more models for the same

purposes. Not only that, Federated learning techniques [208, 209] can be investigated for

GANEx to enable distributed GAN learning to input bigger training data distribution to

get better realistic synthetic data. However, some re-engineering, such as added web ser-

vices for distributed computing, can be researched for online interactions and distributed

computing.

We believe that DeepSynthBody will open new research directions and overcome the

data deficiency problem in medicine. For example, DeepSynthBody can produce a new

model for representing the human body and its intra-correlations of functionalities of

the organs. These functionalities can be achieved by collecting multi-model datasets

consisting of various types of medical data correlated with each other. Suppose we can

investigate GAN models, which can condition on one datatype and generate synthetic data

on another data type. In that case, those models can be used to find correlations among

different medical data types. Finally, GANs can be trained to generate synthetic data

conditioned on one organ’s data and generate data for another organ system. Successful

findings of these correlations can lead to finding correlations about organs’ functions
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because data coming from organ systems is inherited from their functions. Additionally,

this platform will act as a large medical data repository without any privacy concerns and

data storage shortages because successful GANs can act as a data compression method.

For example, the size of the training dataset used in the Pusle2Pulse [70] implementation

is around 3GB for around 15, 000 ECGs. However, if we use the deepfake-ecg PyPI

package, it takes around 50MB to store in cloud platforms. Still, it can generate an

unlimited number of realistic synthetic ECGs from a similar distribution of the real data.

In this thesis, proper evaluations were not done focusing on this data compression because

it was not our main goal. Thus, future studies can be focused on evaluating this privacy-

preserving data compression and storage.

4.4 Conclusion

In conclusion, ML-based CAD systems are a great value addition to medicine because

these systems have the capabilities to assist doctors by performing automated diagnosis

processes. However, we showed that a lack of medical data to train ML models causes

generalizability and performance issues. Collecting and processing medical domain data

is a basic solution to overcome this problem. However, collecting and processing data

is not easy in the medical domain because of privacy restrictions and the costly and

time-consuming data annotation process. Generating synthetic medical data to train ML

models is an alternative solution to overcome this data deficiency problem.

Well-performing GAN architectures can generate realistic synthetic data. These syn-

thetic data can represent real medical data when the real datasets are not permitted to

share. Moreover, conditional GAN architectures can generate synthetic datasets with the

corresponding ground truth data, which domain experts normally do. For example, we

showed that how to generate synthetic polyps and the corresponding ground truth masks.

Furthermore, GANs can generate synthetic medical data by converting true negative data

samples into true positive data samples. Data conversion, such as true negatives to true

positives, can solve the data imbalance problem in the medical domain.

DeepSynthBody framework, which was introduced as the main solution in this thesis

to overcome the data deficiency problem, provides a complete framework to generate syn-

thetic data and develop generative models. We published this concept and the framework

100



4.5. Final Remarks

as an open-source project to get contributions worldwide. Getting more contributions,

we hope to produce the largest synthetic data repository in the world. Ultimately, this

DeepSynthBody concept can be improved to use as a model to represent the human body.

Furthermore, the data compression ability of GANs is a solution for storing medical data

in a limited space avoiding privacy concerns.

4.5 Final Remarks

In this thesis, we researched and developed ML-based components for CAD systems in

three different branches, gastroenterology, andrology, and cardiology. All the data col-

lected under these three branches were collected from hospitals in Norway and Denmark.

In most of the cases, datasets were analyzed by experts in the domains. In the cases

where we generated synthetic data, domain experts helped us to perform a qualitative

analysis with their expertise. Furthermore, our solution proposed in the thesis, namely

DeepSynthBody, shows a high potential to be an important part of the future of devel-

oping well-performing ML models for developing CAD systems. However, the success of

the future directions of DeepSynthBody depends on the contributions from the research

community of ML and the medical data providers. Therefore, the framework is available

as an open-source project at deepsynthbody.org to get more contributions and to the

end-users who want to generate synthetic medical data. Moreover, we showed advanced

future directions of our DeepSynthBody, such as using the framework as a novel model

to the human body and a novel way to store medical data.
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HyperKvasir, a comprehensive 
multi-class image and video dataset 
for gastrointestinal endoscopy
Hanna Borgli1,3,15, Vajira thambawita  1,2,15, Pia H. Smedsrud1,3,6,15, Steven Hicks1,2,15, 
Debesh Jha1,7,15, Sigrun L. Eskeland4, Kristin Ranheim Randel3,10, Konstantin Pogorelov8, 
Mathias Lux11, Duc tien Dang Nguyen5, Dag Johansen7, Carsten Griwodz3, 
Håkon K. Stensland3,8, Enrique Garcia-Ceja  13, Peter t. Schmidt9,14, Hugo L. Hammer1,2,15, 
Michael a. Riegler1,15,16, Pål Halvorsen  1,2,15,16 ✉ & thomas de Lange  4,6,12,15,16

Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse 
and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and 
tedious process to manually label training data. These constraints make it difficult to develop systems 
for automatic analysis, like detecting disease or other lesions. In this respect, this article presents 
HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. the data 
is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly 
labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 
videos, and represents anatomical landmarks as well as pathological and normal findings. The total 
number of images and video frames together is around 1 million. Initial experiments demonstrate the 
potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir 
dataset can play a valuable role in developing better algorithms and computer-assisted examination 
systems not only for gastro- and colonoscopy, but also for other fields in medicine.

Background & Summary
The human gastrointestinal (GI) tract is subject to numerous different abnormal mucosal findings ranging from 
minor annoyances to highly lethal diseases. For example, according to the International Agency for Research 
on Cancer (https://gco.iarc.fr/today/fact-sheets-cancers), the specialized cancer agency of the World Health 
Organization (WHO), GI cancer globally accounts for about 3.5 million new cases each year. These cancer types 
usually have combined mortality of about 63% and 2.2 million deaths per year1–3.

Endoscopy is currently the gold-standard procedure for examining the GI tract, but its effectiveness is con-
siderably limited by the variation in operator performance4–6. This causes, for example, an average 20% polyp 
miss-rate in the colon7. Thus, improved endoscopic performances, high-quality clinical examinations, and sys-
tematic screening are significant factors to prevent GI disease-related morbidity and deaths. The recent rise of 
artificial intelligence (AI)-enabled support systems has shown promise in giving healthcare professionals the 
tools needed to provide quality care at a large scale8,9. The core of an efficient AI-based system is the combination 
of quality data and algorithms which teach a model to solve real-world problems like detecting pre-cancerous 
lesions or cancers in images. Today’s AI-based systems are predominantly using a subfield of AI called machine 
learning (ML), which usually requires training on thousands of data samples to perform well on any given task. 
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However, health data is often sparse and hard to obtain due to legal constraints and structural problems in data 
collection. Nevertheless, an increasing number of promising AI solutions aimed for diagnostics in endoscopy10–17 
are being developed. The datasets used for these systems, like CVC18,19 and the ASU-Mayo polyp database20, are 
rather small in the context of ML research. In other non-medical ML areas, datasets such as ImageNet21 consists 
of 14 million images. Table 1 gives an overview of all, to the best of our knowledge, existing datasets of images and 
videos from the human GI tract. As can be observed, they are rather small, and often limited to polyps. Several of 
these have also lately become unavailable.

The images and videos in HyperKvasir were collected prospectively from routine clinical examinations per-
formed at a Norwegian hospital from 2008 to 2016. We retrieved the images from the Picsara image documenta-
tion database (CSAM, Norway), a plug-in to the electronic medical record system, in 2016. As a first step, 4,000 of 
these images were labeled into eight different classes by medical experts and published as the Kvasir dataset22. The 
dataset was later extended to 8,000 images. Using Kvasir, researchers all over the world have started developing 
different ML models and AI systems for GI endoscopy23–38. Moreover, the Kvasir dataset has been used to organ-
ize international competitions, i.e., the Medico Task at MediaEval in 201739 and 201840 and the ACM Multimedia 
2019 BioMedia Grand Challenge41.

Based on the lessons learned from publishing the Kvasir dataset and organizing competitions, it became clear that 
one of the biggest challenges in medical AI is still data availability. Data is hard to retrieve from the health care systems, 
approvals from medical committees are hard to get, medical experts have limited time, and there are no efficient tools 
to label such data. Therefore, with HyperKvasir, we significantly increase both the amount of labeled medical data for 
supervised learning and also release a large amount of unlabeled data. The new dataset contains 110,079 images and 
374 videos from various GI examinations, resulting in 1 million images and frames in total. Regarding the value of 
unlabeled data, recent work in the ML community has shown remarkable improvements to tackle the challenge of 
lack of data. Instead of learning from a large set of annotated data, algorithms can now learn from sparsely labeled and 
unlabeled data. This technique is known as semi-supervised learning and has lately been successfully applied in differ-
ent medical image analyses42. Examples of semi-supervised learning are self-learning43,44 and neural graph learning45, 
which both make use of unlabeled data in addition to a small number of labeled data to extract additional informa-
tion43,44,46. We believe these new algorithms might be the development needed to make AI even more useful for med-
ical applications. The unlabeled data of HyperKvasir is intended to be used in medical and technical communities to 
explore semi-supervised and unsupervised methods, and users of the data might even consider employing their own 
local experts to provide labels . Subsequently, in addition to the data description, we provide a baseline analysis using 
the labeled classes of the dataset and feasible future research directions for researchers interested in using the dataset.

Methods
The image and video data were collected using standard endoscopy equipment from Olympus (Olympus Europe, 
Germany) and Pentax (Pentax Medical Europe, Germany) at the Department of Gastroenterology, Bærum 
Hospital, Vestre Viken Hospital Trust, Norway. Vestre Viken provides health care services to 490,000 people, of 
which 189,000 are covered by Bærum hospital. Parts of the collected data were annotated with class labels and 
segmentation masks. The annotations were done by at least one experienced gastroenterologist from Bærum 

Dataset Findings Size Availability

CVC-35618 Polyps 356 images† by request●

CVC-ClinicDB19 (also named CVC-612) Polyps 612 images† open academic

CVC-VideoClinicDB18 (also named CVC-12k) Polyps 11954 images† by request●

CVC-ColonDB62 Polyps 380 images†ψ by request●

Endoscopy Artifact detection 201963 Endoscopic Artifacts 5,138 images open academic

ASU-Mayo polyp database20 Polyps 18,781 images† by request●

ETIS-Larib Polyp DB64 Polyps 196 images† open academic

KID65◊ Angiectasia, bleeding, inflammations, polyps 2371 images and 47 videos open academic●

GIANA 201766◊ Polyps & Angiodysplasia 3462 images and 38 videos by request

GIANA 201867,68◊ Polyps & Small bowel lesions 8262 images and 38 videos by request

GASTROLAB69 GI lesions Some 100s of images and 
few videos open academic♣

WEO Clinical Endoscopy Atlas70 GI lesions 152 images by request♣

GI Lesions in Regular Colonoscopy Data Set71 GI lesions 76 images† by request

Atlas of Gastrointestinal Endoscope72 GI lesions 1295 images unknown●

El salvador atlas of gastrointestinal
video endoscopy73 GI lesions 5071 video clips open academic♣

Kvasir22
Polyps, esophagitis, ulcerative colitis, Z-line, 
pylorus, cecum, dyed polyp, dyed resection 
margins, stool

8000 images open academic

Kvasir-SEG49 Polyps 1000 images† open academic

Nerthus74 Stool - categorization of bowel cleanliness 21 videos open academic

Table 1. An overview of existing GI datasets. †Including ground truth segmentation masks. ◊Video capsule 
endoscopy. ●Not available anymore. ψContour. ♣Not really a dataset usable for machine learning. It is more a 
medical atlas or database for education with a several low-quality samples of various findings in the GI tract.
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hospital, the Cancer Registry of Norway or Karolinska University Hospital in Sweden, and one or more experi-
enced persons working in the medical field such as a junior doctor or Ph.D. student. Though several physicians 
have assessed each labeled data record of the dataset, there is a chance that some of the assessments might be 
biased by the well-known observer variation, particularly regarding subtle changes like low-grade reflux eso-
phagitis and ulcerative colitis. Such discrepancies have been demonstrated in previous studies47,48. To tackle this 
further, we decided to combine some of the findings that are prone to bias into one class (details about the classes 
and combinations can be found in the data records descriptions). Finally, a large number of unlabeled images are 
provided.

The study was approved by Norwegian Privacy Data Protection Authority and exempted from patient consent 
because the data were fully anonymous. All metadata was removed, and all files renamed to randomly generated 
file names before the internal IT department at Bærum hospital exported the files from a central server. The study 
was exempted from approval from the Regional Committee for Medical and Health Research Ethics - South East 
Norway since the collection of the data did not interfere with the care given to the patient. Since the data is anon-
ymous, the dataset is publicly shareable based on Norwegian and General Data Protection Regulation (GDPR) 
laws. Apart from this, the data has not been pre-processed or augmented in any way.

Class labels per image. The method for labeling images can be split into three distinct steps. First, experi-
enced gastroenterologists involved in the project decided which classes should be included in the labeling pro-
cess, based on medical relevance and the data collected. The selected classes were described in detail by medical 
experts. Second, two junior doctors or Ph.D. students working in the field annotated a subset of the images to 
the provided classes. Once this pre-labeling step was done, the medical experts checked the labels and adjusted 
when necessary. Cases where no consent could be found were discarded and replaced with new images from the 
dataset. The first dataset we created consisted of 4,000 images from eight classes22. This was later extended to 8,000 
images for the same eight classes. For HyperKvasir, the dataset is further extended to 10,662 images and 23 classes. 
In total, HyperKvasir contains 110,079 images (10,662 labeled and 99,417 unlabeled images) from the GI tract.

Segmentation masks per image. HyperKvasir includes images with corresponding segmentation masks 
and bounding boxes for 1,000 images from the polyp class. To create the segmentation masks, we uploaded 1,000 
polyp images to the Labelbox platform (https://www.labelbox.com/). Labelbox is a tool that allows pixel-accurate 
labeling of image regions. First, a junior doctor and a Ph.D. student pre-segmented the 1,000 images. A gastroen-
terologist subsequently went trough all images verifying and correcting the pre-labeled segmentation masks. A 
detailed description of the annotation process and an example use-case of the dataset can be found in49,50.

Descriptions per video. To get the labels per video, we uploaded the video data to a video annotation plat-
form provided by Augere Medical AS (Oslo, Norway). Each video was analyzed and labeled by an experienced 
gastroenterologist. The class labels selected by the gastroenterologist were representing the main finding in the 
video as accurately as possible. For example, if the video contained footage of a polyp, the label for that video 
would be polyp. Additionally, there are examples of multiple findings in the same video. If so, these and more 
detailed descriptions are included in the video-labeling.csv file.

Data Records
The full HyperKvasir51 dataset, with all its images, videos and metadata, is available from the Open Science 
Framework (OSF) via the link https://doi.org/10.17605/OSF.IO/MH9SJ. The dataset is also available at https://
datasets.simula.no/hyper-kvasir. HyperKvasir is open access and licensed under a Creative Commons Attribution 
4.0 International (CC BY 4.0). In total, the dataset consists of four main data records. The records are labeled 
images, segmented images, unlabeled images, and labeled videos. All the various labeled classes are shown in 
Fig. 1, i.e., 16 classes from the upper GI tract (Fig. 1a) and 24 classes from the lower GI tract (Fig. 1b). The dataset 
has a size of circa 66.4GB (not including metadata files and segmentation masks), 32.5GB for videos and 33.9GB 
for images. An overview of all data records in the dataset is given in Table 2. Some of the images and videos con-
tain a picture in picture (green thumbnail in the lower left corner) which represents the Olympus ScopeGuideTM 
(Olympus Europe, Germany), used by the endoscopist to get a topographic view of the colon. Details about image 
and video resolutions and video frame rates can be found in the Figs. 2 and 3. The following subsections provide 
additional details for each data record.

Labeled images. In total, the dataset contains 10,662 labeled images stored using the JPEG format, where 
Fig. 4 shows the 23 different classes representing the labeled images and the number of images in each class. A 
CSV file is provided (image-labels.csv) giving the mapping between the image (file name) and the labeling for 
each image. These classes are structured according to location in the GI tract and the type of finding as shown in 
Fig. 5. We defined four main categories of findings where the first and the third are found both in the upper an 
lower GI tract:

•	 Anatomical landmarks: Anatomical landmarks are characteristics of the GI tract used for orientation dur-
ing endoscopic procedures. Furthermore, they are used to confirm a complete extent of the examination. 
Landmarks exist both in the upper GI tract (esophagus, stomach and duodenum) and in the lower GI tract 
(terminal ileum, colon and rectum). However, in the small bowel, there are no specific landmarks to be used 
for topographical localization of a lesion.

•	 Quality of mucosal views: Complete visualization of all the mucosa is crucial not to overlook pathological 
findings. In the colon, there exist a classification for the quality of the mucosal vizualisation, the Boston Bowel 
Preparation Scale (BBPS)52.
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•	 Pathological findings: All parts of the gastrointestinal tract can be affected by abnormalities or findings 
due to disease. Most pathological findings can be seen as more or less obvious changes in the intestinal wall 
mucosa. These findings are classified according to the Minimal Standard Terminology, defined by the World 
Endoscopy Organization53.

•	 Therapeutic interventions: When a lesion or pathological finding is detected, a therapeutic intervention is 
frequently required to treat the condition, e.g., lifting and resecting a polyp, dilation of a stenosis or injection 
of a bleeding ulcer.

Each class and the images belonging to it is stored in the corresponding folder of the category it belongs to. For 
example, the ’polyp’ folder in the category pathological findings in the lower GI tract contains all polyp images, 

Fig. 1 Image examples of the various labeled classes for images and/or videos.

Data Record # Files Description Size (MB)

Labeled images 10,662 images 23 classes of findings 3,960

Segmented Images 1,000 images Segmentation masks 
for polyp findings 57

Unlabeled Images 99,417 images Unlabeled 29,940

Videos 374 videos 30 different classes 32,539

Table 2. Overview of the data records in the HyperKvasir dataset.
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Fig. 2 Resolution of the 110,079 images in HyperKvasir.
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the ’barrett’s’ folder in the category pathological findings in the upper GI tract contains all images of Barrett’s 
esophagus, etc. As observed in Fig. 2, the number of images per class are not balanced, which is a general chal-
lenge in the medical field due to the fact that some findings occur more often than others. This adds an additional 
challenge for researchers, since methods applied to the data should also be able to learn from a small amount of 
training data. Below, we detail each class further.

Upper Gastrointestinal tract. The upper GI tract examined by endoscopy includes the esophagus, stomach, and 
duodenum. Below, we give a description of the various classes of findings found here.

As seen in Fig. 5, we have labeled three classes of anatomical landmarks in the upper GI tract. The normal 
Z-line is the anatomical junction between the squamous epithelium of the esophagus and columnar epithelium 
of the stomach. A normal Z-line is located at the same level as the gastroesophageal junction. Retroflex stomach 
means that the endoscope is retroflexed, looking back to visualize the cardia and fundus in the upper parts of the 
stomach. The pylorus is the anatomical junction between the stomach and duodenal bulb, and a sphincter regu-
lating the emptying process of the stomach into the duodenum.

All the following classes are defined as pathological findings in the upper GI tract. Reflux esophagitis is an 
inflammation mostly affecting the lower third of the esophagus, near the Z-line. Reflux esophagitis can be graded 
according to the Los Angeles (LA) classification54. The esophagitis LA classification is defined into four classes as 
(A) mucosal breaks shorter than 5mm, without continuity across mucosal folds where subtle changes can be diffi-
cult to differentiate from a normal Z-line; (B) mucosal breaks longer than 5mm that does not extend between the 

Fig. 3 Statistics of the 374 videos in HyperKvasir.

Fig. 4 The number of images in the various HyperKvasir labeled image classes according to the file folders.
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tops of two mucosal folds; (C) one (or more) mucosal break that is continuous between the tops of two or more 
mucosal folds, but which involves less than 75% of the circumference; and (D) one (or more) mucosal break that 
is continuous between the tops of two or more mucosal folds and involves more than 75% of the circumference. 
We have split esophagitis into two classes because there exists an important observer variation in the assessment 
of low grade esophagitis47. The two classes are esophagitis A and esophagitis B-D. This binary classification of 
the images makes it possible to assess whether mis-classification between normality and esophagitis only concern 
grade A. Barrett’s esophagus represents a metaplastic transformation of the squamous epithelium of the esopha-
gus into a gastric like columnar epithelium. Barrett’s esophagus is considered a premalignant condition, meaning 
it might develop into cancer. Biopsies showing the presence of specialized intestinal metaplasia confirms the diag-
nosis. Barrett’s esophagus can be graded according to the Prague classification, describing the circumferential and 
longitudinal extension of the disease55. We have split the images of Barrett’s esophagus into two classes. Barrett’s 
long-segment and Barrett’s, short-segment esophagus where a short segment is characterized by a longitudinal 
extension of less than 3 cm55.

Lower gastrointestinal tract. The lower GI tract examined by colonoscopy includes the terminal ileum (last part 
of the small bowel), the colon and the rectum (the large bowel). Below, we describe the classes of the lower GI 
tract in the dataset.

We have labeled three classes of anatomical landmarks in the lower GI tract. The ileum is the distal 2/3 of 
the small bowel, recognized by visible intestinal villi. Endoscopically, the ileum cannot be distinguished from 
other parts of the small bowel. During colonoscopy, the distal 5–20 cm of the ileum, named terminal ileum, 
can be reached and examined. The visualization of the terminal ileum confirms complete colonoscopy. Cecum 
is the proximal end of the large bowel and is characterized by the visualization of the appendiceal orifice and the 
ileo-cecal valve. Complete examination of the whole colon can only be confirmed if the medial wall of the cecum 
has been visualized, that is the area between the appendiceal orifice and the ileo-cecal valve. The most distal part 
of the rectum is one of the blind zones of the colon. Therefore, the endoscope is retroflexed in the rectum to vis-
ualize the dentate line and the circumference of the proximal orifice of the anal canal, which is called retroflex 
rectum.

The quality of the mucosal views is a key quality indicator and should always be evaluated because a clean 
bowel is essential to detect pathological findings. In this respect, the degree of bowel cleansing during a colonos-
copy is described by the Boston Bowel Preparation Scale (BBPS)56. BBPS consists of four different degrees which 
are: (BBPS 0) unprepared colon segment with no mucosa seen due to solid stool that cannot be cleared; (BBPS 
1) portions of the mucosa of the colon segment seen, but other areas of the colon segment not well seen due to 
staining, residual stool and/or opaque liquid; (BBPS 2) minor amount of small fragments of stool and/or opaque 
liquid, but mucosa of colon segment seen well; and (BBPS 3) entire mucosa of colon segment seen well with no 
residual fragments of stool or opaque liquid. The bowel cleansing is deemed adequate if the BBPS score is 2 or 3 
in all three segments of the colon after flushing. Therefore, we have labeled our images into the two BBPS 0-1 and 
BBPS 2-3 classes where class 0–1 represents inadequate bowel preparations, and the class 2–3 represents adequate 
bowel preparation. Moreover, a frequent finding in persons above the age of 50 years are pockets in the colon wall 
called diverticula and if numerous called diverticulosis. Sometimes stool is impacted in these diverticula and may 
increase the risk of diverticulitis. In the dataset, this is presented in the impacted stool class.

Fig. 5 The various image classes structured under position and type, also the structure of the stored images.
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The following classes are defined as pathological findings in the lower GI tract. Ulcerative colitis is a chronic 
inflammatory bowel disease often debuting in the twenties. The degree and extent of the disease is determined by 
colonoscopy and can be classified according to the Mayo Score57. The Mayo Score for ulcerative colitis is defined: 
(Score 0) inactive, where the mucosa only has normal vascular patterns; (Score 1) mild with erythema, decreased 
vascular pattern, mild friability; (Score 2) moderate with erythema, absent vascular pattern, mild friability, ero-
sions; and (Score 3) severe with spontaneous bleeding and ulcerations. For ulcerative colitis, we provide six differ-
ent labeled classes, both the Mayo Score classes (Ulcerative colitis 1/2/3) and some classes in-between where it is 
difficult to determine the exact class and because previous studies have shown important observer variation in the 
assessment of the degree of inflammation (Ulcerative colitis 0-1/1-2/2-3)48. Polyps are most frequently neoplas-
tic lesions of the large bowel. They have mainly three different shapes; protruding in the lumen, flat or excavated 
according to the Paris Classification58. Their size vary from 1 mm to several cm. The prevalence increases with 
age. The most common types of polyps are premalignant and can transform into cancer. Thus, it is important to 
discover polyps and remove the suspicious polyps during endoscopy. Hemorrhoids are pathologically swollen 
veins in the anus or lower rectum. When present in the rectum, they are called internal hemorrhoids, and when 
found in the anus, they are called external hemorrhoids.

Finally, therapeutic interventions show treatments of detected pathological findings. It includes for example 
lifting and removal of neoplastic tissue (polyps) and injection therapy of bleeding ulcer. The dyed lifted polyps 
class contains images of polyps lifted with submucosal injection using a solution containing indigo carmine. This 
is done prior to polyp resection for better diagnosis and easier resection. The dye is recognized by the blue color 
underneath the polyp. After resection of dyed polyps with a snare, the resection margins and site appears blue 
due to the indigo carmine solution. Images of these type of resection margin are presented in the dyed resection 
margins class.

Segmented images. For the set of segmented images, we provide the original image, a segmentation mask 
and a bounding box for 1,000 images from the polyp class. In the mask, the pixels depicting polyp tissue, the 
region of interest, are represented by the foreground (white mask), while the background (in black) does not con-
tain polyp pixels. The bounding box is defined as the outermost pixels of the found polyp. For this segmentation 
set, we have two folders, one for images and one for masks, each containing 1,000 JPEG-compressed images. The 
bounding boxes for the corresponding images are stored in a JavaScript Object Notation (JSON) file. The image 
and its corresponding mask have the same filename. The images and files are stored in the segmented images 
folder. It is important to point out that the images of polyp class from the Kvasir dataset had duplicates in the 
images folder. These duplicates were replaced by high-quality polyp images from the colon and segmented.

Unlabeled images. In total, the dataset contains 99,417 unlabeled images. The unlabeled images can be 
found in the unlabeled folder which is a subfolder in the image folder, together with the other labeled image 
folders. In addition to the unlabeled image files, we also provide the extracted global features and possible unsu-
pervised clustering assignments in the HyperKvasir Github repository as Attribute-Relation File Format (ARFF) 
files. ARFF files can be opened and processed using, for example, the WEKA machine learning library, or they can 
easily be converted into Comma-Separated Values (CSV) files.

Labeled videos. The labeled videos are recorded for clinical purposes and thus represent daily practice. In 
total, 374 videos are provided in the dataset, which correspond to 9.78 hours of videos and 889,372 video frames 
that can be converted to images if needed. In total, an experienced gastroenterologist have identified 30 classes 
of findings, and Fig. 6 shows how many videos we have identified for each class. The class describes the video as a 
whole using the main finding, but additionally, many videos include more than one category and several classes 
where, for example, a single video can contain polyps, dyed lifted polyps and dyed resection margins. The video 
file format is Audio Video Interleave (AVI), and they are stored in the folder called labeled videos. As seen in 
Fig. 7, the videos are further organized and stored according to either upper or lower GI tract and then the four 
main categories as for the labeled images described above. In addition to the video files, a CSV file is provided 
(video-labels.csv) containing the videos’ videoID and labeling. Here, the VideoID contains the corresponding 
video file name, and the labeling includes the upper or lower location, the category and the class with some 
detailed descriptions of the video. Below, we describe the new classes per category for the in total 60 videos from 
the upper GI tract and the 60 videos from the lower GI tract.

Upper Gastrointestinal tract. As seen in Fig. 7, we have many of the same classes for videos and for images, but 
since we have labeled all our videos, more classes are added for both the upper and lower GI-tract. In the upper 
GI tract, the three classes of anatomical landmarks (Z-line, Pylorus and Retroflex stomach) are described in the 
section for labeled images above. In the category of pathological findings, both Barrett’s esophagus and esophagi-
tis are also described above, but here we also added some new classes. The first is polyps where the description 
above of polyps in the colon is also valid for the upper GI-tract. In addition, five new classes not previously 
described are included. Mucosal ulcers are quite common in the upper GI tract. Ulcers are nearly always caused 
by Helicobacter pylori infection, ulcerogenic medication, or cancer. Ulcers are characterized according to the 
Forrest classification to predict the risk of bleeding59. Forrest I represents ongoing bleeding, Forrest II presents 
some signs of previous bleeding; and Forrest III does not show any sign of bleeding. The second class Gastric 
antral vascular ectasia (GAVE) represents dilated small superficial vessels in the mucosa of the gastric antrum. 
These lesions may cause chronic bleeding and subsequent anemia and are frequently treated by argon plasma 
coagulation (APC) to prevent further bleeding. Varices (dilated veins) in both the esofagus and the fundus of the 
stomach are most frequently caused by chronic liver diseases complicated with liver cirrhosis. The varices repre-
sent a major risk for severe bleeding. Cancer of the esophagus and the stomach are common findings in the upper 
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GI-tract. The last class gastric banding perforated shows a rare finding, which is the complication of previous 
gastric banding operation where the band perforates the wall of the stomach. The category of therapeutic interven-
tions are introduced for the Upper GI-tract especially because they are nearly always best illustrated by videos and 
can also serve important educational purposes. Since most of the therapeutic interventions are presented as sec-
ondary to a pathological finding we only include Endoscopic Retrograde Choleangio-Pancreatografi (ERCP) 
a procedure to treat gall-duct abnormalities as an independent class. However, other common therapeutic inter-
ventions such as the two thermal methods; APC and heatherprobe as well as injection therapy with adrenaline 
and application of hemospray to stop bleeding can be found under second findings in the csv file. In the category 
quality of mucosal view, we also added a footage showing reduced view due to opaque liquid in the stomach or air 
bubbles in the duodenum. Reduced view increases the risk of missing lesions. In opposite, optimal view demon-
strates excellent visualization of the duodenum.

Lower Gastrointestinal tract. The videos from the lower GI tract illustrate mainly the same categories and classes 
as the labeled images. Nevertheless, they increase the diversity of the dataset. The category anatomical landmarks 
differs from the labeled images as it only contains the cecum class and does not include the classes of terminal 
ileum and retroflex rectum, only defined as second findings. The two categories pathological findings and thera-
peutic intervention also are a bit different compared to the labeled images. In the category pathological findings, 
we still have the above described polyps and hemorrhoids classes. However, all classes of ulcerative colitis are 
merged to colitis and also includes ischemic colitis and infectious colitis. The new class colorectal cancer, the 
second most deadly cancer worldwide60, was added. Colorectal cancer may present itself in different ways in the 
colon, from tiny lesions with a diameter of 1 cm to larger tumors obstructing the entire lumen of the bowel and 

Fig. 6 The number of videos in the various HyperKvasir labeled video classes according to the file folders.

Fig. 7 The various video classes structured under position and type, which is also the structure of the video 
folders.
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cover bowel segments of several centimeters. Moreover, parasites, a common finding of small worms moving 
around in the colon, are more often encountered in tropical areas. Stenosis is characterized by a narrow obstruc-
tion of the bowel caused either by inflammation or malignant diseases. Large neoplastic lesions like cancers 
are surgically resected and subsequently an anastomosis is made to restore normal bowel function. The anas-
tomosis can be visualized during follow-up colonoscopies. A feared complication after large bowel surgery is 
anastomotic leakage, potentially causing smaller or larger cavities of anastomotic leak especially in the rectum. 
The last decade mini-invasive endoscopic therapeutic interventions has to some extent replaced traditional and 
laparoscopic surgery regarding the treatment of large polyps and stenosis of the colon. The classes dyed lifted 
polyp and dyed resection margin are described under labeled images but videos improve the illustration of the 
technique. Three new classes are presented showing removal of polyps by simple snare resection or endoscopic 
mucosal resection (EMR). To prevent or stop bleeding after these resections, clip placement of metallic clips are 
illustrated. Self expanding stents are used to open and dilate either benign or malignant stenosis. Finally, in the 
quality of mucosal views category, we have removed the impacted stool class we have for images, and include only 
the above described BBPS 0-1 and BBPS 2-3 classes. Here, it is also worth noting that many of the videos in BBPS 
2-3 are perfectly clean (BBPS 3), i.e., as then described in the csv-file, these contain videos of normal mucosa (also 
marked as finding 2) which can be extracted in normal images or videos when needed.

technical Validation
To demonstrate the technical quality of the dataset, we performed multiple experiments to provide some baseline 
metrics and to give some insight into the dataset’s statistical qualities. If the reader wants information about clas-
sification and segmentation approaches and experiments comparing state of the art methods using parts of this 
dataset, the reader is referred to other studies49.

Baseline for supervised image classification. The presented dataset is suited for a variety of different 
tasks, one of which is image classification. As a preliminary step to evaluate how state-of-the-art methods perform 
on the labeled part of HyperKvasir, we performed a series of experiments based on methods that have previously 
achieved good results on GI tract image classification. The purpose of these experiments is merely to give exam-
ple baseline results to be used by future researches to compare and measure their results. In total, we ran five 
experiments using different methods. The methods were primarily selected from the best performing methods 
presented at the MediaEval Medico Task39,40. Each method is based on deep convolutional neural networks, which 
is currently state-of-the-art within image classification. Common for all experiments is that the images were 
resized to 224 × 224 before being fed into the networks. All networks are based on common architectures, slightly 
modified to accommodate our task of classifying 23 different classes of images. The specifics of each method is 
further explained below:

•	 Pre-Trained ResNet-50 is a TensorFlow implementation of the ResNet-50 architecture using ImageNet ini-
tialized weights. The network was trained in two steps. First, an initial training over 7 epochs, and then a 
fine-tuning step over 3 epochs which only trained the layers after the 100th index. Images were loaded using 
a batch size of 32, and the weights were optimized using Adam with a learning rate of 0.001.

•	 Pre-Trained ResNet-152 is a PyTorch implementation of the ResNet-152 architecture using ImageNet initial-
ized weights. The network was trained over 50 epochs using a batch size of 32, and optimized using Stochastic 
gradient descent (SGD) with a learning rate of 0.001. No fine-tuning was used for this method.

•	 Pre-Trained DenseNet-161 is a PyTorch implementation of the standard DenseNet-161 architecture using 
ImageNet initialized weights. The network was trained over 50 epochs using a batch size of 32, and optimized 
using SGD with a learning rate of 0.001. No fine-tuning was used for this method.

•	 Averaged ResNet-152 + DenseNet-16138,61 is an approach that combines the ResNet-152 and DenseNet-161 
approach by averaging the output of both models as the final prediction. Both models were trained simulta-
neously by backpropagating the averaged loss through both models. Overall, the networks were trained for 
50 epochs using a batch size of 32. SGD was used to optimize the weights with a learning rate of 0.001. Both 
the ResNet-152 and DenseNet-161 models were initialized using the best weights of the above Pre-Trained 
ResNet-152 and Pre-Trained DenseNet-161 implementations.

•	 ResNet-152 + DenseNet-161 + MLP38,61 is similar to the previous method using both ResNet-152 and 
DenseNet-161 to generate a prediction. However, instead of averaging the output of each model, this method 
uses a simple multilayer perceptron (MLP) to estimate the best way to average the output of each model. 
All networks were trained simultaneously over 50 epochs using a batch size of 32. The weights were opti-
mized using SGD with a learning rate of 0.001. Both the ResNet-152 and DenseNet-161 models were initial-
ized using the best weights of the above two implementations of Pre-Trained ResNet-152 and Pre-Trained 
DenseNet-161.

Each method was evaluated using standard classification metrics including the macro-averaged and 
micro-averaged F1-score, precision, and recall. Additionally, we calculated the Matthews correlation coefficient 
(MCC) for each experiment using the multi-class generalization which is also known as the RK. The results in 
Table 3 show that each method beats the random and majority class baseline by a large margin. However, the 
presented numbers also indicate that there is room for improvement. Looking at the confusion matrices in Fig. 8, 
we see that some classes are harder to identify than others. For example, there is a lot of confusion surrounding 
the difference between the grades of ulcerative colitis and esophagitis. Furthermore, there is also some confusion 
between specific classes such as dyed lifted polyps and dyed resection margins, and distinguishing Barrett’s from 
esophagitis or a normal Z-line. At least the confusion between classes of Z-line, esophagitis and Barrett’s esophagus 
is similar to the human variation in the assessment of these lesions. Thus, it is challenging to create a ground truth.
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Method

Macro Average Micro Average

Precision Recall F1-score Precision Recall F1-score MCC (RK)

Pre-Trained ResNet-50 0.589 0.536 0.530 0.839 0.839 0.839 0.826

Pre-Trained ResNet-152 0.639 0.605 0.606 0.906 0.906 0.906 0.898

Pre-Trained DensNet-161 0.640 0.616 0.619 0.907 0.907 0.907 0.899

Averaged ResNet-152 + DenseNet-161 0.633 0.615 0.617 0.910 0.910 0.910 0.902

ResNet-152 + DenseNet-161 + MLP 0.612 0.606 0.605 0.909 0.909 0.909 0.902

Random Guessing 0.044 0.038 0.034 0.044 0.044 0.044 0.000

Majority Class 0.004 0.043 0.008 0.108 0.108 0.108 N/A

Table 3. Average results for the five tested classification approaches, i.e., average of the results for the two splits.

Fig. 8 Confusion matrices for Averaged ResNet-152 + DenseNet-161 and Pre-Trained DenseNet-161 
including both splits. These confusion matrices were selected based on their performance. Averaged ResNet-152 
+ DenseNet-161 achieved the best micro-averaged results while the Pre-Trained DenseNet-161 achieved the 
best macro-averaged result. The color codes represent the percentages of the total number of images within each 
class. The labeling of the classes is as follows: (A) Barrett’s; (B) bbps-0-1; (C) bbps-2-3; (D) dyed lifted polyps; 
(E) dyed resection margins; (F) hemorrhoids; (G) ileum; (H) impacted stool; (I) normal cecum; (J) normal 
pylorus; (K) normal Z-line; (L) oesophagitis-a; (M) oesophagitis-b-d; (N) polyp; (O) retroflex rectum; (P) 
retroflex stomach; (Q) short segment Barrett’s; (R) ulcerative colitis grade 0-1; (S) ulcerative colitis grade 1-2; 
(T) ulcerative colitis grade 2-3; (U) ulcerative colitis grade 1; (V) ulcerative colitis grade 2; (W) ulcerative colitis 
grade 3.
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Composition of unlabeled data. In order to show the approximate composition of the unlabelled data, we 
present some initial experiments to analyze the provided data which do not have annotated labels from medical 
experts We used our pre-trained classification model to simply classify the unlabeled data to indicate how many 
of the labeled classes are in the unlabeled data and to get an overall idea about data distribution of the 99,417 
images. In particular, we used the best two classification models from the previous experiments, i.e., Pre-Trained 
DenseNet-161 and Averaged ResNet-152 + DenseNet-161 using split_0 and split_1 from the previous experi-
ment. The result are shown in Fig. 9. In the results, we can observe that a large number of predictions are assigned 
to the class normal pylorus, while a smaller number of predictions are assigned to the classes hemorrhoids and 
ulcerative colitis grade 1-2. However, these predictions are similar to that of the class-level accuracies of the ML 

Fig. 9 Unlabeled image data predictions for Averaged ResNet-152 + DenseNet-161 and Pre-Trained DenseNet-161.
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model on the labeled data. Therefore, we can assume that the classes which achieved a high number of correct 
predictions on the labeled images are also more accurate on the unlabeled data. In contrast, it is hard to make 
any conclusions on the labels which had a low number of predictions as the models are not accurate enough. For 
future work, researchers could go trough the classifications of the unlabeled data and, for example, create a larger 
labeled dataset or perform failure analysis to find out why classes were confused or miss-classified. The class labels 
created during this experiments are available in the GitHub repository.

Validation Summary
In the technical validation section, we provided baseline metrics and gave insight into the dataset’s statistical 
qualities to demonstrate it’s technical quality. With the large number of images available in HyperKvasir, we 
encourage other researchers to investigate and develop new and improved methods for the medical domain. 
This also includes an improved methodology for creating the ground truth in classes where there is a substantial 
inter-observer variation in the assessment, which might be used by other researchers to increase the number of 
labels and segmentations for the dataset.

Usage Notes
In our research on detecting, classifying, and segmenting normal and abnormal findings in the GI tract, we have 
collected, to the best of our knowledge, the largest and most diverse dataset. These data are made available as a 
resource to the research community enabling researchers not only to have the ability to research the detection or 
classification of various GI findings but also differentiate between severity of the findings.

In short, we have used the labeled data to research the classification and segmentation of GI findings using 
both computer vision and ML approaches to potentially be used in live and post-analysis of patient examinations. 
Areas of potential utilization are analysis, classification, segmentation, and retrieval of images and videos with 
particular findings or particular properties from the computer science area. The labeled data can also be used 
for teaching and training in medical education. Having expert gastroenterologists providing the ground truths 
over various findings, HyperKvasir provides a unique and diverse learning set for future clinicians. Moreover, the 
unlabeled data is well suited for semi-supervised and unsupervised methods, and, if even more ground truth data 
is needed, the users of the data can use their own local medical experts to provide the needed labels. Finally, the 
videos can in addition be used to simulate live endoscopies feeding the video into the system like it is captured 
directly from the endoscopes enable developers to do image classification.

The dataset includes a series of scripts and text files that aim to help researchers quickly get started using the 
dataset for standard ML tasks such as classification. These are available at the GitHub repository for the dataset: 
http://www.github.com/simula/hyper-kvasir. Moreover, we provide three official splits of the dataset that can be 
used for cross-validation experiments. Keeping splits consistent between methods helps maintain a fair compar-
ison of results. The scripts used to generate the plots, split data into different folds, and generate annotation files 
are included for reproducibility and transparency. These files may also be used to further experiment with the 
dataset. Finally, we include the files used to create our preliminary experiments.

There is currently a lot of research being performed in the field of GI image and video analysis, and we wel-
come and encourage future contributions in this area. This is not limited to using the dataset for comparisons and 
reproducibility of experiments, but also publishing and sharing new data in the future.

Code availability
In addition to releasing the data, we also make available the code used in the experiments. All code and additional 
data required for the experiments are available on GitHub at http://www.github.com/simula/hyper-kvasir.
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ABSTRACT
Games are often defined as engines of experience, and they are heav-
ily relying on emotions, they arouse in players. In this paper, we
present a dataset called Toadstool as well as a reproducible method-
ology to extend on the dataset. The dataset consists of video, sensor,
and demographic data collected from ten participants playing Super
Mario Bros, an iconic and famous video game. The sensor data is
collected through an Empatica E4 wristband, which provides high-
quality measurements and is graded as a medical device. In addition
to the dataset and the methodology for data collection, we present
a set of baseline experiments which show that we can use video
game frames together with the facial expressions to predict the
blood volume pulse of the person playing Super Mario Bros. With
the dataset and the collection methodology we aim to contribute
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to research on emotionally aware machine learning algorithms, fo-
cusing on reinforcement learning and multimodal data fusion. We
believe that the presented dataset can be interesting for a manifold
of researchers to explore exciting new interdisciplinary questions.
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1 INTRODUCTION
"Stop Dave. Stop Dave. I am afraid. I am afraid Dave." This iconic
quote from Stanley Kubrick’s 2001: A Space Odyssey is taken from a
scene where the sentient computer system HAL 9000 is pleading for
life as the human operator is about to shut it down. The movie was
released in 1969, and looking at the state of artificial intelligence

A.2. Paper II - Toadstool: A Dataset for Training Emotional Intelligent Machines
Playing Super Mario Bros

147



MMSys’20, June 8–11, 2020, Istanbul, Turkey Svoren et al.

Figure 1: Frames are taken from each of the 32 levels contained within Super Mario Bros. Note that each image is taken from
the very first frame of each level. Levels in Super Mario Bros. are organized in groups of four and called worlds, so the first
level is world 1-1, the second level is world 1-2, the fifth level is world 2-1, etc.

(AI) today, we can make two observations. First, people in the
60s and 70s were very optimistic about the future capabilities of
AI. Second, we are far away from anything near the emotional
intelligence that HAL 9000 expresses throughout the movie. For
the most part, current AI systems are focused on performing well
on specific tasks like classification, object detection or regression,
while a machine that can express general intelligence is still far off.
This is not negative in and of itself [7], but it is quite different from
what people in the past imagined AI would be in the future, and
what we might imagine today.

Using machine learning to interpret or detect human emotions is
a growing field of research. This is commonly done using different
types of media, such as images [2], sensor data [11], text [23], or
some combination of the three [4, 14]. Recent works in this field
have also moved to look at how human emotion data may affect
the training and performance of deep learning algorithms. McDuff
et al. [17] explore how human emotional response may affect the
performance of a self-driving agent trained in a simulated environ-
ment. They showed that adding human-like signals, such as the
blood volume pulse (BVP), helped improve the driving performance
of the algorithm. The idea of supplementing today’s machines with
emotional or physiological signals is supported by the large amount
of literature that shows that pure rational decision making is often
not optimal in humans [3, 9, 18, 22]. Prior research shows that emo-
tional content can help guide the decision-making process as well
as make it more efficient [16]. Some early work also tried to use
this for artificial agents [10]. Such findings suggest the possibility
that similar benefits might be had by artificial agents, especially
when engaged in human-like tasks or behavior.

Inspired by the work done by McDuff et al. [17], we look at other
areas where the same principles may be applied, which in this case,
is playing the well-known classical video game Super Mario Bros.
While this game is not representative for all video games that are
available right now, it is commonly accepted as a well-known, good
example for a video game and can be considered representative

for the jump and run and the arcade game genres. To perform
experiments in that direction, we first need a dataset that contains
both the frames from Super Mario Bros. and the sensory output
of the player. As no such dataset exists, we collected gameplay
data, sensor data, and facial expression data from ten different
participants. Furthermore, we also made the dataset and all sources
to re-produce the games played publicly available. We think this
dataset is of great interest to many research communities as it
consists of multiple modalities and is applied to a unique use case.
The contributions of this paper are three-fold:

(1) We present a publicly available, multimodal dataset which
focuses on the human component of intelligent machines
along with a reproducible methodology to extend the dataset
with additional data collection.

(2) We present a set of baseline experiments that aim to show
how the dataset can be used to predict specific sensor values
using a combination of data from the video game and facial
expressions.

(3) We outline future applications and interesting research ques-
tions using the dataset.

To the best of our knowledge, this is the first open dataset that
provides the (i) video frames of a person’s facial expressions, (ii)
the sensory output of the person playing a game, and (iii) data
from the video game synchronized with the facial expressions and
sensor data. The dataset opens up for a wide range of new and
interesting analyses, and a proper and fair comparison between
different methods, both from a psychological and a multimedia
perspective. In the following, the process of collecting the data,
as well as the resulting data, are described. Moreover, a baseline
evaluation is presented, including suggestions for future research
directions using the dataset.
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ID Age Sex Dominant hand Hours per week Years active Prior experience Game score

0 26 Male Right 4-8 22 Lots 17, 100
1 48 Male Left 0-1 1 Little 3, 000
2 28 Male Right 0-1 0 None 300
3 32 Male Right 4-8 4 Some 13, 300
4 32 Female Right 0-1 5 Some 6, 400
5 30 Female Right 0-1 5 Little 2, 700
6 35 Male Left 1-4 30 Lots 14, 300
7 34 Female Right 1-4 14 Some 3, 800
8 31 Female Right 0-1 2 Little 200
9 27 Female Right 0-1 5 Little 10, 600

Table 1: This table shows an overview of all participants included in the dataset.

2 DATA COLLECTION
The dataset was collected at our research laboratory located in Oslo,
Norway. Participants were selected based on a set of criteria, mostly
focused on their prior gaming experience. We wanted to collect
data from people with a wide range of different game experience
backgrounds. This includes those who have barely touched a video
game to those who have been playing since childhood. Furthermore,
we aimed to collect data from a balanced set of genders, meaning
an even split of male and female participants. Each participant was
asked to fill out a short questionnaire about their previous video
game experience in addition to some information about themselves.
An overview of the answers can be seen in Table 1. In total, ten
participants were selected for the study, where each participant
provided a written form of consent, allowing for their video, game-
play data, and sensor data to be shared openly for research and
teaching purposes under the license Attribution-NonCommercial
4.0 International (CC BY-NC 4.0)1. The dataset can be accessed via
(https://datasets.simula.no/toadstool) or (https://osf.io/qrkcf/).

As for collecting the gameplay data, we developed a protocol that
describes what data should be collected and how. This protocol went
through multiple iterations as we performed a preliminary test run
before applying it to all participants in the study. From this initial
test run, we learned that, in some cases, the conductivity between
the participant and the wristband (Empatica E4) did not gather
data in line with what we expected. Some anomalies included little
to no detected activity and substantial value differences between
participants. Furthermore, we noticed that the activity would vary
a lot between the start and end of a gameplay session. The primary
cause of this was mostly due to the dry conditions in which the data
was collected. For the wristband to accurately pick up a person’s
sensor data, the electrodes need some sweat to act as a conductor
between the skin and wristband. Based on these observations, we
changed the protocol to include a short warm-up session before
playing the video game and a 15-minute period where the partici-
pant would sit still to develop a baseline. The warm-up consisted
of walking up and down a flight of stairs spanning six floors two
times. This exercise was selected based on tests with some people
in the laboratory. The final protocol is shared with the dataset.

Before playing, the participants were told that their performance
in the game would be measured based on how many stages were
cleared in the time given and on the number of player avatar

1https://creativecommons.org/licenses/by-nc/4.0/

deaths. Furthermore, we informed participants that their perfor-
mance would be measured against other participants and that there
would be a prize for the highest achiever. The motivation behind
making the game more competitive was to make the players want
to perform well, and feel like there was some consequence if they
either died (in the game) or did not beat levels fast enough. The
number of points earned by each player was kept secret from all
participants to avoid them giving up or relaxing due to other play-
ers too high or too low score. Scores were calculated based on two
primary factors; the number of deaths and levels cleared. Starting a
level, the player starts with a base score of 1000. For every death,
the score is reduced by 100 points down to a minimum of 200. If the
player manages to beat the level, he/she is awarded between 200
and 1000. If the player runs out of time, he/she is awarded 0 points
and is moved to the next stage. The final score of each participant
is included in the dataset and can be seen in Table 1.

After the participants had established a sufficient baseline, they
started the primary game session where the video of the partici-
pants, video game frames, and sensor data was collected. Each game
session lasted for approximately 35 minutes. The game was played
directly in the gym-super-mario-bros environment [13], which is a
gym [1] based environment for Super Mario Bros. For reproducibili-
ties sake, the repository for the gym environment has been added
to the official GitHub repository of Toadstool2. There are four differ-
ent graphic environments offered by gym-super-mario-bros, which
include the standard graphics, as well as three different downsam-
pled versions (downsample, pixel, and rectangle). The data in our
dataset is collected in the standard environment, but sessions may
be replayed in any environment if needed.

The gym environment version of the game still differs some-
what from the original gaming experience found in Super Mario
Bros. by Nintendo (a consumer electronics company from Japan).
Firstly, all game-freezing animations and cutscenes are removed
from the game. This includes transitions between levels and travel-
ing through pipes. Second, there is no music or other sound effects.
Third, there are no limits on game lives, and power-ups do not carry
over to new stages. Last, the order of the levels has been changed
compared to the original game. There was one additional rule we
told participants before playing. In Super Mario Bros., some pipes
can warp the player to a new stage that is closer to the final stage
of the game. To keep the levels played consistent between players,

2https://github.com/simula/toadstool
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we asked participants to refrain from using any of the available
warp pipes (one located in world 1-2 and two located in world 4-2).
Overall, it took approximately one hour to collect data from a single
participant.

3 DATASET DETAILS
For each participant, we have included a video of them playing
the game (camera facing the face), the controller input performed
on each frame of the game, and the sensor data collected from an
Empatica E4 wristband [6]. The camera used to collect the facial
expression data was a 1.3-MP webcam attached to a Samsung Series
9 Notebook NP900X4C. The webcam captured video at 30 frames
per second with a resolution of 640 × 480. The controller used to
play the game was a wired USB controller from retro-bit, which is
modeled after the original controller for the Nintendo Entertain-
ment System. Note that the video game frames are not included in
the dataset, but can be extracted by using the provided video game
actions files included with each participant. This can be done by
using a script that is included in the dataset. The reason for not
including the video game frames was mostly due to the exponential
increase in storage size. Another possible benefit of this approach is
the ability to replay the game session in any of the several environ-
ments offered by the gym-super-mario-bros framework to produce
different representations of game frames. The first frame for each
of the 32 levels of Super Mario Bros. can be seen in Figure 1. The
dataset contains the following files:

• participants is the directory that contains the information
of each participant. This includes the video of them playing,
the controller input of each game frame, and the Empatica
E4 wristband sensor data.

• scripts is a directory that holds a set of Python scripts meant
to aid the user in getting an easy start to using the dataset.
The files include a script for replaying gameplay using the
provided controller inputs, a script for matching the game-
play session to the facial expression video, and a script for
matching the raw signal outputs to the gameplay session.

• protocol.pdf is the protocol used to collect the video game
session data.

• questionnaire.pdf is the questionnaire that was filled out
by each participant before starting the game session.

• questionnaire_answers.csv is a summary of all the an-
swers to the questionnaire.

• consent.pdf is the consent form that was signed by each
participant.

• README.txt is a short information file which describes the
contents of the dataset.

• LICENSE is the file that signifies which license in which the
dataset is distributed under.

Contained within the participants directory is a separate direc-
tory per participant included in the dataset. Each directory has a
name corresponding to the participant’s ID, i.e., participant_<ID>,
where <ID> is replaced with the ID of the participant. For each
participant, we have stored the participant’s sensor data collected
from the Empatica E4 wristband, a JSON file containing information
about the participants game session, the video recording of the par-
ticipant playing the game stored in ".avi" format, and another JSON

file which contains information about the video. The JSON file that
holds the game session data, called participant_<ID>_session.json,
contains the actions performed during the game, the start and end
times of the game session, and the achieved gameplay score. As
for the sensor data, the wristband uses four separate sensors to
collect different sensory outputs from the wearer, such as the elec-
trodermal activity (EDA), interbeat intervals (IBI), heart rate (HR),
and blood volume pulse (BVP). The four sensors of the wristband
is a photoplethysmography sensor, an electrodermal activity sen-
sor, 3-axis accelerometer, and an optical thermometer. Of the four
sensors, the thermometer is the only one not graded for clinical
use. All data collected by the wristband are stored in CSV files
that can be downloaded from the wristband. For the dataset, these
CSV files have been matched to the game session. We have also
opted to include the raw source files as they were collected from
the wristband. The CSV files and a short description of the contents
are further explained below.

• ACC.csv contains the data collected from the 3-axis ac-
celerometer sensor in the range [-2g, 2g] sampled at 32 Hz.
The accelerometer measures the movement of the wearer.

• EDA.csv holds the data collected by the EDA sensor sampled
at 4 Hz. EDA measures the electrical conductivity of the skin
and measurements have been proven to be correlated with
emotions since the late 1800s [5]. EDA is also sometimes
called psychogalvanic reflex or skin conductance.

• BVP.csv contains the data collected from the photoplethys-
mograph sensor, which measures the BVP, and is sampled
at 64 Hz.

• IBI.csv stores the interbeat intervals (IBI). The IBI measures
the time interval between individual heartbeats and can
be used to estimate the instantaneous heart rate as well as
heart rate variability. The wristband calculates the values
contained within this file based on the BVP signals.

• HR.csv contains the average heart rate values, computed in
spans of 10 seconds. The heart rate measures the number of
times a person’s heartbeats per minute. Similar to the IBI,
these values are calculated based on the BVP signal.

• TEMP.csv holds the information collected by the thermome-
ter, which is the temperature of the person playing the game
expressed in degrees Celsius (°C) sampled at 4Hz.

• info.txt gives a brief description of all variables collected
by the wristband.

In addition to the data collected throughout the study, we also in-
clude a set of scripts that aim to make the dataset more accessible.
First of all, as previously mentioned, video game frames are not
included in the dataset. However, we include the necessary infor-
mation to extract the frames by using the provided video game
inputs to "replay" the game session and collect the video frames
directly.

4 PRELIMINARY EXPERIMENTS
We performed a set of preliminary experiments to showcase how
the presented dataset can be used to train machine learning algo-
rithms and perform simple predictive modeling. In Section 5, we
mention that a possible use case for the dataset is to predict the
sensor value of the wristband using the video game frames or facial

Appendix A. Published Articles

150



Toadstool: A Dataset for Training Emotional Intelligent Machines Playing Super Mario Bros MMSys’20, June 8–11, 2020, Istanbul, Turkey

CNN ZeroR
ID MAE RMSE MAE RMSE

0 0.076 0.100 0.075 0.099
1 0.104 0.132 0.103 0.131
2 0.071 0.104 0.075 0.100
3 0.050 0.070 0.050 0.070
4 0.078 0.103 0.069 0.094
5 0.091 0.129 0.094 0.121
6 0.091 0.119 0.090 0.116
7 0.110 0.142 0.109 0.139
8 0.061 0.096 0.060 0.090
9 0.126 0.157 0.109 0.134

All 0.105 0.126 0.090 0.117

Table 2: This table shows the results of all experiments
of trying to predict the BVP amplitude using video game
frames and facial expressions alone. Note that all experi-
ments were trained over three-fold cross-validation.

expressions as input. In the following experiments, we trained a
deep convolutional neural network to predict the BVP amplitudes
utilizing a combination of the face data and game frame data. This is
similar to what McDuff et al. [17] did when modeling the emotional
input to their self-driving reinforcement agent.

Before the training step, we needed to prepare the input data,
i.e., the video game recording and facial expression video. As the
gameplay frames were recorded at 60 frames per second, while
the facial expression video was recorded at 30 frames per second,
we down-sampled the video game frames by skipping every other
frame. After that, the BVP amplitudes had to be extracted from the
raw BVP signals and matched to the input frames. The reason for
not predicting the raw BVP values is due to the cyclic nature of a
beating heart. The BVP has the properties of a sine-like wave that
is composed of valleys and peaks which appear in tandem with
every heartbeat. We are not interested in the exact value on the
signal curve, but the highest point of a cardiac cycle, also known
as the systolic peak. This peak-value gives us some information
about the emotional state of the human player [20]. To extract the
BVP amplitudes, we detect a systolic peak in the given BVP signal
and measure its height from the baseline. This peak-value is then
repeated until the next detected peak, and-so-forth. The result is a
square-like signal in comparison to the sine-like wave that is the
BVP. The BVP values were then matched with the input data by
taking the average BVP amplitude values over one second (64 mea-
surements in total). The extracted peaks used for the experiments
are shared on GitHub together with the code used to produce the
baseline experiments3.

We trained one convolutional neural network (CNN) per par-
ticipant in addition to one trained on all participants mixed. The
purpose of training a model on a single participant is because we
generally want to model the emotional response of a single per-
son, not necessarily everyone at once. The model was based on the
TensorFlow implementation of ResNet50 [8], where we input two
video game frames (first and the last frame of one second) and the
3https://github.com/simula/toadstool

facial expression from the last frame of the second corresponding
to the video game frames. These three images were grayscaled and
stacked channel-wise before being processed by the model. In addi-
tion to the CNN-based model, we also calculated the error when
using the mean of the response variable in the training for pre-
diction (also sometimes called ZeroR), which should give us some
indication about how well our model performs. Since the response
is a continuous measurement, we used the metrics mean absolute
error (MAE) and root mean squared error (RMSE). Furthermore, we
used three-fold cross-validation to not bias the results towards a
pre-defined split of the data.

The results of predicting the BVP amplitudes using video game
frames and facial expressions can be seen in Table 2. We observe
that the trained model sometimes outperforms the baseline and
sometimes not, which is an indicator of a challenging task, but
not impossible. There is still much room for improvement, where
methods recurrent neural networks may be used to increase per-
formance, but this is out of scope for this paper. Furthermore, we
want to point out that for classification tasks, such as classifying
emotional states based on sensor and video data, one should use
standard classification metrics such as precision, recall/sensitivity,
and F1-score to determine the quality of the trained model. Op-
timally, one should also report the true positives, true negatives,
false positives, and false negatives so that readers themselves can
calculate the metrics manually. The code used to run all experi-
ments is available online in the datasets official GitHub repository
(https://github.com/simula/toadstool).

5 POSSIBLE APPLICATIONS OF THE
DATASET

We expect that this dataset can be used for many different use
cases and scenarios. First of all, we imagine it can be used to detect
relationships between the player sentiment and the current game-
play state. This could solely be based on the gameplay frames and
collected sensor data, or could also be combined with the player’s
facial expression for further analysis. The uncovered relationships
could be interesting when studying how players get invested in
video games, and what typical scenarios contribute to a strong re-
action from players. A more specific example could be predicting a
person’s facial expression based on a given game state or degree of
progress in a game or level. This could also be expanded to the sen-
sor data, as one could predict the sensory output of the wristband
using the game state and facial expressions as input, like photo-
plethysmography [21] does with the heart rate, but connected to
the current game state the player is in. These two problems could be
modeled as either a regression or classification problem, depending
on the application.

From a game design perspective, correlations between game
progress, game state, the input of players, and the emotions and
sentiment of the players could enable a whole new approach to
experience-based game design. With the possibility to use this as
a method for playtesting, game designers can evaluate when and
how their crafted experience is (or is not) invoked in the players.
Moreover, games can be built around the concept of self-adapting
challenge and difficulty by counter-acting unnecessary frustration,
boredom, or annoyance by adapting the game to the player’s emo-
tion and sentiment. Last but not least, the correlation between the
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game, emotions, sentiment, and game engagement, especially flow
(the state of being fully immersed in an activity while enjoying
it), can be investigated [15, 24]. This would lead to a better under-
standing of what makes games enjoyable and would impact fields
like game and media studies, psychology, game engineering, game
design, and serious games / educational games.

Another area where this dataset could be used is in the training
of emotionally intelligent machines using reinforcement learning.
One way to do this would be by training an algorithm to reproduce
the physiological signals based on the game-state. The reproduced
signals can then be incorporated into the reward function of a
reinforcement learning agent. Since physiological signals like BVP
and EDA are reliable indicators of emotional states in humans [12,
19], such an approach could be used to mimic human emotional
responses. These kinds of emotionally intelligent machines might
aid the pure logic of reinforcement learning models and produce
improved learning, as well as reveal new insights into how both
machines and humans learn. They might also be a step towards
machines with even more complex emotional intelligence, like the
ability to recognize, express, and respond to human emotions. This
is an active research area leading to better personal assistants, more
believable automated communication, as well as more enjoyable
and believable video game AI.

Some more concrete examples of possible research questions or
experiments are:

• How are the sensor measurements related to the facial ex-
pressions?

• Can sentiment analysis of the facial expression be connected
to measurements in the sensors?

• How can different data sources be combined efficiently (sen-
sor data with videos, etc.).

• Can game actions of the human players be used as a baseline
for human performance?

• Can the additional data collected from people be used to
train reinforcement learning algorithms?

• Would a model trained on input from non-experienced play-
ers behave differently from a model trained on experienced
players?

• Can immersion, enjoyment, and flow automatically be in-
ferred from the gathered data?

As one can see from the discussion above, the dataset holds a lot of
interesting research potential to follow up, and we hope that other
researchers get inspired to work on the dataset.

6 CONCLUSION
In this paper, we present Toadstool, a new dataset consisting of
people playing Super Mario Bros. and physiological signals corre-
sponding to their emotional reaction to playing said game. While
the dataset provides a good starting point for applied research
in affective computing in games, emotional AI agents in games,
playtesting, and game analytics, we strongly believe the Toadstool
dataset will foster research in many ways and, therefore, we have
detailed follow up research questions in several fields, including
affective computing, psychology, and game and media studies. With
the detailed description of the dataset, the in-depth discussion of
the method included in the dataset, and the wide availability of the

game instance used for the experiment and the medical sensors em-
ployed, we ensured reproducibility and extension of the dataset. We
hope that our work inspires and encourages interdisciplinary and
multidisciplinary research to (i) examine how the human element in
human-computer interaction can be employed to improve existing
machine learning methods by introducing emotional aspects to an
otherwise cold and unfeeling machine and (ii) show how interactive
entertainment systems, and especially video games, utilize sensory
input to provide a personalized and tailored user experience.
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1 INTRODUCTION
In one way or another, many people are recording parts of their
lives digitally. This could, for example, be through sensors in a
smartwatch, GPS location tracking in smartphones, pictures from
highly portable cameras, or through activities on various online
social media services. It is not uncommon to see people posting
pictures of their food on platforms such as Instagram or boasting
about their workouts on Facebook as the events unfold.

The activity of recording one’s life digitally, through various
input sources, is often referred to as lifelogging [11], and a person
who engages consciously in such activities is referred to as a lifel-
ogger. Recording and analyzing lifelog data is a great opportunity
for studying an individual’s life experience. It can help monitor a
person’s activity to improve health [17], help recover memories
of past events [19], or analyze social behaviour [3, 15]. From a
multimedia perspective, lifelogs are sources of wast rich data for in-
teresting research. For instance, Chokr and Elbassuoni [1] describe
a machine-learning approach for predicting the number of calories
from pictures of food, and De Choudhury et al. [2] describe how
interaction on social media influence our mental health.

Although lifelogs might contain data highly valuable for research,
they are often not available to the researchers. A lifelog is typically
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not stored centrally in one single service that can be tapped into,
but rather exists as the union of data stored in a large number of
online and offline data silos [13]. Still, some datasets exist, and ex-
isting lifelogging datasets [12] usually contain a person’s daily life
activities automatically captured and recorded using smartphone
applications, wearable devices, and other sensors. One example
is the NTCIR Lifelog test collection [10] consisting of lifelogging
datasets for the NTCIR-12/13/14 lifelog tasks, which was first re-
leased at the NTCIR-12 conference [9]. The images in this dataset
are captured by wearable cameras carried by two different lifelog-
gers. Some work has been done with similar datasets, for example,
retrieving moment of interest [5, 15]. However, a key challenge in
lifelogging research is the poor availability of test collections [4].
Hence, there is a need for more available lifelog datasets.

Capturing daily life events is also something many sports pro-
fessionals do. Athletes have kept written training diaries for a long
time, using both pen-and-paper, and more recently using digital
logging systems. Now, the use of wearables to measure activity
and its intensity in both top sport and among the regular physi-
cally active population help to improve performance, recovery, and
other aspects of health [6]. A challenge is to make sense of the
data, and often, the captured data is limited to self-reports since
activity logs from smartwatches and phones are hard to understand.
Thus, there are still steps needed for integration of data [8] and to
find standardized ways to analyze, evaluate, and present data [7].
Another problem in the area of sport is that professional athletes
do not control the captured data by themselves, and they need the
assistance of coaches, physicians, or support staff [13]. This process
adds the burden of informed consent, authorization, and privacy.
Moreover, a trainer or team doctor does not have time to look at the
myriads of sensor data from the athletes to possibly find something
that could be used to improve training. Using PMData, we have
launched a competition task in ImageCLEF/LifeCLEF1, where the
goal is to predict the participants’ weight and run performance at
the end of the data collection period.

To aid these efforts, automatic methods to analyze sensor data
and the quantification of self-reports will play an important role
in retrieving the information that sports athletes may need. To
be able to perform these analyses with the increasing volume of
data coming from different devices, new methods and tools are
needed. PMData is made available in an effort towards enabling
development such support systems. We provide a starting point
by combining the idea of lifelogging data collection with sports
activity logging. Multiple sport-specific analyses can be performed
on such data as predicting sports performance, weight loss, or gain,
but there is a lack of available datasets. We have therefore logged
objective parameters like heart rate, sleep, calorie consumption,
movement distance, activity sessions, weight, and subjective param-
eters of wellness, training load, injuries, food, and drink intake. We
have used the Fitbit Versa 2 smartwatch2, the PMSys sports logging
app,3 and Google forms for the data collection. For now, the dataset,
named PMData, contains logging data for three months from 16

1https://www.imageclef.org/2020/lifelog
2https://www.fitbit.com/no/versa
3https://forzasys.com/pmsys.html

persons. To the best of our knowledge, PMData is the first avail-
able dataset to combine both subjective and objective parameters
combining both daily life and sports activities.

In the following, we describe the procedure for collecting data
and describe the dataset in detail. Furthermore, we present a prelim-
inary experiment using machine learning to predict the possibility
of a person gaining, losing, or keeping the current weight from log-
ging. We also provide possible research questions and applications
of the dataset.

2 DATA COLLECTION
The goal of PMData has been to gather lifelog data related to the
activities of our participants, but without being too invasive. We
planned to collect data from the end of November 2019 to the end
of March 2020. We log data about the participant’s daily activities,
similar to a sport lifelog, and encourage them to exercise at least
twice a week. We did not set any restrictions or requirements on
the type or duration of the exercise participants can engage in.

2.1 Fitbit Versa 2: Objective Biometrics and
Activity Data

Figure 1: Fitbit Versa 2

To log objective biometrics and
activity data, we used the Fit-
bit Versa 2 fitness smartwatch (see
Figure 1). Each participant was en-
couraged to wear the watch as
much as possible, also when sleep-
ing. All settings were set to default,
i.e., sleep tracking in normal mode
and auto-exercise recognition on
for all activities longer than 15 min-
utes. When training, participants
were told to log in using the exercise menu option in the watch
(e.g., run or treadmill).

2.2 PMSys: Subjective Wellness, Training Load,
and Injuries

Subjective assessments of each participant’s wellness, training load,
and injuries have been logged using the PM Reporter Pro smart-
phone application4 where Figure 2 shows an example of a reporting
sequence. PM Reporter is part of the PMSys online sports logging
system that enables athletes to monitor individual training load,
daily subjective wellness parameters, and injuries [20]. Wellness
is reported typically once a day through a sequence of question-
naires. Training load or Session Rating of Perceived Exertion (sRPE)
is a metric calculated from the product of the session length and
the reported Rating of Perceived Exertion (RPE). The training load
is reported after every training session. Finally, the injuries ques-
tionnaire is recommended completed once a week, regardless of
having an injury or not, where the participants press on a body
part to indicate a minor or major injury or pain. To increase the
reporting rate, PMSys sends scheduled push messages directly to
the participants’ smartphones, reminding them to report.

4https://bitbucket.org/corporesano/pm-reporter
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Figure 2: Entering wellness data into PMSys

2.3 Google Forms: Demographics, Food,
Drinking, and Weight

A Google Form questionnaire was used to collect information about
food intake and weight development. Every day, the participants
were asked to report eaten meals (breakfast, lunch, dinner, evening),
the number of glasses of fluid (water, coffee, milk, juice, soda, etc.)
that they consumed. They were also asked about their weight and
whether they have consumed alcohol or not. To increase the re-
porting rate, we used the PMSys push-messaging system to send
reminders to the participants’ smartphones. A one-time question-
naire (see dataset home page) was used to ask for age, gender, height,
and whether the person has a Type A or Type B personality [14].
Most participants regard themselves as having a Type A personality,
and generally wakes up early (potentially also goes to bed early),
rather than one who wakes up late (Type B).

2.4 Food Images
The reports on eaten meals collected using the Google Forms ques-
tionnaire indicate how often and regularly a person consumes food,
but leaves out important details about their content, like nutrients
and calories. Therefore, selected participants were asked to take
photos of everything they have been eating or drinking using their
smartphones. This is a time-consuming task and hard to remember
activity, i.e., severely influencing the daily behavior of the partici-
pants. The collection period is therefore limited to two months.

3 DATASET DETAILS
PMData contains data collected from 16 persons: twelve men and
three women, in the age range 25–60 years, with an average age
of 34 years. The reporting period is from the start of November
2019 to the end of March 2020. The participants range from a broad
background with regards to training and exercises. Some are active
athletes, some previous athletes, and some rarely exercised at all.

An overview of the participants’ demographic information is
provided in the participant-overview.xlsx file where information
like age, height, gender, measured max heart rate, test run results,
and walk and run stride lengths are included. Furthermore, there is
a directory per participant that contains the data from the Fitbit,
PMSys, Google Forms, and Food image data sources. An overview
of the dataset ontology can be found in Figure 3. Statistics about
the Fitbit JSON-files can be found in Table 1 and statistics about
the CSV-Files can be found in Figure 4. Note that all files have
timestamps that must be used to connect the data from the different
files.

Figure 3: Overview of the dataset.

All participants have been informed about the collection and
publication of the data related to this project and signed a form
consenting to this. The Norwegian Centre for Research Data (NSD)
has evaluated the project and found it to be in accordance with
Norwegian and EU data protection laws.

The dataset is available at the Open Science Framework (OSF) at
the following URL: https://osf.io/vx4bk/; or at the Simula datasets
site: https://datasets.simula.no/pmdata/. The dataset is free to use
for research and teaching purposes under the license Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0).5

3.1 Fitbit
The data from the Fitbit Versa 2 smartwatch has been extracted
into CSV and JSON files. The fitbit directory contains the following
files:
5https://creativecommons.org/licenses/by-nc/4.0/
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Table 1: Number of Fitbit entries for each participant.
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P04 152 188 140 218473 1571315 86457 152 161 152 146 35
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(a) PMSys (b) Google Docs

Figure 4: Number of self-reports.

calories.json shows how many calories the person has burned
the last minute.

distance.json gives the distance moved per minute. Distance is in
centimeters.

exercise.json describes each activity in more detail. It contains the
date with start and stop time, time in different activity levels,
type of activity, and various performance metrics depending
on the type of exercise, e.g., for running, it contains distance,
time, steps, calories, speed, and pace.

heart_rate.json shows the number of heartbeats per minute (bpm)
at a given time.

sedentary_minutes.json sums up the number of sedentary min-
utes per day.

lightly_active_minutes.json sums up the number of lightly ac-
tive minutes per day.

moderately_active_minutes.json sums up the number of mod-
erately active minutes per day.

very_active_minutes.json sums up the number of very active
minutes per day.

resting_heart_rate.json gives the resting heart rate per day.
sleep_score.csv helps understand the sleep each night so you

can see trends in the sleep patterns. It contains an overall
0-100 score calculated from the composition, revitalization

and duration scores, the number of deep sleep minutes, the
resting heart rate, and a restlessness score.

sleep.json is a per sleep breakdown of the sleep into periods of
light, deep, REM sleeps, and time awake.

steps.json displays the number of steps per minute.
time_in_heart_rate_zones.json gives the number of minutes in

different heart rate zones. Using the common formula of
220 minus your age to find the max heart rate, Fitbit6 will
calculate your maximum heart rate and then create three
target heart rate zones — fat burn (50 to 69 percent of your
max heart rate), cardio (70 to 84 percent of your max heart
rate), and peak (85 to 100 percent of your max heart rate).

As can be observed, there are various parameters included. For
example, as we can see in Table 1, in total, there are 2,440 activity
sessions (manual and 15-min-auto reports), 20,991,392 heart rate
measurements, and 1,836 days of sleep scores included. It can, of
course, be discussed how accurate data from a smartwatch can be.
For example, we have observations that indicate that the Versa step-
counter is influenced by other activities than walking or running
and that the estimated distances are slightly inaccurate. For heart
rates, the watch seems to be surprisingly accurate when we per-
formed small comparisons using several devices at the same time.
Thus, the Fitbit Versa 2 is not the best watch on the market, and the
absolute values might be slightly off. However, the collected data
should give reasonable indications of activities, and the relative
differences between logs at least show if there have been positive
or negative changes.

3.2 PMSys
In terms of subjective PMSys reporting, there are three CSV-files:
srpe.csv contains a training session’s end-time, type of activity, the

perceived exertion (RPE), and the duration in the number of
minutes. This is, for example, used to calculate the session’s
training load or sRPE (RPE × duration).

wellness.csv includes parameters like time and date, fatigue, mood,
readiness, sleep duration (number of hours), sleep quality,
soreness (and soreness area), and stress. Fatigue, sleep qual-
ity, soreness, stress, and mood all have a 1-5 scale. Score 3 is
normal, and 1-2 are scores below normal, and 4-5 are scores
above normal. Sleep length is just a measure of how long the
sleep was in hours, and readiness (scale 0-10) is an overall
subjective measure of how ready you are to exercise, i.e., 0
means not ready at all, and 10 indicates that you cannot feel
any better and are ready for anything!

injury.csv shows injuries with a time and date and corresponding
injury locations and a minor and major severity.

Discussions in many fora are about the accuracy of subjective
reports, as one is completely dependent on the truthfulness of the
reporter. However, sport is not only a physical activity, and an
athlete’s psychological "state-of-mind" may greatly influence the
performance. Thus, if reported correctly, the subjective information
may be of huge value, and there may be important information to
be found and predicted [18, 21]. In total, as seen in Figures 3 and 4a,
there are 783 training sessions, 1,747 wellness reports, and 225

6https://blog.fitbit.com/max-heart-rate-by-age/
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(a) Readiness. (b) Training load.

(c) Wellness parameters.

Figure 5: Examples of PMSys data that can be extracted.

Figure 6: Weight development of a few selected participants.
injury reports submitted. From the figure, we can see the difference
in reporting activity among the participants. The plots from the
PMSys trainer pages in Figure 5 show examples of data that can be
retrieved.

3.3 Google Forms
The googledocs directory contains the reporting.csv data file, which
contains daily reporting data. The data file contains one line per
report, including the date reported for, timestamp of the report sub-
mission time, the eaten meals (breakfast, lunch, dinner, and evening
meal), the participants weigh this day, the number of glasses drunk,
and whether one has consumed alcohol.

In total, there are 1,569 reports (Figures 3 and 4b). Similarly to
the PMSys data, these reports are also subjective, and some data
points are missing. Nevertheless, the submitted data gives some
indications of consumed food and drinks and might give important
insights into calorie intake. Together with reported activity, this
can indicate weight loss or gain, as shown in Figure 6.

3.4 Food Images Details
Participants 1, 3, and 5 took pictures of everything they consumed,
except water, for two months (February and March 2020). Some
example images can be seen in Figure 7. There are 644 images
included, divided between the participants. Information about the
day and time of capture can be found in the Exif image headers.
The participants used their mobile phone cameras to collect the
images (iPhone 6s, iPhone X, and iPhone XS). MacOS Photos was
used to export the photos in full quality.

Figure 7: Examples of the captured images of food and drink.

4 INITIAL EXPERIMENTS
To demonstrate how the PMData dataset can be used, this section
shows how machine learning can be applied to the data to predict
weight gain or loss. More precisely, we define this as the problem
of predicting weight change for the next day based on what was
reported by the user the previous day. We model this as a classi-
fication problem, where we try to classify data from one day into
three possible weight change classes for the next day. The three
classes are: (0) weight goes down, (1) weight goes up, and (2) no
weight change. For these experiments, we are using the following
data sources from the PMData dataset: (i) Google doc reports, (ii)
PMys wellness reports, and (iii) Fitbit sleep scores. We chose these
three to show how the different data within the dataset can be
combined and because we also had an intuition that well-being
and sleep might correlate with weight change. The exact features
used are weight_previous_day, water, alcohol, breakfast, lunch, din-
ner, evening, fatigue, mood, readiness, sleep_d, sleep_q, soreness,
stress, overall_score, composition_score, and revitalization_score.
We used only entries from the dataset that had at least the weight
reported. Some of the data instances are missing values due to not
being reported. We replaced the missing values with zeros7. This
lead to a total of 1578 data instances. The distributions between the
classes are 229 with weight goes down, 247 with weight goes up,
and 1102 with no change of weight.

All experiments are performed using 10-fold cross-validation.
The experiments are performed using two different algorithms: Ran-
dom Forest and Classification Decision Tree (CDT). As a baseline,
we provide ZeroR (majority class baseline). For all tested algorithms,
we report the following metrics: false positive rate, precision, recall,
F1-score, and Matthew Correlation Coefficient (MCC).

Table 2 shows the results for the experiments using all features.
We can see that both Random Forest and CDT outperform the Ze-
roR baseline. The best classifier is CDT, with an MCC of weighted
average MCC of 0.450. Predicting that weight goes down or up
seems equally difficult. One might think that using the previous
day’s weight is a very important feature. To test this, we also con-
ducted experiments with the two best working classifiers where
the previous day’s weight is removed as a feature. The results are
presented in Table 3, where we can observe that the performance
drops significantly. Both methods are having problems beating the
majority class baseline significantly if the weight of the previous
day is excluded as a feature. For this scenario, Random Forest is
better than CDT, with an MCC of 0.259.

7We also tested to remove them, but replacing with zeros got overall a better score
than removing the entries completely.
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Table 2: Classification performance (10-fold cross-
validation) including weight previous day feature.

Classifier Class False-Positive Rate Precision Recall F1-Score MCC
ZeroR baseline weighted average 0.698 0.000 0.698 0.000 0.000
Random Forest weight up 0.062 0.468 0.296 0.362 0.284
Random Forest weight down 0.060 0.426 0.262 0.324 0.249
Random Forest no change 0.532 0.802 0.933 0.863 0.471
Random Forest weighted average 0.390 0.695 0.736 0.706 0.410
CDT weight up 0.056 0.513 0.316 0.391 0.320
CDT weight down 0.056 0.503 0.336 0.403 0.333
CDT no change 0.504 0.811 0.937 0.870 0.504
CDT weighted average 0.369 0.720 0.753 0.727 0.450

Table 3: Classification performance (10-fold cross-
validation) excluding weight previous day feature.

Classifier Class False-Positive Rate Precision Recall F1-Score MCC
ZeroR baseline weighted average 0.698 0.000 0.698 0.000 0.000
Random Forest weight up 0.043 0.387 0.146 0.212 0.159
Random Forest weight down 0.050 0.299 0.127 0.178 0.112
Random Forest no change 0.725 0.751 0.946 0.838 0.313
Random Forest weighted average 0.520 0.629 0.702 0.644 0.259
CDT weight up 0.032 0.276 0.065 0.105 0.064
CDT weight down 0.033 0.318 0.092 0.142 0.103
CDT no change 0.821 0.731 0.965 0.832 0.244
CDT weighted average 0.583 0.600 0.697 0.618 0.195

5 APPLICATIONS OF THE DATASET
PMData contains a large number of logged parameters that can
be used for various analyzes like classification and prediction of
a person’s well-being and sports performance. Some examples us-
ing various selections of parameters include predicting a person’s
readiness to train for training planning, selecting the best team
for the next competition, differences between genders or age, the
results of the next competition, etc. The combination of the various
parameters gives a unique opportunity to better find, for example,
the total training load of a person, at an individual level, including
data from even outside the training sessions. Thus, it is of large
interest from the sports science point of view. Additionally, from
a technical point of view, the time-series dataset is noisy, making
it a challenge to analyze where one must handle missing data and
find outliers, and the possibility to fuse various data sources raises
diverse challenges. We plan to use the dataset for future projects,
one being a system using PMData to estimate health states [16].

6 CONCLUSION
We have presented the PMData sports logging dataset, containing
both objective and subjective parameters from sport and lifelogging,
enabling the development of several interesting analysis applica-
tions. Our initial experiments show that such analyses are possible,
but the dataset has great potential beyond what we have demon-
strated in this paper. Other researchers using the dataset might want
to look into some of the applications described in the application
of the dataset section or come up with entirely new experiments
and hypotheses.
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Abstract—Using sensor data from devices such as smart-
watches or mobile phones is very popular in both computer
science and medical research. Such movement data can predict
certain health states or performance outcomes. However, in order
to increase reliability and replication of the research it is impor-
tant to share data and results openly. In medicine, this is often
difficult due to legal restrictions or to the fact that data collected
from clinical trials is seen as very valuable and something that
should be kept ”in-house”. In this paper, we therefore present
PSYKOSE, a publicly shared dataset consisting of motor activity
data collected from body sensors. The dataset contains data
collected from patients with schizophrenia. Schizophrenia is a
severe mental disorder characterized by psychotic symptoms like
hallucinations and delusions, as well as symptoms of cognitive
dysfunction and diminished motivation. In total, we have data
from 22 patients with schizophrenia and 32 healthy control
persons. For each person in the dataset, we provide sensor data
collected over several days in a row. In addition to the sensor data,
we also provide some demographic data and medical assessments
during the observation period. The patients were assessed by
medical experts from Haukeland University hospital. In addition
to the data, we provide a baseline analysis and possible use-cases
of the dataset.

Index Terms—Schizophrenia, Actigraphy, Motor Activity, Ma-
chine Learning, Artificial Intelligence, Dataset

I. INTRODUCTION

Objective physiological parameters collected from sensors
and analyzed by machine learning techniques have gained
considerable interest as a tool to support the existing subjective
diagnostic practice within mental health [1]. To perform reli-
able and reproducible research with such data it is important
to share both data and results openly. In the medical field,
sharing data is often problematic due to various privacy
policies. We have previously shared the DEPRESJON dataset
[2], containing motor activity data collected from bipolar
and unipolar patients. In this paper, we present our second
openly shared anonymized dataset on motor activity, contain-
ing actigraph data collected from patients with schizophrenia.
The Norwegian Regional Medical Research Ethics Committee

West approved the original protocol for the study collecting
the data for both datasets, and all processes were in accordance
with the Helsinki Declaration of 1975 [3].

Actigraphy is a non-invasive method of monitoring human
rest and activity cycles, and is normally recorded with a wrist-
worn device that registers gravitational acceleration units [3].
Data from actigraphs have been applied to studies of sleep [4]
and psychiatric diagnosis like bipolar disorder [5] and ADHD
[6], and in some extent in the investigation of Schizophre-
nia. Schizophrenia is characterized by ”positive” symptoms
like hallucinations and delusions, ”negative” symptoms like
diminished motivation and cognitive symptoms like slower
mental processing [7]. A recent systematic review summarised
motor activity studies of schizophrenia, all applying traditional
statistical analysis [8]. Overall, patients with schizophrenia
are associated with lower motor activity levels as well as
repetitious and rigid patterns of behavior when compared to
healthy controls. Motor activity also reflects the symptomatic
state. Increasing positive symptoms correlates with augmented
complexity in activity patterns and increased sleep disturbance.
Increased negative symptoms associates with overall reduced
activity and amplified nighttime sleep disturbance [8].

The circadian system, an internal self-regulating clock,
regulates the diurnal oscillating cycles of nighttime sleep and
daytime activity [9]. Integrated and interlocked in the circa-
dian clock are various ultradian rhythms of shorter duration
regulating patterns like rest/activity cycles, feeding habits, and
hormone levels. Time series of motor activity is an articulation
of this recurring complex clock system in interaction with
daily social rhythms [10]. Disturbed sleep patterns and lurched
rest/active cycles are characterizing symptoms of schizophre-
nia [7].

An alternative method to detect and classify schizophrenia is
electroencephalography (EEG) measuring electrical activity in
the brain [11]. Machine learning appears promising in differ-
entiating between schizophrenic patients and healthy controls
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in such data [12]. Still, data collected with electrodes placed
on the scalp seems like a substantially more cumbersome
and demanding process than a simple wrist-worn actigraph
registering motor activity.

The aim of this paper is to provide a comprehensive dataset
of motor activity of patients with schizophrenia and make it
publicly available. More, to enable additional investigation by
sharing the dataset and ideas for further research. The main
contributions of this paper are:

1) A new publicly available dataset containing sensor and
demographic data of a substantial number of patients
with schizophrenia.

2) The dataset contains additionally sensor data from a
large number of healthy control persons.

3) Baseline experiments that can be used by other
researchers to compare their results. Classifying
schizophrenic versus non-schizophrenic patterns, includ-
ing recommendations for evaluation metrics.

In the following, we describe the diagnosis of Schizophrenia
(Section II), how the data was collected and the attributes
of the data itself (Section III). Section IV lists some of the
potential applications of this dataset. Section V presents some
suggested evaluation metrics. This is followed by an exper-
iment section containing the baseline experiments (Section
VI). In Section VII we also discuss possible future research
questions using the dataset and give a conclusion.

II. MEDICAL BACKGROUND

Schizophrenia is a severe mental disorder that affects ap-
proximately one percent of the global population. Symptoms
of schizophrenia begin in early adulthood, and the debut age
is younger for males than females. The disorder tends to be
chronic and relapsing, however with a highly variable disease
burden and degree of disability between individuals. A range
of different symptoms, including “positive” symptoms like
hallucinations, delusions or psycho-motoric agitation, “nega-
tive” symptoms like impaired affective experience or expres-
sion and diminished motivation, and cognitive symptoms like
problems with focus or paying attention and problem solving
may occur [7], [13]. The main treatment of schizophrenia is
antipsychotic medication, both for acute psychotic episodes
and for relapse prevention. The therapeutic effects of, and
side effects related to, antipsychotics vary substantially among
individuals [7]. Antipsychotics target the dopamine system,
and the antidopaminergic effect may influence motor activity
through side effects such as extrapyramidal syndrome and
akathisia [14]. Akathisia is characterized by subjective and ob-
jective psycho-motoric restlessness [15]. These distressing side
effects are an important factor for patients quitting their pre-
scribed antipsychotic medications [16]. Akathisia investigated
in motor activity studies appears therefore as a relevant and
important topic for future research. Unfortunately, this is not
possible in the present dataset. In retrospect, we have identified
several patient characteristics that would have been beneficial
to studies like this, however requiring a larger sample size.
Variables like previous antipsychotic use, duration of use, type

of antipsychotic including dosage and alteration of dosage,
serum concentration of antipsychotics to verify intake, patient
status (inpatient/outpatient), duration of untreated psychosis,
alcohol consumption and substance use may all be valuable in
further motor activity studies in schizophrenia [15], [17].

III. DATASET DETAILS

Motor activity was collected with a wrist-worn actigraph
device (Actiwatch, Cambridge Neurotechnology Ltd, Eng-
land, model AW4) entailing a piezoelectric accelerometer
programmed to record the integration of intensity, amount
and duration of movement in x, y and z axes. The sampling
frequency was 32 Hz and movements over 0.05 g recorded.
The output is an integer value proportional to the movement
intensity for 1 minute epochs [3]. Figure 1 shows a 24 hour
subset of the actigraphy data produced by the device for one
of the patients.

Fig. 1. Example actigraphy data of patient 1 from midnight to midnight. The
x axis is time and the y axis is the activity level as stored by the device.

The dataset consists of actigraph data collected from 22
psychotic patients hospitalized at a long-term open psychiatric
ward at Haukeland University hospital. All are diagnosed with
schizophrenia, and all used antipsychotic medications. The
group contained 3 females and 19 males with an average
age of 46.2 ± 10.9 years (range 27 – 69 years). The mean
age at first time of hospitalization was 24.8 ± 9.3 (range 10
– 52 years). Clinical experts diagnosed the patients using a
semi-structured interview based on DSM-IV criteria [18]. 17
of the patients were recognized as paranoid schizophrenic.
For the other 5 patients no subtype of schizophrenia was
specified, beyond that they were non-paranoid. DSM-5, the
currently used diagnostic manual do not recognize schizophre-
nia subtypes [19]. The present psychotic symptomatic state
of the patients were rated on the Brief Psychiatric Rating
Scale (BPRS), a frequently used rating scale for measuring
the overall psychopathology of schizophrenic patients. BPRS
consists of 18 items rated from 1 to 7, and higher sum scores
indicate a more severe condition [20]. 17 of the patients were
rated on the BPRS scale, mean score was 50.0±8.8 (range 34
– 59). Further details on the dataset are presented in previous
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papers analyzing the dataset with various linear and nonlinear
statistical approaches [3], [21]–[23].

The dataset also contains actigraphy data from 32 healthy
control persons, consisting of 23 hospital employees, 5 nursing
students, and 4 healthy persons recruited from a general
practitioner. None had a history of either psychotic or affective
disorders. The group consists of 20 females and 12 males, with
a mean age of 38.2± 13.0 (range 21 – 66 years). The gender
composition is mismatched between the groups. Nevertheless,
previous studies of motor activity within mental health have
not identified gender differences in activation [24].

The participants used the actigraph devices for an average
of 12.7 days in the control and condition groups. See Table I
for details. The battery life of the device is about 14 days, thus,
it didn’t need charging during the study. The total number of
collected days was 687 comprising 402 days in the control
group and 285 in the condition group. Note that the actigraph
files might contain more days, but only the first n days were
considered in our analysis where n is the number of days
reported in the days.csv file. These are the days during which
the study took place. Figure 2 shows a boxplot of the average
activity per day for the condition and control group. Here, it
can be seen that the condition group has lower activity levels
compared to the control group.

TABLE I
STATISTICS OF NUMBER OF COLLECTED DAYS BY GROUP.

Control group Condition group

Mean 12.6 12.95
Sd. 2.3 0.37

Max 20 14
Min 8 12

Fig. 2. Boxplots of average activity per day of the condition and control
groups.

A. Dataset Structure

The root folder of the dataset contains five items. Two
folders, one contains the activity data for the controls and
the other the data for the patients. For each patient and

control, a CSV file is provided containing the actigraphy
activity measurements over time. The columns in the patient
and control files are timestamp (one-minute intervals), date
(date of measurement), activity (activity measurement from
the actigraph watch). Figure 3 shows an extract of the first 10
lines of data from patient 18.

Fig. 3. First 10 lines of acitgraphy data from patient 18.

The root folder also contains a file named patients info.csv.
This file contains the following columns: Number (patient
identifier), gender (male or female), age (age of the patient),
days (whole days the patient wore the actigraph), schtype
(type of schizophrenia), bprs (BPRS sum score), cloz (did the
patient use clozapine as antipsychotic medication), trad (did
the patient use traditional neuroleptic or modern antipsychotic
medication), moodst (did the patient use mood stabilizing
medications), agehosp (age first time hospitalized).

Another file in the root folder is named days.csv. This file
contains the number of days the patient and controls are in the
study. It contains the columns id (identifier) and days (number
of full days).

Finally, the root folder contains a file named schizophre-
nia features.csv. This contains the statistical features used
for the baseline experiments. The file contains four columns:
userid (patient identifier), class (class to predict binary),
class str (class name as string), f.mean (the mean), f.sd (the
standard deviation), f.propZeros (proportion of zeros).

The dataset can be accessed via: https://osf.io/dgjzu/ or di-
rectly downloaded from https://datasets.simula.no/psykose/.
The license for the PSYKOSE dataset is Creative Commons
Attribution-NonCommercial 4.0 International.

IV. APPLICATIONS OF THE DATASET

The main goal of publishing this dataset is to encourage
other researchers to use the data to improve the quality of life
for mental health patients. The dataset has several application
areas, of which some will be discussed in the following. Some
suggested future research directions using this dataset could
be:

• Use machine learning for schizophrenia v.s. non-
schizophrenia classification.

• Analysis of circadian and ultradian cycles in schizophre-
nia compared to non-schizophrenia.
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• Diurnal and nocturnal activity analysis of schizophrenia
versus non-schizophrenia.

We believe that this dataset can be useful to the machine
learning community since during the last years the use of
machine learning for mental health has shown promising
results [1], [25], [26].

In addition, we also want to point out that this dataset can be
combined with our previously published Depresjon dataset [2],
to increase the number of persons and measurements for
both datasets. When comparing the motor activity profiles of
depressed patients, schizophrenic patients and healthy con-
trols, the distribution and length of active and resting periods
differentiate in motor activity [22]. Complexity analyzes have
also identified motor activity profiles segregating the three
groups [21] [27]. Therefore, by combing these two datasets,
some potential applications emerge:

• Use machine learning for schizophrenia, depression state
classification.

• Compare attributes of schizophrenia and depression pa-
tients.

• Differences in diurnal/nocturnal patterns and/or the
rest/activity cycles of schizophrenia versus non-
schizophrenia versus depressed.

In addition to these specific medical research questions,
more general research questions in the field of machine learn-
ing could also be addressed using this dataset. For example,
comparing different algorithms and metrics on the dataset, over
and under-sampling techniques and their effect measured using
the dataset, and researching and developing more advanced
time-series based analysis algorithms. Examples of more ad-
vanced algorithms include those based on deep learning, such
as convolutional neural networks or recurrent neural networks.

V. SUGGESTED METRICS

The evaluation of classification algorithms can be done in a
variety of different ways. Sometimes, metrics that measure the
same thing have different names depending on the discipline in
which they are discussed. For example, recall in information
retrieval is often called sensitivity in a medical context. In
the following, we will present two experiments using different
metrics that we recommend for this dataset. In general, there
are two important things to take into account. Firstly, medical
datasets are often imbalanced (one class is presented more
often than another). For an imbalanced dataset like this, it
is important to weigh the metrics based on the number of
classes. Such weighting is specifically applicable to binary
classifications. Secondly, it is good practice to present a
comprehensive set of outcome metrics, beyond the frequently
reported limited subset of accuracy or precision, recall, and
F1-score.

All outcome metrics we recommend are calculated by
using True positives ((TP) number of correctly classified
patients with schizophrenia), true negatives ((TN) number
of correctly classified controls), false positives ((FP) number
of misclassified controls) and false negatives ((FN) number

of misclassified patients with schizophrenia). The metrics
used for this dataset are, False-Positive Rate, Precision, Re-
call/Sensitivity, Matthews Correlation Coefficient (MCC) and
F1-score. In addition, we recommend using Precision-Recall-
Curves (PRC) and Receiver-Operating-Characteristic-Curves
(ROC). Additionally, to obtain better generalizable models, a
cross-validation approach ought to be utilized. We propose
either N-fold or leave-one-patient-out cross-validation.

VI. BASELINE PERFORMANCE

To provide a baseline performance and also to inspire future
work, we present two baseline experiments using the dataset.
The goal of both experiments is to classify patients into
schizophrenia or non-schizophrenia. For all experiments, we
used statistical features extracted from the activity data. The
features used are standard deviation, proportion of zeros and
mean. The features are calculated per full day per patient.
That is, one feature vector is extracted per day and per
participant. This leads to 687 data points (feature vectors)
which corresponds to the total number of study days across all
participants. From these, 285 are from schizophrenic patients
and 402 from controls. Details about how many days per
participant were collected can be found in the days.csv file
of the dataset. The extracted features used for the experiments
are shared with the dataset for reproducibility.

Figure 4 shows a projection of the extracted features into
a 2D plane using Multidimensional Scaling (MDS). It can
be seen that those features, to some extent, are able to
separate both groups but not perfectly, though. In the next few
sections, we present baseline results using machine learning
classifiers to infer each points’ class (no-schizophrenia and
schizophrenia).

Fig. 4. Computed features projected into a 2D plane using MDS.

A. Experiment 1

For the first experiment, we perform 10-fold cross-validation
for the training and leave a certain amount of data out for
testing (90%, 66%, 50%, 33%, and 10%). The data left out
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TABLE II
CLASSIFICATION PERFORMANCE FOR EXPERIMENT 1 (10-FOLDED

CROSS-VALIDATION) REPORTING AVERAGE PRECISION AND AREA UNDER
THE CURVE FOR DIFFERENT TEST SET SIZES.

Metric Testset size LR RF XGB LGB Ensemble

Average Precision 10 0.89 0.86 0.86 0.89 0.92
Average Precision 33 0.94 0.90 0.90 0.93 0.91
Average Precision 50 0.94 0.89 0.89 0.93 0.91
Average Precision 66 0.92 0.89 0.90 0.92 0.89
Average Precision 90 0.92 0.82 0.82 0.89 0.90
Area under the Curve 10 0.81 0.78 0.82 0.85 0.91
Area under the Curve 33 0.90 0.85 0.86 0.90 0.88
Area under the Curve 50 0.89 0.84 0.86 0.90 0.89
Area under the Curve 66 0.89 0.83 0.87 0.90 0.87
Area under the Curve 90 0.88 0.76 0.79 0.84 0.87

for testing is stratified, meaning the number of schizophrenic
and non-schizophrenic data points is balanced if possible (this
cannot be done for the 90% test data case).

The experiments are performed using four different algo-
rithms, namely, Logistic Regression (LR) [28], Random Forest
(RF) [29], Extreme Gradient Boosting (XGB) [30] and Light
Gradient Boosting (LGB) [31]. All four are commonly used
for machine learning tasks. In addition, we also used ensemble
to combine the four different algorithms to perform a com-
bined classification. For all tested algorithm,s we report the
average precision (from the PRC) and the area under the curve
(from the ROC). For the best working one, we also present
plots of the PRC and ROC. Implementations are made using
Scikit-learn [32] and the packages XGBoost1 and LightGBM2

for the two respective algorithms. The implementation details
and configurations are shared with the dataset.

Looking at table II, we can observe that all algorithms
perform well with average precision and area under the curve
above 0.80. Overall, the logistic regression performs best in
terms of average precision and area under the curve. Figure 5
shows the precision-recall curve for the LR and 90% of the
data as a testset. It is interesting to see that the performance
is very good, even with a small number of training data. The
random baseline threshold would be 0.41 (true positive divided
by all samples). For the ROC shown in Figure 6, we can make
the same observation with an area under the curve of 0.92.

B. Experiment 2

For experiment 2, we changed the evaluation of cross-
validation training and separate test set to leave one patient
out cross-validation. This means we leave one patient out
of the training and use that for testing. This is repeated
until all patients have been assigned once to the test set.
For these experiments, we used the WEKA [33] machine
learning library. We are reporting the weighted average of
the metrics. The tested algorithms are ZeroR (which is the
majority class baseline), Random Tree (RT), Random Forest
(RF), and classification via Regression (CVR). From the
results in table III, we can see that all algorithms outperform
the ZeroR baseline. Looking at the Matthews correlation

1https://xgboost.readthedocs.io/en/latest/index.html
2https://github.com/microsoft/LightGBM

Fig. 5. PRC for the logistic regression using 90% of the data as testset.

Fig. 6. ROC for the logistic regression using 90% of the data as testset.

TABLE III
CLASSIFICATION PERFORMANCE (LEAVE ONE PATIENT OUT CROSS

VALIDATION). THE BEST PERFORMING CLASSIFIER ON THE WEIGHTED
AVERAGE IS BOLD.

Classifier Class False-Positive Rate Precision Recall F1-Score MCC

RT Non-Schizophrenia 0.232 0.835 0.828 0.831 0.596
RT Schizophrenia 0.172 0.760 0.768 0.764 0.596
RT weighted average 0.207 0.804 0.803 0.804 0.596

RF Non-Schizophrenia 0.232 0.844 0.886 0.864 0.662
RF Schizophrenia 0.114 0.826 0.768 0.796 0.662
RF weighted average 0.183 0.836 0.837 0.836 0.662

CVR Non-Schizophrenia 0.098 0.906 0.672 0.771 0.570
CVR Schizophrenia 0.328 0.661 0.902 0.763 0.570
CVR weighted average 0.194 0.804 0.767 0.768 0.570

ZeroR Non-Schizophrenia 1.000 0.585 1.000 0.738 0
ZeroR Schizophrenia 0.000 0 0.000 0 0
ZeroR weighted average 0.585 0.515 0.585 0.515 0

coefficient (MCC), we can see that Random Forest is the
overall best performing classifier. The other two algorithms
seem to have a problem to efficiently detect schizophrenia
compared to non-schizophrenia.
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C. Experiments Summary

Both sets of experiments showed promising results for using
activity data to detect schizophrenia versus non-schizophrenia.
However, the results are not optimal, and there is still potential
for large improvements. For example, it might be better to look
at the complete activity using more sophisticated methods such
as recurrent neural networks.

VII. CONCLUSIONS

In this paper, we have presented a dataset containing motor
activity data from patients with schizophrenia. The baseline
analysis of our experimental results showed the potential for
using such data to answer medical relevant research questions.
We also discussed possible applications using the dataset
such as schizophrenia versus non-schizophrenia classification
of patients. In this respect, we hope that this dataset will
encourage other researchers to both perform experiments using
the data, and also to share their own insights and datasets.
The PSYKOSE dataset will hopefully enable reproducible
and comparable results and assist in the development of
future automated systems supporting the existing subjective
diagnostic practice within mental health.
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Oda Olsen Nedrejord  1,3, Espen Næss1,3, Hanna Borgli  1,3, Debesh Jha  1,7,15, 
tor Jan Derek Berstad6, Sigrun L. Eskeland4, Mathias Lux10, Håvard Espeland  6, 
andreas Petlund  6, Duc tien Dang Nguyen5, Enrique Garcia-Ceja  13, Dag Johansen7, 
Peter t. Schmidt8,9, Ervin toth14, Hugo L. Hammer1,2, thomas de Lange  4,6,11,12,15,16, 
Michael a. Riegler  1,15,16 & Pål Halvorsen  1,2,15,16

Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy 
(VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. 
Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems 
for VCE. They also show great potential for improvements to achieve even better results. Also, medical 
data is often sparse and unavailable to the research community, and qualified medical personnel rarely 
have time for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected from 
examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which can be used to 
extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a 
bounding box around findings from 14 different classes. In addition to these labelled images, there are 
4,694,266 unlabelled frames included in the dataset. The Kvasir-Capsule dataset can play a valuable role 
in developing better algorithms in order to reach true potential of VCE technology.

Background & Summary
The small bowel constitutes the gastrointestinal (GI) tract’s mid-part, situated between the stomach and the large 
bowel. It is three to four meters long and has a surface of about 30 m2, including the villi’s surface. As part of the 
digestive system, it plays a crucial role in absorbing nutrients1. Therefore, disorders in the small bowel may cause 
severe growth retardation in children and nutrient deficiencies in children and adults1. This organ may be affected 
by chronic diseases, like Crohn’s disease, coeliac disease, and angiectasias, or malignant diseases like lymphoma 
and adenocarcinoma2,3. These diseases may represent a substantial health challenge for both the patients and the 
society, and a thorough examination of the lumen is frequently necessary to diagnose and treat them4. However, 
due to its anatomical location, the small bowel is less accessible for inspection by flexible endoscopes commonly 
used for the upper GI tract and the large bowel. Since early 2000, video capsule endoscopy (VCE)5 has been used, 
usually as a complementary test for patients with GI bleeding4. A VCE consists of a small capsule containing a 
wide-angle camera, light sources, batteries, and other electronics. The patient swallows the capsule capturing a 
video as it moves passively throughout the GI tract. A recorder, carried by the patient or included in the capsule, 
stores the video before a medical expert examines it after the procedure.

VCE devices exist in various versions and brands such as Given Imaging (Medtronic), Ankon Technologies, 
Chongqing Science, IntroMedic, CapsoVision, and Olympus. The frame rate typically varies between 1 and 30 
frames per second, capturing in total between 50 and 100 thousand frames, with pixel-resolutions in the range of 

1SimulaMet, Oslo, norway. 2Oslo Metropolitan University, Oslo, norway. 3University of Oslo, Oslo, norway. 
4Department of Medical Research, Bærum Hospital, Gjettum, norway. 5University of Bergen, Bergen, norway. 
6Augere Medical AS, Oslo, norway. 7Uit the Arctic University of norway, tromsø, norway. 8Karolinska institutet, 
Department of Medicine, Solna, Sweden. 9ersta Hospital, Department of Medicine, Stockholm, Sweden. 
10Klagenfurt University, Wörthersee, Austria. 11Medical Department, Sahlgrenska University Hospital-Mölndal 
Hospital, Göteborg, Sweden. 12Department of Molecular and clinical Medicine, Sahlgrenska Academy, University 
of Gothenburg, Göteborg, Sweden. 13Sintef Digital, Oslo, norway. 14Department of Gastroenterology, Skåne 
University Hospital, Malmö Lund University, Malmö, Sweden. 15these authors contributed equally: Pia H. Smedsrud, 
Vajira thambawita, Steven A. Hicks, Debesh Jha, thomas de Lange, Michael A. Riegler, Pål Halvorsen. 16these 
authors jointly supervised: thomas de Lange, Michael A. Riegler, Pål Halvorsen. ✉e-mail: pia@simula.no
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256 × 256 to 512 × 512. Some of the vendors have software to remove duplicated frames due to slow movement. 
However, a large number of frames need to be analysed by a medical expert, resulting in a tedious and error-prone 
operation. In the related area of colonoscopy, operator variation and detection performance are reported prob-
lems6–8 resulting in high miss rates9. In VCE analysis, essential findings are missed due to lack of concentration, 
insufficient experience and knowledge10–12. Furthermore, physicians may have trouble handling the associated 
technology, and infrequent VCE use leads to lack of confidence13, resulting in inter-observer and intra-observer 
variations in the assessments12.

The technical developments for automated image and video analysis have sky-rocketed, and multimedia solu-
tions in medicine show tremendous potential14,15. An increasing number of promising machine learning solutions 
are being developed for automated diagnosis of colonoscopies16–23 using open datasets24–27. Regarding automated 
VCE data analyses, machine learning approaches also produce promising results regarding detection and clas-
sification rates28–35. Machine learning, or artificial intelligence (AI) in general, is likely to have profound effects 
on the VCE technology’s future, not only for improving variation and detection rates but also for estimating the 
capsule’s localisation13,36.

Regardless of promising initial results, there is room for improvements in detection rate, reduced manual 
labour, and AI explainability. Large amounts of data are needed37,38, particularly annotated data35, and access to 
these data are often scarce39. As shown in Table 1, very few, small VCE datasets are made publicly available, and 
several have become unavailable. We have previously published the HyperKvasir dataset27. Nevertheless, this and 
similar datasets containing images from colonoscopies and esophagogastroscopies are not applicable because they 
do not depict the small bowel, characterised by the intestinal villi displaying a different surface than the rest of the 
bowel. Also, the image resolution and the frame rate of VCEs are much lower. The small bowel is not air inflated 
during a VCE examination, as is the case with traditional colonoscopies. Different optics are also used, and the 
movement of the capsule is uncontrolled in contrast to flexible endoscopes used during manual examinations.

Therefore, we present a large VCE dataset, called Kvasir-Capsule, consisting of 117 videos with 4,741,504 
frames and 14 classes of findings. The dataset contains labelled images and their corresponding full videos, and 
also unlabelled videos. Recent work in the machine learning community has shown significant improvements 
regarding sparsely labelled and unlabelled data value. Semi-supervised learning algorithms are successfully 
applied in different medical image analyses40,41 using self-learning42,43 and neural graph learning44. Finally, we 
provide a baseline analysis and outline possible future research directions using Kvasir-Capsule.

Methods
The VCE videos were collected from consecutive clinical examinations performed at the Department of Medicine, 
Bærum Hospital, Vestre Viken Hospital Trust in Norway, which provides health care services to 490,000 people, 
of which about 200,000 are covered by Bærum Hospital. The examinations were conducted between February 
2016 and January 2018 using the Olympus Endocapsule 10 System45 including the Olympus EC-S10 endocapsule 
(Fig. 1a) and the Olympus RE-10 endocapsule recorder (Fig. 1b). Originally, the videos were captured at a rate of 
2 frames per second, in a resolution of 336 × 336, and encoded using H.264 (MPEG-4 AVC, part 10). The videos 
were exported in AVI format using the Olympus system’s export tool packaged and encapsulated in the same 
H.264 format, i.e., the frame formats are the same, but the frame rate specification is changed to 30 fps by the 
export tool.

Initially, a trained clinician analysed all videos using the Olympus software, selecting thumbnails from lesions 
and normal findings as part of their clinical work. In spring 2019, all the 117 anonymous videos and thumbnails 
were exported from a stand-alone workstation using the Olympus software. The Olympus video capsule system 
has user-friendly functionalities like Omni-selected Mode, skipping images that overlap with previous ones.

All metadata were removed and files renamed with randomly generated file names, before exporting the vid-
eos and thumbnails that were shared. Thus, data in the dataset are fully anonymized, as approved by Privacy Data 
Protection Authority and in accordance with relevant guidelines and regulations of the Regional Committee for 
Medical and Health Research Ethics - South East Norway. The data has not been pre-processed or augmented 
in any way apart from this. Subsequently, for clinical analyses of the videos, a central expert reader selected 
and categorized thumbnails with pathological findings. These thumbnails were traced to their corresponding 
video segments and the videos were uploaded to a video annotation platform (provided by Augere Medical AS, 
Norway) for efficient viewing and labelling. Next, three master students labelled and marked the findings with 
bounding boxes for each frame. The bounding boxes were designed to include the entire lesion and as little as 
possible of the surrounding mucosa. If the students were unsure about the labelling, the expert reader verified the 
frames. All labels regarding anatomical structures and normal clean mucosa were then confirmed by one junior 

Dataset Findings Size Availability

KID54 Angiectasia, bleeding, inflammations, polyps 2,371 images + 47 videos open academic•

GIANA 201755 Angiectasia† 600 images by request

GIANA201856,57 Polyps and small bowel lesions† 8262 images + 38 videos by request

CAD-CAP58,59 Normal frames, fresh blood, vascular lesion, 
ulcerative and inflammatory lesions 25,000 images by request◇

Gastrolab60 Crohns diseases, small bowel (video)+ GI lesions Few hundred images and videos open academic•

Table 1. An overview of existing VCE datasets from the GI tract. †Including ground truth segmentation masks. 
•Not available anymore. ◇The Computer-Assisted Diagnosis for CAPsule endoscopy (CAD-CAP) Database - 
used for the angiectasia detection.
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medical doctor and the expert reader. Finally, all the annotations were once more verified by the expert reader 
and subsequently validated by a second expert reader. If the second reviewer disagreed with the annotations, the 
first reviewer reassessed the images to see whether he then agreed with the second reviewer to get an agreement. 
After the validation process by the second reviewer there was a disagreement on twenty-six findings in seven 
examinations; nineteen concerning erroneous terminology of the class lymphoid hyperplasia which was changed 
to lymphangiectasia. The other seven were related to the interpretation of the finding. After reviewing these find-
ings, the first reviewer agreed with the second one to finally reach a perfect agreement. After this procedure, the 
video frames were exported as images. Hence, a total of four medical persons have selected, analysed and verified 
the data, and a total of 47,238 frames are labelled.

The Norwegian Privacy Data Protection Authority approved the export of anonymous images for the creation of 
the database, without consent from participants. It was exempted from approval from the Regional Committee for 
Medical and Health Research Ethics - South East Norway. Since the data is anonymised and all metadata removed, 
the dataset is publicly shareable based on Norwegian and General Data Protection Regulation (GDPR) laws.

Data Records
The Kvasir-Capsule dataset is available from the Open Science Framework (OSF)46. Table 2 gives an overview 
of all data records in the dataset. In total, the dataset consists of 4,741,621 main data records, i.e., 47,238 images 
with labels and bounding box masks, the 43 corresponding labelled videos (the videos from which the images are 
extracted), and 74 unlabelled videos (from which labelled images have not been extracted). 4,694,266 unlabelled 
images can further be extracted from all the videos combined. All the various labelled classes are shown in Fig. 2. 
The dataset has a total size of circa 89 GB. Note that the unlabelled images are not extracted and included in the 
uploaded data due to unnecessary duplication of data, but can easily be extracted from the videos.

The dataset is stored according to the data records listed above, and described in more detail below. We have a 
“labelled images” catalogue which contains archive files of each labelled class of images. We have a “labelled vid-
eos” catalogue which contains all the videos where we have annotated findings from, and an “unlabelled videos” 
catalogue containing the videos that are not annotated.

Labelled images. In total, the dataset contains 47,238 labelled images stored using the PNG format, where 
Fig. 3 shows the 14 different classes representing the labelled images and the number of images in each class. The 
provided metadata.csv comma-separated value (CSV) file gives the mapping between file name, the labelling 
for the image, the corresponding video, and the video frame number. Moreover, the CSV file gives information 
about the bounding box outlining the finding. Some samples are given in Fig. 4 where the first line gives the 
type of each element in the lines below. This means that the file filename of the labelled image which is the frame 
frame_number extracted from the video_id video. Moreover, the finding is from the category finding_category and 
class finding_class. Finally, the four xi, yi pairs are the four pixel coordinates for the bounding box, e.g., in the first 
three lines they are empty, meaning that there is no finding with a bounding box in this labelled image. There is 
one line in the file per each labelled image.

Fig. 1 VCE equipment used for data collection.

Data Record # Files

Labelled images 47,238

Labelled videos 43

Unlabelled images 4,694,266

Unlabelled videos 74

Table 2. Overview of the data records in the Kvasir-Capsule dataset.
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We defined two main categories of findings, namely anatomy and luminal findings. Each category, their classes 
and belonging images are stored in their corresponding folder. As observed in Fig. 3, the number of images per 
class is not balanced. This is a global challenge in the medical field because some findings are more common than 
others, which adds a challenge for researchers since methods applied to the data should also be able to learn from 
a small amount of training data.

Categories of findings. We have organised the dataset in two main categories with their corresponding 
classes according to the World Endoscopy Association Minimal Standard Terminology version 3.0 (MST 3.0), 
though we have not included the subcategories or intermediate level to simplify the dataset47.

Anatomy. The category of Anatomy contains anatomical landmarks characterising the GI tract. These land-
marks may be used for orientation during endoscopic procedures. However, for small bowel VCE their role is 
to verify the passage of the capsule trough the entire small bowel to confirm a complete examination. We have 
labelled three anatomical landmarks, the first two delineate the upper (proximal) and lower (distal) end of the 

Fig. 2 Image examples of the various labelled classes for images. Images (a) to (c) are from the Anatomy 
category, and images (d) to (n) are from the Luminal findings category.
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small bowel, respectively. The pylorus is the anatomical junction between the stomach and small bowel and is 
a sphincter (circular muscle) regulating the emptying of the stomach into the duodenum. The ileocecal valve 
marks the transition from the small bowel to the large bowel and is a valve preventing reflux of colonic contents, 
stool, back into the small bowel. The third one, the ampulla of Vater, is the junction between the duodenum and 
the gall duct.

Luminal findings. Endoscopic examinations may detect various luminal findings, this include the subcategories 
content of the bowel lumen, the aspect of the mucosa and mucosal lesions (pathological findings) that could be 
either flat, elevated or excavated. These subcategories are not shown in the dataset. Normally, the small bowel 
contains only a certain amount of yellow or brown liquid considered as clean mucosa. However, larger amounts 
of content may preclude a complete visualisation of the mucosa crucial to verify normal mucosa and detection 
of all pathological(abnormal) findings. For the lumen content assessment, we have labelled five classes. Normal 
clean mucosa depicts clean small bowel with no or small amount of fluid and mucosa with healthy villi and no 
pathological findings. This class can also double as a “normal” class versus the pathological luminal finding class 
(see below). The class reduced mucosal view shows small bowel content reducing the view of the mucosa, like 
stool or bubbles. However, lesions in the upper GI tract or small bowel may bleed, causing the appearance of 
blood - fresh colouring the liquid red. In cases with minimal bleeding, one may observe small black stripes called 
blood - hematin on the mucosal surface. The foreign body class include tablet residue or retained capsules which 
can also be observed in the lumen.

Abnormalities, called lesions or pathological findings, in the small bowel can be seen as changes to the 
mucosal surface. Typical mucosal changes sometimes cover larger segments, such as a reddish appearance called 
erythematous mucosa, is labelled as erythema. The mucosal wall can also have different focal lesions. The classes 
of lesions represented in the Kvasir-Capsule dataset are angiectasias; small superficial dilated vessels causing 
chronic bleeding and subsequently anaemia. It mostly occurs in people with chronic heart and lung diseases48. 
Excavated lesions erode to different extents the surface of the mucosa. Most common are erosions, covered by a 
tiny fibrin layer, while larger erosions are called ulcers. As an example, Crohn’s disease is a chronic inflammation 
of the small bowel characterised by ulcers and erosions of the mucosa. It may cause strictures of the lumen, mak-
ing the absorption and passage of nutrients difficult49. Lymphangiectasia, which represents dilated lymphoid 
vessels in the mucosal wall, and polyps, which may be precancerous lesions, are visible as protruding from the 
mucosal wall.

Labelled videos. Labelled videos are the full 43 videos from which we extracted the above mentioned 
labelled image classes. In total, these videos correspond to approximately 19 hours of video and 47,238 labelled 
video frames. Several segments of each video was labelled, and these segments are what was exported as the 
labelled images. As previously mentioned, one can find the frame number and video of origin of each extracted 
image in the CSV-file. Even though we already have extracted the most interesting frames (images) found by the 
clinicians from these videos, they do contain 1,932,047 non-labelled frames that could be interesting in future 
research. One could also extract the video sequences around the various findings.

Fig. 3 The number of images in the various Kvasir-Capsule labelled image classes.

Fig. 4 Samples from the metadata.csv CSV file.
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Unlabelled videos. We also provide 74 videos, which contain approximately 25 hours of video and 2,762,219 
video frames, without any labels. As previously mentioned, unlabelled data can still have great value. Sparsely 
labelled or unlabelled data can be important for recently emerging semi-supervised learning algorithms. These 
videos are of the same format and quality as the labelled videos, except we do not provide any annotations. This 
means that users of the dataset can either use medical experts to provide further labels, or use the data in unsu-
pervised or semi-supervised learning approaches.

technical Validation
To evaluate the technical quality of Kvasir-Capsule, we performed a series of classification experiments. We trained 
two CNN-based classifiers to classify the labelled data. Both architectures have previously shown excellent per-
formance on classifying GI-related imagery from traditional colonoscopies50,51, and should be a good benchmark 
for VCE-related data. The two algorithms are based on standard CNN architectures, namely DenseNet-16152 and 
ResNet-15253. All experiments were performed over two-fold cross-validation using categorical cross-entropy 
loss with and without class weighting. We also used weighted sampling, which balances the dataset by removing 
and adding images for each class based on a given set of weights. To ensure a fair and robust evaluation, no video 
is shared between splits. Thus, the frames used for training were independent from the frames used for validation. 
This also means that there are frames depicting the same finding in each split which then are related to each other, 
but no related frames distributed across the splits. The effect should therefore be similar to traditional data aug-
mentation techniques used by many researchers today such as multiple rotations, angles and crops.

The purpose of these experiments is two-fold. First, we create a baseline for future researchers using the 
Kvasir-Capsule dataset. Second, by using an algorithm that has previously shown good results on classifying GI 
images, we evaluate how challenging the task of categorizing VCE-related data is. Note that for the classification 
experiments, we removed the blood - hematin, ampulla of Vater, and polyp classes due to the small number of 
findings. The results for the two classification algorithms are shown in Table 3 and confusion matrices for the best 
average MCC value in Fig. 5. We estimated micro-averaged and macro-averaged values for precision, recall and 
F1-score for each method. The Matthews correlation coefficient (MCC) was calculated using the multi-class gen-
eralization, also called the RK. In short, if TP, TN, FP, and FN are the true positives, true negatives, false positives, 
and false negatives, respectively, these metrics are defined as follows26:

Precision. This metric is also frequently called the positive predictive value, and shows the ratio of samples that 
are correctly identified as positive among the returned samples (the fraction of retrieved samples that are relevant):

= =
+

precision TP
of all returned samples

TP
TP FP#

Recall. This metric is also frequently called sensitivity, probability of detection and true positive rate, and it is 
the ratio of samples that are correctly identified as positive among all existing positive samples:

= =
+

recall TP
of all positives

TP
TP FN#

Method

Macro average Micro average

Precision Recall F1-score Precision Recall F1-score MCC

Normal CEL

DensNet-161 (fold 0) 0.2165 0.2341 0.1923 0.7375 0.7375 0.7375 0.3707

DensNet-161 (fold 1) 0.3493 0.3158 0.2996 0.7327 0.7327 0.7327 0.4604

Avereage 0.2829 0.2749 0.2459 0.7351 0.7351 0.7351 0.4156

ResNet-152 (fold 0) 0.3302 0.2401 0.1970 0.7203 0.7203 0.7203 0.3520

ResNet-152 (fold 1) 0.3431 0.2805 0.2789 0.7481 0.7481 0.7481 0.4718

Average 0.3367 0.2603 0.2379 0.7342 0.7342 0.7342 0.4119

Weighted CEL

DensNet-161 (fold 0) 0.2933 0.2939 0.2523 0.7195 0.7195 0.7195 0.3998

DensNet-161 (fold 1) 0.3163 0.2914 0.2581 0.6991 0.6991 0.6991 0.4054

Average 0.3048 0.2927 0.2552 0.7093 0.7093 0.7093 0.4026

ResNet-152 (fold 0) 0.2136 0.2872 0.2186 0.6568 0.6568 0.6568 0.3588

ResNet-152 (fold 1) 0.3033 0.2799 0.2478 0.6890 0.6890 0.6890 0.3966

Average 0.2585 0.2836 0.2332 0.6729 0.6729 0.6729 0.3777

Weighted sampling

DensNet-161 (fold 0) 0.2525 0.2794 0.2315 0.7332 0.7332 0.7332 0.4111

DensNet-161 (fold 1) 0.3463 0.2830 0.2806 0.7400 0.7400 0.7400 0.4547

Average 0.2994 0.2812 0.2560 0.7366 0.7366 0.7366 0.4329

ResNet-152 (fold 0) 0.2637 0.2930 0.2334 0.7324 0.7324 0.7324 0.4088

ResNet-152 (fold 1) 0.3088 0.2619 0.2417 0.7316 0.7316 0.7316 0.4520

Average 0.2862 0.2774 0.2375 0.7320 0.7320 0.7320 0.4304

Table 3. Results for all classification experiments. Experiments were done with and without weighted cross-entropy 
loss (CEL) and using a weighted sampling technique. Bold numbers represent the best average value of that column.
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F1 score (F1). A measure of a test’s accuracy by calculating the harmonic mean of the precision and recall:

F score precision recall
precision recall

TP
TP FP FN

1 2 2
2

= ×
×
+

=
+ +

Matthews correlation coefficient (MCC). MCC takes into account true and false positives and negatives, 
and is a balanced measure even if the classes are of very different sizes. For the multiclass classification generali-
zation, it is often called the Rk statistic. In following equation, tk is the number of times class k actually occurred, 
pk is the number of times class k was predicted, c is the total number of samples correctly predicted, and s is the 
total number of samples:

=
× − ∑ ×

− ∑ × − ∑
MCC

c s p t

s p s t( ) ( )
k
K

k k

k
K

k k
K

k
2 2 2 2

The micro and macro averages are different ways to average metrics calculated over multiple classes. The 
macro average is the arithmetic mean of all the scores of different classes, i.e., calculates the metric per class and 
then calculates the average of these over the number of classes. For example, it is defined for precision as the sum 
of precision scores for all classes (precicion1 + … + precicionn) divided by the number of classes (n). The micro 
average is not counting class wise first, but looking at the total number of true and false findings. For example, for 
precision, it is defined as sum of true positives (TP1 + … + TPn) for all the n classes divided by the all returned 
positive predictions (TP1 + FP1 + … + TPn + FPn).

Considering the results, we experience that classifying VCE data is quite a challenging task. For example, 
several of the classes are erroneously predicted as Normal clean mucosa. On the other hand, the class with the 
most accurate predictions is also Normal clean mucosa, reaching 85% in fold one and 91% in fold two. This is 
expected as the class comprise approximately 73% of the labelled images. This points out the challenges of making 
reliable systems as there are multiple aspects to consider, e.g., the resolution of VCE frames are lower compared 
to gastro- or colonoscopies, and many of the findings are subtle where even clinicians have difficulties differen-
tiating between the classes. As noticed when comparing the images in Fig. 2, several findings are hard to see and 
easily mixed. For example, erosions can often be mistaken as small residues, and it can be difficult to differentiate 
normal mucosa from slight erythema. Thus, these results show the potential of AI-based analysis, but also further 
motivates the need to publish this dataset for more investigations and research into better specific algorithms for 
VCE data. The code used to conduct all experiments, produce all plots, and the images contained in each split 
are available on GitHub (https://github.com/simula/kvasir-capsule), i.e., to increase reproducibility and facilitate 
researches to perform comparable experiments on the Kvasir-Capsule dataset.

Usage Notes
To the best of our knowledge, we have collected the largest and most diverse public available VCE dataset. 
Kvasir-Capsule is made available to enable researchers to develop detection or classification methods of various 
GI findings using for example computer vision and machine learning approaches. As the labelled findings also 
include bounding boxes, areas of potential use are analysis, classification, segmentation, and retrieval of images 
and videos of particular findings or properties. Moreover, the ground truths of various findings by the expert gas-
troenterologists provide a unique and diverse learning set for future clinicians, i.e., the labelled data can be used 
for teaching and training in medical education.

Fig. 5 Confusion matrices for the best average MCC value which is from the weighted sampling technique. The 
labeling of the classes is as follows: (A) Angiectasia; (B) Blood - fresh; (C) Erosion; (D) Erythema; (E) Foreign 
Body; (F) Ileocecal valve; (G) Lymphangiectasia; (H) Normal clean mucosa; (I) Pylorus; (J) Reduced Mucosal 
View; (K) Ulcer.
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The unlabelled data is well suited for semi-supervised and unsupervised machine learning methods, and, if even 
more ground truth data is needed, the users of the data can have medical experts provide the needed labels. In this 
respect, recent work has shown remarkable improvements in the area of semi-supervised learning, also success-
fully applied in medical image analyses40. Instead of learning from a large set of annotated data, algorithms learn 
from sparsely labelled and unlabelled data. Self-learning42,43 and neural graph learning44 are both examples using 
unlabelled data in addition to a small amount of labelled data to extract additional information41–43. In an area with 
scarce data, these new algorithms might be the technology needed to make AI truly useful for medical applications.

An important note in general for this type of AI-based detection systems is that one should be careful about 
how the dataset is split into for example training and test sets in order to avoid having related frames in several 
of the sets. This will give an unfair effect on the results. Thus, the splits should be completely different, probably 
even at the level of patients. As described below, an example of such a split in found in our GitHub repository (see 
below in the Code Availability section).

Currently, there is substantial research in GI image and video analysis. We welcome future contributions such 
as using the dataset for comparisons and reproducibility of experiments and further encourage publishing and 
sharing of new data. Kvasir-Capsule is licensed under a Creative Commons Attribution 4.0 International (CC BY 
4.0) License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original authors and the source.

Code availability
In addition to releasing the data, we also publish code used for the baseline experiments. All code and additional 
data required for the experiments, including our splits into training and test datasets, are available on GitHub via 
http://www.github.com/simula/kvasir-capsule.
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Abstract. In this paper, we present HTAD: A Home Tasks Activities
Dataset. The dataset contains wrist-accelerometer and audio data from
people performing at-home tasks such as sweeping, brushing teeth, wash-
ing hands, or watching TV. These activities represent a subset of activi-
ties that are needed to be able to live independently. Being able to detect
activities with wearable devices in real-time is important for the realiza-
tion of assistive technologies with applications in different domains such
as elderly care and mental health monitoring. Preliminary results show
that using machine learning with the presented dataset leads to promis-
ing results, but also there is still improvement potential. By making this
dataset public, researchers can test different machine learning algorithms
for activity recognition, especially, sensor data fusion methods.

Keywords: Activity recognition · Dataset · Accelerometer · Audio ·
Sensor fusion

1 Introduction

Automatic monitoring of human physical activities has become of great inter-
est in the last years since it provides contextual and behavioral information
about a user without explicit user feedback. Being able to automatically detect
human activities in a continuous unobtrusive manner is of special interest for
applications in sports [16], recommendation systems, and elderly care, to name
a few. For example, appropriate music playlists can be recommended based on
the user’s current activity (exercising, working, studying, etc.) [21]. Elderly peo-
ple at an early stage of dementia could also benefit from these systems, like by
monitoring their hygiene-related activities (showering, washing hands, or brush

c© Springer Nature Switzerland AG 2021
J. Lokoč et al. (Eds.): MMM 2021, LNCS 12573, pp. 196–205, 2021.
https://doi.org/10.1007/978-3-030-67835-7_17

Appendix A. Published Articles

180



HTAD: A Home-Tasks Activities Dataset with Wrist-Accelerometer 197

teeth) and sending reminder messages when appropriate [19]. Human activity
recognition (HAR) also has the potential for mental health care applications [11]
since it can be used to detect sedentary behaviors [4], and it has been shown
that there is an important association between depression and sedentarism [5].
Recently, the use of wearable sensors has become the most common approach
to recognizing physical activities because of its unobtrusiveness and ubiquity,
specifically, the use of accelerometers [9,15,17], because they are already embed-
ded in several commonly used devices like smartphones, smart-watches, fitness
bracelets, etc.

In this paper, we present HTAD: a Home Tasks Activities Dataset. The
dataset was collected using a wrist accelerometer and audio recordings. The
dataset contains data for common home tasks activities like sweeping, brushing
teeth, watching TV, washing hands, etc. To protect users’ privacy, we only include
audio data after feature extraction. For accelerometer data, we include the raw
data and the extracted features.

There are already several related datasets in the literature. For example, the
epic-kitchens dataset includes several hours of first-person videos of activities
performed in kitchens [6]. Another dataset, presented by Bruno et al., has 14
activities of daily living collected with a wrist-worn accelerometer [3]. Despite
the fact that there are many activity datasets, it is still difficult to find one with
both: wrist-acceleration and audio. The authors in [20] developed an application
capable of collecting and labeling data from smartphones and wrist-watches.
Their app can collect data from several sensors, including inertial and audio.
The authors released a dataset1 that includes 2 participants and point to another
website (http://extrasensory.ucsd.edu) that contains data from 60 participants.
However, the link to the website was not working at the present date (August-
10-2020). Even though the present dataset was collected by 3 volunteers, and
thus, is a small one compared to others, we think that it is useful for the activity
recognition community and other researchers interested in wearable sensor data
processing. The dataset can be used for machine learning classification problems,
especially those that involve the fusion of different modalities such as sensor and
audio data. This dataset can be used to test data fusion methods [13] and used
as a starting point towards detecting more types of activities in home settings.
Furthermore, the dataset can potentially be combined with other public datasets
to test the effect of using heterogeneous types of devices and sensors.

This paper is organized as following: In Sect. 2, we describe the data collection
process. Section 3 details the feature extraction process, both, for accelerometer
and audio data. In Sect. 4, the structure of the dataset is explained. Section 5
presents baseline experiments with the dataset, and finally in Sect. 6, we present
the conclusions.

2 Dataset Details

The dataset can be downloaded via: https://osf.io/4dnh8/.

1 https://www.kaggle.com/yvaizman/the-extrasensory-dataset.
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The home-tasks data were collected by 3 individuals. They were 1 female and
2 males with ages ranging from 25 to 30. The subjects were asked to perform 7
scripted home-task activities including: mop floor, sweep floor, type on computer
keyboard, brush teeth, wash hands, eat chips and watch TV. The eat chips activity
was conducted with a bag of chips. Each individual performed each activity for
approximately 3 min. If the activity lasted less than 3 min, an additional trial
was conducted until the 3 min were completed. The volunteers used a wrist-band
(Microsoft Band 2) and a smartphone (Sony XPERIA) to collect the data.

The subjects wore the wrist-band in their dominant hand. The accelerometer
data was collected using the wrist-band internal accelerometer. Figure 1 shows
the actual device used. The inertial sensor captures motion from the x, y, and
z axes, and the sampling rate was set to 31 Hz. Moreover, the environmental
sound was captured using the microphone of a smartphone. The audio sampling
rate was set at 8000 Hz. The smartphone was placed on a table in the same room
where the activity was taking place.

An in-house developed app was programmed to collect the data. The app runs
on the Android operating system. The user interface consists of a dropdown list
from which the subject can select the home-task. The wrist-band transfers the
captured sensor data and timestamps over Bluetooth to the smartphone. All the
inertial data is stored in a plain text format.

Fig. 1. Wrist-band watch.

3 Feature Extraction

In order to extract the accelerometer and audio features, the original raw sig-
nals were divided into non-overlapping 3 s segments. The segments are not over-
lapped. A three second window was chosen because, according to Banos et al.
[2], this is a typical value for activity recognition systems. They did compre-
hensive tests by trying different segments sizes and they concluded that small
segments produce better results compared to longer ones. From each segment, a
set of features were calculated which are known as feature vectors or instances.
Each instance is characterized by the audio and accelerometer features. In the
following section, we provide details about how the features were extracted.
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3.1 Accelerometer Features

From the inertial sensor readings, 16 measurements were computed including:
The mean, standard deviation, max value for all the x, y and z axes, pearson
correlation among pairs of axes (xy, xz, and yz), mean magnitude, standard
deviation of the magnitude, the magnitude area under the curve (AUC, Eq. 1)
, and magnitude mean differences between consecutive readings (Eq. 2). The
magnitude of the signal characterizes the overall contribution of acceleration of
x, y and z. (Eq. 3). Those features were selected based on previous related works
[7,10,23].

AUC =
T∑

t=1

magnitude(t) (1)

meandif =
1

T − 1

T∑

t=2

magnitude(t) − magnitude(t − 1) (2)

Magnitude(x, y, z, t) =

√
ax(t)

2
+ ay(t)

2
+ az(t)

2
(3)

where ax(t)
2
, ay(t)

2
and az(t)

2
are the squared accelerations at time t.

Figure 2 shows violin plots for three of the accelerometer features: mean of
the x-axis, mean of the y-axis, and mean of the z-axis. Here, we can see that
overall, the mean acceleration in x was higher for the brush teeth and eat chips
activities. On the other hand, the mean acceleration in the y-axis was higher for
the mop floor and sweep activities.

3.2 Audio Features

The features extracted from the sound source were the Mel Frequency Cepstral
Coefficients (MFCCs). These features have been shown to be suitable for activity
classification tasks [1,8,12,18]. The 3 s sound signals were further split into 1 s
windows. Then, 12 MFCCs were extracted from each of the 1 s windows. In total,
each instance has 36 MFCCs. In total, this process resulted in the generation
of 1, 386 instances. The tuneR R package [14] was used to extract the audio
features. Table 1 shows the percentage of instances per class. More or less, all
classes are balanced in number.

4 Dataset Structure

The main folder contains directories for each user and a features.csv file. Within
each users’ directory, the accelerometer files can be found (.txt files). The file
names are comprised of three parts with the following format: timestamp-acc-
label.txt. timestamp is the timestamp in Unix format. acc stands for accelerom-
eter and label is the activity’s label. Each .txt file has four columns: timestamp
and the acceleration for each of the x, y, and z axes. Figure 3 shows an example
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Fig. 2. Violin plots of mean acceleration of the x, y, and z axes.

Table 1. Distribution of activities by class.

Class Proportion

Brush teeth 12.98%

Eat chips 20.34%

Mop floor 13.05%

Sweep 12.84%

Type on keyboard 12.91%

Wash hands 12.98%

Watch TV 14.90%

of the first rows of one of the files. The features.csv file contains the extracted
features as described in Sect. 3. It contains 54 columns. userid is the user id.
label represents the activity label and the remaining columns are the features.
Columns with a prefix of v1 correspond to audio features whereas columns with
a prefix of v2 correspond to accelerometer features. In total, there are 36 audio
features that correspond to the 12 MFCCs for each second, with a total of 3 s
and 16 accelerometer features.
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Fig. 3. First rows of one of the accelerometer files.

5 Baseline Experiments

In this section, we present a series of baseline experiments that can serve as a
starting point to develop more advanced methods and sensor fusion techniques.
In total, 3 classification experiments were conducted with the HTAD dataset. For
each experiment, different classifiers were employed, including ZeroR (baseline),
a J48 tree, Naive Bayes, Support Vector Machine (SVM), a K-nearest neighbors
(KNN) classifier with k = 3, logistic regression, and a multilayer perceptron. We
used the WEKA software [22] version 3.8 to train the classifiers. In each experi-
ment, we used different sets of features. For experiment 1, we trained the models
using only audio features, that is, the MFCCs. The second experiment consisted
of training the models with only the 16 accelerometer features described ear-
lier. Finally, in experiment 3, we combined the audio and accelerometer features
by aggregating them. 10-fold cross-validation was used to train and assess the
classifier’s performance. The reported performance is the weighted average of
different metrics using a one-vs-all approach since this is a multi-class problem.

Table 2. Classification performance (weighted average) with audio features. The best
performing classifier was KNN.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.065 0.625 0.623 0.624 0.559

Naive Bayes 0.049 0.720 0.714 0.713 0.667

SVM 0.054 0.699 0.686 0.686 0.637

KNN 0.037 0.812 0.788 0.793 0.761

Logistic regression 0.062 0.654 0.652 0.649 0.591

Multilayer perceptron 0.041 0.776 0.769 0.767 0.731

Tables 2, 3 and 4 show the final results. When using only audio features
(Table 2), the best performing model was the KNN in terms of all performance
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Table 3. Classification performance (weighted average) with accelerometer features.
The best performing classifier was KNN.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.036 0.778 0.780 0.779 0.743

Naive Bayes 0.080 0.452 0.442 0.447 0.365

SVM 0.042 0.743 0.740 0.740 0.698

KNN 0.030 0.820 0.820 0.818 0.790

Logistic regression 0.031 0.800 0.802 0.800 0.769

Multilayer perceptron 0.031 0.815 0.812 0.812 0.782

Table 4. Classification performance (weighted average) when combining all features.
The best performing classifier was Multilayer perceptron.

Classifier False-Positive Rate Precision Recall F1-Score MCC

ZeroR 0.203 0.041 0.203 0.069 0.000

J48 0.035 0.785 0.785 0.785 0.750

Naive Bayes 0.028 0.826 0.823 0.823 0.796

SVM 0.020 0.876 0.874 0.875 0.855

KNN 0.014 0.917 0.911 0.912 0.899

Logistic regression 0.022 0.859 0.859 0.859 0.837

Multilayer perceptron 0.014 0.915 0.914 0.914 0.901

metrics with a Mathews correlation coefficient (MCC) of 0.761. We report MCC
instead of accuracy because MCC is more robust against class distributions. In
the case when using only accelerometer features (Table 3), the best model was
again KNN in terms of all performance metrics with an MCC of 0.790. From these
tables, we observe that most classifiers performed better when using accelerom-
eter features with the exception of Naive Bayes. Next, we trained the models
using all features (accelerometer and audio). Table 4 shows the final results.
In this case, the best model was the multilayer perceptron followed by KNN.
Overall, all models benefited from the combination of features, of which some
increased their performance by up to ≈0.15, like the SVM which went from an
MCC of 0.698 to 0.855.

All in all, combining data sources provided enhanced performance. Here, we
just aggregated the features from both data sources. However, other techniques
can be used such as late fusion which consists of training independent models
using each data source and then combining the results. Thus, the experiments
show that machine learning systems can perform this type of automatic activity
detection, but also that there is a large potential for improvements - where the
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HTAD dataset can play an important role, not only as an enabling factor, but
also for reproducibility.

6 Conclusions

Reproducibility and comparability of results is an important factor of high-
quality research. In this paper, we presented a dataset in the field of activity
recognition supporting reproducibility in the field. The dataset was collected
using a wrist accelerometer and captured audio from a smartphone. We provided
baseline experiments and showed that combining the two sources of information
produced better results. Nowadays, there exist several datasets, however, most
of them focus on a single data source and on the traditional walking, jogging,
standing, etc. activities. Here, we employed two different sources (accelerome-
ter and audio) for home task activities. Our vision is that this dataset will allow
researchers to test different sensor data fusion methods to improve activity recog-
nition performance in home-task settings.
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Abstract. Gastrointestinal (GI) pathologies are periodically screened,
biopsied, and resected using surgical tools. Usually, the procedures and
the treated or resected areas are not specifically tracked or analysed dur-
ing or after colonoscopies. Information regarding disease borders, devel-
opment, amount, and size of the resected area get lost. This can lead to
poor follow-up and bothersome reassessment difficulties post-treatment.
To improve the current standard and also to foster more research on the
topic, we have released the “Kvasir-Instrument” dataset, which consists
of 590 annotated frames containing GI procedure tools such as snares,
balloons, and biopsy forceps, etc. Besides the images, the dataset includes
ground truth masks and bounding boxes and has been verified by two
expert GI endoscopists. Additionally, we provide a baseline for the seg-
mentation of the GI tools to promote research and algorithm develop-
ment. We obtained a dice coefficient score of 0.9158 and a Jaccard index
of 0.8578 using a classical U-Net architecture. A similar dice coefficient
score was observed for DoubleUNet. The qualitative results showed that
the model did not work for the images with specularity and the frames
with multiple tools, while the best result for both methods was observed
on all other types of images. Both qualitative and quantitative results
show that the model performs reasonably good, but there is potential
for further improvements. Benchmarking using the dataset provides an
opportunity for researchers to contribute to the field of automatic endo-
scopic diagnostic and therapeutic tool segmentation for GI endoscopy.
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1 Introduction

Minimally Invasive Surgery (MIS) is a commonly used technique in surgical
procedures. The advantage of MIS is that small surgical incisions are made in
the patient for endoscopy that causes less pain, reduced time of the hospital
stay, fast recovery, reduced blood loss, and less scaring process as compared
to the traditional open surgery. The nature of the operation is complex, and
the surgeons have to precisely tackle hand-eye coordination, which may lead to
restricted mobility and a narrow field of view [5].

However, unlike the treatment of accessory organs such as liver and pan-
creas, no incision is required forGastrointestinal (GI) tract organs (oesophagus,
stomach, duodenum, colon, and rectum). GI procedures also include both min-
imally invasive surveillance and treatment (including surgery) procedures. A
varied number of tools are used as per the requirement of these procedures. For
example, balloon dilatation to help open the GI surface, biopsy forceps for tissue
sample collection, polyp removal with snares, and submucosal injections.

A computer and robotic-assisted surgical system can enhance the capability
of the surgeons [9]. It can provide the opportunity to gain additional information
about the patient, which can be useful for decision making during surgery [6].
However, it is difficult to understand the spatial relationship between surgical
instruments, cameras, and anatomy for the patient [11]. In GI endoscopy, it is
vital to track and guide surgeons during tumor resection or biopsy collection
from a defined site and help to correlate the biopsied samples and treatment
locations post-diagnostic and therapeutic or surgical procedures. While most
datasets and automated-algorithm developments for instrument segmentation
are mostly focused on laparoscopy-based surgical removal, automatic guidance
of tools for GI surgery has not been addressed before.

New developments in the area of robot-assisted systems show that there is
potential for developing a fully automated robotic surgeon [14]. The da Vinci
robot is a surgical system that is considered the de-facto standard-of-care for
certain urological, gynecological, and general procedures [4]. Thus, it is critical
to have information regarding intra-operative guidance, which plays an essential
role in decision making. However, there are specific challenges, such as limited
field of view and difficulties with the surgeons handling the instruments during
surgery [13]. Therefore, image-based instrument segmentation and tracking are
gaining more and more attention in both robotic and non-robotic minimally
invasive surgery. Previous work targeting instrument segmentation, detection,
and tracking on endoscopic video images failed on challenging images such as
images with blood, smoke, and motion artifacts [13]. Other reasons that make
semantic segmentation of surgical instruments a challenging task are the presence
of images containing shadows, specular reflections, blood, camera lens fogging,
and the complex background tissue [14]. The segmentation masks of these images
can be useful for instrument detection and tracking.
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Similarly, in the GI tract procedures, from tissue sample collection to surgi-
cal removal of pathologies is performed in low field-of-view areas. Visual clutter
such as artifacts, moving objects, and fluid, hinders the localisation of the target
site during surgical procedures. Additionally, currently, there is no way of cor-
relating the tissue sample collection with biopsied location and assessing surgi-
cal procedure effectiveness or even post-treatment recovery analysis. Automated
localisation and tracking of tools can help guide the endoscopists and surgeons to
perform their tasks more effectively. Also, post-procedure video analysis can be
done using these automated methods to track such tools, thus enabling improved
surgical procedures or surveillance and their post-assessment. Currently, this is
an open problem in the research community, where most procedures are not
automated in GI tract endoscopy.

While there is an open research question for automated tool detection and
guidance in GI procedures, there is a lack of available public datasets. We aim
to initiate the development of automated systems for the segmentation of GI
tract diagnostic and therapeutic endoscopy tools. This research direction will
enable tracking and localisation of essential tools used in endoscopy and help to
improve targeted biopsies and surgeries in complex GI tract organs. To accom-
plish this, and to address the lack of publicly available labeled datasets, we have
publicly released 590 pixel-level annotated frames that comprise of tools such as
balloon dilation for facilitating the opening of GI organs, biopsy forceps for tis-
sue sample collection, polyp removal with snares, submucosal injections, radio-
frequency ablation of dysplastic mucosa using probes and some other related
surgical/diagnostic procedures. The released video frames will allow for building
automated Machine Learning (ML) algorithms that can be applied during clini-
cal procedures or post-analyses. To commence this effort, we provide a baseline
benchmark on this dataset. U-Net [12] is a common semantic segmentation based
architecture for medical image segmentation tasks. In this paper, we therefore
present results utilising two U-Net based architectures. The provided dataset
is open and can be used for research and development, and we invite medi-
cal imaging, computer vision, ML and multimedia researchers to develop novel
algorithms on the provided dataset. The main contributions of this paper are:

– The release of 590 annotated images with bounding boxes and segmentation
masks of GI diagnostic and surgical tool dataset. To the best of our knowledge,
this is the first dataset of segmented tools used in the GI tract.

– A benchmark of the provided dataset using the U-Net [12] and Double-
UNet [10] architectures for semantic segmentation is provided.

2 Related Work

Surgical vision is evolving as a promising technique to segment and track instru-
ments using endoscopic images [6]. To gather researchers on a single platform, the
Endoscopic vision (EndoVis) challenge has been organized since 2015 at Med-
ical Image Computing and Computer Assisted Intervention Society (MICCAI)
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Table 1. Similar available datasets

Dataset Content Task type Procedure

Instrument
segmentation
and tracking (2015) [6]

Rigid and robotic
instruments

Segmentation
and tracking

Laparoscopy

Robotic Instrument
Segmentation (2017) [4]

Robotic surgical
instruments

Binary segmentation,
part based
segmentation,
instrument
segmentation

Abdominal
porcine

Robotic Scene
Segmentation (2018) [3]

Surgical
instruments
and other

Multi-instance
segmentation

Robotic
nephrectomy

Robust Medical
instrument
segmentation (2019) [13]

Laparoscopic
instrument

Binary segmentation,
multiple instance
detection, multiple
instance segmentation

Laparoscopy

Kvasir-Instrument (Ours) Diagnostic and
therapeutic tools
in endoscopic
images

Binary segmentation,
detection and
localization

Gastroscopy
& colonoscopy

with an exception in 2016. The EndoVis challenge hosts different sub-challenges.
The year-wise information about the hosted sub-challenge can be found on the
challenge website1.

Bodenstedt et al. [6] organized “EndoVis 2015 Instrument sub-challenge”
for developing new techniques and benchmarking ML algorithms for segmen-
tation and tracking of the instruments on a common dataset. The organizers
challenged on two different tasks, i.e., (1) Segmentation and (2) Tracking. The
goal of the challenge was to address the problem related to segmentation and
tracking of articulated instruments in both laparoscopic and robotic surgery2.
A comprehensive evaluation of the methods used in instrument segmentation
and tracking task for minimally invasive surgery is summarized in this work [6].
The extensive evaluation showed that deep learning works well for instrument
segmentation and tracking tasks.

In 2017, a follow up to the previous 2015 challenge was organized called
“Robotic Instrument Segmentation Sub-Challenge”3. The challenge was part
of the Endoscopic vision challenge that was organized at MICCAI 2017. This
challenge offered three tasks: (1) Binary segmentation, (2) Parts based segmenta-
tion, and (3) Instrument type segmentation. The goal of the binary segmentation

1 https://endovis.grand-challenge.org/.
2 https://endovissub-instrument.grand-challenge.org/EndoVisSub-Instrument/.
3 https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org/.
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task was to separate the image into an instrument and background. Parts seg-
mentation challenged the participants to divide the binary instrument into a
shaft, wrist, and jaws. Type segmentation challenged the participants to iden-
tify different instrument types. A detailed description of the challenge tasks,
dataset, methodologies used by ten participating teams in different tasks, chal-
lenge design, and limitation of the challenge can be found in the challenge sum-
mary paper [4].

In 2019, a similar challenge called “Robust Medical Instrument Segmentation
Challenge 2019”4 was organized by Roß et al. [13]. This challenge offered three
tasks (1) Binary segmentation, (2) Multiple instance detection, and (3) Multiple
instance segmentation. The challenge was focused on addressing two key issues
in surgical instruments, Robustness and Generalization, and benchmark medi-
cal instrument segmentation and detection on the provided surgical instrument
dataset. Endoscopic artefact detection challenge (EAD2019) challenge focused
on endoscopic artifact detection primarily but also included instrument class
in their detection, segmentation, and “out-of-sample” generalisation tasks. The
challenge outcome revealed that most methods performed well for instrument
detection and segmentation class [2]. However, this dataset mostly consisted of
large biopsy forceps.

In Table 1, we present available instrument datasets in the field of tool seg-
mentation. All of the datasets were designed for hosting challenges. The training
dataset is released for all the datasets (except ROBUST-MIS); however, the test
dataset is not provided by the challenge organizers. Thus, it makes it difficult
to calculate and compare the results on the test dataset. However, experiments
are still possible by splitting the training dataset into train, validation, and test-
ing sets. The Robust Medical instrument segmentation dataset is yet not public.
However, the participants who have participated in the challenge have the oppor-
tunity to download the training dataset. Usually, there are certain practicalities
to download the dataset, such as signing the agreement and getting permission
from the owner, which takes time, and it is inconvenient. Moreover, to partici-
pate in the challenge, the participants have to signup in a particular year, and
usually, it often takes a very longtime before they publish the dataset. Thus, the
significance of the datasets becomes less as the technology is changing rapidly.
More information on available instrument datasets, contents, and offered tasks
by the organizers and about the availability can be found from Table 1.

The literature review shows that there are only a few open-access datasets for
MIS instrument segmentation. Moreover, to the best of our knowledge, GI tract
tools have never been explored. This is the first attempt to provide the commu-
nity with a curated and annotated public dataset that comprises diagnostic and
therapeutic tools in the GI tract. We believe that the presented dataset and the
widely used U-Net based algorithm benchmark will encourage the researchers to
develop robust and efficient algorithms using the provided dataset that can help
clinical procedures in endoscopy.

4 https://robustmis2019.grand-challenge.org/.
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Fig. 1. Distribution of Kvasir-Instrument dataset. On left: Small (green), medium
(blue) and large (pink) sized tool clusters. On right: sample images with variable tool
size in images. (Color figure online)

3 Kvasir-Instrument Dataset

In this section, we introduce the Kvasir-Instrument dataset with details on how
the data was collected, the annotation protocol, and the dataset’s structure. The
dataset was collected from endoscopic examinations performed at Bærum Hospi-
tal in Norway. The unlabelled images’ frames are selected from the HyperKvasir
dataset [7].

HyperKvasir provides frame-level annotations for 10,662 frames for 23 differ-
ent classes. However, the majority of the images (99,417 frames) are not labeled.
We trained a model using the labeled samples of this dataset and tried to predict
the classes of the unlabeled samples. Although our algorithm [15,16] could not
classify all the images correctly; however, we were able to classify the presence
of instrument or tool out of thousands of provided image frames. However, in
order to perform segmentation, pixel-wise masks and bounding boxes were miss-
ing. This is what is provided in the proposed dataset, and below, we present the
acquisition and annotation protocols used in the data preparation:

3.1 Data Acquisition

The images and videos were collected using standard endoscopy equipment from
Olympus (Olympus Europe, Germany) and Pentax (Pentax Medical Europe,
Germany) at Bærum Hospital, Vestre Viken Hospital Trust, Norway. All the data
used in this study were obtained from videos for procedures that had followed
the patient consenting protocol of Bærum Hospital. Additionally, no patient
information was available. We have performed a random naming for each publicly
released image for further effective annonymisation.
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Fig. 2. Kvasir-Instrument dataset: first two rows represent frames with biopsy forceps,
the middle row consist of metallic clip, the fourth row is a radio-frequency ablation
probe and the last row depicts the crescent and hexagonal shaped snares for polyp
removal.

3.2 Annotation Strategy

We have uploaded the Kvasir-Instrument dataset to labelbox5 and labeled the
Region of Interest (ROI) in the image frames, i.e., the ROI of diagnostic and

5 https://www.labelbox.com/.
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therapeutic tools in our cases, and generated all the ground truth masks. Figure 2
shows the example images, bounding box, image annotation, and generated
masks for the Kvasir-Instrument dataset. All annotations were then exported
in a JSON format, which was used to generate masks for each of the annota-
tions. Related source codes and more information about the dataset can be found
at https://github.com/DebeshJha/Kvasir-Instrument.

The exported file contained the information of the images along with the
coordinate points that were used for mask and bounding box generation. All
annotations were performed using a three-step strategy:

1. The selected samples were labeled by two experienced research assistants.
2. The annotated samples were cross-validated for their delineation quality

by two experienced GI experts (more than 10 years of work experience in
colonoscopy).

3. The suggested changes were incorporated using the comments from the
experts.

The Kvasir-Instrument dataset includes 590 frames consisting of various GI
endoscopy tools used during both endoscopic surveillance and therapeutic or
surgical procedures. A thorough annotation strategy (detailed above) was used to
create bounding boxes and segmentation masks. The dataset consists of variable
tool size with respect to image height and width, as presented in Fig. 1. The
majority of the tools are small and medium-sized. The sample bounding box
annotation, precise area delineation, and extracted masks are shown in Fig. 2.

Our dataset is publicly available and can be accessed at https://datasets.
simula.no/kvasir-instrument/. It consists of original image samples (in JPEG
format), their corresponding masks (in PNG format), and bounding box infor-
mation (in JSON format).

4 Benchmarking, Results and Discussion

In this section, we explore encoder-decoder based classical models for baseline
algorithm benchmarking, their implementation details for reproducibility, details
on evaluation metric used for quantitative analysis, and results and discussion.

4.1 Baseline Methods

U-Net [12] has been explored in the past through many biomedical segmentation
challenges and has shown strength towards an effective supervised segmentation
model. In this paper, we, therefore, use U-Net based architectures on our Kvasir-
Instrument dataset to provide a baseline result for future comparisons. U-Net
uses an encoder-decoder architecture, that is, a contractive feature extraction
path and expansive path with a classifier to perform binary classification of
each image pixel in an upsampled feature map. In our previous work, we have
shown that the strength of supervised classification can be amplified by using the
output mask from one U-Net [12] architecture to the other by proposing Dou-
bleUNet [10]. In addition, the DoubleUNet architecture uses VGG-19 pretrained

Appendix A. Published Articles

198



226 D. Jha et al.

on ImageNet as one of the encoder blocks, squeeze and excite block, and Atrous
spatial pyramid pooling (ASPP) block. All other components in the network
remain the same as the U-Net. For both networks, dice loss gives a 1 − DSC,
where DSC is the dice similarity coefficient (see Eq. 1 below).

4.2 Implementation Details

We have implemented the U-Net-based and DoubleUNet based architectures
using the Keras framework [8] with TensorFlow [1] as backend running on
the Experimental Infrastructure for Exploration of Exascale Computing (eX3),
NVIDIA DGX-2 machine. We have resized the training dataset into 512× 512.
We set the batch size of 8 for training. Both architectures are optimized by using
Adam optimizer. We have made use of dice loss as the loss function. We split
the dataset using 80% of the dataset for training and the remaining 20% for the
testing (evaluation). The same split is also provided in the dataset for the fur-
ther research. We performed basic augmentation, such as horizontal flip, vertical
flip, and random rotation. Moreover, we have also provided the train-test split
so that others can improve the methods on the same dataset.

4.3 Evaluation Metrics

In this medical image segmentation approach, each pixel of the diagnostic and
therapeutic tool either belongs to a tool or non-tool region. The Dice similar-
ity coefficient (DSC) is the mainly used for result evaluation in medical image
segmentation. Additionally, we calculate other standard metrics such as Jaccard
similarity coefficient (JC) (also known as the intersection over union (IoU)), pre-
cision, recall, overall accuracy, F2, and frames per second (FPS). Using tp, fp,
tn, and fn to represent the true positives, false positives, true negatives, and
false negatives, respectively, the mathematical formulas for them are as follows:

DSC =
2 · tp

2 · tp + fp + fn
(1)

JC or IoU =
tp

tp + fp + fn
(2)

Recall (r) =
tp

tp + fn
(3)

Precision (p) =
tp

tp + fp
(4)

F2 =
5p × r

4p + r
(5)

Overall accuracy (Acc.) =
tp + tn

tp + tn + fp + fn
(6)

Frame Per Second (FPS) =
#frames

sec
(7)
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Table 2. Baseline results for tool segmentation

Method JC DSC F2-score Precision Recall Acc. FPS

U-Net [12] 0.8578 0.9158 0.9320 0.8998 0.9487 0.9864 20.4636

DoubleUNet [10] 0.8430 0.9038 0.9147 0.8966 0.9275 0.9838 10.0000

Fig. 3. Failed cases: cap region (top) is under-segmented and small clip area is over-
segmented and consist of large number of false positives (bottom).

4.4 Quantitative and Qualitative Results

Table 2 shows the results of the baseline methods for the tool segmentation on
the proposed Kvasir-Instrument dataset. From the table, we can observe that
the UNet achieved a high JC of 0.8578 and DSC of 0.9158, which is slightly
above than the DoubleUNet that yielded JC of 0.8430 and DSC of 0.9038. Also,
UNet achieved a speed of 20.4636 FPS, whereas computational time is double
for DoubleUNet with only 10 FPS. Similarly, both the recall and precision scores
are very comparable for both U-Net (p = 0.8998, r = 0.9487) and DoubleUNet
(p = 0.8966, r = 0.9275).

Figure 3 shows the qualitative result on two challenging sample images. It
can be observed that both UNet and DoubleUNet are under-segmenting the cap
region (top) and over-segmenting the small clip area (bottom). Some parts of
these images are confused because of the presence of saturation areas. However,
both models were able to segment well with most endoscopic tool samples in the
dataset. This is also evident from the quantitative results. However, even better
models are still needed to motivate further research.

4.5 Discussion

From the experimental results in Table 2, we can validate that the classical U-
Net architecture outperforms DoubleUNet model. Additionally, U-Net is 2×
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faster than the DoubleUNet. This is because U-Net uses basic convolution
blocks, whereas DoubleUNet uses pre-trained encoders, ASPP, squeeze, and
excite blocks, all of which increase the inference latency. Here, the UNet is opti-
mized by dice loss instead of binary cross-entropy loss, which showed improved
performance during our experiments.

Further, fine-tuning on other similar datasets, rigorous data augmentation,
and applying more advanced Deep learning (DL) techniques can improve the
baseline results - eventually achieving the detection, localisation, and segmenta-
tion performance needed to make the technology useful in a clinical environment.
Additionally, the use of DL networks with fewer parameters could increase com-
putational efficiency, thereby enabling real-time systems that can be used in
clinical settings effectively.

5 Conclusion

We have curated, annotated, and publicly released a dataset that contains endo-
scopic tools used in GI examinations and surgical procedures. The dataset con-
sists of images, bounding boxes, and segmentation masks of endoscopy tools used
during different procedures in the GI tract. Additionally, we provided baseline
segmentation methods for the automatic delineation of these tools and have com-
pared them using standard computer vision metrics. In the future, we plan to
continuously increase the amount of data and also call for multimedia challenges
using the presented dataset.
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ABSTRACT
In this paper, we present our approach for the 2018 Medico Task
classifying diseases in the gastrointestinal tract. We have proposed
a system based on global features and deep neural networks. The
best approach combines two neural networks, and the reproducible
experimental results signify the efficiency of the proposed model
with an accuracy rate of 95.80%, a precision of 95.87%, and an F1-
score of 95.80%.

1 INTRODUCTION
Our main goal for the Medico Task [15] is to classify findings in
images from the Gastrointestinal (GI) tract. This task provides two
types of input data: Global Features (GFs) and original images.
The 2017 Medico Task consisted of a balanced dataset with only
8 classes [12] whereas the current task consists of a highly imbal-
anced dataset with 16 classes [11, 12], i.e., making this years task
more complicated. Different approaches have been used in the last
year medico task [5, 7, 9, 10, 14, 17] based on GFs extractions and
Convolutional Neural Networks (CNN) methods. We extend upon
these solutions and present our solutions based on both GFs and
transfer learning mechanisms using CNN. We achieve best results
combining two CNNs and using an extra multilayer perceptron to
combine the outputs of the two networks.

2 APPROACHES
We approach the problem of GI tract disease detection with small
training datasets using five different methods: two based on GF ex-
tractions, and three based on CNN with transfer learning described
below.
2.1 Global-feature-based approaches
Method 1 and Method 2 use the concept of GFs. For the extraction
of GFs, we use Lucence Image Retrieveal (LIRE) [6]. GFs are easy and
fast to calculate, and can also be used for image comparison, image
collection search and distance computing [14]. Based on [13, 16],
we use Joint Composite feature (JCD), Tamura, Color layout, Edge
Histogram, Auto Color Correlogram and Pyramid Histogram of
Oriented Gradients (PHOG). These features represent the overall
properties of the images. Adding more GFs is possible, but it may
increase the redundant information which can reduce the overall
classification performance.

The extracted features are sent to the different machine learning
classifier for the multi-class classification. Method 1 makes the use

Copyright held by the owner/author(s).
MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

of extracted GFs that are sent to SimpleLogistic (SL) classifier. We
input the same selected set of features to the logistic model tree
(LMT) classifier in Method 2.

2.2 Transfer learning based approaches
Our CNN approaches use transfer learning mechanism with pre-
trained models using the ImageNet dataset [18]. Resnet-152 [3] and
Densenet-161 [4] have been selected, and this selection is based
on top 1-error and top-5-errors rate of pre-trained networks in the
Pytorch [8] deep learning framework.

One of the main problems of the given dataset is the "out of
patient"-category which has only four images while other classes
have a considerable number. The colour distribution of this class
shows a completely different colour domain compared to the other
categories. We identified this difference via manual investigations
of the dataset and moved all four images of this category into the
corresponding validation set folder. Then, the training set folder
is filled with random Google images which are not related to the
GI tract. To overcome the problems of stopping training in a local
minima, we use the stochastic gradient descent [1] method with
dynamic learning rate scheduling. The losses (loss 1 and loss 2
in Figure 1) of CNN methods were calculated for each network
separately. Additionally, horizontal flips, vertical flips, rotations
and re-sizing data augmentations have been applied to overcome
the problem of over-fitting.

Method 3 uses transfer learning with Resnet-152 which has the
top-1-error and top-5-error rates. The last fully connected layer of
Resnet-152, which is originally designed to classify 1000 classes of
the ImageNet dataset, has been changed to classify the 16 classes in
the MEdico task. Usually, the transfer learning freezes pre-trained
layers to avoid back propagation of large errors. This is because
of newly added layers with random weights. However, we did not
freeze the pre-trained layers, because modifying only the last layer
cannot propagate huge errors backwards in transfer learning. The
network was trained until it reached to the maximum validation
accuracy of the validation dataset.

Method 4 extends Method 3 by using two parallel pre-trained
models, Resnet-152 and Densenet-161, to get a cumulative decision
at the end as depicted in Figure 1. The classification is based on an
average of the two output probability vectors. Finally, one loss value
was calculated and propagated for updating weights. However,
this yields a restriction of updating weights of networks Resnet-
152 and Densenet-161 separately as they required. Therefore, we
calculated two different loss values (loss 1 and loss 2 in Figure
1) from each network to update their weights separately. Both
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Figure 1: Block diagram of the CNN methods

networks were trained simultaneously until it reached to the best
validation accuracy by changing hyper-parameters manually.

Method 5 was constructed to overcome the limitation of calcu-
lating the average of the probabilistic output of the two networks
used in Method 4. Instead of calculating the average using the sim-
ple mathematical formula, another multilayer perceptron (MLP)
has been merged with the above network to identify complex math-
ematical formula to get the cumulative decision as illustrated in
Figure 1. Therefore, we passed the probability output of two net-
works (16 probabilities from each network) to a new MLP with 32
inputs, 16 outputs (via sigmoid layer) and one hidden layer with
32 units. In this, we used pre-trained Resnet-152 and Densenet-161
using the dataset and froze them before training the MLP. Then,
we trained only the MLP to identify the best mathematical formula
to get the cumulative decision.

3 RESULTS AND ANALYSIS
We have divided the development dataset into a training set (70%)
and a validation set (30%). For the GFs based approach, ensembles of
six extracted GFs were fetched to all the available machine learning
classifiers (with different parameters) using WEKA[2] library. The
SL and LMT classifiers outperform all other available classifiers for
the dataset. The other promising classifier were Sequential minimal
optimization (RBF kernel), and a combination of PCA with LibSVM
(RBF) classifier.

On validation set, all the CNN methods (3-5) show accuracies of
around 95% and specificities of around 99%. These are always better
than the GFs based extraction methods (1,2) which have accuracies
of around 82% and specificities of around 98%. According to the
task organizers’ evaluation results of the test dataset, Methods 3
to 5 show accuracies and specificities of around 99% again,which
demonstrates our CNN methods are not overfitted with validation
dataset.

Method 5 and 4 with Resnet-152 and Densenet-161 performs bet-
ter compared to the Method 3 which has only Resnet-152 because
of the capability of deciding the final answer based on two answers
generated from two deep learning networks. However, getting a
cumulative decision based on simple averaging function (Method
4) shows poor performance than the decision taken from a MLP
(Method 5). As a result, Method 5 shows better results than method
4 by increasing the accuracy from 0.955 to 0.958. Therefore, Method
5 has been selected as our best method and confusion matrix rep-
resented in Table 1 was generated. An overview of the individual
results obtained from five different experiments along with their
performance metrics is presented in Table 2. Results obtained from
the organizers for the test dataset is presented in the Table 3.

Table 1: The Confusion Matrix of Method 5 in our study
A:blurry-nothing, B:colon-clear, C:dyed-lifted-polyps, D:dyed-resection-margins,
E:esophagitis,F:instruments, G:normal-cecum, H:normal-pylorus, I:normal-z-line,
J:out-of-patient, K:polyps, L:retroflex-rectum, M:retroflex-stomach, N:stool-inclusions,
O:stool-plenty, P:ulcerative-colitis

Predicted class
A B C D E F G H I J K L M N O P

Ac
tu

al
cl

as
s

A 53 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
B _ 81 _ _ _ _ _ _ _ _ _ _ _ _ _ _
C _ _ 130 7 _ _ _ _ _ _ _ _ _ _ _ 1
D _ _ 3 122 _ _ _ _ _ _ _ _ _ _ _ _
E _ _ _ _ 115 _ _ _ 19 _ _ _ _ _ _ _
F _ _ _ _ _ 10 _ _ _ _ 1 _ _ _ _ _
G _ _ _ _ _ _ 125 _ _ _ _ _ _ _ _ _
H _ _ _ _ _ _ _ 132 _ _ _ _ _ _ _ _
I _ _ _ _ 11 _ _ _ 121 _ _ _ _ _ _ _
J _ _ _ _ _ 1 _ _ _ 3 _ _ _ _ _ _
K _ 1 _ _ _ _ 6 2 _ _ 172 _ _ _ _ _
L _ _ _ _ _ _ 1 _ _ _ _ 71 _ _ _ _
M _ _ _ _ _ _ _ _ _ _ _ 2 118 _ _ _
N _ _ _ _ _ _ _ _ _ _ _ _ _ 39 _ _
O _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 _
P _ _ _ _ 1 1 2 _ _ _ 4 1 _ _ _ 129

Table 2: Validation results
Method REC PREC SPEC ACC MCC F1 FPS

1 0.855 0.793 0.989 0.816 0.814 0.823 79
2 0.816 0.817 0.984 0.816 0.800 0.815 12
3 0.9536 0.9543 0.9968 0.9536 0.9498 0.9535 64
4 0.9555 0.9563 0.9969 0.9555 0.9519 0.9554 29
5 0.9580 0.9587 0.9971 0.9580 0.9546 0.9580 29

Table 3: Official results

Method REC PREC SPEC ACC MCC F1

1 0.8457 0.8457 0.9897 0.9807 0.8353 0.8456
2 0.8457 0.8457 0.9897 0.9807 0.8350 0.8457
3 0.9376 0.9376 0.9958 0.9922 0.9335 0.9376
4 0.9400 0.9400 0.9960 0.9925 0.9360 0.9400
5 0.9458 0.9458 0.9964 0.9932 0.9421 0.9458

The main considerable point in the confusion matrix in Table 1
is misclassification between categories E: esophagitis and I: normal-
z-line. A large number of misclassifications like 30 images from
the validation set occurred and a manual investigation was done
to identify the reason. We notice that the images of these two
categories were very similar to each other because of the close
location in the GI tract, and identifying these is also a challeng for
physicians.

4 CONCLUSION
In this paper, we presented five different methods for the multi-class
classification of GI tract diseases. The proposed approach are based
on the GFs, and pre-trained CNN with transfer learning mecha-
nism. The combination of Resnet-152 and Densenet-161 with an
additional MLP achieved the highest performance with both the
validation dataset and the test dataset provided by the task organiz-
ers. We show that a combination of pre-trained deep neural models
on ImageNet has better capabilities to classify images into the cor-
rect classes because of cumulative decision-making capabilities. For
future work, we will combine deeper CNNs parallelly to add more
cumulative decision taking capabilities for classifying multi-class
objects. In addition to that, Generative Adversarial Network (GAN)
methods can be utilized to handle imbalance dataset by generating
more data to train deep neural networks.
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Abstract: Precise and efficient automated identification of gastrointestinal (GI) tract

diseases can help doctors treat more patients and improve the rate of disease de-

tection and identification. Currently, automatic analysis of diseases in the GI tract

is a hot topic in both computer science and medical-related journals. Nevertheless,

the evaluation of such an automatic analysis is often incomplete or simply wrong.

Algorithms are often only tested on small and biased datasets, and cross-dataset

evaluations are rarely performed. A clear understanding of evaluation metrics and

machine learning models with cross datasets is crucial to bring research in the field

to a new quality level. Toward this goal, we present comprehensive evaluations of

five distinct machine learning models using global features and deep neural networks

that can classify 16 different key types of GI tract conditions, including pathological

findings, anatomical landmarks, polyp removal conditions, and normal findings from

images captured by common GI tract examination instruments. In our evaluation,

we introduce performance hexagons using six performance metrics, such as recall,

precision, specificity, accuracy, F1-score, and the Matthews correlation coefficient to

demonstrate how to determine the real capabilities of models rather than evaluating

them shallowly. Furthermore, we perform cross-dataset evaluations using different

datasets for training and testing. With these cross-dataset evaluations, we demon-

strate the challenge of actually building a generalizable model that could be used

across different hospitals. Our experiments clearly show that more sophisticated per-

formance metrics and evaluation methods need to be applied to get reliable models

rather than depending on evaluations of the splits of the same dataset—that is, the

performance metrics should always be interpreted together rather than relying on a

single metric.
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1 INTRODUCTION
Cancer is one of the leading causes of death worldwide and a significant barrier to life expectancy [12]. In
particular, the gastrointestinal (GI) tract can be affected by a variety of diseases and abnormalities [52]. Using
data from the Global Cancer Observatory,1 Bray et al. [12] estimated that, for 2018, there would be around
5 million new luminal GI cancer incidences and about 3.6 million deaths due to GI cancer.2 The most frequently
diagnosed GI cancers in 2018 for new cases were colorectal cancer (CRC) (6.1%), stomach cancer (5.7%), liver
cancer (4.7%), rectum cancer (3.9%), and esophageal cancer (3.2%) out of 36 types of cancers [12].

Gastroscopy and colonoscopy are the most successful medical procedures for GI endoscopy examinations.
Among both, colonoscopy has been proven to be an effective preventative method by improving declination in
the occurrence of Colorectal Cancer (CRC) by 30% [41]. During a colonoscopic procedure, an endoscopist inserts
a colonoscope carefully through the anus to examine the rectum and colon. A tiny wide-angle video camera
mounted at the end of the colonoscope captures a live video signal of the internal mucosa of the patient’s colon.
The endoscopist uses the video signal for real-time diagnosis of the patient, where one of the primary goals is
to identify and remove abnormalities such as polyps [77].

The current EU guidelines [74] recommend GI tract screening for all people older than 50 years. Such regular
screenings can be of great significance for early detection and prevention of cancer inside the GI tract, but they
are challenging due to many factors. Moreover, a colonoscopy examination is entirely an operator-dependent
screening procedure [63]. The detection rate of GI tract lesions mostly relies on the clinical experience of the
gastroenterologist. The shortage of experienced gastroenterologists, and the clinicians’ tiredness and lack of
concentration during the colonoscopic examination, can lead to missing polyps that otherwise would be de-
tected [68]. The estimated miss rate for the subject undergoing a colonoscopy examination is 25% [39].

Although considerable work has been done to develop and improve systems for automatic polyp detection,
the performance of existing solutions is still behind that of an expert endoscopist [7, 16, 44, 75, 76]. Most of the
published works in the field use non-public datasets or develop models from too-small training, validation, and
test sets [7, 75, 76]. The performance metrics used to measure the performance of methods are also not sufficient
(e.g., see the first part of Table 1). Thus, it is difficult for researchers to compare and reproduce some of the
present related works. Moreover, the state-of-the-art research in this field does not present the generalizability
of their solutions using cross-dataset evaluations. As a result, it creates a distrust for applying these machine
learning (ML) solutions in practice.

An automatic and efficient computer-aided diagnosis (CAD) system in a clinic could assist medical experts
during the endoscopic and colonoscopy procedure to improve the detection rate by finding unrecognized lesions
and act as a second observer by providing better insights to the gastroenterologist concerning the presence and
types of lesions. With this inspiration, we conducted five experiments to classify 16 classes of GI tract conditions

1https://gco.iarc.fr.
2We have considered the statistic of esophagus, stomach, colon, rectum, anus, gallbladder, and pancreas.
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Table 1. Overview of the Related Work

Reference Year REC PREC SPEC ACC MCC F1 Rk FPS
Hwang et al. [27] 2007 0.9600 0.8300 — — — — — 15
Li & Meng [40] 2012 0.8860 — 0.9620 0.9240 — — — —
Zhou et al. [83] 2014 0.7500 — 0.9592 0.9077 — — — —
Wang et al. [76] 2014 0.8140 — — — — — — 0.14
Mamonov et al. [43] 2014 0.4700 — 0.9000 — — — — —
Wang et al. [77] 2015 0.9770 — — 0.9570 — — — 10
Riegler et al. [57] 2016 0.9850 0.9388 0.7250 0.8770 — — — ∼300
Shin & Balasingham [63] 2017 0.9082 0.9271 0.9176 0.9126 — — — —
Riegler et al. [58] 2017 0.9850 0.9390 0.7250 0.8770 — — — ∼75
Yu et al. [78] 2017 0.5005 0.4917 — 0.9471 — 0.4830 0.5357 —
Pogorelov et al. [54] 2017 0.8260 0.8290 0.9750 0.9570 — 0.8260 0.8020 46
Agrawal et al. [1] 2017 — — — 0.9610 0.8260 0.8470 — —
Naqvi et al. [45] 2017 — 0.7665 0.9660 0.9420 0.7360 0.7670 — —
Petscharnig et al. [48] 2017 0.7550 0.7550 0.9650 0.9390 0.7200 0.7550 0.7240 —
Pogorelov et al. [52] 2017 0.9060 0.9060 0.9810 0.9690 — — — 30
Yuan et al. [79] 2018 0.8180 0.7232 — — — 0.7431 — —
Wang et al. [75] 2018 0.9438 — 0.9592 — — — —
Mori & Kudo [44] 2018 >0.9000 — >0.9000 — — — — —
MediaEval 2018 Medico Task [53] (The following experiments were done using the 2018 Medico dataset.)
Hoang et al. [25] 2018 0.9281 0.9426 0.9963 0.9932 0.9312 0.9342 0.9398 23
Hicks et al. [24] 2018 0.9218 0.9378 0.9959 0.9924 0.9228 0.9236 0.9325 624
Borgli et al. [10] 2018 0.8572 0.8708 0.9956 0.9918 0.8555 0.8555 0.9280 —
Kirkerød et al. [36] 2018 0.8433 0.8514 0.9944 0.9896 0.8366 0.8367 0.9082 —
Dias & Dias [18] 2018 0.8205 0.8414 0.9938 0.9885 0.8146 0.8114 0.8983 8.61
Taschwer et al. [70] 2018 0.8673 0.8826 0.9933 0.9876 0.8641 0.8662 0.8897 —
Ostroukhova et al. [46] 2018 0.8236 0.8281 0.9911 0.9835 0.8115 0.8145 0.8539 1E-100
Khan & Tahir [33] 2018 0.6203 0.7173 0.9767 0.957 0.6025 0.5868 0.6302 43329
Steiner et al. [64] 2018 0.4219 0.5146 0.9717 0.9469 0.3901 0.3913 0.5368 —
Ko et al. [37] 2018 0.5005 0.4916 0.9715 0.9471 0.4608 0.4829 0.5357 0.5357
Thambawita et al. (Ours) [71] 2018 0.9361 0.9319 0.9963 0.9932 0.9283 0.9297 0.9397 —
REC, recall (sensitivity); ACC, accuracy; MCC, Matthews correlation coefficient; F1, F1-score; Rk, Rk correlation coefficient; FPS, frames per
second.
The results of the Medico Task may slightly vary compared to the proceeding note papers because of different ways of calculating the
multi-class performance metrics by the organizers. The highest score for the MediaEval 2018 Medico Task is marked in bold.

for the Medico Multimedia Task at MediaEval 2018 [53]. One example for each of the 16 classes is depicted in
Figure 1.

In this work, we focus on identifying the limitations of generalizing ML models across different datasets and
how to interpret the evaluation metrics in that context. For this, we are using global feature (GF)-based and deep
learning (DL)-based methods that performed well at the 2018 Medico Task [53], where one specific dataset was
used. In addition, here we explore the different performance metrics of both methods (GF and deep learning
(DL)) to identify the limitations of each. We show that combined complex deep neural network (DNN) mod-
els outperform other methods. Finally, we explore how multi-class models perform on polyp and non-polyp
detection with and without retraining the model for the two specific classes. The effects of retraining for classi-
fying the sub-categories of the same dataset and using them in other datasets are analyzed in detail to identify
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Fig. 1. Sample images of GI findings. Each image represents one of the 16 classes from the dataset used for the Medico 2018
Challenge [50, 51].

the cross-dataset generalization capabilities of our models. We emphasize that a large number of performance
measures do not show the real performance of ML models. We also highlight the necessity of having cross-dataset
evaluations to determine the real capabilities of ML models before using them in clinical settings.

To study cross-dataset bias and metrics interpretation, our contributions are as follows:

(1) We present five ML classification models to classify multi-class findings (anatomical landmark, patholog-
ical findings, polyp removal conditions, and normal findings) of the GI tract. Using a limited imbalanced
dataset, we experiment with approaches ranging from Global Feature (GF) approaches to simple Deep
Neural Network (DNN) and complex DNN approaches with transfer learning. Moreover, we present a de-
tailed evaluation using six performance metrics to show the real classification performance of ML models.
In addition, we analyze and present detailed evaluation results of using multi-class classification ML mod-
els for classifying binary classes (sub-classes of the multi-class categories) with and without retraining to
evaluate the generalizability of our models. We emphasize the difficulties of using well-performing ML
methods in cross-datasets as a result of the reluctance of ML models to cross-dataset generalization. We
present this negative impact with the aid of another evaluation using the receiver operating characteristic
(ROC) curve and the precision-recall (PR) curve of the best model. We also demonstrate when a Receiver
Operating Characteristic (ROC) curve is good to use and when it is better to use a PR curve.

(2) With the preceding point, we emphasize the requirement of detailed cross-dataset evaluations to identify
generalizability of ML models before using them as universal models in live applications. Because good
performance measures with a single dataset do not necessarily imply good real-world performance, we
argue that researchers should present cross-dataset evaluations for building a generalizable model rather
than presenting performance values for the test datasets, which is separated from the same training data
source.

Moreover, with respect to the 2018 Medico Task [53], our best DNN method achieved the highest recall, speci-
ficity, and accuracy for multi-class classification of the GI tract findings. We achieved a Matthews correlation
coefficient (MCC) (0.0029 less) and an Rk correlation coefficient3 (0.0001 less) nearly equal to the winning team.
With this achievement, we demonstrate all of the steps, from designing to training and testing, for reaching such
performance using this model and its expandability using different pre-trained networks.

3The Rk correlation coefficient and the MCC were the most important considered metrics for winning the 2018 Medico Task.
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In Section 2, we present related work and the performance of relevant existing solutions. Section 3 discusses
the methodology used for our GF-based approaches and the theoretical foundation for our work. The DNN-based
approaches are similarly described in Section 4. Our experimental results are presented and analyzed in Section 5,
followed by a discussion in Section 6 on how our results can be helpful to other researchers. In Section 7, we
conclude our findings.

2 RELATED WORK
Many methods and algorithms have been proposed for GI tract disease detection/classification using videos and
images from colonoscopy and gastroscopy as input. The problem of polyp detection has by far received the most
attention by researchers. Images and videos of polyps and other abnormalities inside the GI tract are usually
collected using a specific-purpose camera and imaging system, like ScopeGuide from Olympus. The information
gathered from these types of devices may be of great significance for later examination and must be handled with
great care. Polyps generally have characteristics different from the normal surrounding healthy tissue and are
often easy for clinicians to detect. There are several good datasets available for training and testing on polyps
(the details about the available polyp dataset can be found in other works [16, 30]), and binary classification
methods are relatively straightforward to implement.

The other active research efforts include developing an automatic and real-time detection system for GI bleed-
ing, ulcerative lesion, blood-based abnormality, tumor, and angiectasia, and for multi-class data of the GI tract
that comprise anatomical landmarks (e.g., z-line, pylorus, and cecum), pathological findings (e.g., esophagitis and
ulcerative colitis), and normality and regular findings (e.g., normal colon mucosa and stool). Suitable datasets
for research in these areas are less developed and lack adequate content. Similarly, presented performance mea-
sures in these areas are not adequate because of not presenting enough performance metrics or not presenting
cross-dataset evaluations.

Table 1 presents an overview of important works related to GI disease detection/classification and the 2018
Medico Task [53] using Computer-Aided Diagnosis (CAD), from automatic polyp detection to multi-class disease
detection and classification systems. The dataset used for the experiments in the first half of the Table 1 is
different. Therefore, the results cannot be directly compared; however, the results in the lower half of the table
can be compared, as the algorithms are tested on the same dataset.

Most of the research in the medical field only focuses on designing an automated disease detection system for
detecting or classifying specific disease or abnormality, such as polyp detection or ulcer detection. Because pa-
tients may suffer from more than one type of disease at the time, a working multi-class disease detection system
will help treatment. The performance of existing multi-abnormality detection systems is, however, not satisfac-
tory and cannot assist doctors in CAD in real time while undergoing colonoscopies. Furthermore, these research
works have not evaluated all performance metrics at once to analyze the real behavior of their classification
models. Yet none of the preceding methods have performed cross-dataset evaluations to prove the capabilities
for using the ML models in real CAD systems.

For handcrafted (HC) feature-based methods, image descriptors like global or local image features (e.g., color,
texture, and edges) are extracted, and later on, various ML classifiers (e.g., logistic model tree (LMT) [71], ran-
dom forest classifier [43], or support vector machine (SVM) [76]) are employed to perform analysis using these
features. HC descriptors (manually designed features) are useful for the gastroenterologist while identifying spe-
cific abnormality regions inside the GI tract. For instance, as blood has a particular range of chromaticity, we
can specify a specific chromaticity range where features of bleeding abnormality seem to be concentrated [31].
Riegler et al. [58] achieved an F1-score of 0.909 with a GF-based approach and an F1-score of 0.875 with a DL-
based approach with a multi-class GI tract dataset. With the ASU-Mayo polyp dataset, the GF-based approach
achieves an F1-score of 0.961, whereas the DL-based approach could obtain 0.936. They further suggested that
the combination of both approaches may lead to improved performance. In addition, previous work by Riegler
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et al. [56] reveals that although only detecting whether a frame contains an irregularity or not, GFs can beat
local features—for instance, they can at least reach the same results with regard to detection/classification and
perform better than local features with regard to processing speed. In all of these works, researchers presented
performance metrics using a test dataset selected from the same dataset used for the training data. Therefore,
these results do not reflect the actual practical performance of the proposed methods.

A few past studies used information such as the color and texture of polyps to sketch HC descriptors [2, 3,
13, 28, 29, 32, 68]. The other category of methods for automated polyp detection used shape, intensity, edge,
and spatio-temporal information. For instance, Hwang et al. [27] appropriated elliptical shape features to detect
the occurrence of polyps in colonoscopy videos. Bernal et al. [7] proposed a polyp detection technique by
utilizing a polyp region descriptor, which is dependent on the depth of the valley image and introduced a region
growing method to detect polyps in colonoscopy images. Bernal et al. [8] additionally used valley information
and enhanced their approach by improving the polyp localization results to almost 30%. Bernal et al. [6] also
performed additional evaluations using valley information and demonstrated better performance, especially for
smaller polyps and decreased the polyp miss rate. Park et al. [47] utilized spatio-temporal features for automatic
polyp detection. The recently completed related work that uses the cross-sectional profile to detect protruding
polyps automatically is the polyp detection system Polyp-Alert [77], which can provide near real-time feedback
during colonoscopies. However, the system is limited to polyp detection and is slow for live examinations.
Tajbakhsh et al. [68] proposed a method for automatic polyp detection from colonoscopy videos that uses
context information to remove non-polyp and shape information to localize polyp reliably. Riegler et al. [58]
utilized various GFs and achieved high precision and recall above 90%. Yuan et al. [79] employed a bottom-up and
top-down saliency approach for automated polyp detection. Although these research works discuss improving
the performance of ML models, they have not evaluated the performance of the ML models with cross-datasets.

As convolutional neural network (CNN) architectures have achieved exceptional gains in medical image and
video analysis tasks, more recent work on polyp detection is mainly based on Convolutional Neural Networks
(CNNs). Tajbakhsh et al. [67] proposed a 2D-CNN method for polyp detection by learning discriminative spatial
and temporal features. Yu et al. [78] proposed a 3D fully convolutional network to deal with the challenges
related to automatic polyp detection for colonoscopy videos. Zhang et al. [81] suggested an enhanced single-shot
multi-box detector (SSD) called SSD-GPNet for detecting gastric polyps, which have the potential for achieving
real-time detection up to 50 FPS using Nvidia Titan V. Furthermore, they use GPDNet [82] to classify three
classes of pre-cancerous gastric disease.

Researchers have also compared HC and DL methods. For instance, Pogorelov et al. [52] and Riegler et al. [58]
compared several (HC- and DL-based) localization methods. Pogorelov et al. [49] evaluated their approach uti-
lizing HC and DL methods on different available datasets for real-time polyp detection. Their best model with a
generative adversarial network (GAN) obtained detection specificity of 94% and accuracy of 90.9%. The preceding
research works presented good performance for predicting polyps, whereas Pogorelov et al. [49] presented eval-
uation results of the models with cross-datasets. However, having overlapped data sources in the cross-datasets,
the shown results do not reveal the real performance in cross-dataset evaluations.

The pre-trained models, along with transfer learning mechanisms, are also becoming popular because of their
capability to outperform state-of-the-art algorithms even with less training data, where the limited size of the
medical dataset for experiments has always been a problem to yield better results. For the detection and local-
ization of the polyps [9, 69], the pre-trained models with a CNN mechanism also achieve promising results. A
comparison of DL with GFs for GI tract disease detection has also been presented. Pogorelov et al. [54] presented
17 different methods for multi-class classification of GI tract data with the limited number of the training dataset.
They used both GFs and DL approaches in their work. They achieved the best result with modified ResNet50
features using the LMT classifier. They reached an Rk value of 80.2% and an F1-score of 82.6% with 2,000 training
and 2,000 test datasets.
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Comparing with the polyp detection approaches, the research on multi-class disease detection/classification
on a complete GI tract system is minimal. However, for multi-class disease detection/classification (including
polyp detection) inside the GI tract, we note a few contributions made in this area. For example, the authors of
numerous works [1, 10, 18, 24, 25, 33, 36, 37, 46, 48, 64, 70] presented their approach in classifying disease inside
the GI tract utilizing the Kvasir dataset and the MediaEval Medico 2018 dataset. The latter is a combination of
the Nerthus [50] and Kvasir [51] datasets.

Hicks et al. [24] show how fine tuning a CNN model using transfer learning with data from different source
domains affects classification performance. In their case, extending the generic ImageNet dataset with medi-
cal images from the LapGyn4 and Cataract-101 dataset, they obtained a high Matthews Correlation Coefficient
(MCC) score of 0.9228. For the 2018 Medico Task, we proposed solutions based on GFs and DL-based methods
for multi-class classification of GI tract findings [71]. Our best model was a combination of two pre-trained net-
works, ResNet-152 and Densenet-161, along with a multi-layer perceptron (MLP). Here, we obtained an MCC of
94.21%, an F1-score of 94.58%, and an accuracy of 99.32%. This was one of the best results in the MediEval 2018
Medico Task Challenge. We discuss the model introduced by Thambawita et al. [71] in detail in this article and
reproduce similar results. Based on those models, we provide and discuss the requirement of detailed evaluations
using multiple performance metrics and cross-dataset evaluations.

Recent related works show promising results in terms of evaluation metrics, such as both sensitivity and speci-
ficity despite various challenges (e.g., difficulties arise due to a dataset obtained from different modalities). The
limitation with most of the recent approaches is that they target only specific problems, like bleeding detection
or polyp detection. Current systems are either (i) too narrow for a flexible, multi-disease detection/classification
system; (ii) tested only on a limited datasets, too small to show whether the systems would work well in hospi-
tals, (iii) provide low processing performance for a real-time system or ignore the system performance entirely;
(iv) problematic with regard to overfitting of the specific dataset and lead to unreliable results; or (v) tested using
datasets that are not publicly available, making it difficult to compare the approaches with others.

In some cases, GF-based approaches produce better results. For some methods, DL performs better. The CNN
approaches and pre-trained network with transfer learning mechanism approaches have the best results in most
of the cases. Reusing already existing DL architectures and pre-trained models leads to excellent results in, for
example, the ImageNet classification tasks. For example, the HC feature-based approach works well for true
negative (TN) detection/classification tasks.

To reduce the damage of the dataset bias problem, Khosla et al. [34] directed their experiments for both classi-
fication tasks and detection problems. They used different datasets from different domains in the training stage
to generalize the features extracted from their ML model. However, SVM was used as the main algorithm, and
the DNN dataset bias problem was not addressed.

With the goal of making researchers aware of the dataset bias problems, Torralba and Efros [72] did informative
research using basic datasets and basic ML models with the classification and detection task of computer vision.
Initially, they trained a simple linear Support Vector Machine (SVM) to make a simple classifier to name a given
dataset from 12 different datasets, which have nearly the same categories. They were inspired by the research
done by Dollár et al. [20] to detect pedestrians. The result of the experiment for dataset classification shows a
clear diagonal in the confusion matrix (CM). This implies that there are clear dataset bias features, and that these
datasets have the same categories. Therefore, researchers want to apply cross-dataset generalization for avoiding
dataset bias behavior of ML models. Moreover, they discussed selection bias, capture bias, category or label bias,
and negative bias as the main factors for the dataset bias. This directs our research to do additional experiments
to identify the significant factors of the cross-domain data generalization in the medical domain, which is more
critical than the general image classification.

The classification of GI diseases is more complicated than a simple real-world object classification task where
one detects faces or recognizes characters. Typical GI tract datasets are heavily imbalanced—for example, the
2018 Medico Task dataset consists of 16 classes of anatomical landmarks, pathological findings, polyp removal
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Fig. 2. Block diagram of the proposed method 1 and method 2. The pipeline starts with the input of images. GFs are extracted
using the LIRE framework. These features are then used for two different classification algorithms (the SL model for method
1 and LMT for method 2).

cases, and normal and regular findings, where the polyp class has a maximum of 613 images, and the instrument
class has a minimum of only 4 images. Additionally, medical datasets are captured using different endoscopic
instruments, and some of the images can be noisy, blurry, over- or under-exposed, and interleaved, and can have
superfluous information within the image, contain borders, and be affected by specular reflections caused by the
instrument light source. Some of the images may have bleeding, whereas other images can be partially covered
by stool or mucus. Moreover, the organs from mouth to anus can have multiple lesions showing different dis-
eases, abnormalities, and internal injuries. Thus, the preceding situation leads to the necessity of distinguishing
between various classes of GI tract findings. In this scenario, not only high precision and recall but also high ac-
curacy and MCC become essential for developing an automated generalizable multi-class classification system.
This implies the real requirement of measuring and analyzing all performance metrics at once. Furthermore, to
prove the generalizability of models, cross-dataset evaluations are required.

3 GF-BASED APPROACHES
GFs or descriptors are features computed over the whole image or covering a regular sub-section of an image.
GFs represent the overall properties of an image and are often used in image retrieval, image compression,
image classification, object detection, and image collection search and distance computing [54]. Examples of GFs
are shape matrix, histogram-oriented gradients (HOGs), Co-HOG, and invariant moments (Hu, Zernike). The
LIRE [42] framework can be used to extract HC GFs such as texture, color distribution, and the histogram of
brightness. The most commonly used GFs include joint composite descriptor (JCD), Tamura, color layout (CL),
edge histogram (EH), autocolor correlogram, pyramid histogram of oriented gradients (PHOGs), color and edge
directivity descriptor (CEDD, local binary patterns, and scalable color (SC). Figure 2 shows the architecture of
the proposed GF-based methods (1 and 2). These methods use six selected GFs and the best ML classifiers for the
provided dataset.

Feature engineering is among the most crucial and challenging parts for approaching any ML and computer
vision problem. Based on the findings of Pogorelov et al. [54] and Riegler et al. [59], we choose to used JCD,
Tamura, CL, EH, autocolor correlogram, and PHOG. The combinations of these features represent the overall
properties of the images. We can even add more GFs, but doing so may increase the noise to the image features,
which again would hurt the classification performance. Moreover, we have formulated the problem of GI tract
anomaly classification as a multi-class (16-class) classification of different findings including anomalies, land-
marks, and clinical markings. With the provided dataset, we computed the GFs of each image. A multi-class
classification problem is a general and well-studied ML problem, and there is a variety of methods available to
solve this issue with higher performance. Therefore, we sent the extracted GFs to many available ML classifiers.
The whole experiment was completed with the development dataset. The 2018 Medico Task [53] shows the best
classification rates with SimpleLogistic (SL) [38] and LMT [38] classifiers.
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3.1 Method 1: The SL Classifier
In method 1, we combine the SL classifier from the Weka software [22] to build a linear logistic regression (LR)
model with the LogitBoost [21] utility for determining attributes. The SimpleLogistic (SL) classifier can deal with
binary class classification, multi-class classification, missing class, and nominal class. It can handle different types
of attributes, such as binary attributes, nominal attributes, date attributes, missing values, unary attributes, and
empty nominal attributes [38]. In a linear LR classifier, a simple (linear) model fits the data, and the method of
model fitting is pretty stable, leading to low variances.

LogitBoost is utilized for determination of the most appropriate attributes in the data at the time of executing
LR, which is done by performing a simple regression in every iteration before it converges to a solution of max-
imum likelihood. Therefore, LogitBoost, with a simple regression function that acts as a base learner, is utilized
for fitting the logistic models. The optimum number of iterations associated with the LogitBoost algorithm to
function is cross validated, which leads to the automatic selection of the attribute [65]. The SL classifier has a
built-in attribute selection (if the default parameter is not changed): it stops computing simple linear regression
models (i.e., performing LogitBoost iterations) when the cross-validated classification error no longer decreases.
With the extracted features using LIRE, the SL classifier has not only the highest classification accuracy but
also takes the lowest classification time (i.e., lowest computational complexity) when compared with other ML
classification algorithms.

3.2 Method 2: The LMT
In method 2, we use the Logistic Model Tree (LMT) classifier from the Weka software. The LMT is a classifica-
tion model related to a supervised training algorithm, which is a combination of LR and decision tree learning
techniques [38, 62]. Thus, the LMT is considered an analogue model for solving classification problems. In the
logistic variant, information gain is utilized for splitting, the LogitBoost algorithm generates an LR model at each
node in the tree, and the CART algorithm [62] is utilized for pruning the tree.

The LMT uses a cross-validation (CV) technique to find several LogitBoost iterations to prevent overfitting of
the training data. The LogitBoost algorithm accomplishes additive LR, which is achieved by least-square fits for
every class M [19], which is shown in Equation (1):

LM (x ) =
n∑

i=1
βi + β0. (1)

Here, βi denotes the coefficient of the ith component of the vector x, and n denotes number of features. The LMT
model uses the linear LR method to calculate the posterior probabilities of the leaf nodes [38], which is shown
in Equation (2):

LM (X ) = − exp (LM (X ))
∑D

M=1 exp (LM (X ))
. (2)

Here, D denotes the number of classes, and L M(X) stands for the least-square fits. The least-square fits L M(X)
are transformed in such a way that ∑D

M=1 exp(LM (X )
)

is equal to zero.

4 DL APPROACHES
For our transfer learning approaches, we selected two DNNs: ResNet-152 [23] and DenseNet-161 [26] based on
the top-1 error rate and top-5 error rate for the ImageNet [17, 61] classification as given in the PyTorch documen-
tation [14]. Then, we chose ResNet-152 as the base model of the first DL approach, and this base model experiment
was done under method 3 (the model is illustrated in Figure 3). This selection was made based on preliminary
experiments. In the preliminary experiments, ResNet-152 showed better performance than DenseNet-161. This
DenseNet-161 was in second place in the performance ranking when we compared stand-alone pre-trained DL
models.
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Fig. 3. Block diagram of method 3. The input is an image that is passed to a ResNet-152 neural network. A final softmax
layer outputs the scores for the 16 classes.

Fig. 4. Block diagram of method 4. The input image is in parallel passed to a ResNet-152 and a DenseNet-161 neural network.
Two separate softmax layers calculate separate 16-class scores, which are finally combined.

Fig. 5. Block diagram of method 5. It is similar to method 4, but instead of a single step to combine the output scores of the
two neural networks, two fully connected layers are utilized.

In DL methods 4 and 5 (as illustrated in Figures 4 and 5), we used both pre-trained ResNet-152 and DenseNet-
161 using the ImageNet dataset. In the following sections, we discuss data pre-processing mechanisms and
training mechanisms used for all three DL methods. In later sections, we discuss these methods one by one
with their fine-tuning mechanisms with more comprehensive explanations.

For the transfer learning methods, we use the data pre-processing tool of the PyTorch library to (i) resize input
images, (ii) crop marginal annotations of the medical images, (iii) normalize the pixel values of input images, and
(iv) apply random image transformations. Regarding image resizing, all images of the dataset were resized into
224 × 224 because ResNet-152 and DenseNet-161 accept images with these dimensions. By applying the central-
cropping transformation of PyTorch, we minimized unnecessary effects for the final predictions of DNNs affected
from annotated marks (green boxes) of the medical images as shown in Figure 1(b), (n), and (o). Center cropping
did not remove important information from the images because we cropped down to 224 × 224 from 256 × 256.
Our experiments show that removing the whole green box, such as those in Figure 1(b), (n), and (o), from the
images by applying a larger crop size is not advisable, because for some images, too much content of the finding
is lost with a large crop size. When applying the normalization function to the input images, a standard deviation
(σ ) of 0.5 and a mean (μ) of 0.5 were used with the normalization function in PyTorch. The mathematical equation
used in this function is given in Equation (3), and c represents the three channels R, G, and B of input images.
The input represents a tensor of pixel values of each layer. We used random transformations, random horizontal
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flips, random vertical flips, and random rotations from PyTorch as data augmentation techniques.

inputc =
inputc − μc

σc
; where c = [0, 1, 2] (3)

For training all DNNs, the transfer learning mechanism was used. Then, we used cross-entropy loss [15] with
weighted classes as given in Equation (4) to calculate the loss values of the DNNs:

loss (x , class ) = weiдht[class] × ���−x[class] + ln ���
∑

j

exp(x[j])���
��� . (4)

In this equation, the weight parameter value is calculated inversely proportional to the image count in the cor-
responding class. In other words, class weight values are high when the classes have fewer images. However,
the inbuilt cross-entropy function given in PyTorch is used instead of implementing it from scratch. While doing
preliminary experiments, we observed that there was not any effect from weighted cross-entropy loss. Then, we
used the normal cross-entropy loss (Equation (5)) function for calculating the loss of the DNNs:

loss (x , class ) = − ln
(

exp(x[class])∑
j exp(x[j])

)
= −x[class] + ln ���

∑

j

exp (x[j])��� . (5)

As the optimizer of all DNNs, the stochastic gradient descent (SGD) [11] method with a momentum [66] was
applied. We selected this optimizer because of its stable learning mechanism in contrast to the highly unstable
learning pattern of other methods [35, 60, 80], as they show fast convergence.

During the training procedure, we changed the learning rate manually based on the progress of learning
curves rather than using the inbuilt learning rate schedulers of PyTorch. Initially, we began with a high learning
rate. Then, the learning rate was reduced by a factor of 10 if the training process did not show good progress in
the learning curves. Finally, model weights of the best epoch based on the best validation accuracy were saved
to use in the inference stage.

4.1 Method 3: DNN Approach Based on ResNet-152
Method 3 is the base method that uses only ResNet-152. A block diagram of this is illustrated in Figure 3. In this
method, the last layer of ResNet-152 is modified to output 16 classes of the 2018 Medico Task from 1,000 classes
of ImageNet. Usually, we freeze first layers (there is not a logical way to select the number of layers to freeze)
of pre-trained networks when we do transfer learning. Then, we train the last and the new layers using the new
domain data. Finally, the entire network is trained after unfreezing all parameters of the network (a method
known as fine tuning).

We performed preliminary experiments to identify the influence of the preceding freezing-unfreezing tech-
nique compared to using simple fine tuning. Both techniques showed the same performance at the end of the
training process, and we could not gain any performance benefit from the freezing-unfreezing method, as using
the simple fine-tuning method was faster. Therefore, we decided to use the simple fine-tuning method for all
experiments.

In method 3, we started the training process with a learning rate of 0.001. Then, the learning rate was decreased
by a factor of 10 if we could not see any performance improvement for the validation dataset. We repeated this
change of learning rate until the model came to a good stable position. In this experiment, the SGD method was
used as the optimization method with a momentum of 0.9.

4.2 Method 4: DNN Approach Based on ResNet-152 and DenseNet-161
In method 4, as illustrated in Figure 4, we used two pre-trained networks on ImageNet: ResNet-152 and DenseNet-
161. These networks were retrained separately into the Medico dataset using the same procedure used in

ACM Transactions on Computing for Healthcare, Vol. 1, No. 3, Article 17. Publication date: June 2020.

A.9. Paper IX - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning Applied to Gastrointestinal Tract Abnormality

Classification

219



17:12 • V. Thambawita et al.

Fig. 6. Block diagram of the proposed parallel DNN merging. The training process is split into a pre-training (pre-training
of individual models) and post-training step (training the whole network architecture).

method 3. Before this retraining, the networks were modified to classify the 16 classes. Then, we calculated
an average probability of the two probability vectors (VResnet_152 and VDensenet_161) output by the two sep-
arate networks: ResNet-152 and DenseNet-161. By calculating the average of these two probability vectors
(Vanswer =

1/2
(
VResnet_152 +VDensenet_161

) , we accepted the cumulative probability decision rather than the in-
dividual decision. Using the average from these two networks, we expected to have a good decision with high
confidence. For example, if the two networks return high probability values for the same class, the class proba-
bility value (confidence of classifying to that class) is high. However, when one network has a high probability
and the other network has a low probability for a specific class, then the final probability value is around 0.5.
This value infers that confidence about the particular class is not good enough for the final decision.

In this model, the probability of the final answer depends on the average values rather than the highest prob-
ability value returned from one of the two models. Here, the problem is that the prediction suggested from the
highest probability value of one model may be the correct class compared to the selected category from the
average. Finally, we trained the model using a learning rate of 0.001. In addition, we decreased the learning rate
by a factor of 10 when the model did not show convergence. A momentum of 0.9 with SGD was used as in
method 3.

4.3 Method 5: DNN Approach Based on ResNet-152, DenseNet-161, and MLP
Method 5 was designed to overcome the problem of method 4. The block diagram of this method is illustrated
in Figure 5. The simple averaging method was not enough to make a final decision when the two networks
provided two different answers. As a solution, an Multi-Layer Perceptron (MLP) was introduced instead of the
simple averaging method. Then, we trained only this MLP with the pre-trained ResNet-152 and DenseNet-161
for the Medico dataset to decide the final prediction based on the probabilities that come from two networks.
More details about designing this complex model are discussed in Sections 4.3.1 and 4.3.2.

4.3.1 Extendable Method 5. In this section, we show how we can improve accuracy using multiple cumulative
probabilistic decisions by extending method 5 into N ≥ 2 DNNs. In this general model, as illustrated in Figure 6,
we divide the whole training process into the following four steps: (1) pre-training of individual models, (2)
model selection for merging, (3) merging models with an MLP, and (4) post-training and fine tuning. Let NETS =
{net1,net2, . . . ,netN } be the set of pre-trainer networks using the ImageNet dataset and POi be the returned
probability vector for model neti .

In step 1 (pretraining), we train each DNN neti ∈ NETS as much as possible using the transfer learning mech-
anism until it gives the best predictions as described in method 3 (using different loss functions; loss1 to lossN ).
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The DNNs have their unique prediction capabilities within the given classification problem. Then, we analyze
the CM of the best outcome of each DNN.

In step 2 (selection), we select networks that give different diagonals of CMs (the diagonal of a CM represents
correct classifications) compared to other CMs of selected DNNs. If the diagonal of CM of network neti = CMi ,
then we select networks that have CMi � CMj ; j = [1, 2, . . . , i − 1, i + 1, . . . ,N ]. The goal of this comparison is
to identify DNN models that have different classification performances compared to each other. Equal diagonals
of CMs do not imply that the networks are identical for their classifications, because there might be models
that give the same diagonal numbers but lead to different classifications for a given image. If the case of equal
diagonals occurs, we have to compare correctly classified images to identify the differences. The number of DNNs
selected for the final training may or may not be equal to the initial number of pre-trained DNNs depending on
similarities in some of the CMs.

In step 3 (merging), we use an MLP to merge all outputs of the selected DNNs. The MLP consists of M layers
that take ∑N

i=1 lenдth_o f (POi ) number of inputs and output Pout probability vector according to the given clas-
sification problem. Then, step 4 can be started by freezing all the pre-trained DNNs and training only the new
MLP until it shows a good validation performance. Optionally, we can retrain the whole model without freezing
any layer if we cannot achieve a performance improvement by training only the new MLP.

4.3.2 Method 5 Used by This Research Work. According to the procedure discussed in Section 4.3.1, our im-
plementations of method 5 were designed using two parallel networks (N = 2): ResNet-152 and DenseNet-161.
Then, we analyzed two CMs, which came from ResNet-152 and DenseNet-161. These two networks were pre-
trained according to the given classification problem. BecauseCMResnet_152 � CMDensenet_161, we combined the
two networks with an MLP. This comparison of CMs was done visually using colormaps. However, if the visual
inspection of CMs is hard, mathematical operations can be used. Moreover, if the CMs are equal completely,
a manual inspection of the classified images is required to identify the differences of model classifications. Af-
ter combining, we froze two DNNs to proceed to the post-training step. In our experiments, the input layer of
the MLP consisted of 32 input nodes. The output of the MLP was a probability vector with 16 values, which is
equal to the number of classes of the Medico dataset. We used two fully connected layers, with 32 neurons and
16 neurons. In the post-training step, we started training only the MLP with a learning rate of 0.01. To do the
post-training, multi-class cross-entropy loss and Stochastic Gradient Descent (SGD) were used.

5 RESULTS
In this section, we discuss the experimental setup, datasets, and results obtained from our experiments. Using
these presented results, we emphasize that high scores for performance metrics do not always show the actual
performance of ML methods. To show this, we present well-performing ML models that achieved good results
for their performance values. Using cross-dataset testing, we present a detailed analysis of evaluation metrics to
emphasize that they are not always representative to identify the real performance of models.

For all experiments, we used the same hardware platform with an Intel Core i7 eighth-generation processor
with 16 GB of DDR4 RAM and an 8-GB NVIDIA GeForce 1080 GPU. However, we practiced two different software
frameworks for implementing our methods. To implement the GF-based methods (1 and 2), we used the Weka
framework [22]. We used the PyTorch framework for the DNN-based methods (3, 4, and 5).

5.1 Datasets
For the work performed in this article, we used the following four datasets: the 2018 Medico dataset [55], CVC-
356-plus (a modified version of CVC-356 [6, 7, 73]), CVC-612-plus (a modified version of CVC-612 [6, 7, 73]),
and CVC-12k [4, 5]. The training and testing datasets of the 2018 Medico Task were derived from the Kvasir
dataset [51] and Nerthus dataset [50], consisting of 16 classes as shown in Table 2. These images consist of
different anatomical landmarks (z-line, pylorus, cecum), pathological findings (esophagitis, polyps, ulcerative
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Table 2. Summary of the 2018 Medico Dataset

Type Images in the Development Set (#) Images in the Test Set (#)
Blurry-nothing 176 39
Colon-clear 267 1,070
Dyed-lifted-polyps 457 590
Dyed-resection-margins 416 583
Esophagitis 444 483
Instruments 36 165
Normal-cecum 416 604
Normal-pylorus 439 569
Normal-z-line 437 636
Out-of-patient 4 6
Polyps 613 423
Retroflex-rectum 237 194
Retroflex-stomach 398 399
Stool-inclusions 130 508
Stool-plenty 366 1,920
Ulcerative-colitis 457 551
The first column shows the names of the different findings. The second and third columns show the number of
images in the development and test sets.

Table 3. Overview of the Datasets Used for Our Experiments

Dataset Training Testing Images (#) Polyps (#) Non-Polyps (#)
2018 Medico—Development X — 5,906 613 5,293
2018 Medico—Testing — X 8,740 423 8,317
CVC-356-plus X X 2,285 356 1,929∗
CVC-612-plus X X 1,316 612 704
CVC-12k — X 11,954 10,025 1,929
∗We replaced this image set with a new image set (with 1,171 images) extracted from a clear colon video collected from
the Bærum Hospital, Norway, in the second stage of this research to avoid the overlap between the training data and
the testing data.
In total, we have five different datasets, but the Medico dataset is split into a development part and a test part for
the challenge. The training and testing columns indicate how the dataset was used in the experiments. Polyps and
non-polyps indicate the number of findings. Medico and CVC-356-plus represent a bias toward non-findings. CVC-
612-plus is a quite balanced dataset, and CVC-12k presents a bias toward findings. Datasets were chosen based on these
distributions to represent common cases in medical imaging datasets.

colitis), endoscopic polyp removal cases (dyed and lifted polyp, dyed resection margin), and normal findings
(normal colon mucosa, stool) in the GI tract. The dataset also contains images with different degrees of the Boston
Bowel Preparation Scale (BBPS), ranging from 0 to 3. Some of the original images contain the endoscope position
marking probe. These are seen as a small green box located in the bottom corners, showing its configuration
and location of the image frame. The images used in the study were captured using an electromagnetic imaging
system (Scopeguide, Olympus, Europe) [51]. In Table 3, we present a summary of the uses of the 2018 Medico
dataset and other datasets for polyp and non-polyp classifications.

The Medico development dataset was used to train our ML models in the first stage. However, this dataset
consists of a highly imbalanced number of images, as summarized in Table 2. Within this, the out-of-patient
class had only 4 images to train our models. Therefore, only in the first stage, we used an additional 30 images
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Fig. 7. Ratios of findings to non-findings in the datasets (polyp/non-polyp). The X axis represents the different datasets used
for the binary classification. The Y axis represents the percentage of polyps and non-polyps. The numbers inside the bars
show the actual number of polyp and non-polyp images.

that were selected randomly from the Internet to fill this class in the training dataset. These were images of
flowers, vehicles, and other general stuff in our everyday life and did not have any relationship with this class.
The advantage of this technique is discussed in the discussion of Section 6.

When we discussed the ML models’ generalizability in the second part of the article, we used the CVC datasets
to retrain and test our models. The CVC-356-plus dataset is the modified version of the CVC-356 [6, 7, 73]
dataset that has only polyp images. In that modification, we added 1,929 non-polyp images from the CVC-12k
[4, 5] dataset to the CVC-356 dataset and created a new dataset called CVC-356-plus. Similarly, the CVC-612-plus
dataset was created by extending the CVC-612 dataset [6, 7, 73]. For this CVC-612-plus dataset, we added 704
non-polyp images extracted from new GI tract videos collected by the Bærum Hospital, which is part of the
Vestre Viken Hospital Trust in Norway. The content of the CVC-12k dataset underwent a minor reorganization
by filtering and grouping polyp and non-polyp images into two separate folders. However, the content and
number of images in CVC-12k were not otherwise changed. Therefore, we refer to it by its common name.

In the second part of our research, we used the CVC-356-plus and CVC-612-plus datasets for retraining our
models to classify polyps and non-polyps. In only this part of the research, we replaced 1,929 non-polyp images
of the CVC-356-plus dataset with 1,171 newly extracted images from a clean and healthy colon video collected
from the same hospital. We did this modification to avoid the overlap between the non-polyp images of the
CVC-356-plus training dataset and the CVC-12k testing dataset.

For the dataset preparation stage, we focused on the number of polyp and non-polyp images in each dataset
to analyze the correlation between the data distribution and the model performance. A bar graph of this data
distribution is illustrated in Figure 7. We chose to include different proportions for the number of polyps and non-
polyps to keep diversity of data percentages in each test case. In the CVC-356-plus dataset, the polyp percentage
is low compared to the non-polyp percentage. In the CVC-612-plus dataset, percentages of polyps and non-polyps
are around 50%. In contrast, the CVC-12k dataset has a higher polyp percentage than the non-polyp percentage.
Due to this, we can study the effects of data imbalance in the training and testing datasets on the performance
and interpretability of the metrics.

5.2 Analyzing Results
We discuss our results in two main sections: (i) the 16-class classification task based on the 2018 Medico Task
and (ii) the polyp and non-polyp classification task to analyze generalizability of ML models.
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Table 4. Evaluation Results of the 2018 Medico Task (as Provided
by the Organizers of the 2018 Medico Task) [71] for the Five

Methods Used in This Article

Method REC PREC SPEC ACC MCC F1
1 0.8457 0.8457 0.9897 0.9807 0.8353 0.8456
2 0.8457 0.8457 0.9897 0.9807 0.8350 0.8457
3 0.9376 0.9376 0.9958 0.9922 0.9335 0.9376
4 0.9400 0.9400 0.9960 0.9925 0.9360 0.9400
5 0.9458 0.9458 0.9964 0.9932 0.9421 0.9458

Based on the official results, method 5 was the best one based on the MCC score.

Fig. 8. Performance comparison of all five classification models for the 16 classes of the 2018 Medico test dataset. Methods
1 and 2 are similar in results but different from the other three methods (note that measurements start at 0.75).

5.2.1 16-Class Classification. In this 16-class classification task, the training dataset of the 2018 Medico Task
was split into a 70% training dataset and a 30% validation dataset. Then, the test data given by the organizers
was used to test the performance of five methods for classifying 16 classes of the GI tract findings.

We evaluated our five models based on the results collected by the organizers. The evaluated results of the main
five models are tabulated in Table 4. With an MCC score of 0.9421, method 5 showed the best performance for
classifying the 16 classes of GI tract findings. However, our GF-based approaches did not show results competitive
with the DNN methods. The GF model introduced in method 1 could reach an MCC score of 0.8353. This result
showed the best performance record for a GF-based method. A clear performance difference between the GF-
based methods and the DNN-based methods can be seen in Figure 8. In this plot, we compared this performance
difference using six performance measures: recall (REC), precision (PREC), specificity (SPEC), accuracy (ACC),
MCC, and F-score (F1). According to this plot, it is clear that the areas of the hexagons covered by the GF methods
are smaller than the areas covered by DNN methods. These results imply that three DL methods outperform two
GF methods.

The CM of method 5 collected from the organizers of the 2018 Medico Task is tabulated in Table 5 for the
in-depth investigation. According to the CM, we can identify two main bottlenecks to improve the performance
of method 5. The first one is misclassification between esophagitis and normal-z-line, and the second one is
misclassification between dyed-lifted-polyps and dyed-resection-margins. Therefore, images from these classes
were manually examined to identify the reasons for these misclassifications. For the conflict between esophagitis
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Table 5. CM of Method 5 (Our Best Model) Based on the Medico Test Dataset

Actual Class
A B C D E F G H I J K L M N O P

Pr
ed

ic
te

d
Cl

as
s

Ulcerative-colitis (A) 500 — — — – — — — 39 — 3 — 1 1 — 7
Esophagitis (B) 3 432 48 — — — — — — — — — — — — —
Normal-z-line (C) 1 121 513 — — — — — — — — — 1 — — —
Dyed-lifted-polyps (D) 1 — — 522 31 — — — — — 2 — — — — 34
Dyed-resection-margins (E) — — — 33 532 — — — — — 1 — — — — 17
Out-of-patient (F) — — — — 1 5 — — — — — — — — — —
Normal-pylorus (G) 3 3 2 — — — 559 — — — 2 — — — — —
Stool-inclusions (H) — — — — — — — 501 7 — — — — — — —
Stool-plenty (I) 1 — — — — — — — 1,918 — — — — — — 1
Blurry-nothing (J) 1 — — — — — — — 1 37 — — — — — —
Polyps (K) 10 — — 1 — — 1 — — — 358 6 — 1 — 46
Normal-cecum (L) 18 — — — — — — — — — 6 578 — — — 2
Colon-clear (M) 1 — — — — — — 5 — — — — 1,063 — 1 —
Retroflex-rectum (N) 3 — — — — — — — — — 2 — — 188 1 —
Retroflex-stomach (O) — — — — — — 1 — — — — — — 2 395 1
Instruments (P) — — — — — — — — — — — — — — — 165

The diagonal value represents true predictions (number of images) of the model. A through P are the classes corresponding to the class
names in the first column. The most confusion can be observed between classes B and C, and classes D and E. Looking at the images, we
can see that they are quite similar in their visual features (colors, texture, etc.).

and normal-z-line, the reason is the very close locations of these two landmarks in the GI tract. However, the
confusion between dyed-lifted-polyps and dyed-restrictions is caused because of the same color patterns and the
same texture structures of both types of images. With these limitations, method 5 showed the best performance
with an MCC of 0.9421, which was the important measurement to win the 2018 Medico Task. Based on the MCC
value, we won second place in the 2018 Medico Task. The winning team [25] relabeled the development dataset
and also generated more images out of the provided instruments class by placing the instrument as a foreground
over the images of dyed-lifted-polyps, dyed-resection-margins, and ulcerative colitis to balance the instrument
class for improving performance. However, we developed the model by only using the images provided by the
task organizers for a fair comparison of the approaches with the limited dataset. Then, our next experiments were
conducted to find the reusability of these well-performed models in different datasets with polyp and non-polyp
categories (sub-categories of the 16 classes of primary tasks).

5.2.2 Polyp and Non-Polyp Classification Using the Pre-Trained Models. The following analysis was performed
to identify the polyp classification ability of our five models on the same test dataset and different CVC datasets.
The 16-class classification results collected from the Medico Task organizers were analyzed to calculate polyp
detection performance in the Medico test data. Moreover, our models were tested with the CVC-356-plus, CVC-
612-plus, and CVC-12k datasets without any modifications to the five models to compare the performance of
polyp detection.

According to the correct and incorrect classifications of polyps and non-polyps in the test datasets, the first
large column of Table 6 was calculated to measure the polyp detection performance of five models. In this eval-
uation process, all 15 classes except the polyp class were considered as the non-polyp classification because the
number of outputs is 16 in the first models. For comparison, the MCC values of these tests are plotted in Figure 9.
This graph shows that the polyp detection performance of the same dataset (the testing dataset of the Medico
Task) is higher than on the completely new datasets (CVC-356-plus, CVC-612-plus, and CVC-12k) for both the
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Table 6. Polyp Classification Results with and without Retraining for All Datasets and Methods

Without Retraining With Retraining to 2-Class Classification
M REC PREC SPEC ACC MCC F1 REC PREC SPEC ACC MCC F1

Te
st

D
at

as
et 1 0.7834 0.4899 0.9635 0.9558 0.5987 0.6028 0.9550 0.9630 0.6740 0.9553 0.5430 0.9590

2 0.7834 0.4899 0.9635 0.9558 0.5987 0.6028 0.9540 0.9630 0.6840 0.9537 0.5400 0.9580
3 0.9733 0.8088 0.9897 0.9890 0.8819 0.8835 0.9813 0.6577 0.9772 0.9773 0.7934 0.7876
4 0.9599 0.8467 0.9922 0.9908 0.8969 0.8997 0.9813 0.7384 0.9845 0.9843 0.8440 0.8427
5 0.9572 0.8463 0.9922 0.9907 0.8954 0.8984 0.9706 0.7516 0.9857 0.9850 0.8470 0.8471

CV
C-

35
6-

pl
us 1 0.3089 0.1053 0.5158 0.4835 −0.127 0.1571 0.8450 0.7990 0.1700 0.8446 0.0750 0.7780

2 0.3089 0.1053 0.5158 0.4835 −0.127 0.1571 0.8510 0.8420 0.2070 0.8512 0.1930 0.7930
3 0.7865 0.3738 0.7569 0.7615 0.4198 0.5068 0.8118 0.5547 0.8797 0.8691 0.5978 0.6591
4 0.6713 0.4003 0.8144 0.7921 0.4010 0.5016 0.6517 0.4150 0.8305 0.8026 0.4068 0.5071
5 0.6685 0.4837 0.8683 0.8372 0.4737 0.5613 0.6713 0.6408 0.9305 0.8902 0.5906 0.6557

CV
C-

61
2-

pl
us 1 0.7696 0.7969 0.8295 0.8016 0.6008 0.7830 0.6980 0.8070 0.6530 0.6983 0.4740 0.6590

2 0.7696 0.7969 0.8295 0.8016 0.6008 0.7830 0.7220 0.8170 0.6800 0.7218 0.5140 0.6910
3 0.8415 0.6242 0.5597 0.6907 0.4137 0.7168 0.8382 0.6136 0.5412 0.6793 0.3932 0.7086
4 0.8627 0.6559 0.6065 0.7257 0.4803 0.7452 0.8578 0.6890 0.6634 0.7538 0.5265 0.7642
5 0.8137 0.6501 0.6193 0.7097 0.4379 0.7228 0.8007 0.7061 0.7102 0.7523 0.5104 0.7504

CV
C-

12
k

1 0.4858 0.8391 0.5158 0.4907 0.0012 0.6154 0.1650 0.7880 0.8370 0.1651 0.0130 0.0530
2 0.4858 0.8391 0.5158 0.4907 0.0012 0.6154 0.1650 0.8210 0.8380 0.1699 0.0290 0.0630
3 0.6112 0.9289 0.7569 0.6347 0.2722 0.7373 0.6033 0.9631 0.8797 0.6479 0.3558 0.7419
4 0.6236 0.9458 0.8144 0.6544 0.3241 0.7517 0.6459 0.9519 0.8305 0.6757 0.3539 0.7696
5 0.5936 0.9591 0.8683 0.6379 0.3401 0.7333 0.5576 0.9766 0.9305 0.6178 0.3595 0.7099

M, method.
For training, 2018 Medico development data was used. We can observe that for some datasets, retraining seems to improve performance.

Fig. 9. Polyp and non-polyp classification capabilities (based on MCC) of all five methods that were trained using 2018
Medico development data to classify 16 classes. For most cases, methods 3 through 5 perform best. For the CVC-612-plus
test data, methods 1 and 2 perform best.
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GF-based approaches and the DNN approaches. This is the first analysis, and we emphasize that it shows that
researchers need to do cross-dataset evaluations to prove the real capabilities of ML models.

From the first column of Table 6 and Figure 9, it is clear that the performance of the GF methods for different
datasets (CVC-356plus, CVC-612-plus, and CVC-(356+612) dataset) is unpredictable because it presents huge
value fluctuations in the graph with a negative MCC value. This shows the incapability of GF methods to make
predictions on different datasets. The negative values of MCC in this experiment, such as −0.127 for the CVC-
356-plus dataset, indicate that there is no agreement or only a non-relevant relationship between target and
prediction. An MCC around zero would mean that the classifier is deciding randomly, and MCCs above zero
would indicate correct classification. The closer to –1 or 1, the stronger the indication for being wrong or correct,
respectively. However, the polyp detection performance of the GF-based methods in the CVC-612-plus dataset
outperforms the DNN methods with an MCC value of 0.6008, whereas the best DNN method shows an MCC value
of 0.4803. This prediction accuracy of the GF methods can be identified as an erroneous prediction, because the
performance of this method for the other two CVC datasets shows poorer MCC scores than those of DNN-based
approaches. Moreover, the DNN-based approaches show considerable steady MCC values for all new datasets,
implying that the DNN methods are more generalizable than the GF methods.

Because the performance gap between the 16-class classification and polyp classification showed differences,
we retrained our models to classify only the polyp and non-polyp classes. Therefore, our next experiments
were performed to test how retraining our five ML models to classify polyps and non-polyps will influence
performance.

For the retraining experiments, we first retrained the two GF methods with new ARFF files generated for
polyp and non-polyp categories. Second, in the retraining stage of the three DNN methods, we changed only the
last layer into two outputs. However, we did not change the loss function from categorical cross-entropy into
binary cross-entropy because two-class categorical cross-entropy is equal to binary cross-entropy. Moreover, we
retained the original optimization functions. Then, we retrained all five models using the same Medico dataset,
which has only polyp and non-polyp classes. The results of these experiments are tabulated in the right columns
of Table 6.

The results in Table 6 show that it can be difficult to evaluate the models and interpret the results after re-
training for two-class classification. All MCC values of the five methods tested on the CVC-356-plus data show
improvements. Similarly, for the CVC-612-plus test data, methods 4 and 5 show performance improvements
from MCC values of 0.4803 and 0.4379 to 0.5265 and 0.5104, respectively. In contrast, methods 1, 2, and 3 show
a performance drop, which is indicated by MCC values 0.6008, 0.6008, and 0.4137 reduced to 0.4740, 0.5140, and,
0.3932, respectively. Therefore, we extended our experiment by introducing additional retraining options with
the CVC-356-plus and CVC-612-plus datasets. After that, the retraining process can be categorized as retraining
the models to classify polyps and non-polyps using (i) only the same Medico training dataset (as tabulated in
Table 6), (ii) the Medico dataset with the CVC-356-plus dataset, (iii) the Medico dataset with the CVC-612-plus
dataset, and (iv) the Medico dataset with the CVC-356-plus and CVC-612-plus datasets. Then, our testing datasets
are limited to two datasets: the Medico test dataset and the CVC-12k dataset. Results related to these new retrain-
ing processes can be seen in Table 7. When the models are trained using the balanced CVC-612-plus dataset in
combination with the 2018 Medico development data, the DNN models show better MCC values (0.8189, 0.8555,
and 0.8606) for methods 3, 4, and 5, respectively. This is true for the Medico test data and the two smaller CVC
datasets. Moreover, the MCC values for the CVC-12k test data also achieve the best MCC values of 0.1421, 0.1418,
and 0.1802 for methods 3, 4, and 5. An important observation from the CVC-12k dataset is also that looking at all
other metrics but MCC and specificity could mislead to the assumption that the results are good—for example,
scores above 0.8 for accuracy, which is often used as the only indicator for performance in similar studies.

In the first comparison, we plotted performance changes for the retraining with the different training datasets
and tested them on the Medico test dataset. The changes in the Recall (REC), Precision (PREC), Specificity (SPEC),
Accuracy (ACC), MCC, and F-score (F1) values can be seen as hexagon plots in Figure 10(a), (c), (e), (g), and (i),
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Fig. 10. Polyp and non-polyp classification using the proposed ML methods: 1, 2, 3, 4, and 5. The first column (sub-figures
(a, c, e, g, i)) shows the results of the Medico test dataset, and the second column (sub-figures (b, d, f, h, j)) shows the results
of the CVC-12k dataset. The methods are represented as follows: (a) and (b) for method 1, (c) and (d) for method 2, (e) and
(f) for method 3, (g) and (h) for method 4, and (i) and (j) for method 5, respectively.
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Table 7. Evaluation Results on Using CVC-356-plus and CVC-612-plus Combined as Training
Data with Retraining to Classify Polyps and Non-Polyps

MedicoTest Data CVC-12k
M REC PREC SPEC ACC MCC F1 REC PREC SPEC ACC MCC F1

Re
tra

in
in

g
D

at
as

et
sw

ith
M

ed
ic

o
D

at
a

CV
C-

35
6-

pl
us 1 0.9550 0.9610 0.6230 0.9549 0.5160 0.9570 0.5840 0.7040 0.3090 0.5836 −0.084 0.6320

2 0.9520 0.9620 0.6710 0.9521 0.5260 0.9560 0.5810 0.7100 0.3360 0.5807 −0.065 0.6310
3 0.9626 0.6630 0.9781 0.9775 0.7887 0.7852 0.8423 0.8565 0.2665 0.7494 0.1052 0.8493
4 0.9599 0.7526 0.9859 0.9848 0.8427 0.8437 0.9192 0.8481 0.1441 0.7941 0.0810 0.8822
5 0.9706 0.7773 0.9876 0.9868 0.8623 0.8633 0.8694 0.8507 0.2068 0.7625 0.0802 0.8599

CV
C-

61
2-

pl
us 1 0.9510 0.9590 0.6270 0.9508 0.4970 0.9540 0.5840 0.7030 0.3040 0.5842 −0.087 0.6320

2 0.9530 0.9610 0.6430 0.9530 0.5160 0.9560 0.6400 0.6970 0.2240 0.6395 −0.117 0.6660
3 0.9652 0.7092 0.9823 0.9816 0.8189 0.8177 0.9325 0.8546 0.1752 0.8103 0.1421 0.8918
4 0.9572 0.7766 0.9877 0.9864 0.8555 0.8575 0.9336 0.8544 0.1731 0.8109 0.1418 0.8922
5 0.9626 0.7809 0.9879 0.9868 0.8606 0.8623 0.9486 0.8571 0.1778 0.8242 0.1802 0.9005

CV
C-

{3
56

+6
12

} 1 0.9500 0.9600 0.6480 0.9503 0.5050 0.9540 0.6180 0.6930 0.2280 0.6179 −0.129 0.6520
2 0.9500 0.9610 0.6710 0.9503 0.5170 0.9550 0.7200 0.7010 0.1820 0.7199 −0.105 0.7100
3 0.9733 0.5909 0.9699 0.9700 0.7458 0.7354 0.9537 0.8479 0.1109 0.8177 0.1028 0.8977
4 0.9545 0.7596 0.9865 0.9851 0.8443 0.8460 0.9543 0.8463 0.0995 0.8164 0.0874 0.8971
5 0.9599 0.7771 0.9877 0.9865 0.8571 0.8589 0.9278 0.8462 0.1239 0.7981 0.0699 0.8851

The 2018 Medico test dataset and the CVC-12k dataset are the test datasets. Using the balanced CVC-612-plus as training data, we achieve
the best results. Combining CVC-356-plus and the CVC-612-plus does not improve performance. Overall, the performance is better on the
Medico test dataset.

which correspond to methods 1, 2 ,3, 4, and 5, respectively. In these plots, T1 is used to present performance
values before retraining the ML models into 2-class classification (binary classification). In this case, 15 classes
except for the polyp class of the 16 classes were considered as the non-polyp class, and the polyp class is counted
as the same polyp class. Furthermore, from T2 to T5, lines are used to present models with only two outputs.
The T2 plot represents models’ performance for the retraining using the Medico training dataset. Similarly, T3,
T4, and T5 represent the retraining process using the Medico dataset and the CVC-356-plus dataset, the Medico
dataset, and the CVC-612-plus dataset, and the Medico dataset, the CVC-356-plus dataset, and the CVC-612
dataset, respectively.

In the second series of experiments in this session, the same experiments were performed and tested on the
CVC-12k dataset. The results obtained from these experiments are tabulated in Tables 6 and 7. Then, relevant
results from these tables are plotted in Figure 10(b), (d), (f), (h), and (j). These plots use line notations similar to
the preceding experiments.

Using the plot series in Figure 10, we can examine the reusability of ML models to classify polyps and non-
polyps, which are sub-classes of the primary classes on the task. For example, if we compare plots in Figure 10(a)
and (b), then we can know how method 1 performs to classify polyps and non-polyps within the test dataset the
same as the training dataset and within an entirely new dataset. While investigating these plots, the proportion
of the number of polyps and non-polyps is an important factor in explaining the shape of these hexagon plots.

If we compare the GF methods (Figures 10(a) through (d)) and the DL methods (Figures 10(e) through (j)), it
is clear that the DL methods outperform the GF methods in both the Medico Task and polyp classification task
introduced in this article. This implies that the DL methods are capable of extracting deep features that cannot be
extracted by manual feature extraction methods used by the GF methods. With the retraining process in the GF
methods, we can see performance differences between the Medico dataset and the CVC-12k dataset. The main
conclusion that we make is that GF-based methods are not able to capture the underlying patterns that would
allow for efficient classification; thus, their performance is low.

ACM Transactions on Computing for Healthcare, Vol. 1, No. 3, Article 17. Publication date: June 2020.

A.9. Paper IX - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning Applied to Gastrointestinal Tract Abnormality

Classification

229



17:22 • V. Thambawita et al.

Fig. 11. ROC and Precision-Recall Curve (PRC) curves for method 5 trained on the CVC-356-plus and CVC-612-plus datasets
as mentioned in the legends. Testing datasets are the CVC-12k and Medico test datasets. Overall, good performance can be
observed in both ROC and PR curves. For CVC-12k, the PR curve shows the interesting case of a high random baseline for
a biased dataset.

Plots in the first and second columns in Figure 10 show completely different behaviors for the same retraining
process when we use different test datasets. The test dataset for the first column comes from the same domain
as the training data, and the test dataset for the second column comes from the completely new domain, such
as the CVC-12k dataset. To investigate these unusual performance changes, we generated and examined ROC
and PR curves for the best DNN model (method 5). The ROC and PR curves for method 5 with the Medico test
data (for the plot in Figure 10) are depicted in Figure 11(a) and (c). Similarly, the ROC and PR curves for method
5 with CVC-12k data (for the plot in Figure 10) are plotted in Figure 11(b) and (d).

Analysis of ROC curves is more robust for ML models that are used with balanced datasets, whereas PR curves
are more valuable for ML methods when the methods engage with imbalanced datasets. However, we have used
both curves in this paper to investigate the behavior of these curves while we are using highly imbalanced
datasets. Consequently, the PR curves show completely different baseline values of 0.0483 for the Medico test
dataset and 0.8386 for the CVC-12k dataset. The small baseline value arises in the plot in Figure 11(c) as a result
of small polyps to the non-polyp proportion in the Medico test dataset. Conversely, the high baseline value in
Figure 11(d) appears there as an effect on a high ratio of polyps to non-polyps.

To get a better understanding of the above plots, we selected the plots in Figure 10(i) and (j), and ROC
and PR curves in Figure 11. With this selection, first, we analyzed T1 and T2 from the hexagon plots and the
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Table 8. Method 5: Training Only the MLP vs. the Complete DNN

Test Training Only the MLP Training the Whole DNN
Data T REC PREC SPEC ACC MCC F1 REC PREC SPEC ACC MCC F1

M
ed

ic
o

Te
st

D
at

a T1 0.9572 0.5859 0.9698 0.9692 0.7357 0.7269 0.9706 0.7773 0.9876 0.9868 0.8623 0.8633
T2 0.9599 0.7804 0.9879 0.9867 0.8591 0.8609 0.9626 0.7809 0.9879 0.9868 0.8606 0.8623
T3 0.9626 0.6316 0.9749 0.9744 0.7684 0.7627 0.9599 0.7771 0.9877 0.9865 0.8571 0.8589

CV
C-

12
k T1 0.6984 0.8972 0.5842 0.6799 0.2184 0.7854 0.8694 0.8507 0.2068 0.7625 0.0802 0.8599

T2 0.7588 0.8993 0.5583 0.7265 0.2565 0.8231 0.9486 0.8571 0.1778 0.8242 0.1802 0.9005
T3 0.7614 0.8933 0.5272 0.7236 0.2352 0.8221 0.9278 0.8462 0.1239 0.7981 0.0699 0.8851

T, the additional training dataset that was added to the Medico dataset; T1, Medico dataset + CVC-356-plus; T2, Medico dataset + CVC-612-
plus; T3, Medico dataset + CVC-356-plus + CVC-612-plus.

corresponding ROC and PR curves. Although T2 shows a performance loss compared to T1 in Figure 10(i),
Figure 10(j) shows that T2 achieves a performance improvement over T1. Next, we look for the reasons for these
performance changes.

In method 5, the model with the 16 outputs corresponding to T1 has 15 choices to classify non-polyp images.
Similarly, the Medico test dataset has more non-polyp images than polyp images. However, the model corre-
sponding to T2 has a 50% chance to classify both polyps and non-polyps. As a result, the model of T1 shows
better performance than the model of T2 in Figure 10(i). Because this shows a slight performance change, we
cannot see the same difference in ROC and PR curves in Figure 11(a) and (c). In contrast, T2 in the plot in
Figure 10(j) shows performance improvement when the model has a 50:50 chance for classifying polyps and
non-polyps. This improvement occurred as a result of a large number of polyps in the CVC-12k dataset. The
ROC and PR curves in plots in Figure 11(b) and (d) show this performance difference precisely. In other words,
the model of T2 has a better chance of classifying polyps compared to the 1/16th chance in the model of T1.

The retrained models corresponding to T3, T4, and T5 do not show considerable performance changes for the
Medico test dataset, as we can see from plots in Figure 10(i), (a), and (c). Conversely, the retraining method used
in T3, T4, and T5 for the CVC-12k dataset shows large performance changes in the plots in Figure 10(j), (b), and
(d). However, these methods show an overall performance loss. More comparisons on these plots are discussed
in Section 6.

For the following experiments, we analyzed method 5 even further. The main focus of this analysis is to
understand the behavior of the best model for training only the MLP versus training the whole DNN. In this
experiment, we collected results for two main test datasets: the Medico test dataset and the CVC-12k dataset.
Then, we collected performance measures from the two training mechanisms: training only the MLP and training
the whole DNN. Furthermore, results were tabulated in Table 8, and corresponding graphs were depicted in
Figure 12 to analyze them.

The first row of Figure 12 shows the differences in the performance of testing with the Medico test data.
In the second row, it presents the performance changes for the CVC-12k dataset. The dotted lines in plots in
Figure 12 represent training MLP. Similarly, the dashed lines represent training the whole DNN. The three plots
of each row represent results of retraining the model with the Medico training data and CVC-356-plus dataset,
the Medico training data and CVC-612-plus dataset, and the Medico training data and both CVC-356-plus and
CVC-612-plus datasets, respectively.

According to the plots in Figure 12(a) through (c), it is clear that retraining the whole DNN can be used to
improve the overall performance of the DNN model because we can see performance improvement in these plots
except in Figure 12(b), which shows closely equal performance metrics. However, in test cases with the CVC-12k
dataset, it shows a completely new behavior for retraining the whole DNN as depicted in Figure 12(d) through (f).
These plots show large changes in the performance hexagons with considerable positive improvements for the
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Fig. 12. Behavior of the complex DNN method (method 5) while training only MLP compared to training the whole DNN.
The first row shows the effects for both cases when the test dataset is the Medico test data, and the second row shows
the result when the test dataset is the CVC-12k dataset. T1, T2, and T3 represent the training dataset used for the model.
(T1, Medico training dataset + CVC-356; T2, Medico training dataset + CVC-612; T3, Medico training dataset + CVC-356 +
CVC-612.)

recall and considerable performance loss for the specificity values. This experiment also shows that researchers
could be misled by the performance monitoring process of DNN methods using a single dataset. In other words,
according to the first row of the figure, researchers may conclude that retraining the whole DNN is a positive
factor. However, the results of the second row prove that it is not always true by showing performance losses
for the same technique.

The results presented in plots in Figure 12 show difficulties in adapting ML models for cross-dataset general-
ization with a different perspective. In that experiment, the performance loss in specificity, which is a parameter
of reflecting True Negative (TN) detection, shows that method 5 is affected by imbalanced data in the CVC-12k
dataset. The main reason for the effect is that the CVC-12k dataset contains a lower percentage of negative
images compared to positive ones. This reflects an important factor to take into account when developing gen-
eralizable ML models, which is that the ratio of negative and positive findings needs to be taken into account
when looking at metrics. Metrics such as MCC are better suited to interpret results. In terms of ROC compared
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to the PR curve, the results show that the PR curve reflects the performance of the model more realistically than
ROC.

6 DISCUSSION
In this section, we present our findings and point out several important considerations for future research. Our
discussion follows the same sequence as our contributions in this article.

In our experiments, combinations of ResNet-152, DenseNet-161, and an additional MLP produced the best
result for the Medico 2018 dataset. The reported results from this model for the Medico Task led us to hold
second place based on the MCC values calculated by organizers, and there was only a tiny gap of around 0.0029.
Furthermore, the winning team of this competition used additional data items that were made by photo-editing
tools for the imbalanced classes, such as the out-of-patients class. In contrast to this, our method 5 works well
without using manually annotated data items because of the procedure we followed to implement and train that
model. The procedure of implementing such a complex model is described step by step in Section 4.3, and anyone
can follow these steps to get a well-performing DL model in a classification task.

In addition to the implementation and the procedure used in method 5, the data-filling mechanism used to fill
the out-of-patient imbalance class shows impressive performance gain. This method is preferred when one class
has a small number of data items in a multi-class classification task. In our work, without annotating more data
ourself, which also requires the help of medical experts, we prefer to use random images from the Internet, as
described in Section 5.1. This is an efficient way to add more data items without spending more time on manual
annotation or creating synthetic data items. The preceding method works because the random images influence
the ML models to make a wider range of possibilities to classify images into a particular class.

Dyed-lifted-polyps, dyed-resection-margins, esophagitis, and normal-z-line raised classification conflicts in
our best method (method 5). If we could overcome these conflicts, then the model would perform better than
the current recorded performance in the 2018 Medico Task. To identify the reasons for these classification con-
flicts, we manually investigated the images of these classes. If we compare sample images of dyed-lifted-polyps
(Figure 1(c)), dyed-resection-margins (Figure 1(d)), esophagitis (Figure 1(e)), and normal-z-line (Figure 1(i)), then
we can identify that this conflict was caused as a result of similar texture and shapes of these images. To over-
come this problem, researchers can select only the images that made the conflict and train a new DL model to
classify them into the correct classes. Then, this model can be added to the model introduced in method 5 using
the property of its expandability.

Can we use our best DL model for real systems in hospitals to classify GI findings? Or can we use the state-of-
the-art ML classification models introduced by researchers in real applications? Toward answering this question,
this article focuses on deep evaluations of the proposed methods as one of the main contributions. Regularly,
researchers present the performance of their classification models using only a test dataset, which was reserved
from the dataset used to produce the training data. In addition, they measure the performance by selecting only
a few measurements out of the REC, PREC, SPEC, ACC, MCC, and F1. However, we emphasize the requirements
of an in-depth analysis of all of these six parameters at once to identify the real performance of ML models.
Several of the works listed in Table 1 do not use this methodology as part of their evaluations. This makes it
difficult to reason about the real-world performance of the proposed methods and how they compare with other
methods. In this article, we also consider the importance of evaluating ML models with cross-datasets.

Why do we need cross-dataset evaluations? To explain this requirement, we consider the research work done
by Wang et al. [75]. They presented an area under the ROC curve of 0.984 and a per-image sensitivity of 94.38 for
polyp detection. In our first look, these results show a good DL model. Similarly, our results in Figure 10(i) and
11(a) and (c) reflect the same impression in the first look because it shows excellent performance as a DL model.
However, after analyzing cross-dataset performance for polyp detection with a completely new dataset like CVC-
12k, we recognized that performance gain is not enough for applying it in real applications. Therefore, from this
work, we emphasize that researchers want to consider cross-dataset evaluations thoroughly before applying
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their solutions in real-world applications. Otherwise, the selection bias, the capture bias, and the category bias
(label bias) problems may appear in the results. Then, we may end up with the wrong conclusion about research
works. All of these facts imply that more research must be performed to improve the generalizability along with
the performance improvement on a single dataset or single data source.

7 CONCLUSION
We studied cross-dataset bias and evaluation metrics interpretation in ML using five methods and four different
datasets within the field of GI endoscopy as respective use case. In particular, we performed an extensive study of
ML models in the context of medical applications based on a use case of GI tract abnormality classification across
different datasets. The main conclusion and resulting recommendation is that a multi-center or cross-dataset
evaluation is important, if not essential, for ML models in the medical field to obtain a realistic understanding of
the performance of such models in real-world settings.

We found that the combination of DNN ResNet-152 and DenseNet-161 with an additional MLP performed best
on both the validation and test datasets. This model shows that a combination of multiple pre-trained DNN mod-
els can have better capabilities to classify images into the correct classes because of their cumulative decision-
making capabilities. We also proposed an evaluation method using six measures: REC, PREC, SPEC, ACC, MCC,
and F1. Moreover, we suggest that these measures should be presented all at once using hexagon plots that con-
vey a complete view of real performance. It is our hope that these tools can enable a more realistic evaluation
and comparison of ML methods.

Furthermore, we presented cross-dataset evaluations to identify the generalizability of our ML models, empha-
sizing the fact that achieving high scores for evaluation metrics does not always represent the real performance
of ML models and should be interpreted with care. By evaluating the ML models with cross-datasets experiments,
we showed the complexity of understanding the real functional performance of the models. The state-of-the-art
research works that perform classification cannot be used in practical applications because of their lack of gen-
eralizability. Based on the experimental results, we conclude that researchers should focus on implementing and
researching generalizable ML models with cross-dataset evaluations. Rather than presenting metrics calculated
from a simple training and testing split of the data, we suggest to always rely on cross-dataset evaluation to obtain
a real-world representative indication of model performance. This is especially important in a medical context
because one has to make sure that the obtained models are reliable and not just perform well on a specific dataset.

Finally, we want to point out that the lack of generalization, as evidenced by the poor result for cross-dataset
evaluation presented in this article, rises a very important question: in the context of cross-dataset or multi-
center studies, is it really possible to have generalizable ML models? This is something that we ourselves plan
to investigate further in future work, and it is ou hope that other researchers in computer science and medicine
will do the same or at least have the question in their mind when performing similar studies.
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Machine Learning-Based Analysis 
of Sperm Videos and participant 
Data for Male fertility prediction
Steven A. Hicks1,2*, Jorunn M. Andersen3,5, Oliwia Witczak3,5, Vajira Thambawita  1,2, 
pål Halvorsen1,2, Hugo L. Hammer1,2, Trine B. Haugen3,6 & Michael A. Riegler1,4,6

Methods for automatic analysis of clinical data are usually targeted towards a specific modality and 
do not make use of all relevant data available. In the field of male human reproduction, clinical and 
biological data are not used to its fullest potential. Manual evaluation of a semen sample using a 
microscope is time-consuming and requires extensive training. Furthermore, the validity of manual 
semen analysis has been questioned due to limited reproducibility, and often high inter-personnel 
variation. The existing computer-aided sperm analyzer systems are not recommended for routine 
clinical use due to methodological challenges caused by the consistency of the semen sample. Thus, 
there is a need for an improved methodology. We use modern and classical machine learning techniques 
together with a dataset consisting of 85 videos of human semen samples and related participant data 
to automatically predict sperm motility. Used techniques include simple linear regression and more 
sophisticated methods using convolutional neural networks. Our results indicate that sperm motility 
prediction based on deep learning using sperm motility videos is rapid to perform and consistent. 
Adding participant data did not improve the algorithms performance. In conclusion, machine learning-
based automatic analysis may become a valuable tool in male infertility investigation and research.

Automatic analysis of clinical data may open new avenues in medicine, though often limited to one modality, 
usually images1. Recently, however, trends have shifted to include data from other modalities, including sensor 
data and participant data2,3. Furthermore, advancements in artificial intelligence, specifically deep learning, have 
shown its potential in becoming an essential tool for health professionals through its promising results on numer-
ous use-cases1,4–6.

Male reproduction is a medical field that is gaining increased attention due to several studies indicating a global 
decline in semen quality during the last decades7,8 as well as geographical differences9. Semen analysis is a cen-
tral part of infertility investigation, but the clinical value in predicting male fertility is uncertain10. Standard semen 
analysis should be performed according to the recommendations made by the WHO, which includes methods of 
assessing semen volume, sperm concentration, total sperm count, sperm motility, sperm morphology, and sperm 
vitality11. Sperm motility is categorized into the percentage of progressive, non-progressive, and immotile spermato-
zoa. Sperm morphology is classified according to the presence of head defects, neck and midpiece defects, principal 
piece (main part of the tail) defects, and excess residual cytoplasm in a stained preparation of cells. Figure 1 shows 
an example of a frame extracted from a video of a wet human semen sample. The WHO has established reference 
ranges for various semen parameters based on the semen quality of fertile men whose partners had a time to preg-
nancy up to and including 12 months12. However, these ranges can not be used to distinguish fertile from infertile 
men. Manual semen analysis requires trained laboratory personnel, and even when performed in agreement with 
the WHOs guidelines, it may be prone to high intra- and inter-laboratory variability.

Attempts to develop automatic systems for semen analysis have been carried out for several decades13. CASA 
was introduced during the 1980s after the digitization of images made it possible to analyze images using a com-
puter. A more rapid and objective assessment of sperm concentration and sperm motility was expected by using 
CASA, but it has been challenging to obtain accurate and reproducible results13. The results may be unreliable 
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due to particles and other cells than spermatozoa in the sample as well as the occurrence of sperm collisions and 
crossing sperm trajectories. Better results are obtained when analyzing spermatozoa separated from seminal 
plasma and re-suspended in a medium. CASA was also developed for assessment of sperm morphology and DNA 
fragmentation in the sperm. It is claimed that new models can also assess vitality and that some functional tests 
of a semen sample are possible13. However, the assessments require special staining or preparation procedures. 
Despite its long history as a digitized sperm analyzer, CASA is not recommended for clinical use11,13. The tech-
nology, however, has been improved, and it has been suggested that using CASA for sperm counting and motility 
assessment can be a useful tool with less analytical variance than the manual methods14,15.

Concerning automatic semen analysis in general, Urbano et al.16 present a fully automated multi-sperm tracking 
algorithm, which can track hundreds of individual spermatozoa simultaneously. Additionally, it is also able to meas-
ure motility parameters over time with minimal operator intervention. The method works by applying a modified 
version of the jpdaf to microscopic semen recordings, allowing them to track individual spermatozoa at proximities 
and during head collisions (a common issue with existing CASA instruments). The main contribution made by 
Urbano et al. is the modified jpdaf algorithm for tracking individual spermatozoa, but by only evaluating the pro-
posed approach on two samples, the generalizability of the method to a larger population is difficult to determine.

Dewan et al.17 present a similar method, tracking spermatozoa by generating trajectories of the cells across 
microscopic video sequences. Similar to CASA, object proposals are generated through a greyscale edge detection 
algorithm, which is then tracked to generate object trajectories. These trajectories are then classified into “sperm” 
or “non-sperm” entities using a CNN, of which the “sperm” entities are used to estimate three quality measure-
ments for motility (progressive, non-progressive, and immotile), and the concentration of spermatozoa per unit 
volume of semen. The results seem promising but since the method was evaluated on a closed dataset, it is not 
possible to directly compare this approach with other methods.

Although not the focus in our work, another essential attribute for semen quality is measuring the number of 
abnormal spermatozoa present in a semen sample. Ghasemian et al.18 tried to detect abnormal spermatozoa by 
individually classifying human spermatozoa into normal or abnormal groups. Shaker et al.19 did a similar study 
to predict sperm heads as normal or abnormal by splitting images of sperm heads into square patches and using 
them as training data for a dictionary-based classifier. A common theme is that all automatic approaches, for both 
motility and morphology assessment, focus on one modality and do not incorporate other data into the analysis. 
Additionally, the evaluation is performed on a rather limited or closed data which hinders reproducibility and 
comparability of the results. In the presented work, we aim to contribute to the field of automated semen analysis 
in the following three ways: (i) to develop a rapid and consistent method for analyzing sperm motility automati-
cally, (ii) to explore the potential of multimodal analysis methods combining video data with participant data to 
improve the results of the automatic analysis, and (iii) to compare different methods for predicting sperm motility 
using algorithms based on deep learning and classical machine learning.

To the best our knowledge, no study has been performed on how deep learning and multimodal data analysis 
may be used to directly analyze semen recordings in combination with participant/patient data for the automated 
prediction of motility parameters. Using data from 85 participants and three-fold cross-validation, we observe 
that the initial results are promising. Thus, machine learning-based automatic analysis may become a valuable 
tool for the future of male infertility investigation.

Figure 1. Frame from a microscopic video of a human semen sample showing several spermatozoa (Olympus 
CX31 phase contrast microscope with heated stage, UEye UI-2210C camera, 400x magnification).
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Methods
Experimental design. Our main approach is the use of CNNs to analyze sequences of frames from video 
recordings of human semen under a microscope to predict sperm motility in terms of progressive, non-progres-
sive, and immotile spermatozoa. The video recordings are then combined with participant data to see how it may 
improve our methods using the multiple modalities available in our dataset. As there are no related works for 
which to compare directly, we first trained a series of machine learning algorithms to set a baseline for how well 
we can expect our deep learning-based algorithms to perform.

The presentation of our methods is divided into three parts. Firstly, we provide a description of the dataset 
used for both training and evaluation of the presented methods and the statistical analysis. Secondly, we detail 
how we trained and evaluated the methods based on classical machine learning algorithms. Lastly, we describe 
our primary approach of using deep learning-based algorithms to predict sperm motility in terms of progressive, 
non-progressive, and immotile spermatozoa. All experiments were performed following the relevant guidelines 
and regulations of the Regional Committee for Medical and Health Research Ethics - South East Norway, and the 
General Data Protection Regulation(GDPR).

Dataset. For all experiments, we used videos and several variables from the VISEM-dataset20 [https://data-
sets.simula.no/visem/], a fully open and multimodal dataset with anonymized data and videos of semen samples 
from 85 different participants. In addition to the videos, the selected variables for the analysis included manual 
assessment of sperm concentration and sperm motility for each semen sample and participant data. Participant 
data consisted of age, BMI, and days of sexual abstinence. In the experiments, the videos and participant data were 
used as independent variables whereas the sperm motility values (percentage of progressive, non-progressive 
sperm motility, and immotile spermatozoa) were used as the dependent variables. We also performed an addi-
tional experiment to test the effect of sperm concentration if added as an independent variable to the analysis.

Details on the collection and handling of semen samples have previously been described by Andersen et al.21.  
Briefly, the semen samples were collected at a room near the laboratory or at home and handled according to 
the WHO guidelines11. Samples collected at home, were transported close to the body to avoid cooling and ana-
lyzed within two hours. Assessment of sperm concentration and sperm motility was performed as described 
in the WHO 2010 manual11. Sperm motility was evaluated using videos of the semen sample, and all samples 
were assessed by one experienced laboratory technician. 10 μl of semen were placed on a glass slide, covered 
with a 22 × 22 mm cover slip and placed under the microscope. Videos were recorded using an Olympus CX31 
microscope with phase contrast optics, heated stage (37°C), and a microscope mounted camera (UEye UI-2210C, 
IDS Imaging Development Systems, Germany). Videos for sperm motility assessment were captured using 400× 
magnification and stored as AVI files. The recordings vary in length between two to seven minutes with a frame 
rate of 50 frames-per-second.

Statistical analysis. For all experiments, we report the MAE calculated over three-fold cross-validation to get 
a more robust and generalizable evaluation. Furthermore, statistical significance was tested by a corrected paired 
t-test, where a p-value below or equal to 0.05 was considered significant. Usually, t-test is based on the assumption 
that samples are independent. However, samples in the folds of cross-validation are not independent. Therefore, a 
fudge factor is needed to compensate for the not independent samples22. The significance test showed that all results 
with an average MAE below 11 are significant improvements compared to the ZeroR baseline. For ZeroR, which is 
also commonly known as the null model, the cross-validation coefficient is defined with a Q2 value of 0. This means 
that the ZeroR predictions are equal to the average calculated over the entire training dataset.

Baseline machine learning approach. For the machine learning baseline, we relied on a combination 
of well-known algorithms and handcrafted features. To extract features from the video frames, we used the 
open-source library Lucene Image Retrieval (LIRE)23. LIRE is a Java library that offers a simple way to retrieve 
images and photos based on color and texture characteristics. We tested all available features (more than 30 dif-
ferent ones) with all machine learning algorithms (more than 40 different ones), but in this work, we only report 
the features that worked best with our machine learning algorithms, which were the Tamura features. Tamura 
features (coarseness, contrast, directionality, line-likeness, regularity, and roughness) are based on human visual 
perception, which makes them very important in image representation. Using the Tamura image features, partic-
ipant data and a combination of both, we trained different algorithms to perform prediction on the motility vari-
ables. We performed a total of three experiments per tested algorithm; one using only Tamura features, one using 
only participant data, and one combining the Tamura features with the participant data through early fusion.

Since the Tamura features are sparse compared to deep features, we used a slightly different approach for 
selecting frames from the videos. Each video was represented by a feature vector containing the Tamura features 
of two frames per second (the first and the middle frame) for the first 60 seconds. In total, we had 120 frames per 
video and a visual feature space consisting of 2160 feature points. These features were then used to train multiple 
machine learning algorithms using the WEKA machine learning library24. We conducted experiments with all 
available algorithms, but report only the six best performing ones. The reported algorithms are Simple Linear 
Regression, Random Forests, Gaussian Process, Sequential Minimal Optimization Regression (SMOreg), Elastic 
Net, and Random Trees. One limitation of these algorithms is that they are only able to predict one value at a time, 
meaning we had to run them once for each of the three sperm motility variables.

Deep learning approach. For our primary approach, we use methods based on CNNs to perform regression 
on the three motility variables. For each deep learning-based experiment, we extracted 250 frame samples (single 
frames or frame sequences) from each of the 85 videos of our dataset. The reason for only extracting 250 frames 
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per video was due to some videos being too short for collecting more than 250 sequences of 30 frames, which is 
about 7,500 frames equalling about 2 minutes of video at 50 frames-per-second. This results in a total of 21,250 
frames used for training and validation. As we are evaluating each method using three-fold cross-validation, the 
split between the training and validation datasets is 14,166 and 7,083 frame samples, respectively.

Our deep learning approaches can be split into three groups. Firstly, we analyze raw frames as they are 
extracted from the videos. The analysis is done by looking at the raw pixel values from a single or a sequence of 
frames and using these to make a prediction. Secondly, we use optical flow to generate temporal representations 
of frame sequences to condense the information of the temporal dimension into a single image. The advantages 
of this representation is that it can model the temporal dependencies in the videos, and it is able to alleviate the 
hardware costs of analyzing raw frame sequences using CNNs. Lastly, we combine the two previous methods to 
exploit the advantages of both, by using the visual features of raw video frames together with the temporal infor-
mation of the optical flow representations.

The baseline for the deep learning approaches are the machine learning algorithms as described above and 
ZeroR. For each experiment, we predict the percentage of progressive spermatozoa, non-progressive sperma-
tozoa, and immotile spermatozoa for a single semen sample. In contrast to the classical machine learning algo-
rithms, neural networks can predict all three values at once. Figure 2 illustrates a high level overview of the 
complete deep learning analysis pipeline.

All deep learning-based models were trained using mse to calculate loss and Nadam25 to optimize the weights. 
The Nadam optimizer had a learning rate of 0.002, β1 value of 0.900, and β2 value of 0.999. We trained each model 
for as long as it improved with a patience value of 20 epochs, meaning if the mse did not improve on the valida-
tion set for 20 epochs, we stopped the training to avoid overfitting. The model used for evaluation was the one 
which performed best on the validation set, not the model from the last epoch. Furthermore, for each method we 
trained two models. One model uses only frame data, and the other uses a combination of the frame data and the 
related participant data (BMI, age, and days of sexual abstinence). To include the participant data in the analysis, 
we first pass a frame sample through the CNN. Then, we take the output of the last convolutional layer and glob-
ally average pool it to produce a one-dimensional feature vector which is concatenated with the participant data. 
This combined vector is then passed through two fully-connected layers consisting of 2,048 neurons each before 
being making the final prediction (shown in Fig. 2). In the following few sections, we will describe six different 
methods used to predict sperm motility; a method using single frames for prediction, a method which stacks 
frames channel-wise, a method using vertical frame matrices, a method based on sparse optical flow, a method 
based on dense optical flow, and a method based on two-stream networks.

Single frame prediction. For the single frame-based method, we extracted 250 single frames from each video 
and used this to train various CNNs models based on popular neural network architectures (such as DenseNet26, 
ResNet27, and Inception28). We experimented using transfer learning from the ImageNet29 weights included with the 
Keras30 implementations of the different CNN architectures and found that, in general, using these weights as a base 
for further training worked better than training from scratch. Note that we did not fine-tune the models, meaning 
we did not freeze any layers during training. We only report the model which performed best, which in our case 
was a ResNet-50 model implemented in Keras with a TensorFlow31 back-end. The frames were resized to 224 × 224 
before being passed through the model, which is the recommended size for the ResNet-based architectures27.

Figure 2. The deep learning pipeline used for all multimodal neural network-based experiments. Starting with 
our dataset, we extract frame data into four different representations. These four different “images” are sent to 
the image preparation were we either pass a single image or stacked images to a convolutional neural network 
(CNN). The CNN is trained to learn a model that captures the spatial or spatial and temporal combined features 
of sperm motility. This is based on the image representation and preparation (stacking or single frame). The 
output of the CNN model is then combined with the participant data. This combined vector is passed through 
two fully-connected layers before performing multivariate prediction on the three motility variables.
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The single frame-based approach is simple and comes with some obvious limitations. Most notably, we lose 
the temporal information present within the video. Losing the temporal information may be acceptable when 
measuring attributes that rely on visual clues, such as morphology, but for motility the change over time is an 
important feature.

Greyscale frame stacking. The Grayscale Frame Stacking method is an extension of the single-frame prediction 
approach. Here, we extract 250 batches of 30 frames and greyscaled them before stacking them channel-wise 
(shown in Fig. 3). This results in 21,250 frame samples with a shape of 224 × 224 × 30, which contains the infor-
mation of 30 consecutive frames. The reasons for greyscaling the frames before stacking them is two-fold. Firstly, 
seeing as the color of the videos are a feature of the microscope and lab preparation, and not the spermatozoon 
itself, we assume that this feature may confuse the model in unintended ways. Secondly, greyscaling the frames 
reduces the size of each frame by three, making stacking 30 frames feasible on less powerful hardware. The moti-
vation behind this approach was to keep the temporal information present in a given frame sequence, yet still, 
keep the size of the input relatively small.

These extracted frame sequences were used to train a ResNet-50 model implemented in Keras30. Note that 
because we changed the size of the channel dimension, we could not perform transfer learning as we did in the 
previous method. Apart from this, the model was trained in the same manner as described in the beginning of the 
Deep Learning Approach section.

Vertical frame matrix. To create the vertical frame matrix, 250 batches of 30 frames were extracted and grey-
scaled. Each frame was resized to 64 × 64 before being flattened into a one-dimensional vector. The reason for 
resizing each frame was to keep the length of the flattened images relatively short. With a size of 64 × 64, the final 
vector had a length of 4096. Each vector was then stacked on top of each other which resulted in a matrix with 
a shape of 30 × 4096 × 1. Examples images using this transformation can be seen in row four of Fig. 4. Similar 
to the Greyscale Frame Stacking approach described in the previous section, we condense the information of 
multiple frames into a single image, which we can then pass through a standard two-dimensional CNN. Due to 
size constraints, the model used for this method was ResNet-18. Otherwise, it was trained in the same way as the 
previous two methods.

Sparse optical flow. For the Sparse Optical Flow approach, we use Lucas-Kanade’s32 algorithm of estimating 
optical flow. What makes sparse optical flow “sparse,” is that we only measure the difference between a few tracked 
features from one frame to another. In our case, we use Harris and Stephens corner detection algorithm33 to detect 
individual sperm heads (implemented in OpenCV34 as “goodFeaturesToTrack”). Then, we track the progression 
of each spermatozoon using Lucas-Kanade’s algorithm over a sequence of 30 frames. Similar to the previous 
methods, sequences were sampled at evenly spaced intervals to maximize differences between optical flow rep-
resentations. We used a CNN model based on the ResNet-50 architecture implemented in Keras and trained using 
the same configuration described previously. Examples for the sparse optical flow image representation can be 
seen in row two of Fig. 4.

Dense optical flow. The Dense Optical Flow approach generates optical flow representations using Gunner 
Farneback’s algorithm35,36 for two-frame motion estimation. Dense optical flow, in contrast to sparse optical flow, 
processes all pixels of a given image instead of a few tracked features. For this method, we tried two configura-
tions. The first configuration measures the difference between two consecutive frames. The second configuration 
adds a stride of 10 frames between selected frame samples. This is done to increase the measured difference 
between frame comparisons. We collected 250 dense optical flow images and trained one model for each of the 
two configurations to evaluate the result of this method. For both stride configurations, we train each model using 
the same architecture (ResNet-50) and training configuration as for the other deep learning methods. Examples 
for the created image representations using the dense optical flow can be seen in row three of Fig. 4.

Figure 3. An illustration of how frames are stacked channel-wise after being greyscaled. From a video, a 
sequence of n frames are extracted and greyscaled. These frames are then stacked channel-wise, meaning 
each frame occupied one channel-dimension of the final image. The final stacked “image” is then of shape 
224 × 224 × 30.
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Two-stream network. For the last approach, we combine the two previous methods (visual features of 
raw frames and the temporal information of optical flow), which is inspired by the work done by Simonyan 
and Zisserman’s36, where they used a dual-network to perform human action recognition and classification. The 
model architecture follows a similar structure as described in their article, with the difference being how we input 
the optical flow representations into the model (we do not stack multiple optical flow representations for different 
sequences).

Based on this modification, we propose three different methods. Firstly, we use the dual network to analyze 
one raw video frame in parallel with a Lukas-Kanade sparse optical flow representation of the previous 30 frames. 
Secondly, we process one raw frame together with a Farneback’s dense optical representation. Lastly, we again 
use one raw frame, but now we combine both the Lukas-Kanade and Farneback’s optical flow method by stack-
ing them channel-wise and pass these together through the network. Frames were extracted in the same way as 
performed for the Single Frame Prediction approach, and the optical flow representations were reused from the 
Optical Flow-based experiments.

ethical approval and informed consent. In this study, we used fully anonymized data originally collected 
based on written informed consent and approval by the Regional Committee for Medical and Health Research Ethics 
- South East Norway. Furthermore, we confirm that all experiments were performed in accordance with the relevant 
guidelines and regulations of the Regional Committee for Medical and Health Research Ethics - South East Norway, 
and the GDPR.

Figure 4. Examples of images from videos of semen samples with different concentrations (columns) and the 
four image representations used to train the neural network-based algorithms (rows). Sperm concentration; (A) 
4 per x106/mL, (B) 33 per x106/mL, (C) 105 per x106/mL, (D) 192 per x106/mL, and (E) 350 per x106/mL. Image 
representation; (1) original video, (2) sparse optical flow, (3) dense optical flow, and (4) vertical frame matrix.
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Results and Discussion
A complete overview of the results for each method can be seen in Tables 1 and 2. A chart comparing the results 
is presented in Fig. 5. Table 1 presents the results for the classical machine learning algorithms trained on partici-
pant data, Tamura image features, and a combination of the two. For these results, the Gaussian Process, SMOreg, 
and Random Forests have a MAE below 11, which according to the paired t-test analysis is significant. One 
interesting finding is that for all cases where participant data is added, the algorithm performs worse. Although a 
preliminary result, for BMI this is not in line with the finding in our previous work Andersen et al.21, where BMI 
was found to be negatively correlated with sperm motility using multiple linear regression. However, the methods 
are very different and therefore not directly comparable. As future work, we plan to perform an extensive analysis 
of all methodologies on a new dataset. Another interesting insight gained from this experiment is that the Tamura 
features seem to be well suited for sperm analysis, which will be interesting to investigate more closely.

Since sperm concentration is an important confounding variable when assessing sperm motility by CASA, 
we performed additional experiments using the two best-performing algorithms to investigate whether or not it 
had any influence. For the Random Forest, we achieved a MAE of 11.091 when including sperm concentration, 
compared to 10.996 when we did not. For SMOReg, the MAE was 10.902 with and 10.800 without. This minor 
difference in error indicates that our method is not gaining or losing any predictive power when including sperm 
concentration in the analysis, which can be seen as an advantage compared with CASA systems.

To assess the performance of the deep learning-based methods, we used the best performing classical machine 
learning approach (SMOreg with a MAE of 10.800) and ZeroR as a baseline. In Table 2, the results for single and 
multimodal deep learning approaches are shown. For most of the experiments, the deep learning models outper-
form the best machine learning algorithm (SMOreg) by a margin of one or two points. The two methods which 
are not significant better than ZeroR are the two-stream neural networks, which combined the two optical flow 
representations in a custom network.

We hypothesize that this is related to the fact that these networks are not able to learn the association between 
the temporal information of the optical flow and the visual data of the raw frame. Similar to the machine learn-
ing algorithms, all methods which combined the participant data with the videos performed worse than those 
without, leading to the same conclusion as previously discussed. Thus, in our study, adding patient data does not 
improve the results compared to using only video data, regardless of the algorithms used. If these findings also 
apply to other patient data needs to be further investigated.

The best performing approaches were a near tie between the method Channel-wise Greyscale and Dense 
Optical Flow using a stride of 1 or 10 (see Fig. 5). The Channel-wise Greyscale approach achieved a MAE of 8.786, 
which is two points lower than that of the best performing classical machine learning algorithm (see Table 2). The 
two Dense Optical Flow methods have the same performance as the Channel-wise Greyscale approach but using 
one-tenth of the image size, which makes them faster and less computational resource demanding.

Classical Machine Learning Results

Method Progressive Non-progressive Immotile
Average Mean 
Absolute Error

Baseline

ZeroR 17.260 7.860 13.660 12.927

Participant Data Only

Elastic Net 15.198 9.525 13.441 12.721

Gaussian Process 15.556 9.762 13.474 12.931

Simple Linear Regression 15.416 9.281 13.601 12.766

SMOreg 15.355 9.441 12.959 12.585

Random Forests 13.312 8.886 11.905 11.368

Random Tree 17.801 10.952 14.984 14.579

Tamura Image Features Only

Elastic Net 14.400 7.750 12.190 11.447

Gaussian Process 13.230 7.260 11.920 10.803

Simple Linear Regression 13.520 8.170 12.690 11.460

SMOreg 13.220 7.260 11.920 10.800

Random Forests 13.530 7.400 12.060 10.997

Random Tree 18.700 9.960 16.520 15.060

Tamura Image Features and Participant Data

Elastic Net 14.130 9.890 11.750 11.923

Gaussian Process 13.700 10.120 11.460 11.760

Simple Linear Regression 13.940 10.240 11.410 11.863

SMOreg 13.710 10.140 11.460 11.770

Random Forests 13.510 10.000 11.340 11.617

Random Tree 18.660 13.270 16.960 16.297

Table 1. Prediction performance of the machine learning-based methods in terms of mean absolute error for 
each of the motility values and the overall average. The best performing algorithm in each category is in bold.
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It is important to point out that the 250 frames used in the analysis were extracted evenly distributed across 
the entire video length. This means that if there were a noticeable reduction in sperm motility after a certain 
amount of time, it would be taken into account by the algorithm. The results also support this assumption as the 
deep learning methods outperformed all classical machine learning methods. This is one of the advantages of the 
deep learning-based methods presented here.

Deep Learning Results

Method Progressive
Non-
progressive Immotile

Average Mean 
Absolute Error

Raw Frame Data Approach

Single Frames (ResNet50) 13.162 8.024 10.967 10.718

Single Frames (ResNet50) + PD 13.659 8.196 12.293 11.383

Channel-wise Greyscale 10.498 7.037 8.822 8.786

Channel-wise Greyscale + PD 11.599 7.849 10.132 9.860

Vertical Frame Matrix 11.149 8.218 9.418 9.595

Vertical Frame Matrix + PD 11.182 8.199 9.274 9.552

Optical Flow Approach

Sparse Optical Flow 11.573 7.263 10.155 9.664

Sparse Optical Flow + PD 12.214 7.760 10.802 10.259

Dense Optical Flow (stride = 1) 10.191 7.114 8.914 8.740

Dense Optical Flow (stride = 1) + PD 10.795 7.856 8.745 9.132

Dense Optical Flow (stride = 10) 10.319 7.546 8.782 8.882

Dense Optical Flow (stride = 10) + PD 11.386 7.825 9.734 9.648

Two Stream Network Approach

Two Stream Sparse 15.888 8.187 13.326 12.467

Two Stream Sparse + PD 16.435 8.197 13.172 12.601

Two Stream Dense (stride = 1) 14.583 7.393 11.996 11.324

Two Stream Dense (stride = 1) + PD 18.166 8.570 15.983 13.940

Two Stream SP + DE (stride = 1) 11.848 7.070 10.823 9.917

Two Stream SP + DE (stride = 1) + PD 17.304 8.066 13.783 13.051

Table 2. Prediction performance of the deep learning-based methods in terms of mean absolute error for each 
of the motility values and overall mean. Note that for each method, we trained two models, one with participant 
data and one without. Methods which used participant data under training are marked with (+PD). For the 
methods which use dense optical flow, stride represents the number of frames skipped when comparing the 
difference of two frames.

Figure 5. The different machine learning-based algorithms (classical and deep learning) used to predict semen 
quality in terms of progressive, non-progressive, and immotile spermatozoon. The stippled line represents the 
threshold for the results to be considered significant compared to the ZeroR baseline. The y-axis does not start 
at 0 to better highlight the differences. For the methods which used dense optical flow, stride values, how many 
frames are skipped when comparing two frames, are presented with a 1 or 10 indicating the number of skipped 
frames. Dense Optical Flow (1) and Channel-wise Greyscale are the best-performing ones but, several of our 
proposed methods are below the significance threshold.
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In terms of time needed for the analysis, all presented methods perform the prediction within five minutes, 
including data preparation which takes most of the time. This is considerably faster than manual sperm motility 
assessment would be. The classical machine learning methods are faster to train, but in terms of application of the 
model, the speed is comparable with the deep learning methods.

Conclusion and Future Work
Overall, our results indicate that deep learning algorithms have the potential to predict sperm motility con-
sistently and time efficiently. Multimodal analysis methods combining video data with participant data did not 
improve the prediction of sperm motility compared to using only the video data. However, it is possible that 
multimodal analysis using other participant data could improve the prediction. Our results indicate that the deep 
learning models can incorporate time into their analysis, and therefore are able to predict motility values better 
than the classical machine learning algorithms. In the future, deep learning-based methods could be used as an 
efficient support tool for human semen analysis. The presented methods can easily be applied to other relevant 
assessments such as automatic evaluation of sperm morphology.

Efficient analysis of long videos is a challenge, and future work should focus on how to combine the different 
modalities of time, imaging, and patient data. The dataset used in this study is also shared openly to ensure com-
parability and reproducibility of the results. Furthermore, we hope that the methods described in this work will 
inspire to further development of automatic analysis within the field of male reproduction.

Data availability
The dataset used for all experiments is publicly available at https://datasets.simula.no/visem/ for non-commercial 
use. The data is fully anonymized (no keys for re-identification are stored).
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ABSTRACT
In this paper, we analyse two deep learning methods to predict
sperm motility and sperm morphology from sperm videos. We use
two different inputs: stacked pure frames of videos and dense optical
flows of video frames. To solve this regression task of predicting
motility and morphology, stacked dense optical flows and extracted
original frames from sperm videos were used with the modified
state of the art convolution neural networks. For modifications of
the selected models, we have introduced an additional multi-layer
perceptron to overcome the problem of over-fitting. The method
which had an additional multi-layer perceptron with dropout layers,
shows the best results when the inputs consist of both dense optical
flows and an original frame of videos.

1 INTRODUCTION
Our main goal of this task is to predict the sperm motility and sperm
morphology from videos of sperm samples. In the 2019 Medico task
[8], a video dataset was provided with ground truth values of sperm
motility such as progressive motility, non-progressive motility, and
immotility, and sperm morphology such as head defects, tail de-
fects, and midpiece and neck defects. This task was introduced as
completely new this year, and therefore, we could not find any
previous work in previous mediaeval Medico task competitions
[14, 15]. In this competition, the VISEM dataset [6] which contains
sperm videos recorded from 85 participants is used. In the dataset
paper, the authors presented baseline mean absolute error values for
motility and morphology. Moreover, the importance of computer-
aided sperm analysis can be identified from the research works
which have been done to develop automatic sperm analysis method
in last few decades [3, 13, 19].

Video analysis is a hot research topic in the field of deep learning.
Some researchers are experimenting with video classification [2],
detection [1], segmentation [5], and generations [12, 18] for various
type of video datasets. Yue-Hei Ng et al. [20] experimented with
video classification problem using well knows datasets such as
sports-1M [10] and UCF101 [16]. In these experiments, they have
generated dense optical flow images and row frames of videos
to classify 120 seconds long videos. In this paper, we use very
short video segments such as nine frames compared to these long
segments such as 120s X 30 frames/s.

To solve this new regression problem of predicting morphology
and motility from videos of sperm samples, this paper presents
two deep learning methods where we used extracted dense optical
flows and raw frames from the videos. In Section 2, we are going
Copyright 2019 for this paper by its authors. Use
permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).
MediaEval’19, 27-29 October 2019, Sophia Antipolis, France
Github: https://github.com/vlbthambawita/
MedicoTask_2019_paper_1

(a) Original frame (b) Dense optical flow -
stride 1

(c) Dense optical flow -
stride 10

Figure 1: Sample images used to construct input image
stacks into the models

to present our two types of input data and two types of methods
used in our experiments. Then, the results collected from these
experiments will be discussed in Section 3. Finally, the paper ends
up with conclusions and future work in Section 4.

2 APPROACH
We have selected the pre-trained ResNet-34 [7] to do some basic
experiments of predicting sperm motility and sperm morphology us-
ing stacked normal raw video frames and a combination of stacked
dense optical flows and raw frames of videos. In this paper, we
obtain experimental results using two different types of inputs and
from two different types of models.

2.1 Preprocessing data
To find estimates for the sperm motility and sperm morphology,
we first preprocessed the input videos to generate two types of
input. In the first type (dataset - D1), we stacked nine consecutive
frames from a video to make a single input data point. A sample of
a raw frame of a video is given in Figure 1a. Before stacking raw
video frames, we converted the RGB format frames of the video into
grayscale images and resized them into 256x256. These nine frames
represent nine different consecutive frames of a video. Moreover,
we collected 250 stacked data points (chunks) from 250 locations in
time from a video as described above.

For the second type of input (dataset - D2), we generated a
tensor with nine channels, which consists of a three-channels (RGB)
original video frame (Figure 1a), a three-channels dense optical flow
image of stride 1 (Figure 1b), and a three-channels image of dense
optical flow of stride 10 (Figure 1c). The dense optical flow image
of stride 1 was generated from two consecutive video frames from
a selected location of a video. Then, we generated the stride-10
dense optical flow image using two frames; the first frame of the
video chuck and the 10th frame of a selected video chunk. To
generate dense optical flows [4] of two different frames of a video,
the OpenCV library [9] was used with its inbuilt functions.
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Figure 2: Big picture of our deep learning model: M1 - the
base model of Resnet-34 with a three output last layer, M2
- the modified version of Resnet-34 with an additional MLP,
D1 and D2 represent the two different types of input used in
our experiments.

For both input types, we split the datasets into three folds based
on the folds given in the video dataset provided by organizers. Then,
a three-fold cross-validation was performed to evaluate our deep
learning models which will be introduced in the later sections.

2.2 Deep learning model implementation
For implementation of our deep learning models, we selected Resnet-
34 which is larger than the smallest, Resnet-18, and smaller than
other large scales Resnet models like Resnet-50, Resnet-101, and
Resnet-152. The selections of this intermediate Resnet-34 was done
based on expandability of the model by adding additional multi-
layer perceptron (MLP) within the available hardware resources
(considering memory limitations of the available graphics process-
ing units). In addition to that, the pre-experiments were done to
identify over-fitting problems of strong models for simpler predic-
tions and computation time required to finish training. Furthermore,
expandability of the number of input channels of the model within
the available GPU memory was examined.

For method 1 (M1), we modified the input layer of the selected
pre-trained Resnet-34 to take nine channel inputs and modified
the last layer of the model to output only three values which are
representing either three values of sperm motility or three values
of sperm morphology. We used this method as our base model with
the two different datasets (D1 and D2) as introduced in Section 2.1
and recorded results collected from this experiment in D1-M1 and
D2-M1 rows in Table 1.

In method 2 (M2), to avoid over-fitting problems of this task,
we have embedded additional MLP to the end of the network with
dropout layers [17]. The full structure of this additional MLP is
depicted in Figure 2 using a green colour. The dropout values of
this MLP were selected using pre-experiments, and it is a hyper-
parameter for this model. The collected results of this method are
tabulated in rows D1-M2 and D2-M2 of Table 1.

In the training process of all the above methods, the Adam opti-
mizer [11] with a learning rate 0.001 was used. The mean square
error (MSE) was used as the loss function for back-propagating
error, and mean absolute error (MAE) was used for calculating the
actual loss of predictions based on ground truth values of motility
and morphology.

Table 1: MAE values collected from the proposed methods:
D1-stacked gray-scale nine consecutive frames, D2-stacked
an original frame + a dense optical flow image from two con-
secutive frames + a dense optical flow from two frames with
stride=10; M1 - the basic model of Resnet-34 with modifi-
cations of number of input channels and outputs, M2 - the
modified model with an additional MLP with dropout layers

Motility Morphology
Input Method Fold MAE Average MAE Average

D1

M1
Fold 1 9.562

9.200
5.626

5.649Fold 2 8.959 5.749
Fold 3 9.079 5.573

M2
Fold 1 9.585

9.185
5.424

5.394Fold 2 9.28 5.382
Fold 3 8.689 5.375

D2

M1
Fold 1 9.044

9.372
5.933

5.525Fold 2 8.062 5.394
Fold 3 11.01 5.248

M2
Fold 1 8.612

8.825
5.549

5.293Fold 2 7.873 5.463
Fold 3 9.991 4.868

3 RESULTS AND ANALYSIS
According to the average MAE values shown in Table 1, the M2
method with the input type 2 (D2) shows best results among other
methods and other input types. This method shows the best MAE
value of 8.825 for the sperm motility and 5.293 for the sperm mor-
phology. This improvement of error values can be seen as results
of accumulated benefits of showing pre-processed temporal infor-
mation such as dense optical flows to the model and the additional
MLP to overcome the problem of over-fitting. Moreover, the added
MLP in M2 gives better results with both input types (D1 and D2)
for both predictions: sperm motility and sperm morphology. We
achieved this performance as a result of the pre-processed input
data with dense optical flows and the MLP introduced to overcome
the over-fitting problem.

4 CONCLUSION AND FUTURE WORK
The input with a raw frame and dense optical flows of two difference
stride values show better results compared to the stacked normal
frames of videos. Moreover, the modified Resnet-34 model with an
MLP which consists of dropout layers with high probabilities did
achieve better results than the base model in the both cases because
it helped to overcome the problem of over-fitting in the training
stage. Finally, the combination of the input with dense optical flows
and the modified Resnet-34 with an additional MLP shows the best
overall performance.

In future work, it is worth to try CNN models with long short-
term memory units to capture temporal features of video frames.
Moreover, a 3D CNN can be a promising approach for this kind of
task because 3D CNN models have capabilities to capture temporal
information of videos.
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ABSTRACT
In this paper, we present a two-step deep learning method that
is used to predict sperm motility and morphology based on video
recordings of human spermatozoa. First, we use an autoencoder
to extract temporal features from a given semen video and plot
these into image-space, which we call feature-images. Second, these
feature-images are used to perform transfer learning to predict the
motility and morphology values of human sperm. The presented
method shows it’s capability to extract temporal information into
spatial domain feature-images which can be used with traditional
convolutional neural networks. Furthermore, the accuracy of the
predicted motility of a given semen sample shows that a deep
learning-based model can capture the temporal information of
microscopic recordings of human semen.

1 INTRODUCTION
The 2019 Medico task [7] focuses on automatically predicting se-
men quality based on video recordings of human spermatozoa.
This is change from previous years which have mainly focused
on image classification of images taken from the gastrointestinal
tract [10, 11]. For this year’s task, we look at predicting the mor-
phology and motility of a given semen sample. Motility is defined
by three variables, namely, the percentage of progressive, non-
progressive, and immotile sperm. Morphology is determined by the
percentage of sperm with tail defects, midpiece defects, and head
defects. The organizers have provided a dataset consisting of 85
videos of different semen samples and a preliminary analysis of
each, which is used as the ground truth. For this competition, the
organizers have provided a predefined three-fold split of the VISEM
dataset [5], which contains 85 videos from different participants
and a preliminary analysis of each semen sample. In the dataset
paper, the authors presented baseline mean absolute error (MAE)
values for motility and morphology. Furthermore, the importance of
computer-aided sperm analysis can be identified from the previous
works which have been done over the last few decades [3, 9, 12].

To solve this year’s task, we propose a deep learning-based
method consisting of two steps - (i) unsupervised feature extraction
using an autoencoder [1] and (ii) video regression using a standard
convolutional neural networks (CNN) and transfer learning. The au-
toencoder we use is different from the state-of-the-art autoencoders
used to extract video features [2, 13] as they use autoencoders to
extract feature vectors which are used with long-short memory
models or multi-layer perceptron (MLP)s. In contrast, we use au-
toencoders to extract feature-images for use in CNNs.
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2 APPROACH
Our method can primarily be split into two distinct steps. First,
we use an autoencoder to extract temporal features from multi-
ple frames of a video into a feature-image. Second, we pass the
extracted feature-image into a standard pre-trained CNN to pre-
dict the motility and morphology of the spermatozoa in a given
video. In this paper, we present the preliminary results for four
experiments based on four different input types. The first input
type (I1) uses a single raw frame. Input type two (I2) is a stack of
identical frames copied across the channel-dimension. The third
(I3) and fourth (I4) input type stack 9 and 18 consecutive frames
from a video respectively.

The first two experiments (using I1 and I2) were performed as
baseline experiments. The two other experiments (using I3 and
I4) were performed to see how the temporal information affects
the prediction performance of the approach. For all input types,
we split the extracted datasets into three folds based on the folds
provided by the organizers. Then, three-fold cross-validation was
conducted to evaluate our four experiments. An overview of all
experiments is shown in Figure 1.

2.1 Step 1 - Unsupervised temporal feature
extraction

In step 1, we trained an autoencoder that takes an input frame or
frames (I1, I2, I3 or I4) from the sperm videos as depicted in Figure 1.
Then, the encoder of the autoencoder extracted feature-images and
passed them through the decoder architecture to reconstruct the
input frame or frames back (R1, R2, R3, and R4). These extracted
feature-images are different from traditional feature extractions of
autoencoders because the traditional autoencoders extract feature
vectors instead of feature-images. In this autoencoder, the mean
square error (MSE) loss function is used to calculate the difference
between input data and reconstructed data. Then, this error value
is backpropagated to train the autoencoder. After training 2,000
epochs, we use the encoder architecture of the autoencoder model
to step 2.

2.2 Step 2 - CNN regression model
We have selected the pre-trained ResNet-34 [6] as our basic CNN to
predict the values of motility and morphology of the sperm videos.
However, any pre-trained CNN could be chosen for this step and
in future work we will test and compare different ones in more
detail. Firstly, we take an input frame or frames (I1, I2, I3 or I4)
and pass through the pre-trained encoder model (only the encoder
section of the autoencoder model) which was trained also from the
same data inputs in an unsupervised way. Then, the outputs of the
encoder model were passed through the CNN model which has a
modified last layer to output three prediction values for motility or
morphology.
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Figure 1: A big picture overview of our two step deep learning model: Step 1 - an autoencoder architecture used to extract
image features, Step 2 - the pre-trained Resnet-34 CNN for predicting the regression values of motility and morphology, I1, I2,
I3 and I4 - input frames extracted from the video dataset, R1, R2, R3 and R4 - reconstructed data corresponding to the input
data I1, I2 I3 and I4, sample 4 feature frames shows extracted 4 feature images from the autoencoder after training 2000 epochs
(actual resolution of a feature image is 256X256 which is equal to the original frame size of the input data)

3 RESULTS AND ANALYSIS
According to the average MAE values shown in Table 1, the average
motility values of input I3 and I4 shows the best results among other
motility values of input I1 and I2. These performance improvements
imply that our model is able to learn temporal features into a spatial
feature image representation. Furthermore, input I4 which uses 18
stacked frames shows the best motility average values compared
to input I3. This performance gain shows that to predict the sperm
motility in sperm videos, it is better to analyze more frames at
the same time. This might be due to the fact that the behaviour of
sperm is something that needs to be observed over time and not in
single frames. Moreover, the predictions for our base case inputs I1
and I2 show the same average values. This shows that our model
learns temporal information from different sperm video frames.
Otherwise, it would be shown different average values for our two
base case inputs I1 and I2.

When we consider the predicted morphology average in Table 1,
it shows values that are almost equal to each other. This is ex-
pected because the morphology of a sperm is something that can
be observed using a single frame. In contrast to predicting accurate
morphology, the predicted morphology values support the prove
that our model has the capability to learn temporal data from mul-
tiple frames because motility predictions show an improvement
when we increase the number of frames analyzed simultaneously.

4 CONCLUSION AND FUTURE WORKS
In this paper, we proposed a novel method to extract temporal
features from videos to create feature-images, which can be used
to train traditional CNN models. Furthermore, we show that the

Table 1: Mean absolute error values collected from the pro-
posed method from different inputs: I1, I2, I3 and I4

Motility Morphology
Input Fold MAE Average MAE Average

I1
Fold 1 13.330

13.017
5.698

5.715Fold 2 12.880 5.748
Fold 3 12.840 5.698

I2
Fold 1 12.890

13.017
5.573

5.606Fold 2 13.010 5.593
Fold 3 13.150 5.653

I3
Fold 1 10.850

10.970
5.567

5.632Fold 2 11.310 5.748
Fold 3 10.750 5.580

I4
Fold 1 9.462

9.427
5.900

5.777Fold 2 9.426 5.738
Fold 3 9.393 5.692

feature-images capture temporal present in a sequence of frames,
which can be used to predict the motility of the sperm videos.

This method can be improved by using different error functions
to force the model to learn more temporal data. For example, re-
searchers can experiment with variational autoencoders [8] and
generative adversarial learning methods [4] to improve this tech-
nique. Additionally, it may be beneficial to embed long short-term
memory units to investigate how our feature-images compare to
actual extracted temporal features.
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ABSTRACT
The BioMedia 2020 ACM Multimedia Grand Challenge is the second
in a series of competitions focusing on the use of multimedia for
different medical use-cases. In this year’s challenge, participants are
asked to develop algorithms that automatically predict the quality
of a given human semen sample using a combination of visual,
patient-related, and laboratory-analysis-related data. Compared to
last year’s challenge, participants are provided with a fully multi-
modal dataset (videos, analysis data, study participant data) from
the field of assisted human reproduction. The tasks encourage the
use of the different modalities contained within the dataset and
finding smart ways of how they may be combined to further im-
prove prediction accuracy. For example, using only video data or
combining video data and patient-related data. The ground truth
was developed through a preliminary analysis done by medical
experts following the World Health Organization’s standard for
semen quality assessment. The task lays the basis for automatic,
real-time support systems for artificial reproduction. We hope that
this challenge motivates multimedia researchers to explore more
medical-related applications and use their vast knowledge to make
a real impact on people’s lives.
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1 INTRODUCTION
The BioMedia 2020 ACM Multimedia Grand Challenge1 is a com-
petition that aims to introduce multimedia researchers to differ-
ent medical-related tasks that solve real-world challenges. Last
year [10], the goal was to automatically analyze images and videos
taken from routine investigations of the human digestive tract in
order to identify disease, anatomical landmarks, or other relevant
findings. This year, we move the focus to assisted reproduction and
how multimedia researchers can aid in the development of tools
that help determine the quality of a given semen sample. This chal-
lenge is the next version of the 2019 Medico: Multimedia for Medicine
task, which has previously been held at MediaEval Benchmark [10].
Furthermore, the challenge was discussed in the tutorial Medical
Multimedia Systems and Applications [8] at ACM Multimedia 2019,
where attendees showed much interest in this multimodal problem.
As the task requires an analysis of a combination of different data
modalities, we find that it is a perfect fit for ACM Multimedia and
that there is a high chance of making a real impact on the field of
human reproduction.

Assessment of semen is usually performed during the early
stages of male infertility testing. This is mostly a manual pro-
cess, where trained clinicians inspect semen samples through a
microscope and count the number of different sperms with cer-
tain qualities, like the number of moving or not moving sperm,
to evaluate quality [4]. As one might expect, this is a tedious and
time-consuming process that could greatly benefit from some au-
tomation. Furthermore, due to the subjective nature of manually
inspecting large numbers of moving sperm, there is a large inter-
and intra-observer variability between and within clinics. Having
an algorithm that can give consistent results for any given semen
sample would be of great benefit. This year, we present four different
tasks, each targeting a different aspect of sperm quality assessment.
The first two tasks relate to predicting common measurements used
for general fertility testing, specifically the motility (movement)
and morphology (shape and structure) of the spermatozoa (living
sperm). These two tasks encourage participants to combine all avail-
able data modalities and data sources to make predictions. Besides

1https://www.biomediachallenge.com
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Figure 1: Sample video frames taken from the dataset. Note the variety of number of cells in the different video samples.

the quantitative and measurable tasks, we also have a more subjec-
tive part (optional). Participants are asked to come up with a tool
that can help medical doctors choose an ideal sperm for assisted
reproduction. This could be as simple as providing an interface to
aid in manual tracking to more advanced methods such as unsuper-
vised spermatozoa tracking. The winner of this sub challenge will
be chosen by the majority vote of three andrology experts through
testing the tool in a clinical setting. The assessment will primarily
be based on the usefulness and novelty of the idea.

We provide a dataset consisting of 85 videos, a set of sperm char-
acteristics (such as hormones or fatty acids data), anonymized study
participants-related data, and preliminary analysis data collected ac-
cording to the World Health Organization’s standards [20] (ground
truth for sperm quality assessment). It is a typical assumption that
visual analysis, as provided by the computer vision and medical im-
age processing communities today, is capable of already providing
viable and practical approaches to healthcare multimedia challenges.
Automatic analysis of human semen is an active field of research
supported by several studies on the topic [1, 3, 6, 7, 11, 15, 17].
However, a common theme is that approaches usually focus on one
modality and do not incorporate other data sources into their anal-
ysis. Although we concede that these methods are indeed essential
contributors to promising approaches, we realize the limitations
of analyzing images and videos independently in medical fields,
such as endoscopy or ultrasound, because of the complexity and
needs of medical experts and patients. Neither does it make enough
use of the multitude of additional information sources, including
sensors and temporal information. The challenge can be seen as
very challenging and hard to solve. Due to its novel use-case, we
hope to motivate many researchers to look into the field of medical
multimedia [16]. Performing research that can have a societal im-
pact will be an essential part of multimedia research. We hope that
the challenge can help raise awareness of the topic and provide
exciting and meaningful use-cases to researchers.

2 DATASET DETAILS
The challenge uses an open dataset called VISEM [9], which con-
tains data from 85 free-willing male participants aged 18 years or
older. For each participant, the dataset presents a set of data col-
lected from a standard semen analysis, which includes a video of
the spermatozoa under a microscope, a sperm fatty acid profile, the
fatty acid composition of serum phospholipids, participants-related
data, and set of preliminary analysis data collected in accordance to
the WHO guidelines. The dataset contains a wide variety of samples
with varying quality. As we can see in Figure 1, samples vary from
containing just a few cells to containing a lot.

The dataset contains over 35 gigabytes of videos, with each video
lasting between two to seven minutes. Each video has a resolution of
640×480 and runs at 50 frames-per-second. The dataset contains six
CSV-files, a description file, and a folder containing the videos. Each
video file’s name contains the videos ID, the date it was recorded,
and a small description. Then, the end of the filename contains the
code of the person who assessed the video. Furthermore, VISEM
contains five CSV-files for each category of sensor/patient-related
data, a CSV-file with the IDs linked to each their video, and a text
file containing descriptions of some of the columns of the CSV-files.
One row in each CSV-file represents one participant. In addition to
the videos, we provide pre-extracted features for all videos in the
dataset.

The features contain a collection of visual features (Tamura, JCD,
Edge histogram, and color histogram [14, 18]). All visual features
were extracted from the first two frames of every second for sixty
seconds of each video. To extract the features, we use the open-
source library LIRE [14]. For the final evaluation, participants were
asked to use three-fold cross-validation on a pre-defined split of the
dataset to calculate the final results. The VISEM dataset [9] is pub-
licly available2 for participants and other multimedia researchers
without any restriction. All study participants agreed to donate
their data for science and provided the necessary consent for us to

2https://datasets.simula.no/visem
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be able to distribute the data (checked and approved by Norwegian
data authority and ethical committee).

3 TASKS AND EVALUATION METRICS
This year, we present four different tasks, of which two are required
to participate in the challenge. For evaluating the first two tasks,
we primarily use the mean absolute error (MAE) to compare sub-
missions and report a series of other metrics that the participants
may decide to use in their report. For both tasks, we asked partic-
ipants to perform video analysis over single frame analysis. This
is important since single frame-based analysis will not be able to
catch the movement of the spermatozoa, which contains essential
information to perform the predictions. For the optional challenges,
we use manual evaluation with the help of three experts within hu-
man reproduction. The experts will deliver a subjective assessment
of the submissions based on the delivered result’s clinical viability.
The script used to evaluate all quantitative submissions is published
online for transparency and reproducibility3.

3.1 Prediction of Motility Task
One of the most common measurements used to evaluate a per-
son’s semen quality is looking at the motility of the spermatozoa
contained within. Healthy spermatozoon should move at a rapid
pace in a forward trajectory. If not, it may be a sign that the sperm
will not perform as well. This task aims to predict the percentage
of progressive, non-progressive, and immotile sperm in a given
semen sample. Motility is the ability of an organism to move inde-
pendently. Where a progressive spermatozoon can "move forward",
a non-progressive would move in circles without progression. An
immotile sperm does not move at all. The number of progressive,
non-progressive, and immotile spermatozoon should sum up to
100%, meaning every sperm in the sample should be counted.

Submissions to this task should be a CSV file containing the
percentage of progressive, non-progressive, and immotile sperma-
tozoon for a given sample. The prediction needs to be performed
sample wise resulting in one set of predictions per video sample.
No sperm tracking or bounding boxes are required to solve the
task. The goal is to maximize the algorithm’s performance in terms
of prediction accuracy. In this context, accuracy will be evaluated
based on the achieved MAE, which is calculated over three-fold
cross-validation on the provided test dataset split.

3.2 Prediction of Morphology Task
Morphology is a branch of biology dealing with the study of an
organism’s form and structural features. In the context of semen,
doctors often examine the three parts that make up a spermatozoon,
which includes the head, midpiece, and tail, to see if there are any
defects. Defects are common and could hamper the spermatozoa
ability to move, making it less likely to fertilize. This task should
predict the percentage of sperm with head defects, midpiece defects,
and tail defects.

Similar to the motility task, the submission to this task should
be a CSV file containing the percentage of cells with head defects,
percentage of cells with midpiece defects, and the percentage of
cells with tail defects. Morphology analysis only requires sample
3https://github.com/simula/biomedia-2020-submission-evaluation

wise prediction resulting in one value per sample per predicted
attribute, meaning one set of predictions per video sample. No
sperm tracking or bounding boxes are required to solve this task.
For evaluation, we apply the same principals as described under
the prediction of motility task.

3.3 Unsupervised Sperm Tracking Task
Finding an optimal sperm for use in assisted reproduction can be
crucial for fertilization success. However, detecting the "correct"
spermatozoon can be difficult as they can move fast and be sur-
rounded by spermatozoa and other debris. In the first optional task
of the challenge, we ask participants to find the spermatozoon that
moves faster than all others. This task requires that task partici-
pants track the spermatozoa. Within the tracked ones, the fastest
is defined as either:

(1) Fastest average speed - The spermatozoon that moves the
longest distance during the video (total distance/length of
the video). This can then be calculated summarizing the
different positions (in pixels) between each frame and divide
on the number of frames.

(2) Highest top speed - The spermatozoon that has the highest
average speed across the entire duration of the video. This
can be calculated using the maximum of the differences
between frames.

A challenge with this task is that the videos change view through-
out the sample. This happens because the sample is moved below
the microscope to observe the complete sample area. Therefore,
the tracking has to be performed per viewpoint on the sample. We
decided to keep the submission format to this task quite open, and
leave it to the participants to deliver the information in the way that
they see fit. Three separate andrology experts will do the evaluation,
where they emphasize the correctness of the selected spermatozoa
and how well the information is presented.

3.4 Sperm Tracking Support Tool
As previously mentioned, the current procedure for analyzing se-
men is through manual counting of spermatozoa, which is both
tedious and time-consuming. To alleviate this process, we ask par-
ticipants to come up with a tool that can assist medical experts
better in observing and choosing sperms. This could be as simple
as providing an interface with different filters that allow for better
control of the tracking of spermatozoa. The tool’s quality is decided
via a majority vote from three medical experts in the field testing
the tool. The assessment will focus on the usefulness and novelty of
the idea (not user interface or usability in terms of human-computer
interaction).

Submission to this task should be a GitHub repository containing
the code and a short README containing setup and usage instruc-
tions for the submitted software. The submission will be evaluated
by three separate andrology experts, who will assess how useful the
software would be in a real-world clinic. Participating teams will
get a report containing the final evaluation and a few pointers on
where the software could be improved to be more clinically viable.
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4 DISCUSSION AND OUTLOOK
In this paper, we described the BioMedia 2020 challenge, which is
the second part of a series of medical related challenges held at
ACM Multimedia. This year, the challenge focuses on automatic
semen analysis and the development of tools to aid clinicians in
finding the optimal spermatozoa for fertilization. We presented four
different tasks, two of which were optional, where participants were
given an open dataset consisting of video recordings and related
sensor data from 85 free-willing participants. Last year, five teams
participated in BioMedia.

Only one team participated in the this years challenge. We be-
lieve multiple factors influenced the lack of participating teams this
year. First of all, COVID-19 has and still is making a large impact on
people’s lives and their ability to work, which may have affected the
number of people who were able to participate. Another possible
reason for the lack of participation could be that assisted reproduc-
tion has certain cultural barriers that make it a difficult topic to
work with [2, 5, 13, 19, 21]. This is also supported by the fact that a
lot of people were interested in the task, but in the end, only one
team submitted. Another limiting factor could be that this year the
task was truly multimodal, and it requires a lot of effort to analyze
data in a multimodal manner. BioMedia’s primary purpose is to
encourage multimedia researchers to explore the field of medical
multimedia. In the future, we hope to continue the challenge over
the next few years with different medical use-cases each year. The
2021 version will focus on mental health [12] using multimodal data
from a variety of different data sources. In conclusion, we believe
that the multimedia community can have a great impact on the field
of medicine. We can already see several works in that direction to
support our effort in encouraging even more researchers to follow
that path.
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Explaining deep neural networks 
for knowledge discovery 
in electrocardiogram analysis
Steven A. Hicks1,2,7*, Jonas L. Isaksen3,7, Vajira Thambawita1,2, Jonas Ghouse3, 
Gustav Ahlberg3, Allan Linneberg3, Niels Grarup3,4, Inga Strümke1, Christina Ellervik3, 
Morten Salling Olesen3, Torben Hansen3,4, Claus Graff5, Niels‑Henrik Holstein‑Rathlou3, 
Pål Halvorsen1,2, Mary M. Maleckar6, Michael A. Riegler1,7 & Jørgen K. Kanters3,7

Deep learning‑based tools may annotate and interpret medical data more quickly, consistently, and 
accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical 
decision‑making, any deep learning‑based prediction should be accompanied by an explanation that 
a human can understand. We present an approach called electrocardiogram gradient class activation 
map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep 
learning‑based decision‑making in ECG analysis. Attention maps may be used in the clinic to aid 
diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical 
tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep 
learning model measures both amplitudes and intervals in 12‑lead electrocardiograms, and we show 
an example of how attention maps may be used to develop novel ECG features.

Deep learning methods have the potential to become essential tools for diagnosis and analysis in medicine. 
Automatic analysis of electrocardiograms (ECGs) is a field with a long history and many different  approaches1–5, 
but recent years have shown that deep learning works better than traditional  methods6. However, this family of 
machine learning algorithms may also bring much uncertainty and confusion among the medical practitioners 
they aim to help because of lacking understanding of how these algorithms work. Despite the impressive results 
in areas like  radiology7,  dermatology8, and  cardiology9–11, deep neural networks are often criticized for being 
difficult to explain and for providing little to no insight into why they produce a given result (the so-called "black-
box phenomenon")12. Since doctors are accountable for their diagnoses, a black-box approach is  unacceptable13,14.

History has shown that doctors in practice prefer simpler, although inferior algorithms to their neural net-
work-based counterparts, primarily because the simple algorithms are more  interpretable15. Lack of insight has 
in some cases of machine learning led to obvious mistakes, which has been overlooked because the black-box 
decision did not allow for interpretation of the neural network  predictions16,17. A classic example comes from 
deep learning in radiology (X-ray of the thorax), where the neural networks effectively distinguished between 
lung cancer and pneumonia simply by predicting the referring department from various labels in the image and 
not the relevant parts of the X-ray images. When the network is presented with X-rays without similar depart-
ment labels, the network fails to distinguish between lung cancer and  pneumonia7. This study is a good example 
of a mistake rooted in the differences between training and test data distribution. The neural network learned 
data-specific features that did not generalize to data from outside its domain. This simple but grave mistake 
could have easily been discovered with an explanation of the predictions where one could easily have observed 
what the network recognized as the most important feature for its predictions. Hence, it is clear that we need 
to understand the decisions of the neural network. In this respect, recent developments in explainable artificial 
intelligence (AI) have shown progress in shedding light on these black-boxes, which seems imperative if deep 
learning is to be implemented in  clinics18. Generally, explanations are produced for image data and classification. 
In this work, we present a method that can obtain explanations for classification and prediction/regression tasks 
on non-image data. Specifically, we look at ECG where AI has become an emerging topic, where interpretable and 
explainable results of both classification and prediction will be crucial for clinical implementation and research.
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In the field of electrocardiography, a 12-lead ECG is a recording of the electrical activity of the heart using ten 
electrodes placed on the patient’s thorax and limbs. The ECG consists of a set of voltage time-series, with several 
characteristic waves (see Fig. 1), which each carry clinical information about the state of the heart. The timing 
and the amplitude of these waves contain essential information associated with morbidity and  mortality19–22. The 
ECG is one of the cheapest and most commonly used medical procedures, and the availability of large training 
data sets makes the ECG well-suited for neural network analysis. While automated analysis of ECGs has been 
a topic of research since the early  1960s23, recently, we have seen an introduction of machine learning in ECG 
analysis. Deep learning has shown to be successful in using features that may indicate cardiac arrhythmias or 
other  diseases10.

Incorporating explainability into medical decision-making has three potential advantages. First, for imple-
menting deep learning in the clinic, where medical decisions may be a matter of life and death, a deep learning 
algorithm that explains how it arrived at a particular decision allows the prevention of rare but potentially fatal 
mistakes. Such mistakes may be the result of shortcomings in the training of the algorithm (such as biased or 
narrow training data) or noisy or faulty input data leading to unexpected and extreme decisions. Explainability 
thus provides a higher level of trust and transparency in the clinical setting because a doctor can understand 
what the algorithm bases its predictions  on24,25. This may pave the way for the implementation of neural networks 
in clinical practice and reduce human error, resulting in fewer fatalities. Second, more explainable models may 
allow for the identification of novel features that may lead to a new understanding of the disease pathophysiology 
and increased diagnostic capability, which in the end may save lives. Suppose a deep learning algorithm success-
fully predicts sudden cardiac death using ECGs from a given population. If the algorithm can explain where the 
information is located in the ECG, we may combine medical knowledge of the ECG with that location making 
it possible to identify novel mechanisms of sudden cardiac death. This would potentially make it possible to 
identify an intervention or possible drug target to prevent untimely death. Third, making the algorithms more 
interpretable may be important from a legal perspective because one would be able to explain why a model made 
an incorrect decision and place responsibility accordingly.

The work presented in this paper has three primary contributions. First, we present the architecture of a 
residual convoluted neural network (CNN) and show that it is able to quantify intervals and amplitudes in the 
ECG more accurately than trained cardiologists are. Second, we present a modified version of the  GradCAM26 
algorithm called electrocardiogram gradient class activation map (ECGradCAM) and show how the resulting 
attention maps can be utilized for ECG analysis to understand, interpret, and learn from neural network predic-
tions. Third, we show how network and attention maps may be combined to identify novel features in the ECG 
by identifying a novel feature to determine the sex of a person based on an ECG.

Results
Automatic ECG analysis and data description. We define two case studies for model evaluation: a 
regression study, measuring standard, clinically relevant intervals and amplitudes from the ECG, and a classifica-
tion study to predict the sex from the ECG. Numerous cardiovascular diseases are diagnosed by measuring key 
intervals and amplitudes present in the  ECG27,28, and we leverage this to predict these intervals directly instead 
of categorizing ECGs into normal and abnormal groups. The predicted intervals and amplitudes include the PR 
interval, QRS duration, heart rate, J-point elevation, QT interval, R-wave amplitude, and T-wave amplitude (see 

Figure 1.  An annotated ECG representative beat and rhythm strip (top-right inset) with intervals (PR, QRS, 
QT) and amplitudes (R peak, STJ, T peak). Amplitudes are measured with respect to the baseline. STJ denotes 
J-point elevation. Heart rate is calculated as HR = 60,000/RR where RR is measured in ms.
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Fig. 1). By predicting these measurements directly, we allow for better interpretation of the results rather than 
limiting it to a predefined set of categories. The second case study looks at differentiating between male and 
female ECGs. This use case is motivated by the difficulty for humans to determine sex based on ECGs alone, 
making it a good candidate for visualization as one may find certain features that correlate to sex that have previ-
ously gone unfound.

All models are trained and evaluated on either raw 10-s 12-lead ECGs or on the 12SL-generated median 
beat from the GESUS  dataset29. The performance of all GESUS generated models is replicated in the Inter99 
 dataset30. The demographics of the study populations are summarized in Table 1. To evaluate the effect of ECG 
abnormalities on the prediction performance of our network, we tested the prediction errors on subgroups 
with bundle branch blocks (QRS ≥ 120 ms) or first-degree AV block (PR > 220 ms). Furthermore, to study the 
performance on ECG with strange, abnormal T waves, we used the existing T-wave Morphology Combination 
 Score31 to divide the ECGs into four different groups ranging from peaked to flattened T-waves. Supplementary 
Table S1 shows that the network performed only slightly worse in subjects with bundle branch block, AV block, 
and flattened T waves, respectively.

CNN results. The performance of our method for predicting ECG intervals and amplitudes is evaluated 
using quantitative regression metrics, as seen in Table 2. The primary metrics used for evaluation are the mean 
absolute error (MAE) as it is easily interpretable, and the root-mean-squared error (RMSE) as it is more sensitive 
to outliers. In Table 2, we see that every model beats the ZeroR-estimate (predicting the mean) by a large margin. 
This shows that the proposed architecture successfully analyzes the ECG, both in the voltage and time domains. 
For interval measurements, the MAEs are close to two samples (4 ms) for both the median beat and rhythm strip 

Table 1.  Characteristics of the participants in both population studies. Values are presented as median [fifth to 
ninety-fifth percentiles] for continuous measures and % (n) for categorical variables.

Variable GESUS (training) Inter99 (replication)

Number of samples (n) 8939 6667

Age (years) 56.6 [35.1; 78.4] 45.3 [34.5; 60.0]

Female sex 54.3% (4852) 51.2% (3412)

BMI (kg/m2) 26.1 [20.4; 35.3] 25.7 [20.2; 34.8]

Heart rate (bpm) 64 [48; 85] 66 [51; 86]

QT interval (ms) 408 [364; 460] 402 [362; 450]

PR interval (ms) 158 [126; 204] 156 [124; 196]

QRS duration (ms) 92 [76; 118] 90 [76; 110]

J-point elevation V5 (µV) − 5 [− 54; 48] 4 [− 35; 58]

R-peak amplitude V5 (µV) 1376 [698; 2,426] 1171 [600; 2,044]

T-wave amplitude V5 (µV) 346 [122; 698] 327 [122; 649]

Bundle branch block (QRS ≥ 120 ms) 4.4% (390) 1.6% (107)

1° AV block (PR > 220 ms) 2.0% (174) 0.9% (61)

Table 2.  Training and validation error in  GESUS25 and replication error in  Inter992.

Type Variables

Validation on GESUS 
(fivefold) Replication on Inter99

Zero R on 
Inter99

MAE RMSE MAE RMSE MAE RMSE

Median

QT Interval (ms) 3.26 ± 0.80 5.08 ± 0.40 3.13 ± 0.19 4.89 ± 0.19 21.7 27.4

PR Interval (ms) 2.82 ± 0.15 4.52 ± 0.49 2.73 ± 0.06 4.70 ± 0.23 17.6 22.8

QRS duration (ms) 2.98 ± 0.15 4.10 ± 0.22 2.58 ± 0.07 3.43 ± 0.07 9.0 11.6

Heart Rate (beats per min) 1.54 ± 0.07 2.44 ± 0.09 1.57 ± 0.06 2.33 ± 0.07 8.6 11.1

J-point elevation (µV) 8.16 ± 0.40 11.20 ± 0.69 5.77 ± 0.10 8.09 ± 0.12 22.2 29.0

T-wave amplitude (µV) 5.63 ± 1.31 15.2 ± 6.83 5.80 ± 1.13 16.10 ± 0.53 129.0 167.0

R-peak amplitude (µV) 8.60 ± 1.05 16.00 ± 4.13 8.30 ± 0.98 21.70 ± 0.71 413.0 501.0

Rhythm

QT Interval (ms) 3.97 ± 0.03 6.05 ± 0.39 3.62 ± 0.03 5.82 ± 0.20 21.7 27.4

PR Interval (ms) 3.67 ± 0.21 5.60 ± 0.60 3.58 ± 0.60 5.80 ± 0.31 17.6 22.8

QRS duration (ms) 3.08 ± 0.12 4.33 ± 0.17 3.39 ± 0.06 4.49 ± 0.07 9.0 11.6

Heart Rate (beats per min) 0.31 ± 0.01 0.40 ± 0.02 0.18 ± 0.01 0.6 ± 0.1 8.6 11.1

J-point elevation (µV) 10.50 ± 0.31 14.10 ± 0.50 7.90 ± 0.19 10.70 ± 0.24 22.2 29.0

T-wave amplitude (µV) 11.50 ± 0.43 25.00 ± 5.55 9.40 ± 0.41 19.40 ± 1.79 129.0 167.0

R-peak amplitude (µV) 20.10 ± 0.70 33.00 ± 4.54 17.4 ± 0.55 51.00 ± 13.21 413.0 501.0
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(10 s) measurements. Amplitude measurements varied similarly (the least significant bit is 4.88 µV), indicating 
that the network performed equally well with voltage and time-domain measurements.

Attention maps. To create meaningful and detailed visualizations, we modified the GradCAM approach so 
that visualizations are generated for each lead of the ECG, where the final attention maps are produced by aver-
aging the importance values across all leads. We call this method ECGradCAM since it can give a more accurate 
representation of what regions of the ECG are most important for the model. We focus our interpretation on 
the last layer of the last residual module of the neural network (as shown in Fig. 2). This corresponds to the final 
layer before prediction, meaning the visualizations show what areas of the ECG are deemed most important at 
the moment of prediction. It can also be useful to interpret the intermediate layers of a  network32 as these layers 
may offer insight into how the network’s perception changes and how it narrows down the analysis to the final 
result (see Supplementary Figure S1). Here, we note that the initial residual block recognizes several features 
in the ECG, which becomes more and more focused on the relevant wave as the ECG progresses through the 
residual layers.

The attention maps often highlight the areas we expect when predicting a specific interval or amplitude. 
Figure 3 presents a median ECG visualized for six of the predicted variables. For instance, the QRS complex is 
highlighted when we predict QRS duration, and the end of the T-wave is delineated along with the beginning of 
the QRS complex for QT interval measurement. For amplitude measurements, the corresponding wave top is 
correctly pinpointed by the attention maps. One should note that for amplitude measurements, other parts of the 
ECG are given minor importance, likely for the network to learn about the ECG voltage baseline. For intervals, 
secondary activations are also observed, such as the T-wave being highlighted when measuring the PR-interval. 
We hypothesize that these secondary activations may be happening because the network needs to appreciate the 
whole ECG in order to narrow its search down and perform the actual measurements. This is further supported 
by the PR interval attention maps generated for the intermediate layers (see Supplementary Figure S1), where 
the network highlights the QT in the former layers but less so at the moment of prediction.

Sex prediction. For a cardiologist, the task of determining a subject’s sex from the ECG is nearly impos-
sible. However, our network is able to correctly identify the sex with an accuracy of 89% (Table 3). Here, we can 
see the potential of attention maps, as the accuracy output from the network does not give any clue or insight 
into how the network made its decision on sex classification. The attention maps (see Fig. 4) clearly show that 
the ECG sex classification is mainly based on the QRS complex and more specifically on the downslope of the 
R-wave, offering new insight into electrophysiology. Using findings from the attention maps, we did a post-hoc 
analysis with logistic regression predicting sex using QRS duration, R- and S-amplitudes, and the timing of the 
R- and S-waves. It revealed an accuracy of 73% (our CNN: 89% QRS duration alone: 69%) and an AUC of 0.80 
(our CNN 0.96 QRS duration alone: 0.72). The wave blocking experiments (Table 3) verified this observation, 
since removing the P-wave has almost no influence on the accuracy of the sex prediction, removing the T-wave 
had only minor influence, whereas removing the QRS complex resulted in a drastic reduction in performance. 
This shows that one can obtain new knowledge by using our ECGradCam method combined with the deep 
neural network.

Human cardiologist vs neural network evaluation. To assess how the neural network compares to 
standard clinical decision making, we further evaluate the performance of our model by comparing its predic-
tions to predictions made by cardiologists who have manually annotated a set of twenty randomly selected ECGs 

Figure 2.  The convolutional neural network-based architecture used for all experiments. Each red block 
corresponds to a convolutional layer, the blue blocks represent a batch normalization layer, the yellow blocks are 
ReLU activations, and the green block represents average pooling. Besides these base building blocks, the model 
consists of eight residual modules (purple blocks) composed of two sequential blocks of convolution, batch 
normalization, and ReLU activation.
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from the Inter99 replication dataset. As seen in Table 4, the trained networks prove substantially more precise 
and consistent than human expert assessments. Human bias-corrected MAE and RMSE are around 15–20 ms, 
i.e., a factor 4 to 5× higher than the neural network. Errors in heart rate measurements are below one beat per 
minute (BPM) for the network but about 3 BPM for the human operators with multiple errors above 10 BPM. 
Amplitude measurements are much more difficult for humans, given the resolution of the digital ECG and the 

Figure 3.  Visualization of the attention maps generated for the interval and amplitude prediction models. As 
we can see from the plots, the model learns to inspect the waves and intervals that are related to the predicted 
variable. Red color indicates high importance and blue color low importance of the ECG for the decision of the 
neural network.

Table 3.  Mean absolute error (MAE) and accuracy (ACC) ± standard deviation measured on the replication 
dataset when blanking specific waves of a median heartbeat. Prediction errors increased dramatically when the 
feature in question is blanked out. Prediction errors also often increased slightly when other parts of the ECG 
are blanked. In the metric column, the arrow signifies whether higher or lower values are better, i.e., an arrow 
pointing downwards means that lower values are preferable.

Variable Metric Median ECG Blanking P-wave Blanking QRS complex Blanking T-wave

QT interval (ms) MAE ↓ 3.13 ± 0.21 3.20 ± 0.22 31.76 ± 6.34 47.35 ± 12.38

PR interval (ms) MAE ↓ 2.73 ± 0.06 32.95 ± 10.31 40.55 ± 5.88 3.84 ± 0.71

QRS duration (ms) MAE ↓ 2.58 ± 0.08 3.99 ± 0.48 40.55 ± 5.88 3.50 ± 0.10

Heart Rate (bpm) MAE ↓ 1.57 ± 0.07 2.92 ± 0.19 3.62 ± 1.89 4.79 ± 1.10

J-point elevation (µV) MAE ↓ 5.77 ± 0.18 6.43 ± 0.56 23.07 ± 3.29 8.62 ± 0.42

T-wave amplitude (µV) MAE ↓ 5.80 ± 1.29 6.13 ± 1.45 8.70 ± 1.49 339.04 ± 8.0

R-wave amplitude (µV) MAE ↓ 8.35 ± 1.12 8.64 ± 1.11 927.38 ± 16.0 10.48 ± 3.56

Sex classification (%) ACC ↑ 88.80 ± 0.7 87.50 ± 1.0 62.40 ± 6.6 79.80 ± 2.5
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accuracy of the human eye. For the R-peak amplitude, the network operates at an MAE of twice the least signifi-
cant bit at 4.8 µV. In contrast, the human reviewer operates with an MAE in the magnitude of half a millimeter 
(corresponding to 50 µV or 10 the times least significant bit).

Discussion
This paper identified three novel findings. First, we presented a residual CNN that reliably analyzes both ECG 
intervals (time dimension) and amplitudes (voltage dimension) independent of whether the ECG presented is 
a 10-s 12-lead ECG or a 1.2-s median representative beat. The architecture proved accurate for a variety of dif-
ferent ECG tasks. In all cases, CNN prediction outperformed the cardiologists by a large margin. Furthermore, 
with repeated blinded measurements, the cardiologists had a large intra-observer variation, whereas the neural 
network was very consistent in its predictions between folds. The MAE was between 3 and 4 ms correspond-
ing to two samples which is close to the physical obtainable lower limit (since the interval uncertainty consists 
of two cumulative uncertainties of 2 ms at each the end of the interval). In general, measurements were more 
accurate when using 1.2-s median beats compared to 10-s rhythm strips, except for heart rate. The generation of 
the median beat reduces noise by averaging all beats during the 10-s ECG, stretching each complex to minimize 
the influence of variations, making measurements more accurate. The exception of heart rate is not surprising 
since several ECG complexes are needed to properly estimate heart rate, and these are only found in the rhythm 
strip. More surprising is the finding that the neural network uses other features than the RR-interval to calculate 
heart rate and obtains a relatively good estimate from the single ECG complex of the median beat. In fact, the 
heart rate estimate from the median was only slightly worse than that based on the rhythm strip (see Table 2). 
Similar to human overreaders, the network performed slightly worse in subjects with conduction blocks. How-
ever, the increase in prediction error was small compared to the human overreader error, showing a satisfactory 
accuracy for clinical use. The QT interval is an important feature in the ECG because the interval is related to 

Figure 4.  Visualizations of the attention maps from the sex classification model for eight different ECGs. 
The plots suggest that the QRS-complex and especially the downslope of the R-wave is most important when 
distinguishing between a male and female ECG. Red color indicates high importance and blue color low 
importance of the ECG for the decision of the neural network.

Table 4.  Evaluation of twenty randomly selected ECGs by two experienced cardiologists. Bias is the average 
difference between the ground truth and the doctor/network. Mean absolute error (MAE*) is the bias-
subtracted mean absolute error, to account for the fact that there is no universal correct measurement for 
an ECG, ensuring that any personal bias does not contribute to the error (e.g., some doctors measure QT 
consistently shorter or longer than others). R: Pearson’s correlation coefficient between the doctor’s two 
measurements/the neural networks five folds. SD Standard deviation.

Variables Test set, mean ± SD

Neural network Doctor A Doctor B

Bias MAE* R Bias MAE* R Bias MAE* R

Heart rate (bpm) 71 ± 8 0.04 0.20 0.99 0.98 3.20 0.68 − 0.52 1,38 0.99

QT interval (ms) 392 ± 21 0.50 3.70 0.98 − 8.50 15.8 0.49 − 17.8 9.2 0.89

QRS duration (ms) 91 ± 10 − 3.30 3.00 0.98 − 7.80 11.9 0.39 − 7.6 8.22 0.55

PR interval (ms) 161 ± 16 − 2.50 4.70 0.99 5.90 8.00 0.87 6.45 9.01 0.82

R-peak amplitude (mm) 12 ± 4 0.02 0.16 0.99 0.57 0.42 0.98 0.06 0.50 0.95

J-point elevation (mm) − 0.04 ± 0.28 0.02 0.09 0.98 0.12 0.19 − 0.01 − 0.01 0.17 0.86

T-wave amplitude (mm) 3.00 ± 1.50 0.03 0.10 0.99 − 0.13 0.32 0.89 0.20 0.56 0.80
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sudden  death33. It is well known that abnormal T waves are difficult to measure correctly, which is important 
because these abnormal T waves are associated with increased  mortality34. As seen in the supplementary (Sup-
plementary Table S1), the network accurately measured even the most flattened T waves only marginally worse 
than the “easy-to-measure” peaked T waves with a sharp, well-defined end.

Second, we presented ECGradCAM attention maps for 12-lead ECG-analysis to explain how the network 
made its decisions. In medical practice, explainability is crucial because medical doctors are concerned that 
algorithms may produce erroneous results, either due to bias or trying to predict outcomes not appropriately 
represented in the training data. For example, measurement of the PR interval in a case of ventricular tachy-
cardia would be unreliable if the training set only consisted of ECGs taken in sinus rhythm. Interpretation and 
transparency should be at the forefront when developing new algorithms intended for medical use. Although the 
results suggest that deep learning could be an essential tool for cardiologists for doing analysis and interpretation 
of the ECG, it is doubtful that the neural network models without explanations of an estimate of uncertainty 
would be accepted by doctors.

The attention maps showed nicely that all amplitude measurements focused on the proper ECG wave, and in 
cases of interval measurements, both the beginning and the end of the specific interval are most often highlighted 
by the algorithm. The obscurity tests confirmed the attention map results. When we removed ECG waves used 
for the specific interval or amplitude measurement, the MAE increased dramatically, confirming the message 
from the attention maps that our CNN focused on the same features as human cardiologists, just more accurately 
and reliably. One may also notice that the network tries to extract information about the baseline from the ECG. 
Since we use batch normalization (a standard feature in neural networks to avoid exploding gradients), the net-
work had to get an idea of the magnitude of normalization to restore the absolute values needed for amplitude 
prediction. This may be why the network also focuses on more steady, constant parts of the ECG. By providing 
these explanations with a predicted variable, we allow the users to interpret the results with confidence that 
model had some notion of the traits that make up the variable in question.

Third, sex prediction is an excellent example of how neural networks combined with an explanation method 
can be used to discover novel medical knowledge. It is well known that there are sex differences in the ECG. 
Female ECGs, on average, have a longer QT interval, faster heart rate, and shorter QRS  duration35. However, 
if one were to ask a cardiologist to determine the sex based on an ECG alone, they would not be able to make 
a confident prediction. Recent studies using deep learning have shown that neural networks can differentiate 
between the sexes from the ECG  alone36, but the underlying reasoning is not provided. The attention maps 
indicate that the physiological background seems to be differences in the R-wave downslope, which may provide 
important mechanistic insight into the observed sex differences. We confirmed the findings by our neural net-
work that simple logistic regression with QRS duration, wave amplitudes, and timing (slopes can be inferred by 
wave amplitudes and timings) significantly improved sex prediction compared to QRS duration alone. Although 
adding the R-wave downslope to the QRS duration significantly increased sex prediction, the neural network still 
performed better than the logistic regression, most likely because the R-wave downslope is not the sole source 
of information. However, it is also possible that the R-wave downslope contains nonlinear information or that 
only part of the downslope is relevant. This study constitutes a scholarly example that the use of attention maps 
can assist scientists in discovering novel insights and identify hitherto unknown features for classification, which 
may lead to important physiological understanding. Classifying an appropriate outcome in a suitable popula-
tion, one may identify novel prognostic markers in the ECG for that outcome, which may lead to a suggestion 
for possible treatments.

Conclusions
This paper presented a study on interpreting deep learning models used for ECG analysis. We propose a neu-
ral network architecture that predicts multiple attributes of a standard median or 10-s rhythm ECG with low 
error. The model was compared against real-world cardiologists, and our model outperformed the cardiologists 
by a large margin. The predictions were interpreted using attention maps (ECGradCAM), which show how 
the network operates and confirmed that the neural network analyzes ECGs similarly to trained cardiologists. 
Furthermore, we show that the neural network can differentiate between male and female ECGs with over 90% 
accuracy. Using the ECGradCAM attention maps, we find that the down-slope of the R wave is a crucial feature 
of an ECG when determining sex. This emphasizes the need for more interpretable machine learning methods 
as they can be used to find new insights in rather mature medical fields such as ECG analysis. We believe that 
open and transparent systems are paramount for their adoption and use in medicine. Making high-risk decisions 
based on the output of a black-box algorithm is irresponsible and could potentially have fatal consequences that 
could easily be avoided. We hope this paper motivates a more thorough evaluation and interpretation of deep 
learning-based models applied to all of medicine and not only to ECGs.

Methods
Data populations. We use digital ECGs from two population studies. (1) The Danish General Suburban 
Population Study (GESUS)29 consisting of 8939 free-living subjects (age 56.5 ± 13.5, 54% females) at least 18 
years old from the Naestved municipality, 90 km south of Copenhagen, the Capital of Denmark, randomly cho-
sen. The study was approved by the local ethics committee (SJ-113, SJ-114, SJ-147, SJ-278). (2) The Inter99 study 
(CT00289237, ClinicalTrials.gov) consists of 6,667 free-living subjects (age 46.1 ± 7.9, 51% females) randomly 
drawn from the Glostrup municipality with an age of 30–65  years30. This yields a collection of ECGs from people 
with and without cardiac disease and an equal representation of men and women. Both studies are conducted in 
accordance with the Declaration of Helsinki.

Appendix A. Published Articles

270



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10949  | https://doi.org/10.1038/s41598-021-90285-5

www.nature.com/scientificreports/

Electrocardiography. All ECGs are digitally recorded as 10-s ECGs with 12 leads. All ECGs are transferred 
to a MUSE Cardiology Information system (GE Healthcare, Wauwatosa, WI, USA) and ground truths are cal-
culated with version 21 of the Marquette 12 SL algorithm (GE Healthcare, Wauwatosa, WI, USA). The ECGs are 
recorded with a sample rate of 500 Hz and a resolution of 4.88 µV per least significant bit.

Prediction model. Architecture. A digital electronic ECG can be represented as a two-dimensional matrix 
of integers representing the voltage at a specific point in time. To analyze these measurements, we use a standard 
convolutional neural network (CNN) consisting of eight residual modules (as introduced by He et al.37) to cap-
ture the complex features and relationships present in a standard ECG. The neural network architecture consists 
of 1,652,993 parameters and is built to handle two different types of input, a single representative median heart-
beat of 1.2-s duration and a 10-s rhythm ECG. Both input types contain data from 12-lead ECGs. A detailed 
view of the neural network architecture can be seen in Fig. 2. From the input layer, the ECG is passed through 
two convolutional layers before being average pooled. The two convolutional layers generate 64 and 32 feature 
maps with a kernel size of 8 and 3. After this initial convolution block, the output is sent through eight residual 
blocks, each consisting of two convolutions. Each convolutional layer in the residual blocks generates 64 and 32 
feature maps, respectively, and both layers use a kernel size of 50. We use a large kernel size to extend the recep-
tive field to include multiple parts of a typical ECG. This could, for example, capture both the P wave and the 
QRS complex in a single convolution. We add batch normalization after each convolution and dropout after the 
final convolution with a drop rate of 50%. After the eight residual blocks, the output is globally average pooled 
before making the final prediction. The prediction layer consists of a single neuron with a linear activation that 
predicts a single variable of the ECG.

Training. All models are trained for a maximum of 1000 epochs on a computer consisting of two Intel Xeon 
Silver 4116 CPUs running at 2.1 GHz, four Nvidia RTX 2080Ti graphics cards, and 96 gigabytes of RAM. The 
models are implemented using Keras version 2.1.0 with a TensorFlow backend on Ubuntu 18.04.2. Processing 
one ECG takes about 0.06 s using the aforementioned hardware and Python libraries. To optimize the weights, 
we used the gradient descent-based optimizer  Nadam38 with a learning rate of 0.0005. The learning rate is 
selected based on manual testing and prior experience from our previous  works32. Otherwise, we used the Keras 
defaults for all optimizer parameters. In total, we performed 14 different experiments, seven using the median 
for prediction and seven using the rhythm. The variables predicted with regression parameters (include the 
QT interval, PR interval, QRS duration, heart rate, ST-segment deviation from baseline at the junction (STJ), 
T-wave amplitude, and R-peak amplitude). The three amplitudes are lead specific and lead V5 is used. Some of 
these variables cater more to rhythm analyses (such as heart rate), while others are more appropriate for median 
complexes (such as the R-peak). One problem with training on the median complexes is that they are all cen-
tered in a manufacturer-specific way, whereby each wave appears in nearly the same place in each of the ECG. 
Thereby, the network can learn to predict a particular vicinity and guarantee a relatively low error. To circumvent 
this problem, we time-shifted all median complexes by a random amount (− 40 to +40 ms) so that the network 
learns to find the individual waves. This increases the likelihood that the model can be used on ECGs from other 
manufactures with different temporal alignment. No alignment is performed for the rhythm ECGs; the start of 
the recording is random with respect to the ECG. Furthermore, to test the network’s ability to classify in binary 
outcomes, we classified the ECG for sex (male/female).

Attention maps. To obtain physiological insights from the neural network’s decisions, it is necessary to under-
stand how and why a decision is achieved. In this study, we used attention maps to visualize which parts of the 
ECG have importance for each interval/amplitude prediction. To explain the predictions of our model, we use 
gradient-based activation maps (attention maps) to visualize which parts of the ECG are the most important 
when predicting a given variable or class. The technique used is a modified version of  GradCAM26, commonly 
used to interpret image classification models. As we show in our study, this approach works just as well for 
regression tasks of quantitative measurements in the data. Visualizations are generated based on a given network 
layer and output neuron, which produces a heat map that marks the most important areas as hot (red color) and 
less important regions as cold (blue color). In this context, importance signifies how much weight a specific area 
contributes to the overall prediction. We are not the first to use attention maps to interpret deep neural networks 
applied to  ECGs39,40. Most other works use these visualizations to confirm that their model does not deviate 
from the expectations of the medical  doctors41. Our work goes one step further and expands the method of 
explanations to find new insights into the unique properties of ECGs through a case study on sex classification. 
Furthermore, even though the attention maps are generated on a per-lead basis, we average the explanations for 
each lead to produce a visualization that contains more fine-grained details and thus is able to more accurately 
represent what regions of the ECG are most important for the model when making a specific prediction.

Evaluation. To ensure a fair and robust evaluation, we trained each model with five-fold cross-validation for 
1000 epochs on the GESUS  dataset29, resulting in 7152 samples being used for training and 1787 for validation. 
After training and internal cross-validation, the results of GESUS models are replicated in the Inter99  dataset30 
to examine whether the models are generalizable or not. As seen in Table 1, GESUS and Inter99 datasets are 
comparable regarding ECG measurements, although participants in the GESUS study are on average older than 
participants in the Inter99 study. The neural network performance is evaluated by the MAEs (|predicted – actual 

value|) and the RMSEs ( 
√

1
n

∑(∣∣predicted− actual value
∣∣)2 ) to evaluate the mistakes of the neural networks 
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relative to the ground truth. To give an idea of the magnitude of uncertainty, we calculated the ZeroR-estimate, 
defined as constantly guessing the population mean of the desired variable. If a model’s performance is not better 
than ZeroR, the model has not learned anything except the population mean. Conversely, if the model perfor-
mance is better than the ZeroR, it follows that the model has succeeded in extracting and processing features 
from the ECGs.

Furthermore, ECGs were evaluated manually by two skilled cardiologists. Whereas the neural network by 
definition has a bias (i.e., average error) of zero (ignoring an eventual bias in the ground truth from the 12SL 
algorithm), the human overreaders may exhibit substantial bias relative to the ground truth (i.e., the measure 
consistently shorter or longer intervals), which originates from their own training and personal preference. Since 
this bias is not an error, the human bias is subtracted from the errors before calculating human MAE and RMSE.

Wave blocking. To verify that the neural network model is focusing on relevant waves of the ECG, and as an 
alternative to the attention maps, we remove specific parts of the ECG (either the P- QRS- or T-wave) from the 
median ECGs of the replication set. Using the MUSE 12SL fiducial points, we blank out a wave by replacing it 
from the start to the end with a lead-specific linear interpolation. This analysis represents an alternative measure 
of explainability for representative beats of an ECG by analyzing the decrease in performance when different 
waves of the ECG are blanked. Thus, we can test how dependent our model is on different parts of the ECG and 
verify which waves the model is focusing on when making a prediction. The results in Table 3 show that the 
model performance drop when the wave involved with a particular feature is removed. However, we also find 
that removing non-involved waves typically decreases performance slightly, suggesting that the neural network 
also includes other parts of the ECG to stabilize the model to ensure that it is analyzing the correct part of the 
ECG.

Ethics. We confirm that all experiments were performed in accordance with Helsinki guidelines and regu-
lations of the Danish Regional Committees for Medical and Health Research Ethics. The data studies were 
approved by the ethical committee of Region Zealand (SJ-113, SJ-114, SJ-191), ethical committee of Copenhagen 
Amt (KA 98 155). Written informed consent was obtained from all study participants.

Data availability
The data is not available to the public.

Code availability
The code used to conduct the experiments and generated the related attention maps is available on GitHub at 
https:// github. com/ steve nah/ ecg- atten tion- maps.
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ABSTRACT
Segmentation of findings in the gastrointestinal tract is a challeng-
ing but also important task which is an important building stone
for sufficient automatic decision support systems. In this work, we
present our solution for the Medico 2020 task, which focused on the
problem of colon polyp segmentation. We present our simple but
efficient idea of using an augmentation method that uses grids in a
pyramid-like manner (large to small) for segmentation. Our results
show that the proposed methods work as indented and can also
lead to comparable results when competing with other methods.

1 INTRODUCTION
Segmented polyp regions in Gastrointestinal Tract (GI) images [1]
can provide detailed analysis to doctors to identify correct areas to
proceed with treatments compared to other computer-aided analy-
sis such as classification [2, 9, 10] and detection [7] which provide
less detailed information about the exact region and size of the
affected area. However, training Deep Learning (DL) models to
perform segmentation for medical data is challenging because of
the lack of medical domain images as a result of tight privacy re-
strictions, the high cost for annotating medical data using experts,
and a lower number of true positive findings compared to true
negatives. In this paper, we present our approach for the partici-
pation in the 2020 Medico Segmentation Challenge [4], for which
we introduce a novel augmentation technique called pyramid-
focus-augmentation (PYRA). PYRA can be used to improve the
performance of segmentation tasks when we have a small dataset
to train our DL models or if the number of positive findings is
small. Further, our method can focus doctors’ attention to regions
of polyps gradually. In addition to that the output of the method is
also adjustable meaning, we could present a lower resolution of the
grid if this is sufficient for the task at hand which can help to save
processing time. Finally, our technique can also be applied to any
segmentation task using any deep learning segmentation model.

2 METHOD
Our method has two main steps: data augmentation with PYRA
using pre-defined grid sizes followed by training of a DL model with
the resulting augmented data. The source code for our method can
be found in our GitHub1 repository. The development dataset [5]

1GitHub: https://vlbthambawita.github.io/PYRA/
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DL Model
(Unet)

Converted GTGT

Input + grid

Predicted mean and std

Loss calculation
between 

converted GT and
predicted output

Figure 1: Training steps for a segmentation model with the
new augmentation technique.
provided by the organizers has 1000 polyp images with correspond-
ing ground truth masks. We divided it into two parts such that 800
images are used for model training and 200 for testing.

2.1 PYRA Data Augmentation
As the first step in PYRA, we generate checker board grids as il-
lustrated in the first row of Figure 2 with sizes of 𝑁 × 𝑁 with 𝑁

values of 4, 8, 16, 32, 64, 128 and 256. 𝑁 should be selected such that
𝑖𝑚𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 % 𝑁 = 0. Applying these eight grid augmentations to
the training dataset with 800 images increases the training data to
800 × 8 = 6400 images.

For the second step, we convert the Ground Truth (GT) segmen-
tation masks into a grid-based representation of the GT correspond-
ing to the grid sizes. For example, if the grid size is 8 × 8, then the
corresponding GT is a 8 × 8 converted GT.

The transformation of the ground truth masks to gridded masks
is performed as following: (i) we divide the gt into the input grid
size, (ii) we counted true pixels of each grid cell, (iii) if the number
of true pixels is larger than 0, we converted the whole cell into a
true cell. An example of a converted GT is depicted on the top of
Figure 1.

2.2 Experimental Setup and Model training
We have set up four experiments: Exp-1, Exp-2, Exp-3, and Exp-4
to show the performance of PYRA. Exp-1 and Exp-2 represent two
baseline experiments. Exp-1 uses only the 800 training images with-
out any augmentations. In Exp-2, we used general augmentations
such as Affine, Coarse Dropout, and Additive Gaussian Noise from
the library called imgaug [6]. Exp-3 and Exp-4 are using our PYRA
with the data from Exp-1 and Exp-2, respectively. The training
dataset size was changed from 800 to 6400 after applying PYRA.
However, we validated our experiments only using 200 images re-
served for testing. We have used one data loader for all experiments
to maintain a fair evaluation. The baseline experiments Exp-1 and
Exp-2 used the data loader with a grid size of 256 × 256 which
represents the original GT masks without any conversion.
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Image 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Ground
Truth

Predictions

Std from 30
samples

Figure 2: A representation of input and corresponding outputs of grid-augmentation-based segmentation. The first row shows
an input image and all grid sizes used as stacked grid image with the input image. The second row represent ground truth.
The third and fourth rows show predicted mean and std output images calculated from 30 samples.

Table 1: Result collected from validation data and test data.
All test data results were provided by organizers of Medico
task in MediaEval 2020.

Validation results Official test results
Method mIOU Dice mIOU Dice
Exp-1 0.7640 0.8422 0.6934 0.7817
Exp-2 0.7077 0.7957 0.6759 0.7700
Exp-3 0.7693 0.8447 0.6981 0.7887
Exp-4 0.6898 0.7822 0.6696 0.7665

We have used the Unet architecture [8] as our DL model to
perform the polyp segmentation task. We trained the Unet model
with a stacked input using a polyp image and a random grid image
selected from the eight sizes. Then, the model was trained to predict
converted GT which were formed by converting the real GT into a
grid-based GT as in the previous section.

The Unet model used dropout layers with the probability of 0.5.
Then, we used our Unet model as a stochastic model to perform
Monte Carlo sampling for the validation data. We kept our Unet
model in the training state to perform this sampling while pre-
dicting the output for the validation data. In the Pytorch library,
which is used for all our implementations, we can do this simply by
keeping the model state in the model.train() state. We iterated
50 times for a single input to predict the output. We calculated the
mean from these 50 predictions, which is used as the final prediction
for the competition and Standard Deviation (std) images to know
the model’s confidence for the predictions. The whole training pro-
cess is illustrated in Figure 1 with an example image and a grid size
of 8 × 8 as an input. However, we submitted the predicted mean
images for the gird size of 256 × 256 which generate predictions
with the size of true GT (without any transformations). All the
experiments used a fixed learning rate of 0.001 with the RMSprop
optimizer [3], which were selected from preliminary experiments.

3 RESULT AND DISCUSSION
Table 1 summarizes the Mean Intersection over Union (mIoU) and
the Dice Coefficient (DC) for the validation dataset and the test
dataset. The final results to the competition were collected from

mean images calculated by sampling 50 outputs for the same input
with the grid size of 256. Additionally, we have calculated std im-
ages for the validation dataset to show the benefits of using PYRA.
Example outputs for a given input image are illustrated in Figure 2.

According to the results in Table 1, Exp-3 which use only Pyramid-
focus-augmentation shows the best validation results with mIoU
of 0.7693 and DC of 0.8447, and the best test results with mIoU
of 0.6981 and DC of 0.7887. The advantage of our Pyramid-focus-
augmentation can be identified using the third row of Figure 2
along the fourth row of the same figure. We can see that our
model can focus on polyp regions step by step. The third row
of Figure 2 shows how our model predicts correct polyp cells in
2×2, 4×4, 8×8, 16×16, 32×32, 64×64, 128×128 and 256×256 grid
sizes, respectively. When we compare this row with the last row of
the images of std, we can see that the model has high confidence for
the identified polyp regions. For example, it shows high confidence
(black color region) for the middle part of the polyps. In contrast,
our model shows less confidence (yellow color region) for a polyps’
outer borders.

4 CONCLUSION AND FUTURE WORK
In this paper, we presented a novel augmentation method called
Pyramid-focus-augmentation (PYRA), which can be used to train
segmentation DL methods. Our method shows a large benefit in
the medical diagnosis use-case, by focusing a doctors’ attention on
regions with findings step by step.

Our experiments did not use post-processing to clean up output
corresponding to the input grid. In future work, we will evaluate
our approach with additional post-processing steps for smaller
grid sizes. For example, we can do convolution operations to the
output using a convolutional window equal to the input grid size
to clean the results. However, post-processing techniques will not
improve the final results when the grid size equals the input images’
resolution.
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Introduction: Convolutional neural networks (CNNs) are increasingly used to improve
and automate processes in gastroenterology, like the detection of polyps during a
colonoscopy. An important input to these methods is images and videos. Up until now, no
well-defined, common understanding or standard regarding the resolution of the images
and video frames has been defined, and to reduce processing time and resource
requirements, images are today almost always down-sampled. However, how such
down-sampling and the image resolution influence the performance in context with
medical data is unknown. In this work, we investigate how the resolution relates to the
performance of convolutional neural networks. This can help set standards for image or
video characteristics for future CNN based models in gastrointestinal endoscopy.

Methods: This study examines the changes in the performance of CNNs when trained
with different resolutions. For all experiments, we rely on the Kvasir data set, consisting of
10,662 GI images from 23 different findings. We evaluate two state-of-the-art CNN
models, ResNet-152 and DenseNet-161, for classification under quality distortions with
image resolutions for training and testing ranging from 32×32 to 512×512 pixels as shown
in Figure 1. For training the models transfer learning is performed with ImageNet weights.
The model performance is evaluated using two-fold cross-validation and F1-score, MCC,
precision, and sensitivity as metrics.

Results: Increased performance was observed with higher image resolution for all
findings in the data set. Lower resolution has a significantly lower performance with an
MCC of 0.34 for the lowest and 0.9 for the highest. Table 1 shows the evaluation results in
terms of precision, sensitivity, F1-score and MCC for the evaluated ResNet-152 and
DenseNet-161 models. The presented numbers are the average over both folds in the
cross-validation. Increasing the resolution leads to increased performance measured in
almost all metrics. There is a slight decrease in sensitivity for the highest resolution, but
taking MCC into account, there is still an overall improvement. For both CNNs, we
observe the same behavior.

Conclusion: Different image resolutions and their effect on CNNs are explored. We show
that image resolution has a clear influence on the performance which calls for standards
in the field in the future. Currently, CNNs usually operate on low to mid-level resolutions.
Higher resolution data sets might require new methods, architectures and hardware. As
hardware improvements and algorithmic advances continue to occur, developing deep
learning applications for endoscopy at higher image resolutions becomes increasingly
feasible. Nevertheless, although the full potential of high-resolution data sets might not be
exploitable yet, it is evidently important to collect data with the highest resolution possible.
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Figure 1: Examples of an image with the different resolutions used for the experiments for
this abstract. Clear differences in the level of details that detectable can be observed.
Note that for this figure all resolutions are re-scaled to the same size to show quality
differences.

Table 1: Average ResNet-152 and DenseNet-161 results for both cross-validation splits.
Best MCC score in bold.
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ABSTRACT

Clinicians and model developers need to understand how proposed machine learning (ML) models could improve patient
care. In fact, no single metric captures all the desirable properties of a model and several metrics are typically reported to
summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover,
comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the
same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of
what different metrics mean in the context of the presented studies, and gives a thorough explanation of how different metrics
should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant
metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.

Keywords: Gastroenterology, standardization, machine learning, evaluation metrics

Improving healthcare applications and supporting decision making for medical professionals using methods from Artificial
Intelligence (AI), specifically Machine Learning (ML), is a rapidly developing field with numerous retrospective studies being
published every week. We also observe an increasing number of prospective studies involving large multi-center clinical
trials testing ML systems’ suitability for clinical use. The technical and methodological maturity of the different areas varies,
radiology and dermatology being examples of the more advanced ones1. In addition to these two examples, we observe a
recent surge of studies in the field of gastroenterology2. Therefore, the present study focuses on the current development in
gastroenterology due to its timeliness. However, our discussions, recommendations, and proposed tool are valid and useful in
every clinical field adopting and employing ML-based systems.

The use of ML in gastroenterology is expected to significantly improve detection and characterization of colon polyps and
other precancerous lesions of the Gastrointestinal (GI) tract3. These potential advances are mainly expected from artificial
neural networks, specifically deep learning-based methods4. Safe and efficient adoption of ML tools in clinical gastroenterology
requires a thorough understanding of the performance metrics of the resulting models and confirmation of their clinical utility5.

Creating strong evidence for the usefulness of ML models in clinical settings is an involved process. In addition to the
relevant epidemiological principles, it requires a thorough understanding of the properties of the model itself and its performance.
However, despite increased interest in ML as a medical tool, understanding of how such models work and how to aptly evaluate
them using different metrics is widely lacking. In this article, we use examples of metrics and evaluations drawn from a variety
of peer-reviewed and published studies in gastroenterology to provide a guide explaining different evaluation metrics, including
how to interpret them. Note that we do not discuss the quality of these studies, but merely use them to discuss how different
metrics give different interpretations of the quality of an ML model.

The main contributions are: We present a detailed discussion on metrics commonly used for evaluating ML classifiers,
examine existing research using ML in gastroenterology along with reported metrics, and we discuss the different metrics’
interpretations, usefulness, and shortcomings. To this end, we recalculate the reported metrics and calculate additional ones to
further analyze the performance of the presented methods. Additionally, we present a web-based open source tool intended to
let researchers perform metrics calculations easily, both for their own and other reported results to allow for comparison. The
tool is accessible via www.medimetrics.no, and the source code via github.com/simula/medimetrics.
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Metrics
The relevant quantities for calculating the metrics for a binary classifier are the four entries in the confusion matrix

M =

(
TP FN
FP TN

)
, (1)

which are introduced below. Note that we limit ourselves to binary classification in this study, which is at the time of writing
most common for medical applications, e.g., cancer/no-cancer or polyp/no-polyp. Some metrics have different interpretations
in the context of evaluating multi-class classification methods. Although these discussions fall outside the scope of the present
one, the underlying principles still apply in multi-class settings. Furthermore, some methods have their metrics calculated on a
per-finding basis, meaning there can be multiple instances for one image, and hence more positive samples than total samples
(e.g., images or videos) in a data set.

True Positive (TP) The true positive denotes the number of correctly classified positive samples. For example, the number of
frames containing a polyp correctly predicted as having a polyp.

True Negative (TN) The true negative denotes the number of correctly classified negative samples. For example, the number
of frames not containing a polyp correctly predicted as not having a polyp.

False Positive (FP) The false positive denotes the number of samples incorrectly classified as positive. For example, the
number of frames not containing a polyp incorrectly predicted as having a polyp.

False Negative (FN) The false negatives denotes the number of samples incorrectly classified as negative. For example, the
number of frames containing a polyp incorrectly predicted as not having a polyp.

Accuracy (ACC) The accuracy is the ratio between the correctly classified samples and the total number of samples in the
evaluation data set. This metric is among the most commonly used in applications of ML in medicine, but is also known for
being misleading in case of different class proportions, since simply assigning all samples to the prevalent class is an easy way
of achieving high accuracy. The accuracy is bounded to [0,1], where 1 represents predicting all positive and negative samples
correctly, and 0 represents predicting none of the positive or negative samples correctly.

ACC =
# correctly classified samples

# all samples
=

TP+TN
TP+FP+TN+FN

(2)

Recall (REC) The recall, also known as the sensitivity or True Positive Rate (TPR), denotes the rate of positive samples
correctly classified, and is calculated as the ratio between correctly classified positive samples and all samples assigned to
the positive class. The recall is bounded to [0,1], where 1 represents perfectly predicting the positive class, and 0 represents
incorrect prediction of all positive class samples. This metric is also regarded as being among the most important for medical
studies, since it is desired to miss as few positive instances as possible, which translates to a high recall.

REC =
# true positive samples

# samples classified positive
=

TP
TP+FN

(3)

Specificity (SPEC) The specificity is the negative class version of the recall (sensitivity) and denotes the rate of negative
samples correctly classified. It is calculated as the ratio between correctly classified negative samples and all samples classified
as negative. The specificity is bounded to [0,1], where 1 represents perfectly predicting the negative class, and 0 represents
incorrect prediction of all negative class samples.

SPEC =
# true negative samples

# samples classified negative
=

TN
TN+FP

(4)

Precision (PREC) The precision denotes the proportion of the retrieved samples which are relevant and is calculated as the
ratio between correctly classified samples and all samples assigned to that class. The precision is bounded to [0,1], where 1
represents all samples in the class correctly predicted, and 0 represents no correct predictions in the class.

PREC =
# samples correctly classified
# samples assigned to class

=
TC

TC+FC
, (5)

where C denotes “class”, and can in binary classification be either positive (P) or negative (N). The terms precision and Positive
Predictive Value (PPV) are often used interchangeably.

2/10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.07.21254975doi: medRxiv preprint 

A.17. Paper XVII - On Evaluation Metrics for Medical Applications of Artificial
Intelligence

285



F1 score (F1) The F1 score is the harmonic mean of precision and recall, meaning that it penalizes extreme values of either.
This metric is not symmetric between the classes, i.e., it depends on which class is defined as positive and negative. For example,
in the case of a large positive class and a classifier biased towards this majority, the F1 score, being proportional to TP, would
be high. Redefining the class labels so that the negative class is the majority and the classifier is biased towards the negative
class would result in a low F1 score, although neither the data nor the relative class distribution have changed. The F1-score is
bounded to [0,1], where 1 represents maximum precision and recall values and 0 represents zero precision and/or recall.

F1 = 2× precision× recall
precision+ recall

=
2×TP

2×TP+FP+FN
(6)

Matthews Correlation Coefficient (MCC) Pearson’s correlation coefficient6, takes on a particularly simple form in the binary
case. This special case has been coined the MCC7, and become popular in ML settings for its favorable properties in cases
of imbalanced classes8. It is essentially a correlation coefficient between the true and predicted classes, and achieves a high
value only if the classifier obtains good results in all the entries of the confusion matrix Equation 1. The MCC is bounded to
[−1,1], where a value of 1 represents perfect prediction, 0 random guessing and −1 total disagreement between prediction and
observation.

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(7)

PPV The PPV is the ratio between correctly classified positive samples and all samples classified as positive, and equals the
precision for the positive class. The PPV is bounded to [0,1], where 1 represents all positive samples predicted correctly, and 0
represents no correct positive class predictions.

PPV =
# correct positive predictions

# samples classified as positive
=

TP
TP+FP

(8)

Negative Predictive Value (NPV) The NPV is the ratio between correctly classified negative samples and all samples
classified as negative, and equals the precision for the negative class. The NPV is bounded to [0,1], where 1 represents all
negative samples predicted correctly, and 0 represents no correct negative class predictions.

NPV =
# correct negative predictions

# samples classified as negative
=

TN
TN+FN

(9)

Threat Score (TS) The TS, also called the Critical Success Index (CSI), is the ratio between the number of correctly predicted
positive samples against the sum of correctly predicted positive samples and all incorrect predictions. It takes into account both
false alarms and missed events in a balanced way, and excludes only the correctly predicted negative samples. As such, this
metric is well suited for detecting rare events, where the model evaluation should be sensitive to correct classification of rare
positive events, and not overwhelmed by many correct identifications of negative class instances. The TS is bounded to [0,1],
where 1 represents no false predictions in either class, and 0 represents no correctly classified positive samples.

TS =
# correct positive predictions

# correct positive and all false predictions
=

TP
TP+FN+FP

(10)

We do not consider the AUROC (Area under the Receiver Operating Characteristic Curve) or AUPRC (Area under the Precision
Recall Curve) since these cannot be calculated without access to the model, or from the entries of the confusion matrix.
Extensive research has been done on their usefulness, and we refer the interested reader to9.

Class mixture
Binary classification problems can be expressed in terms of a mixture model, the total data distribution modelled as

p(X ,α) = α pP(X)+(1−α)pN(X) , (11)

where X represents data samples, pP/N denotes the positive/negative class distributions, and α the mixture parameter of the
positive class, calculated as α = NP

NP+NN
, with NP/N the total number of positive/negative class data samples. Studies in which

the classification threshold of model outputs are tuned using a class imbalanced data set, should investigate how these perform
on other class admixtures. This is an important step to assess whether bias towards either class has been introduced and to what
extent.

3/10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.07.21254975doi: medRxiv preprint 

Appendix A. Published Articles

286



Blinded data
Model development is typically split into three phases. First, the model is trained on a training dataset appropriate for the given
task. Second, during training, the model is continuously validated on data not part of the training data, to evaluate the model’s
performance on unseen data. Last, after the model has finished training, it is tested on a test dataset for which the final metrics
should be calculated. Regardless of which metric is used, this can only be as informative as the classifier’s performance on the
test data. Blinding data, i.e., withholding data from those performing the experiment, is an important tool in many research
fields, such as medicine. In some experiment types, it is difficult to achieve blinding, but the analysis in a setting where the data
has already been collected can almost always be blinded. Misconceptions regarding the objectivity of statistical analysis should
not keep researchers from blinding the data10. For ML analyses, such as the ones described in the present work, this means that
one should set aside representative data that can be used for testing after the training and tuning processes are finished.

Methods
In the following, we identify a subset of relevant studies for our analysis. Medical studies presenting ML applications often
refer to them simply as “AI systems”. While AI has certainly received an unprecedented amount of attention over the past
years, and presenting systems using this term emphasizes their novelty, the term is imprecise. Hence, we refrain from using this
generic term in the following and instead refer to the exact model architecture used.

Study selection
The studies used for this work are chosen based on the following rational considerations. Our starting point is a recent review
of AI in gastroenterology11. The review contains 138 articles, from which we select five studies that represent existing work
using ML in gastroenterology. The selection criteria are as follows

(i) Report sufficient information (many studies report so few metrics that it is not possible to calculate other metrics) for
reproducing the reported metrics and calculating metrics not reported.

(ii) Represent different cases of interest for performance metrics discussions.

In addition, we select a recent study reporting results from a large clinical trial, which was not included in the aforementioned
review. The following contains a brief description of the selected studies and reported metrics.

Study 1
Hassan et al.12 introduce an unspecified “AI system” called GI-Genius to detect polyps, trained and validated using 2,684
videos from 840 patients collected from white-light endoscopy. All 840 patients are randomly split into two separate data
sets, one for training and one for validation. The validation data set contains 338 polyps from 105 patients, where 168 of the
identified polyps are either adenomas or sessile serrated adenomas. The authors report a sensitivity of 99.7% as the main
performance metric, which is calculated from 337 TPs out of the total 338 positive samples. From this, readers are likely to
conclude that only one FN instance is identified in the validation set. No other metrics are reported, and while it is reported that
each colonoscopy contains 50,000 frames, no further details are given on the exact number of frames per video.

Study 2
Mossotto et al.13 use several ML models to classify diseases commonly found in the GI tract, using endoscopic and histological
data. The data consist of 287 patients, from which 178 cases are Crohn’s Disease (CD), 80 cases are Ulcerative Colitis (UC),
and 29 cases are Unclassified Inflammatory Bowel Disease (IBDU). Results are shown from unsupervised (clustering) and
supervised learning. The latter is used to classify CD and UC patients. For this, the data is divided into a model construction
set consisting of 210 patients (CD = 143, UC = 67), a model validation set of 48 patients (CD = 35, UC = 13), and an IBDU
reclassification set containing 29 IBDU patients. The model is thus not trained on IBDU data, and the latter data set is excluded
from the present discussion. The model construction set is stratified into a discovery set used to tune the parameters for CD
versus UC discovery, and one for training and testing. For the best performing supervised model, tested on the test set, an
accuracy of 82.7%, a precision of 0.91, a recall of 0.83 and an F1 score of 0.87 are reported, see Table 2 in13. On the validation
set, the reported numbers are an accuracy of 83.3%, a precision of 0.86, a recall of 0.83, and an F1 score of 0.84, see Table 3
in13. These reported results are also listed in Table 1 under study 2.

Study 3
Byrne et al.14 introduce a Convolutional Neural Network (CNN) to differentiate diminutive adenomas from hyperplastic polyps.
They define the four classes NICE type 1, NICE type 2, no polyp, and unsuitable. The training data set contains 223 polyp
videos, consisting of 60,089 frames in total, with 29% containing hyperplastic polyps, 53% containing adenomas polyps, and
18% containing no polyps. The model is tested on 158 videos, and 32 of these are removed due to the reported instances in the
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Table 1. The reported metrics of the selected studies. The STUDY column represents each of the five studies selected for
metric recalculation. The SET column is the different metrics calculated for the same set of data. The REPORTED column is
how the metrics were reported in the respective study. To refer to the tables in each respective paper, we use T to refer to the
table number and R for the row number. The EVALUATION column is the method used to generate the metrics. The TOTAL
column is the total number of samples used in the metrics calculations. The POS and NEG columns represent the total number
of positive and negative samples, respectively. The remaining columns correspond the aforementioned metric acronyms
described in the main text.

STUDY SET REPORTED EVALUATION TOTAL POS NEG TP TN FP FN ACC PREC REC F1 SPEC MCC NPV TS

1 1 In-text Per-finding - 338 - 337 - - 1 - - 1.00 - - - - -

2

1 T2.R1 Per-frame 210 143 67 - - - - 0.71 0.89 0.68 0.75 - - - -
1 T2.R2 Per-frame 210 143 67 - - - - 0.77 0.81 0.88 0.83 - - - -
1 T2.R3 Per-frame 210 143 67 - - - - 0.87 0.91 0.84 0.87 - - - -
2 T3.R1 Per-frame 48 13 35 - - - - - 0.65 0.85 0.73 - - - -
2 T3.R2 Per-frame 48 35 13 - - - - - 0.94 0.83 0.88 - - - -
2 T3.R3 Per-frame - - - - - - - 0.83 0.86 0.83 0.84 - - - -

3 1 T1 Per-frame 106 - - 65 33 7 1 0.94 0.90 0.98 - 0.83 - 0.97 -

4

1 T2.R1 Per-frame 6,000 6,000 0 5,663 0 251 337 - - 0.94 - - - - -
1 T2.R2 Per-frame 1,414 1,414 0 1,296 0 41 118 - - 0.92 - - - - -
1 T2.R3 Per-frame 21,572 0 21,572 0 20,691 1,004 0 - NA - - 0.96 - - -
2 T2.R4 Per-frame - - - 570 0 42 76 - 0.88 - - - - - -
3 In-text Per-frame 60,914 - - - - - - - - 0.92 - - - - -
4 In-text Per-frame 1,072,483 0 1,072,483 0 - - 0 - - - - 0.95 - - -

5 1 T1 Per-frame - - - 3723 4735 262 930 0.88 - 0.80 - 0.95 - - -

videos. Three are sessile serrated polyps, 25 are identified as normal tissue or lymphoid aggregate, two are fecal material, one
video is corrupted, and two contain multiple polyp frames. The resulting 125 videos are used to evaluate the CNN model again,
which is unable to confidently1 identify 19 of the 125 polyps. The 19 videos on which the model does not reach this confidence
threshold are therefore removed from the test data set, and the model is evaluated using the remaining 106 videos. Finally, after
this data filtering, the model achieves an accuracy of 94%, a sensitivity of 98%, a specificity of 83%, a PPV of 90% and an
NPV of 97%, see Table 1 under study 3.

Study 4
Wang et al.15 present a near real-time deep learning-based system for detecting colon polyps using videos from colonoscopies.
The model is trained on data collected from 1,290 patients and validated on 27,113 colonoscopy images from 1,138 patients
showing at least one detected polyp. It is then tested on a public database containing 612 images with polyps16. As the
presented method is able to differentiate between different polyps within the same image, there may be more true positives than
images in the data set. This is also the reason why the metrics are reported on a per-image basis. The reported results show that
the method is highly effective, with a per-image-sensitivity of 94.38% and a per-image-specificity of 95.92%. As the metrics
are reported separately for images containing polyps and those that do not, recalculating the metrics as presented provides
an inaccurate representation of the model’s actual performance. This is because there are either no true positives or no true
negatives, depending on the metrics used.

Study 5
Sakai et al.17 propose a CNN-based system to automatically detect gastric cancer in images from colonoscopies. The model is
trained on a data set of 172,555 images containing gastric cancer and 176,388 images of normal colon. For evaluation, the
model is tested on 4,653 cancer images and 4,997 normal images, on which it achieves an accuracy of 87.6%, a sensitivity of
80.0%, a specificity of 94.8% (see Table 1 in17), and a PPV of 93.4%. A method capable of distinguishing which regions of an
image contain signs of gastric cancer is also presented. This method uses a sliding-window approach, where the model predicts
the presence of gastric cancer in specific regions of the image to generate a block-like heat map covering the afflicted areas.
This detection model is tested on 926 images, where it achieves an accuracy of 89.9% on cancer images and an accuracy of
70.3% on normal images.

Results
In this section, we perform a recalculation of all reported and missing metrics in the selected studies. Based on this, we discuss
the usefulness of different metrics and how to obtain a realistic and complete picture of the performance of a classifier. This is

1For each image, the model gives a confidence value ranging from 0 to 1. If the confidence level is below 0.5, the model is not considered confident enough
to keep the prediction.
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Table 2. The recalculated metrics of the selected papers. Columns represent the same as described in Table 1.

STUDY SET REPORTED EVALUATION TOTAL POS NEG TP TN FP FN ACC PREC REC F1 SPEC MCC NPV TS

1 1 In-text Per-polyp 16,900,000 338 16,899,662 337 16,730,662 169,000 1 0.99 0.00 1.00 0.00 0.99 0.04 1.00 0.00
1 Calculated Per-frame 16,900,000 84,500 16,815,500 84,500 16,646,500 169,000 250 0.99 0.33 1.00 0.50 0.99 0.57 1.00 0.33

2

1 T2.R1 Per-frame 210 143 67 97 55 12 46 0.71 0.89 0.68 0.77 0.82 0.47 0.55 0.63
1 T2.R2 Per-frame 210 143 67 116 40 27 27 0.77 0.81 0.88 0.81 0.59 0.40 0.59 0.68
1 T2.R3 Per-frame 210 143 67 130 54 13 13 0.87 0.91 0.84 0.91 0.81 0.72 0.81 0.83
2 T3.R1 Per-frame 48 13 35 11 29 6 2 0.84 0.65 0.85 0.74 0.83 0.63 0.94 0.58
2 T3.R2 Per-frame 48 35 13 29 11 2 6 0.84 0.94 0.83 0.88 0.86 0.64 0.65 0.79
2 T3.R3 AVG - - - - - - - 0.84 0.80 0.84 0.81 0.84 0.63 0.79 0.69
2 Calculated WAVG - - - - - - - 0.84 0.86 0.84 0.84 0.85 0.64 0.73 0.73

3 1 T1 Per-frame 106 66 40 65 33 7 1 0.92 0.90 0.98 0.94 0.83 0.84 0.97 0.89

4

1 T2.R1 Per-frame 6,000 6,000 0 5,663 0 251 337 0.94 0.96 0.94 0.95 NA −0.05 0 0.91
1 T2.R2 Per-frame 1,414 1,414 0 1,296 0 41 118 0.92 0.97 0.92 0.94 NA −0.05 0 0.89
1 T2.R3 Per-frame 21,572 0 21,695 0 20,691 1,004 0 0.95 0 NA 0 0.95 NA 1 0
1 Calculated Combined 27,572 6,000 21,695 5,663 20,691 1,255 337 0.95 0.82 0.94 0.88 0.95 0.84 0.98 0.78
1 Calculated Biased POS 27,572 6,000 21,695 6,000 0 21,695 0 0.22 0.22 1 0.36 0 NA NA 0.22
1 Calculated Biased NEG 27,572 6,000 21,695 0 21,695 0 6,000 0.78 NA 0 0 1 NA 0.78 0
2 T2.R4 Per-frame 646 646 42 570 0 42 76 0.83 0.93 0.88 0.91 0 −0.09 0 0.83
3 In-text Per-frame 60,914 - - - - - - - - 0.92 - - - - -
4 In-text Per-frame 1,072,483 0 1,072,483 0 1,023,149 49,334 0 0.95 0 NA 0 0.95 NA 1 0

5 1 T1 Per-frame 9,650 4,653 4,997 3,723 4,735 262 930 0.88 0.93 0.80 0.86 0.95 0.76 0.84 0.76

done by extracting reported numbers and metrics from each study and using these to calculate additional metrics, which gives
additional perspectives on the possible evaluations and could lead to different conclusions. In some cases, assumptions must be
made in order to calculate metrics or assess model performances under different conditions. All assumptions made in this study
are detailed in the relevant discussions.

We also present our freely available online tool, which allows medical experts to calculate all presented metrics from
classifier predictions, or those which can be calculated from a subset of metrics. This can be used for a variety of different
usage scenarios, like gaining a better understanding of studies using ML classifiers, calculate missing metrics for studies which
do not report them, to double-check calculations, and to calculate metrics for new studies.

Precision and recall
To reproduce the results of Study 112, it is necessary to make some assumptions. Primarily, no information is given regarding
the total number of frames for all videos, but as an average of 50,000 frames per video is reported, we use this to calculate
the total number. Further, we calculate two sets of metrics, see Table 2 under study 1. For the first row, we calculate TP=337,
TN=16,730,662, FP=169,000, and FN=1 using the same per polyp detection evaluation as Study 1. In the second row, we
assume that ten seconds around the polyp are either detected correctly or missed with a frame rate of 25 fps. This yields
TP=84,500, TN=16,646,500, FP=169,000, and FN=250, which are used in our calculations. FP for both calculations are
obtained based on the reported 1% FPs per video, i.e., 50,000

100 = 500. These assumptions yield two sets of results for the
evaluation, which, if considered jointly, give a more thorough understanding of the performance. In any case, the reported
values are not sufficient for reproducibility without making assumptions.

Assuming the most optimistic case amounts to mixture components of 0.995 and 0.005 for the positive and negative classes,
respectively, meaning extremely imbalanced classes. The authors report a recall of 99.7%, in which case we calculate a
precision of 0.33. Clearly, the recall must be interpreted with care in cases of strongly imbalanced classes. The reason is that
precision and recall are both proportional to TP, but have an inverse mutual relationship: High precision requires low FP, so a
classifier maximizing precision will return only very strong positive predictions, which can result in positive events missed.
On the other hand, high recall is achieved by assigning more instances to the positive class, to achieve a low FN. Whether to
maximize recall or precision depends on the application: Is it most important to identify only relevant instances, or to make sure
that all relevant instances are identified? Regardless of which is the case, this should be clearly stated, and both metrics should
be reported. The balance between the two has to be based on the medical use case and associated requirements. For example,
some false alarms are acceptable in cancer detection, since it is crucial to identify all positive cases. On the other hand, for the
identification of less severe disease with high prevalence, it can be important to achieve the highest possible precision. A low
precision combined with a high recall implies that the classifier is prone to set of false alarms (FPs), which can result in an
overwhelming manual workload and time wasted.

Mixture parameter dependent tuning
In Study 2, Mossotto et al.13 split the model construction data set into two subsets of equal size and class distribution, with
mixture components 0.68 and 0.32 for the two classes CD and UC. One of these subsets is used to tune parameters to maximize
CD versus UC classification, meaning that the classification task is done with the underlying assumption that the class admixture
will remain constant. This is trivially true for the training and test data, being the other of the two subsets, but not for the
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validation set, where the corresponding mixture components are 0.73 and 0.27. The authors do not mention the deviation
from the tuned admixture, nor do they investigate systematically how much a given deviation affects the reported performance
metrics. Without access to the resulting model, this cannot be investigated further in this article or by other interested readers.
Consequently, there is no way of knowing the sensitivity the presented method has to the class admixture.

The study does not report any of the confusion matrix entries, thus not facilitating the process of reproducible results.
However, we can derive the TN by multiplying the total number of positive samples with the recall, TP = REC× (TP+FN).
The FP are then obtained via FP = TP

PREC −TP. From this, we can calculate the reported and missing metrics. The authors report
the positive class precision, which represents the PPV. In addition, the NPV should also have been reported for completeness.
As shown in Table 2, the NPV is lower for the validation data sets where the precision is high, and vice versa. Calculating
the MCC, this is stable around 0.63 over all validation sets listed in Table 3 of13, although not as high as any of the reported
metrics.

Blinded data
In Study 3, Byrne et al.14 remove data samples for which the classifier does not achieve high confidence, as well as videos with
more than one polyp. They calculate the model’s performance for the different videos in the study, and remove the ones on
which the model performs poorly. As such, the results reported from the study concerns a very specific selection of their data,
made after the model has been adjusted. Excluding data on which a model performs poorly leads to a misrepresentation of its
abilities and should not be done. If the classification task is too difficult or the removed data was faulty, this should instead be
reported, and a new classifier should be trained for a more limited task. The metrics reported from a study should be calculated
after the final model calibration and subsequent testing on blinded data.

Negative and positive class performance
In Study 4, Wang et al.15 report high per-image-sensitivity (recall) values of 0.94, 0.92 and 0.92, see Table 2 in15, or metric
set 1 under study 4 in Table 1. For the first two of these, sufficient numbers are reported to reproduce the reported metrics, as
well as to calculate the corresponding positive class precisions, which are reported as 0.96 and 0.97, respectively. In the third
case, the positive class precision cannot be calculated since the positive and negative samples are separated for the test. No
explanation or reason is given regarding why the tests are performed only on the separated classes and not together, which
would give a better overall impression of the performance. For the first data set, it is not clear how the numbers are calculated,
as no test set is mentioned. This could mean that the reported sensitivity is calculated on the training data.

Rows five to seven in Table 2 show the results achieved when combining the negative and positive class samples. Since we
do not know if the obtained model is biased towards the negative or positive class, we present three evaluations: In row five,
we assume that the positive and negative results can simply be combined, which gives an overall MCC of 0.84 and NPV of
0.98, indicating good performance. In rows six and seven, we assume that the model is biased towards the positive or negative
class, respectively. The resulting MCCs are both −0.05 and the NPVs both 0. This means that the classifier, which seemed to
perform exceptionally well based on the reported numbers, is actually severely under-performing on the negative class. Besides
these ambiguities, the results for the first three data sets indicate strong performance, but using the same numbers to calculate
metrics more sensitive to bias, reveals severe under-performance (see Tables 1 and 2 for all reported and calculated numbers).

While detection and classification are in principle the same task for a fixed number of instances per class, the study in15

faces a challenge: The negative class is unbounded, i.e., the number of negative instances is undefined. The more sensitive the
classifier is, the larger the negative class effectively becomes, as the classifier generates FP instances, and the negative class
instances can be calculated as Neg = TN+FP. In general, evaluating without clearly defining boundaries for the classes is
risky, as it can lead to an unclear impression of the model performance, in either the positive or negative direction. It is also
nearly impossible for follow up studies to reproduce and compare results.

Without a well-defined number of true negatives in a video (or set of images), each of the frames not containing a polyp and
each of the pixels not being part of a polyp are in principle true negatives. Optimally, the classes should instead be balanced, at
best with a mixture parameter of 0.5. If this is not possible, the study should at least be based on well-motivated assumptions
informed by real-world properties. For example, a standard colonoscopy contains on average n number of frames and m polyps
found per examination. Most colonoscopies take less than an hour, so assuming a 24 hour time frame would be an unreasonable
assumption within such boundaries.

Keeping the positive and negative classes separated in an evaluation can lead to misleading results and can make a model
appear very different in terms of performance, depending on the presentation. The most important question that one should ask
before performing the evaluation is: Which evaluation and metrics provide the most accurate representation regarding how the
model will perform in the real world? This needs to be an overarching picture including both classes, and a set of diverse and
well-suited metrics.
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Class dependent performance
Study 517 contains a confusion matrix, enabling us to calculate most metrics for the reported results. As shown in Table 1,
reported accuracy is 0.88, the specificity 0.95, the sensitivity 0.80, and the PPV 0.93. The PPV indicates the precision for
the positive class and should be accompanied with the corresponding metric for the negative class, i.e., the NPV, which we
calculate to be 0.84. This could indicate that the model is better at classifying positive than negative samples correctly, which
would be surprising, given that the model is trained on slightly more negative than positive class images. However, not knowing
the loss function or which measure the model was optimized for, we cannot investigate this further. What we do know is that a
large number of FNs directly cause the low NPV: On the test data set, the model has a significantly higher number of FNs,
meaning missed detection, than FPs, meaning a false alarm and in this case over-detection of cancer. The study specifically
states reducing misdetection to be the primary motivation for using ML assisted diagnosis, and should thus have reported
metrics providing a more comprehensive representation of the model’s performance in this regard. For instance, the MCC,
which measures the correlation between the true and predicted classes, and is high only if the prediction is good on the positive
and the negative class. By using the reported results, we calculate the MCC to be 0.76, which is still an acceptable performance,
although not as high as the metrics reported by17. Which metric values are acceptable depends on non-technical aspects, e.g.,
the human performance baseline or requirements from hospitals or health authorities.

A potential weakness associated with the NPV is its dependence on TNs, which can overwhelm a classifier whose purpose
is detecting rare events. In such cases, the TS, which does not take TNs into account, can be advantageous. From the values
reported in Table 1 of17, the TS value is 0.76, again indicating that the model performs sub-optimally with respect to the
objective, despite achieving high accuracy and precision values. In conclusion, the reported metrics show that the model, for
the most part, performs well on the evaluation data set. When taking the recalculated metrics into account, we see that the
model is more prone to misdetection than causing false alarms.

MediMetrics
Together with this study, we release a web-based tool called MediMetrics for calculating the metrics introduced in Table , to
make them easily accessible for medical doctors and ML researchers alike. From the provided input, the tool automatically
calculates all possible metrics and generates useful visualizations and comparisons the user may freely use in their research.
The tool is open-source, and the code available on GitHub2.

Discussion
There are many available metrics that can be used to evaluate binary classification models. Using only a subset could give a
false impression of a model’s actual performance, and in turn, yield unexpected results when deployed to a clinical setting. It is
therefore important to use a combination of multiple metrics and interpret the performance holistically. Calculating multiple
metrics does not require extra work in terms of study design or time, thus there is no apparent reason not to include a set of
metrics, besides lack of space, obfuscating actual performance, or lack of knowledge regarding classifier evaluation. Besides
interpreting the different metrics together, metrics for the separate classes should be calculated individually. Special care
should be taken in cases of imbalanced classes, and the robustness of the classifier’s performance tested over a range of class
admixtures. In general, a high score in any metric should be regarded with suspicion.

Training and evaluation sets should be strictly separated: Optimally, the data should be split into training, validation, and
test data sets. The test data set should be separate from the other partitions to avoid introducing bias on the parameters set
during the tuning phase. Furthermore, data regarding the same instance should not be shared across data splits. For example,
frames of the same polyp from different angels should not shared across the training and test data sets. Once the model’s
performance has been optimized on the training data, including tests on a validation set, it can be finally evaluated using the test
set. This last step should thus not involve additional tuning, and the test data should not be made available to the analysis before
results are fixated for publication. We argue strongly that this should be the standard for studies on the performance of ML
classifiers used in medicine in the future. If possible, cross-dataset testing should be performed, meaning in this context that the
training and test data are obtained from different hospitals or at least different patients.

In general, all studies involving classification should report the obtained TP, FP, TN, and FN values for validation and test
data. In addition, the data along with either the source code, the final models or both should be made available. If this is not
possible, other alternatives, like performing additional evaluation on public data sets, such as Kvasir18 or the Sun database19),
should be considered. If such an alternative is chosen, it is important to check if the test data is outside the distribution of the
training data20, and in that case, re-fit the model’s parameters. Although public data sets do not match the purpose of the study,
evaluating the model on such data, by either re-training it or applying it directly on the data if similar to the initial data used for
training, would allow others to compare methods and results.

2github.com/simula/medimetrics
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DivergentNets: Medical Image Segmentation by
Network Ensemble
Vajira Thambawitaa,b, Steven A. Hicksa,b, Pål Halvorsena,b and Michael A. Rieglera
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Abstract
Detection of colon polyps has become a trending topic in the intersecting fields of machine learning
and gastrointestinal endoscopy. The focus has mainly been on per-frame classification. More recently,
polyp segmentation has gained attention in the medical community. Segmentation has the advantage
of being more accurate than per-frame classification or object detection as it can show the affected area
in greater detail. For our contribution to the EndoCV 2021 segmentation challenge, we propose two
separate approaches. First, a segmentation model named TriUNet composed of three separate UNet
models. Second, we combine TriUNet with an ensemble of well-known segmentation models, namely
UNet++, FPN, DeepLabv3, and DeepLabv3+, into a model called DivergentNets to produce more general-
izable medical image segmentation masks. In addition, we propose a modified Dice loss that calculates
loss only for a single class when performing multi-class segmentation, forcing the model to focus on
what is most important. Overall, the proposed methods achieved the best average scores for each re-
spective round in the challenge, with TriUNet being the winning model in Round I and DivergentNets
being the winning model in Round II of the segmentation generalization challenge at EndoCV 2021. The
implementation of our approach is made publicly available on GitHub.

Keywords
Deep learning, medical image segmentation, colonoscopy, generalisation, computer-assisted diagnosis

1. Introduction

Automatic segmentation of medical images is a common use case in machine learning that has
gained a lot of attention over the last few years. Popular applications include segmenting tumors
in computed tomography (CT) scans [1, 2], finding abnormalities in magnetic resonance images
(MRIs) [3, 4], or segmenting organs and tissue in medical applications [5, 6]. Segmentation
goes a step beyond standard classification and object detection as it extracts the area in an
image that corresponds to the target class or classes at pixel-level precision. This comes with
two advantages that are important in the medical field. The first one is that the algorithm
learns pixel-wise and has more examples to learn from compared to if it would learn image-
wise [7, 8]. This can help for use cases where one does not have many images from a disease.
Secondly, the segmented area makes it easier for the physician to determine what the algorithm
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Figure 1: Some example images and their corresponding ground truth masks taken from the develop-
ment dataset of EndCV2021 [10]

detected and classified as a disease which serves in a broader sense as an explanation. Thus,
detailed image segmentation can also be seen as a type of explanation method. This makes
it highly desired by medical professionals as explainable machine learning is seen as one of
the requirements for the successful implementation of automatic decision support systems
in hospitals [9]. As part of the EndoCV2021 challenge (https://endocv2021.grand-challenge.
org/), we were tasked with creating machine learning models that automatically segment
polyps [11, 12, 13] in video frames collected from real-world endoscopies. This is a complex
task as polyps come in various shapes and sizes, where some (e.g., flat lesions) are barely
detectable by even the most experienced endoscopists. Figure 1 shows some of the more difficult
examples taken from EndoCV’s development dataset [10] provided by the challenge organizers.
The challenge presented two separate tasks, the detection generalization challenge and the
segmentation generalization challenge. We participated in the segmentation generalization
challenge, where we achieved the best results among 13 other competitors in both rounds. The
code for the experiments presented in this paper is available on GitHub1.

This paper summarizes our approaches to the EndoCV2021 challenge. In particular, we
developed the TriUNet segmentation model combining three separate UNet models, and the
DivergentNets that combines TriUNet with an ensemble of the well-known segmentation models,
namely UNet++, FPN, DeepLabv3, and DeepLabv3+. The rest of the paper is structured as
follows. Section 2 present our approach to this year’s challenge, where we use two unique
models that achieve state-of-the-art performance on the EndoCV dataset. Section 3 gives a
description of the implementation details on the models and training procedure and how the
data was split and prepared. Section 4 presents the preliminary and official results for our tested
models and performs a qualitative analysis on some of the predicted masks. Lastly, Section 5
concludes this paper with a summary and plans for future work.

1https://github.com/vlbthambawita/divergent-nets

Appendix A. Published Articles

296



UNet2

UNet3

UNet1

In
pu

t 

Feature Vector1

Feature Vector2

Predictions

Dice Loss (ignore channel 0)Backpropagation

Ground
truth

= Concatenation of feature vectors

Figure 2: An illustration of the TriUNet architecture. First, the image is passed through two separate
UNets in parallel, which produce the feature vectors 𝑉1 and 𝑉2, respectively. These two vectors are then
concatenated before being passed through a third UNet that predicts the final segmentation mask. The
loss is calculated by taking the Dice coefficient of the mask corresponding to the main class and the
ground truth, which is then back-propagated through the entire model.

2. Approach

In this section, we introduce three approaches that we developed for the segmentation general-
ization challenge at EndoCV 2021, which are two new architectures, TriUNet and DivergentNet,
and a modified loss function.

2.1. TriUNet

TriUNet is a convolutional neural network (CNN) architecture that utilizes multiple UNet [14]
architectures arranged in a triangular structure as depicted in Figure 2. The model takes a single
image as input, which is passed through two separate UNet models with different randomized
weights. The output of both models is then concatenated before being passed through a third
UNet model to predict the final segmentation mask. Figure 2 also shows an example of the
intermediate representations provided by the two initial UNet models. The loss is calculated
and back-propagated through the whole model, meaning the entire network is trained in one go.
From the intermediate representations, we clearly see that the different UNets learn different
interpretations of the data, which then are combined in one final output.

2.2. DivergentNets

The DivergentNets network is inspired by the idea of ensembles made with multiple high-
performing image segmentation architectures and the TriUNet architecture presented in the
previous section. We constructed this DivergentNets assuming that cumulative decisions taken
from multiple intermediate models should give a more precise decision than the predictions from
a single network. The included models were selected based on what has previously been shown
to produce good results on different segmentation tasks and some preliminary experiments
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Figure 3: An illustration of the DivergentNets architecture. First, five different models are trained
using the U-Net++, FPN, TriUnet, DeepLabv3, and DeepLabv3 architectures. Then, an image is passed
through each model separately, which produces masks 𝑀1 to 𝑀5. Last, the masks are averaged to
make the final segmentation mask.

using each model independently. Furthermore, the selection was limited by the hardware we
had available.

As shown in Figure 3, our configuration comprises five intermediate models, namely UNet++,
FPN, DeepLabv3, DeepLabv3+, and TriUNet. The five intermediate models are first trained
for 𝑁 number of epochs separately, where the best checkpoint of each model is selected to
be combined in DivergentNet. This 𝑁 should be selected using a preliminary experiment. In
our case, we identified that 𝑁 = 200 is enough to produce high-quality masks. However,
training for more epochs may result in better checkpoints to use in DivergentNet. To produce
the intermediate masks, the output of each model is passed through a softmax2d activation
function. However, this should be changed based on the application. In our case, we predict
masks for two classes, background and polyp, where no two categories may overlap. The masks
produced by each intermediate model represent the divergent views on the data. The final
output of DivergentNets is made by averaging the pixels between each intermediate mask and
rounding to the nearest integer (either 0 or 1).

2.3. Single-channel Dice

All models were trained to predict masks for both polyps and background (mostly containing
the mucosal wall lining the inside of the colon). As the primary focus of EndoCV is to segment
colon polyps, we use a modified Dice loss to calculate the prediction error. We call this loss
function single-channel Dice loss as it only considers one channel when calculating error. This
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Table 1
An overview of how the data was split between training, validation, and testing.

Dataset Partition # Samples # Polyp # Non-Polyp

EndoCV Training 1,754 1,329 435
EndoCV Validation 2,756 1,400 1,356

HyperKvasir Testing 1,000 1,000 0

is shown in Equation 1:

Single-Channel Dice Loss =
2 · |𝐴𝑛 ∩𝐵𝑛|

2 · |𝐴𝑛 ∩𝐵𝑛|+ |𝐵𝑛∖𝐴𝑛|+ |𝐴𝑛∖𝐵𝑛|
(1)

where 𝑛 represents the class for which loss should be calculated for. In this case, we only
calculate loss for the polyp class and ignore the background.

3. Experiments

The experimenters can be categorized into two sub-groups, namely baseline experiments and
experiments used for the challenge. The baseline experiments were used to benchmark common
segmentation models. The baseline models tested were UNet [14], UNet++ [15], FPN [16],
DeepLabv3 [17], and DeepLabv3+ [18]. In turn, we used these networks to design the TriUNet
and DivergentNets architectures. This section describes the experimental setup, including how
the data was prepared, training procedures, architecture implementations, and specifics on
what hyperparameters were used.

3.1. Data details and preparation

The development dataset provided by the organizers was split between several directories,
primarily one part consisting of a five-way center-wise split (directories C1 through C5) con-
taining a diverse set of data [10], and one part consisting of pure sequence data (directories
seq1 through seq15). For this challenge, we decided to use a standard three-way split of the data
into training, validation, and testing datasets. The training data was made up of all the data
contained within the center-wise split for training data, in addition to a few sequences only
containing negative samples. For validation, we used the remaining sequence data. Table 1 gives
an overview of how each directory was split between training, validation, and test datasets. All
samples contained an image, a segmentation mask, bounding box coordinates, and the image
with the bounding-box superimposed over it. As we were only participating in the segmentation
generalization challenge, we only used the images and segmentation masks.

3.2. Implementation details

All models were implemented in PyTorch and trained on an Nvidia DGX-2. The Nvidia DGX-2
consists of 16 Tesla V100 GPUs, dual Intel Xeon Platinum 816 processors, and 1.5 terabytes
of system memory. Despite that the system contains 16 GPUs, we only use one for training
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Table 2
The results collected from the preliminary experiments on the internal validation dataset.

Model
All Classes Polyp Class Background Class

IoU F1 REC PREC IoU F1 REC PREC IoU F1 REC PREC

U-Net 0.973 0.985 0.985 0.985 0.774 0.802 0.831 0.926 0.984 0.991 0.996 0.988
U-Net++ 0.972 0.984 0.984 0.984 0.787 0.815 0.847 0.918 0.983 0.991 0.995 0.989

FPN 0.973 0.985 0.985 0.985 0.778 0.810 0.853 0.904 0.984 0.991 0.995 0.989
DeepLabv3 0.971 0.984 0.984 0.984 0.764 0.798 0.842 0.902 0.983 0.991 0.994 0.989

DeepLabv3+ 0.973 0.985 0.985 0.985 0.777 0.807 0.840 0.919 0.984 0.991 0.994 0.989
TriUNet 0.970 0.983 0.983 0.983 0.775 0.802 0.846 0.903 0.982 0.990 0.992 0.989

DivergentNets 0.976 0.986 0.986 0.986 0.795 0.823 0.844 0.937 0.986 0.992 0.997 0.989

so that we can train multiple models in parallel. For the baseline experiments, we used the
implementations and pre-trained weights available in the Segmentation Models [19] library.
These networks were also used as the basis for our proposed TriUNet and DivergentNets. Each
model was implemented SE-ResNeXt-50-32x4D [20] as the encoder, which was initialized with
ImageNet [21] weights. Images and masks were resized to 256× 256 and resized back to the
original resolution using bilinear interpolation. The final prediction was produced by passing
the output through a two-dimensional softmax function. For training, all models started with a
learning rate of 0.0001 and reduced to 0.00001 after 50 epochs. The model error was calculated
using the proposed single-channel Dice for the polyp class (as explained in Section 2.3), and the
weights were optimized using Adam [22].

As the size of the development dataset is relatively small, we use a series of different image
augmentations to make the model more generalizable. These augmentations include horizontal
flip, shift scale rotation, resizing, additive Gaussian noise, perspective shift, contrast limited
adaptive histogram equalization (CLAHE), random brightness, random gamma, random sharpen,
random blur, random motion blur, random contrast, and hue saturation. The augmentations
were implemented using the Python library Albumentations [23]. No augmentations were
applied to the validation and testing data.

4. Results and Discussion

In this section, we discuss the preliminary and official results of our approach to the EndoCV
2021 challenge. We also perform a qualitative analysis of the models, showing how the different
modes diverge to a final prediction.

4.1. Preliminary results

Table 2 and Table 3 show the initial results on the provided development validation and testing
datasets. Overall, we see that all models perform well on segmenting the polyp class, with the
DivergentNets architecture achieving the best performance and UNet++ at a close second place
on both the validation and test datasets. Comparing UNet and TriUNet, we see that TriUNet
performs slightly better on the polyp class, however, UNet++ outperforms both. With these
results, it would be natural to assume that a TriUNet++ architecture would perform even better
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Table 3
The results collected from the preliminary experiments on the internal testing dataset.

Model
All Classes Polyp Class Background Class

IoU F1 REC PREC IoU F1 REC PREC IoU F1 REC PREC

U-Net 0.941 0.967 0.967 0.967 0.823 0.883 0.876 0.938 0.959 0.977 0.988 0.970
U-Net++ 0.945 0.969 0.969 0.969 0.834 0.894 0.882 0.942 0.961 0.979 0.988 0.972

FPN 0.944 0.968 0.968 0.968 0.824 0.887 0.870 0.943 0.961 0.978 0.990 0.970
DeepLabv3 0.942 0.968 0.968 0.968 0.821 0.885 0.874 0.935 0.959 0.977 0.988 0.970

DeepLabv3+ 0.942 0.968 0.968 0.968 0.823 0.886 0.883 0.931 0.823 0.886 0.883 0.931
TriUNet 0.941 0.967 0.967 0.967 0.829 0.890 0.891 0.928 0.959 0.977 0.983 0.975

DivergentNets 0.949 0.972 0.972 0.972 0.840 0.899 0.886 0.946 0.964 0.980 0.990 0.973

Table 4
The official results provided by the EndoCV organizers. Score is an average score of F1-score, F2-score,
PPV, and Recall provided by the organizers, and SD is the standard deviation of the metrics.

Round Model Score SD

I
UNet++ 0.917 0.168
TriUNet 0.925 0.152

II
TriUNet 0.796 0.047

DivergentNets 0.823 0.043

than TriUNet. However, due to hardware limitations (specifically GPU memory), we were
unable to test this configuration and move this to future work.

4.2. Official results

The official evaluation was split into two rounds, where Round I used a subset of the testing data
that was fully used for Round II. For both rounds, we were limited by the number of submissions
that could be delivered per day. This limit started at five-per-day for Round I and was reduced
to two-per-day for Round II. Due to this limitation, only a subset of the aforementioned models
was submitted as official runs. Models were selected based on their performance on a different
test dataset that we chose, namely the well-known and established HyperKvasir [24] dataset, in
ascending fashion. From the HyperKvasir dataset, we only used the images with segmentation
masks as an independent test set to determine the best generalizable model. It was not used in
any way as training or validation data. Table 4 shows the official results for Round I and Round
II. Note that the DivergentNets model was not part of Round I as it was developed during Round
I and used in Round II once it was finished. From the results, we see that TriUNet achieved the
best score for Round I, and DivergentNets achieved the best score for Round II, i.e.,both winning
their respective rounds of the competition.

4.3. Qualitative analysis

Figure 4 shows some example masks predicted by our best performing model (DivergentNets)
together with masks produced by the intermediate models. We see that each intermediate model
learns slightly different features, making an overall more precise segmentation mask when
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Figure 4: Some predicted mask examples taken from the divergent network and its five intermediate
models. The images are taken from HyperKvasir.

combined. For example, the first row of Figure 4 shows the predicted masks and ground truth
of a large polyp. We see that each model predicts slightly different masks for the same input
and that TriUNet over-estimates the size of the polyp. After averaging the predicted masks
for DivergentNets’ final output, this area is smoothed out by the predictions from the other
intermediate models.

Even though DivergentNets primarily produces more accurate masks than any single model,
there are cases where masks from the intermediate model better match the ground truth. We see
this in row three, where DeepLabv3+ produces a more precise mask than all other intermediate
models, making the averaged output less accurate.

5. Conclusion and future work

In this paper, we presented our approaches to the EndoCV 2021 challenge. We trained a series
of baseline models and two models based on novel architectures using a slightly modified Dice
loss, which achieved the overall best score in both rounds of the generalization segmentation
challenge. For the first round, we developed TriUNet, which reached an average score of
0.925 on the official testing dataset. For the second round, we developed the DivergentNets
architecture, which combines the baseline models with the TriUNet to gain an average score of
0.823 on the official training dataset. Due to a limitation on time and computational resources,
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we could not experiment with another improved version where the UNet architectures are
replaced with UNet++ architectures.

For future work, we plan to explore different configurations of TriUNet, such as implementing
TriUNet++ and testing different architectures for three architectures that make up the TriUNet
architecture, for example, combining the UNet, FPN, and DeepLabv3 as TriUNet nodes. We
would also like to explore different configurations for the DivergentNets architecture with
different networks for each node. Another idea could be to use a neural network to produce the
final prediction instead of the current averaging technique, similar to the approach discussed
in [25]. Further testing the approaches with datasets from other medical fields can help to
identify the generalizability of our approach.
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Abstract—We present a semi-supervised teacher-student
framework to improve classification performance on gastroin-
testinal image data. As labeled data is scarce in medical settings,
this framework is built specifically to take advantage of vast
amounts of unlabeled data. It consists of three main steps: (1)
train a teacher model with labeled data, (2) use the teacher
model to infer pseudo labels with unlabeled data, and (3) train
a new and larger student model with a combination of labeled
images and inferred pseudo labels. These three steps are repeated
several times by treating the student as a teacher to relabel
the unlabeled data and consequently train a new student. We
demonstrate that our framework can classify both video capsule
endoscopy (VCE) and standard endoscopy images. Our results
indicate that our teacher-student framework can significantly
increase the performance compared to traditional supervised-
learning-based models, i.e., an overall increase in the F1-score
of 4.7% for the Kvasir-Capsule VCE dataset and 3.2% for the
HyperKvasir colonoscopy dataset. We believe that our framework
can use more of the data collected at hospitals without the need
for expert labels, contributing to overall better models for medical
multimedia systems for automatic disease detection.

Index Terms—Teacher-student framework, capsule endoscopy,
colonoscopy, self-training, deep learning, machine learning, com-
puter vision

I. INTRODUCTION

Numerous abnormal mucosal findings ranging from minor
annoyances to highly lethal diseases can be found in the
human gastrointestinal (GI) tract. According to the Interna-
tional Agency for Research on Cancer [1], GI cancer globally
accounts for about 3.5 million new cases each year. These
types of cancer usually have combined mortality of about
63% and 2.2 million deaths per year [2], [3], [4]. In this
context, endoscopy is currently the gold-standard procedure
for examining the GI tract for cancer precursors like polyps,
but its effectiveness is considerably limited by the variation
in operator performance [5], [6], [7]. The consequence is an
average of 20% polyp miss-rate in regular colonoscopies [8].
In video capsule endoscopy (VCE) analysis, essential findings
are also missed due to lack of concentration, insufficient
experience and knowledge [9], [10], [11]. Thus, improved
endoscopic performances, high-quality clinical examinations,
and systematic screening are significant factors in preventing
GI disease-related morbidity and deaths.

To assist clinicians, computer-aided diagnosis (CAD) sys-
tems have recently received a lot of attention where supervised
machine learning models detect and classify lesions. Despite
there being a lot of data gathered at hospitals, labeled data
is scarce due to the time-consuming, tedious, and expensive

(a) HyperKvasir (b) Kvasir-Capsule

Fig. 1: Example images from both datasets.

process of having qualified medical personnel do manual
labeling work. In this respect, semi-supervised methods using
unlabeled data have shown improvements and been success-
fully applied in medical image analyses [12]. Instead of
learning from a large set of annotated data, algorithms learn
from sparsely labeled and unlabeled data. Self-learning [13],
[14] and neural graph learning [15] are examples of using
unlabeled data in addition to a small amount of labeled data
to extract additional information [16], [14], [13]. In an area
with scarce data, such algorithms might be the technology
needed to make AI truly useful for medical applications.

In this work, we present a semi-supervised teacher-student
framework using the classification of GI images as a case
study. The semi-supervised learning framework trains a model
on labeled data, uses this model to predict image labels, called
pseudo labels, from a corpus of unlabeled images, then finally
trains a new model on the combination of labeled images
and pseudo labels. This type of self-learning framework is
called a teacher-student framework because we first train a
model on the labeled data (the teacher), and then use the
teacher to train a student, which eventually becomes better
than the teacher. Moreover, we have used two open datasets,
HyperKvasir [17] and Kvasir-Capsule [18] to demonstrate the
potential of our framework for both colonoscopy and VCE
data (example images shown in Figure 1. Our results indi-
cate that our teacher-student model can significantly increase
the performance compared to traditional supervised-learning-
based models, i.e., compared to EfficientNet [19] as a repre-
sentative example of supervised models, we observe overall
increase in the F1-score of 4.7% for the Kvasir-Capsule VCE
dataset and 3.2% for the HyperKvasir colonoscopy dataset. We
believe that this proves, using two different datasets, that our
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framework has the potential to be a useful addition to existing
medical multimedia systems for automatic disease detection as
it can make use of the unlabeled data collected at hospitals.

II. BACKGROUND AND RELATED WORK

In recent years, there have been many proposed methods to
use deep learning to produce better and more efficient health
care systems [20], [21]. Many of these methods are considered
state-of-the-art within the fields of deep learning [22], [23].
As neural networks developed for medicine usually deal
with high-risk decision-making, all data should be labeled
by a doctor or other professional personnel before it is used
for training. We propose a method that takes advantage of
unlabeled data, which is more readily available and cheaper
to produce.

Examination of the colon using conventional endoscopy or
VCE produces a lot of video data. Too much data for any
medical professional to manually annotate every frame. The
result is that only a handful of frames are labeled, leaving a
vast number of unlabeled images. In cases like this, semi-
supervised models that can utilize the unlabeled data have
found success in the area of medical image analyses [12],
where self-learning [13], [14] and neural graph learning [15]
are example solutions where additional information is ex-
tracted from the unlabeled data [16], [14], [13].

Self-training is one of the most common semi-supervised
methods used. Self-training means to use a trained, supervised
model, called a teacher, to assign pseudo labels on a subset of
the unlabeled data by using a threshold on the predictions. This
pseudo-labeled data is then combined with the original labeled
dataset, and used to train a new model, called a student model.
This is repeated multiple times until the system converges, and
thereby fully utilizing the unlabeled data to increase model
performance.

Xie et al. [24] proposed a self-training framework better
suited to work well at scale, and their model achieved 88.4%
top-1 accuracy on ImageNet [25], which is 2.0% better than
the previous state of the art model [24]. They found that for
self-training to work well at scale, noise should be inserted
into the student model during training while no noise should
be input into the teacher model when generating pseudo labels.
Noisy students improve self-training in two distinct ways:
(1) it makes the student model deeper and wider than, or at
least equal to, the teacher so the student can learn from a
larger dataset, and (2) it adds noise to the student, forcing
the student to better generalize on the unlabeled dataset,
and thereby learn more. The authors used multiple types of
noise to improve the student model’s ability to generalize,
such as RandAugment data augmentation [26] as input noise,
stochastic depth [27] as model noise, and dropout [28]. In-
jecting noise on the input data has the benefit of enforcing
local smoothness in the decision function on both labeled
and unlabeled images. The student must be able to correctly
classify images with random data augmentations, which helps
the student model to learn beyond the teacher and make
predictions on more difficult data. When model noise such

as stochastic depth and dropout are used, the teacher behaves
like an ensemble while it generates pseudo labels, whereas
the student is forced to mimic a more powerful ensemble
model. Below is the noisy student algorithm in more detail.
In the following algorithm, {(x1, y1), (x2, y2), ..., (xn, yn)} in
steps 1 and 2 are the labeled images and their respective label,
and {(x̃1, ỹ1), (x̃2, ỹ2)..., (x̃m ỹm)} in step 3 is the unlabeled
images and their respective pseudo label.

1) Learn a teacher model θt∗ which minimizes the cross-
entropy loss on a labeled set of images.

1

n

n∑

i=1

`(yi, f
noised(xi, θ

t)) (1)

2) Use the teacher model to generate soft or hard pseudo
labels for unlabeled images.

ỹi = f(x̃, θt∗),∀i = 1, ...,m (2)

3) Learn an equal-or-larger student model θs∗ which min-
imizes the cross-entropy loss on labeled images and
pseudo labels with noise added to the student model.

1

n

n∑

i=1

`(yi, f
noised(xi, θ

s))+
1

m

m∑

i=1

`(ỹi, f
noised(x̃i, θ

s))

(3)
4) Use the student model as a teacher and repeat steps 2

through 4 until the student stops improving.
To train the teacher and student models, Xie et al. [24] use
EfficientNet [19] as the baseline model and further scale up
and down the model to achieve network architectures which
are deeper and wider, as well as networks which are shallower
and thinner.

The previously discussed teacher-student-based methods
are complex, difficult to train, and hard to set up. In this
work, we focus on a simple but efficient framework with
a particular emphasis on the evaluation process specifically
targeted towards medical applications. Related work usually
follows a set and forget training strategy, which only produces
one final model, while our framework stores every model and
its corresponding evaluations to be considered in the entire
training process.

III. ITERATIVE TEACHER-STUDENT FRAMEWORK

We developed a semi-supervised teacher-student-based im-
age classification system, depicted in Figure 2, to take advan-
tage of the vast amounts of unlabeled medical data and thereby
reduce the estimated cost of creating medical classification
models.

The first step in our semi-supervised framework is to
train a model, called a teacher model, on labeled data. The
next step is to use the trained model to infer pseudo labels
from the unlabeled dataset, then train a student model on
the combination of the pseudo-labeled data and the original
labeled dataset. Finally, we switch the teacher with the student
and repeat in an iterative process. This process is shown in
Figure 2. This framework is heavily dependent on the initial
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Train teacher model
with iterative data

Infer pseudo-labels
on unlabeled data

Train equal-or-
larger student model
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Stochastic depth

Polyp Pylorus Cecum

......

Fig. 2: Illustration of the Noisy student method.

teacher model, which must capture at least some of the features
of each class to later produce useful pseudo labels in later
iterations. Therefore, we set up a data pipeline with integrated
monitoring of model metrics, as demonstrated in Figure 3.

For our teacher and student models, we use architectures
based on EfficientNet [19] with weights pre-trained on the
ImageNet dataset [25]. EfficientNet was chosen due to its
compound scaling, which uniformly scales network width,
depth, and resolution to create the optimal network that
captures all fine-grained features of an image. Furthermore,
we can also use the architecture itself to add stochastic depth
as model noise to the student model.

The labeled images are downscaled to 256×256 pixels and
the pixel values are normalized to be between 0 and 1. The
framework was tested with the original resolution of the VCE
device, 336× 336 pixels, but we found no additional benefits
that outweighed the increased time needed for training. To
produce a uniform number of images from each class, we
resample the dataset by oversampling the minority classes and
undersampling the majority classes. For the student models,
we randomly augment the data using a series of image aug-
mentations (rotation, flipping, skewing, cropping, and adjust
image brightness, saturation, and contrast), and add model
noise in the form of stochastic depth and dropout. We generate
pseudo labels for the unlabeled data by running every image
through our predictive model. For the first iteration, the teacher
model makes the predictions, and the next time the student.
This is the most time-consuming process of our system, and
depending on the size of the unlabeled dataset and the depth
of the model, it can take from half an hour to many hours for
each run through the dataset on an Nvidia Volta 100 GPU. For
HyperKvasir, which has approximately 100, 000 unlabeled im-
ages, and the shallowest EfficientNet model (EfficientNetB0),
the process takes roughly forty minutes. The model predicts a
probability distribution over the set of classes for each image
in the unlabeled data. We empirically set a threshold to include
the image if the prediction confidence is above 90%. If above
this threshold, the image is marked with a pseudo label and
incorporated into the training data for the next iteration. If
confidence is below the threshold, it is assumed to be out-of-
domain and rejected.

To prevent growing memory usage, we add a threshold

1https://github.com/henriklg/teacher-student-framework
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Fig. 3: The pipeline used for training our models. All code is
available on GitHub1.

for the max number of pseudo labels added to each class.
This threshold was set based on the number of images in the
majority class in the initial training data and remained constant
throughout all iterations of the framework. In Figure 4, an
example of the number of samples per class for two iterations
of the teacher-student framework is shown. The majority class
in this example is BBPS-2-3 with 803 samples, and during the
run, no more pseudo labels are added.

The framework stores the model metrics for each trained
model at the end of the run. In this metric folder, we can
inspect the pseudo labels, its distribution of samples per class,
accuracy and loss for both training data and validation data,
classification report of precision, recall, F1-score, confusion
matrix, and more. When testing the framework, we monitored
the pseudo labels added to the training data of the later models
to verify that they were aligned with the annotated images for
the given class. In Figure 5, we see one such output of pseudo
labels for a subset of the classes from the HyperKvasir dataset,
which contains the class hemorrhoids, one of the minority
classes. We see that the teacher models can produce good in-
domain pseudo labels for the minority class. The correctness of
the pseudo labels was verified by a professional endoscopist.

We rely on data augmentation and model noise to help
the student model generalize and not overfit on the training
data. This is done when preparing the data by using data
transformations, which applies a user-defined function to each
element of the input dataset to artificially inflate the training
dataset with label-preserving transformations. Because the
samples are independent of one another, the process can be
run in parallel across multiple CPU cores for efficiency. These
transformations include commonly used ones such as horizon-
tal and vertical flipping of the image, skewing, cropping, and
rotating. By doing this, the augmented data is able to simulate
a variety of subtly different data points, as opposed to just
duplicating the same data over and over. We shuffle the data
twice to reduce variance and to make sure the model remains
general and overfits less.

Our framework incorporates two methods for dampening
the negative effect of training on a highly skewed dataset: (1)
weighing the classes by the number of samples per class when
calculating loss, and (2) sampling from the training dataset
during model training, which ensures the model is fed with
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Fig. 5: Generated pseudo labels from the ulcerative colitis
grade 3, esophagitis B-D, dyed resection margins, and hemor-
rhoids classes, from a subset of the 23 classes in HyperKvasir
dataset. Above each pseudo label is the models confidence
score which is generated by a teacher model on first iteration.

images from a uniform distribution of the overall training data.

IV. EXPERIMENT DETAILS

A. Datasets

The framework was tested on two public datasets. The
first is the HyperKvasir dataset [17], which is one of the
largest endoscopy datasets available, containing 110, 079 im-
ages, of which 10, 662 images are labeled, and 373 videos of
anatomical landmarks and pathological findings, resulting in
more than 1.1 million images and video frames altogether.
The dataset contains four parts, labeled images, unlabeled
images, segmented images, and videos. The labeled images are
categorized into 23 classes, with a varying number of images
per class. The classes contain a mix of pathological findings,

normal mucosa and anatomical landmarks, and degrees of
bowel cleanliness. The second dataset is the Kvasir-Capsule
dataset [18], which is a large VCE dataset collected from
routine clinical examinations at Hospitals in Norway. The
dataset consists of 118 videos which can be used to extract
a total of 4, 820, 739 image frames. This includes a total of
44,228 labeled, medically verified frames with a bounding box
around the detected anomalies. There are 13 different classes
of anomalies with a skewed number of samples per class, as
some findings are more scarce than others. The classes contain
images from anatomical landmarks, quality of mucosa view,
and pathological findings.

Because Kvasir-Capsule contains frames extracted from
videos, we had to consider what parts of the data went into
each respective split (train and validation) to avoid near-
duplicates between them. Suppose the data is split arbitrarily.
In that case, there might be instances of the same finding
spread across the different data splits, which would give an
incorrect depiction of the model’s actual performance. To
avoid this, we split the data so that no frames of one specific
finding are part of both the training and validation split.

B. Model evaluation

To make full use of the available data, we used two-fold
cross-validation to evaluate our teacher-student framework. We
ran our framework using one split as training data and the
other for validation, and in the next run, we swapped the
training data with the validation data and vice versa. The final
performance metrics were calculated by averaging the metrics
produced for each split, which is visualized in Figure 6 as
a graph with metrics for each iteration of the teacher-student
framework for HyperKvasir and Kvasir-capsule datasets. The
metrics used to evaluate the framework are calculated by av-
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Fig. 6: Averaged accuracy and F1-score for both splits after three iterations of switching out the teacher with the student. The
pseudo label threshold was set to a max of 1,500 labels per class.
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Fig. 7: A comparison of the performance on the HyperKvasir
dataset of how the teacher-student framework performs when
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without adding noise, which is averaged over four runs using
EfficientNet B0, B2, B4, and B6 for both the teacher and
student models. The orange line shows the results with adding
noise to the student.

eraging the weighted metric with regards to the class support,
and by averaging the model metrics for each split of the data.

V. RESULTS

A. Adding noise to the student

Our experiments found that the student model performed
better than the teacher. This is because the teacher tends to
overfit on the data, while the student uses a model with more
parameters, dropout, and data augmentation, which forces the
student to better learn each class feature. For the teacher, we
used EfficientNetB0 with no dropout and no augmentation.
For the student model, we used EfficientNetB6 with a dropout
rate of 30% and a range of image augmentations. The effect
of adding noise to the student is shown in Figure 7, where we
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Kvasir-Capsule
EfficientNetB0 0.634 0.657 0.635 0.717 0.599
Teacher-student 0.695 0.704 0.696 0.734 0.626

HyperKvasir
EfficientNetB0 0.855 0.854 0.855 0.858 0.992
Teacher-student 0.893 0.886 0.893 0.890 0.993

TABLE I: The results using our teacher student framework
compared to standard classification training on the Kvasir-
Capsule dataset and the HyperKvasir dataset. The results are
averaged over two-fold validation.

see that when the teacher-student framework is run without
injecting noise into the student, the models perform about
the same as the teachers. When noise is added to the student
model, we see a clear improvement in the overall performance,
until in the last student iteration, the performance drop due to
over-saturation of pseudo labels.

B. Iterative training

By putting the student back as the teacher and repeating
the process, we found that the models generally perform better
after mixing in more pseudo-labeled data with the labeled data.
This allows the student to train on more images and therefore
generalize better. In Table I, we present the results compar-
ing our teacher-student framework using EfficientNetB0 and
EfficientNetB6 against a EfficientNetB0 trained on only the
labeled images. Running the framework for more than 3 or 4
iterations gave diminishing returns, or in some cases, an abrupt
performance drop due to the over-saturation of pseudo labels
in the training data. For this reason, the framework should
incorporate an automatic look-back system to capture the best
iteration and exit the training at an appropriate time. This was
done manually in our work, but it should be implemented in
future work.
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VI. CONCLUSIONS

This paper presented a teacher-student-based framework for
automatically classifying findings in the GI tract using video
frames from VCE and standard endoscopies. The results show
the potential of the proposed framework in utilizing unlabeled
data, specifically by increasing the F1-score by 3.2% for the
HyperKvasir dataset and 4.7% for the Kvasir-Capsule dataset.
As most medical data is collected without being annotated,
we expect this type of self-learning paradigm will have a
profound affect on the future of computer-assisted diagnoses
in medicine. However, despite this framework being tested
on two medical datasets, the framework should be tested on
different datasets from different medical domains to better
understand its generalizability and performance.
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ABSTRACT
In this paper we describe our approach to gastrointestinal disease
classification for the medico task at MediaEval 2018. We propose
multiple ways to inpaint problematic areas in the test and training
set to help with classification. We discuss the effect that prepro-
cessing does to the input data with respect to removing regions
with sparse information. We also discuss how preprocessing affects
the training and evaluation of a dataset that is limited in size. We
will also compare the different inpainting methods with transfer
learning using a convolutional neural network.

1 INTRODUCTION
Medical image diagnosis is a challenging task in the industry of
computer vision. In the last couple of years, as computing power
has increased, machine learning has become a tool in the task of
image detection, segmentation and classification. In this paper we
are looking in depth how to use machine learning to help solve
classification tasks on the data-set from the Medico task [8]. The
Medico task focuses on image classification in the gastrointestinal
(GI) tract. The data is divided in to 16 different classes.

Similar to other parts of image detection, the Medico dataset
encounter the challenges that the amount of data is too small, or
that the training data does not cover the full distribution of the data
in the test case. The main goal of this task is to classify medical
images. Our proposal is to use unsupervised machine learning for
removal of the green corners that are in the Medico dataset. The
details of the task are described in [5, 7].

2 APPROACH
Our approach is divided in to two steps: first preprocessing, then
classifying. Our focus is mainly on the preprocessing of the data to
remove the green corners in the medical images.

After the preprocessing the dataset we run it through a Con-
volutional Neural Network (CNN) based on transfer learning. We
chose the CNN model based on the top 5 and top 1 accuracy of the
pre-trained networks on the Keras documentation pages.

In our approach we use the InceptionResNetV2 [9] network.
We also remove the top layer and replace it with a global average
pooling layer and a dense 16 layer output, to match the number of
classes wanted. In addition, we do not freeze any layers of the model.
The five submissions that we run is with the same hyperparameters
in the transferlearning model. This means that the difference in

Copyright held by the owner/author(s).
MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

(a) Image before inpainting (b) Image after inpainting

Figure 1: Differences of images after inpainting

results should only come from the different training datasets we
use.

The medical data has 1 main feature that we focus on during the
preprocessing, namely the green square in the bottom left corner.
A neural network often struggle with areas with really sparse infor-
mation. Our hypothesis is that just replacing the green area with a
similar black area will not yield a better result.

We have a dataset that we use as a base case. This dataset was
not augmented, other than shrinking the size of every image to a
fixed resolution. The other datasets were augmented in a way that
would cover up the green square in one way or another.

Our hypothesis it that if we recreate the areas as they would
look like without any sparse areas, the classifier can focus on the
right features for classifications. We propose 4 different methods
on how to inpaint the corner area of the medical images.
An autoencoder [4], a context conditional generative adversarial
network[2, 3], a context encoder [6], and a simple crop of the image.

2.1 Autoencoder
For the autoencoder approach, we created and trained a custom
autoencoder from scratch. Our autoencoder consist of a encoder-
decoder network, with 2D convolutions as well as rectified linear
units as activation functions. In the layer between the encoder and
the decoder we included a 25% dropout. [1]

To preprocess the medical data we feed the whole image through
the encoder-decoder network. We take the loss of the whole recon-
structed image, but only keep the inpainted part. Under training,
the goal is to minimize the loss: L(x ,д(f (x̃))) Where x is an image
without a green corner, and x̃ is the same image with an artificial
green corner. In theory we can replace any part of the image with
this method.
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Table 1: Validation set’ results

Method REC PREC SPEC ACC MCC F1

Autoencoder 0.929 0.929 0.981 0.929 0.923 0.928
CC-GAN 0.931 0.932 1.000 0.931 0.926 0.931

Contextencoder 0.926 0.928 0.945 0.926 0.920 0.926
Clipping 0.903 0.904 0.980 0.903 0.895 0.903

Non-augmenteted 0.925 0.927 0.981 0.925 0.919 0.924

2.2 Context encoder
For the context encoder approach, we created a new encoder-
decoder network. Here the encoder has a similar structure to the
autoencoder, but our decoder is only making outputs at the size of
the desired area to inpaint. In addition to the loss generated from
taking a MSE loss[6]:
L(x̂ ,д(f (x))) Where x̂ is an image with an artificial green corner,
and x is the part that was replaced by the corner, we include an
adversarial loss, as described in [6].

With the context encoder we feed images without a green corner
in to the encoder-decoder network. The output of the network is
the same size as the area we want to fill.

2.3 Context conditional generative adversarial
network

For the generative adversarial approach, we create a similar struc-
ture as the autoencoder. We have a constant 10% dropout at each
layer in the discriminator. As with the autoencoder we have the
same size input as output, but we only decide to keep the parts we
want to inpaint.

We use the same type of loss as the context encoder, with 15%
of the loss coming from a MSE loss, and the remaining 85% coming
from the adversarial loss.

2.4 Clipping instead of inpainting
The last method was just to crop the images in a way that excluded
the green corner. Since every image is scaled down to 256x256 px
during preprocessing, the same is done with the clipped version
(after the clip the size was reduced to 256x256).

The clipping was done in a way so that we had the most amount
of center frame, and minimal amount of the bottom left corner,
without sacrificing to much of the image.

3 RESULTS AND ANALYSIS
We made the augmented datasets before we trained the prepro-
cessing model. This means that the transferlearning model did not
augment the images at runtime. We split the data into a 70% train
set, and a 30% validation set.

Our results on the test set are tabulated in Table 1. The official
Results on the test set are tabulated in Table 2. Table 3 shows the
confusion matrix from the CC-GAN from the official test set.

The results show that the CC-GAN got the highest MCC score
with 0.926, and also the most realistic inpaintings. The context
encoder had the lowest MCC score with 0.920, and also the worst
inpainted areas. The official result did have the same pattern in

Table 2: Official Results

Method REC PREC SPEC ACC MCC F1

Autoencoder 0.915 0.915 0.994 0.989 0.910 0.915
CC-GAN 0.915 0.915 0.994 0.989 0.910 0.915

Contextencoder 0.910 0.910 0.994 0.988 0.905 0.910
Clipping 0.904 0.904 0.993 0.988 0.898 0.904

Non-augmenteted 0.917 0.917 0.994 0.989 0.911 0.917

Table 3: Confusion Matrix
A:ulcerative-colitis , B:esophagitis , C:normal-z-line , D:dyed-lifted-polyps , E:dyed-
resection-margins , F:out-of-patient , G:normal-pylorus , H:stool-inclusions , I:stool-
plenty , J:blurry-nothing , K:polyps , L:normal-cecum , M:colon-clear , N:retroflex-
rectum , O:retroflex-stomach , P:instruments

A B C D E F G H I J K L M N O P
A 510 0 1 0 1 0 1 0 69 0 5 24 0 3 0 13
B 3 401 68 0 1 0 5 0 0 0 0 0 0 0 1 0
C 0 153 489 0 0 0 3 0 0 0 0 0 0 0 0 0
D 0 0 0 502 39 0 0 0 0 0 3 0 0 1 0 45
E 0 0 0 46 517 1 0 0 0 0 1 0 0 0 0 15
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 2 2 3 0 0 0 547 0 0 0 0 0 0 0 1 0
H 0 0 0 0 0 0 0 486 35 0 0 0 0 0 0 0
I 3 0 0 0 2 0 0 1 1857 0 3 1 0 0 0 3
J 1 0 0 0 0 1 0 1 0 36 0 0 1 0 0 0
K 8 0 1 5 2 3 4 0 0 0 349 17 0 2 1 55
L 11 0 1 2 1 0 1 0 1 1 11 542 0 0 0 3
M 2 0 0 0 0 0 0 18 2 0 1 0 1064 0 1 3
N 2 0 0 1 1 0 0 0 0 0 1 0 0 183 4 5
O 0 0 0 0 0 0 0 0 1 0 0 0 0 2 389 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 131

MCC score, though the base case got the best result. In both cases
the clipping gave significantly worse result.

As expected, most of the images was classified correctly, but
we had some problems distinguishing between esophagitis and
normal-z-line. We also had a few cases of instruments where there
were none.

4 CONCLUSION
In general, when training on a dataset that is homogeneous, the
preprocessing is less valuable. We want to remove areas with sparse-
ness, and areas that has nothing to do with the classification.
In our example we used 3 different methods to do this, and we had
no improvements in the results. As we can see from the validation
set, we saved under a percent on the best method, and we got a
worse score on the official results.
We conclude that preprocessing the Medico dataset is not worth
the hassle. The effort put in to preprocess the images yields little to
no improvement to the result. We recommend that the time is used
to find the right network, with the right hyper-parameters instead.
A reason to lackluster results might be caused that the training
and the test set have the same green squares in the same classes.
We suspect that the similarity in the test and train set makes the
squares an essential part of the image. We believe that the result
would be much better if the test set would be completely without
the squares, as they would if they were ”real time” images.

In a future test we would also recommend removing the four
black edges too. With the images being round, this might be a
challenge, since there are no full-resolution images (without zoom)
that captures the edges. With the medico dataset, this method will
probably not give a better score, on the basis that every image in
the dataset has the same four black corners.
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Abstract—Automated disease detection in videos and images
from the gastrointestinal (GI) tract has received much attention
in the last years. However, the quality of image data is often
reduced due to overlays of text and positional data. In this
paper, we present different methods of preprocessing such images
and we describe our approach to GI disease classification for
the Kvasir v2 dataset. We propose multiple approaches to
inpaint problematic areas in the images to improve the anomaly
classification, and we discuss the effect that such preprocessing
does to the input data. In short, our experiments show that the
proposed methods improve the Matthews correlation coefficient
by approximately 7% in terms of better classification of GI
anomalies.

Index Terms—Machine learning, GAN, Autoencoder, Inpaint-
ing

I. INTRODUCTION

In the field of computer vision, image-based disease de-
tection has become a popular area of research. For example,
algorithms based on deep neural networks have been used to
automatically analyse the human digestive system for anoma-
lies such as polyps, lesions and other common illnesses. This
is important as the detection and removal of colon polyps
is the main prevention method of colorectal cancer, which
ranks within the top-three terminal cancer types for both men
and woman [1]. Automatically detecting this disease goes
a long way of aiding doctors to perform a more thorough
analysis of their patients, and has the potential of saving lives.
In addition to gastroenterology, we continue to see machine
learning based classification systems appear in nearly every
branch of medicine.

In recent years, deep learning based algorithms have be-
come a popular method for solving these problems. Aided
by the rapid advancement of computational power due to
the efficiency of GPUs, deep learning has shown state-of-the-
art performance across numerous fields, including medicine.
However, deep neural networks are only as good as the data
used to train them. Thus, data which contains artefacts such
as text and overlays may negatively impact the performance
of models trained on this data. This is particularly problematic
in medicine, as the selection of datasets is often limited, and
the datasets available may include artefacts from the software

Fig. 1: Example image from the Kvasir dataset with included
overlays and black borders.

the doctors use to analyse the images/videos (e.g., overlays,
text, and other information).

In this work, we look at improving the quality of a publicly
available endoscopy dataset called Kvasir [2], which contains
several of the artefacts previously mentioned (example shown
in Figure 1). We hope that this shows that there are more ways
of improving the performance of a deep neural network than
increasing its number of training samples. This work can be
seen as an extension of our approach to this years MediaEval
Medico task [3], where we presented a similar technique, albeit
to a much lesser extent [4]. Additionally, a recent study using
Kvasir for training deep learning based models showed that
these artefacts directly impacted the classification performance
of said models, showing that there is potential room for
improvement [5].

The main contributions of this paper are (i) we present
different methods for preprocessing data to be able to create
better generalisable models, (ii) a detailed cross-dataset eval-
uation of the methods used and (iii) we report classification
performance across different datasets.
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II. RELATED WORK

As mentioned in the introduction, medical image classifi-
cation has been a heavily researched area. Research gathered
by Lu and Weng [6] give current practices, problems, and
prospects of image classification.

Our methods for inpainting bears a resemblance to context-
encoder made by Pathak et al. [7] who introduce an encoder-
decoder network in style close to our proposed generative
adversarial network. However, a big difference is the use of
a channel-wise fully connected layer in their model to share
information around in the image space. This part was not
necessary for us, given the homogeneity of the medical images
coupled with the use of a non-random filter for inpainting.

Denton et al. [8] presented a model for inpainting close
to the context-conditional adversarial network presented by
Pathak et al. that is also trained on non-medical images, with
random filter placement during training and evaluation. Their
results showed that their generative adversarial network (GAN)
model was capable of producing semantically meaningful in-
paintings in a diverse set of images.

Previously, Hicks et al. [5] applied various preprocessing
steps to Kvasir based on analysis conducted on common
CNN architectures. Using heat maps and saliency maps, they
discovered a common issue where artefacts such as text, black
borders, and green navigation boxes were directly correlated to
the misclassification of some images. In an attempt to correct
this issue, they applied various preprocessing steps to the
training data, namely cropping black borders and blacking out
the green navigation box. Their results revealed improvement
in all cases of data preprocessing, and in the best case,
they achieved an increase of Matthews correlation coefficient
(MCC) by approximately 3%.

In this paper, we aim to improve on this work by not simply
removing borders and green navigation boxes. We also try
to replace the artefacts using ideas from GAN inpainting to
generate an automatically generated mask which attempts to
replicate what would have been there if not for said overlay
artefacts.

III. APPROACH

By using machine learning, we aim to classify medical
images from the gastrointestinal (GI) tract correctly. With
this approach, it is common to use a dataset for training
and validation, with a separate set for testing. In practice
the dataset we test on is never seen by the model before its
evaluation. This is the main reason why we often struggle to
get the same level of accuracy when evaluating our model if
the data originates from different sources. In our case, the test
data from the CVC dataset differs from the training data in
both the image content and size. When this problem arises, it
is practice to use domain-specific knowledge to help training,
and if the amount of training data is small, methods like K-fold
cross-validation [9] can also be used to improve the results.

For this paper, we focus on inpainting as a form of gen-
eralised preprocessing. We do this to remove dataset specific
overlays for better classification on new datasets no matter the
source of the dataset. Furthermore, we have also chosen to use

(a) Original image (b) Square inpainted

(c) Edges inpainted (d) Corner and edges inpainted

Fig. 2: Here we have a sample of what we want to achieve. (a)
Original from the Kvasir dataset. Here we also see extended
edges that we can cut away without any machine learning. (b)
Same image without edges and the green square. (c) Same
image with new corners, (d) Same image with both new
corners and new area for green square

the same Bayesian optimisation techniques as in the Borgli et
al. paper [10] to find the optimal network for classification.
With both hyperparameter optimisation and inpainting, our
goal is to get the highest classification score on the CVC
datasets.

A. Preprocessing

As discussed, the Kvasir dataset has some unwanted arte-
facts that are present in a good portion of the data. Some
of the unwanted artefacts are Kvasir specific, and some are
general artefacts when capturing images from the colon. First,
the camera used in colonoscopies has an exceptionally wide
lens. This setup takes good medical images but comes with
the drawback that the images are not rectangular. Because of
this, the camera needs to add black corners and borders to save
the images. Another unwanted artefact that is Kvasir specific
is an unwanted additional overlay added to the images. They
are added post-image-capture by the medical staff, and they
show essential information about the patient. As we can see
from this, we have multiple areas in the images with pixels
not originating from the patient, and subsequently contains no
information relevant for classification.

A neural network will also often struggle with areas with
really sparse information. Because of this, we believe that just
replacing the green area with a similar black area will not yield
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TABLE I: Details of all datasets used in the experiments.

BC: Black corner. GS: Green square. BC+GS: Black corner and
Green square

Dataset
labels Size Inpainted

area

Generator
network
used

D-I 256x256 px - -
D-II 256x256 px BC Autoencoder
D-III 256x256 px GS Autoencoder
D-IV 256x256 px BC+GS Autoencoder
D-V 256x256 px BC GAN
D-VI 256x256 px GS GAN
D-VII 256x256 px BC+GS GAN
D-VIII 512x512 px - -
D-IX 512x512 px BC Autoencoder
D-X 512x512 px GS Autoencoder
D-XI 512x512 px BC+GS Autoencoder
D-XII 512x512 px BC GAN
D-XIII 512x512 px GS GAN
D-XIV 512x512 px BC+GS GAN

the best result. However, we expect improvement if we instead
try to inpaint both the green corner and the black edges with
data gathered from similar images. Furthermore, by removing
areas that are specific for that dataset, we believe the model
will be far better at generalising to other datasets within the
same domain. In our case, the area we will be inpainting is
the green area, since it is not present in the CVC datasets, and
most other medical datasets are also without it.

With our two hypotheses, we have two different features that
we believe will make the classification harder. We first aim to
inpaint both areas separately to see how each of them affects
classification. We also want to try to collectively remove both
areas to see if a combined mask will yield a better or worse
result.

With this in mind, we use two different methods for
inpainting the desired areas. First, an autoencoder (AE) [11]
as a lightweight way to generate new data, and second we use
a GAN [12] as a more sophisticated generator. Both methods
are unsupervised learning methods to generate new data within
the distribution of the original dataset.

For our experiments, we scale our data to a constant
resolution. We run four experiments with 256x256 pixels (px)
resolution, and four experiments at 512x512 px. Our change
in resolution is to compare the effect it has compared to our
standard 256x256 px. With this configuration, we end up with
14 augmented datasets shown in table I.

B. Classification

Our research from the 2018 MediaEval workshop showed
less desirable result compared to other projects that researched
on the same dataset [13] [10]. Therefore one of our goals is
to make our model more realistic by using a model that works
better on the augmented Kvasir dataset. Using the Bayesian
hyperparameter optimiser on our newly created datasets, we

TABLE II: Details of experiments.

Test Training datasets Testing dataset Network model

T1 D-I - D-VII Kvasir V2 DenseNet121
T2 D-I - D-VII CVC-12k DenseNet121
T3 D-I - D-VII CVC-356 DenseNet121
T4 D-I - D-VII CVC-356 InceptionResnetV2
T5 D-VIII - D-XIV CVC-356 DenseNet121

choose Densenet121 [14] as our default architecture for train-
ing our new datasets. We are also interested in the accuracy
compared to a more general classification network. We ran
model D-I - D-VII with the pretrained InceptionResNetV2 [15]
network. We chose this network because of its high accuracy
on the Keras websites [16], and thus we hypothesise that
the model will be generally good without hyperparameter
optimisation. In both cases, we remove the top layer and
replace it with a global average pooling layer and a dense eight
layer output to match the number of classes in the training
dataset.

Our focus is the comparison between the generated datasets
and the baseline; hence we do not change the hyperparame-
ters after they are chosen. We believe this sets up a valid
comparison since the only difference in score should come
from the differences in the dataset and not the classification
model. An overview of our experiments are shown in Table II,
where Models T1 - T3 is a direct comparison on how well we
have generalised our model, while Models T4 & T5 show how
changing models will affect the results. Below, we give brief
a description of the three datasets used.

a) The Kvasir V2 dataset [2]: The Kvasir V2 dataset
consists of 8,000 images from the GI tract. Several of these
images contain artefacts such as navigation boxes (green box
as seen Figure 1), overlayed text, black borders, and black
edges. With our first hypothesis in mind, we assume that the
dataset with the inpainted rounding corners (D-II & D-IV) will
do slightly better than the baseline (D-I). This is because the
training and test data is from the same set, and subsequently
our generalisation will not help. That leaves us with the only
way to improve the result is to remove sparseness.

b) The CVC-356 dataset [17]: The CVC-356 dataset
consists of 2,285 images from the lower GI tract. CVC-356
does not have images with green boxes. It does have images
with black borders, and rounded black edges. As stated in
our second hypothesis; the inpainting of the green square will
presumably give the best result. This is because, as stated,
the CVC-356 images has the same black rounded corners as
Kvasir, but lacks the green squares.

c) The CVC 12k dataset [17]: The CVC-12k dataset
consists of 11954 images from the lower GI tract, with a
resolution of primarily 288x384 px. Given the similarity with
the CVC-356 dataset, this will presumably follow our second
hypothesis stating that the inpainting of the green square would
give the best result. Given that the CVC-12k images has the
same black rounded corners as Kvasir, but lacks the green
squares.
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IV. PREPROCESSING TOOLS

The networks used for inpainting are based on the network
presented in the Mediaeval conference [4]. Both networks
are using on masking, where only the parts of the image
corresponding to a mask was inpainted.

A. Autoencoder

The first approach we created and trained was a custom
autoencoder [11] from scratch. Our autoencoder consists of
an encoder-decoder network, with 2D convolutions as well
as rectified linear units as activation functions, and a 25%
dropout between the encoder and decoder. The network used
is a modification of the network presented in [4]. The modi-
fications are a smaller batch size and a more consistent filter
size throughout the network. These modifications were made
to make more credible results, and to get a lower error during
training. The loss function was also modified to solely train on
parts of the images that were modified. This lead to a larger
and more accurate gradient descent, which also contributed to
a better reconstruction.

B. Context conditional generative adversarial network

For the GAN approach, we create a similar structure to the
autoencoder. We have a generator-discriminator network that
serves much of the same functionality as the encoder-decoder
network in the autoencoder. As with the autoencoder, we have
the same size input as output, but we only decide to keep
the parts we want to inpaint. The model we ended up with is
closely inspired to the model made by Denton et al. in [18].
The main differences are the number of layers used, and the
lack of a low-resolution image as an extra input.

V. RESULTS

We divide our results into two sections, preprocessing and
classification. In our preprocessing section, we discuss the
appearance of the dataset, and how close the results are to
the ground truth. In our classification section, we discuss the
rate of generalisation and rate of success.

A. Preprocessing

Since there are no specific metrics associated with the
training of Autoencoders and GANs, we used the mean square
error of the ground truth as a metric of our progress. Figure 3
from the z-line shows how the two different models perform
on the two different sizes. This is a typical case where both
the GAN and the AE are fairly similar, except for more
features added by the GAN. The features are most present
in the smaller images, as the images are easier to train on,
and subsequently easier to add complex local features too.

B. Classification

We evaluated our model on both the Kvasir and the CVC
dataset as described in the classification section (III-B). When
presenting our results, our main point of comparison is the
MCC [19]. In addition to the MCC score, we use F1, precision

(a) GAN generated image at
512x512 px

(b) Autoencoder generated image at
512x512 px

(c) GAN generated image at
256x256 px

(d) Autoencoder generated image at
256x256 px

Fig. 3: Same image from the z-line with four different inpaint-
ing attempts. Each image is re-sized to fit in the figure.

and recall as metrics when presenting our results. In addition
to the best MCC score, we present the average MCC score as
an indicator of the general success of the method in question.

Since our task was to improve classification and cross-
dataset generalisability through inpainting, each table has its
first row as the dataset without any inpainting, followed by
the rest of the datasets. The first column is the maximum
MCC score of the runs. Then we give the maximum F1
score followed by the maximum precision and recall. The last
column gives us the average MCC of all four runs for each
model.

First, we evaluated our results on the three datasets: Kvasir,
CVC-356 and CVC-12k. Here our goal was to see the general
improvement based only on inpainting and dataset. Then we
evaluated the InceptionResNetV2 network on the CVC-356
dataset, and lastly, re-evaluated the CVC-356 network, at
double image size.

a) Kvasir, Test T1: These are our results from training
and evaluating on the Kvasir v2 dataset with the 5,600 image
training set, 800 image validation set, and 1,600 image test
set split. Table III shows the highest value for each of the six
methods compared to the highest baseline.

As we can see in the results shown in Table III, we got
the highest MCC score on the baseline dataset. Both the
best and average scores were highest for the baseline, but
the average was consistently high for all methods. As we
recall, we predicted that we expected a higher MCC score
for the Autoencoder inpainting the black corner and the GAN
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TABLE III: Test T1, Kvasir dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.9307 0.9394 0.9396 0.9394 0.9163 0.0166
D-II 0.9150 0.9254 0.9303 0.9250 0.9053 0.0102
D-III 0.9212 0.9310 0.9347 0.9306 0.9040 0.0167
D-IV 0.9187 0.9287 0.9298 0.9288 0.9105 0.0057
D-V 0.9208 0.9308 0.9316 0.9306 0.9108 0.0067
D-VI 0.9096 0.9204 0.9226 0.9206 0.9055 0.0038
D-VII 0.8960 0.9094 0.9174 0.9081 0.8926 0.0049

TABLE IV: Test T2, CVC-12k dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.2897 0.5558 0.6968 0.6067 0.2723 0.0329
D-II 0.3031 0.5413 0.7148 0.5927 0.2675 0.0250
D-III 0.3197 0.6152 0.7050 0.6600 0.2649 0.0374
D-IV 0.2956 0.4663 0.7632 0.5156 0.2733 0.0225
D-V 0.2967 0.5451 0.7072 0.5965 0.2523 0.0440
D-VI 0.2803 0.4548 0.7571 0.5038 0.2244 0.0410
D-VII 0.2225 0.5740 0.6451 0.6236 0.1984 0.0195

inpainting the black corner. The results do not show a clear
indication that the baseline was the best method, nor that there
are any good ways to inpaint this dataset.

b) CVC-12k, Test T2: The T2 test case was trained on
the Kvasir v2 dataset with the 5,600 image training set and
the 800 image validation set, then evaluating on the CVC-12k
dataset. Table IV shows the highest value for the six methods
compared to the highest baseline, with four runs each.

As we can see in the results, shown in Table IV, we got
the highest MCC score on the dataset with the inpainted green
square made by the autoencoder. Also, the average score was
consistently higher for the autoencoder datasets compared to
the GAN datasets. The results give a small indication that
inpainting the green area with an autoencoder might give a
better result compared to the baseline.

c) CVC-356, Test T3: The T3 test case was, as test case
T2, trained on the Kvasir v2 and evaluated on the CVC-356
dataset. The table V shows the highest value for each of the
six methods compared to the highest baseline, with four runs
each.

As we can observe in the results shown in Table V, we
got the highest MCC score on the dataset with the inpainted
green square made by the autoencoder and the GAN. We can
also see a constant higher value for both datasets inpainting
the green area. The highest value was from the dataset with
both corner and square inpainting, but this is most likely just
a lucky result, given the low average MCC. The results give a
reasonable indication that inpainting the green area will give
a better result compared to the baseline.

d) InceptionResNetV2, Test T4: These are our results
from training on the Kvasir v2 dataset with the 5,600 image
training set and the 800 image validation set, then evaluating
on the CVC-365 dataset. The table VI shows the highest value

TABLE V: Test T3, CVC-356 dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.7070 0.9137 0.9132 0.9164 0.5904 0.1104
D-II 0.5153 0.7846 0.8153 0.8065 0.4861 0.0307
D-III 0.7325 0.9402 0.9535 0.9348 0.6465 0.0978
D-IV 0.6631 0.9264 0.9410 0.9194 0.5637 0.1011
D-V 0.5714 0.8387 0.8487 0.8516 0.4557 0.1002
D-VI 0.7150 0.9214 0.9206 0.9225 0.6334 0.0819
D-VII 0.7466 0.9370 0.9391 0.9356 0.4576 0.1941

TABLE VI: Test T4, CVC-356 dataset on InceptionResNetV2

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.4038 0.8851 0.9130 0.8678 0.2999 0.0841
D-II 0.2221 0.7957 0.7958 0.7955 0.1227 0.0900
D-III 0.0745 0.4489 0.5535 0.5131 0.0299 0.0374
D-IV 0.3147 0.7793 0.7730 0.7916 0.1636 0.1197
D-V 0.1802 0.5434 0.6201 0.5985 0.0446 0.0923
D-VI 0.3276 0.8372 0.8429 0.8323 0.2234 0.0826
D-VII 0.2738 0.6754 0.6938 0.7106 0.1417 0.1230

for each of the six methods compared to the highest baseline,
with four runs each. In this run we used the InceptionRes-
NetV2 network to train our model.

As we can see from the results shown in Table VI, we
got the highest MCC score on the baseline dataset. From our
tests, it looked like the overall scores were much lower here
compared to our DenseNet121 models, and in general, we got
more unpredictable scores.

e) Double image size, Test T5: These are the results from
training on the Kvasir v2 dataset with the 5600 image training
set and the 800 image validation set, then evaluating on the
CVC-365k dataset. The table VII shows the highest value for
each of the six methods compared to the highest baseline, with
four runs each. Here we have doubled the size of the images
for the training and evaluation set to see how size affects the
results.

On the CVC-356 dataset at 512x512 px resolution, we see
a generally lower MCC score compared to the same dataset at
256x256 px. Our best average results came from the dataset
with both inpainted corners and inpainted squares, but it looks
like the more inpainting, the better. The results give a small
indication that inpainting large areas with sparse information
might give a better result compared to the baseline, at least
compared to smaller areas.

Overall, we can observe through all experiments that in-
painting can both improve and worsen the results. In general,
inpainting works best when applied in dataset specific artefacts
that are not present in the test set.

VI. DISCUSSION

Our first hypothesis was that removal of the black edges
and corners around the images would result in a better clas-
sification and better generalisation. Our results also show that
training and testing on the same dataset gave approximately
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TABLE VII: Test T5, CVC-356 dataset with double resolution

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-VIII 0.5865 0.8711 0.8702 0.8770 0.4696 0.1560
D-IX 0.6447 0.8992 0.8980 0.9015 0.4775 0.1142
D-X 0.4346 0.8894 0.9157 0.8735 0.3754 0.0709
D-XI 0.6449 0.8998 0.8986 0.9019 0.5935 0.0402
D-XII 0.7189 0.9294 0.9311 0.9282 0.4499 0.2110
D-XIII 0.5956 0.8891 0.8880 0.8905 0.5547 0.0604
D-XIV 0.7234 0.9235 0.9228 0.9247 0.5737 0.1173

the same MCC score, with and without corners. In addition, we
observed that the removal of areas within the images with no
relevant information did not give any better results, given the
same training and test distribution. This was not the case when
the images were up-scaled above their original size, as we saw
a much better result when the areas were inpainted. We also
observed that by removing the corners on the Kvasir set during
training, the testing on the CVC-sets we did not get any better
results in general. This was as expected since all the images
had black edges, and removing them from training would make
the datasets less alike. Our second hypothesis was concerning
the removal of the green squares in the training set. With this,
we wanted to see how the inpainted training sets affected to the
test set that did not originate from the original distribution. We
observed good results for both the CVC-12k set and the CVC-
356 set. For the set, we deemed most realistic, namely the
CVC-356 set, we saw that our score consistently was higher
both for the average and the max MCC. Lastly, using a non-
optimised network gives a lower MCC score when inpainting.
In general, we see that inpainting to only remove sparseness
will often worsen the results when the test and training set is
from different sources. The same goes for excessive inpainting.

VII. CONCLUSIONS

Our two main hypotheses regarding types of inpainting for
this paper were about how it would affect classification. We
tested this on various datasets with different models at different
sizes to see how the datasets affected the classification score.
From our experiments, we can see that inpainting can help
when generalising the training data to other datasets. In our
GI anomaly classification experiments, our models show an
average increase of at least 7% MCC score when using an
optimal network for testing on images that are not from the
same domain as the training data, shown in VII. When working
with bigger size images, and subsequently larger areas with
sparse information, it seems that inpainting does a better job,
compared to smaller images. The results coincide with the
previous work done [4].
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Abstract—Deep learning (DL) is one of the standard methods
in the field of multimedia research to perform data classi-
fication, detection, segmentation and generation. Within DL,
generative adversarial networks (GANs) represents a new and
highly popular branch of methods. GANs have the capability
to generate, from random noise or conditional input, new data
realizations within the dataset population. While generation is
popular and highly useful in itself, GANs can also be useful to
improve supervised DL. GAN-based approaches can, for example,
perform segmentation or create synthetic data for training other
DL models. The latter one is especially interesting in domains
where not much training data exists such as medical multimedia.
In this respect, performing a series of experiments involving
GANs can be very time consuming due to the lack of tools
that support the whole pipeline such as structured training,
testing and tracking of different architectures and configurations.
Moreover, the success of generative models is highly dependent
on hyper-parameter optimization and statistical analysis in the
design and fine-tuning stages.

In this paper, we present a new tool called GANEx for making
the whole pipeline of training, inference and benchmarking GANs
faster, more efficient and more structured. The tool consists
of a special library called FastGAN which allows designing
generative models very fast. Moreover, GANEx has a graphical
user interface to support structured experimenting, quick hyper-
parameter configurations and output analysis. The presented tool
is not limited to a specific DL framework and can be therefore
even used to compare the performance of cross frameworks.

Index Terms—GANs, Neural Networks, Graphical User Inter-
face, GAN Experiments, GAN Library, GAN Statistics

I. INTRODUCTION

Generative models have become an active research area
in recent years as a result of the introduction of generative
adversarial networks (GANs) [1], [2]. Research such as deep
convolution GAN [3], conditional GAN [4], coupled GAN
[5], cycle GAN [6] and many more generative models [7]
based on the original GAN idea have been published in
recent years. These generative models are actively used in
multimedia research because of the capabilities for generating
images, sounds, texts and videos from noise or conditional
inputs. Most of the GAN architectures follow the same set of
logical training procedures, generative and adversarial network
architectures and closely related optimization procedures. Re-
searchers are wasting valuable time to implement the same

logical flow of GANs over and over again implementing
already available GAN architectures from scratch. In addition,
they are facing problems in organizing deep learning (DL)
experiments and experiment data.

In this context, our GANEx tool is a solution to perform
GAN based research more effectively and efficiently. This tool
is a complete pipeline for training, inference and analysis of
generative models for saving the time of researchers and sav-
ing valuable data of experiments. The GANEx tool is enriched
with real-time training analysing tools to support researchers
to get early-stage decisions such as stopping the unstable
training processes, detecting the unstable hyperparameters and
other decisions which are more important to take early before
starting the long training process of DL. Moreover, this tool
is capable to handle GAN experiments in structured way and
perform advanced analysis in the inference stage of GAN
experiments.

As depicted in Figure 1, our main GANEx tool consists of
three components; 1) a graphical user interface (GUI), 2) a
library called FastGAN and 3) a DL library (Pytorch). In this
paper, we discuss only the first two sections (our contributions)
because the last section is implemented using the well known
DL library Pytorch where details are found in [8]. Based on
this, the main contributions of the presented tools are:

• The FastGAN library, which is introduced to develop, fine-
tune, perform experiments and analyse generative models or
GANs efficiently and effectively.

• The GANEx GUI, which is introduced to perform GAN
experiments in a structured way and benchmarking them
quickly for saving valuable time and experiment results
such as parameters of GAN models, output data and other
analysed statistical data.

In the next section (section 2), we discuss the available GUI
based tools for running DL experiments. Section 3 covers the

GANEx user Interface

Handling experiments using
the GUI

FastGAN Library PyTorch Library

A GAN library based on
FastGAN framework

Back-end deep learning
library 

Fig. 1: Overview of the GANEx execution flow978-1-7281-4673-7/19/$31.00 ©2019 IEEE
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concept and architecture of the FastGAN library before we
discuss the GANEx GUI in section 4. We present some ideas
of how GANEx can be expanded in section 5 and finally, in
section 6, we give a description of the proposed demo.

II. RELATED WORK

NVIDIA DIGITS [9] is one of the popular tools among
researchers for running and analysing DL experiments in
computer vision problems such as classification, detection
and segmentation. Recently they have experimented how to
run basic GAN experiments using this tool and they have
added basic GAN training capabilities. However, NVIDIA
DIGITS capabilities of the current version are not enough
for analysing and performing advanced GAN experiments
because it has general purpose DL capabilities and it does not
have mechanisms to mange experiments and doing advanced
statistical analysis. Moreover, this kind of web-based solutions
are slower than stand-alone applications because it has limita-
tions to work directly with OS functionalities. Therefore, our
solution is designed using stand-alone application development
concepts to keep good performance and reliability.

GAN lab [10] is another web-based tool for understanding
the main GAN architecture. Users can play with simple
data generation problems using this tool. It visualizes how
the GAN changes the input noise to the target distribution.
They clearly emphasize gradient changes of model parameters
using visualization to give a deeper understanding of the
GAN architecture. This web-page was designed using the
Tensorflow Javascript [11] library, and they have not targeted
any researchers who are doing new advanced generative model
experiments.

Weka [12] is a popular tool among machine learning re-
searchers from beginners to advanced users. However, han-
dling DL experiments using the Weka tool is limited. Because
it mainly targets statistical machine learning algorithms, it
has restrictions for doing advanced DL experiments using
the popular DL frameworks such as Pytorch and TensorFlow.
But, the concepts for managing experiments underpinning the
Weka tool are helpful for developers of GUI-based experiment
tools. They use standalone application development methods
with Java for maintaining reliability of the tool with OS
interactions.

The TensorBoard [13] visualization tool comes with the
Tensorflow [14] DL library, and it is rich with more visualiza-
tion tools for model parameters and training process. This tool
is also powered by web technologies. Moreover, this tool can
be used to visualize the main components of any DL model.
However, GAN-specific statistical analysis is more difficult
with this tool as a result of a generalized tool with Tesorflow.
Structured experiment handling and data handling capabilities
have not been designed in this solution.

Deep learning studio [15] is another tool which is closer
to the concept of NVIDIA DIGITS. This tool has more
capabilities in designing deep neural networks compared to
the designing capabilities of NVIDIA DIGITS tool. In contrast
to these benefits, Deep learning studio suffers from a lack of

capabilities for visualization of model learning patterns and
reasoning of inference. However, this tool can be identified as
a tool including all the steps like designing a model, training a
model and inference from a pre-trained model. For example,
an autoencoder [16] which is one of the generative models
is demonstrated using this tool. The autoencoder model can
be designed easily using this tool because the input of this
type of model is an image while the output is also an image.
In contrast to autoencoder experiments, GAN experiments’
input data depend on latent spaces, images as well as labels
while they generate several output data such as images and
labels. Some generative models generate indirect inference
parameters like standard deviation and mean of probability
distributions. Therefore, statistical data analysing and param-
eter handling are more important for GAN experiments.

Deep learning studio and all other tools discussed above
are lacking of GAN specific modifications, statistical analysis
tools and developments procedures. Therefore, we address
these issues in our proposed solution, the GANEx tool which
is a complete GAN specific pipeline for training, inference
and doing advanced statistical analysis.

III. THE FASTGAN LIBRARY

The FastGAN implementation can be categorized as a core
library because it opens paths for developers to define there
own GAN experimental tools using other DL frameworks. The
FastGAN library implementation is the core of the GANEx
GUI tool. This library consists of high-end abstract logical
flow which can be used to implement GAN based experiments
very easily and quickly in a few steps. The main structure of
the library is depicted in Figure 2.

The FastGAN library can be defined on top of available
DL libraries such as Tensorflow, Pytorch, Microsoft Cognitive
Toolkit or any other DL libraries available today. However, our
first FastGAN library implementation is accomplished using
the Pytorch library. This back-end dependency is depicted at
the bottom of Figure 2. Visualization and 2D/3D plotting
tools have to be provided alongside the main DL library
for advanced statistical analysis of GAN experiments. The
first FastGAN library uses “pyqtgraphs” [17] for this purpose
because of the enrichment of plotting tools which are based
on statistical and engineering applications.

The second level of this library consists of three main
sections; FastGAN Nets, FastGAN Trainer and FastGAN
Analyser. The FastGAN Nets should be packed with state
of the art generative networks, discriminative networks, de-
coder and encoder networks which are used in generative
model implementations. The FastGAN Trainer defines the
logical training flows of generative models. It should have
all possible training mechanisms of generative model training
and adversarial generative model training. These mechanisms
can be implemented as methods which are applicable for
all generative models. For example, a training discriminator
with real labels, a training discriminator with fake labels and
a training generator with fake labels as real labels, can be
identified as sub-components of the main training of basic
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Fig. 2: The FastGAN library structure

GAN architectures. The FastGAN Analyzer is the next main
module at the same level. This analyzer consists of various
analysis tools for generative models. These analysis tools
can include metrics for generative model comparison, plots
of training and inference stages, parameter representations,
input-output analysis, probability distribution representations
and many more engineering and statistical analysis algorithms
that are commonly used for generative models. The FastGAN
analyzer can be implemented as an independent module which
can be used for statistical analysis of any DL architecture.

The third level of the FastGAN library is named FastGAN
Runner which defines how to execute training, re-training
and inference of generative models based on the components
of the bottom levels. This level includes data pre-processing
mechanisms, parameters initialization methods for network
parameters and noises, initializing analysis mechanisms of a
specific GAN and interconnecting routings of all the compo-
nents of the bottom levels.

The top level of the FastGAN library can be implemented by
collecting implementations of all the state of the art generative
models using the components of the bottom levels. Then, we
can allow researchers to define their own parameters and input
data without considering developments of generative models.
If researchers are interested in more advanced modifications,
then they can go through the levels of FastGAN from top to
bottom as they required. This allows researchers to do GAN
experiments from simple modifications to more advanced
modifications.

The last component, the FastGAN Parahandler or parameter
flow, is defined using the JSON library and dictionary data
structures of Python in our test implementation. However,
researchers or developers can use any mechanism such as a
relational database to handle parameters and store parameters
via all the levels.

IV. THE GANEX GUI TOOL

The GANEx GUI implementation is developed on top of
the FastGAN library, and it enables a structured way for
researchers to train, re-train, save, analyse and manage exper-
iments and experiment data. The GUI of this tool is designed
using PyQT5 library which is based on the well known Qt
[18] project. In this GANEx tool, we designed a mechanism to
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Create a
Project

Delete  Project

Open a project

Projects JSON 
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Experiments
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Create an 
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Setup hyper
parameters
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hardware  

Fig. 3: GUI and JSON flow of GANEx

save all experimental details and data automatically to avoid
losing them as a result of forgetting to save. In contrast to
this, if the researcher wants to delete experiments or projects,
they can use the delete option of our tool compared to the
saving options of general GUI tools. The main motivation
for this concept is that every experimental details may have
valuable point in future and therefore it should be a reference
or logged records to easily track previous experiments. The
main GUI flow of our GANEx is depicted in Figure 3. This
flow is defined from the top to the bottom; the top level is
the starting point of the tool while the bottom level represents
endpoints of the GUI flow. Four boxes in the bottom layer
shows different user interfaces for configuring and visualizing
experiments.

The top level of GANEx creates projects which can be
consist of several GAN experiments. These experiments may
have any type of FastGAN implementations. Then, GANEx
enables users to organize their experiments in a structured way.
As depicted in the left side of Figure 3, the GANEx tool uses
its own JSON recorder to record project details.

The next main window is “list of experiments interface”
which allows users to create different experiments based on
different type of generative models. This window summarizes
all the details about previous experiments and if researchers
want it is possible to continue to the previous experiments. The
user can create a new experiment by selecting a generative
model type within the wizard window. Then, the GANEx
GUI enables the main experiment window which has all the
functionalities to control a specific GAN experiment. This
experiments window is capable of handling several experi-
ments of different types of generative models at the same
time. Therefore, doing comparative generative model-based
experiments are straightforward. The experiments JSON file
organizes all details related to experiments of the current
project.
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(a) Real-time plotting (b) Advanced analysis of generated images

Fig. 4: Sample screenshots of the GANEx tool; (a) - this screen shows real-time loss value plots of a GAN architecture to
monitor the failures of GAN training process, (b) - in this window, the user can use different heat maps and color histograms
to understand the generated outputs

The current implementation of the main experiment window
has capabilities to train a generative model, handle input data
sources, set or tune hyperparameters of generative models and
analyze generative models by visualizing input data, generated
data, training and re-training behaviour and many more statis-
tical and engineering analysing mechanisms. Example screen
shots of real application windows and plots are presented in
Figure 4.

V. EXPANDABLE GANEX

This GANEx implementation opens doors to a wide range
of directions for expansions. In the future, the GUI-based
GANEx tool can be improved to design complex GAN ar-
chitectures from scratch using drag and drop components
while implementing training and inference via GUI-based
flow diagrams. In adddition, the analysis functionalities can
be expanded based on the state of the art findings without
affecting them with the base implementation because we keep
the analysing part as an independent section. Moreover, our
tool can be upgraded with hardware resources monitoring for
researchers who are dealing with performance improvements.
Furthermore, using the concepts behind this tool, GANEx
shows direction to implement advanced tools for other DL
mechanisms also.

VI. DEMO

In this demo, participants can get hands-on knowledge of
GANEx, and they will experience the power of the tool.
They will be able to get an idea about how GANEx organize
experiments and experimental details. In this session, users
can train a pre-designed simple GAN model from scratch
using simple datasets like MNIST (handwritten digits) [19]
and CelebA (low resolution celebrity images) [20]. Then, they
can analyse the training process in real-time and generated
images using the analysis window of GANEx.
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Abstract—Data is arguably the most important resource today
as it fuels the algorithms powering services we use every day.
However, in fields like medicine, publicly available datasets are
few, and labeling medical datasets require tedious efforts from
trained specialists. Generated synthetic data can be to future
successful healthcare clinical intelligence. Here, we present a
GAN-based video generator demonstrating promising results.

Index Terms—Deep learning, generative adversarial networks,
data up-sampling, video generation.

I. INTRODUCTION

Data-driven technology has become ingrained in all areas of
modern society, and healthcare is no exception. For example,
machine learning-based systems have shown tremendous re-
sults in automatic detection of gastrointestinal (GI) anomalies
for colonoscopies (e.g., [1], [2]). Despite these impressive
results, these methods do not generalize well [3]. This is
mostly due to a lack of training data as making medical
data public is difficult, i.e., due to legal restrictions, patient
privacy, and a manual time-consuming, tedious labelling task
for trained medical experts.

Generated “fake” synthetic data can be the key to successful
clinical and business intelligence [4], [5]. Therefore, in this
paper, we present our Vid2Pix system that takes existing
datasets and generates synthetic videos using a generative
adversarial network (GAN). As an initial use-case, we use data
collected from GI colonoscopies where anomalies are often
missed and overlooked. We limit our scope to polyp videos,
but the presented method should generalize well to other
domains as well. The realism of the generated data is evaluated
by two medical doctors, and quantitative measurements. The
results suggest that the generated synthetic data is sometimes
indistinguishable from real data and can, in the future, be used
as training data for machine learning-based algorithms.

II. THE PROPOSED METHOD: VID2PIX

Using a dataset collected from two hospitals in Norway
containing 83, 088 video frames, downsized to 128× 128, we
developed a system that can create more data from data we
already have. Specifically, we aim to generate artificial videos
of colon polyps by using real videos of colon polyps. Our
system can be broken down into three distinct steps:

1) Skip Frames using Dense Optical Flow (step 1): A
high frame rate combined with inconsistent camera movements
causes inconsistencies in the videos. To address this problem,
we first process the videos by using dense optical flow. Since
the movement direction is not critical to solve our problem, we

only consider the magnitude of the motion to decide whether
to keep or to skip a frame using a threshold of 20% above the
average magnitude between each continuous frame in a video.
We create each video with a fixed length of 8 frames. If the
difference in frame numbers are larger than 10 frames, we
create a new video to avoid large jumps in the videos. With
the method, we managed to optimize the dataset by removing
duplicate frames and large jumps between frames.

2) Future Frame Generation with Vid2Pix (step 2): Our
proposed architecture is a conditional GAN [6] that uses a
generator and discriminator based on Pix2Pix [7]. Pix2Pix was
developed to translate an image in one domain to an image in
another domain. However, we are trying to learn past image
sequences (videos) in one domain to generate future sequences
in the same domain. Thus, our Vid2Pix system is a generative
model that predicts a future frame conditioned on the past
frames in a sequence.

We first add an additional dimension in order to use
the temporal dimension to generate realistic motions. The
additional dimension leads to a replacement of 2D with 3D
convolutions and deconvolutions. The 3D convolutions extract
features from the temporal dimension as well as the spatial
dimension. Instead of using 2D convolutions as Pix2Pix does
for down- and upsampling, we use 3D convolutions for both
operations (to ensure support features). We use the additional
dimension to input temporal information by stacking frames
through that dimension. The height, width, and channels
dimensions are used to input spatial features of input frames.
The discriminator outputs a downsampled feature map from
either a concatenation of the input sequence and a generated
image or from a concatenation of the input sequence and the
ground truth. The discriminator is a PatchGAN [7] .

3) Pipeline of predicting frame sequence (step 3): In order
to generate a video in Vid2Pix, we need to iterate over the
model with shifted input several times. Figure 1 shows how we
generate a video from generated images. The Vid2pix model
generates one image at a time as depicted in Figure 2.

III. QUALITY EVALUATION OF GENERATED VIDEOS

As an initial step in evaluating our GAN-based system,
we generated videos consisting of four frames and calculated
a dense optical flow visualization between each frame (Fig-
ure 3). An initial inspection suggests that they look realistic,
and the dense optical flow proves that the model also learned
to capture the correct movement of the videos.
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Fig. 1: Frame pipeline to create a video from Vid2Pix.

Input 1 Input 2 Input 3 Input 4 Actual Predicted

Fig. 2: Videos with four input frames representing the stacked
input to the model, the ground truth and the predicted output.

Fig. 3: Generated four frames and the corresponding dense
optical flow between consecutive frames. Hue values represent
the direction and the amount of motion.

Furthermore, to assess the realism of the generated content,
we conducted a subjective human assessment to evaluate
the generated videos. We recruited two medical doctors with
endoscopy data experience, i.e., a medical doctor with two
years of experience, and a gastroenterologist with extensive
experience. The assessment is divided into two sessions, where
we for each provided detailed information. The classification
session involves classifying videos into two classes, either real
or fake, where ten were artificial, and ten were real. Our results
show that a total of six real videos were miss-classified as
fake, and six videos were miss-classified as real when they
were fake. Moreover, in a grading assessment, the reviewers
assessed 31 fake videos. For each video, they were asked to
give scores from one to five where one is least real and five
is most real. Figures 4a and 4b show the grading results. The
average grade from the first reviewer (the junior doctor) is 3.4,
and the average grade from the second reviewer (the senior
doctor) is 2.8. Overall, the doctors found many examples
where it was hard to differentiate between real and fake as
the shapes and colors appeared realistic, but the differences
indicate that there is room for improvement, especially since
the participants found some examples of strange motions and
tissues.

Finally, we assessed the system using objective similarity
measures. Using the generated frame and the correspond-
ing ground truth on all generated videos we calculated the
mean square error (MSE), peak signal to noise ratio (PSNR)
and structural similarity (SSIM) values. Using 626 videos,
we achieved respective PSNR, MSE, and SSIM averages

(a) Reviewer 1 (b) Reviewer 2

Fig. 4: Subjective grading distributions of 31 generated videos.

of 72.1301, 0.0050, and 0.8011 for Pix2Pix, and 73.3718,
0.0042, and 0.8409 for Vid2Pix. From these numbers, we
observe that when we modify the original Pix2Pix model by
using our intermediate experiments, such as predicting four
frames at once, the SSIM and PSNR values first decrease,
and MSE increases. Finally, SSIM shows good values for
our last model modification, where we changed the model to
predict one image instead of a sequence of images and reduced
the discriminator complexity. We conclude that reducing the
discriminator complexity and changing the output dimension
has a positive effect on the quality of generated output.

IV. CONCLUSION

We have developed a conditional GAN to generate “fake”
synthetic future frames using real videos as input. The key
parts of the model were the 3D convolutional and deconvo-
lutional layers creating realistic-looking spatio-temporal fea-
tures. Moreover, to improve quality, we implemented a dense
optical flow-based preprocessing framework, which could filter
away stationary frames of a video. From our quantitative
measurements, the MSE, PSNR, and SSIM metrics show that
the Vid2Pix model outperforms the Pix2Pix model for artificial
video generation. We also found that experienced medical
doctors struggle to differentiate between real and synthetic
videos, which indicates that synthetic videos look real. Still,
there is a large room for improvement, and we currently work
on model enhancements and trying different use-cases.
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Summary 

Big data is needed to implement personalized medicine, but privacy issues are a prevalent 

problem for collecting data and sharing them between researchers. A solution is synthetic data 

generated to represent real dataset carrying similar information. 

Here, we present generative adversarial networks (GANs) capable of generating realistic 

synthetic DeepFake 12-lead 10-sec electrocardiograms (ECGs). We have developed and 

compare two methods, namely WaveGAN* and Pulse2Pulse GAN. We trained the GANs with 

7,233 real normal ECG to produce 121,977 DeepFake normal ECGs. By verifying the ECGs 

using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we 

demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN to produce realistic 

ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. 

These synthetic ECGs are fully anonymous and cannot be referred to any individual, hence 

they may be used freely. The synthetic dataset will be available as open access for researchers 

at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for 

generating synthetic ECGs. 

In conclusion, we were able to generate realistic synthetic ECGs using adversarial neural 

networks on normal ECGs from two population studies, i.e., there by solving the relevant 

privacy issues in medical datasets.  
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Introduction 

The use of artificial intelligence has increased in medicine over the past years. The overall aim 

of artificial intelligence in medicine is to aid clinicians based on complex data with decisions 

that are more accurate and improving personalized medicine. The prerequisite and foundation 

for artificial intelligence is the large amount of high-quality clinical data.  

With updates of the General Data Protection Regulation (GDPR) regulative in the EU, the free 

flow of data has been restricted to ensure patient consent and anonymity1. Even anonymized 

deidentified data cannot be shared between research groups in different countries, because 

combining a few variables in an anonymized dataset, may allow for individual identification2. 

For example, knowing the zip code, birthday and sex is enough to identify 87% of US citizens3. 

On the other hand, large-scale, publicly available open-access medical datasets are required for 

personalized medicine to improve data-heavy machine learning solutions in medicine.  

A solution to the privacy issue may be generation of synthetic realistic data. Synthetic data are 

data, which contain all the desired characteristics of a specific population, but without any 

sensitive content, making it impossible to identify individuals. Therefore, properly generated 

synthetic data are a solution to the privacy problem and will enable data sharing between 

research groups. 

In this paper, we showcase synthetic electrocardiograms (ECG) as a complex example of 

medical data. An ECG is a voltage time series reflecting the electric currents within the heart, 

a widely used easy applicable and inexpensive clinical screening procedure to detect cardiac 

diseases. Using multiple electrodes, 3D propagation of cardiac electric impulses can be 

obtained and plotted as a standard 10-sec 12-lead ECG. Synthetic ECGs have been a topic of 

interest and research for many years.  McSharry et al.4 and Sayadi et al.5 proposed mathematical 

dynamic models to generate continuous ECG signals, but these models were restricted to one 
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lead and did not reflect the distribution found in the normal population, nor did they give any 

insight in the mechanisms behind the disease. 

Generative adversarial networks (GAN) were introduced in 2014 by Goodfellow et al. to 

generate synthetic data6 using multi-layer perceptrons.  Basically, a GAN consists of two neural 

networks: A generator network making signals (here ECGs) from random noise and a 

discriminator network evaluating whether the ECG is real or fake. During training, a mix of 

real ECGs and DeepFake ECGs are presented for the discriminator, which evaluates the ECGs 

assigning a score; high score for a likely real ECG, and low score for a supposed DeepFake 

ECG. As training proceeds, both the generator and discriminator improve until an equilibrium 

is reached7. Later, Radford et al.8 developed a convolutional neural network GAN to generate 

synthetic images well suited for images like the ECG. 

Since ECGs basically are time series, an initial approach was to use a WaveGAN9 which is 

capable of generating sound signals. The classical WaveGAN is only able to output a single 

channel time series, so we modified the WaveGAN to generate all ECG channels (leads) 

(denoted WaveGAN*) instead of audio signals. We also introduce a novel DeepFake ECG U-

net generative model, called Pulse2Pulse inspired by WaveGAN published by Donahue et al.9 

and compare our Pulse2Pulse generator to the WaveGAN generator. 

In this paper, we present two GANs with the ability to generate an infinite number of 10-sec 

12-leads synthetic “DeepFake” ECGs as a solution to overcome privacy issues related to real 

ECG data. These DeepFake ECGs can be openly distributed and freely downloaded as open 

access to be used by other scientists to develop ECG algorithms.  
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Results 

We used ECGs from two population studies (GESUS10  and Inter9911). To avoid chimeras 

between normal and abnormal ECG, we only trained the neural network with ECGs classified 

as normal by the MUSE 12SL. As shown in Table 1, both the WaveGAN* and Pulse2Pulse 

improved during training expressed as the percentage of DeepFake ECGs classified by the 

MUSE 12SLas normal ECGs. The Pulse2Pulse GAN trained faster than the WaveGAN* and 

had a better performance (expressed as fraction of ECGs classified as normal by the MUSE) 

than the WaveGAN* at their respective optimal number of training epochs (Table 1). Figure 1 

shows a comparison of real and DeepFake ECGs, and the supplementary Figure S1 shows 

twenty randomly chosen DeepFake ECGs. Figure 2 shows the distribution of heart rates in the 

DeepFakes. By clinical definition Normal ECGs heart rates are between 60 and 99 beats per 

minute. The MUSE 12SL12 classified 129 DeepFakes (0.5%) as sinus tachycardia (fast heart 

rate≥100) and 2863 (10.2%) as sinus bradycardia (slow heart rate<60). Figure 4 shows that 

cross correlation between as an example the QT interval and the RR interval were preserved. 

All cvariance structures can be seen in Supplementary Figure S2.  

All DeepFake ECGs can be downloaded at OSF.io (https://osf.io/6hved/) with the 

corresponding ground truth parameters for the QT, RR, PR and QRS intervals and the P, STJ, 

R, and T amplitudes (see Figure 3 for ECG wave/interval naming terminology) delivered by 

the MUSE 12SL system (version 2.43). The DeepFake ECGs may be freely used for scientific 

use or commercial algorithm development if this paper is properly cited.)  
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Table 1. Quantitative difference between WaveGAN* and Pulse2Pulse GAN in the initial 

training for determining the optimal network and optimal number of epochs. The best values 

are bolded for each GAN.  

 Fraction of ECGs classified as Normal (%) 

Checkpoint (epochs) WaveGAN* Pulse2Pulse 

500 20.9 78. 7 

1000 69.5 81.2 

1500 71.2 78.8 

2000 72.5 79.7 

2500 71.3 81.6 

3000 65.3 81.5 

 

Using the Pulse2Pulse model from the optimal number of epochs (2500), we generated 150,000 

DeepFake ECGs. To ensure, that these ECGs were realistic, we uploaded the 150,000 ECGs to 

the GE MUSE system and analyzed them using the 12SL algorithm. We found that 81.3% of 

the 150,000 DeepFake ECG were classified as “Normal ECG” (vs. 81.6 % in the initial 

training). Table 2 compares real vs. DeepFake ECGs using eight ECG properties (heart rate, P 

duration, QT interval, QRS duration, PR interval, STJ amplitude, R amplitude, and T amplitude 

extracted using MUSE 12SL. See Figure 3 for ECG nomenclature). The real data included all 

ECGs from GESUS and Inter99 classified as “Normal ECG” which were used for training. 

DeepFake ECGs are presented both as all 150.000 generated ECGs and the subset classified as 

Normal ECG. The supplementary Table S4 summaries the most common reasons for 

classifying  DeepFake ECGs as Non-Normal ECGs.  
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Table 2. Mean, standard deviation (std), 2.5%, and 97.5% percentile for standard ECG 

parameters in real and fake ECGs. BPM = beats per minute 

  Real – Normal (7,233) Pulse2Pulse – Normal (121,977) Pulse2Pulse – All (150,000) 

  Mean std 2.5% 97.5% Mean  std 2.5% 97.5% Mean  std 2.5% 97.5% 

Heart rate  BPM 70 8 60 90 70 7 60 88 70 8 60 89 

P Duration ms 105 12 82 130 117 17 86 152 118 17 84 152 

QT Interval ms 395 21 352 436 395 20 354 436 395 22 352 436 

QRS Duration ms 90 9 74 110 92 9 78 112 93 10 78 114 

PR Interval ms 156 19 120 198 158 17 126 192 159 19 124 194 

STJ amplitude (V5) µV 2 27 -44 58 18 33 -44 87 16 36 -54 87 

R Amplitude (V5) µV 1287 402 600 2163 1275 367 620 2026 1273 402 566 2094 

T Amplitude (V5) µV 343 137 126 664 366 135 156 668 361 141 141 673 

 

 

A sample real ECG:         A sample DeepFake ECG: 

 

Figure 1. Comparison of examples of a real ECG (left lane) and a DeepFake ECG (right lane). 

See supplementary Figure S1 for 20 more randomly chosen pairs of real and DeepFake ECGs.   
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Figure 2. Distribution of heart rates in all 150.000 DeepFake electrocardiograms. Red fill 

denotes outside the normal heart rate range. Blue fill is within normal heart rate range (60-

100). 

 

Figure 3.  An ECG complex with the nomenclature of intervals (QT, QRS, P duration) and 

Amplitudes (STJ, R, T) and RR-interval (which can be converted to heart rate (HR) as 

HR=60/RR interval. 
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Figure 4. Scatter plot of the QT/RR interval relationship. Real ECG in blue and normal 

DeepFakes in red. DeepFake dots are nudged 1 ms to the left for visibility. Note that there are 

121,977 normal DeepFakes and only 7,233 Real ECG making the DeepFake distribution more 

pronounced. As seen by the correlation coefficient r2, the real and the fake DeepFake ECGs 

are similarly distributed. 

 

 Discussion 

Although deep learning has been used for ECG analysis before13,14, this study is the first study 

to generate realistic synthetic 10-sec 12-lead DeepFake ECGs. We demonstrate that the ECG 

characteristics from the real ECGs were similar to DeepFake ECGs. Hence, our DeepFake 

generator was able to construct synthesized ECG with similar intervals and amplitudes as the 

original population.  

Nearly one fifth of the DeepFake ECGs were not recognized as Normal ECGs (Non-Normal) 

by the commercial MUSE 12SL ECG analyzer (No ECGs were rejected as being invalid). 
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Many ECG parameters have hard boundaries in distinguishing between Normal and Non-

Normal. For example, a normal heart rate is defined as between 60 to 99 bpm. Since we trained 

our model only on Normal ECGs, the input distribution for the GAN was a truncated 

asymmetric distribution. Thus, the clinically defined boundaries are skewed compared to the 

normal distribution of heart rates. The left truncation (at low heart rates) will discard more 

individuals than the right truncation (at high heart rates), and the final distribution of the real 

ECGs will be close to a truncated normal distribution with asymmetric truncations. The GAN 

will generally learn that heart rates outside 60-99 will not be valid, but small deviations will 

occur as seen in Figure 2 and Table 2. Since similar boundaries exist for many ECG parameters 

(for example PR interval >120 ms or QRS Interval<120 ms) sharp truncations would occur 

with several ECG parameters. This would lead to exclusion of some DeepFake ECGs, simply 

because the ECG intervals or amplitudes were just outside the normal range. Most ECG 

amplitudes and intervals were similar between real ECGs and DeepFake ECGs, but it was 

noteworthy that the STJ amplitude and the P duration had the greatest deviation between real 

ECGs and DeepFake ECGs. An explanation may be that both STJ and P amplitudes are small, 

and the network may tend to focus on larger waves such as the R and T waves. Following this 

theory, the network would to some extent neglect the smaller waves and features thereby 

introducing a larger uncertainty. Future networks may improve the ECG generation using 

conditional GANs to give more attention to smaller signal features.  The Pulse2Pulse model 

was able to preserve the covariance structure between different ECG features, as seen in the 

most important relationship the QT/RR relationship which is known to have prognostic 

importance15. 

A challenging task is to define the optimal number of epochs for training. GANs tend to become 

unstable during the training process with the risk of the generator producing unrealistic output. 

To get an unbiased estimate how well the trained GAN performs, we used the commercial 
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MUSE 12SL system which automatically and reliably evaluates an ECG with a sensitivity of 

99.9% and specificity of 100%16. Although the ECG discarded by the MUSE 12 SL may only 

have minimal abnormalities (like a heart rate of 59.9 where 60 is normal), the filtering of the 

DeepFake ECGs ensures, that the best epoch is chosen without bias, and the resulting ECGs 

are normal not only according to the discriminator, but also according to one of the most widely 

used ECG system in hospitals worldwide.   

Personalized medicine will be dependent on big data, which demands international cooperation 

to ensure large datasets for researchers and the industry to work with. However, privacy and 

general data protection regulation rules are major obstacles for sharing data between 

researchers from different institutions and countries, or with the industry17.  In conclusion, we 

show that we may overcome privacy and ethical18 issues by constructing synthetic signals from 

real patients keeping the same clinical information as in the real dataset. The synthetic data 

generated by our Pulse2Pulse GAN makes it impossible to identify any patients, but still the 

ECGs remain useful for data scientists or industry to use for generating novel algorithms for 

ECG analysis. The approach is not limited to ECGs but should be expandable to all medical 

multichannel data, e.g., electroencephalography and electromyography. Therefore, the 

DeepFake ECGs generated from the Pulse2Pulse model can be used as a replacement to 

overcome the privacy constraints in real datasets. 

Methods 

The WaveGAN model is an evolution from the first GAN model introduced by Goodfellow et 

al.6. There are two deep neural networks named generator (G) and discriminator (D) to achieve 

the generation task from these GANs models. The main goal of the generator is to produce a 

data sample input (ECG(z)) from random noise (z) to the generator. The discriminator’s task 

is to differentiate between real and fake data. We train the generator and discriminator together 
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as a competition (minmax game) between them. When a steady state is reached, the training 

halts, and the generator will generate realistic synthetic ECGs.  

 

Data preparation 

We have used two combined datasets: the Danish General Suburban Population Study10 

(GESUS) and the Inter99 study11 (CT00289237, ClinicalTrials.gov). GESUS consists of 8,939 

free-living subjects, and Inter99 consists of 6,667 free-living subjects with an available digital 

ECG. To avoid generation of hybrid ECG with mixed ECG abnormalities not occurring in real 

persons (e.g., to both be in sinus rhythm and atrial fibrillation at the same time which is 

impossible), we excluded ECGs who were not classified as normal (n=8,348) leaving 7,233 

Normal ECGs for training.   

A 12-lead 10-sec ECG consists only of 8 independent channels since 4 of the channels are 

simply trigonometric rotations. Therefore, the input ECG signal is 5,000x8 data points 

(corresponding to 10 sec with 500 samples per sec. x 8 channels).  In addition to the up-scaling, 

we calculate the missing four channels with trigonometric functions to create the classic 12-

channels ECG.  

WaveGAN*: The input to WaveGAN* is a 1D random noise vector sampled from the uniform 

distribution (mean = 0, std = 1) with 100 x 1 passes through six deconvolution blocks to 

generate the desired output of 5000 x 8 samples. The deconvolution blocks are built from a 

series of four layers: an up-sampling layer, a constant padding layer, a 1D-convolution layer, 

and a ReLU activation function, consecutively. This implementation is deeper than the original 

architecture which use five deconvolution blocks used to generate synthetic music samples. 

Table S1 has comprehensive details of our WaveGAN* generator network. 
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Pulse2Pulse: The implementation of the Pulse2Pulse architecture (Figure 4) is inspired by the 

U-Net architecture19 which is used for image segmentation. However, our Pulse2Pulse 

implementation is different than the original U-net implementation because the Pulse2Pulse 

implementation use 1D CNN for ECG signal generation rather than the 2D CNN used for 

original image segmentation task. The Pulse2Pulse network takes an 8×5000 noise vector 

which has the same dimension as the output dimension of a generated ECG. Then, we pass the 

noise through six down-sampling blocks followed by six up-sampling blocks as illustrated in 

Figure 3b. Each down-sampling block consists of a 1D-convolution layer followed by a Leaky 

ReLU activation. The up-sampling block is similar the deconvolution block used in 

WaveGAN*. In down-sampling, we have used Leaky ReLU instead of the ReLU layer used in 

the up-sampling to match the down-sampling operations to the discriminator. In addition to the 

up-sampling and down-sampling, the major modification is a bypass with down-sampling 

block features concatenating into the up-sampling block features represented by the black 

arrows in Figure 3b. To facilitate for this concatenation, we doubled the input size of up 

sampling blocks compared to WaveGAN* up sampling blocks. More details about Pulse2Pulse 

architecture are shown in the supplementary Table S1. 

Discriminator: The same discriminator is used by WaveGAN* and Pulse2Pulse to discriminate 

between real and fake ECGs (Figure 3c). We used seven convolution layers (the original 

WaveGAN9 has five layers), and each convolution layer is followed by a Leaky ReLU 

activation and the phase shuffle layer introduced in the original WaveGAN paper9. The 

discriminator takes an ECG as input (5000 samples * 8 channels) and outputs a score how close 

the ECG are to be determined fake or real. 
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Figure 4. Model architectures of the generators and the discriminator used to generate synthetic 

ECGs. WaveGAN* uses a 1D noise vector with 100 points. Pulse2Pulse uses a 2D noise vector 

with size of 8×5000 as input, same as the output ECG size. 

 

Training: The models were trained on a Ubuntu workstation with a double Xeon processor and 

a GeForce NVIDIA RTX 2080 running  the Pytorch deep learning framework20. We ran all our 

experiments (generators + discriminator) using the Adam21 optimizer with a learning rate of 

0.0001, β1value of 0.5, and β2 value of 0.9. As loss function, we used gradient clipping 

WGAN-GP22, to ensure faster and better convergence. Similar to the audio generation paper of 

WaveGAN9, we updated (backpropagated) the discriminator five times per update of the 

generator. We used a batch size of 32, which is half of the original batch size of 64 used in the 

original WaveGAN paper, as a result of using larger networks than the WaveGAN networks. 
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We kept the training process until 3000 epochs (~10 days computing time) because we 

experienced unstable training curves for both WaveGAN* and Pulse2Pulse afterwards.  

DeepFake ECGs: For evaluation of our two GAN models, we initially generated 10,000 ECGs 

from every 500 epochs until 3000 epochs from each GAN model. The DeepFake ECGs were 

transferred to the MUSE system and evaluated by the MUSE 12SL algorithm v. 2.4312 using 

the fraction of DeepFake ECGs described as Normal (similar to the Real ECGs used for 

training). Using the best epoch for the best GAN, we generated 150.000 DeepFake ECGs. 

These DeepFakes were similar evaluated by the MUSE 12SL.  

Data Availability: The Normal DeepFake ECGs are available at OSF (https://osf.io/6hved/) 

with corresponding MUSE 12SL ground truth values freely downloadable and usable for ECG 

algorithm development. The DeepFake generative model is available at 

https://pypi.org/project/deepfake-ecg/ to generate only synthetic ECGs.  

Code Availability: The complete source code of all networks discussed in paper are available 

at GitHub (https://github.com/vlbthambawita/deepfake-ecg). 
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Abstract

Processing medical data to find abnormalities is a
time-consuming and costly task, requiring tremen-
dous efforts from medical experts. Therefore, artifi-
cial intelligence (AI) has become a popular tool for
the automatic processing of medical data, acting as
a supportive tool for doctors. AI tools highly depend
on data for training the models. However, there are
several constraints to access to large amounts of med-
ical data to train machine learning algorithms in the
medical domain, e.g., due to privacy concerns and
the costly, time-consuming medical data annotation
process.

To address this, in this paper we present a
novel synthetic data generation pipeline called
SinGAN-Seg to produce synthetic medical data
with the corresponding annotated ground truth
masks. We show that these synthetic data genera-
tion pipelines can be used as an alternative to by-
pass privacy concerns and as an alternative way to
produce artificial segmentation datasets with corre-
sponding ground truth masks to avoid the tedious
medical data annotation process. As a proof of con-
cept, we used an open polyp segmentation dataset.
By training UNet++ using both real polyp segmenta-
tion dataset and the corresponding synthetic dataset
generated from the SinGAN-Seg pipeline, we show
that the synthetic data can achieve a very close per-

formance to the real data when the real segmenta-
tion datasets are large enough. In addition, we show
that synthetic data generated from the SinGAN-Seg
pipeline improving the performance of segmentation
algorithms when the training dataset is very small.
Since our SinGAN-Seg pipeline is applicable for any
medical dataset, this pipeline can be used with any
other segmentation datasets.

1 Introduction

AI has become a popular tool in medicine and has
been vastly discussed in recent decades to augment
performance of clinicians [1, 2, 3, 4]. According to the
statistics discussed by Jiang et al. [1], artificial neu-
ral networks (ANNs) [5] and support vector machines
(SVMs) [6] are the most popular machine learning
(ML) algorithms used with medical data. These ML
models learn from data; thus the medical data have
a direct influence on the success of ML solutions in
real applications. While the SVM algorithms are
popular within regression [7, 8] and classification [9]
tasks, ANNs or deep neural networks (DNNs) are
used widely for all the types; regression, classifica-
tion, detection and segmentation.

A segmentation model makes more advanced pre-
dictions than regression, classification, and detection
as it performs pixel-wise classification of the input
images. Therefore, medical image segmentation is
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a popular application of AI in medicine, so it is
used more widely with different kinds of medical im-
age data [10, 11, 12]. Polyp segmentation is one
of popular segmentation tasks that uses ML tech-
niques to detect and segment polyps in images/videos
collected from gastrointestinal tract (GI) screenings.
Early identification of polyps in GI tract is criti-
cal to prevent colorectal cancers [13]. Therefore,
many ML models have been investigated to segment
polyps automatically in GI tract videos recorded
from endoscopy [14, 15, 16] or PilCams examina-
tions [17, 18, 19] to augment performance of doctors
by detecting polyps missed by experts, thereby both
decreasing the miss rates and reducing the observer
variations.

Most of polyp segmentation models are based
on convolutional neural networks (CNNs) and are
trained using publicly available polyp segmentation
datasets [20, 21, 22, 23, 24]. However, these datasets
have a limited number of images with corresponding
expert annotated masks. For examples, the CVC-
VideoClinicDB [21] dataset has 11, 954 images from
10 polyp videos and 10 non-polyp videos, the PIC-
COLO dataset [24] has 3, 433 manually annotated
images (2, 131 white-light images and 1, 302 narrow-
band images), and the Hyper-Kvasir [20] dataset has
only 1, 000 segmented images, but also contains of
100, 000 unlabeled images.

We identified two main reasons for having small
datasets in medical domain compared to other do-
mains. The first reason is privacy concerns attached
with medical data, and the second is the costly and
time-consuming medical data annotation processes
that the medical domain experts must perform.

The privacy concerns can vary from country to
country and region to region according to data pro-
tection regulations introduced in the specific ar-
eas. For example, Norway should follow the rules
given by the Norwegian data protection authority
(NDPA) [25] and enforce the personal data act [26]
in addition to following the general data protec-
tion regulation (GDPR) [27] guidelines being the
same for all European countries. While there is
no central level privacy protection guideline in the
US like GDPR in Europe, US rules and regulations
are enforced through other US privacy laws, such as

Health Insurance Portability and Accountability Act
(HIPAA) [28] and California Consumer Privacy Act
(CCPA) [29]. In Asian counties, they follow their
own sets of rules, such as Japan’s Act on Protection of
Personal Information [30], the South Korean Personal
Information Protection Commission [31] and the Per-
sonal Data Protection Bill in India [32].

If research is performed with such privacy re-
strictions, the papers published are often theoretical
methods only. According to the analyzed medical im-
age segmentation studies in [33], 30% have used pri-
vate datasets. As a result, the studies are not repro-
ducible. Researchers must keep datasets private due
to medical data sharing restrictions. Furthermore,
universities and research institutes that use medical
domain data for teaching purposes use the same med-
ical datasets for years, which affects the quality of
education. In addition to the privacy concerns, the
costly and time-consuming medical data labeling and
annotation process [34] is an obstacle to producing
big datasets for AI algorithms. Compared to other
already time-consuming medical data labeling pro-
cesses, a pixel-wise data annotation are far more de-
manding on the valuable medical experts’ time. The
experts in the medical domain can perform the an-
notations fully trustable in terms of correctness. If
the data annotations by experts are not possible, the
experts should do at least a review process to make
the annotations correct before using them in AI al-
gorithms. The importance of having accurate anno-
tations from experts for medical data is, for example,
discussed by Yu et al. [35] using a mandible segmenta-
tion dataset of CT images. In this regard, researching
a way to produce synthetic segmentation datasets is
important to overcome the timely and costly medical
data annotation process. Therefore, researching an
alternative way for medical data sharing, bypassing
both the privacy and time-consuming dataset gener-
ation challenges, is the main objective of this study.

In this regard, the contributions of this paper are
as follows.

• This study introduces the novel SynGAN-Seg
pipeline to generate synthetic medical image and
its corresponding segmentation mask using a
modified version of the state-of-the-art SinGAN
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architecture with a fine-tuning step using a style-
transfer method. We use polyp segmentation as
a case study, the SinGAN-Seg can be applied for
all types of segmentation tasks.

• We have published the biggest synthetic polyp
dataset and the corresponding masks at https:
//osf.io/xrgz8/. Moreover, we have pub-
lished our generators as a python package at
Python package index (PyPI) (https://pypi.
org/project/singan-seg-polyp/) to generate
an unlimited number of polyps and correspond-
ing mask images as needed. To the best of our
knowledge, this is the first publicly available syn-
thetic polyp dataset and the corresponding gen-
erative functions as a PyPI package.

• We show that synthetic images and correspond-
ing mask images can improve the segmentation
performance when the size of a training dataset
is limited.

2 Method

In the pipeline of SinGAN-Seg, there are as de-
picted in Figure 1 two main steps: (1) training novel
SinGAN-Seg generative models and (2) style trans-
ferring. The first step generates synthetic polyp im-
ages and corresponding binary segmentation masks
representing the polyp area. The novel four channels
SinGAN-Seg, based on the vanilla SinGAN architec-
ture [36], is introduced in this first step. The novel
training process of four channels SinGAN-Seg models
is presented in this step. Using a single SinGAN-Seg
model, we can generate multiple synthetic images and
masks from a single real image and the correspond-
ing masks. Therefore this generation process can be
identified as 1 : N generations, and it is denoted using
[img]N , where N represents the number of samples
generated in the figure. The second step focuses on
transferring styles such as features of polyps’ texture
from real images into the corresponding generated
synthetic images. This second step is depicted in the
Step 2 in Figure 1.

SinGAN-Seg is a modified version of SinGAN [36]
which was designed to generate synthetic data from

a generative adversarial network (GAN) trained only
using a single image. The original SinGAN is trained
using different scales of the same input image, the
so-called image pyramid. This image pyramid is a
set of images of different resolutions of a single im-
age from low resolution to high resolution. SinGAN
consists of a GAN pyramid, which takes the corre-
sponding image pyramid. In this study, we build on
the implementation and the training process used in
SinGAN, except for the number of input and output
channels. The original SinGAN implementation [36]
uses a three-channel RGB image as the input and
produces a three-channel RGB image as the output.
However, our SinGAN-Seg uses four-channels images
as the input and the output. The four-channels im-
age consist of the input RGB image and the single
channel ground truth mask by stacking them together
as depicted in the SinGAN-Seg model in Figure 1.
The main purpose of this modification is to generate
four-channels synthetic output, which consists of a
synthetic image and the corresponding ground truth
mask.

In the second step of the SinGAN-Seg pipeline, we
fine-tune the output of the four channels SinGAN-Seg
model using the style-transfer method introduced by
Leon et al. [37]. This step aims to improve the quality
of the generated synthetic data by transferring real-
istic styles from real images to synthetic images. As
depicted in Step 2 in Figure 1, every generated image
GM is enhanced by transferring style form the cor-
responding real image imM . Then, the style trans-
ferred output image is presented using STM where
M = [0, 1, 2...999] in this study, representing the 1000
images in thr training dataset. In this process, a suit-
able content : style ratio should be found, and it is a
hyper-parameter in this second stage. However, this
step is a separate training step from the training step
of the SinGAN-Seg generative models. Therefore,
this step is optional to follow, but we strongly rec-
ommend this style-transferring step to enhance the
quality of the output data from the first step.
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Figure 1: The complete pipeline of SinGAN-Seg to generate synthetic segmentation datasets. Step 1 :
represents the training of four channels SinGAN models. Step 2 : represents fine tuning step using the
neural style transfer [37]. Four channels SinGAN : Single training step of our four-channels SinGAN. Note
the stacked input and output compared to the original SinGAN implementation [36] which input only single
image with a noise vector and output only an image. In our SinGAN implementation, all the generators
(from G0 to GN−1), except GN , get four channels image (a polyp image and a ground truth) as the input
in addition to the input noise vector. The first generator, GN get only the noise vector as the input. The
discriminators also get four channels images which consist of a RGB polyp image and a binary mask as
input. The inputs to the discriminators can be either real or fake.

3 Experiments and results

This section demonstrates all the experiments and re-
sults collected using a polyp dataset as a case study.
For all the experiments discussed in the following
sections, we have used Pytorch deep learning frame-
work [38].

3.1 Data

We have used a polyp dataset published with Hy-
perKvasir dataset [20] which consists of polyp find-
ings extracted from endoscopy examinations. This
polyp dataset has 1000 polyp findings and a corre-
sponding segmentation mask annotated by experts.
We use only the polyp dataset as a case study be-
cause of the time and resource-consuming training
process of the SinGAN-Seg pipeline. Furthermore,
we use three-fold cross-validation, which is another
time-consuming technique, for the experiments per-
formed to find the validity of using synthetic data
instead of real data.

A few sample images and the corresponding masks
of the polyp dataset of HyperKvasir are depicted in
Figure 2. The polyp images of the dataset are RGB
images. The masks of the polyp images are single-
channel images with white (255) for true pixels, which
represent polyp regions, and black (0) for false pixels,
which represent clean colon or background regions.
In this dataset, there are different sizes of polyps.
The distribution of polyp sizes as a percentage of the
full image size is presented in the histogram plot in
Figure 3. In this dataset, there are more relatively
small polyps compared to larger polyps according to
the plot presented in Figure 3. Additionally, this
dataset was used to prove that the performance of
segmentation models trained with small datasets can
be improved using our SinGAN-Seg pipeline.

This dataset was used for two purposes.

1. To train SinGAN-Seg models to generate syn-
thetic data.

2. To compare performance of real and synthetic
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data for training segmentation ML models.

3.2 Training Generators

To use SinGAN-Seg to generate synthetic segmenta-
tion datasets to represent real segmentation datasets,
we first trained SinGAN-Seg models one by one for
each image in the training dataset. In our case
study, there were 1000 polyp images and correspond-
ing ground truth masks. Therefore, 1000 SinGAN-
Seg models were trained. To train these SinGAN-Seg
models, we have followed the same SinGAN settings
used in the vanilla SynGAN paper [36]. Despite us-
ing the original training process, the input and out-
put of SinGAN-Seg are four channels. After train-
ing each SinGAN-Seg by iterating 2000 epochs per
scale of pyramidal GAN structure (see four channels
SinGAN-Seg architecture in Figure 1 to understand
this pyramidal GAN structure), we stored final check-
points to generate synthetic data in the later stages
from the each scale. The resolution of the training
image of the SinGAN-Seg model is arbitrary because
it depends on the size of the real polyp image. This
input image is resized according to the pyramidal
re-scaling structure introduced in the original imple-
mentation of SinGAN [36]. This rescaling pattern is
depicted in the four channels SinGAN architecture
in Figure 1. The re-scaling pattern used to train
SinGAN-Seg models is used to change the random-
ness of synthetic data when pre-trained models are
used to generate synthetic data. The models were
trained on multiple computing nodes such as Google
Colab with Tesla P100 16GB GPUs and a DGX-2
GPU server with 16 V100 GPUs because training
1000 GAN architectures one by one is a tremendous
task. The average training time per SinGAN-Seg
model was around 65 minutes.

After training SinGAN-Seg models, we have gen-
erated 10 random samples per real image using the
input scale 0, which is the lowest scale that use a
random noise input instead of a rescaled input im-
age. For more details about these scaling numbers
and corresponding output behaviors, please refer to
the vanilla SinGAN paper [36]. Randomly selected
three training images and the corresponding first 5

synthetic images generated using scale 0 are depicted
in Figure 4. The first column of the figure represents
the real images and the ground truth mask anno-
tated from experts. The rest of the columns repre-
sents randomly generated synthetic images, and the
corresponding generated mask.

In total, we have generated 10, 000 synthetic polyp
images and the corresponding masks. SinGAN-Seg
generates random samples with high variations when
the input scale is 0. This variation can be easily rec-
ognized using the standard deviation (std) and the
mean mask images presented in Figure 5. The mean
and std images were calculated by stacking the 10
generated mask images corresponding to the 10 syn-
thetic images related to a real image and calculating
pixel-wise std and mean. Bright color in std images
and dark color in mean images mean low variance
of pixels. In contrast, dark color in std and bright
color in mean images reflect high variance in pixel
values. By investigating Figure 5, we can notice that
small polyp masks have high variance compared to
the large polyp mask as presented in the figure.

To understand the difference between the mask
distribution of real images and synthetic images,
we plotted pixel distribution of masks of synthetic
10, 000 images in Figure 6. This plot is compara-
ble to the pixel distribution presented in Figure 3.
The randomness of generations made differences in
the distribution of true pixel percentages compared
to the true pixel distribution of real masks of real
images. However, the overall shape of synthetic data
mask distribution shows a more or less similar dis-
tribution pattern to the real true pixel percentage
distribution.

3.3 Style Transferring

After finishing the training of 1000 SinGAN-Seg mod-
els, the style transfer algorithm [37] was applied to
every synthetic sample generated from SinGAN-Seg.
In the style-transferring algorithm, we can change
several parameters such as the number of epochs
to transfer style from an image to another and the
content : style weight ratio. This paper used a
1000 epoch to transfer style from a style image (real
polyp image) to a content image (generated syn-
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Figure 2: Sample images and corresponding masks from HyperKvasir [20] segmentation 1000 images.
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Figure 3: Distribution of true pixel percentages of
the 1000 polyp masks of HyperKvasir [20] dataset.

thetic polyp). For performance comparisons, two
content : style ratios, 1 : 1 and 1 : 1000 were used.
An NVIDIA GeForce RTX 3080 GPU took around
20 seconds to transfer style for a single image.

We have depicted visual comparison between pure
generated synthetic images and style transferred im-

ages (content : style = 1 : 1000) in Figure 7. Samples
with the style transfer ratio 1 : 1 are not depicted here
because it is difficult to see the differences between
1 : 1 and 1 : 1000 visually. The first column of Fig-
ure 7 shows the real images used as content images to
transfer styles. The rest of the images in the first row
of each image shows synthetic images generated from
SinGAN-Seg before applying the style transferring al-
gorithm. Then, the second row of each image shows
the style transferred synthetic images. Differences of
the synthetic images before and after applying the
style transfer method can be easily recognized from
images of the second reference image (using 3rd and
4th rows in Figure 7).

3.4 Python package and synthetic
data

Using all the pre-trained SinGAN-Seg checkpoints,
we have published a PyPI package and the corre-
sponding GitHub repository to make all the experi-
ments reproducible. Additionally, we have published
the first synthetic polyp dataset to demonstrate how
to share synthetic data instead of a real dataset that
may have privacy concerns. The synthetic dataset
is available at https://osf.io/xrgz8/. Moreover,
this is an example synthetic dataset generated using
the SinGAN-Seg pipeline. Furthermore, this dataset
is an example showing how to increase a segmentation
dataset size without using the time-consuming and
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Figure 4: Sample real images and corresponding SinGAN generated synthetic GI-tract images with corre-
sponding masks. The first column is illustrated with real images and masks. All other columns represent
randomly generated synthetic data from SinGANs which were trained from the image on the first column.
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Figure 5: Mean and standard deviation calculated
from 10 random mask generated from SinGAN-Seg.
The corresponding real mask annotated from ex-
pertes can be seen in Figure 4.

costly medical data annotation process that needs ex-
perts’ knowledge.

We named this PyPI package
as singan-seg-polyp (pip install

singan-seg-polyp) and it can be found here:
https://pypi.org/project/singan-seg-polyp/.
To the best of our knowledge, this is the only PyPI
package to generate an unlimited number of synthetic
polyps and corresponding masks. The corresponding
GitHub repository is available at https://github.

com/vlbthambawita/singan-seg-polyp. A set of
functionalities were introduced in this package for
end-users. Generative functions can generate ran-
dom synthetic polyp data with their corresponding
mask for a given image id from 1 to 1000 or for
the given checkpoint directory, which is downloaded
automatically when the generative functions are
called. The style transfer function is in this package
to transfer style from the real polyp images to the
corresponding synthetic polyp images. In both
functionalities, the relevant hyper-parameters can be
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Figure 6: Distribution of 10, 000 masks of the syn-
thetic generations. This 10, 000 represent the 1000
real polyp images. From each real image, 10 syn-
thetic samples were generated. The synthetic 10, 000
dataset can be downloaded from https://osf.io/

xrgz8/.
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Figure 7: Direct generations of SinGAN-Seg versus Style transferred samples. The style transferring was
performed using 1 : 1000 content to style ratio.
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changed as needed to end-users of this PyPI package.

3.5 Baseline experiments

Two different sets of baseline experiments were per-
formed for two different objectives. The first objec-
tive was to compare the quality of generated syn-
thetic data over the real data. Using these baseline
experiments, we can identify the capability of shar-
ing SinGAN-Seg synthetic data instead of the real
datasets for omitting privacy concerns. The second
objective was to test how to use SinGAN-Seg pipeline
to improve the segmentation performance when the
size of training dataset of real images and masks
are small. For all the baseline experiments, we se-
lected Unet++ [39] as the main segmentation model
according to the performance comparison done by
the winning team at EndoCV 2021 [16]. The single-
channel dice loss function used in the same study was
used to train Unet++ polyp segmentation models.
The se resnext50 32x4d network as the encoder of
the UNet++ model and softmax2d as the activation
function of the last layer were used according to the
result of the winning team at EndoCV 2021 [16].

Pytorch deep learning library was used as the
main development framework for the baseline exper-
iments also. Training data stream was handled us-
ing PYRA [14] data loader with Albumentations aug-
mentation library [40]. The real images and the syn-
thetic images were resized into 128 × 128 using this
data handler for all the baseline experiments to save
training time because we had to train multiple models
for fair comparisons. We have used an initial learn-
ing rate of 0.0001 for 50 epochs and then change it to
0.00001 for the rest of the training epochs for all the
training processes of UNet++. The UNet++ mod-
els used to compare real versus synthetic data were
trained 300 epochs in total. On the other hand, the
UNet++ models used to measure the effect of using
SinGAN-Seg synthetic data for small segmentation
datasets were trained only 100 epochs because the
size of the data splits used to train the models are
getting bigger when increasing the training data. In
all the experiments, we have selected the best check-
point using the best validation IOU score. Finally,
dice loss, IOU score, F-score, accuracy, recall, and

precision were calculated for comparisons using vali-
dation folds.

3.5.1 Synthetic data vs real data for segmen-
tation

We have performed three-folds cross-validation to
compare polyp segmentation performance using
UNet++ when using real and synthetic data. First,
we divided the real dataset (1000 polyp images and
the corresponding segmentation masks) into three
folds. Then, the trained SynGAN-Seg generative
models and the corresponding generated synthetic
data were also divided into the same three folds.
These three folds are presented using three colors in
Step I of Figure 1. In any of the experiments, train-
ing data folds and corresponding synthetic data folds
were not mixed with the validation data folds. If
mixed, it leads to a data leakage problem.

Then, the baseline performance of the UNet++
model was evaluated using the three folds of the real
data. In this experiment, the UNet++ model was
trained using two folds and validated using the re-
maining fold of the real data. In total, three UNet++
models were trained and calculated the average per-
formance using dice loss, IOU score, F-score, accu-
racy, recall, and precision only for the polyp class
because the most important class of this dataset is
the polyp class. This three-fold baseline experiment
setup is depicted on the left side of Figure 8.

The usability of synthetic images and correspond-
ing masks generated from SinGAN-Seg was investi-
gated using three-fold experiments as organized in
the right side of Figure 8. In this case, UNet++
models were trained only using synthetic data gener-
ated from pre-trained generative models and tested
using the real data folds, which were not used to train
the generative models used to generate the synthetic
data. Five different N(N = [1, 2, 3, 4, 5]) amount of
synthetic data per image were used to train UNet++
models. This data organization process can be iden-
tified easily using the color scheme of the figure. To
test the quality of pure generations, first, we used
the direct output from SinGAN-Seg to train UNet++
models. Then, the style transfer method was applied
with 1 : 1 content to style ratio for all the synthetic
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Figure 8: Three step experiment setup to analyze the quality of SinGAN output.
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Figure 9: Real versus synthetic data performance
comparison with UNet++ and the effect of applying
the style-transferring post processing.

data. These style transferred images were used as
training data and tested using the real dataset. In
addition to the 1 : 1 ratio, 1 : 1000 was tested as a
style transfer ratio for the same set of experiments.

Table 1 shows the results collected from the
UNet++ segmentation experiments for the baseline
experiment and the experiments conducted with syn-
thetic data, which contains pure generated synthetic
data and style transferred data using 1 : 1 and
1 : 1000. Differences in IOU scores of these three
experiments are plotted in Figure 9 for easy compar-
ison.

3.5.2 Synthetic segmentation data for real
small datasets

The main purpose of these experiments are to find
the effect of using synthetic data generated from the
SinGAN-Seg pipeline instead of small real datasets
because the SinGAN-Seg pipeline can generate an
unlimited number of synthetic samples per real im-
age. A synthetic sample consists of a synthetic image
and the corresponding ground truth mask. There-
fore, experts’ knowledge is not required to annotate
the ground truth mask. For these experiments, we
have selected the best parameters of the SinGAN-
Seg pipeline from the experiments performed under
Section 3.5.1. First, we created small 10 real polyp
datasets from the fold one such that each dataset con-
tains R number of images and R can be one of the val-
ues of [5, 10, 15, ..., 50]. The corresponding synthetic
dataset was created by generating 10 synthetic im-
ages and corresponding masks per real image. Then,
our synthetic datasets consist of S number of im-
ages such that S = [50, 100, 150, ..., 500]. Then we
have compared true pixel percentages of real masks
and synthetic masks generated from SynGAN-Seg
pipeline using histograms of bin size of 5. The his-
tograms are depicted in Figure 10. The first row rep-
resents the histograms of real small detests, and the
second row represents the histograms of correspond-
ing synthetic datasets. Compare pairs (one from the
top row and the corresponding one from the bottom)
to get a clear idea of how the generated synthetic
data improved the distribution of masks.

UNet++ segmentation models were trained using
these real and synthetic datasets separately. Then
we have compared the performance differences using
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Table 1: Three-fold average of basic metrics to compare real vs synthetic performance with UNet++ and
the effect of style-transfers performance

Train data ST (cw:sw) dice loss iou score fscore accuracy recall precision

REAL NA 0.1123 0.8266 0.8882 0.9671 0.8982 0.9161

FAKE-1
No ST 0.1645 0.7617 0.8357 0.9531 0.863 0.8793
1:1 0.1504 0.7782 0.85 0.9572 0.8672 0.8917
1:1000 0.1473 0.782 0.853 0.9591 0.8624 0.9005

FAKE-2
No ST 0.1549 0.7729 0.8453 0.9561 0.8692 0.8895
1:1 0.155 0.7765 0.8453 0.9575 0.8729 0.8852
1:1000 0.1477 0.7854 0.8525 0.9609 0.8647 0.9038

FAKE-3
No ST 0.161 0.7683 0.8391 0.9556 0.8568 0.8945
1:1 0.1475 0.7845 0.8525 0.9585 0.8723 0.8936
1:1000 0.1408 0.7923 0.8593 0.9629 0.8693 0.9078

FAKE-4
No ST 0.1649 0.7638 0.8352 0.9525 0.8669 0.878
1:1 0.1464 0.7848 0.8537 0.9594 0.8713 0.8921
1:1000 0.137 0.7983 0.863 0.9636 0.8653 0.9185

FAKE-5
No ST 0.1654 0.7668 0.8345 0.9563 0.8565 0.8919
1:1 0.1453 0.7887 0.8547 0.961 0.8703 0.9
1:1000 0.1458 0.7889 0.8543 0.962 0.8527 0.9211

validation folds. In this experiments, the training
datasets were prepared using the fold one. The re-
maining two folds were used as the validation dataset.
The collected results from UNet++ models trained
with the real datasets and the synthetic datasets are
tabulated in Table 2. A comparison of the corre-
sponding IOU scores are plotted in Figure 11.

4 Discussion

The SinGAN-Seg pipeline has two steps. The first
one is generating synthetic polyp images and the
corresponding ground truth masks. The second is
transferring style from real polyp images to synthetic
polyp images to make them more realistic than the
pure generations from the first step. We have de-
veloped this pipeline to achieve the main two goals.
The first one is for sharing medical data when privacy
concerns are to share real data. The second one uses
is to improve the polyp segmentation performance
when the size of training datasets are small.

4.1 SinGAN-Seg as data sharing tech-
nique

The SinGAN-Seg can generate unlimited synthetic
data with the corresponding ground truth mask, rep-
resenting real datasets. This SinGAN-Seg pipeline is
applicable for any dataset with segmentation masks,
particularly when the dataset is not sharable due to
privacy concerns. However, in this study, we applied
this pipeline to a public polyp dataset with segmenta-
tion masks as a case study. Assuming that the polyp
dataset is private, we used this polyp dataset as a
proof of concept medical dataset. In this case, we
published PyPI package, singan-seg-polyp which
can generate an unlimited number of polyp images
and corresponding ground truth masks. If the real
polyp dataset is restricted for public use, then this
type of pip package can be published as an alter-
native dataset to represent the real dataset. Alter-
natively, we can publish a pre-generated synthetic
dataset using the SinGAN-Seg pipeline, such as the
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Figure 10: Distribution comparison between real and synthetic mask. Synthetic mask were generated using
the SinGAN-Seg.

# Reals

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

Real IOU Fake IOU (# Reals x 10)

Figure 11: Real versus Fake performance comparison
with small training datasets

synthetic polyp dataset published as a case study at
https://osf.io/xrgz8/.

According to the results presented in Table 1, the
UNet++ segmentation network perform better when
the real data is used as training data compared to
using synthetic data as training data. However, the
small performance gap between real and synthetic
data as training data implies that the synthetic data
generated from the SinGAN-Seg can use as an alter-
native to sharing segmentation data instead of real
datasets, which are restricted to share. The style-
transferring step of the SinGAN-Seg pipeline could
reduce the performance gap between real and syn-
thetic data as training data for UNet++. The per-
formance gap between real data and the synthetic
data as training data for segmentation models is ne-
gotiable because the primary purpose of producing
the synthetic data is not to improve the performance
of segmentation models but to introduce an alter-
native data sharing which are practically applicable
when datasets have privacy concerns to share.
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Table 2: Real vs Fake comparisons for small datasets. The fake images were generated using style tranfer
ration 1 : 1000.

dice loss iou score fscore accuracy recall precision

Real 5 0.4662 0.4618 0.5944 0.8751 0.7239 0.6305
Fake 50 0.3063 0.5993 0.7048 0.9211 0.7090 0.8133

Real 10 0.3932 0.5969 0.7079 0.9164 0.7785 0.7516
Fake 100 0.2565 0.6478 0.7457 0.9259 0.7911 0.7970

Real 15 0.2992 0.6431 0.7402 0.9322 0.7388 0.8602
Fake 150 0.2852 0.6559 0.7624 0.9329 0.8172 0.7833

Real 20 0.3070 0.6680 0.7668 0.9328 0.7771 0.8566
Fake 200 0.2532 0.6569 0.7544 0.9342 0.7317 0.8827

Real 25 0.2166 0.6995 0.7929 0.9405 0.7955 0.8804
Fake 250 0.2182 0.6961 0.7860 0.9418 0.7690 0.8957

Real 30 0.2100 0.7037 0.7971 0.9417 0.8005 0.8758
Fake 300 0.2228 0.6843 0.7797 0.9388 0.7683 0.8810

Real 35 0.2164 0.6955 0.7889 0.9398 0.8157 0.8456
Fake 350 0.2465 0.6677 0.7543 0.9346 0.7385 0.8933

Real 40 0.2065 0.7085 0.7974 0.9417 0.7881 0.8947
Fake 400 0.2194 0.6894 0.7816 0.9305 0.8276 0.8219

Real 45 0.1982 0.7188 0.8062 0.9441 0.8120 0.8839
Fake 450 0.2319 0.6794 0.7697 0.9341 0.7859 0.8633

Real 50 0.2091 0.7115 0.7948 0.9418 0.7898 0.8932
Fake 500 0.2255 0.6896 0.7756 0.9380 0.7961 0.8644

4.2 SinGAN-Seg with small datasets

In addition to using the SinGAN-Seg pipeline as a
data-sharing technique when the real datasets are
restricted to publish, the pipeline can improve the
performance of segmentation tasks when a dataset is
really small. In this case, the SinGAN-Seg pipeline
can generate synthetic data to overcome the problem
associated with the small dataset. In other words,
the SinGAN-Seg pipeline act as a data augmenta-
tion technique. The SinGAN-Seg-based data aug-
mentation acts as an unlimited number of stochastic
augmentation techniques due to the randomness of
the synthetic data generated from this model. For
an example, consider a manual segmentation process
such as cell segmentation in any medical laboratory

experiment. This type of task is really hard to per-
form for experts as well. As a result, the amount
of data collected with manually annotated masks are
limited. Our SinGAN-Seg pipeline can improve these
datasets by generating an unlimited number of ran-
dom samples from a single manually annotated im-
age. This study showed that these synthetic data
generated from a small real dataset can improve the
performance of segmentation machine learning mod-
els. For example, when the real polyp dataset size is
5 to train our UNnet++ model, the synthetic dataset
with 50 samples showed 30% improvement over the
IOU score of using the real data samples.
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5 Conclusions and future work

This paper presented a four-channel SinGAN-Seg
model and the corresponding SinGAN-Seg pipeline
with a style transfer method to generate realistic syn-
thetic polyp images and the corresponding ground
truth masks. This SinGAN-Seg pipeline can be
used as an alternative data sharing method when
real datasets are restricted to share. Moreover, this
pipeline can be used for improving the segmentation
performance when we have small segmentation real
datasets. The conducted three-folds cross-validation
experiments and collected results show that synthetic
data can achieve very close performance for segmen-
tation tasks when we use only synthetic images and
corresponding masks compared to the segmentation
performance if the real data and experts annotated
data is used when the real dataset has a consider-
able amount of data. On the other hand, we show
that SinGAN-Seg pipeline can achieve better segmen-
tation performance when training datasets are very
small.

In future studies, researchers can combine super-
resolution GAN model [41] to this pipeline to im-
prove the quality of the output after the style transfer
step. When we have high-resolution images, machine
learning algorithms show better performance than al-
gorithms trained using low-resolution images [42].
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GENERATIVE ADVERSARIAL NETWORKS FOR    
CREATING REALISTIC ARTIFICIAL COLON    
POLYP IMAGES 
Vajira Thambawita1,2, Inga Strümke1, Steven Hicks1,2, Michael Riegler1, Pål Halvorsen1,2,          
Sravanthi Parasa3 

1Simula Metropolitan Center for Digital Engineering, Oslo, Norway. 2Oslo Metropolitan          
University, Oslo, Norway, 3Department of Gastroenterology, Swedish Medical Group,         
Seattle, WA, USA 
 
Introduction: Artificial intelligence is increasingly used to detect and classify colon polyps.            
However, small datasets are a major obstacle, especially for supervised machine learning.            
Data collection is challenging, and synthetic data generation, using models such as            
generative adversarial networks (GANs), may help overcome this hurdle. To determine the            
clinical utility of synthesized images, we generate images containing colon polyps, and eight             
endoscopists assess their anatomical correctness. Method: Using training data from the           
Kvasir dataset, a large colonoscopy dataset, an image inpainting GAN is used to generate              
artificial colon polyp images. The GAN is pre-trained with colon images and fine-tuned to              
generate synthetic polyps using colon images as input. The discriminator of the GAN is used               
to assess the global and local quality of generated images, in addition to discriminating real               
from generated. The quality of the generated images is evaluated by 2 expert endoscopists,              
3 non-expert endoscopists, and 3 internal medicine residents. The experience of the            
physicians ranges from 0 to 20 years. Five synthesized and five real images are selected for                
the evaluation. For each image, the physicians assessed whether the polyp appeared real or              
generated on a scale from 1-10. Results: To measure the agreement among the raters, we               
calculate Fleiss’ kappa for all questions regarding visual appearance across all participants.            
For all questions, over all, only generated and only real instances, respectively, the Fleiss kappa                             
values are (0.0352, 0.0206, 0.0347) with p-values of (0.00034, 0.176, 0.00909). Similarly, the                         
Fleiss kappa values for the question “Does the polyp appear generated?” are (0.0115, -0.0159,                           
-0.0222). Limiting the included responses to only our two gastroenterologists, the Fleiss’            
kappa reduces to Cohen’s kappa, and the respective values are (-0.235, -0.316, -0.282) with              
p-values (0.108, 0.193, 0.208). Landis and Koch (1977) provide guidelines for interpreting            
Fleiss’ kappa, and according to these, values in the range 0.01-0.2 indicate only slight              
agreement between the raters. Moreover, we observe higher reported confidences on           
generated polyps than real ones. We clearly see that the participants do not find a strong                
agreement for real or generated, even not the most experienced gastroenterologists.           
Conclusion: We develop and validate a GAN generating high-quality synthetic polyp           
images. Our evaluation by medical experts indicates only little assessors agreement, even            
among the most experienced gastroenterologists. We also observe higher reported          
confidences on generated polyps than real ones. This does not mean that generated polyps                    
are indistinguishable from real ones, but that they share visual and anatomical properties. These                           
promising results show GANs could contribute synthetic data for training and unrestricted                       
sharing. 
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Figure 1: Generated vs. real polyp images used in the questionnaire.  
 

 
 
Table 1: Overview of obtained results from all 8 readers (2 experts - EE and 3 non-experts -                  
NE, 3 internal medicine residents - IM). 
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Hugo L. Hammer, P̊al Halvorsen, Michael A. Riegler

Abstract: Identification of individual sperm is essential to assess a given sperm sample’s

motility behaviour. Existing computer-aided systems need training data based on

annotations by professionals, which is resource demanding. On the other hand,

data analysed by unsupervised machine learning algorithms can improve supervised

algorithms that are more stable for clinical applications. Therefore, unsupervised

sperm identification can improve computer-aided sperm analysis systems predict-

ing different aspects of sperm samples. Other possible applications are assessing

kinematics and counting of spermatozoa. Generative adversarial networks (GANs)

have become common AI methods to process data in an unsupervised way. Based

on single image frames extracted from videos, a GAN (SinGAN) can be trained to

determine and track locations of sperms by translating the real images into localiza-

tion paintings. The resulting model showed the potential of identifying the presence

of sperms without any prior knowledge about data. Visual comparisons of local-

ization paintings to real sperm images show that inverse training of SinGANs can

track sperms. Converting colour frames into grayscale frames and using grayscale

synthetic sperm-like frames showed the best visual quality of generated localization

paintings of sperm frames.

Published: Eshre, 2021

Candidate contributions: Vajira contributed to the design of this concept and he de-

veloped all the models and the corresponding experiments for tracking sperms using

a modified SinGAN generative model. He evaluated results collected from the exper-
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insemination, infectious and male infertility)

Presentation
preference

Oral presentation or poster

Abstract title Identification of spermatozoa by unsupervised learning from video data

Biography Vajira Thambawita is a Ph.D. student at the HOST department at SimulaMet and the Department of Computer Science at OsloMet. He
comes from a computer engineering background and focuses on finding applications of deep generative models in the medical
domain. Besides his primary research, he improves the quality of machine learning (ML) applications in medicine by investigating
proper analysis and benchmarking ML on medical data.

V. Thambawita1, T.B. Haugen2, M.H. Stensen3, O. Witczak2, H.L. Hammer4, P. Halvorsen1, M.A. Riegler1.
1Simula Metropolitan Center for Digital Engineering, Department of Holistic Systems, Oslo, Norway.
2Faculty of Health Sciences- OsloMet – Oslo Metropolitan University, Department of Life Sciences and Health, Oslo, Norway.
3Fertilitetssenteret, Fertilitetssenteret, Oslo, Norway.
4Faculty of Technology- Art and Design- OsloMet -Oslo Metropolitan University, Department of Computer Science, Oslo, Norway.

Study question:

Can artificial intelligence (AI) algorithms identify spermatozoa in a semen sample without using training data annotated by
professionals?

Summary answer:

Unsupervised AI methods can discriminate the spermatozoon from other cells and debris. These unsupervised methods may have a
potential for several applications in reproductive medicine.

What is known already:

Identification of individual sperm is essential to assess a given sperm sample's motility behaviour. Existing computer-aided systems
need training data based on annotations by professionals, which is resource demanding. On the other hand, data analysed by
unsupervised machine learning algorithms can improve supervised algorithms that are more stable for clinical applications. Therefore,
unsupervised sperm identification can improve computer-aided sperm analysis systems predicting different aspects of sperm samples.
Other possible applications are assessing kinematics and counting of spermatozoa.

Study design, size, duration:

Three sperm-like paint images were manipulated using a graphic design tool and used to train our AI system. Two paintings have an
ash colour background and randomly distributed white colour circles, and one painting has a predefined pattern of circles.  Selected
semen sample videos from a public dataset with videos obtained from 85 participants were used to test our AI system.

Participants/materials, setting, methods:

Generative adversarial networks (GANs) have become common AI methods to process data in an unsupervised way. Based on single
image frames extracted from videos, a GAN (SinGAN) can be trained to determine and track locations of sperms by translating the real
images into localization paintings. The resulting model showed the potential of identifying the presence of sperms without any prior
knowledge about data.

Main results and the role of chance:

Visual comparisons of localization paintings to real sperm images show that inverse training of SinGANs can track sperms. Converting
colour frames into grayscale frames and using grayscale synthetic sperm-like frames showed the best visual quality of generated
localization paintings of sperm frames. Feeding real sperm video frames to the SinGAN at different scaling factors, which is defining
the resolution of the input image, showed different quality levels of generated sperm localization paintings. A sperm frame given to the
algorithm with a scaling factor of one leads to random sperm tracking, while the scales two to four result in more accurate localization
maps than scaling levels five to eight. In contrast, scales from six to eight result in an output close to the input frame. The proposed
method is robust in terms of the number of spermatozoa, meaning that the detection works well for samples with a low or high sperm
count. For visual comparisons, visit our Github page: https://vlbthambawita.github.io/singan-sperm/. The sperm tracking speed of our
SinGAN using an NVIDIA 1080 graphic processing unit, is around 17 frames per second, which can be improved by using parallel video
processing capabilities. This shows the capability of using this method for real-time analysis.

Limitations, reasons for caution:

Unsupervised methods are hard to train, and the results need human verification. The proposed method will need quality control and
must be standardized. Unsupervised sperm tracking SinGAN may identify blurry bright spots as non-existing sperm heads which may
restrict the use of SinGAN sperm tracking for sperm counting.

Wider implications of the findings:

Assessment of semen samples according to the WHO guidelines is subjective and resource-demanding. This unsupervised model
might be used to develop new systems for less time-consuming and more accurate evaluation of semen samples. It may also be used
for real-time analysis of prepared spermatozoa for use in assisted reproduction technology.

COI I have no potential conflict of interest to disclose

Keywords identification of spermatozoa
artificial intelligence
unsupervised artificial intelligence
generative adversarial networks
sperm localization

Your abstract will be reviewed and scored and subsequently accepted for presentation or rejected. This process will take some time to complete and the outcome
will be available by 26 April 2021. At that time you will be notified as to whether your abstract has been accepted or not.
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Abstract—Limited access to medical data is a barrier on devel-
oping new and efficient machine learning solutions in medicine
such as computer-aided diagnosis, risk assessments, predicting
optimal treatments and home-based personal healthcare systems.
This paper presents DeepSynthBody: a novel framework that
overcomes some of the inherent restrictions and limitations of
medical data by using deep generative adversarial networks
to produce synthetic data with characteristics similar to the
real data, so-called DeepSynth (deep synthetic) data. We show
that DeepSynthBody can address two key issues commonly
associated with medical data, namely privacy concerns (as a
result of data protection rules and regulations) and the high
costs of annotations. To demonstrate the full pipeline of applying
DeepSynthBody concepts and user-friendly functionalities, we
also describe a synthetic medical dataset generated and published
using our framework. DeepSynthBody opens a new era of
machine learning applications in medicine with a synthetic model
of the human body.

Index Terms—DeepSynthBody, synthetic medical data, deep
synthetic human body, synthetic data, GAN, DeepSynth aug-
mentation, privacy issue, medical data privacy, multi-model
DeepSynth, DeepSynth explainable AI, explainable DeepSynth

I. INTRODUCTION

Artificial intelligence (AI) has become widespread in
medicine because of the success achieved by AI algorithms
and rapid hardware development in the recent decade. AI-
based medical solutions vary from computer-aided diagno-
sis [1], [2], risk assessments [3], [4], and predicting optimal
treatments [5], [6] in hospitals to home-based personal health
care systems [7]–[9].

We identify four main stages in applying machine learning
(ML) solutions to medicine as depicted in Figure 1. In the
first stage, data is collected from hospitals, outside clinics,
health registers and other locations such as medical research
institutions. These data have different data modalities like
biological signals, images, videos, and unique data formats
such as 4D data from magnetic resonance imaging (MRI)

Collecting
data

Annotating
data

Applying machine
learning methods

Final product
and XAI

Fig. 1. The main four steps for applying deep learning in medicine. XAI is
the abbreviation for explainable artificial intelligence.

machines. In the second stage of this process, domain experts
annotate or label the data to train ML models. In the third step,
one can investigate ML solutions to find the best model which
can be generalized into final products and train them using
the annotated data coming from the previous stage, or train
unsupervised ML models without annotated or labeled data.
However, before releasing ML solutions as a final product in
medicine, explainable artificial intelligence (XAI) should be
applied to explain the decision taken from ML algorithms.
This will be an important step in the future to increase trust
in the models and lead to better models in general.

In the first stage of the process introduced in Figure 1,
producing open access datasets in the medical domain is
a time-consuming task [10], [11] or impossible because of
protocols that should follow specific rules and regulations such
as the general data protection regulation (GDPR) [12] in EU
countries. Moreover, rules and regulations for producing open
access medical data vary from region to region. For example,
Norway should follow the Norwegian data protection authority
(NDPA) rules, the health research act [13] and enforce the
personal data act in addition to following GDPR. While there
is no central level privacy protection guideline in US like
GDPR in Europe, there are rules and regulations applicable
and in effect through other US privacy laws, such as, Health
Insurance Portability and Accountability Act (HIPAA) [14]
and California Consumer Privacy Act (CCPA) [15]. In Asian
counties, they follow their own set of rules country-wise, such
as, Japan’s Act on Protection of Personal Information [16],
South Korea Personal Information Protection Commission [17]
and the Personal Data Protection Bill from India [18]. With
these restrictions, researchers publish only the research meth-
ods and, as a result, other researchers cannot reproduce or
compare those results using the same methods because of
limited access to real datasets. Furthermore, universities or
other research institutions that use medical domain data for
teaching purposes use the same medical domain datasets
for years, which probably affects the quality of education.
Therefore, data sharing restrictions resulting from privacy
protocols are identified as one of the main research problems
addressed with the presented framework.

After collecting data, one should collect corresponding
ground truth (the second stage as depicted in Figure 1). In
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some cases, the ground truth is present, for example the
outcomes of treatments in retrospective data, but usually anno-
tation must be done manually. Medical data annotations should
be done by experts to ensure the best quality. However, the
annotating and labeling process for creating medical domain
data is a time-consuming and costly process [19]. This process
is identified as another problem to tackle for the larger goal
of producing large-scale datasets needed to develop AI-based
medical systems.

The third step in Figure 1 is to apply ML methods, which
is an often used AI-based solution. As a result of privacy
protocols and the aforementioned complex data retrieval and
annotation problems, researchers and industries do often not
have open access to large datasets annotated by experts.
Because of limited data to train supervised ML models, they
become less reliable [20] (as a result of poor generalizability)
and have fewer functionalities such as limited interpretabil-
ity [21].

The fourth step in the Figure 1 represents the final stage
of producing products of ML to use in clinical settings.
Transparency is key, particularly if algorithmic output conflicts
with a medical doctors assessment. In this stage, explaining
the prediction results (XAI) is an important step because it is
the only step in which one can convince doctors and patients
to accept decisions made by ML solutions. Explanation by
example is currently the preferred XAI method by non-
experts [22]. Privacy issues can limit explaining deep learning
(DL) solutions by examples [23], when the data used for the
examples is restricted.

To address all these issues which are secondary to lack of
available medical data, we present a novel framework called
DeepSynthBody. This framework can be used to overcome the
data accessibility problems in the medical domain by gener-
ating realistic synthetic data with reduced privacy issues. The
DeepSynthBody concept is inspired by deepfakes [24], [25]
which are produced by deep generative models introduced by
Ian et al. [26]. By developing the DeepSynthBody framework,
we intend to achieve the following objectives:

1) overcome the privacy related limitations for medical data
by producing open access deep synthetic data.

2) reduce the time-consuming and resource-consuming pro-
cess of medical data labeling and annotation.

3) find intra-correlations of human body organs (how one
organ affect to other organs) and functions and reproduce
them to produce a new model for the human body.

This paper introduces the complete DeepSynthBody frame-
work. In addition, we introduce new research directions based
on our framework. To the best of our knowledge, this is the
first paper to introduce a complete framework to address the
previously discussed challenges in preparing medical data for
ML using GAN. We anticipate that DeepSynthBody will be a
possible solution for data privacy challenges, mitigate the time
and cost to annotate medical data, and aims to find hidden
correlations of human body functions using multi-model data
to introduce a new model for the human body.

The DeepSynthBody pipeline consists of four steps, namely,
(I) collecting real data and analysis, (II) developing gener-
ative models, (III) producing deep synthetic data, and (IV)
explainable DeepSynth AI and DeepSynth explainable AI.
In Section II, we introduce the DeepSynthBody framework
via three subsections: DeepSynthBody pipeline, additional
features of DeepSynthBody, and technical features behind
DeepSynthBody. In Section III, we introduce a case study that
was implemented based on the DeepSynthBody concept. At
the end, we discuss limitations and future research directions
using DeepSynthBody in Section IV followed by a conclusion
in Section V.

II. DEEPSYNTHBODY

Our DeepSynthBody framework consists of four major
steps: (I) collecting real data and analysis, (II) developing gen-
erative models, (III) producing deep synthetic data, and (IV)
explainable DeepSynth AI and DeepSynth explainable AI as
depicted in the main flow diagram in Figure 2. The top arrow,
Restricted access represents areas where we consider privacy-
related restrictions and guidelines to follow. In contrast, the
Open access arrow represents the flow after resolving privacy
issues with real data by replacing them with deep synthetic
data. We discuss more details in the following sections.

A. Pipeline

In this section, we discuss the whole process step by step
which is the recommended order one should follow in practice
to use the DeepSynthBody framework. In the framework,
we can identify mainly two types of users; 1) contributors
to develop deep generative models for the DeepSynthBody
framework and 2) end users, who are using pre-trained deep
generative models from DeepSynthBody to produce synthetic
data for their research or applications. In our case study
described in Section III, we discuss the development stage
from a developer perspective and the data generation from a
user perspective.

1) Collecting real data and analysis (I): This step repre-
sents the first step in the DeepSynthBody framework (top part
of Figure 2) and can be primarily be divided into three sub-
steps, namely data categorization, data annotation, and data
analysis. After collecting medical data, the data should be
categorized into a body category and a data format available
in DeepSynthBody. Then, the data must be tagged as either
having annotations or not. Finally, a set of baseline metrics
should be made by training a ML model to perform a given
task. If real datasets are restricted, then all sub-steps can only
be done by research institutions with allowed access following
the data privacy protocols. If machine learning experts are
not accessible to the institutions, then the institutions have
to use user friendly GUI-based tools [27], [28] to build ML
models. Otherwise, one can follow steps (I) to (IV) in the
DeepSynthBody framework without any restrictions with aids
from ML experts.

In the first step, we classify almost all the data into 11
organ system categories [29] based on the anatomy of the
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Fig. 2. The overall framework of the DeepSynthBody concept. The main four stages (I) collecting real data and analysis, (II) developing generative models,
(III) producing DeepSynth data and (IV) explainable DeepSynth artificial intelligence (AI) and DeepSynth explainable AI are presented using four different
colors.

human body. These categories are cardiovascular, digestive,
endocrine, integumentary, lymphatic, muscular, nervous, uri-
nary, reproductive, respiratory, and skeletal. This is the main
classification which is available to the end users of our
DeepSynthBody, who are producing synthetic data from this
framework.

The data classified using organ system classification can be
classified further using the complexity of the data in terms
of its dimensions. The dimensions of real data increase the
complexity of generative models, which are implemented in
later sections. Taking the dimensionality of the data into ac-
count, we classify all biomedical data into one-dimensional (1-
D), two-dimensional (2-D), three-dimensional (3-D), and N-
dimensional (N-D such that N > 3) data to use in development
stages in DeepSynthBody framework.

Under the 1-D data, we cover biomedical signals collected
from the human body. Well-known signals are Electroen-
cephalogram (EEG), Electrocardiogram (ECG), Electromyo-
gram (EMG), Mechanomyogram (MMG), Electrooculogra-
phy (EOG), Galvanic skin response (GSR), and Magnetoen-
cephalogram (MEG). However, biomedical signals can be
analysed as 2-D, 3-D, or N-D depending on the method. For
example, an electrocardiogram (ECG) signal consists of 12-
channels and can be processed as 12 streams of 1-D data or
a 2-D matrix of 12× times after combining all 12 channels.
Therefore, we consider data dimensions coming through data
sources (medical devices) as the dimensionality of data in this
DeepSynthBody framework instead of considering the data
dimensions used in data processing techniques.

Medical imaging techniques are commonly used to visualize
human body organs, functions, and important for making
diagnosis and treatment suggestions. In the DeepSynthBody
framework, we subcategories these medical imaging data

into three categories, 2-D, 3-D, and N-D, based on the
dimensionality of the data obtained. Various technologies
produce medical images such as radiography, magnetic res-
onance imaging, nuclear medicine, ultrasound, elastography,
photoacoustic imaging, tomography, functional near-infrared
spectroscopy, and magnetic particle imaging under 2-D, 3-D,
or N-D. For example, images collected from data sources like
video cameras or images extracted from another type of data
like MRI, can be categories under 2-D data type. Similarly,
video collected from cameras in the medical equipment like
endoscope or colonoscope can be identified as a 3-D data
type when considering time as the third dimension. However,
some data sources produce 3-D data in a spatial domain, e.g.,
fMRI which produces data in the Neuroimaging Informatics
Technology Initiative (NIFTI) format. In this NIFTI format, we
can observe 3-D volume spatial data for a specific timestamp.
However, we can classify this kind of 3-D data into 4-D (into
N-D because N > 3) when the source produces a series of
3-D data points. In addition to 4-D data, there are data sources
producing 5-D data [30] which are considered under our N-D
data category. Under this definition, we identify all real data
sources through 1-D, 2-D, 3-D, or N-D classes.

After collecting data following the data dimension classi-
fication, we can further categorize data into two categories:
(i) without annotations (or labels) and (ii) with annotations. In
this step, we also consider if the data was labeled by experts or
not. Generally, most of the data coming from medical systems
do not have expert annotations or labels to use with ML
algorithms. However, if annotated data can be obtained at this
step, we can develop advanced deep generative models with
controllable input (conditional generative models) [31], which
take input parameters such as class labels to produce deep
synthetic data in the step (II) which is developing generative
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models. While one of our primary objectives is to reduce
annotation cost and time required from experts, at least a
few data points with annotated ground truth are needed to
use conditional generative models.

Analysis of original data produces baseline statistics about
the data itself and the ML models trained using this real data.
This analysis step is significant for later steps to identify if
our deep generative model can generate data samples from
a similar distribution compared to the real distribution used
to train the GAN models. Therefore, we investigate possible
use cases, for example, classification, detection, segmentation,
or forecasting, using ML algorithms with real datasets to use
those as baseline or benchmarks in the later step (II).

2) Developing generative models (II): This step presents
all stages from designing to publishing generative models as a
package to end users. Deep generative models used to produce
deep synthetic data should be designed using real data sources
coming from the first layer (I). The whole process of this step
can be divided into three sub-processes, namely designing and
evaluating generative adversarial networks (GANs), producing
modules (e.g., python packages) and publishing them under
www.deepsynthbody.org for the end users who use DeepSyn-
thBody to generate synthetic data.

Recent studies show that deep generative models can be
used to generate diverse data formats such as text [32]–
[34], signals [35]–[37], images [38]–[40], videos [41]–[43] as
well as complex data sources like MRI [44] (this generation
process can be considered as 3-D data generation). In the
context of DeepSynthBody, we do not consider text GANs
because biomedical data sources do not produce a text like
data as the main data format at the moment of initiating the
DeepSynthBody framework. In contrast to this, all other deep
generative models can be trained to generate random deep
synthetic data (unconditional) or conditional deep synthetic
data [31], [45]. When we compare conditional generative
models with unconditional generative models, we can see
that conditional generative models have the advantage to have
controllable parameters to produce deep synthetic data as
needed. Then, the conditional GANs can be used to produce
synthetic data with corresponding ground truth.

Not only designing generative models but researching bet-
ter evaluation methods [46]–[48] for GAN to quantify the
quality of generated data is a necessary sub-task under this
step. Therefore, proper GAN evaluation methods should be
performed along the process of each specific GAN generation
such as images, videos, or other medical data formats. With
these evaluation methods and real data analysis methods from
the top layers, we can perform benchmark experiments and
publish benchmark results to the end users as supporting
quantitative and qualitative supplement materials to analyze
their research studies. Until these benchmark comparisons are
available, users can perform their own baseline experiments,
which can be time consuming compared to pre-evaluated
benchmark results.

3) Producing deep synthetic data (III): End users who use
the DeepSynthBody generative models to generate synthetic

data interact with our framework through step (III). The step
(III) has a flow similar to the flow of the step (I), but they are
slightly different. Step (I) uses categorization to classify input
data while step (III) uses the same categorization to generate
synthetic data. The data annotation layer of step (I) is replaced
with two new data generation processes, namely unconditional
and conditional. Finally, data generation processes are used in
this step (III) instead of real data analysis processes in step
(I).

We use the same 11 categories as used in step (I) to
generate deep synthetic data from DeepSynthBody to end
users. Therefore, this layer is defined as the output layer of the
DeepSynthBody pipeline. We further split the 11 categories
into four categories based on the data dimensionality (1-
D, 2-D, 3-D, and N-D) as discussed in Section II-A1. This
layer enables us to decide the data output format when there
are multiple data formats for a selected category from the
above layer. For example, fMRI data can be generated as
images (2-D) or volume data (3-D). In addition, users can
also decide that the generation process is either unconditional
or conditional. The conditional generation will be allowed if
conditional generative models are available for that specific
generation task in the layer (II). In the framework, several
generative models for a specific generative task can exist
(e.g., two different GAN models to generate ECGs, one with
conditions and one without). If more than one model exists,
the end users can chose a model for their specific application
based on benchmark reports or comparisons. Similarly, com-
binations of multiple GANs can be used as a possible final
generative model, which can open for more diversity within
the generated data. Technical details about these DeepSynth
generative functions are discussed in Section II-C.

4) Explainable DeepSynth AI and DeepSynth XAI (IV): The
fourth layer, called explainable DeepSynth AI and DeepSynth
XAI is introduced to embed explainability and transparency
into all other layers. This layer is essential to explain our deep
generative models to increase trust and enable deeper failure
analysis. In the medical domain, XAI plays a significant role
in increasing trust to accept solutions from ML models that
generally perform classification, detection, and segmentation.
When we use our DeepSynthBody generated synthetic data
as a replacement to real medical data, we have to have eX-
plainable DeepSynth Artificial Intelligence (XSAI), which is
introduced as a specific subsection of XAI in this framework.
XSAIs main goal is to explain deep generative models to
increase understanding of the generative process and quality
of the generated data [49], [50].

XSAI discusses the explainability of generative models. In
contrast to this, deep synthetic data can be used to support
explanations of other ML models and we discuss this under
DeepSynth XAI (SXAI). In this context, the main goal is
not to explain deep generative models, but to explain other
ML models used to classify, detect and segment medical
data using DeepSynth-data as examples. We can see that this
problem is related to privacy issues as well. For example,
when researchers cannot explain their ML models by examples

A.28. Paper XXVIII - DeepSynthBody: the Beginning of the End for Data Deficiency
in Medicine

383



because these examples could raise privacy problems, they can
use DeepSynth examples to explain their models with less
concern about patient privacy.

B. Additional features
After establishing the whole pipeline steps from (I) to (IV),

this DeepSynthBody concept will open new research areas
such as generating deep synthetic data with many modalities
such as generating DeepSynth sperm sample videos with
corresponding blood reports and synthetic patient data like age
and body mass index (BMI). Multi-modal data should be fed
into the DeepSynthBody framework in step (I) to achieve this
DeepSynth multimodality goal. When the DeepSynthBody is
enriched with diverse deep synthetic data generators, the end
users get facilitated to generate unlimited data, missing data,
and exploring data distributions. In addition, exploring cor-
relations between deep synthetic data that reflect real human
body correlations will enable different medical perspectives for
diagnosis and treatments and find hidden clues and findings
of our human body such as how organs interact with each
other [51]. Controllable deep synthetic data generation can
generate deep synthetic data using given conditions using
input parameters through conditional generative models. This
conditional generation can enhance generalizability by im-
proving real datasets, solving data imbalance problems, and
introducing new augmented data for ML models that used only
real data to train.

C. Technical features
In the initial phase of implementing the DeepSynthBody

framework, we use Python version 3 as the main program-
ming language and Python package index (PyPI) as the main
hosting place to publish DeepSynthBody functionalities. First,
all DeepSynth generative models are published as individual
PyPI packages. Therefore, DeepSynth generative models and
corresponding benchmark models can be implemented using
any ML framework such as Pytorch [52], Tensorflow [53],
Microsoft Cognitive Toolkit (CNTK) [54] or other common
ML frameworks that support PyPI. The final PyPI package
of DeepSynthBody (pip install deepsynthbody) collects all
submodules and reorganizes them into the DeepSynthBody
framework to give a high-end user experience. An example
PyPI package flow is given in Figure 3.

In addition to providing DeepSynth generative models,
the DeepSynthBody framework provides functionalities to
use pre-generated data published by developers of generative
models when the end users do not need to run deep generative
models to generate deep synthetic data. On the other hand, this
kind of pre-generated data availability is essential when the
end users do not have enough computation power to run high-
end generative models, requiring more computation power in
the inference stage also.

III. CASE STUDY

As an example how to follow the framework guidelines we
implemented a use-case study which consists of gastrointesti-
nal (GI) tract [55] findings collected from endoscopic images,

pip install deepsynth-gitract pip install deepsynth-{}

pip install deepsynthbody

deepsynthbody.digestive.gitract.{functions}(*param)

deepsynthbody.{system}.{sub-system}.{functions}(*param)

Fig. 3. An example python package flow. The top layer represent sub-modules
and the second layer represent the main module of DeepSynthBody.

which represent the 2-D data format of our DeepSynthBody
framework. However, we do not cover implementation details
of the used generative models because our primary goal is
to introduce the framework and not present a reproducible
methodology for deep generative models, which is out of the
scope of this paper. Generally, every package or every gen-
erative model comes with its own research protocols because
developing and publishing a DeepSynth model, and a dataset
from scratch is a complex research and development task in
itself. Therefore, the DeepSynthBody framework provides cor-
responding research details (corresponding papers explaining
details of the methods and implementations) to the end users
with the DeepSynthBody functionalities.

HyperKvasir is a GI dataset [55] that is public and open
for the research community. We selected this dataset to show
that we can reproduce similar deep synthetic data repre-
senting the real dataset distribution. To generate DeepSynth-
gastroenterology data from this dataset, we used the unlabeled
data in the dataset, consisting of around 100,000 images to
train a deep generative model of style GAN-v2 [56]. We
trained this generative model 10000k steps over more than
eight days to get a stable generative model using the Pytorch
implementation of Style GAN-v21.

The Fréchet inception distance (FID) [48] scores calculated
from different checkpoints are tabulated in Table I. These
calculations were performed using the FID Pytorch implemen-
tation [57] with different feature extraction layers, 64: first max
pooling features, 192: second max pooling features, 768: pre-
aux classifier features and 2048: final average pooling features,
which are introduced in the original implementation [57] .
Small FID value represent better quality images than higher
FID values. Each check point number represents the check-
point at chk point × 1000, which is used to calculate FIDs.
The best FID values are presented using bold numbers in
Table I. We selected our best check point to publish in the
DeepSynthBody framework according to the best FID values
of 0.1980 and 41.2030 calculated using feature layers 768 and
2048 consecutively. These last two layers selected because
they represent high end features compared to basic feature
extractions coming from feature layers 64 and 192. We can
achieve further improvement to this FID values with more

1https://github.com/lucidrains/stylegan2-pytorch

Appendix A. Published Articles

384



TABLE I
FID SCORES CALCULATED FROM DIFFERENT CHECKPOINTS

chk point FID 64 FID 192 FID 768 FID 2048

0 39.1090 189.4938 2.6159 342.0751
100 1.7710 8.3480 0.3030 58.9490
200 1.6616 8.0271 0.2977 59.7215
300 1.6575 7.8310 0.2671 52.6597
400 1.2801 6.1183 0.2429 48.5694
500 1.2262 5.8759 0.2372 49.3512
600 1.5974 7.4586 0.2626 52.9441
700 1.3826 6.5063 0.2363 46.2668
800 1.1938 5.9112 0.2312 46.7931
900 0.6537 3.0260 0.2017 44.3310

1000 0.8736 4.2926 0.1980 41.2039

training step. However, we stopped our experiment at this level
because of time limitation.

After selecting the best checkpoint (alternative option
is publishing all interesting checkpoints to select the best
at the end user level) to publish with DeepSynthBody
framework, we prepared and published a PyPI package for
our sub-module (pip install deepsynth-gitract).
However, this module is specially designed to target the
development process of DeepSynthBody. Then, we em-
bedded this sub-module into the DeepSynthBody module
(pip install deepsynthbody), and all functionalities,
research papers, and corresponding usages of these sub-
modules are discussed in www.deepsynthbody.org2. In this
case study, our deepsynth-gitract module is published under
deepsynthbody.digestive.gitract module which
is structured as depicted in Figure 3. In Figure 3, we use word
system to represent the 11 systems introduced in Figure 2.
The keyword sub-system is used to represent subcategories
under these 11 main systems. In our use case, it is the
GI tract (gitract). In Figure 3, functions is to represent all
generative functions (functionalities) under these sub-modules
and *param represents all input parameters to generative
functions.

In this study, we introduce two functions, generate()
and generate_interpolation(). The main func-
tionality of the generate() function is to generate
DeepSynth GI tract images which can be used in an-
other study. Sample DeepSynth GI tract images generated
from this function are presented in Figure 4. Using the
generate_interpolation() function, we can generate
DeepSynth GI tract images between two random noise points
for a given interpolation steps. Figure 5 shows DeepSynth
GI tract images generated using two different seeds with
interpolation step size of 100. In this Figure 5, we visualize
the first five consecutive images out of 100.

IV. DISCUSSION

DeepSynthBody assists in getting anonymous, realistic, syn-
thetic medical data to be used for ML that otherwise would
be unavailable due to privacy concerns and/or the lack of
available medical personal to perform the tedious annotation
process. Nevertheless, the state-of-the-art generative models

2www.deepsynthbody.org

Fig. 4. Style-GAN generated random gastrointestinal-tract findings.

Fig. 5. First five samples generated with 200 interpolation steps for two
different random seeds. First and second row represent the two different
random seeds.

are incapable [58] to reproduce the same distribution as the
real distribution but future research studies can overcome these
limitations [59], [60]. On the other hand, limited medical do-
main data minimize using deep generative models to produce
DeepSynth medical data. However, recent advancement [61],
[62] in deep generative models to use limited data shows
the potentials of applying deep generative models even with
smaller datasets.

Finding inter-correlations between DeepSynth generative
models such as how organs interact with each other is an
advanced functionality in this DeepSynthBody framework. In
the initial stage, we cannot handle this functionality due to a
lack of real data sources and corresponding deep generative
models. Not only that, to accomplish this advanced option,
we need more multi-model datasets as well as collected data
from the same patients because inter-correlations can be found
from the data coming from a single patient. Therefore, this
framework’s success depends on successful contributions from
the research community who are working with medical data
and ML, and deep generative model designing.

Initiating this framework collects scattered research in deep
generative applications in medicine into a single framework.
Then, this DeepSynthBody acts as a repository for synthetic
medical data. Similarly, this framework can be used as a
data compression mechanism for large scale medical datasets
because we keep generative models that can create data if
required instead of large datasets. From another perspective,
having many DeepSynth generative models under the Deep-
SynthBody framework can be considered as a new possible
way to explain the human body.
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V. CONCLUSION AND FUTURE WORK

In this study, we presented a novel framework called
DeepSynthBody to solve data deficiency problems caused by
privacy issues and time-consuming and costly medical data
annotation processes. DeepSynthBody can provide synthetic
data as replacements to real data and this can fulfill our first
objective. We present that introducing conditional GANs in
DeepSynthBody can produce synthetic data and corresponding
ground truths to tackle our second objective of reducing cost of
medical data annotations. We show that collecting diverse data
from different data sources from the same patients can direct
our DeepSynthBody framework to find intra-body correlations
which is discussed as our third objective. However, in this
study, we have provided case studies only for the first objective
as a result of limited time and resources.

We can generate reliable and generalizable ML solutions
in medicine with the aid of DeepSynthBody. It also might
open up the possibility to find advanced human body correla-
tions (intra-body correlations) through conditional generative
models developed under this Deepsynthbody concept. Ultimate
accomplishments of these findings can produce a novel model
to explain the human body. The Explainability section (IV)
of the DeepSynthBody framework opens new research areas
to explain deep generative models in medicine and use Deep-
SynthBody data as examples to explain other ML solutions
which are used for classification, detection and segmentation
in medicine.

Besides our primary objectives, DeepSynthBody can be
used as a repository for deep generative models used in
medicine and a data compression mechanism to keep big
medical datasets in a small storage without any privacy
concerns and space to save large amounts of the data. In
this context, contributions from the research communities in
medicine and ML to develop and improve the sub-modules
of DeepSynthBody is the key to the ultimate success of
DeepSynthBody framework.
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