
UNIVERSITY OF OSLO

Department of Informatics

Solid State Disks vs

Magnetic Disks:

Making the right

choice

Master thesis

Torkild Retvedt -

torkildr@ifi.uio.no

Solid State Disks vs Magnetic Disks:

Making the right choice

Torkild Retvedt - torkildr@ifi.uio.no

ii

Acknowledgments

I would like to thank my advisor Pål Halvorsen, for being a great source

of valuable feedback, and for being extremely flexible and easy to work

with. I would also like to thank the entire lab at Simula, for providing an

incredibly stimulation work environment, and for being an infinite supply

of information and entertainment.

In addition, I would like to express my gratitude to both friends and fam-

ily for being a great inspiration, and for providing me with just the right

amount of distraction. . .

Oslo, August 17, 2009

Torkild Retvedt

iii

iv

Contents

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Main contributions . 2

1.4 Structure . 2

2 Non-Volatile Memory 5

2.1 EPROM . 5

2.2 E2PROM . 6

2.3 Flash Memory . 7

2.3.1 Multi-level cell vs Single-level cell 7

2.3.2 NAND vs NOR . 7

2.3.3 Structure . 8

2.3.4 Cell degradation . 10

2.4 Related technologies . 10

2.4.1 MRAM . 10

2.4.2 FeRAM . 11

2.4.3 PCM . 11

2.4.4 Others . 12

2.5 Summary . 12

3 Disk Storage 13

3.1 Magnetic disks . 13

v

vi CONTENTS

3.1.1 Physical layout . 14

3.1.2 Disk access time . 15

3.1.3 Reliability . 16

3.1.4 Future . 16

3.1.5 Summary . 17

3.2 Solid State Disks . 17

3.2.1 General . 17

3.2.2 Physical layout . 19

3.2.3 Flash Translation Layer 20

3.2.4 Future . 25

3.2.5 Summary . 26

3.3 SSDs vs. magnetic disks . 27

3.3.1 Magnetic disks . 27

3.3.2 Solid State Disk . 28

3.3.3 Cost . 28

3.3.4 Capacity . 29

3.3.5 Access time . 29

3.3.6 Zoning . 30

3.4 File systems . 30

3.5 Disk scheduler . 33

3.6 Summary . 34

4 Benchmark 35

4.1 Benchmark environment . 36

4.2 File system impact . 37

4.2.1 Test scenario . 38

4.2.2 Results . 39

4.2.3 Summary . 42

4.3 File operations . 43

4.3.1 Test setup . 44

4.3.2 Checkout of Linux kernel repository 45

4.3.3 Scheduler impact . 50

4.3.4 Inode sorting . 52

CONTENTS vii

4.3.5 Summary . 54

4.4 Video streaming . 54

4.4.1 Streaming scenario . 54

4.4.2 Results . 56

4.4.3 Summary . 59

4.5 Discussion . 59

4.5.1 Benchmark results . 59

4.5.2 Placement of disk logic 60

4.5.3 Solid State Disk (SSD) improvements 62

5 Conclusion 63

5.1 Summary and contributions 63

5.2 Future work . 64

A List of Acronyms 67

B Example trace of git checkout 69

C Source code 73

viii CONTENTS

List of Figures

2.1 NAND vs NOR memory . 8

2.2 A generic overview of a Flash memory bank 9

3.1 Internal view of a magnetic disk 14

3.2 Example on layout of a magnetic disk surface 15

3.3 Internal view of a 64 GB SSD 18

3.4 Price vs performance of different architectures 19

3.5 Block diagram of an SSD . 20

3.6 Placement of the FTL in an SSD 22

3.7 Signs of zoning in magnetic disk vs no zoning in SSD 31

4.1 Multiple file systems on Mtron SSD 40

4.2 Multiple file systems on Transcend SSD 40

4.3 Multiple file systems on Western Digital Raptor 40

4.4 Sequential read operations across multiple file systems . . . 41

4.5 Sequential write operations across multiple file systems . . . 41

4.6 Random read operations across multiple file systems 41

4.7 Random write operations across multiple file systems 41

4.8 Accumulated time of checking out 160 git tags 47

4.9 Boxplot of time spent on block requests 47

4.10 A trace of block requests when doing a git checkout . . . 48

4.11 Disk scheduler performance impact on git checkout . . . 51

4.12 Inode ordering impact . 53

4.13 50 concurrent clients, streaming at 1MB/s 57

4.14 60 concurrent clients, streaming at 1MB/s 57

ix

x LIST OF FIGURES

4.15 70 concurrent clients, streaming at 1MB/s 57

4.16 80 concurrent clients, streaming at 1MB/s 58

4.17 90 concurrent clients, streaming at 1MB/s 58

4.18 100 concurrent clients, streaming at 1MB/s 58

Chapter 1

Introduction

1.1 Motivation

The last few years, SSDs has received much focus as a possible replace-

ment for magnetic disks. SSDs ability to do random operations with a

near constant latency has changed the way we look at disk performance,

making random access of data less costly. For many workloads, this rea-

son alone, has been enough to consider the technology. Even though SSDs

show great improvements over magnetic disks on random read opera-

tions, it still faces challenges caused by the physical limitations of Flash

memory, makingwrite operations amore complex operation than onmag-

netic disks. This property of SSDsmeans that it can, inmany cases, be hard

to give a clear answer to what disk technology is the best.

Thoughmany simple performance studies have looked at the performance

of both magnetic disks and SSDs, these have a tendency to look at the per-

formance of very basic, and limited, operations. By simply looking at per-

formance in a few narrow cases, it can be hard to identify where a potential

bottleneck lies. To get an insight into the limitations and advantages of the

different technologies, we will take a close look at both magnetic disks and

SSDs.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem statement

We will, in this thesis, closely investigate the performance of SSDs and

magnetic disks. Looking at physical attributes of these two disk technolo-

gies, we will try to give an understanding of how they perform in dif-

ferent scenarios based on real workloads. Based on what we learn from

investigating the performance in these scenarios, we will try to get an un-

derstanding of what performance issues the different storage technologies

faces. We will look at how optimizations in Operating System (OS) and at

application-level have an impact on SSDs and magnetic disks, as well as

what we can do to achieve best possible performance.

1.3 Main contributions

In our benchmarks, we show that early generation SSD suffer from write

amplification, and will, because of that, have problems achieving good

performance on random write operations. By introducing a log-based

file system, we see that we can remove the effect of write amplification

received by random write operations, and give us a more stable perfor-

mance. We discuss, and benchmark, possible alternatives for optimizing

existing applications for magnetic disks, by introducing SSDs, as an alter-

native to magnetic disks as storage device. By going from high-end mag-

netic disks to SSDs, we see that we, in some cases, can achieve orders of

magnitude better performance, without changing application level code.

1.4 Structure

In chapter 2 we will look at different, existing and future, non-volatile

technologies. We look into what fundamental changes these technologies

introduces, and why we are interested in these changes in storage tech-

1.4. STRUCTURE 3

nology. Chapter 3 will give an overview over magnetic disks, SSDs and

how these two compare. We will also give a short insight into what ex-

pectations we have from both magnetic disks and SSDs, with regard to

different aspects of system performance. In chapter 4 we will look closely

on the performance of magnetic disks and SSD in different scenarios. We

will try to identify the main characteristics and try to point out possible

weaknesses, as well as solutions to these. Finally, in chapter 5 we will

summarize our findings, as well as do some reflection on possible impli-

cations.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Non-Volatile Memory

The last couple of decades, we have seen an increase in availability and

interest of non-volatile memory technologies. In this chapter we will look

into different types of non-volatile memory. We will give an overview on

how the different types of memory compare to each other, andwhatmakes

these interesting for bulk storage.

Non-volatilememory is generically speaking all semiconductor basedmem-

ory devices with persistent storage. We will look at both advantages and

challenges introduced by using non-volatile memory as storage. Also we

will take a look at possible future technologies, and how these compare to

existing non-volatile memory.

2.1 EPROM

Erasable Programmable Read-Only Memory (EPROM) was introduced in

1971 by Frohman-Bentchkowsky as a new way of storing data in semi-

conductor materials [1]. Historically, the most viable solution for storing

data permanently has been magnetic storage on disk platters, e.g., a hard

drive. This new technology however, was far from being able to satisfac-

tory replace bulk storage, having major shortcomings, like no fast auto-

5

6 CHAPTER 2. NON-VOLATILE MEMORY

mated way for erasing data. EPROM did supported erasure, but mainly

as a way for testing chips when in production. To erase an EPROM chip, it

has to be exposed to Ultra Violet (UV)-light, making it highly impractical

for any scenario where erasures are commonplace.

As a simple permanent storage, however, EPROM has proved valuable,

growing more and more popular into the 1980s. It has since been in-

cluded in a number of application, both in industry and consumer prod-

uct. This ranges from internal permanent storage in hard drives and net-

work switches, to automotive usage. Being included as a simple storage

for small amounts of data in consumer products, EPROM quickly received

attention in form of research and refined production.

2.2 E2PROM

A refined version of EPROM, called Electrically Erasable Programmable

Read-Only Memory (E2PROM) was proposed in 1985 [2, 3]. This tech-

nology introduces a more flexible approach to erasing, making it possible

to erase data with an electrical current, using a technology called field

emission. Not only does this make it possible to simplify test procedures

during production, but it also has the side effect of enabling on-device era-

sure. These memory cells are organized in manner resembling NOR-gates,

as will we will look at in detail in section 2.3.2, and are sometimes being

referred to as NOR Flash cells [1].

Being a relatively young technology, early E2PROM implementationswere

still considered to be a form of permanent storage. During the 1990s, the

technology did, however, prove itself powerful. Because of lacking mov-

ing parts, having a relatively low power consumption and getting increas-

ingly cheaper to produce, E2PROM soon proved to be a vital part of many

mobile devices.

2.3. FLASH MEMORY 7

2.3 Flash Memory

The term Flash memorywas coined in the early days of E2PROM to empha-

size the ability to erase the entire chip in a fast and effortless way, or in a

flash [1]. Through the years, the term has been used for numerous variants

of non-volatile memory types. In recent years, it has, however, become

common to refer to a modified variant of E2PROM. This variant uses a cell

structure resembling NAND-gates, as will be explained in section 2.3.2.

What is common for both EPROM and E2PROM (or variants of both), is

that data is being stored by altering the electrical attributes of a floating-

gate cells, changing the threshold voltage. This voltage is later being used

to determine what bit the cell represents.

2.3.1 Multi-level cell vs Single-level cell

Regular Flash cells, described in section 2.3, are called Single-level cell

(SLC). These cells can distinguish between two discrete values, thus being

able to store a single bit of information. To give a higher storage density,

another type of cell has been introduced, Multi-level cell (MLC). Unlike

SLC, these cells can hold several distinct threshold voltages, something

that in turn will make it possible to store more than one bit in a single cell.

By having four or eight different values, the density is increased two or

four times respectively.

2.3.2 NAND vs NOR

As we mentioned briefly in section 2.3, Flash cells can be organized in

different ways. The two ways used is named after what logic-gate struc-

ture they resemble, NAND and NOR. In short, NOR Flash is connected in

parallel, giving it great performance in random access, whereas the more

serial approach in NAND Flash gives it a higher storage density. Today,

8 CHAPTER 2. NON-VOLATILE MEMORY

NAND Flash is more or less the de-facto standard used in Flash storage [4].

figure 2.1 illustrates multiple reasons for this. One of the more convincing

reasons for choosing NAND over NOR is probably the cost-pr-bit, making

Flash storage a viable option to the well established magnetic storage.

High

Low

Hard

E as y

E as y

High

Low

High

High

Low

HighLow

Low File Storage Use

Code Execution

Capacity

Write Speed

Read Speed

Active Power (*)

Standby

Power

(*):

Dependant on how memory is used. NOR is

typically slow on writes and consumes more

power than NAND. NOR is typically fast on

read, which consume lese power

Cost-per-bit NOR

NAND

Figure 2.1: NAND vs NOR memory [4]

2.3.3 Structure

The internal structure of Flash memory is rarely identical from chip to

chip. As the technology has matured over the years, many smaller archi-

tectural changes are been made. There are, however, a few fundamentals

for how Flash memory is constructed. Each chip will have a large number

of storage cells. To be able to store data, these will be arranged into rows

and columns [1]. This is called the Flash array. The Flash array is con-

nected to a data register and a cache register, as seen in figure 2.2. These

registers are used when reading or writing data to or from the Flash array.

By having a cache register in addition to a data register, the controller can

process a request while the controller serves data. This enables the Flash

memory bank, to internally, process the next request, while data is being

read or written.

2.3. FLASH MEMORY 9

fla
sh

 a
rray

data register

cache register

erase block

pages

address register

status register

command register

I/
O

 c
o

n
tr

o
l

control

logic

Figure 2.2: A generic overview of a Flash memory bank. Based on [5]

Page

Pages in a Flash array is the smallest unit any higher level of abstrac-

tion will be working on. The size of a page may vary, depending on the

specifics of physical structure, but are typically in the size of 2kB [6, 5]. In

addition data, each cell will also have a allotted space for Error-Correction

Code (ECC). During a read operation, all the data from the page will be

transferred to the data register.

In a similar way, write operations to a page will write all data in the data

register to the cells within a page. What we need to know about Flash

cells when writing is that these cells only support two operations. A cell

can be in a neutral or a negative state. When writing data to a page, it is

only possible to change from neutral (logical one) to negative (logical zero)

state, meaning that to be able to change from zero to one, we need to reset

the entire page.

10 CHAPTER 2. NON-VOLATILE MEMORY

Erase Block

When reseting cell state with field emission, multiple pages will be af-

fected by the reset. This group of pages is called an erase block. A typical

number of pages contained will be 64 [7], but can be different, depend-

ing on how the Flash cells are structure. Given a page size of 2kB, an

erase block would then be 128kB in size. This tells us that changing con-

tent in any of the pages within the erase block, we would need to rewrite

all 128kB. For this simple reason, in-place writes are not possible in Flash

memory.

2.3.4 Cell degradation

Each time a Flash cell is erased, the stress on the cell from the field emis-

sion will contribute to cell degradation [1]. Modern Flash memory banks

are usually rated for approximately 100.000 erase cycle, but to be able to

handle a small number of faulty cells, each page will be fitted with ECC-

data.

2.4 Related technologies

During the last two decades, Flash memory has become an increasingly

stable and widespread technology. However, it does suffer from certain

constraints, as we have discussed in section 2.3. To counter these con-

straints, there are several new non-volatile memory technologies on the

horizon, some of which might take over for Flash in the future.

2.4.1 MRAM

Magnetoresistive RandomAccessMemory (MRAM) is a non-volatilemem-

ory where bit information is stored by changing magnetic properties in a

2.4. RELATED TECHNOLOGIES 11

cell. Performance-wise, MRAM places somewhere between Flash and Dy-

namic Random Access Memory (DRAM) [8]. Being considerably faster at

writes than Flash and lacking any known deterioration, thismakesMRAM

a valid competition for Flash. Using magnetic properties to store bit infor-

mation instead of electrical charge, MRAM can be able to achieve lower

power consumption on writes. Though much research is being done on

MRAM, there is still no commercial production, and the maturity of the

technology is years from being close to that of Flash.

2.4.2 FeRAM

Ferroelectric Random Access Memory (FeRAM) is a form of non-volatile

memory, organised in much the same was as DRAM, but with ferroelec-

tric properties instead of dielectric. The main advantages of FeRAM over

Flash is overall better speed, less cell deterioration on writes [9], combined

with low power usage. FeRAM does however not scale in the same way

Flash does, both with regard to capacity and density. Because of these

shortcomings, despite being commercially available, FeRAM is not ma-

ture enough to be a viable alternative to Flash.

2.4.3 PCM

Though still being far away from commercial production, Phase-Change

Memory (PCM) is probably the most promising alternative to Flash to

date. PCM addresses the issues mentioned in section 2.3.3, making it pos-

sible to flip bits between logical one and zero, without the need to erase/re-

set cells [9]. There are, however, still many unresolved issues or questions

regarding deterioration and scalability.

12 CHAPTER 2. NON-VOLATILE MEMORY

2.4.4 Others

In addition to the technologies mentioned here, there is constant research

being done in the field of non-volatile memory. With an increasing amount

of embedded devices demanding both higher capacity and higher perfor-

mance storage, without having to sacrifice low power consumption, no

single solution stands out as optimal at this time.

2.5 Summary

In this chapter, we have given an introduction to different non-volatile

memory technologies. We have also looked closely at the Flash memory,

and seen how this technology is suitable for bulk storage, as well as some

of the challenges introduced by cell degradation. In section 3.2, we will

see how Flash memory can be used in storage devices aimed at competing

with magnetic disk drives.

Chapter 3

Disk Storage

As computing capacity increases, so does the need for permanent storage.

Disk storage has since the early days of mainframe computing been used

in some way or another to store data. In the last decade, we have seen a

change in how we think of storage with the introduction of SSD. Our goal

in this chapter is to get an overview over what the different disk storage

technologies have to offer, what they have in common, what sets them

apart and what impacts these differences might impose.

In this chapter, we will look at the current state of disk storage, repre-

sented by magnetic disks in section 3.1. We will then take a look SSDs in

section 3.2. In section 3.3, we will give a comparison of these two tech-

nologies.

3.1 Magnetic disks

Rotating magnetic disks is without doubt the most used disk storage tech-

nology today. Being in use for half a century, magnetic disks are today

considered very mature, and have seen many major improvements. We

will in this section look at some of the advances done in magnetic disks

over the years, as well as try to give an overview over known weaknesses.

13

14 CHAPTER 3. DISK STORAGE

Magnetic disks, or Hard Disk Drive (HDD), are storage devices containing

one or more rotating platters made out of a magnetic material. Small sec-

tions of this material is manipulated into different magnetic states, making

it possible to store data. Magnetic disks have had a great ability to scale

capacity, and continues to do so today. We can see an internal view of a

magnetic disk in figure 3.1.

Figure 3.1: Internal view of a magnetic disk [10]

3.1.1 Physical layout

The rotating platters in magnetic disks may use both sides for storage.

Each of these are are divided into sectors and tracks. The intersection of

a single block and a single track makes up a block. As seen in figure 3.2,

tracks on the outer part of the disk platter are made up of more sectors.

This is due to the fact that the surface will pass faster under the disk head,

also more surface mean we will be able to store more data in these tracks.

We call these different sections zones.

To get a higher data capacity in a disk, several platters are put together in

3.1. MAGNETIC DISKS 15

Sector TrackBlock

Figure 3.2: Example on layout of a magnetic disk surface

a spindle. The disk arm will have a separate head for each surface, and

is able to write to more sectors with out seeking to a different track. The

same tracks across all surfaces are called a cylinder. Having cylinders will

make it possible to increase read and write operations, as the disk arm

can perform operations on multiple surfaces without needing to move to

different position.

3.1.2 Disk access time

Disk access time in magnetic disks are made up of three different opera-

tions. The time the different operations take will vary on position of disk

head, where in the rotation the disk surface is and physical abilities of the

disk.

Seek time The time needed for the arm to move into position, in other

words changing track. When idle, the disk will place the arm in the

middle of the disk to minimize this distance.

16 CHAPTER 3. DISK STORAGE

Rotational delay Rotational delay is the time it takes for the disk to spin

into position. This time will be dependent on the rotational speed of

the disk, as well as where in the rotation cycle the head is.

Transfer time Determined by the rotational speed of the disk, as well as

the data density of the track being read.

With these characteristics, we see that seek time and rotational delay be-

come a significant part of a random read or write operation. For sequen-

tial operations, the disk will be able to work on entire tracks/cylinders

at a time, continuing with neighboring tracks/cylinders. Doing sequen-

tial read will, because of a short physical distance between the location of

data, minimize time used on seeks, resulting in an overall lower access

time for the data.

3.1.3 Reliability

In order for the disk head to read/write data, it has to float as close as a few

nanometers from the surface of the disk. With a platter rotating up to as

much as 15.000 Rounds per Minute (RPM), we have a piece of hardware

very susceptible to damage. That being said, most disks today have a

relatively high Mean Time Between Failures (MTBF) (like 1.200.000 hours

in [11]), making reliability a minor issue.

Errors, however, do occur from time to time, making a way to handle these

necessary. Magnetic disk drives today, has a small portion of spare sectors

reserved for this purpose. When having tried correcting errors discovered

by ECC, the disk will re-map the logical block [12].

3.1.4 Future

Magnetic disks has during the last decades followed Moore’s Law, dou-

bling in capacity roughly every 12 months. As well as capacity, band-

width has also followed this trend. Latency does, however, improvewith a

3.2. Solid State Disks 17

smaller factor, making random seeks more and more expensive [13]. Con-

tinuing this trend, we will either need to rethink the way magnetic disks

are used or move to an alternative storage solution.

3.1.5 Summary

In this section, we have given a quick overview over the state of magnetic

disks today. We have seen that magnetic disks have a challenge when it

comes to random disk operations, and that moving parts make improving

performance further a challenge.

3.2 Solid State Disks

In this section, we will take a close look at SSDs. Our goal is to identity

what separates SSDs from magnetic disks, and how these differences will

have an impact on different aspects of performance. We will also try to

get an overview of the weaknesses in SSDs and how we might be able to

counter these.

3.2.1 General

Contrary to its name, Solid State Disks (SSDs) do not use disks for storing

data. An SSD is a storage medium made up of multiple Flash memory

banks, combined to provide a seamless way to store data in ways similar

to magnetic disks. SSDs provides the same physical interfaces, as well

as command interfaces as conventional magnetic disks. This means that

it is possible to switch from a magnetic disk to an SSD without having

to upgrade additional hardware components, or doing alterations to the

OS. We will take a close what the changes brought forth by SSDs means,

and some of the considerations we need to take when replacing magnetic

disks.

18 CHAPTER 3. DISK STORAGE

Figure 3.3: Internal view of a 64 GB SSD, exposing the Flash memory
banks [14]

What makes Flash interesting for storage is that the performance places

it somewhere between RAM and high-end magnetic disks [15]. In fig-

ure 3.4, we can see that SSD perform over 50 times better than magnetic

disks with regard to access time. At the same time price is currently only

increased with a factor of 5. Constant improvements like higher density,

cheaper components and faster read/write speeds are making SSDs an

increasingly attractive alternative to magnetic disks.

Though we see an increasing interest for use of SSD in applications such

as servers and desktop machines, the success can most likely be attributed

to the widespread inclusion in many capacity centered embedded applica-

tions1 like digital cameras and digital music players. As the alternative to

Flash in these applications has been magnetic disks in a smaller form fac-

tor, there is much to be gained by switching to Flash. These applications

also make the main selling points of SSDs apparent, as things like small

form factor, low power consumption and lack of moving parts are vital.

Today, several new laptop computers that focus on weight and power con-

1as opposed to bandwidth centered

3.2. Solid State Disks 19

sumption use SSD as an alternative to magnetic disks. Though SSD capac-

ity is overall less than that of magnetic disks, it has been doubled every

year since 2001 [5]. At the same time, prices has effectively been cut in

half. This is probably the reason why SSD in later years have become a

more viable option as primary storage in laptop computers, and not only

used as an additional storage device for specific applications. Already in

the early days of netbooks2, many alternatives was produced with 16GB

SSD as an option. This has most likely attributed to the mainstream inclu-

sion and given the possibility to see how SSD perform in real scenarios.

0,1

1

10

100

1000

10000

access µsecs $/GB

DRAM

SSD

15K RPM

Figure 3.4: Price vs performance on different architectures. Based on [15]

3.2.2 Physical layout

There is little information released by hardware manufacturers about disk

layout and how data is organized. To illustrate this, we can take a look at

the entirety of what the Intel® X25-E datasheet has to say about its archi-

tecture.

The Intel® X25-E SATA Solid State Drives utilize a cost effec-

tive System on Chip (SOC) design to manage a full SATA 3

Gb/s bandwidth with the host while managing multiple flash

memory devices on multiple channels internally [16]

2Inexpensive laptop computers priced at a low price point, like Asus EEE

20 CHAPTER 3. DISK STORAGE

Having looked the structure of the Flash memory banks in section 2.3.3,

we get a general idea of what to expect, but only a simple read/write op-

eration. As we can see from block diagram in figure 3.5, an SSD connects

several Flash memory banks together in a Flash Bus Controller (FBC). In

a single SSD there are usually multiple FBCs, which are commonly called

channels. As implied by the name, a channel will be able to independently

process requests, giving SSDs the ability to internally process a number of

operations in parallel. How and if operations are performed in parallel is

however very often not known to neither consumer nor OS3. We will later

see that from benchmarking certain types of operations on an SSD, we can

make a few assumptions about the design.

Host

Interface

Logic

D
E

M
U

X
M

U
X

Splitter

Multiple

Buffer

Flushers

SDRAM

BufferF
IF

O

Processor
SRAM

Flash Bus

Controller

Flash

Memory ...Flash

Memory

Flash Bus

Controller

Flash

Memory ...Flash

Memory

SSD Controller

Figure 3.5: Block diagram of an SSD. Based on [18] and [19]

3.2.3 Flash Translation Layer

To be able to provide the same level of consistency on SSDs as on mag-

netic disks, we need to take into consideration wear and tear. As we

have discussed in section 2.3.4, all cells have a limited number of approx-

imately 100.000 erase cycles. This will, according to [18], give an SSD of

3This can be seen in a correspondence from the Linux kernel mailing list [17]

3.2. Solid State Disks 21

32GB capacity the life span of >140 years with a strain of 50GB sequential

writes/day. Because of this physical limitation, SSDs is accessed through

an abstraction layer known as the Flash Translation Layer (FTL). The main

purpose of this layer is to make the SSD appear as any other block de-

vice, without the need for the OS to be aware of physical limitations [6].

This means that the OS will be able to use the disk without any additional

knowledge. It also means that a potential overhead will be introduced on

all I/O.

The FTL performs a mapping between how the data is represented to the

OS and how data is stored in the different Flash memory banks. An illus-

tration of this can be seen in 3.6. In magnetic disks, there is also a logical in

place, though unarguably, not as extensive as in SSDs. In magnetic disks,

blocks are mapped directly to corresponding physical blocks. When the

disk observes a bad sector, the data contained in the sector are remapped

to a physical block from a pool of spare blocks. As bad sectors in magnetic

disks can be viewed as a relatively critical and rare occurrence, the role

this layer plays, can mostly be view as a last resort.

Much unlike the mapping layer in magnetic disks, SSDs will remap blocks

on a regular basis. When doing in-place write, most wear leveling algo-

rithms will copy the new version of the data to a different physical block,

and remap these [20]. This will mean that the OS thinks it is working on

the same physical block, even though the data will be moving around con-

stantly. By doing this, the FTL will ensure that no single page will be worn

out by constantly changing data, while others are being left unattended.

These abstraction layers gives us the ability to access drives with different

architectural design with a common interface, however they also make it

hard to optimize for performance. Most of the commonly used file systems

are optimized so that the abstractions of magnetic disks will prove less of

a bottleneck.

22 CHAPTER 3. DISK STORAGE

Operating System

Host System

File Systems

Applications

Block Device Driver

SSD Disk

Flash Translation Layer

NAND Flash Memory

Figure 3.6: Placement of the FTL in an SSD. Based on [6]

Wear leveling

The physical attributes of Flash dictates that each cell will only last for

about 100.000 erase cycles [1, 21]. We have seen in section 2.3.3 that we

only can erase an entire erase block of typically 128 kB at the time. This

means that if we change data in a certain page, data changed in neighbor-

ing pages will need to invoke an erase operation on the entire erase block.

All unchanged data will then have to be erased and immediately rewrit-

ten along with the changed data. As we have learned from section 3.2.3,

in reality, we will want to keep data moving around, so that the overhead

of writing is keep as small as possible. We can, however, from both these

ways of altering data, see that a system with constantly changing data,

even in small numbers, will wear out.

SSDs handle these long term reliability constraints by utilizing some sort

of wear leveling amongst pages. The goal of a successful wear leveling

3.2. Solid State Disks 23

mechanism is to, optimally, keep the erase cycle count in all pages as low

as possible. At the same time, it should try to keep a level wear state across

the entire disk. What this means is that the wear leveling algorithm, re-

gardless of implementation, will monitor the wear of all blocks, and from

that data, rearrange the logical representation of physical blocks as data

changes.

Implementations of different wear leveling algorithms will differ greatly.

As is being discussed in Chang et al. [20], the different ways to do wear

leveling put focus on different performance aspects of the SSDs. Some im-

plementations will favor fast availability of requested pages, whereas oth-

ers will focus on keeping a balanced erase count. This is shown in a com-

parison of both academic and industry wear leveling algorithms. From the

evaluation and benchmarking of these different implementations, we can

see that most of these, both academic and industry, suffer from a skewed

erase block count. We also see that using a less optimally implemented

wear leveling algorithm can take quite a hit on performance, in addition

to having large skew in cell wear.

Write Amplification

Asmentioned in both section 2.3.3 and section 3.2.3, SSDswill needworkarounds

to enable in-placewriting of data. That is, changing a few bytes of datawill

either need the entire erase block to move, or the entire erase block to be

rewritten [22].

As with magnetic disks, an SSD will do some sort of drive level caching to

achieve better performance on write operations. This caching will in some

cases make a huge difference. A typical example of this is can be multiple

in-place writes on a data contained within a single erase block. If in a

queue, the SSD can get away with a single copy-modify-write operations,

whereas working without cache, or with a flush between each write, the

SSD would do a copy-modify-write for each of the writes.

24 CHAPTER 3. DISK STORAGE

When writing random patterns, the disk will not be able to rationalize

in this way. Seeing as the cache will be full before the same erase block

is being written to again, the SSD will have to perform an erase-write or

copy-modify-write operation for each of the requests.

This effect is what is commonly referred to as write amplification. Sim-

ply put, this can bee seen as a side effect of not being able to perform in-

place writes. There are, on the other hand, several ways to try to prevent

write amplification. Newer SSDs fights the effect of write amplification

in the FTL [23], making an in-place write operation at file system level

more symmetric in performance. We have seen that some of these bene-

fits can be achieved without such improvements on the FTL, by moving

hardware architecture aware logic to either the file system or application.

Though this is the case with magnetic disks as well, workarounds have

historically been done in file system.

Error correction

As in magnetic disks, SSD provide a way detecting bit errors at low lev-

els. Knowing that a cell will loose its ability to properly store data after

a certain number of writes, the SSD-controller needs to be able to handle

erroneous pages in a graceful manner. To detect errors, each page have

an alloted space for ECC. This makes it possible to check the consistency

of the data on writes. The ECC will be used to handle a given number

of damaged cell, but will at some point reach an uncorrectable amount of

noise. This page will then be marked as invalid, and no longer be used by

the FTL. To be able to provide the same capacity over time, the SSD will

have to keep a spare pool of pages, just for this reason. Keeping a spare

pool means that the SSD will be able to offer the same capacity to the OS,

even if a small number of pages are worn out or otherwise defective.

3.2. Solid State Disks 25

3.2.4 Future

The availability and maturity of SSD-technology are changed drastically

over the last couple of years. Having gone from being a vastly more ex-

pensive technology that proved better in only a small subset of scenarios,

SSD are now considered to be equal in performance to magnetic disks, if

not better in many cases. Recent tests also report that newer enterprise

type SSDs will outperform expensive RAID-setups [24].

Scalability

The usage of Flash in SSDs does however impose a few challenges as de-

mand for capacity and bandwidth continue to expand. As we have seen

in section 3.2.2, an SSD will be built up of multiple Flash banks. Several

of these will be connected to a FBC, giving the internal SSD-controller the

possibility of processing some information in parallel. When increasing

the size of each Flash memory bank, without increasing the number of

FBCs, we might find that bigger capacity drives will have a tougher time

achieving the same level of performance. There are however solutions for

this. In magnetic disks, we will quickly reach the limit to internal disk

scalability, simply because there is a limit to the number of platters it is

possible to stack on top of each other. In SSDs, this will not be an issue.

As mentioned in [24], increasing the number of channels in SSD, will ef-

fectively directly increase the possible level of parallelization.

ATA Trim

In June, 2007, Technical Committee T13, a committee responsible for the

Advanced Technology Attachment (ATA) storage interface standardiza-

tion, started the process of extending the ATA-standard with a new at-

tribute, referred to as the ATA Trim attribute [25]. This attribute is the

proposed solution to the challenges discussed in section 3.2.3. Today, the

26 CHAPTER 3. DISK STORAGE

abstraction between storage device and file system removes all knowledge

about validity of data from the disk. Because of this, a disk will have to

treat all data as currently in use, even if a file can be deleted from the file

system. In magnetic disks, this has not been view as a problem, as an

entire block will pass the disk head on reads, and entire blocks will be

written at a time. There is, in other words nothing to gain from ignoring

dead data, as a block containing nothing but dead data will be ignored by

the file system.

SSDs, will however, as we have seen in section 2.3.3, work with two dif-

ferent block sizes. One for erase, and one for reads. When writing a block,

the SSD will need to consider this data valid, even if it is later deleted in

the file system. This also means that once a block is used in an SSD, it will

be considered valid for the life time of the SSD, unless told otherwise4. By

knowing some of the blocks can be discarded, the wear leveling algorithm

can also move data more freely around, as not all blocks will be used at all

times.

3.2.5 Summary

In this section, we have looked at the technology behind SSDs. We have

seen that Flash cells are at a point where production and technology are

mature enough to make storage devices capable of competing with mag-

netic disks. We have also looked at the benefit we get using a storage tech-

nology without moving parts. In section 3.2.3, we have discussed some of

the challenges SSDs are faced with when using these Flash cells for bulk

storage.

4A hardware reset of the SSD, invalidating all blocks

3.3. SSDs VS. MAGNETIC DISKS 27

3.3 SSDs vs. magnetic disks

As we have seen in section 2.3, the technology in SSDs is built up in a sub-

stantially different way than magnetic disks, seen in section 3.1. Magnetic

disks consist of a magnetic material that is being manipulated into differ-

ent states by a strong magnet. These magnetic states are later detected

to read out data. SSDs, as we have seen in section 2.3, are on the other

hand built up of a large number of Flash cells. Despite these differences,

both technologies are able to store data in approximately the same order

of magnitude and are in a similar price range.

As all other technologies, both magnetic disks and SSDs have weaknesses.

For both SSDs and magnetic disks, certain data access pattern or disk op-

eration might be severely limited by disk attributes.

3.3.1 Magnetic disks

Because of the moving parts in magnetic disks, random seeks will cost

time. As we have seen in section 3.1.1, data scattered across the disk will

result in the disk performing time demanding repositioning of the disk

head in relation to the surface of the disk. The time needed for this is di-

rectly, but not exclusively, influenced by the rotational speed of the disk.

Higher-end disks usually try to minimize the seek latency, as well as in-

crease bandwidth, by having a higher rotational speed. It can also be chal-

lenging to scale performance in disks as size increase. Having multiple

disk platters stacked on top of each other will increase density within a

single disk. As disks will only have one disk arm, the only parallelization

it can achieve is to read cylinders at a time.

28 CHAPTER 3. DISK STORAGE

Disk pricing

Model Type Capacity Latency MB/s Price NOK
read/write (NOK) per GB

WD Caviar® HDD 1 TB - 111 / 111 750 0,73
WD VelociRaptor HDD 150 GB 4.2 ms 126 / 126 1.325 8,83
Seagate Cheetah
15K.5

HDD 300 GB 3.5 ms 125 / 125 3.795 12,65

Kingston V Series SSD 128 GB - 100 / 80 1.899 14,84
OCZ Solid Series-
SATAII

SSD 250 GB 350 µs 155 / 90 4.795 19,18

Intel® X25-M SSD SSD 160 GB 85 µs 250 / 70 3.795 23,72
Kingston E Series SSD 64 GB 75 µs 250 / 170 6.895 107,73

All prices are gathered from komplett.no

Table 3.1: Pricing and capacity of different storage devices as of July 2009

3.3.2 Solid State Disk

As we have mentioned in section 3.2.1, an SSD does not have the ability to

perform in place writes. It can be argued that no magnetic disk can do this

either, as it will always need to write an entire sector at the time. The big

difference between the two is that SSDs are forced to erase an entire erase

block to change data in a page. As we mentioned in section 2.3, an erase

block will be around 128 kB. However, it is possible to write only single

pages, or typically 4 kB. A sector in a magnetic disk will typically be 512

B, making small writes more flexible, though file systems usually works at

4 kB.

3.3.3 Cost

As we have seen in section 3.2.1, there is a difference between the cost of

SSDs and magnetic disks. In table 3.1, we have compiled a list comparing

different consumer-available storage devices. We can see from this list

that there is still a huge gap between SSDs and magnetic disks when it

comes to available capacity and price per capacity. This means that in any

situation where both SSDs and magnetic disks meet our requirements for

3.3. SSDs VS. MAGNETIC DISKS 29

performance, magnetic disk will be the preferred choice.

To take implication further, we could say that to consider an SSD over a

magnetic disk, it will either have to perform in some way magnetic disk

cannot, or to perform better for a given price. As luck will have it, modern

SSDs can in some cases do both. We know that SSDs have better perfor-

mance when it comes to random access reads, and on this point easily beat

magnetic disks.

3.3.4 Capacity

The capacity of magnetic disks has proven to more or less follow Moore’s

law, increasing with a factor 2 every 12 months [13]. This law also seems

to be valid for SSDs, with gate density being constantly improved. With

SSDs having a considerably higher cost per capacity, as seen in table 3.1,

the main reason for SSDs being sold with a lower capacity can be said to be

cost. We can see this confirmed with recently announced SSDs, matching

the 1 TB storage capacity found in magnetic disks [26].

3.3.5 Access time

The access time in disks, regardless of technology used, is determined by

the physical limitations of how fast data can be retrieved from themedium

in which it is stored. In magnetic disks, as we have discussed in sec-

tion 3.1.1, this is the limit of how fast the disk arm is able to move to the

correct location combined with the rotational speed of the disk platter. In

SSDs, as discussed in section 3.2.2, the limitation, for read operations, is

how fast the Flash memory chip is able to send data back after a request

has been sent and how fast the FTL will handle the level of abstraction in

the drive. For write operations in SSDs, the FTL will have much more to

say. The main limit is how fast an SSD can perform an erase operation, but

by having a smart FTL, the need to erase an erase block can be minimized.

30 CHAPTER 3. DISK STORAGE

3.3.6 Zoning

In section 3.1.1 we have seen that the different tracks in a magnetic disk

has different storage density. This is due to the fact that the disk is divided

into what we call zones, giving the outer tracks of the surface more sectors.

By having a constant rotational speed, this means that a block at the outer

rim of the platter will pass faster under the head on the disk arm than one

located near the center. This effect is called zoning. Because of zoning, the

location of the block being read or written will determine what speed we

will be able to achieve.

SSDs do not, however, suffer from this effect. As we have seen in sec-

tion 3.2.2, the way the Flash memory banks are connected together, where

data is placed will not have an effect on the transfer speed or the latency.

Even in the case where this would matter, SSDs would most likely not be-

have in the samematter as magnetic disks, due to the fact that the FTL will

constantly change the mapping of logical blocks.

In figure 3.7, we can see an experimental comparison on the effect of zon-

ing between two different SSDs and a magnetic disk. The results are gath-

ered from running a large sequential read directly from the block device

at different points of the disk. We see that the SSDs keep a steady band-

width across the entire disk, while the bandwidth of the magnetic disk go

down almost 30% at the end of the disk, compared to the best bandwidth

measured at the beginning.

3.4 File systems

To accommodate the level of performance and or reliability needed for

specific applications, different file systems will have different areas of fo-

cus. In addition to being created with a specific workload or ability in

mind, file systems will also be equipped with options to tweak the perfor-

mance or choose features to provide. All these design choices and consid-

3.4. FILE SYSTEMS 31

Position (GB)

S
p

e
e

d
 (

M
B

/s
)

59.73

84.75

77.62

123.34

Raptor (HDD) Mtron (SSD) Transcend (SSD)4
0

6
0

8
0

1
0

0
1

2
0

0 10 20 30 40 50 60 70

Figure 3.7: Signs of zoning in magnetic disk vs no zoning in SSD

erations will have an effect on the performance the file system will be able

to give in certain scenarios.

To make it easier to change between file systems, the Linux kernel pro-

vides a common interface for file system operations, called the Virtual File

System (VFS). This layer of abstraction will provide a set of interfaces,

making it possible to change a file system without changing application

level, or even kernel level code. We will later in section 4.2 take a look

at performance on different file systems, and will therefore give a short

introduction to a few file systems available in Linux.

ext2 Was until early 2000s considered the de-facto file system for Linux

distributions [27, p. 739]. This file system does not use a journal, and

will therefore have less overhead on writes, as well as being more

susceptible to damaged file system during system crashes.

32 CHAPTER 3. DISK STORAGE

ext3 Made as an extension to ext2, ext3 tries to address some of the

shortcoming ext2 proved to have. ext3 is built up in much the

sameway as ext2, but with the difference of introducing journaling.

It is also made to be backwards compatible with ext2. The journal

in ext3 is used to back up blocks of data as they are changed, making

recover from a system crash possible.

ext4 The ext4 file system, is like ext3 an extension to the previous ex-

tended file systems. Unlike the previous versions, ext4 introduces

extents, a features that will break backwards compatibility with ear-

lier ext file systems. This feature replaces regular block mapping,

and will give better performance on larger files.

reiserfs Is like ext3 and ext4, a journaled file system, introducing

optimizations giving better performance working on smaller files.

nilfs2 A log-based file system. nilfs2, or New Implementation of a

Log-structured File System, will instead of changing data directly in

blocks, perform a copy-on-write, writing a new block with the valid

data, invalidating the old one. This gives the file system the ability

to provide continuous snapshots of the state as the file system ages.

To clean up invalidated blocks, a garbage collector will clean unused

snapshot as the drive becomes full.

On different disk storage architecture, these file systems will handle quite

differently. If we have an SSDs where we easily will experience write am-

plification, journal writes on every write will be costly. This is one of the

reasons why many consider ext2 to be the most suitable file system for

early SSDs. nilfs2, and other log-based file systems like logfs5, will

fight write amplification, simply because they will evade the problem by

writing all changed data in different blocks. As the file system has full

knowledge of what data is valid, the file system can in this way reorga-

nize how data is placed when writing changes.

5A file system made with Flash memory devices in mind, but at a very early point in
development

3.5. DISK SCHEDULER 33

3.5 Disk scheduler

To handle different types of access patterns under heavy load, the Linux

kernel will support different types of scheduling algorithms [27]. These

algorithms, will schedule the I/O requests to a block device to suit dif-

ferent workloads. The different algorithms will be optimized for different

workloads, but common for all is that they will be optimized for magnetic

disks.

NOOP A simple queue, doing nothing to reorder requests. This scheduler

will merge a request if it is adjacent to a request already in the queue.

Deadline Requests are put in four queues. Two of these are for reads and

two are for writes. Both read and write requests are put in both a ele-

vator queue and a deadline queue. This will ensure that requests are

handled within a given deadline, but optimally sorted by position

on disk. This scheduler will also queue read requests before write

requests, because read requests are considered likely to block.

Anticipatory Uses queueing much in the same way as the deadline sched-

uler, but will in addition try to anticipate requests from processes.

This scheduler will alternate more between read and write requests,

but will also favor read. To anticipate requests, the scheduler will

gather statistics about a process, making it possible for a process to

get a request served immediately after it is issued.

CFQ The Completely Fair Queuing (CFQ) scheduler focuses on dividing

I/O bandwidth equally amongst processes. It will have a large num-

ber of queues, and will always insert requests from a single process

into the same queue.

As we see, these schedulers focus on solving different issues with I/O

request scheduling. The NOOP scheduler will refrain from ordering and

only merge requests. This makes it possible for the devices, which will

have more knowledge of physical layout, to schedule requests internally

to better suit the characteristics of the drive, and will make the firmware

34 CHAPTER 3. DISK STORAGE

in the devices more complex. We know from section 3.2.3 that the FTL in

SSDs will hide knowledge of the physical layout from the OS. This means

that optimizations done in scheduler for magnetic disks will most likely

be less optimal for SSDs.

The deadline and anticipatory schedulers will both order requests on sec-

tor number, to fit a SCAN-pattern6 on the disk. This will have a positive

effect on magnetic disks, but will most likely have less to say on SSDs, as

pages are moved around, changing logical address. It can be argued that

providing a good scheduling algorithm for a device with little information

about physical layout can be hard, if not impossible. As SSD already have

an abstraction layer in place that will do queueing and buffering, it can be

argued that this layer should be intelligent enough to do disk scheduling

as well. Therefore, with an optimal FTL, SSDs should see the best perfor-

mance with the NOOP scheduler.

3.6 Summary

We have in this chapter looked at different disk storage technologies; mag-

netic disks and SSDs. Comparing these two, we see that both are able to

meet the requirements we have for disk storage today, both regarding ca-

pacity and bandwidth. We do, however, see a difference in how the two

technologies perform in certain scenarios. In section 3.2.2 and section 3.1.1

we have discussed how SSDs andmagnetic disks, respectively, handle ran-

dom requests, identifying the challenges present in keeping latency low

for magnetic disks. We have, in section 3.2.3, looked at the potential issues

with SSDs, regarding small random writes. Last, in section 3.3.6, we have

seen that transfer speed in magnetic disks depend on placement on disk,

whereas the transfer speed in SSDs is constant.

6Processing requests as the sectors passes, from low to high sector number

Chapter 4

Benchmark

The performance of both SSDs and magnetic disks can be difficult to sum-

marizewith just a few numbers. Aswe have discussed in chapter 3, certain

aspects of a disk might give different performance results, and one might

get different performance depending the workload. In addition to these

uncertainties, different file systems will store data in a fundamentally dif-

ferent way. All this put together, we have an overall hard time getting a

clear answer for what level of performance a given application can expect

to achieve, only looking at numbers from datasheets.

We know from section 3.2 that SSDs have the advantage of not having

moving parts, giving it an overall low latency. Magnetic disks, on the other

hand, have a harder time keeping latency low, due to seek and rotational

delay. In this chapter, we will look at how these general performance char-

acteristics add upwhen facedwith specific application scenarios. Our goal

is to get a clear profile of both SSDs and magnetic disk, making the choice,

when faced with one, a simpler task.

35

36 CHAPTER 4. BENCHMARK

Disk specifications
Make MTRON [18] Transcend [28] WD Raptor [29] Seagate [11]
Type SSD SSD HDD HDD
Size 32GB 32 GB 74 GB 80 GB
Form factor 2.5" 2,5" 3.5" 3.5"
Interface SATA SATA SATA SATA
Rotation
speed

- - 10.000 RPM 7.200 RPM

Memory SLC NAND SLC NAND - -
Access read 0.1 ms - 4.8 ms 8.5 ms
Access
write

- - 5.2 ms 9.5 ms

Max read 100 MB/s 150 MB/s - 85.4 MB/s
Max write 80 MB/s 120 MB/s - -
MTBF
(hours)

1.000.000 1.000.000 1.200.000 600.000

All numbers are from datasheet provided by manufacturer

Table 4.1: An overview of disks in benchmark environment

4.1 Benchmark environment

In our benchmark environment, we have two different SSDs and twomag-

netic disks. One of these magnetic disks are being used as system disks,

and will only be used in some test scenarios, for comparison purposes.

Information about the disks, as provided from datasheets is available in

table 4.1. We will, for simplicity, refer to make of disk when talking about

these in our benchmarks. Our test PC is suitedwith a Core™2Duo 2.66GHz

CPU and 2GB of Random Access Memory (RAM), running Ubuntu 9.04

with Linux kernel 2.6.28-14.

The Seagate disk in table 4.1 is included to better understand the impact

of attributes in magnetic disks, as latency in this disk is quite much more

than in the Raptor. We can see a comparison of the seek times of these two

disks in table 4.1. It should be noted that the Seagate disk is also being

used as a system disk. This will be taken into consideration in the tests

performed on this disk.

4.2. FILE SYSTEM IMPACT 37

When choosing disks for benchmark, we have focused onmid-range alter-

natives, both for the magnetic disks and SSDs. There’s a few reasons for

this, money being one, but it is also interesting to see what we can be able

to achieve with relatively cheap hardware.

In section 3.2 we have talked about FTL and wear leveling. According

to the Transcend datasheet [28], this SSD uses wear leveling techniques.

Inside this disk, we can see 16 Flash chips of 16 Gbit capacity, giving a

total of 32 GB storage. As the entirety of this storage is reported to the OS

as available storage, we can make some assumptions about, not only the

physical layout, but the wear leveling algorithm.

As we have discussed in section 3.2.4, future SSDs will be able to more

effectively perform wear leveling by having some level of idea about the

validity of data. As this drive does not have ATA-Trim capability, we know

that it will have to regard all data as valid at all times. In other words, this

means that the drive, or more specifically, the FTL, will have to have all

physical blocks mapped to logical blocks at all times, seeing as no spare

space is available.

4.2 File system impact

The last decade, magnetic disks have ruled the realm of data storage. This

has not surprisingly had an effect on the design choices of file systems. It

is common to store inode information on places of the disk that give good

performance, but in an SSD, as we have seen in section 3.2.3, this will

produce an increased amount of erases of single blocks, unless handled

by the FTL. How good this is handled, is much up to the FTL.

In this section, wewill try to understandwhat impact different file systems

have on magnetic disks and SSDs. Our goal is to get an overview of what

file systems is best suited for the different technologies, as well as try to

explain the reason behind this. By testing different file systems on both

38 CHAPTER 4. BENCHMARK

magnetic disks and SSDs, we are hoping to gain insight to how the FTL

handle some of the assumptions done in these file systems.

4.2.1 Test scenario

To discover the level of impact the file system has on performance, we

have tested a set of different file systems across three different disks. These

disks are listed in table 4.1, and are a Western Digital Raptor, Transcend

and Mtron, one magnetic disk and two SSDs respectively. By having two

kinds of SSD, wemight see a potential impact of different FTL-implementation.

We will in this test scenario try to focus mainly on the effect we receive by

using different file systems. To do this, we will test four different opera-

tions; sequential read, sequential write, random read and random write. Each

of these operations are run, using the iozone benchmark utility [30], on a

large file located in the file system. It’s important to note here that we are

not testing how efficient the file system is able to do operations across a

number of files, but how the most basic operations perform.

In addition to testing the commonly used Linux file systems, ext2, ext3

and the newly included ext4, we have tested on reiserfs and nilfs2

as well. reiserfs is, like ext3 and ext4 a journaled file system. This

file system is know to have better performance on smaller files, and can

therefore be interesting to test on SSDs. nilfs2, or New Implementation

of a Log-structured File System, is a log-based, snapshotting file system,

recently included into the development branch of the Linux kernel. We

have tested nilfswith the default block size of 4096 bytes, meaning that,

if we are lucky enough to guess the right erase page size, the file system

will only write an entire erase block worth of data at a time.

Log-based file systems is regarded as well suited for SSDs with less effec-

tive FTL, as it will generally avoid in-place writes. Instead the file system

will copy the content to memory, modify, and write the changes to a fresh

block. Because this file system also provides snapshotting, the old block

4.2. FILE SYSTEM IMPACT 39

will then be invalidated, and later recycled by a garbage collector. Because

of this way of writing modified data, the integrity of the file systemwill be

preserved, even if a write operation gets corrupted. It also means that we

will spend a lot of capacity on invalidated blocks when modifying data.

4.2.2 Results

When comparing the results from the two SSDs, seen in figure 4.1 and

figure 4.2, we observe many of the same characteristics. Both perform

relatively close to that of advertised speedwhen doing random reads, seen

in figure 4.6, with Transcend averaging at 118 MB/s, andMtron averaging

at 108 MB/s. The Raptor disk, on the other hand has an average 16 MB/s

on random reads. This due to the symmetrical latency properties of SSDs,

discussed in section 3.2.2. It is however interesting to see that big impact

this latency has, when it comes to doing random writes.

On sequential reads, we see that both SSDs, across all file systems, achieve

a lower throughput. This can most probably be attributed to the fact that

Flash memory banks are channeled. When getting a series of requests for

data located on different channels, the SSDs will be able to handle these

requests in parallel.

Comparing the write performance of the two SSDs in figure 4.5, we see

that the Mtron SSD achieve a much greater speed than that of the Tran-

scend SSD in all filesystems but ext4. An example of this is in ext2,

where Mtron write at 83 MB/s, and Transcend write at 49 MB/s. In ext4,

however, we see Transcend writing at 86 MB/s, while Mtron writes at 78

MB/s. This is evidence the limitation of write speed on the other file sys-

tems does not lie in the Flash memory used, but the FTL.

With write speeds, we see an overall trend that the SSDs are able to match

that of the magnetic disks in sequential writes, but have trouble keeping

up on random writes, seen in figure 4.5 and figure 4.7 respectively. This is

not surprising, as magnetic disks will have the same basic latency, caused

40 CHAPTER 4. BENCHMARK

Figure 4.1: Multiple file systems on Mtron SSD

Figure 4.2: Multiple file systems on Transcend SSD

Figure 4.3: Multiple file systems on Western Digital Raptor

4.2. FILE SYSTEM IMPACT 41

Figure 4.4: Sequential read operations across multiple file systems

Figure 4.5: Sequential write operations across multiple file systems

Figure 4.6: Random read operations across multiple file systems

Figure 4.7: Random write operations across multiple file systems

42 CHAPTER 4. BENCHMARK

by moving parts, when doing a write operations, as when doing a read

operation. SSDs on the other hand, as we have seen in section 2.3, have a

much higher write latency than read latency, and will because of this have

a highly asymmetrical performance.

It is also interesting to see how the SSDs perform on random writes when

using nilfs2. On the Transcend SSD, nilfs2 is able to achieve 28.7

MB/s, whereas the next best result is 5.7 MB/s, using ext2. The Mtron

SSD, getting overall better results on writes, see a similar improvement,

going from 17.0 MB/s in ext2, to 42.5 MB/s in nilfs2.

4.2.3 Summary

We have, by running benchmarks on two SSDs and one magnetic disk,

been able to compare the impact different file systems have on the differ-

ent architectures. In our tests, we have observed an overall similar perfor-

mance on sequential reads, though slightly favorable to SSDs, especially

the Transcend disk. We have seen that SSDs have a clear advantage when

it comes to random reads, due to no mechanical parts. Mechanical parts

give, as we have discussed in section 3.1.2, large seek and rotational delays

A general observation over the results of both sequential and random

reads across all disks is that file system has little to no impact on these

operations. This is especially true for random reads, where the standard

deviation over all file systems is 5 MB/s in the SSDs, and 1 MB/s on the

magnetic disk. This tells us that there’s a high probability that the limita-

tions for random read speeds lies directly in the physical attributes of the

disks. In the case of magnetic disks, latency is the bottle neck, as we see

we get better read speeds when read sequentially, whereas on SSDs, Flash

memory bandwidth is the limit. This can be solved, as we have discussed

in section 3.2.4 by having multiple channels, effectively multiplying the

bandwidth by the number of channels.

By having tested a log-based file system, nilfs2, on the SSDs, we ob-

4.3. FILE OPERATIONS 43

server that the FTL in neither SSD remove penalty of in-place writes. An

optimal FTL would give the SSDs the same level on performance on a

file system not aware of this constraint as one trying to minimize in-place

writes. Instead of writing modified data back to the same block, nilfs2

will do a copy-on-write operation, writing a new block with the data and

then marking the old one as invalid and unused. We also observe that the

sequential writes using nilfs2 are only slightly better on both SSDs, with

46 MB/s to 43 MB/s in Mtron, and 31 MB/s to 29 MB/s for sequential and

random writes respectively. This means that nilfs2 is able, even though

sequential write performance drops, to make writes more symmetrical in

nature, and therefore more predictable.

We observer that using a nilfs2 on the Raptor disk gets the highest band-

width for random writes, at 56 MB/s. This implies that SSDs should be

able to achieve close to the best possible random write speeds as well

when using nilfs2. In magnetic disks, the drop in speed from sequen-

tial to random writes can be explained by latency from rotating the platter

and performing seeks. We do however have a constant latency in SSDs,

so any drop when doing random writes can, most likely, be attributed to

the implementation of the FTL, or to be more exact, the effect known as

write-amplification, as discussed in section 3.2.3.

4.3 File operations

We have in section 4.2 seen the impact different file systems can have on

magnetic disks and SSDs. These tests tell us how the disks perform on

isolated use of the basic operations sequential read, random read, sequen-

tial write and random write. When working with large sets of files, these

operations are used together, depending on the specific operation. This

produces a much more complex performance profile, and it can be hard to

foresee what will become a bottle neck.

We will in this section take a look at the performance of doing different file

44 CHAPTER 4. BENCHMARK

operations on a large set of files. These operations, which we will look at

in detail later, will be tested on the disks listed in table 4.1 in section 4.1.

Our goal is to get an understanding of what kind of performance we can

expect from magnetic disks and SSDs under different scenarios working

on a large set of files.

4.3.1 Test setup

We know that SSDs can suffer from write amplification, as seen in sec-

tion 3.2.3, and it is therefor interesting to observe how changing small

amount of data in a large set of files will perform. In addition to looking at

write performance, we also want to know how time consuming operations

such as directory tree traversals handle on SSDs, as opposed to magnetic

disks.

For the basis of our tests, we will use a recent git clone of the Linux

kernel repository. There are multiple reasons for the choice here. First off,

the Linux kernel has large amount of files, almost 29.000, distributed over

a reasonable amount of directories, just under 1.800. As a code base, it is

quite big, at just over 750 MB. This means that we use both quite a few

inodes as well as a bit of disk space. The reason we have chosen to use

a git repository, is not only that it gives us the possibility to play back

activity, but that this activity is actual development history in a project,

not only simulated requests.

For the tests, we are using the ext4 file system, this is mainly because it

is a modern file system, made as an improvement for the much used and

tested ext3. This file system has recently been included into the Linux

kernel, making it reasonable to expect future Linux systems to have this

file system as a default option. This is a big argument for testing on this file

system, as in systems where many applications work together, we would

want a modern, general and well tested file system. From our results in

section 4.2.2, we can see that ext4 perform reasonably well in all cases

4.3. FILE OPERATIONS 45

but random write. This is most probably because of the fact that ext4 is a

journaled file system, making it less prone to error on interrupted writes.

4.3.2 Checkout of Linux kernel repository

To test how the disks performs in file intensive scenario, we will do repos-

itory operations on the Linux kernel source. For each release candidate of

a Linux kernel version, a git tag is created. Tags do, in other word, provide

snapshots in time of the development history. To create file system activity,

we will do a git checkout of these revisions. A git checkout simply

changes state in the entire directory tree to match that of the state in the

repository when tagged. It is safe to assume that most of the differences

are very incremental in nature, and that they will change a large number

of files. In this scenario, we have run a git checkout of 160 tags, in

order, of the Linux kernel source code.

Theworkload generated by a git checkout, will havemuch in common

withmany other application scenarios. One checkout will read data from a

internal database type structure. Calculate changes in files, read meta data

from a number of files and write changes to a number of files. This will

mean that we have a very mixed workload, depending on many different

aspects of the disk. Random read performance will highly influence the

reading of meta data, writing small changes to a wide range of files will

depend on the ability of the disk to do random write operations.

The tests have been run on all disks shown in table 4.1. We should, how-

ever note that the Seagate disk in this table is used as system disk. This

disk is included so we can observe how the performance will be when

sharing resources. With the increased latency, seen in table 4.1, and re-

source sharing, we can expect less performance from this disk. This will

give us some idea of a worst case scenario of this kind of task.

46 CHAPTER 4. BENCHMARK

Results

In table 4.2 we can see the resulting run time of running 160 consecutive

checkouts of different tags in the Linux kernel git repository. These results

are also listed inMatching our expectations from earlier in this chapter, the

Seagate disk gets the lowest performance in the test, with 920.28 seconds

run time. Shortest run time, we achieved on the Raptor disk, clocking in at

178.86 seconds. One of the reasons behind the run time in the Seagate disk

being much higher is the fact that we’re sharing this disk with the system

Disk Time Stdev Mean
Seagate 920.28 8.84 5.75
Raptor 178.86 1.43 1.12
Mtron 184.76 1.50 1.15
Transcend 236.65 1.99 1.48

Table 4.2: Statistics of time used on checkout of 160 git tags

Some variance is to be expected on tasks like these, as some of the tags will

be at a point in the revision history where there has been more changes to

the files. These checkouts will take more time, as a diff will have to cal-

culated, located on disk and merged with the current version. We can see

in figure 4.8, how the time accumulates as we checkout tags. Though there

are variations in the time it takes to perform a checkout, we can clearly see

a trend here.

Block trace

To better understand the performance the different disks have achieved

on the git checkout tests, we will take a look at a block trace of activity

generated by the git command. To trace traffic, we have used blktrace,

a program for tracing block layer IO. This will give us the ability to trace

multiple events in the block layer of Linux.

In figure 4.10, we can see a block trace on all disks during a git checkout.

This trace is parsed from the data provided by blkparse, a part of the

4.3. FILE OPERATIONS 47

0 20 40 60 80 100 120 140 160
Number of checkouts

0

200

400

600

800

1000

A
cc

u
m

u
la

te
d
 t

im
e
 (

se
c)

Seagate
Raptor
Mtron
Transcend

Figure 4.8: Accumulated time of checking out 160 git tags

Seagate Raptor Mtron Transcend
0

50

100

150

200

T
im

e
 (

m
s)

Figure 4.9: Boxplot of time spent on block requests

48 CHAPTER 4. BENCHMARK

0 5 10 15 20 25 30
Time (sec)

S
e
ct

o
r

n
u
m

b
e
r

Seagate

0 5 10 15 20 25 30

1K
2K
3K
4K
5K
6K
7K

R
e
q
u
e
st co

u
n
t

0 5 10 15 20 25 30
Time (sec)

S
e
ct

o
r

n
u
m

b
e
r

Raptor

0 5 10 15 20 25 30

1K
2K
3K
4K
5K
6K
7K

R
e
q
u
e
st co

u
n
t

0 5 10 15 20 25 30
Time (sec)

S
e
ct

o
r

n
u
m

b
e
r

Mtron

0 5 10 15 20 25 30

1K
2K
3K
4K
5K
6K
7K

R
e
q
u
e
st co

u
n
t

0 5 10 15 20 25 30
Time (sec)

S
e
ct

o
r

n
u
m

b
e
r

Transcend

0 5 10 15 20 25 30

1K
2K
3K
4K
5K
6K
7K

R
e
q
u
e
st co

u
n
t

Figure 4.10: A trace of block requests when doing a git checkout

4.3. FILE OPERATIONS 49

blktrace software package. An example of this output can be seen in

Appendix B, showing block requests as they are queued, merged and

completed. What we see traced in this graph is requests of blocks, be-

ing reported as they are completed on the disk. This is, in other words,

the activity of the disk, not how blocks are put in the queue. The red line

seen in the graph is a representation of the accumulated number of blocks

processed by the disk. This does not necessarily translate directly to data

transfered, but it gives us an idea of how much activity the disk is able to

process.

Whatwe see in the graph is the first 30 second of the series of git checkouts.

During this time, we can clearly see both SSDs serving block requests from

the block layer at a much higher rate than both the magnetic disks in the

beginning, but changing during the course of the test. The Raptor disk

clearly has an advantage when it comes to write operations in general,

and will catch up when doing these. With the Seagate disk, which is being

used as a system disk in addition to servicing the git checkout request,

we see the signs of resource sharing, as the time between completed blocks

are much higher than the increased latency would indicate. The request

count indicates that this disks serves about the same number of block re-

quests as the other disks, the difference being that the other disks will have

time to merge more requests together, and thus, serving more data per re-

quest.

We can in figure 4.9, see a boxplot of time spent from block requests are

inserted into queue to block requests are completed from the disk. The

red line indicates the median of the samples, the bottom and top of the

box represents the upper and lower quartile of the samples, respectively.

Here we see that, despite being less efficient on random reads, the raptor

disk see both a lower variance in process time for block requests, as well

as having quicker response. These results are across the entire test, and tell

us that, in a scenario like this, the ability of magnetic disks to do faster ran-

dom write operations than that of SSDs weighs up for being less effective

at random read operations. This can also be said the other way around,

50 CHAPTER 4. BENCHMARK

that SSDs faster random read operations compensate for its slower ran-

dom write operations.

In table 4.3, we can see the mean time of how long a block requests takes

from insertion to completion, divided into read andwrite operations. From

this table we can see that both SSDs are close to the Raptor disk in respond

time for read requests, but fall behind on response time for write requests.

Again, we need to note that this is response time for a block request, and

tells us little of actual bandwidth. We see that the Mtron disk falls behind

the Transcend in request time, but still is able to end upwith a shorter total

run time. As we know, from section4.2.2, the Mtron disk performs better

than the Transcend disk on random writes, with the Raptor disk dwarfing

both these. All this points to that that it is very likely that random writes

is the critical factor in this test scenario.

Disk Read Write Combined
Seagate 22.13 ms 1133.59 ms 255.84 ms
Raptor 4.70 ms 41.00 ms 10.01 ms
Mtron 4.41 ms 145.22 ms 50.65 ms
Transcend 8.22 ms 106.78 ms 39.28 ms

Table 4.3: Time in queue for read and write operations

4.3.3 Scheduler impact

As we have discussed, in section 3.5, the disk scheduler will have an ef-

fect on the efficiency of the disk in different scenarios. To give us an idea

of what role the scheduler will play on the different disks seen in sec-

tion 4.3.2, we have run the same test on the four different schedulers in

Linux. As we know that the different schedulers will be optimized for

different workloads, we are not necessarily interested in which scheduler

will give us the best performance for this exact scenario. What we dowant

to observe is how the different disks react to the different disk schedulers,

and how big role the underlying architecture will play.

4.3. FILE OPERATIONS 51

Mtron Raptor Transcend

160

180

200

220

240

R
u
n
 t

im
e
 (

se
co

n
d
s)

NOOP
Deadline
Anticipatory
CFQ

Figure 4.11: Disk scheduler performance impact on git checkout

In figure 4.11, we can see the total run time of the same test as in sec-

tion 4.3.2, using the four different disk schedulers found in Linux. The er-

ror bars in the graph show the standard deviation across a series of tests.

The Raptor disk, we see have about the same results within the margin

of error for all the schedulers, except for NOOP. This is, as we have dis-

cussed in section 3.5, expected, as all three schedulers will optimize for

certain workloads. In this test have amixed scenario, usingmany different

aspects of the disks, and some properties of the schedulers will, because

of this, at times limit the throughput we are able to achieve. Both SSDs,

however, see tendency towards the default Ubuntu Linux scheduler, CFQ,

being on par with NOOP.

As we know CFQ will mostly focus on giving different processes a fair

52 CHAPTER 4. BENCHMARK

share of I/O time. In our test, we only have one process using the re-

sources from the disk, but will still have some system processes with disk

activity. The CFQ scheduler will most likely give better results thanNOOP

on magnetic disks, as requests from the same process tend to be adjacent

to each other, and therefore create less disk seeks. This is also reflected in

the results. For SSDs, we see that both the deadline scheduler, and the an-

ticipatory scheduler get better results. A reason for this can be that these

two will have a separate queue for write requests, making it more likely

that the FTL can consolidate writes.

4.3.4 Inode sorting

Another common operation on large sets of files, at least like our scenario

where these files are part of a relatively large code base, is packing and

compressing for distribution. The packing part here usually means some

sort of archiver tool, like tar. tar can take a series of command line op-

tions for filtering content put in the archive, but we will assume that tar is

given default options, packing all files within a directory. When process-

ing files, tar will recurse through all subdirectories, adding content as it

is discovered. For magnetic disks, this can be less than optimal, as con-

tent will be added as it is found in the directory tree, not as it is stored on

the disk. As the file system ages, chances are files will get more and more

spread around on the disk, making this weakness more apparent.

In Lunde [31], we see a proposed improvement of tar, optimizing the

read order of blocks. In this improved version, the directories will first be

scanned to check where the data blocks of files are located, then this list

will be sorted by location on disk. This first traverasal will add an extra

Central Processing Unit (CPU) overhead, but the theory here is that run

time will be reduced in total because of less latency from scattered disk

position requests. In Lunde [31], we observe over 80% reduced run time

as an effect of the improved tar.

4.3. FILE OPERATIONS 53

With the introduction of SSDs, as discussed in section 3.2.2, we have a

reduced and constant latency for read operations. It is therefore interesting

to see how an SSDwill perform both with andwithout inode sorting in the

same scenario. We have modified this implementation to simply read data

to /dev/null (due to some portability issues), and might because of this

see that run time of sort will be a bigger part of the total run time.

In figure 4.12 we can see the Raptor disk performing in a similar way is

in the reference tests, improving time with 67%, from 37.7 seconds to 12.3

seconds. The SSDs, however, see a much lower degree of difference be-

tween sorted and unsorted traversal of files. The Mtron disk see no im-

provement from sorting, using 8.9 seconds in both implementations. The

Transcend disk, on the other hand see a slight improvement of 3%, from

9.8 seconds to 9.5 seconds. With both SSDs performing better on random

reads in ext4, as seen in the results in section 4.2.2, the slight difference

in time for the Transcend disk might be attributed to a difference in the

implementation of the FTL.

Transcend Raptor Mtron
0

5

10

15

20

25

30

35

40

R
u
n
 t

im
e
 (

se
co

n
d
s)

Unsorted
Sorted

Figure 4.12: Inode ordering impact

54 CHAPTER 4. BENCHMARK

4.3.5 Summary

In this section we have looked for possible differences in file intensive op-

erations. We have seen that in a scenario like running git checkout,

magnetic disks are able to outperform SSDs, due to better performance

in mixed (random read, random write) scenarios. By studying trace data

collected during benchmarking of in section 4.3.2, we have seen that SSDs

ability to do random reads fast, in some scenarios, is only able to compen-

sate for slow writes at a minimal degree. We have also seen that the disk

scheduler can have an impact on what performance we are able to achieve

on different disk architectures.

In section 4.3.4 we have seen that on magnetic disks, access pattern in ap-

plications can be a limiting factor. By optimizing the order data is accessed

in applications, performance can be severely increased. We have also seen

that in this situation, SSDs can effectively remove this bottle neck, without

optimizing application level code.

4.4 Video streaming

As bandwidth on consumer internet connection continue to increase, stream-

ing video become a more and more viable option to video on media. A

challenge, however, when it comes to streaming video, is providing a cost-

effective infrastructure. We will in this section try to understand how the

different disk storage technologies we have looked at in chapter 3 per-

forms when serving concurrent video streams to a large number of clients.

4.4.1 Streaming scenario

A streaming service will typically offer a multitude of videos to a large

number of clients. Assuming that the demand for content is Zipf-distributed

amongst the clients, a small portion of the content will need to be streamed

4.4. VIDEO STREAMING 55

to a large group of clients. This means that in a system where we have a

true on-demand service, a large groups of clients will be streaming differ-

ent parts of a relatively small video base.

Our test scenario we will simulate a number of clients, concurrently ac-

cessing content stored on a single disk. In a real streaming services, we

would in some cases delay a video stream for some users, in order to be

able to serve multiple users with the same content, but or goal here is to

find out what level of streaming concurrency the different types of disks

will be able to serve. Because of this, we will assume that all clients stream

different portions of the content, effectively creating a worst-case content

distribution. This streaming is done by laying out a number of 200 MB

files in a otherwise empty ext4 file system. There are multiple reasons

for choosing ext4. As discussed in section 4.3.1, it is an extension to the

widely used ext3, and is amongst the best performers on read operations,

seen in section 4.2.2. We will test with a different number of clients, each

streaming at 1 MB per second, a bandwidth capable of delivering video in

DVD quality or higher.

We have tested the scenario described in section 4.4.1 with a different num-

ber of concurrent clients, 50 through 100 in increments of 10 users. The

results we have seen from our file system tests in section 4.2.2 is summa-

rized in table 4.4 for both read and random read operations using ext4.

We see from these numbers that the Raptor disk is unable to give us at

best 83.7 MB/s. Streaming 1 MB/s to 90 and 100 clients is, because of this,

an impossible task, but as we want to look at how the SSDs handle this

amount of clients, it is also interesting to see the effect it will have on the

magnetic disk.

Disk Read Random read
Raptor 83.7 MB/s 17.4 MB/s
Mtron 77.5 MB/s 114.9 MB/s
Transcend 106.7 MB/s 125.7 MB/s

Table 4.4: Read performance using ext4

56 CHAPTER 4. BENCHMARK

4.4.2 Results

Our bar graphs show the mean bandwidth across all the concurrent clients

in the benchmark. The error bars show the standard deviation across the

results. In our test results, we see that all three disks handle streaming to

50 and 60 concurrent clients, with within 99% of the bandwidth require-

ments, shown in figure 4.13 and figure 4.14 respectively. This tells us that

the magnetic disk will, even though reading streams from different posi-

tions of the disk, be able to read enough data in each turn, making the

operation perform like a sequential read. In figure 4.15, we see that both

SSDs, Transcend and Mtron, still is able to give within 99% of 1 MB/s to

all clients, and show little to no standard deviation across the clients. The

Raptor disk, does however, show signs of starting to fall behind on some

clients, whereas some still get the correct bandwidth, resulting in a higher

standard deviation.

In figure 4.16, figure 4.17 and figure 4.18, we see results for 80, 90 and 100

concurrent clients, respectively. Here we see a bit of the same tendency as

we have seen in the results for fewer clients, onlymagnified. For 80 clients,

we see both the Raptor disk and the Mtron disk, start falling more behind

on bandwidth to clients. This tells us, when looking at the results from our

file system tests in section 4.2.2 that both disk perform as with sequential

read operations, and both disks are able to achieve close to the maximum

bandwidth for this test. What is interesting to note for the results of 90 and

100 concurrent clients, is that though both the Raptor disk and the Mtron

disk fall behind on the bandwidth requirement, but quite differently. The

Mtron disk will give a lower bandwidth to all clients, giving very little

variance in how much resources the different streams get. On the other

hand, the Raptor disk will give some clients the full bandwidth of 1 MB/s,

whereas others will get less than 400 kB/s. The Transcend disk is able to

give 1 MB/s to all clients in all these tests.

4.4. VIDEO STREAMING 57

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

50 streams

Figure 4.13: 50 concurrent clients, streaming at 1MB/s

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

60 streams

Figure 4.14: 60 concurrent clients, streaming at 1MB/s

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

70 streams

Figure 4.15: 70 concurrent clients, streaming at 1MB/s

58 CHAPTER 4. BENCHMARK

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

80 streams

Figure 4.16: 80 concurrent clients, streaming at 1MB/s

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

90 streams

Figure 4.17: 90 concurrent clients, streaming at 1MB/s

0 200 400 600 800 1000
Mean bandwidth per client (kB/s)

Raptor

Transcend

Mtron

100 streams

Figure 4.18: 100 concurrent clients, streaming at 1MB/s

4.5. DISCUSSION 59

4.4.3 Summary

We have in this section seen how the different disk architectures handle

video streaming. We see from our tests that video streaming to clients

at 1 MB/s will give a sequential-like read performance, even with many

concurrent clients, streaming different portions of a stream. From our test

results, we see that SSDs handle over-utilization in a more consistent way

than magnetic disks. In video streaming, less performance in a consistent

way mean we buffer more intelligent, as performance is more predictable.

4.5 Discussion

4.5.1 Benchmark results

From our benchmark, we see that our results fit many of the observations

done in section 3.2 and section 3.1. Magnetic disks show an overall low

performance on random operations, due to seek time and rotational delay.

SSDs show a high performance on random read operations, even showing

a higher degree of performance than on sequential reads. This, we most

likely can attribute to the fact that an SSD consist of multiple Flash mem-

ory chips, connected in parallel, as discussed in section 3.2.2. How much

of the effect from these channels we see in an SSD, will depend heavily on

the FTL, as each channel, can handle requests in parallel.

We see, in section 4.3.4, the effects of these disk properties, when perform-

ing file system operations where order of access plays a part. As most

applications, in some way or another, will work on a number of files in the

file system, there is a high probability that the order these files are read or

written in, is a consequence of application design, not disk design. On a

magnetic disk, we see we can achieve much better results in the applica-

tion scenario by simply changing the access order in the application. In

SSDs, however, we see that we get the same performance, with both an

60 CHAPTER 4. BENCHMARK

original and an optimized application, both performing better than the

magnetic disk. We therefore argue that instead of optimizing applications

that have a large portion of random read operations, either within files,

or simply because we need to do inode lookup on a large number of files,

we change disk architecture. Changing an existing application, or even

designing an application, for specific access patterns, like sorting inodes

by location of data, can be a complex, and sometimes troublesome, task.

By changing disk architecture to one better suited for a given workload,

we might achieve the same, if not better, level of performance, without the

risk of spending time and resources optimizations.

4.5.2 Placement of disk logic

In this chapter we have looked at the performance of SSDs and magnetic

disks in different usage scenarios. As we have discussed in section 3.3,

SSDs and magnetic disks are built with fundamentally different technolo-

gies, even thought they are presented in the same way to the operating

system. When changing disk architecture, without doing modifications to

application or OS, an SSD will be used as any other magnetic disk would.

Many of the big questions today about SSDs is whether or not optimiza-

tions should be done at OS-level or device level [32]. There are of course,

several sides and arguments to these questions, and giving a text book an-

swer is far from possible. The two biggest arguments can be summed up

as follows:

Keep the storage device simple

This solution is more or less the state of magnetic disks as we know them

today. Even though newer magnetic disks contain mapping through the

Logical-disk Block Address (LBA), this is mostly assumed to be almost a

direct mapping to the cylinder, head, sector addresses of the disk. The

OS can check capabilities of the drive through common interfaces, mak-

4.5. DISCUSSION 61

ing it possible for components higher up in the hierarchy to optimize for

better performance. This solution gives us almost endless possibilities for

customization, and makes it possible to resolve issues by altering the dif-

ferent OS-components. By having all this logic at this level, it also means

that the OS will need to be aware of many hardware specific properties to

get best possible performance. As hardware architecture changes, so will

OS-level code need to change, to best be able to utilize the storage devices.

Put disk-specific logic in the disk

This is generally the solution newer SSDs lean towards. The idea is noth-

ing new, as many Redundant Arrays of Independent Disks (RAID) and

Storage Area Network (SAN) systems will want to do optimization of

access in ways the operating system is unable to do. This also makes it

possible to change between these different types of components, without

altering, or even alerting, the OS. Because SSDs connects as any magnetic

disk would, changing storage architecture without changing software is,

not only possible, but easy. The main reason why this approach has been

made for SSDs is likely to be that hardware manufacturers want products

quickly into consumer markets when the technology is mature. When the

technology quickly becomes available, as we have seen with SSDs, there

has been little time do do OS-level performance optimization. In addition,

consumers expect to see the potential benefits of these disks in an existing

system, without altering the system at software level.

By these two arguments, we see that the latter is chosen for SSDs, simply

because it makes it much easier to replace existing disk drives. From our

tests, specifically tests with random write operations, seen in figure 4.7 in

section 4.2.2, we see that early generation SSDs have trouble hiding the

fact that it needs to erase an entire erase block on writes. One can argued

that OS-level code should be optimized for this, like file system and disk

schedulers. We see from the same tests that nilfs2 end up with more

than twice the bandwidth on randomwrite operations for both SSDs, than

62 CHAPTER 4. BENCHMARK

for a commonly used file system like ext3.

4.5.3 SSD improvements

As the latency for accessing different parts of the Flash memory is con-

stant, the only different between a sequential write and a random write is

the amount of data that is written to a location at a given time. Because of

the physical attributes of Flash memory, as we have seen in section 2.3.3,

writing data to Flash memory will be done in erase blocks. When the SSD,

or more specifically, the FTL know nothing about what data is valid and

what is invalid, it will have to keep all data living at all times, making

small writes more expensive. We have discussed, in section 3.2.4, the pro-

posed feature of new SSD, making it possible for the file systems to tell a

storage device if a block is invalidated.

The SSDs we have used for testing in our benchmark are, early genera-

tion SSDs. Later SSDs have better performing Flash memory chips, and

not least, a more intelligent FTL. The recently released Intel® X25 SSDs

provides a much improved FTL, in addition to better performing Flash

memory chips. This may be best seen in the Intel® X25-E [33]. These disks

have 10x 4 GB or 10x 8 GB Flash memory chips, giving a raw capacity

of 40 and 80 GB. By exposing only 32 and 64 GB to the OS, respectively,

the SSD will have 25% of the capacity reserved for use by the FTL. This

means that, even without the implementation of ATA-Trim, the SSD have

a much needed freedom to keep erase blocks ready, and can do wear lev-

eling, without the need to regard all data as valid.

These improvements all suggest that newer generations SSDswill keep the

same level of performance on sequential and random reads. Because of the

ability these will have to keep a number of blocks in an erased state, and

because the FTL will be able to do garbage collection, without the need to

regard all data in the disk as valid, random write operations will be much

closer to that of sequential writes, effectively removing the biggest penalty

of SSDs.

Chapter 5

Conclusion

5.1 Summary and contributions

In this thesis we have looked at the performance of magnetic disks com-

pared to Solid State Disk. We have, in chapter 4, looked at different bench-

mark scenarios, to compare performance in magnetic disks SSDs. In sec-

tion 4.2.2 we have seen that early generation SSDs are able to outperform

high-end magnetic disks at random read operations, due to a constant,

and low, latency. At the same time, SSDs perform well on sequential read,

matching the performance of magnetic disks. This is also reflected in our

tests of video streaming in section 4.4.2, where we see that both magnetic

disks and SSDs are able achieve their maximum bandwidth, but that SSD

handle over-utilization a more predictable manner. By these results, we

can see that, when handling scenarios which rely heavily on read perfor-

mance, either random or sequential, SSD will be able to deliver a much

more consistent bandwidth.

Aswe have seen early on in section 2.3.3, and later discussed in section 4.5.1,

random write operations is a performance issue in early generation SSDs,

because of write amplification. By using a log-based file system, we see

that this write amplification can be, if not entirely removed, strongly re-

63

64 CHAPTER 5. CONCLUSION

duced. This suggests that the FTL implemented in the SSDs used in our

benchmarks, is unable to, or does not at all, hide the fact that Flash mem-

ory needs to erase an erase block when writing changes to a page.

We have seen, in section 4.3.2, that magnetic disks perform well in work-

loads with mixed operations. In these same operations, we see that SSDs,

even with high write amplification, is able to achieve a total run time, close

to that of the magnetic disk. When using different Linux disk schedulers,

in section 4.3.3, we see that the SSDs perform better with schedulers that

divide operations into write and read queues. This further suggests that

the FTL in these SSDs does little or nothing to hide write amplification.

In section 4.3.4, we have seen an example of a file intensive application sce-

nario. This application will traverse a directory tree and process all files

contained within all subdirectories. We see that by changing this applica-

tion to order the requests by block number, a magnetic disk will see a huge

performance benefit. This is because ordering block requests will limit the

amount the disk needs to seek between each request. For SSDs we see that

both ordered and unordered requests give almost identical performance,

and that these are better than both cases on magnetic disks. From this, we

learn that we in some cases, can get the same benefit as from optimizing

application level code, simply by changing disk architecture.

5.2 Future work

As we have discussed in section 4.5.3, much has happened to SSDs in the

last few years, andmuch indicate that newer versions seem to almost com-

pletely remove thewrite amplification effect. For further work, it would be

of great interest to see how new generation SSDs, like the Intel® X25 series,

handle workloads that we have shown to be a challenge to early genera-

tion SSD. By removing the penalty of write amplifications, SSDs quickly

become much more attractive to applications with heavy write load, like

database systems. Combined with low latency, there are potentially much

5.2. FUTURE WORK 65

to gain from considering performance benefits, both from offloading entire

database storage, or just commit logs.

We have not looked at a power consumption comparison between the two

architectures, but we know, as seen in section 2.2, that Flash memory uses

less power than magnetic disks. It could therefore be interesting to see

total cost comparison of a system with magnetic disks, and one with SSD.

This can probably give amore realistic image to the total cost of ownership

of SSDs, as a number given for price per capacity only tell us part of the

story. As newer generation SSDs is closing in on the performance we get

from RAID-arrays, it could also be of interest to get a comparison of the

cost effectiveness of these versus that of SSDs.

66 CHAPTER 5. CONCLUSION

Appendix A

List of Acronyms

ATA Advanced Technology Attachment

CFQ Completely Fair Queuing

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

ECC Error-Correction Code

E2PROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

FBC Flash Bus Controller

FeRAM Ferroelectric Random Access Memory

FTL Flash Translation Layer

HDD Hard Disk Drive

LBA Logical-disk Block Address

MLC Multi-level cell

MRAM Magnetoresistive Random Access Memory

MTBF Mean Time Between Failures

NILFS New Implementation of a Log-structured File System

OS Operating System

PCM Phase-Change Memory

67

68 APPENDIX A. LIST OF ACRONYMS

RAID Redundant Arrays of Independent Disks

RAM Random Access Memory

RPM Rounds per Minute

SAN Storage Area Network

SLC Single-level cell

SSD Solid State Disk

UV Ultra Violet

VFS Virtual File System

Appendix B

Example trace of git checkout

Seagate

Device CPU Seq # Time (sec) PID Action, Mode, Block, Size, Process

8,1 0 443 3.684757146 23934 G RM 77736103 + 8 [git]

8,1 0 444 3.684758448 23934 P N [git]

8,1 0 445 3.684759200 23934 I R 77736103 + 8 [git]

8,1 0 446 3.684767390 23934 D R 77736103 + 8 [git]

8,1 0 447 3.684819135 23934 U N [git] 1

8,1 1 463 3.693358108 0 C R 77736103 + 8 [0]

8,0 1 464 3.693375442 23934 A RM 77595439 + 8 <- (8,1) 77595376

8,1 1 465 3.693375682 23934 Q RM 77595439 + 8 [git]

8,1 1 466 3.693376901 23934 G RM 77595439 + 8 [git]

8,1 1 467 3.693377550 23934 P N [git]

8,1 1 468 3.693377883 23934 I R 77595439 + 8 [git]

8,1 1 469 3.693381599 23934 D R 77595439 + 8 [git]

8,1 1 470 3.693427170 23934 U N [git] 1

8,1 0 448 3.693727687 0 C R 77595439 + 8 [0]

8,0 0 449 3.693758990 23934 A RM 77736111 + 8 <- (8,1) 77736048

8,1 0 450 3.693759245 23934 Q RM 77736111 + 8 [git]

8,1 0 451 3.693760436 23934 G RM 77736111 + 8 [git]

8,1 0 452 3.693761233 23934 P N [git]

8,1 0 453 3.693761565 23934 I R 77736111 + 8 [git]

8,1 0 454 3.693765769 23934 D R 77736111 + 8 [git]

8,1 0 455 3.693813272 23934 U N [git] 1

8,1 1 471 3.693968435 29272 C R 77736111 + 8 [0]

8,0 0 456 3.693977930 23934 A RM 77595447 + 8 <- (8,1) 77595384

8,1 0 457 3.693978113 23934 Q RM 77595447 + 8 [git]

8,1 0 458 3.693979143 23934 G RM 77595447 + 8 [git]

8,1 0 459 3.693979736 23934 P N [git]

8,1 0 460 3.693980047 23934 I R 77595447 + 8 [git]

8,1 0 461 3.693983662 23934 D R 77595447 + 8 [git]

8,1 0 462 3.694030185 23934 U N [git] 1

8,1 0 463 3.694531553 4190 C R 77595447 + 8 [0]

8,0 0 464 3.694776263 23934 A RM 77595455 + 8 <- (8,1) 77595392

8,1 0 465 3.694776515 23934 Q RM 77595455 + 8 [git]

8,1 0 466 3.694777829 23934 G RM 77595455 + 8 [git]

69

70 APPENDIX B. EXAMPLE TRACE OF GIT CHECKOUT

8,1 0 467 3.694778584 23934 P N [git]

8,1 0 468 3.694778964 23934 I R 77595455 + 8 [git]

8,1 0 469 3.694783710 23934 D R 77595455 + 8 [git]

8,1 0 470 3.694830240 23934 U N [git] 1

8,1 1 472 3.695051220 0 C R 77595455 + 8 [0]

8,0 1 473 3.695083367 23934 A R 77737927 + 8 <- (8,1) 77737864

8,1 1 474 3.695083628 23934 Q R 77737927 + 8 [git]

Raptor

Device CPU Seq # Time (sec) PID Action, Mode, Block, Size, Process

8,16 1 3 0.000007010 22888 G RM 74103 + 8 [git]

8,16 1 4 0.000008184 22888 P N [git]

8,16 1 5 0.000008867 22888 I R 74103 + 8 [git]

8,16 1 6 0.000011235 22888 U N [git] 1

8,16 1 7 0.000015823 22888 D R 74103 + 8 [git]

8,16 0 1 0.000120473 0 C R 74103 + 8 [0]

8,16 0 2 0.000154816 22888 A RM 74111 + 8 <- (8,17) 74048

8,16 0 3 0.000155079 22888 Q RM 74111 + 8 [git]

8,16 0 4 0.000156418 22888 G RM 74111 + 8 [git]

8,16 0 5 0.000157205 22888 P N [git]

8,16 0 6 0.000157526 22888 I R 74111 + 8 [git]

8,16 0 7 0.000161712 22888 D R 74111 + 8 [git]

8,16 0 8 0.000207613 22888 U N [git] 1

8,16 1 8 0.000260302 0 C R 74111 + 8 [0]

8,16 1 9 0.000298436 22888 A R 82263 + 8 <- (8,17) 82200

8,16 1 10 0.000298675 22888 Q R 82263 + 8 [git]

8,16 1 11 0.000299903 22888 G R 82263 + 8 [git]

8,16 1 12 0.000300669 22888 P N [git]

8,16 1 13 0.000301017 22888 I R 82263 + 8 [git]

8,16 1 14 0.000305032 22888 D R 82263 + 8 [git]

8,16 1 15 0.000351143 22888 U N [git] 1

8,16 0 9 0.008269783 0 C R 82263 + 8 [0]

8,16 0 10 0.009326639 22888 A R 81991 + 8 <- (8,17) 81928

8,16 0 11 0.009326915 22888 Q R 81991 + 8 [git]

8,16 0 12 0.009328325 22888 G R 81991 + 8 [git]

8,16 0 13 0.009329152 22888 P N [git]

8,16 0 14 0.009329496 22888 I R 81991 + 8 [git]

8,16 0 15 0.009333709 22888 D R 81991 + 8 [git]

8,16 0 16 0.009335997 22888 R R 81991 + 8 [0]

8,16 0 17 0.009336653 22888 I R 81991 + 8 [git]

8,16 0 18 0.009336988 22888 P N [git]

8,16 0 19 0.009338024 22888 U N [git] 1

8,16 0 20 0.009338791 22888 D R 81991 + 8 [git]

8,16 0 21 0.009339386 22888 R R 81991 + 8 [0]

8,16 0 22 0.009339922 22888 I R 81991 + 8 [git]

8,16 0 23 0.009340168 22888 P N [git]

8,16 0 24 0.013973186 4199 UT N [gnome-terminal] 1

8,16 0 25 0.014068467 16 U N [kblockd/0] 1

8,16 0 26 0.014071453 16 D R 81991 + 8 [kblockd/0]

8,16 0 27 0.014072938 16 R R 81991 + 8 [0]

71

Mtron

Device CPU Seq # Time (sec) PID Action, Mode, Block, Size, Process

8,48 0 3 0.000010310 23264 G RM 74424 + 8 [git]

8,48 0 4 0.000012529 23264 P N [git]

8,48 0 5 0.000013275 23264 I R 74424 + 8 [git]

8,48 0 6 0.000016925 23264 U N [git] 1

8,48 0 7 0.000022210 23264 D R 74424 + 8 [git]

8,48 1 1 0.000191201 0 C R 74424 + 8 [0]

8,48 0 8 0.000224726 23264 A RM 74432 + 8 <- (252,1) 73920

8,48 0 9 0.000225238 23264 Q RM 74432 + 8 [git]

8,48 0 10 0.000226502 23264 G RM 74432 + 8 [git]

8,48 0 11 0.000227187 23264 P N [git]

8,48 0 12 0.000227466 23264 I R 74432 + 8 [git]

8,48 0 13 0.000231454 23264 D R 74432 + 8 [git]

8,48 0 14 0.000276996 23264 U N [git] 1

8,48 0 15 0.000369049 0 C R 74432 + 8 [0]

8,48 0 16 0.000407985 23264 A R 78672 + 8 <- (252,1) 78160

8,48 0 17 0.000408429 23264 Q R 78672 + 8 [git]

8,48 0 18 0.000409342 23264 G R 78672 + 8 [git]

8,48 0 19 0.000410001 23264 P N [git]

8,48 0 20 0.000410267 23264 I R 78672 + 8 [git]

8,48 0 21 0.000414058 23264 D R 78672 + 8 [git]

8,48 0 22 0.000459812 23264 U N [git] 1

8,48 1 2 0.000566355 0 C R 78672 + 8 [0]

8,48 1 3 0.001553698 23264 A R 78360 + 8 <- (252,1) 77848

8,48 1 4 0.001554258 23264 Q R 78360 + 8 [git]

8,48 1 5 0.001555659 23264 G R 78360 + 8 [git]

8,48 1 6 0.001556546 23264 P N [git]

8,48 1 7 0.001556860 23264 I R 78360 + 8 [git]

8,48 1 8 0.001561157 23264 D R 78360 + 8 [git]

8,48 1 9 0.001608109 23264 U N [git] 1

8,48 0 23 0.001716625 0 C R 78360 + 8 [0]

8,48 0 24 0.002763049 23264 A R 78632 + 32 <- (252,1) 78120

8,48 0 25 0.002763525 23264 Q R 78632 + 32 [git]

8,48 0 26 0.002764959 23264 G R 78632 + 32 [git]

8,48 0 27 0.002765867 23264 P N [git]

8,48 0 28 0.002766151 23264 I R 78632 + 32 [git]

8,48 0 29 0.002770616 23264 D R 78632 + 32 [git]

8,48 0 30 0.002817107 23264 U N [git] 1

8,48 1 10 0.003065081 0 C R 78632 + 32 [0]

8,48 1 11 0.003118737 23264 A R 78664 + 8 <- (252,1) 78152

8,48 1 12 0.003119168 23264 Q R 78664 + 8 [git]

Transcend

Device CPU Seq # Time (sec) PID Action, Mode, Block, Size, Process

8,32 1 112 0.004719886 23598 G RM 74424 + 8 [git]

8,32 1 113 0.004721326 23598 P N [git]

8,32 1 114 0.004722132 23598 I R 74424 + 8 [git]

8,32 1 115 0.004730705 23598 D R 74424 + 8 [git]

8,32 1 116 0.004782480 23598 U N [git] 1

8,32 1 117 0.004950250 0 C R 74424 + 8 [0]

72 APPENDIX B. EXAMPLE TRACE OF GIT CHECKOUT

8,32 1 118 0.004991093 23598 A RM 74432 + 8 <- (252,0) 73920

8,32 1 119 0.004991504 23598 Q RM 74432 + 8 [git]

8,32 1 120 0.004992513 23598 G RM 74432 + 8 [git]

8,32 1 121 0.004993240 23598 P N [git]

8,32 1 122 0.004993510 23598 I R 74432 + 8 [git]

8,32 1 123 0.004997534 23598 D R 74432 + 8 [git]

8,32 1 124 0.005042600 23598 U N [git] 1

8,32 0 11 0.005216900 0 C R 74432 + 8 [0]

8,32 0 12 0.005263819 23598 A R 82744 + 8 <- (252,0) 82232

8,32 0 13 0.005264304 23598 Q R 82744 + 8 [git]

8,32 0 14 0.005265532 23598 G R 82744 + 8 [git]

8,32 0 15 0.005266331 23598 P N [git]

8,32 0 16 0.005266655 23598 I R 82744 + 8 [git]

8,32 0 17 0.005270823 23598 D R 82744 + 8 [git]

8,32 0 18 0.005317260 23598 U N [git] 1

8,32 1 125 0.005477154 0 C R 82744 + 8 [0]

8,32 0 19 0.006508525 23598 A R 78360 + 8 <- (252,0) 77848

8,32 0 20 0.006509007 23598 Q R 78360 + 8 [git]

8,32 0 21 0.006510309 23598 G R 78360 + 8 [git]

8,32 0 22 0.006511088 23598 P N [git]

8,32 0 23 0.006511393 23598 I R 78360 + 8 [git]

8,32 0 24 0.006515711 23598 D R 78360 + 8 [git]

8,32 0 25 0.006561669 23598 U N [git] 1

8,32 0 26 0.006741266 0 C R 78360 + 8 [0]

8,32 0 27 0.007758935 23598 A R 82704 + 32 <- (252,0) 82192

8,32 0 28 0.007759390 23598 Q R 82704 + 32 [git]

8,32 0 29 0.007760597 23598 G R 82704 + 32 [git]

8,32 0 30 0.007761528 23598 P N [git]

8,32 0 31 0.007761821 23598 I R 82704 + 32 [git]

8,32 0 32 0.007766241 23598 D R 82704 + 32 [git]

8,32 0 33 0.007812367 23598 U N [git] 1

8,32 1 126 0.008109263 0 C R 82704 + 32 [0]

8,32 0 34 0.008156041 23598 A R 82736 + 8 <- (252,0) 82224

8,32 0 35 0.008156460 23598 Q R 82736 + 8 [git]

Appendix C

Source code

All source code, benchmark scripts, benchmark results and scripts made

for parsing/plotting these are made available at http://torkildr.at.

ifi.uio.no/master/.

73

http://torkildr.at.ifi.uio.no/master/
http://torkildr.at.ifi.uio.no/master/

74 APPENDIX C. SOURCE CODE

Bibliography

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to

flash memory. Proceedings of the IEEE, 91(4):489–502, April 2003.

[2] S. Mukherjee, T. Chang, R. Pang, M. Knecht, andD. Hu. A single tran-

sistor EEPROM cell and its implementation in a 512K CMOS EEP-

ROM. In Electron Devices Meeting, 1985 International, volume 31, 1985.

[3] Fujio Masuoka and Hisakazu Iizuka. Method for manufacturing

E2PROM. US Patent No. US4612212, April 1985.

[4] Toshiba America Electronic Components, Inc. NAND vs. NOR

Flash Memory. http://www.toshiba.com/taec/components/

Generic/Memory_Resources/NANDvsNOR.pdf, Accessed De-

cember 2008.

[5] Cagdas Dirik and Bruce Jacob. The performance of pc solid-state

disks (ssds) as a function of bandwidth, concurrency, device architec-

ture, and system organization. In ISCA ’09: Proceedings of the 36th an-

nual international symposium on Computer architecture, pages 279–289,

New York, NY, USA, 2009. ACM.

[6] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee

Cho, and Jin-Soo Kim. A reconfigurable FTL (flash translation layer)

architecture for NAND flash-based applications. Trans. on Embedded

Computing Sys., 7(4):1–23, 2008.

[7] David Roberts, Taeho Kgil, and TrevorMudge. Integrating nand flash

devices onto servers. Commun. ACM, 52(4):98–103, 2009.

[8] S. Tehrani, JM Slaughter, E. Chen, M. Durlam, J. Shi, and M. De-

Herren. Progress and outlook for MRAM technology. IEEE Trans-

actions on Magnetics, 35(5):2814–2819, 1999.

75

http://www.toshiba.com/taec/components/Generic/Memory_Resources/NANDvsNOR.pdf
http://www.toshiba.com/taec/components/Generic/Memory_Resources/NANDvsNOR.pdf

76 BIBLIOGRAPHY

[9] R. Bez and A. Pirovano. Non-volatile memory technologies: emerg-

ing concepts and new materials. Materials Science in Semiconductor

Processing, 7(4-6):349–355, 2004.

[10] Image distributed under the Creative Commons License, Attribution-

Noncommercial-Share Alike 2.0 Generic, http://www.flickr.

com/photos/lifeisaprayer/2282011834/.

[11] Seagate. Seagate Barracuda ST380013AS Datasheet. http://www.

seagate.com/support/disc/manuals/sata/cuda7200_

sata_pm.pdf, Accessed June 2009.

[12] L.N. Bairavasundaram, G.R. Goodson, S. Pasupathy, and J. Schindler.

An analysis of latent sector errors in disk drives. In Proceedings of

the 2007 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems, pages 289–300. ACMNew York, NY,

USA, 2007.

[13] D.A. Patterson. Latency lags bandwith. 2004.

[14] Image distributed under the Creative Commons License, Attribution-

Noncommercial-Share Alike 2.0 Generic, http://www.flickr.

com/photos/ciaociao/2859153476/.

[15] Adam Leventhal. Flash storage memory. Commun. ACM, 51(7):47–51,

2008.

[16] Intel. Intel® X25-E Extreme SATA Solid-State Drive. http://

download.intel.com/design/flash/nand/extreme/

319984.pdf, Accessed July 2009.

[17] Matthew Wilcox. Re: [PATCH 2 of 9] block: Export I/O topol-

ogy for block devices and partitions. http://marc.info/?

l=linux-kernel\&m=124058465811408\&w=2, Accessed April

2009.

[18] MTRON. MSD-SATA3025 Product Specification. http://mtron.

net/Upload_Data/Spec/ASiC/MOBI/SATA/MSD-SATA3025_

rev0.4.pdf, Accessed December 2008.

[19] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,

Mark Manasse, and Rina Panigrahy. Design tradeoffs for ssd per-

formance. In ATC’08: USENIX 2008 Annual Technical Conference on

http://www.flickr.com/photos/lifeisaprayer/2282011834/
http://www.flickr.com/photos/lifeisaprayer/2282011834/
http://www.seagate.com/support/disc/manuals/sata/cuda7200_sata_pm.pdf
http://www.seagate.com/support/disc/manuals/sata/cuda7200_sata_pm.pdf
http://www.seagate.com/support/disc/manuals/sata/cuda7200_sata_pm.pdf
http://www.flickr.com/photos/ciaociao/2859153476/
http://www.flickr.com/photos/ciaociao/2859153476/
http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://download.intel.com/design/flash/nand/extreme/319984.pdf
http://marc.info/?l=linux-kernel&m=124058465811408&w=2
http://marc.info/?l=linux-kernel&m=124058465811408&w=2
http://mtron.net/Upload_Data/Spec/ASiC/MOBI/SATA/MSD-SATA3025_rev0.4.pdf
http://mtron.net/Upload_Data/Spec/ASiC/MOBI/SATA/MSD-SATA3025_rev0.4.pdf
http://mtron.net/Upload_Data/Spec/ASiC/MOBI/SATA/MSD-SATA3025_rev0.4.pdf

BIBLIOGRAPHY 77

Annual Technical Conference, pages 57–70, Berkeley, CA, USA, 2008.

USENIX Association.

[20] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory

storage systems. In SAC ’07: Proceedings of the 2007 ACM symposium

on Applied computing, pages 1126–1130, New York, NY, USA, 2007.

ACM.

[21] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Se-

ungryoul Maeng, and Feng-Hsiung Hsu. Ftl design exploration in

reconfigurable high-performance ssd for server applications. In ICS

’09: Proceedings of the 23rd international conference on Supercomputing,

pages 338–349, New York, NY, USA, 2009. ACM.

[22] Xiao-YuHu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Ro-

man Pletka. Write amplification analysis in flash-based solid state

drives. In SYSTOR ’09: Proceedings of SYSTOR 2009: The Israeli Ex-

perimental Systems Conference, pages 1–9, New York, NY, USA, 2009.

ACM.

[23] Theodore Ts’o. Aligning filesystems to an SSD’s erase block

size. http://thunk.org/tytso/blog/2009/02/20/

aligning-filesystems-to-an-ssds-erase-block-size/,

Accessed February 2009.

[24] Sang-Won Lee, Bongki Moon, and Chanik Park. Advances in flash

memory ssd technology for enterprise database applications. In SIG-

MOD ’09: Proceedings of the 35th SIGMOD international conference on

Management of data, pages 863–870, New York, NY, USA, 2009. ACM.

[25] Data Set Management Commands Proposal for ATA8-ACS2.

http://t13.org/Documents/UploadedDocuments/

docs2008/e07154r6-Data_Set_Management_Proposal_

for_ATA-ACS2.doc.

[26] Electronista | OCZ set to ship 1TB Colossus SSD http://www.

electronista.com/articles/09/08/03/ocz.1tb.ssd/.

[27] Daniel P. Bovet and Marco Cesati. Understanding the linux kernel.

Number ISBN : 0-596-00213-0. O’Reilly, o’ edition, d 2003.

http://thunk.org/tytso/blog/2009/02/20/aligning-filesystems-to-an-ssds-erase-block-size/
http://thunk.org/tytso/blog/2009/02/20/aligning-filesystems-to-an-ssds-erase-block-size/
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://www.electronista.com/articles/09/08/03/ocz.1tb.ssd/
http://www.electronista.com/articles/09/08/03/ocz.1tb.ssd/

78 BIBLIOGRAPHY

[28] Transcend. Transcend S32GSSD25-S. http://www.

transcendusa.com/support/dlcenter/datasheet/

Datasheet%20for%20SSD25.pdf, Accessed December 2008.

[29] Western Digital. Western Digital Raptor WD740ADFD. http://

www.wdc.com/en/library/sata/2879-001165.pdf, Ac-

cessed March 2009.

[30] IOzone Filesystem Benchmark. http://www.iozone.org/.

[31] Carl Henrik Lunde. Improving disk i/o performance on linux. Mas-

ter’s thesis, University of Oslo, 2009.

[32] Theodore Ts’o. Should Filesystems Be Optimized for

SSD’s? http://thunk.org/tytso/blog/2009/02/22/

should-filesystems-be-optimized-for-ssds/, Accessed

February 2009.

[33] Intel’s X25-E SSD Walks All Over The Competition http://

www.tomshardware.com/reviews/intel-x25-e-ssd,2158.

html.

http://www.transcendusa.com/support/dlcenter/datasheet/Datasheet%20for%20SSD25.pdf
http://www.transcendusa.com/support/dlcenter/datasheet/Datasheet%20for%20SSD25.pdf
http://www.transcendusa.com/support/dlcenter/datasheet/Datasheet%20for%20SSD25.pdf
http://www.wdc.com/en/library/sata/2879-001165.pdf
http://www.wdc.com/en/library/sata/2879-001165.pdf
http://www.iozone.org/
http://thunk.org/tytso/blog/2009/02/22/should-filesystems-be-optimized-for-ssds/
http://thunk.org/tytso/blog/2009/02/22/should-filesystems-be-optimized-for-ssds/
http://www.tomshardware.com/reviews/intel-x25-e-ssd,2158.html
http://www.tomshardware.com/reviews/intel-x25-e-ssd,2158.html
http://www.tomshardware.com/reviews/intel-x25-e-ssd,2158.html

	
	Introduction
	Motivation
	Problem statement
	Main contributions
	Structure

	Non-Volatile Memory
	EPROM
	E2PROM
	Flash Memory
	Multi-level cell vs Single-level cell
	NAND vs NOR
	Structure
	Cell degradation

	Related technologies
	MRAM
	FeRAM
	PCM
	Others

	Summary

	Disk Storage
	Magnetic disks
	Physical layout
	Disk access time
	Reliability
	Future
	Summary

	Solid State Disks
	General
	Physical layout
	Flash Translation Layer
	Future
	Summary

	SSDs vs. magnetic disks
	Magnetic disks
	Solid State Disk
	Cost
	Capacity
	Access time
	Zoning

	File systems
	Disk scheduler
	Summary

	Benchmark
	Benchmark environment
	File system impact
	Test scenario
	Results
	Summary

	File operations
	Test setup
	Checkout of Linux kernel repository
	Scheduler impact
	Inode sorting
	Summary

	Video streaming
	Streaming scenario
	Results
	Summary

	Discussion
	Benchmark results
	Placement of disk logic
	SSD improvements

	Conclusion
	Summary and contributions
	Future work

	List of Acronyms
	Example trace of git checkout
	Source code

