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Abstract

The human digestive system can be affected by many types of
diseases. For example, three of the six most common cancer types
(esophagus, stomach and colorectal) are located in the gastrointestinal
tract. Colorectal cancer (CRC) is the third most common cancer in
men and the second most common cancer in women worldwide, and
Norway has one of the highest incidences of this cancer. Early detection
is vital for the prognosis, level of treatment and survival.

EIR is a multimedia system with the main objective of supporting doc-
tors in gastrointestinal tract disease detection, both as a live examination
system and an offline system for VCE. However, the detection and au-
tomatic analysis subsystem within EIR today consists of two parts; the
detection subsystem and the localisation subsystem.

Recent advances in machine learning, particularly deep learning, have
provided excellent object detection models. This thesis explores the
possibility of using a deep neural network at the base of the detection
and automatic analysis subsystem in EIR, specifically by using You
only look once (YOLO). YOLO is a state-of-the-art, real-time object
detection system that was used together with the ASU Mayo Clinic
polyp database to detect CRC precursors called polyps.

The YOLO system reaches a satisfactory detection accuracy, while still
being able to process videos in real-time. The proposed system and
EIR is compared using the standard metrics of recall, precision and F1-
score. When compared, it is clear that the system still has room for
improvement in regard to its precision.
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Chapter 1

Introduction

1.1 Background and Motivation

The human digestive system can be affected by many different types
of diseases. For example, three of the six most common cancer types
(esophagus, stomach, colorectal) are located in the gastrointestinal tract
(GI tract) [44]. There are a lot of diseases that are common in the GI
tract. Some visual examples can be seen in figure 1.1.

Colorectal cancer (CRC) is the third most common cancer in men and
the second most common cancer in women worldwide [45]. Nearly
55% of the cases occur in the more developed regions and according
to the Norwegian Cancer Registry [24], Norway has one of the highest
incidences of CRC. The occurrence of this cancer type has more than
doubled in the last 50 and so years. Studies also show that the 5-year
survival rate of CRC ranges from 93% in stage 1 to 8% in stage 4 [33].
This makes early detection crucial for the prognosis, level of treatment
and survival of the patients.

There are several ways of screening the GI tract, but population wide
examinations are the most important tool for early detection. However,
the current procedures have limitations regarding sensitivity, specificity
and cost. The current recommended method for screening the colon
is endoscopy, but it is a demanding procedure that requires a lot of
time for medical personnel to complete. Furthermore, lesions are often
missed due to the tiredness of the doctors or because a specific part of
the colon was not accessible with an endoscope [22]. To help doctors by
automatically analyzing videos during manual examinations and give
live feedback, could prove to be quite helpful for the doctors. A way to
accomplish this could be through the field of computer vision.

An alternative method for screening is to perform the examination
using a wireless video capsule endoscope (VCE), which is swallowed
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(a) Normal polyp (b) Colorectal
cancer

(c) Ulcerative col-
itis

(d) Ileum

(e) Diverticula (f) Bleeding (g) Erosion (h) Tattoo

(i) Normal Vessel (j) Melanosis (k) Erythema (l) Advanced
polyps

Figure 1.1: An inconclusive list of diseases that can be diagnosed using
colonoscopy [47].

by a patient and then proceed with recording a video from the whole
trip through the digestive system (GI tract). This, however, creates
a tremendous amount of data (approx. 5-8 hours of video) and is
difficult to scale for a population wide screening. A way of making these
procedures better able to scale, could be through the field of computer
vision.

Computer vision (CV) is the science of using computers to analyze
and understand the content of images automatically. CV systems can
automate tasks and remove the need for human labor. Advances in the
machine learning field of Convolutional Neural Networks (CNNs) have
improved the accuracy of CV systems considerably in recent years and
many researchers believe that it has the potential to improve medical
imaging [15]. In this work, it is investigated how adopting the use
of these recent advances introduces the possibility of automatically
analyzing and supporting medical experts both during procedures and
on stored data from VCE examinations.

2



1.2 Problem Statement

Inspired by the return of deep learning these last few years the goal
of this thesis is to explore a possible improvement for automatically
diagnosing diseases in the GI tract. Building on the previous work from
EIR [46], the focus will be to explore and use a neural network that can
both: assist doctors with visual feedback during manual examinations
and perform a fully automated screening of the GI tract using data from
VCE examinations.

Being a medical assist tool there are strict requirements toward the
accuracy of the system in order to avoid negative findings (overlooking
a disease) as well as low resource consumption. To allow the system
to assist doctors during examinations, it is necessary to introduce a real-
time processing requirement (defined as processing at least 25-30 frames
per second (FPS)) [47].

The specific problem statement for this thesis is: can deep learning
be used for automatic detection of diseases in the gastrointestinal
tract? The goal is to improve upon the work in EIR, which is presented
in section 2.4.3, by introducing the use of modern techniques for
object detection, specifically by introducing deep learning as a potential
technology.

By introducing deep learning as a tool for automatic detection of
diseases, we hope to further the research into a fast and efficient system
for the detection and automatic analysis subsystem. To achieve this, the
goals we hope to achieve with the system is as follows:

• High disease detection accuracy.

• Real-time processing for supporting medical experts during
colonoscopies.

• Efficient processing to allow for screening with VCE.

• Being expandable to allow for detection of different diseases.

1.3 Limitations and Scope

Based on the research question in section 1.2, the scope of this thesis
is researching a possible improvement to the detection and automatic
analysis subsystem in EIR, which is presented in section 2.4.3. Now,
because the size of the medical field is quite large, the focus for this
investigation is the human gastrointestinal tract (GI tract) which can
be affected by many types of diseases that are visually distinguishable.
Further, it was decided to limit the disease detection system to polyps,
because of two main challenges:
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• The first challenge is the large number of possible diseases and
their visually distinct appearances in the GI tract. See figure 1.1
for examples.

• The second challenge is the lack of publicly available data for
different diseases, which makes evaluation and comparisons
difficult between detection methods. At least for polyps there are
some datasets available that can be used to evaluate the results for
this work.

Limiting the detection system to polyp detection (in this thesis) is
also because polyps are precursors to CRC, which makes them more
interesting from a medical point of view. Because early removal of a
polyp significantly decreases the chance for the patient to develop CRC,
which makes early detection to be of clear value for survival.

1.4 Research Method

This thesis will be following the design paradigm described by the ACM
Task Force in the report Computing as a Discipline [7]. This involves the
design, implementation and evaluation of the object detection system
where the goal is to achieve good detection accuracy of polyps in
medical images.

The experiments with the object detection system follows an iterative
approach, to allow for improvements and augmentations to be added
after each evaluation. The results from the performance evaluation will
then be used to adjust the parameters for the next experiment.

1.5 Main Contributions

In this thesis, we have shown that deep learning can be used for
automatic detection of diseases in the GI tract. The preliminary results
achieved, by using the YOLO object detection system, suggests that
there is large potential for object detection systems within automatic
analysis of medical imaging, specifically the detection of diseases in
the GI tract. The systems both reach good detection accuracy, while
still being within the real-time border of 30 FPS that was defined in
section 1.2. Using either tiny-YOLO or YOLOv2 is possible, as tiny-
YOLO runs detection fast (at 123 FPS), but has less accuracy, meaning
that tiny-YOLO generates more false positives than the larger YOLOv2
network. This makes it possible to trade between accuracy and speed,
by using either tiny-YOLO for its speed, or YOLOv2 for its precision
(less false positives).

4



The main contribution in this thesis is the research and evaluation
of a new, and potential improvement, to the detection and analysis
subsystem in the multimedia system EIR. This system has proven able
to detect polyps, with good accuracy, that can be seen in GI tract
examination videos, either from a VCE or during manual procedures.
It is, however, important to point out that the used dataset is limited
in its size and that evaluations, and further experiments, on a larger
amount of data is recommended.

1.6 Outline

The rest of this thesis is structured as follows:

Chapter 2 - Background: The background chapter presents the medi-
cal scenario and techniques for modern object detection. Further,
it presents relevant research concerning the polyp detection use
case and describes the previous work EIR, which this thesis builds
on, and ends the chapter with a presentation of different systems
that can be used for object detection.

Chapter 3 - Neural Network for Polyp Detection: This chapter intro-
duces the goals for our system as well as giving a presentation
of the object detection system, YOLO, that is used in the experi-
ments. This is followed with how the system have been modified
for our use case as well as a presentation of the dataset used for all
the experiments.

Chapter 4 - Experiments & Discussion: This chapter begins with list-
ing the exact setup used for conduction our experiments, before
presenting the overall results that have been achieved. The chap-
ter then continues with a presentation and discussion about the
experiments and results, before ending with a general discussion
about the results that has been achieved by the detection system.

Chapter 5 - Conclusion: The thesis is summarized and concluded
before presenting some ideas for future work.

5
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Chapter 2

Background

This thesis is about investigating a potential improvement to the
detection and automatic analysis subsystem of EIR, which is presented
in section 2.4.3.

This chapter will first provide necessary background information
regarding the medical scenario that concerns the polyp detection use
case. It will then continue with presenting modern techniques for
object detection that can make it possible for computers to assist
doctors during examinations and even act as a fully automated disease
detection system. Further, the chapter will introduce the standard
metrics that have been used for performance measuring of the detection
system, before presenting research that is relevant towards the polyps
detection use case. The chapter then continues with a presentation of
EIR, the previous work of which this thesis builds upon, before ending
with a presentation of different systems that can be used for object
detection, leading up to the detection system that has been used in this
thesis.

2.1 Medical Scenario

As stated in the introduction 1.1, CRC is the third most common cancer
in men and second most common cancer in women worldwide [45].
The fact that Norway has one of the highest incidences of CRC [24]
combined with the fact that lesions1 are often missed due to the
tiredness of the doctors [22], makes research into an automatic assist
and disease detection system quite relevant as a research topic.

This section will further explain the medical scenario concerning
procedures for examining and screening of the colon. This is necessary

1A lesion is any abnormal damage in the tissue of an organism, usually caused by
disease (from wikipedia: https://en.wikipedia.org/wiki/Lesion)
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as an introduction to the potential system for automatic detection of
diseases in the GI tract.

The GI tract (see figure 2.1) can be affected by several diseases, where
CRC is one of the major health issues worldwide. If CRC is detected
at an early stage the prognosis is substantially improved [33], as said
in section 1.1. Studies show that screening a large portion of the
population improves the prognosis and also reduces the rate of CRC
incidences [4, 24]. Therefore, the current European Union guidelines
recommend screening for CRC for all people older than fifty years2

[17].

Figure 2.1: An overview of the gastrointestinal tract3.

Polyps can be found in different parts of the body, like the GI tract, nose,
bladder or stomach. Colon polyps are clumps of cells that form in the
colon (seen in figure 1.1) and is a common precursor to CRC. Polyps

2The process of screening the GI tract is recommended to be performed on
a regular basis: https://www.cancer.org/healthy/find-cancer-early/cancer-screening-
guidelines/american-cancer-society-guidelines-for-the-early-detection-of-cancer.html

3The figure is derived from a diagram created by Mariana Ruiz and Joaquim Alves
Gaspar. The original has been released into the public domain by the author: https:
//en.wikipedia.org/wiki/File:Digestive_system_diagram_edit.svg
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typically, do not cause symptoms, particularly when they are small, but
over time some may grow to become cancerous. There is no way to
tell if a polyp will become cancerous, without it being analyzed in a
laboratory, which acts as an incentive to remove any polyp once it is
detected.

2.1.1 Colonoscopy

GI tract endoscopies are common medical examinations where the
entire GI tract is visualized and examined to diagnose diseases. An
endoscope is a long flexible tube (see figure 2.2) used to examine the
interior of a patients body. The most common gold standard4 for
GI tract examinations are gastroscopy (entering via the mouth) and
colonoscopy (entering via the anus).

Figure 2.2: A standard endoscope5.

Because some polyps might become cancerous, it makes early detection
important for the prognosis, level of treatment and survival. The
recommended method for detection is through endoscopy, but regular
screening of the population is challenging due to several factors:

Invasive: Endoscopies are demanding invasive procedures and may
lead to great discomfort for the patients.

Extensive training: There is extensive training required for the physi-
cians to be able to perform the procedure.

Cost: The procedure is also quite expensive. For example, in the US,
colonoscopy is the most expensive screening process, with annual

4The best available standard for an examination of a certain area in the body under
reasonable conditions.

5Image is from Wikipedia: https://en.wikipedia.org/wiki/Endoscopy.
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costs of 10 billion US dollars6.

Time: A colonoscopy requires about one medical-doctor-hour and two
nurse-hours per examination.

It is apparent that scaling colonoscopy procedures to a population-wide
process requires significant resources, incurs large costs and, while the
use of endoscopy is the preferred method for detection, the procedure
is not ideal. On average 20% of polyps are missed or not removed
completely, so the risk of developing colorectal cancer largely depends
on the physician performing the procedure [22].

2.1.2 Virtual Colonoscopy

Another procedure that is used to screen the colon is virtual
colonoscopy (see figure 2.3), which is a minimally invasive examination.
During this screening process a CT scan produces many cross-sectional
images of the patients abdominal organs. The images, which can be
two- and three-dimensional images, are then combined and digitally
manipulated to give physicians a detailed view inside the colon. One
disadvantage of this procedure is that the detail provided is reduced, as
opposed to conventional endoscope, and this means that polyps smaller
than 2-10 millimeters in diameter may not show in the produced im-
ages. Another disadvantage to this screening method is that the patient
is exposed to a significant amount of radiation during the scan.

Figure 2.3: CT machine for virtual colonoscopy7.

6Numbers from the NY times: http://www.nytimes.com/2013/06/02/health/
colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.
html?pagewanted=all&_r=0.

7Image is from wikipedia: https://en.wikipedia.org/wiki/CT_scan.
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2.1.3 Wireless Video Capsule Endoscopy

Medical screenings used to identify undiagnosed diseases in large
populations have some known issues, like too many false positives,
invasive screening procedures and high costs [22]. However, the
benefits of screening can outweigh the disadvantages.

A solution that can provide a more efficient and large scale screening,
is the use of camera pills, as shown in figure 2.4. Video Capsule
Endoscopy (VCE) is yet another way of screening the gastrointestinal
tract of a patient, and it has the potential to overcome several of the
limitations and disadvantages arising from the previously discussed
procedures in sections 2.1.1 and 2.1.2.

Screening a patient with VCEs is done using a small capsule, in essence,
a camera masked as a pill. When the capsule is swallowed, it moves
through the entire gastrointestinal tract, continuously recording and
transmitting captured images to a receiver worn on a belt around the
patients waist.

Figure 2.4: A look on a video capsule endoscope8.

VCE has a considerable potential as a tool for screening the gastroin-
testinal tract; however, a drawback is the large amount of data, about
5-8 hours [9] of video, captured with each procedure. This is an inor-
dinate amount of time for a medical professional to invest in a single
procedure, and to make VCE meet the needed efficiency in health care
it is necessary to automate as much of this process as possible.

In the literature, current computer aided diagnosis (CAD) techniques
generally uses feature extraction of color, shape and texture combined
with machine learning classifiers to detect colon polyps [16, 18, 19].

8Both images have been released into the public domain:
https://en.wikipedia.org/wiki/File:CapsuleEndoscope.jpg,
https://en.wikipedia.org/wiki/File:CapsuleEndoscopeEnd.jpg.
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The main difficulty of the feature extraction methods is due to several
factors, e.g. a variance in illumination, the different shapes of polyps
or the blurring of frames due to the movement of the capsule [18,
58].

A potential solution, could be training a neural network to do the
feature extraction and making it possible to avoid both the manual
work and create better descriptors for detecting polyps. With a neural
network, it is also possible to expand the detection to more irregularities
and diseases, e.g., bleeding, by expanding the training data. But first, it
would be prudent to have a short introduction to a subfield of artificial
intelligence that is known as deep learning.

2.2 Artificial Intelligence

Today, artificial intelligence (AI) is a highly active field of research
and practical applications. It is widely used to automate tasks,
understanding speech and images, make diagnosis in medicine and
support basic scientific research. The true challenge of AI is solving
tasks that are easy for humans to perform, but difficult to explain, tasks
that we solve intuitively, like recognizing speech or faces in images. A
solution to this, as stated on page 1 in the introduction chapter from the
deep learning book [14]:

"[..] the solution to this is to allow computers to learn from
experience and understand the world in terms of a hierarchy of
concepts, with each concept defined in terms of its relation to
simpler concepts".

Drawing a graph that displays how these concepts are relative to each
other, the graph is deep with many layers, which is why this approach
to AI is called deep learning.

2.2.1 Deep learning

Deep learning is an approach to AI, specifically, it is an approach to
machine learning that has drawn from our knowledge of the human
brain. In the last few years there has been a tremendous growth in its
usefulness and popularity, due to larger and more powerful computers
and techniques for training deeper networks.

An artificial neural network is built up of multiple layers of nodes, or
neurons, where each node has connections to nodes from the previous
layer. As seen in figure 2.5, the first layer is referred to as the input

9This is figure 1.2 from the deep learning book [14]. It can be found on page 6 in the
introduction.
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Figure 2.5: Deep learning overview9.

layer and the last layer is referred to as the output layer. The layers
in between, are the hidden layers, as these are not directly observable
when running evaluation. Note that when a neural network has
multiple hidden layers it is often referred to as a deep neural network
(DNN).

Figure 2.5, gives a view of how deep learning can interpret the world
with a hierarchy of concepts. As one can see, it would be difficult for a
computer to draw any meaning from the raw input data. By using deep
learning, the computer can separate the complicated task into simpler
ones. The first hidden layer can find edge features from the image by
comparing with neighboring pixels and then the second layer combines
these edge features to find contours and corners in the image, which in
turn is used to describe parts of the object in the image.

The current methods for deep learning, provide a powerful framework
for supervised learning10 and making networks deeper, by adding more
layers and nodes per layer, a deep network can represent increasingly
complex functions. Tasks that are easy for a person to do rapidly,
like recognizing objects in a video, can be accomplished using deep
learning, as long as the models and datasets with labeled training
examples are sufficiently large.

10Refer to section 2.5.1 for more on supervised learning.
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2.2.2 Convolutional Neural Networks

A neural network is a system of interconnected artificial neurons
that can exchange information between each other. The connections
between the neurons have numeric weights that are updated during
the training process, in such a way that a properly trained network will
respond correctly when presented with a pattern or image to recognize.
One can think of these neurons as simple feature detectors, where each
layer of neurons responds to different combinations of inputs from
previous layers (see figure 2.5). The layers are stacked in such a way
that the first layer detects a set of primitive features, the second layer
detects features of these features, and so on.

Figure 2.6: A typical CNN architecture11.

The design of Convolutional Neural Networks (CNNs) are biologically
inspired by the behavior of a visual cortex. The cortex contains several
cells that are responsible for detecting light in small, overlapping sub-
regions, which are called receptive fields. These cells act as filters over
the input space, where the more complex cells have larger receptive
fields. The convolution layer of a CNN performs the function that is
performed by cells in the visual cortex [51, 64].

A CNN is a special implementation of the neural network and is
typically used for pattern- and image-recognition. A CNN is built up
of one or more convolution layers and often with a pooling layer, which
is then followed by one or more fully connected layers as in a standard
neural network. As we can see from figure 2.6, each feature of a layer
receives inputs from a small neighborhood of features (called a local
receptive field) in the previous layer.

When training a CNN on different tasks with images as input, a lot
of similar features are found in the first few layers no matter what the
network is being trained to detect. From the figure 2.5, one can see that
for the first layers the features that are extracted are quite simple, for
example, edges are a basic feature found in any image. Based on this,
it seems wasteful to train new networks completely from scratch each

11The image has been released into the public domain by the author:https://en.
wikipedia.org/wiki/File:Typical_cnn.png.
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time. Studies actually show that one can save a lot of training time and
shows that it is possible to get good results with smaller training dataset,
by using a pre-trained model instead of random initial weights [13,
55].

2.3 Performance Measuring

To evaluate how well different object detection systems perform on a set
of test data, a score of the accuracy for each system is useful. The metrics
used to evaluate the system presented in this thesis are: precision, recall
and F1 score.

Precision denotes the number of predictions, made by the detection
system, that were correct. It is computed by true positives (tp, correctly
classified as positive) divided by tp plus false positives (fp, falsely
classified as positive class).

Precision =
tp

tp + f p

Recall (aka. sensitivity) denotes the number of ground truth bounding
boxes that were accurately predicted. It is computed by tp divided by tp
plus false negatives (fn, falsely classified as negative class).

Recall =
tp

tp + f n

In an optimal case, both precision and recall, are high. Usually these
values are in such a relation with each other, so that a high precision
leads to lower recall and vice versa [39]. A way to calculate the
prediction quality of a network that considers both measures is the F1-
score. F1-score is basically the probability that the networks predictions
are correct. It is an average of both measures, more specifically, it is the
harmonic mean between precision and recall.

F1 = 2 ⇥ Precision ⇥ Recall
Precision + Recall

A tp is found when there exists a certain amount of overlap between
a predicted bounding box, made by the network, and a ground truth
bounding box. This overlap is defined by the Intersection-Over-Union
(IOU) of the prediction and ground truth box, the intersection of the
two boxes divided by the union of their areas. A typical threshold value
signifying a correct detection is an IOU of 50%.

Predictions made by the network are not absolute. Each prediction has
its own probability or confidence score that tells us how certain the
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prediction is. By choosing a minimum confidence value, often referred
to as a threshold, the total number of predictions will be reduced. This
will increase the precision of the network because of the lower number
of false detections. However, a higher threshold also means that recall
decreases, which makes selecting a good threshold value into a matter
of finding a balance between good precision and high recall.

2.4 Polyp Detection

Based on the discussions from sections 1.1 and 2.1 there is a need to
develop a detection system for GI tract examinations, that can both act
as a live CAD tool during procedures and a scalable screening system
for VCE videos. Now, a system that aims to analyze the entire GI tract
needs to fulfill some specific requirements. It needs to be able to process
a large amount of data efficiently, while still being practically applicable
so that it can support doctors during examination procedures or help
analyzing VCE videos.

As said in section 1.3, detection of diseases in the GI tract are mostly
focused on polyps due to lack of available data and the fact that polyps
are precursors to CRC. Automatic analysis of video from colonoscopies
has attracted research attention for a long time, with several studies
published [59, 61, 62].

In the following sections, related work that is relevant for this thesis will
be presented.

2.4.1 Machine learning approaches

Machine learning algorithms can be separated into supervised and
unsupervised learning (see section 2.5.1) and two-class or multi-class
algorithms. Two-class algorithms are able to predict if an image
contains one specific object, e.g., if the image contains a dog or not. The
multi-class classifiers are not limited to a number of classes and can find
multiple objects in an image [11, 30]. An example of how a multi-class
algorithm could work can be seen in figure 2.8b.

Concerning the classification of multimedia data, there exists a lot of
alternatives. Here is a presentation of the four most popular machine
learning approaches:

Support Vector Machines (SVM): Operates with training data that has
two labeled classes. They can classify future data with similar
features into their corresponding classes. This is done by mapping
data as points in a space, so that the two classes are clearly
separated [11, 53].
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Instance-based algorithms: These algorithms learn from known and
already labeled training data. This works by comparing new data
with training data to make predictions [1, 11, 30].

Clustering: This is a well known machine learning method used in
unsupervised learning. This approach is used to cluster data into
different groups based on similarities [11, 30].

Deep Learning: This is based on neural networks and is a machine
learning approach that has drawn from our knowledge of the hu-
man brain. More about deep learning approaches in section 2.4.2
and an introduction to what deep learning is can be found in sec-
tion 2.2.

The first three approaches, SVM, instance-based algorithms and clus-
tering are well researched approaches and are considered in the cat-
egory of traditional machine learning. Deep learning, on the other
hand, is a rather new approach that has become popular these last few
years.

For automatically classifying polyps in endoscopic imaging data most
approaches rely on SVMs or instance-based two-class classifiers. The
specific features, from the image, vary depending on each approach.
These features can be physical dimensions, greyscale intensity values,
gradient orientation, color information or texture and are used as
input into the classifier. For automatic analysis, one can generalize
these methods into two different approaches: geometrical analysis and
machine learning.

Table 2.1 gives a summary of approaches for polyp detection that are
most relevant. The last row of the table shows the performance of EIR,
which will be presented in section 2.4.3.

Mamonov et al. [29] presented a method called binary classification
with pre-selection. It is a binary classifier for detecting polyps in
the colon, focusing on reducing the number of frames that need to
be manually inspected by medical doctors. As can be seen from the
table 2.1, the algorithm reaches a recall rate of 47% with regards to single
input frames.

Hwang et al. [20] is a similar approach and also focuses on polyp
shapes, particularly ellipses. This method first segments a frame
into different regions by using a watershed-based image segmentation
algorithm, which is based on observations that polyps are spherical or
hemispherical geometric elevations. When finding a potential polyp,
the subsequent frames are examined for the same characteristics. This
enables the system to apply a threshold for the number of subsequent
frames after the detection, to reduce the number of false positives.

Wang et al. [60] presents the most complete system in the polyp
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Publication/System Detection Type Recall/Sensitivity Precision Specificity Accuracy FPS Dataset Size
Wang et al. [60] polyp/edge, texture 97.70%a N/A N/A 95.70% 10 1.8m frames

Tajbakhsh et al. [55] polyp/shape, color, texture 50% - - - - 35, 000 images
Park et al. [34] polyp/shape, color, texture 82.80% 65.80% - - - 62 images
Wang et al. [63] polyp/shape, color, texture 81.4% - - - 0.14 1, 513 images

Mamonov et al. [29] polyp/shape 47% - 90% - - 18, 738 frames
Hwang et al. [20] polyp/shape 96% 83% - - 15 8, 621 frames
Li and Meng [27] tumor/textural pattern 88.6% - 96.2% 92.4% - -
Zhou et al. [66] polyp/intensity 75% - 95.92% 90.77% - -

Alexandre et al. [2] polyp/color pattern 93.69% - 76.89% - - 35 images
Kang et al. [23] polyp/shape, color - - - - 1 -
Cheng et al. [5] polyp/texture, color 86.2% - - - 0.076 74 images

Ameling et al. [3] polyp/texture AUC=95%b - - - - 1, 736 images
Nawarathna et al. [31] abnormalities/features 92% - 91.8% - - -

EIR abnormalities/30 features 98.50% 93.88% 72.49% 87.70% ⇠ 75c 18, 781 frames

aThe sensitivity is based on the number of detected polyps, other papers use per
frame detection.

bReported only area under the curve (AUC) instead of sensitivity.
cDetection and localization performed together for full HD videos. Detection

performance alone is around 300 FPS and for localization around 100 FPS.

Table 2.1: Performance comparison of polyp detection approaches
discussed in this chapter. Not all performance measurements are
available for all methods. Nevertheless, including all the available
information gives an idea about each methods performance.

detection field. It is called Polyp-Alert and reaches near real-time
feedback for colonoscopy examinations. It employs their previous edge-
cross-section visual features with a rule-based classifier to detect the
edge of a polyp. They also track the detected polyp edge (or edges),
so that they can group a sequence of images that covers the same polyp
(or polyps). The paper report a recall of 97.7% on the data, which is 52
videos recorded during colonoscopies using different endoscopes. The
fact that the testing data they use is not publicly available makes an
exact performance comparison impossible.

Another approach, which is not limited to only detecting polyps, is
presented by Nawarathna et al. [31]. The proposed method uses a
texton histogram of an image block as features to determine if there
exists an abnormality in the image, achieving 92% recall and 91.8%
specificity on VCE images and 91% recall and 90.8% specificity on
colonoscopy images.

2.4.2 Deep learning approaches

Deep learning algorithms are based on neural networks and use
recently developed techniques to train their models. A more detailed
dive into deep learning can be found in section 2.2. The new training
techniques used in deep learning were mainly made possible due to the
emergence of GPU computing, which allows for completion of training
within a reasonable amount of time [26]. The main disadvantages of
applying deep learning, is the time to convergence during training (long
time to train), the fact that classifications made by the network are hard
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to explain (acts as a black box system) and the network is very data
driven [11, 26, 30]. On the other hand, deep learning can work very
well for multi-class classification [11, 26, 30].

For similar problems, like detecting breast cancer [57], lung cancer [6] or
polyp detection [55], deep learning is already very relevant. However,
training is very complicated and time-consuming. The fact that it is
difficult to evaluate the specific classifications that a network performs
can lead to serious problems in the medical field [32]. Additionally, one
of the largest challenges with deep learning is the large quantities of
data required to train a robust detection system. Data collection is really
difficult due to legal and ethical issues as well as the very high workload
of doctors which makes it difficult to get ground truth 12 data.

As one can see from table 2.1, recent approaches for polyp detection,
using neural networks, can achieve interesting results with a relatively
small labeled dataset. Tajbakhsh et al. [55] presents a polyp detection
method that is based on a 3-way image presentation and CNNs.
The method consists of learning polyp features, color, shape and
texture, in multiple scales. Given a polyp candidate, a set of CNNs
specialized in each of these features are applied and their results are
combined to either accept or decline the candidate. This method has a
detection performance of 0.002 false positives13 per input frame at 50%
recall.

Park et al. [34] presents another method that also adopts the use of
a CNN as their main tool. This approach focuses on polyp shape
detection by using scale-invariant learning of hierarchical features. This
method achieves a recall of about 83% with 66% precision on a total of
62 images that contains 64 polyps.

In the following section, the work that is the basis for this thesis, will be
presented.

2.4.3 Previous Work - EIR

As said in section 1.2, this thesis builds on the work of EIR [35, 38, 46,
47, 48, 49, 50], which is a multimedia system that aims to detect diseases
in the GI tract.

The EIR system consists of three subsystems:

Annotation Subsystem: This subsystem has the task of collecting
training data for the detection and automatic analysis subsystem.
This data can only be collected with the help of medical experts.

12Ground truth, or labels, which tells us where the object is in the image. E.g. binary
ground truth images seen in figure 3.4.

13False positives are explained in section 2.3.
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Detection and Automatic Analysis Subsystem: This subsystem has
the purpose of automatically detecting, analyzing and localizing
endoscopic findings in the GI tract for standard colonoscopies and
VCEs. This subsystem is designed in a modular way to simplify
future improvements and widen the field of different diseases that
it can detect. As it is now, this subsystem consists of two parts:

1. The detection part that detects irregularities in video frames
and images. This means it actually acts as classification (see
section 2.5.1).

2. The localization part that finds the exact location of the
irregularities classified in the first part.

Both of these parts, detection and localization, combined acts as
the object detection system that finds objects in videos or images
(see section 2.5.1).

Visualization Subsystem: This subsystem has the task of providing
the results from the automatic detection and analysis subsystem to
the medical experts that are supposed to use the output for CAD.

Figure 2.7: A complete overview of the EIR system14.

As the focus in this thesis, specified in section 1.2, is the automatic
detection of diseases (read polyps) in the GI tract, this means that the
detection and automatic analysis subsystem is the subsystem of EIR
that is to be further investigated.

The detection and automatic analysis subsystem compares and deter-
mines abnormalities in the given video frames or images by using global
image features. To achieve this, the Lire [28] open source library for

14Figure can be found in [46] as "Figure 3.1".
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content-based image retrieval is used. Lire provides a comprehensive
set of algorithms to extract different types of global image features.
Once the global image features have been extracted and stored in an
index, which is performed by the detection part of the subsystem, this in-
dex is then used as input for the localization part of the subsystem.

The localization part of the subsystem then has the task of finding the
exact location of the detected irregularities. The images are filtered by a
sequence of intra-frame filters, to allow for better localization that uses
local image features.

2.5 Object Detection Systems

This section introduces the idea of object detection, before presenting a
few different CNN-based object detection systems. The section ends
with a presentation of the system that has been used in this thesis,
YOLO.

2.5.1 Object detection

Object detection is a subfield of computer vision that deals with
identifying and locating specific objects within an image or video. For
instance, given the image in figure 2.8a, the goal would be to predict the
bounding boxes for the objects as shown in figure 2.8b.

(a) Example image. (b) Exmaple image with bounding
boxes applied.

Figure 2.8: Example image with and without bounding boxes around
detected objects15.

Object detection differs from the similar challenge of image classification
where the goal is to describe the image with labels. In the case of
figure 2.8a this could be dog, bike and car.

15Image is from the YOLO homepage: https://pjreddie.com/darknet/yolo/.
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Machine learning16 has become an important part of object detection
research, as the problem is exceedingly complex. Machine learning
is the study (and construction) of algorithms that can learn from
examples, which is especially useful for high dimensional and complex
problems, where it is easier to get example data than to program a direct
solution.

Machine learning is often divided into unsupervised and supervised
learning. Unsupervised learning focuses on finding structure in
unlabeled17 data. Supervised learning, on the other hand, is given a
labeled set of data that has input-output pairs. The goal of this is to
be able to predict the right output from new data that was not a part of
the training data. In object detection, the training data would then be
pairs of input images and output bounding boxes (labels) for the specific
objects, with the goal being to predict bounding boxes on previously
unseen images.

However, measuring the performance of object detection has to be done
on a separate dataset, often called the validation dataset, because of a
common problem within machine learning that is known as overfitting.
Overfitting is what occurs when a trained model learns features (or
noise) that is specific to the training data, but not relevant when
examining new, previously unseen data. This lays the groundwork
for one of the main challenges within machine learning, which is to
generalize the model (or learned features) well enough, so that it can
recognize the same object in new data.

In the following sections, we will introduce a few different CNN-based
object detection systems leading up to YOLO, the system that has been
used in this thesis.

2.5.2 R-CNN

Inspired by the work of Krizhevsky et al. [25], on the CNN-based
classifier that outperformed earlier classification techniques, Girshik et
al. [13] proposed an object detection system that combined a CNN with
region proposals, called R-CNN.

The figure 2.9, shows that the R-CNN detection system operates with
three steps. The first steps generates category-independent region
proposals which acts as proposals that define a set of candidate
detection possibilities for the detector. These regions then act as input
to a large CNN that extracts a 4096-dimensional feature vector. The

16More on Machine learning can be found here: https://en.wikipedia.org/wiki/
Machine_learning.

17A deeper explanation can be found here: http://stackoverflow.com/questions/
19170603/what-is-the-difference-between-labeled-and-unlabeled-data.

18Image is from Girshik et al. [13], the R-CNN paper.
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Figure 2.9: R-CNN overview18.

final step is a set of class specific SVMs that score each extracted feature
vector for a specific class. Based on all the scored regions, for all the
classes, only the highest scoring classes for each overlapping region are
kept.

The R-CNN algorithm is effective because of the fact that the CNN
parameters are shared across all categories. This means that step one,
from figure 2.9, only has to be executed once for all classes. The
evaluation of the network is also only done once per region (from step
one) which results in lower computational costs.

R-CNN still has drawbacks. The training pipeline, consisting of
fine-tuning a CNN, fitting SVMs to the feature vectors and learning
bounding box regressors, is complex, which renders training to be slow
(up to 2.5 GPU days19 on 5000 images [12]). One of the major bottlenecks
of the R-CNN system in test-time is the fact that it performs one CNN
forward pass for each object proposal.

2.5.3 Fast and Faster R-CNN

Figure 2.10: Fast R-CNN architecture20.

19One GPU day is 24 hours on a single GPU.
20Image is from the Fast R-CNN paper [12].
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Fast R-CNN was proposed by Ross Girshik [12], to improve the training
and testing speed of R-CNN. As you can see in figure 2.10, the Fast
R-CNN network takes an entire image as input with a set of object
proposals. The image is then processed through several convolutional
and maxpooling layers to produce a convolutional feature map. After
this, a region of interest (RoI) pooling layer, extracts a feature vector
from the feature map, for each of the object proposals. Every feature
vector is then processed by fully connected (FCs) layers that branches
into two output layers: The softmax output layer that produces a
probability estimate for each object class, and a bounding box regressor
returning refined bounding-box positions for each class.

Fast R-CNN still relies on slow algorithms, like selective search, for
generating initial object proposals. As said in [43], selective search
usually uses 2 seconds per image in a CPU implementation, limiting
the frame rate to under 0.5 FPS, which lowers the benefits of speeding
up the network further.

Faster R-CNN [43] presents an approach that improves on the way
region proposals are computed. The approach introduces a Region
Proposal Network (RPN), which acts as a kind of fully convolutional
network and can be trained specifically for the task of generating
region proposals. The effective processing time for the RPN is only 10
milliseconds per image. The total pipeline for Faster R-CNN reaches 5
FPS on the very deep VGG-1621 model.

As stated in section 1.2, the detection system to be used for polyp
detection needs to be able to run detections in real-time, which means
that the object detection in R-CNN, with VGG16, that takes 47 seconds
per image, is too slow. The Faster R-CNN model reaches 5 FPS on
the same VGG16 model and then, with the smaller ZFnet [65], the FPS
increases to 17. As our definition of real-time was to process 25-30 FPS,
from section 1.2, the FPS reached is too slow for our use case. For this
reason, the object detection system that has been used in this thesis is
You Only Look Once, or YOLO for short.

2.5.4 YOLO

Recent approaches for detection systems, like R-CNN 2.5.2, uses
regional proposal methods to generate potential bounding boxes for an
image and then run a classifier on these boxes. The systems then have
post-processing methods that refine the bounding boxes, eliminates
duplicates and evaluates the boxes against other boxes in the scene [13].
These complex pipelines are slow and hard to optimize, because every
component is trained separately.

21VGG16 is a pre-trained model [52].
22The image is from the YOLO paper [41].
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Figure 2.11: The YOLO detection system22as presented in [41]. All
processing is accomplished by a single deep CNN.

YOLO, published in 2015 by Redmon et al. [41], is based on Darknet,
which is an open source neural network framework [40]. It uses a
different approach than the classifier-based systems. Its predictions are
based on the entire image and made using a single network evaluation,
as shown in figure 2.11. From the paper [41]:

"We reframe object detection as a single regression problem,
straight from image pixels to bounding box coordinates and class
probabilities. Using our system, you only look once at an image to
predict what objects are present and where they are."

YOLO works by dividing the input image into an S ⇥ S grid. When the
center of an object falls within a grid cell, that grid cell is responsible
for detecting that object. Each grid cell predicts B bounding boxes
with a corresponding confidence score, which reflects how confident
the model is that the bounding box contains an object and how accurate
the box is.

As discussed earlier, the detection system needs to operate in real-time.
The reported detection frame rate of YOLO is 45 FPS (on a Titan X
GPU), which means it can process video in real-time, as was listed as
a requirement in section 1.2.

In late 2016, Redmon et al. [42], introduced YOLOv2. It focuses on
improving the recall and localization error from the previous YOLO
version. Instead of increasing the size of the network they simplify
it and make representations easier to learn. To improve YOLOs
performance several methods have been added:

Batch Normalization: Leads to lower time requirement for training
while eliminating the need for other forms of regularization [21].

High Resolution Classifier: Fine tuning of the classification network is
done at full 448 ⇥ 448 resolution for 10 epochs on ImageNet (pre-
trained model/weights).

Convolutional with Anchor Boxes: Removes the fully connected lay-
ers from previous YOLO model and uses anchor boxes to predict
bounding boxes. This creates two issues when using it in YOLO:
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1. Dimension Clusters: The first issue is that the box dimen-
sions are handpicked. Instead of choosing this by hand, k-
means clustering is used on the training set bounding boxes
to help the network automatically find good dimensions for
the bounding box. This is done to find boxes that give a better
IOU23 score.

2. Direct Location Prediction: The second issue is model
instability, especially during early iterations. Using random
initialization, the model takes a long time to stabilize to
predicting sensible offsets for the bounding boxes. Instead
YOLO predicts location coordinates relative to the location
of the grid cell.

Fine-Grained Features: Helps YOLO with localizing smaller objects by
adding a pass-through layer that increases the resolution of the
feature map.

Multi-Scale Training: Because the model only uses convolution and
pooling layers it can be rescaled on the fly. By resizing the network
every few iterations, the model becomes robust for images in
different sizes.

Considering these improvements to the YOLO model and that the
newer version also reported running detection in real-time, it was
decided to use YOLOv2 for the experiments in this thesis. Also notable
is the existence of a faster and smaller network architecture called tiny-
YOLO. This network is built to be lightweight and fast, but has less
detection accuracy than the larger YOLOv2 model. Tiny-YOLO has a
reported FPS of more than 200 when running on a GPU24.

2.5.5 Tiny-YOLO vs. YOLOv2

Figure 2.12: The YOLO Logo25.

As mentioned at the end of section 2.5.4, the experiments in this
thesis are being conducted with YOLO, using two pre-defined network
structures, tiny-YOLO and YOLOv2. You have the large network,

23See section 2.3.
24From the YOLO website: https://pjreddie.com/darknet/yolo/#tiny.
25Logo is from the YOLO website: https://pjreddie.com/darknet/yolo/.
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YOLOv2, with 22 convolutional layers and then tiny-YOLO, with its 9
convolutional layers. The Tiny-YOLO model is designed to be a trade-
off between detection accuracy and speed, while also requiring less
memory to run.

From the github of AlexeyAB26, which actually provides a port of YOLO
for windows, you can find that the pre-trained models require different
amounts of GPU memory. The small network, tiny-YOLO, requires 1
GB of GPU memory, while the full sized YOLOv2, requires up to 4 GB
GPU memory27.

Using two networks for the experiments in this thesis was to investi-
gate whether there is a correlation between the resulting detection per-
formance when running on the same data. The networks are trained
and evaluated using the same dataset (separate dataset for training and
evaluation, of course).

Using tiny-YOLO is interesting for several reasons. First, the speed in
which it is designed for, makes it very interesting for running detection
in real-time. Secondly, the reduced training time means it allows for
running more experiments in the same amount of time as YOLOv2.
In our experience, the YOLOv2 network uses about twice as long for
training as tiny-YOLO28. Thirdly, the lower memory usage makes it
possible to run detections on cheaper (and smaller) hardware.

Comparing the detection performance between the two differently
sized networks can also tell us whether tiny-YOLO can act as a proxy
for how the YOLOv2 network will perform; that is, if training on one
dataset is better for tiny-YOLO is it likely to be better for the larger
YOLOv2 network as well? If this is true, one can use tiny-YOLO to
test for performance on datasets, to allow running the experiments at
a faster rate, and then apply the final training regime to the YOLOv2
network, with its reported higher detection accuracy.

2.6 Summary

In summary, actual computer-aided diagnostic systems for the GI
tract do not provide real-time performance, with sufficient detection
and localization accuracy required when operating within the medical
field. Most of the approaches in the GI tract use case, uses evaluation
approaches that are often based on small amounts of data, or data
that are not publicly available. Deep learning approaches seem to be
a hot topic in the medical imaging processing field, even though they

26GitHub of AlexeyAB: https://github.com/AlexeyAB/darknet.
27The amount of memory usage depends on the training scheme, e.g. when having

multi-scale training enabled the YOLOv2 network actually used 7980MB of memory.
28Training with the hardware specified in section 4.1.1.

27

https://github.com/AlexeyAB/darknet


require a large amount of data for training. Nevertheless, deep learning
has a large potential for automating disease detection, which makes
more research into these modern object detection systems, in regard to
medical image processing, seem necessary.

In the next chapters, the specific goals for our detection system are listed
and the details regarding the object detection system that has been used
for our experiments will be explained. Lastly, the dataset used for all
training and testing will be shown.
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Chapter 3

Neural Network for Polyp
Detection

As explained in section 1.2, this thesis focuses on researching a potential
improvement to the detection and automatic analysis subsystem of EIR.
The current subsystem in EIR is split into two parts: detection and
localization, but by adopting a neural network to perform detection, this
system can detect irregularities in the video or image as well as finding
the exact location the irregularities occur.

The main purpose of the detection system is to analyze video or images
from examinations of the GI tract, in real-time. This work builds on the
previous work of EIR, which is described in section 2.4.3, and hopes to
further the research into a fast and efficient system for the detection and
automatic analysis subsystem. To achieve this, the goals for the system
are as follows:

• High disease detection accuracy.

• Real-time processing for supporting medical experts during
colonoscopies.

• Efficient processing to allow for screening with VCE.

• Being expandable to allow for detection of different diseases.

The work conducted in this thesis consists mainly of running experi-
ments on two detection systems, tiny-YOLO and YOLOv2. This chap-
ter will give an overview of these two CNN object detection models
and how they were setup for detecting polyps, followed by a complete
overview of the base dataset used for training.
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3.1 CNNs for Object Detection

For the experiments in this thesis, the chosen neural network architec-
ture is YOLOv2 as well as a smaller (and faster) version called tiny-
YOLO. All the experiments are performed using these two networks,
so that their performance can be compared. Using YOLOv2 and tiny-
YOLO was chosen for its reported high accuracy while still being able to
perform detection in real-time. The YOLO architecture is implemented
on custom neural network software: Darknet.

Figure 3.1: The Darknet Logo1.

Darknet2 is an open source neural network framework, that has been
written in C and CUDA. The framework supports both CPU and GPU
computation, but the use of CUDA means it cannot run directly on non-
NVIDIA hardware. More about the hardware and frameworks that
have been used can be found in section 4.1.1. Darknet was installed
with two dependencies, OpenCV and CUDA, and was quite simple to
install:

• First the github repository was cloned with the command: git
clone https://github.com/pjreddie/darknet.git.

• Then Darknet had to be built by typing make.

• For this thesis, we built Darknet after enabling GPU and OpenCV
in the Makefile3.

Once Darknet had been built, with the said dependencies4, there were
changes that needed to be done before the network would be ready

1Logo is from the Darknet website: https://pjreddie.com/darknet/.
2Darknet website: https://pjreddie.com/darknet/.
3Before a GPU was obtained for the experiments, it was attempted to train the

network by using the CPU. This folly was ended when it seemed that the training of
the small network, tiny-YOLO, would last up to one week.

4As said: CUDA and OpenCV. The installation process is not particularly pleasant
for either.
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to begin training for our use case, meaning detecting of polyps. The
changes performed are listed and explained in section 3.2.

3.1.1 Training Time and Pre-Trained Weights

The network is pre-trained on ImageNet [8] and the resulting weights
are distributed along with the YOLO source code. Using the pre-trained
weights, instead of random initialization when training, means that
the network does not have to learn basic image features from scratch
(see section 2.2.2). Using the pre-trained weights, reduces the time to
convergence during training, meaning that they significantly lower the
time required for training or fine-tuning the network towards detecting
new objects.

3.1.2 Training Variation

Training CNNs with stochastic gradient descent is an optimization
problem and there are no guarantees to find the global optimum, or
to find the same results each time. This, coupled with the built-in data
augmentation in YOLO, will give a slightly different model, every time
it is trained.

The built-in data augmentation that YOLO performs during training
includes:

Scaling and translations: Random scaling and translations of up to
20% of the original image size.

Rotation and cropping: Random rotation and performs random crop-
ping of up to 80% of the image.

Color shifts: Random adjustment of the exposure and saturation of the
image, up to a factor of 1.5 in the HSV 5 color space.

Due to the stochastic training process, there might be slight variation in
the resulting models from the experiments performed for this thesis. To
account for this the training data has only been changed slightly for each
new iteration of experiments, in an attempt to reduce the differences in
the achieved results and ensure that they are not just caused by random
variances.

5Hue, saturation and value: https://en.wikipedia.org/wiki/HSL_and_HSV.
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3.2 Configuring YOLO for custom objects

The reference implementation of the YOLOv2 network had a few hard-
coded values that had to be changed to allow for starting the training
for detection of custom objects, which in this case is polyps:

Editing the configuration file: The configuration file is the network de-
scription file i.e., it describes the network structure (meaning
the convolutional and maxpooling layers) and contains technical
specifications that Darknet reads. The technical specifications are
values concerning the training scheme, which includes values like
the learning rate (this is the rate of how much the weights are up-
dated per iteration) and the total amount of training steps. When
cloning the Darknet repository, several configuration files are in-
cluded as well as the one used for our experiments: yolo-voc.cfg
for YOLOv2 and tiny-yolo-voc.cfg for tiny-YOLO. There were two
modifications necessary in this file, before the experiments could
begin:

1. Within the configuration file we changed the filter value of
the last convolutional layer, according to formula described
in section 3.2.1.

2. The number of classes also had to be changed for our polyp
detection use case, meaning we set the value of classes = 1.

Object Names: To allow the network to print out a bounding box with
the corresponding object name, the file ending with .names has
to contain the specific object name. This file only consists of one
name: polyp.

Data File: The data file had to be changed to fit our setup. The syntax,
and its specific content for our first experiment is explained in
section 3.2.2.

Other than the hardcoded values that we had to change to fit our
polyp detection use case, Darknet has its own unique label format. In
section 3.3.1 this format is explained.

3.2.1 Outputs from YOLO

The figure 3.2 shows the new classification model at the base of
YOLOv2, called Darknet-19. When it comes to training for detection this
model has been modified by replacing the last convolutional layer with
three 3⇥ 3 convolutional layers with 1024 filters followed by a final 1⇥ 1
convolutional layer with the number of outputs needed for detection.
The formula for calculating filters corresponding to outputs:

(Classes + Coordinates + 1)⇥ NumberO f Boxes
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Figure 3.2: The Darknet-19 classification model6.

For this thesis, where the number of classes were limited to our polyp
detection use case, we only require filters corresponding to one class
in the output layer. The network predicts 5 boxes with 4 coordinates
each and 1 class per box, which gives (1 + 4 + 1)⇥ 5 = 30 filters for the
output layer.

3.2.2 Data File

Figure 3.3: The datafile from the first experiment.

The figure 3.3 shows the file that was used in the first experiment. In
the .data file we specified the number of classes that was to be detected,
the full system path to the training and validation text files, their format
as explained in section 3.3.2, as well as the project paths to the name
file and the backup directory. The backup directory is the file used to
store the checkpoint weights that are created by the network during
training.

6Figure from YOLOv2 paper [42].
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3.3 The Dataset

For this thesis, the ASU Mayo Clinic polyp dataset7 [56], is used as the
training and testing dataset. This is the only publicly available dataset
that contains a large amount of annotated data. The dataset contains
20 short colonoscopy videos, of which 10 contain polyps. Each frame
in these videos comes with a corresponding ground truth image (or
binary mask, see figure 3.4) that indicates the polyp region, if one exists.
The resolution varies between 720 ⇥ 480 to 1920 ⇥ 1080 pixels. As seen
from table 3.1, the videos are named using np (no polyps) or wp (with
polyps).

This dataset was used as training and test data for all experiments that
relates to the polyp detection use case in this thesis.

Video Frames with Polyps Frames Without Polyps Total Number of Frames
ShortVD_np_5 0 682 682
ShortVD_np_6 0 838 838
ShortVD_np_7 0 769 769
ShortVD_np_8 0 712 712
ShortVD_np_9 0 1843 1843
ShortVD_np_10 0 1925 1925
ShortVD_np_11 0 1550 1550
ShortVD_np_12 0 1740 1740
ShortVD_np_13 0 1802 1802
ShortVD_np_14 0 1639 1639
ShortVD_wp_2 245 79 324
ShortVD_wp_4 910 0 910
ShortVD_wp_24 374 145 519
ShortVD_wp_49 391 110 501
ShortVD_wp_52 684 422 1106
ShortVD_wp_61 209 130 339
ShortVD_wp_66 234 184 418
ShortVD_wp_68 189 70 259
ShortVD_wp_69 235 381 616
ShortVD_wp_70 385 25 410

Total 3856 15046 18902

Table 3.1: The starting dataset.

3.3.1 Darknet Label Format

Darknet, sadly, cannot operate with the dataset as it is. In the format that
is specific for Darknet, each image needs a corresponding ground truth
label. So, instead of the binary ground truth images seen in figure 3.4,
Darknet requires a .txt file for each image. This label file should contain
a line for each ground truth object in the image:

ObjectClass X Y Width Height

7The ASU Mayo Clinic polyp dataset website: https://polyp.grand-
challenge.org/site/Polyp/AsuMayo/.
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Figure 3.4: Frames from the ASU Mayo Clinic Polyp dataset and their
corresponding ground truth images [56].

Where X, Y, Width and Height are relative to the width and height of
the image. X and Y should also be the coordinates of the center point of
the resulting bounding box 8.

3.3.2 Train & Valid Text Files

Together with the label files from section 3.3.1, Darknet requires one
separate text file for the validation and training dataset, as seen in
figure 3.3. These text files contain the full system paths to the training
and validation images, one image path per line. Further, the images/ and
labels/ directories should be placed within the same parent directory, as
Darknet simply replaces "images" with "labels" when looking for the
training and validation text files.

3.3.3 Data Converting

The polyp dataset is a set of 20 videos and contains a binary ground
truth mask for each frame of these videos. To modify the data to work
with the Darknet label format it was necessary to save each single
video frame from the colonoscopy videos, which was done using a
simple python script with OpenCV. Another python script was used
to generate the label files, format as specified in section 3.3.1, from the

8A bounding box is the smallest possible rectangle that encompasses the object.

35



corresponding binary ground truth images9.

3.4 Summary

This chapter lists the goals for the system and gives an overview of the
object detection system, which includes a how-to on configuring YOLO
for running detection with custom objects. The dataset that have been
used for all training and testing, the ASU Mayo clinic polyp dataset, is
also presented.

In the following chapter, there will be a detailed presentation of how the
experiments were conducted, before the experiments are presented and
the results are discussed.

9All code used in this thesis can be found in section 4.1, which provides a link to
GitHub.
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Chapter 4

Experiments and
Discussion

This chapter provides useful context for how the experiments have been
conducted, through first presenting the hardware and frameworks that
have been installed as well as specifics on how to run the training
and validation of experiments. The chapter then moves on to listing
the exact training and validation datasets used. Further, the results
that have been achieved from the experiments are listed and continues
with presenting the experiments conducted in this thesis, as well as
a discussion about the achieved results. Lastly, there is a general
discussion about the experiments, observations from these experiments
and the goals for the detection system. The chapter ends with a section
that lists a few lessons that have been learned during the course of this
thesis.

4.1 Setup

All code, data and result files are available on GitHub1: https://goo.
gl/zgEWJU.

4.1.1 Hardware & Frameworks

All experiments have been executed with the same version of Darknet,
using commit b61bcf5, by cloning the Darknet GitHub repository, as
explained in section 3.1. Following these steps, Darknet was compiled
with CUDA 8.0 and OpenCV 2.4.13 enabled. The hardware that was
used for the experimenting was a single desktop computer with an
Nvidia GeForce GTX 1070 GPU and running Kubuntu 16.04.

1Full link to the GitHub page here: https://github.com/Tobzor/PillCamMaster.
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4.1.2 Running Experiments

After the preparation of the dataset and the modifications to Darknet,
which can be found in sections 3.3 and 3.2, respectively, all that was
required was starting the training of the detection system. To start
training, the following command was executed:

./ darknet d e t e c t o r t r a i n c . c fg d . data w. weights
> t r a i n i n g�output . log

Where the .cfg and .data files are specified in section 3.2. The .weights
file can be one of the provided pre-trained models, for example
darknet19_448.conv.23, or one of the checkpoint weights saved in the
backup directory while training.

The train command will start the network training process and store
the training output into the output file (here: training-output.log) and
after a set amount of iterations, meaning the training steps set in the
configuration file from section 3.2, the network saves checkpoints of the
weights in the backup directory at the location that has been set in the
Data file from section 3.2.2. Any of these checkpoint weights from the
backup directory can then be used for detection (or as a checkpoint from
where to resume the training, hence the name).

To evaluate the performance of the trained network, with its weights,
we executed the following command:

./ darknet d e t e c t o r va l id c . c fg d . data f i n a l . weights

This validation command uses the valid path value that has been set in
the data file, from section 3.2.2. The valid command outputs one result
text file per class. This text file then contains all the bounding boxes that
the network predicted, in the format specified by PASCAL Visual Object
Classes (PASCAL VOC) [10]:

ImageID Probability/Con f idence Xmin Ymin Xmax Ymax

4.2 Dataset reference

An overview of the training and testing dataset that have been used in
our experiments can be found in tables 4.1 and 4.2, respectively. These
tables list the dataset videos as well as useful statistics concerning the
number of positive, negative and the total number of video frames each
video contains.
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Starting Dataset Frames with Polyps Frames Without Polyps Total Number of Frames
ShortVD_wp_49 391 110 501
ShortVD_wp_52 684 422 1106
ShortVD_wp_61 209 130 339
ShortVD_wp_66 234 184 418
ShortVD_wp_68 189 70 259
ShortVD_wp_69 235 381 616
ShortVD_wp_70 385 25 410

Added in the second experiment.
ShortVD_np_5 0 682 682
ShortVD_np_6 0 838 838
ShortVD_np_7 0 769 769
ShortVD_np_8 0 712 712

Added in the third experiment.
flips70-49 4654 2644 7298

Total in Starting Dataset 2327 1322 3649
Total in Second Experiment 2327 4323 6650
Total in Third Experiment 6981 6967 13948

Table 4.1: The training dataset, with each new addition of data, for all
experiments.

Video Frames with Polyps Frames Without Polyps Total Number of Frames
ShortVD_np_9 0 1843 1843

ShortVD_np_10 0 1925 1925
ShortVD_np_11 0 1550 1550
ShortVD_np_12 0 1740 1740
ShortVD_np_13 0 1802 1802
ShortVD_np_14 0 1639 1639
ShortVD_wp_2 245 79 324
ShortVD_wp_4 910 0 910
ShortVD_wp_24 374 145 519

Total 1529 10723 12252

Table 4.2: The testing dataset for all experiments.

4.3 Results

This section presents the overall detection performance that the tiny-
YOLO and YOLOv2 networks achieved, for each experiment.

Experiment TP FP TN FN Recall Precision F1 score
First - Base Dataset 4.6 1130 413 10397 399 73.90% 73.23% 73.57%

Second - Negative Training 4.7 934 318 10596 595 61.09% 74.60% 67.17%
Third - Data Augmentation 4.8 1126 396 10598 403 73.64% 73.98% 73.81%

Table 4.3: Overall results from YOLOv2 using the FINAL.weights.

Table 4.3 lists the results that have been achieved, for each experiment,
by YOLOv2. Table 4.4 presents the same, but for tiny-YOLO. The
tables list the evaluation metrics that were received when running the
evaluation, which is explained in section 4.4. Discussions and more
specific metrics are presented for the experiments in their own sections,
which is referred to in the table.

From the performance evaluation section 2.3, it is possible to under-
stand the performance metrics that have been presented in tables 4.3
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Experiment TP FP TN FN Recall Precision F1 score
First - Base Dataset 4.6 971 869 10121 558 63.51% 52.77% 57.64%

Second - Negative Training 4.7 903 441 10505 626 59.06% 67.19% 62.86%
Third - Data Augmentation 4.8 1146 910 10422 383 74.95% 55.74% 63.93%

Table 4.4: Overall results from tiny-YOLO using FINAL.weights.

and 4.4. The true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN) from the tables are used to calculate the re-
call and precision that the system achieves. Recall and precision are
then again used to calculate the F1-score, following the equations in
section 2.3. When comparing the systems detection performance, we
use the recall and precision to calculate the F1-score as this is the easi-
est metric to compare with. F1-score is basically the probability that the
predictions, that are made by the network, is correct. Table 4.5 shows
the tiny-YOLO and YOLOv2 networks and their different performances
with a change in network resolutions. These differences are discussed
further in section 4.8.

System Recall Precision F1-score FPS
Tiny-YOLO 74.95% 55.74% 63.93% 123

Tiny-YOLO-608 81.82% 49.54% 61.72% 75
Tiny-YOLO-832 79.79% 46.41% 58.68% 51

YOLOv2 73.64% 73.98% 73.81% 51
YOLOv2-608 80.18% 67.40% 73.24% 29
YOLOv2-832 77.83% 62.27% 69.19% 19

Table 4.5: The table shows tiny-YOLO and YOLOv2 with the change in
detection performance over different network resolutions.

4.4 System Evaluation Script

The performance evaluation was done by comparing the resulting file
from running the valid command (from section 4.1.2) in Darknet, with
the ground truth labels from our validation dataset. This is done by the
eval_testing.py script created for this purpose2. Through running our
script several times and observing the results, these are the values that
it was decided to use:

Probability Threshold: This threshold is set to 10%, to filter out
the more uncertain predictions. The valid command outputs a
resulting file that contains the image, prediction probability and
bounding box coordinates, as seen in section 4.1.2. It is this
prediction probability that the threshold is for.

2Link to GitHub can be found in section 4.1.
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IOU Threshold: As explained in section 2.3, a typical threshold for
the IOU is 50%. In our evaluation, this has been reduced to 40%
because of the small size of the bounding boxes that are used.

Duplicate Detections: Multiple detections, on the same image, will
result in one true positive (if it exists) and the rest will be set
as false positives. What has not been taken into consideration
is the way YOLO runs its detections. By separating the image
into region boxes, a polyp (it’s center) could be located on the
border between these regions which could, potentially, create two
probable detections within that image. See figure 4.1, for some
example predictions made by the smaller network, tiny-YOLO.

(a) False negative. (b) True positive. (c) Duplicate detection.

Figure 4.1: A sample of a false negative, true positive and duplicate
predictions by tiny-YOLO.

4.5 Experiments

There are several experiments that have been conducted in this work,
all related to the GI tract use case, concerning an automatic disease
detection system. By using the architecture of the two networks, tiny-
YOLO and YOLOv2, there are many parameters that can be varied and
tested, but at first the focus will be exploring different strategies for
the training dataset. As mentioned in section 1.4, the experiments will
follow an iterative approach.

When training the networks for our experiments, there were some
differences in the training scheme between tiny-YOLO and YOLOv2.
YOLOv2 had a learning rate of 0.0001 and 45000 training steps, whereas
tiny-YOLO had a learning rate of 0.001 and 40100 training steps. Every
evaluation has been run using the final.weights from each model, which
are created after the last training step, as these were the weights that
gave the best results on the testing dataset.

The main experiments conducted in this thesis will be presented,
and their results will be discussed, in the following sections 4.6, 4.7,
4.8
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4.6 First - Base dataset

The first experiment was conducted with the starting dataset, after the
conversion to the Darknet format, as it is explained in section 3.3.

The dataset from table 3.1 was split into two parts, training and test
data. The training data was constructed from the images and labels
from ShortVD_wp_49 down to ShortVD_wp_70 and the testing dataset
was constructed from video ShortVD_np_9 down to ShortVD_wp_24,
leaving the videos ShortVD_np_5 through ShortVD_np_8 unused. This
splitting of the dataset was meant to leave as much of the data as
possible for the training dataset, while still leaving enough positive data
for the testing dataset.

The purpose with this experiment was to get a feel of how the two
networks, YOLOv2 and tiny-YOLO, could perform when applied to
detection inside the GI tract, as opposed to detecting objects on the
streets (e.g. cars, planes, etc.), and how they were in use.

Discussion - Base Dataset

The main purpose of this experiment, as stated in section 4.6, was to
determine how the two YOLO networks could perform when adopted
for the polyp detection use case, by training the networks on the starting
dataset, specified in table 4.1.

The achieved performance for YOLOv2 was 73.90% recall, 73.23%
precision and a F1-score of 73.57%. Compared to the 63.51% recall,
52.77% precision and F1-score of 57.64% from tiny-YOLO, it shows
that YOLOv2 achieves an overall better performance using the same
data.

Looking at the metrics in table 4.6, it is quite clear that tiny-YOLO
has overall lower performance than YOLOv2, particularly the precision
the network reaches. Nevertheless, when examining the results, it is
evident that the YOLO-networks have good potential for the polyp
detection use case.

As one of the main goals for the disease detection is to achieve
good detection accuracy, the next experiments was an attempt to first
reduce the amount of false predictions, meaning false positives and
false negatives, before increasing the amount of correctly detected
polyps.
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Metrics from evaluation Tiny-YOLO YOLOv2
Total number of predictions 31913 9149

Predictions below probability threshold 30073 7606
Classified as positive events 1840 1543

Total number of polyps in dataset 1529 1529
True positives 971 1130
False positives 869 413

Classified as negative events 10679 10796
True negatives 10121 10397
False negatives 558 399

Recall 63.51% 73.90%
Precision 52.77% 73.23%
F1-score 57.64% 73.57%

Table 4.6: Performance metrics from running evaluation of the first
experiment.

4.7 Second - Negative training

For this experiment the unused negative (no polyp) videos from the
dataset are added to the training data. From the Darknet forum, which
is a Google Group created for the users of Darknet, one of the authors of
YOLO, Joseph Redmon [42] (known as "SuperDragon McFuzzypants"
in the forum), explains that adding negative images, with empty labels,
can help the network to filter out unwanted detections. Specifically, he
states that3:

"[...]. The only real reason to include them (meaning negative
data) is if there is some object you don’t want to detect that looks
similar to objects you DO want to detect."

And as one can see from the figure 3.4, it is not always easy to find
a clear indication that there is a polyp in the images, which fits well
with the mentioned quote. So, the purpose for this experiment was
to reduce the amount of false predictions from the detection system.
The unused videos negative videos from the dataset in table 3.1, videos
ShortVD_np_5 through ShortVD_np_8, was added to the training
dataset described in section 4.6.

Discussion - Negative Training

The purpose of this second experiment, as explained in section 4.7, was
to focus on reducing the amount of false predictions by adding the

3Direct link to the Q&A in the Darknet forum: https://groups.google.com/d/msg/
darknet/Bs4N3IiBH3s/EivXBkwzAwAJ.
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unused np videos to the training data (see table 3.1) to help the networks
become more familiar with the features in the GI tract. Potentially,
this could help with filtering out unwanted predictions and make the
networks better able to discern polyps from the GI wall4.

At first glance it seems that the networks have reduced the total number
of predictions when running detection, as can be seen in table 4.7. In the
case of tiny-YOLO, the total amount of predictions has been reduced
by almost 50%. This does however seem to have had some negative
consequences for the recall achieved by the detection systems. As said
in section 2.3, recall is based on the number of polyps detected out of
the total number of possible polyps to detect.

Metrics from evaluation Tiny-YOLO YOLOv2
Total number of predictions 15408 7646

Predictions below probability threshold 14064 6394
Classified as positive events 1344 1252

Total number of polyps in dataset 1529 1529
True positives 903 934
False positives 441 318

Classified as negative events 11131 11191
True negatives 10505 10596
False negatives 626 595

Recall 59.06% 61.09%
Precision 67.19% 74.60%
F1-score 62.86% 67.17%

Table 4.7: Performance metrics from running evaluation of the second
experiment.

Looking at the results in table 4.7, there is strong indication that
introducing negative data into the training dataset had an undesirable
outcome. A possible explanation might be that the total dataset that
has been used in this experiment, which can be seen in table 3.1,
is imbalanced, meaning the negative training data compared to the
amount of images containing polyps is in a ratio of approximately 1:0.5
(negative:positive).

Investigating the ratio of positive and negative training data and
what effects a variation of this ratio might have, the next experiment
introduces data augmentation, which is performed on the positive
training data. The purpose of this was to add more variation into
the positive training data, which hopefully would let the networks
generalize more to the different appearances, locations and angles
that the diseases, in this case polyps, might be exhibiting in the GI
tract.

4Or the mucosa, which is the innermost layer of the gastrointestinal tract.
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4.8 Third - Data Augmentation

Because deep neural networks require a large amount of training
data to achieve good detection performance and, unfortunately, the
dataset available for this thesis is limited. To help remedy this, data
augmentation was performed on the positive training data, following
the work of Krizhevsky et al. [25]. This was to both improve upon
the variability of the data as well as, potentially, boosting the detection
performance the detection networks can achieve.

As said in section 3.1.2, YOLO already has several built-in data
augmentation methods. Nevertheless, increasing the total size of the
training dataset helps provide the network with more variances and
helps reduce overfitting the model to the training data. Specifically,
the data augmentation implemented was horizontal and vertical flips
of the positive training data, meaning videos ShortVD_wp_49 to
ShortVD_wp_70 from table 3.1.

Discussion - Data Augmentation

As said previously in section 4.8, the purpose of this experiment was
to increase the amount of positive data in the training dataset. The
experiment is based on the hypothesis that having a 1:1 ratio of positive
and negative data with more variations of the positive data will increase
the recall that the networks achieve.

Having a more balanced dataset, and more variations of positive
data, has increased the detection performance of both networks. In
the case of tiny-YOLO, the network actually surpassed its larger
counterpart YOLOv2. This might have several explanations. One
possible explanation for this might be drawn from the architecture
differences in tiny-YOLO versus YOLOv2, meaning that tiny-YOLO
have less convolutional layers and therefore have generalized better
towards detecting previously unseen polyps.

Another potential explanation could be drawn from the training data.
There are a total of 7 unique polyps within the training data and 3
unique polyps in the testing data. Considering that YOLOv2 is deeper
than tiny-YOLO, YOLOv2 learns richer, more complex, features beyond
the scope of tiny-YOLO, which might mean YOLOv2 has started to
overfit to the training data and this increases the generalization error
on new data.

However, YOLOv2 and tiny-YOLO also has a difference in learning rate
(see section 4.5, which might mean that YOLOv2 simply was not done
training after the predefined steps (although for one class this should be
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more than enough, according to users from the Darknet forum5).

Metrics from evaluation Tiny-YOLO YOLOv2
Total number of predictions 15078 8214

Predictions below probability threshold 13022 6692
Classified as positive events 2056 1522

Total number of polyps in dataset 1529 1529
True positives 1146 1126
False positives 910 396

Classified as negative events 10805 11001
True negatives 10422 10598
False negatives 383 403

Recall 74.95% 73.64%
Precision 55.74% 73.98%
F1-score 63.93% 73.81%

Table 4.8: Performance metrics from running evaluation of the third
experiment.

Comparing the results from the second experiment (table 4.7) and the
results in table 4.8, tells us that the balancing of the dataset had the
intended positive effect on the recall and precision metrics.

As pointed out in the general discussion section 4.10.1, random
rescaling of the network during training was disabled for YOLOv2
during the first experiments, and was not noticed until after the results
from this experiment was compared. What was interesting, was that
after the retraining with random rescaling (see multi-scale training
in section 2.5.4) there were no significant changes in performance.
However, this allows for a manual change in network-resolution that
can be set in the configuration file and the standard value here is
416 ⇥ 416. Increasing the resolution makes the network more precise
and allows for better detection of small objects, up to a certain resolution
before the precision drops6. As expected, the increased resolution
also makes detection significantly slower in terms of FPS. Results
from running detection on different network resolutions are shown in
table 4.9.

However, when the resolution is increased from the standard 416⇥ 416,
the networks has a decrease in precision. A probable explanation for
this can be drawn from the total number of predictions, where there
is an increase in number of predictions for every increase in resolution.
Something that would be interesting to test further, is how the networks
react to different input image resolutions when running detection on

5Darknet forum: https://groups.google.com/forum/#!forum/darknet.
6The YOLO training scheme only uses random rescaling between resolutions of 320-

608.

46

https://groups.google.com/forum/#!forum/darknet


Metrics from multi-scale detection Tiny-YOLO YOLOv2
Resolutions 608 ⇥ 608 832 ⇥ 832 608 ⇥ 608 832 ⇥ 832

Frames Per Second 75 51 29 19
Total number of predictions 29462 41657 9460 10626

Predictions below probability threshold 26937 39028 7641 8715
Classified as positive events 2525 2629 1819 1911

Total number of polyps in dataset 1529 1529 1529 1529
True positives 1251 1220 1226 1190
False positives 1274 1409 593 721

Classified as negative events 10540 10540 10832 10812
True negatives 10262 10231 10529 10473
False negatives 278 309 303 339

Recall 81.82% 79.79% 80.18% 77.83%
Precision 49.54% 46.41% 67.40% 62.27%
F1-score 61.72% 58.68% 73.24% 69.19%

Table 4.9: Performance metrics from running evaluation of the third
experiment with different resolutions for both tiny-YOLO and YOLOv2.

different network resolutions.

4.9 Comparing with EIR

System Recall Precision F1-score FPS
EIR 88.90% 96.40% 91.60% ⇠ 75 a

Deep-EIR 87.9% 87.2% 87.6% 30
Tiny-YOLO 74.95% 55.74% 63.93% 123

Tiny-YOLO-608 81.82% 49.54% 61.72% 75
Tiny-YOLO-832 79.79% 46.41% 58.68% 51

YOLOv2 73.64% 73.98% 73.81% 51
YOLOv2-608 80.18% 67.40% 73.24% 29
YOLOv2-832 77.83% 62.27% 69.19% 19

Table 4.10: EIR versus the YOLO detection systems.

a300 FPS for detection and 100 FPS for localization.

Comparing our results with that of EIR, which is presented in sec-
tion 2.4.3, it would seem that their detection performance is superior to
the performance tiny-YOLO and YOLOv2 reaches. The detection com-
paring was difficult considering that the normal EIR uses handpicked
features in a machine learning approach and Deep-EIR uses a differ-
ent dataset. Nevertheless, the results in table 4.10 gives an approximate
overview of how the evaluated systems performs compared to those
from EIR.

Deep-EIR (results shown in table 4.10) is a proof-of-concept of EIR for
multi-disease classification based on deep learning. In particular, it is
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based on the Inception v3 architecture [54]. Deep-EIR is presented in
the PhD thesis of Michael Riegler [46]7 and the evaluation of its accuracy
have been completed using a multi-class dataset that contains a total of
300 images, with 50 images for the 6 different classes.

Tiny-YOLO and YOLOv2 detects approximately the same number of
polyps, seen from the recall metrics, but with a varying degree of
precision. As explained in section 2.4.3, precision is a value that shows
how many of the predictions a system performs are correct. As seen
from the F1-score in table 4.10, the highest score that has been reached
with our detection systems, 73.81% still has potential for improvement
when seen in the light of both EIR systems, 91.60% for EIR and 87.6%
for Deep-EIR.

Unfortunately, there was not enough time at the end of this thesis to run
a leave-one-out cross-validation to get an exact comparison between the
YOLO networks and the handpicked features of EIR, nor was there time
to run a multi-class experiment using the multi-class dataset that was
used in Deep-EIR.

4.10 General Discussion

The idea for this thesis was to explore the viability of using modern
object detection systems as a medical assist and automatic analysis
tool, following the work of EIR, which is presented in section 2.4.3.
The achieved results suggest that using a CNN object detection system
for automatic disease detection is viable if there exists access to good
training data. However, the approach of using tiny-YOLO and YOLOv2
requires further investigation into how the networks generalize to new
data as well as some form of cross-validation to gain a clearer view of
how the networks could perform.

Preliminary results achieved from the experiments in this thesis sug-
gests that there is potential for tiny-YOLO or YOLOv2 as a detection
subsystem within the EIR system (presented in section 2.4.3). This sec-
tion presents some interesting observations noticed during the experi-
ments and discusses if the goals for the system, presented in section 1.2
and in the introduction of chapter 3, have been reached.

4.10.1 Training Observations

As the results from tiny-YOLO was compared to YOLOv2, there were
some interesting behavior that was observed between the two networks.

7Section 3.6.2 in the paper.
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To pinpoint this difference in behavior the configuration files for the
networks were compared.

When examining the YOLOv2 configuration file that was used for the
experiments, it was noticed that the random rescaling of the network
during training was disabled. As mentioned in section 2.5.4, multi-
scale training makes the network robust for images in different sizes.
Considering that the training dataset contains images in many different
sizes and the fact that tiny-YOLO, which has this enabled, achieves
higher recall than YOLOv2 without random rescaling, the random
rescaling for YOLOv2 was enabled and the network was retrained for
the third experiment in section 4.8.

The multi-scale training did not provide any significant difference at
first glance. Instead the random rescaling of the network during
training allows for a network that is more robust towards detection
across different input resolutions. This, in turn, made it possible
to change the network resolution8 when running detection. The
results from running detection at different resolutions, are presented in
table 4.9.

As is mentioned in section 2.5.5, using tiny-YOLO as well as YOLOv2
could give valuable insight into how the networks operate and make
it possible to investigate if tiny-YOLO could be used as a proxy for
YOLOv2, to allow for faster iteration conducting experiments. As we
have observed by running the experiments presented in sections 4.6,
4.7 and 4.8, the networks have an approximate matching of increase
and decrease in their detection performance throughout the different
experiments. This observation suggests that tiny-YOLO, with its
approximate 1/3 of the training time for YOLOv2, can be used as
a proxy for running more iterations (and variations) of experiments.
However, it should be noted that this is based on the experiments
conducted in this thesis and it might be acting differently on other types
of experiments, or even with other software versions, which suggests
that there is some need for further investigation.

Everything that was read about training towards detecting objects with
Darknet and its predefined network structures, YOLOv2 and tiny-
YOLO, was pointing towards needing less training steps when training
to detect a single class of objects. From the GitHub of AlexeyAB9 he
states that it is usually sufficient with 2000 training steps, as opposed
to the 40100 steps for tiny-YOLO and 45000 for YOLOv2. For a more
precise definition when to stop training, it is possible to use the training
output from Darknet. Specifically concerning the average loss (error)

8By network resolution we mean that that is the resolution of which the input images
are scaled down (or up) to when performing detection on said images.

9AlexeyAB at GitHub: https://github.com/AlexeyAB/darknet#when-should-i-
stop-training.
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printout and "stopping" training (using the checkpoint weights) at the
early stopping point. See figure 4.2a.

(a) (b)

Figure 4.2: (a) The figure to the left depicts the early stopping point10.
(b) The figure on the right depicts the loss plot from tiny-YOLO.

However, when the loss was plotted for one of our training runs with
tiny-YOLO, seen in figure 4.2b, it was rather difficult to draw any
useful information from the graph considering we had no validation
set to see when the network started to overfit on the training data.
Instead, we tried several of the checkpoint weights that are saved
during training. Unfortunately, this was proven to be unnecessary as
the results we achieved, meaning the F1-score, which takes into account
both recall and precision, was higher when measured from the final
weights created after the completion of the training steps.

A potential explanation for not getting a higher F1-score when using
any of the checkpoint weights, could be related to our dataset. It is
possible that overfitting on the training data helps the network towards
better recognizing the polyps in the testing data, because both training
and testing datasets are just different parts out of the same dataset. This
would, however, be interesting to investigate further by measuring the
generalization loss on a validation dataset and plotting this together
with the training loss to see if or when overfitting occurs.

4.10.2 System Goals Achieved?

The overall detection performance that has been achieved is presented
in tables 4.3 and 4.4. The evaluation of the detection performance
has been done by running detection on the test dataset, shown in
table 4.2, and then evaluating using the evaluation script presented in
section 4.4.

The goal of reaching high disease detection accuracy could be said
to have been reached. Although, the tested systems, tiny-YOLO

10Early stopping is a form of regularization used to avoid overfitting.
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and YOLOv2, still have potential for improvement compared to other
approaches from EIR11. As seen in table 4.10, the detection accuracy
achieved from the experiments conducted in this thesis is lower than
that of EIR and Deep-EIR. The relevant results from EIR is presented
and compared to our detection systems in section 4.9.

Further, the goals of running the detection system in real-time and being
efficient at handling large amounts of data (for VCE screening) have
been reached. The large network, YOLOv2, reported a total detection
time of 239 seconds on the validation dataset, which contains 12252
images, and this gives a rate of 51.26 FPS. Which is above the defined
real-time border of 25-30 FPS. The small network, tiny-YOLO, reported
its total detection time to being 99 seconds on the validation dataset.
This gives a rate of 123.75 FPS, which is 4⇥ faster than the real-time
border. Note that the FPS was reduced when running detection on
larger resolutions, which is shown in table 4.9.

The goal of the system being easily expandable have, unfortunately,
not been addressed due to lack of time. However, the YOLO papers
concerning the detection system [41, 42] provides information about
multi-class detection and as a matter of fact, the reference networks of
YOLO is already set up for the detection of multiple classes and fully
trained models (or weights) are provided via the Darknet website12.
Unfortunately, this does not prove that YOLO is viable for detecting
more diseases than polyps, which suggests that further investigation
into multi-class detection is required, preferably using the same dataset
from Deep-EIR13 to allow a better comparison.

4.10.3 Lessons Learned

As this thesis was my first research experience with the conducting of
larger experiments, the idea with this section is to note some of the
things learned during the course of this thesis.

Conducting experiments when using deep learning requires a lot of
time to complete, which was a new experience. Usually, when testing
different iterations of some practical work it uses a few minutes to
run through the process before its done. Adjusting to working with
deep learning, which uses between 5 to 72 hours, required a lot of try
and fail runs to determine a process that worked for conducting the
experiments. However, what was found lacking in hindsight, when
writing, was the documentation of the process and results during the

11EIR has been presented in section 2.4.3.
12https://pjreddie.com/darknet/yolo/.
13Deep-EIR is a proof-of-concept using deep learning with EIR and is presented in

the EIR papers found in section 2.4.3.
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experiments, which unfortunately meant that some of the results had to
be rechecked when the writing started.

Another lesson learned over the course of this thesis was that figuring
out what system to use and how to conduct experiments, should be
done after the general goals for the system have been set. Especially
important, if the system is to be compared with previous work (as
in this thesis) leave enough time during the experimental phase to
run an approximately similar experiment, e.g. a leave-one-out cross-
validation, as this would make running a comparison a lot easier.

4.11 Summary

As discussed in section 4.10.2, most of the goals listed in section 1.2
relating to our system was reached. The system still has room
for improvement in the case of high disease detection accuracy and
expanding the detection for more than one class of disease have not
been addressed. Nevertheless, the proposed systems achieve good
results on the dataset used, which suggests that further investigation
into the use and possibilities of Darknet, specifically tiny-YOLO and
YOLOv2, should be considered. We found that the networks tested was
a little lacking in the hope of high detection accuracy, but the systems,
particularly tiny-YOLO, shines when it comes to speed.

In the next chapter, we summarize the thesis and its research contribu-
tions and draw a conclusion, which is then followed up with sugges-
tions for further work.
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Chapter 5

Conclusion

In this chapter, we summarize the work that has gone into this thesis
and what has been done to address the problem statement in section 1.2.
The chapter then presents the main contributions of this thesis and what
future work remains to be done.

5.1 Summary

In this thesis, we presented our experiences with researching a new
potential technology to be used for automatic analysis of medical
imaging of the GI tract. This technology, which is using deep learning
for object detection, was aimed at being a potential improvement in
EIR (presented in section 2.4.3) as the detection and automatic analysis
subsystem. We concluded that the used object detection systems,
meaning both tiny-YOLO and YOLOv2, can be used for automatic
detection of diseases in the GI tract. However, while both systems
reached a satisfactory detection rate and were very fast, particularly
tiny-YOLO, when running detection, they did not reach the same level
of detection rate and accuracy as was reported in EIR. This suggests that
there is still potential for improvements when adopting the YOLOv2
and tiny-YOLO object detection systems for automatic disease detection
in the GI tract.

At the beginning of this thesis, meaning in chapter 2, we introduced
the medical scenario in section 2.1, which is relevant for examining
the GI tract (can be seen in figure 2.1) and then proceeded to present
the technology that has the potential to significantly improve upon
this medical scenario, namely deep learning, which can be found
in section 2.2. After introducing some of the relevant research for
automatic polyp detection in section 2.4, the chapter continues with a
presentation of several object detection systems in section 2.5, leading
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up to the YOLOv2 system, in section 2.5.4, that was used to conduct
experiments in this thesis.

In chapter 3, the introduction gives a presentation of the goals we have
for the detection system and the chapter continues with explaining
the detailed steps necessary to make polyp detection work within the
chosen object detection system in section 3.1. Lastly, the section 3.3
presents the ASU Mayo Clinic polyp dataset [56] and explains the data
format that Darknet, which the chosen detection system YOLOv2 is
built on, requires.

Chapter 4 continues on from where the previous chapter ended and
begins with the setup, in section 4.1, used for running the experiments
in this thesis. The chapter then presents statistics for both splits of the
dataset that has been used as training and testing data, in section 4.2.
Chapter 4 then provides the overall results, in section 4.3, that has been
achieved through the experiments conducted in this thesis as well as
how the system was evaluated, which can be found in section 4.4.

At the end of chapter 4 the experiments is presented, and their results
are discussed, in their own sections 4.6, 4.7 and 4.8. We then proceed to
compare our systems performance with that of EIR in section 4.9, before
moving on to a more general discussion in section 4.10. This section
looks into our systems performance, observations that has been made
during training and a discussion about the original goals we set for our
system and if they were reached.

5.2 Main Contributions

In this thesis, we have shown that deep learning can be used for
automatic detection of diseases in the GI tract. The preliminary results
achieved, by using the YOLO object detection system, suggests that
there is large potential for object detection systems within automatic
analysis of medical imaging, specifically the detection of diseases in
the GI tract. The systems both reach good detection accuracy, while
still being within the real-time border of 30 FPS that was defined in
section 1.2. Using either tiny-YOLO or YOLOv2 is possible, as tiny-
YOLO runs detection fast (at 123 FPS), but has less accuracy, meaning
that tiny-YOLO generates more false positives than the larger YOLOv2
network. This makes it possible to trade between accuracy and speed,
by using either tiny-YOLO for its speed, or YOLOv2 for its precision
(less false positives).

The main contribution in this thesis is the research and evaluation
of a new, and potential improvement, to the detection and analysis
subsystem in the multimedia system EIR. This system has proven able
to detect polyps, with good accuracy, that can be seen in GI tract
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examination videos, either from a VCE or during manual procedures.
It is, however, important to point out that the used dataset is limited
in its size and that evaluations, and further experiments, on a larger
amount of data is recommended.

5.3 Future Work

For future work, there are two new datasets that have become available:
an extended multi-class dataset for computer aided GI tract detection
called Kvasir [36] and a bowel (colon) preparation quality video dataset
called Nerthus [37]. Using these datasets to either test, train or validate
the detection systems would be very interesting and could be used to
investigate if the detection systems really have generalized its weights
towards new, previously unseen data. Further, running cross-validation
using the ASU Mayo Clinic polyp dataset to provide a more detailed
comparison between other detection systems as well as using the
multi-class dataset, that was mentioned in section 4.8, to see how the
detection systems could perform on multiple types of diseases is highly
recommended as future work.

The results achieved in this thesis are from running three iterations
of experiments and investigating the results from manipulating or
augmenting the training dataset. Even from a pure data augmentation
angle, there are many more experiments that could improve upon the
detection systems performance. For example, more pre-processing of
the training data by applying different filters or a smoothing of the
bright areas within the data that occur due to screen glare from the VCE
light source, which appear because the camera and light source is so
closely placed. Even an investigation into how the detection system acts
without the built-in data augmentation could be relevant and provide
context as to how the system would act in a real setting.
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