
Trade-offs of Adapting Binary

Neural Network Ensembles for

Multiclass Problems

Master’s Thesis

Tor Jan Derek Berstad

Spring 2018

Abstract

The One Versus Rest (OVR) method of building classifiers has fallen out of favor with machine
learning researchers in recent years. When used, it is mostly only with older binary linear classifiers
such as Support Vector Machines. We suspected that one could also improve the classification
performance of more complex neural network architectures by setting them up as individual binary
classifiers for each class and combining the output.

In our research, we have tested the OVR style of building a classifier on several modern neural
network architectures, including DenseNet, Inception v3, Inception ResNet v2, Xception, NASNet,
and MobileNet. We have compared several aspects of their performance during training and testing,
in both an OVR style and conventional multiclass single-network style. We have compared hardware
resource use, classification speed, and several classification accuracy metrics. Also, we trained and
tested a total of 186 networks; 50 of these were multiclass, and 136 were individual binary networks.

Using our final selection of 99 networks (11 multiclass and 88 binary), we compared the results of the
11 multiclass networks with the 11 OVR style networks built from the 88 individual binary classifiers
using the Kvasir v2 dataset, which contains thousands of classified frames from colonoscopy videos.
We chose The Kvasir dataset as it could provide a good indication of how applicable our method
is to clinical research. We found that overall, there was a substantial increase in the average and
median classification metrics when using our methods and applications.

Using the OVR style resulted in a 7% increase in average F1 score, a 1% increase in average
accuracy, a 6% increase in Matthews Correlation Coe�cient (MCC), a 1% increase in precision
and finally a 4% increase in average recall. Specificity remained mostly unchanged. Also, the
median values for all of these metrics increased significantly in the OVR style, with the median
F1, MCC and recall scores increasing by over 15%. The most improved network in the OVR
configuration saw an increase in F1 of 45% and an MCC increase of 40%.

However, on average our OVR multi-network style was 7.6 times slower to classify than a single
network multiclass implementation. These collective findings lead us to conclude that the OVR
method can be applied to modern neural networks structures, and will often result in increased
classification accuracy, but at the cost of classification speed.

i

ii

Acknowledgments

First and foremost I would like to thank my supervisors; Michael Riegler, Pål Halvorsen, and
Konstantin Pogorelov. They have provided me with invaluable assistance and guidance throughout
the progression of my research.

I would also like to thank some of the other Master’s students of the group, specifically Steve Hicks
and Rune Borgli. Our discussions about the research material proved extremely helpful at times
when the challenges seemed insurmountable.

I want to thank my parents, Elizabeth Glass and Olav Berstad, for giving the means and motivation
to pursue this education, love and support my entire life, and an interest in technology.

I would like to thank one of my best friends, Ole Herman Elgesem for the support and guidance
throughout our years of study. Although our paths eventually diverged, our friendship has been
invaluable to me.

Finally, I would like to extend my gratitude to my partner Ingvild for being there for me when
the light at the end of the tunnel was nearly imperceptible. Without you, I don’t think this would
have been possible.

Tor Jan Derek Berstad,
23.05.2018

iii

iv

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Motivation . 4
1.2 Research Questions . 5
1.3 Scope and Limitations . 5
1.4 Main Contributions . 6
1.5 Thesis Structure . 7

2 Background 9
2.1 Machine Learning . 10

2.1.1 Early History of Neural Networks and Deep Learning 10
2.1.2 One vs. Rest . 12
2.1.3 The Modern Era . 12
2.1.4 Applications . 14
2.1.5 TensorFlow and Keras . 17
2.1.6 Transfer Learning . 17

2.2 Resource Use . 19
2.2.1 Central Processing Unit (CPU) . 19
2.2.2 Graphics Processing Unit (GPU) . 19

2.3 Medical Uses and Kvasir . 20
2.4 Summary . 20

II Implementation and Discussion 23

3 Tools and Implementation 25
3.1 Test Systems . 26

3.1.1 System Specifications . 26
3.1.2 Frameworks and Packages . 27

3.2 Dataset . 29
3.2.1 Selecting a Dataset . 29
3.2.2 Dividing the Data . 29

3.3 Overall Structure . 30
3.4 Classification Performance Metrics . 30

3.4.1 Post-selection Accuracy . 30
3.4.2 Averaging . 32
3.4.3 Pre-selection Accuracy . 32
3.4.4 Metric Goals . 34
3.4.5 Selection Method . 35

3.5 Main Machine Learning Framework . 35
3.5.1 Applications . 36
3.5.2 Transfer Learning . 36

v

3.5.3 Hyperparameters . 37
3.6 Hardware Metrics . 39

3.6.1 General System Metrics . 39
3.6.2 GPU Metrics . 40
3.6.3 Parallelization . 40
3.6.4 Calibration . 41

3.7 Summary . 43

4 Experiments 45
4.1 Common Results . 46

4.1.1 Included Results . 46
4.1.2 The Appendices . 47
4.1.3 Performance on the Testing and Validation Sets 47

4.2 Training . 48
4.2.1 Accuracy . 48
4.2.2 Resource Use . 50
4.2.3 Time . 60

4.3 Fine-tuning . 63
4.3.1 Resource Use . 64
4.3.2 Time . 66
4.3.3 Tradeo�s . 67

4.4 Testing . 68
4.4.1 Resource use . 68

4.5 Classification . 75
4.5.1 Performance . 75
4.5.2 Accuracy . 77
4.5.3 Goals . 84

4.6 Summary . 85

5 Conclusion 87
5.1 Summary . 88
5.2 Contributions . 88
5.3 Future Work . 89

III Appendices 95

A Figures 97
A.1 Model Visualizations . 97
A.2 Training . 117

A.2.1 VGG16 . 117
A.2.2 VGG19 . 121
A.2.3 Inception v3 . 125
A.2.4 DenseNet 121 . 129
A.2.5 DenseNet 169 . 133
A.2.6 DenseNet 201 . 138
A.2.7 Xception . 142
A.2.8 Inception ResNet v2 . 146
A.2.9 Mobilenet . 150
A.2.10 NasNet Large . 154
A.2.11 NasNet Mobile . 158

A.3 Fine-tuning . 162
A.3.1 Average Power Use . 162
A.3.2 Memory Use . 162

vi

A.3.3 VGG16 . 162
A.3.4 VGG19 . 168
A.3.5 Inception v3 . 172
A.3.6 DenseNet 121 . 176
A.3.7 DenseNet 169 . 180
A.3.8 DenseNet 201 . 185
A.3.9 Xception . 189
A.3.10 Inception ResNet v2 . 193
A.3.11 Mobilenet . 197
A.3.12 NasNet Large . 201
A.3.13 NasNet Mobile . 205

A.4 Testing . 209
A.4.1 VGG16 . 209
A.4.2 VGG19 . 212
A.4.3 Inception v3 . 215
A.4.4 DenseNet 121 . 218
A.4.5 DenseNet 169 . 221
A.4.6 DenseNet 201 . 224
A.4.7 Xception . 227
A.4.8 Inception ResNet v2 . 230
A.4.9 Mobilenet . 233
A.4.10 NasNet Large . 236
A.4.11 NasNet Mobile . 239

A.5 Throughput and Accuracy . 242
A.5.1 VGG16 . 242
A.5.2 VGG19 . 244
A.5.3 Inception v3 . 246
A.5.4 DenseNet 121 . 248
A.5.5 DenseNet 169 . 250
A.5.6 DenseNet 201 . 252
A.5.7 Xception . 254
A.5.8 Inception ResNet v2 . 256
A.5.9 Mobilenet . 259
A.5.10 NasNet Large . 259
A.5.11 NasNet Mobile . 262

vii

viii

List of Figures

2.1 A Neuron and its Components. 11
2.2 A Neural Network Example . 11
2.3 A Simple CNN . 13

3.1 Kvasir v2 Dataset Example Images . 29
3.2 Confusion Matrix Example . 32
3.3 Equations for True Positive Fraction (TPF) and False Positive Fraction (FPF) . . 33
3.4 ROC and PR Curves Example . 34
3.5 Calibration GPU Usage . 41
3.6 Calibration GPU Memory Usage . 42
3.7 Calibration GPU Power Usage . 42
3.8 Calibration CPU Usage . 43
3.9 Calibration Memory Usage . 43

4.1 Violin Plots of Validation vs. Test Set Accuracy 48
4.2 NASNet Mobile Training accuracy and loss . 49
4.3 NASNet Mobile Training Accuracy and Loss (Validation) 50
4.4 Training GPU Volatile Percentage . 51
4.5 DenseNet 201 Training GPU usage . 52
4.6 NASNet Large Training GPU usage . 53
4.7 NASNet Mobile Training GPU usage . 54
4.8 Training GPU Power in W . 55
4.9 NASNet Large Training GPU power usage . 55
4.10 NASNet Mobile Training GPU power usage . 56
4.11 Training CPU Average Percentage . 57
4.12 NASNet Large Training CPU usage . 58
4.13 NASNet Mobile Training CPU usage . 58
4.14 Training Memory Used in GB . 59
4.15 NASNet Mobile Training memory usage . 60
4.16 GPU Temperature Fluctuations . 61
4.17 Training Time Used in Seconds . 62
4.18 Training Average time used per epoch in seconds 62
4.19 NASNet Mobile Fine-tuning Accuracy and Loss . 63
4.20 NASNet Mobile Fine-tuning Accuracy and Loss (Validation) 64
4.21 Fine-tuning GPU Volatile Percentage . 65
4.22 Fine-tuning CPU Average Percentage . 66
4.23 Fine-tuning Time Used in Seconds . 67
4.24 Fine-tuning Average time used per epoch in seconds 68
4.25 Testing GPU Volatile Percentage . 69
4.26 Inception v3 Test GPU usage . 70
4.27 NASNet Mobile Test GPU usage . 71
4.28 Testing GPU Power in W . 72
4.29 Xception Test GPU power usage . 72

ix

4.30 NASNet Mobile Test GPU power usage . 73
4.31 Testing CPU Average Percentage . 74
4.32 Testing Memory Used in GB . 75
4.33 FPS Test summary . 76
4.34 NASNet Mobile Confusion matrices . 81
4.35 NASNet Mobile ROC Curves . 81
4.36 NASNet Mobile PR Curves . 82
4.37 Mobilenet Confusion matrices . 83
4.38 Mobilenet PR Curves . 83
4.39 Metric Test Summary Plots . 84

A.1 VGG 16 Model Visualization . 98
A.2 VGG 19 Model Visualization . 99
A.3 Inception v3 Input Layers . 100
A.4 Inception v3 Block . 101
A.5 Inception v3 Output Block . 101
A.6 DenseNet Input Block . 102
A.7 DenseNet Output Block . 103
A.8 Xception Input . 104
A.9 Xception Block type 1 . 105
A.10 Xception Block type 2 . 106
A.11 Xception Output . 107
A.12 Inception ResNet v2 Input . 108
A.13 Inception ResNet v2 Block type 1 . 109
A.14 Inception ResNet v2 Block type 2 . 109
A.15 Inception ResNet v2 Output . 110
A.16 MobileNet Input . 111
A.17 MobileNet Output . 112
A.18 NASNet Large Input . 113
A.19 NASNet Large Output . 114
A.20 NASNet Mobile Input . 115
A.21 NASNet Mobile Output . 116
A.22 VGG16 Training accuracy and loss . 117
A.23 VGG16 Training Accuracy and Loss (Validation) 118
A.24 VGG16 Training GPU usage . 118
A.25 VGG16 Training GPU memory usage . 119
A.26 VGG16 Training GPU power usage . 119
A.27 VGG16 Training CPU usage . 120
A.28 VGG16 Training memory usage . 120
A.29 VGG19 Training accuracy and loss . 121
A.30 VGG19 Training Accuracy and Loss (Validation) 122
A.31 VGG19 Training GPU usage . 122
A.32 VGG19 Training GPU memory usage . 123
A.33 VGG19 Training GPU power usage . 123
A.34 VGG19 Training CPU usage . 124
A.35 VGG19 Training memory usage . 124
A.36 Inception v3 Training accuracy and loss . 125
A.37 Inception v3 Training Accuracy and Loss (Validation) 126
A.38 Inception v3 Training GPU usage . 126
A.39 Inception v3 Training GPU memory usage . 127
A.40 Inception v3 Training GPU power usage . 127
A.41 Inception v3 Training CPU usage . 128
A.42 Inception v3 Training memory usage . 128

x

A.43 DenseNet 121 Training accuracy and loss . 129
A.44 DenseNet 121 Training Accuracy and Loss (Validation) 130
A.45 DenseNet 121 Training GPU usage . 130
A.46 DenseNet 121 Training GPU memory usage . 131
A.47 DenseNet 121 Training GPU power usage . 131
A.48 DenseNet 121 Training CPU usage . 132
A.49 DenseNet 121 Training memory usage . 132
A.50 DenseNet 169 Training accuracy and loss . 133
A.51 DenseNet 169 Training Accuracy and Loss (Validation) 134
A.52 DenseNet 169 Training GPU usage . 135
A.53 DenseNet 169 Training GPU memory usage . 135
A.54 DenseNet 169 Training GPU power usage . 136
A.55 DenseNet 169 Training CPU usage . 136
A.56 DenseNet 169 Training memory usage . 137
A.57 DenseNet 201 Training accuracy and loss . 138
A.58 DenseNet 201 Training Accuracy and Loss (Validation) 139
A.59 DenseNet 201 Training GPU usage . 139
A.60 DenseNet 201 Training GPU memory usage . 140
A.61 DenseNet 201 Training GPU power usage . 140
A.62 DenseNet 201 Training CPU usage . 141
A.63 DenseNet 201 Training memory usage . 141
A.64 Xception Training accuracy and loss . 142
A.65 Xception Training Accuracy and Loss (Validation) 143
A.66 Xception Training GPU usage . 143
A.67 Xception Training GPU memory usage . 144
A.68 Xception Training GPU power usage . 144
A.69 Xception Training CPU usage . 145
A.70 Xception Training memory usage . 145
A.71 Inception-ResNet-v2 Training accuracy and loss . 146
A.72 Inception-ResNet-v2 Training Accuracy and Loss (Validation) 147
A.73 Inception-ResNet-v2 Training GPU usage . 147
A.74 Inception-ResNet-v2 Training GPU memory usage 148
A.75 Inception-ResNet-v2 Training GPU power usage 148
A.76 Inception-ResNet-v2 Training CPU usage . 149
A.77 Inception-ResNet-v2 Training memory usage . 149
A.78 Mobilenet Training accuracy and loss . 150
A.79 Mobilenet Training Accuracy and Loss (Validation) 151
A.80 Mobilenet Training GPU usage . 151
A.81 Mobilenet Training GPU memory usage . 152
A.82 Mobilenet Training GPU power usage . 152
A.83 Mobilenet Training CPU usage . 153
A.84 Mobilenet Training memory usage . 153
A.85 NASNet Large Training accuracy and loss . 154
A.86 NASNet Large Training Accuracy and Loss (Validation) 155
A.87 NASNet Large Training GPU usage . 155
A.88 NASNet Large Training GPU memory usage . 156
A.89 NASNet Large Training GPU power usage . 156
A.90 NASNet Large Training CPU usage . 157
A.91 NASNet Large Training memory usage . 157
A.92 NASNet Mobile Training accuracy and loss . 158
A.93 NASNet Mobile Training Accuracy and Loss (Validation) 159
A.94 NASNet Mobile Training GPU usage . 159
A.95 NASNet Mobile Training GPU memory usage . 160

xi

A.96 NASNet Mobile Training GPU power usage . 160
A.97 NASNet Mobile Training CPU usage . 161
A.98 NASNet Mobile Training memory usage . 161
A.99 Fine-tuning GPU Power in W . 162
A.100 Fine-tuning Memory Used in GB . 163
A.101 VGG16 Fine-tuning Accuracy and Loss . 164
A.102 VGG16 Fine-tuning Accuracy and Loss (Validation) 165
A.103 VGG16 Fine-tuning GPU usage . 165
A.104 VGG16 Fine-tuning GPU memory usage . 166
A.105 VGG16 Fine-tuning GPU power usage . 166
A.106 VGG16 Fine-tuning CPU usage . 167
A.107 VGG16 Fine-tuning memory usage . 167
A.108 VGG19 Fine-tuning Accuracy and Loss . 168
A.109 VGG19 Fine-tuning Accuracy and Loss (Validation) 169
A.110 VGG19 Fine-tuning GPU usage . 169
A.111 VGG19 Fine-tuning GPU memory usage . 170
A.112 VGG19 Fine-tuning GPU power usage . 170
A.113 VGG19 Fine-tuning CPU usage . 171
A.114 VGG19 Fine-tuning memory usage . 171
A.115 Inception v3 Fine-tuning Accuracy and Loss . 172
A.116 Inception v3 Fine-tuning Accuracy and Loss (Validation) 173
A.117 Inception v3 Fine-tuning GPU usage . 173
A.118 Inception v3 Fine-tuning GPU memory usage . 174
A.119 Inception v3 Fine-tuning GPU power usage . 174
A.120 Inception v3 Fine-tuning CPU usage . 175
A.121 Inception v3 Fine-tuning memory usage . 175
A.122 DenseNet 121 Fine-tuning Accuracy and Loss . 176
A.123 DenseNet 121 Fine-tuning Accuracy and Loss (Validation) 177
A.124 DenseNet 121 Fine-tuning GPU usage . 177
A.125 DenseNet 121 Fine-tuning GPU memory usage . 178
A.126 DenseNet 121 Fine-tuning GPU power usage . 178
A.127 DenseNet 121 Fine-tuning CPU usage . 179
A.128 DenseNet 121 Fine-tuning memory usage . 179
A.129 DenseNet 169 Fine-tuning Accuracy and Loss . 180
A.130 DenseNet 169 Fine-tuning Accuracy and Loss (Validation) 181
A.131 DenseNet 169 Fine-tuning GPU usage . 182
A.132 DenseNet 169 Fine-tuning GPU memory usage . 182
A.133 DenseNet 169 Fine-tuning GPU power usage . 183
A.134 DenseNet 169 Fine-tuning CPU usage . 183
A.135 DenseNet 169 Fine-tuning memory usage . 184
A.136 DenseNet 201 Fine-tuning Accuracy and Loss . 185
A.137 DenseNet 201 Fine-tuning Accuracy and Loss (Validation) 186
A.138 DenseNet 201 Fine-tuning GPU usage . 186
A.139 DenseNet 201 Fine-tuning GPU memory usage . 187
A.140 DenseNet 201 Fine-tuning GPU power usage . 187
A.141 DenseNet 201 Fine-tuning CPU usage . 188
A.142 DenseNet 201 Fine-tuning memory usage . 188
A.143 Xception Fine-tuning Accuracy and Loss . 189
A.144 Xception Fine-tuning Accuracy and Loss (Validation) 190
A.145 Xception Fine-tuning GPU usage . 190
A.146 Xception Fine-tuning GPU memory usage . 191
A.147 Xception Fine-tuning GPU power usage . 191
A.148 Xception Fine-tuning CPU usage . 192

xii

A.149 Xception Fine-tuning memory usage . 192
A.150 Inception-ResNet-v2 Fine-tuning Accuracy and Loss 193
A.151 Inception-ResNet-v2 Fine-tuning Accuracy and Loss (Validation) 194
A.152 Inception-ResNet-v2 Fine-tuning GPU usage . 194
A.153 Inception-ResNet-v2 Fine-tuning GPU memory usage 195
A.154 Inception-ResNet-v2 Fine-tuning GPU power usage 195
A.155 Inception-ResNet-v2 Fine-tuning CPU usage . 196
A.156 Inception-ResNet-v2 Fine-tuning memory usage . 196
A.157 Mobilenet Fine-tuning Accuracy and Loss . 197
A.158 Mobilenet Fine-tuning Accuracy and Loss (Validation) 198
A.159 Mobilenet Fine-tuning GPU usage . 198
A.160 Mobilenet Fine-tuning GPU memory usage . 199
A.161 Mobilenet Fine-tuning GPU power usage . 199
A.162 Mobilenet Fine-tuning CPU usage . 200
A.163 Mobilenet Fine-tuning memory usage . 200
A.164 NASNet Large Fine-tuning Accuracy and Loss . 201
A.165 NASNet Large Fine-tuning Accuracy and Loss (Validation) 202
A.166 NASNet Large Fine-tuning GPU usage . 202
A.167 NASNet Large Fine-tuning GPU memory usage 203
A.168 NASNet Large Fine-tuning GPU power usage . 203
A.169 NASNet Large Fine-tuning CPU usage . 204
A.170 NASNet Large Fine-tuning memory usage . 204
A.171 NASNet Mobile Fine-tuning Accuracy and Loss . 205
A.172 NASNet Mobile Fine-tuning Accuracy and Loss (Validation) 206
A.173 NASNet Mobile Fine-tuning GPU usage . 206
A.174 NASNet Mobile Fine-tuning GPU memory usage 207
A.175 NASNet Mobile Fine-tuning GPU power usage . 207
A.176 NASNet Mobile Fine-tuning CPU usage . 208
A.177 NASNet Mobile Fine-tuning memory usage . 208
A.178 VGG16 Test GPU usage . 209
A.179 VGG16 Test GPU power usage . 210
A.180 VGG16 Test GPU memory usage . 210
A.181 VGG16 Test CPU usage . 211
A.182 VGG16 Test memory usage . 211
A.183 VGG19 Test GPU usage . 212
A.184 VGG19 Test GPU power usage . 213
A.185 VGG19 Test GPU memory usage . 213
A.186 VGG19 Test CPU usage . 214
A.187 VGG19 Test memory usage . 214
A.188 Inception v3 Test GPU usage . 215
A.189 Inception v3 Test GPU power usage . 216
A.190 Inception v3 Test GPU memory usage . 216
A.191 Inception v3 Test CPU usage . 217
A.192 Inception v3 Test memory usage . 217
A.193 DenseNet 121 Test GPU usage . 218
A.194 DenseNet 121 Test GPU power usage . 219
A.195 DenseNet 121 Test GPU memory usage . 219
A.196 DenseNet 121 Test CPU usage . 220
A.197 DenseNet 121 Test memory usage . 220
A.198 DenseNet 169 Test GPU usage . 221
A.199 DenseNet 169 Test GPU power usage . 222
A.200 DenseNet 169 Test GPU memory usage . 222
A.201 DenseNet 169 Test CPU usage . 223

xiii

A.202 DenseNet 169 Test memory usage . 223
A.203 DenseNet 201 Test GPU usage . 224
A.204 DenseNet 201 Test GPU power usage . 225
A.205 DenseNet 201 Test GPU memory usage . 225
A.206 DenseNet 201 Test CPU usage . 226
A.207 DenseNet 201 Test memory usage . 226
A.208 Xception Test GPU usage . 227
A.209 Xception Test GPU power usage . 228
A.210 Xception Test GPU memory usage . 228
A.211 Xception Test CPU usage . 229
A.212 Xception Test memory usage . 229
A.213 Inception-ResNet-v2 Test GPU usage . 230
A.214 Inception-ResNet-v2 Test GPU power usage . 231
A.215 Inception-ResNet-v2 Test GPU memory usage . 231
A.216 Inception-ResNet-v2 Test CPU usage . 232
A.217 Inception-ResNet-v2 Test memory usage . 232
A.218 Mobilenet Test GPU usage . 233
A.219 Mobilenet Test GPU power usage . 234
A.220 Mobilenet Test GPU memory usage . 234
A.221 Mobilenet Test CPU usage . 235
A.222 Mobilenet Test memory usage . 235
A.223 NASNet Large Test GPU usage . 236
A.224 NASNet Large Test GPU power usage . 237
A.225 NASNet Large Test GPU memory usage . 237
A.226 NASNet Large Test CPU usage . 238
A.227 NASNet Large Test memory usage . 238
A.228 NASNet Mobile Test GPU usage . 239
A.229 NASNet Mobile Test GPU power usage . 240
A.230 NASNet Mobile Test GPU memory usage . 240
A.231 NASNet Mobile Test CPU usage . 241
A.232 NASNet Mobile Test memory usage . 241
A.233 VGG16 Confusion matrices . 242
A.234 VGG16 ROC Curves . 242
A.235 VGG16 PR Curves . 243
A.236 VGG19 Confusion matrices . 244
A.237 VGG19 ROC Curves . 244
A.238 VGG19 PR Curves . 245
A.239 Inception v3 Confusion matrices . 246
A.240 Inception v3 ROC Curves . 246
A.241 Inception v3 PR Curves . 247
A.242 DenseNet 121 Confusion matrices . 248
A.243 DenseNet 121 ROC Curves . 248
A.244 DenseNet 121 PR Curves . 249
A.245 DenseNet 169 Confusion matrices . 250
A.246 DenseNet 169 ROC Curves . 250
A.247 DenseNet 169 PR Curves . 251
A.248 DenseNet 201 Confusion matrices . 252
A.249 DenseNet 201 ROC Curves . 252
A.250 DenseNet 201 PR Curves . 253
A.251 Xception Confusion matrices . 254
A.252 Xception ROC Curves . 254
A.253 Xception PR Curves . 255
A.254 Inception-ResNet-v2 Confusion matrices . 256

xiv

A.255 Inception-ResNet-v2 ROC Curves . 257
A.256 Inception-ResNet-v2 PR Curves . 257
A.257 Mobilenet ROC Curves . 259
A.258 NASNet Large Confusion matrices . 260
A.259 NASNet Large ROC Curves . 260
A.260 NASNet Large PR Curves . 260

xv

xvi

List of Tables

3.1 Major System Components . 26
3.2 Frameworks and Packages . 27
3.3 Metric performance goals . 35
3.4 Application details . 36
3.5 Final hyperparameter selection . 39

4.1 Network complexity and FPS . 77
4.2 Metric Test Summary . 78
4.3 Metric Di�erence Summary . 79
4.4 Accuracy Test for Nasnetmobile . 80
4.5 Accuracy Test for Mobilenet . 82
4.6 Goals Summary . 85

A.1 FPS Test for Vgg16 . 242
A.2 Accuracy Test for Vgg16 . 243
A.3 FPS Test for Vgg19 . 244
A.4 Accuracy Test for Vgg19 . 245
A.5 FPS Test for Inception-v3 . 246
A.6 Accuracy Test for Inception-v3 . 247
A.7 FPS Test for Densenet121 . 248
A.8 Accuracy Test for Densenet121 . 249
A.9 FPS Test for Densenet169 . 250
A.10 Accuracy Test for Densenet169 . 251
A.11 FPS Test for Densenet201 . 252
A.12 Accuracy Test for Densenet201 . 253
A.13 FPS Test for Xception . 254
A.14 Accuracy Test for Xception . 255
A.15 FPS Test for Inception-v2 . 256
A.16 Accuracy Test for Inception-v2 . 258
A.17 FPS Test for Mobilenet . 259
A.18 FPS Test for Nasnetlarge . 259
A.19 Accuracy Test for Nasnetlarge . 261
A.20 FPS Test for Nasnetmobile . 262

xvii

xviii

Acronyms

ANN Artificial Neural Network . 11

AUC Area Under the Curve . 33

AUROC Area Under the Receiver Operating Characteristic curve, aka. AUC-ROC 33

BMLBLN Based Model Last Block Layer Number. .38

CAD Computer-Aided Diagnosis . 4

CNN Convolutional Neural Network . 12

CPU Central Processing Unit . v

DNN Deep Neural Network . 12

FC Fully Connected. .52

FN False Negative . 30

FPF False Positive Fraction . ix

FPS Frames Per Second . 34

FP False Positive . 30

GIL Global Interpreter Lock . 40

GPU Graphics Processing Unit . v

GUI Graphical User Interface . 41

I/O Input/Output . 40

xix

JSON JavaScript Object Notation . 28

LR Learning Rate. .38

MCC Matthews Correlation Coe�cient . i

MLP Multi-layer Perceptron . 12

MMU Memory Management Unit . 57

NVML Nvidia Management Library . 41

OVO One Versus One . 11

OVR One Versus Rest, aka. One Versus All .3

PR Precision-Recall .33

RAM Random Access Memory . 19

RN Residual Network or ResNet . 16

ROC Receiver Operating Characteristic . 33

SM Streaming Multiprocessor . 40

SNARC Stochastic Neural Analog Reinforcement Calculator .11

SVM Support Vector Machine . 4

TDP Thermal Design Power . 26

TNR True Negative Rate . 31

TN True Negative . 30

TPF True Positive Fraction . ix

TPR True Positive Rate . 30

TP True Positive. .30

xx

Part I

Introduction and Background

1

Chapter 1

Introduction

In recent years, the interest and research into machine learning have skyrocketed [1]. The
potential applications of many types of machine learning are vast, with researchers envisioning
new applications and solutions constantly. One of the most promising applications of many types
of machine learning is in the area of image classification and processing. The hope is that, as
research progresses, computers can assist and perhaps even replace humans in many types of
image classification.

This would be beneficial in many circumstances as computers might have the potential to solve
image classification problems more quickly than humans. Also, a computer might be able to provide
a less costly alternative to having people do classification, so research in this area shows promise
in cost-savings. However, developing newer and faster methods is a time-consuming and intensive
process. Therefore, it might be beneficial to see if old techniques could be re-used with modern
technologies.

In our research, we hope to re-examine and re-purpose an older technique that was used to get
around the linearity of early binary classifiers and adapt them to multiclass applications, the One
Versus Rest, aka. One Versus All (OVR) style. Here we have one classifier per class and combine
the output of all of our classifiers to create a multiclass classifier. The OVR method was previously
only used with simpler classifiers, but we intend to examine if this technique can also be applied
to more modern complex neural networks and improve their results.

3

1.1 Motivation

It is not di�cult to imagine several cases where computer-assisted image classification could be
useful. For example, in a waste management sorting facility, where machines could recognize and
extract special waste before recycling or other processes. Such a system might be much faster than
manual sorting, and allow sorting to continue 24 hours a day. Another example would be a factory
where computers vision could be used to detect manufacturing flaws as products progress down the
line, saving money on defective product returns. However, one of the most potentially beneficial
applications of computer vision is in the field of Computer-Aided Diagnosis (CAD).

Here we can use machine learning techniques to assist medical practitioners in disease detection
and diagnosis. This has potentially massive benefits in patient outcomes, as many diseases have
prognoses vastly improved by early detection and diagnosis. Much research has already been done
in the field of medical image classification.

In general in image classification, one of the previously preferred methods of performing
classification with multiple classes was to use several binary classifiers in an OVR configuration [2].
This means that we will have one binary classifier for each class, instead of a single classifier for all
classes. In recent years this technique has fallen out of favor, and we were not able to find much
research in which it was utilized. Also, all of the research we found using this technique was done
using simpler classifiers such as Support Vector Machine (SVM)’s.

We were interested in investigating if we could apply the OVR technique to more complex classifiers
by setting them up in a binary configuration and combining several classifiers into one large
classifier. The theory being that the binary classifiers could become better at learning the specific
features of the class in question, and the performance of the combined classifier could improve
overall. We also believe that these single-class binary classifiers could be more robust against poor
hyperparameter selection and un-optimized network structures. Also, this setup could increase the
learning capacity of the network.

Also, we have noticed that the focus of research in machine learning is often on creating new and
novel uses for machine learning or optimizing the accuracy of existing solutions. The amount of
resources used and the drawbacks of increasing complexity with regards to classification speed are
often not presented in much detail. This can be unfortunate because in most circumstances one
would have several crucial requirements for a good classifier:

• The classifier must have high classification accuracy. A classifier is not very useful if it
is highly inaccurate.

• It would be preferable if the classifier could function without using an unreasonable amount
of system resources, both in the form of pure computational power and in the form of
electrical power.

• In many cases, the classifier should be able to function in real-time. This means that it
should be able to read some form of video input and perform classification on the frames as
they arrive, and without a significant delay.

We aim to improve the classification accuracy of our existing solutions for the Kvasir v2 dataset.
Also, our research will focus on the relationship between machine learning architecture, accuracy,
and resource use. More specifically, we will focus on analyzing several modern deep learning
architectures set up in both OVR and conventional multiclass configurations to reveal how this
will a�ect the classification accuracy, classification speed, and hardware resource use.

4

1.2 Research Questions

Our principal hypothesis is that we can use modern neural network architectures in a binary OVR
structure or style, and achieve better classification results. We hope to determine whether or not
an OVR network style can, in fact, achieve better or at least similar classification results to a
conventional multiclass network. Also, we aim to determine if the resource use increases and if so
by how much. To put it plainly, we aim to examine the following:

• Can OVR produce desirable results with complex binary neural networks?

• How does using an OVR style a�ect how we fulfill the requirements of our classifier? Will our
experimental setup still perform to the desired level when it comes to classification accuracy,
resource use, and classification speed?

Resources will be monitored using several key metrics, for example, GPU usage, CPU usage, and
system memory usage. In addition to the classification results, these metrics will inform us of
the relationship between splitting the classification problem into several binary networks and the
achieved performance. Our overall structures for comparison will be a single multiclass network,
in contrast to an ensemble of binary networks which use the same architecture as the multiclass
network. Our primary goal will be to examine the di�erence in classification accuracy achieved,
and the tradeo� this has with resource use. We will also examine the di�erent architectures to
determine their resource e�ciency on our dataset in comparison to their accuracy.

At the conclusion to our research, we should be able to determine whether or not OVR is a viable
strategy for use with modern neural network architectures set up as binary classifiers.

1.3 Scope and Limitations

In our research, we will implement at testing and profiling suite that will allow us to train, test
and log critical metrics about several modern neural network architectures, or applications. These
applications will be set up in both a conventional multiclass configuration with a single network
for all classes and a OVR binary configuration with one network per class. We will train and
test the networks on the Kvasir v2 dataset, which is a medical dataset of anatomical landmarks
and pathological findings of endoscopic procedures. We will log and calculate several vital metrics
about these networks as they progress through all phases of our transfer learning based approach.
These metrics will log both resource use on our system during all phases of use, and also important
classification performance metrics. The metrics will hopefully allow us to answer our research
questions about the performance of the OVR multi-network style.

There are, of course, some limitations to our methods. First of all, our methods are limited
to a transfer learning approach, which means that we will not be training our applications from
randomly initialized weights, but instead from weights pre-trained on the ImageNet dataset. There
are other pre-trained weights available for transfer learning, but we will not examine those in
our research. As a consequence of using transfer learning, the pre-trained weights and how we
go about the transfer learning approach will a�ect the results. Secondly, we are only using
a particular selection of modern neural network architectures. These include the most popular
architectures from Google Brain, including select Inception variants. Additionally, we will examine
the results for NASNet, MobileNet, DenseNet and the older VGG architectures. There are of
course many architectures to choose from, and we cannot include them all. However, we feel that
these architectures are a good representation of the current technological state of machine learning
for image classification.

Furthermore, our experimentation is limited to the Kvasir v2 dataset, mostly in the interest of
time. This will no doubt a�ect the results as some of our chosen architectures may be particularly

5

well, or poorly, suited for this dataset. The Kvasir v2 dataset is also limited in size, and while
the transfer learning process can hopefully mitigate some of the downsides of this, it will not solve
every issue. The results may change significantly with a larger dataset. The dataset also is limited
in the type of images it contains, as it is a specific medical scenario and thus the images will be
similar in many regards. The outcome may be di�erent for a more diverse dataset.

We have only experimented using one system configuration, which as a CPU without
hyperthreading and a single GPU. A more powerful GPU with hyperthreading and multiple GPUs
might significantly a�ect the results. These setups would be an exciting experiment for future
research in this area. On a related note, we are only using one main machine learning library.
Keras, based on the TensorFlow API, is our choice and provides a solid foundation for us to build
our framework. Consequently, other libraries which implement the base neural network building
blocks di�erently might produce di�erent results, at least when it comes to performance.

Finally, during our testing, we are reading test frames from the system memory, which we suspect
is faster than basically any other method of feeding frames through our network. In a real-world
application, the frames may be produced live by a camera or read from system storage into memory.
Our test situation should provide a reasonable approximation of the latter case, but not necessarily
the former. It would be of interest in future research to examine how live performance di�ers from
our approach.

1.4 Main Contributions

In the following chapters, we will provide a comprehensive breakdown of the results of our
experiments and the di�erence between an OVR multi-network and a conventional multiclass single-
network approach when applied to our chosen dataset. These di�erences include both the di�erence
in classification performance and the di�erence in resource use.

We have shown that, for many of our chosen applications, the OVR style does provide satisfactory
classification performance at the expense of higher resource use and slower classification speed. We
have shown what e�ect this change in style has on the performance of several di�erent architectures.
In summary, using the OVR style resulted in a 7% increase in average F1 score, 1% increase in
average accuracy, 6% increase in MCC, 1% increase in precision and finally a 4% increase in average
recall. Specificity remained relatively unchanged. Also, the median values for all of these metrics
increased significantly in the OVR style, with the median F1, MCC and recall scores increasing by
over 15%. The most improved network in the OVR configuration saw an increase in F1 of 45%
and an MCC increase of 40%. During testing, on average our OVR multi-network style was 7.6
times slower to classify than a single network multiclass implementation.

We created a framework, TFmetrics, which allows automated training and testing of neural
networks in many di�erent configurations, and on a user’s chosen dataset. This framework may
be useful in future research, and we plan to develop it further to support a broader spectrum of
machine learning approaches. In total, during this research, we completed training, fine-tuning
and testing sessions for 186 networks. 50 of these were multiclass, and 136 were individual binary
networks. On our final test selection of 99 networks (11 multiclass and 88 binary), the metrics
logged and calculated resulted in 16,029,806 total data points.

Also, we have created and tested configurations which improve the classification speed and accuracy
significantly over previous research on this dataset. Our best networks achieved an F1 score of 0.87,
an accuracy of 0.97, MCC of 0.86, a precision of 0.88, recall of 0.87 and a specificity of 0.98 on the
Kvasir dataset.

6

1.5 Thesis Structure

The structure of the remainder of this thesis will be as follows:

• Chapter 2: Background
This chapter will give an introduction to the necessary theoretical background of our work. It
will also attempt to put our work in the context of existing work and historical development
in the field. We explain several of the main structures and methods used in this text.

• Chapter 3: Tools and Processes
We detail and explain the di�erent tools and processes used in this work, and summarize why
we made these particular choices.

• Chapter 4: Experiments
This section features a detailed explanation of the conducted experiments. Here we detail
all metrics used and why they might or might not be useful. We also give a comprehensive
breakdown of our experiments and the raw data the produced.

• Chapter 5: Conclusion
We conclude with a summary of the study and what we have gleaned from the results. Also,
we will suggest possible further expansions and continuations on these results, and what this
could mean for future research.

7

8

Chapter 2

Background

To build comprehensive background knowledge of the field and the relevant structures, we analyzed
several key texts about di�erent neural network structures and their performance. Also, we looked
at texts which specifically explore the use of neural nets for colonoscopy analysis. We chose Stephen
Marsland’s Machine Learning: An Algorithmic Perspective [3] (commonly referred to as Marsland)
as an introductory background text on Machine learning. To gain an understanding of the chosen
applications1, as detailed in section 3.5.1, we analyzed their respective papers. This should allow
us to establish similar expectations for each application.

We then analyzed several OVR structures relating to applying binary classifiers to multiclass
problems. These texts gave us an insight into proper recombination strategies and final
classification, in addition to inspiring us with proper metrics to determine what the results of
our research were.

Finally, we look at work which discusses the Kvasir dataset. This work should give us an insight
into the specific benefits and drawbacks, including potential limitations, of this dataset. It should
also provide us with good background knowledge of what work has previously been done with the
dataset. This dataset also provides us with a good insight into a specific situation where image
classification is required and can be useful for medical practitioners.

In the following sections, we will outline the relevant parts of the texts mentioned above and how
they relate to our work.

1
Note: The use of the word applications here is to be consistent with Keras. In other research or texts, these may

be referred to as models.

9

2.1 Machine Learning

Machine Learning is a popular subject in modern computer science, and a large quantity of research
is focused on this field. One of the most promising and exciting uses for machine learning is in
the area of image classification. Humans are naturally very good at image classification, but our
classification speed is slow. This becomes an issue when there exists a significant amount of data
to classify and little time to classify it.

Enter the modern computer, which can process vast quantities of data at high speeds, and
remarkably e�ciently, given an appropriate algorithm. Now, however, is when we encounter our
first caveat. An appropriate algorithmic solution could be di�cult or even impossible to design
manually. That problem is especially true for image classification, which places several critical
requirements on the algorithm chosen, including:

• The algorithm must often be able to di�erentiate between classes which are very similar.
This limitation makes designing a manual image-classification algorithm based on traditional
feature extraction and Bayesian probability calculation extremely di�cult because a Bayesian
classifier assumes feature independence [4], which we cannot guarantee. The changes in
features and textures may be so minute between classes that it becomes impossible to
di�erentiate them.

• Image classification must often be done with some expectation of speed and e�ciency. It is
no good to us if our classification algorithm never produces a result, or produces a result in
a timeframe which is unrealistic for day to day use. Extracting features for each new frame
might be so complex that it becomes very ine�cient.

• Our solution should preferably be able to take new data into account and use this data to
improve future results.

These challenges led to the desire in the scientific computing community to more e�ciently harness
the capacity of computers in the exploration of solutions in a stochastic manner. One of the
first implementations of this theoretical capability was the Markov chain, which harnessed the
power of stochastic processes using a sort of state machine configuration where the next state
was independent on the previous states or configurations of the process. Each state has a certain
probability of progressing to a specific next state or staying in the same state [3]. This was a useful
step on the way to our current technologies.

2.1.1 Early History of Neural Networks and Deep Learning

People have often looked to nature for solving our technological problems. Even today there are
things we can learn from the natural world, for example in aircraft design, where the shape of
aircraft and wings might still be improved by taking inspiration from birds [5]. In 1943 Warren
McCulloch and Walter Pitts published a critical work which postulated a mathematical model
for human learning [6]. This, along with D.O. Hebb’s work from 1949 [7] laid the groundwork
for perhaps the most critical element of modern machine learning, the artificial neuron, seen in
figure 2.1.

10

S Ï

b

x0

x1

x2

x
n

≠1
w0

w1

w2

w n

...

Figure 2.1: Artificial neuron and its components.2We see the neuron itself illustrated as the
combination of a summing function S and an activation function Ï. The inputs themselves are
denoted as x0 . . . x

n

, which are multiplied by the weights w0 . . . w
n

. There is also a bias input b,
typically -1.

The artificial neuron, rooted in biology, formed the basis for experimentation in building networks
of such neurons, to emulate the structure of the brain. These advances could, theoretically,
allow a machine implementing this structure to learn patterns on a given set of inputs. The
first implementation of a neural network on physical hardware was Stochastic Neural Analog
Reinforcement Calculator (SNARC), an Artificial Neural Network (ANN) machine consisting of
approximately 40 randomly connected neurons [8].

In the years following these initial experiments, designs progressed and became more organized.
In 1958 Frank Rosenblatt designed and implemented the single layer perceptron [9]. The network
consisted of a single layer of neurons which together could function to linearly separate classes. The
capacity of this network was limited, and it took several decades before more significant progress
was made on neural networks. The problem was that to increase the learning capacity of a network;
it was theorized that we would need to increase the number of weights, which required us to have
additional layers. An example of a multiple layer neural network can be seen in figure 2.2. This
means that to "teach" the network, we need to adjust the weights of several layers per iteration,
and perhaps more critically, we need to know which weights to adjust.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A simple neural network with one hidden layer.3

Another benefit of adding additional layers was that we could classify into multiple classes using a
single network [3]. Previously, the best way to classify into multiple classes was to combine several
binary classifiers, primarily using one of two di�erent strategies. One Versus Rest, aka. One Versus
All, which used a single classifier per class, and One Versus One (OVO), which used a classifier for

2
Adapted from https://github.com/MartinThoma/LaTeX-examples/blob/master/tikz/artificial-neuron/

3
Adapted from: http://www.texample.net/tikz/examples/neural-network/

11

https://github.com/MartinThoma/LaTeX-examples/blob/master/tikz/artificial-neuron/
http://www.texample.net/tikz/examples/neural-network/

every two classes. The first of these, OVR, is what we will examine later in the thesis and will be
the primary focus of our research.

Classifying multiple classes was made possible in 1986 by David E. Rumelhard et al. when
they invented the feed-forward Multi-layer Perceptron (MLP) and a way to backpropagate weight
updates over multiple layers [3] [10]. The research also introduced a bias to the neurons as seen in
figure 2.1. Backpropagation was useful as it functioned as a form of gradient descent to minimize
the error of a network [11].

As time progressed and ANN’s became more complicated with more layers, the term deep learning
was introduced, along with the designation of Deep Neural Network (DNN)’s. These networks were
termed as such because they could derive features from the input images, and thus learn higher-
order correlations of the data, instead of just learning on the pure pixel values [3]. In the initial
structures which implemented this, several autoencoders, derived from MLP’s, could be stacked
together in such a manner that the output of the hidden layer from one autoencoder was connected
to the input of the hidden layer in the next. Many autoencoders can be stacked together, to form
a DNN of unsupervised networks. At the top of the network, we can add an MLP, which produces
the final classification.

After the resurgence of research into machine learning in the 1980’s [11], massive leaps have
been made in this field. Newer architectures achieve performance which the original perceptrons
could not even compare to [11]. However, that increase in capability usually come at the cost of
massively increased computational complexity, with many modern network architectures featuring
millions [12] or even more than a hundred million trainable parameters or weights [13] and millions
of multiplications and additions [13]. All of the excess computational costs meant more time spent
at every step of the way, from training to final classification.

2.1.2 One vs. Rest

As mentioned in the previous section, OVR style classification has mostly fallen out of favor for
multiclass use [2]. When OVR is implemented, it is usually by using more traditional binary
classifiers that support regularization. An example of this is the SVM. In our search for previous
work, we were not able to locate an example where someone had researched the application of an
OVR strategy using the more advanced neural network styles which are common today.

We looked at several SVM implementations of OVR and these seemed to perform very well or at
least comparable to some multiclass networks [2] [14] [15].

However, as we are not implementing SVM’s, the technical implementation of these solutions is of
less interest to us. What is interesting is that such a structure might be accurate at all, and it will
be up to us to investigate if this property can be transferred to more complex networks, and what
impact this will have on the classification accuracy and performance.

2.1.3 The Modern Era

Since the early days of machine learning a vast amount of progress has been made in the field,
and the complexity of di�erent strategies has increased immensely. We will look at a few of
the key innovations of modern machine learning, and these will be particularly relevant as these
architectures will also be used in our research. Most of these architectures are based on a form
of Convolutional Neural Network (CNN), an example of a simple CNN can be seen in figure 2.3.
Our networks usually consist of a considerable variety of convolutional layers (of di�erent types),
pooling layers, batch normalization layers and activation layers. Some will also feature fully-
connected layers (FC-layers) and simple linear layers. Before beginning this section, it would,

12

therefore, be prudent to have a quick summary of the di�erent layer types and what their purposes
are.

Figure 2.3: Illustration of a simplified CNN, with the di�erent layers labeled. 4

Linear Layer

Linear layers are the most straightforward layer style. They are also one of the most prominent
building blocks in modern neural networks [16], despite it being almost directly based on the
original single layer perceptron as discussed in section 2.1. The layer mainly consists of a single set
of basic neurons, which have a set of weights W, and linearly output a scaled multiplication of the
input [16]. Essentially, it is a matrix-vector operation [16]. We can interpret this to mean that a
linear layer is the mathematical operation seen in equation 2.1. Here, y is the output vector, W is
the weights of the layer, and x is the input vector.

y = xW (2.1)

The linear layer performs a simple operation, but a computationally costly one, as it requires
O(N2) operations to calculate the output [16].

Activation Layer

Activation layers are a bit more complicated to define, as there are dozens of activation choices
available. We will not delve into the di�erent activation functions here. However, the basic premise
is to introduce non-linearity into the network, by having layers of neurons which are either activated
or not activated, preferably by some non-linear function, depending on the input to the layer. Two
common examples of this are ReLU (Rectified Linear Units) and Sigmoid, which are both e�cient
activation functions [17]. The most common activation function in the tested architectures is
ReLU, which is an activation function defined as seen in equation 2.2.

f(x) = x+ = max(0, x) (2.2)

The output of the layer is the same as the input where the input is greater than 0. Otherwise, it is
zero. This is an e�cient operation as it is merely a comparison unless some form of approximation
is used [17].

4
From http://www.mdpi.com/2078-2489/7/4/61, CC BY 4.0

13

http://www.mdpi.com/2078-2489/7/4/61

Convolutional Layer

Convolutional layers are the core building block of many modern neural networks, especially those
used in image classification. Here, the primary purpose is to extract high-level features from the
image using convolution. This operation iterates over the original input using a moving window
or filter of a certain size. Typically the window could be a filter of size 5x5 or 3x3, which we can
refer to as size K ◊ K. To understand this operation, we can view an image as a matrix of binary
values of size N ◊ N . We then iterate our filter over our input image, which results in a convolved
output of size (N ≠ (K ≠ 1) ◊ N ≠ (K ≠ 1)).

Depthwise separable conventional blocks are standard in some modern architectures. These consist
of one depthwise convolutional layer and one pointwise convolutional layer [12]. First, the depthwise
convolution applies a single filter per channel of the input image, as discussed above. Then the
pointwise convolutional layer applies a simple 1x1 convolution to create a linear combination of the
outputs from the depthwise layer [12].

Pooling Layer

A pooling layer is often inserted between successive convolutional layers to reduce the spatial size
of the representation as we progress up the network. The purpose of this operation is to reduce the
number of parameters needed and thus the complexity of the network. There are di�erent types
of pooling, which employ di�erent strategies to reduce the spatial dimensions. We will not detail
them here, but the most important thing to note is the purpose of these layers, which is to reduce
computational complexity.

Batch Normalization Layer

These layers, simply put, increase the stability of the network. They do so by normalizing the
output of the previous layer and then subtracting the batch mean, followed by a division by the
batch standard deviation. Not all of our selected applications use batch normalization layers,
but they are interesting to note regardless as the operation they perform can be computationally
intensive.

Fully-connected Layer

Fully-connect layers are similar to the conventional layers we discussed in the section on neural
network history. They have connections to all of the previous layer’s outputs and all of the next
layers inputs (if applicable). Otherwise, if used at the top of a network, it will have N output
connections, where N is the desired number of classes. They are essentially the same as the output
layer of the MLP discussed earlier in this regard.

2.1.4 Applications

Since the early days of machine learning, many new and exciting architectures and designs have
been created. The designs have varying degrees of complexity, and the primary goal of the designers
has been to create networks that are exceedingly capable of learning more complex problems. In
our research, we will use a selection of these more modern applications, specifically ones that are
available in Keras. The following is a summary of these applications. To more easily visualize
the architectures described here, figures for each application are included in the appendix. Note
that we use the term applications here, as that is the term used by Keras [18]. Many would refer

14

to these as models or architectures. However, the term application is used as these models are
available from Keras with pre-trained weights.

VGG

Beginning with the oldest architecture tested, we reviewed the accompanying article for the
VGG16 and VGG19 architectures, titled Very Deep Convolutional Networks for Large-Scale Image
Recognition [13]. In this article, Karen Simonyan and Andrew Zisserman aim to improve the
classification accuracy of modern Convolutional networks (ConvNets) and investigate the e�ects of
network depth on classification accuracy.

The VGG architecture was established by pushing the network depth of a convolutional network
to 16-19 layers, leading to a substantial increase in the number of trainable weight layers. The
details regarding the network construction and what impact it has on classification accuracy and
resource usage are of particular interest to us. The article contains detailed information about the
number of parameters and the classification accuracy compared to previous networks architecture.

The article does not go into detail about processing performance. No details are presented regarding
frames processed per second or hardware resource usage. The technical details of the Keras
implementation are of interest to us in this section. We observe in table 3.4 that the VGG 16
implementation has over 138 million parameters with a depth of only 21. While the number of
parameters is not the only aspect that can a�ect the performance, it is a rather high number for
such a simple architecture. As we can see in the table, the two VGG architectures have the highest
parameter count of all the tested styles, despite having the lowest number of layers.

Inception v3

Although VGG is a capable architecture, there are some limitations associated with it, and it does
have a rather large number of trainable parameters. This lead to researchers desiring to make
networks which could more e�ciently use system resources, so that the resulting architectures
would be more suitable for mobile vision and big data scenarios. The Inception v3 architecture is
detailed in Rethinking the Inception Architecture for Computer Vision [19]. The application was
designed to classify the ImageNet dataset [20].

This innovation involved a transition from conventional feed-forward convolutional networks, to a
di�erent structure, which used so-called Inception modules. These modules can be seen as small
blocks of convolutional layers connected sequentially, and several of these sequential layer stacks
are connected in parallel using concatenation layers [19]. This comprises a single block, and these
blocks are connected in sequence, along with some conventional convolutional layers, and pooling
layers to form the complete architecture.

The primary claimed benefit here, compared to VGG, is lower computational cost [19]. It will be
interesting to see if this is reflected in our results. Inception v3 was also able to achieve a lower
error rate than VGG on the ILSVRC 2012 classification benchmark [19].

DenseNet

In Densely Connected Convolutional Networks [21], Huang et al. propose an alternative solution
which uses dense blocks. In these dense blocks, each layer is connected to all subsequent layers; this
exploits the potential of a network through feature reuse [21]. The dense blocks are then connected
sequentially using convolutional and pooling layers. It is similar to the approach used by residual
networks. However, this approach should be more e�cient [21].

15

The DenseNet article does not o�er a good comparison to what sort of classification accuracy
we can expect compared to Inception V3 or VGG applications, but it does contain claims that
DenseNets are less prone to over-fitting than ResNets [21].

Xception

After the original Inception block structures were described and their performance analyzed, several
researchers endeavored to improve their results. On such implementation was Xception: Deep
Learning with Depthwise Separable Convolutions [20]. It uses a very similar structure to Inception
v3, but it also incorporates depthwise separable convolutional operations. Although exactly what
e�ect this has on the network complexity is outside the scope of our research, the network style is
claimed to o�er higher accuracy and lower loss on several key datasets. Interestingly, the researchers
also speculated that Inception v3 might tend to over-fit on the ImageNet dataset, whereas Xception
would not [20].

Inception ResNet v2

In another attempt to improve the performance of Inception blocks by including feature reuse,
Szegedy et al. have designed a residual version of the Inception block in Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning [22]. The blocks are used to build
a complete network, which is designed to be similar in computational cost to the Inception v4
network [22]. However, Inception v4 will not be tested in our research.

In this Residual Network or ResNet (RN) version of Inception, the researchers reported lower error
rates on the ILSVRC 2012 dataset than Inception v3 and Inception v4. [22].

Mobilenet

The previous applications we have discussed have increased the complexity of the networks
gradually increasing, having more and more mathematical operations from the bottom of the
network to the top. MobileNet, detailed in MobileNets: E�cient Convolutional Neural Networks for
Mobile Vision Applications [12], was designed to be e�cient on low power hardware, presumably for
mobile applications, and as such is much less complex. The layers are arranged in a purely sequential
manner but, in contrast with for example VGG, it features depthwise separable convolutional layers.
This allows approximately 1/10th the amount of Multiply-accumulate operations5 of Inception v3
and 1/30th the amount VGG 16 has [12]. Optimizing in that manner should allow for much better
performance on low power hardware.

NASNet

Our final applications are both based on the NASNet (Neural Architecture Search Net) structures.
In Learning Transferable Architectures for Scalable Image Recognition [23] Zoph et al. propose
an innovative way to optimize neural network architecture. In the previous examples, the search
for a suitable architecture is performed on the dataset which one wants to classify. For example,
Inception v3 was built to be the best possible classifier for ImageNet. However, this can be resource
intensive and extremely time-consuming. Thus, it would be practical to be able to optimize our
architecture on a smaller, less computationally intensive, dataset and then transfer this architecture
to our main classification problem and dataset. The NASNet researchers’ experiments are based

5
By multiply-accumulate operation, we mean the common operation that calculates the product of two numbers

and adds the result to an accumulator.

16

on using the CIFAR-10 dataset to optimize the network structure, and then transfer this structure
to the ImageNet dataset [23].

NASNet-A (6 @ 4032), or NASNet Large as it is referred to by Keras and in our research, was able
to achieve better results than Inception v3, Inception ResNet v2 and Xception on the ImageNet
dataset. NASNet-A (4 @ 1056), or NASNet Mobile in our research, achieved results which were
only slightly weaker, but with far fewer multiply-accumulate operations than those mentioned [23].

2.1.5 TensorFlow and Keras

Manually implementing many of described network structures and applications manually is complex
and time-consuming. Luckily, several libraries and packages can create layers of neurons and
connect them based on our input. One such library is TensorFlow, which was developed by the
Google Brain team in 2015 to allow many machine learning algorithms to be represented as stateful
dataflow graphs [24]. Data in the graph is represented as so-called tensors, which in the case of
image classification are data structures of the format NHWC or NCHW. Here N is the number of
images in a batch, H is the height of an image, W is the width of an image and C is the number of
channels in the image, for example, three channels in the case of an RGB image [24]. The di�erence
between NHWC and NCHW is merely the ordering of the dimensions.

Tensors are then fed through the network, where they are dimensionally altered depending on what
type of operation the current layer does, but the format remains the same, i.e., although H, W,
and C might change, the ordering will remain either NHWC or NCHW respectively. This tensor
implementation makes it simpler to feed data through the network and keep track of the alterations
in spatial size with using, for example, convolutional layers.

When it comes to calculations, TensorFlow can perform most of the calculation on the GPU, and
as GPU’s today usually have a tremendous number of cores, it allows for e�cient performance of
highly parallelizable tasks [24].

TensorFlow also has some pre-implemented layers that can be called and created with the desired
dimensions, meaning that it is easy to create a stack of layers, and in turn create complex neural
networks without having to program all of the layer functions and data structures ourselves.
However, TensorFlow has some operations that are di�cult to understand intuitively. Thankfully,
Keras has been developed which allows us to import completed applications easily and quickly in a
way that is easier to understand than TensorFlow [25] [26]. This is especially useful in our case as
the primary focus of our research is to examine the di�erence between OVR and multiclass styles,
not on the low-level implementation of each application.

2.1.6 Transfer Learning

Training a complex neural network structure such as those we will be examining can be extremely
time-consuming at first, as we would usually begin with all of our weights randomly initialized.
As there can be millions of weights to adjust and incredibly complex features in many image
classification problems, it comes as no surprise that adjusting all of these weights from scratch takes
time and system resources, especially as the number of multiply-accumulate operations increase
into the billions [12].

It would, therefore, be practical if we did not have to train the network from scratch but instead
could use the weights of an already trained network for a new problem by adjusting them. That way
base image features which the network has already learned could be applied to the new problem.
This would be especially useful if we do not have much training and testing data for our new
problem [27].

17

In our research, we applied a transfer learning function which used networks previously trained on
the ImageNet dataset. The ImageNet dataset or database is a large set of over 14 million images
classified into over 20 thousand classes [28]. This means that during the di�erent phases of our
research we will be adjusting these previously trained networks to suit our chosen dataset. To
complete our research, we must design and implement a piece of software which will create neural
networks and take them through several key phases.

Building the network

Due to the particular nature of our transfer learning implementation, our phases of use are di�erent
from how things might conventionally be done. It would, therefore, be helpful to describe exactly
how these phases will progress in our case. Initially, the networks will be initialized with fully
trained weights, with the except final output layers of the network. These layers are also known as
the top layers, and will not be included from the Keras implementation. This means that the last
included layer from the Keras implementation will vary between the applications. For example,
in the case of NASNet Mobile, the last included layer of the Keras implementation will be an
activation layer with 7 ◊ 7 ◊ 1056 outputs. We will then attach our top layers which conform to
our desired number of output classes. Essentially, in the OVR layout, each class’s network will first
have one global average 2D pooling layer on the output of the pre-trained network. This operation
will reduce the 4D tensors into a 2D output, which no longer has separate spatial data. Then a
fully-connected layer will be added on top, which will further reduce the output into our desired
number of classes. This will give us the final output prediction values.

Training

During the initial training, all layers except our top two added layers will be frozen, meaning that
the imported ImageNet weights will be untrainable during this phase and we will only be training
our final two layers. Freezing the layers limits how accurate the network can become, but will
also allow us to achieve a basic amount of accuracy while substantially reducing the amount of
hardware resources needed to train, as the weight calculation functions will not have to be run for
the pre-trained network. During training itself, first training data will be propagated through the
network. Then, during the backpropagation phase, the outputs of the network and the true classes
of the training data will be run through a loss function. This loss or error is then used to update
the weights, starting from the output, down the network until the input is reached or until the
layers are no longer trainable. The process is done using an optimization algorithm, which seeks
to optimize the loss (i.e., reduce it), and updates the weights of each neuron based on how much
it contributed to the outcome. Please note that this is an elementary explanation, but the fine
technical details are not the main focus of our research.

Fine-tuning

In the second phase of training, what we describe as fine-tuning, a large number of the weights of
the imported network are unfrozen, typically a few blocks or a certain number of layers at the top
of the network. This allows several more of the weights to be adjusted by the optimizer during
training. Furthermore, it means that the network can learn more specific features of the training
data but at the cost of increased computational intensity and resource use. We might also adjust
the learning rate of the optimizer during this phase to reflect the change in the number of trainable
parameters.

18

Testing

The final phase of use for our networks, testing, involved test images being quickly fed through
the network and predictions stored for each image. As there is no loss or optimization function
involved here, this phase is usually able to process images much more quickly than the training
phases.

2.2 Resource Use

During all phases of network use, TensorFlow makes extensive use of the CPU, GPU and main
system memory (Random Access Memory (RAM)) [24]. Although most of the actual computation
happens on the GPU [24], how much of the CPU and memory resources are used is essential to
know in the present study. As we are comparing two styles of classification which might have
wildly di�erent complexities, we should expect our resource use to increase, at least during the
final classification when several networks are being used simultaneously.

The monitoring and evaluation of the resource use is essential because we are seldom blessed with
an infinite amount of computational resources during actual use of a classification system. Besides,
high power hardware can be prohibitively expensive, di�cult to set up and use, and not always be
available. Resource should also have a significant e�ect on the amount of time spent in all phases
throughout use. Amid the training phases, high resource use might mean that we are unable to
experiment as much as we would like with application and hyperparameter selection. Throughout
testing, this might mean that the network is unable to classify images in a reasonable amount of
time.

2.2.1 CPU

Several important operations during training and testing are performed mainly on the CPU, so the
CPU usage is these phases is an important part of the performance of the network. For example, all
the base Python code, along with the python interpreter itself run on the CPU. Also, TensorFlow
uses the CPU to transfer data into and out of the GPU, and thus into and out of the main system
memory. This is important as during training weights and gradients will be transferred back an
forth by the CPU. One interesting thing to note here is that Python has a Global Interpreter
Lock, meaning that the Python interpreter will run only one piece of code at a time. This will be
important for us to consider when designing and building our testbench. Most of the more di�cult
calculations, however, are performed in the GPU.

2.2.2 GPU

During training and testing, the GPU is heavily used by TensorFlow [24]. This means that during
all phases of our testing, to gain an understanding of the performance impact the OVR structure
has, we should examine the GPU usage at the same time. It may be that some applications
lend themselves better to the OVR structure than others, especially in the case of testing. During
testing, networks will have to be run in parallel, and perhaps data from the networks be transferred
to and from the GPU.

As GPUs are complicated devices, there are several areas of interest when it comes to their use. To
begin with, we would want to monitor the volatile GPU core usage; this will likely be an important
metric as it gives us an idea of how computationally complex our applications and styles are. We
might also want to monitor the raw power draw of the GPU, which should also give us a similar idea
of the computational complexity of our problem and how much of the GPU’s resources are being

19

used by changing hardware states within the GPU. Although we will not perform an incredibly
complex analysis of how TensorFlow uses the GPU, it will still be interesting to see the di�erences
between the OVR and multiclass styles in this regard.

Contexts

We would, of course, prefer to be able to run the networks in parallel on the GPU in the testing
phase, as this is potentially the most critical time for performance. We want the networks to
produce results promptly. Unfortunately, it seems that the contexts used by CUDA prevent more
than one instance from sequestering GPU resources simultaneously [29]. This limitation might be
problematic for parallelization. Thus it would be interesting for us to see if it indeed is the case
during testing.

2.3 Medical Uses and Kvasir

Medical science is one of the more promising uses for machine learning; ranging from using machine
learning to identify statistical patterns in patient outcomes, to our use case, which is using machine
learning methods for medical image classification as in the present study. Specifically, we are
interested in the form of CAD where the computer can assist the medical practitioner in detecting,
classifying, and diagnosing medical issues which may be present in images.

There are many types of CAD, and for several forms, the stakes can be high, as early detection can
be a crucial factor for patient outcomes in many diseases. Such a system can be useful and alert the
doctor if it detects an anomaly or recognizes a medical issue [30]. In particular, we are interested
in forms of CAD which are primarily an exercise in image classification and feature detection. Due
to the extensive focus on image classification in modern machine learning, we can perhaps create
systems that can assist the practitioner.

One of the potential applications for a medical image classifier is assisting doctors with identifying
anomalies in the digestive system. Anomalies can be critical to identify, as many serious diseases
and issues can manifest themselves in the digestive system, and can have consequences ranging
from a severe decrease in life quality to death. Colorectal cancer (CRC), esophageal and stomach
cancers, for example, account for over 2.8 million new cases each year. The cancers can have quite
poor outcomes, as they result in over 1.8 million deaths per year [31]. For cancers of the digestive
system, early detection and treatment can be vital when it comes to having a good patient outcome.

With this in mind, we wanted to select a dataset which presented a useful real-world scenario for
our approach, and one which could perhaps be used to improve the outcomes in the previously
discussed scenarios. In KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal
Disease Detection [32] , Pogorelov et al. present a dataset called Kvasir which contains thousands
of classified frames from colonoscopy videos. This dataset is an improvement over the previously
available data in the field [32].

Also, the dataset has related research which provides us with exciting findings we can compare our
final results with, to evaluate how our classifiers might function in a clinical setting [33] [34] [35].

With these ideas in mind, selected the Kvasir dataset for our experiments.

2.4 Summary

In this chapter, we have provided an introduction to many of the basic concepts and tools used in our
research. We looked at the historical path machine learning has taken, and why re-examining OVR

20

style networks in a modern context might be an interesting research opportunity. In particular,
we can note that no previous research that we could find has attempted to use the OVR technique
with modern neural network architectures. We have provided a breakdown of the various modern
architectures we will examine in our comparisons, and why they represent a good selection of the
current cutting edge of machine learning.

We discussed the di�erent hardware resources involved and why they are essential for us to monitor
in our experiments. These will provide us with an excellent basis to determine how e�cient or
ine�cient our solutions are. These metrics are especially crucial for the performance aspect of our
research questions. Finally, we outlined the main classification problem we will be examining and
why this classification problem is of particular importance.

However, to answer our central research questions, we will require more information and a
comprehensive selection of experiments. The experiments will provide us with the data we need
to answer our questions. In the next chapter, we will detail a testing framework which will give us
the basis to answer our research questions.

21

22

Part II

Implementation and Discussion

23

Chapter 3

Tools and Implementation

In this chapter, we will outline the details of our implementation and research methods. Of
particular note here is the design and creation of TFmetrics, our research framework. We have
decided to examine our hypothesis using 11 neural network applications, which means that to train
and test all of these, we will need to train 99 networks in total, test them and log metrics about
them. Given that it can take up to 29 hours to train a single network as we have configured
them, it would not have been possible without our framework as it would have been too time-
consuming otherwise. Also, we will detail all the metrics we have logged during the experiments,
which external frameworks we have used and critical specifications about our chose applications.
The following sections will outline exactly how we planned to answer our research questions.

25

3.1 Test Systems

To run the necessary experiments, we required a few main resources. First, we required a physical
system to run the experiments on, and secondly, we required a software framework which would
create the neural networks and run them. In the following section, we will provide details about
the hardware and software used.

3.1.1 System Specifications

We used a system configured with a single GPU as detailed in table 3.1. At the time of writing, this
system was the most appropriate system available for our use. The system should be capable of
adequate performance for our use, in addition to being representative of modern high-performance
hardware. Importantly our GPU had a cuDNN compute compatibility of 6.1 [36], which was the
highest available at the time of writing for a consumer GPU. Note that the system is only equipped
with a single GPU, while TensorFlow is built to optimize use on several GPUs in parallel [24].

Component Model Specifications

CPU Intel i5-45906
Logical Cores: 4
Clock speed: 3.3GHz (3.7 GHz max)
Thermal Design Power (TDP): 84W

GPU NVIDIA GTX 1080 Ti7

CUDA®Cores: 3584
Boost clock speed: 1.582GHz
TDP: 250W
Memory: 11 GB GDDR5X
Memory speed: 11 Gbps

System memory N/A 16GB DDR3

Table 3.1: A list of the major system components

6 https://ark.intel.com/products/80815/Intel-Core-i5-4590-Processor-6M-Cache-up-to-3_70-GHz
7 https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/

26

https://ark.intel.com/products/80815/Intel-Core-i5-4590-Processor-6M-Cache-up-to-3_70-GHz
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/

3.1.2 Frameworks and Packages

Many frameworks and packages enabled us to complete our research. An overview of the most
relevant ones can be seen in table 3.2. We make extra note of the version numbers as the
resource usage characteristics might change during development, so all metrics are provided as
the frameworks stood at the time of writing.

Package name Version Source
Ubuntu 16.04.2 LTS Server Canonical Ltd.8

TFmetrics 0.0.1 Github9

Keras 2.1.5 Github (Fork)10

CUDA Toolkit 9.0 Nvidia Corp.11

Nvidia Driver 390.30 Nvidia Corp.12

Python 3.5.2 apt-get
nvidia-ml-py3 7.352.0 pip
tensorflow-gpu 1.5 pip
psutil 5.4.3 pip
scikit-learn 0.19.1 pip
scikit-plot 0.3.4 pip
numpy 1.14.2 pip
scipy 1.0.1 pip
opencv-python 3.4.0.12 pip
matplotlib 2.1.2 pip
graphviz 0.8.2 apt-get
pydot 1.2.4 pip
seaborn 0.8.1 pip

Table 3.2: A list of the frameworks and packages used in this thesis, along with their respective
version numbers.

TFmetrics

TFmetrics is a framework we developed to encapsulate Keras instances and compile metrics about
their performance. Keras itself is explained in more detail in section 3.5. Our framework was
created with the intention of being able to e�ciently run many experiments sequentially, including
all phases of network use. Also, the framework can log the metrics which are specified more closely
in this section.

The motivation for creating our framework was primarily to make it easier to run the number of
8https://www.ubuntu.com/download/desktop
9https://github.com/Berstad/TFmetrics

10https://github.com/Berstad/keras
11https://developer.nvidia.com/cuda-downloads
12https://www.nvidia.com/Download/index.aspx

27

https://www.ubuntu.com/download/desktop
https://github.com/Berstad/TFmetrics
https://github.com/Berstad/keras
https://developer.nvidia.com/cuda-downloads
https://www.nvidia.com/Download/index.aspx

experiments required, and to create a piece of software that could set up and use several networks
in an OVR configuration, as no such software currently exists to our knowledge. As training and
testing these networks can be extremely time-consuming, we wanted to develop a system which
could read a list of desired jobs as inputs and process these automatically in succession without
additional input from the user.

This system was important because we would be training, fine-tuning and testing a total of 99
neural networks, in addition to running 11 tests of the OVR networks running simultaneously in
the networks parallel. We also wanted to be able to run tests using several di�erent combinations of
hyperparameters without having to start and configure the networks each time manually. Therefore
we desired a software suite which could perform the following actions without intervention from
the user:

• Read and interpret jobs from some form of an input file.

• Set up the specified applications in Keras using the specified hyperparameters.

• Perform the action specified in the job file, which could, for example, be to run all phases of
the network or to load previous weights and only perform testing.

• While performing these actions, log hardware metrics as specified in the job file. The metrics
are detailed in section 3.6.

• Log any applicable network metrics, for example, accuracy during training.

• During testing, calculate accuracy metrics as defined in section 3.4.1.

• Store all metrics collected during all phases in appropriate formats, and automatically
generate metric plots and figures if it is specified in the job file.

With TFmetrics, we have achieved most of the design goals. Based solely on JavaScript Object
Notation (JSON) standard parameter files, the framework creates, trains, fine-tunes, tests and
generates metrics for the specified network. The framework supports all available architectures in
Keras, in addition to all available optimizers. The metrics are logged in separate threads using the
threading module, with each metric type having its own thread. The project ended up having 2812
lines of code and required a fork of a few external repositories to provide the desired functionality.

In the future, we plan to develop the framework further so that it can run as a server and save all
metrics and data to a database. This change would allow a client to connect to the server, select
di�erent network parameters to test and then do so. Also, the user should be able to monitor
whichever metrics they like in approximately real-time. We would also like to create a graphical
client for the project, similar to Tensorboard, but more specific to our use-case. Eventually, we
hope to develop the framework to use other learning methods than transfer learning and to support
custom network structures.

Plotting and Visualization

Mostly, all plots are generated using matplotlib with a custom library to translate stored metric
history into coherent plots. The only exception is the model visualization, which is generated by
Keras’ model visualizer, which has been forked and modified by us to include layer numbers for all
layers. It made it easier to visualize the networks and select layers to freeze during fine-tuning.

Some plots are generated using Seaborn, including most statistical plots such as bar plots, violin
plots, and box plots. The plots enable us to visualize the e�ects of the OVR style networks have
had on performance.

28

3.2 Dataset

3.2.1 Selecting a Dataset

As detailed in section 2.3 we have selected the Kvasir v2 dataset to perform our tests. We chose
this dataset as the supervisors and group have extensive experience using this dataset, and have
previously assembled a selection of classification results [32] which we can compare with our results.
We selected this dataset because of its medical potential, and because relevant research on this
dataset includes classification results that we can compare with our own.

The Kvasir v2 dataset consists of 8000 images, which belong to 8 classes showing anatomical
landmarks and pathological findings of endoscopic procedures in the GI tract [32]. The classes are
balanced, i.e., there are 1000 images per class. The encoding settings of the images vary across the
dataset, which reflects the a priori unknown endoscopic equipment settings [32]. Sample images
of each of the classes can be seen in figure 3.1.

(a) Class 0: Dyed lif-
ted polyps

(b) Class 1: Dyed re-
section margins class

(c) Class 2: Eso-
phagitis

(d) Class 3: Normal
cecum

(e) Class 4: Normal
pylorus

(f) Class 5: Normal Z-
line

(g) Class 6: Polyps (h) Class 7: Ulcerative
colitis

Figure 3.1: Example images from the Kvasir v2 dataset.

3.2.2 Dividing the Data

Marsland outlines the need for separate testing and validation sets, and for example, using some
form of K-fold Cross-Validation to avoid overfitting [3]. We have decided, based on this information,
to use separate validation and test sets. We have 8000 total images, as discussed in the previous
section. We chose to divide the images into three sets using a seeded random process, which creates
symlinks to existing data in a pseudorandom manner. The first set, the training set, is used for
training directly. The second set, the validation set, is used for the validation phase of training,
where the validation accuracy is calculated and is primarily used for our early-stopping function.
Finally, we have the test set, which is not used for training at all and is not seen by the network
until the final testing phase. This process uses numpy’s random selection. We selected a 50-25-25
split, as suggested by Marsland [3]. Thus, we have 4000 training images, 2000 validation images,
and 2000 test images. The images are selected proportionally per class, i.e., each set will have the
same number of images for each class.

The same images are used to train, validate, and test both the multiclass and binary networks.
Although Kvasir is a rather small dataset, we felt it would still be prudent to have a test set.

29

3.3 Overall Structure

In section 1.2, we outlined our fundamental research question: Will the OVR multi-network style
o�er comparable results to the single-network multiclass style? We must now define basic network
structures that can be used to evaluate and potentially answer this question. Because we have
chosen to use pre-defined network topologies, which we detail in section 3.5.1, the multiclass
network structure is simplified. We can use the automatically generated structures from Keras
for both the multiclass and binary structures. In principle, we are using the same architectures
for both our binary and multiclass classification, but for the binary case, we are merely using two
classes, positive and negative. Our segmentation of the data means that we are training 8 OVR
classifiers on all of the training data.

3.4 Classification Performance Metrics

We used several metrics, as outlined by Marsland [3], as inspiration to define our final metric list,
seen in section 3.4.1. Also, Marsland gives examples of how the divide data and evaluate a classifier
on this data in a way that can give us an idea of how generalized the performance of the network
is [3].

A systematic analysis of performance measures for classification tasks [37] was used for inspiration.
Ultimately several metrics from both sources were used, although with a slight modification to the
metrics from the latter paper, as we have chosen to use macro-averages for all metrics.

3.4.1 Post-selection Accuracy

In the pursuit of properly assessing the final classification performance of both the binary and
multiclass networks, we chose a selection of metrics which together create a decent summary.
Some of these metrics are better for assessing the performance of multiclass networks, and some
are better for binary problems. If we look at the multiclass problem as a series of binary problems
both styles can be helpful. The metrics are primarily based on Marsland’s book [3].

• True Positive (TP):
TP is the number of correctly identified samples or the number of frames with a
specific endoscopic finding which are correctly identified as a frame with that endoscopic
finding [32] [3].

• True Negative (TN):
TN is the number of correctly identified negative samples or the number of frames without a
specific endoscopic finding which are correctly identified as a frame without that endoscopic
finding [32] [3].

• False Positive (FP):
Here we have the number of positively identified samples for a specific class which were, in
fact, negative, commonly called a "false alarm" [32] [3].

• False Negative (FN):
FN is the number of negatively identified samples for a specific class which were, in fact,
positive [32] [3]. This metric can be critical in a medical setting, where a false negative can
lead to undiscovered issues.

• Recall (REC):
Recall is frequently called sensitivity, the probability of detection and True Positive Rate

30

(TPR). It is the ratio of samples that are correctly identified as positive to the total number
of positive samples [32] [3]:

REC =
TP

TP + FN
(3.1)

• Precision (PREC):
Precision is frequently called the positive predictive value. It is the ratio of correctly identified
positive samples to the total amount of positively identified samples [32] [3]:

PREC =
TP

TP + FP
(3.2)

• Specificity (SPEC):
Specificity is frequently called the True Negative Rate (TNR), and shows the ratio of correctly
identified negative samples to the total amount of negative frames [32] [3]:

SPEC =
TN

TN + FP
(3.3)

• Accuracy (ACC):
Accuracy is the the percentage/ratio of correctly identified true and false samples [32] [3]:

ACC =
TP + FP

TP + FP + TN + FN
(3.4)

• MCC:
MCC takes into account true and false positives and negatives. It is especially useful for us
in the binary case because of the unbalanced dataset [32] [3]:

MCC =
TP ◊ TN ≠ FP ◊ FN

Ò
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.5)

• F1 score (F1):
The F1 score is the harmonic mean of the precision and recall. It is a useful metric for
combining the precision and recall scores [32] [3]:

F1 =
2TP

2TP + FP + FN
(3.6)

• We also calculated classification loss on validation and training sets (loss) as defined by the
selected loss function. The figures will show us the progression of the loss and accuracy
during training, at the end of each epoch. It gives us a good idea of the e�ciency of our
hyperparameter selection.

• Also, we generate confusion matrices on test set [3]. The figures show us how often each
class was confused for another, but plotting the network’s predictions on the test set in a
matrix where the rows represent the true class labels, and the columns represent the output
predictions for the network. An example of this can be seen in figure 3.2 The confusion
matrix, compared with all the other metrics we have chosen, will give us a good idea of which
classes the classifiers struggle with the most.

• Frames Per Second:
How many frames of test data the network is able to predict per second. The metric is
measured using the Keras predict method.

31

Figure 3.2: Example confusion matrix for Inception-ResNet-v2, multiclass, generated by Scikit-
plots.

3.4.2 Averaging

In the following sections, two di�erent methods of averaging will be discussed. The two methods
are important in di�erent ways: macro-averaging is useful when the classes are balanced as it treats
all classes in the same way, while micro-averaging, on the other hand, is useful when the classes
are unbalanced.

• Micro-average:
In order to calculate an average score, curve or metric, we add up the base scores:

q
n

i=1 TP
i

= TP
totalq

n

i=1 TN
i

= TN
totalq

n

i=1 FP
i

= FP
totalq

n

i=1 FN
i

= FN
total

Where n is the number of classes, and the base numbers are as defined in 3.4.1. We then
place these sums in the formula instead of the original sums, so the micro-averaged F1 score
would become:

F1
micro≠avg

=
2TP

total

2TP
total

+ FP
total

+ FN
total

(3.7)

• Macro-average:
Macro-averaging is a more conventional averaging strategy, basically we sum the individual
scores and divide the number of classes, r.g. for F1 this would be.

F1
macro≠avg

=
F11 + F12 . . . F1n

n
(3.8)

The metrics mentioned in section 3.4.1 are then macro-averaged for each class, for both the OVR
networks and the multiclass network. Macro-averaging was deemed acceptable because our classes
are balanced for the test data.

3.4.3 Pre-selection Accuracy

To evaluate the performance of our networks regardless of which strategy we use to select the
output class, we can use metrics which directly utilize the prediction probabilities. For example,

32

if we were to select a threshold strategy for our final classification, we would like to be able to
compare the network probabilities directly, without choosing a threshold.

• Receiver Operating Characteristic (ROC) curves:
A receiver operating characteristic curve, an example of which can be seen in figure 3.4, is a
two-dimensional plot that plots the TPF against the FPF [38]. The formula for these ratios
can be seen in equation 3.3. This plot allows us to get a good idea of what the accuracy would

TPF = TPR = REC =
TP

TP + FN
(3.9)

FPF = 1 ≠ SPEC (3.10)

Figure 3.3: Equations for the TPF and FPF. For an explanation of TP, RN, REC, and SPEC, see
section 3.4.1

be with a specific threshold (or operating point) selection [38]. Each ROC figure contains the
following curves:

– Per class ROC:
One curve is included per class, along with the accompanying Area Under the Receiver
Operating Characteristic curve, aka. AUC-ROC (AUROC).

– Micro-average ROC:
The average ROC curve for all classes using the micro-averaging method.

– Macro-average ROC:
The average ROC curve for all classes using the macro-averaging method.

The AUROC is included for each class, and for the micro and macro averages. In general,
we wish to maximize the AUROC.

• Precision-Recall (PR) curves:
As each curve for each class of the ROC curves can be interpreted as the curve for a separate
binary classifier, the curves will often not tell the whole story. This is especially true when
the dataset is skewed [39], which it is in our case as we have, for each class, eight times more
negative samples than positive ones. It would be useful for us to have another plot which
could show the relationship between the precision and recall for any given threshold, i.e., the
Precision-Recall. Each PR figure contains the following curves:

– Per class PR:
One curve is included per class, along with the accompanying Area Under the Curve
(AUC).

– Micro-average PR:
The average PR curve for all classes using the micro-averaging method.

There can be large di�erences between the apparent performance on the PR and ROC
curves [40]. An example of this can be seen in figure 3.4, where the ROC curves appear
to be acceptable, with AUROC scores over 0.9 for all classes. However, the PR curves tell a
di�erent story. Here the goal is for each curve to be as close to the upper right-hand corner as
possible, and we can see that the curves for class 0,2 and 5 are much worse than the others,
lowering the average curve and the micro-average AUC. This is not easy to see on the ROC
figure, where the AUROC for these classes seems to be only marginally less than for all other
classes.

33

(a) Multiclass ROC curves (b) Multiclass PR curves

Figure 3.4: Example Receiver Operating Characteristic and Precision-Recall curves for Inception-
ResNet-v2, multiclass, generated by Scikit-plots.

3.4.4 Metric Goals

As our trained networks have the potential for use in a clinical setting [32], it will be helpful for
us to define a threshold for all, or at least several, of our metrics that show us if the resulting
classification is suitable for diagnostic work. The threshold for when a network becomes a good
classifier is di�cult to define exactly, as these thresholds vary based on the data in question and
the application. As our dataset is used in a medical setting, some metrics might be more important
than others, particularly metrics that place a high value on avoiding false negatives. Metrics where
false negatives heavily reduce the score would be more suitable to optimize.

One such metric is recall or sensitivity, as discussed in section 3.4.1. Research suggests that a
reasonable threshold, for a network to be used for diagnostic purposes, is for recall to be greater
than 0.85 [41]. The same research also suggests that the specificity should be higher than 0.85.
Based on this, when evaluating our results, we will look for values higher than these thresholds for
recall and specificity. We should also aim to have F1 and MCC scores which are as high as possible;
these metrics are commonly used in machine learning to determine the quality of classification [37].

Besides, we have set a goal that our networks should be able to process data in real-time. This
means that they should be able to process frames at least as quickly as the equipment can produce
them. After searching for several di�erent makes and models of endoscopic equipment, we found
that the number of frames per second varied considerably. Some wireless pill-type cameras produced
as little as 3 Frames Per Second (FPS) [42], whereas high-end wired equipment produced up to 60
FPS [43]. It appeared to us that the higher frame rate was a selling point for many of the high-end
cameras and that this might be a trend towards the future. Some of the cameras also featured a
30 FPS output [44], so we have set this as the minimum goal.

For the other metrics, we decided to compare our results to those found in the original paper for the
Kvasir dataset, and aim to achieve better, or at least as good, results [32]. With these specifications
in mind, we have set ourselves the goals seen in table 3.3 for metrics and processing performance.

We have not set any specific goals for the AUC and AUROC, as there was little research available
for comparison. It would be interesting for future researchers to examine the relationship between
the ROC and PR curves and the diagnostic suitability of a method.

34

Metric Minimum diagnostic Desired
Recall 0.85 [41] >0.85
Precision N/A >0.748 [32]
Specificity 0.85 [41] >0.964 [32]
Accuracy N/A >0.959 [32]
MCC N/A >0.711 [32]
F1 N/A >0.747 [32]
FPS 30 [44] 60 [43]

Table 3.3: A list of our major metrics and our desired values.

3.4.5 Selection Method

There were many potential methods available to us when we were looking for an appropriate way to
select our output class from the ensemble of OVR classifiers. We reviewed several of these methods,
however with the inclusion of the ROC and PR curves in our report, we determined it would be
prudent to select the most straightforward method. This was done both to save time and to avoid
introducing errors/bias into the statistical analysis.

The challenge here is that while the multiclass networks output a probability vector of length n,
where n is the number of classes, the binary classifiers each output a probability vector of length
2, one probability for negative and one probability for positive.

Considered methods

• We considered thresholding of the outputs for both the binary and multiclass classifiers. In
this case, thresholding would mean that any positive output more than our set threshold
would be labeled as true, and any below it would be labeled as false. The method seems
interesting, but the tuning of the threshold would be challenging and time-consuming and
was thus decided to be beyond the scope of this thesis.

• We also considered training a "top" network on the outputs of the binary networks, which
itself would provide the same type of output as the multiclass network. Again, this would be
an interesting experiment, but we decided not to pursue this.

Selected Method

In the current study, we decided to select an output, after discussion with the Media Processing
Group at Simula Research Laboratory, by selecting the binary network that had the highest positive
probability output. To do this, we combine all positive probabilities of the binary networks into a
vector and select the maximum value along that vector as our output class. This strategy seems
to be common in OVR classification [2] [45].

3.5 Main Machine Learning Framework

To answer our research questions in an e�cient and surmountable manner, we required a suitable
framework to build our networks and run them. We decided that it would be best to select a
framework which allowed ease of use and with which we were already familiar. As it would be
impractical to implement our framework during the allotted time for a short thesis, Keras seemed
to be a promising alternative. Keras o�ers several benefits when it comes to straightforwardly

35

implementing machine learning algorithms. Keras is a model-level library that can use several
backends [18].

For several reasons, it seemed appropriate to use Tensorflow GPU as a backend; the backend was
already familiar to us and should o�er acceptable performance on our hardware, using a general-
purpose GPU [24]. In addition to the ease of using di�erent backends, Keras has several built-in
network structures and applications. Our thinking was that using several of these applications
would o�er more opportunities for comparison of results, and it would not be very time consuming
to implement. Thus, a selection of the available applications was chosen, as detailed below.

Unfortunately, Tensorflow is not the fastest machine learning library available, so in future research,
it might be prudent to use di�erent libraries and re-examine the results [46].

3.5.1 Applications

In table 3.4 we have compiled a summary of the chosen applications, detailing the amount of
parameters, the number of layers, the depth and the size on disk of each application. There is a large
variety of complexities and network sizes. Interestingly, this shows us one of the first issues with
a binary implementation, which requires one fully trained model per class. The number of classes
and network size means that, in the case of NASNet Large, we will end up with approximately 8
GB of applications. These models must be stored on the disk and, perhaps even more importantly,
must be loaded into video memory during normal operation/classification. The large size of these
models will pose a challenge on systems where video memory is limited.

Also, model visualizations for several of the models used have been provided in the appendix in
section A.1.13 These visualizations, generated as outlined in table 3.2, give us an insight into
several of the network structures and the balancing which has gone on between network depth and
network width. It also shows us how the networks are structured including residual connections,
parallel blocks/layers and so on. Also, these visualizations a�ord us the ability to envision the size
and complexity of each structure more intuitively.

Network Parameters (millions) Depth Number of Layers Size on disk
VGG16 138.35 [18] 21 21 115.6MB
VGG19 143.6 [18] 24 24 155.7MB
Inception v3 23.85 [18] 159 313 177.1MB
DenseNet 121 8 [18] 121 428 81.3MB
DenseNet 169 14.3 [18] 169 596 69MB
DenseNet 201 20.242 [18] 201 708 94.4MB
Xception 22.9 [18] 126 134 121.9MB
Inception RN v2 55.87 [18] 572 782 261.3MB
MobileNet 4.25 [18] 88 98 32.4MB
NASNet Large 88.9 [23] 768 1021 1002MB
NASNet Mobile 5.3 [23] 384 751 54.8MB

Table 3.4: A list of the chosen applications with specifications, depth and layers adjusted to match
our actual implementation. Size is based on the size of trained models.

3.5.2 Transfer Learning

Keras o�ers us the ability to import networks with pre-trained weights, i.e., an easy way to
implement transfer learning. We decided to use this ability, and as our problem is an excellent

13
Some of these visualizations have been truncated/edited so that they will be easier to include in this document.

36

example of image classification based on features we decided to use networks which were already
trained on the ImageNet dataset, as these were available. This should allow us to train our networks
much more quickly and e�ciently.

In our implementation, we do not include the top of the pre-defined networks, and instead, build
our own top layers: a pooling layer and a fully connected layer with two or eight outputs depending
on the configuration. Then, during the initial training, we freeze all weights other than the ones
in our top layers. This allows us to quickly gain some accuracy while retaining much of the pre-
trained information. Afterward, we unfreeze a certain number of blocks at the top of the imported
network, and "fine-tune" with a lower learning rate. Unfreezing more of the weights allows the
network to learn more about the data.

This method is especially important in our case as we have a relatively small dataset, and as
mentioned in section 2.1.6, transfer learning is useful in such cases.

3.5.3 Hyperparameters

If we wish to have any chance of decent network performance, certain hyperparameters must be
selected. Because automatic hyperparameter optimization is not a part of this thesis, much of it
was down to trial and error. After communication with the media processing group, some basic
hyperparameters that worked well in previous work were chosen. The rest of the hyperparameters
were based on those used initially, after adjustments to make the networks perform better. In the
end, we were able to achieve an accuracy score, as defined in 3.4.1, of 0.85 or more on the validation
set for all multiclass network styles. The binary hyperparameters were then based on those used
for the multiclass networks.

There is more work to be done here, as one could optimize the multiclass networks further, and
optimize the binary networks individually for each class. The process would take very long time,
or require an automated approach, so further optimization was determined to be outside the scope
of this thesis. Furthermore, we will not go into a significant amount of detail on how each of the
hyperparameters impacts the results, how they work, or their benefits compared to other choices,
as that could be several theses in and of itself.

• Batch size (BS):
For the batch size, we selected the largest possible batch size which would still function
with the chosen network style and image dimensions. Some applications require so much
video memory during training that they would cause a "Resource exhausted: OOM" (Out-of-
memory) error in Keras. We selected the largest functional size so that the gradient estimates
for the optimizer would be the most accurate.

• Input image dimensions (Dims):
Here, we selected the default input image dimensions from Keras for each application [18].
These, in turn, are based on the image dimensions used in each style’s respective research.

• Loss function:
We selected a loss function which seemed to perform well in previous experimentation with
Keras. Specifically, we selected categorical cross-entropy as each of our samples belong to a
single class.

• Activation function:
We selected a Softmax activation function. Softmax is a common activation function in
machine learning and seems to work well in our case.

• Optimizer (Opt.):
We selected Nadam here. Nadam is a variant of Adam (Adaptive Moment Estimation). It
incorporates Nesterov Momentum and seems to work well for our applications.

37

• Learning Rate (LR):
We adapted and tuned the learning rates for each application and phase. Often the base
training will have a higher learning rate than the fine tuning; this seemed to work the best in
our experience. Some applications use the default learning rate for Nadam, 0.002, but many
do not. The other variables for the Nadam optimizer —1, —2 and ‘, were set as the default in
the Keras implementation [18].

• Based Model Last Block Layer Number (BMLBLN):
This hyperparameter selected the number of layers unfrozen during the fine-tuning phase.
We, for the most part, selected values which would unfreeze the last few blocks of the given
applications structure. Some applications had other values which we found to work well after
brief experimentation.

• Number of training epochs:
Although our training regimen implements early stopping, we set a limit to the amount of
training and fine-tuning epochs for each style. During the initial training, we use one fifth
the amount of epochs as during fine-tuning. As many of these networks take an extremely
long amount of time to train, as we will discuss further in the results section , the number of
epochs for the binary networks was set to be 1/8th of that of the multiclass networks.

• Patience:
Patience is the number of epochs the network will tolerate not improving the validation loss.
After this number is reached, the early-stopping function terminates training. This value was
selected primarily to save time.

In table 3.5 we can see the finally selected hyperparameters for each of our applications. As we
can see the hyperparameters for the binary networks that will make up our OVR structure are the
same as for our multiclass applications.

38

Network BS Dims Opt. LR (Train) LR (Tune) BMLBLN Epochs (Max)
VGG16 Multi 64 224x224 Nadam 0.002 1e-06 15 200
VGG19 Multi 64 224x224 Nadam 0.002 1e-06 17 200
Inception v3 Multi 64 299x299 Nadam 0.002 1e-05 249 200
DenseNet 121 Multi 64 224x224 Nadam 1e-04 1e-05 394 200
DenseNet 169 Multi 16 224x224 Nadam 1e-04 1e-05 530 200
DenseNet 201 Multi 64 224x224 Nadam 1e-04 1e-06 642 200
Xception Multi 16 299x299 Nadam 0.002 1e-05 126 200
Inception RN v2 Multi 64 299x299 Nadam 0.002 1e-05 64 200
MobileNet Multi 64 224x224 Nadam 1e-03 1e-04 762 200
NASNet Large Multi 8 331x331 Nadam 1e-05 1e-06 100 100
NASNet Mobile Multi 64 224x224 Nadam 1e-05 1e-06 0 200
VGG16 Binary 64 224x224 Nadam 0.002 1e-06 15 25
VGG19 Binary 64 224x224 Nadam 0.002 1e-06 17 25
Inception v3 Binary 64 299x299 Nadam 0.002 1e-05 249 25
DenseNet 121 Binary 64 224x224 Nadam 1e-04 1e-05 394 25
DenseNet 169 Binary 16 224x224 Nadam 1e-04 1e-05 530 25
DenseNet 201 Binary 64 224x224 Nadam 1e-04 1e-06 642 25
Xception Binary 16 299x299 Nadam 0.002 1e-05 126 25
Inception RN v2 Binary 64 299x299 Nadam 0.002 1e-05 64 25
MobileNet Binary 64 224x224 Nadam 1e-03 1e-04 762 25
NASNet Large Binary 8 331x331 Nadam 1e-05 1e-06 100 25
NASNet Mobile Binary 64 224x224 Nadam 1e-05 1e-06 0 25

Table 3.5: A list of the chosen hyperparameters for each network style

3.6 Hardware Metrics

We have chosen several hardware metrics to measure which resources Keras is using during all
phases of the process. We chose these metrics to give an impression of the type of system resource
impact one might expect when using these specific architectures, and how using an OVR strategy
a�ects this use. For all metrics, we chose to sample every 0.5 seconds. This sampling rate was
deemed appropriate given the amount of time it takes to train one of these networks (up to 30
hours) and also given the number of metrics logged, 15. Also, we determined that this would have
a negligible impact on system resources on its own, i.e., a low polling rate would not influence the
results.

3.6.1 General System Metrics

Using psutil, we can collect many di�erent system metrics [47]. We selected the most interesting
ones to log:

• CPU Use per Core
CPU use per core is the volatile use percentage of the CPU measured individually per core.

• CPU Use Average:
The average CPU use is the volatile use percentage of the CPU averaged over all cores.

• CPU Temperature:
The CPU temperature is the temperature of the die on package id 0, be aware this might be
platform dependent [47].

39

• System Memory used:
Additionally, we measure the amount of system memory used at the time of measurement in
bytes.

• Disk Input/Output (I/O):
Finally, we measure the number of bytes read/written to the disk.

3.6.2 GPU Metrics

On the GPU, a vast quantity of metrics is available via NVML [48]. We selected a subset of these
to implement in our testing software. Not all of these metrics will be useful in our final analysis,
but we will still collect data about them for the sake of analysis.

• GPU Volatile Percentage:
The GPU volatile percentage is the percent of the time over the last sample period during
which one or more kernels was executing on the GPU [48]. The sample period is set to be
0.5 seconds.

• GPU Memory Percentage:
The GPU memory usage is the percent of the time over the last sample period during which
global (device) memory was being read or written [48]. The sample period is the same as
above.

• GPU Memory actual in B:
We can retrieve the amount of used memory on the device, in bytes.

• GPU temperature:
Here, we get the device temperature on the GPU die in °C.

• GPU Fan speed:
We can retrieve the intended operating speed of the device’s fan in percent. This percentage
may di�er from the actual operating speed [48].

• GPU Power usage in mW:
We retrieve power usage for this GPU in milliwatts and its associated circuitry (e.g., memory).
This should be within +/- 5% of current power draw [48].

• GPU Device Clocks:

– Graphics clock speed in Mhz.

– Streaming Multiprocessor (SM) clock speed in Mhz.

– Memory clock speed in Mhz.

– Video Clock speed in Mhz.

3.6.3 Parallelization

In our results we are interested in the output speed and performance for each network structure,
it is interesting for us to examine how parallelizable these network instances are when it comes to
processing frames. As discussed in section 2.2.1 the python interpreter is equipped with a Global
Interpreter Lock (GIL) which might hamper parallelization.

Also, the CUDA library does not allow more than one context, as discussed in section 2.2.2, to
sequester the GPU resources at the same time. This will likely also significantly a�ect our ability
to parallelize. It will be of interest to us to confirm this using our available metrics.

40

3.6.4 Calibration

In the interest of determining whether or not our metric measurements a�ected their own results,
we ran multiple calibration measurements to determine what the baseline resource use was for the
system with a single network loaded into the memory. This test was run for 1 minute before every
training, fine-tuning and testing session. This was done to ensure that in the case of abnormal
results, we could refer back to the calibration phase and make sure that other processes were not
taxing the system. As the system in question was not running a Graphical User Interface (GUI) or
any resource heavy background processes, these results should read minimal resource usage across
the board except for memory usage, as a single network (DenseNet 121) was loaded.

GPU Usage

In figure 3.5, we can see that our volatile GPU during the calibration period is 0% for the entirety
of the period. This means that unless training or testing is creating a context on the GPU, it is
not being used by Keras (or any other process.)

Figure 3.5: GPU volatile usage during calibration, with a moving window average over 40
measurements overlaid

Strangely, the same can not be said for the volatile memory usage, as seen in figure 3.6. Here the
usage is 0% at first, then increases to 2% for the remainder of the period. This result was consistent
for all tests we checked, so it may be that this increase is due to the interactions between Nvidia
Management Library (NVML) and the GPU memory to read the results. Hence, this is something
we should keep in mind when interpreting the results later on.

Looking at the GPU power measurement in figure 3.6, it starts at over 50W, then declines after
around 10 seconds. It then remains stable at a little less than 20W. 20W would appear to be
the idle power usage for the GPU. When we looked at the clock metrics, we observed that all the
GPU clock speeds were reduced at this time. This reduction would appear to confirm what we
speculated earlier: the clock speeds are reduced to conserve energy.

41

Figure 3.6: GPU memory usage during calibration, with a moving window average over 40
measurements overlaid

Figure 3.7: GPU power usage during calibration in W, with a moving window average over 40
measurements overlaid

CPU and memory usage

Moving on to the CPU usage in figure 3.8, we can see that the average usage is around 1% during
the test time. This seems reasonable considering that we have three threads running during the
calibration, each logging their own system metrics. It does have a spike of 15% at the first index,
but this does not seem problematic to us as this is seems to be an aritifact of the way psutil gives
data for the first measurement [47]. We should be able to assume a baseline use of around 1%
when considering our results.

The memory usage during calibration, seen in figure 3.9 is interesting. Because of the relatively
large size of the DenseNet model, we have a memory usage with the model loaded of around
1.65GB. We should expect this to change depending on what model is chosen. After looking at
the other results, we can confirm that it does, which brings us back to what was mentioned in
section 3.5.1. Loading 8 NASNet models into the system memory at one time means that on a
system such as ours, over half of the memory is already used before the test data is loaded. If we
wish to process large amounts of data, this could be problematic as we would need to either load
the data into batches or only use ImageDataGenerators.

42

Figure 3.8: CPU usage (averaged over 4 cores) during calibration, with a moving window average
over 40 measurements overlaid

Figure 3.9: Memory usage during calibration, with a moving window average over 40 measurements
overlaid

3.7 Summary

We created a comprehensive system to test our hypothesis and collect metrics about our results.
The system, TFmetrics, can automatically run our experiments and compile results in a human-
readable format. It will collect several metrics about all aspects of our network’s use and will be
useful for us in our final analysis and conclusion. By using the classification metrics outlined here,
we should be able to get a good idea of how useful our OVR style implementation could be in a
clinical setting. On the other hand, our hardware metrics provide us with an insight into what is
influencing the performance of our networks, and what kind of hardware would be required to use
our solution in a real-world scenario. Together these metrics will provide us with a basis to answer
our central research questions. Now that we have designed a testing framework, it is time for us to
begin our experiments. We will run a substantial number of experiments, and collect a significant
amount of data. In the next chapter, we will attempt to break down all of these experiments and
provide a useful context for them. In addition, we will attempt to show how these experiments
help us answer our research questions.

43

44

Chapter 4

Experiments

During the progression of our research, we performed a rather substantial amount of experiments
and collected a significant amount of data. In this chapter, we hope to present it concisely and
explain what this data means for our research questions. We aim to examine the di�erences between
an OVR multi-network approach and a multiclass single-network approach. These di�erences will
include resource use during all phases, time to train, and finally classification performance, including
both speed and accuracy. We aim to provide an idea of the tradeo�s involved in selecting our OVR
style and the conventional multiclass style. It will aid us in answering our primary research question;
is OVR a viable strategy using modern neural networks?

The chapter is structured such that we will first examine all aspects of both training phases, then
will we will examine the resource use of the testing phase. Finally, we will examine the classification
performance. Hopefully, the chapter will provide a good breakdown of all phases of use for our
network styles.

45

4.1 Common Results

4.1.1 Included Results

In total, we collected data on 186 networks’ training, fine-tuning and testing sessions. 50 of these
were multiclass, and 136 were individual binary networks. On our final test selection of 99 networks
(11 multiclass and 88 binary), the metrics logged and calculated resulted in 16,029,806 total data
points collected and 19,974 plots being generated by our testing framework. Although most of
the hardware metrics are interesting in some regard, some of them were especially interesting, and
thus we will concentrate on presenting those in this chapter. More specifically we will focus on the
following metrics.

• CPU Volatile use percentage averaged over all cores:
We find that this metric provides a reasonable estimation of the CPU usage during all phases.
As this is one of the primary system components, we conclude that this resource use is valuable
to investigate, especially considering the potential additional CPU overhead involved in the
OVR style during testing.

• System Memory used:
The metric provides an impression of the amount of system memory required during all phases
of use, which will be helpful, as we suspect the required memory will increase drastically in
the OVR configuration.

• GPU Volatile Percentage:
This is perhaps the most critical hardware metric, as it directly expresses how much of the
GPU operational resources are being used at any given time. When we see a di�erence
here, we usually expect to see a corresponding di�erence in power usage and temperature
fluctuations.

• GPU Power usage in mW:
This metric is important as it gives us a good idea of what some of the real world consequences
might be of selecting a certain network style. Electricity is a valuable resource, and we should
endeavor to select a style that provides us with satisfactory classification results in addition
to being environmentally conscious.

As can be expected in such an experiment, not all of the metrics we collected were particularly
useful. Many of our collected metrics will be omitted from the discussion, as they are not of
particular interest in this research. More specifically, the following system metrics, as discussed in
section 3.6 will be omitted from this section in the interest of brevity and succinctness:

• CPU Percentage used per core:
These plots are almost unreadable within any significant sample period, and will be omitted.
We determined that the average CPU usage metric would be specific enough for our use.

• CPU Temperature:
Similar to the GPU temperature metric, this seemed highly related to the volatile use
percentage.

• Disk I/O:
Although this metric might be useful for analyzing the way Keras’ ImageDataGenerator
object streams training, validation and test data from the disk, we determined it to be
outside the scope of our research.

• GPU Memory actual in bytes:
After reviewing the stored data, we determined that this metric was not as useful as the
volatile memory usage. In particular, because the memory seemed to be constant at the
maximum storage of the device. Furthermore, it seems likely this phenomenon caused

46

by TensorFlow mapping all device memory immediately after starting. It appears that
TensorFlow can be programmed to not do this, but unfortunately that was not implemented
during our testing.

• GPU Memory Percentage:
Although the memory usage percentage on the GPU was more interesting than the actual
memory used in bytes, we will not be examining it in this section as we found that the other
metrics provide a good summary. These plots are included in the appendix for reference.

• GPU temperature:
This metric seems, perhaps unsurprisingly, to be a function of the GPU volatile usage over
time, and as such does not directly relate to our research.

• GPU Fan speed in percentage:
Configured fan speed is directly related to the device temperature so that it will be omitted
as well.

• GPU device clocks:

– Graphics clock in Mhz.

– SM clock in Mhz.

– Memory clock in Mhz.

– Video Clock in Mhz.

These are somewhat interesting, as they do vary slightly over time, likely as a function of the
GPU trying to optimize power usage. However we decided it would be outside the scope of
this thesis to analyze these optimizations, and as such these will be omitted.

4.1.2 The Appendices

In the interest of brevity, we will only be examining some of the results in great detail. We
will examine those networks which displayed the most exciting results or representational results.
There are several plots that are not included directly in this chapter but are instead included in
the appendix. The plots, tables, and figures are of the same type as those we have included here.
We have included them to support our conclusions, and provide the reader with reference material
should that be required.

4.1.3 Performance on the Testing and Validation Sets

In section 3.2.2, we discussed our choice of having three sets of data with a separate untouched
test set. In theory, it would provide us with a better idea of how generalized our performance is
on unseen data. The validation data is used for early stopping and adjusting hyperparameters.
It will as such be of interest to see if there is a di�erence in performance between the validation
and test sets. As we have a limited number of networks in our final selection, it is by no means
a comprehensive test. We still thought it was pertinent to include, but it should perhaps be
investigated more closely in future research.

Because the number of results here is limited we will not draw too many conclusions here, however,
based on figure 4.1 there might be some di�erence between the sets, at least for the multiclass
networks. For the OVR networks, it appears the di�erence is insignificant.

A note on accuracy:
In the following sections, we will be discussing two di�erent metrics of accuracy. In our plots that
display accuracy as a function of the number of epochs, the accuracy metric is calculated by Keras

47

(a) Violin plot of the accuracy on the validation
and test sets for both OVR and multiclass network
styles, with quartiles imposed.

(b) Violin plot of the di�erence in accuracy on the
validation and test sets for both OVR and multiclass
network styles, with quartiles imposed. Positive
values indicate that the network performed better
on the validation set than the test set.

Figure 4.1: Plots of the di�erence between the validation and test sets

and is a batch estimate. Keras’ accuracy is equivalent to our Recall metric when macro-averaged.
This di�erence might seem confusing, but we felt it would be even more confusing to refer to it as
recall since Keras does not use this term in their metric calculation [18].

4.2 Training

4.2.1 Accuracy

During training, we are interested in many aspects of how the Keras is using the system resources
and the di�erences between network styles in this regard. We also want to analyze how much
time is used to do the initial training of the networks. Of interest here is how long each epoch
is on average for each network style, and how much time in total it took to achieve the attained
performance.

As the training progresses, we expect to see the accuracy increase and loss decrease on both the
training and validation sets. For the test set, an example of this can be seen in figure 4.2. Here we
see the Keras accuracy rise steadily for each epoch, and the loss falling as we expect. Interestingly,
we can also see that our hyperparameter selection is well optimized for the multiclass classifier,
but poorly optimized for the OVR classifier in questions. Despite this, both classifiers end up at
approximately the same Keras accuracy and loss, despite the Binary classifier having trained for
less than 1/5th the number of epochs of the multiclass network.

The previous plots illustrate an issue with the style of accuracy Keras chooses: it can be misleading,
as it was in this case. In our experience, and after reviewing the data, to expect a high total
output accuracy of the OVR ensemble, we want to see higher numbers for Keras accuracy from
the individual binary networks.

At the same time as the training accuracy is increasing, we would expect the validation accuracy
to grow, although perhaps not as much, as the network is not learning directly from the validation
data. The accompanying results to the previous figure can be seen in figure 4.3.

The findings were somewhat unexpected. On one hand, for the multiclass network, we can see
what we expected, the accuracy does increase, but not nearly as much as for the training set. The

48

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure 4.2: NASNet Mobile Training classification Keras accuracy (Recall) and loss history for the
training data

growth in accuracy is also more volatile, which makes sense as the optimizer corrects by updating
the weights. This means that accuracy will jitter around the learning curve. As we can see, after
training, our accuracy on the training set for the multiclass network is over 0.7, whereas it is less
than 0.3 for the validation set.

The binary network’s performance is more surprising though, the validation accuracy (¥ 0.85) and
loss (¥ 0.38) are quite a lot better than for the training data (¥ 0.775 and 0.85, respectively). We
would typically expect that the training accuracy would be higher than the validation accuracy, as
the training data is used directly to update the weights. Interestingly, this di�erence is relatively
standard across our experiments, the validation data accuracy for the binary networks is often at
least as high, or higher than for the training data. The opposite is true for the multiclass networks.

We have included examples of all runs in the appendices, in section A. We would speculate that this
phenomenon is due to the use of dropout and other regularization mechanisms during training, but
not during the validation calculations [18]. The e�ect seems to be greater for the binary networks
than for the multiclass ones.

49

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure 4.3: NASNet Mobile Training classification Keras accuracy (Recall) and loss history for the
validation data

4.2.2 Resource Use

As mentioned previously, we are also interested in how system resources are used during the di�erent
phases of network use. We will look at the use percentage of the GPU, CPU and system memory.
The use percentage should give us a good idea of how the binary and OVR networks compare, in
addition to how the di�erent applications compare.

GPU Usage

In figure 4.4 we can see a breakdown of the average GPU volatile use for each network style and
application. In this figure, the OVR usage is the average of the usage for each class’s network during
training. Perhaps unsurprisingly, the volatile usage is similar for both the OVR and multiclass styles
for most applications, within a few percentage points. In some cases, the usage is slightly higher for
OVR, and others it is somewhat higher for multiclass. We can see that, on average, the multiclass
use is somewhat higher. Interestingly, there is a rather substantial di�erence in the case of NASNet
Large, where the resource use is much higher for the multiclass network.

Another interesting revelation from this chart is just how little GPU resources are used on average
here, and especially in the case of MobileNet and NASNet mobile. These applications are designed
to use fewer resources, and as we can see, this is also the case during training. The other network
styles seem to be within a few percentage points of the overall average. It appears that DenseNet

50

Figure 4.4: Training: GPU Volatile Percentage, including all applications and an average value.
For both binary and multiclass styles.

201 is an excellent example of the average case. Of course, there might not be a "typical" case
here, as the way resources are allocated could change drastically between applications. We should,
therefore, look at a few of the most exciting examples.

51

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.5: DenseNet 201 GPU volatile usage during training, with a moving window average over
40 measurements overlaid

Note:
In each of the following figures, which plot resource usage during each phase, the binary network
chosen as a comparison is trained on the polyps class of the Kvasir dataset. For all of the results
we examined, the di�erence between classes with regards to resource use was negligible.

As we mentioned, DenseNet 201 could be representative of a typical case in our experiments, so we
have plotted the GPU volatile usage during training in figure 4.5. The plots reflect the results from
the summary figure (4.4) nicely and o�er some interesting insights into the GPU usage during
training.

We can, for example, see the di�erent phases of each epoch play out as training progresses. There
is a slight peak at the end of most epochs, where the validation loss calculations take place. There
is also a significant dip at the end of the first epoch, and as we can see the first epoch takes longer
than the remaining epochs. This dip to 0% usage in the first epoch was also observed with a few
of the other applications. After examining the other resource plots, we were not able to find any
reasonable explanation for this.

In figure 4.6 we have plotted the GPU volatile usage for the NASNet Large structure. Again, we
see the dip at the beginning of the first epoch. Interestingly, there is also a dip at the end of each
subsequent epoch, which is also di�cult to explain. It may be the case that the drop in the first
epoch takes place for the same reason as for subsequent epochs, but lasts longer.

For us, the most interesting relationship in figure 4.6 is the di�erence in GPU use during the
training of the binary and multiclass network. We can see that the average usage during training
is much more stable for the multiclass network than the binary network. On average, the use is
higher than for the binary network. This might be due to the unbalanced classes of the binary
network, although it is di�cult to say. Having checked the network structures, we can confirm that
the network structure for the multiclass and binary network is the same apart from the top Fully
Connected (FC) layer, which has two outputs for the binary network, and 8 for the multiclass. The
images are the same as well, with both networks reading symlinks to the same training set.

Contrasting with the NASNet Large example above, the NASNet Mobile volatile GPU usage shown

52

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.6: NASNet Large GPU volatile usage during training, with a moving window average over
40 measurements overlaid

in figure 4.7 shows much lower GPU use across the board. The NASNet mobile application is less
complicated than the large, so this might partially explain it. The overall GPU usage is very low,
with much time at 0% usage and spikes to around 60% usage. The dip discussed earlier during the
first epoch seems to be a lot longer for the multiclass networks, which a�ects the overall training
time, especially if we were to have fewer epochs. Overall though, we can see that the NASNet
mobile application uses minimal GPU resources during training, possibly to the detriment of overall
performance and training speed.

However, this also means that, as was the claimed goal for the application, it is suitable for low
performance/low power hardware. In future research, running these tests on less capable hardware
would be of interest.

53

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.7: NASNet Mobile GPU volatile usage during training, with a moving window average
over 40 measurements overlaid. Note that the multiclass measurements contain a gap in the data
before 2000 seconds. We suspect this might have something to do with the GIL but it is di�cult
to be sure.

Another interesting metric to look at on the GPU is the power P used in W, and the averages
for this can be seen in figure 4.8. We noticed that the relationship between OVR and multiclass
network styles remained the same, in comparison to the volatile usage.

We can also see in figure 4.8 that it appears that the di�erence between applications is more
substantial here than for the volatile usage percentage in figure 4.4. In the case of DenseNet 121,
DenseNet 169 and DenseNet 201 this di�erence is particularly large. These three had very similar
volatile usage percentages, but di�erent power use percentages, with DenseNet 169 having far less
than the others. To get a better idea of the relationship, we can look at the actual recorded data
for two of the network styles we examined in the case of GPU volatile percentage.

In figures 4.9 and 4.10 we can see the power draw during training for NASNet Large and NASNet
Mobile. Interestingly, the di�erence is smaller here than when we examined the volatile usage.

We also see the same behavior as before on the NASNet Large application, where the power use is
higher on the multi-class structure. It seems likely this behavior is due to the more stable volatile
usage during the initial phase of each epoch, where the power draw is relatively constant for the
multiclass structure and very volatile for the binary structure.

The same behavior is displayed for NASNet Mobile, the power used is highly reflective of the volatile
GPU percentage. The GPU power makes up the bulk of the power usage in this system during
all phases, which means that our NASNet Mobile and MobileNet applications likely consume far
less power during training. Thus, provided that they can attain a reasonable accuracy, they will
be much more e�cient.

54

Figure 4.8: Training: GPU Power in W, including all applications and an average value. For both
binary and multiclass styles.

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.9: NASNet Large GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

55

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.10: NASNet Mobile GPU power usage during training in W, with a moving window
average over 40 measurements overlaid

56

Other Hardware

It is also interesting and informative to look at the other system resources during the training
phase and see if any of them might be bottlenecking the performance of our networks, and also to
compare across styles. Aside from GPU resources, the most valuable resource during training is
the CPU. As the Memory Management Unit (MMU) is implemented here, all memory operations
also play a role in CPU use, hence that the loading and unloading of testing data into the network
might be problematic. In figure 4.11 we can see the average CPU usage during training for each
application and both OVR and binary styles.

Figure 4.11: Training: CPU Average Percentage, including all applications and an average value.
For both binary and multiclass styles.

What we can observe is that, apart from NASNet Large, most of our networks have incredibly
similar usage, with the di�erences between network styles and binary/multiclass seemingly
negligible. To confirm this di�erence, we might be interested in re-examining two examples that
we have previously examined.

In figures 4.12 and 4.13, we can see the di�erence between one of the more normal CPU usage
profiles, NASNet Mobile, and the uncommonly high one, NASNet Large. We can also see that
the CPU usage is not particularly volatile, at least not to the same degree as the GPU usage. It
remains relatively constant, with certain spikes and dips which seem to be related to each phase
of the epoch. Comparing these figures to the figures of the GPU usage, we can see that when the
GPU usage dips at the end of each epoch, there is a corresponding dip in the CPU usage. It is
unexpected, as it is not entirely clear what is happening at this point in the training.

We can also see that in the case of NASNet Mobile, the CPU usage is very stable except for the
small bursts about 3/4ths through the epoch. It might be that when the validation test is being
run, the validation data is loaded from the disk or memory and into the GPU. In future research,
it would be interesting to monitor specific system busses, in addition to logging the system calls

57

made by TensorFlow.

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.12: NASNet Large CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.13: NASNet Mobile CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

Finally, we can observe the system memory used for each network style and application in
figure 4.14. Here we can see that the memory usage varies quite substantially between the
applications, and in fact, it also varies whether or not the binary or multiclass network uses the
most system memory. After reviewing the plotted memory usage, we were unable to come to any
conclusions on why this might be the case. There would seem to be no discernable reason why the

58

system memory usage would vary so much; it might have something to do with the way TensorFlow
stores variables in the system memory, in addition to the way Keras’ ImageDataGenerator function
stores and loads training and validation data.

Figure 4.14: Training: Memory Used in GB, including all applications and an average value. For
both binary and multiclass styles.

To examine this more closely, we would need to examine how much memory is being allocated
by Keras/TensorFlow specifically and profile the memory allocations somehow. In the interest
of curiosity, we have included a plot of the memory use during training for NASNet Mobile in
figure 4.15. What we can see is, that much like the GPU and CPU usage, the memory usage rises
and falls in phases during each epoch. We can also observe, however, that the memory use steadily
rises as training progresses, by for example 200MB in the multiclass case. This might be due to
some form of history stored by TensorFlow.

We initially suspected this steady rise in memory across epochs might be due to the stored logging
of the metrics, but this data is only a few MB for the entire training history, so this seems unlikely.

59

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure 4.15: NASNet Mobile Memory usage during training, with a moving window average over
40 measurements overlaid

4.2.3 Time

Another crucial aspect of our research is time. The amount of time it takes to train a network can
be important, for example, if one desires to update the network frequently once new classified data
becomes available. In general, it is also important because it determines how much energy we are
using in total, dependant on the average energy use of the network. There is also reason to believe
that the circumstances of training a network put more wear on the components of the system, as
temperature fluctuations force the materials of the system to expand and contract. This could
mean a premature physical component failure, for example of a capacitor on the GPU board. An
example of these temperature fluctuations can be seen in figure 4.16.

In addition to the above factors, having a shorter training time allows us to try more strategies,
hyperparameters, dataset splits and other factors which may impact the final classification. For
example, in research funding and similar factors might limit the amount of available time. Thus, if
one application takes several days to train, while another takes a few minutes, it would be extremely
advantageous to select the least time-intensive network.

In figure 4.17 we have the total amount of time taken to train each network style and application.
For the OVR method, the total time to train all the binary networks is shown. It is apparent when
viewing the plot, that the total time spent training the OVR networks is much higher than for the
multiclass network, despite the fact that we limited the number of epochs in the binary case to be
1/8th that of the multiclass case. The likely reason for the increased time use is that the patience
for the early stopping function was set to the be the same for the binary and multiclass cases,
which means that for the initial training the binary networks were seldom stopped early, while the
multiclass networks were. It is an unsurprising outcome, given that the multiclass networks had a
limit of 40 epochs for the initial training and the binary networks had a limit of 5.

To confirm this thought, we should be able to see that the amount of time spent on each epoch
is roughly similar to the total amount of training time for the binary case, but not similar in the
multiclass case. To examine this, we can look at figure 4.18 which features the average epoch time
for each application and style. From this figure, we can confirm visually that these do roughly

60

Figure 4.16: NASNet Mobile GPU temperature during training, with a moving window average
over 40 measurements overlaid

align, except for VGG19. After consulting with the test data, we confirmed that this inconsistency
was due to a mistake in the parameter files, where the number of epochs allowed for VGG19 was
set to 100 instead of 25.

We can also see that in the case of the multiclass networks, the total amount of time does not
seem to line up with the epoch duration. It is likely that most of these networks were stopped
early. Another interesting detail is that there actually is a substantial di�erence in epoch duration
for some of the network styles, and it is not always the same di�erence. For example, the VGG19
application has longer binary epochs than multiclass epochs, as does the NASNet Large style. On
the other hand, the NASNet Mobile has the opposite situation.

61

Figure 4.17: Training: Time Used in Seconds, including all applications and an average value. For
both binary and multiclass styles.

Figure 4.18: Training: Average time used per epoch in seconds, including all applications and an
average value. For both binary and multiclass styles.

62

4.3 Fine-tuning

During the fine-tuning phase of each network, many layers are unfrozen and made trainable, and
thus many more layers of weights are updated during backpropagation. We might expect all phases
of training to take longer and use more resources, and as such, it is the most resource-intensive
phase for our networks. It also usually lasts far longer than the initial training phase.

We should first look at what is precisely going on during the fine-tuning phase. To determine this,
it might be helpful to look at the accuracy and loss plots of the same network we looked at in
the previous section, NASNet Mobile. A plot of the training set accuracy and loss can be seen in
figure 4.19.

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure 4.19: NASNet Mobile Fine-tuning classification accuracy and loss history for training data

In this figure, we can see that the training set accuracy and loss resume basically where they left o�
after the initial training. They then steadily rise and fall, respectively, until our limit of 200 epochs
is reached for the multiclass network, and 25 epochs for the binary network. Interestingly this is
one of the few applications that was not stopped early in either the multiclass our binary cases. The
characteristic of the curve for the multiclass network indicates a good selection of hyperparameters,
but not so much for the binary case. It should be mentioned that the polyps class is consistently
one of the most di�cult for the network to learn, as we will see in the testing section. Thus, the
performance might not be as bad as it initially appears, but it also illustrates how the performance
perhaps could be improved by individually tuning the hyperparameters for each binary network.

In figure 4.20 we see similar characteristics for the validation data. Notice that the validation
accuracy appears to rise much more steadily than the training accuracy did in figure 4.19. Although

63

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure 4.20: NASNet Mobile Fine tuning classification accuracy and loss history for validation
data

it does seem to move around the average overlaid curve slowly, the large jitter from the previous
figure is missing. It may be because the optimizer is making more substantial corrections based
on the data from the training set, which leads to slight overfitting during each epoch and then
corrections in the next epoch. Meanwhile, the validation accuracy rises steadily.

4.3.1 Resource Use

As mentioned previously, the resource use during the fine-tuning phase is important because it is
so time-consuming, so we should examine the most significant metrics during this phase as well.
In figure 4.21 we can see the average volatile GPU usage during fine-tuning. In general, we can
see that on average, the OVR networks now have a slightly higher average GPU usage. However,
the di�erence is small so this result is probably not significant. We can also see that the di�erence
between the binary and multiclass NASNet Large has almost disappeared, whereas for NASNet
Mobile the di�erence is much more drastic. Interestingly, it would seem that the large di�erence
in the resource use due to the number of classes is particular to the NASNet applications. It
also might be related to the rather substantial amount of unfrozen layers for these networks. We
cannot find any particular reason why this would a�ect the binary network so much more than the
multiclass one.

We examined the raw GPU usage data for NASNet Large and Mobile, and as expected the usage
is higher for the binary NASNet Large and Mobile networks during fine-tuning. In addition, we

64

Figure 4.21: Fine-tuning: GPU Volatile Percentage, including all applications and an average value.
For both binary and multiclass styles.

examined the GPU power usage for all networks during fine tuning and concluded that as before,
it is highly tied to the GPU volatile percentage. We have included the figure A.99 in the appendix
which shows these numbers.

Other Hardware

As before, the CPU usage during this phase is important to examine. We present the numbers in
figure 4.22. For the most part, the numbers are very similar to those in the initial training, we can
see that on average the CPU use has risen by about 5%. This is not entirely unexpected, as the
CPU usage would presumably increase when the gradients and variables are updated during each
epoch, due to the substantial increase in the number of trainable parameters.

We also examined the system memory usage, but these numbers seemed to be very similar to the
initial training, and as such not particularly attractive to examine in detail. The numbers here are
included in the appendices A.100. In summary, we can conclude that the resource use during fine
tuning has increased, as we initially suspected, although the increase was mostly seen in the case
of the CPU use.

65

Figure 4.22: Fine-tuning: CPU Average Percentage, including all applications and an average
value. For both binary and multiclass styles.

4.3.2 Time

Finally, we should examine the time spent fine-tuning each network style. The total time taken to
fine-tune each network style and application can be seen in figure 4.23. It is clear that the time
taken is quite substantial for most of the OVR style networks, and a few of the multiclass ones.
The average time spent is over 5 hours, which is a substantial amount of time. The NASNet Large
OVR networks, for example, took over 20 hours to fine tune, which is a considerable amount of
time since the average GPU power draw during this time was 220W.

Although the total amount of time spent training is interesting, it does not tell the whole story and
is likely very dependant on the hyperparameter selection, which we have not optimized as much
as one would perhaps usually like. In figure 4.24 we can instead observe the amount of time spent
per epoch.

These numbers are more interesting for a general use-case, as it shows the di�erence between fine-
tuning our binary networks and the multiclass networks, in a manner which isn’t so dependant on
hyperparameter selection. Here we can see that, by and large, the di�erence is not very substantial
between the network styles. However, there are two exceptions, namely VGG 16 and NASNet
Mobile, where the multiclass networks are immensely more time consuming to fine-tune per epoch
than the binary equivalent. This also partially explains the sizeable total time increase for these
networks.

The plots for the GPU usage and power draw are included in the appendices A.3. After examining
these the usage plots, we determined that the amount of time needed for each epoch slowly increased
during fine tuning. We could not find any discernable reason for this, as the operating temperature
of the GPU was well within acceptable parameters and thus throttling was eliminated as a cause.
This e�ect could be interesting to examine in future research.

66

Figure 4.23: Fine-tuning: Time Used in Seconds, including all applications and an average value.
For both binary and multiclass styles.

4.3.3 Tradeo�s

During the initial training and fine-tuning, we can see that the most important and immediate
trade-o� is time spent training. We have seen that the time spent training is often a great deal
longer in total for the OVR styles, probably because the OVR styles are less likely to be stopped
early during their smaller number of epochs. If the number of epochs for the OVR networks was
increased to match the multiclass networks, the di�erence would probably be much larger, making
training multiple binary networks extremely time-consuming if we have many classes.

67

Figure 4.24: Fine-tuning: Average time used per epoch in seconds, including all applications and
an average value. For both binary and multiclass styles.

4.4 Testing

When we tested of our neural nets on the test set, we focused on examining several crucial factors
which could determine how well each network style and application is to any given final use.
Classification accuracy is of paramount importance and is often the focus of research in this field.
However the hardware resources used, and classification speed, are also essential in many cases.
In the following section, we will look at the final performance of the fully trained networks in all
respects: resource use, to speed, and accuracy. Hopefully, it will provide us with a satisfactory
overview of what we can expect from these networks in real-world situations, naturally with some
limitations. We ran a series of 10 tests for each network style and application.

4.4.1 Resource use

The final phase of use for a neural network is perhaps the most important when it comes to resource
use. During actual classification, the network could be expected to run continuously and, in some
circumstances, in real time. This means that network with excessive resource use will most likely
be unable to classify images quickly enough on low power or older hardware. Specifically, in our
case, we are interested in determining how well Tensorflow can delegate resources so that the OVR
networks can classify images in parallel. The networks are not connected together in one large
network. Hence several model instances must be run on the GPU at the same time, with each
model generating its probabilities during testing.

This might be problematic if the interpreter or scheduler is unable to process these requests in
parallel. However, it might also mean that when one network is not actively using resources, they
may be used by another. In the following sections, we should look for signs that the binary and

68

Figure 4.25: Testing: GPU Volatile Percentage, including all applications and an average value.
For both binary and multiclass styles.

multiclass networks are e�ciently using the hardware during testing. We expect that the resource
use will be higher in the OVR case, but it will be interesting to determine what the di�erence is,
and of course how much resources are used by the multiclass base network in test mode.

In figure 4.25, we can see the overall average GPU usage during testing for all applications and both
network styles. The first thing that strikes us here is how even the use is across the board, where
nearly all of the networks have upwards of 90% volatile GPU usage. This indicated to us that
Tensorflow might be allocating resources with reasonable e�ciency for both the single multiclass
network case and our OVR parallel case. For most of the network styles, the reported usage is
within a few percents of each other, with the OVR networks using slightly more GPU resources
on average. There are a few notable exceptions though. The multiclass Inception v3 network has
nearly 10% higher usage during testing than the OVR equivalent, which is odd and unexpected.
It is the only network style where the multiclass usage is reported as higher.

In figure 4.26 we can see the volatile usage for Inception v3 in both styles with the test number
overlaid. The culprit of the strange results becomes apparent: the binary network has a considerable
period of relative inactivity on the first test. At first, we suspected that it was an anomaly of the
particular test, but after reviewing the results of other tests for this style, we see the same delay
across all tests, although with varying duration. Ultimately we decided to include this particular,
albeit extreme, example as this is a real curiosity with using this application. We did not observe
similar results with the other applications.

Otherwise, our two "high-e�ciency" applications, NASNet Mobile and MobileNet both had a large
increase in volatile usage during testing with the OVR network. The applications are designed to
be e�cient on low power hardware, and the findings thus make sense. The applications were very
similar to each other in volatile usage, with only a few percent di�erence. We observe the actual
recorded usage for NASNet Mobile in figure A.228.

69

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure 4.26: Inception v3 GPU volatile usage during testing, with a moving window average over
40 measurements overlaid

The volatile usage is relatively stable during the entire test phase, but we can see that the stable
usage is higher for the OVR case, approaching 100% use. It seems that we might be approaching
the limit of what is possible given our hardware, which is a good sign as it implies that Tensorflow
is e�ciently allocating our resources. Here we can also see that all tests take roughly the same
amount of time, and we do not see the same strange delay at the beginning of the testing. In this
regard, this characteristic is similar to our other results.

However, this might not tell the whole story. In our previous results we found that during training
and fine-tuning, the amount of power used by the GPU was roughly reflective of the volatile
percentage. However, if we look at figure 4.28, and compare it to the volatile use, we can see that
there is, in fact, a more substantial di�erence than we might have expected. Our high-e�ciency
applications appear to use significantly less power than the other applications, even in the OVR
case where the volatile usage approached 100% for both styles, the power use is about 30W shy of
the TDP for this card.

The application with the highest power draw was the Xception OVR style. It would be interesting
to compare the use of this application with the use of our NASNet Mobile, for example, which
has within 5% of the volatile GPU usage in the OVR configuration, and yet over 40W more power
usage (15% of the total TDP, or 17.5% of the above-baseline TDP14.)

Figures 4.29 and 4.30 allow us to observe the di�erence here in more detail. In the Xception plots, it
is immediately clear that the GPU wattage is greater than the maximum TDP specified by Nvidia
for this card. This might mean that our specific card is drawing more power than the reference
cards, or that the cards have this possibility in general. At any rate, we can see that the Xception
OVR style is peaking at over 300 watts of power consumption during testing of the style.

In comparison, the NASNet Mobile power draw does not substantially exceed 200W, which
is interesting, because it tells us that over the course of testing there might be as much as
100W of di�erence between these two applications in power consumption. The di�erence is not
inconsequential, as it means that in continuous operation we could cut our power use by 20-30% by

14
We are using the term "above-baseline TDP" here to refer to the amount of W di�erence between the minimum

recorded consumption (20W), to the maximum TDP of the card.

70

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure 4.27: NASNet Mobile GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

switching from Xception to NASNet Mobile, given that the more e�cient network has an accuracy
that makes the switch justifiable.

71

Figure 4.28: Testing: GPU Power in W, including all applications and an average value. For both
binary and multiclass styles.

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure 4.29: Xception GPU power usage i W during testing, with a moving window average over
40 measurements overlaid

72

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure 4.30: NASNet Mobile GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

73

CPU use is another metric of interest for us. Although we would expect the CPU use for most of
the multiclass applications to be relatively similar, it would ostensibly have more work to do in
the OVR case, as it now has eight networks running in eight threads and has to manage memory
and data transfers between all of them and the GPU. Also, 8 ImageDataGenerators are working
simultaneously on the test data, instead of just one. We can see the measured usage in figure 4.31.
It is quite remarkable how similar the usage is for each of the multiclass applications, it appears
to be almost the same.

Figure 4.31: Testing: CPU Average Percentage, including all applications and an average value.
For both binary and multiclass styles.

However, the OVR CPU usage is a di�erent story. As we expected the usage is higher for all
applications in the OVR case, however, there is a considerable variation in just how much higher.
For example, the VGG applications seem to use almost three times as much CPU resources in the
OVR configuration than in the multiclass configuration. This is the most extreme case, but it does
illustrate that the di�erence can be quite extreme here. The di�erence in CPU use should be a
consideration the planning process if one is going to consider an OVR approach.

Another metric of interest during testing is the amount of system memory that is used, and
it is presented in figure 4.32. It would seem from the figure that the multiclass configurations
all use a similar amount of system memory and that the OVR configurations can and do use
significantly more, often more than double the amount of the multiclass equivalent. This is not
entirely unexpected but should be considered if one is planning to apply OVR configuration in
practice.

74

Figure 4.32: Testing: Memory Used in GB, including all applications and an average value. For
both binary and multiclass styles.

4.5 Classification

In the previous sections we have primarily examined the resource use during all phases of use for
the di�erent networks. The findings so far have given us an idea of what we might be able to expect
for the classification performance. In this section we will look at how all the networks performed
during classification. Of particular importance is how quickly each style and application was able to
process and generate predictions on the frames. In addition, the classification accuracy will give us
an idea of what e�ect the OVR set up has had on overall accuracy, even when the hyperparameters
are not optimized for the individual binary networks.

4.5.1 Performance

To begin, we will examine the frame throughput, or FPS, of each network. We run the 2000 frames
in our test set, which have not been used for training or validation, through each network’s predict
function. In the OVR case, it means that the frames are run through the eight networks in parallel.
We observed a slight variance in FPS and decided to run the test ten times sequentially to correct
for it. E�ectively, we are testing our network on processing 20,000 frames quickly, which is the
equivalent of ¥ 11.1 minutes of video with a framerate of 30 FPS. We did, however, log the FPS
achieved for each 2000 frame test. The summary of these tests can be seen in figure 4.33.

Immediately, we see that the OVR network style has a notable impact on frame throughput. Every
application is consistently faster in the multiclass configuration, but it is not surprising given the
resource allocation characteristics we observed in the previous chapters. We can see that the
slowdown experienced, on average, is nearly proportional to the number of classes. We interpret
this to mean that our binary networks are saturating what little resources were left over from a

75

(a) Bar plot of FPS on the test set for both OVR and multiclass
network styles, by application

Application Multi OVR SDF
VGG16 341.62 44.49 7.68x
VGG19 299.49 38.52 7.77x
Inception v3 260.18 31.33 8.30x
DenseNet 121 160.89 20.67 7.78x
DenseNet 169 232.91 29.97 7.77x
DenseNet 201 183.31 23.59 7.77x
Xception 163.27 21.08 7.75x
Inception RN v2 139.86 17.72 7.89x
MobileNet 692.59 95.79 7.23x
NASNet Large 47.56 6.03 7.89x
NASNet Mobile 486.83 66.75 7.29x
Average 273.50 35.99 7.60x

(b) Raw FPS averages.

Figure 4.33: FPS Test summary for all networks, including all 10 tests and average value. SDF
is the Slowdown Factor, i.e., how many times slower the OVR network is than the multiclass
equivalent. From the averages we can see that using single multiclass networks is approximately
7.6 times faster than using the OVR style.

single multiclass network, and all the additional resources required are just causing the performance
to decrease proportionally. This means that for a dataset with more classes, for example, ImageNet
with over 20,000 classes, it would not be an appropriate strategy as the time needed to test would
be too long.

Two things are interesting to note here, however. As we can see, the SDF is higher for Inception
v3. This is likely because of the substantial delay for the first test that we showed in the resource
use section 4.2.2. The delay reduces the average FPS rather dramatically for this application in
the OVR style. Besides, we note that the SDF appears to be lessened for the two high-e�ciency
applications (MobileNet and NASNet Mobile). It is an unsurprising outcome, but it shows the
e�ect of their initial resource usage not being as high as the other applications in the multiclass
style. We can also see that our fastest networks, both MobileNet, experienced the least amount of
relative slowdown of all our applications. This would appear to confirm that if a network is using
fewer resources in a typical configuration, the consequences of using it in an OVR configuration
will be lessened, at least from a performance standpoint.

We can also see from figure 4.33 that there is a rather significant di�erence in the applications
when it comes to frame throughput. Our fastest application, MobileNet, is over ten times faster
than our slowest, NASNet Large. In the tools and implementation section, we detailed what our
goals were for the achieved FPS, to enable real-time performance. We set a minimum FPS of 30,
and a goal of 60. From the numbers, we can see that all but one of our applications achieved 60
FPS or higher in the multiclass configuration, and even that one achieved at least 30 FPS.

However, considering OVR, we can see that the numbers are not as excellent. Only two of our
chosen applications were able to achieve above 60 FPS; unsurprisingly these were the two high-
e�ciency applications. A further three applications were able to achieve over 30 FPS, which means
that 6 of our 11 applications fell below our minimum 30 FPS goal, some by quite a substantial
amount. Thus, the current networks would likely not be suitable for real-time operation. The most
substantial feasibility decrease NASNet Large, which ended up with a rather paltry 6 FPS.

76

On the other hand, MobileNet is still able to achieve 95 FPS in the OVR configuration, which
is surprisingly useful and close to exactly twice as fast as the slowest multiclass classifier. To
summarize, there is a substantial performance penalty associated with choosing an OVR style.
These penalties are so substantial that they will render some of our networks unable to classify in
real-time. The choice of application is also critical, and a good takeaway from this section is not
to choose an application which is more complex and resource hungry than what we require.

Speed and Network Complexity

To determine what e�ect network complexity has on performance, we can examine the same table
we presented in the tools and implementation section, but with the FPS values from our tests
included. In table 4.1, the basic network complexity details, and the achieved FPS are presented.
However, the table cannot tell the whole story because it cannot include the issue of exactly what
layer types are chosen in the application and how they are connected. However, it is still interesting
to examine the relationships between the di�erent specifications and their performance.

Network Parameters (M) Depth Layers Size FPS (Multi) FPS (OVR)
VGG16 138.35 [18] 21 21 115.6MB 341.62 44.49
VGG19 143.6 [18] 24 24 155.7MB 299.49 38.52
Inception v3 23.85 [18] 159 313 177.1MB 260.18 31.33
DenseNet 121 8 [18] 121 428 81.3MB 160.89 20.67
DenseNet 169 14.3 [18] 169 596 69MB 232.91 29.97
DenseNet 201 20.242 [18] 201 708 94.4MB 183.31 23.59
Xception 22.9 [18] 126 134 121.9MB 163.27 21.08
Inception RN v2 55.87 [18] 572 782 261.3MB 139.86 17.72
MobileNet 4.25 [18] 88 98 32.4MB 692.59 95.79
NASNet Large 88.9 [23] 768 1021 1002MB 47.56 6.03
NASNet Mobile 5.3 [23] 384 751 54.8MB 486.83 66.75

Table 4.1: A list of the chosen applications with specifications, depth and layers adjusted to match
our actual implementation, in addition ot the achieved FPS in our tests. Size is based on actual
trained models.

We can, for example, see that the VGG applications have an enormous amount of trainable
parameters, by far the most of the applications we tested. However, they are also the two
shallowest networks. Both VGG networks achieved above average performance (>273.5 FPS).
By comparison, the DenseNet applications have far fewer trainable parameters but achieve below
average performance. The two fastest networks also have the fewest trainable parameters, but it
seems evident that the number of trainable parameters does not tell the whole story of performance.

Network depth does not seem to a�ect the achieved FPS either. Intable 4.1 we find that NASNet
mobile is the third deepest network, but yet the second fastest. Conversely, DenseNet 121 is
the fourth shallowest network and yet also the third slowest. In fact, after attempting to do
some regression analysis on the test runs we had for each application, none of these specifications
seemed to correlate with the total performance. It is more likely that the types of layers, blocks,
and connections have an e�ect on the total performance. In future research, a more in-depth
analysis of the relationship should be carried out.

4.5.2 Accuracy

While the frame throughput is important, it is of little consequence if the resulting classification
accuracy does not meet our expectations. Thus, we need to determine how well, or poorly,

77

our networks were able to classify the test data. Using the metrics detailed in the tools and
implementation section 3.4.1, we should be able to attain a satisfactory summary of the accuracy
provided by both the multiclass and OVR network styles, as well as each application.

Network style FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, VGG16 35.38 35.38 1714.62 214.62 0.86 0.96 0.84 0.86 0.86 0.98
Multi, VGG19 35.50 35.50 1714.50 214.50 0.86 0.96 0.84 0.86 0.86 0.98
Multi, Inception v3 81.50 81.50 1668.50 168.50 0.62 0.92 0.63 0.77 0.67 0.95
Multi, DenseNet 121 113.50 113.50 1636.50 136.50 0.50 0.89 0.52 0.76 0.55 0.94
Multi, DenseNet 169 111.88 111.88 1638.12 138.12 0.51 0.89 0.51 0.69 0.55 0.94
Multi, DenseNet 201 148.12 148.12 1601.88 101.88 0.34 0.85 0.35 0.66 0.41 0.92
Multi, Xception 82.12 82.12 1667.88 167.88 0.65 0.92 0.63 0.72 0.67 0.95
Multi, Inception RN v2 79.62 79.62 1670.38 170.38 0.66 0.92 0.64 0.72 0.68 0.95
Multi, MobileNet 98.88 98.88 1651.12 151.12 0.56 0.90 0.55 0.74 0.60 0.94
Multi, NASNet Large 42.50 42.50 1707.50 207.50 0.83 0.96 0.81 0.83 0.83 0.98
Multi, NASNet Mobile 31.38 31.38 1718.62 218.62 0.87 0.97 0.86 0.88 0.87 0.98
Average 78.22 78.22 1671.78 171.78 0.66 0.92 0.65 0.77 0.69 0.96
OVR, VGG16 46.62 46.62 1703.38 203.38 0.81 0.95 0.79 0.82 0.81 0.97
OVR, VGG19 44.38 44.38 1705.62 205.62 0.82 0.96 0.80 0.83 0.82 0.97
OVR, Inception v3 58.50 58.50 1691.50 191.50 0.76 0.94 0.74 0.79 0.77 0.97
OVR, DenseNet 121 109.50 109.50 1640.50 140.50 0.53 0.89 0.53 0.69 0.56 0.94
OVR, DenseNet 169 94.12 94.12 1655.88 155.88 0.60 0.91 0.59 0.71 0.62 0.95
OVR, DenseNet 201 146.25 146.25 1603.75 103.75 0.39 0.85 0.39 0.65 0.41 0.92
OVR, Xception 91.12 91.12 1658.88 158.88 0.65 0.91 0.63 0.77 0.64 0.95
OVR, Inception RN v2 64.12 64.12 1685.88 185.88 0.74 0.94 0.72 0.79 0.74 0.96
OVR, MobileNet 45.62 45.62 1704.38 204.38 0.81 0.95 0.80 0.86 0.82 0.97
OVR, NASNet Large 33.00 33.00 1717.00 217.00 0.87 0.97 0.85 0.87 0.87 0.98
OVR, NASNet Mobile 51.25 51.25 1698.75 198.75 0.79 0.95 0.77 0.80 0.80 0.97
Average 71.32 71.32 1678.68 178.68 0.71 0.93 0.69 0.78 0.71 0.96
Average Di�erence -6.90 -6.90 +6.90 +6.90 +0.05 +0.01 +0.04 +0.01 +0.03 0.00

Table 4.2: Metric averages for all network styles and applications, including all metrics.

In table 4.2 we have created an extensive summary of how well our networks were able to classify
the data. In the table, we have highlighted the best results achieved for each metric, in both
the multiclass and OVR styles. Of immediate interest here is that the best performing multiclass
application is not the best performing OVR application. It is also interesting to note that the best
performing OVR application is very similar to the best multiclass in classification performance,
with only 1 TP and 1 TN di�erence between them on average. We can also see, with the help
of the average di�erence fields, that the OVR classifiers perform slightly better than multiclass
classifiers in total.

The table makes it di�cult to see what the change was for each metric for each application, so it
would be helpful to have a table with only the di�erences from multiclass to OVR, and it is provided
in table 4.3. The new table makes the di�erences between OVR and multiclass applications more
apparent. For example, we can see that both VGG applications performed worse in the OVR
style, and by approximately the same amount. The Inception applications performed better in
OVR, as did NASNet Large. Xception performed slightly worse, and NASNet Mobile performed
significantly worse, showing the most significant detriment to accuracy from switching to the OVR
style.

The DenseNet styles performed better on average with OVR, except when it comes to precision
in the case of 121 and 201, where they performed worse. This seems odd and is discussed further
below. Finally, we can see that MobileNet has had a massive improvement in performance, going
from being one of the worst classifiers to one of the better classifiers, by switching from single-

78

network multiclass to OVR.

Network style FN FP TN TP F1 ACC MCC PREC REC SPEC
VGG 16 +11.25 +11.25 -11.25 -11.25 -0.05 -0.01 -0.05 -0.05 -0.05 -0.01
VGG 19 +8.88 +8.88 -8.88 -8.88 -0.04 -0.01 -0.04 -0.03 -0.04 -0.01
Inception v3 -23.00 -23.00 +23.00 +23.00 +0.14 +0.02 +0.11 +0.02 +0.09 +0.01
DenseNet 121 -4.00 -4.00 +4.00 +4.00 +0.03 0.00 +0.01 -0.07 +0.02 0.00
DenseNet 169 -17.75 -17.75 +17.75 +17.75 +0.09 +0.02 +0.08 +0.03 +0.07 +0.01
DenseNet 201 -1.88 -1.88 +1.88 +1.88 +0.05 0.00 +0.04 -0.02 +0.01 0.00
Xception +9.00 +9.00 -9.00 -9.00 -0.00 -0.01 0.00 +0.05 -0.04 -0.01
Inception RN v2 -15.50 -15.50 +15.50 +15.50 +0.08 +0.02 +0.08 +0.07 +0.06 +0.01
MobileNet -53.25 -53.25 +53.25 +53.25 +0.25 +0.05 +0.25 +0.11 +0.21 +0.03
NASNet Large -9.50 -9.50 +9.50 +9.50 +0.04 +0.01 +0.04 +0.03 +0.04 +0.01
NASNet Mobile +19.88 +19.88 -19.88 -19.88 -0.08 -0.02 -0.09 -0.08 -0.08 -0.01
Average Di�erence -6.90 -6.90 +6.90 +6.90 +0.05 +0.01 +0.04 +0.01 +0.03 0.00
Average Di�erence (%) -8.82 -8.82 +0.41 +4.02 +7.02 +0.79 +5.99 +1.06 +4.11 +0.38
Median Di�erence (%) -28.22 -28.22 +1.38 +13.65 +16.92 +2.17 +17.46 +3.95 +14.93 +2.11

Table 4.3: Metric average di�erences from multiclass to OVR for all network styles and applications,
including all metrics.

79

Specific cases

To attain a better understanding of why the di�erences behave as they do, we should examine a
few of the mentioned cases more closely. Specifically, we should have a closer look at a case where
the OVR performed worse and one where it performed better.

As we can see, NASNet Mobile had the worst result of using the OVR style. To begin, we can
examine the raw figures for each class, which are seen in table 4.4 Reviewing the table, it becomes
clear what is wrong: every class is classified less accurately, almost irrespectively of which metric
we choose. There are a few small exceptions, such as class 5 having higher precision in the OVR
style, and class 2 having higher recall.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 46 31 1719 204 0.84 0.96 0.82 0.87 0.82 0.98
Multi, class 1 27 41 1709 223 0.87 0.97 0.85 0.84 0.89 0.98
Multi, class 2 95 18 1732 155 0.73 0.94 0.72 0.90 0.62 0.99
Multi, class 3 15 18 1732 235 0.93 0.98 0.92 0.93 0.94 0.99
Multi, class 4 2 10 1740 248 0.98 0.99 0.97 0.96 0.99 0.99
Multi, class 5 20 92 1658 230 0.80 0.94 0.78 0.71 0.92 0.95
Multi, class 6 16 33 1717 234 0.91 0.98 0.89 0.88 0.94 0.98
Multi, class 7 30 8 1742 220 0.92 0.98 0.91 0.96 0.88 1.00
Average 31.38 31.38 1718.62 218.62 0.87 0.97 0.86 0.88 0.87 0.98
Binary, class 0 86 53 1697 164 0.70 0.93 0.67 0.76 0.66 0.97
Binary, class 1 32 87 1663 218 0.79 0.94 0.76 0.71 0.87 0.95
Binary, class 2 85 55 1695 165 0.70 0.93 0.66 0.75 0.66 0.97
Binary, class 3 41 25 1725 209 0.86 0.97 0.85 0.89 0.84 0.99
Binary, class 4 24 20 1730 226 0.91 0.98 0.90 0.92 0.90 0.99
Binary, class 5 58 73 1677 192 0.75 0.93 0.71 0.72 0.77 0.96
Binary, class 6 50 58 1692 200 0.79 0.95 0.76 0.78 0.80 0.97
Binary, class 7 34 39 1711 216 0.86 0.96 0.83 0.85 0.86 0.98
Average 51.25 51.25 1698.75 198.75 0.79 0.95 0.77 0.80 0.80 0.97
Average Di�. +19.88 +19.88 -19.88 -19.88 -0.08 -0.02 -0.09 -0.08 -0.08 -0.01

Table 4.4: Accuracy Test for Nasnetmobile, including all metrics and average values.

Inspecting the confusion matrix in figure 4.34, we can see the e�ect more clearly. Our true positives,
indicated on the diagonal, are fewer for each class except class 2. Likewise, our false positives are
higher for each class except class 5. We also get an indication from this plot that class 2 and 5 are
often confused with each other, likewise with classes 0 and 1.

80

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure 4.34: Confusion matrices for NASNet Mobile, binary and multiclass, generated by Scikit-
plots.

Looking at the ROC curves in figure 4.35, we can see that the results look very good for the
multiclass case, several of the curves have an AOC Ø 0.99. Both the micro and macro-averaged
AUC values are 0.99. Unsurprisingly, this is our best classifier in the multiclass configuration. In
the OVR case, however, the results have diminished slightly. Specifically, classes 0,2,5 and six have
become a little worse. However, AUC values of 0.95 or higher are still usually an indication of
functional classification, and we should examine the PR curves as well.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure 4.35: ROC curves for NASNet Mobile, binary and multiclass, generated by Scikit-plots.

From the PR curves, seen in figure 4.36, the e�ect of our poorest classes is much more apparent.
The di�erence between the multiclass and OVR styles is easily visible. It also shows us a more
realistic picture of how good the multiclass classifier is. The AUC is no longer almost perfect, and
the di�erences between classes become more easily visible as well. Class 2 and 5 can be seen here
reducing the average AUC, and they are a fair amount below average. Interestingly, although some
of the values for classes 2 and 5 seemed to improve in the main chart, here we can see that they
have also gotten worse if one takes into account both precision and recall.

In contrast to NASNet Mobile, MobileNet seems to perform much better in the OVR style. The
results for the multiclass are quite weak, or certainly below our desired goals, while the OVR style
meets many of our goals. We can see the overall raw figures for each class in table 4.5. We can
see that in the OVR case, the numbers are better across the board, with very few exceptions.

81

(a) Multiclass PR curves (b) Binary PR curves

Figure 4.36: PR curves for NASNet Mobile, binary and multiclass, generated by Scikit-plots.

We can also see how poorly our multiclass classifier seemed to perform on the test set, with some
classes having remarkably few true positives, for example, class 2 which has only two true positives.
Interestingly, this class also has very few false positives, so the precision and specificity are very
high for this class.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 89 111 1639 161 0.62 0.90 0.56 0.59 0.64 0.94
Multi, class 1 201 0 1750 49 0.33 0.90 0.42 1.00 0.20 1.00
Multi, class 2 248 0 1750 2 0.02 0.88 0.08 1.00 0.01 1.00
Multi, class 3 29 34 1716 221 0.88 0.97 0.86 0.87 0.88 0.98
Multi, class 4 0 337 1413 250 0.60 0.83 0.59 0.43 1.00 0.81
Multi, class 5 89 202 1548 161 0.53 0.85 0.45 0.44 0.64 0.88
Multi, class 6 48 99 1651 202 0.73 0.93 0.70 0.67 0.81 0.94
Multi, class 7 87 8 1742 163 0.77 0.95 0.77 0.95 0.65 1.00
Average 98.88 98.88 1651.12 151.12 0.56 0.90 0.55 0.74 0.60 0.94
Binary, class 0 9 104 1646 241 0.81 0.94 0.79 0.70 0.96 0.94
Binary, class 1 125 0 1750 125 0.67 0.94 0.68 1.00 0.50 1.00
Binary, class 2 128 5 1745 122 0.65 0.93 0.66 0.96 0.49 1.00
Binary, class 3 17 15 1735 233 0.94 0.98 0.93 0.94 0.93 0.99
Binary, class 4 0 117 1633 250 0.81 0.94 0.80 0.68 1.00 0.93
Binary, class 5 40 107 1643 210 0.74 0.93 0.71 0.66 0.84 0.94
Binary, class 6 26 10 1740 224 0.93 0.98 0.92 0.96 0.90 0.99
Binary, class 7 20 7 1743 230 0.94 0.99 0.94 0.97 0.92 1.00
Average 45.62 45.62 1704.38 204.38 0.81 0.95 0.80 0.86 0.82 0.97
Average Di�. -53.25 -53.25 +53.25 +53.25 +0.25 +0.05 +0.25 +0.11 +0.21 +0.03

Table 4.5: Accuracy Test for Mobilenet, including all metrics and average values.

Looking at the confusion matrix 4.37, the di�erence is night and day. The multiclass MobileNet
has unacceptable performance for almost every class, except for perhaps class 3, which has a good
number of true positives and few false positives. Class 4, on the other hand, is a big problem, it
has a perfect score for true positives, but unfortunately also has a huge amount of false positives.

On the other hand, the OVR classification is much more acceptable. We still have a slightly high

82

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure 4.37: Confusion matrices for Mobilenet, binary and multiclass, generated by Scikit-plots.

number of false positives for classes 0, 4 and 5. Classes 1 and two also have quite a few false
negatives, but otherwise, the results are much more in line with what we would like to see from a
classification problem like this. This e�ect can also be seen in the PR curves in figure 4.38. Here
we see that classes 0 and two are the most di�cult for our classifier. In summary, we have seen
an example where the OVR style has made a great classifier worse, and one where it made a very
bade classifier much better. Judging by the table of average di�erences, the latter case seems to
be slightly more common, and in the cases where the classifier was made worse, it usually wasn’t
by an unacceptable amount.

(a) Multiclass PR curves (b) Binary PR curves

Figure 4.38: PR curves for Mobilenet, binary and multiclass, generated by Scikit-plots.

Overall e�ect

Looking at the raw numbers is interesting, but it is di�cult to intuit how using an OVR strategy
e�ects the accuracy metrics based on them. In figure 4.39 we have generated two plots which
should help us with this. The first, a bar plot with error bars, shows us the small improvements
to the average values which we saw in the previous sections. We also see that the error bars are
quite large for some of these metrics, which makes sense as there is not that much data.

However, the second plot tells an exciting story. The box plot shows us an e�ect the action of
switching to an OVR strategy has on accuracy. We can see that this changes the distribution of

83

the accuracies significantly. The majority of the observed values fall into a smaller range on the
OVR side of the plot, both in the positive and negative sense. This means that the best performers
in the multiclass style have become slightly worse, and the worst performers have become slightly
better. This seems to reflect what we have previously observed about the e�ects. We can see that
specifically the second quartile, or median, in the box plot has become much higher for many of
the metrics.

(a) Bar plot of average metrics on the test set for
both OVR and multiclass network styles

(b) Box plot of metrics on the test set for both OVR
and multiclass network styles

Figure 4.39: Summary plots of the testing metrics

4.5.3 Goals

In the tools and implementation section, we specified a set of goals which we hoped to achieve
both in regards to classification accuracy and performance. In figure 4.6 we have outlined which
networks achieved what goals. The same e�ect is visible here as from the previous section, the best
networks from multiclass now fail to achieve some of the same classification goals, but overall the
number of classification goals not met has gone down, from 34 in the multiclass case to 31 in the
OVR case.

A few of the cases where we only met the minimum goals have also changed to meet the desired goals
in the OVR case, specifically for specificity. Unfortunately fewer applications meet our minimum
goals for recall in the OVR style, with only one classifier achieving this. In our specific case, the
best classifier was a multiclass style network, NASNet Mobile, which met all of our goals in addition
to being extremely fast.

We aimed to have high F1 and MCC scored in our results, and as we can see the number of
applications which met our goals increased for both of these scores in the OVR style.

When it comes to speed, the e�ect of the OVR style becomes apparent, we have gone from almost
all networks exceeding the desired goals for FPS to only 2 doing this, and six now do not even
meet our requirements for real-time processing. The best classifier in the OVR configuration was
NASNet Large, which was only able to achieve 6 FPS during testing. MobileNet in the multiclass
style is over 100 times faster by comparison, although it is not a particularly good classifier.

84

Goals F1 ACC MCC PREC REC SPEC FPS
VGG16, Multi Des. Des. Des. Des. Des. Des. Des.
VGG19, Multi Des. Des. Des. Des. Des. Des. Des.
Inception v3, Multi N/A N/A N/A Des. No Min. Des.
DenseNet 121, Multi N/A N/A N/A Des. No Min. Des.
DenseNet 169, Multi N/A N/A N/A N/A No Min. Des.
DenseNet 201, Multi N/A N/A N/A N/A No Min. Des.
Xception, Multi N/A N/A N/A N/A No Min. Des.
Inception RN v2, Multi N/A N/A N/A N/A No Min. Des.
Mobilenet, Multi N/A N/A N/A N/A No Min. Des.
NASNet Large, Multi Des. Des. Des. Des. No Des. Min.
NASNet Mobile, Multi Des. Des. Des. Des. Des. Des. Des.
VGG16, OVR Des. N/A Des. Des. No Des. Min.
VGG19, OVR Des. Des. Des. Des. No Des. Min.
Inception v3, OVR Des. N/A Des. Des. No Des. Min.
DenseNet 121, OVR N/A N/A N/A N/A No Min. No
DenseNet 169, OVR N/A N/A N/A N/A No Min. No
DenseNet 201, OVR N/A N/A N/A N/A No Min. No
Xception, OVR N/A N/A N/A Des. No Min. No
Inception RN v2, OVR N/A N/A Des. Des. No Min. No
Mobilenet, OVR Des. N/A Des. Des. No Des. Des.
NASNet Large, OVR Des. Des. Des. Des. Des. Des. No
NASNet Mobile, OVR Des. N/A Des. Des. No Des. Des.

Table 4.6: Summary of which goals were achieved for each network style and application. Green
cells (Des.) meet our desired goals, yellow cells (Min.) meet our minimum goal, red cells did not
meet any goal, and cells labeled N/A did not meed our desired goal, but did not have a minimum
goal specified.

4.6 Summary

In this chapter, we have detailed our training and testing procedures. Besides, we have provided
a breakdown of the recorded metrics during all phases. These metrics should provide us with
an answer to our second research question, namely what the performance and resource usage
consequences are for choosing and OVR style. In the final section, we detailed the classification
performance and to what degree our networks were able to meet our performance goals. This
should provide us with answers to our primary research question, whether or not neural network
OVR is a viable strategy for a classification problem such as ours.

Based on our final results, we can see that the performance impact of using the OVR style is
rather significant, especially in the testing phase. Here, on average, our classification slowed nearly
proportionally to the number of classes. However, on the classification side of things, we saw the
classification quality metrics increase on average, and that the best networks of both styles had
nearly the same performance, exceeding our desired goals. These results, in total, should be enough
to answer our research questions.

85

86

Chapter 5

Conclusion

We trained and ran tests on 99 networks using 11 di�erent architectures, where 88 were binary
networks set up in an OVR configuration. When comparing the networks, we measured several
critical metrics of their performance, including hardware resource use (GPU, CPU and System
Memory), classification speed (in FPS), and classification accuracy (F1, Accuracy, MCC, Precision,
Recall, Specificity). Our primary research goal was to determine if the OVR technique could be
applied to modern neural network architectures and how this would change the metrics we set out
to measure.

87

5.1 Summary

In summary, we saw an increase in the average classification results across all applications using the
OVR method. Some applications saw vastly improved classification results, and some applications
saw worsened results, but the negative findings were usually not as extensive as the improvements.
All applications saw increased resource use during testing with the OVR style, and many saw
increased use during training as well. In regards to frame throughput, all applications saw a severe
decrease in performance using OVR, nearly proportional to the number of classes. This leads us
to believe that the vast increase in complexity and the way resources are allocated on the GPU
mean that this style will carry with it a severe performance penalty. The penalty likely means that
our OVR is likely completely unsuitable for a dataset or classification problem with a class count
greatly exceeding that of Kvasir v2.

In our introduction, we began with a set of research questions which we endeavored to answer with
our research. For clarity those were:

• Can OVR produce useful results with complex binary neural networks?

• How does using an OVR style a�ect how we fulfill the requirements of our classifier? Will our
experimental setup still perform to the desired level when it comes to classification accuracy,
resource use, and classification speed?

Based on the results in the previous chapter, we would conclude that the OVR method is suitable for
use with complex neural networks, as in general, it o�ered comparable results to the single-network
method. In general, our requirements for classification accuracy are better fulfilled by the OVR
style, with increases in mean and median results across the board. However, our requirements for
resource use and speed go largely unmet, meaning that this style might be unsuitable for real-time
classification unless some optimizations can be made which will increase the classification speed.

Thus, the OVR style might be beneficial to attempt if our initial classification results are weak, and
we can tolerate the proportional (to the number of classes) decrease in classification speed. This
method might be faster than attempting to optimize hyperparameters manually and is relatively
easy to set up, especially using our framework.

When it comes to the clinical setting, as none of our OVR classifiers were able to meet all of our
minimum design goals in this regard, the exact networks we have presented here would likely be
unsuitable for this use. However, with performance optimizations and hyperparameter tuning, this
might change. The fastest OVR classifier, based on MobileNet was able to achieve 95 FPS with an
accuracy of .95, so it might be possible to tune these networks so that the other accuracy metrics
also exceed our clinical requirements.

5.2 Contributions

We also saw that the distribution of our accuracy metrics became less spread, with the worst
performing applications in multiclass becoming better in an OVR configuration, and the best
performing multiclass classifiers usually becoming slightly worse. This indicates to us that the
OVR technique might make the networks less sensitive to poor hyperparameter selection, so it
might be a valid strategy to quickly improve abysmal classification accuracy without having to
spend much time optimizing hyperparameters.

When it comes to our performance goals, the number of goals met by all of our applications
increased, but the number of applications which met all of our classification goals decreased overall,
especially when frame throughput is considered. Interestingly, the most substantial average increase
for the OVR style was for the F1 and MCC scores, which were essential metrics to us. In general,
we can see that the classification accuracy is comparable and that the OVR structure could be

88

used directly in at least one case if performance is not critical. To conclude, we feel that in many
cases OVR could be a viable strategy with modern neural networks, but that it will not always
result in increased classification accuracy.

As mentioned in the introduction, we provide in this research a comprehensive analysis of
the performance di�erence between our experimental OVR multi-network style, moreover, a
conventional multiclass approach on our selected dataset. These performance di�erences include
both the di�erence in classification performance and the di�erence in resource use. We have shown
what e�ect this change in style has on the performance of several di�erent architectures. During this
analysis, we have found that, in many cases, our OVR style does provide satisfactory classification
performance, but that it comes at a massive resource usage cost during final classification.

We have also created a testing and metric logging framework, TFmetrics, which allows automated
training and testing of neural networks in many di�erent configurations, and on a user’s chosen
dataset. TFmetrics allows the user to quickly and easily use OVR classification with select modern
neural network architectures, something which is not supported by any other framework to our
knowledge. This framework may be useful in future research, and we plan to develop it further to
support a broader spectrum of machine learning approaches.

Also, we have created and tested multiclass networks which improve the classification speed and
accuracy significantly over previous research on this dataset, ending up with three network styles
which meet or exceed all of our desired classification and performance goals.

In summary, using the OVR style resulted in a 7% increase in average F1 score, 1% increase in
average accuracy, 6% increase in MCC, 1% increase in precision and finally a 4% increase in average
recall. Specificity remained relatively unchanged. Also, the median values for all of these metrics
increased significantly in the OVR style, with the median F1, MCC and recall scores increasing by
over 15%. The most improved network in the OVR configuration saw an increase in F1 of 45%
and an MCC increase of 40%. During testing, on average our OVR multi-network style was 7.6
times slower to classify than a single network multiclass implementation.

5.3 Future Work

Although this research was rather involved and comprehensive, there is, of course, a lot more to
explore using OVR styles. In the future, we would be interested in conducting additional research
in this field and exploring the possibilities o�ered by this style more thoroughly and in other ways
that what we have done so far. There are several aspects of the OVR style we would like to explore
in the future, among them are:

• For example, it is of interest to examine the performance of simpler architectures with OVR,
which no longer operate well on newer or more complex datasets.

• Testing on other datasets than Kvasir v2. Our results are limited to a single dataset; it
would be interesting to explore the results of many datasets and see if the performances are
similar or di�erent. Of particular interest would be datasets with fewer than eight classes,
and datasets with a much higher number of classes.

• Experimenting with optimizing the hyperparameters separately for the individual binary
networks in the OVR configuration, since it is possible that it could lead to better
performance.

• It would be interesting to test other strategies such as One Versus One, which would halve
the required number of networks. In addition, testing other methods of combining the results
of the individual binary networks would be of interest. For example, we might try to place
a simple network on top of the individual networks and train it on their outputs collectively.

89

Another strategy could be thresholding to decide whether or not a frame is positive or negative
for a specific class.

Finally, there are several performance improvements should be explored, as they could make the
OVR networks in our research more viable for real-time applications.

• In our research, we have used the default data structure of TensorFlow, which is NHWC
as described in the background chapter. However, there could be serious performance gains
from switching to an NCHW data structure instead, but still using TensorFlow [49].

• TensorRT is a network optimizer developed by NVidia specifically for use with their GPU [50].
The network optimizer was not used in our research and it would be interesting to examine
what kind of performance gains could be made with this framework.

• TensorFlow itself is optimized to run on multiple GPU’s [24]. It would be interesting to see
if this improves the performance of the OVR style and if so, by how much.

• We have primarily focused on TensorFlow, but other machine learning libraries exist that
might provide better performance. Indeed, there might be a reason to believe that TensorFlow
is one of the slower frameworks [46], and it might be interesting to test the OVR style on
PyTorch, Theano or Ca�e.

• We would also like to examine the actual calls being made by TensorFlow during training
and testing to see what exactly is happening during these phases. In future research, it might
be interesting to include a visual profiler which could give us a good idea of exactly how the
frameworks use resources [51].

90

Bibliography

[1] Robbie Allen. Nips accepted papers stats – machine learning in practice – medium. https://

medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0. (Accessed
on 05/20/2018).

[2] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of machine
learning research, 5(Jan):101–141, 2004.

[3] Stephen Marsland. Machine Learning: An Algorithmic Perspective, Second Edition. Chapman
& Hall/CRC, 2nd edition, 2014.

[4] Irina Rish. An empirical study of the naïve bayes classifier. 3, 01 2001.

[5] Joachim Huyssen and Geo�rey Spedding. Should airplanes look like birds? engineers envision
more fuel-e�cient design. https://phys.org/news/2010-11-airplanes-birds-envision-fuel-e�cient.

html, 2010.

[6] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

[7] G. L. Shaw. Donald hebb: The organization of behavior. In Günther Palm and Ad Aertsen,
editors, Brain Theory, pages 231–233, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[8] Daniel Crevier. AI: The Tumultuous History of the Search for Artificial Intelligence. Basic
Books, Inc., New York, NY, USA, 1993.

[9] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[10] David E Rumelhart, Geo�rey E Hinton, James L McClelland, et al. A general framework
for parallel distributed processing. Parallel distributed processing: Explorations in the
microstructure of cognition, 1:45–76, 1986.

[11] Bohdan Macukow. Neural networks–state of art, brief history, basic models and architecture.
In IFIP International Conference on Computer Information Systems and Industrial Manage-
ment, pages 3–14. Springer, 2016.

[12] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[14] Jin-Hyuk Hong and Sung-Bae Cho. A probabilistic multi-class strategy of one-vs.-rest support
vector machines for cancer classification. Neurocomputing, 71(16-18):3275–3281, 2008.

[15] Jianhua Xu. An extended one-versus-rest support vector machine for multi-label classification.
Neurocomputing, 74(17):3114–3124, 2011.

91

https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
https://phys.org/news/2010-11-airplanes-birds-envision-fuel-efficient.html
https://phys.org/news/2010-11-airplanes-birds-envision-fuel-efficient.html

[16] Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. ACDC: A
structured e�cient linear layer. CoRR, abs/1511.05946, 2015.

[17] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational e�ciency of training
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 855–863.
Curran Associates, Inc., 2014.

[18] François Chollet et al. Keras. https://keras.io, 2015.

[19] Christian Szegedy, Vincent Vanhoucke, Sergey Io�e, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.

[20] François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

[21] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

[22] Christian Szegedy, Sergey Io�e, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016.

[23] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. CoRR, abs/1707.07012, 2017.

[24] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manjunath Kudlur, Josh
Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A
system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–283, 2016.

[25] Katyanna Quach. Machine learning newbs: Tensorflow too hard? kick its ass with keras
• the register. https://www.theregister.co.uk/2017/03/16/keras_new_update/. (Accessed on
05/19/2018).

[26] Aakash Nain. Tensorflow or keras? which one should i learn? https://medium.

com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0. (Accessed
on 05/19/2018).

[27] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei
Li. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.

[29] Nvidia Corporation. Programming guide :: Cuda toolkit documentation. https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html#context. (Accessed on 05/09/2018).

[30] Kunio Doi. Computer-aided diagnosis in medical imaging: historical review, current status
and future potential. Computerized medical imaging and graphics, 31(4-5):198–211, 2007.

[31] International Agency for Research on Cancer et al. Latest world cancer statistics global
cancer burden rises to 14.1 million new cases in 2012: Marked increase in breast cancers must
be addressed. World Health Organization, 12, 2013.

[32] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland,
Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias
Lux, Peter Thelin Schmidt, Michael Riegler, and Pål Halvorsen. Kvasir: A multi-class image
dataset for computer aided gastrointestinal disease detection. In Proceedings of the 8th ACM

92

https://keras.io
https://www.theregister.co.uk/2017/03/16/keras_new_update/
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://medium.com/implodinggradients/tensorflow-or-keras-which-one-should-i-learn-5dd7fa3f9ca0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context

on Multimedia Systems Conference, MMSys’17, pages 164–169, New York, NY, USA, 2017.
ACM.

[33] Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas de Lange,
Sigrun L. Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Peter T. Schmidt, Cathal
Gurrin, Dag Johansen, Håvard Johansen, and Pål Halvorsen. Multimedia and medicine:
Teammates for better disease detection and survival. In Proceedings of the 2016 ACM on
Multimedia Conference, MM ’16, pages 968–977, New York, NY, USA, 2016. ACM.

[34] Michael Riegler, Konstantin Pogorelov, Sigrun Losada Eskeland, Peter Thelin Schmidt, Zeno
Albisser, Dag Johansen, Carsten Griwodz, Pål Halvorsen, and Thomas De Lange. From
annotation to computer-aided diagnosis: Detailed evaluation of a medical multimedia system.
ACM Trans. Multimedia Comput. Commun. Appl., 13(3):26:1–26:26, May 2017.

[35] Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Carsten Griwodz, Thomas de Lange,
Kristin Randel, Sigrun Eskeland, Dang Nguyen, Duc Tien, Olga Ostroukhova, et al. A
comparison of deep learning with global features for gastrointestinal disease detection. 2017.

[36] Nvidia Corporation. Geforce gtx 1080 ti graphics cards | nvidia geforce. https://www.nvidia.

com/en-us/geforce/products/10series/geforce-gtx-1080-ti/. (Accessed on 05/07/2018).

[37] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, 2009.

[38] Charles E. Metz. Basic principles of roc analysis. Seminars in Nuclear Medicine, 8(4):283 –
298, 1978.

[39] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages
233–240, New York, NY, USA, 2006. ACM.

[40] Andreas Beger. Precision-recall curves. https://ssrn.com/abstract=2765419, 2018.

[41] K. Pogorelov, O. Ostroukhova, A. Petlund, P. Halvorsen, T. de Lange, H. N. Espeland,
T. Kupka, C. Griwodz, and M. Riegler. Deep learning and handcrafted feature based
approaches for automatic detection of angiectasia. In 2018 IEEE EMBS International
Conference on Biomedical Health Informatics (BHI), pages 365–368, March 2018.

[42] Mirocam capsule endoscope camera o�ers a broder field of 170 degrees which enables a more
through diagnosis of the small bowel. http://www.reyyanmedical.com/index.php?yazigoster=

mirocam-endoscopic-camera&dil=en. (Accessed on 05/11/2018).

[43] Endoscopic camera | vimex endoscopy. http://vimex-endoscopy.com/aparatura-endoskopowa/

kamera/?lang=en. (Accessed on 05/11/2018).

[44] Patrick Blessing Peter F. Niederer Daniel Doswald Norbert Felber Juerg Haefliger,
Yves Lehareinger. High-definition digital endoscopy, 1999.

[45] M Galar, A Fernández, E Barrenechea, H Bustince, and F Herrera. Aggregation schemes for
binarization techniques methods’ description. Pamplona, Spain, 2011.

[46] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-of-the-art
deep learning software tools. CoRR, abs/1608.07249, 2016.

[47] Giampaolo Rolada et al. psutil. https://github.com/giampaolo/psutil, 2018.

[48] Nvidia Corporation. Nvidia management library (nvml). https://developer.nvidia.com/

nvidia-management-library-nvml, 2018.

[49] Google Brain. Performance guide. https://www.tensorflow.org/performance/performance_

guide. (Accessed on 05/21/2018).

93

https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://ssrn.com/abstract=2765419
http://www.reyyanmedical.com/index.php?yazigoster=mirocam-endoscopic-camera&dil=en
http://www.reyyanmedical.com/index.php?yazigoster=mirocam-endoscopic-camera&dil=en
http://vimex-endoscopy.com/aparatura-endoskopowa/kamera/?lang=en
http://vimex-endoscopy.com/aparatura-endoskopowa/kamera/?lang=en
https://github.com/giampaolo/psutil
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.tensorflow.org/performance/performance_guide
https://www.tensorflow.org/performance/performance_guide

[50] Nvidia Corporation. Tensorrt 3: Faster tensorflow inference and volta support | nvidia
developer blog. https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/. (Accessed
on 05/21/2018).

[51] Illarion Khlestov. Howto profile tensorflow: – towards data science. https://towardsdatascience.

com/howto-profile-tensorflow-1a49fb18073d. (Accessed on 05/21/2018).

94

https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/
https://towardsdatascience.com/howto-profile-tensorflow-1a49fb18073d
https://towardsdatascience.com/howto-profile-tensorflow-1a49fb18073d

Part III

Appendices

95

Appendix A

Figures

A.1 Model Visualizations

97

Figure A.1: VGG 16 Model Visualization
98

Figure A.2: VGG 19 Model Visualization
99

Figure A.3: Inception v3 Input Layers
100

Figure A.4: Inception v3 Block

Figure A.5: Inception v3 Output Block

101

Figure A.6: DenseNet Input Block
102

Figure A.7: DenseNet Output Block

103

Figure A.8: Xception Input

104

Figure A.9: Xception Block type 1

105

Figure A.10: Xception Block type 2

106

Figure A.11: Xception Output

107

Figure A.12: Inception ResNet v2 Input

108

Figure A.13: Inception ResNet v2 Block type 1

Figure A.14: Inception ResNet v2 Block type 2

109

Figure A.15: Inception ResNet v2 Output

110

Figure A.16: MobileNet Input

111

Figure A.17: MobileNet Output
112

Figure A.18: NASNet Large Input
113

Figure A.19: NASNet Large Output
114

Figure A.20: NASNet Mobile Input
115

Figure A.21: NASNet Mobile Output
116

A.2 Training

A.2.1 VGG16

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.22: VGG16 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

117

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.23: VGG16 Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.24: VGG16 GPU volatile usage during training, with a moving window average over 40
measurements overlaid

118

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.25: VGG16 GPU memory usage during training, with a moving window average over 40
measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.26: VGG16 GPU power usage during training in W, with a moving window average over
40 measurements overlaid

119

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.27: VGG16 CPU usage (averaged over 4 cores) during training, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.28: VGG16 Memory usage during training, with a moving window average over 40
measurements overlaid

120

A.2.2 VGG19

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.29: VGG19 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

121

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.30: VGG19 Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.31: VGG19 GPU volatile usage during training, with a moving window average over 40
measurements overlaid

122

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.32: VGG19 GPU memory usage during training, with a moving window average over 40
measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.33: VGG19 GPU power usage during training in W, with a moving window average over
40 measurements overlaid

123

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.34: VGG19 CPU usage (averaged over 4 cores) during training, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.35: VGG19 Memory usage during training, with a moving window average over 40
measurements overlaid

124

A.2.3 Inception v3

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.36: Inception v3 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

125

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.37: Inception v3 Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.38: Inception v3 GPU volatile usage during training, with a moving window average over
40 measurements overlaid

126

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.39: Inception v3 GPU memory usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.40: Inception v3 GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

127

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.41: Inception v3 CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.42: Inception v3 Memory usage during training, with a moving window average over 40
measurements overlaid

128

A.2.4 DenseNet 121

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.43: DenseNet 121 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

129

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.44: DenseNet 121 Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.45: DenseNet 121 GPU volatile usage during training, with a moving window average
over 40 measurements overlaid

130

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.46: DenseNet 121 GPU memory usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.47: DenseNet 121 GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

131

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.48: DenseNet 121 CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.49: DenseNet 121 Memory usage during training, with a moving window average over 40
measurements overlaid

132

A.2.5 DenseNet 169

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.50: DenseNet 169 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

133

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.51: DenseNet 169 Training classification accuracy and loss history for validation data

134

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.52: DenseNet 169 GPU volatile usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.53: DenseNet 169 GPU memory usage during training, with a moving window average
over 40 measurements overlaid

135

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.54: DenseNet 169 GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.55: DenseNet 169 CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

136

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.56: DenseNet 169 Memory usage during training, with a moving window average over 40
measurements overlaid

137

A.2.6 DenseNet 201

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.57: DenseNet 201 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

138

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.58: DenseNet 201 Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.59: DenseNet 201 GPU volatile usage during training, with a moving window average
over 40 measurements overlaid

139

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.60: DenseNet 201 GPU memory usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.61: DenseNet 201 GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

140

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.62: DenseNet 201 CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.63: DenseNet 201 Memory usage during training, with a moving window average over 40
measurements overlaid

141

A.2.7 Xception

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.64: Xception Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

142

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.65: Xception Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.66: Xception GPU volatile usage during training, with a moving window average over 40
measurements overlaid

143

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.67: Xception GPU memory usage during training, with a moving window average over
40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.68: Xception GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

144

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.69: Xception CPU usage (averaged over 4 cores) during training, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.70: Xception Memory usage during training, with a moving window average over 40
measurements overlaid

145

A.2.8 Inception ResNet v2

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.71: Inception-ResNet-v2 Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

146

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.72: Inception-ResNet-v2 Training classification accuracy and loss history for validation
data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.73: Inception-ResNet-v2 GPU volatile usage during training, with a moving window
average over 40 measurements overlaid

147

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.74: Inception-ResNet-v2 GPU memory usage during training, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.75: Inception-ResNet-v2 GPU power usage during training in W, with a moving window
average over 40 measurements overlaid

148

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.76: Inception-ResNet-v2 CPU usage (averaged over 4 cores) during training, with a
moving window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.77: Inception-ResNet-v2 Memory usage during training, with a moving window average
over 40 measurements overlaid

149

A.2.9 Mobilenet

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.78: Mobilenet Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

150

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.79: Mobilenet Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.80: Mobilenet GPU volatile usage during training, with a moving window average over
40 measurements overlaid

151

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.81: Mobilenet GPU memory usage during training, with a moving window average over
40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.82: Mobilenet GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

152

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.83: Mobilenet CPU usage (averaged over 4 cores) during training, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.84: Mobilenet Memory usage during training, with a moving window average over 40
measurements overlaid

153

A.2.10 NasNet Large

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.85: NASNet Large Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

154

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.86: NASNet Large Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.87: NASNet Large GPU volatile usage during training, with a moving window average
over 40 measurements overlaid

155

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.88: NASNet Large GPU memory usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.89: NASNet Large GPU power usage during training in W, with a moving window average
over 40 measurements overlaid

156

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.90: NASNet Large CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.91: NASNet Large Memory usage during training, with a moving window average over
40 measurements overlaid

157

A.2.11 NasNet Mobile

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.92: NASNet Mobile Training classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

158

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.93: NASNet Mobile Training classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.94: NASNet Mobile GPU volatile usage during training, with a moving window average
over 40 measurements overlaid

159

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.95: NASNet Mobile GPU memory usage during training, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.96: NASNet Mobile GPU power usage during training in W, with a moving window
average over 40 measurements overlaid

160

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.97: NASNet Mobile CPU usage (averaged over 4 cores) during training, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.98: NASNet Mobile Memory usage during training, with a moving window average over
40 measurements overlaid

161

A.3 Fine-tuning

A.3.1 Average Power Use

Figure A.99: Fine-tuning: GPU Power in W, including all applications and an average value. For
both binary and multiclass styles.

A.3.2 Memory Use

A.3.3 VGG16

Classification Accuracy and Loss

GPU Usage

CPU and memory usage

162

Figure A.100: Fine-tuning: Memory Used in GB, including all applications and an average value.
For both binary and multiclass styles.

163

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.101: VGG16 Fine-tuning classification accuracy and loss history for training data

164

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.102: VGG16 Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.103: VGG16 GPU volatile usage during fine tuning, with a moving window average over
40 measurements overlaid

165

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.104: VGG16 GPU memory usage during fine tuning, with a moving window average over
40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.105: VGG16 GPU power usage during fine tuning in W, with a moving window average
over 40 measurements overlaid

166

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.106: VGG16 CPU usage (averaged over 4 cores) during fine tuning, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.107: VGG16 Memory usage during fine tuning, with a moving window average over 40
measurements overlaid

167

A.3.4 VGG19

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.108: VGG19 Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

168

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.109: VGG19 Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.110: VGG19 GPU volatile usage during fine tuning, with a moving window average over
40 measurements overlaid

169

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.111: VGG19 GPU memory usage during fine tuning, with a moving window average over
40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.112: VGG19 GPU power usage during fine tuning in W, with a moving window average
over 40 measurements overlaid

170

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.113: VGG19 CPU usage (averaged over 4 cores) during fine tuning, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.114: VGG19 Memory usage during fine tuning, with a moving window average over 40
measurements overlaid

171

A.3.5 Inception v3

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.115: Inception v3 Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

172

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.116: Inception v3 Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.117: Inception v3 GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

173

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.118: Inception v3 GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.119: Inception v3 GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

174

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.120: Inception v3 CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.121: Inception v3 Memory usage during fine tuning, with a moving window average over
40 measurements overlaid

175

A.3.6 DenseNet 121

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.122: DenseNet 121 Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

176

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.123: DenseNet 121 Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.124: DenseNet 121 GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

177

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.125: DenseNet 121 GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.126: DenseNet 121 GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

178

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.127: DenseNet 121 CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.128: DenseNet 121 Memory usage during fine tuning, with a moving window average over
40 measurements overlaid

179

A.3.7 DenseNet 169

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.129: DenseNet 169 Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

180

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.130: DenseNet 169 Fine tuning classification accuracy and loss history for validation data

181

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.131: DenseNet 169 GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.132: DenseNet 169 GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

182

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.133: DenseNet 169 GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.134: DenseNet 169 CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

183

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.135: DenseNet 169 Memory usage during fine tuning, with a moving window average over
40 measurements overlaid

184

A.3.8 DenseNet 201

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.136: DenseNet 201 Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

185

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.137: DenseNet 201 Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.138: DenseNet 201 GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

186

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.139: DenseNet 201 GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.140: DenseNet 201 GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

187

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.141: DenseNet 201 CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.142: DenseNet 201 Memory usage during fine tuning, with a moving window average over
40 measurements overlaid

188

A.3.9 Xception

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.143: Xception Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

189

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.144: Xception Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.145: Xception GPU volatile usage during fine tuning, with a moving window average over
40 measurements overlaid

190

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.146: Xception GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.147: Xception GPU power usage during fine tuning in W, with a moving window average
over 40 measurements overlaid

191

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.148: Xception CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.149: Xception Memory usage during fine tuning, with a moving window average over 40
measurements overlaid

192

A.3.10 Inception ResNet v2

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.150: Inception-ResNet-v2 Fine-tuning classification accuracy and loss history for training
data

GPU Usage

CPU and memory usage

193

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.151: Inception-ResNet-v2 Fine tuning classification accuracy and loss history for
validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.152: Inception-ResNet-v2 GPU volatile usage during fine tuning, with a moving window
average over 40 measurements overlaid

194

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.153: Inception-ResNet-v2 GPU memory usage during fine tuning, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.154: Inception-ResNet-v2 GPU power usage during fine tuning in W, with a moving
window average over 40 measurements overlaid

195

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.155: Inception-ResNet-v2 CPU usage (averaged over 4 cores) during fine tuning, with a
moving window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.156: Inception-ResNet-v2 Memory usage during fine tuning, with a moving window
average over 40 measurements overlaid

196

A.3.11 Mobilenet

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.157: Mobilenet Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

197

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.158: Mobilenet Fine tuning classification accuracy and loss history for validation data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.159: Mobilenet GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

198

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.160: Mobilenet GPU memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.161: Mobilenet GPU power usage during fine tuning in W, with a moving window average
over 40 measurements overlaid

199

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.162: Mobilenet CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.163: Mobilenet Memory usage during fine tuning, with a moving window average over 40
measurements overlaid

200

A.3.12 NasNet Large

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.164: NASNet Large Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

201

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.165: NASNet Large Fine tuning classification accuracy and loss history for validation
data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.166: NASNet Large GPU volatile usage during fine tuning, with a moving window average
over 40 measurements overlaid

202

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.167: NASNet Large GPU memory usage during fine tuning, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.168: NASNet Large GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

203

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.169: NASNet Large CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.170: NASNet Large Memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

204

A.3.13 NasNet Mobile

Classification Accuracy and Loss

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.171: NASNet Mobile Fine-tuning classification accuracy and loss history for training data

GPU Usage

CPU and memory usage

205

(a) Multiclass network accuracy (b) Multiclass network loss

(c) Binary network "polyps" accuracy (d) Binary network "polyps" loss

Figure A.172: NASNet Mobile Fine tuning classification accuracy and loss history for validation
data

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.173: NASNet Mobile GPU volatile usage during fine tuning, with a moving window
average over 40 measurements overlaid

206

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.174: NASNet Mobile GPU memory usage during fine tuning, with a moving window
average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.175: NASNet Mobile GPU power usage during fine tuning in W, with a moving window
average over 40 measurements overlaid

207

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.176: NASNet Mobile CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all epochs (b) Multiclass first epoch (c) Multiclass final epoch

(d) Binary all epochs (e) Binary first epoch (f) Binary final epoch

Figure A.177: NASNet Mobile Memory usage during fine tuning, with a moving window average
over 40 measurements overlaid

208

A.4 Testing

A.4.1 VGG16

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.178: VGG16 GPU volatile usage during testing, with a moving window average over 40
measurements overlaid

CPU and memory usage

209

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.179: VGG16 GPU power usage i W during testing, with a moving window average over
40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.180: VGG16 GPU memory usage during testing, with a moving window average over 40
measurements overlaid

210

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.181: VGG16 CPU usage (averaged over 4 cores) during testing, with a moving window
average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.182: VGG16 Memory usage during testing, with a moving window average over 40
measurements overlaid

211

A.4.2 VGG19

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.183: VGG19 GPU volatile usage during testing, with a moving window average over 40
measurements overlaid

CPU and memory usage

212

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.184: VGG19 GPU power usage i W during testing, with a moving window average over
40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.185: VGG19 GPU memory usage during testing, with a moving window average over 40
measurements overlaid

213

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.186: VGG19 CPU usage (averaged over 4 cores) during testing, with a moving window
average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.187: VGG19 Memory usage during testing, with a moving window average over 40
measurements overlaid

214

A.4.3 Inception v3

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.188: Inception v3 GPU volatile usage during testing, with a moving window average over
40 measurements overlaid

CPU and memory usage

215

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.189: Inception v3 GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.190: Inception v3 GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

216

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.191: Inception v3 CPU usage (averaged over 4 cores) during testing, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.192: Inception v3 Memory usage during testing, with a moving window average over 40
measurements overlaid

217

A.4.4 DenseNet 121

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.193: DenseNet 121 GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

CPU and memory usage

218

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.194: DenseNet 121 GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.195: DenseNet 121 GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

219

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.196: DenseNet 121 CPU usage (averaged over 4 cores) during fine tuning, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.197: DenseNet 121 Memory usage during testing, with a moving window average over 40
measurements overlaid

220

A.4.5 DenseNet 169

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.198: DenseNet 169 GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

CPU and memory usage

221

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.199: DenseNet 169 GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.200: DenseNet 169 GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

222

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.201: DenseNet 169 CPU usage (averaged over 4 cores) during testing, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.202: DenseNet 169 Memory usage during testing, with a moving window average over 40
measurements overlaid

223

A.4.6 DenseNet 201

Testing performance

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.203: DenseNet 201 GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

CPU and memory usage

224

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.204: DenseNet 201 GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.205: DenseNet 201 GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

225

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.206: DenseNet 201 CPU usage (averaged over 4 cores) during testing, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.207: DenseNet 201 Memory usage during testing, with a moving window average over 40
measurements overlaid

226

A.4.7 Xception

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.208: Xception GPU volatile usage during testing, with a moving window average over 40
measurements overlaid

CPU and memory usage

227

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.209: Xception GPU power usage i W during testing, with a moving window average over
40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.210: Xception GPU memory usage during testing, with a moving window average over
40 measurements overlaid

228

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.211: Xception CPU usage (averaged over 4 cores) during testing, with a moving window
average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.212: Xception Memory usage during testing, with a moving window average over 40
measurements overlaid

229

A.4.8 Inception ResNet v2

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.213: Inception-ResNet-v2 GPU volatile usage during testing, with a moving window
average over 40 measurements overlaid

CPU and memory usage

230

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.214: Inception-ResNet-v2 GPU power usage i W during testing, with a moving window
average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.215: Inception-ResNet-v2 GPU memory usage during testing, with a moving window
average over 40 measurements overlaid

231

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.216: Inception-ResNet-v2 CPU usage (averaged over 4 cores) during testing, with a
moving window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.217: Inception-ResNet-v2 Memory usage during testing, with a moving window average
over 40 measurements overlaid

232

A.4.9 Mobilenet

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.218: Mobilenet GPU volatile usage during testing, with a moving window average over
40 measurements overlaid

CPU and memory usage

233

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.219: Mobilenet GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.220: Mobilenet GPU memory usage during testing, with a moving window average over
40 measurements overlaid

234

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.221: Mobilenet CPU usage (averaged over 4 cores) during testing, with a moving window
average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.222: Mobilenet Memory usage during testing, with a moving window average over 40
measurements overlaid

235

A.4.10 NasNet Large

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.223: NASNet Large GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

CPU and memory usage

236

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.224: NASNet Large GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.225: NASNet Large GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

237

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.226: NASNet Large CPU usage (averaged over 4 cores) during testing, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.227: NASNet Large Memory usage during testing, with a moving window average over
40 measurements overlaid

238

A.4.11 NasNet Mobile

GPU Usage

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.228: NASNet Mobile GPU volatile usage during testing, with a moving window average
over 40 measurements overlaid

CPU and memory usage

239

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.229: NASNet Mobile GPU power usage i W during testing, with a moving window average
over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.230: NASNet Mobile GPU memory usage during testing, with a moving window average
over 40 measurements overlaid

240

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.231: NASNet Mobile CPU usage (averaged over 4 cores) during testing, with a moving
window average over 40 measurements overlaid

(a) Multiclass all tests (b) Multiclass first test (c) Multiclass final test

(d) Binary all tests (e) Binary first test (f) Binary final test

Figure A.232: NASNet Mobile Memory usage during testing, with a moving window average over
40 measurements overlaid

241

A.5 Throughput and Accuracy

A.5.1 VGG16

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 315.76 345.07 344.95 344.71 344.65 344.00 344.17 344.47 344.23 344.23 341.62
Binary 44.55 44.57 44.55 44.37 44.46 44.46 44.53 44.47 44.45 44.45 44.49

Table A.1: FPS Test for Vgg16, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.233: Confusion matrices for VGG16, binary and multiclass, generated by Scikit-plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.234: ROC curves for VGG16, binary and multiclass, generated by Scikit-plots.

242

(a) Multiclass PR curves (b) Binary PR curves

Figure A.235: PR curves for VGG16, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 37 45 1705 213 0.84 0.96 0.82 0.83 0.85 0.97
Multi, class 1 37 26 1724 213 0.87 0.97 0.85 0.89 0.85 0.99
Multi, class 2 64 42 1708 186 0.78 0.95 0.75 0.82 0.74 0.98
Multi, class 3 19 20 1730 231 0.92 0.98 0.91 0.92 0.92 0.99
Multi, class 4 18 11 1739 232 0.94 0.99 0.93 0.95 0.93 0.99
Multi, class 5 39 72 1678 211 0.79 0.94 0.76 0.75 0.84 0.96
Multi, class 6 38 46 1704 212 0.83 0.96 0.81 0.82 0.85 0.97
Multi, class 7 31 21 1729 219 0.89 0.97 0.88 0.91 0.88 0.99
Average 35.38 35.38 1714.62 214.62 0.86 0.96 0.84 0.86 0.86 0.98
Binary, class 0 66 23 1727 184 0.81 0.96 0.78 0.89 0.74 0.99
Binary, class 1 40 26 1724 210 0.86 0.97 0.85 0.89 0.84 0.99
Binary, class 2 80 58 1692 170 0.71 0.93 0.67 0.75 0.68 0.97
Binary, class 3 14 31 1719 236 0.91 0.98 0.90 0.88 0.94 0.98
Binary, class 4 23 46 1704 227 0.87 0.97 0.85 0.83 0.91 0.97
Binary, class 5 75 79 1671 175 0.69 0.92 0.65 0.69 0.70 0.95
Binary, class 6 45 74 1676 205 0.78 0.94 0.74 0.73 0.82 0.96
Binary, class 7 30 36 1714 220 0.87 0.97 0.85 0.86 0.88 0.98
Average 46.62 46.62 1703.38 203.38 0.81 0.95 0.79 0.82 0.81 0.97
Average Di�. +11.25 +11.25 -11.25 -11.25 -0.05 -0.01 -0.05 -0.05 -0.05 -0.01

Table A.2: Accuracy Test for Vgg16, including all metrics and average values.

243

A.5.2 VGG19

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 299.63 300.12 299.90 299.18 299.49 299.27 299.31 299.40 299.54 299.04 299.49
Binary 38.53 38.54 38.53 38.54 38.44 38.55 38.53 38.54 38.55 38.47 38.52

Table A.3: FPS Test for Vgg19, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.236: Confusion matrices for VGG19, binary and multiclass, generated by Scikit-plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.237: ROC curves for VGG19, binary and multiclass, generated by Scikit-plots.

244

(a) Multiclass PR curves (b) Binary PR curves

Figure A.238: PR curves for VGG19, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 38 27 1723 212 0.87 0.97 0.85 0.89 0.85 0.98
Multi, class 1 22 27 1723 228 0.90 0.98 0.89 0.89 0.91 0.98
Multi, class 2 70 54 1696 180 0.74 0.94 0.71 0.77 0.72 0.97
Multi, class 3 18 17 1733 232 0.93 0.98 0.92 0.93 0.93 0.99
Multi, class 4 13 13 1737 237 0.95 0.99 0.94 0.95 0.95 0.99
Multi, class 5 50 72 1678 200 0.77 0.94 0.73 0.74 0.80 0.96
Multi, class 6 44 37 1713 206 0.84 0.96 0.81 0.85 0.82 0.98
Multi, class 7 29 37 1713 221 0.87 0.97 0.85 0.86 0.88 0.98
Average 35.50 35.50 1714.50 214.50 0.86 0.96 0.84 0.86 0.86 0.98
Binary, class 0 59 23 1727 191 0.82 0.96 0.80 0.89 0.76 0.99
Binary, class 1 37 29 1721 213 0.87 0.97 0.85 0.88 0.85 0.98
Binary, class 2 106 24 1726 144 0.69 0.94 0.67 0.86 0.58 0.99
Binary, class 3 12 60 1690 238 0.87 0.96 0.85 0.80 0.95 0.97
Binary, class 4 8 43 1707 242 0.90 0.97 0.89 0.85 0.97 0.98
Binary, class 5 40 97 1653 210 0.75 0.93 0.72 0.68 0.84 0.94
Binary, class 6 50 55 1695 200 0.79 0.95 0.76 0.78 0.80 0.97
Binary, class 7 43 24 1726 207 0.86 0.97 0.84 0.90 0.83 0.99
Average 44.38 44.38 1705.62 205.62 0.82 0.96 0.80 0.83 0.82 0.97
Average Di�. +8.88 +8.88 -8.88 -8.88 -0.04 -0.01 -0.04 -0.03 -0.04 -0.01

Table A.4: Accuracy Test for Vgg19, including all metrics and average values.

245

A.5.3 Inception v3

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 257.90 260.72 260.38 260.42 260.42 260.42 260.45 260.45 260.42 260.25 260.18
Binary 8.15 32.45 33.86 34.08 34.16 34.07 34.09 34.08 34.16 34.23 31.33

Table A.5: FPS Test for Inception-v3, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.239: Confusion matrices for Inception v3, binary and multiclass, generated by Scikit-plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.240: ROC curves for Inception v3, binary and multiclass, generated by Scikit-plots.

246

(a) Multiclass PR curves (b) Binary PR curves

Figure A.241: PR curves for Inception v3, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 38 203 1547 212 0.64 0.88 0.60 0.51 0.85 0.88
Multi, class 1 231 0 1750 19 0.14 0.88 0.26 1.00 0.08 1.00
Multi, class 2 218 4 1746 32 0.22 0.89 0.31 0.89 0.13 1.00
Multi, class 3 41 25 1725 209 0.86 0.97 0.85 0.89 0.84 0.99
Multi, class 4 1 169 1581 249 0.75 0.92 0.73 0.60 1.00 0.90
Multi, class 5 40 158 1592 210 0.68 0.90 0.64 0.57 0.84 0.91
Multi, class 6 30 82 1668 220 0.80 0.94 0.77 0.73 0.88 0.95
Multi, class 7 53 11 1739 197 0.86 0.97 0.85 0.95 0.79 0.99
Average 81.50 81.50 1668.50 168.50 0.62 0.92 0.63 0.77 0.67 0.95
Binary, class 0 76 67 1683 174 0.71 0.93 0.67 0.72 0.70 0.96
Binary, class 1 124 3 1747 126 0.66 0.94 0.68 0.98 0.50 1.00
Binary, class 2 124 60 1690 126 0.58 0.91 0.53 0.68 0.50 0.97
Binary, class 3 2 85 1665 248 0.85 0.96 0.84 0.74 0.99 0.95
Binary, class 4 1 133 1617 249 0.79 0.93 0.77 0.65 1.00 0.92
Binary, class 5 67 56 1694 183 0.75 0.94 0.71 0.77 0.73 0.97
Binary, class 6 26 54 1696 224 0.85 0.96 0.83 0.81 0.90 0.97
Binary, class 7 48 10 1740 202 0.87 0.97 0.86 0.95 0.81 0.99
Average 58.50 58.50 1691.50 191.50 0.76 0.94 0.74 0.79 0.77 0.97
Average Di�. -23.00 -23.00 +23.00 +23.00 +0.14 +0.02 +0.11 +0.02 +0.09 +0.01

Table A.6: Accuracy Test for Inception-v3, including all metrics and average values.

247

A.5.4 DenseNet 121

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 160.36 161.06 160.98 160.97 160.98 160.99 160.98 160.88 160.89 160.86 160.89
Binary 19.82 20.67 20.78 20.79 20.76 20.77 20.79 20.78 20.77 20.78 20.67

Table A.7: FPS Test for Densenet121, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.242: Confusion matrices for DenseNet 121, binary and multiclass, generated by Scikit-
plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.243: ROC curves for DenseNet 121, binary and multiclass, generated by Scikit-plots.

248

(a) Multiclass PR curves (b) Binary PR curves

Figure A.244: PR curves for DenseNet 121, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 145 15 1735 105 0.57 0.92 0.57 0.88 0.42 0.99
Multi, class 1 200 1 1749 50 0.33 0.90 0.42 0.98 0.20 1.00
Multi, class 2 237 2 1748 13 0.10 0.88 0.19 0.87 0.05 1.00
Multi, class 3 15 47 1703 235 0.88 0.97 0.87 0.83 0.94 0.97
Multi, class 4 1 313 1437 249 0.61 0.84 0.60 0.44 1.00 0.82
Multi, class 5 62 463 1287 188 0.42 0.74 0.34 0.29 0.75 0.74
Multi, class 6 31 67 1683 219 0.82 0.95 0.79 0.77 0.88 0.96
Multi, class 7 217 0 1750 33 0.23 0.89 0.34 1.00 0.13 1.00
Average 113.50 113.50 1636.50 136.50 0.50 0.89 0.52 0.76 0.55 0.94
Binary, class 0 54 66 1684 196 0.77 0.94 0.73 0.75 0.78 0.96
Binary, class 1 135 1 1749 115 0.63 0.93 0.65 0.99 0.46 1.00
Binary, class 2 248 3 1747 2 0.02 0.87 0.04 0.40 0.01 1.00
Binary, class 3 24 31 1719 226 0.89 0.97 0.88 0.88 0.90 0.98
Binary, class 4 0 715 1035 250 0.41 0.64 0.39 0.26 1.00 0.59
Binary, class 5 241 14 1736 9 0.07 0.87 0.09 0.39 0.04 0.99
Binary, class 6 38 45 1705 212 0.84 0.96 0.81 0.82 0.85 0.97
Binary, class 7 136 1 1749 114 0.62 0.93 0.65 0.99 0.46 1.00
Average 109.50 109.50 1640.50 140.50 0.53 0.89 0.53 0.69 0.56 0.94
Average Di�. -4.00 -4.00 +4.00 +4.00 +0.03 0.00 +0.01 -0.07 +0.02 0.00

Table A.8: Accuracy Test for Densenet121, including all metrics and average values.

249

A.5.5 DenseNet 169

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 232.18 233.13 233.10 233.07 232.99 232.91 232.91 232.88 232.96 232.91 232.91
Binary 29.97 29.99 29.96 29.94 29.95 29.98 29.98 29.98 29.97 30.00 29.97

Table A.9: FPS Test for Densenet169, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.245: Confusion matrices for DenseNet 169, binary and multiclass, generated by Scikit-
plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.246: ROC curves for DenseNet 169, binary and multiclass, generated by Scikit-plots.

250

(a) Multiclass PR curves (b) Binary PR curves

Figure A.247: PR curves for DenseNet 169, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 163 57 1693 87 0.44 0.89 0.40 0.60 0.35 0.97
Multi, class 1 196 5 1745 54 0.35 0.90 0.42 0.92 0.22 1.00
Multi, class 2 221 1 1749 29 0.21 0.89 0.31 0.97 0.12 1.00
Multi, class 3 13 212 1538 237 0.68 0.89 0.66 0.53 0.95 0.88
Multi, class 4 0 321 1429 250 0.61 0.84 0.60 0.44 1.00 0.82
Multi, class 5 133 69 1681 117 0.54 0.90 0.49 0.63 0.47 0.96
Multi, class 6 42 221 1529 208 0.61 0.87 0.57 0.48 0.83 0.87
Multi, class 7 127 9 1741 123 0.64 0.93 0.65 0.93 0.49 0.99
Average 111.88 111.88 1638.12 138.12 0.51 0.89 0.51 0.69 0.55 0.94
Binary, class 0 165 24 1726 85 0.47 0.91 0.48 0.78 0.34 0.99
Binary, class 1 101 17 1733 149 0.72 0.94 0.70 0.90 0.60 0.99
Binary, class 2 226 7 1743 24 0.17 0.88 0.25 0.77 0.10 1.00
Binary, class 3 67 35 1715 183 0.78 0.95 0.76 0.84 0.73 0.98
Binary, class 4 2 265 1485 248 0.65 0.87 0.64 0.48 0.99 0.85
Binary, class 5 78 167 1583 172 0.58 0.88 0.52 0.51 0.69 0.90
Binary, class 6 23 227 1523 227 0.64 0.88 0.61 0.50 0.91 0.87
Binary, class 7 91 11 1739 159 0.76 0.95 0.75 0.94 0.64 0.99
Average 94.12 94.12 1655.88 155.88 0.60 0.91 0.59 0.71 0.62 0.95
Average Di�. -17.75 -17.75 +17.75 +17.75 +0.09 +0.02 +0.08 +0.03 +0.07 +0.01

Table A.10: Accuracy Test for Densenet169, including all metrics and average values.

251

A.5.6 DenseNet 201

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 183.28 183.45 183.39 183.30 183.32 183.28 183.27 183.30 183.23 183.32 183.31
Binary 23.59 23.59 23.59 23.57 23.58 23.60 23.59 23.58 23.59 23.59 23.59

Table A.11: FPS Test for Densenet201, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.248: Confusion matrices for DenseNet 201, binary and multiclass, generated by Scikit-
plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.249: ROC curves for DenseNet 201, binary and multiclass, generated by Scikit-plots.

252

(a) Multiclass PR curves (b) Binary PR curves

Figure A.250: PR curves for DenseNet 201, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 204 21 1729 46 0.29 0.89 0.32 0.69 0.18 0.99
Multi, class 1 242 1 1749 8 0.06 0.88 0.16 0.89 0.03 1.00
Multi, class 2 249 0 1750 1 0.01 0.88 0.06 1.00 0.00 1.00
Multi, class 3 28 288 1462 222 0.58 0.84 0.55 0.44 0.89 0.84
Multi, class 4 0 663 1087 250 0.43 0.67 0.41 0.27 1.00 0.62
Multi, class 5 130 132 1618 120 0.48 0.87 0.40 0.48 0.48 0.92
Multi, class 6 137 78 1672 113 0.51 0.89 0.46 0.59 0.45 0.96
Multi, class 7 195 2 1748 55 0.36 0.90 0.43 0.96 0.22 1.00
Average 148.12 148.12 1601.88 101.88 0.34 0.85 0.35 0.66 0.41 0.92
Binary, class 0 228 13 1737 22 0.15 0.88 0.20 0.63 0.09 0.99
Binary, class 1 198 4 1746 52 0.34 0.90 0.41 0.93 0.21 1.00
Binary, class 2 237 1 1749 13 0.10 0.88 0.20 0.93 0.05 1.00
Binary, class 3 75 218 1532 175 0.54 0.85 0.48 0.45 0.70 0.88
Binary, class 4 0 774 976 250 0.39 0.61 0.37 0.24 1.00 0.56
Binary, class 5 153 69 1681 97 0.47 0.89 0.42 0.58 0.39 0.96
Binary, class 6 162 65 1685 88 0.44 0.89 0.39 0.58 0.35 0.96
Binary, class 7 117 26 1724 133 0.65 0.93 0.63 0.84 0.53 0.99
Average 146.25 146.25 1603.75 103.75 0.39 0.85 0.39 0.65 0.41 0.92
Average Di�. -1.88 -1.88 +1.88 +1.88 +0.05 0.00 +0.04 -0.02 +0.01 0.00

Table A.12: Accuracy Test for Densenet201, including all metrics and average values.

253

A.5.7 Xception

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 162.56 163.44 163.37 163.40 163.43 163.28 163.39 163.28 163.35 163.20 163.27
Binary 21.12 21.11 21.06 21.07 21.07 21.08 21.06 21.04 21.07 21.08 21.08

Table A.13: FPS Test for Xception, including all 10 tests and average value.

Frame throughput

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.251: Confusion matrices for Xception, binary and multiclass, generated by Scikit-plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.252: ROC curves for Xception, binary and multiclass, generated by Scikit-plots.

254

(a) Multiclass PR curves (b) Binary PR curves

Figure A.253: PR curves for Xception, binary and multiclass, generated by Scikit-plots.

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 92 82 1668 158 0.64 0.91 0.60 0.66 0.63 0.95
Multi, class 1 168 3 1747 82 0.49 0.91 0.53 0.96 0.33 1.00
Multi, class 2 175 27 1723 75 0.43 0.90 0.43 0.74 0.30 0.98
Multi, class 3 9 117 1633 241 0.79 0.94 0.77 0.67 0.96 0.93
Multi, class 4 0 237 1513 250 0.68 0.88 0.67 0.51 1.00 0.86
Multi, class 5 92 96 1654 158 0.63 0.91 0.57 0.62 0.63 0.95
Multi, class 6 78 45 1705 172 0.74 0.94 0.70 0.79 0.69 0.97
Multi, class 7 43 50 1700 207 0.82 0.95 0.79 0.81 0.83 0.97
Average 82.12 82.12 1667.88 167.88 0.65 0.92 0.63 0.72 0.67 0.95
Binary, class 0 65 91 1659 185 0.70 0.92 0.66 0.67 0.74 0.95
Binary, class 1 152 4 1746 98 0.56 0.92 0.59 0.96 0.39 1.00
Binary, class 2 136 26 1724 114 0.58 0.92 0.57 0.81 0.46 0.99
Binary, class 3 67 29 1721 183 0.79 0.95 0.77 0.86 0.73 0.98
Binary, class 4 0 486 1264 250 0.51 0.76 0.50 0.34 1.00 0.72
Binary, class 5 119 43 1707 131 0.62 0.92 0.59 0.75 0.52 0.98
Binary, class 6 107 41 1709 143 0.66 0.93 0.63 0.78 0.57 0.98
Binary, class 7 83 9 1741 167 0.78 0.95 0.77 0.95 0.67 0.99
Average 91.12 91.12 1658.88 158.88 0.65 0.91 0.63 0.77 0.64 0.95
Average Di�. +9.00 +9.00 -9.00 -9.00 -0.00 -0.01 0.00 +0.05 -0.04 -0.01

Table A.14: Accuracy Test for Xception, including all metrics and average values.

255

A.5.8 Inception ResNet v2

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 137.72 140.20 140.10 140.19 140.23 140.21 140.23 139.93 139.91 139.92 139.86
Binary 14.80 17.97 18.04 18.05 18.05 18.06 18.07 18.05 18.06 18.04 17.72

Table A.15: FPS Test for Inception-v2, including all 10 tests and average value.

Classification Accuracy

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.254: Confusion matrices for Inception-ResNet-v2, binary and multiclass, generated by
Scikit-plots.

256

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.255: ROC curves for Inception-ResNet-v2, binary and multiclass, generated by Scikit-
plots.

(a) Multiclass PR curves (b) Binary PR curves

Figure A.256: PR curves for Inception-ResNet-v2, binary and multiclass, generated by Scikit-plots.

257

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 84 132 1618 166 0.61 0.89 0.55 0.56 0.66 0.92
Multi, class 1 191 2 1748 59 0.38 0.90 0.45 0.97 0.24 1.00
Multi, class 2 163 38 1712 87 0.46 0.90 0.45 0.70 0.35 0.98
Multi, class 3 34 67 1683 216 0.81 0.95 0.78 0.76 0.86 0.96
Multi, class 4 4 124 1626 246 0.79 0.94 0.78 0.66 0.98 0.93
Multi, class 5 60 157 1593 190 0.64 0.89 0.59 0.55 0.76 0.91
Multi, class 6 58 71 1679 192 0.75 0.94 0.71 0.73 0.77 0.96
Multi, class 7 43 46 1704 207 0.82 0.96 0.80 0.82 0.83 0.97
Average 79.62 79.62 1670.38 170.38 0.66 0.92 0.64 0.72 0.68 0.95
Binary, class 0 60 69 1681 190 0.75 0.94 0.71 0.73 0.76 0.96
Binary, class 1 94 22 1728 156 0.73 0.94 0.71 0.88 0.62 0.99
Binary, class 2 141 10 1740 109 0.59 0.92 0.60 0.92 0.44 0.99
Binary, class 3 26 54 1696 224 0.85 0.96 0.83 0.81 0.90 0.97
Binary, class 4 1 213 1537 249 0.70 0.89 0.69 0.54 1.00 0.88
Binary, class 5 69 90 1660 181 0.69 0.92 0.65 0.67 0.72 0.95
Binary, class 6 85 26 1724 165 0.75 0.94 0.73 0.86 0.66 0.99
Binary, class 7 37 29 1721 213 0.87 0.97 0.85 0.88 0.85 0.98
Average 64.12 64.12 1685.88 185.88 0.74 0.94 0.72 0.79 0.74 0.96
Average Di�. -15.50 -15.50 +15.50 +15.50 +0.08 +0.02 +0.08 +0.07 +0.06 +0.01

Table A.16: Accuracy Test for Inception-v2, including all metrics and average values.

258

A.5.9 Mobilenet

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 692.52 692.76 692.28 692.52 692.52 692.28 692.76 692.76 692.76 692.76 692.59
Binary 95.82 95.86 95.86 95.72 95.41 95.74 95.88 95.90 95.85 95.84 95.79

Table A.17: FPS Test for Mobilenet, including all 10 tests and average value.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.257: ROC curves for Mobilenet, binary and multiclass, generated by Scikit-plots.

A.5.10 NasNet Large

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 47.68 47.60 47.54 47.54 47.54 47.54 47.53 47.54 47.54 47.54 47.56
Binary 6.04 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03 6.03

Table A.18: FPS Test for Nasnetlarge, including all 10 tests and average value.

Classification Accuracy

259

(a) Multiclass confusion matrix (b) Binary confusion matrix

Figure A.258: Confusion matrices for NASNet Large, binary and multiclass, generated by Scikit-
plots.

(a) Multiclass ROC curves (b) Binary ROC curves

Figure A.259: ROC curves for NASNet Large, binary and multiclass, generated by Scikit-plots.

(a) Multiclass PR curves (b) Binary PR curves

Figure A.260: PR curves for NASNet Large, binary and multiclass, generated by Scikit-plots.

260

Style, class FN FP TN TP F1 ACC MCC PREC REC SPEC
Multi, class 0 61 52 1698 189 0.77 0.94 0.74 0.78 0.76 0.97
Multi, class 1 40 39 1711 210 0.84 0.96 0.82 0.84 0.84 0.98
Multi, class 2 118 23 1727 132 0.65 0.93 0.64 0.85 0.53 0.99
Multi, class 3 8 27 1723 242 0.93 0.98 0.92 0.90 0.97 0.98
Multi, class 4 2 60 1690 248 0.89 0.97 0.88 0.81 0.99 0.97
Multi, class 5 41 84 1666 209 0.77 0.94 0.74 0.71 0.84 0.95
Multi, class 6 37 42 1708 213 0.84 0.96 0.82 0.84 0.85 0.98
Multi, class 7 33 13 1737 217 0.90 0.98 0.89 0.94 0.87 0.99
Average 42.50 42.50 1707.50 207.50 0.83 0.96 0.81 0.83 0.83 0.98
Binary, class 0 39 47 1703 211 0.83 0.96 0.81 0.82 0.84 0.97
Binary, class 1 38 24 1726 212 0.87 0.97 0.86 0.90 0.85 0.99
Binary, class 2 87 32 1718 163 0.73 0.94 0.71 0.84 0.65 0.98
Binary, class 3 8 17 1733 242 0.95 0.99 0.94 0.93 0.97 0.99
Binary, class 4 7 23 1727 243 0.94 0.98 0.93 0.91 0.97 0.99
Binary, class 5 35 74 1676 215 0.80 0.95 0.77 0.74 0.86 0.96
Binary, class 6 23 29 1721 227 0.90 0.97 0.88 0.89 0.91 0.98
Binary, class 7 27 18 1732 223 0.91 0.98 0.90 0.93 0.89 0.99
Average 33.00 33.00 1717.00 217.00 0.87 0.97 0.85 0.87 0.87 0.98
Average Di�. -9.50 -9.50 +9.50 +9.50 +0.04 +0.01 +0.04 +0.03 +0.04 +0.01

Table A.19: Accuracy Test for Nasnetlarge, including all metrics and average values.

261

A.5.11 NasNet Mobile

Frame throughput

Network style 1 2 3 4 5 6 7 8 9 10 Average
Multiclass 484.14 487.33 487.09 487.21 486.97 487.21 486.97 487.09 487.21 487.09 486.83
Binary 66.91 66.87 66.69 66.66 66.80 66.86 66.75 66.56 66.61 66.82 66.75

Table A.20: FPS Test for Nasnetmobile, including all 10 tests and average value.

262

	I Introduction and Background
	Introduction
	Motivation
	Research Questions
	Scope and Limitations
	Main Contributions
	Thesis Structure

	Background
	Machine Learning
	Early History of Neural Networks and Deep Learning
	One vs. Rest
	The Modern Era
	Applications
	TensorFlow and Keras
	Transfer Learning

	Resource Use
	CPU
	GPU

	Medical Uses and Kvasir
	Summary

	II Implementation and Discussion
	Tools and Implementation
	Test Systems
	System Specifications
	Frameworks and Packages

	Dataset
	Selecting a Dataset
	Dividing the Data

	Overall Structure
	Classification Performance Metrics
	Post-selection Accuracy
	Averaging
	Pre-selection Accuracy
	Metric Goals
	Selection Method

	Main Machine Learning Framework
	Applications
	Transfer Learning
	Hyperparameters

	Hardware Metrics
	General System Metrics
	GPU Metrics
	Parallelization
	Calibration

	Summary

	Experiments
	Common Results
	Included Results
	The Appendices
	Performance on the Testing and Validation Sets

	Training
	Accuracy
	Resource Use
	Time

	Fine-tuning
	Resource Use
	Time
	Tradeoffs

	Testing
	Resource use

	Classification
	Performance
	Accuracy
	Goals

	Summary

	Conclusion
	Summary
	Contributions
	Future Work

	III Appendices
	Figures
	Model Visualizations
	Training
	VGG16
	VGG19
	Inception v3
	DenseNet 121
	DenseNet 169
	DenseNet 201
	Xception
	Inception ResNet v2
	Mobilenet
	NasNet Large
	NasNet Mobile

	Fine-tuning
	Average Power Use
	Memory Use
	VGG16
	VGG19
	Inception v3
	DenseNet 121
	DenseNet 169
	DenseNet 201
	Xception
	Inception ResNet v2
	Mobilenet
	NasNet Large
	NasNet Mobile

	Testing
	VGG16
	VGG19
	Inception v3
	DenseNet 121
	DenseNet 169
	DenseNet 201
	Xception
	Inception ResNet v2
	Mobilenet
	NasNet Large
	NasNet Mobile

	Throughput and Accuracy
	VGG16
	VGG19
	Inception v3
	DenseNet 121
	DenseNet 169
	DenseNet 201
	Xception
	Inception ResNet v2
	Mobilenet
	NasNet Large
	NasNet Mobile

