UNIVERSITY OF OSLO

Department of Informatics

Scheduling of Data
Streams over a
Multicast Protocol

Masteroppgave

Tonje Jystad

Fredrikson

December 1, 2008







Scheduling of Data Streams over a Multicast

Protocol

Tonje Jystad Fredrikson

December 1, 2008






Contents

1 Introduction 1
1.1 Background . ... . ... ... .. ... 1

1.2 Problemstatement . . ... ... ... ... ... ... .. .. ... ... 3

1.3 Main contributions . . . . . ... ... ... e 3

1.4 Structure . . . . . . . . e 4

2 Scheduling techniques 5
2.1 Terminologyandconcepts . . . . .. ... ... ... ... .. 5
211 Terminology . . . . . . . . . .. .. 5

212 Concepts . . . .. .. . 6

2.1.3 Costs related to scheduling techniques for Video-on-Demand .. 7

2.2 Delayed On Demand Delivery . . ... ... .. ... ........... 8
221 Batching . . ... ... .. ... .. 8

222 Adaptive Piggybacking (Stream Merging) . . . . . . ... ... .. 9

2.3 Prescheduled Delivery . . . ... ... ... ... ... ... . ...... 9
23.1 Staggered Broadcasting . . ... ... .. ... ... ... . ..., 10

2.3.2 Pyramid Broadcasting . . . ... ... ... . ... . .. L. 10

2.3.3 Skyscraper Broadcasting . . . . ... ... .. .. 0oL 12

234 Harmonic Broadcasting . . .. ... ... .. ... ......... 12

24 ClientSideCaching . . . . .. ... ... ... . ... . . .. 15
241 Patching (Stream Tapping) . . ... ... ... ... ... ..... 15

2.4.2 Hierarchical Multicast Stream Merging (HMSM) . . . . . ... .. 17

2.5 Discussionand Summary . . ... ... .o 17

3 Existing Implementations 19
3.1 Periodic Broadcast and Patching Services . . . ... ... .. ....... 19
311 Testbed . ... .. .. .. . . 20

3.1.2 MetricsStudied . . . ... ... ... 20

3.1.3 End-to-end Performance . . . . . ... ... ... .. ........ 22



3.2 An empirical Study of Harmonic Broadcasting Protocols . . . . ... .. 22

321 Thetestbed ... ... ... .. . ... ... o L 23
322 Results . . ... ... 23
33 Discussion . . . . ... 23
Protocols and Coding Standards for Video Streaming 27
41 Network Layer Protocols . . . .. ... ... ... ... .. ... .. .. 27
42 Transport Layer Protocols . . . ... ........... ... ....... 29
421 User Datagram Protocol (UDP) . . . . ... ............. 29
4.2.2 Transmission Control Protocol (TCP) . ... ... ... ... ... 30
43 Application Layer Protocols . . . . ... ....... .. .......... 30
43.1 Real Time Streaming Protocol (RTSP) . ... ... ... ...... 31
4.3.2 Session Description Protocol (SDP) . . . . ... ........... 31
43.3 Realtime Transport Protocol (RTP) . . . . .. ... ... . ... .. 31
44 Coding Standards and stream formats . . . . ... ... ... .. ..... 32
441 The Motion Picture Expert Group (MPEG) Video Codecs . . . . . 32
442 Elementary Stream . . ... ... ... ... ... ... ..., 33
443 EncapsulationFormats. . ... .. ... ... ..., ... .... 33
45 Summary . . . ... 34
Design 35
51 StreamFormat . ... ... .. ... ... ... . ... . . .. 35
5.1.1 Encapsulation: Transport vs. Program Stream . . ... ... ... 36
5.2 Segmentation and reassembling of themovie . . . . . ... ... ... .. 36
52.1 Design of the Cautious Harmonic Broadcasting Scheduling Scheme 36
522 Segmentation of themovie . ... ... ... ......... ... 37
52.3 Reassembling the moviesegments . . . . .. ... ... ...... 38
53 Waittime . . . . . ... ... 39
5.4 Integration with existing media players . . . ... ... .. ... ... .. 40
5.5 Transmission of thesegments . . . .. ... ............... .. 41
551 Channels. . .. ... ... ... . ... 41
5.5.2 Routing and transport protocols . . . . ... ... ... ... ... 41
5.6 Summary of requirements for a CHB serverand client . . . . . . ... .. 42
5.7 Establishing sessions . . . . ... ... .. ... ........ . ...... 43
5.7.1 Design choices for Real Time Streaming Protocol (RTSP) . . . . . 43
5.7.2  Design choices for Session Description Protocol (SDP) . . . . .. 44
5.8 Reassembling the fragments tosegments . . . .. ... ... ... .... 45
5.8.1 Reassembly of fragments based on the RTP packet header: . . . . 47

1



59 Processmanagement . ... ... ... ... L 48

5.10 Overview of server and client communication . ... ... ........ 48
Implementation 51
6.1 Livebbb . . . . . e 51
6.1.1 Typical program flow using live555 . . . .. ... ... ... ... 51
6.1.2 Library description . . . . ... ... ... ... . . L. 52
6.1.3 Difficulties . . . . . . .. ... 53
6.14 Benefits . . ... .. ... 53
6.2 Implementation of the CHB Server using live555 . . . . .. ... ... .. 54
6.2.1 Creatingsegments . ... ... ... ... ........ . ..... 54
6.2.2 Establishing clientsessions . . . .. ... ... ... ........ 56
623 Streaming . . ... .. ... .. 57
6.24 Scheduling. . ... ... ...... ... ... ... .. ... 57
6.3 Implementation of the CHB Client using live555 . . . . . ... ... ... 57
6.3.1 Handling RTSP sessionsetup . . . .. ... ............. 59
6.3.2 Receivingsegments . . ... ... ... ... ........ 59
6.3.3 Buffering and segment boundary recognition. . . . .. ... ... 59
6.4 Summary . . .. ... 63
Experiments 65
7.1 Testenvironment . . .. . .. .. ... ... 65
7.2 Testing the scheduling performance . . ... ................ 67
721 Startupdelay . ... ... ... ... . o oo 67
7.2.2 Transmissiontooneclient . . . . ... ... ... ... ....... 68
7.2.3 Transmission of several iteration of the movie . ... . ... ... 72

7.24  Scheduling performance based on client wait time and number

ofsegments . .. ... ... ... ... 74

725 Actualbandwidth . .. ... ... ... ... ... . 000 75

7.3 Video quality at the occurrence of packetloss . . . . ... ... ... ... 77
74 Summary . ... .. 79
Discussion 81
8.1 Issues when creating disjoint segments . . . . . .. ... ... .. ... .. 81
82 PFaulttolerance . . . . ... .. ... .. 82
8.2.1 Performance in alossy environment . . . . .. ... ... ... .. 82

8.2.2 Errors when reassembling segments . . . . . ... ... ...... 83

823 Supportforresuming . ... ... ... ... ... .. ... 83

111



8.3 Network and channel considerations . . . . . . . . . . .. . . ... .... 84

8.4 Optimization and the applicabilityof CHB . . . ... ... ........ 85
Conclusion 87
91 Summary and contribution . ... ... ... oo 00000 87
92 Futurework . . ... ... ... 88
89
A.1 Measurements of network delay from Oslo to selected Norwegian des-
tinations . . . . ... L e 89
A2 Specification of test machines . . . . .. ... ... ... . 0L 90
A.3 Movie specifications . . . .. ... .. L L Lo Lo 90
A4 Testresults, Scheduling performance based on client wait time and num-
berofsegments . .. .. ... ... .. oL 91
A41 TheWrongLanding . ......................... 91
A.42 TheElephant'sDream . . ... ... ... .............. 92
A.5 Collaboration diagrams and call graphs . . . . .. ... .. ... ... .. 93

iv



List of Figures

21
2.2
2.3

24

2.5

2.6

2.7

2.8

29

2.10

Adaptive Piggybacking . . . . . ... ..o o 10
Staggered Broadcasting . . . . ... ... L 11
Pyramid Broadcasting for movie a and b, where the numbers indicate segment
number. The red lines indicate the time of download of the indicated segment

for movie a, whereas the blue line shows the client’s consumption time of the

same segment (also from moviea). . . . . ... ... ... ... 11
Skyscraper Broadcasting for movie a. where the numbers indicate the segment
numbers. The red line indicates the time of download, whereas the time of
consumption at the client end is indicated by the bottom row. (Figure adapted

from Griwodz and Halvorsen, 2008 [1]) . . . . . .. ... ... ... .... 13
Harmonic Broadcasting. (Figure adapted from Griwodz and Halvorsen, 2008

[1D . 14
Cautious Harmonic Broadcasting Algorithm, transmitting movie a and its
corresponding segment number. (Figure adapted from Griwodz and Halvorsen,

2008 [1]) .« o o o 14
Quasi-Harmonic Broadcasting Algorithm, transmitting segments S, where the
notation Sy 4 refers to segment 2 and its sub-segment 4. . . . ... ... ... 15
Patching. A client buffers buffers the multicast stream transmitted during the

time the client receives the patch as unicast. Figure adapted from Griwodz and

Halvorsen [1] . . . . . . . .. 16
After a multicast stream is initiated, arriving client requests are served by
unicast streams patching the already transmitted part of the multicast stream.

The same part of the multicast stream is buffered at the need for buffering on the

client side equals the size of the individual patch. Figure adapted from Griwodz

and Halvorsen [1] . . . . . . . ... . . 16
The comparison of wait time and bandwidth when using the Pyramid, Skyscraper

and Harmonic based scheduling algorithms. Figure taken from Paris et. al,
1998 [2] . o o e 18



4.1

51
52

53

54

6.1
6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8

An overview of the Internet Protocol Suite. The protocols used at the different
layers are listed just below the name of the layer. . . . . . ... ... .. ...

Our implementation of the Cautious Harmonic Broadcasting Algorithm

Total bandwidth for transmitting a 1100 kbps movie using either CHB or our
simplified CHB algorithm (Edited CHB). For average numbers measured see
Chapter 7.2.5 . . . . ..
Client listening to channels, while buffering data to be consumed later to files.
The latter part of the segment is in all the shown channels downloaded prior to
the beginning of the segment. . . . . . .. . ... L .

Our implementation of the Cautious Harmonic Broadcasting Algorithm

SD sample, included in the server’s RTSP DESCRIBE response . . . . . . ..

A MediaSession object has pointers to multiple HarmonicMediaSubsessions.
Each subsession has a FileSink, HarmonicTransportStreamFramer and a Sim-
pleRTPSource, as well as an RTCPInstance. The variable names in the source
code are found on the edges between the objects. . . . . .. .. ... ... ...
Simplified call graph for the RTSP setup on the client side. When a function is
implemented in a parent class, the class names are indicated in square brackets.

Simplified call graph of the most important functions with an RTP server. . . .

Test environment . . . . . . . . e e e e e e

Start up delay: The initial scheduling delay between the movie segments for
the initial first (and second) packets for all streams at the client side. Note that
stream 11 is transmitted prior tostream 1. . . . . . . ... ... ...
Transmission to one client from the start up time of the server until completion
of one iteration of A Mmovie . . . . . .. ...
Transmission of one full movie to one client at an arbitrary start time. The fall
in the graphs indicate the place where a segment is looping, making it neces-
sary for a client to reassemble the segment on a specific channel, in addition to
reassemble the segments prior to consumption. . . . . .. . ... ... ..
Transmission of several iterations of a movie to one client from start of the
server. Stream 1 is at the bottom (red). . . . . . ... ... ... .. .....
Number of segments vs. download indicator . . . . . ... ... ... ...,
Wait time vs. download indicator . . . . . ... ... Lo L L
Transmission of the movie from the server for the duration of approximately one
iteration of the movie . . . . . . ... .

vi

58

60
62



A1 Simplified call graph for the server sink, framer and source. Functions imple-
mented in parent classes have the parent class name indicated in square brack-
CES. . e e

A2 Collaboration diagram for MediaSession. The diagram is without our additions
to the library. Diagram taken from live555 online documentation [3]. . . . . .

Vil



viil



List of Tables

2.1

7.1

7.2

7.3

Al

A2

A3

The table shows how the segments in Skyscraper broadcasting are distributed
to their respective channels in the a shape of an increasing steep 'skyscraper’.
This table only shows up to 12 segment for one channel. The next channel
with 25 segment, would underline the steep increase in number of channels per

SEQMENt. . . . .. e e e

Initiation delay (in seconds) for all streams at the start up time of transmission
measured ataclient . . . . .. ... .. L L
The measured and theoretical bandwidth in kbps for our implementation of the
CHB scheduling algorithm. The measured bandwidth includes that of protocol
overhead. . . . . .. ... ...
PSNR and SSIM values based on the received video files . . . . .. ... ...

Measuring round trip time using ping from an ADSL home user to selected
servers throughout Norway bottom line displays the average . . . . . . . . ..
Metrics from wait time vs download indicator investigation for "The Wrong
Landing” . . . . . ..
Metrics from wait time vs download indicator investigation for "The Elephant’s

Dream’ . . . . . .

X






Acknowledgments

I would like to express my gratitude to my advisers, Carsten Griwodz, Pal Halvorsen
and Hévard Espeland, for their guidance, valuable feedback, and helpful attitude.

I would also like to thank Hakon Stensland for his continued encouragement through-
out my studies, leading up to this thesis. Along with Paul Beskow he has been a great
help in providing feedback on my writing. I also wan to thank Alexander Eichorn for
helpful discussion, and Pengpeng Ni for help with PSNR and SSIM.

I would also like to thank all the guys in the lab. I have truly appreciated the motivating

work environment, good conversations, and our many laughs.

I would also like to thank my parents for continued support, and my friends for en-

couragements along the way.

Tonje Jystad Fredrikson

Fornebu, December 1, 2008

el



xii



Chapter 1

Introduction

1.1 Background

Networked multimedia refers to the transmission of video, audio, and other interac-
tive content like online games. A common denominator is that end users are given im-
mediate access to the stored media upon request. Growing popularity for networked
multimedia has been seen over the last years, and as a result we see new media services
arise. Examples span from video streaming on www . youtube . com, games like World
of Warcraft [4], to Internet based TV and radio as seen on www.nrk.no/nett—-tv/
and www.radiol.no. In this thesis we will focus on a subset of networked multime-

dia, namely Video-on-Demand (VoD).

Transmission of video represents a range of challenges as large amounts of data are
delivered over the network. End users have high demands with regard to delivery
time and sometimes expect the system to respond instantaneously. On the server side
the processing performance and ability to meet client requests is vital. The network
needs to be able to handle the transmissions, whether the challenge is bandwidth, de-
lay, or routing. The client needs enough bandwidth to download the video, as well as
processing power to receive, decode and display the streams. Depending on the trans-
mission model, the client will possibly need buffering capabilities, something that will
be discussed in later chapters. There has been active research on trading off resource
use at servers, clients, and on intermediate systems such as proxies, and in the net-
work itself. This work has, however, been largely theoretical due to shortcomings of
the deployed infrastructure, many of which are no longer an obstacle.

As the network infrastructure has improved, we now find it interesting to revisit the
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research areas for transmission of VoD. Some focus on how to differentiate the deliv-
ery to the client based on the end users needs. Another area of research focuses on
mechanisms for scheduling the media streams that are transmitted. Using scheduling
techniques the VoD providers seek to avoid consuming more network resources than
necessary. Stream scheduling mechanisms attempt to deliver content rapidly following
an individual user’s request so that the system appears to answer immediately. They
also seek to provide individual service, while handling requests from as many users as
possible and still reduce the resource consumption on servers and in the distribution

system and network.

Some techniques assume broadcast infrastructures like TV broadcast over antenna. Us-
ing these ideas on the Internet is difficult, because TV broadcast guarantees bandwidth
and delay, while the Internet does not. Other techniques use Internet multicast, but
multicast has not been supported by Internet Service Providers (ISPs). Good payment
models in conjunction with multicast is one problem area, as multicast addresses can
be listened to by anyone in the autonomous network. Potential for Distributed Denial
of Service attacks is another challenge. Communication across different ISPs was yet
another challenge, as some do not agree in policies and what services should be acces-
sible for their customers. The increasing demand on processing in the network could
result in a need for more complex routers and higher costs for the ISPs. The number
of end users with enough bandwidth to actually make good use of VoD transmissions
has only increased rapidly in the later years. Prior to the upgrade of the network in-
frastructure it was impossible for ISPs and researchers to actually implement broadcast
and multicast outside of testbeds, such as it is today.

Existing service providers (such as www.sf-anytime.com, fxt.no) presently offer video-
on-demand, and they are now noticing that the lack of multicast restricts the number
of customers that they can serve concurrently. ISPs are therefore upgrading their net-
works to support multicast, and open it at least for their own on-demand applications.
By using multicast in combination with scheduling techniques using several channels,
as well as buffering at the client side, the server and network resources can be sig-
nificantly reduced. There is a trade off between the reduced use of resources on the
server side and on the requirements on the client side. The end users will in most cases
have to wait for a short time before the movie can actually be watched. In addition,
the client will meet a higher requirement for bandwidth, as well as need for buffering;

both challenges that with today’s technology have feasible solutions.

Consequently, ISPs are currently interested in stream scheduling techniques. As men-
tioned, most of them are purely theoretical and make assumptions about quality of

2



service in the underlying network. Such assumptions include constant transmission,
latency, delivery rates and bandwidth, as well as a lossless environment. In this thesis,
we revisit one of the techniques, Cautious Harmonic Broadcasting, used together with
Real Time Streaming Protocol and Real-time Transport Protocol, to test and evaluate
these in our environment.

1.2 Problem statement

Stream scheduling techniques show a great potential for reducing server load and im-
prove resource utilization for distribution of highly popular media files. In the 90s,
when the first of these techniques were proposed, it was not feasible to put them into
practice because of various reasons, including those mentioned in the background (see
1.1). Consequently the techniques were therefore evaluated analytically or by using
simulations. However, as the computing technology has improved the situation today
is different.

In this thesis, we therefore seek to develop an implementation based on the concepts
of periodic broadcasting. A periodic broadcast server divides a video object into mul-
tiple disjoint segments, and broadcasts these segments over a set of multicast ad-
dresses. Harmonic Broadcasting is a scheduling technique that makes use of periodic
broadcasting, and it has shown promising results in simulations. Focusing on Har-
monic Broadcasting, we will put periodic broadcasting into practice using an exist-
ing streaming framework, namely live555 [3]. Live555 is a streaming library currently
used in streaming applications like VLC (VideoLAN Project [5]) and MPlayer (MPlayer
team [6]). We will look at design issues for how the scheduling technique can be imple-
mented. Finally, we will evaluate the performance of the implementation to determine
how well it works in an emulated system, as well as expose challenges and suggest
possible solutions.

1.3 Main contributions

In this thesis we have investigated a selection of promising scheduling techniques for
periodic broadcasting. As ISPs are upgrading their networks to support multicast,
they see the opportunity to use less resources to offer their customers quality VoD by
making use of efficient scheduling techniques. Of the techniques studied, we found
the Cautious Harmonic Broadcasting (CHB) algorithm to be most promising.
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CHB is designed to schedule video streams over a multicast network. Reduced trans-
mission bandwidth is one of the benefits of using this algorithm. Our most important
contribution was designing a CHB streaming server and client, and implementing a
prototype of each. Our server prototype has successfully put the CHB algorithm into
practice.

In our implementation we used the live555 framework, enabling future integration
with open source media players like VLC and MPlayer. In our assessment of the pro-
totypes we have performed a series of tests to evaluate the performance. We suggest
that conflicting use of variable and constant bit rates can be one factor that can interfere
with the CHB scheduling. We also observed that the temporally aligned scheduling
scheme in CHB can result in duplicate or lost video frames.

From our work we can conclude that it is feasible with today’s technology to put a

CHB streaming server into operation for a number of subscribers.

1.4 Structure

This thesis is organized as follows; An introduction to terminology and concepts within
scheduling techniques is presented in chapter 2. We also give a background on differ-
ent scheduling theories, including Harmonic Broadcasting. There are existing imple-
mentations to a couple of the scheduling techniques. In chapter 3, we give a summary
of articles that describe some of them, and discuss their results. To make use of the
underlying network, scheduling techniques must make use of transmission protocols.
Chapter 4, gives an introduction to common streaming protocols, as well as a common
standard for video compression. In chapter 5, we look at design challenges for imple-
menting a periodic broadcasting algorithm, the Harmonic Broadcasting protocol. We
then move on to chapter 6, where we explain the actual implementation. This includes
an introduction to the live555 streaming library that has been used. We continue to
evaluate the performance of the implementation in chapter 7, and discuss our find-
ings further in chapter 8. The discussion leads up to our conclusion in chapter 9 with
suggestion for further work.



Chapter 2
Scheduling techniques

In this chapter, we will take a look at some scheduling techniques for VoD. VoD con-
sumes lot of the resources in the network. Even a small video with resolution of 512 x
288 pixels will require a bandwidth of 1100 kbps from end to end. With technologies
like High Definition (HD) that has higher resolution than normal TV, the demands
for bandwidth can seem likely to increase. The following techniques seek to optimize
the resources and bring them down to a minimum to lower the requirements to the

underlying network, the client, and the server, as well as costs.

The Harmonic Broadcasting technique will be examined in more detail as it is the one
we consider most promising with regards to use of resources, particularly with regard
to bandwidth. Before we look at the different scheduling techniques, we will have
a short introduction to terminology and concepts that are recurring throughout the
chapter. We will also briefly look at what some of the costs related to these techniques

are.

2.1 Terminology and concepts

2.1.1 Terminology

Unicast is when a packet is sent from a source to a single client.

Multicast When sending is directed only to the clients who have specifically requested
membership in a group, we call it multicast, as there can be multiple recipients
of the packets transmitted. Packets are only routed through the span tree created

by group members.



Broadcast Sending packets to all clients in a network is referred to as broadcasting. It
is, however, up to the client to choose to listen and receive the packets or not.

Stream: Continuous transmission of data.

Channel: A stream of data on the VoD server (Carter et. al 2001 [7]). The resources
needed for continuous delivery of a single stream. (Dan et. al, 1993 [8]).

Segment: A movie can be divided into several non-overlapping parts called segments.

Consumption rate: The rate at which a client consumes the media (for example watches

a video).

Wait time The time gap between a client requests a video until it is ready for consump-
tion is called ‘wait time’.

Trick Play: Functions like Play, Pause, Stop, Forward and Rewind are referred to as

Trick Play functions.

2.1.2 Concepts

In “Prospects for Interactive Video on Demand,” Little and Venkatesh [9] classify in-

teractive services into several categories based on their level of interactivity. They are:

Broadcast has no VoD. Like with television the end user has no control over the ses-

sion.

Pay-per-view exists today, and requires the client to sign up and pay for a specific
session. Finding good ways to ensure billing is a current challenge.

Quasi VoD (Q-VoD) requires the users to be grouped. Users can then perform some
Trick Play functions by switching groups.

Near VoD (N-VoD) Some Trick Play functions like forward and reverse are available
to the end user. The capability is provided by multiple channels with the same
program skewed in time.

True VoD gives the user full control over the session presentation, including Trick Play

functions.



2.1.3 Costs related to scheduling techniques for Video-on-Demand

Recurring in this chapter will be references to various costs related to scheduling tech-
niques for Video-on-Demand. For a better understanding we will give a brief intro-
duction to some of these. Costs in our context refers to not only monetary value. It
includes resources used as well as complexity in implementations and other factors

that influence the quality and success of an offered VoD service.

Wait time Wait time can determine whether a client decides to use a service or not. If
the waiting time exceeds what the client is willing to wait, the number of users

of the service will decrease, and lessen the value of offering the service.

Delay Delay from when a packet is sent until it is received at the client side will add to
a users wait time. Constant delay for all packets will not affect the quality of the
received video. However, delay occurring at random points can affect the view-
ing experience if the packets do not reach the client in time. It will have the same
effect as packet loss. Network congestion is once cause of such delay, interference
in wireless networks another one. Rebooting of a router is yet another cause.

Packet loss Video is very sensitive to packet loss. The loss of vital frames in the video
can cause flickering when viewing the movie, and in worst case the loss of either

sound and/or images.

Buffering Some scheduling techniques will transmit data prior to client consumption.
This requires local storage to buffer the data until the time of consumption. The
main buffering can take place either at the server, a proxy server or a client. The
buffered data can be either in memory, or written to disk. Monetary costs will de-
pend on type of storage medium in use. Buffering can on the other hand prevent

negative effects from delay.

Scalability A scheduling technique that is said to scale well can transmit video to an
increasing number of users, while having the costs on the server and network
increase at a much lower rate. Good scalability will make the costs per client

decrease as more clients use the service.

Bandwidth Video itself requires a substantial amount of bandwidth in comparison to
other services like downloading web pages or just audio. The cables carrying the
data signals need to have enough bandwidth to transmit the video from end to
end. Unicast will transmit one separate stream to each client. For highly popular
videos, this will cause high stress on the network as well as the streaming server.

Broadcast will transmit to everybody, and hence take up unnecessary bandwidth
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to those who do not wish to receive the data in question.

Network costs The network itself depends on routers to forward packages to the end
user. With increasing amount of data these routers need to be able to handle an

increasing amount of data.

Application complexity When implementing a scheduling technique, the complexity
will directly affect the costs for the development of application. The more com-
plex the algorithm, the longer it takes for a programmer to code, and the costlier

is the maintenance and upgrading of the application.

In the following sections we will look at three main mechanisms: Delayed On-Demand
Delivery, Prescheduled Delivery, and Client-Side Caching. We will describe these and
give examples of scheduling techniques that represent each of them, and discuss their

performance.

2.2 Delayed On Demand Delivery

Delayed on Demand is based on true on demand delivery. However, it is delayed be-
cause it will not transmit the data until several clients have requested the same file.
This enables more efficient delivery than when sending unicast to each individual

client.

2.2.1 Batching

When multiple clients requests for the same movie arrive within a short time frame,
they can be batched together and serviced by the same multicast stream [8]. The wait
time between each single stream, the bathcing window, will directly affect the server
capacity. There is a trade-off between decreasing server capacity and increasing wait
time. Batching has the benefits of being able to service popular media different than
less popular media. The technique is N-VoD as Trick Play is to some extent possible
by changing the stream a client listens to. For example, to rewind, or pause a client
can jump to the next stream that has been activated. If no new stream is available, a
solution if to create a new batch. To fast forward, the client can likewise switch to the
preceding stream. However, the availability of Trick Play does rely on the underlying
batching policies.

The bathcing can be done purely by number of clients requesting the same video, by a
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predefined schedule, or a maximum wait time before multicasting. Drawbacks include
the wait time, as well as limited saving with regard to bandwidth in comparison with
other scheduling techniques. Careful selection of which policy to use will be impor-
tant for any service provider using batching. Three main objectives are to reduce the
average wait time for the clients, avoid clients canceling their requests, and to be fair

to all requests; irrespective of popularity.

2.2.2 Adaptive Piggybacking (Stream Merging)

Adaptive piggybacking seeks to reduce wait time for servicing new requests for VoD,
and is used in conjunction with batching. By changing the consumption rate for video
streams of the same video, the streams can later be merged. [10]. By reducing the
consumption rate of a movie for an initial stream, and increasing it for the stream fol-
lowing, the two streams can be merged into one when they eventually reach the same
video frame. After the merging the consumption rate can be set to normal. Golubchik
et. al [10] established that a deviation of at most 5% from the normal consumption rate
will not be perceived by the viewer. They concluded that even small variations in the
delivery rate can be enough to decrease the bandwidth significantly.

Adaptive Piggybacking can be categorized as a Q-VoD technique as the clients do not
have full control, but can have access to limited Trick Play by changing group and
stream. It has a great benefit over pure batching in that the wait time is reduced. It
is also possible to serve a client immediately if desired, at the cost of increased band-
width. Variation in the delivery rate can also make already merged streams merge
with new streams added at a later point, decreasing the bandwidth even more. It still
requires several streams, at almost basically full bandwidth, containing the same con-

tent, being transmitted over the network.

2.3 Prescheduled Delivery

Presided delivery mechanisms will already be running the video at the time of the
client’s request. For example, a video will be transmitted repeatedly to a multicast
address, where clients need to start listening when the video has completed an iteration
and reached back to start. The client will perceive the service as on demand, whereas in
truth it has been scheduled in advance. Prescheduled deliveries will generally require

segmentation of the video, and buffering and reordering on the client side.
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Figure 2.1: Adaptive Piggybacking
2.3.1 Staggered Broadcasting

Staggered Broadcasting is a technique that is based on transmitting a video on several
channels by staggering the starting time for the video evenly across the channels [11].
Each channel transmits the video at the required bandwidth, so the needed bandwidth
on the server side increases linearly as a product of number of channels. The difference
in starting time between each channel is the phase-offset. The waiting time for a client
will then be equal to or less than the phase-offset time. In other words, a provider may
adjust the phase-offset according to popularity of a video to provide a better (though
perhaps unfair) service. A popular movie can have small segments, so the phase offset
is smaller, possible starting points more frequent. This model provides limited Trick
Play functions where forward can be done by jumping to a channel one phase-offset
earlier, or pause and rewind by jumping to a later one. The drawback of staggered
broadcasting is the high need for bandwidth as the phase-offset gets smaller. It is,
however, one of the techniques that has been put into real life use. It can be imple-
mented both for broadcasting and multicasting [11]. The benefit of multicasting over
broadcasting is that the stream is only transmitted via routers with client members of
the multicast group. In other words, with no members, mainly server resources add to
the cost given that the network provides multicast routing.

2.3.2 Pyramid Broadcasting

Unlike Staggered broadcasting, where the segments of the video are same length, it is

possible to use variable length segments. This idea was introduced by by Viswanathan
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Figure 2.2: Staggered Broadcasting

and Imielinski in 1996 [12], and is called Pyramid broadcasting. Pyramid broadcast-
ing multiplexes a video on the channels in a similar way as Staggered broadcasting.
However, the movie segments are broken into segments of increasing sizes (instead of
equal). The name Pyramid was derived from the notion that stacking the segments on
top of each other (with the first, and shortest segment on top) the segments would take
the shape of a pyramid. The smallest segment (the first part of the movie) is broadcast
most frequently. While the first segment is consumed, the second one can be down-
loaded. As a result, Pyramid scheduling requires the end user to buffer the data upon
reception. Pyramid Broadcasting requires that the number of high bandwidth channels

bl al|bl|al|blfal|blfal|bl|al|{bl|al|bl|al|bl|fal|bl]|al|bl|al|bl|al|blfal|bl|al|bl]|al|bl|al]|bl
—
I
a2 b2 a2 b2 a2 b2 a2 b2 a2 b2 a2 b2 a2 b2 a2 b2
a3 b3 a3 b3 a3 b3 a3 b3
ad b4 a4 b4
— o p——
L
I >
Time
mmm Download time mmm Consumption time

Figure 2.3: Pyramid Broadcasting for movie a and b, where the numbers indicate segment
number. The red lines indicate the time of download of the indicated segment for movie a,

whereas the blue line shows the client’s consumption time of the same segment (also from movie
a).
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is predefined and constant for a given server. If a video is divided into n segments, then
there will also be n equal-bandwidth channels. As a result, the movie segment can be
broadcast at a higher bandwidth than the movie is actually consumed. Where stag-
gered broadcasting only uses a channel for one movie segment, pyramid allows for
segments from multiple movies to be broadcast interleaved using the same channels.

See figure 2.3 for a graphical model of the play out of 2 movies using 4 channels.

Drawbacks with Pyramid Broadcasting are that the clients need to buffer more than
50% of the desired video, in addition to receiving all channels concurrently in a worst
case scenario. In figure 2.3, this can be seen as all of segment a4 is buffered prior to
consumption. The bandwidth is a direct multiple of number of segments, and will
only work for clients in high bandwidth networks.

2.3.3 Skyscraper Broadcasting

Where Pyramid broadcasting took its name from the shape of how the segments would
look stacked, Skyscraper broadcasting takes its name from how equally sized segments
would be placed over several channels in a steep, skyscraper-like shape. In "Skyscraper
Broadcasting: A New Broadcasting Scheme for Metropolitan Video-on-Demand Sys-
tems" Hua and Sheu lay out a scheduling scheme where a movie is divided into n
equally sized segments, and the following pattern determines how many segments to
be allocated on each channel:

1, 2, 2, 5, 5, 12, 12, 25, 25, 52, 52,

Each channels has the same bandwidth, and must be equal to the consumption rate of
the video. The client receives at most two channels at a time while buffering at most

two segments.

2.3.4 Harmonic Broadcasting

Harmonic Broadcasting was introduced by Juhn and Tseng [13]. Their theory breaks a
video into n equally-sized segments S, and dedicates n streams for broadcasting the
different segments of the video. Each stream i repeatedly shows segment S; with
bandwidth %, where b is the consumption rate of the video. However, in “Efficient
broadcasting protocols for video on demand” Paris, Carter and Long [2] prove that
this protocol will not always deliver all data on time. It requires that the client waits
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Segments |1 2|2 |5 |5 |12 |12
27 | 39

26 | 38

Segment 25 |37
24 | 36

numbers 23 | 35
22 | 34

in 21 | 33
10 |15 |20 | 32

channel 9 1114|1931
8 | 13|18 | 30

3|57 121729

11246 |11 |16 |28

Channel [1/2|3| 4|5 |6 |7

Table 2.1: The table shows how the segments in Skyscraper broadcasting are distributed to their
respective channels in the a shape of an increasing steep ‘skyscraper’. This table only shows up
to 12 segment for one channel. The next channel with 25 segment, would underline the steep
increase in number of channels per segment.

Channel 1 al | al | al | al | al | al | al | al
Channel 2 a2 1 a3 | a2 | a3 | a2 | a3 | a2 | a3
Channel 3 a4 | a5 |—adl a5 | a4 | a5 | a4 | a5
charnel 4 [ |57 [T el s oz [

TRequest for stream a arrives

al a2 a3 a4 ab ab a/
time >
mmm Download time mmm Consumption time

Figure 2.4: Skyscraper Broadcasting for movie a. where the numbers indicate the segment
numbers. The red line indicates the time of download, whereas the time of consumption at
the client end is indicated by the bottom row. (Figure adapted from Griwodz and Halvorsen,
2008 [1])

for (n — 1)d/n units of time. As a result, Paris et al [2] have proposed two variations to
the protocol, described below, that address this issue. These protocols ensure that all
frames will always arrive on time and the client will never have to wait any extra time

after the beginning of an instance of segment S;.
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Figure 2.5: Harmonic Broadcasting. (Figure adapted from Griwodz and Halvorsen, 2008 [1])
Cautious Harmonic Broadcasting (CHB)

Cautious Harmonic Broadcasting solves the problem by sending the first 3 segments
at full bandwidth (alternating S, and S3), and then transmitting S4 to S, at decreasing
bandwidths (b; = % fori = 3,...,n —1). As a consequence the first three segments must
all be delivered on time as they are broadcast with full bandwidth.

Cl—> a1 al al al al al al al -
=
C2—— a2 a3 a2 a3 a2 a3 a2 a3 %
&
C3— —ti a4 a4 | |2
C4—r | a5

TRequest for stream a arrives

al a2 a3 a4 a5

time
== Download time mmm Consumption time

\/

Figure 2.6: Cautious Harmonic Broadcasting Algorithm, transmitting movie a and its corre-
sponding segment number. (Figure adapted from Griwodz and Halvorsen, 2008 [1])

Quasi-Harmonic Broadcasting (QHB)

If we allow the client to consume data from a segment while it is still receiving data for
that segment, we can improve upon the CHB protocol.
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Like Harmonic Broadcasting, CHB broadcasts the first segment at full bandwidth. For
each segment i, for 1 < i < n, i is broken into im — 1 fragments for some parameter .
and the client will receive m fragments from each channel per time slot. If each time
slot is divided into m equally sized subslots, then the client will receive one fragment
during each subslot. The fragments are transmitted in the following order:

¢ In channel i, the last subslot of each time slot is used to transmit the first i — 1

fragments of S;.

e The rest of the subslots transmit the other i(m — 1) fragments such that the k"
subslot of slot j is used to transmit fragment (ik +j — 1) mod i(m — 1) + i (see
tigure 2.7 ).

S1 S1 S1 S1

S22 is2415261521i523i525i5273i521|522 is24i526i521i523i525i527i521

$33is36i539i531is34is3755310i532is35is38is318531|s33is36i530i532;

Figure 2.7: Quasi-Harmonic Broadcasting Algorithm, transmitting segments S, where the
notation Sy 4 refers to segment 2 and its sub-segment 4.

2.4 Client Side Caching

Client Side Caching is, like the name indicates, based on buffering at the client, while
offering the service on demand. As a consequence they require a considerable amount

of client resources. We will describe one, and very briefly introduce a second.

2.4.1 Patching (Stream Tapping)

Consider a movie that is multicast on a channel. A client who wants to watch the
movie requests the movie n minutes after the initiation. Instead of having to wait for
the next iteration of the movie, the server can transmit the n minutes of the movie by
unicast, and at the same time let the client listen to the multicast channel (see figure
2.8). By continuously buffering the next nminutes on the multicast channel the client
is able to receive the movie as True VoD. The n minutes of the movie that was unicast
to the client is referred to as a “patch’ for the missing portion of the movie at the time
the client requests to watch. The length of the patch will be dependent on the size
between the initial and following multicast stream, as seen in figure 2.9 In "Patching:
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Figure 2.8: Patching. A client buffers buffers the multicast stream transmitted during the
time the client receives the patch as unicast. Figure adapted from Griwodz and Halvorsen [1]
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Figure 2.9: After a multicast stream is initiated, arriving client requests are served by unicast
streams patching the already transmitted part of the multicast stream. The same part of the
multicast stream is buffered at the need for buffering on the client side equals the size of the
individual patch. Figure adapted from Griwodz and Halvorsen [1]

A Multicast Technique for True Video-on Demand Services" Hua et. al describes how
patching techniques can be used in conjunction with bathcing. In this scenario, a server
can be set up with a number of logical channels. As clients request the movie they are

added into a client waiting queue, Wj list used to batch clients together for the next
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available channel C; to multicast the movie. For clients who request the movie after
the first batch has started to receive the video a new wait queue, W, is created. When
the next available channel, Cy, is free the clients from W, are being multicast (instead
of unicast) the missing patch. By having all the clients from batch W; listen to both C;
and C; for the duration of the patch, channel C; can be made available for new clients
at the time the patch has filled the missing portion. In other words, a batch of later
arriving clients get a multicast patch stream, and buffers at the same time portion of the
previous multicast stream until the patch is completely transmitted. As a consequence,

more channels are available, and more clients can be served.

The latter patching technique will offer clients a Near VoD service. The use of batch-
ing in combination with multicast can reduce the server load significantly. The server
bandwidth will rely linearly on the number of batches. The requirements on the client
side will be a maximum bandwidth of two times the playback rate of the movie, in ad-
dition to the local temporary buffer equal to the size of the batch (in the case of being
in a patch batch of clients).

2.4.2 Hierarchical Multicast Stream Merging (HMSM)

By combining the techniques known from Piggybacking, Patching and a version of
Skyscraper (Dynamic Skyscraper), Eager et. al has proposed the HMSM technique
[14]. The key idea is to let each transmission be based on multicast. Clients must
receive the video data faster then the playback rate. It makes use of multiple streams,
as in Skyscraper, accelerated streams, as in Piggybacking, and merging large multicast
groups as in Patching. As a consequence the clients receives a True VoD service, and
resources are reduced on the server side. However, the complexity of this technique

can be hard to combine with user interactivity. Client buffers may also become large.

2.5 Discussion and Summary

We have looked at different algorithms that can be used to schedule media streams.
What they all have in common is that they are assume that videos are encoded with a
constant bit rate. However, as we will see in the next chapter, widely used codecs use
variable bit rate, which can cause challenges not considered by the described schedul-

ing techniques.

Staggered broadcasting results in the server bandwidth to increase linearly as a result

17



of the number of channels in use. In “Efficient broadcasting protocols for video on
demand” Paris, Carter and Long [2] compare the bandwidth per video when streamed
with either Pyramid, Skyscraper or Harmonic (including Cautious Harmonic), see fig
2.10. Of these the Cautious Harmonic performs better both with regards to waiting
time at the client side, as well as the server bandwidth when measured as a multiple of
the playback rate. In chapter 3, we will describe some existing implementations, where
patching is said to result in a network bottleneck when exceeding 5 client requests per

minute at the transmission of a 3 mbps video. As a result we believe that harmonic

14+ Pyramid — |
Permutation-based Pyramid -
Skyscraper -
Harmonic —---

S Cautious Harmonic -~ |

10

Maximum Client Waiting Time (min)

8 10 12 14 16 18 20
Bandwidth Per Video (multiples of the consumption rate)

Figure 2.10: The comparison of wait time and bandwidth when using the Pyramid, Skyscraper
and Harmonic based scheduling algorithms. Figure taken from Paris et. al, 1998 [2]

is the most efficient. Cautious Harmonic Broadcast efficiently limits the use of server
bandwidth and can at the same time have a low wait time from the video request is
sent to client can actually start consuming the media file. Quasi-harmonic broadcasting
requires somewhat less bandwidth, but at the cost of a more complex implementation.
Consequently, we have chosen to implement Cautious Harmonic Broadcasting for our

experiments.

We will now take a closer look at implementation of three different scheduling tech-

niques.
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Chapter 3
Existing Implementations

Scheduling techniques like the ones discussed in chapter 2 have mainly been studied
theoretically, run as mathematical simulations. As already mentioned, shortcomings
in the deployed infrastructure in the 1990s made testing in real life scenarios difficult.
However, a few implementations do exist. We will take a closer look at the implemen-
tation of three different techniques examined in two separate articles. The first two
techniques are implemented in a real life scenario, whereas the third one is mainly
simulated to perform measurements on the performance of the algorithm. Through
our discussion of these we will look for relevant aspects to keep in mind when devel-

oping our own application.

3.1 Periodic Broadcast and Patching Services

In “Periodic broadcast and patching services” [15] an Internet streaming test bed is im-
plemented, measured and analyzed. The goal was to expose and develop solutions to
underlying system issues that arise when both periodic broadcast and patching algo-
rithms are put into practice, one being caching implications. Below is a description of
the scheduling techniques used in the streaming testbed.

Periodic broadcast: Clients play videos sequentially. By dividing a video into seg-
ments, and broadcasting these over a set of channels, clients listen on the different
channels simultaneously, buffering later segments of the movie. Earlier segments of
the video are transmitted more frequently. The study used the Greedy Disk-conserving
Broadcasting (GDB) scheduling scheme. GDB seeks to conserve client disk space by
letting a client receive data as late as possible [16]. Doing so, less buffering space is
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needed at the client as more data is received close to the time of consumption. The
scheme uses equal bandwidth channels to transmit the video.

Patching: A new client listens to an existing multicast stream transmitting later seg-
ments of the video, which is then buffered. The server only needs to separately trans-
mit the earlier frames that were missed by the new client. Patching differs from peri-
odic broadcasting in that video is transmitted on demand, not continuously. The study
used the patching as described in [17]. This algorithm makes use of multicast streams,
also for the patch stream.

3.1.1 Testbed

We will now briefly describe the streaming server and client architecture used in the
study. The server was set up with a Server Control Engine to handle interaction
between the server and its clients, including separate threads for listening and for
scheduling. It was also set up with a Server Data Engine, using separate disk threads
to retrieve data from disk to main memory, and network threads to transmit data from

main memory to the network. The mentioned threads would operate in rounds.

The client was equipped with a data engine that receives data and reorders out of order
data, and is separate from the decoder software (i.e, video player).
RTSP, using TCP, was used for setup of a session, and RTP for data transmission.

3.1.2 Metrics Studied

The study took several performance measures into account when conducting the study.
Following is a list of the main focus areas on both the client and server side.

Server side:

¢ System Read Load - The volume of video data transmitted per unit time from the
underlying OS.

¢ Server Network Throughput - The volume of video data transmitted per unit
time by the application.

* Deadline Conformance Percentage - The percentage of frames that the server was

able to transmit to the network by their respective schedule deadlines.

Client side:
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* Client Frame Interarrival Time - The time between packet r; and r; + 1 arrives at

the client side.

* Reception Schedule Latency - The time from when the client requests the video

until it receives the reception schedule.

Caching implications:

For both patching and periodic broadcast application level caching strategies were
tested. Both Least Recently Used (LRU) and Least Frequently Used (LFU) were im-
plemented. Through tests LFU showed to provide the best performance, and hence
the preferred caching algorithm. For videos with a lower request frequency from end
users, patching appears beneficial over periodic broadcasting as it proved to result in
lower network bandwidth [18]. Without caching the crossover is at 2.8 requests per

minute.

Caching was shown to have direct influence on the crossover point between when
which of the two techniques, patching and periodic broadcasting, was the most effec-

tive with regard to system bandwidth, and was greater the larger the cache was.

Signaling Costs:

In the study TCP was used as the underlying protocol for the communication to set
up a client session prior to the media streaming itself. For a periodic type broadcast
the time to handle a client request is fairly constant up until a threshold caused by a
limitation in how many TCP sessions the server could set up without crossing the TCP
timeout period. This was shown to be true when having several movies, spread over
fewer channels. With only one movie spread over more channels the threshold was
lower. In other words, the signaling delay increases as the client request rate increases.
It was assumed that the latter is a result from the increased chance of a thread being
interrupted during processing.

Cost of Delivering Data:

An interesting detail is that the deadline conformance percentage was above 99% for
all the experiments. This relied on all the data being present in the cache.
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3.1.3 End-to-end Performance
Periodic Broadcast:

More streams and higher arrival rates of client requests did not necessarily lead to
noticeably lower deadline conformance percentage on the server side. Client Frame
Interarrival Time (CFIT) depends on the OS scheduling granularity, but will also be
affected by the traffic load on the network. The study was able to serve up to 600 client
requests per minute.

Patching:

The study showed that with 100 Mbit available in the network, no more than 5 clients
could be served per minute as the network itself would become a bottleneck. The

server itself experienced no difficulties as the deadline conformance percentage stayed
stable at above 99.9%.

Evidence was given that without guaranteed processor time, the number of active
threads should be chosen carefully. Also, with more than one movie, scheduling to
avoid synchronization between the movies is necessary to avoid high peak server net-
work throughput.

We will now look at the third implementation, this one using periodic scheduling.

3.2 An empirical Study of Harmonic Broadcasting Proto-

cols

In our study of broadcasting techniques in chapter 2 we concluded that we found the
CHB algorithm was the most promising of the ones studied. In “An Empirical Study
of Harmonic Broadcasting Protocols” [19] Cautious Harmonic Broadcasting (CBH) is
simulated, and therefore in particular interest to us. For a more thorough description
of CHB please refer to section .
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3.2.1 The testbed

The testbed of the simulation used a server and a client machine. Both the server and
client were set up to use fork to handle the separate channels transmitting the disjoint
segments of the video. For video, a dummy files was generated to simulate a 180
minute movie. The dummy file was sent with a constant bandwidth from the server.
In other words, the transmission was based on constant bit rate. To avoid lost I-frames
in the video, this simulation chose TCP over UDP, and experimented with different
TCP packet and window sizes to find the optimal use of the protocol.

To reduce the effects of disk scheduling and I/O the server was set to read the video
file from disk to cache before starting its operations.

3.2.2 Results

A single PC with Pentium III and 512MB RAM could manage to support up to 2400
independent video streams with a guaranteed wait time of 5.3 seconds for a 3 hour
video. The researchers concluded that more work can be done investigating the ben-
efits of switching to a connectionless protocol and reducing the number of processes

required to implement the CHB protocol.

3.3 Discussion

For higher volume video on demand “Periodic broadcast and patching services” [15]
shows that periodic broadcast is to be preferred over patching. With a more effective
scheduling algorithm, like shown with cautious harmonic broadcasting, the network
load should be possible to decrease in comparison with GDB that uses equal band-
width channels.

For videos with a lower request frequency from end users, patching appears benefi-
cial over periodic broadcasting as it is truly on demand, and is also proved to result
in lower network bandwidth [18]. However, if using multicast, rather than broadcast,
this should result in the network load increasing only in the instance of a connected
client. This is due to multicast only being forwarded along the path of routers that
have clients who have requested the multicast stream. With no clients the network
would only be taking up bandwidth between the server and the neighboring router.
More research can be done in this area as technology has advanced, possibly making
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the cross over point between which broadcasting scheme is better different than found
in the first study referred to.

The two experiments differ in that “An Empirical Study of Harmonic Broadcasting Pro-
tocols” [19] bases the transmission on up to 2400 concurrent streams forked into sep-
arate processes. The other “Periodic broadcast and patching services” [15] only tested
up to 24 concurrent streams using threads. Even though more streams and higher
arrival rates did not necessarily lead to noticeably higher deadline conformance per-
centage on the server side when using threads, the numbers are one hundred times
apart and should be examined more closely to draw any conclusion with regards to
effectiveness. An upper level was also found for broadcasting in “Periodic broadcast
and patching services” at 1670 users, due to limitations with TCP timeout period and
therefore refused by the OS. “An Empirical Study of Harmonic Broadcasting Proto-
cols” does not discuss the resources used to handle users, which clearly is a parameter

to take into regard when looking at overall performance.

“An Empirical Study of Harmonic Broadcasting Protocols” chose TCP as the transport
protocol. As we will see in the next chapter, TCP is connection oriented and results
in overhead due to being a reliable protocol. Buffering all packets transmitted until
they are acknowledged by the receiver, TCP takes up more memory at the server than
UDP that was used in “Periodic broadcast and patching services”. In addition, TCP is
not made for multicast. TCP is a host-to-host protocol [20], and it is advisable to use a
different protocol better suited for a broadcasting algorithm. More regarding this will
be discussed in chapter 5.

The underlying system should be taken into account with regard to whether use sepa-
rate processes or threads to handle the streaming of the segments. “Periodic broadcast
and patching services” used threads, and showed successful server performance, in
particular with deadline conformance percentage. Their caching policies also put less
stress on the underlying server system. On the other hand, “An Empirical Study of
Harmonic Broadcasting Protocols” reported that memory on the server side could be
a potential problem when streaming several videos concurrently. They proposed two
solutions. One was buying more memory for the server. The other solution proposed
decreasing the number of segments, showing that merging segments to use half the
number of channels would result in a 4% increase in the network bandwidth. We think
providers may also consider what wait time is needed to meet the demands of the
client. With 60 second wait time instead of 5.3, the number of channels would be only
180. Creating a full process for each stream requires more processing power than the
same number of threads would. We recommend using threads.
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We will now take a closer look at protocols and standards that are commonly used in
streaming VoD.
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Chapter 4

Protocols and Coding Standards for
Video Streaming

When requesting Video on Demand the actual data of the video has to be transmitted
over a network to reach the client. We have looked at different techniques to schedule
these streams efficiently. We will now look at common protocols for transmitting the
data.

We will first look at the network layer which is responsible to get data packets from the
server, through all intermediate links, and all the way to the end client. Next, we will
look at the transport layer which goal is to provide reliable and cost effective transport
from the server to the client independent of the network in use. We then move up
to the application layer where we need protocols to support the applications. For an
overview of the different protocols please refer to the figure 4.1 of the Internet Protocol

Suite. Finally we will look at a common encoding standard for video applications.

4.1 Network Layer Protocols

For communication on the Internet the Internet Protocol (IP) is used, and operates at
the network layer. The main job is routing packets from a source to its destination,
as well as service the transport layer (see section 4.2). There exists several protocols
for use on the network layer. Some deal with control of the Internet, like the Internet
Control Message Protocol and the Address Resolution Protocol, whereas others are

specifically designed for routing.

Normal IP communication is unicast. However, as we have seen when discussing
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Figure 4.1: An overview of the Internet Protocol Suite. The protocols used at the different
layers are listed just below the name of the layer.

scheduling techniques, there are many benefits from using multicast when streaming
VoD. IP supports multicasting, and in IPv4 a class of addresses is set aside for mul-
ticasting, class D. The addresses span from 224.0.0.0 to 239.255.255.255. Multicasting
is implemented by special multicast routers, most of which use the Internet Group
Management Protocol (IGMP) [21].

Periodically, each multicast router sends a hardware multicast to the hosts on its Lo-

cal Area Network asking them to report back on the groups their processes currently

belong to [21]. This is known as a query. Each host sends back responses for all the

class D addresses it is interested. These query and response packets use IGMP [22].

IGMP version 3 adds support for "source filtering", that is, the ability for a system to

receive packets only from specific unicast source IP addresses, as required to support

Source-Specific Multicast [23].

The multicast routers on their side exchange information with their neighboring routers.
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Multicast spanning trees used for routing are based on the exchanged information.

4.2 Transport Layer Protocols

The transport layer links user sessions with the network, hence services both the layers
above, as well we the network layer below. It provides both connection-oriented and
connectionless byte streams from a sender to a receiver. The layer’s basic functions are
to receive data from the layer above, split the data into smaller units if needed, and

pass them to the network layer for transmission.

4.2.1 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a protocol for connectionless communication
[24]. Packets are encapsulated in IP datagrams and sent off without needing any estab-
lished connection with the destination address. In addition to the destination address,
the UDP packet contains information about the source and destination port. Without
the port fields the transport layer would not know what to do with the packets, as the
ports guides where to deliver the payload. in other words, UDP provides an interface
to the IP protocol with the feature of demultiplexing processes using ports. With few
features, the protocol is both simple and fewer messages are required to be transmitted
than what we will see with a connection oriented protocol. For small tasks like looking
up the IP address for a domain name, this can be beneficial, as only the exchange for a
request and the reply is needed. The requesting host can simply resend the request if
the reply is not received, instead of setting up an entire connection.

UDP provides no guaranteed transmission, nor connection to a host. It is an unreli-
able protocol. The protocol does not support modification of its transmission rate, and
can result in congested networks leading to packet loss. If packets arrive out of or-
der, no support to reorder them is in place. Reordering of packets can be performed
either by choosing a different transport protocol with reordering support, or by using
another protocol on top of UDP providing the added services needed. Real Time Proto-
col (RTP) is one example of a protocol offering sequencing of packets. We will describe
RTP later in this chapter. This functionality is also available at the transport layer by
using the Transmission Control Protocol (TCP), which also offers reliable transmission.
UDP does, however, have a 16-bit checksum field that is used for error-checking of the
header and data. This way UDP ensures a level of integrity of the received data.
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4.2.2 Transmission Control Protocol (TCP)

TCP was designed with the focus of offering reliable end-to-end communication over
an unreliable inter-network [21]. TCP is said to be connection oriented. This means that
TCP sets up a connection prior to transmitting the data, using what is known as a three-
way-handshake; in a client server scenario the client will request a transmission from
the server, the server will reply with an acknowledge (ACK) to the request, to which
the client acknowledges to the server again. Once the connection is established, the
data is transmitted until the connection is torn down by one of the hosts. Termination
of the connection is done by sending a packet indicating it is finished (FIN) [20].

TCP uses packet header sequence to reorder packets that are received out of order
upon reception. A client application can be ensured that all data is delivered to the
layer above in the order it was transmitted.

When sending out data the TCP protocol expects an ACK to be sent as a receipt for
all packets. In the case of a missing ACK, a retransmission is scheduled. Hence, using
TCP you can be sure all your packets will arrive at their destination. During the con-
nection setup a calculation of the round trip time between the client and server is also
conducted. TCP uses this information to calculate how long to wait (timeout) for an
ACK before retransmitting the packet. Consequently, in the event of a lost packet it can
take time before the packet is retransmitted, causing a delay in the transmission. With
real time applications, where arrival time is prioritized over reliability, UDP is often

the preferred protocol.

TCP continues to send more packets before all ACKs are received. The number of
packets in transit is slowly increased, and the number is referred to as the congestion
window. In the case of a timeout waiting for an ACK, TCP reduces the transmission
rate. As a result, all who use TCP will modify their usage of the bandwidth according
to the perceived traffic in the network. TCP is said to be fair in this sense, as streams
that share a path will reach an equal share of the bandwidth.

4.3 Application Layer Protocols

Application level protocols have an important task in creating an interface to the un-
derlying transport layer. Applications can use the transport layer interface directly.
However, several protocols exists, like Hyper Text Transfer Protocol, Session Initiation
Protocol, Simple Mail Transfer Protocol, and many more. They can handle numerous
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functions, including synchronization, encryption and content delivery. The services
may vary according to what underlying transport protocol they make use of. We will
describe three that are in common use for streaming video on demand, namely Real
Time Streaming Protocol, Session Description Protocol, and Real Time Protocol.

4.3.1 Real Time Streaming Protocol (RTSP)

RTSP is an application level protocol for delivery of real-time data like audio and video,
and is defined in RFC 2326 [25]. The protocol is intended to control multiple data
delivery sessions and can make use of transport layer protocols like UDP, and TCDP, as
well as the application level protocol RTP. It does not typically deliver the continuous
streams itself, but can be said to act as a "network remote control" for multimedia
servers. This includes allowing Trick Play commands like play and pause. The set of
streams to be controlled is defined by a presentation description. The format for the
description is not set, but the Session Description Protocol that we will describe below

is commonly used.

4.3.2 Session Description Protocol (SDP)

SDP is a format for session descriptions (SDs) defined in RFC 4566 [26]. RFC 4566
defines a session descriptions as follows: “ A well-defined format for conveying suf-
ficient information to discover and participate in a multimedia session.” A common
scenario is a client requesting a description of one or more media streams. A server
can reply with an SD of a media stream(s) so the client can prepare and connect to the
right channel(s) to receive the data. SDP does not incorporate a transport protocol, but
can contain information about what protocol to be used for a session. The protocol is
ASCII based, and has fields used to describe a session. New values that can be used in

the fields are updated regularly, adding to the versatility of the protocol.

4.3.3 Realtime Transport Protocol (RTP)

RTP [27] [28] [29] defines a standardized packet format for delivering real-time data.
With RTP, audio and video are transmitted over unicast and multicast network ser-
vices, i.e. UDP and TCP. It is typically used in conjunction with a control protocol,
RTCP. Both protocols are independent of the underlying transport and network proto-
cols. However, for video streaming RTP is often run on top of UDP (see section 4.2.1)
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to make use of its multiplexing and checksum services. RTP and RTCP operate on
separate channels, where RTP uses the even number and RTCP the odd.

RTP provides end-to-end network transport functions. The functions include payload
type identification, sequence numbers, timestamping and delivery monitoring. RTP
itself is not reliable, but relies on the lower level services for such functions. RTP is
also described as a protocol framework that is deliberately not complete. Separate
profiles and format specifications exist. One example is the octet in the header that
contains the marker bit and the payload type. These can be redefined depending on
the profile requirements. There is also support for data header addition by setting the

extension header bit.

The RTP control protocol, RTCP, has a primary function in providing feedback on the
quality of the data distribution done by RTP. The data delivery is monitored in a man-
ner scalable for multicast networks. With the RTCP feedback a certain level of flow and
congestion control can be used for adaptive encoding. It can also be used to diagnose
faults in the data distribution. To get the feedback receivers send reports to the server
at a rate that is scales with the number of participants.

4.4 Coding Standards and stream formats

In “Computer Networks” [21] Tanenbaum explains that even for a 1024 x 768 pixes
video, with 24 bits per pixel and shown at 25 frames per second , it needs a bandwidth
of 472 Mbps. With such a great demand for bandwidth for feeding raw video, there
is a need for video compression. The Motion Picture Expert Group (MPEG) standard
was developed to cover motion video as well as audio coding. We will briefly describe
two of them, MPEG-1 and MPEG-2, followed by an explanation of how the MPEG-2
stream is multiplexed and encapsulated for storage and transmission.

4.4.1 The Motion Picture Expert Group (MPEG) Video Codecs

MPEG-1 has has three parts, audio, video and system. The audio and video encoders
work independently, and the system multiplexer integrates the two. Video compres-
sion can be achieved by taking advantage of the fact that image frames are often almost
identical. Hence, it is possible to only update the changes in picture, and not necessar-
ily the entire screen. For this MPEG-1 has four different kinds of frames [21].
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I - Intracoded frames: Self contained encoded still pictures. These are the frames that
contain the most information, as it contains an entire image, and are inserted once

or twice per second.

P - Predictive frames: Block-by-block difference with the last frame. P-frames code
only interframe differences. They can refer to I and P frames.

B - Bidirectional frames: Differences between the last and next frame. B-frames are
like the P-frames, only that they can refer also to the upcoming frame, not only
previous ones. They can refer to I and P frames.

D - DC-coded frames: Block averages used for fast forward. They are only used to
make it possible to display low resolution images.

MPEG-2 is fundamentally similar to MPEG-1, with the exception of D-frames that are
no longer supported. Instead of supporting one, it supports four resolution levels, all
the way up to HDTV.

MPEG-2 addresses both audio and video, and provides the MPEG-2 system with a
definition of how audio, video and other data (like subtitles) are combined into a single
or multiple streams which are suitable for storage and transmission. We will not look

at such stream formats.

4.4.2 Elementary Stream

[30] To each audio-visual object in a scene, there is related information that is com-
pressed. This information is referred to as an Elementary Stream (ES). The ES is in
other words the output of encoded video or audio encaptions (it can also be i.e. sub
titles). Each ES in an MPEG-2 is packetized and wrapped in a structure called Packe-
tized Elementary Stream (PES). The resulting PES in interleaved into either a Transport
Stream (TS) or a Program Stream (PS) which we will describe below. The PES pack-
ets start with a lengthy header structure. The most important features are the length
of the packet, a stream id, as well as presentation and decoding time stamps for the
content [31] [32].

4.4.3 Encapsulation Formats

The PES packets for MPEG-2 can be encapsulated for storage or transmission in two
formats, TS and PS. Below is a description of the two, including their usage areas.
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PS is aimed at a relatively error-free environment such as disks (and DVDs). The Pro-
gram Stream’s packet’s may be of variable length. When transmitting a PS over a
network the ESs in the PS are multiplexed into separate streams, i.e a separate stream
for audio, and a separate for video. [33].

TS combines Packetized Elementary Streams and one or several independent time
bases into a single stream. The Transport Stream is designed for use in lossy or noisy
media. The respective packets are 188 bytes long, including the 4-byte header [33]. The
TS is well-suited for transmission of digital television and video telephony over fiber,
satellite, cable, ISDN, ATM and other networks, and also for storage on digital video

tape and other devices. When sent over a network only one stream is transmitted [31].

4.5 Summary

We have now described common protocols for transmission of data over an internet-
work. Our focus has been on those protocols that are commonly used for streaming
video on demand. We have also given a short background to the MPEG-2 video codec
and encapsulation formats for transmission. This to provide a background, as we move

to chapter 5, describing our design for a VoD streaming server and client.
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Chapter 5
Design

In chapter 3 we looked at some existing implementations of scheduling algorithms,
including Cautious Harmonic Broadcasting (CHB). Where one of the existing imple-
mentations performed real movie transmissions, another implementation using CHB
used a dummy file. They thereby avoided issues that can occur when working with
real image data. In this chapter we will detail a design for integrating CHB with ex-
isting media players. As such, this will affect some of our design choices to comply
with existing solutions. Through such an implementation we hope to get a better
understanding of the challenges that arise in writing a streaming server and a client

supporting periodic scheduling.

To create such an implementation one needs to determine what content to transmit,
and what encapsulation and encoding to use. Furthermore, one needs to segment the
movie on the server side, and reassemble them on the client side. To do so the server
needs to know how many segments to split the movie into, and the client needs to
know how many to receive. The data for each segment needs to be transmitted from
the server and received by the client. We will now look at the required considerations
writing such applications; for both the server and client side. Last, the CHB scheduling
scheme requires client buffering. We will look at different options when receiving the

movie in segments, and discuss these.

5.1 Stream Format

Several stream formats and codecs exist today. MPEG-2 video encoding is perhaps the
most widely used of today, and is the standard for common DVDs. It is therefor our
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choice of encoding as well. However, the encoding is primarily a technology concerned
with movie compression from raw video and audio signals. When transported it needs
to be transmitted in a suitable format. For MPEG-2 there are two options, namely
Program Stream (PS) which belongs to the MPEG-1 standard, and Transport Stream
(TS) that came with the MPEG-2 standard. For a description of the two please refer to
section 4.4.3.

5.1.1 Encapsulation: Transport vs. Program Stream

In our work we had to decide on whether to use PS or TS. The PS transmits the video
and audio separately. This can be useful when using unicast because you choose to
drop less important frames at the server side to adjust to a lower bandwidth, if needed.
In a multicast scenario such individual needs can not be taken into account with to-
day’s protocols. Hence, a common bandwidth will have to be chosen for all recipients.
As TS was designed for use in a lossy environment, it seems to be the better solution.
With PSs, lost packets can cause disruption to the synchronization between i.e. video
and audio. As long as the packets are delivered synchronously, they will play well,
but not necessarily with packet loss as the separate ESs sent do not contain synchro-
nization code. In TSs the TS packet header contains more meta data that will help

synchronization in the event of packet loss.

5.2 Segmentation and reassembling of the movie

To implement a periodic broadcasting scheme it is necessary to split the movie into dis-
joint segments. As discussed in chapter 2, we found the Cautious Harmonic Broadcast-
ing algorithm to be the most promising. Below is be a description of what implication
cautious Harmonic Broadcasting will have when determining the size of the segments
and how we designed the scheduling scheme. Following is a description of how to

create such segments, and how to reassemble them on the client side.

5.2.1 Design of the Cautious Harmonic Broadcasting Scheduling Scheme

The Cautious Harmonic Scheduling Scheme is described in the Harmonic Broadcasting
section 3.2. All the Harmonic Broadcasting schemes operate with segments of the same
size. In our code, we decided to use the Cautious Harmonic Broadcasting algorithm.
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However, for the simplicity of the code, we altered the algorithm so that instead of
sending segment 2 and 3 on channel 2, we send segment 2 at full bandwidth on channel
2, and segment 3 at half bandwidth on channel 3. This will not affect the arrival time at
the client. However, adding an extra channel will increase the bandwidth with a little
over b/2 added to the total. 5.2 shows a graph displaying the theoretical bandwidth
expected when streaming a 1100 kbps movie according to the CHB and our edited
version of CHB. Our scheduling scheme is designed as shown in figure 5.1.
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Figure 5.1: Our implementation of the Cautious Harmonic Broadcasting Algorithm

Implementing a periodic scheduling scheme also requires the use of logical channels,
to transmit and receive the streams. We will discuss the possible technical solution on

how to create such channels later in this chapter in section 5.5.1

5.2.2 Segmentation of the movie

To split a movie into disjoint segments, a design issue had to be made with regard to
variable bit rate vs. constant bit rate. The scheduling theories we have discussed in
this thesis are all based on a constant bit rate, hence, we decided to use a constant bit
rate as well. As we chose the TS format, we decided it was wise to not split a segment
in the middle of a TS packet. It may be easier to read the TS packets on the client side
if they are sent in the same packet unit in the event of packet loss, and not split on two
different packet units. As the TS packets have a constant size of 188 bytes, we decided
to split the movie into blocks of 188 bytes, and then decide how many blocks to include

in each segment.
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Figure 5.2: Total bandwidth for transmitting a 1100 kbps movie using either CHB or our
simplified CHB algorithm (Edited CHB). For average numbers measured see chapter 7.2.5

There are two ways to determine how to split the movie into segments. One way is
deciding how many segments there should be, and calculate how many blocks should
be in each segment. Alternatively one can determine how long the client wait time
should be, and calculate the number of segments based on that in relation to the entire
duration of the movie. As wait time can be a determining factor in the success of the
deployment of a VoD service, we decided wait time would be the better approach. This

however, does require that the duration of the movie is known at the server side.

5.2.3 Reassembling the movie segments

The CHB algorithm calls for a significant amount of buffering at the client side. As
we will see later in this chapter, caching will be used to buffer data packets from the
transport layer. As a result, it can be difficult to keep all the segments in cache if the end
user has a machine with low caching capabilities. Therefore, we decided to write the
segments to disk. Segment buffers are temporary, and only required until consumption
of the segment. It made sense to write the segments to separate files, as appending to a
file is technically much easier than "prepending’. Another solution could have been to
map the entire video file area, and write the received data to its corresponding offset
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in the file. Such a solution would require more meta data about the received media,
including the offset of where to write in the file, as well as knowledge of the entire
file size prior to receiving the segments. In case of loss, this could be an advantage
when demultiplexing the video. This is due to how media players handles missing
frames. However, we expect that a solution that writes each segment to its own buffer
is more flexible. It makes it easier to free the consumed segment from the clients disk.
Writing to one big file would reserve a file area equal to the size of the video throughout
the entire time of downloading and consumption. It does, however, raise a greater
challenge when delivering the data to a demultiplexer in the media player, as the media
is distributed at different locations on the disk. In that case, the media player will need
to have a buffer that fetches or delivers data from the correct file buffer at the correct
time. In our implementation we will not deliver the media to a player. Instead, we
will reassemble the segments at the end of the download for easy assessment of the

transmitted data.

When downloading the segments, the CHB scheme indicates that a client always starts
the download at the beginning of the segment. We will discuss the details of this later
in the chapter. However, given enough disk space, we see no reason to wait for the
initiation of the download until the start of the segment. As we will see, recognizing
the beginning of the stream can represent a challenge in itself. Instead, we will allow
the client to start buffering the segments immediately (as seen in figure 5.3). As a
result, the former and latter part of the segment will be arriving in opposite order. Our
solution to this is to write the two parts to each their segment. The same structure that
will reassemble the file segments, may just as well reassemble the two segment parts.
There is an exception in the case where listening starts at the exact beginning of the
segments. which requires only one file buffer. Such a buffering scheme will avoid any
problem with recognizing the start of a segment in a data stream, there is no need to
known the size of the segment in advance. It also fits well with the chosen design for

reassembling all of the segments.

5.3 Wait time

The play time of a segment according to the CHB algorithm is equivalent to the longest
time a client has to wait before starting the consumption of the movie. Wait time can
be said to be directly linked to the number of segments. As mentioned in section 2.1.3,
wait time affects the end users experience of the service, and needs to be chosen care-
fully. However, for our implementation, we do not seek to research what maximum

39



al al al al al al al al Cl1l

<
]
o
s a2 a2 a2 a2 a2 a2 a2 a2 |C2
o
c
8 a3 a3 a3 a3 C3
a4 } a4 ad c4
o5 ! ab Cc5

A

A
request for a arrives

\

time
=== Fijle buffer for first part of segment
=== File buffer for second part of segment

Figure 5.3: Client listening to channels, while buffering data to be consumed later to files. The
latter part of the segment is in all the shown channels downloaded prior to the beginning of the
segment.

wait times end users demand for a VoD server. Hence, our choice of wait time will not
be scientifically based, but rather based on our own subjective preference. We have
chosen 60 seconds as our wait time. We believe this is a wait time end users are will-
ing to wait. For profit seeking providers it is also a suitable time slot for streaming
advertisement.

5.4 Integration with existing media players

To get a fuller understanding of the real challenges of implementing a periodic broad-
casting algorithm we decided to create a server and client that can easily be integrated
into existing media streamers and players. To do so we needed access to source code,
limiting our choice of streamers and players to open source software. Two media play-
ers that meet those requirements, VLC [5] and MPlayer [6]. Both use the same stream-
ing code library, live555 [3]. As a result, we decided to implement our code as part of
a modification and addition to live555. Using liveb555 gives us the benefit of having
a library for an RTSP server, as well as support for SDP, RTP and TS framing. This
matched well with our considerations that we will describe below.
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5.5 Transmission of the segments

5.5.1 Channels

For the transport of CHB, a streamer requires channels to transmit the segments of the
movie over the Internet, using the Internet Protocol Suite. In our algorithm one seg-
ment is needed per channel. One way to create channels is to have one address for
each channel. This could potentially create a tremendous need for IP addresses. With
IPv4 still being predominant, broadcast and multicast addresses could, be in short.
The easiest solution seems to be that of using ports in combination with the multicast
IP address. There is a trade off between using ports instead of separate multicast ad-
dresses for the channels. Ports operate on the transport layer, and multicast forwarding
happens at the network layer. In our implementation this means the client will con-
tinue to receive traffic on all channels for the duration of the download, and not just
on the channels that are remaining to be consumed. Consequently, the bandwidth at
the client will be constant during the download, and not decreasing as outlined by the
algorithm. Using overlay multicast is one possible solution to address that problem. A

further discussion of this is found in section 8.3.

5.5.2 Routing and transport protocols

We choose multicast over broadcast as multicast will only transmit to the spanning
tree made up by its member group. Broadcasting will consume resources in the entire
network. The trade off with multicast is that it requires more advanced routers, adding
to the total cost while decreasing the overall network traffic.

As described in section 3.2, an existing implementation using TCP has been tested. In
their conclusion they suggested implementing the CHB protocol in a connectionless
environment. Their rationale for choosing TCP instead of UDP was the importance of

I-frames when viewing video.

As earlier concluded, broadcast and multicast makes little sense when using TCP which
is a host-to-host protocol. Acknowledgment packets would put a tremendous strain
on the server in the event of numerous clients. The clients on the other hand could
experience significant delay caused at the occurrence of packet loss triggering retrans-
missions. There is a trade off between packet delay and packet loss for the client, as

they are both factors that will decrease the viewing experience.
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We chose to use UDP instead TCP. Considering there are drawbacks with using both
TCP and UDP, and seeing how TCP is not fit for use in a multicast environment, UDP is
the best solution. We did, however, take a closer look at the quality of the received file
in chapter 7.3 to see if we could find any indication on the effect of a lossy environment.

5.6 Summary of requirements for a CHB server and client

Using CHB with UDP we have the following needs for setting up a streaming session

between the server and client:
The server application must:

* Establish client sessions: In a reliable way a server must be able to give a client

information needed to receive the segment streams.

¢ Divide segments into fragments: The video segments will be sent as payload in
UDP packets. Keeping bandwidth as constant as possible,the segments need to
be fragmented into smaller packets. These packets must be sent with a steady

frequency.
The client application must:

¢ Know when and where to listen: A client requesting a video needs to know how
many channels to listen to to receive all segments. Furthermore, there is a need

to know when to start and stop listening to a given channel.

* Reassemble the disjoint segments into a video A client needs to have informa-
tion about which channel corresponds to which segment to be able to deliver the
segments in the right order to a file or media player.

* Reassemble the UDP packets for each segment: The media will be sent as pay-
load in UDP packets. We have no guarantee that the packets will arrive in order,
or without delay. The application needs to determine how long to wait for de-
layed or lost packets, as well as put them in order.

* Work with existing media players: The application needs to be able to work with
the chosen media players, VLC and MPlayer.
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5.7 Establishing sessions

A reliable connection needs to be established when setting up the session between the
client and the server. Without reliability the server does not know if the client has
received the needed session information. As the streaming of the video as a whole can
be regarded as one session, we will look at each segment as part of a subsession that is
also responsible for the corresponding channel.

Two common protocols are frequently used to set up sessions for real time streaming,
namely RTSP in combination with SDP. RTSP requests uses TCP, hence, is reliable.
Following is a description of how the two protocols can be used together to establish a
server-client streaming session.

5.7.1 Design choices for Real Time Streaming Protocol (RTSP)

RTSP helps set up a session between a client and a server using TCP as the underlying
transport protocol. The setup itself is therefore reliable and connection oriented. On
the other hand, the streaming of the video will be using UDP. The most common com-
mands in the protocol, and the ones relevant for our implementation, are listed below
with explanation on how we see it fit the design for setting up our client sessions.

OPTIONS An OPTIONS request can be made at any time by the client. A server reply
describes the commands it supports.

DESCRIBE Following an OPTIONS request a client will typically request the video
on demand. We will use the format of a Uniform Resource Identifier (URI) [34].
A DESCRIBE response from the server can then respond by including a session
description in the format of SDP.

SETUP Based on the session description the client will be able to set up a connection
for each segment. The segments will all have corresponding URIs. The client
can use the SETUP command to specify the transport mechanisms to be used for
streaming the segment. In our case the client will specify the protocols and the
ports it will listen to, as well as the URI for the segment. The response will specify
the actual parameters the server will offer.

PLAY When a server receives a PLAY command from a client, the server will start
transmitting data according to the specifications in SETUP. In our implementa-
tion, the streaming will be prescheduled, and already streaming. Only one PLAY
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command should be necessary to send to the server, as the client already has the

information needed to receive the channels.

TEARDOWN The TEARDOWN command stops the stream delivery, freeing all re-
sources associated with it. As our implementation streams continuously in the
time period the video is offered, the TEARDOWN message is mainly to terminate
the session on the client side. The server will continue to stream as determined

by the service provider.

Other commands that are outside the scope of these thesis are ANNOUNCE, PAUSE,
GET_PARAMETER, SET_PARAMETER, REDIRECT and RECORD. Please refer to [25] for
their method definitions.

We will now outline our design of the session description that is to be transmitted as
part of the DESCRIBE response from the server.

5.7.2 Design choices for Session Description Protocol (SDP)

The session description needs to contain all the information the client needs with re-
gard to what ports to listen to, what segment corresponds to which channel, and what
protocols needed to set up the client subsessions. Below is a list of the main syntax
used in a session description, followed by an example of how SDP can be used to give
information about segments streamed using a CHB scheduling scheme. The available
fields should suffice to meet the requirements of our implementation.

v= protocol version

o= originator and session identifier

s= session name

i= session information

t= time the session is active

a= zero or more media attribute lines
m= media name and transport address

c= connection information - optional if included at session level

Another useful field is the SDP tag a=x—fmt :, known as the extended attribute. It is
flexible and can be used for basically anything a developer wants to include. For more

tield and attribute values please refer to [26].

Not all the fields are relevant for our implementation. We have chosen to not send

information about the length of the movie or its segments, hence the t-field is not
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needed. Using the remaining fields we will include information about the following;:
¢ The SDP protocol version.
¢ The server IP address and its session identifier.
* The name of the session, given as information about the streamer
* The name of the streamed video

* What type of transmission. We have decided to use ’harmonic” instead of uni-
cast, multicast or broadcast, letting the ’harmonic” term indicate that the session

consists of several independent subsessions transmitted over separate channels.
¢ What kind of media the session consists of, namely video.
e What port and protocol to use for a subsession.
* The segment number corresponding to a given port.
For a sample of the SDP description please refer to section ??2.

Upon reception of the session description the client should have the sufficient infor-
mation to set up the channels and start receiving the streams. However,as previously
pointed out, the UDP packets may arrive delayed, and therefore out of order, as well
as getting lost in the network. Consequently there is a need to reassemble the packets
at the client side prior to reassemble the distinct segments with each other. In other
words, our implementation needs two levels of reassembly, one of the segments with
each other, and another level reassembling the packet payloads that make up each
segment. A protocol providing such support at the application level is the Real Time

Protocol (RTP). However, we will also discuss other options considered.

5.8 Reassembling the fragments to segments

As mentioned the movie is split into disjoint segments. The segments are split into
fragments streamed by RTP over UDP from the server. We need to reassemble these

fragments on the client side.

RTP is a protocol made for streaming real time data. The services include payload type
identification, sequence numbering, time stamping and delivery monitoring. For our
implementation we need to be able to sequence packets arriving out of order. The se-
quence numbers included in RTP allow the receiver to reconstruct the sender’s packet
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sequence. The sequence numbers might also be used to determine the proper loca-
tion of a packet, for example in video decoding, without necessarily decoding packets
in sequence. However, with only a 16-bit sequence number [27], we could experi-
ence a wrap around of the numbers if segments are long and require more than 65535
RTP packets. This causes a problem for our implementation, as we might need to se-
quence packets exceeding that range. For sequencing within a short time range, the
16-bit number will be sufficient. However, to reassemble the fragments into an en-
tire segment one needs a greater number. This is particularly important for the client
to be able to recognize when the entire segment is downloaded. Streaming from an
arbitrary point, information about when a movie segment has iterated to the client’s
listening start point is vital to stop the streaming of that particular segment.

Following is a discussion of different possibilities.

Reassembly of fragments based on TS content:

The TS packet format, and the elementary stream it is encapsulating contains data
about the video. Below is a discussion to whether this information is suited for re-

assembly of the fragments of each separate segment.

Based on TS packet header The TS packet header does not include any sequence
or presentation time information [30]. It generally requires that the underlying layers
takes care of packets arriving in order. However, the TS packet header has an extension
possibility through the adaptation field. The adaptation field may or may not include
a program clock reference that can possibly be used for reassembly. This requires that
the TS packets are never split up across segments or fragments, something we have
taken into consideration. It also requires that careful consideration is taken during the

generation of the TS encapsulation.

Based on PES time stamp Decoding Time Stamp (DTS) or Presentation Time Stamp
(PTS) is an optional part of the PES header, indicated in the PTS_DTS_flags field [30].
However, the PES packets can be split up into several Transport Stream packets. If re-
moving the payload from the TS packet we could have a lot of elementary stream data
with no sequencing information at all. If the looping was the only cause for reassem-
bly, this could possibly work if the data otherwise was delivered in order without loss.
Unfortunately, using RTP over UDP we have no guarantee of a reliable connection.
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In addition to this, reassembling requires information that is otherwise mainly left for
the media player. We think a flexible solution should be able to reassemble the frag-

ments independent of the data that is carried.

Not recommending to use the information in the TS packets, we look at the RTP packet
format for other solutions. We have already established that the RTP sequence number

will be insufficient.

5.8.1 Reassembly of fragments based on the RTP packet header:

In addition to the sequence number, the RTP packet header contains a time stamp as
well as an optional extension header. We will now discuss these two fields as possible

solutions.

Based on RTP extension header The use of the RTP extension header is not defined,
but should not be used to describe the payload according to [27]. Sequencing is, like
seen with TCP, a typical feature performed prior to data reaching the application. The
payload of the RTP packet would be decreased, and the use of the extension header
would imply a small protocol overhead of little significance. As a result, this occurs to
be the a feasible and logical solution. However, live555, the streaming library we have

decided to use, has no such support.

Based on RTP time stamp For MPEG files the RTP timestamp will generally contain
information regarding the servers system clock reference, and should not be passed on
to the MPEG decoder (see [28]).

That being said, the timestamp in RTP can be generated by a sampling clock (as op-
posed to the system clock). The requirements are that the timestamp is incremented
monotonically and linearly to allow synchronization and jitter calculations. The cal-
culations are included in the RTCP packets sent to the server as part of the receiver
report. The timestamp is depend ant on the format of data carried as payload. or may
be specified dynamically for non-RTP formats. The timestamp is most commonly used
for synchronizing a video stream with an audio stream. For our implementation we
use the TS format, that contains both audio and video in one stream. In addition, the
TS format supports a program clock reference (PCR), hence the TS packets will con-

tain timing information. In other words, except for monotonic and linear increments,
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we find that the timestamp can be used instead of the sequence number to reassem-
ble the fragments. Wrap around should not be an issue, as we have a 68 years range
available [27].

5.9 Process management

As many segments have to be transmitted concurrently, there is a great need for effec-
tive process management of the tasks ranging from disk I/O to sending and receiving
the streams. In the implementations discussed in chapter 3 two different methods were
in use. The first study had used threads to handle the segments, whereas the second
study let each segment be handled by a separate process by using the fork () sys-
tem call. Both threads and separate processes will require context switches adding
extra strain on the processor. Several separate processes also require their own stack
and heap, using more memory than a single process. There is another solution, that
of using and even loop in combination with the select () system call. In short the
select () function receives a set of file descriptors that listens on the desired ports.
Using an event loop, events on the ports will be caught in the loop. Also other event
handlers can be added to such a loop. We find that an event loop is better suited for our
needs. With only one process running we save both processing power and memory for
the other challenges that we have outlined with regard to buffering and scheduling.

5.10 Overview of server and client communication

We have now looked closely at many aspects to keep in mind when implementing our

CHB server and client. here is an overview outlining the main structures.

The server will use an event loop to schedule the iterating segments. The segments will
be transmitted as multicast streams. A TS video file will be split into segments (video
source) and passed to a framer ensuring that 188 byte size fragments (or frames) are
added to RTP packets as payload. RTP sinks will ensure that the RTP packets are sent
at the corresponding port using UDP. Using RTSP the server will set up client sessions,
sending the needed information to the requesting client through reliable communi-
cation. Once the session is established, the client will start receiving the RTP packet
streams, seen as RTP sources. The RTP sources will pass the payload to a framer.
The framer on the client side will deliver the fragments to the corresponding segment
buffer (video sink). These segments will be handled by a main structure that keeps
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track of the segments and the order they need to be reassembled. Please refer to figure

5.4 for a graphic model of the server and client.

> OPTIONS
OPTIONS OK _
» DESCRIBE
DESCRIBE OK, SDP ‘
RTSP » RTSP
Server _ SETUP Client
SETUP OK o
_ PLAY
PLAY —~
RTP RTP packets > RTP
Sinks . RTCP packets Sources
Framer Framer
v 1 v t
Video Video
Source Sink
_ TEARDOWN
TEARDOWN OK ~

Figure 5.4: Our implementation of the Cautious Harmonic Broadcasting Algorithm

We will now take a closer look at how we implemented this design, using our version

of CHB and with support from the live555 code library.
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Chapter 6
Implementation

We have looked at considerations for creating an application for CHB scheduling, and
discussed our design choices, in chapter 5. We will now describe how these choices
were put into practice. One goal was to create functions that can be integrated with
existing media players, like VLC and MPlayer. As such, we found that the live555
streaming library can work as a good framework for our development. We will start
out with an introduction to live555, before we go into details of changes and addition
made to implement CHB.

6.1 Live555

The live555 Streaming media code forms a set of C++ libraries for multimedia stream-
ing, using open standard protocols including RTP, RTCP, RTSP, SDP and Session Initi-
ation Protocol (SIP). These libraries can be used to build streaming applications [3].

6.1.1 Typical program flow using live555

A typical server application using live555 will set up an RTSP server to handle in-
coming clients by listening to a network read handler. A network read handler is an
interface to the network, implemented with a socket. Other network read handlers can
be established as part of further streaming that is initiated. All active network read
handlers are monitored by an event loop. When a request from a client is received, the
response will be added to a task queue in the same event loop, which again will trigger
a transmission. The event loop basically works as follows:
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while (1) {
find a task that needs to be done by looking
on the task queue, and the list of
network read handlers;
perform this task;

}

For the event loop to be active there needs to be waiting tasks in the queue or active
network read handlers. Live555 uses the select () system call to monitor the network

read handlers, something that matches well with our design.

An application generally consists of a sink, a framer and a source. By calling start-
Playing () from the sink object, tasks will be generated and added to the event loop.
The video sink is the structure that transmits data over the network. It requests a video
frame from the framer, which again fetches a complete frame from a video source.
Both the framer and the video source are regarded as data sources, and respond to
the function call getNextFrame (). The function triggers a pure virtual function
by almost the same name, doGetNextFrame (). Each module’s implementation of
doGetNextFrame () works by arranging for a call back function to be triggered from

the event loop when new data becomes available for the caller.

In other words, data passes from sources to sinks. The sink module is to receive data
from a source, and for some sinks, for example an RTP sink, it involves transmitting
packets over the network. A file sink on the other hand will write the data to a file.
Likewise, a source may have to read from a file, or read from the network, or simply

from another source.

6.1.2 Library description

The code includes the following libraries, each with its own sub directory (taken from
the live555 website):

¢ UsageEnvironment The "UsageEnvironment" and "TaskScheduler" classes are
used for scheduling deferred events, for assigning handlers for asynchronous
read events, and for outputting error/warning messages. Also, the "HashTable"

class defines the interface to a generic hash table, used by the rest of the code.

These are all abstract base classes; they must be subclassed for use in an imple-
mentation. These subclasses can exploit the particular properties of the environ-
ment in which the program will run - e.g., its GUI and/ or scripting environment.
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* groupsock The classes in this library encapsulate network interfaces and sockets.
In particular, the "Groupsock" class encapsulates a socket for sending (and/or

receiving) multicast datagrams.

* liveMedia This library defines a class hierarchy - rooted in the "Medium" class -

for a variety of streaming media types and codecs.

* BasicUsageEnvironment This library defines one concrete implementation (i.e.,
subclasses) of the "UsageEnvironment" classes, for use in simple, console applica-
tions. Read events and delayed operations are handled using a select () loop.

The library code also provides a selection of test programs, including a simple RTSP

server and client.

6.1.3 Difficulties

One of the difficulties of using live555 is that the library is good for use, but not well
commented. There is good online documentation [35] of the library structure, as well
as descriptive class- and variable names. However, this does not remove the need for
commented code that explains why certain design choices have been made, or what
measurement is used for in example a time variable. In other words, the lack of well
documented variables and functions made the library initially hard to read and get a

good overview of.

6.1.4 Benefits

One benefit of the live555 library is that it is well tested. It is included for RTSP han-
dling in open source media players, like VLC and MPlayer. The code is thorough,
and uses a strict hierarchy of classes that is well designed. The library developer, Ross
Finlayson, also has a development mailing list where questions regarding use of the
library can be asked. The test programs also provide good support in modeling usage
of the library. The structures supported by the modules in the library also match well
with the requirements we set for developing our server and client streaming applica-

tions.

In our implementation of CHB, live555 had many structures that could be used directly.
Out of the main libraries, only the liveMedia library was necessary to modify and
extend for our purpose. Functions that could be directly used were those of RTSP
session setup, including SDP, and RTP streaming, with framer support for TS sources.
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6.2 Implementation of the CHB Server using live555

With live555 an RTSP server is set up with a link to a multicast session, referred to as
a ServerMediaSession. The ServerMediaSession points to one or more subsessions. These
subsessions are mainly created for formats like PS, where audio and video are trans-
mitted on separate channels. Instead, we wanted to transmit segments on separate
channels. To do so, we could create segments of the movie (as separate files) prior to
starting the server. Alternatively, we could create support for splitting up TS files into
segments by the use of multiple file descriptors pointing to respective segment offsets.
We decided to implement the latter. That way, we avoid preprocessing prior to start-
ing the server application. We could also let wait time be a start up parameter that
could easily be changed without any further implications. To accomplish the above
we needed a structure to create segments, and a structure to handle the segments as a

video source.

6.2.1 Creating segments

A TS file would in live555 be read through a ByteStreamFileSource that would take care
of the file descriptor and reading from the file. To handle the same for segments we set
up the following structures described in the sections below:

Helper classes

HarmonicHelper.cpp has the source code for two helper classes, HarmonicFile and Har-

monicSegment, and their functions.

HarmonicFile is a helper class. It finds the duration of a video and calculates the file
offsets to create file descriptors that point to the start of a segment. In our design, we

assumed a constant bit rate. To find the correct offsets we did the following:

* Found the movie duration by using a pregenerated reference file, TS index file
(made with 1live555’s MPEG2TransportStreamIndexer program). The duration, if
known, could have been included as a start up parameter. We chose to keep the
generation of the index file separate from the program as it was time consuming,
and would cause a delay in starting the server. There could be other benefits of

generating an index file, which we will mention in chapter 8.

¢ Calculated the number of segments, duration / wait time.
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Calculated the number of TS packets (of 188 bytes) in the file, file size/188.

Calculated the number of TS packets in a segment, number of TS packets /number
of segments.

Calculated the number of bytes in a segment, number of TS packets+188.

Calculated the segment offsets, segment numberxbytes in a segment

The Harmonic file generates HarmonicSegment objects, passing along the correspond-

ing segment start offset, and the end offset.

HarmonicSegment is the second helper class. It creates an instance of the Harmonic-
ByteStreamFileSource. By knowing the start offset, the HarmonicFileSegments opens the
video file (TS file) and seeks to the start offset. When creating a HarmonicByteStream-
FileSource, this file descriptor is passed along together with the start and end offset.

Handling looping and timestamps

HarmonicByteStreamFileSource.cpp has the source code for the HarmonicByteStream-
FileSource class. It is a subclass of the ByteStreamFileSource used to read TS files in
live555. Different from its parent class, the HarmonicByteStreamFileSource will not close
when reaching the end of a file. Instead, HarmonicByteStreamFileSource will seek back to
the segments start point once it reaches the end of segment block in the video file. This
looping of a segment in a file is a necessity to continuously stream the same segment
over a channel in an CHB implementation. To perform the looping a new callback

function for the sources was added to the library, handleReset ().

For the client to recognize the start of a segment, we decided in our design to use the
RTP timestamps. To enable this, the timestamp needs to start at 0. This is against the
recommendation of the RTP protocol [27], which is to start with a random timestamp.
However, we needed a value that could be used to recognize a beginning, something 0
does. As a result, prior to looping a segment, it is desirable to transmit any remaining
data buffered in an RTP packet, before resetting the time stamp. If not, an RTP packet
may contain data from both the end of the segment and the beginning. We want to
avoid frames from the beginning of for example segment s; at the beginning of segment
si+1. The handleReset () function does exactly that. The timestamp, on the other
hand, is generated by the HarmonicByteStreamFileSource object. This will automatically
set back to 0 when reading from the start offset of the TS file segment. For a brief
overview of the implemented functions and their collaborations with main functions

in other classes, refer to figure A.1 in the appendix.
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Last, a small function returning the segment number of the file source was added for

scheduling purposes. A further description is found in section 6.2.4.

6.2.2 Establishing client sessions

The ServerMediaSession takes care of generating a session description (SD) sent to the
client upon an RTSP request. To inform the client application about the streaming, we
decided to make a change in the common use of SDP. SDP generally indicates the ses-
sion type, for example broadcast or meeting, in the attribute (a) type field. As CHB
indicates a special streaming scheme, we decided to use this field to specify that peri-
odic scheduling is in use. We use the term harmonic, named after the algorithm. The
SDP attribute fields also contain control information indicating a track number for each
channel to be streamed over. As the segments are added to the ServerMediaSession in
an orderly matter, the SD uses the track number to indicate the segment number.

The c field contains connection data, in our case the multicast address which to listen
to.

The m field following gives the client a media description of the segment. The descrip-
tion includes the protocol to use for streaming, which multicast port to listen to, as well
as a format description. The format is in our case MPEG-2 TS, which is indicated by
the number 33. See figure 6.1 for an example of the SD.

v=0

o=- 1226703493445253 1 IN IP4 192.168.101.230
s=Session streamed by "harmonicMPEG2TransportStreamer"
i=elephant.ts

t=0 0

a=tool:LIVE555 Streaming Media v2008.01.18
a=type:harmonic

a=control:

a=range:npt=0-

a=x—gt-text-nam:Session streamed by "harmonicMPEGZ2TransportStreamer"
a=x—-qgt-text-inf:elephant.ts

m=video 8888 RTP/AVP 33

c=IN IP4 239.255.42.42/2

a=control:trackl

m=video 8890 RTP/AVP 33

c=IN IP4 239.255.42.42/2

a=control:track?

Figure 6.1: SD sample, included in the server’s RTSP DESCRIBE response
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6.2.3 Streaming

The RTP functions in live555 take care of streaming RTP packets. The MPEG2Transport-
StreamFramer makes sure to request complete TS packets from the HarmonicByteStream-
FileSource, making up frames suitable for RTP over UDP. UDP supports packet sizes up
to 65535 bytes. However, the underlying Ethernet has a limitation of 1500 bytes. Con-
sequently, the RTP packets do not exceed that number, avoiding fragmentation of the
packets. As mentioned in our design, splitting up TS frames can make the demulti-
plexing on the client side more difficult.

6.2.4 Scheduling

The MPEG2TransportStreamFramer is responsible for calculating the timestamps that
are used for scheduling the transmission of the RTP packets containing the TS frames.
We based the generation of segments on a constant bit rate for streaming. A part of this
assumption was the expectation that the RTP timestamp would be used for scheduling
the transmission of the RTP packets. However, as we found out late in the imple-
mentation, the scheduling in live555 for transport streams are based on an estimation
calculated in the MPEG2TransportStreamFramer: :updateTSPacketDuration-
Estimate () function. By looking at the program clock reference in the TS packets,
an estimate of the next scheduling is given. To differentiate the bandwidth for the seg-
ments, each HarmonicByteStreamFileSource has a function returning the segment num-
ber n. The segment number corresponds to the decreasing factor of the bandwidth at
which the packet should be transmitted. By multiplying the estimated frame duration,
the scheduling should be postponed n times that duration. As this is a method based
on the the program clock reference for TS, it is best suited for movies with constant
bit rate. However, many movies, including the ones we have available, use variable
bit rate. We will do experiments to see if we can get an indication as to what effect
the constant bit rate based transmission might have when streaming a variable bit rate
movie, as well as see if we can see any consequences of using an estimate that is not

necessarily accurate. Refer to chapter 7 for the results.

6.3 Implementation of the CHB Client using live555

Similar to the server side, there is support in live555 for establishing a client RTSP
session to receive multiple streams with RTP over UDP. The RTSP client mirrors the
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server structure when establishing an RTSP session, MediaSession, established by the
RTSP functions. The media session has subsessions that points to one file sink per
subsession. Upon receiving the SD from the server’s 'RTSP DESCRIBE’ reply, the client
sends a '‘RTSP SETUP’ message for each stream to the server. As a result, each segment
described by the SD, is connected to a media subsession. The subsession takes care
of establishing an RTP source to read the data from the network, and a TS framer to
deliver the video frames to a video sink, in our case a file buffer. For a simple class

overview see figure 6.2. However, there is no support in live555 to join the data from

MediaSession

1k

A 4

HarmonicMediaSubsession

ﬁ NCPInstance

FileSink fReadSource! RTCPInstance

\fjource TPSource

HarmonicTransportStreamFramer

\I:putSource

SimpleRTPSource

Figure 6.2: A MediaSession object has pointers to multiple HarmonicMediaSubsessions. Each
subsession has a FileSink, HarmonicTransportStreamFramer and a SimpleRTPSource, as well
as an RTCPInstance. The variable names in the source code are found on the edges between the
objects.

the streams back into one TS stream or file. In addition, the MediaSubsession class in
live555 had no support for establishing more than one sink to deliver data to. As
described in our design, we decided to use two file buffers. The segmentation of the
movie on the server side was done at the application level, and the joining has been
designed to image this. To handle these functions we did the following changes and
additions to the live555 library:

58



6.3.1 Handling RTSP session setup

MediaSession.cpp has the source code for the media sessions established by RTSP for
the client side in live555. MediaSession is the one place where there are pointers than
can lead to all existing file sinks (through the subsessions), and therefore the logical
place to keep track of downloaded segments and merge them if desired. We altered
the MediaSession source code to recognize CHB streaming. If harmonic is included in
the SD, a structure for saving file descriptors for each file buffer is established. In our
implementation all the segments are joined to one file upon complete transfer. How-
ever, the structure is made so that the file descriptors should be easy to feed to a de-
multiplexer in a media player by adding some support functions. In addition, instead
of pointing to MediaSubsession objects, HarmonicMediaSubsession objects are created for

our purpose.

6.3.2 Receiving segments

HarmonicMediaSession.cpp has the source code for the HarmonicMediaSubsession class.
It is a subclass of MediaSubsession in live555, and is initiated by the MediaSession object
based on the SD. Its only function is to set up a file descriptor to be used as a file buffer
for the latter part of the segment, as shown previously in figure 5.3. A file descriptor
for the former of the two buffers is initiated when the segment has looped back to start.
For a simple call graph outlining the main functions in the RTSP session setup, refer to
tigure 6.3. For a more detailed collaboration diagram of the parent class MediaSession,

refer to figure A.2 in the appendix.

6.3.3 Buffering and segment boundary recognition

HarmonicTransportStreamFramer.cpp has the source code for the HarmonicTransport-
StreamFramer, a subclass of the live555 MPEG2TransportStreamFramer. An important
feature implemented in the class is that of recognizing when a segment has reached
the end of an iteration and being looped back to start on the server side. This to trigger
the switch from one file buffer to the next one. When starting to listen to the network,
HarmonicTransportStreamFramer ensures that the RTP timestamp of the first packet is
recorded as the ’start time’. The timestamp is fetched from the RTP source object. Af-
ter each frame is read from the source, the timestamp is checked, and whether the end

of the segment is reached is kept track of. If the segment end is not reached, and the
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Figure 6.3: Simplified call graph for the RTSP setup on the client side. When a function is
implemented in a parent class, the class names are indicated in square brackets.
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timestamp is less than the time stamp when starting to listen (start time), we can as-
sume to have reached the end of the segment. In that case an added callback function
to the library is called, namely handleSegment (). The function is implemented in
the parent class FramedSource. handleSegment () calls on a function with the same
name in the file sink, resulting in the file descriptor of the current buffer to be added to
the MediaSession. The file descriptor pointed to by the file sink is then substituted by
a new file buffer for the first part of the segment. The rest of the stream is afterwards
written to the newly added file descriptor. Furthermore, when the RTP timestamp is
equal to or greater than that of the start time and we know that the segment has looped,
ahandleClosure () function is called. When all subsessions are done, this results in
a tear down of the RTSP session, and the MediaSession reassembles all the segment
parts into one TS file in the /tmp/ folder on the computer. The file name is currently
harmonic.ts. Pseudo code of the process above is found in 6.1. For a graphic overview
of the function calls using HarmonicTransportStreamFramer, refer to figure 6.4

RTPSource * rtpSource = (RTPSource #)fInputSource;

if (segment_buffer == NOT_STARTED){ /* First frame =/
startTime = rtpSource —>currentRTPTimestamp () ;
segment_buffer = SECOND_PART;
} else if ( (segment_buffer == SECOND PART) &&
(rtpSource —>currentRTPTimestamp () <= startTime) )|

/* We have reached the end of the segment. Calling a segment
handler that will substitute the file descriptor in the file
sink */

handleSegment (this);

segment_buffer = FIRST_PART;

} else if( (segment_buffer == FIRST_PART) &&
(rtpSource —>currentRTPTimestamp () >= startTime) ) {

/* We are back to the start of the segment, and the two segment
parts should be buffered. Closing down the media subsession
and its structures */

handleClosure (this);

return;

Listing 6.1: Handling segment iteration on the client side
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Figure 6.4: Simplified call graph of the most important functions with an RTP server.
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6.4 Summary

We have implemented CHB as an RTSP streaming server and client. SDP is used to
describe the type of transmission in use, which we called harmonic. The server is set
up to multicast the segments as RTP streams over UDDP, using the CHB scheduling
scheme. In the SD sent as part of the RTSP streaming initiation, all information for
the segments in the video are described, including channel and segment number. The
clients receive the streams through separate interfaces, and buffers the data in files. The
client session has a structure to store file descriptors pointing to the beginning of each
tile buffer that can be used to deliver the segments to a demultiplexer in the correct

order.

We will now look at some experiments conducted to evaluate the performance of the

streaming application.
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Chapter 7
Experiments

To evaluate our implementation, we have performed a selection of tests and measure-
ments. The purpose has been to investigate the performance of the CHB algorithm
through the implemented application. In this chapter, we describe the test environ-

ment and setup, in addition to describing our results.

7.1 Test environment

For the experiments, we set up an emulated network consisting of a server, an net-
work emulator, a switch and several client machines. Only one client was needed for
our testing purposes. For specifications on the machines, refer to the description in
section A.2 in appendix A. For a graphical overview of the test setup, refer to figure
7.1

A switch can not route multicast packets, but rather broadcasts them to all connections.
The application was set to multicast the video content. Consequently, all packets from
the server were transmitted to all clients connected to the switch. This made it im-
possible to listen seclusive to the communication from the server to one specific client.
However, it did make it possible to measure the performance over the network at all
times the server was running. For network emulation, a computer was set up with
a bridge, using the netem application to emulate a network with delay and loss. All
communication between the server and the network was streamed through the net-
work emulator. Bash and python scripts were used to automate the testing processes,
as well as the python gnuplot extension for generation of graphs to analyze the net-
work traffic. To capture network traffic, tcpdump was used. Following, scripts were
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Figure 7.1: Test environment

run to create log files with the desired content for easy input to gnuplot.

Emulating round trip delay and packet loss

When evaluating the CHB algorithm, it was of interest to see how it performed in a
realistic network. In our case, it is of main interest to see how well it would perform
locally in Norway. Seeing how these services often follow the ISP, and knowing that
autonomous systems do not always allow for multicast across their borders, we de-
cided to test under the conditions that is common for a normal Norwegian ADSL user

(see appendix A).

To measure what is a realistic network in Norway, we measured the round trip time
(using ping) from a private Telenor ADSL connection in Oslo to several hosts through-
out Norway. For the specific locations and measurements, refer to table A.1 in the
appendix. The results showed a round trip time from 53 to 77 milliseconds, with an
average just below 65. The packet loss was generally at 0%, but we did experience up
to 1%. We have therefore chosen to perform the test under ideal conditions of no delay
and no loss, a 32.5 (round trip time/2) millisecond delay, and a loss spanning from 0%

and up to 1% with 0.25% increments.
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7.2 Testing the scheduling performance

In order to test the performance of the actual application, we set up a number of tests.
All tests were performed with the same video file, “Elephants Dream” [36], which is a
654 second long movie. We also used “The Wrong Landing” by Chema Hernandez [37]
for shorter tests, as it is only 270 seconds long. For the test results reported in this the-
sis, the former of the two videos were used. We set the maximum waiting time for a
client before consumption to 60 seconds.

We did the following tests, using tcpdump for the generation of log files for our anal-

ysis.

7.2.1 Start up delay
Description

The CHB algorithm assumes that streaming on all channels can be triggered at the
same time. However, the test environment used a computer with one CPU, processing
tasks in a sequential way. As a result, there was expected a small scheduling start up
delay for the streams, increasing with the number of channels. We wanted to measure
how big the delay was, to check if it had any impact on the consumption at the client
side.

Results

In figure 7.2, we see the initial gap between the segments for the very first packet sent
from the server upon receiving the packets at the client side. The network settings for
this result are a round trip time of 65 milliseconds and 0.25% packet loss. In our tests,
we found that the figure is representative also for the other network settings (as de-
scribed in the test setup), as the network delay is not taken into consideration since all
it does is add to the wait time. It does not affect the scheduling itself since UDP pack-
ets are transmitted despite loss or congestion. It was still interesting to see how the
scheduler performed, and if there were cases where there was a greater difference in
the start up time of the various streams (for the same movie transmission). Due to how
the different segments were added to the scheduler, the last segments were scheduled
first (as shown in 7.2 where segment 11 in corresponding stream 11 is transmitted prior

to stream 1). This ensures that the algorithm works, even if it had been depending on
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Start time for first packets from all streams, rtt 65ms, loss percentage 0.25
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Figure 7.2: Start up delay: The initial scheduling delay between the movie segments for the
initial first (and second) packets for all streams at the client side. Note that stream 11 is trans-
mitted prior to stream 1.

the initial scheduling. However, because both initial segments are sent at full band-
width, the order at initiation could have been according to the segment number. This
is because the algorithm makes sure the client always has a full segment in the buffer,
except from the very first one. The exact differences in microseconds are displayed in
table 7.1. It is at most 4.283ms, and small given that we should have the length of a
segment at 60 seconds in our buffer most of the time. The network delay in this test
does not affect the client in other ways than adding to the wait time, unless the interar-
rival time between packets differ. Consequently, our tests indicate that the algorithm
can be said to perform without risk for missing deadlines at the client side when using

a 60 second wait time for our test movie.

7.2.2 Transmission to one client

For these tests we wanted to investigate to what extent the server varied the bandwidth
for the different segments. We recorded the receiving time for packets at a client while
receiving an entire movie. We did two different analysis based on the logs generated.
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No delay Delay 65ms

Stream 0 % 0 % 0.25 % 0.5 % 0.75 % 1.0%

Stream 1 | 0.001050 | 0.000946 | 0.000960 | 0.000969 | 0.000953 | 0.004283
Stream 2 | 0.000953 | 0.000848 | 0.000863 | 0.000871 | 0.000857 | 0.004186
Stream 3 | 0.000857 | 0.000754 | 0.000767 | 0.000773 | 0.000760 | 0.004090
Stream 4 | 0.000761 | 0.000656 | 0.000670 | 0.000677 | 0.000664 | 0.004004
Stream 5 | 0.000664 | 0.000559 | 0.000574 | 0.000580 | 0.000567 | 0.000580
Stream 6 | 0.000568 | 0.000463 | 0.000477 | 0.000484 | 0.000470 | 0.000486
Stream 7 | 0.000471 | 0.000371 | 0.000381 | 0.000388 | 0.000376 | 0.000386
Stream 8 | 0.000374 | 0.000270 | 0.000284 | 0.000292 | 0.000279 | 0.000291
Stream 9 | 0.000276 | 0.000176 | 0.000188 | 0.000194 | 0.000184 | 0.000187
Stream 10 | 0.000180 | 0.000088 | 0.000092 | 0.000098 | 0.000085 | 0.000100
Stream 11 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

Table 7.1: Initiation delay (in seconds) for all streams at the start up time of transmission
measured at a client

Description of part 1

The first analysis was done based on data from a client waiting for the video at the
initiation time of the server. This ensured that the RTP timestamp for the first packet
on all channels would be 0. This made it easier to create a graphic display of all the
streams, and to display their arrival at the client, where the x axis would be the arrival
time, and the y axis the RTP timestamp. The timestamps used at the client in the
tcpdumps are those on the client computer, written as seconds.

The RTP time stamp indicates how far in the video segment the stream is receiving
(under the assumption of constant bit rate). The RTP timestamps will increase up to
the same value at the completion of the download. The seconds since epoch shows the
arrival time at the client. A difference in angle between the graphs showing the first
stream and the following streams is an indication of decreasing transmission frequency
(of the same number of bytes), and also decreasing bandwidth as the segment sizes are
the same. Common for both tests was that the RTP timestamp was used in correlation
to the arrival time at the client machine. Consequently, the higher the bandwidth, the
steeper the curves appear.

Results for part 1

As expected, the benchmarks showed that the first two initial segments were transmit-
ted at the same rate. As seen in figure 7.3, a fan shape is formed, underlining that the
segments are indeed transmitted at their decreasing bandwidth (as the angle is increas-
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ing). It is, however, also evident that the fan is not perfect. We believe this irregularity
is caused by the issue of variable versus constant bit rate. A more thorough reflection
of this issue is found in chapter 8 (Discussion).

Seconds since epoch vs. RTP time, roundtrip delay 65ms, loss percentage 0.25
6000000 T T T T T T T T T

5000000 [
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Figure 7.3: Transmission to one client from the start up time of the server until completion of
one iteration of a movie

Description of part 2

The second analysis was based on logs from a client that started to listen at an arbitrary
point after the server had been running for a while. The logs from such a transmission
were expected to show the client starting to listen in the middle of a segment, and
would stop upon reaching the same RTP timestamp in the stream after an iteration of

the segment on the server side.

Results for part 2

For the the results that started streaming from an arbitrary point (see figure 7.4), we
have added an offset to the RTP timestamps to avoid the graphs to overlap each other.
We have removed the RTP time stamp, but the values for each stream are correspond-
ing to those of the previous test. In figure 7.4, we can observe that the first and second
segments are not being transmitted in parallel as one would expect. This can be caused
by the initial delay discussed in test 1, though one would expect a smaller difference

that what we see in our test. Another possible cause is that the scheduling is based
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on variable bit rate, whereas the timestamps assume constant bit rate. As a result, the
segments are not seen as same length time wise as falsely indicated by the RTP times-
tamps. The segments are of equal size byte wise. More about this issue in chapter 8.
Despite this issue, we are still able to observe that the client receives the entire seg-
ments according to the RTP timestamps. In the graph below, we can read that the start
of segment one is received by the client approximately 50 seconds after starting to re-
ceive the stream, and the segment as a whole is received within the next 10 seconds.

The second segments appears to be received within the same time frame as expected.

Seconds since epoch vs. RTP time, roundtrip delay 65ms, loss percentage 0.25
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Figure 7.4: Transmission of one full movie to one client at an arbitrary start time. The fall
in the graphs indicate the place where a segment is looping, making it necessary for a client to
reassemble the segment on a specific channel, in addition to reassemble the segments prior to
consumption.

We found it interesting to see how the CHB works in practice in comparison to the
theoretical model. The theoretical model assumed that the download of a segment
would start only at the initiation of a new iteration of a segment. However, in practice
the client might just as well download and reassemble the segment. In the theoretical
alternative, the client would have to stay in listening mode to be able to determine
if a packet was indeed the beginning of a new iteration, and consequently be using
bandwidth in doing so. By downloading immediately the client ensures even better

that all segments are available upon time of consumption, and makes better use of the
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available bandwidth during the initial wait time at the client side. However, the client
will need to have enough available space on disk to buffer the file segments.

7.2.3 Transmission of several iteration of the movie
Description

We were interested in how the scheduling performed after transmitting the same movie
repeatedly. To measure this, we set up one client to be in listening mode for the dura-
tion of 2100 seconds, which corresponds to over 3 iterations of the entire movie at 654
seconds. Capturing the network traffic we were able to measure how the scheduling
of the repeated segments was performing. The result can be seen in figure 7.5. In the
tigure an offset has been added to each stream so the lines do not overlap in the graph.
That way it is easier to see how the streams are scheduled in comparison to each other.

Seconds since epoch vs. RTP time, roundtrip delay 65ms, loss percentage 0.25

RTP time

Seconds since epoch time

Figure 7.5: Transmission of several iterations of a movie to one client from start of the server.
Stream 1 is at the bottom (red).

Results

For a graphical overview of the transmission of the iterating streams, refer to figure 7.5.
A segment start is found just after the drop in the graphs, as then the RTP time is reset
to 0. From there the time stamp increases. We see this as a wave pattern in our graphs,
where the drop is the indication of the time the seek back to start has occurred. As
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before, the steeper the curve grows, the greater is the bandwidth. From the graphs
we can see that one iteration of the two last segments takes less time than the time
needed to consume the video. The maximum wait time is set to 60 seconds, and the
time needed for consumption is 654 seconds. This means that the client, under the
assumption of constant bit rate) may use just below 714 seconds to download the video,
and still have the segments in time for consumption. However, as seen in the graph,
the download takes approximately 425 seconds. The segment that takes the longest to
download is a direct measure of the total download time. The relationship between the
actual download time and the time required to receive the entire movie must be below
1 to indicate that the movie has been received on time. We get the following formula:

download time
wait time + movie duration

(7.1)

425/714 = 0.6 indicates that our movie was received within approximately 60% of
the time needed for consumption. Having a great portion of the movie downloaded
prior to the consumption time, the client needs a substantial amount of disk space for
buffering. With today’s computers we do not see this as a great challenge, but found
it worth pointing out as a requirement. To give a more clear example: If a video has
wait time equal to its length, only one segment will be needed. If starting to listen to
the stream just a few seconds after an iteration occurred, almost the entire movie will
have to be buffered prior to consumption. If not starting to download and buffer until
the start of the first segment, there is less need for buffer space, as consumption of
the first segment will happen immediately. If wanting to download from the time the
client starts to listen, which can be at any arbitrary point in the iteration, a greater need
for buffer is required at the client side. A greater buffer may, however, create support
for limited Trick Play functionalities (like rewind and pause). The client is also less

vulnerable for jitter and unexpected delay in the transmission.

When the segments are described in the algorithms, they are supposed to be trans-
mitted at the same time, and iterate so that the segment at times becomes aligned.
From figure 7.5 we can easily observer that this is not the case when implemented with
segments that cannot be triggered at the exact same time. She scheduling also skews
this pattern. There is one benefit of this difference from the theory to our practical
implementation, that of peaks in the bandwidth. If the iterations had occurred as de-
scribed mathematically, there would be times at which all the segments would be back
to start, attempting to transmit at the exact same time. This could cause a peak in the
bandwidth, and possibly not supported at the client end. By having segments that are
skewed in the temporal alignment, we avoid these peaks to a greater extent.
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7.24 Scheduling performance based on client wait time and number

of segments
Description

Wwe wanted to check if movie transmission were downloaded within the guaranteed
time. The guaranteed download time is the duration of the movie, in addition to the
maximum wait time. In the section above we described a download indicator, the
fraction of the guaranteed download time and the actual download time. We will refer
to that fraction, given as a decimal number, as the "download indicator’. The download
indicator is defined by the equation given in the section above, 7.2.3. If the download
indicator is above 1.0, it indicates that the download took longer than the guaranteed
time. That means the video arrived sower than that of the consumption rate. If the
download indicator is below 0 it indicates that the video was received without causing

any consumption delay.

Knowing the the wait time has direct influence on the number of segments, we also

wanted to check the download indicator in comparison with number of segments.

To determine the download indicator for different wait times and different numbers
of segments we used both our test movies. It should be mentioned that these two
movies have different resolutions as well as bandwidth, so the numbers may not be

comparable.

To measure the download time of the segments we We defined the download time
as following: The download time is the time between the RTSP PLAY response from the
server reaches the client, until the client send an RTSP TEARDOWN message. To do so we
captured the network traffic while downloading the movie in a 0 ms delay, 0% loss
test environment. We used a variety of wait times, splitting the number into different
numbers of segment. Refer to tables A.2 and A.3 in the appendix to see the metrics.

Results

Looking at figure 7.6 we see no patterns between the two movies. The only correlation
is that the first two segments both arrive in half the guaranteed time, or less. This is

expected from the scheduling scheme.

However, if looking at figure 7.7, we see a similar pattern form for the two videos. The
statistical material is not sufficient to draw any conclusion. The graphs indicate that the
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Figure 7.6: Number of segments vs. download indicator

smaller the wait time, the greater the download indicator. However, CBH was made to
always transmit the segments on time. A small wait time also indicates small segments.
Many of our other tests have pointed towards the variable bit rate scheduling estimate
in 1ive555 as a possible cause for unexpected results. This seems likely also for this
test. It can appear as if the smaller the segment, the harder it is for live555 to make a
proper scheduling estimate. However, like our other tests, further investigations with
different length movies, preferably with the same playback bandwidth, would need to
be tested with.

7.2.5 Actual bandwidth
Description

We wanted to check the actual bandwidth of the transmission, to compare if to the
estimation we made in our design, seen in figure 5.2. To measure this we calculated
the bandwidth based on the received bits per second, measured from the number of
bytes transmitted from the server within a time frame of 450 seconds.

Results

In figure 7.8, a graph over the actual bandwidth of the transmission of the video is
shown. We note that the bandwidth indeed varies by a considerable number. The
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Figure 7.7: Wait time vs. download indicator

averages are as shown in table 7.2, and the variation in bandwidth is displayed in the
graph in figure 7.8. Note that graphs are only shown for a selection of the streams.
Also note that the measured average is based on the transport layer packets, including
protocol overhead.

Stream 1 | Stream 4 | Stream 7 | Stream 10 | All streams
Measured Average 1247 557 300 176 5991
Theoretical average 1100 367 183 122 3872

Table 7.2: The measured and theoretical bandwidth in kbps for our implementation of the CHB
scheduling algorithm. The measured bandwidth includes that of protocol overhead.

We have not found a clear reason to why the bandwidth is so much higher than that
estimated. The transport and application layer protocols do cause a certain level of
overhead. The RTP payload is always a multiple of 188 (the byte size of a TS frame).
Thus, this also adds some overhead. However, the mentioned overhead does not mea-

sure up to a number that would indicate the measurements we are observing.

A movie of 654 seconds, divided into 60 second segments should result in 11 channels.
The bandwidth for the last channel should then be equal the frequency of 10 times
the length of the segment. That is approximately 600 seconds. However, in figure
7.5, we found the download time for our movie to have been closer to 425 seconds. We
draw the conclusion that there are indication of the segments being scheduled for faster
transmission than necessary. There is a possibility that this is caused by the estimation
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Figure 7.8: Transmission of the movie from the server for the duration of approximately one
iteration of the movie .

used to schedule the transmission of the packets. However, further research is needed
to determine if that is the cause.

7.3 Video quality at the occurrence of packet loss

Discuss difference of VLC and MPlayer... and the need for a media player that handles
lossy streams. As most media is still sent by TCP, not all current media players take

this into consideration (including VLC, but excluding MPlayer).

Description

We wanted to see how a video file streamed with our implementation performed in the
event of packet loss in the network. We were in other words interested in the quality
of experience for an end user. For packet loss we used the same network delay and
loss as for all the other tests. We simply started the server and had a client download
the same video for all the network setting combinations. The client saved the video for

further assessment.
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There are several ways to measure quality in video. Well known are the objective
quality metrics Peak Signal to Noise Ration (PSNR) and Structural SIMilarity (SSIM).
Both PSNR and SSIM seek to measure the similarity between two images, where one
image is the original image, and the other is the one being compared.

PSNR is perhaps the most widely used objective video quality metric. It is based on
a pixel by pixel comparison of an image [38]. PSNR is usually expressed in terms
of the logarithmic decibel scale, where the higher the number the better result of the

comparison.

SSIM seeks to compare three main metrics in images, that of luminance, contrast and
structure [38]. The SSIM index is a decimal value between 0 and 1. A value of 0 would

mean zero correlation with the original image, and 1 means the exact same image [39].

Results

PSNR and SSIM both require temporal alignment of the two videos. Temporal align-
ment is quite a strong restriction and can be hard to achieve in practice, even for shorter
clips [39]. In a lossy environment this is a problem, as even few packet losses can skew
the alignment, and give a wrong impression of the end result. Our experience from
our initial results in table 7.3 indicated that the objective metrics were inaccurate for
reflecting the user perceived quality. We did SSIM and PSNR calculations based on
the entire video file, in addition to only the first 60 seconds. The results showed a big
difference in the results, an indication that lack of temporal alignment can be a possible
cause. We therefore chose to not do any further measurements using objective metrics,

but finding better methods for measuring quality of experience.

Only one sample of the movie still seems to indicate that there generally is a decreasing
quality the more loss experienced in the network.

In addition, the test shows that even in a lossless environment the received video does
not equal the video transmitted. We believe this can be due to the possible overlap in
frames when joining the two halves of a segments together. Another possible cause is
errors in the video file, specifically missing synchronization bits in the TS header. The
live555 library then drops frames as a result.
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No delay Delay 65ms

Method 0 % 0% [025% | 0.5% | 0.75% | 1.0%

PSNR full movie | 63.194 | 29.575 | 15.750 | 19.027 | 18.684 | 15.599
PSNR 60 seconds | 100.000 | 86.932 | 12.480 | 29.620 | 27.544 | 12.422
SSIM full movie 0.915 0.690 | 0.406 | 0.528 | 0.513 | 0.396

SSIM 60 seconds 1.000 0.967 | 0311 | 0.816 | 0.735 | 0.306

Table 7.3: PSNR and SSIM values based on the received video files

7.4 Summary

Through our testing we have showed that we have a working prototype of an imple-
mentation of the CHB stream scheduling over a multicast protocol. The transmission
of the segments are occurring more rapid than estimated. We have proposed that the
reason behind this lies in the estimation of the duration of TS frames in live555 used
to calculate the scheduling. We also found that the prototype does not always down-
load the movie in time for consumption. The reason for this is unclear, but we would
like to investigate if the variable bit rate scheduling can be a cause. We recommend
implementing segments that are split up in equal time lengths instead of by byte size
to further investigate this issue.

Observing several iterations of the streaming segments we observed that the nice tem-
poral alignment of the segments in the scheduling scheme does not reflect that which
we experience in real life. This is due to all segments using the same CPU, and gives
a skewed temporal alignment. A benefit is that peaks in the transmission, and thereby
also the bandwidth, are less likely to occur.

In our assessment of the quality of the received video we found that objective metrics
to measure quality of experience is lacking. PSNR and SSIM give insufficient indication

as to how an end user might experience a video transmitted over a lossy network.

We have looked at and analyzed various performance results. In the next chapter we
will discuss some of the issues observed in more detail. We will also look at other
issues we found of interest throughout our work on implementing our prototype CHB

streamer.
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Chapter 8
Discussion

Through our study of scheduling techniques, our application design, development and
testing, we have gained valuable experience and insight to issues that arise when im-
plementing the CHB periodic broadcasting scheme. We will now discuss our experi-
ences, both with direct connection to our development and experiments, but also the

broader picture of deploying VoD in an internetwork.

First, we will discuss the scheduling performance of our prototype, and then the lack
of fault tolerance. We then move on to discuss network and channel related consider-
ations that can be made. Last, we discuss optimization possibilities and general usage

of a service based on a CHB streaming application.

8.1 Issues when creating disjoint segments

In our experiment, transmitting to one client (as seen in section 7.2.2), we saw irregular-
ities in the bandwidth consumption. If the bandwidth had been stable we would have
experienced less fluctuations. The timestamps used in the graph 7.3 were based on the
RTP timestamp that was generated under the assumption of a constant bit rate trans-
mission. However, the live555 library provided a calculation of the estimated duration
of all the TS frames transmitted in one RTP packet, and used the estimate as its base for
scheduling the transmission. Where our timestamps were based on a constant bit rate,
the actual scheduling of the packet was based on the assumption of a variable bit rate.
Despite the scheduling timestamp being multiplied to fit that of the send out rate for
the respective channels, the transmission rate for segments was clearly higher than the

theoretical calculations would indicate, leading to increased bandwidth consumption.
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We believe that the conflicting assumptions, with regard to bit rate, is the cause for the
unexpected bandwidth measured. In live555, the calculation of the duration is an esti-
mate. Further testing of the scheduling would be required to determine how accurate
the estimation is, and what effect it has on the transmission. We can not guarantee that
the video frames are received in time when transmitting a variable bit rate movie with
constant bit rate. A better way would be to split the movie into segments based on
the time, and not blocks of TS frames (bytes). The index file mentioned in the imple-
mentation chapter contains such information, and the library also contains functions
for deriving the byte offset of a given time in the movie. In other words, it should be
possible to base the transmission on variable bit rate with some modifications to the
code. It is uncertain if this also affects the scheduling that is currently causing a higher
transmission rate. Further investigation is required to determine the effects of this, and

is thus left as further work.

8.2 Fault tolerance

Congestion in the network can lead to packets being dropped by routers. As a result,
the end user may experience loss of data. A lossy environment is a reality that stream-
ing applications need to take into account. We will now look at how loss can affect the
end users’ experience of a VoD session.

8.2.1 Performance in a lossy environment

In a lossy environment with up to 1% packet loss, we experienced a significant amount
of disturbance when playing back the received video. PSNR and SSIM did not reflect
this drop, in the experience of the video quality. Finding ways to measure the quality

experience using objective metrics is currently a challenge.

Transport Streams have support for error correction which adds fault tolerance. This is
accomplished by adding a forward error correction field to the packet. The transport
error indicator in the TS header flags the error as unrecoverable by the demodulator.
Error correction like this seeks to fix errors in existing TS frames, and not make up for
missing ones. Consequently, there is a need for encapsulation formats and codecs that
compensate for the effects of missing TS frames.
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8.2.2 Errors when reassembling segments

Consider the following scenario: A client starts listening at the movie during the n'"
iteration on the server side. The scheduler has just primitively transmitted an RTP
packet, because of a scheduling deadline, this despite the RTP packet having space for
more TS frames. Once the segment loops to the next iteration, n + 1, the TS frames
added to the RTP packets may not be aligned in the same way as the RTP packets in
the previous iteration. The timestamp of one RTP packet may still be aligned with the
n'" iteration, and have either more or less payload than that of iteration n'". If such
a skewed alignment is present when the client is receiving an RTP packet with the
timestamp that indicates that the segment is complete, there might be a few TS frames
too many, or too few. As a result, the joining point of the two parts of the segment may

have repeated or missing frames.

As a result, even in a lossless environment a client may receive segments that are not
identical to that on the server side. This will only be visible at the place in the video
where the segments are joined.

Using the timestamps as implemented in our prototype, there is no way to avoid this
loss or duplication caused by the reassembly. However, if we change the application to
use the RTP extension header we have more options. An extension header can include
an offset where to write to in the segment file. If the segment size is included in the
SD, the segment can be mapped on the disk, and the file sink writes the frames to their
correct offsets as indicated by the RTP extension header. If we are missing frames, the
client can choose to listen for a longer time. If receiving the same frame twice, the client
can simply overwrite the previous. It is possible to include offsets for each TS frame,
as they have a constant size of 188 bytes. It is a trade off of extra overhead in the RTP
header versus a small overwrite in the segment buffer. Implementing such a scheme
is only necessary if the loss or duplicate frames seen in the present implementation
decrease the quality of experience. Further assessment would be needed to determine
if that is the case.

8.2.3 Support for resuming

CHB is a near VoD scheduling technique that has limited support for Trick Play func-
tionality. If the client buffers already consumed data, rewind and pause could be used
in the media player. Fast forward, on the other hand, will not work as skipping in a

multicast stream is not supported as the stream can service several end users. The lack
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of skipping is also a problem in the case of failure. The cause of failure can be anything
from server error, power shortage and network congestion. If the transmission is in-
terrupted by more than a short time period, the CHB technique provides no support
for resuming if the buffer is lost. The last segments are transmitted at a much slower
rate than the first ones. Late segments will have a transmission time lasting almost the
entire duration of the movie. If interrupted, it is unlikely to start downloading again
from the same position in the segment. Unfortunately, we see no feasible solution to
this vulnerability in the broadcasting scheme. Being able to download from several
sources could be possible, but CHB was designed to avoid transmitting the movie si-
multaneously and would thus not take full advantage of its capabilities.

8.3 Network and channel considerations

The segments in our implementation were transmitted over channels created by the
combination of a multicast address and the use of ports. In the Internet backbone,
intermediate routers, between a source and a destination, do not make use of data be-
yond the network layer. Multicast group memberships manage the network layer, and
do not take ports into consideration. As a result, our implementation would trans-
mit the same bandwidth for the entire duration of the movie, from end-to-end. This
is because the entire movie is transmitted over the same multicast address, with each
segment identified by a unique port. Thus, clients are unable to unsubscribe from
the segment channel. The CHB technique, on the other hand, is designed to decrease
the bandwidth. It decreases the bandwidth rapidly once the two first segments are
buffered on the client side. In our testing we had to make our analysis based on data
that was receiving all the server streams continuously. Alternatively, we can use a ap-
plication layer multicast overlay scheme, to filter on ports. Deploying a CHB technique
for VoD without using overlay networks requires logical channels created by the use of
separate multicast addresses. Sending each segment with a unique multicast address
potentially requires a considerable number of addresses. If used across ISPs bound-
aries, this represent a challenge with availability of IPv4 class D addresses. This may

already be the reason why VoD is mostly supported within ISP networks only.

One way to reduce the need for multicast addresses would be for ISPs to support
Source-Specific Multicast in their networks using IGMPv3 [23]. By listening to the
multicast from only specific sources (source filtering), an ISP could potentially mul-
ticast over the same addresses for several movies, as long as the server addresses for

transmitting the movies are different. Given that periodic broadcasting is mainly bene-
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ficial for the top 10-20 popular movies, providing 10-20 separate unicast IP addresses is
for most ISPs feasible. Given a 1 minute wait time for 3 hour long movies, this would
result in 180 multicast addresses. If having 20 movies, the total need for addresses
would increase to 200. Whereas without source filtering the need for addresses would
be 20 x 180 = 3600. In the latter example, cooperation to support VoD across ISPs
would be more difficult with IPv4.

IPv6 increases the address space from 32 bits to 128. With this increase, there will
be a substantial number of addresses available. As such, the problem of an insuf-
ficient number of multicast addresses, even when transmitting across the border of
autonomous networks, would be solved. However, ISPs may still want to limit the use

of multicast across their service area.

Another solution could be to add support for handling the transport layer in routers.
This would however require major change in the deployed infrastructure. Today, bot-
tlenecks in the network are not found in the cables and transmission media, but rather
in the processing power of the routers and switches [21]. In addition, in RFC 1958 [40],
principles for the network layer are outlined. They include keeping the architecture
simple, consider costs. Adding support for another layer would clearly make the
routers much more complex. Current routers would need to be upgraded, or most

likely substituted by new ones, adding substantial cost for the ISPs.

8.4 Optimization and the applicability of CHB

Periodic broadcasting protocols were developed to scale to video playback distribu-
tions following Zipf’s law [21]. This was also the case for the implementation studied
in section 3.1 [15]. This study concludes that the network bandwidth becomes a bot-
tleneck for the Patching protocol which limits the service to 5 clients per minute for a
three hour video at 1.5 Mbps. Periodic broadcasting, using multicast in combination
with RTSP, proved to scale much better. The benefit of patching is that of true on de-
mand delivery. Periodic broadcasting, including our implementation of CHB, will in-
duce a wait time before playback commences. However, as far as the use of bandwidth
in the network is concerned, our implementation of CHB will not use any bandwidth
beyond the first multicast router if no clients have requested the video. Once the movie
is requested, the bandwidth will increase, though no more than the maximum for all
channels, and only along the spanning tree of group members. That being said, our
test results showed that a movie playing back at 1.1Mbps, with a 60 second maximum
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wait time, would consume almost 6 Mbps when transmitting all the segments. It is
worth noting that this scales to support all members in a multicast group. Today, ma-
jor Norwegian ISPs generally offer DSL connections from 768 to 20000 kbps. From this
we can conclude that it is feasible with today’s technology to put a CHB streaming
server into operation for a number of subscribers.

There are also possibilities for making a CHB service on demand, by sending the first
segment by unicast instead of multicast. The service will be delivered on demand,
and at the same time take advantage of the benefits of CHB. Such a service will in-
crease the bandwidth linearly for the transmission of the first segment as the number
of clients increase. However, it would be for a short clip equal to the duration of the
wait time. To lower the stress on certain paths, the download of the unicast stream
could be distributed to proxy servers or a set of streaming servers. The SD could re-
flect where a client was to download the multicast stream from, choosing to even out
the traffic among differing routes as a means for traffic shaping. The total bandwidth
usage would be the same, but would not need to stress the same pathway for all clients

for the unicast transmission.
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Chapter 9
Conclusion

We have designed and implemented an application for scheduling data streams over a
multicast protocol. We have evaluated the implementation, as well as discussed both
the performance and the infrastructure such an implementation is dependent on. We
will now summarize our work and point out our most important contributions. Last,

we will present challenges that we believe will contribute to this area of research.

9.1 Summary and contribution

We have looked at different techniques for scheduling streams over a multicast proto-
col. Out of the techniques examined we found the Cautious Harmonic Broadcasting
(CHB) algorithm to be the most promising with regard to bandwidth consumption at
the server, and in the network, as well as offering a near video on demand service. By
studying existing implementations and simulations, we gained insight in performance

issues motivating our own design of a streaming server for Video on Demand (VoD).

We have also become acquainted with common protocols and standards for imple-
menting periodic scheduling techniques. This served as a good background when
choosing the live555 framework for developing our own video streaming application.
It also helped us choose a media format that was beneficial for streaming in a lossy

environment; Transport Streams (TS).

Our main contribution is that of designing a working prototype using our own ver-
sion of the CHB scheduling algorithm. The implementation works with an existing
framework, live555, that is used by open source media players like VLC and MPlayer.
As a result of the assessment of our prototype, we have suggested that conflicting as-
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sumptions in constant and variable bit rates in video streams can interfere with CHB
scheduling. We also observed that the temporally aligned scheduling scheme in CHB
easily becomes skewed. This can, however, be a benefit in avoiding peaks in the band-
width. Last, we have looked at optimization possibilities and the applicability of the
CHB algorithm.

Based on experiments conducted using the prototype, we have established that creat-
ing and deploying a CHB streaming service is feasible with today’s infrastructure.

9.2 Future work

In our work, we found irregularities in the streaming, as well as a higher bandwidth
consumption than expected. We have raised the question whether this may be caused
by variable bit rate scheduling of segments that are the same size, byte wise. To inves-
tigate this further, it would be interesting to see how the server application performs
when creating segments based on duration instead of size. Live555 supports an index
tile to seek to time based offsets in the TS file. Hence, support for such modifications
to the code is readily available. Along the same line it would be useful to do tests on
the estimated packet duration that is used when determining the scheduling time for
transmission of RTP packets. Further research into how the estimation is calculated
is essential to develop an application that streams closer to the bandwidth modeled
theoretically.

As described in our discussion, the reassembly of the segments may cause loss or du-
plication of frames. We would find it interesting to investigate the effects of using the
RTP extension header to include more meta data regarding the TS frames transmitted.

As the server prototype uses UDP ports for streaming, the application is generally
best suited for an overlay multicast protocol. We would like to modify the prototype
to support channels based on multicast addresses, this to be able to perform more
authentic experiments. That way the benefits of multicast routing would be taken fully
advantage of, and any overhead caused by using an overlay network would diminish.
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Appendix A

A.1 Measurements of network delay from Oslo to selected

Norwegian destinations

The round trip between an ADSL user with a download bandwidth of 3000 kbit, and
upload at 350 kbit, to selected servers throughout Norway was measured using the

ping application. Table A.1 displays the results from a count of 100 packets sent,

whereas the same test was repeated several times with similar, though not logged,

outcome.
Location URL rtt min | rtt avg | rtt max | rtt var | %loss
Andenes www.andoyposten.no 66.243 | 68.348 | 79.627 | 1.531 0
Narvik www.narvik. kommune.no | 74.485 | 76.707 | 98.494 | 2.452 0
Trondheim | www.mamoz.no 51.622 | 53.308 | 57.955 | 0.93 0
Bergen www.securehosting.no 56.977 | 59.308 | 63.042 | 1.016 0
Kristiansand | kristiansand.folkebibl.no 49.643 | 54.644 | 169.248 | 17.633 0
Oslo www.linpro.no 62.45 | 65.454 | 80.302 | 2.425 1
Norway 60.237 | 62.962 | 91.445 | 4.331 | 0.167

Table A.1: Measuring round trip time using ping from an ADSL home user to selected servers
throughout Norway bottom line displays the average
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A.2 Specification of test machines

All machines used were set up with Linux Ubuntu 7.04 (feisty) or higher.
Server:

Ubuntu 7.04 (feisty)

Memory: 768 MB

Processor: Intel Pentium 4, CPU 1.60 GHz

Network Emulator:

Ubuntu 7.04 (feisty)

Memory: 512 MB

Processor: Intel Pentium 4, CPU 1.60 GHz

Clients:

Ubuntu 8.04 (hardy)

Memory: 512 MB

Processor: Intel Pentium 4, CPU 1.60 GHz

A.3 Movie specifications

The Wrong Landing

Duration: 270 seconds

Resolution: 320 x 240

Frames per second: 25.0

Video: Unknown

Audio: 64.0 kbit/4.54% (ratio: 8000->176400)

Transmission bandwidth: Unknown. Used 650 kbps for testing

The Elephant’s Dream

Duration: 654 seconds

Resolution: 512 x 288

Frames per second: 24.0

Video: 800.0 kbps

Audio: 224.0 kbit/14.58% (ratio: 28000->192000)
Transmission bandwidth: 1100 kbps
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A4 Testresults, Scheduling performance based on client

wait time and number of segments

A.4.1 The Wrong Landing

Wait time | Download time | Segments | Download indicator
271 270.29 1 0.50
136 138.89 2 0.34

91 137.94 3 0.38
68 166.28 4 0.49
55 183.49 5 0.56
46 203.07 6 0.64
39 221.58 7 0.71
34 238.90 8 0.78
31 254.09 9 0.84
28 263.45 10 0.88
25 270.89 11 0.92
23 275.33 12 0.94
21 278.81 13 0.95
20 280.71 14 0.96
19 282.07 15 0.97
17 285.41 16 0.99
16 287.35 17 1.00
15 290.25 19 1.01
14 292.93 20 1.03

Table A.2: Metrics from wait time vs download indicator investigation for "The Wrong Land-
ing’
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A.4.2 The Elephant’s Dream

Wait time | Download time | Segments | Download indicator
654 655.47 1 0.50
327 330.08 2 0.34
218 294.13 3 0.34
164 343.47 4 0.42
131 366.08 5 0.47
109 370.67 6 0.49

94 385.51 7 0.52
82 377.15 8 0.51
73 434.59 9 0.60
66 426.23 10 0.59
60 416.55 11 0.58
55 404.59 12 0.57
51 400.17 13 0.57
47 399.26 14 0.57
44 406.93 15 0.58
41 467.53 16 0.67
39 535.78 17 0.77
37 532.33 18 0.77
35 528.37 19 0.77
33 514.28 20 0.75
32 508.06 21 0.74
30 494.88 22 0.72
29 482.79 23 0.71
28 505.79 24 0.74
27 589.12 25 0.87
26 628.35 26 0.92
25 626.71 27 0.92
24 624.99 28 0.92
23 616.46 29 091
22 567.36 30 0.84
21 567.49 32 0.84
20 646.72 34 0.96
19 727.23 36 1.08
18 706.43 38 1.05
17 626.13 40 0.93
15 815.36 46 1.22
14 681.53 50 1.02

Table A.3: Metrics from wait time vs download indicator investigation for "The Elephant’s
Dream’
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A.5 Collaboration diagrams and call graphs

[MediaSink]
[RTPSink]
[MultiFramedRTPSink]
SimpleRTPSink::startPlaying()

MultiFramedRTPSink::continuePlaying() MultiFramedRTPSink::sendNext()

. B

TPSink:bu 0

/

Mul(iFramedRTPSink::packFrame()

HarmonicByteStreamFileSource lextFrame()

HarmonicByteStreamFileSource::doGetNextFrame()

HarmonicByteStreamFileSource::fileReadableHandler()

[FramedSource]
HarmonicByteStreamFileSource::handleClosure()

HarmonicByteStreamFileSource::doReadFromFile()

) = [FramedSource] = -
HarmonicByte! leSource::setHarmonicTimestamp() HarmonicByteStreamFileSource::ourHandleReset()

HarmonicByteStreamFileSource::afterGetting()

[FramedSource]

HarmonicByteStreamFileSource::handleReset()

MultiFramedRTPSink::ourHandleReset()

TPSis i ) MultiFramedRTPSink::ourHandleClosure()

Figure A.1: Simplified call graph for the server sink, framer and source. Functions imple-
mented in parent classes have the parent class name indicated in square brackets.
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Figure A.2: Collaboration diagram for MediaSession. The diagram is without our additions to

the library. Diagram taken from live555 online documentation [3].
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