
UNIVERSITY OF OSLO

Department of Informatis

Periodi Broadasting

Protool -

implementation and

measurements

Master thesis

Tommy Gudmundsen

May, 2009

Periodic Broadcasting Protocol - implementation
and measurements

Tommy Gudmundsen

May, 2009

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Main Contributions . 3

1.4 Outline . 4

2 Scheduling techniques 5

2.1 Terminology and concepts . 5

2.1.1 Terminology . 5

2.1.2 Concepts . 6

2.2 Delayed on-demand delivery . 7

2.2.1 Batching . 7

2.2.2 Adaptive piggybacking (stream merging) 8

2.3 Prescheduled delivery . 9

2.3.1 Staggered Broadcasting . 9

2.3.2 Pyramid Broadcasting . 10

2.3.3 Skyscraper Broadcasting . 10

2.3.4 Harmonic Broadcasting . 11

2.3.5 Cautious Harmonic Broadcasting 13

2.3.6 Quasi-Harmonic Broadcasting . 13

2.4 Client-Side Caching . 14

i

2.4.1 Patching (Stream Tapping) . 15

2.4.2 Hierarchical Multicast Stream Merging (HMSM) 15

2.5 Summary and discussion . 15

3 Existing Implementations 17

3.1 An Empirical Study of Harmonic Broadcasting Protocol 17

3.1.1 Experiment setup . 17

3.1.2 Results . 18

3.2 Scheduling of data streams over a multicast protocol 18

3.2.1 Description . 18

3.2.2 Future work suggestions . 19

3.3 Summary . 20

4 Protocols and coding standards for video streaming 21

5 Design 22

5.1 Stream format . 22

5.2 Media segmentation and reassembly . 22

5.2.1 Segment creation . 23

5.2.2 Reassembly of media segments . 24

5.3 Transmission of segments . 25

5.3.1 Channel design . 25

5.3.2 Protocols . 25

5.4 Channel and session scheduling . 26

5.5 Session management . 27

5.5.1 Session definition . 27

5.5.2 Session establishment . 28

5.5.3 Session execution and termination 28

5.6 Reassembling fragments into segments 29

ii

5.7 Integration with existing media players 29

5.8 Process management . 29

5.9 Summary . 30

6 Implementation 31

6.1 Live555 . 31

6.1.1 Live555 library description . 31

6.1.2 Live555 concepts and typical program flow 32

6.2 Stream Scheduling Framework overview 33

6.2.1 The Media Session Descriptor file 33

6.2.2 The Session Description Protocol file 34

6.2.3 Server side components . 36

6.2.4 Client side components . 37

6.3 Server implementation . 37

6.3.1 Create the SSFServer . 38

6.3.2 Initialize the new controller . 39

6.3.3 Running the controller . 44

6.3.4 Runtime server events and handlers 44

6.4 Client implementation . 46

6.4.1 Client creation . 47

6.4.2 Client initialization . 47

6.4.3 Client channel setup . 48

6.4.4 Runtime client events and handlers 49

6.4.5 Session completion . 51

6.5 Summary . 51

7 Experiments 52

7.1 Test environment . 52

iii

7.1.1 Media description . 52

7.1.2 Testbed . 52

7.1.3 Tools and measurements techniques 53

7.2 Scheduling performance . 54

7.2.1 Startup delay . 54

7.2.2 Transmission scheduling . 57

7.2.3 Client waiting time variation impact 60

7.2.4 Media transmission . 61

7.3 Bandwidth consumption . 63

7.4 Video quality . 64

7.5 Summary . 65

8 Conclusion 66

8.1 Summary and contribution . 67

8.2 Future Work . 67

iv

List of Figures

2.1 Pyramid broadcast. Adapted from Griwodz and Halvorsen [1] 11

2.2 Skyscraper broadcast. Adapted from Griwodz and Halvorsen [1] 12

2.3 Harmonic Broadcast. Adapted from Griwodz and Halvorsen [1] 13

2.4 Cautious Harmonic Broadcast. Adapted from Griwodz and Halvorsen [1] . 14

2.5 Quasi-Harmonic Broadcast. Adapted from [2] 14

7.1 Testbed network . 53

7.2 Startup delay for 9 streams . 55

7.3 Startup delay for 42 streams . 56

7.4 Startup delay for 325 streams . 57

7.5 Deadline conformance for varying client waiting time 60

7.6 Segment progression for CBR media . 62

7.7 Segment progression for VBR media . 63

v

List of Tables

7.1 Startup delay for 9 streams . 56

7.2 Transmission duration for CHB media . 58

7.3 Transmission duration VBR media . 59

7.4 Average and total bandwidth consumption for 10 segments CBR media 64

7.5 Average and total bandwidth consumption for 10 segments VBR media 65

vi

Chapter 1

Introduction

1.1 Background

Multimedia content consists of both video and audio content, and have traditionally
been the domain of television broadcasters to deliver to the consumers. The multime-
dia content receiver used by most consumers is the television, and any required sub-
scription decoder devices. For movies the traditional, and still dominating, approach
is renting a movie on a physical medium like a DVD disk from a video rental store.

As technology advances in the computer and networking areas, more people then ever
are now equipped with powerful personal computers and high speed connections to
the Internet. This development and increase in Internet connected consumers, along
with popular Internet multimedia services like Youtube featuring user generated con-
tent, are factors that help establish this platform as a competitor to the traditional mul-
timedia platforms. The consumers that take part in the computing technology evolu-
tion, are getting more and more accustomed to multimedia content being available on
the computer platform, and this also raises the requirements on content providers for
them to remain competitive.

Among the content providers currently following this line in Norway, are some of the
online news providers like, www.vg.no, www.dagbladet.no, along with several others.
These content providers are all providing multimedia content as part of their news
coverage. This is just one case that supports our argument that consumers are getting
more accustomed to multimedia being a natural part of the computing platform.

Video on-demand refers to the media content being available to the consumer when-
ever the consumer desires. This is very different from the traditional broadcasting
scheme, where content is available only according to a particular schedule, determined
by the broadcasters.

Some of the traditional broadcasters in Norway, are also making parts of their con-
tent available on the computing platform. Examples are two of the largest Norwegian

1

broadcasting corporations likeNRK (www.nrk.no/nett-tv) and TV2 (www.tv2sumo.no).
TheNRK aremaking a some of their archived TV-shows, for which they hold the distri-
bution rights, available as video on-demand, free of charge. The other example is TV2,
through the TV2 Sumo brand, where a payed subscription is required. TV2 is also ac-
tively promoting this distribution platform, by making popular TV-shows available to
consumers on this platform, before the content is available on the traditional broad-
casting platform.

There also exist other computing based video-on demand providers like SF Anytime
(http://www.sf-anytime.com), that provide mainly movies to the scandinavian mar-
ket. In the U.S market there are rising providers like Hulu (www.hulu.com), providing
video on-demand movies as well as TV-series.

Multimedia is a very rich content form, where the amount of data involved is very
high, compared to just text and motionless pictures. This high amount of data, con-
sumes a very large amount of bandwidth, when transferred from the media server
to the client. This means that the content providers, as well as the internet service
providers, will have to support very high loads, in terms of network bandwidth. Most
of the existing solutions today are based on a unicast model where each video on-
demand user will consume the same amount of network resources. As the number of
users grow, the content providers will no longer be able to serve their new customers,
as their solutions will run out of resources, and is unable to scale. This leads us into
our problem statement.

1.2 Problem Statement

As we stated in our background section, the unicast data transmission model em-
ployed by most of the video on-demand solutions available today, is not a scalable
solution, and will have limits on the number of customers that can be served. In order
to address this issue, researchers have proposed different multicast stream scheduling
techniques, where the multimedia transmissions for the same media are shared among
the users.

The multicast approach is not well suited for video on-demand solutions without the
use of stream scheduling techniques. This is because there is an inherent conflict be-
tween the sharing property in multicast, and the on-demand property in video on-
demand. The periodic broadcasting class of stream scheduling techniques typically
divides the media into disjoint segments, and repeatedly multicast the different seg-
ments on separate channels, according to some algorithm. These techniques mitigates
the leap between the sharing and on-demand properties, enabling efficient use of our
network resources, and providing scalable solutions.

In this thesis we will examine the periodic broadcasting class of stream scheduling al-
gorithms, and the Cautious Harmonic Broadcasting algorithm in particular. Much of
the research that have been performed in the areas of stream scheduling algorithms,

2

are mainly based on mathematical analysis and simulations. We therefor seek to create
a framework for implementing periodic broadcasting stream scheduling algorithms,
and to employ our framework to implement the cautious harmonic broadcasting algo-
rithm. In order to examine the performance and operation of our implementation, we
will perform experiments in a testbed and analyze the results, as well as comment on
the experienced issues.

As a base for implementing our stream scheduling framework, and cautious harmonic
broadcasting algorithm, we have chosen to use the live555 [3] streaming media library.
This library implements most of the primitives and standards compliant protocols we
require for our implementation. The live555 library is open source, extensible, and
employed in media-players like VLC [4] and MPlayer [5].

1.3 Main Contributions

In this thesis we have argued that the current unicast delivery schemes for video on-
demand are unable to scale when the number of consumers are rising. Valuable net-
work resources are not being used in an optimal way, where all the consumers watch-
ing the same movie, all use exclusive video streams transmitting the same content. A
multicast infrastructure is not available in todays global Internet, but as demand for
more efficient network utilization keeps rising, in parallel with growing use of multi-
media content and a growing number of users, internet service providers are gaining
incentives to implement multicast support in their autonomous systems. This multi-
cast infrastructure within an ISPs domain, is required for establishing a scalable mul-
ticast based video on-demand service, and we also argue that this is the most realistic
short term scenario for the deployment of a scalable video on-demand service.

We have examined different stream scheduling techniques, and chosen to focus on the
periodic broadcasting class of solutions, due to its scalability, as well as predictable
resource consumption, regardless of the number of consumers. The most promising
algorithm, considering its demands for server bandwidth, client waiting time, client
access bandwidth, client buffer requirements, as well as complexity, is the Harmonic
variant named cautious harmonic broadcasting (CHB). The CHB algorithm have been
criticized for its high requirement for channels, translating into a high number of IP
multicast addresses, but our scope of applicability is running this algorithm inside of
an internet service providers autonomous system, and thus will not be unmanageable.

The main contributions of this thesis is the implementation of the cautious harmonic
broadcasting algorithm, as well as a stream scheduling framework (SSF), that sup-
ports implementing periodic broadcasting class algorithms. By implementing a SSF
we support implementing other promising periodic broadcasting algorithms in our
future work, in a more consistent approach. The SSF is built by extending the live555
streaming media library, enabling future integration into existing media-players like
VLC and MPlayer. The implementation have been tested through running experi-
ments, and measuring the performance and operation of the CHB algorithm, using

3

both constant bit-rate and variable bit-rate media.

We conclude that the implementation of periodic broadcasting algorithms are realistic
and feasible, and that the CHB algorithm performs well in most of our experiments.
However we also suggest that more research is necessary in the area of transmission
scheduling calculations, and especially for small media segments, and even more so
for the ones based on a variable bit-rate media. The outcome of further research in this
area, would be to ensure on-time delivery of the media regardless of media segment
size and bit-rate variations.

1.4 Outline

In chapter 2, we establish terminology and concepts related to stream scheduling tech-
niques, as well as examine different classes of stream scheduling techniques proposed
in the literature. After the examination of different stream scheduling techniques we
examine some of the existing implementations in chapter 3. In chapter 4, we describe
the most relevant protocols and standards required in a streaming media implementa-
tion, before we turn our attention to our design and requirements in chapter 5. After
exploring our design wemove on to chapter 6, where we elaborate on our implementa-
tion and how our design has been realized. In chapter 7, we describe the experiments
performed in order to test and measure our implementation, as well as discuss the
results. After exploring the measurements results, we conclude and summarize our
work in chapter 8.

4

Chapter 2

Scheduling techniques

In this chapter we are going to examine different classes of stream scheduling tech-
niques for video on-demand. We argued in our introduction the resource intensive
nature of multimedia, as well as the need for stream scheduling techniques used in
conjunction with multicast technology. Performing delivery of the same data to all
users, and repeating all the steps involved, without any sharing of data, mean we are
utilizing our resources poorly. The stream scheduling techniques examined in this
chapter, all aid in better utilization of our network and server resources.

We start by establishing some of the terminology and concepts used in relation to
stream scheduling techniques, before moving on to the exploration of three different
classes of stream scheduling techniques.

2.1 Terminology and concepts

The following lists some of the common terminology and concepts we use when dis-
cussing stream scheduling techniques.

2.1.1 Terminology

Unicast Is the most common form of communication in use today, where the data is
transferred from one sender to one receiver. Unicast does not allow for sharing of
communication resources, and the resource consumption increases linearly with
the number of users.

Multicast Enables one or more senders to deliver data to a group of interested re-
ceivers. The receivers join multicast groups, and the network is responsible for
building a spanning-three from the sender to all the receivers, which is used as
forwarding paths to deliver data to all receivers. This enables the most efficient
use of the network resources, by ensuring that the same data is only sent across

5

the same link once. The network resources needed at the sender, thus becomes
independent of the number of participants in the multicast session. Multicast
requires additional management, and more advanced network routers than uni-
cast. This description is specified as Any-SourceMulticast (ASM). Source-Specific
Multicast (SSM) adds support for filtering traffic based on the source, so that only
multicast traffic from a specified source is forwarded to the receiver. The receiver
needs to specify the sources it wants to receive from when it joins the multicast
group.

Broadcast Sends its data from one sender to every receiver. A typical example of
the broadcasting scheme is traditional television transmission, where one sender
sends the same data to every receiver. The broadcast scheme has a high resource
consumption, where the entire network carries all the transmitted data regardless
of any receiver presence.

Segment A non overlapping part of a media, like a video file, is referred to as a seg-
ment. The media can be divided into fixed or variable sized segments.

Channel An addressable resource used to transmit data between the server and client.

Stream Is a continuous flow of data, transmitted across a network path. A typical
example of a stream would be the transmission of a segment over a network
channel.

Session In our context a session refers to the transfer of an entire media, like a video
file. The session streaming a media file will typically be a continuous process in
most stream scheduling algorithms, that runs until the server is terminated.

Consumption rate Also referred to as the playback and playout rate, is the rate a client
will receive at in order to consume the media, i.e watching a video is done at its
consumption rate.

Wait time The time period between a clients request for amedia, and the time at which
the client can begin consuming the media.

Trick play Refers to VCR functions on a media stream like the ability to play, pause,
stop, forward and rewind.

2.1.2 Concepts

Video on-demand (VoD) Refers to the users ability to gain access to the media at the
time the user desires, as opposed to a traditional broadcasting schedule set by the
broadcasters.

Broadcast Does not support any VoD access, but operates according to a fixed sched-
ule.

True VoD (T-VoD) Gives the user full control over when to access a media, without
any delay.

6

Near VoD (N-VoD) Provides the user access in a VoD way, but delays exist, and there
will be a waiting time before the media is accessible.

In the following sections we will examine different classes of stream scheduling tech-
niques available.

2.2 Delayed on-demand delivery

The delayed on-demand delivery scheme is based on the true on-demand delivery
scheme, as it will attempt serving client requests as quickly as possible after the ar-
rival request. The element that separates delayed on-demand delivery from true on-
demand delivery is the waiting time the client experience after its request for a video
has been received by the server. This delay is used by the server to collect and group
client requests, before transmission begins, or perform adaptations to merge clients
onto existing streams. The delayed on-demand delivery scheme thus has a dynamic
scheduling mechanism, where the client arrival pattern affects the transmission sched-
ule. This dynamic schedule support also implies a higher server complexity than fixed
schedule solutions. In this section we will examine two different delayed on-demand
delivery schemes, batching and adaptive piggybacking.

2.2.1 Batching

The idea behind the batching technique is to group as many clients onto as few streams
as possible, thereby saving network resources by allowing the client to share the data
transmission. This grouping of client requests will infer a delayed response for the
waiting clients, and this period is referred to as the batching window [6].

For this approach to be effective, and aid in saving network resources, it depends on
many clients accessing the same media within a limited time period, the batching win-
dow. This requirement for effectiveness also mandates a balanced approach to deter-
mining the size of the batching window. If the batching window is set too large, the
client waiting timemay exceed the limit a user is willing to wait before abandoning the
request. On the other hand, if the batching window size is set too small, the network
resource savings will diminish.

The batching window may be fixed or variable, depending on the batching policy ap-
plied. The batching policy determines how we group client request together, and also
what media is being served first. If the batching server only have a limited number of
channels it uses for streaming, the client requests will contend for these resources, and
the batching policy will determine the outcome. Next we will cover two of these batch-
ing policies, namely First-Come-First-Server (FCFS), and Maximum Length Queueing
(MLQ).

7

If we arrange all the incoming client requests into a First In First Out (FIFO) queue,
where each client requests a specific video, this request queue will collect client re-
quests for the duration of our batching window. After the batching window limit is
reached, we proceed by applying the batching policy in order to select the requests
that will get serviced.

The FCFS batching policy will select the first client request in our FIFO queue, and
allocate resources for the media requested by the client at the head of the queue. Next
the FCFS policy will examine the rest of the FIFO queue for clients requesting the same
media, and group these clients together on the resource allocated. This approach may
lead to limited savings of network resources if there are no other clients in the FIFO
queue requesting the same media. On the other hand this approach ensures a maxi-
mum client waiting time, and request processing fairness.

TheMQL batching policy does not pick the client request at he head of the FIFO request
queue, instead it examines the entire client request queue to determine the media that
have the most requests. The media with the most requests will then get streaming
resources allocated, and the clients requesting this media will be grouped together and
served. This approach will be the most efficient way of saving network resources, as
it will always be able to group the most amount of clients onto a single stream. This
approach will favor popular media, over less popular media requests. This means that
a fairness issue exists when using MQL. If a client request is at the head of our FIFO
request queue, and is the only client requesting a particular media, it may never get
served if request for more popular media are continuously added to the client request
queue. This fairness issue may be reduced by applying a maximum client waiting time
limit along the MQL batching policy.

2.2.2 Adaptive piggybacking (stream merging)

Unlike the batching technique, the adaptive piggybacking, or stream merging, ap-
proach does not have an initial client waiting period, but starts serving the client im-
mediately upon request arrival. When the streaming server have multiple clients re-
ceiving the same media, the adaptive piggybacking server will alter the media display
rates for the streams in progress, in order to achieve resource savings. [7].

If the server have two clients, A and B, both in progress of receiving the same media,
but on different streams. Where client A started playback some time before client B
started its playback. The adaptive piggybacking idea is to merge these two clients
onto the same stream by changing the display rates until they are at the same position
in the media playout. This is performed by lowering the display rate for client Awhile
increasing the display rate for client B. This alterationwill lead to the two clients ending
up at the same position in the media playback schedule, and the two streams can be
merged.

The underlying assumption here is that he user watching the streamedmedia is unable
to perceive display rate manipulations as long as the manipulations are kept within a

8

5% rate change [8]. Adaptive piggybacking may also be used together with batching
to further increase the resource savings, however the implementation complexity may
in sum be significant. [9]

Next we move on to examine another class of stream scheduling algorithms, presched-
uled delivery.

2.3 Prescheduled delivery

The prescheduled delivery scheme is based on the principle where the server is run-
ning a fixed schedule for streaming media content. This static schedule is set upon
server startup and does not change during server operations, unlike the delayed on-
demand delivery scheme does. This also implies that the server resource require-
ments are fixed, and easier to calculate and scale. The initial resource requirements for
prescheduled delivery schemes tends to be quite high, compared to the initial resource
requirements of other schemes. This means that the prescheduled delivery scheme
will be most beneficial in higher load scenarios, compared to some of its delayed on-
demand delivery counterparts. The scalability, in terms of the number of concurrent
clients it servers, is also one of the strong sides of prescheduled delivery techniques, as
the server resource consumption remains fixed independent of the number of clients
is serves.

The prescheduled delivery schemes are also referred to as periodic broadcasting schemes,
and involves dividing videos into segments, and streaming these on separate channels,
according to a transmission schedule. These segments are then repeatedly broadcasted
on the channel, and the scheduling is designed to ensure that all segments are received
in time for consumption, ensuring continuous playback. This technique shifts much
of the complexities to the clients, requiring clients to follow a reception schedule, and
buffer and reorder received data.

The prescheduled delivery scheme can be vulnerable to failure, as it is a single instance
running the static schedule, a failure in this instance will result in a failure at all the
clients currently receiving, making this a single point of failure.

In the following sections we will examine a set of different prescheduled delivery tech-
niques proposed in the literature.

2.3.1 Staggered Broadcasting

Staggered broadcasting [10] is among the earliest, and simplest periodic broadcasting
protocols proposed. The principle is to allocate K channels, that all stream the entire
media repeatedly, but with staggered starting times. The client waiting time will then
depend on the duration of the media S, divided by the number of channels allocated,
w = S/K. Each of the allocated channels streams the media at its playout bandwidth b,

9

and the total bandwidth consumption B, increases linearly with the number of chan-
nels. B = b * K. This technique is not among the most efficient, in terms of bandwidth
consumption, but has been put into practice in production systems.

One of the attractive properties with staggered broadcasting is that it can provide some
trick-play functions, by jumping between the different staggered streams, allowing
the client to discretely navigate back and forward in the streaming media. Staggered
broadcasting is also among the techniques that does not require very much complexity
in the receiving client.

2.3.2 Pyramid Broadcasting

Pyramid broadcasting [11] is a technique that assumes higher client capabilities than
many of the other periodic broadcasting techniques, in terms of required client access
bandwidth and client storage.

Pyramid broadcasting divides its available bandwidth into fixed size HIGH-bitrate
channels, with one channel for each segment. Each segment is repeatedly broadcasted
on its assigned channel. Pyramid broadcasting divides its media into variable size
segments that grows exponentially according to a geometric series. The first segment,
representing the earliest part of the media, is the smallest segment, causing this seg-
ment to be broadcast most frequently and determines the client waiting time for the
technique.

The client only starts downloading segments from the start, and a client will begin
consuming the first segment as soon as it has started downloading it. By only down-
loading the segments from the beginning avoids the need for client reordering. All
segments are downloaded according to its consumption sequence, as soon as the client
begins consuming segment N, the client will start downloading segment N+1 at its
earliest occurrence.

Pyramid broadcasting also supports interleaving several different media files on the
same set of channels. The media files are divided into the same number of segments,
and each media segment of the same relative size alternates over its assigned channel.
A graphical representation of pyrmid broadcasting is available in figure 2.1.

In the worst case, the client will need to download from all the channels concurrently,
and the client access bandwidth requirements reaches its maximum requirement, equal
to the server bandwidth. Also the client buffer requirement may be as high as 50% of
the media.

2.3.3 Skyscraper Broadcasting

Skyscraper broadcasting [12] was proposed as a novel technique with lower client ac-
cess bandwidth and storage requirements than Pyramid broadcasting, while still keep-

10

Figure 2.1: Pyramid broadcast. Adapted from Griwodz and Halvorsen [1]

ing an acceptable client waiting time.

Skyscraper broadcasting uses fixed bandwidth channels, all with a bandwidth cor-
responding to the media playback rate. The segmentation scheme for Skyscraper is
effectively based on fixed size segments, and multiple segments are allocated to chan-
nels according to a channel allocation series. The Skyscraper proposal in [12], uses
variable size segments, but again sub-divides the segments that are larger into frag-
ments, so that we effectively end up working with equal sized blocks of media data,
and we get more than one segment allocated to a channel. A graphical representation
of skyscraper broadcasting is available in figure 2.2.

The channel allocation series, also referred to as the broadcast series [12], describes
how we map segments onto channels, from a recursive function. A sample channel
allocation series for 11 channels may be:

[1, 2, 2, 5, 5, 12, 12, 25, 25, 52, 52]

This series allocates one segment on the first channel, two segments on channel two
and three, and so on. The segments are mapped in sequence, so the segment order for
our three first channels would be 1 - 2,3 - 4,5 respectively.

The structure of Skyscraper broadcasting ensures that the client needs to receive from
at most two channels concurrently, and needs to buffer at most two segments at any
one time. The client requirements in terms of client access bandwidth and storage, are
thus lower than in the Pyramid broadcasting technique.

2.3.4 Harmonic Broadcasting

Harmonic broadcasting (HB) [13], was introduced as a more bandwidth efficient alter-
native to its pyramid based predecessors, for the same client waiting time achieved.

11

Figure 2.2: Skyscraper broadcast. Adapted from Griwodz and Halvorsen [1]

HB divides the media into n equally sized segments S. The algorithm also allocates n
channels with a decreasing bandwidth for each channel i. The playout bandwidth b, is

referred to as full bandwidth. Each of the channels are allocated b
i units of bandwidth,

and each segment Si is assigned to a single channel, where it is repeatedly broadcast.
A graphical representation of the HB algorithm is shown in figure 2.3.

The client waiting time for the HB algorithm corresponds to the duration d of the first
segment. The bandwidth requirement for the HB algorithm grows according to the
harmonic number, by adding the bit-rates for the different channels like: 1/1 + 1/2 +
1/3 ... 1/n. This implies that we are able to achieve low client waiting time, without a
large increase in the required bandwidth, as the harmonic number grows very slowly
when adding additional channels. This has also been one of the critiques towards the
HB algorithms, as it requires a significant number of channels.

In the paper “Efficient broadcasting protocols for video on demand” [2], by Paris,
Carter and Long, the authors proved that the HB algorithm is not always able to de-
liver all of its data on-time. The HB algorithm needs to add an additional (n-1)d/n units
of time, in order to guarantee on-time delivery. As a result Paris, Carter and Long
proposed two alternatives to the HB protocol which corrected the delivery guarantee
problem. These algorithm are examined in the following sections.

12

Figure 2.3: Harmonic Broadcast. Adapted from Griwodz and Halvorsen [1]

2.3.5 Cautious Harmonic Broadcasting

Cautious Harmonic Broadcasting (CHB) [2], improves upon the on-time delivery issue
in the original HB algorithm. The changes performed involves rearranging the channel
bandwidth allocations. CHB allocates two full bandwidth channels, as opposed to just
one in HB. The second channel is used as a shared channel, alternately streaming seg-
ments 2 and 3. At the same time the the remaining channels are allocated bandwidth

bi =
b
i for i = 3, ... , n-1. This scheme guarantees on-time delivery, as all of the first

3 segments are transmitted at full bandwidth. This will increase the total bandwidth
requirement for CHBwith approximately b/2 units, for a high number of channels. The
graphical representation of CHB is available in figure 2.4.

2.3.6 Quasi-Harmonic Broadcasting

The second proposal in [2], was Quasi-Harmonic Broadcasting (QHB). The QHB algo-
rithm has the advantage of offering no additional bandwidth requirement compared
to the HB algorithm, however the QHB complexity is higher.

The QHB algorithm still streams the first segment repeatedly at full bandwidth, where
the segment occupy one time slot. For each segment i, for 1 < i <= n, the segment
is broken into im-1 fragments for some parameter m , and the client will receive m
fragments from each channel per time slot. By further dividing each time slot into
m equally sized subslots, then the client will receive a single fragment during each
subslot. One of the key principles in QHB is the way the fragments are arranged. For
an illustration of the layout we refer to figure 2.5.

13

Figure 2.4: Cautious Harmonic Broadcast. Adapted from Griwodz and Halvorsen [1]

Figure 2.5: Quasi-Harmonic Broadcast. Adapted from [2]

For channel i, the last subslot of each time slot is used to send the first i-1 fragments of
Si in order.

The rest of the subslots sends the other i(m-1) fragments, such that the kth subslot of
slot j is used to send fragment (ik+j-1) mod i(m-1)+i. [2].

2.4 Client-Side Caching

The client-side caching class of stream scheduling techniques relies on buffering of
media at the client side, receiving multicast streams, in addition to any potential uni-
cast patch streams necessary to receive the entire media on-demand. The client-side
caching scheme offers on-demand delivery, and require significant client resources.
We are in the following briefly going to describe two client-side caching approaches.

14

2.4.1 Patching (Stream Tapping)

The patching scheme [14], also referred to as stream tapping [15], is based on the server
multicasting the entire media repeatedly. Clients connect to the multicast stream, and
begin receiving the media. If a client arrives after the current multicast stream has
started, the client requests a patch stream, that is used to serve the part of the media
missed by the client. The patch stream is a unicast stream, and is triggered on demand,
which makes the patching scheme a true video on-demand scheme. As suggested
in [14], the patching schememay be combined with other schemes, such as batching, to
gain better server and network resource utilization, at the expense of a slightly reduced
on-demand response. One principle consists of merging large batches onto multicast
patch streams. The patching scheme does not provide the same scalability we can
achieve in the periodic broadcasting schemes, but are less resource demanding for less
popular media.

2.4.2 Hierarchical Multicast StreamMerging (HMSM)

In the hierarchical multicast stream merging (HMSM) technique [16], the combined
use of different techniques like, piggybacking, patching and the variant of skyscraper
named dynamic skyscraper, are employed to achieve a true video on-demand service.
The transmissions are all based onmulticast, where the clients receive data at a rate that
is higher than the playout rate by reception from multiple streams, like in skyscraper.
The streams are also accelerated as in piggybacking, and groups of users are merged in
large multicast groups. The scheme provides significant resource savings on the server
side, but the complexity of the HMSM scheme, may be a significant implementation
challenge.

2.5 Summary and discussion

In this chapter we have examined three different classes of stream scheduling tech-
niques. All aiming to aid in better server and network resource utilization. We have ex-
amined the delayed on-demand delivery techniques, the prescheduled delivery tech-
nique, also referred to as periodic broadcasting, and the client-side caching technique.

Through our study of different stream scheduling techniques, we have decided to fur-
ther work with the periodic broadcasting class of techniques. The main arguments for
this selection is the scalability, and applicability for serving highly popular media to
a high number of users. Among the available periodic broadcasting techniques, we
have chosen to implement the cautious harmonic broadcasting algorithm. We arrived
at this choice after examining the properties for bandwidth use, client waiting time, as
well as application complexity and client side buffer requirements. For the bandwidth
utilization alone, we could have chosen the QHB algorithm, but have abandoned it

15

due to its complexity compared to CHB. We believe that CHB is the algorithm that
has the most promising bandwidth saving potential, as well as a good balance in the
other properties mentioned. We also believe that the current state of technology, is well
capable of supporting both a CHB server as well as a client.

After examining the options with regards to stream scheduling techniques, we move
on to examining existing implementations, with our focus directed toward the har-
monic type of stream scheduling algorithms.

16

Chapter 3

Existing Implementations

In chapter 2 we examined different classes of scheduling techniques. Most of the lit-
erature proposals are based on mathematical analysis and theoretical simulations, due
to the lack of contemporary infrastructure, enabling realistic tests. There exist however
some work addressing the scheduling techniques in a more practical manner. As we
established in chapter 2, we find the periodic broadcasting class of algorithms the most
interesting to study further, and the CHB stream scheduling technique in particular. In
this chapter we examine a paper where the authors have performed a practical sim-
ulation using the CHB scheduling technique. We also move on to examine in more
detail the contemporary work conducted by one of our peers, in their experiences im-
plementing the CHB scheduling technique.

3.1 An Empirical Study of Harmonic Broadcasting Proto-

col

In chapter 2 we examined the CHB algorithm in more detail, and concluded that it
was our choice for implementation. It is therefore of particular interest to us that this
is the algorithm studied in the paper “An Empirical Study of Harmonic Broadcasting
Protocols” [17]. The authors have performed experiments in a simulation environment,
focusing on the performance of the CHB protocol itself.

3.1.1 Experiment setup

The authors set up a client server pair used to execute the simulations, where they en-
sure accurate clock synchronization between the two parties, to achieve more accurate
measurements. The server design is using pre-forked processes to handle the differ-
ent streams, this implies one process managing one stream or channel. The client side
forks each stream into a new process upon connection.

17

The media used in the experiments is not a real media, but a constant bit-rate dummy
file, generated and stored in memory. The dummy file is stored in memory and com-
pressed, these measures are taken to avoid being affected by the disk I/O subsystem
delays in the measurements. The compression is also added to ensure that no interme-
diary system on the data transport path will be able to compress the media and thus
affect the measurements.

The authors have selected the reliable TCP protocol as their transport protocol, how-
ever they have also discussed and considered using the non-reliable UDP protocol.
The most important argument for choosing the reliable and connection-oriented TCP
protocol, was to ensure no loss of important frames in the video. A series of tests was
also performed on the TCP usage, in order to find and use the most suitable TCP win-
dow size. The broadcasting protocol selected for simulation by the authors was the
CHB periodic broadcasting protocol.

3.1.2 Results

The experiments showed that a single Pentium III computer with 512MBmemory, was
able to serve 2400 concurrent streams, providing a maximum client waiting time of 5.3
seconds, for a 180 minute video. The authors claim that CHB is a strong contender for
distributing popular video to large audiences.

Beyond this number of concurrent streams, the system reliability deteriorated, and
significant delays in packet deliver was experienced. The authors suggests further re-
search using a connectionless protocol, as opposed to the use of a connection oriented
protocol in their experiments. The authors also suggests to reduce the number of pro-
cesses involved in implementing the CHB protocol.

3.2 Scheduling of data streams over a multicast protocol

Upon beginning the work on this thesis, a similar and closely related work was already
in progress by another master student. In her thesis “Scheduling of data streams over
a multicast protocol” [18], Fredrikson have examined some of the same objectives, set
forth in this thesis. The work performed by Fredrikson in [18], was completed towards
the end of 2008, a few months prior to the completion of our work. Thus we were able
to gain insight into the experiences of closely related work, and address some of the
issues experienced.

3.2.1 Description

In [18], the objectives are closely related to our own, in particular the implementation
of the CHB stream scheduling technique.In the following section we will explore the

18

most important issues discovered in [18], and how they influence our own design. It
is also worth remarking that as the two similar thesis evolved in parallel, they do not
share any implementation artifacts like the source code.

3.2.2 Future work suggestions

This section will sum up some of the key issues experienced by the author of [18], that
was suggested for further research. These issues will have an influence on our design
and implementation.

CHB implementation

The CHB implementation was modified in order to simplify the code, and avoid trans-
mission of multiple segments on the same channel. Instead of alternating segments
2, and 3 on channel 2, as in the CHB design in [2], segment 2 was the only segment
transmitted on channel 2. Segment 3 was instead transmitted on a new channel at half
the playout bandwidth. These changes results in an increase in the total bandwidth
consumption of approximately, one half of the playout speed.

In our thesis we will follow the CHB specification put forth by the authors in [2].

Bandwidth consumption

The measurements performed in [18], indicated that the total bandwidth consumption
of the implementation well exceeded the theoretical calculations. The author suggests
that this is related to the transmission scheduling mechanism in the live555 library, and
possibly also affected by the use of variable bit-rate videos.

We intend therefore to further examine these issues in our work, and also comparing
the effects of different bit-rate variations, by using both constant and variable bit-rate
media in our measurements.

Segmentation scheme

The segmentation scheme employed in [18], divided the media into segments based on
its byte size. When handling variable bit-rate media, this scheme will not correspond
to equal sized segments, time-wise. The author experienced segments not arriving on-
time for consumption, and non ordered completion sequences for some of the steams,
and suggests examining the issue further.

19

Segment reassembly

The segments transmitted from the server to the client needs to be reassembled at the
client side, due to RTP fragmenting the segments into discrete packets, or fragments.
For the client side to be able to correctly reassemble the RTP packets into a full segment,
Fredrikson mad use of the RTP timestamp field. This was done by manipulating the
RTP timestamp on the server side, setting it to zero at each segment start. The receiver
then used two buffers to store the segment parts, switching buffer upon RTP timestamp
reset. The client was thus able to examine the RTP timestamps, and determine if the
arriving packet belonged to the first or second part of the segment. The segment parts
was later combined into the full segments.

This use of the RTP timestamp, could cause loss or duplication that the client was
unable to detect. (We refer to [18] chapter 8 for details.) There is also no way to dis-
criminate different segments on the same channel when employing this scheme. The
author therefore suggests RTP extension headers as an alternative, which we are going
to explore further in chapter 5.

Channel design

The channel design in [18] uses the same IP multicast address for all of its logical chan-
nels, using port numbers for separation. This channel design does not work well with
IP multicast, because the port numbers are a construction that belongs on the transport
layer, not the network layer. As the multicast routers operate on the network layer, and
are unable to distinguish the different channels, the bandwidth consumption through
the network will not decline when the preliminary channels are complete. The multi-
cast traffic will remain until the movie is completely downloaded.

3.3 Summary

In this chapter we have examined existing implementations of the CHB scheduling
techniques. The first paper used a multi process design, using reliable transport of
segments, achieving good results, and concludes that the CHB algorithm is an impor-
tant contender in the distribution of popular media to large audiences. In our second
paper, we examine the work recently performed by one of our peers, exploring some
of the same objectives as our own. In this paper we focus on the experiences and
future work suggestions set forth. We find issues related to scheduling, channel de-
sign, as well as segmentation and reassembly. The results from these papers will help
guide our design, as well as providing us with a better foundation for making our de-
sign decisions. We now move on to exploring the commonly used protocols in media
streaming systems, as well as notes on media encodings.

20

Chapter 4

Protocols and coding standards for
video streaming

In this chapter we will very briefly list the most important protocols and media coding
standards used in our work. Additional comments to these protocols and standards,
will be provided in context of its use.

Real-time Transport Protocol (RTP) [19] RTP is designed for transport of real-time data,
and offer services like sequence numbering and time-stamping, and will be em-
ployed as our real-time protocol in stream scheduling implementations.

Session Description Protocol (SDP) [20] SDP is designed for describing sessions, and
has will be employed as the format we use for this purpose. The SDP protocol
will also been extended using custom attributes, used to describe metadata in our
stream scheduling implementation.

Internet Group Management Protocol (IGMP) [21] Is the protocol wewill employ for
multicast group membership management.

Protocol Independent multicast - Sparse Mode (PIM-SM) [22] PIM-SM will be used
for multicast tree building, and multicast traffic forwarding.

The Motion Picture Expert Group (MPEG) video codecs In our work we employ the
MPEG-2 media encoding, using the transport stream (TS) encapsulation. The TS
encapsulation is the best suited for use in lossy environments, and is therefore
preferred over the program stream (PS) encapsulation format. The encapsulation
formats are specified in system part in the ISO / IEC 13818-1:2000 standard.

21

Chapter 5

Design

After examining different stream scheduling techniques in chapter 2 and looking at ex-
iting implementations in chapter 3, we selected the CHB stream scheduling algorithm
to be implemented and tested in our stream scheduling framework. In this chapter
we are going to examine the most important design requirements and issues, required
for implementation of our solution. We will also provide arguments and rationale for
our design decisions, where this is required. We start by examining the media stream
format.

5.1 Stream format

In our study we have decided upon using the MPEG-2 media encoding, due to its
widespread use, and also good support in the live555 streaming media library we are
going to employ. The MPEG-2 media format supports two different schemes for en-
capsulating the media. The Program Stream (PS) format is designed for error free en-
vironments, like playback from a DVD disk. The other option is the Transport Stream
(TS) encapsulation, which is designed for more lossy and unreliable mediums. The TS
also contains synchronization information embedded in the TS, making it more robust
and resistant to loss of TS packets. We therefore chose to use the MPEG-2 TS stream
format in our work.

5.2 Media segmentation and reassembly

In the CHB stream scheduling algorithm we need to divide the media into segments
on the server side, transport these to the client, and reassemble the media on the client
side. In this section we are going to discuss the options we have and describe our
design.

22

5.2.1 Segment creation

When dividing a media into its respective segments, there are two main options. We
can perform the division by byte-size or by duration in time. The CHB segmentation
scheme uses segments of equal size, andwewill now explore the two options available.

Time based segmentation

In a time based segmentation scheme we divide the media into segments based on the
duration of the media. In our design, using MPEG-2 TS media files, this means that we
need a way of accessing the position in the media that corresponds to a given instance
in the media duration. We require the byte offset in the media file corresponding to the
given time instance. The reason for this requirement is that we rely on the underlying
operating systems file handling functionality, and the operations available requires
byte related information to operate.

In order to obtain the byte offset into the media for a given time instance, we need an
index file that provides this mapping. The live555 library we have chosen to use, sup-
ports creating the required index file by parsing the MPEG-2 TS media, and extracting
the time instance for each of the I-frames in the media. This index file thus also pro-
vides us with the total duration of the media, which we require in order to divide it by
time.

The index files resolution is dependent on the I-frame density, and thus will not alway
return the exact position that corresponds to our query, but the closest one available.
This may lead to slight variations in the size of the different segments, but the dif-
ferences are not big enough to cause scheduling problems. The index file also makes
sure that the positions returned are a multiple of 188 bytes which corresponds to the
MPEG-2 TS packet size.

By using this index file we are able to divide variable bit-rate media, as well as constant
bit-rate media files, into equal length segments. And thus we chose to include this
segmentation scheme into our design.

Byte based segmentation

The byte based segmentation scheme, is the simpler of the two, as it does not require
any additional support beyond the file handling functions provided by the underlying
operating system. In this approach we simply divide the media into equal byte sized
segments. The only issue to maintain is that we make our divisions a multiple of 188
bytes, which corresponds to the MPEG-2 TS packet size. This ensures that we do not
split a TS packet into two different segments.

For true constant bit-rate media files, the byte based segmentation scheme and the time

23

based segmentation scheme, will not differ by any significant amount in the resulting
segmentations.

For completeness in our framework we have chosen to support both of these segmen-
tation schemes.

5.2.2 Reassembly of media segments

The CHB stream scheduling technique will receive multiple segments simultaneously,
and thus there is a need for client buffering, used to hold the segments until consump-
tion time.

In our client design we have chosen to receive the entire media, and reassemble the
different segments into the full media. This design is due to our desire to test our
framework and CHB implementation, and this allows us to validate the entire media
after reception. In later stages, it is possible to alter our design to support continuous
delivery of the received media to a media player, but at this stage we chose not to add
the media player delivery mechanism.

The CHB stream scheduling algorithm assume that the receiver obtains all the seg-
ments from their beginning, and does not start receiving a segment at any other point
in its progress. As we will see in the section describing our channel design, we use IP
multicast to deliver segments. This design implies that the client would have to listen
to the channel transferring the segment, and discard all the received data until the seg-
ment beginning was detected. This approach would waste network resources, and we
therefore design our client to support reception from the instance it starts.

This support for beginning reception at an arbitrary point in the segment progression,
may cause our client to receive the last part of a segment before the first part. To ad-
dress this issue we need to note the starting position of our segment reception, and
use this offset when reassembling the media. Another consequence of the support for
beginning the reception at an arbitrary place in the schedule, is for channels stream-
ing multiple segments in sequence. The client will start receiving data according to a
schedule, and there might be a mismatch between the client schedule position and the
servers current schedule position. This requires support for hot-swapping the receiv-
ing buffer, so that the data received is assigned to the correct segment. Wewill examine
how we obtain starting point information as well as segment affinity in a later section.

Each of the segments will be buffered in separate files, and when all the segments have
been received, the segments are combined into the full media, and will be validated
against the source media.

24

5.3 Transmission of segments

Like most kinds of data, multimedia data like audio and video, must be transported
to a client in order to be available and useful. For this transport there is a need for a
mechanism that is able to transport the data, in a way that is suitable for the data that
needs transfer. This mechanism is referred to as a channel. In our thesis the channels
are transporting multimedia data, with real-time properties, and the channel design
must reflect this. By real-time properties we refer to the need to deliver the multime-
dia data on-time, and before its playback deadline expires. This also implies that it
is more important to receive the multimedia data on time, than to make sure we re-
ceive all the data, without any lost parts. The arguments for the claim that it is more
important to receive the data on time, than to receive all the data without any loss, is
based upon the consequences it has for the receiving client. When watching a video,
the consequences of loosing part of the data, due to packet loss for instance, will be
a momentarily degradation of quality in the video that is played back. If however,
the receiver operates in a reliable way, using TCP, and does not accept any lost data,
the client would have to suspend the playback of the video until the lost data is re-
transmitted from the sender. If the channel transporting the video stream is subject
to some packet loss, the video playback would be regularly suspended, while wait-
ing for retransmissions, and the impact would result in a more disruptive playback of
the video. We therefore argue that the channel design should be based on a transport
scheme without reliability guarantees like UDP.

5.3.1 Channel design

The channel design is based on support for IPv4 multicast, and thus we assign a single
multicast IP address to each channel. This design will have a significant requirement
on the number of multicast IP addresses required, but as we stated in our introduction
chapter, we argue that this design would be realistic when operated inside the bounds
of an ISPs autonomous system. This design will benefit from the network layer trans-
port of multicast traffic, as the client will be able to leave the multicast groups as soon
as all the channel data is received, thus reducing the network load as soon as possible
in the edges of the multicast tree. We have also chosen to use different transport layer
port numbers for the different channels, in addition to different multicast IP addresses.
This design is due to the inability to discriminate incoming multicast traffic destined
for the same port number, but on different IP addresses, in some versions of the linux
kernel.

5.3.2 Protocols

The protocols used in transferring our media, will be RTP over UDP/IP for the trans-
missions, as we have argued at the beginning of this section. For IPv4 multicast sup-

25

port, we have selected the IGMP group management protocol, and the PIM-SM proto-
col for multicast forwarding, and tree management. More information on the testbed
setup is available in chapter 7.

5.4 Channel and session scheduling

In this section we will describe the process and scheduling primitives necessary for
enabling our client to receive media data from the streaming server in the intended or-
der. In the CHB stream scheduling algorithmwe have multiple segments and multiple
channels, and some of the segments share a single channel. For our framework client
to be able to support other periodic broadcasting algorithms, using different schemes
for how channels and segments are related and used, we need a way to express this
relation, so that the client are able to receive and reassemble the media correctly. We
first introduce the concepts and their meaning, before describing the design.

Channel schedule: The ordering of segments on a channel.

Session schedule: The ordering of channels in a session.

Channel cycle: A complete channel schedule iteration.

Session cycle: A complete session schedule iteration.

The cycle concept is implicit, and determined at runtime by the client and server. A
cycle defines the total span of a channel schedule or a session schedule. When a chan-
nel schedule has been run from start to finish, it completes one channel cycle. On the
client side this implies that the segments on this channel are received. On the server
side this implies running the channel schedule again in a new channel cycle. This pro-
cess repeats until the server is terminated. The same principle applies to the session
schedule.

The client needs to obtain the entire cycle to get all the data, and when the client have
obtained all the cycle data, it no longer needs to receive data from the active channel
or session.

There are two kinds of schedule in the SSF, channel schedule and session schedule.
A channel schedule describes the ordered allocation of segments to a channel. An
example channel schedule may look like this:

{[S1, S3, S5]}

This channel schedule states that a cycle is streaming segments 1-3-5 before the cycle
ends and is started again from the beginning.

26

A session schedule describes the overall session, defining what channels the client
must receive from at any given time. When a channel is listed in the session sched-
ule, it means that the client should receive an entire cycle on this channel. The session
schedulemay be both serial and parallel in nature. A serial session schedulemeans that
the client only receives from one channel at any given time. A parallel session sched-
ule means that the client must receive from two or more channels simultaneously. One
example of each kind follows:

Serial session schedule: { [C1],[C2],[C3],[C4] }

One cycle for the entire session, where the client receives all the content on channel 1,
then all the content on channel 2, and so on.

Parallel session schedule: { [C1, C2], [C3, C4], [C5, C6] }

One cycle for the entire session, where the client receives first channel 1 and 2 simulta-
neously, then channel 2 and 3 simultaneously, and so on.

When a client has received an entire session cycle, it is done receiving. For each of the
session schedule channels, the client must receive an entire channel cycle, with all the
specified segments.

The behavior in the CHB stream scheduling algorithm is to receive from all the chan-
nels simultaneously, and thus we need not specify a session schedule, only the channel
schedules are required. We therefore make this the default behavior for the client when
no session schedule is specified.

5.5 Session management

The session concept refers to the process of transferring a media from the streaming
server to the client, and all the steps involved. The session needs to be established, exe-
cuted or performed, before it finally terminates. All of these tasks needs to be designed
and handled by our system. In our systemwe have chosen to employ the SDP protocol
for the purpose of describing and conveying information about a session. For us to be
able to convey all the information we require in order to support stream scheduling
techniques, we define a set of custom attributes in our SDP format, both for the session
level and the media level.

5.5.1 Session definition

The session is created and made available when our server starts, and is initialized.
It is therefore the servers responsibility to define the session it offers to clients. The

27

server will dynamically create a SDP file describing the available session. In order for
our system to support the CHB stream scheduling algorithm, we need to define a set
of custom attributes in SDP. The following list will sum up these requirements.

• Specification of the number of segments and channels.

• Description of each of the segments.

• For each of the channels we require a channel schedule description.

For details on the realization of these custom attributes we refer to chapter 6.2, and also
the sample SDP file in listing 6.2 in the same chapter.

5.5.2 Session establishment

The client needs to access the SDP file generated by the server, in order to establish the
necessary channel connections, and receive the media segments. One of the options
would be to implement the RTSP protocol in our server and serve the SDP file through
this instance. However we believe that the ability to serve the SDP file through an
RTSP server, would add more overhead and complexity than necessary. The reasoning
behind this design decision is that our server does not support any trick-play function-
ality, and the ability to serve the SDP file is a small part of the RTSP protocol. The most
important requirement for serving the SDP file to our client is that it be, served over a
reliable protocol, to ensure that a correct session can be established. Our proposal is to
serve the SDP files from a web-server, running the HTTP protocol over TCP. An added
benefit from this design is that the serving of the SDP file to potentially thousands of
clients, becomes disconnected from the streaming server and would not induce the
added load onto this server. We also remark that a web-server would make a good
platform for presentation of the different videos that are available to the user.

5.5.3 Session execution and termination

After the client has obtained the SDP file describing the session, and parsed the SDP
file in order to establish the required channels, segments, and channel schedules. The
client begins executing the session and channel schedules. This implies that the client
starts receiving segments over the established channels, in the sequence and order
specified. After the client have received all the different segments for the entire ses-
sion, the client will terminate the session.

28

5.6 Reassembling fragments into segments

Upon segment transmission on the server side, the segment data is fragmented into
smaller blocks of data, and transmitted in an RTP packet. This fragmentation needs
to be handled correctly at the receiving client, in order to assure correct reassembly of
the segments. In the CHB stream scheduling algorithm our design needs to support
streaming several segments over a shard channel, in sequence. This design in combi-
nation with our design choice where the client can begin receiving data at any point in
the channel schedule, implies that we require information in the incoming RTP packets
about segment affinity and segment progress. In order for us to fulfill this requirement
we have chosen to use the RTP extension headers option, in the RTP protocol. The
live555 library currently does not support RTP extension headers, and thus we need
to implement this functionality. We will go into more detail on how this design is re-
alized in chapter 6. We also require the segment data to receive in order for us to be
able to correctly reassemble the fragments into segments, for this issue we will use a
reordering-buffer in our receiving client. A final requirement is that a single RTP packet
cannot contain data from two different segments, as we would be unable to detect this
in our RTP extension header usage. The default behavior for the live555 library is to
allow a certain time to ensure the RTP packets are filled up before transmission, this
behavior will need to be overridden to avoid data from different segments in the same
packet.

5.7 Integration with existing media players

We seek to provide a design that will support integration with existing media players.
We have examined the live555 streaming media library [3], which is in use by existing
open source media players like VLC [4] and MPlayer [5]. In our design we therefore
chose to extend and build upon the live555 library.

5.8 Process management

As seen in our study of existing implementation in chapter 3, a CHB implementation
using separate processes for each channel, leads to significant memory overhead, as
well as extensive context switching when the number of channels are high. We there-
fore take the recommendations put forth in [17] into consideration, and select a single
process design for our server and client.

29

5.9 Summary

In this section we have covered themost important design requirements, and issues for
our stream scheduling framework and CHB algorithm. In the next chapter we move
on to see how these requirements are realized and put into practice.

30

Chapter 6

Implementation

In this section we will examine our stream scheduling framework and CHB stream
scheduling algorithm implementation, as well as how our design requirements have
been realized.

6.1 Live555

Live555 streaming media [3] is an open source library written in C++, intended for
implementation of streaming media applications. The library implements a series of
open standard protocols such as RTP/RTCP,RTSP,SDP,SIP, as well as support for sev-
eral popular media encoding formats. The Live555 library is also used in several open
source media players to support streaming media, such as VLC [4] and MPlayer [5].
This integration into existing media players, along with the fact that the library is
extensible, makes the library a good choice for implementing our stream scheduling
framework upon.

6.1.1 Live555 library description

The following list describes the main parts of the live555 library in the authors own
words, obtained from [3].

The code includes the following libraries, each with its own subdirectory:

UsageEnvironment TheUsageEnvironment and TaskScheduler classes are used for schedul-
ing deferred events, for assigning handlers for asynchronous read events, and for
outputting error/warning messages. Also, the HashTable class defines the inter-
face to a generic hash table, used by the rest of the code.

31

These are all abstract base classes; they must be subclassed for use in an imple-
mentation. These subclasses can exploit the particular properties of the environ-
ment in which the programwill run - e.g., its GUI and/or scripting environment.

groupsock The classes in this library encapsulate network interfaces and sockets. In
particular, the Groupsock class encapsulates a socket for sending (and/or receiv-
ing) multicast datagrams.

liveMedia This library defines a class hierarchy - rooted in the Medium class - for a
variety of streaming media types and codecs.

BasicUsageEnvironment This library defines one concrete implementation (i.e., sub-
classes) of the UsageEnvironment classes, for use in simple, console applications.
Read events and delayed operations are handled using a select() loop.

6.1.2 Live555 concepts and typical program flow

It is very important to understand the key concepts and how the media data travels
inside the live555 library on a conceptual level. We will therefore introduce the key
concepts first and then move on to the more detailed parts.

Source This is a source of media data, it may be a file source, or a network source
receiving RTP packets.

Sink The sink acts as the destination for the media data.

Filter A filter is positioned between a source and a sink, and takes on the role of a
source when interacting with the sink. This concept allow us to add extra func-
tionality in the media data path. A typical example of a filter is a framer.

These three concepts operates within the bounds of a client side or a server side. This
means that data traveling over a network, in form of RTP packets for example, does
not flow from a source to a sink in the live555 concepts. Rather, the RTP packets is a
side-effect of an RTP sink.

The flow of the live555 library, along with a description of the task schedulers basic
operation is next described, again in the authors own words obtained from [3].

Applications are event-driven, using an event loop TaskScheduler::doEventLoop() that
works basically as follows:

while (1) {

find a task that needs to be done

(by looking on the delay queue,

and the list of network read handlers);

perform this task;

}

32

Also, before entering this loop, applications will typically call
someSinkObject->startPlaying();
for each sink, to start generating tasks that need to be done.

Data passes through a chain of sources and sinks - e.g.,

source1 -> source2 (a filter) -> source3 (a filter) -> sink

(Sources that receive data from other sources are also called filters.)

Whenever a module (a sink or one of the intermediate filter sources) wants to get more
data, it calls FramedSource::getNextFrame() on the module that’s to its immediate left.
This is implemented by the pure virtual function FramedSource::doGetNextFrame(), that
is implemented by each source module.

Each source module’s implementation of doGetNextFrame() works by arranging for an
after getting function to be called (from an event handler) when new data becomes
available for the caller.

In the next section we examine the details of our stream scheduling framework.

6.2 Stream Scheduling Framework overview

In this section we will provide a brief overview of the most important component in
the SSF. We will separate the overview into the client and server side components. The
use and interaction between the different components will be examined in the sections
following this brief overview, and we will not go into the component details in this
section. Before examining the client and server components we will examine the files
that provides the base for initializing and creating the client and server components.

6.2.1 The Media Session Descriptor file

The MSD file is used by the server to determine the media session parameters, and the
controller type. This means that for each media we want to send using our server we
define a MSD file for the session. in listing 6.1 we provide a sample MSD file and will
briefly examine the different parameters.

medianame= provides the name of the media we are streaming.

mediafilename= specifies the path and name of the media file we are streaming.

clientwaitingtime= gives the maximum client waiting time for the media in seconds,
this is again used to calculate the number of segments we require to satisfy the
maximum client waiting time.

33

streamschedulingalgorithm= specifies the stream scheduling algorithm we are going
to use for streaming the media. This determines the type of controller the server
creates to handle the streaming session. Currently we only support the CHB
algorithm.

segmentdivisionmethod= is used to determine how we divide our media file into
segments. Currently two options are supported, time and bytes. Time division
dictates use of the playout duration to divide the media into segments of equal
length. The bytes scheme will ignore the playout duration and divide the media
into equally byte-sized segments.

1 medianame=The Movie

2 mediafilename=test.ts

3 clientwaitingtime=27

4 streamschedulingalgorithm=CHB

5 segmentdivisionmethod=time

Listing 6.1: Sample MSD file

6.2.2 The Session Description Protocol file

As described in our design chapter, the SDP protocol is used by our client to be able to
connect with the session server and receive data. The session SDP file is dynamically
generated by our streaming server upon creation and initialization. A sample SDP file
is shown in listing 6.2. In this section we will examine the custom attributes we have
added to our SDP file in order for the clients to be able to support our streaming server.
We do not examine all of the standard SDP parts.

We will first describe the session parameters, then go on to the channel (m=) parame-
ters.

a=segment-count:24 specifies the number of segments in the session. This aids the
client in initializing its datastructures.

a=channel-count:23 specifies the number of channels in the session, and is also in-
tended for client initialization aid.

a=segment-description:1:25469:27207 Each of the segments available on the server is
described in the SDP file. This segment description provides two parameters
when streamed in the byte based segment division scheme, and one additional
parameter when streamed using the time based segment division scheme. The
first parameter is the segment ID, identifying the segment. The second parame-
ter is the size of the segment. In our MPEG-2 TS CHB implementation, the size is
provided as the number of 188 bytes TS packets. The third parameter available

34

under the time based segment division scheme provides the length of the seg-
ment playout duration in milliseconds. This also implies that the segments are
loosely coupled in the session, and described independent of the channels at this
stage.

Next we examine the channel specifications in the SDP file. We have chosen two chan-
nels with different schedules.

m=video 1234 RTP/AVP 33 This is a standard SDP media description line, and spec-
ifies the media type (video), port number (1234), profile (RTP/AVP) and media
payload type (33) that corresponds to the MPEG-2 TS payload type.

c=IN IP4 239.255.42.42/7 The c= line specifies the connection information for this me-
dia, and the address type and parameters. This is the multicast address of the
channel.

a=channel-schedule:[1] The channel schedule custom attribute is used to map seg-
ments onto channels. This channel only involves a single segment and is quite
simple.

a=channel-schedule:[2,3] This channel schedule contains a schedule for segments 2
then 3. This means that the client will first receive data from this channel into
segment 2, then segment 3 before the channel cycle completes and segment 2
begins again. As we will see later, the segment id is carried in the RTP Extension
Header, allowing the client to switch sinks if the client starts receiving data in the
middle of a server transmission, which is likely to occur.

1 v=0

2 o=- 1240266009982954 1 IN IP4 172.16.3.208

3 s=The Movie

4 i=The Movie

5 t=0 0

6 a=tool:SSF Cautious Harmonic Broadcasting Controller

7 a=type:broadcast

8 a=control:*
9 a=segment-count:24

10 a=channel-count:23

11 a=segment-description:1:25469:27207

12 a=segment-description:2:25489:27250

13 ...

14 a=segment-description:23:25708:27500

15 a=segment-description:24:25578:27335

16 m=video 1234 RTP/AVP 33

17 c=IN IP4 239.255.42.42/7

18 a=channel-schedule:{[1]}

19 m=video 1236 RTP/AVP 33

35

20 c=IN IP4 239.255.42.43/7

21 a=channel-schedule:{[2,3]}

22 ...

23 m=video 1276 RTP/AVP 33

24 c=IN IP4 239.255.42.63/7

25 a=channel-schedule:{[23]}

26 m=video 1278 RTP/AVP 33

27 c=IN IP4 239.255.42.64/7

28 a=channel-schedule:{[24]}

Listing 6.2: Sample SDP file

We will now go on to provide an overview of the server components.

6.2.3 Server side components

The key server side components of the SSF are included in this overview, we also in-
clude some of the live555 library components we use in the following sections for com-
pleteness.

SSFServer is the component responsible for managing the different controllers, and
the address factory. It is responsible for reading and parsing the MSD files pro-
vided and use the information to create the correct controllers.

SSFAddressFactory is responsible formanaging the server address space, keeping track
of availablemulticast IP addresses. This address factory is a server-wide instance,
making sure all the controllers running in this server have unique addresses.

SSFController forms the base class of all new controllers. It implements functionality
that is common to all sub-classed and specialized controller types, like creating
an index file for the media. The intention is that any new periodic broadcasting
algorithm will be created and implemented as a subclass of this controller.

SSFCHBController encapsulates our implementation of the CautiousHarmonic Broad-
casting algorithm. This class also serves as an example of how to use the SSF to
implement new periodic broadcasting algorithms. This controller will also be
used in the experiments performed in this thesis.

SSFSegmentSource encapsulates the behavior and state management for a segment.
This is the main source object in the frameworks server side.

SSFMPEG2TransportStreamFramer is a part of the channel and is positioned between
the source and the sink, and acts like a filter. The main responsibilities for the
framer is to frame data from the source in appropriate frame sizes, and to calcu-
late the frame transmission time. This component is where we manipulate the
channel bandwidth relative to the media playout speed, and is thus a key com-
ponent in our transmission scheduling.

36

SSFRTPSink is part of the channel and is the server side sink. It is responsible for
encapsulating the data into RTP packets and schedule the transmission of these
using the calculations obtained from the framer component. It is the component
that transmits the RTP packets.

channel_t structure is the structure used to organize and group all the channel com-
ponents together. The most important components are the framer, sink, channel
schedule, ports and group socket components.

ByteStreamFileSource encapsulates the primitives necessary to read an MPEG-2 TS
file as a byte stream. It includes operations such as reading, seeking, and also
allowing control over the block size of the read operations.

MPEG2IFrameIndexFromTransportStream uses the I-frames in an MPEG-2 TS file to
calculate and create an index file for the media. This index file is later used to
lookup the byte offset in a media file based on a given time instance in the media
playout duration, as well as providing information on the total media duration.

6.2.4 Client side components

In this section we provide a brief overview of the most important client side compo-
nents in the SSF. The use and interaction details of these components are detailed in
the client implementation section below.

SSFRTPSource is the source component that receives the RTP packets, on the ad-
dresses it is listening to. After receiving packets it will call its RTP Extension
Header handler before delivering the RTP packet to the registered sink. It also
contains a buffer for reordering any out of order packets it receives.

SSFSegmentSink receives the media data from the source and is responsible for correct
reassembly of the received segment.

clientChannel_t structure encapsulates and groups all the client channel components.
The most important components are the source, sink, and the channel schedule.

This concludes the overview of the SSF framework components, and we nowmove on
to the server and client implementation.

6.3 Server implementation

In this section we will go through the composition and execution-flow of the server
side SSF, in an applied context. We describe our implementation of the cautious har-
monic broadcasting algorithm and how it interacts with the general parts of the frame-
work. This aims to provide insight into how the design goals and requirements have

37

been realized. We believe that by describing the framework in the context of imple-
menting our CHB algorithm, it will also be a good guide to approach implementing
other periodic broadcasting stream scheduling algorithms.

6.3.1 Create the SSFServer

We start by creating a a common live555 BasicUsageEnvironment and BasicTaskSched-
uler so that we are able to run our server on the building blocks of the live555 library.
Next we read the MSD file provided into a buffer and pass it along to our SSFServer
constructor, along with the live555 environment we have set up. Further we need to
initialize our server.

The SSFServer will initialize its parameters by parsing the provided MSD file content,
line by line until it is completely parsed. The parsing process will also contain valida-
tions making sure any unknown lines in the MSD file are rejected, while also making
sure that all the required parameters are present in the MSD file. The most important
parameters read from the MSD file are the following items:

The filename and path of the media that is to be transmitted, typically the video file.

The scheduling algorithm we are going to use, this determines the type of controller
we create. In this case the CHB algorithm is the one we are going to examine.

The segment division scheme , both the time based scheme, and the byte based scheme
is supported. In our case we are going to examine the time based scheme.

The maximum client waiting time given in seconds, used to calculate the number of
segments we require to stay within the bounds of the specified maximum client
waiting time.

The SSFServer also creates a singleton [23] instance of the SSFAddressFactory class that
manages the multicast IP-addresses and port numbers the controllers may request.
This ensures that we do not get any addressing conflicts when creating multiple con-
trollers for streaming different medias at the same time. In this description of the server
implementation, only one media will be streamed, so addressing conflicts are not an
issue, but in a more realistic running scenario the server would typically be streaming
more media files at any given time.

After setting up our environment and validating the MSD file parameters, the SSF-
Server now needs to create the controller type specified in the scheduling algorithm
parameter it was provided with from the MSD file. In our case the scheduling algo-
rithm selected is CHB, and the SSFServer creates an instance of the SSFCHBController
to handle the remaining steps necessary to stream the media file to clients. The newly
created controller was given all the required parameters, including pointers to access

38

the SSFAddressFactory singleton class. We now need to initialize the SSFCHBController,
before it is executed.

6.3.2 Initialize the new controller

In this section we will examine the steps involved in initializing and preparing the
SSFCHBController for execution. The scenario selectedwill examine the initialization of
a time based segment division scheme, where no prior media index file exists. We will
comment on the sections that would be handled differently in a byte based segment
division scheme, and the case where a media index file is already present.

Index file creation

In our scenario we use the time based segment division scheme, and we require an
index file for the media we are going to stream from our server. The index file require-
ment is necessary because we need to look up the TS packet number based on a given
time in the media playout timeline, to obtain the corresponding byte offset within the
media file.

In our implementation the logic responsible for generating the index file from aMPEG-
2 TS file, is located in the SSFController base class. The rationale for placing the imple-
mentation logic related to creating the index file in this base class, instead of placing it
in the subclass SSFCHBController, is that index file creation is carried out in the same
way for all the different stream scheduling algorithms that may be implemented.

The steps necessary to create the index file begins by opening the input media file
using a ByteStreamFileSource, which contains all the basic operations we need to read
from the source media. We also make sure the input source will read data from the
input media in 188 byte blocks, that corresponds to the size of the TS packets. Next we
create an instance of the MPEG2IFrameIndexFromTransportStream class, and assign the
input source we created as its source of media data to be indexed. As the class name
implies the indexer class creates the index file using the I-Frames in the MPEG-2 TS
file, and the granularity of the index file thus depends on the I-Frame frequency in the
media file. The last live555 library class necessary to create our index file is an output
sink, in our implementation the FileSink class is the most appropriate.

After creating the necessary classes and linking them together, we need to schedule
the indexer to run, in our task scheduler. This is done in the normal live555 way, by
calling the created file sink startPlaying method. We also require notification when the
index file is created, and therefore register a afterIndexFileCreation callback function as
a parameter to the output sink startPlayingmethod.

At this point we actually return from the SSFCHBController initialization process, back
to the main server, where the task scheduler is started. This is necessary because the
rest of the initialization process requires the index file in order to function. Before

39

returning to run the task scheduler, we set up sufficient state variables, so that the
initialization process can continue where it left off. This behavior is contrary to the one
we face when an index file already exist for this media file. We deploy this behavior
because index file creation is a lengthy and processor intensive task for large media
files, and thus we reuse the index files to save system resources.

The initialization process will logically continue from this location in the sequence,
wether it progresses directly, or reenters via the provided afterIndexFileCreation callback
function we have set up.

Set up algorithm

This section explores the steps we take in order to set up our CHB algorithm controller,
so that all the necessary data-structures and classes are created and initialized.

We obtain the maximum client waiting time as a parameter from the class that cre-
ated the CHB controller, namely the SSFServer, which again obtained this parameter
by parsing the MSD file. The most important use for the maximum client waiting time
is in determining the segment size, and thus the number of segments we require. We
calculate the number of segments by dividing the media duration, obtained from the
index file, by the maximum client waiting time. The number of segments is always an
integer, so small deviations from the specifiedmaximum client waiting timemay occur.

After calculating the number of segments we calculate the number of channels we
require in order to stream the number of segments we have calculated. In CHB the
number of channels required is numberOfSegments - 1 because segments 2 and 3 are
both streamed over the second channel, making it the only shared channel.

Next we will examine the segment creation process.

Create the segments In this paragraph we elaborate on the steps we take in order
to create the segments from the media file. First we explain the initial setup, next the
required steps for each segment are explained, lastly the special considerations for the
last segment is described.

We start by allocating enough storage space for the calculated number of segments,
and initialize our segment data structures. We have also defined a constant read block
size, this illustrates the preferred data block size we obtain from each segment when
requesting data from it. The data block size is a multiple of the TS packet size of 188
bytes, and as many TS packets we can fit into a network packet while avoiding frag-
mentation. This size depends on the underlying network infrastructure, and in our

40

case we use 188 * 7 = 1316 bytes as our read block size, as this allows for header data
addition and still does not exceed the 1500 byte ethernet frame limit in our network.

As all segments in CHB are of equal size, we calculate the duration for each segment
by dividing the media duration with the number of segments. This gives us an exact
segment duration, but the actual duration for each segment will not correspond exactly
to this calculated duration. The reason for this deviation is the granularity of our index
file. When querying our index file for the TS packet number corresponding to a given
time in the media duration, it will return the closest match, and this may lead to small
differences in the segment sizes. For each of the segments we do the following set of
operations, by running a loop with one iteration for each segment we need to create.

We start by calculating the segment startTime and stopTime, and use these points in time
to lookup the corresponding TS packet number in our index file. Next we need to use
this offset information to calculate the startByte and stopByte in the overall media file
that corresponds to the current segment. This byte offset is obtained by multiplying
the TS packet number by the TS packet size of 188. The byte offsets will later be sup-
plied to the SSFSegmentSource class and will be used as bounds for reading data. We
also note the TS packet number corresponding to the stopTime for this segment. We
use this value in the next iteration of the loop to make sure we do not end up with
any segments of zero size. We may end up with segments of zero size if the distance
between the segments are shorter than what the index file granularity supports.

Next we create an instance of our segment implementation class, SSFSegmentSource,
supplying it with the parameters for segmentID, startByte, stopByte, and the preferred
read block size. After creation we also assign the segment duration in milliseconds to
the SSFSegmentSource instance, this will be used later when we generate the SDP file
for the server session. We use the segment duration in the SDP file mainly to allow the
client to check deadline conformance for each segment, i.e that the segment is received
on time at the client side.

The last segment we create will typically not be of the same size as the other segments,
but will in most cases be slightly smaller. The exception is when our index file contains
exact data for all the startTime and stopTime values we ask for, which is unlikely to occur.

We have now created all the segments we require and we move on to creating our
framers.

Create the framers The framer is placed between the source and the sink, and acts
like a filter, where it runs calculations of the presentation time for the data frames.
These calculations are used by the RTP sink to schedule transmission of the data. In
our design the framer and the RTP sink together make up the channel concept, and

41

handle the responsibilities we have assigned to a channel.

We start by allocating space for the framer data-stuctures, one framer for each chan-
nel. Each of the SSFMPEG2TransportStreamFramer instances is assigned a bit-rate factor,
used to scale the channel transmission speed relative to the media playout speed.

In CHB the first two channels are allocated as full bit-rate channels, where the trans-
mission speed is not scaled in any way. this mean they are set up with a bit-rate factor
of 1, that implies full playout speed referred to as b. The framers for channel 3 to N,
where N is the number of channels, the scaling of channel i is set to b/i.

Each of the framers are assigned its initial input source, i.e the first segments in the
schedule for this channel. All the channels except for channel 2, will only have one
segment in its schedule in CHB. This means that channel 2 is initially assigned seg-
ment 2, while segment 3 is not yet assigned to any channel, but will be scheduled on
channel 2 after segment 2 is completed.

Next we examine the RTP sink creation process.

Create the channels As we saw in the framer section, a channel is composed of both
a framer an a sink. In our implementation the sink is of the class SSFRTPSink, and is
connected to the corresponding framer.

We start by allocating space for the channel_t structure used to store all the required
parts of the channel. For each of the channels we do the following steps in order to
create and set up the channel.

We use the SSFAddressFactory singleton class, provided as a parameter to the SSFCHB-
Controller class, to obtain a multicast IP-address and an RTP/RTCP port-number pair
for the channel. This endpoint information is then used to create the Port and Group-
Sock instances we require, and the results are stored in the channel_t structure.

Next we create the SSFRTPSink instance used to handle the RTP related parts of this
channel, such as transmission scheduling and actual transmission of RTP packets on
our network interface. The SSFRTPSink is provided with significant parameter in its
constructor that allows the sink to transmit RTP packets that still have room for more
data. This behavior is contrary to the standard live555 library RTP sink implementa-
tions, which will normally wait for a RTP packet to fill up before transmitting it on the
network interface. The rationale for allowing transmission of non-full RTP packets, is
that we cannot allow data from different segments in the same RTP packet. This may

42

occur in our implementation of CHB when the last part of segment 2 on channel 2 is
sent ,and does not completely fill the RTP packet. In the default live555 library RTP
sink implementation the current RTP packet would then also receive a part of the ini-
tial data from segment 3 before transmission. This would break our designed use of
the RTP extension headers, causing data corruption.

Next we create an RTCP instance and assign it to the channel. We currently do not han-
dle the RTCP reports beyond the default actions of the live555 library, but we decided
to add support for RTCP reports in order to support extending our framework.

In the final part of creating and initializing our channels, we assign the RTP extension
header provider callback functions, assign the corresponding initial segment to each
channel, and set up the channel segment schedules. In CHB the only channel with a
multi-segment schedule is channel 2.

Finally each of the channels are iterated to create the channel specific SDP lines, this
includes the channel connection information along with the channel schedule.

Next we move on to examine the SDP file creation.

Generate the SDP file for the clients The final step in initializing our SSFCHBCon-
troller is generating the customized SDP file, used by our clients to be able to receive
the media.

The first part of the SDP file is RFC standardized [20] session information, media in-
formation, etc, we refer to the description provided at the beginning of this chapter
for details on the SDP format. The custom attribute parts of the SDP file are created
dynamically, from the controller state. The essential parameters are specified in the
following list.

The number of segments are written to help the client in initial allocation of data
structure sizes.

The number of channels are also written to aid the client side in its initial data struc-
ture allocations.

The segments are custom attributes used to provide metadata about the segments,
describing the segmentID, segment size in the number of TS packets, and the
segments playout duration in milliseconds.

The channels are described in the standard SDP m= type of description, but have an
additional line for each channel describing the channel schedule.

43

This was the final step in our SSFCHBController initialization, we nowmove on tho the
necessary actions required to run our controller.

6.3.3 Running the controller

The final step in the process of initializing and running the server is to set up the con-
troller to be executed by the task scheduler and set the appropriate callbacks for the
afterSegment handler, that is called when a segment is done playing all its data, and we
need to swap input segments instead of just looping the active segment.

For each of the channels we have set up, we need to call the channel sinks startPlaying()
function to register it in the task scheduler. We call the startPlaying function on each
channel with the appropriate framer as the source of the media data, and a callback
function to be executed upon data completion. This data completion callback is not
called in the normal running channels, as the segment will handle the seeking upon
reaching its stopByte position, and perform the looping or call its afterSegment handler
if any is registered.

For channel 2 that is used to stream both segments 2 and 3, it is necessary to switch seg-
ments when the active segment is completely transmitted. This is done by registering
an afterSegment callback function, in the segment, so instead of looping the segment,
the callback function is executed, passing control from the segment itself to the con-
troller.

The task scheduler will now start playing the different segments as soon as it is en-
gaged.

6.3.4 Runtime server events and handlers

This section will examine some of the key events and processes that occurs when the
server is running. This indicates that the task scheduler has been engaged and is pro-
cessing tasks. We will examine the handling of segment switching and how we obtain
and use the RTP Extension Headers on the server side.

The RTP Extension Header provider function

Each of the channels have the RTP sink responsible for encapsulating and transmitting
our media data as RTP packets. Since we decided in our design to use RTP Extension
Headers to carry segment metadata, we need to obtain these metadata each time a

44

new RTP packet is created. This section will elaborate how we obtain the RTP Exten-
sion Header data, for each outgoing RTP packet, and the content and intended use for
each of the metadata fields.

In our CHB implementation all the channels have a RTP Extension Header provider
function registered. When a new RTP packet is created on the channel, and it has a
registered RTP Extension Header provider function registered, the RTP packet will be
initialized with the required RTP Extension Header present bit set. We do not request
the RTP Extension Header data upon RTP packet initialization, we instead set aside
space in the packet and note for later the positions where we need to insert the exten-
sion header data. The reason we postpone obtaining the extension header data is that
we need to obtain the actual payload data first, as the input source segment may be
changed upon our segment data request.

After we have obtained the next frame from our input source, we call our registered
RTP Extension Header provider function with the following four parameters:

The active segment This is the source of our extension header data.

The profile specific data This field is used to carry the segment ID for the active seg-
ment. This provides the receiver with information on segment affinity for this
RTP packet.

The size of the extension header data In our CHB implementation this size is always
1. This indicates the number of 32-bit blocks our extension header payload data
will consume.

The extension header data payload The payload for the RTP Extension Header con-
tains the segment index in the current RTP packet. The index specifies the TS
packet number that begins this RTP packet media payload. This provides the
receiver with enough information to be able to write the RTP payload data to
the correct position in the received segment. Since we only provide the starting
position, the first TS packet number in this RTP packet, it is the receivers respon-
sibility to calculate the number of TS packets contained in this RTP packet.

This RTP Extension Header usage gives the receiver information on segment affinity,
and indexing information used to reassemble the segment correctly.

The afterSegment and afterCycle callback functions

Segments that are part of a channel schedule, meaning they are being streamed on a
channel that has more than one segment it is responsible for streaming, will have an
assigned afterSegment function. The afterSegment function is called from within the SS-
FSegmentSource instance when it has reached the end of its data. Segments that are

45

not part of a channel schedule, meaning the channel only streams one segment, does
not have an afterSegment function assigned to them. When these kinds of segments are
done playing all their data, they handle this internally by looping the segment, and
starts reading from the segment beginning again. Next we will detail the steps carried
out by the controller upon a call to the afterSegment function.

When the segment has reached the end of its data, and the segment is complete, it will
call its registered afterSegment function. The afterSegment function evaluates the seg-
ment according to the channel schedule, and assigns the next segment scheduled to be
played on the channel. If the channel schedule has completed an iteration of all the
segments in its schedule, the channel afterCycle callback function will be called. This
afterCycle callback is not in use for any specific action in CHB, but may be necessary
in other algorithms. Also when the channel cycle is complete it will start playing from
the beginning of the schedule again.

After the new segments has been assigned to the active channel, the channels framer
is assigned the new segment as its input source of media data.

The channels RTP Extension Header provider function is updated with the new active
segment.

The newly activated segment is assigned an afterSegment callback handler function, so
that we again can switch the segment after it is completed.

6.4 Client implementation

In this section we will describe a client implementation, capable of receiving the media
streamed by our server implementation. The main focus in this description will be on
the assembly and interaction of the most important client side components, as well as
important run-time events, and how they are handled. We start by describing the client
creation and initialization process, and proceed with the run-time event processing.

The client implementation is a stand-alone client, and we do not perform any inte-
gration with existing media players. The rationale for making a stand-alone client
implementation is that it allows us to focus on the framework components alone, as
well as adding functionality to aid in our experiments and measurements described in
chapter 7. The implementation does however cover the client responsibilities, and the
same set of responsibilities would also have to be fulfilled when integrating with an
existing media player, and thus forms a good starting point for such an integration.

46

6.4.1 Client creation

The first steps in the client creation is to create instances of the live555 library Basi-
cUsageEnvironment and BasicTaskScheduler classes which allows us to rely on the live555
librarymanagement and task scheduling. After this basic initializationwe need to read
the SDP file generated by our server implementation into a buffer, so that is is available
for parsing.

We do not describe any mechanism for transferring the SDP file from the server to
the client, but note that this must be performed using a reliable transfer protocol, like
HTTP running over TCP/IP.

After the SDP file is available in memory, we move on to the initialization process.

6.4.2 Client initialization

In this section we describe the most important tasks performed during client initial-
ization. This includes parsing the SDP file describing our media session, and creating
the necessary components and data-structures, enabling us to receive the media being
streamed from the server.

SDP session level parsing

Webegin by parsing the SDP session level parameters, andwewill focus on our custom
attributes. The following attributes are the key custom attributes:

The number of segments is specified by the a=segment-count:<count> line in the SDP
file, and is used to initiate the data-structures for our SSFSegmentSink instances.

The number of channels is specified by the a=channel-count:<coint> line, and is the
basis for initiating data-stuructures for SSFRTPSource instances.

Each segment is described by a a=segment-description:<segment id>:<segment TS packet
count / size>:(optional)<Segment playout duration in milliseconds> line, and for each
of these descriptor lines we create a SSFSegmentSink instance with the associated
data fields assigned.

SDP session level validation

After the session level attributes are parsed and all of the segments created, we need
to perform validation of the required attributes described above. This validation is
performed to ensure that the SDP file was generated for our client implementation, and
not a standard SDP file. If the SDP file does not contain all of the custom attributes, the

47

SDP file was intended for a standard media player, or has otherwise been corrupted,
and the client aborts the process.

SDP media level parsing

After the SDP validation, we shift our focus to the media level SDP parameters, the
lines that start with m=, we refer to listing 6.2 for our sample SDP file. For each of the
media level SDP lines we perform the following steps in order to initiate our channels:

• Create a clientChannel_t structure used to store and group all the necessary com-
ponents and state related to this particular channel.

• Extract the media type (video), port number, and payload type from the m= line,
and the media connection IP multicast address from the c= line.

• Create the ports and group sockets for this channel based on the data obtained in
the previous step.

• Create the SSFRTPSource component for this channel, and assign the port, and
group socket component to it. We also create the RTCP instance here.

• Finally we extract the channel schedule in the a=channel-schedule: line, and use
this to create a channel schedule data-structure, which is assigned to the channel.

We now have all the components necessary to receive streamingmedia from our server
implementation, and we go on to linking these components together, and assigning
callback functions and handlers.

6.4.3 Client channel setup

We now describe the client channel setup, where we link together the different data
structures, and assign our handlers and callback functions, in order to make the client
ready for execution. The following operations are performed on each channel:

• We initialize the channel schedule management variables to the schedules initial
values.

• Based on the initial channel schedule, we assign the specified segment as the
active segment.

• We assign the afterSegment callback function on the channels active segment, this
function will be called by the segment when it is done receiving the entire seg-
ment.

48

• We register the RTP extension header handler function on the channels RTP source,
which is called when a RTP packet arrives, and provides the segment metadata
carried in the RTP extension header. (The metadata consists of the segment id the
data belongs to, and the offset into the segment for the current data.)

• Finally we call the channel sinks startPlayingmethod, which registers the channel
in the task scheduler, so that it will receive data.

We now engage the task scheduler, and begin executing our client.

6.4.4 Runtime client events and handlers

In this section we examine the most important client runtime events, and how they are
handled.

RTP packet arrival and RTP extension header processing

When a RTP packet arrives on a channel RTP source, it calls the registered RTP ex-
tension Header handler. The RTP extension header handler takes the following four
parameters:

• The channel the packet arrived on

• The RTP extension header specific data:

• The profile specific data used to carry the segment id the data belongs to.

• The size of the RTP extension header data in 32-bit blocks. This is always 1 in our
implementation.

• The RTP extension header payload carrying the index of the first TS packet in this
RTP packet, used by the segment.

We first check that the RTP packet that has arrived belongs to the active segment
sink on this channel. If it does not, we suspend the current segment and call the as-
signedafterSegment handler, which will assign the correct segment to the channel ac-
cording to the channel schedule. This may occur if we start the client in the middle
of a server schedule, and thus have different schedule progression status in the client
and server endpoints. We will examine the details of the afterSegment handler in a few
moments.

After we have verified that the correct segment is assigned to the channel, we set the
index carried in the RTP extension header in the segment so it will receive the data in
the correct position relative to the entire segment. This is also a good time to perform

49

any statistics collection, and print any status information we might want to display
during testing, like the progress of the different segments.

We nowmove on to examine the details of the channel schedule advances and segment
completion handling.

Segment completion and channel schedule advancement

When a segment is complete, i.e all the data belonging to the segment is received, the
afterSegment callback function is called.

This function is also called if we start receiving data in the middle of a server sched-
ule and the wrong segment sink is currently active on the channel. This condition
is detected in the RTP extension header handler as described in the previous section.
This means we need to "hot-swap" the segment sink, but we already have data in the
RTP source buffer, ready to be copied into the segment sink registered. This drove
the need to change the RTP source to support switching sinks while in progress of de-
livering data to the active segment sink that requested the data. To accomplish this
we needed to make some changes in the live555 library itself, because it does not al-
low hot-swapping of the sink while it is in the process of delivering the received RTP
packet to it.

The afterSegment function has one parameter when called from within the segment or
from the RTP Extension Header handler, this parameter is the the channel this segment
is currently active on. We proceed by describing the afterSegment operations, which
involves examining the channel and session schedule.

We first check if we have another segment scheduled on this channel cycle, and if there
is another segment in the channel schedule we perform the following operations:

• We first check if the next segment on the schedule is complete, if it is we skip to
the next segment in the schedule, and starts this list again.

• We set the segment that was next in the schedule as the active segment on the
channel.

• We set up the afterSegment callback function in the segment that we assign to the
channel.

• We assign the RTP extension header handler function to the channel, passing in
the correct parameters.

• Finally we register the newly assigned segment in the task scheduler by calling
its startPlaying function, and return from the handler function.

If we do not have any segments ahead in this channel cycle, we check if we have an-
other channel cycle that we need to execute. This will never happen in the CHB algo-
rithm, because all channels have only one cycle. But if it happens we start playing the

50

first segment in the new cycle, by doing the same steps described in the listing directly
above this description.

If we are at the end of the channel cycle, we have reached the end of the channel
schedules, and we check our entire channel schedule for incomplete segments:

• We check the segments in our schedule for completeness, starting at the begin-
ning of the channel schedule.

• If we find any unfinished segment we start playing this segment by assigning it
to the channel and repeating the steps mentioned above, when assigning a new
active segment.

If we have received all segments scheduled on this channel we perform the following
operations:

• We shut down this channel and its RTP source and RTCP instance.

• We check if there exist any overall segment that is not complete, if any exist we
return to the scheduler and the remaining channels keep receiving.

• If this was the last segment to complete, we call our completion handler, afterSes-
sion detailed in the following section.

6.4.5 Session completion

When all the segments are completed, the afterSession handler is called. This function
rearrange all the segments, so that they all start at the beginning of a file, and merges
all the segments into a full media, so that we can use a binary diff tool to examine
the reception result. It also prints some helpful statistics, like average bandwidth con-
sumption for each segment, bytes received for each segment, the transfer time for each
segment and the total duration of media reception, used for determining on time de-
livery.

6.5 Summary

In this section we have detailed our stream scheduling framework, in the context of
the CHB stream scheduling algorithm. We have examined how our design require-
ments have been realized and will now move on to examining the performance of our
implementation through a series of experiments.

51

Chapter 7

Experiments

In this chapter we perform a series of experiments using our CHB implementation, as
well as some tests designed to test the SSF transmission scheduling mechanisms. The
purpose of the experiments is to examine the performance and operation of our im-
plementation, using both constant bit-rate (CBR) media, and compressed media with
a variable bit-rate (VBR).

7.1 Test environment

This section describes our test environment including the testbed network, media files
used in the experiments, and our selection of tools and techniques.

7.1.1 Media description

The media used throughout our experiments is based on the open source movie Ele-
phants dream [24]. The original media file has been transcoded into two test media files,
both with an average bit-rate of 1400 kbps and a duration of 654 seconds. The two test
media files are transcoded using the FFmpeg [25] tools, into a CBR and a VBR encoded
media. The CBR encoded media is not fully constant bit-rate due to the MPEG-2 TS
encoding, but as close to CBR as the FFmpeg tools could produce.

7.1.2 Testbed

The testbed is set up using three computers, as well as a management station used to
control the experiments. The three computers are a server, used to serve the media
running our CHB implementation, the client used to receive the streamed media over
IP multicast, and a router and network emulator. We have chosen not to inflict any

52

network packet loss or additional delays, this is due to our focus on testing our frame-
work and CHB implementation for correctness, and perform accurate measurements.
The testbed diagram is shown in figure 7.1.

The network is divided into separate IP subnets for the client and the server computers,
connected by the router computer using different network interfaces for the different
subnets. The router is running the XORP [26] open source routing platform, configured
with IGMPv3 [21] and PIM-SM [22] multicast management and forwarding protocols.
All the traffic between the client and server computers goes through the router, and
the router is thus also set up as a monitor and emulator. The monitor is used to capture
network traffic between the client and server computers.

server

monitor / emulator / router

cl ient

eth0

10.10.10.1

eth0

10.10.10.2

eth0

10.10.20.2

eth2

10.10.20.1

mgmt .

en0

10.10.0.20

eth1

10.10.0.80

Testbed network setup

100 Mbps ethernet

Figure 7.1: Testbed network

7.1.3 Tools and measurements techniques

The monitor computer is set up to use tcpdump for traffic capture, which are saved to
log files on disk storage. During some of the experiments the disk IO rate at the server
and client computers can become high, and by performing the traffic capture on the
monitor computer we ensure that the capture does not interfere with the implementa-
tion performance. The monitor also have separate network interfaces for the client and
the server computers, allowing more complex traffic capture operations.

The SSF client implementation is also equipped with functionality to gather statistics,
and capture aggregated data during operations, like the time it used to download each
segment, the average bit-rate for each segment, which again can be used to determine
if all the data arrived on-time for consumption.

53

The experiments are controlled by batch and python scripts, and python scripts are
used to process the collected data, and generate gnuplot data files.

7.2 Scheduling performance

In the following sections we are performing a series of experiments in order to test the
stream scheduling framework mechanisms and our CHB implementation. Most of the
tests use a client waiting time set to 60 seconds, and are all performed using both the
VBR and CBR media files described in the previous section. All the tests related to our
CHB implementation are performed using the time based segmentation scheme.

7.2.1 Startup delay

Description

The CHB stream scheduling algorithm assumes that all the channels start transmitting
the different segments at the same instance in time. This assumption is not possible
in our implementation, as we perform our experiments on a single CPU computer,
making all our instructions execute in sequence. For this reason we expect a startup
delay between the different channels in our implementation, and we want to measure
the delays, in order to examine their significance.

The CHB algorithm also assumes that when segment N is consumed by the client,
segment N+1 is downloaded and ready for consumption. This means that the trans-
mission scheduling for the different segments needs to operate in a way that supports
this assumption. Because we expect a startup delay between our streams, we need to
keep this assumption supported to the best of our abilities. In our CHB implemen-
tation the transmission scheduling mechanism schedules the segments in the reverse
order, meaning that the first RTP packet of segment N, is scheduled for transmission
after the first RTP packet of segment N+1. By doing this reverse order scheduling of
segments, we ensure that our startup delay does not impact the assumption made by
CHB, because the first segment to be consumed by the client, is the last segment in the
transmission schedule.

It is also interesting to examine how the startup delay manifests itself when we vary
the number of channels, and if it remains predictable across different channel numbers.

The measurements are performed by capturing the network traffic from the streaming
server, and plotting the delays.

54

Results

In figure 7.2 we see 9 streams plotted in reverse order, and the stream delay. The first
stream is not extended as a line in the plot, because this is our source of the first RTP
packet, and is what the other streams are measured against. We observer a linearly
growing startup delay as the stream number advances, this is in accordance with our
expectations for a sequential transmission scheduling approach. The values for the dif-
ferent startup delays, as well as a calculated average are available in table 7.1. We see
that the average startup delay, when adding another stream, is close to 81 microsec-
onds, and have a small impact on the overall scheduling.

 0

 2

 4

 6

 8

 10

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

S
tr

e
a
m

Time

Startup delay between streams

239.255.42.50.1250:
239.255.42.49.1248:
239.255.42.48.1246:
239.255.42.47.1244:
239.255.42.46.1242:
239.255.42.45.1240:
239.255.42.44.1238:
239.255.42.43.1236:
239.255.42.42.1234:

Figure 7.2: Startup delay for 9 streams

We also wanted to examine if the startup delay remains predictable when increasing
the number of streams that is scheduled for transmission. In figure 7.3 we have plotted
the startup delays for 42 different streams, and the delays also here follows a linear
pattern. The only observable difference is between stream 37 and 38, where the startup
delay appears slightly larger than between the other streams.

The cause for this extra delay may be related to disk IO scheduling or other operating
system related delays. The difference is not as significant, that we wish to examine it
any further.

We have also performed the same startup delaymeasurement using 325 different streams,
the results are plotted in figure 7.4. Here we observe the same linear increase in startup
delay as in the other figures. As far as our measurements have explored, the startup

55

Startup delay for 9 streams
Stream Delay (sec) Difference from previous stream (sec)

1 0.000000 N/A
2 0.000103 0.000103
3 0.000196 0.000093
4 0.000271 0.000075
5 0.000342 0.000071
6 0.000419 0.000077
7 0.000492 0.000073
8 0.000557 0.000065
9 0.000647 0.000090

Average between streams: 0.000080875 (sec)

Table 7.1: Startup delay for 9 streams

delay pattern remains predictable, by growing in a linear way as more streams are
added.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003

S
tr

e
a
m

Time

Startup delay between streams

Figure 7.3: Startup delay for 42 streams

56

 0

 50

 100

 150

 200

 250

 300

 0 0.02 0.04 0.06 0.08 0.1

S
tr

e
a
m

Time

Startup delay between streams

Figure 7.4: Startup delay for 325 streams

7.2.2 Transmission scheduling

Description

One of the key parts of our stream scheduling framework is the ability to correctly scale
the transmission speed for the segments according to the stream scheduling algorithm.
Therefore we think it is interesting to test this mechanism separately. We will examine
the transmission duration for both a CBR and a VBR based media, in order to see if
there is any differences in handling the two different media encodings.

For us to measure the time it takes in a comparative way, we have implemented a mod-
ified CHB algorithm, where all the segments consists of the entire media. The desired
client waiting time is set to 60 seconds, resulting in 10 segments. Using our modified
CHB algorithm, where each segment is equal to the entire media, makes it well suited
for comparing the calculated transmission time and the measured transmission time
for each segment.

The measurements are performed in the client application receiving the segments. The
client notes the time of the first part of a segment, and notes the time when the segment
is completely downloaded and ready for consumption. This is done for each of the 10
segments separately.

57

Full CBR media 60 sec client waiting time
Segment
length
ms

SegID Channel
slow-
down

Calc.
trans-
mission
time

Meas.
trans-
mission
time

Diff
ms

Diff
%

With
heuris-
tic

Diff
ms

Diff
%

653414 1 1.00 653414 653452 -38 -0.01 651170 2244 0.34
653414 2 1.00 653414 653452 -38 -0.01 651169 2245 0.34
653414 3 1.00 653414 653468 -54 -0.01 651191 2223 0.34
653414 4 3.00 1960242 1960342 -100 -0.01 1953511 6731 0.34
653414 5 4.00 2613656 2613793 -137 -0.01 2604658 8998 0.34
653414 6 5.00 3267070 3267254 -184 -0.01 3255843 11227 0.34
653414 7 6.00 3920484 3920692 -208 -0.01 3906977 13507 0.34
653414 8 7.00 4573898 4574148 -250 -0.01 4558144 15754 0.34
653414 9 8.00 5227312 5227599 -287 -0.01 5209310 18002 0.34
653414 10 9.00 5880726 5881068 -342 -0.01 5860458 20268 0.34

Table 7.2: Transmission duration for CHB media

Results

In table 7.2 we see the transmission data for each of the segments in the CBR based
media. The table shows the segment duration, segment ID, channel slow-down factor
according to the CHB algorithm, as well as the calculated and measured transmission
durations. The deviation between the calculated transmission duration and the mea-
sured duration are also provided in milliseconds and in percentages. We will return to
the with heuristics columns towards the end of this section.

We observe that the measured transmission duration is 0.01 % lower than the calcu-
lated transmission duration, for all the segments. This delay is consistent across all the
segments, and is well within the bounds of the client waiting time of 60 seconds.

The first three segments are transmitted at the media playback rate, and no rate manip-
ulations are performed on the channels transmitting these segments, as this is the rate
the live555 library is designed to operate according to. These three first segments de-
viate by the same percentage as the segments that are transmitted over channels with
rate manipulation. We therefore conclude that the manipulations performed on the
channels operate as expected. The CBR media being transferred is not fully constant
bit-rate, as mentioned in the media description of this chapter, and we believe this is
the reason for the slightly longer measured transmission durations.

In table 7.3 we see the same measurements performed for the VBR media, and the
differences are clearly more significant, as well as more variable. Although the VBR
media delays are more significant, all the segments are still transmitted within the
bounds of the client waiting time of 60 seconds.

58

Full VBR media 60 sec client waiting time
Segment
length
ms

SegID Channel
slow-
down

Calc.
trans-
mission
time

Meas.
trans-
mission
time

Diff
ms

Diff
%

With
heuris-
tic

Diff
ms

Diff
%

653414 1 1.00 653414 654764 -1350 -0.21 652502 912 0.14
653414 2 1.00 653414 654764 -1350 -0.21 652502 912 0.14
653414 3 1.00 653414 654895 -1481 -0.23 652632 782 0.12
653414 4 3.00 1960242 1964422 -4180 -0.21 1957680 2562 0.13
653414 5 4.00 2613656 2619257 -5601 -0.21 2610283 3373 0.13
653414 6 5.00 3267070 3274009 -6939 -0.21 3262806 4264 0.13
653414 7 6.00 3920484 3929041 -8557 -0.22 3915389 5095 0.13
653414 8 7.00 4573898 4583923 -10025 -0.22 4567941 5957 0.13
653414 9 8.00 5227312 5238786 -11474 -0.22 5220757 6555 0.13
653414 10 9.00 5880726 5893633 -12907 -0.22 5873369 7357 0.13

Table 7.3: Transmission duration VBR media

Discussion

As we observed in table 7.3, the measured transmission time for VBR media deviates
more than for the CBR based media. We believe this is caused my the mechanisms in
live555 responsible for calculating the transmission scheduling.

The transmission duration for the VBRmedias last segment is almost 13 seconds, while
this is within the client waiting time of 60 seconds, it is still a significant delay. The
client waiting time is directly linked to the number of segments, and with a reduced
client waiting time the number of segments would increase. This would imply that
the transmission scheduling would no longer be able to send a VBR media segment
on time for consumption, when lowering the client waiting time further. For lower
client waiting time, assuming that the deviation rate at approximately 0.21 % would
remain at its rate, the scheduling would fail. We will further examine the deadline
conformance in a following section.

The with heuristics column in table 7.3 shows the same measurements, but with a
heuristic constant added to the live555 scheduling mechanism. This heuristic constant
involves adding an increase to the duration estimate performed on transport stream
packets within live555. In table 7.3 and 7.2, we have added a 0.0035 % constant in-
crease into the live555 duration estimation process, the results are shown in the with
heuristics columns. In the VBR media case, this heuristic constant ensures that media
will always arrive on time for consumption, at the expense of a slightly increased band-
width consumption. The same constant is added to the CBR media table, to illustrate
its impact on CBR media.

In experiments conducted, but not reported here, we observe that the live555 schedul-
ing estimation is less accurate for smaller segments than for larger segments. This
implies that the heuristic constant needs to be adaptive. We propose further research

59

into establishing a mechanism for an adaptive heuristic constant, to guarantee on-time
delivery for any media type and segment size.

Next we will examine the deadline conformance when client waiting time varies.

7.2.3 Client waiting time variation impact

Description

In the previous section, we examined the the transmission scheduling using a cus-
tomized CHB implementation, designed for channel transmission scheduling tests. In
this section we observed that our transmission scheduling mechanism experienced a
delay rate that implies reduced accuracy when the segment size decreased. This de-
creased segment size is directly linked to an increasing number of segments, as a result
of reducing the client waiting time.

These observations raise some concern, and we want to measure the impact of the
client waiting time below 60 seconds.

When transferring our media file, we have a deadline for the on-time delivery of the
entire media equal to the media duration + client waiting time. Using our 654 second me-
dia files, we proceed to measure the deadline conformance for varying client waiting
time.

 600

 650

 700

 750

 800

 10 20 30 40 50 60

T
o
ta

l
tr

a
n
s
m

is
s
io

n
 d

u
ra

ti
o
n
 i
n
 S

e
c
o
n
d
s

Client waiting time in seconds

Deadline conformance for different client waiting times

Deadline
CBR
VBR

Figure 7.5: Deadline conformance for varying client waiting time

60

Results

In figure 7.5 we see the calculated deadline, for different client waiting times. We
observe that the deadline times increase linearly as the client waiting time increases.

Further we observe that for lower client waiting times, both the CBR and VBR media
fails to stay below the deadline requirement. We also observe that the CBR media
performs better then the VBR media. And these observations verifies the observations
in the previous section.

The CBRmedia is able to deliver the entiremedia on-time for client waiting time values
greater than 10 seconds, while the VBR media does not meet the on-time requirement
before the client waiting time is increased to 25 seconds. These results leads to our
restatement, in that further research is necessary in order to achieve a better trans-
mission scheduling mechanism, for small segments, and more so for small VBR based
segments.

We now move on to examining the individual segment progressions.

7.2.4 Media transmission

Description

Our implementation of the CHB stream scheduling algorithm is responsible for deliv-
ering segments to its client on-time before consumption. In this section we want to
examine the segment progression, and on-time delivery. The experiment is performed
with both a CBR and a VBR basedmedia, and we are interested in examining the trans-
mission progress for these two media types, looking at the segments over time.

The experiment is performed for one iteration of the media, where the client receives
the segments from the beginning of the iteration. The media is 654 seconds, and we
have a 60 second client waiting time. The media is split into 10 segments of equal
duration, and streamed over 9 channels.

Themeasurements are performed using tcpdump for traffic capture, and python scripts
for data processing and plot generation.

Results

Figure 7.6 shows the segment progression for the CBR media, where the segment
progress is plotted as time progresses. The streams in the figure represents the 9 CHB
channels, where stream 1 is responsible for segments 1, stream 2 is responsible for seg-
ments 2 and 3. The segment progress over time takes the form of a fan, and as shown
in figure 7.6, the fan shape is very closely matched. This makes it clear that the media

61

is a constant bit-rate media, because the progress is growing evenly as time progresses.

The angle of the line representing a stream, represents the stream speed, the higher the
speed is, the steeper is the plotted line. As is seen by examining stream 1, reaching 100
% after approximately 60 seconds, while stream 9 reaching 100 % after approximately
600 seconds.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

S
e
g
m

e
n
t
p
ro

g
re

s
s
 i
n
 %

Duration in Seconds

Segment progression CBR media

stream 1
stream 2
stream 3
stream 4
stream 5
stream 6
stream 7
stream 8
stream 9

Figure 7.6: Segment progression for CBR media

The first three segments of the media are transmitted at the media playout rate, this
is clear when examining stream 1 and 2, which is responsible for streaming these seg-
ments. We observe that stream 1 and 2 follow the same progression. Stream 2 however,
is also responsible for transmitting segment 3 in addition to segment 2, this is done in
sequence. We observe a drop back to 0 % for stream 2, as soon as it has completed the
transmission of segment 2. After the drop, we observe that stream 2 again progresses
from start to finish, this is the transmission of segment 3.

In figure 7.7 we see the same plot for the VBR media. Here we observer more variation
in the progression lines, as is natural due to the varying bit-rate of the media. In the
progress lines for stream 7 and 8, we observer that up to 400 seconds into the duration,
the progress for stream 8 is ahead of stream 7, but in near the end the streams arrive
in order. This variation is a clear consequence of the varying bit-rate, and is to be
expected.

The scheduling still ensures that the segments for both CBR and VBR media arrive in
order and on-time for consumption. In the next section wewill examine the bandwidth
consumption of our implementation.

62

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

S
e
g
m

e
n
t
p
ro

g
re

s
s
 i
n
 %

Duration in Seconds

Segment progression VBR media

stream 1
stream 2
stream 3
stream 4
stream 5
stream 6
stream 7
stream 8
stream 9

Figure 7.7: Segment progression for VBR media

7.3 Bandwidth consumption

Description

We are interested in measuring the bandwidth consumption required for our CHB
implementation, and to compare these to the algorithm theory. For this experiment
we use our 1400 kbps media files, and measure the average bandwidth used by each
segment transfer.

We perform our measurements for both the CBR and the VBR media files. The mea-
surement is performed by themeasurements code built into our client implementation.
The client measures the average bandwidth consumed by each of the 10 segments in-
dividually.

Results

In table 7.4 we see the theoretical bandwidth calculations, according to the CHB algo-
rithm, along with the measured results. The results are shown for each segment, and
the difference between the measured and calculated values are also provided. At the
bottom of the table the total average bandwidth consumption is shown.

We observe that table 7.4 indicates a very close relation between the theoretical and

63

Average bandwidth consumption CBR
Segment Calculated avg. kbps Measured avg. kbps Difference

1 1400 1405 5
2 1400 1420 20
3 1400 1412 12
4 467 471 4
5 350 351 1
6 280 281 1
7 233 234 1
8 200 201 1
9 175 175 0

10 156 156 0
Total bandwidth for all segments

Sum: 6061 6106 45

Table 7.4: Average and total bandwidth consumption for 10 segments CBR media

measured results, an the total difference in bandwidth consumption is 45 kbps. We
observe that the measured average bandwidth is slightly higher than the calculated
average bandwidth, but the differences are not alarming.

In table 7.5 we see the same measurements performed for the VBR media, while the
theoretical calculations remain the same. In the VBR measurements we observe a sig-
nificantly higher difference in the total bandwidth, compared to the CBR measure-
ments. We also observe that the variations are more significant, where segments vary
both above and below the calculated average. The average bandwidth consumed by
segment 9 is lower than that of segment 10, and is contrary to the bandwidth reduction
steps defined by CHB.

The VBRmedia, is performing to our expectations, as it is variable and scheduled using
an adaptive scheduling mechanism. The most interesting observation is that the total
average bandwidth does not deviate to much from the theoretical calculations. Next
we will briefly comment on the issue of video quality.

7.4 Video quality

In our work we have not employed any particular techniques designed for analyzing
video quality at the receiver. Our focus has been on testing our stream scheduling
framework mechanisms and CHB implementation, and the operations and correctness
for these parts. The tests performed in order to ensure media integrity, has been using
a binary diff tool, that compares the source and resulting media file. This method of
verifying the received and reassembled media file to the source is strict, as it requires
the files to be binary equal and has been useful for detecting segment reassembly errors
in the early implementation phase.

64

Average bandwidth consumption VBR
Segment Calculated avg. kbps Measured avg. kbps Difference

1 1400 1428 28
2 1400 1792 392
3 1400 1305 -95
4 467 374 -93
5 350 307 -43
6 280 265 -15
7 233 263 30
8 200 248 48
9 175 126 -49

10 156 167 11
Total bandwidth for all segments

Sum: 6061 6275 214

Table 7.5: Average and total bandwidth consumption for 10 segments VBR media

7.5 Summary

In this chapter we have performed a series of experiments of our stream scheduling
framework through our CHB implementation. We have demonstrated a working pro-
totype implementation of the CHB algorithm, and determined that the performance is
sufficient for both CBR and VBR based media.

We have examined the scheduling performance by examining the startup delay, trans-
mission scheduling, on-time delivery conformance, segment progression, as well as
the CHB bandwidth consumption. We find that the scheduling performance is not
sufficient for small segments based on variable bit-rate. And suggest further research
into the estimation and transmission scheduling mechanisms, where one possibility
would be adding adaptive heuristic constants. The scheduling performance is not able
to deliver all the data on time for low values of the client waiting time, but for values
beyond 25 seconds, the on-time delivery succeeds. This property is affected by the me-
dia form, and CBR based media has shown a better deadline conformance than VBR
based media.

In measuring the total average bandwidth consumption in our CHB implementation,
we found that is closely matched that of the theoretical model in the CHB proposal.
The measured values for CBR based media was closer to the theoretical model than
the VBR based media.

65

Chapter 8

Conclusion

In this thesis we have argued that the current unicast delivery schemes for video on-
demand are unable to scale when the number of consumers are rising. Valuable net-
work resources are not being used in an optimal way, where all the consumers watch-
ing the same movie, all use exclusive video streams transmitting the same content.

A multicast infrastructure is not available in todays global Internet, but as demand for
more efficient network utilization keeps rising, in parallel with growing use of multi-
media content and a growing number of users, internet service providers are gaining
incentives to implement multicast support in their autonomous systems. This multi-
cast infrastructure within an ISPs domain, is required for establishing a scalable mul-
ticast based video on-demand service, and we also argue that this is the most realistic
short term scenario for the deployment of a scalable video on-demand service.

We have examined different stream scheduling techniques, and chosen to focus on the
periodic broadcasting class of solutions, due to its scalability, as well as predictable
resource consumption, regardless of the number of consumers. The most promising
algorithm, considering its demands for server bandwidth, client waiting time, client
access bandwidth, client buffer requirements, as well as complexity, is the Harmonic
variant named cautious harmonic broadcasting (CHB). The CHB algorithm have been
criticized for its high requirement for channels, translating into a high number of IP
multicast addresses, but our scope of applicability is running this algorithm inside of
an internet service providers autonomous system, and thus will not be unmanageable.

Based on these considerations we have implemented and measured an IP multicast
based periodic broadcasting stream scheduling technique, and will now go on to sum-
marize our main contributions, followed by our suggestions for future work in this
context.

66

8.1 Summary and contribution

The main contributions of this thesis is the implementation of the cautious harmonic
broadcasting algorithm, as well as a stream scheduling framework (SSF), that sup-
ports implementing periodic broadcasting class algorithms. By implementing a SSFwe
support implementing other promising periodic broadcasting algorithms in our future
work, in a more consistent approach. The client side SSF implementation is algorithm
agnostic, as long as the server side algorithm can be expressed through our schedule
description approach. The client is served descriptions of each segment, along with
descriptions of each channel. For each of the channels we attach a channel schedule
stating how the client will receive and assemble the segments, this loose coupling be-
tween segments and channels is the rationale for claiming an algorithm agnostic client.

The SSF is built by extending the live555 streaming media library, enabling future inte-
gration into existing media-players like VLC and MPlayer. The live555 library did not
support the use of RTP extension headers, and such support have accordingly been im-
plemented, to ensure the support for more complex scheduling, like shared channels.

The implementation have been tested through running experiments, and measuring
the performance and operation of the CHB algorithm, using both constant bit-rate and
variable bit-rate media. We also implemented a specialized version of the CHB algo-
rithm, where all the segments were equal and consisted of the entire media. This spe-
cial implementation was used to measure the correctness of our transmission schedul-
ing in a comparative manner, and helped us realize the issues in scheduling variable
bit-rate media using the same approach as scheduling the constant bit-rate media.

We conclude that the implementation of periodic broadcasting algorithms are realistic
and feasible, and that the CHB algorithm performs well in most of our experiments.
However we also suggest that more research is necessary in the area of transmission
scheduling calculations, and especially for small media segments, and evenmore so for
the ones based on a variable bit-rate media. We therefore move on to our suggestions
for future work.

8.2 Future Work

In our measurements of our CHB implementation, we have seen that we are unable to
guarantee on-time delivery when the segments transmitted are small and have a short
duration. The mechanism responsible for transmission scheduling in the live555 li-
brary, is adaptive and uses the transmission history for a particular program inside the
transport stream, as well as the current TS packet, when it estimates the transmission
time. We believe that for perfect CBR media, the transmission scheduling mechanism
works as intended, and is able to deliver media on-time. When the media bit-rate is
variable however, the current transmission scheduling technique is not able to calcu-
late and schedule the transmission times correctly for small segments. For this reason

67

we suggest that this mechanism should be the subject of further research, in order to
support on-time delivery of variable bit-rate media segments of any size.

Another subject we suggest for further research are the mechanisms causing the lin-
early growing startup delay. We believe that the startup delays will remain in any
sequential processing system, but the time between the different streams initial packet,
could be mitigated by preloading the first part of each segment into memory buffers,
avoiding time consuming disk IO operations to affect the startup delays.

Finally we would like to see other periodic broadcasting algorithms implemented us-
ing our SSF, and perform similar experiments and measurements on these algorithms.
After gaining insight into the performance of different periodic broadcasting tech-
niques, we suggestmoving on to integrate the SSF client into and existingmedia-player
like VLC or MPlayer.

68

Bibliography

[1] Carsten Griwodz and Pål Halvorsen. Distribution systems (lecture notes).
http://www.uio.no/studier/emner/matnat/ifi/INF5071/h08/undervisningsmateriale/06-
distribution-1.pdf, October 2008. [Online; Accessed 06-March-2009].

[2] J. F. Paris, S. W. Carter, and D. D. E. Long. Efficient broadcasting protocols for
video on demand. In Proc. Sixth International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pages 127–132, 1998.

[3] Ross Finlayson. Live555 streaming media. http://www.live555.com, March 2009.
[Online; Accessed 06-March-2009].

[4] Videolan Project. Videolan media player. http://www.videolan.org, March 2009.
[Online; Accessed 06-March-2009].

[5] MPlayer Team. Mplayer. http://www.mplayerhq.hu, February 2009. [Online; Ac-
cessed 06-March-2009].

[6] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-demand
video server with batching. InMULTIMEDIA ’94: Proceedings of the second ACM in-
ternational conference on Multimedia, pages 15–23, New York, NY, USA, 1994. ACM.

[7] Leana Golubchik, John C. S. Lui, and Richard Muntz. Reducing i/o demand in
video-on-demand storage servers. In SIGMETRICS ’95/PERFORMANCE ’95: Pro-
ceedings of the 1995 ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, pages 25–36, New York, NY, USA, 1995. ACM.

[8] Leana Golubchik, John C. S. Lui, and Richard R.Muntz. Adaptive piggybacking: a
novel technique for data sharing in video-on-demand storage servers. Multimedia
Syst., 4(3):140–155, 1996.

[9] Charu Aggarwal, Joel Wolf, and Philip S. Yu. On optimal piggyback merging
policies for video-on-demand systems. In SIGMETRICS ’96: Proceedings of the
1996 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems, pages 200–209, New York, NY, USA, 1996. ACM.

[10] K. C. Almeroth and M. H. Ammar. The use of multicast delivery to provide a
scalable and interactive video-on-demand service. IEEE Journal on Selected Areas
in Communications, 14(6):1110–1122, 1996.

69

[11] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service
using pyramid. Multimedia Systems, Volume 4(4):197 – 208, 08 1996.

[12] Kien A. Hua and Simon Sheu. Skyscraper broadcasting: a new broadcasting
scheme for metropolitan video-on-demand systems. SIGCOMM Comput. Com-
mun. Rev., 27(4):89–100, 1997.

[13] Li-Shen Juhn and Li-Ming Tseng. Harmonic broadcasting for video-on-demand
service. IEEE Transactions on Broadcasting, 43(3):268–271, 1997.

[14] Kien A. Hua, Ying Cai, and Simon Sheu. Patching: a multicast technique for true
video-on-demand services. In MULTIMEDIA ’98: Proceedings of the sixth ACM
international conference on Multimedia, pages 191–200, New York, NY, USA, 1998.
ACM.

[15] S. W. Carter and D. D. E. Long. Improving video-on-demand server efficiency
through stream tapping. In Proc. Sixth International Conference on Computer Com-
munications and Networks, pages 200–207, 1997.

[16] D. Eager, M. Vernon, and J. Zahorjan. Minimizing bandwidth requirements for
on-demand data delivery. IEEE Transactions on Knowledge and Data Engineering,
13(5):742–757, 2001.

[17] Cyrus Dara Vesuna and Jehan-Francois Paris. An empirical study of harmonic
broadcasting protocols. Computación y Sistemas [1405-5546], 7(3):156–166, 2004.

[18] Tonje Jystad Fredrikson. Scheduling of data streams over a multicast protocol.
Master’s thesis, University of Oslo, December 2008.

[19] Rtp - rfc3550, 2003.

[20] Handley, Jacobson, and Perkins. Sdp: Session description protocol, July 2006.

[21] Cain, Deering, Kouvelas, Fenner, and Thyagarajan. Internet group management
protocol, version 3. rfc 3376., October 2002.

[22] Fenner, Handley, Holbrook, and Kouvelas. Protocol independent multicast -
sparse mode (pim-sm). rfc4601., August 2006.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
: elements of reusable object-oriented software. Addison-Wesley, 1994.

[24] Project Orange Blender Foundation. Elepants dream.
http://www.elephantsdream.org/, October 2008. [Online; Accessed 06-March-2009].

[25] The-FFmpeg-Project. Ffmpeg documentation. http://www.ffmpeg.org/ffmpeg-
doc.html, March 2009. [Online; Accessed 19-March-2009].

[26] The XORP team. Xorp. http://www.xorp.org, January 2009. [Online; Accessed 06-
March-2009].

70

