
Imputation of missing time series
values using statistical and

mathematical strategies

Tomas Rakvåg Ulriksborg

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022

Imputation of missing time series
values using statistical and

mathematical strategies

Tomas Rakvåg Ulriksborg

© 2022 Tomas Rakvåg Ulriksborg

Imputation of missing time series values using statistical and
mathematical strategies

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

In this thesis, we looked at different approaches for imputation of missing
values in time series. We carried out experiments and compared how
these approaches affected machine learning models from two different
machine learning libraries. After selecting and comparing models across
both libraries we tested these models up against both multivariate and
univariate time series regression for predicting readiness to play in
athletes. The experimentation saw different stages, finding the optimal
parameters for the models, testing to find the best performing combination
of imputation approaches, models and training method, and a final testing
on multi-step forecasting. After testing we compared and discussed the
results based on the accuracy score of the models along with looking at
how the models behaved differently on the imputation approaches and
training methods. Finally, we tried to draw some conclusions based on the
results gotten as well as what would be some interesting ideas for future
research.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

2 Background and related work 4

2.1 PmSys - smartphone-based athlete monitoring system 4

2.1.1 Introduction . 4

2.1.2 Users . 5

2.1.3 Functionality . 5

2.1.4 Architecture . 6

2.1.5 Parameters . 7

2.1.6 The flow of PmSys . 8

2.2 Technologies . 9

2.2.1 Machine learning . 9

2.2.2 Supervised learning 9

2.2.3 Neural networks . 11

2.2.4 Time Series . 11

2.2.5 Data analysis . 12

2.2.6 Model training . 13

ii

2.2.7 TSAI library . 15

2.2.8 Keras . 15

2.2.9 Models used . 16

2.3 Related studies . 21

2.3.1 LSTM for peak readiness 22

2.3.2 Case study on self-reporting symptoms on triathletes 23

2.4 Summary . 24

3 Methodology 27

3.1 System specification . 27

3.2 Dataset . 28

3.2.1 NaN handling filling with zero values 29

3.2.2 NaN handling filling with mean values 29

3.2.3 NaN handling filling with interpolate values 29

3.2.4 Univariate . 30

3.2.5 Multivariate . 30

3.2.6 Timesteps and prediction clarification 31

3.2.7 Multi-step forecasting 33

3.2.8 Data splits for training, testing and validation sets . . 35

3.3 Keras and Tsai Models . 35

4 Experiments and results 37

4.1 Experiments overview . 37

4.2 Initial experiments . 39

4.2.1 Overview . 39

4.2.2 Results for Tsai . 41

iii

4.2.3 Results for Keras . 44

4.3 Discussion of initial experimentation 47

4.4 Filling Nan’s with zero/mean/interpolate Tsai 49

4.4.1 Overview . 49

4.4.2 Multivariate training on all players 50

4.4.3 Multivariate training on one player’s self report data 53

4.4.4 Univariate training . 56

4.4.5 Comparing the results from training methods 58

4.5 Filling Nan’s with zero/mean/interpolate Keras 63

4.5.1 Overview . 63

4.5.2 Multivariate training on all players 65

4.5.3 Multivariate training on one player’s self report data 67

4.5.4 Univariate training . 68

4.6 Discussion of imputation results 69

4.7 Experiment with univariate multi-step prediction 71

4.7.1 Overview . 71

4.7.2 NaN handling with interpolated values 72

4.7.3 NaN handling with mean values 73

4.7.4 NaN handling with zero values 75

4.8 Discussion of multi-step forecasting 76

4.9 Summary . 78

5 Conclusion and future work 79

iv

List of Figures

2.1 Wellness timeline with one player highlighted[20] 5

2.2 Body silhouette taken from mobile app 8

2.3 Injury summary taken from mobile app 8

2.4 Example of typical time series graph showing both seasonal
shifts and predictable trends [2] 12

2.5 Graph showing features (Readiness, Sleep Duration, Sleep
Quality, Stress, Fatigue and Session RPE divided by 100).
Useful graph for understanding the relation between all
features on a numerical level 13

2.6 What the features in an array of 7 does to the accuracy
of the model. Features seen as var 0-6 shown with their
represented accuracy change of removed 16

2.7 Figure shows an example of semantic segmentation where
Fully Convolutional Networks can learn by upsampling the
output size when wanted. Figure source: [15] 18

2.8 Figure shows an example of a multivariate time series
problem and how the inside of Inception treats it, one of
the modules in InceptionTime.[5] The steps of Inception
goes as follows: First the input data is sent to a bottleneck
which in this example is a bottleneck with the dimension
of 1. The bottleneck transforms the time series to a
multivariate time series with M dimensions, 1 in this case.
This reduces the complexity and dimension of the model
and in turn will give some prevention for overfitting.
After this the output of the bottleneck is filtered with
three convolutions in this example and concatenated with
a parallel MaxPooling operation from the same time series
which has gone through a bottleneck as well. 19

v

2.9 The structure of LSTM cells Figure source: [16] 21

2.10 The layers inside an LSTM cell, figure source: [8] 21

2.11 Figure shows one single GRU cell. Red circle indicating
sigmoid functions and blue tanh. figure source: [13] 22

3.1 Figure shows what is estimated in linear interpolation
(Interpolated point P) and the formula for this calculation,
figure sources [11] [19] . 30

3.2 Difference of filling NaNs with zero, mean value and
interpolate values. The index of this dataset is dates, but to
get a visual on the dataset it is indexed in an observational
order . 31

3.3 Figure shows multivariate dataset with Readiness, Sleep,
Fatigue, Stress, SleepQuality and PE(Perceived Exertion).
This particular set is also a set used for multivariate training
on one player and predicting the Readiness level on that
player. 32

3.4 Figure shows how strafe and window length looks like on
a series of N length. This particular figure has a window
of 4 and trafe of 1. Feeding this to a configured model will
use the 4 values from x0 to x3 for predicting the value of x4.
Next prediction will use the values x1 to x4 for prediction of
the next value. These two prediction will use some of the
same values since the window is of size 4 and strafe is only
1. There are many different ways of configuring these types
of models, having a strafe of 1 being fairly common. Figure
source: [18] . 33

3.5 Figure illustrates multi-step prediction/forecasting. In this
example the window size is 9 and the last white box is the
day to be predicted. When that day is predicted the window
shifts one day ahead and puts the predicted value in to this
window. This means the model will use the predicted value
to further predict what values comes next. Figure source: [12] 34

3.6 Figure shows the split distribution of training, validation
and test set . 35

vi

4.1 Figure shows initial experimentation results from training
on all players readiness levels and predicting readiness of
one player . 42

4.2 Figure shows initial experimentation results from training
on one players self report data and predicting on the same
player . 43

4.3 Figure shows initial experimentation results from univari-
ate training . 44

4.4 Figure shows how we designed the models used in experi-
mentation for Keras. Each blue box represents a layer with
the arrows pointing to the next layer. From each layer, the
input is processed and passed on as output to the next layer.
Once it reaches the dense layer the output will be narrowed
down to a single output for each datapoint fed to the model.
Every model has a dropout dividing the middle layer with
the same dropout rate: 0.2. 45

4.5 Figure shows what the features in an array of 7 does to
the accuracy of the model. Lower score results in a higher
model accuracy . 47

4.6 Figure shows how the models generally performed during
initial experimentation . 49

4.7 Figure shows results from training on all players with
interpolated values as replacements with the best window
size of 3 . 51

4.8 Figure shows results from training on all players with mean
value NaN replacement . 53

4.9 Figure shows results from training on all players with zero
value replacement . 54

4.10 Figure shows results from training on one player with
interpolated values replacement dataset 55

4.11 Figure shows results from training on one player with mean
value replacement dataset . 55

4.12 Figure shows results from training on one player with zero
value replacement dataset . 56

vii

4.13 Figure shows results from univariate training with interpol-
ated values as replacements dataset 57

4.14 Figure shows results from univariate training with mean
value replacements dataset 58

4.15 Figure shows results from univariate training with zero
value replacements dataset 59

4.16 Best and worst models from interpolation replacement on
multivariate training on all players 60

4.17 Best and worst models from mean value replacement on
multivariate training on all players 60

4.18 Best and worst models from zero value replacement on
multivariate training on all players 60

4.19 Best and worst models from interpolation replacement on
multivariate training on one player 62

4.20 Best and worst models from mean value replacement on
multivariate training on one player 62

4.21 Best and worst models from zero value replacement on
multivariate training on one player 62

4.22 Best and worst models from interpolation replacement on
univariate training . 64

4.23 Best and worst models from mean value replacement on
univariate training . 64

4.24 Best and worst models from zero value replacement on
univariate training . 64

4.25 LSTM, GRU and RNN graphs from multi-step forecasting
on interpolated dataset with a window size of 3 days 75

4.26 LSTM, GRU and RNN graphs from multi-step forecasting
on mean value dataset with a window size of 3 days 76

4.27 LSTM, GRU and RNN graphs from multi-step forecasting
on zero value dataset with a window size of 3 days 77

viii

List of Tables

2.1 Self report parameters. 7

3.1 System specifications. 28

4.1 Table shows the configurations of hyperparameters and
other relevant information used for initial experimentation. . 40

4.2 Table shows results from multivariate training on all pre-
dicting on one in Keras . 45

4.3 Table shows results from multivariate training on one
predicting on one in Keras . 46

4.4 Table shows results from univariate training in Keras 47

4.5 Table shows updated overview of hyperparameters and
other useful information used in further experimentation . . 50

4.6 Table shows the best models when training on all players. . 59

4.7 Table shows the best models when training on one player. . 61

4.8 Table shows the best models when training with univariate
set. 63

4.9 Table shows results from LSTM training on three data-
sets, training on all players(all), training on one players
self reported data(one) and training on the univariate data-
set(Uni). Training was done on the three different NaN
handling methods, Interpolation, Mean value and Zero
values. 65

ix

4.10 Table shows results from GRU training on three datasets,
training on all players(all), training on one players self
reported data(one) and training on the univariate data-
set(Uni). Training was done on the three different NaN
handling methods, Interpolation, Mean value and Zero
values. 66

4.11 Table shows results from RNN training on three datasets,
training on all players(all), training on one players self
reported data(one) and training on the univariate data-
set(Uni). Training was done on the three different NaN
handling methods, Interpolation, Mean value and Zero
values. 66

4.12 Table shows the best models for multivariate training on all
players with Keras. 67

4.13 Table shows the best models for multivariate training on
one player with Keras. 68

4.14 Table shows the best models for univariate training with
Keras. 69

4.15 Table consists of the MSPE scores gotten from training on
univariate time series with interpolated values for NaN
replacement, divided into the three models ran on multi-
step forecasting . 73

4.16 Table consists of the MSPE scores gotten from training
on univariate time series with mean values for NaN
replacement, divided into the three models ran on multi-
step forecasting . 74

4.17 Table consists of the MSPE scores gotten from training on
univariate time series with zero values for NaN replace-
ment, divided into the three models ran on multi-step fore-
casting . 74

x

Chapter 1

Introduction

In this day and age everything is stores as data. Technologies and
companies capture and store everything which might have the slightest
beneficial factor. From all this data new techniques of handling data is
discovered and put to the test. Storing data in a timely matter can be
considered to be time series. Time series is interesting for many reasons,
one of them being the potential of looking into the future. Machine
learning is something that has gotten a lot of praise in the media lately for
how it can use time series to look in to the future. How well this actually
works is something that has peaked the interest of many industries one of
them being the sports industry.

1.1 Motivation

With technologies advancing and becoming a part of our daily routine, it
has also become a helping hand in driving people’s abilities ever further.
In sport science and sport performance, technology has become a huge
part in helping athletes becoming better versions of themselves. It has the
ability to see even more than what humans see with the naked eye. Get-
ting new and precise information about performance in both training and
competition can be analyzed and used for improvement. For instance,
in the world of soccer, analytic systems have shown to have a great im-
pact on the game, with for example, coach Joachim Low calling a substi-
tute of Mario Götze to arguably win the world cup final in Brazil 2014.
The Germany based software company called SAP played a huge role in
Germany’s win. They were the ones providing the data and analysis of
matches and players of the German national soccer team. Capturing and
analyzing data from video cameras around the field, combining it with

1

player’s speed, distance travelled and positioning, made up the dataset
for what was needed to improve the soccer team’s success.

There are many reasons being able to predict readiness of players can
be profitable. Going inn to a match, players need to be at their absolute
best in order to perform their absolute best, if a player is weakened or
injured by heavy workload from training this will impact their perform-
ance in the match. Making a good workout/training plan is about find-
ing the threshold an athlete can work at for performance increase with
respect to how long or how well the athlete’s body or mind can work at
that pace/workload. In order to find an athlete’s threshold, we need to
be collecting and analyzing data from their performance in match days
and training days. This is exactly what PMSys intend to do, closing the
gap between coaches and athletes in an efficient way introducing a plat-
form for data visualization, statistics and prediction of how the athletes
states are. PMSys is an athlete monitoring system developed by Simula
Research Laboratory along with University of Tromsø and ForzaSys. With
technologies advancing, machine learning has become useful when look-
ing at athletes performance. When using machine learning to predicting
the states of athletes, consistency is a driving force. Having data scattered
randomly across a time frame will not unsure the best predictions because
of the irregularities in the data. In a system where data is captured by the
users themselves, it will be prone to a few issues along the lines of data
consistency. Some days of data might be missing which in turn might de-
crease potential accuracy of these predictions. Addressing inconsistency
in the form of missing data can a yield boosting capabilities for machine
learning, thus sparking the questions of how to deal with missing data.

1.2 Problem statement

As discussed earlier, when working with users you are prone to run into
some inconsistencies. Since users are a part of PMSys, the athlete mon-
itoring system we described in the prior chapter, the system om PMSys
is prone to running into the same issues. Simula Research Laboratory
and partners encounter the problem of users not registering data for some
days, resulting in a time series with days consisting of no values. If this
time series is to be used in any beneficial way these missing data points
needs to be dealt with. PMSys is looking to give the users of the system
even more functionality, introducing machine learning to predict readi-
ness to play in athletes of a team. Combining machine learning with time
series introduces a combination of new potential analysis which can be
beneficial for teams and athletes wanting that extra insight in their per-

2

formance. Getting that extra insight into their performance might lend a
helping hand in helping the athletes better plan their workouts or help-
ing them realise some things the eyes might miss, like figuring out how
their bodies might respond to exertion when training. One way techno-
logy might give a handy insight into this is by using the time series data
to predict the readiness values of athletes the future days. Machine learn-
ing and time series can be combined to achieve just this, but how machine
learning might respond to the missing data is something which PMSys
has not been experimenting on quite yet. This raises the question for this
thesis:

How efficient can statistical and mathematical strategies be used to im-
pute missing values in time series data and how will it affect perform-
ance in machine learning?

In the following chapters we will be looking at researching different
types of ways of imputing missing values from the world of mathematics
and statistics. We will be using the different imputing approaches on
time series data from PMSys and testing how efficient they work on
different machine learning approaches and models. We will also give
an interpretation of the results, how the different imputation approaches
affected performance from both the perspective of machine learning and
PMSys.

3

Chapter 2

Background and related work

This chapter will introduce PMSys, what it does, how it operates and why.
PMSys is a big system of many moving parts which will be described,
everything from the back of the system to what can be seen by the users.
Since PMSys operates with large amount of data and data collection, the
steps from collecting to using the data will be described. Every data
collected and processed is related to athletes and how their performance
might fluctuate over time, this will make the data time series which will be
the main part of this thesis. Along with describing how time series work,
previous work related to PMsys will be described.

2.1 PmSys - smartphone-based athlete monitor-
ing system

2.1.1 Introduction

There are many ways of collecting and analysing data related to athletes
performances. Depending on which type of sport the context is, it is
important to find what data should be focused on. For example, triathletes
and distance athletes need to know what affects their ability to sustain
muscle fatigue. One of the many ways this can be measured is by testing
the blood lactate levels. This is often done in the middle and/or after a
workout focusing on raising the lactate level. This data could be plotted in
somewhere to be further analyzed by coaches and team members in order
to help the athlete better respond and prepare workouts improving this
measurement. Seeing what relates to this lactate level and how it trends
over a period of time can be done to understand the athlete’s performance.

4

Figure 2.1: Wellness timeline with one player highlighted[20]

PmSys focuses on athletes in soccer. Pål and colleagues have made a self-
reporting system customized with inputs focused on wellness, injury and
illness for athletes.

2.1.2 Users

PMSys is generally made for organization, institutes and sport teams
across Norway. From this there will be a variety of users involved.
The system is both made for coaches and players and the intention is
to bring insight and functionality to both parties. From PMSys’ own
website they showcase some of the teams and institutes using the system;
The Norwegian International Football Team, Viking FK, MFK, Norges
Toppidressgymnas, RBK and many more. For the athletes using this
system they will get to see their own reported data, keeping the data
logged and accessible for review and easily communicated to coaches and
team members. Coaches has their own page for monitoring team players
with graphs, stats and customizable data shown in a informational way.

2.1.3 Functionality

Logging data relevant for analysis and use in measuring performance,
wellness, injury and illness for athletes. A smartphone-based applica-
tion where the athletes on a daily base self-report their parameters for
research. Designed on the principle that these subjective reports are cap-
tured in real-time with minimal effort, while the data is fresh and relevant.
Team personnel, like coaches and physicians, got their own portal which
displays the data submitted as can be seen in figure 2.1. The data is dis-
played and divided into two different pages, team centered and single-
player centered. For the team view, the data can be arranged to visualize
for instance injuries, illnesses and session participation. The data can be
sorted to daily and weekly load, acute load, chronic load, acute chronic
workload ratio, monotony and strain. The single player view is showing

5

all relevant data from each individual player. The portal provides push
messages to players from team personnel, which has increased participa-
tion in the project.

2.1.4 Architecture

In order for PMSys to work, there are a few building blocks to support
the load of athletes self reports and analysis. PMSys’s architecture can be
divided into 4 different layers:

• Mobile app

• Data Storage Unit

• Policy Server Unit

• PMSys trainer

The smartphone application is both available on iOS and Android.
Made easy to download and set up for use. In the app you get a clear
overview of reports for a specific time period, and you can easily make
a report of every parameter used by PMSys. The report is made with a
simple questionnaire with already defined values to choose from, both
making it more consistent and easy to use.

Every player report is stored in one or more Data Storage Units. PMSys
uses their own Open mHealth compliant Data Storage Units (DSU). These
DSUs are running with Amazon’s AWS cloud service, which both is
secure, reliable and easily manageable. Player reports can be divided into
multiple DSU servers if the level of isolation or replication requires it to
be. Players names and identification is not stored on DSU this is done by
a separate unit.

Policy Server Unit (PSU) is a component in charge of setting and
following policies separate from DSU. When creating a team inside the
application, the team owner will centrally manage the data and own that
data. The PSU will then be in charge of controlling who has access to this
team, for how long and performs the aggregation functions needed for the
data. Pseudonymous player data is shared in real time.

6

5 4 3 2 1

Sleep Quality
Well

rested
Good Normal

Restless

sleep
Insomnia

Fatigue
Very

fresh
Good Normal

Little

tired

Very

tired

Soreness
Not

sore

Feeling

good
Normal Sore Very sore

Mood

Very

positive

mood

Generally

good

mood

Less interested

in others

and/or

activities

than usual

Snappiness

at teammates

or close ones

Highly

annoyed/

irritable/

down

Stress
Very

relaxed
Relaxed Normal

Feeling

stressed

Highly

stressed

Table 2.1: Self report parameters.

2.1.5 Parameters

Data collected by PMSys’s mobile questionnaire solution is presented on a
scale on either 1-5, 0-10 or 0-100. Some examples can be seen in Table 2.1.
In newest version of PMSys’s mobile app for iOS the wellness parameters
is set up as the following questions and gradation:

• How ready are you to train? 0-10 (Readiness)

• How fatigued do you feel? 1-5 (Fatigue)

• How much did you sleep last night? Own choosing (Sleep duration)

• How well did you sleep? 1-5 (Sleep quality)

• How sore are your muscles? 1-5 (Soreness)

• How stressed are you? 1-5 (Stress)

• What is your mood? 1-5 (Mood)

Apart from wellness reports the newest version also has sessionRPE re-
porting. In this tab the player registers length and time of completion
along with type of session (Competition/Individual session/Team ses-
sion), with classification of strength/endurance/soccer or other. Session
RPE is assigned to this session on a scale of 1-10, 1 being Very light activ-
ity and 10 being max effort.

7

Figure 2.2: Body
silhouette taken from
mobile app

Figure 2.3: Injury
summary taken from
mobile app

2.1.6 The flow of PmSys

The flow of PmSys can be divided into different sections. The system
is designed for athletes and coaches/team personnel to be able to
communicate with each other in a more efficient way with data. Coaches
will be able to fetch the data needed to assess the players. We can divide
the system in to these sections:

Injury reports: Through a couple of iterations, this report method is
made to resemble a figure as seen in figure 2.2 of the human body in where
the body is divided into different parts/joints covering the whole body
for accuracy. The process of injury reporting is minimized to about 12-15
seconds per report. This gives both a general overview for the coaches
to keep track on and it works as a parameter for other functionalities like
machine learning.

Coach/team personnel portal: An organized place for coaches and
team personnel to see and manage relevant data from training and
matches. Sorted in a way for the team to view the different parameters
from the self-reported data given by the players themselves. Example
being how much sleep individuals get, their overall wellness and
readiness to play over a timeline specified in the interface.

8

Communication between coaches and players: Communication
between coaches and players is important. Not only do the coaches have
access to the stored and fixed data off the players parameters, they also
can directly communicate to players in the app. If a particular player lacks
parameters from that day, the coaches can notify the player to register their
self-reports.

AI/Machine learning: Machine learning/AI is being used to predict
peak performance and the future health and fitness of athletes. Using the
data from self-reporting this model can predict the players readiness to
train or if the player has a positive or negative readiness peak.

2.2 Technologies

In this section we will look at what make up the technology in this thesis.
Everything technologies relevant for the operations and experimenting
done will be described in the following sub sections.

2.2.1 Machine learning

Machine learning works by feeding a model data it needs in order to
predict an outcome/result. Neural networks are what most think of when
hearing machine learning. They are great for doing tasks which need a lot
of computing and might not be as straight forward as typical mathematical
problems might be. Problems like text to speech and speech to text are
good examples of complex technical problems where machine learning
shines. The data needed to solve these problems can be massive and the
context needed for a program to solve it are difficult to do without machine
learning. Machine learning stems from how our brains are made up and
how they work. Since out brains are quite complex and intelligent there
is much to get inspiration from and development of machine learning has
been done for many years and is still being worked on.

2.2.2 Supervised learning

Supervised learning is usually done with a training set containing correct
responses or the correct answers. Based on this training set the algorithm
will learn to respond correctly on the given input and correct response. If
we look at the example from Pål’s research, this training set will be created

9

out of what the athletes sets as their readiness values. Inputs the algorithm
uses is the self-reported data from the athletes, and based on previous
collected data the algorithm will adapt the answers in order to get the
most accurate results. The predictions from the algorithms are usually
tested up against a test set which is unbiased, and from this we can craft an
accuracy rating which will be an indicator on how good the model is. The
input of a machine learning model/algorithm can be divided into many
features. In the case of Pål’s research they used the players self-reported
“variables mood, stress, sleep quality, fatigue, and soreness” as inputs, and
tried to predict the output value of the players readiness to train the next
day. There are multiple ways of further modeling supervised learning,
for example after looking at the data you can either pick classification or
regression predictive modeling.
Classification: In a classification model you are to map a function (f) from
features/inputs (x) in order to decide the most likely output values (y).
The outputs are often called classes, labels or categories. Based on the
previous observation in the values gives as features/inputs the model is
to predict which label most likely fits. In the case of PMSys’s readiness
prediction you can divide the output into 10 classes. Each class deriving
from the scale 0-10. The classification models will then use what data is
provided, either it is just the univariate inputs of one self report parameter
or multiple to predict which class at that particular date should be. Other
examples of classification predictive modeling is predicting whether or
not an email should be considered spam. This output is typically only
split into "spam" or "not spam". If the email spam probability is set
to be 0.9 the email would then be predicted as spam. The probability
of a classification problem is the likelihood of the inputs belonging to a
certain class. Only having two output classes is typically called a binary
classification problem. Having more than two classes such as in PMSys or
any voice or text recognition is called a multi-class classification problem.
Regression: Regression works with a similar mapping of a function (f)
with inputs (x) to predict a variable (y), although in typical regression
problems the output is continuous and outputs often represents a real-
value for example being integer/floating point quantities such as size,
prize or amounts. An example of regression based machine learning
problem is predicting rain based on climatology related inputs such as
temperature, sea level and other factors. A typical and often used example
of regression prediction is linear regression. Linear regression shows
the linear correlation between inputs and is good for simple regression
problems.

10

2.2.3 Neural networks

The typical neural network is made up of a couple of layers. The first
layer is the input layer, second is one or more hidden layers and the last
layer is the output layer. The research gone in to this network is immense
and there are many different methods and algorithms to chose from when
deciding how the network should work, some might be better than others
depending on what the network is designed for. If we start with the input,
this can be represented in many different ways, vectors being one of the
most used. The length of the vector is depending on how many features
the inputs have. One feature might for example be in our case, how much
sleep one athlete got that night. This input is apart of what makes the
input layer. Weights will be what decides the importance of any given
variable. The weights assigned to each input is then multiplied and added
up. This output is then sent to an activation function, deciding whether the
data should be transferred to the next node for further use. The activation
functions uses a threshold in order to decide this, and the threshold can
be modified for better results. Passing of data on to the next node is what
makes this neural network a feedforward network [3]. This means data
flows in one direction, from input to output. One other way to form a
neural network is by using backpropagation. This is where you do the
opposite, going from output to input. Backpropagation gives a detailed
insight into how changing parts like the weight in the model might change
the overall behaviour of the network. [4]

2.2.4 Time Series

Since PMSys’s data both have a value and date, the data sets created can
be considered a time series. Time series data can be a variety of data sets,
daily closing values of stocks, ocean tides, customer count, it can all be
categorized as time series if indexed in a time order. Therefor different
kinds of analysis, algorithms, regression and classification that can be
used to solve or answer any problem related to the time series. Time
series forecasting is used to predict future values. In forecasting different
methods and models are used depending of which type of data the
problem consists of. Using previous observed values and other existing
values related to the problem with seasonality as seen in figure 2.4 can
be helpful for creating a accurate model. In the dataset gathered by self
reports from PMSys there are multiple values and dates. Reports from
2016 to 2019 is all gathered in the dataset used in this thesis.

11

Figure 2.4: Example of typical time series graph showing both seasonal
shifts and predictable trends [2]

2.2.5 Data analysis

Athletes participation lead to great data sets. Some of the data sets un-
fortunately contains some holes which can be expected with data being
collected in such a big timeline. Some days the athletes might forget or
simply not have the ability to log the required parameters. Because of this,
testing of how the data sets should be prepared is important. With data
missing there are some steps to take in order for the models to more ac-
curately predict, either deleting NaNs completely from the data, replacing
them with 0 or an average of the past observations or use a function to
determine what values would fit in these holes. Where data is missing
for the day, a NaN(Not a number) constant will be put in to maintain the
timeline, this constant don’t have any value. Deleting NaNs completely
will lead to dates missing when feeding it to ML models which if not im-
pacting the model can confuse results.

Feature engineering

The goal of feature engineering is to create features from variables that is
the most favorable to the model and will give the best results considering
the problem in mind. In this project we have a many parameters from self
reports, some parameters hold greater value for readiness prediction than

12

Figure 2.5: Graph showing features (Readiness, Sleep Duration, Sleep
Quality, Stress, Fatigue and Session RPE divided by 100). Useful graph
for understanding the relation between all features on a numerical level

others. One could use every parameter and bet that is the best features
for the model, and one could also test the dataset for which have the
closest relation. Figure 2.5 shows a graph over every potential feature
from data collection. The relation between every parameter is hard to state
but there are some parameters who are more closely following each other
and showing signs of seasonality which could be in good use as features
in a multivariate time series prediction. To test the relation between the
possible features we looked at all of them in a single graph as seen in figure
3.2. Some parameters from the self reports make sense compared next to
each other, for instance sleep duration (measured in hours) and session
RPE (performance based value self given from a workout that day). In this
graph i divided session RPE by 100 in order for it to more closely fit in the
graph on the scale of 0-10. Sleep duration and session RPE might relate on
a logical/bodily sense, a harder workout would make the body more tired
and should theoretically result in a longer sleep duration. In the graph
session RPE can be seen peaking one day with sleep duration dipping at
the same time. This relation might not be as persistent as one would want
it to be in order for it to be considered in the model as a feature. On the
other hand, fatigue, readiness and sleep duration more closely relate to
each other. Dips and peaks in these three parameters consistently happen
at the same time or within a day in the future which logically makes sense
as well.

2.2.6 Model training

In order to find the best way for training a model, we need to define
what is a good model. There are many values to a model we can use
to determine the overall score of a model. We need to consider both the
results of testing, prediction and the behaviour of the model. Efficiency
of models is also something to keep in mind, since you would want a
model to be training fast and not take up too much of the computer’s
power. Every unit, node and layer of the model affects both time and
efficiency. Having multiple layers with multiple nodes might make the

13

model more accurate but will have a significant loss of efficiency, so we
will be keeping this in mind when designing models. When training a
model we need to assess how the model trains through time/epochs. The
models chosen in this thesis are pre-made when it comes to training them
and predicting with them, but we still need a way of checking how well
the models perform.

Loss

Loss in machine learning is an indicator for how good/bad a models’
predictions was on a particular moment. The further prediction is from
the actual values, the higher loss will be. Having a loss of zero means
the model’s prediction is perfect. When training a model having a low
loss will be one of the goals. There are different functions for determining
loss, mean square error(MSE) being one of the most used. In this thesis
we are using MSE for checking loss both in training and when predicting
on unseen and unbiased test sets. MSE works by taking the difference
in the models’ predictions and the actual values, square it and average
it out for every step in question. The formula for MSE is defined as:
1
N ∑D

i=1(xi − yi)
2 MSE will be used for calculating the loss of the epoch you

are at when training and machine learning libraries often project it to the
user for debugging and making the models easier to improve. In addition
to this, we will be using what is called MSPE (Mean Square Prediction
Error). MSPE is just a regular MSE done on an unbiased and unseen test
set or whatever is to be predicted after the model is trained.

Univariate time series

Using only one feature for training is commonly called univariate time
series. It is defined as using only one observation over a time period for
training and prediction.

Multivariate time series

Using multiple features for training is commonly called multivariate time
series. It is defined by using more than one time-dependent variable as in
our instance more than one self report parameter/feature.

14

2.2.7 TSAI library

Tsai is a Deep Learning library actively being developed by timeseriesAI.
In the documentation it is stated it is a open-source deep learning package
built on top of a couple of other Deep Learning libraries, Pytorch and
fastai. Description read from its own documentation page "State-of-the-art
Deep Learning library for Time Series and Sequences" [17]. Implementing
models and neural networks for time series prediction is both complicated
and time consuming, having an easy to use and efficient library to work
with goes a long way. Tsai’s functions and options provides a good deal
of different specification, variables and parameters to test. Along with all
the visuals created when training and testing and the models and training
being efficient, all of this result in a great library for this thesis. Example
of ready-made models in this library relevant for this thesis:

• ResNet

• ResCNN

• FCN

• InceptionTime

• Xceptiontime

• LSTM_FCN

• LSTM

• LSTM Bidirectional

Analysis of training, models, features and prediction in Tsai is a plus point
for this library. Testing some of these features provided by Tsai gave good
insights in which of the features and inputs comes in a favor or not. For
example, the library provides a feature importance tool which is seen in
figure 2.6. This tool uses permutation importance to help the user better
understand what the features does for accuracy or other metrics like mean
squared error in the model.

2.2.8 Keras

From keras.io, keras’s own webpage[10] it claims to be the most used deep
learning framework among the top 5 winning teams on Kaggle. It is a
solid framework for machine learning and deep learning. Used by both

15

Figure 2.6: What the features in an array of 7 does to the accuracy of the
model. Features seen as var 0-6 shown with their represented accuracy
change of removed

CERN and NASA it has to be reliable and industry strong, meaning it is
holding its weight in scaling and efficiency. Built on top of TensorFlow 2, a
well known open source platform for machine learning. Keras focuses its
neural networks on what they call layers, their building blocks. A model
can contain many different layers each providing a little tweak in structure
making up divers use cases. Since Keras is made with the intention of
being highly scalable and easily deployable, many companies uses it for
this purpose. With it being made for a borderline commercial but also
research use in mind it provides a good debug-able environment. Utilities
for debugging and visualising connections, layers and operations makes
it great for people just diving in to deep learning, and a good tool for this
thesis’ experimentation.

2.2.9 Models used

Below we will give a short insight in how the different models used in this
thesis operate.

ResNet

ResNet short for Residual neural network is an artificial neural network
derived from the first very deep feedforward neural network Highway
Network. Highway network is known for being the first neural network
that could handle hundreds of layers and going much deeper than the
other neural networks at that time. Working with a gated way to organise
and operate on information flow this network saw good results when it
came to preventing the vanishing gradient problem.[9] Where ResNet is

16

different from HighwayNet is being gateless. Being gateless this provides
different options across layers, for ResNet networks if there is need for
it, information might skip a couple of layers. This is a good way for
preventing vanishing gradients and increases the speed of training. For
more information about ResNet the paper can be found here.[7]

ResCNN

From Tsai’s documentation there is not much to find about ResCNN. After
some research we found a paper by Sarosij Bose where they compared
CNN to the newly introduced ResilientCNN also called ResCNN.[1]
From the little information we could gather about ResCNN, it uses
image processing techniques like Singular Value Decomposition(SVD)
instead of the typical convolution we can find in CNNs. Singular value
decomposition is factorization of complex matrices which this network is
based off, convolution implemented as a matrix matrix operation. Some
qualities of this model is learning with both bigger batch sizes and bigger
learning rates without sacrificing accuracy.

FCN

Fully Convolutional Networks(FCN) are typically used in semantic
segmentation but can be used for other problems as well. In FCN’s
they typically do not use any Dense layers which makes them have less
parameters. Dense layers are deeply connected layers taking many inputs
and operating on them before sending the information elsewhere.[15] The
dense layer often consists of many neurons which all receive input from
the neurons from the preceding layer, making up a ton of parameters.
In FCN’s there are no Dense layers, so they only use locally connected
layers, like convolution or upscaling as seen with an example of a picture
in figure 2.7. This in turn makes the model faster to train because of the
less parameters throughout all layers.

Inceptiontime

Based on both convolutional neural networks and Resnet, Inception-V4
was made to achieve good performance at a low computational cost.
InceptionTime is a variation of Inception-V4 with multiple Inceptions built
in to the network. InceptionTime takes five Inception modules with the
intention of applying multiple filter at the same time to an input.[5] The

17

Figure 2.7: Figure shows an example of semantic segmentation where
Fully Convolutional Networks can learn by upsampling the output size
when wanted. Figure source: [15]

power of InceptionTime comes in the ability to extract data from both long
and short time series. The flow of one Inception out of the five used in
InceptionTime can be seen in figure 2.8

XceptionTime

XceptionTime is heavily inspired by InceptionTime, having a quick
glance over the main parts of the network it is hard to spot any
difference. For XceptionTime it has been tested better performance
results on larger image classification tasks than with Inception V3
even though they are so similar in structure. The key part in what
separates XceptionTime versus InceptionTime is the Convolution made.
XceptionTime is implemented with depth-wise separable convolutions in
the layer between the bottleneck and output. This in turn will mitigate the
number of required parameters for the network.[14]

RNN

Neural networks are made to reflect the behavior of the human brain.
Simply put, it is made up of nodes with weights in between them.
The weights are used to change and decide which of the nodes are
better used for the solution in question. Neural networks are great
at recognizing patterns and solve common AI and machine learning
problems. Traditional neural networks don’t usually have persistence
like our brains does, the human brain don’t throw away every memory

18

Figure 2.8: Figure shows an example of a multivariate time series
problem and how the inside of Inception treats it, one of the modules in
InceptionTime.[5] The steps of Inception goes as follows: First the input
data is sent to a bottleneck which in this example is a bottleneck with the
dimension of 1. The bottleneck transforms the time series to a multivariate
time series with M dimensions, 1 in this case. This reduces the complexity
and dimension of the model and in turn will give some prevention for
overfitting. After this the output of the bottleneck is filtered with three
convolutions in this example and concatenated with a parallel MaxPooling
operation from the same time series which has gone through a bottleneck
as well.

for each thought. Recurrent neural networks addresses this, looping
in this network allows information to persist. Each chunk in the
network allows information to be passed along to the next[3]. Uses
of this type of neural network can be seen many places, language
modeling, image captioning, speech recognition and Pål and colleagues
work with performance prediction. Where some networks use just
a normal backpropagation for determining the gradients, RNN uses
backpropagation though time(BPTT). The difference here lies in when the
errors for adjusting weights are calculated. In normal backpropagation it
is usually done from output layer to the input layer, but in RNN errors
are summed at each time step through training. One downside to doing
it this way is the probability of running into vanishing gradients which
essentially makes the model stop learning at a certain point if the gradient
is too small.

LSTM

LSTM is based upon a concept of RNN, but has added some new techno-
logy to the common RNN network. LSTM has "cells" in the hidden layer
with three different gates functions, input, output and forget [4]. With

19

these gates this network can more accurately decide the results based on
context stated before. The cells can communicate prior context and in-
formation to the next cell and the cells can also decide what to forget. In-
formation on the cell is sent to a sort of conveyor belt where if any inform-
ation should be changed before outputting it, it can be done with these
conveyor belts. For PMSys, patterns from the self-reported data can be
found and used to predict if an injury could possible be in the horizon and
which player is ready for a match, this can all be done in a nice and agile
way with LSTM.

A single LSTM cell includes a couple components as shown in figure 2.9.
In this figure red circles indicate operands being done from left to right
depending on the decisions of the model. The yellow squares represent
the functions Sigmoid and Tahn being used as activation functions. Each
cell takes inn two inputs, one cell state and general input, it gives a output
and sends the input and a cell state further to the next cell. For simplicity
i will call the top running line both working as input and output trough
the cells, the cell state. The two different activation functions both got
their own role in this structure. Sigmoid functions will output from 0 to
1, making it known as the gatekeeper for a forget gate. For instance, if the
value equals 0 in the first Sigmoid operation the input will be forgotten,
and otherwise if the output is equal to 1, the input will be considered in
future operations. Tanh outputs from -1 to 1, this is crucial to overcome
the vanishing gradient problem where tanh will sustain for a longer range
and not giving the model such a close value to 0. Tanh and Relu are both
valuable options and the debate of which is best for LSTM is still active. A
combination of Tanh and Sigmoid is used in what can be called the input
gate and output gate which. Input gate being right after the forget gate
multiplication/Sigmoid operation. Taking in the raw input from the cell
t-1 running it through a Sigmoid actiavtion and multiplying it to the result
of a Tanh activation. This is then added to what came from the forget gate.
The output gate will take the raw input from cell t-1 running it with a Sig-
moid activation and multiplying it with what comes from taking a Tanh
activation on the cell state pipeline.
Sigmoid activation:

hθ(x) =
1

1 + e−θTx

Tanh activation:
tanh

(x − g
h

)

20

Figure 2.9: The structure of LSTM cells Figure source: [16]

Figure 2.10: The layers inside an LSTM cell, figure source: [8]

GRU

Similar to LSTM, GRU is a runner up for solving RNN’s problems. Where
RNN under performs in short-term memory, GRU along with LSTM is
made to address these problems. Made of one gate less than LSTM, GRU
goes around the cell state from LSTM with only having an update gate
and a reset gate. For the update gate, it decides what information to keep
or ignore/throw away. The reset gate works in the same way on another
level it assesses what part of the past information passed in it wants to
forget for further computation. Since GRU has one less gate, the network
will train somewhat faster than LSTM. Which of LSTM and GRU is the
definite best of the two is up to the problem being solved, both LSTM and
GRU can work great depending on the problem.

2.3 Related studies

There are some studies done which related to some degree to what we
are researching. In this section we will introduce some of the problems
relevant to this thesis which earlier has been addressed. These studies has

21

Figure 2.11: Figure shows one single GRU cell. Red circle indicating
sigmoid functions and blue tanh. figure source: [13]

influenced what was decided to experimented on in this thesis.

2.3.1 LSTM for peak readiness

With the purpose of finding out if machine-learning methods could be
applied and predict the future health and fitness of athletes Pål set up
an experiment[20]. Pål used LSTM to train their model. The model
took in players reported readiness values and outputted a score being the
predicted readiness value. This all operated on a day to day basis, using
one day’s values to predict the next with the possibility of adding more
data in the future which might help predicting more accurate readiness
values. For training and validation, two different methods were used:
“First, training on all other players on the team, then predicting the
readiness of the chosen player. Second, use most of a player’s data to
train and then predict on the rest.” [20]. The first method had a scarce
amount of data to train and predict on since the model only trained and
predicted on the same person, and only having 100 to 200 time steps to
train on. The method performed quite good with respect to the limitations
it had. The accuracy could have been much better, but it was mostly clear
where the general peaks would have been. Training using the dataset
of all players except one and predicting on that one player saw the best
results out of the two methods. One drawback with this method could
be that the other players might have different behaviors in their patterns,
but the trade for this is that this method gets more data than the other
method. The second method had some inaccuracy but overall it could

22

more accurately predict a clear peak and much earlier in the experiment
than the other method. With the two methods having some inaccuracy
possibly caused by the lack of training data, Pål extended their experiment
to detect positive and negative peaks. This will come in handy for fitting
a workout plan or knowing before a match which player is most ready
and has the most potential for optimal performance. From observing the
data outputted from the model, it is clear that the model could distinguish
high and low values quite well. This made it possible to define a positive
peak to values in readiness from 8 and up to 10. One small issue with the
model was distinguishing higher values from each other. If a player had
an higher average of values the model could distinguish the values better
than with players with lower average readiness to train values. Negative
peaks are a good indicator for finding out which players should not train
or play. With a readiness value under 3 the players are classified as having
a negative peak in readiness. In this evaluation the model could more
easily distinguish between the negative peaks. Overall the experiment got
good results on predicting peaks in readiness.

2.3.2 Case study on self-reporting symptoms on triathletes

Three case studies conducted by J. R. Grove and colleagues looked at
triathletes performance stress measured with a training scale called Train-
ing Distress Scale (TDS).[6] This scale includes 19 items of measurement
related to distress and performance readiness. Two of the case studies
performed different interval training to validate TDS score over time. The
third group were a group of swimmers examined in relation to TDS over a
2 week period before a swim competition. Training distress measured re-
lated to TDS include various symptoms in relation to “emotionality, gen-
eral fatigue, concentration difficulties, physical discomfort, sleep disturb-
ance, and appetite changes.” [6]. Some examples from this includes “lack
of energy”, “muscle soreness” and “loss of appetite”. Input from these
symptoms where collected on a 0-5 scale on to what extent the participants
experienced the symptoms the last two days. Both the first and second
case study found that TDS demonstrated a link between performance and
the self-reported data. All three cases concluded that using TDS as a meas-
urement of training distress could successfully indicate peak readiness to
perform. A high score in TDS related to a decrease in performance. All
though, there are limitations to the research both in the limited sample size
and variability of self-reporting with participants’ possibility of not assess-
ing the same scores compared to each other, the results are still promising.

23

2.4 Summary

This chapter gave an quick introduction to the background knowledge
needed for this thesis. In section 2.1, we took a look at PMSys and how the
platform is made for monitoring and improving athletes and is a good link
between staff and athletes in an organization. Furthermore we described
how the system uses self reporting data from the athletes and portrays it
to a portal for coaches, team personnel and athletes. We went through
the steps for the athletes when reporting their data and looked at the
functionality of the system both with the mobile app and coach portal. We
described every parameter the athletes could enter and send as reports to
the system and how they are graded on a scale. At the end of this section
we introduced how machine learning is used for readiness prediction and
how it will be used in the system.
In section 2.2 we introduced the technologies used in this thesis. This
section started with a description of how machine learning works and
typical problems related to machine learning. From machine learning
we moved on to a short introduction of supervised learning and how the
data is created so that the machine learning models use it optimally. This
subsection described the difference between classification and regression
and how showed examples of how the two differ from each other. From
this we moved on to neural networks, and how it uses layers and
weights along with the supervised dataset. We also discussed the use
of backpropagation and how it can improve the behaviour of models.
Since PMSys stores their data along with dates, it can be considered time
series. Here we looked at different examples of time series and how PMSys
uses data from 2016 to 2019. With all this data stored it needs to be
analysed and processed. Here, we discussed how the data is analysed
with regards to missing values(NaNs) and how the dataset is split up in
features. Feature engineering is a big part of making a model perform
as well as we want it, so we discussed how the features gives the model
potential. We discussed how features relate to one another and selecting
the right ones for the problem in question is key for performance. Next
we moved on to how model training works and how defining what you
want out of a model is important. Along with this we described the way
we measure the performance of a model with a mean square error(MSE)
on the unbiased and unseen test set making it mean square prediction
error(MSPE). Before we headed in to defining the two main machine
learning libraries used in this thesis we briefly described the difference
between univariate time series and multivariate time series. The two main
machine learning libraries used in this thesis is Tsai and Keras. To finish
this section we looked at what they are, where they are used and what
they are good for.
Section 2.3 showed and explained the relevant models from machine

24

learning libraries explained just over. The models introduced where:

• ResNet

• ResCNN

• FCN

• InceptionTime

• XceptionTime

• RNN

• LSTM

• GRU

All of these models explain the main theory behind every model used in
this thesis, since the rest of the models build upon the logic of these 8
models explained here. In this section we saw what defined the models,
what makes them differ from each other and what typically makes them
excel over each other.
For the last section 2.4 we took a look at prior work done on the relevant
technology and system. We saw how LSTM had been used earlier by Pål
and colleagues to predict the readiness values of players. In this case we
explained how the models had a hard time distinguishing higher values
from each other, how a the models did not always predict the actual
highest value only catching the upwards trend most of the time. After
this, we introduces a case done by J. R. Grove on how effective RPE(Rate
of Percieved Exertion) self reporting had been seen in triathletes. This case
brought to life the link between actual performance and what the athletes
self reported on the TDS(Training Distress Scale).

Self-reporting is known by now to be a viable way for athletes to
keep track of their health and is a good measurement used for team
improvement which is seen in both Pål and Grove, J.R[20] [6]. Collecting
this into a well developed system running on smartphones makes it even
more efficient and opens up possibilities for even more functionality and
research. For coaches and team personnel to be able to analyze and
further work with this self-reported data improves the old way of keeping
track of the athletes. Communicating and notifying athletes in the app
also makes this much more efficient. Machine learning fitted around the
relevant data for peak readiness has seen use in sports analytics. Neural
networks with a long short term memory found the best use in predicting
readiness in athletes with self-reporting as input. The prediction can be

25

helpful in both fitting a training plan, and finding which players are most
ready for a match. Finding parameters and functionality which will give a
better prediction in performance readiness can be done on the basis which
already is available by Pål’s work abd PMSys’ data collection.

26

Chapter 3

Methodology

In this chapter, we will look at the where our experiments are run and
what choices we made for the configuration of both the models and data
used. We will look at the baseline of everything namely the system spe-
cifications of the computer used for running the experiments. Along with
this we will look at different libraries used as the building blocks of how
we are able to compute and run everything. Tsai and Keras are two of
the main libraries used for the machine learning part of this thesis with
some extra tools being used in order to make these main libraries work
seamlessly. In addition to this, we will discuss the choices made inside
these libraries when it comes to models, parameters for the models and
functionality these models provides. The data fed to these models are also
influential, so there are some decisions going into what separates the dif-
ferent datasets that we will look at as well.

3.1 System specification

Table 8.1 is a list of each component along with their respective version
under the software tab. In the hardware tab you will see the most
important hardware components along with its specifications. Everything
in this list is ran with Windows on top. There is no specific reasoning
for this other than it was the easiest to configure since it was already the
running operating system on the computer used for testing. Running
each the component on Windows did not come with any advantage or
disadvantage, at least none experienced in this thesis. Python was used as
the primary and only programming language used for implementation.
Python is often used when it comes to implementation and running

27

Type Name Version Description

Windows Pro 10.0.19044 OS

Python 3.8.5 Programming language

Tsai 0.3.0 + extra Machine Learning library

Software Fastai 2.5.3 Machine Learning library

Fastcore 1.3.27 Python extension

Torch 1.10.0+cpu Machine Learning library

Pandas 1.3.4 Data analysis library

Memory 16 GB -

Hardware Drive
Kingston 1TB M.2 SSD

2200 MBps / 2000 MBps

-

CPU
AMD Ryzen 5 3600,

6-core

-

Table 3.1: System specifications.

of machine learning. it is easy to use with lots of compatibility for
the libraries to be used. In table 8.1 the libraries used are only the
core and base libraries needed in order to experiment with Keras or
Tsai. To make implementation easier a couple of time-saver libraries
were used. Libraries such as sklearn.metrics for MSE and confusion
matrix, IPython.display for clearing output are some examples of the
types of libraries not mentioned in the table. ’Keras’ and ’Tsai’ are the
main libraries used for machine learning both being compatible with the
components used and fairly easy to set up. For handling the data used fed
to Keras and Tsai we used pandas, a data analysis library for python. This
library made the typical time-consuming job of arranging and configuring
the time series data much faster and easier.

3.2 Dataset

Since we aim to predict readiness to play, the shape of the different
datasets plays a big role for optimal training. The data gotten from

28

PMSys’ self reporting system unfortunatly got some days where players
did not report anything to the system. These values needs to be addressed
in order for any prediction to be done. Finding the optimal way of
handling these missing data points(NaN) could make a difference for both
training and prediction. We decided to replace the missing datapoints
with three different approaches; filling NaNs with zeros, a mean value and
an interpolate value. From this, there will be 9 different configurations of
datasets used in experimentation; two multivariate and one univariate.
Each of these will be used to test the three different NaN handling
methods.

3.2.1 NaN handling filling with zero values

Replacing NaN values with 0 is not that difficult of a process. With panda’s
built-in function for filling NaN we were able to simply state what value
we want to use for replacing and do it all in one go. Compared to the other
methods for filling, this one should not need much explanation. For every
point where there are missing data this function replaces it with the value
0.

3.2.2 NaN handling filling with mean values

Filling NaNs with mean values is a typical statistical way of imputing.
What we believe will be the benefit from filling with mean values is that
compared to fillig with zero values, mean values should be closer to what
the athlete actual was going to report that day. This all relies on that the
athletes are consistent in the way their body feels, which might not be the
case every time. When filling NaNs with the mean value we first calculate
the mean value of the whole dataset. This fairly simple, and after that
we find every NaN in order for it to be replaced with this value we just
computed.

3.2.3 NaN handling filling with interpolate values

Interpolation or more specifically linear interpolation as we will use, is a
simple method for estimating any missing or unknown values/value of a
function between known values. The interpolated point/target value is a
point between two known values. The calculation of this point uses the
known values from both side, take a look at figure 3.1 for visuals. In this

29

Figure 3.1: Figure shows what is estimated in linear interpolation
(Interpolated point P) and the formula for this calculation, figure sources
[11] [19]

example we take the biggest value of y from point B and subtract it with
the y-value of point A. This is then divided with the x-value of B minus the
x-value of A. All of this is then multiplied with (x-x1) and added with the
y-value of point A. Since interpolation requires two known values there
are cases where some NaNs might not have two known values in front
of behind itself. In these cases we decided to fill the rest of NaNs with
zeros. Typically this would happen at the start or at the end of a dataset,
and all the machine learning models used do not support NaN as data for
training.

3.2.4 Univariate

For univariate training we will only use one features which is the same
feature as we are to predict; Readiness to play. As we discussed earlier in
this chapter, univariate training will be further divided into 3 datasets.
These consists of NaNs filed with zeros, mean value and interpolate
values. Training will happen on one of the three chosen datasets at a time,
we will not use all three sets at once this will be done in the multivariate
part of experimentation.

3.2.5 Multivariate

For multivariate datasets we have two different configurations for sets:

• One for training on every player’s readiness level(30 in total) and

30

Figure 3.2: Difference of filling NaNs with zero, mean value and
interpolate values. The index of this dataset is dates, but to get a visual
on the dataset it is indexed in an observational order

predicting one particular player Readiness level

• One for training on Readiness, Sleep, Fatigue, Stress, Sleep quality
and PE (Percieved Exertion) levels on one player and predicting
Readiness on the same player

Figure 3.2 and 3.3 shows the two configurations of multivariate datasets.
Figure 3.2 is part of the dataset for multivariate training with training
on all player’s Readiness data(figure showing the three different NaN
imputes for one player) and figure 8.3 is multivariate training on a subset
of one player’s self report data. For experimentation on the multivariate
dataset training on all players there are a lot of missing datapoints. After
looking at the entire dataset we found that some players have upwards of
800 days where they did not record readiness values. This could turn into
an issue for the models when training so we decided to cut out the players
with the most NaNs in their section of the dataset. For players with more
than 750 missing NaNs we will cut them out the training, validation and
test set. After cutting these players we are left with 15 in total with less
than 750 NaNs throughout the period of self reporting. We will still call it
training on all players even though we cut players and technically it is not
"all" players.

3.2.6 Timesteps and prediction clarification

Timesteps or sometimes called lag or window size is a method in machine
learning where you shift time series data so that previous observations
will affect the prediction of models. Sliding window is also the same thing
which some people will call it. Browsing the web you can find some

31

Figure 3.3: Figure shows multivariate dataset with Readiness, Sleep,
Fatigue, Stress, SleepQuality and PE(Perceived Exertion). This particular
set is also a set used for multivariate training on one player and predicting
the Readiness level on that player.

diversity in what people call timesteps, we decided to define timesteps
as the number of previous observations used in making a prediction.
In addition to timesteps when making the datasets for timeseries you
can define the strafe the window will take when setting up predictions.
Having a strafe of 1 is the equivalent to taking the x (timesteps) amount
of days prior to the day you want to predict and after predicting the
next prediction will use two of the same values used in the prediction
prior. Finding the right balance in timesteps is important if you want to
see some good results. We decided to try a couple of different timesteps
when experimenting to see what gave the best average score. Looking
at how machine learning would work in the area PMSys designed it
to be implemented in, there are some things to take into consideration.
One might get the best results by having a certain amount of timesteps,
but typically football teams have their training and match days in a
structured week. They might have their games on saturday or sunday
using weekdays as training days. In this scenario you might see some
seasonality in the data which might give a timestep of 6-7 days an
advantage over just one or two days. This premise is not based on the fact
that some days are missing data, so we will be testing different timesteps
also called window size. When it comes to predicting just one day or a
sequence of days ahead the results may vary. For practical reasons a team
might want to predict 6 or 7 days ahead of a game in order to better plan
what they should have the players do that week. If they find a player who
is predicted to not be as ready to play as they would like, they can now
adjust this in order for the player to the most ready to play. This way of
predicting is called multi-step forecasting or multi-step prediction.

32

Figure 3.4: Figure shows how strafe and window length looks like on a
series of N length. This particular figure has a window of 4 and trafe of
1. Feeding this to a configured model will use the 4 values from x0 to x3
for predicting the value of x4. Next prediction will use the values x1 to x4
for prediction of the next value. These two prediction will use some of the
same values since the window is of size 4 and strafe is only 1. There are
many different ways of configuring these types of models, having a strafe
of 1 being fairly common. Figure source: [18]

3.2.7 Multi-step forecasting

Multi-step prediction is predicting multiple days ahead of time. For ex-
ample, you can train your models on 3 months worth of data and with
multi-step prediction/forecasting you can predict the next 2 weeks of data.
In the case of PMSys, multi-step prediction can be useful for teams that
want to see how their players’ readiness to play will be heading the next
week. If they have pushed a week full of training and want to see how
their readiness will be the next week, the models can predict day by day
how the readiness might go. Something to be noted, the longer you want
to predict into the future the less accurate the prediction will be. If we set
the models to predict the next 10 days after self reported data stops, it will
continue to top off days for prediction based on what is already predicted.
Figure 3.5 illustrates how multi-step forecasting works. This example uses
a sliding window length of 9 days and hops to the next day after one pre-
diction. Once a prediction is made the first value is no longer used in
prediction since the window length is only 9 so the newly predicted value
will be used. This can go on as long as one wants, only downside is ac-
curacy will decrease since the data used for prediction is not based on any
facts/observations.

For our experiment with multi-step forecasting we will start by using a
window length of 1 and a test set of 20 days. This means at the end of the
test set there are no longer any observational data left for the model to use
when predicting. We are going to see how accurate predictions will be and

33

Figure 3.5: Figure illustrates multi-step prediction/forecasting. In this
example the window size is 9 and the last white box is the day to be
predicted. When that day is predicted the window shifts one day ahead
and puts the predicted value in to this window. This means the model will
use the predicted value to further predict what values comes next. Figure
source: [12]

we will test what works best, replacing NaNs with interpolation, zero or
mean values. Due to time constraints we will use Keras with univariate
training for testing this. Tsai might have given better results but we did not
find any functionality resembling this in their library and it seemed to be
too complicated to try modify or implement this with Tsai. For Keras they
did not bring any functionality for this but their predict method comes in
handy, so we made a recursive multi-step forecasting solution ourselves.
A fully working multi-step forecasting method might be coming soon to
Keras so better solutions are probably out there in a moment of time.

For the experiments with multi-step forecasting we will test how well
this works in Keras with the same three different models tested on be-
fore; LSTM, GRU and RNN. The models will be trained on the three dif-
ferent NaN handling datasets. When predicting we plan to use different
amount of days as test set. The first prediction of these days will use ac-
tual observational data to predict and after this, we feed the model its own
prediction for it to further predict.

34

Figure 3.6: Figure shows the split distribution of training, validation and
test set

3.2.8 Data splits for training, testing and validation sets

Data splits are important for model training and having the perfect
balance of training, testing and validation data will result in the best
results. From PMSys’ self-reporting system we got 915 days worth of data.
Figure 3.6 shows the exact splits used in experimentation. We decided to
go for a training size of about 80 percent, with validation set having 20
percent and test data will go on 10 days. For the test set we decided to go
with the days not including zeros which was the case if we cut off the last
10 days.

• Training split: 714

• Validation split: 180

• Test split: 10

NaN handling as we discussed earlier in this chapter will be done on the
entirety of the dataset, meaning it will not just be done on the training set
but on validation as well. The test set will not be affected since we went
for a test set without zeros in it.

3.3 Keras and Tsai Models

In order to compare the results between Keras and Tsai, we decided to try
and find the best performing models from a subset of models chosen for
both Keras and Tsai. Since Keras do not use the same pre-built models
as Tsai uses, we were limited to making our own models out of what
they provide with their layers architecture. The layers in each Keras
model are created the same with only the defining part of the model
(LSTM/GRU/RNN) being what is changed between them. We landed
on 3 different RNN based models:

• LSTM (Long Short Term Memory)

35

• GRU (Gated Recurrent Unit)

• SimpleRNN (A simple version of a Recurrent Neural Network)

For the models chosen for Tsai we came up with the list of:

• FCN

• InceptionTime

• LSTM

• LSTM_FCN

• XceptionTime

• ResNet

• XResNet

• ResCNN

36

Chapter 4

Experiments and results

This chapter will contain an overview of the experiments done, how
they were done and what the results looked like. Experimentation went
through different stages, the start focused on testing and learning how
the different libraries worked and behaved on our data. From experiment
to experiment we use the knowledge learned along the way in order to
find the optimal results. We will be testing what models works the best,
and for what NaN handling method they combine best with, and for what
training method they all work the best with. In addition to this, we will
test to see if how the models and configurations we find the best will do
on predicting readiness for players both a day ahead and a couple of days
in the future. To finish this chapter we will present and discuss the overall
results obtained.

4.1 Experiments overview

After learning and understanding how both keras and Tsai implements we
decided to find the models with the best results for further experimenta-
tion. From Tsai we chose 14 models we found in Tsai’s documentation and
for Keras we 3 models who were easy to set up. Experiments are also made
to compare what NaN handling methods work the best for these models.
We have chosen three different NaN handling methods; Replacing NaNs
with zeros, replacing with the mean value of the entire dataset and lastly,
replacing with an interpolated value. On top of all this we will try to check
what window size works the best when predicting. From prior work done
with PMSys we chose to check with two sliding window sizes; 1 day win-
dow and 3 day window. Testing will be done on the same test set through
all experiments in the beginning. This test set is a set off 10 days with no

37

NaNs.

The following experiments will use the same set of self report data for
the whole of experimentation. Prediction will always be done on readiness
to play and on the same player for every experiment, both for multivariate
and univariate training methods. Multivariate models will use two
different approaches. One of the approaches is training on multiple
players in the team, and predicting on the values of a single player withing
the same dataset. This approach will only use the parameter Readiness for
training and prediction and the features for all models will be the different
readiness to play taken from the dataset in question. The other approach
is training with multiple features from the self reporting data on the same
player as is being predicted on. The features for this training method will
be: Readiness, fatigue, stress, sleep duration, sleep quality and perceived
exertion. Univariate models will train on one player with one feature,
Readiness.

When determining how well models performed we will look at the
MSPE (Mean Square Prediction Error) of the models. This score is
calculated based on an unbiased test set of 10 days going for the same
set through all experiments. Training loss and validation loss from
training will also be assessed in the initial part of experimentation in
order to determine how to adjust parameters for models used in further
experimentation. Graphs from prediction on test sets will also be used to
determine how the models behave on the different datasets. Everything
we learn from each step of experimentation will be used in the next step if
possible, changes in parameters might not work universally on all models
or datasets created, so some hyperparameters might be different inside
each experimentation.

After initial testing is done, we intend of using the information we
got on a different set of data. This time we will be testing different
ways of handling NaNs and seeing what needs to be changed from initial
experimentation on to this intermediate experimentation. In addition to
this, we will be experimenting with different window sizes of 1 day or
3 days. For this middle part of experimentation we will compare all the
models, the results they got and how they behaived when predicting on
the test set with different datasets for training. After we have determined
what worked the best, we will continue to a final experiment. This
experiment is about predicting x number of days into the future. We will
use Keras for this experimentation and check whether the models can hold
up the same results in this last experiment compared to the intermediate
experiments. We will use different window sizes and predict different
amount of days into the future to check what works best and how well
the models can predict into the future.

38

4.2 Initial experiments

4.2.1 Overview

The initial experimentation was done to establish what capacity and
baseline results each model had in order for the models to improve
and be compared later on. For the initial experimentation we opted for
handling NaNs by filling them with zeros, for all sets including training
and validation set. The beginning thoughts for this thesis was to compare
results from Keras and Tsai’ LSTM models. After some research and
discussion we opted for testing what Tsai has to offer over Keras which
is their many premade models and utilities easily usable. For initial
experimentation we take a look at what Keras and Tsai has to offer and
how they compare when it comes to results. Along with this we will take
a look at which of the 3 training methods we use generate the best results.
We will also track what hyperparameters work for the different setups,
something we will need for further experimentation down the line.

Tsai

Tsai provides a tutorial notebook with different assembles for machine
learning in their environment. From this notebook they provide a test you
can run with their create_model to compare different models’ metrics and
time. We tested in total 14 different models with this test:

• ResNet

• ResCNN

• LSTM_FCN

• LSTM_FCN (’shuffle’: false)

• FCN

• XceptionTime

• InceptionTime

• LSTM (’n_layers’: 3, ’bidirectional’: True)

• LSTM (’n_layers’: 1, ’bidirectional’: False, ’fc_dropout’: 0.2,
’mm_dropout’: 0.2)

39

Type Parameter Description

Number of epochs 50

Hyper- Batch size 32

parameters Learning rate 0.001

Optimizer Adam

NaN handling Fill with ’0’

Other Training method

Training on all players,

training on one player

multivariate and training

on univariate

Window size 1

Prediction Readiness

Table 4.1: Table shows the configurations of hyperparameters and other
relevant information used for initial experimentation.

• LSTM (’n_layers’: 2, ’bidirectional’: True)

• LSTM (’n_layers’: 2, ’bidirectional’: False)

• LSTM (’n_layers’: 3, ’bidirectional’: False)

• LSTM (’n_layers’: 1, ’bidirectional’: True)

• xresnet1d34

Since we are experimenting on LSTM configuration in Keras as well, we
added 6 different LSTM configurations in Tsai to be able to compare them
with LSTM in Keras. When running every model listed above, we set
the number of epochs to 50, learning rate to 0.001 and used Adam as
optimizer which comes as default optimizer. For Tsai we treated this
machine learning problem as a regression problem with a window size
of 1.

Keras

Initial experimentation with Keras is aimed at showing us what keras
has to offer and how it compares to Tsai. Keras thrives in flexibility

40

and make it easy for users to make changes and design their own model
with their layered architecture. This is what we decided to experiment
on in the initial stages of experimentation for Keras. For the models
we decided to go for Keras’ recurrent neural network layers found in
their documentation. Models we will use in Keras are LSTM, GRU and
SimpleRNN which is a basic RNN. These models will be setup in the same
way dataset and training wise as Tsai by training and testing it on the two
multivariate datasets and one univariate dataset as discussed before. Just
as with Tsai we will be doing this with the handling of replacing NaNs
with zero values. Because of the structure of which Keras is based on,
completely copying Tsai’s models with with Keras is hard. We will try
to make the models as simple and default as we can based on what we
know of the models chosen for testing with Tsai. When it comes to the
hypterparameters for the models in Keras we chose the same as for Tsai,
learning rate of 0.001, 50 number of epochs, batch size of 128 and optimizer
as Adam and a window size of 1.

4.2.2 Results for Tsai

Experimentation for Tsai was done by testing 14 different models on the
same dataset. The dataset was various self report data with ’0’ replacing
NaNs. We ran three different tests on this dataset as seen in table 9.1 with
the same number of epochs, batch size and learning rate. These tests are
regression based test with the use of Tsai’s TSRegression specified as a
tfms parameter. This parameter as fastai defines it in their documentation,
is a transformer and it is where you can specify how you want the models
to work, classification or regression in our case. Prediction through the
entirety of initial experimentation was done on the same player for every
case in order to ensure continuity through testing. The following shows
all results from initial experimentation.

Results from multivariate training on all players readiness levels

When training on all players, features was set to be every player’s read-
iness level. In total this gave us a feature count of 15. After running the
models listed previously on the configuration seen in table 9.1, we set it up
to be compared as seen in figure 4.1. This figure is sorted in an descending
order based on MSPE (Mean Square Prediction Error). At first we thought
of measuring performance on the loss of the validation set. This gave us
the initial thoughts that LSTM was the better choice for predicing on this
dataset, having the lowest validation loss. After checking how the models

41

Figure 4.1: Figure shows initial experimentation results from training on
all players readiness levels and predicting readiness of one player

did on the test set with MSPE(MSE on test set) we came to another conclu-
sion. MSE on the validation set is not the same as MSE on the test set, so
calculating the MSPE (Mean squared prediction error) should be done in
further experimentation to better show the true results.
Now knowing this, the results are looking different. ResNet, Xception-
Time and InceptionTime did better than we expected when looking at
MSPE score instead of validation loss. The top 5 models are now: ResNet,
LSTM_FCN(shuffled), LSTM(3 layers), XceptionTime, InceptionTime and
LSTM_FCN(no shuffle). When reflecting on the results we got, we can
see the models tend to have a much lower training loss than validation
loss. This is something we do not want to see when evaluating the mod-
els. Having such a low training loss compared to validation loss might
indicate that the model is overfitting. Overfitting is when the training of
models end up corresponding to close to the training set provided, result-
ing in worse performance when testing on other sets like the validation or
test sets we use.

Concluding what we have discovered from this test, we have figured out
ResNet seems to work the best on training on all so far. With LSTM_FCN,
LSTM (3 layers) XceptionTime and InceptionTime coming in at the top 5
models. The models seems to be getting a low training loss but a high
validation loss which might be caused by overfitting.

42

Figure 4.2: Figure shows initial experimentation results from training on
one players self report data and predicting on the same player

Results from multivariate training on one players self report data

As stated before, when training on self reported data on one player
we used the following parameters as features: Readiness to play, Sleep
Duration, Stress Level, Sleep quality, Fatigue, Soreness and Perceived
Exertion. This time we got some worse results compared to the last
experiment. The overall MSPE score is way up, now best coming in at 8.5
and training seems to go worse as well, figure 4.2 for reference. Validation
loss was over 14 for every model with training loss lower but still much
higher than experiments with training on all players. There are 4 models
standing out in this test which are all different configurations of LSTM,
after these the MSPE score tend to stay pretty close for the rest of the
models. Even though this test indicated some sort of overfitting we still
have something to work with for the next experiments with the same
multivariate training method.

Results from univariate training

Results from training on an univariate dataset did at the start see some
worse results than seen in Figure 4.3. The models were consistently
getting MSPE scores around 16+ with both training and validation loss
seen as high enough to explain the bad results. Both training and
validation loss seemed to start high and end high throughout epochs.
After testing different configurations of the base model parameters like
learning rate, batch size, number of epochs and even training/validation

43

Figure 4.3: Figure shows initial experimentation results from univariate
training

splits we figured out the models did not get enough data to perform better.
This lead to us changing the number of days needed for an prediction.
Changing the number of days used in prediction to 3 days seemed to
be a good fit for our univariate testing. After this change we got the
results seen in figure 4.3. Now we had all models performing under 5
in MSPE score which was good to see. Running univariate training just
like multivariate training having the same number of models, epochs and
learning rate turned out not to be working that great. We will se in further
experimentation if we need to run univariate training on its own set of
hyperparameters.

4.2.3 Results for Keras

For experimentation with Keras we decided to first try running every
model on the same parameters as we did for Tsai, see Table 9.1
for reference. Although Keras might react differently with the same
parameters such as number of epochs and learning rate we decided to test
how the results might vary from Tsai to Keras. Prediction will still be done
on the readiness to play levels of the player selected. The player selected
is also the same as in Tsai. In Keras we needed to "build" our own model
with their layer building blocks. We tried not complicating the models
in Keras too much for initial experimentation only having a 2 dropouts,
2 layers of chosen neural networks and 1 dense layer. We ran 3 different
neural networks with the configuration seen in figure 4.4: LSTM, GRU
and RNN. These models run on the same dataset with the same training,
validation and test split so the data is completely the same in Keras and

44

Figure 4.4: Figure shows how we designed the models used in experi-
mentation for Keras. Each blue box represents a layer with the arrows
pointing to the next layer. From each layer, the input is processed and
passed on as output to the next layer. Once it reaches the dense layer the
output will be narrowed down to a single output for each datapoint fed to
the model. Every model has a dropout dividing the middle layer with the
same dropout rate: 0.2.

Model Train loss Valid loss MSPE Time

LSTM 4.4500 4.2860 8.54 5.1

GRU 4.2453 4.5471 9.48 5

RNN 4.3890 4.2206 9.16 3.7

Table 4.2: Table shows results from multivariate training on all predicting
on one in Keras

Tsai. For comparing we look at the MSPE score of the models, this is MSE
for prediction data. This means doing a normal MSE validation on the
predicted values and actual values from test set.

Results from multivariate training on all predicting on one

After running tests with Keras we got the results shown in table 4.2. When
discussing how Keras is built and how it is intended to be used, we
believed the running time and results from Keras would be slower and
worse than Tsai’ results. After this first experiment with training on all
players and predicting on one, we were surprised to see the runtime so
low at around 5 seconds with the batch size of 32 and 50 epochs. Training
loss and validation loss looked promising when considering overfitting,
no indication of any overfitting only a model with not the best accuracy
score. Overall, the result from testing here had LSTM ahead of the other
models and we will be considering this for further experimentation. All in
all, LSTM got a score of 8.54 MSPE following with RNN at 9.16 and GRU
at 9.48 MSPE score. Thing to note here is RNN is running a bit faster than
the other models.

45

Model Train loss Valid loss MSPE Time

LSTM 8.1947 6.2341 12.92 4.9

GRU 8.0403 6.2185 13.1 5

RNN 8.0838 6.1591 13.08 3.4

Table 4.3: Table shows results from multivariate training on one predicting
on one in Keras

Results from multivariate training on one predicting on one

Results of training on one player’s self reported data is shown in table
4.3. From running tests on the different self reported data stated earlier
we got some worse results compared to the first initial experiment ran
with Keras. MSPE was looking way higher than anticipated with a
training loss of almost double of the first Keras experiment. Increasing
the epochs seemed to do nothing to the results, looking at the training
and validation loss graph it was clear after 10-15 epochs the loss of
both training and validation just bottomed out. We tried changing the
optimizer, the learning rate, batch size and the results were still the same
bottoming out around the same epoch. After adding shuffling to the data
we saw some change in the MSPE score for the better, we therefore ran
the model 10 times and took the average MSPE all runs. It went from a
score of 16.34 on RNN to an average score of 8.45. When looking at a
graph produces in one of the runs with a test size of 50 found in figure 4.5
we see the difference slightly. The left graph shows how the model more
closely can predict when the readiness spikes compared to the other graph
where the prediction seems to lag a bit more. The model without shuffling
seems to need a day after readiness ascents or descents to predict it is
going up or down. To conclude the results gotten, LSTM got the better
of the 3 models even if it is only with a slight margin and training loss
compared to the MSPE looks promising if we only could make the models
more exploratory.

Results from univariate training

As expected testing with the univariate dataset saw worse results than
multivariate testing. Overall higher in everything, training loss, validation
loss and MSPE. These results were done with 1 day lag and predicting the
day after and it revealed the model was not exploratory enough, table 4.4
shows the MSPE score of this test. It seemed the model was going kind
off safe and not predicting volatile movements in readiness. If the actual

46

Figure 4.5: Figure shows what the features in an array of 7 does to the
accuracy of the model. Lower score results in a higher model accuracy

Model Train loss Valid loss MSPE Time

LSTM 8.6053 7.3473 15.66 5

GRU 8.5192 7.3034 16.24 5.3

RNN 8.6929 7.2623 16.34 3.5

Table 4.4: Table shows results from univariate training in Keras

values were going all over the place between 1-5, the model seemed to
safe it by predicting the readiness was a 3 on every point. To make the
model more exploratory we decided to change the number of days used
in prediction, namely the days used for prediction/window size. When
changing the model to use 2-5 past days for predicting, the model seemed
to go to the more extreme values. The MSPE did change for the worse,
but the model seemed to catch the trends of higher and lower values and
not only predict the values in between target values. This caught our eye
and is something we might continue testing after initial experimentation
is done. Even though the results varied the different setups with a bigger
window size for prediction might be something useful for later and should
be looked at further down in the experimentation. From the results here
we can see the 3 different models are quite alike, LSTM only having a
slight advantage with half a point better MSPE score.

4.3 Discussion of initial experimentation

After doing the initial experimentation we collected a valuable amount of
knowledge we can use for further experimentation. First off for Keras, the
result from all three experiments showed us training on all players had
the best results both in the form of better fit when training (training and

47

validation loss) and when testing on the unbiased test set. LSTM coming
in at the best model almost 1 MSPE score better than the other models.
An ongoing theme in these experiments is the low exploratory factor the
models had. The training loss and validation loss was consistently high
and we found it hard to make the loss better. Changing number of epochs,
learning rate, batch size, activation functions and optimizers did little to
nothing for the loss and MSPE score. It was not until we tried changing
the window size before we saw some change in the behaviour of the mod-
els. This was certainly noticeable on the univariate dataset. The univariate
dataset has less data for the models to use, so changing the dataset by
adding more days for prediction seemed help the models perform better.

When it comes to Tsai, the result on all three dataset tended to be a little
better than keras’ results. Training on all players gave the best results out
off all three training methods.Having MSPE score all the way down at 2.1
with the top 5 models coming close at around or under 3 in score. Even
though training loss and validation loss was seen having a higher score
than the prediction itself the models seemed to perform quite well. Uni-
variate training saw the next best results with a LSTM scoring 2.8 and the
top 5 models going around the same with a max MSPE of 3.4 Training on
7 different self reported data gave the worst result out off the three, gener-
ally doing worse in both loss and MSPE score. For this training the LSTMs
were the best so that is something to note. Lowering the MSPE score and
loss was difficult and weirdly did not really go down after the testing we
did. When moving on to the next experimentation we will take the note of
the best performing models from each dataset we got during initial exper-
imentation. The next experiments will be focused on how performance of
models change when using new NaN handling methods.

What we have learned overall from initial experimentation is Tsai’s
univariate training with zero as NaN replacement saw the best results.
From this experiment we can conclude the models needs to be more
exploratory in order to catch more exact where trends in readiness shift.
In figure 4.6 we see how the typical models performed. They did not
reach far enough to catch the tops and bottoms of readiness. This might be
caused by having such a low learning rate, low batch size and not enough
training. We thought the models were overfitting, but what if the models
never actually were learning good enough since they had such a high
training loss as well as high validation loss. For further experimentation
we will increase the learning rate and batch size since those two go hand
in hand. We will also try increasing the number of epochs. Shuffling when
training saw some good results in Keras when training on one player
multivariate dataset, this is something to keep in mind when moving on
with experimentation.

48

Figure 4.6: Figure shows how the models generally performed during
initial experimentation

4.4 Filling Nan’s with zero/mean/interpolate Tsai

4.4.1 Overview

In order to find the best predictive model, the dataset needs to be set up
with the highest likelihood of helping training. There are multiple ways
to prepare a dataset for training. Due to our natural way of collecting data
with PMSys’ self report system, missing data exists. Missing data will
be referred to as NaN (Not a Number) in this thesis and is a commonly
used word for missing data points. Models used in this thesis are
not designed for handling NaNs, so we needed to find which was the
best way of handling them. You can either delete or replace NaNs,
both could work perfectly fine depending on what use the models are
for. A conseqence of deleting NaNs is consistency regarding patterns of
seasonality (e.g athletes doing the same workout every Monday reporting
the same values). Replacing NaNs will maintain the integrity of the data
and will be used in the experiments going forwards. For NaN handling we
will further experiment with replacing with mean values and interpolate
values. After that we will compare the results and discuss what models
worked the best for each NaN handling method. Testing will happen on
the same test set as used for every experiment up to this point. This test
set has NaNs filled with zeros and we will test the models both on a 1 day
and 3 days prediction basis to see what performs best. Going in to this
experiment we decided from the last experiment on zero values that we
needed more exploration. We will therefore also increase the learning rate
to 0.02, increase the batch size to 128 and number of epochs to 75-100.

We decided to test the newly updated model hyperparameters on
the same dataset used in initial experimentation with zero values as
NaN replacements. Since the hyperparameters learning rate, batch size,
number of epochs and window size changed, the models will produce

49

Type Parameter Description

Number of epochs 75-100

Hyper- Batch size 128

parameters Learning rate 0.002

Optimizer Adam

NaN handling

Fill with interpolate

values, mean values

and ’0’

Other Training method

Training on all players,

training on one player

multivariate and training

on univariate

Window size 1 and 3

Prediction Readiness

Table 4.5: Table shows updated overview of hyperparameters and other
useful information used in further experimentation

different results on Zero value NaN replacement. So, this time we will test
how the models perform on the new hyperparameters: learning rate 0.002,
batch size 128, 100 number of epochs and 1 vs 3 day window size.

4.4.2 Multivariate training on all players

Interpolate

Interpolation uses values next to the datapoint which are to be replaced.
The NaNs will be replaced with the result of the interpolate function
described in the prior section. If there are any NaNs in the beginning or
end of the dataset which might not have any values next to them to use for
interpolation, these values will be replaced with zero values. Fortunately,
there are only a few scenarios where this will happen, for example there
are some player’s dataset that start with a few NaNs and end with NaNs as
well, here they will instead start with a few zeros in order for the dataset to
keep its integrity. When training on all players we initially got promising

50

Figure 4.7: Figure shows results from training on all players with
interpolated values as replacements with the best window size of 3

results. When testing the models up against multivariate training on all
we first tried running the models on a higher lr and batch size on 50
number of epochs. In addition to this we tested whether having 1, 3 or
more days as window size would have an impact on performance with
these models hyperparameters. Testing with one day window size seemed
to give good results in the beginning, giving an MSPE of just under 3 for
the top 5 performing models. From these test we saw the training loss
and validation loss could have been better. Training loss saw a steady
decrease over time, but validation loss saw an initial decrease followed by
a flattening around 30 epochs and even an increase in some models. We
thought the model might be overfitting, so we tried running some more
test with a higher number of epochs and a lower learning rate to test this
theory out. This seemed to only make our model weaker and less accurate,
so we tried increasing the learning rate instead since the model did not
seem to overfit as much as we thought. After these changes we got the
results seen in figure 4.7. Validation loss decreased over time and training
loss stagnated and flattened around where they lie in figure 4.7.

Concluding the changes made; they did absolutely give a boost to the
models. In addition, interpolation seems to be doing the models a solid
for performance as well. InceptionTime did the best followed closely by
xresnet1d34, ResNet and the two LSTM_FC configurations.

51

Mean

When testing with mean values as replacement for NaN we described
earlier how the mean value of the dataset is calculated and this value will
be the replacement for every NaN. In the beginning of experimentation
on this dataset we tested with number of epochs set to 50, batch size of
128 and a learning rate of 0.001. After running all the model through
testing and prediction on the test set, we saw the models did not seem
to be training as well as we would want them to be. Following the same
changes as from interpolation we went to test with a higher learning rate
and higher number of epochs. This immediately gave us better results and
the models was training better, giving more promising results. In order to
test where the boundary was for how high the learning rate can go before
we caught a glimpse of overfitting we continued to lower the learning rate.
From this we saw how the models operated on different hyperparameters.
Some models such as InceptionTime worked better than LSTM on a lower
learning rate and XceptionTime seemed to not be training optimally on
this dataset at all. When reaching a learning rate of 0.002 we saw the best
results yet, not extreme overfitting and we got some good MSPE scores
from this learning rate aswell. In addition to increasing the learning rate
we tried increasing the number of epochs to exaggerate overfitting. It
seemed for the majority of the models, having around 100 epochs did the
best for results. Running this training with a window length of 3 saw
better results compared to a length of 1. Results can be seen in figure 4.8.

Concluding the results we got from testing with mean value replace-
ment, we saw a better results with the changes made in number of epochs
with around 100 to be the best. Batch size of 128 with a learning rate of
0.002 did also good for the models’ performance. The top performing
model was LSTM_FCN (no shuffling) followed by LSTM (3 layers), FCN,
LSTM_FCN (shuffeled) and InceptionTime. Overall interpolation did bet-
ter than mean value replacement on this training method.

Zero

After testing with the same dataset from initial experimentation for zero
value replacements we go the results seen in figure 4.9. This time around
we got a worse performance, so the changes in hyperparameters and
window size of 3 only worked for the new NaN handlings tested. With the
best model LSTM with 3.7 MSPE we can compare it to the best model from
initial experiment where we saw the best model ResNet with a 2.1 MSPE.
Concluding training on all players with Zero as NaN handling, window
size of 1 saw the best results from the initial experimentation. ResNet got

52

Figure 4.8: Figure shows results from training on all players with mean
value NaN replacement

the best results on this combination of training method and NaN handling
on this dataset with a 2.1 MSPE.

4.4.3 Multivariate training on one player’s self report data

Interpolate

When testing the models with interpolate NaN handling we decided to
first check how well the models worked on the same model hyperparamet-
ers (learning rate, batch size and such) as being changed from initial ex-
perimentation. The results achieved from these parameters looked prom-
ising and can be seen in figure 4.10. One model not suited for this dataset
seemed to be XceptionTime, doing the worst out off all models with a
MSPE score of 23.2 and very high training and validation loss. This time
we can see the LSTMs did not perform as well as the other models such
as ResNet, InceptionTime and FCN. Bidirectional LSTM with two layers
and the FCN versions of LSTM on the other hand did perform better than
stock LSTM scoring a 1.8 and 2.4. Training loss this time around were the
lowest seen so far indicating that the models are well trained if not leaning
on the overfitting side. Validation loss saw a steady decrease to a certain
epoch where they stopped and stayed still for the remainder of epochs. To
try and make the models even better we decided to try make the models
more resistant against overfitting. This saw an increase in MSPE score and
a much higher training/validation loss. Since the validation loss stopped
decreasing, increasing the number of epochs only worsened the perform-
ance of the models. Having a number of epochs of 50 got the best res-

53

Figure 4.9: Figure shows results from training on all players with zero
value replacement

ults. The top 5 models from this test was LSTM (2 layers bidirectional),
LSTM_FCN(shuffeled), FCN, ResNet and LSTM_FCN.

Mean

For training on one player’s self reported data we tested with the newest
findings from experimentation with interpolation on the same dataset. In
addition to this we tried running the models on with different number
of days for prediction. Among the best prediction windows was 1 or
3 both doing good on their own hyperparameters. Testing the different
hyperparameters with the different prediction windows showed us how
having a prediction window of 3 overfitted the models more easily and in
turn needed adjustment to reach optimized result. After going through
different sets of epochs, having around 100 number of epochs seemed
to be the best. When reaching 150 epochs the models very overfitting
and getting a worse result than on 50 epochs. It seemed most models
had the best results with just under 100 epochs while the different LSTM
configurations trained slower and had the lowest loss around 140 epochs.
The best overall scores took place on 75 epochs with a learning rate of 0.002
and batch size of 128. Results can be seen in figure 4.11.

Zero

We also tested to see whether or not the new hyperparameters would work
on the dataset used in initial experimentation with zero values as NaN

54

Figure 4.10: Figure shows results from training on one player with
interpolated values replacement dataset

Figure 4.11: Figure shows results from training on one player with mean
value replacement dataset

55

Figure 4.12: Figure shows results from training on one player with zero
value replacement dataset

replacement. This time we got some better results, having a much lower
overall MSPE of all the models. This run, all the LSTM configurations
was doing the best for all models with 1 layered bidirectional LSTM
doing the best at 4.5 MSPE. Comparing this to the three other NaN
handling methods, this one did the worst by a good margin. One note
to take with us from this test is that the changes made in hyperparamters
made the results overall better than from the initial experimentation.
Comparing the best model from this run we got a 4.5 MSPE and from inital
experimantation we got 8.5 on the same model which also performed the
best that time as well. Loss from training saw an overall decrease which
is a good thing along with MSPE score doing better. So to conclude the
results from multivariate training on one player with the zero dataset,
this hyperparameter configuration saw the best results even though it
did perfrom the worst out off all three NaN handling methods from this
training method. Results can be seen in figure 4.12.

4.4.4 Univariate training

Interpolate

Interpolate on univariate training did not seem to go any good. From
the results seen in figure 4.13 it is clear that the models did not perform
well on interpolate compared to the other NaN handling methods. We
tried tweaking the hyperparameters for the models only to worsen the
results. From running on the same learning rate of 0.002 with 200 epochs
we saw the training loss steadily go down while the validation loss was

56

Figure 4.13: Figure shows results from univariate training with interpol-
ated values as replacements dataset

seen increasing after around 100 epochs. This was a sign of overfitting,
so we tried running the model on a lower learning rate 0.02 and 0.006
with a lower number of epochs of 50, only to see the results once again
for the worse. This was the optimal hyperparameters to run on univariate
training with interpolation. Among the top 5 model we have FCN at 4.4
MSPE followed by ResNet, InceptionTime, LSTM_FCN and xresnet1d34.
Compared to the other results gotten from earlier experiments univariate
training with interpolation is not something to keep experimenting on
with Tsai, Keras might see some other results but as far as this goes, we
have seen better results.

Mean

In figure 9.12 we see results of training and predicting with the mean
value NaN handling dataset. Compared to interpolation, the models seem
to respond better with mean values as fillers. Loss from training and
validation seems to be going at the same rate as for interpolation, only
this time the MSPE is about half. We tried running these models on an
even increasing learning rate only to have the models overfitting, even
after increasing the batch size. Increasing batch size and learning rate did
nothing do the eventual overfitting which seemed to be happening around
the same epoch of 50 and up. From what time we had this was the best
results we got from each model as seen in figure 4.14. Concluding the top
5 models from univariate training on mean NaN replacement: LSTM(3
layers and bidirectional) at 1.8 MSPE, LSTM(1 layer with dropout), FCN,

57

Figure 4.14: Figure shows results from univariate training with mean
value replacements dataset

LSTM_FCN and ResNet.

Zero

Replacing NaN values with zero when training on the univariate training
set showed the best results MSPE wise. Every model we see in figure 4.15
is trained with a window size of 3. ResCNN showed the most promising
the results with a score of 1.1. Even though the training loss and validation
loss did not seem to agree with how well the model performed, it was ran
through multiple times and showed good results each time. A score of 1.1
is the best score gotten so far in this thesis and following ResCNN the rest
of the models performed great as well. InceptionTime scoring 1.3, ResNet
1.6, Xceptiontime 1.6 and FCN on 2.0.

4.4.5 Comparing the results from training methods

In this section we will compare the graphs of the best and worst models
predicted above to see how they behave on the different datasets and NaN
handling methods. We will look at how the behaviour differs in how they
predict the trends of readiness, along with how accurate they are. We
chose to use the best models and worst models because the models in
between are typically a combination of either the best of the worst. The
other models can be excepted to be doing worse than the best models with
some exceptions which will be pointed out.

58

Figure 4.15: Figure shows results from univariate training with zero value
replacements dataset

NaN handling Model MSPE

Interpolated InceptionTime 2.0

Mean LSTM_FCN (Shuffle: false) 2.4

Zero LSTM(1 layers with dropout) 3.7

Table 4.6: Table shows the best models when training on all players.

Multivariate training on all players

From training on all players readiness levels we see the behaviour from
the three NaN handling methods differ to some extent. Look at figures
4.16-4.18 for reference. When looking at the interpolation we see the
best model dipping and reaching the bottom quite well, even though
it is a day behind in prediction the model seems to got lower than the
two other NaN handling methods. From experimentation interpolation
saw the best results when it comes to MSPE score which makes sense
when looking at the graph seeing it following the ups and down of target
values more closely. The mean value NaN handling seems to be rounding
the prediction more than the other, only going as low as 3 for a missed
prediction. The LSTM from zero value NaN handling did also see a 3
as the lowest prediction aswell, indicating that interpolation has an edge
when it comes to more precisely predicting the actual high and low values
of readiness. When it comes to the worst models for the three, we have
XceptionTime. This model did not seem to do very well on these datasets
with a MSPE score of around 15 on average across the three.

59

Figure 4.16: Best and worst models from interpolation replacement on
multivariate training on all players

Figure 4.17: Best and worst models from mean value replacement on
multivariate training on all players

Figure 4.18: Best and worst models from zero value replacement on
multivariate training on all players

60

NaN handling Model MSPE

Interpolated
LSTM

(2 layers, bidirectional)
1.8

Mean LSTM(2 layers) 1.6

Zero
LSTM

(1 layer, bidirectional)
4.5

Table 4.7: Table shows the best models when training on one player.

Multivariate training on one player

Multivariate training on one player’s self reported data showed much
more promising results. From the figures 4.19-4.21 we can see the results
in the graphs from this training. Interpolation here did not do as well as
in training on all players, the graph shows how the model did not catch
the lowest point of targets, but this time it predicted the highest point,
only one day after it happened. This can be explained by the randomness
that comes with machine learning models at times. For the mean value
predictions we saw the LSTM perform the best so far, catching both the
dip in readiness and the peak after that and on the exact day it happened
as well. The model did not do that great in the beginning if we are focusing
on how the MSPE would look, the prediction is off by one or two readiness
levels, but the model can detect that indeed there are fluctuations. For the
zero value NaN handling we see some same results compared to the mean
value NaN handling. The model predict the trends quite well, and on the
exact day it is peaking or dropping. From this NaN handling we see the
prediction are a bit more extreme compared to mean value, going on a
bigger range at the start. This decreases of course decreases the MSPE
score of the model and is not the best if any teams are to decide what
the readiness is of a player. When it comes to the worst models of this
experiment we see XceptionTime this time as well. Coming in at the same
performance as for the prior training method.

Univariate training

Univariate training saw the best overall MSPE scores so far through all of
experimentation, we will now take look at the best performing models
from each univariate Nan handling methods seen in figures 4.22-4.24.
Interpolation on the univariate set saw the worst results out of the three
with the best MSPE of 4.4 on FCN. This model as seen in figure 4.22

61

Figure 4.19: Best and worst models from interpolation replacement on
multivariate training on one player

Figure 4.20: Best and worst models from mean value replacement on
multivariate training on one player

Figure 4.21: Best and worst models from zero value replacement on
multivariate training on one player

62

NaN handling Model MSPE

Interpolated FCN 4.4

Mean
LSTM

(3 layers, bidirectional)
1.8

Zero ResCNN 1.1

Table 4.8: Table shows the best models when training with univariate set.

just missed too many target values making the MSPE score that low and
overall the models from univariate interpolation did not cooperate well
together. It did not hit the bottoming trend of the target values but it
almost hit the peaking trend only off by one readiness level. When it
comes to univariate training with mean value NaN handling we see a
much better result. Even though the model misses a few targets it seemed
to get the trends correct, predicting lower and higher at the right time
only missing by a couple of readiness levels. Zero value replacement saw
the best results and as seen in figure 4.26 ResCNN closely followed the
target values, atleast when it came to the lower target values. For the
first 5 days it did not capture the top of readiness, but for all the dips in
readiness this model hit every target value on point. When comparing the
results of ResCNN to xresnet1d34 which also is a ResNet, we can see how
xresned1d34 was more volatile. This volatility turned out to be costly for
the overall MSPE score but having a model predicting both peaking and
dropping in readiness should hold some value as well.

4.5 Filling Nan’s with zero/mean/interpolate Keras

4.5.1 Overview

Experimenting with Keras will use knowledge gotten from all the
runs with Tsai as well as prior results with Keras. Hyperparameters
such as learning rate and number of epochs are tweaked from last
experimentation with the zero values NaN handling dataset. Since Keras
seemed to be able to run with a higher number of epochs we decided to
increase the learning to 0.02 and epochs have increased to 500 for the first
runs. Batch size is also increased to 128 in order to counteract overfitting
for this experiment. We are now experimenting on a bigger scale by
training and predicting 10 times over and taking the average results from
these runs. We do this with Keras because the runtime of Keras is so low

63

Figure 4.22: Best and worst models from interpolation replacement on
univariate training

Figure 4.23: Best and worst models from mean value replacement on
univariate training

Figure 4.24: Best and worst models from zero value replacement on
univariate training

64

NaN handling Window All One Uni

Interpolate 1 4.15 5.91 4.67

3 3.79 4.59 5.41

Mean 1 3.63 4.21 3.30

3 3.23 5.07 4.79

Zero 1 3.70 7.08 5.80

3 2.95 9.53 8.50

Table 4.9: Table shows results from LSTM training on three datasets,
training on all players(all), training on one players self reported data(one)
and training on the univariate dataset(Uni). Training was done on the
three different NaN handling methods, Interpolation, Mean value and
Zero values.

compared to Tsai, running 500 epochs 10 times for each model with Keras
takes less time than runnning all models on 50-100 epochs with Tsai. For
updated experimentation with Keras we use the same configurations of
the datasets as before; training on all players, training on one players self
reported data and an univariate dataset on readiness levels. We will take
a look at the results on training on all players, training on one player’s self
report data and univariate training. In addition to this, we will test what
works best of window length 1 or 3 days.

4.5.2 Multivariate training on all players

Interpolate

For interpolate RNN saw the best results out of the three models, with a
prediction window of 3 days it got an average MSPE score of 3.16 through
the 10 runs we did. All three models was close in score fluctuating with
under 1 score between all results from interpolation.

Mean

Going with 3 as prediction window saw the best overall results amongst
all three models tested with mean value NaN handling on this dataset. 3
as prediction window gave a average MSPE score of 3.29 while going with
1 gave 3.74, so not that much of a difference but still better. When it came

65

NaN handling Window All One Uni

Interpolate 1 3.49 6.59 4.79

3 3.50 5.63 5.12

Mean 1 3.94 3.90 3.30

3 3.44 5.20 4.79

Zero 1 3.70 6.59 5.68

3 3.47 9.49 8.16

Table 4.10: Table shows results from GRU training on three datasets,
training on all players(all), training on one players self reported data(one)
and training on the univariate dataset(Uni). Training was done on the
three different NaN handling methods, Interpolation, Mean value and
Zero values.

NaN handling Window All One Uni

Interpolate 1 3.50 5.38 4.77

3 3.16 5.81 5.41

Mean 1 3.65 4.19 4.78

3 3.20 5.04 4.77

Zero 1 3.73 6.00 5.88

3 2.94 9.85 8.36

Table 4.11: Table shows results from RNN training on three datasets,
training on all players(all), training on one players self reported data(one)
and training on the univariate dataset(Uni). Training was done on the
three different NaN handling methods, Interpolation, Mean value and
Zero values.

66

NaN handling Model MSPE

Interpolated RNN 3.16

Mean RNN 3.20

Zero RNN 2.94

Table 4.12: Table shows the best models for multivariate training on all
players with Keras.

to which models did the best, both RNN and LSTM did better than GRU.
LSTM and RNN got the same score oddly enough with 10 runs each and
GRU got 0.3 worse score.

Zero

Replacing with zero values on a window of 3 saw the best results from all
three NaN handling approaches in this training method. With an average
score of 3.12 compared too 3.71 for 1 day window this results was pretty
good. LSTM performed the best cutting close with RNN by only 0.01 in
average difference.

All in all when looking over the results gotten from multivariate
training on all players, the Zero value NaN handling method saw the best
results. Having a window size of 3 days was clearly working the best for
all the three models when training on all players scoring about 0.4 points
better than with a window size of 1. RNN gave the best results as seen in
table 4.12. RNN and LSTM gave the best MSPE score on the zero value
dataset with 0.01 points difference between the two.

4.5.3 Multivariate training on one player’s self report data

Interpolate

Interpolated NaN handling combined with training on one player’s self
reported data saw the worst results out off the three interpolation tests we
did with Keras. With an average MSPE score from all 60 tests on 5.6. 3
days window came in a slight lead by a 0.5 difference compared to a 1 day
window. As for the best model, LSTM performed the best.

67

NaN handling Model MSPE

Interpolated LSTM 4.59

Mean GRU 3.90

Zero RNN 6

Table 4.13: Table shows the best models for multivariate training on one
player with Keras.

Mean

Mean NaN handling on this training method did also see the worst results
so far, averaging at 4,6 overall. This time having a 1 day window saw the
best results at 4.1 MSPE score compared to 5.1 at 3 day window. For the
models there was a slight deviation at around 0.1 favoring GRU.

Zero

Zero value replacement gave the worst results from this entire interme-
diate experimentation with Keras. Even though the results were better
for a 1 day window the MSPE score was on average 6.55 across all mod-
els. For the tests on 3 day window the average score was 9.6, the highest
seen from this experiment. RNN seemed to be working the best with Zero
value NaN handling, but not far away from GRU 0.1 away.

Multivariate training on one player’s self report data showed the best
results with GRU on the mean value replacement dataset. See table 4.13
for the summary of the best models based on NaN handling. LSTM did
the best for interpolated NaN handling, and RNN performed over the rest
of the models on zero value NaN handling.

4.5.4 Univariate training

Interpolate

When it came to Univariate training, window size of 1 had the best results.
With interpolation we saw a 4.74 on a 1 day window compared to 5.31 with
a 3 day window. The models performed close to the same when it comes
to the difference in results within the same window size. GRU saw the
better results with 0.1 score gap between LSTM.

68

NaN handling Model MSPE

Interpolated LSTM 4.67

Mean GRU/LSTM 3.30

Zero GRU 5.68

Table 4.14: Table shows the best models for univariate training with Keras.

Mean

3.79 is the best average score across models to be seen on univariate
training and was done with mean value NaN replacement with a 1 day
window. Average score acorss models on a 3 day window was 4.7 a whole
point away from 1 day window. Again we saw similar results between
the three models this time a split 1st place between LSTM and GRU with
RNN 0.7 MSPE away.

Zero

Once more we see zero value replacement coming with a high MSPE
score. Having the best score at a 1 day window size with the score of
5.78 compared to 8.34 with a 3 day window. Here we see GRU getting the
best performance only by 0.1.

For univariate training both GRU and LSTM got the same MSPE score
of 3.30, table 4.14 for reference. Mean NaN handling with GRU and LSTM
got the best results from this training method doing over 1 MSPE over
interpolated NaN handling coming in at second best. Zero value Nan
handlin saw the worst results with GRU at 5.68 MSPE.

4.6 Discussion of imputation results

In this section of experiments we have taken a look at how replacing NaN
with different values looked like all while predicting on the same test set.
For Tsai we experimented with 14 different models and for Keras we ex-
perimentet with 3. We executed these experiments with the intention of
predicting readiness to play based on the data received from self reporting
in PMSys. Since this data had missing values on some days we modified
the data to replace NaNs with zeros, the mean value of the entire dataset

69

and interpolated values calculated from the values closest. The test set
was a series of readiness values without missing numbers so the test set
has not been touched and is unseen and unbiased. When it comes to per-
formance from Tsai compared to performance from Keras, Tsai has seen
some better results from some of the 14 models we tested.

For Keras, the best results we got was from training on all players’
readiness score with RNN and a window size of 3. This combination got
a MSPE score 2.94. Coming close with only 0.01 score higher was train-
ing on all players with LSTM with a MSPE of 2.95. Window size in Keras
favored having 1 day as window when training with one player, either it
was multivariate training on one player or if it was univariate training on
one player. For training on all players having a window size of 3 saw the
best results overall. In addition to this, training with all players in general
saw better results with Keras with an MSPE within 2.95 -:- 4.15 for LSTM,
3.47 -:- 3.94 for GRU and 2.94 -:- 3.73 for RNN.

When it comes to Tsai, as mentioned this library generally saw the
best results. The best combination of training method and NaN handling
method was univariate training with zero values replacing NaNs. Having
a window size of 3 gave the models the best MSPE score seen through all
of experimenting. We saw ResCNN on top with an MSPE score of 1.1 fol-
lowing close is InceptionTime with 1.3 in score, ResNet and XceptionTime
with 1.6. The next best combination was training on one player’s self re-
ported data with mean values as NaN replacements. This proved to be a
good fit with a window size of 3 and had the best MSPE score of 1.6 on
LSTM with 2 layers. The scond best model from this set was ResNet once
again coming with a low score of 1.8. Bidirectional LSTM with 2 and 3
layers saw some great results as well with a score respectively of 1.8 and
2.0. When training on all players, replacing NaNs with interpolated val-
ues gave the best results.

Something to note when discussing the results of experimentation on
the different ways of handling NaNs is how the athletes values might
look like from day to day. Since we saw the best results on the datasets
where we replaced NaNs with zero, there need to be some explanation for
this. The way we rate our model’s performance, MSE focuses on the big
mistakes rather than the small ones. This can tie in how the results came to
be what they are. With what we know about how MSE is calculated we can
combine that with what the athletes report. Normal readiness is typically
on the upper side on the scale as we can see in figure 3.2 where the mean
value is 6. Players are more often than not ready to train or ready to play

70

compared to not ready at all. This will in turn make the average predicted
readiness value along that same average value. When the models predict
they are trained on the prior data and for the mean value and interpolation
value this typically is not 0. This might make the models trained on these
two datasets more prone to predict a value higher on average. For the
datasets with zero as replacement for NaNs they will be trained on having
observing lower values more often. Then when the actual value to be
predicted is a low value this favours the models trained on zero value
replacement. Again looking at how MSE is computed the bigger misses
are weighted heavier than small misses, so this will make the models
not accurately predicting dips in readiness have a lower MSE. This works
for the opposite also when the readiness values are peaking with a rapid
change from for example 3 to 9 in readiness. Mean value and interpolation
datasets might already be prone to predict higher so they might be hitting
more often the tops than models trained on zero value replacement. At
the same time, models trained on zero value replacement are trained on
volatile data so they might predict somewhat when values peak in such a
high value. Looking at the graphs in figures 4.16-4.24 we can visually see
how the different NaN handling methods tends to behave with the zero
replacements often predicting lower values than the rest of the methods.
Although classifying the behaviour of the three NaN handling methods
is hard when there is a element of randomness in machine learning and
from having just this small sample of graphs, we can not draw any strong
conclusions on behaviour.

4.7 Experiment with univariate multi-step pre-
diction

4.7.1 Overview

Teams might want to predict X amount of days in to the future in order
to see how their athletes might develop in readiness to play. We decided
to use the knowledge gathered up to this point in order to see how well
some of the models might predict into the future. This type of prediction
is called multi-step forecasting and when forecasting x amount of days
into the future we do not use any actual observations for predicting the
next days. After the first day the models will recursively use the already
predicted values to forecast the x amount of days we want. When thinking
logically about how many days a team might want to predict, we thought
about testing for a couple of days to see the performance of the models.
Teams might want to predict how the week goes from for example a

71

Monday. Then the model will use the last reported data available in this
case the Monday and predict how the readiness might go the next 7 days.
When forecasting multi-steps the performance depends on the window
size/timesteps used. We decided to experiment with 3 and 5 days as
window sizes and predict the next 7 days recursively using predicted
values. Here is an overview of what we will be using when multi-step
forecasting:

• Univariate training on readiness

• Test set of max 10 days configured the same as in prior experiments

• Forecasting the next 7 days

This experiment will also have some variables we will compare the results
of in order to find what performs the best:

• Timesteps/Window size: 3 and 5

• NaN handling with interpolated values

• NaN handling with mean values

• NaN handling with zero values

For these variables we will set them up with the three different models
used with Keras in prior experimentation:

• LSTM

• GRU

• SimpleRNN

4.7.2 NaN handling with interpolated values

In table 4.15 we see the results of multi-step forecasting on the interpolated
dataset. We tested with a window size of 3 and 5 days and from for all
three models having a window size of 3 gave the best results. Figure 4.25
shows us the difference in the predicted versus actual value of the models
tested on the interpolated dataset. Top left we have LSTM which got an
MSPE score of 4.11 in this graph, showing how it can predict the trends in
a very subtle way but still predicting the trends nonetheless. Top right we

72

Model Window MSPE

LSTM 3 4.11

5 5.20

GRU 3 3.79

5 4.61

SimpleRNN 3 4.03

5 4.24

Table 4.15: Table consists of the MSPE scores gotten from training on
univariate time series with interpolated values for NaN replacement,
divided into the three models ran on multi-step forecasting

have GRU which got an MSPE score of 3.79 in this graph. The predicted
values are seen closer to the actual values and as we discussed earlier this
will give a better MSE score. GRU was not able to predict the trends in the
graph as well as LSTM but still got the better score. Bottom right we see
RNN with a score of 4.03. RNN seems to be able to follow the trends a bit
better than GRU but not as much as LSTM.

4.7.3 NaN handling with mean values

For the results on training with mean values as NaN replacements we
saw overall worse results compared to training with interpolated data.
Looking at the results in table 4.16 we can see the two models LSTM and
GRU on a window size of 3 performed worse when comparing MSPE
score to the last test with interpolated data. SimpleRNN on the other
hand saw some slight improvements with a score of 3.85 on window
size 3. All three models seems to be predicting lower values on mean
value imputation compared to interpolation. Once again we see LSTM
predicting in a more volatile fashion with a higher gap between the
predicted values following the movements of the test set. When it comes
to the performance of having a 5 day window the score was a bit worse
than with a window size of 3. About a 0.5 difference in score in general
comparing 3 days to 5 days.

73

Model Window MSPE

LSTM 3 4.35

5 4.70

GRU 3 4.63

5 5.06

SimpleRNN 3 3.85

5 4.34

Table 4.16: Table consists of the MSPE scores gotten from training on
univariate time series with mean values for NaN replacement, divided
into the three models ran on multi-step forecasting

Model Window MSPE

LSTM 3 4.76

5 11.06

GRU 3 5.09

5 10.43

SimpleRNN 3 5.18

5 9.17

Table 4.17: Table consists of the MSPE scores gotten from training on
univariate time series with zero values for NaN replacement, divided into
the three models ran on multi-step forecasting

74

Figure 4.25: LSTM, GRU and RNN graphs from multi-step forecasting on
interpolated dataset with a window size of 3 days

4.7.4 NaN handling with zero values

Replacing NaNs with zero values in this experiment with multi-step
forecasting saw the worst results out off all three NaN handling methods.
As seen in table 4.17 we now saw MSPE scores as high as 11.06 on LSTM
with a window size of 5. It is clear that having a window size of 5 did not
do any good for the MSPE scores with zero values as NaN replacements.
Having a window size of 5 days saw on average 5,21 increase in MSPE
score when calculating the average of all three models. The best results
was LSTM with a window size of 3 getting a score of 4.76. Looking at
the scores for all models we see that every score gotten is the worst out
of the three ways of handling NaNs we so far have tested with multi-step
forecasting. When looking at the graphs generated from the results, we
can see how all three models have predicted a much lower value than
the target value of that day. This is what makes the MSPE so bad for
this NaN handling. If we focuse on how well the models could have
potentially followed the flow of target values in the graph we see that
LSTM is following the closest. It is somewhat catching the peak of day
2 followed by a small drop to day 3 and a slight increase from day 3 to

75

Figure 4.26: LSTM, GRU and RNN graphs from multi-step forecasting on
mean value dataset with a window size of 3 days

day 4 once again. After day 4 the models prediction do not vary that
much anymore. This is because the predicted values from prior days
all slowly go towards the same number for every prediction. When the
model just keeps predicting closer and closer to the value 4 which we see
in LSTM after day 4, the model will continue to predict and shove the
same predictions with a smaller and smaller variation until the predictions
seem to bottom out. This bottoming out seems to happen much faster in
the Models of GRU and RNN compared to LSTM.

4.8 Discussion of multi-step forecasting

The intention of experimenting with multi-step forecasting was first off all
to the possibilities of predicting X amount of days in to the future. From
the results we achieved we can say multi-step forecasting did not see the
best of accuracy. Considering this being the first implementation and the
time limitation we saw when making our own version of recursive multi-
step forecasting, we can say the results reflect on this. Results can certainly

76

Figure 4.27: LSTM, GRU and RNN graphs from multi-step forecasting on
zero value dataset with a window size of 3 days

be improved with time and energy going in to fitting the models better to
the datasets and messing around with different configurations but from
the time we had this results is respectable. The best model being LSTM
saw some promising behaviour if we think about how the model could
follow the peaks and dips seen in actual readiness values. When it came
to the number of days multi-step forecasting could forecast into the future
we saw a steady decrease in prediction volatility after around 4 or 5 days.
All three models behaved the same when considering how the predictions
tended towards one flattened prediction after 4 or 5 days. This might be
caused by the volatility of the prediction decreasing over time which since
the predictions are based on previous predictions will guide towards a
constant value of prediction. To recap what we have learned from this
experiment:

• Sliding window of 3 days generally saw better results than with 5
days

• Replacing NaNs with interpolated values showed the best results of
4.11 with LSTM, 3.79 with GRU and 4.03 with RNN.

77

• GRU saw the best MSPE score of 3.79 with interpolated NaN
replacements and a window size of 3 days

• LSTM behaved the best considering how it more closely followed
peaks and dips in readiness to play

4.9 Summary

In section 4.1 we gave an overview of what to expect from experiments.
This included defining the types of NaN handling we are going to test
out, the different training methods used and the different datasets made
for all of these parts. We stated what libraries we will be experimenting
on and how we will compare them. We also set the stakes for how we will
be determining how well the different model interact with the different
NaN handling methods and datasets. Everything information described
in section 4.1 was used in section 4.2, the initial experimentation. In this
section we stated the motivation of initial experimentation, how we want
to use the information gotten in this section further down in the other
sections. This section established the capacities and baseline of what we
are using in the next experiments. The results gathered in section 4.2 was
the different training methods using Zero values as NaN replacements.
These results saw a change in the experiments done in section 4.4. Section
4.3 discussed the results gotten from initial experimentation, how the
hyperparameters of the models saw changes for the better and how it the
parameters were going to be used in the next section. We also discussed
the results from the two different libraries used. Section 4.4 showed
how the different NaN handling methods worked on the baseline of the
models chosen from Tsai. Here we also saw how the results from initial
experimentation had been improved by the changes suggested in the
discussion section 4.3. Section 4.5 saw the results of experimenting with
the different NaN handling methods on the models chosen from Keras. In
section 4.6, we discussed the results from experimenting with the different
imputations. We compared both how the different libraries performed
and how the imputations affected the results gotten from these libraries.
Section 4.7 was done to test out how well what we learned from Keras and
experiments with imputations would work on multi-step forecasting. In
section 4.8, we discussed the results gotten from multi-step forecasting. In
the next chapter, we will draw a conclusion based on the results gotten
from all of our research and we will provide some suggestions on what
would make for some interesting future work.

78

Chapter 5

Conclusion and future work

In this thesis we aimed at comparing different approaches for imputing
missing values in time series data and seeing how these approaches
might affect performance in machine learning. When checking how the
different imputing approaches affected machine learning performance we
predicted athletes readiness to play based on the data provide by PMSys.
By using two different machine learning libraries, Keras and Tsai we were
able to compare how the imputation approaches affected chosen models
from these libraries. When predicting readiness to play we had two
different machine learning approaches, predicting the next day and multi-
step forecasting along with three different training methods, training on
all players, training on one player’s self reported data and training on one
players readiness to play data. We compared the results of both predicting
the next day and multi-step forecasting on the different imputation
approaches and models from the two machine learning libraries. The
best results we got can be seen in figure 4.15 on the model ResCNN. This
result was on imputing missing values with zero values and was done
on univariate training on one player. Although this was the overall best
results seen for predicting one day ahead, when multi-step forecasting
we saw interpolation getting the best results with GRU as seen in table
4.15. In this thesis we only tested multi-step forecasting with Keras as the
library of choice. Since Tsai got the best results from one day predictions,
a proposal for future work could be to see how well Tsai would do when
multi-step forecasting. In addition to this, some interesting thoughts about
further research could be testing with larger window sizes when multi-
step forecasting.

79

Bibliography

[1] Sarosij Bose and Avirup Dey. ResCNN: An alternative implementation
of Convolutional Neural Networks. URL: https : / / ieeexplore - ieee - org .
ezproxy.uio.no/document/9667654. 10.05.2022.

[2] Decomposition Models. URL: https://online.stat.psu.edu/stat510/lesson/
5/5.1. 16.08.2021.

[3] IBM Cloud Education. ‘Neural Networks’. In: (2020). URL: https://
www.ibm.com/cloud/learn/neural-networks. 06.04.2021.

[4] IBM Cloud Education. ‘Recurrent Neural Networks’. In: (2020). URL:
https : / / www . ibm . com / cloud / learn / recurrent - neural - networks.
13.04.2021.

[5] Hassan Ismail Fawaz et al. InceptionTime: Finding AlexNet for time
series classification. URL: https : / / link - springer - com . ezproxy. uio . no /
article/10.1007/s10618-020-00710-y. 10.05.2022.

[6] J.R. Grove et al. ‘Training distress and performance readiness:
Laboratory and field validation of a brief self-report measure’. In:
Scandinavian journal of medicine and science in sports 24 (2014), pp. 483–
490. DOI: https://doi-org.ezproxy.uio.no/10.1111/sms.12214.

[7] Kaiming He, Xiangyu Zhang andShaoqing Ren and Jian Sun. Deep
Residual Learning for Image Recognition. URL: https://ieeexplore. ieee.
org/document/7780459. 10.05.2022.

[8] Bahrudin Hrnjica and Ognjen Bonacci. ‘Lake Level Prediction using
Feed Forward and Recurrent Neural Networks’. In: Water Resources
Management (May 2019), pp. 1–14. DOI: 10.1007/s11269-019-02255-2.

[9] Rupesh K., Klaus Greff and Jürgen Schmidhuber. Training Very Deep
Networks. URL: https : / / proceedings . neurips . cc / paper / 2015 / hash /
215a71a12769b056c3c32e7299f1c5ed-Abstract.html. 10.05.2022.

[10] Keras Homepage. URL: https://keras.io/. 22.09.2021.

[11] Linear interpolation and extrapolation with calculator. URL: https ://x-
engineer.org/linear-interpolation-extrapolation-calculator/. 05.03.2022.

[12] Multistep ahead forecast feature. URL: https://github.com/sassoftware/
python-dlpy/issues/101. 06.05.2022.

80

[13] Michael Phi. Illustrated Guide to LSTM’s and GRU’s: A step by step
explanation. URL: https://towardsdatascience.com/illustrated-guide-to-
lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21. 10.05.2022.

[14] Elahe Rahimian et al. XceptionTime: A NOVEL DEEP ARCHITEC-
TURE BASED ON DEPTHWISE SEPARABLE CONVOLUTIONS
FOR HAND GESTURE CLASSIFICATION. URL: https ://arxiv .org/
abs/1911.03803. 10.05.2022.

[15] Evan Shelhamer, Jonathan Long and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation. URL: https://arxiv.org/abs/
1605.06211v1. 10.05.2022.

[16] Manik Soni. Understanding architecture of LSTM cell from scratch with
code. URL: https://medium.com/hackernoon/understanding-architecture-
of-lstm-cell-from-scratch-with-code-8da40f0b71f4. 15.04.2021.

[17] Tsai documentation. URL: https : / / timeseriesai . github . io / tsai/.
03.03.2022.

[18] Li-Pen Wang et al. ‘An enhanced blend of SVM and Cascade
methods for short-term rainfall forecasting’. In: (Sept. 2011).

[19] What is linear interpolation - Definition and Meaning. URL: https : / /
www.easycalculation.com/maths- dictionary/linear_interpolation.html.
05.03.2022.

[20] Theodor Wiik et al. Predicting Peek Readiness-to-Train of Soccer Players
Using Long Short-Term Memory Recurrent Neural Network. URL: http:
//home.simula .no/~paalh/publications/files/cbmi2019- PMSYS.pdf.
accessed: 10.02.2021.

81

