
pmSys
Implementation of a digital Player Monitoring System

Thuc Tuan Hoang
Master’s Thesis Spring 2015

pmSys

Thuc Tuan Hoang

Abstract

A football match can be determined by the smallest factors such as mood, however, but other factors as
injuries can determine whether you place first or second. The teams with the least injuried players would
have a better edge in reaching the top each season. Since the beginning of monitoring in football it has
all been registered by hand using paper and pen. During the 21th century technology has been one of
the best and most accurate helping hand any area within monitoring can get. Being able to process large
amounts of data in split seconds has proven to be worth the investment in going digital when it comes to
monitoring. On the basis of this, pmSys was created to enhance the power of processing personal data in
real time.

In this master thesis we wanted to develop a system for both the football players and trainers to be able to
register and follow up the submitted data in real time. By giving a team these tools we wish to constitute
the small factor that can push any football team to the limits without going over the edge and into an
injury nightmare.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 2
1.3 Limitations . 2
1.4 Research Method . 3
1.5 Main Contributions . 3
1.6 Outline . 4

2 Background and related work 5
2.1 Medical related background / Sport related background 5

2.1.1 Athlete Physical Status . 5
2.1.1.1 Rating of Perceived Exertion (RPE) 5
2.1.1.2 Wellness . 6
2.1.1.3 Injury . 6

2.1.2 Analysis of RPE . 7
2.2 Participatory Sensing . 8
2.3 Open mHealth . 8
2.4 Ohmage . 9
2.5 District Health Information Software . 10
2.6 MilanLab . 11
2.7 Summary . 11

3 Ohmage 13
3.1 Early ideas . 13
3.2 System design . 14
3.3 Ohmage back-end API . 15

3.3.1 Authentication . 16
3.3.2 User roles . 16

3.3.2.1 Administrator . 17
3.3.2.2 Privileged . 17
3.3.2.3 Restricted . 17

3.4 Class roles . 17
3.5 Campaign and surveys . 17
3.6 Ohmage MWF mobile application . 18

3.6.1 Login page . 20
3.6.2 User Interface . 22
3.6.3 Reporting workflow . 22
3.6.4 Survey queue . 22
3.6.5 Survey history . 24
3.6.6 Notifications . 24
3.6.7 Motivational factor . 24

3.7 Summary . 25

4 pmSys-design 27

ii

iii

4.1 System requirements . 27
4.1.1 Functional requirements . 27

4.1.1.1 Data capture . 27
4.1.1.2 Presentation and visualization of data 28
4.1.1.3 System assistance for data quality . 28
4.1.1.4 Platform support . 28

4.1.2 Non-functional requirements . 28
4.1.2.1 Availability . 28
4.1.2.2 Usability . 29
4.1.2.3 Scalability . 29
4.1.2.4 Privacy and Security measures . 29
4.1.2.5 Performance . 30
4.1.2.6 Maintainability . 30

4.2 Architecture . 30
4.3 Configuration . 31

4.3.1 User creation . 32
4.3.2 Class roles . 33

4.4 Summary . 33

5 The pmSys-App 35
5.1 Motivation . 35
5.2 Architecture . 35

5.2.1 Single Page Application . 35
5.2.2 Model View Controller . 36
5.2.3 Cordova . 37
5.2.4 AngularJS . 37

5.2.4.1 Routes and states . 38
5.2.5 Ionic . 38

5.3 Features . 40
5.4 Implementation . 40

5.4.1 Authentication . 40
5.4.2 Login . 41
5.4.3 User categories . 41
5.4.4 Campaigns and Surveys . 41

5.4.4.1 Prompts . 42
5.4.5 Survey response registration . 42
5.4.6 Visualization . 44
5.4.7 Notifications . 44
5.4.8 Cordova Filesystem . 46
5.4.9 Offline support . 46
5.4.10 Bypass functionality on startup of application 47
5.4.11 Glossary . 48

5.5 Deployment . 48
5.5.1 App Store (iOS) . 48
5.5.2 Google Play (Android) . 49

5.6 Evaluation & Discussion . 49
5.6.1 Hybrid versus Web versus Native application 50
5.6.2 Data storage . 52
5.6.3 User case: Which application is preferred . 52

5.6.3.1 User study 1: Objective users . 52
5.6.3.2 User study 2: Subjective users . 53

5.6.4 Answer rate between Ohmage versus pmSys 54
5.6.5 Performance test of Ohmage versus pmSys . 55

5.7 Summary . 56

iv

6 pmSys-Trainer 59
6.1 Motivation . 59
6.2 Features . 59
6.3 Related work: Ohmage front-end . 60
6.4 Architecture . 62

6.4.1 NodeJS with Express and Nunjucks . 62
6.4.2 Redis . 64
6.4.3 Bootstrap . 64

6.5 Implementation . 64
6.5.1 Session key storage . 64
6.5.2 Visualization . 64

6.5.2.1 Team visualization . 65
6.5.2.2 Player visualization . 66

6.5.3 Push Notification . 66
6.5.4 Survey responses . 68

6.6 Evaluation & Discussion . 68
6.6.1 User study: pmSys front-end vs Ohmage front-end 69
6.6.2 Client side versus server side processing . 70
6.6.3 Token storage . 70

6.7 Summary . 71

7 pmSys-Push 73
7.1 Motivation . 73
7.2 Related work: pmSys-push compared to other well-known providers 73
7.3 Features . 74
7.4 Implementation . 75

7.4.1 API endpoints . 75
7.4.2 Apple Push Notification service . 75
7.4.3 Google Cloud Messaging service . 76
7.4.4 Token storage . 76
7.4.5 Cron . 77

7.5 Evaluation & Discussion . 77
7.6 Summary . 79

8 Objective data: Integration of third party hardware 81
8.1 Motivation . 81
8.2 Example devices - for objective data . 82
8.3 Background . 83

8.3.1 Big data . 83
8.3.2 Internet of Things . 84
8.3.3 Countermovement Jumps . 85

8.4 Fitbit . 85
8.4.1 Features . 85
8.4.2 Limitations . 86
8.4.3 Uploading data to pmSys . 86
8.4.4 Data processing . 87
8.4.5 Visualization . 87

8.5 HUR Labs Jumping Board . 88
8.5.1 Features . 88
8.5.2 Limitations . 88
8.5.3 Uploading data to pmSys . 89
8.5.4 Data processing . 90

8.5.4.1 Method 1: By cutting data with a hardcoded value after highest value . 91
8.5.4.2 Method 2: By using gravitational and kinetic energy calculations . . . 91

v

8.5.5 Visualization . 93
8.6 Evaluation & Discussion . 93

8.6.1 Difference between objective data in Ohmage versus pmSys 94
8.7 Summary . 94

9 Conclusion 95
9.1 Summary . 95
9.2 Main Contributions . 96
9.3 Future work . 96

9.3.1 Ohmage back-end . 97
9.3.1.1 Update campaigns . 97
9.3.1.2 Validation of hashed password . 97
9.3.1.3 Optimalized results . 97

9.3.2 pmSys-App . 98
9.3.2.1 Color highlights of survey list . 98
9.3.2.2 Encrypted end-to-end chat between coach and player 98
9.3.2.3 Language localization (i18n) . 98
9.3.2.4 Rewamp offline mode by using SQLite 99
9.3.2.5 Security of the mobile application . 99
9.3.2.6 Add Windows Phone support . 99

9.3.3 pmSys-Trainer . 99
9.3.3.1 Artificial Intelligence (AI) or Machine Learning 99
9.3.3.2 User mapping . 99
9.3.3.3 Open up the web portal for the players 99

9.3.4 pmSys-Tesseract . 100
9.3.4.1 New visualization layout . 100
9.3.4.2 Storage of latest fetched data from Fitbit 100
9.3.4.3 More third party hardware . 100
9.3.4.4 Data warehouse . 100

A Accessing the source code 101
A.1 pmSys-app . 101
A.2 pmSys-trainer . 101
A.3 pmSys-push . 101

B User Surveys 103
B.1 pmSys vs. Ohmage . 103
B.2 Rating of pmSys . 107

C Surveys in pmSys 111
C.1 RPE Survey . 111
C.2 Wellness survey . 114
C.3 Injury survey . 117

List of Figures

2.1 Rating of Perceived Extertion (RPE) scale [11] . 5
2.2 Wellness chart [13] . 6
2.3 Injury questions [14] . 7
2.4 Injury flowchart [14] . 7
2.5 Stovepipe vs mHealth [20] . 9
2.6 Applications and features of Ohmage [23] . 10
2.7 The health information cycle [26] . 11

3.1 (Early) pmSys architecture . 13
3.2 A simple MongoDB query (NoSQL) . 14
3.3 Overview of Ohmage architecture . 15
3.4 Stateless authentication - Hash based . 16
3.5 Stateful authentication - Token based . 16
3.6 An example of how users are listed in Ohmage . 18
3.7 Example of a campaign (in XML) for RPE (coaches) 19
3.8 The difference between iOS and Android’s dashboard 20
3.9 Overview of Ohmage Login and Server page . 21
3.10 Problems when entering Ohmage URL . 21
3.11 The difference between iOS and Android Ohmage MWF 22
3.12 Overview of heatmap and problems during answering surveys 23
3.13 Overview of heatmap and problems during answering surveys 23
3.14 Overview of Ohmage’s survey history feature . 24
3.15 Notifications in Ohmage . 25

4.1 The correlation between real name and username . 29
4.2 pmSys architecture . 31
4.3 Deployment workflow for pmSys . 32
4.4 pmSys monitoring . 32
4.5 Previous and current class roles in pmSys . 33

5.1 Overview of the history of web pages [57] . 36
5.2 The Model-View-Controller model . 37
5.3 AngularJS HTML template syntax . 38
5.4 AngularJS routeProvider example . 39
5.5 The pmSys-app’s visualization using state routing . 39
5.6 URL example . 39
5.7 Login page with custom server enabled . 41
5.8 Programlist when logged into pmSys . 42
5.9 Example of a survey in the pmSys-app . 43
5.10 An example of the JSON object in required syntax . 43
5.11 The workflow of the Visualization module . 44
5.12 Visualization of survey responses in the pmSys-app . 45
5.13 Overview of the (local) notification feature . 45
5.14 Receiving push message on iOS . 45
5.15 iOS file system . 46

vi

vii

5.16 Memory stack on iOS for background applications . 47
5.17 Bypass workflow . 48
5.18 Overview of the memory usage of pmSys . 51
5.19 Usability . 53
5.20 Design . 53
5.21 Navigation . 54
5.22 Content presentation . 54
5.23 Statistics from the user study conducted at LIF and SIF 55
5.24 Performance tests between Ohmage versus pmSys . 57

6.1 Two examples of what type of graphs OpenCPU returns to Ohmage 60
6.2 Ohmage dashboard responses . 61
6.3 pmSys-Trainer architecture . 62
6.4 Sample code of Express routing with error handling . 63
6.5 Sample code for the views in Nunjucks . 63
6.6 Extending the main layout in Nunjucks . 63
6.7 Session cookie on pmSys-Trainer . 64
6.8 Example of the required data format for C3 . 65
6.9 RPE visualization . 65
6.10 Wellness visualization . 66
6.11 Injury visualization . 66
6.12 Player visualization . 67
6.13 Automated push messages . 67
6.14 The response-module in pmSys-Trainer . 68
6.15 Ohmage’s visualization module . 69
6.16 Client side vs Server side with pmSys-Trainer . 71

7.1 pmSys-Push endpoint map . 75
7.2 Overview of Apple Push Notification service and Google Cloud Messaging service . . . 76
7.3 Crontab on UNIX . 77
7.4 Node-cron with NodeJS . 77
7.5 SenderID for GCM . 78
7.6 The Norwegian National football team answer rate after cron was introduced 78

8.1 HUR Labs Jumping board visualization . 82
8.2 Traditional database system versus distributed database systems 84
8.3 Example of what simple sensors can provide of analytics 84
8.4 Fitbit dashboard visualization . 86
8.5 OAuth workflow for read-access to user data . 87
8.6 Visualization of sleep time and activity levels . 88
8.7 Upload interface for jumping board data . 89
8.8 Raw jumping data . 89
8.9 Calculated values from the software . 90
8.10 Algorithm to find the highest value in the array . 91
8.11 Visualization of jumping data . 93

9.1 Example of new data format . 97
9.2 Color highlights of survey status . 98
9.3 Example of how a data warehouse works [125] . 100

List of Tables

2.1 Ohmage vs DHIS2 . 12

3.1 Most used operations used by pmSys . 15
3.2 Class restrictions . 17
3.3 Campaign restrictions [38] . 19

5.1 Detailed list of features available in Ohmage compared to pmSys 40
5.2 Authentication type table . 41
5.3 OS and their programming language . 50
5.4 Pros and cons of pmSys-app as a hybrid application . 51
5.5 Survey statistics for 2014 and 2015 . 54

6.1 Ohmage versus pmSys features . 69

7.1 Examples of some push notification providers and their costs 74
7.2 Payload limit on iOS and Android . 78

viii

List of Equations

2.0 Equation for calculating Training load . 6
2.1 Equation for calculating Training monotony . 8
2.2 Equation for calculating Training strain . 8
8.0 Method 1: By cutting data with a hardcoded value after highest value 91
8.1 Equation for calculating Gravitational potential energy . 92
8.2 Equation for calculating Kinetic energy . 92
8.3 Equation for calculating time . 92
8.4 Method 2: By using gravitational and kinetic energy calculations 92

ix

Acknowledgement

I would like to thank my supervisor Pål Halvorsen, for all the advices you have given me the past two
years. Thank you for providing me guidance, ideas, motivation, discussion and constructive feedback
throughout this thesis. Your knowledge, commitment, hard work and positiveness are truly inspiring,
and I am grateful for getting the chance to work with you on this project.

Furthermore, I would like to thank my best friends and collegues; Nguyen Cong Nguyen and Kennet
Khang Vuong for working together with me on pmSys. Their commitment, hard work and positive
attitude has constantly made me want to out do myself. I am really looking forward to the future, and all
the future work we are going to do together!

I would also thank the Norwegian School of Sports Sciences, especially Håvard Wiig and Thor Einar
Anderson for giving us the opportunity to create the monitoring tool needed for your PhD research.
Thank you for sharing your expertise within sports medicine, your constructive feedback and discussion
throughout this thesis. I would also thank everyone that have been there for us during our user studies,
tested the application, the system and also providing us feedback!

Moreover, I would like to thank Håvard Johansen, Dag Johansen, Svein Arne Pettersen from University
of Tromsø, as well as Carsten Grizwods and Håkon Kvale Stensland from Simula Research Lab for
providing us with input and great insight.

Finally, I would like to thank my family and friends for their continuous morale support and encouraging
words throughout my education. Especially my incredible girlfriend, Phuoc Hanh Thi Nguyen who has
supported me throughout this whole process. Thank you for motivating, encouraging and for always
being there for me!

Oslo, May 18th 2015
Thuc Tuan Hoang

Chapter 1

Introduction

1.1 Background

In recent years, information about a football player’s physical state has been collected by only pen and
paper. Crunching numbers into formulas by hand or using third party programs such as Excel to compute
a report faster, still requires a lot of time. The idea is to add more advanced technology into the equation
so that we can accomplish at least the same results in just a few seconds just by clicking on a button. Even
though computing all the data is faster on a computer, formulas are needed to compute all the numbers.
In our case, it is physics and well documented algorithms used for detection of strain and workload on
the players. The formulas have to be implemented in code, but also thoroughly tested to ensure that
everything is correct. From an informatics perspective, this is the perfect case of use where technology
can be used as a quality assurance tool and giving output with customized quality for a small percent of
the cost and time used.

During this master thesis, I have worked with two other master students, Cong-Nguyen Nguyen and
Kennet Khang Vuong on the systems we have created. Our master thesis is based on the same core code,
however, later in the master thesis timeline, each of our projects branched out into different focus fields.
To make this system possible (with the sufficient medical background), we paired with PhD student
Håvard Wiig and MD PhD PT Thor Einar Andersen with their project within health monitoring from a
medical perspective [1]. Our part in this project involves creating a system that can ease the calculation
and detect when a player’s health is getting close to self-inflicting injury due to overtraining.

During spring 2014, four teams from the Norwegian Premier Football league ”Tippeligaen” used using a
very first version of the system using Ohmage to collect their health1 data. This was meanwhile pmSys
was under the early stages of development, by doing this we could get better feedback from the players
on how Ohmage worked. Creating reports and graphs had to be done by hand due to a bug with the
OpenCPU module in Ohmage. This meant that even though the information was collected through the
Ohmage mobile application, it would still take a lot of manual labor for the coaches or any other person to
create all the detailed reports perfectly. Discovering trends and abnormalities would be time consuming
due to the time it takes to compile all the information by hand. In addition it is not possible to compile
a detailed report where the information are updating itself all the time. With technology this can be
done in just a matter of seconds. Discovering and alerting the correct people can make a huge difference
before an injury occurs. Avoidance of injury can be translated into a player’s value in the football market,
the less the player is injured and performs well, the better is the value for both the player and the club.
Investing millions of dollars in one player just to have him overextend his physique would cost a lot of

1It is important to note that we have not been working with health data in our thesis, but created tools for collecting health
data.

1

2

money every day he is not actively performing as a football player.

Because of the complexity of Ohmage’s current front-end, we decided to create pmSys. It originally
started as an alternative front-end for Ohmage, however, during this thesis, pmSys evolved into it’s own
system by reusing Ohmage’s REST API to manipulate the data the way we want it to be. By doing this,
we can improve Ohmage and in addition present the data on a whole new level, i.e., making the system
more approachable for both football players, medical staff and coaches.

1.2 Problem Definition

Since the beginning of monitoring health of football player has always been recorded by using pen and
paper. In this thesis, we wish to find out how can we create a digital monitoring system that optimizes
the collection, the storage of data, the data analyzation and the visualization of a player’s health data.
How can a digital tool help a team towards their goal by monitoring their own players?.

We will therefore address the main problems concerning monitoring health of football players. By using
technology to speed up the process and to increase the detection rate of pre-injuries before it is too late.
We will research and develop a health monitoring system, which we named, Player Monitoring System
(pmSys). The system will be the main reporting tool for the football player, the coach and the medical
staff.

For the players, a new mobile application has to created because of the lack of usability of Ohmage
MWF [2], due to the nature of an athlete’s schedule the mobile application has to be as easy as possible.
Registration should take as little time as possible so that the focus can be channeled into performing at
the maximum limit during training sessions.

Even though the players will be receiving a new tool to use, the coaches should not be using their time
to enforce players to register health data. We will therefore create a web portal with rich features where
intuitiveness should be one of the most important factor for using the system. The data will be presented
in a way so that the medical staff and the coach can use it to monitor their players, which means that they
will not be needed to work the data to receive the results they wish for.

Collection and storage of objective data requires objective devices that can record physical data from
the players, and one of the possible ways to do this is to use third party devices such as hardware and
wearables. These devices can provide a team the possibility of valuable data from a player daily life for
closer analysis, for example during training sessions and outside of the training sessions.

The primary goal of this thesis is therefore to create a system for both the players and the coaches to
replace the pen and paper. Everything can be processed and presented in the most effective way possible.
Because of the time limit set for this thesis, we need to provide a stable and efficient implementation.
By reusing the API back-end of Ohmage [3], pmSys will provide the users with a simple, but yet
powerful tool to analyze and follow a player’s progression throughout a season by detailed visualization
of subjective and objective data.

1.3 Limitations

Since pmSys is more or less an extension of Ohmage, only the most basic descriptions and the features
of Ohmage will be presented. We will go into how pmSys is using the Ohmage back-end as a supporting
pillar of the system, and why we chose to use it instead of creating our own back-end. As for the security

3

aspect, we will not provide any in depth description of the solutions pmSys is currently using, but rather
scratch the surface of what security issues we can come across while implementing pmSys. We will
also point out the flaws of Ohmage and how we implemented pmSys in order to fill the gaps and lack of
functions of the Ohmage back-end.

pmSys supports subjective data through questionnaires, but wishes to support objective data through
third party hardware and wearables in the future. For a more detailed analysis of the data through trends
and expected values is covered in Cong-Nguyen Nguyen’s master thesis [4]. Meanwhile for the theory
and decisions on how pmSys can become more scalable and the efficiency of our code and frameworks
will be researched and discussed in Kennet Khang Vuong’s master thesis [5].

1.4 Research Method

In this thesis, we will be following the design methodology described by the ACM Task Force in
Computing as a Discipline [6]. This involves the design, implementation and evaluation of the integration
module where the objective data should be registered and visualized.

For all systems, we have created we have been following a Scrum approach [7]. Scrum allows us to
do "sprints" which is more or less small deadlines for version releases without too much pre-planning
except from selecting tasks to finish since we were working in one team, Scrum was a perfect fit for our
situation. We had a lot of thoughts which went on our Project Management Board on Trello [8], but
in the beginning, we had no categorization, everything was "urgent". It was after the proof of concept
period was over that we added Scrum into our project to be more efficient when releasing the application
frequently. The reality was that only 10% of all of our "stories" were urgent, i.e., the some should be
prioritized, and some were only an idea.

pmSys itself has been deployed and real football teams are currently using it every single day. The
use of a prototype in a real environment allows us to see how the prototype is reacting when several
teams is using it at the same time. By doing this, the module could allow us to verify how effective the
implementation is and tweak it to become more effective.

1.5 Main Contributions

In this thesis, we show what customizing an already existing general system for collecting health data can
provide. As a result of this thesis, several systems and a mobile application under the name pmSys has
been released to fulfill the holes and features in which Ohmage (both server and mobile application) is
missing. One of the main contributions of this thesis is the implementation of pmSys mobile application,
which also has given us media exposure [9] on NRK’s (Norsk rikskringkasting AS) web news. Providing
the players a better set of tools which is more intuitive and faster to register their self-assessment of health
status every day by half the time compared to the Ohmage application (see section 5.6.5). This has proven
to help the coaches, adjusting the training sessions to the team’s response instead of possibly overtrain
the players. The answer rate for one of the teams that has used the first version and the current version
of pmSys, has increased by 555% in the first four months compared to how much they answered the
whole year before (see section 5.6.4). 167 people in total have downloaded the mobile application, but
the number of active users of pmSys is a bit lower than what Apple Store and Google Play reports, since
even though the application has been downloaded it does not mean that the application is being used.
111 users of pmSys are iOS users and 9 users are Android users, which means that the real number of
active users of pmSys mobile application is 120/167 (72% of the reported number).

4

In 2014, the first version of pmSys had four Tippeliga teams as participants. The teams were:
Rosenborg Ballklubb (RBK), Strømsgodset Idrettslag (SIF), Viking Fotballklubb (VIF), Sarpsbord 08
Fotballforening (SAR) and Tromsø Idretslag (TIL). During the first deployment, the teams gave us
vital feedback about their percieved experience with the system which has helped us in our process
of developing a new monitoring system. In 2015, SIF and SAR wished to continue to participate with
NiH and us. We also added a local football team into our test group, Lørenskog Idrettsforening G16.
They immediately became our primary test group for all functionality; the reason is due to the fact that
we were able to contact them directly for feedback instead of going through NiH.

The second contribution of this thesis is the implementation of the pmSys-trainer web portal. The web
portal itself gives the coach and the medical staffs full access to all responses of the players, with the
possibility of checking the subjective health data and also use objective data from third party systems
and wearables.

In this thesis, HUR Labs Jumping board (see section 8.5) and fitbit support (see section 8.4) has been
implemented, which makes it possible to get more detailed physical state information about the player
without the data being tampered by the player. As a web portal and as a tool it has been successfully
used to replace the pen and paper, which were the main idea of creating pmSys.

The pmSys-Push project also shows that creating a push message system that supports both iOS and
Android takes little to nearly no time to implement (without the security features), but it also shows that
the pmSys-push could become competition of existing services (Table 7.1). For such a simple system,
the effectiveness and cost of deploying pmSys-push should not prevent pmSys or any other projects using
the same push message system to pay for the same service.

1.6 Outline

Chapter 2, gives a brief presentation of the related background and other systems that has had an impact
on the development process and the features of pmSys. We then evaluate Ohmage in chapter 3 more
thoroughly, to see which part of Ohmage that can be interesting for pmSys to adapt and copy from. Then,
we present our functional and non-functional requirements for the whole pmSys-system in chapter 4. In
chapter 5, we present the mobile application with the sole purpose of optimizing the registration of
surveys. This chapter covers everything from the development phase to the functionalities the mobile
application has to offer. In chapter 6, we present the pmSys-Trainer web portal created spesifically
for the coaches. We go through how the web portal works with the mobile application, how they are
interconnected with each other and how they solve the problems the teams have been dealing with since
the beginning of player health monitoring. We will also present the middleware-system between the
pmSys-app and the web portal, pmSys-Push in chapter 7. The system enables a one-way communication
channel between the coaches to their players through push notifications. In chapter 8, we will research
and find out to what extent integration of objective data can do and what objective data could mean for
the analysis for each player in pmSys. Finally, in chapter 9, we conclude the thesis by the results from
the previous chapters, and the outcome of this thesis. We also discuss future work for the system and
what we could do to make pmSys even better.

Chapter 2

Background and related work

In this chapter, we will be reviewing related work to pmSys. We will be looking into some medical
related background that pmSys uses for the systems and frameworks that are used to collect data, which
in this case is health data.

2.1 Medical related background / Sport related background

2.1.1 Athlete Physical Status

In the previous chapter, we explained that all medical formulas we are using in pmSys comes from
studies conducted to evaluate the physical status of athletes for analysis of workload (Rating of Perceived
Extertion), and how well the athlete are feeling when they wake up (Wellness). The physical status of
an athlete means everything in terms of how much the athlete should train, prevent injuries and it also
makes sure that the athlete can rest enough before matches. Furthermore, we will in explain briefly the
surveys conducted to monitor the physical state of an athlete, in this case, a football player.

2.1.1.1 Rating of Perceived Exertion (RPE)

Rating of Perceived Extertion (RPE) [10] are one of the most important surveys for subjective data in
pmSys , this survey provides an indication of how the athlete perceives the training based on the intensity
of the training session. The data from this survey gives the coach an overview of how the player perceives
the training, which translates in better understanding of the player’s physical status. But, it also measures
the degree of training to a certain extent (given that the data collected are truthful), which may be the
cause of injuries as a result of overtraining.

Figure 2.1: Rating of Perceived Extertion (RPE) scale [11]

5

6

Right after a training session, either it is a team session or an individual session; the player should answer
the RPE survey as soon as possible. For the most optimal response, the survey should be answered within
15 minutes after the session has finished. By using the formula below (see equation 2.1), a load can be
calculated and plotted into graphs for a better visual understanding of the physical status of the player.
When a survey answer is above a certain amount of load, it is important that the coach can be notified in
order to follow up the player’s performance, and also various things related to the reason for high RPE
load.

Training load = training volume (minutes) ⇤ training intensity (1-10 scale) (2.1)

2.1.1.2 Wellness

The study about the wellness of an athlete gives the medical staff an indication of how the athlete
perceives the training based on measuring fatigue, stress, sleep duration, mood and muscle soreness.
The survey is a self-assessment of the athlete’s physical and mental health after a night sleep, due to this
the survey should be answered right after waking up for the most optimal response. The answer scale is
a Likert-scale [12] where the answer is translated into a value between one to five (see figure 2.2), and
plotted on a graph, where it can show and be used to predict the athlete’s health.

Figure 2.2: Wellness chart [13]

2.1.1.3 Injury

The study about injuries of an athlete gives both the athlete and the medical team an indication on how
severe the injury is. By answering a set of questions about what and where the problem lies, a score is
generated. The higher the end-score is, the more severe is the injury or illness.

For questions with 4 answers the score are given (based on ascending order): 0-8-17-25 points. And
for questions with 5 answers the score given for each choice option the score are given: 0-6-13-19-
25 [14].

With a total score of 100, the score can give the coach and the medical staff an indication on how injured
the player is even though it is not entirely accurate (due to being subjective data), it does show some
simple post-analysis nonetheless.

In pmSys we are using the four questions below (Figure 2.3) as a base to generate the injury score, the

7

Figure 2.3: Injury questions [14]

survey has four main questions that are based on the Oslo Sports Trauma Research Center questionnaire
for reporting health problems [13]. The reason why there is 11 questions in pmSys RPE survey is because
we need to clarify where the injury or illness lies, since this information is vital for the medical staff if
they want to conduct more detailed tests on the players (see figure 2.4).

Figure 2.4: Injury flowchart [14]

2.1.2 Analysis of RPE

The data we get from RPE answers can provide a deeper analysis of a players physical state. This can be
calculated based on a total training load for each day by using the formula in equation 2.1. This value
we get is the total load of all RPE registrations, the higher the value, the more physical load has been
performed by the player.

When the load has been calculated, we can calulate the training monotony. The definition of training
monotony is lack of variety when it comes to the training routine, and it is considered a key factor in

8

the syndrome Overtraining Syndrome [15]. The higher the value is more similar is the daily training
performed by the player, and by reading of this value over time can determine the effectiveness of the
training program. It has been suggested that training with low monotony may prevent injuries compared
to high monotony training [16]. The idea of calculating this value is to make sure that the player gets
sufficient variation between the sessions to prevent injuries. In pmSys, this value is calculated by the
standard deviation of each days average TL over the course of seven days (see equation 2.2).

Training monotony = average daily training load/standard deviation (2.2)

The last equation that the pmSys system calculates is training strain (see equation 2.3). This calculation
will provide the coaches with a value that is determined based on the total training load for the past seven
days multiplied with the monotony value calculated from the previous step (equation 2.2). High strain
value can only be achieved by high training load over a long period of time (within the last seven days),
and if the value is high then it means that the player has not been given sufficient time to recover from
the past training sessions.

Training strain = total weekly training load ⇤ training monotony (2.3)

2.2 Participatory Sensing

The concept of what pmSys is doing and the related systems below are called Participatory Sensing
[17]. Participatory Sensing is a distributed data collection and analysis approach that revolves around
the individual that uses the system. According to a survey conducted by TNS Gallup [18], in Q3 of
2014, 81% of the Norwegian population had a smartphone. The definition of a smartphone when this
survey was conducted were as following: A smartphone has to be able to connect to both the internet and
accept emails. It also has to have a touch-screen or be able to install programs. By using smartphones
to analyze, the individual can gather information about certain aspects of their normal daily life (for
example step counting) in an easy way without keeping track of the data themselves. In other words,
smartphones can be used to send in self-reports (surveys in pmSys) and to be used as monitors and
recording devices for sensors such as wearables connected to a mobile device (see chapter 8).

In order to achieve the goals of a participatory sensing system, there is a model which defines the general
user roles needed to fulfill this approach:

• Initiators - Users being able to create campaigns and specify the data collection
• Gatherers - Participants (users) of the system
• Evaluators - User that verifies and classify collected data in the campaign
• Analysts - User that process, interpret, presenting data and conclusions

2.3 Open mHealth

Open mHealth [19] is a registered non-profit organization which revolves around building an
architecture that has shared data standards. The way they have created a set of standardlized frameworks
with optimalized data schemes for clinical usage. Instead of only collecting data from closed systems,
the frameworks enable the possibility of retrieving all types of data from third party systems, such as
wearables.

9

Mobile Health (mHealth) [20] is a practice of medicine and public health supported by mobile devices.
mHealth encourages reuse of code to create an open platform for collecting health data, but also following
a standard for data capture. The objective of mHealth is to make it easier to collect data and exchange
the data between different systems and platforms, but also so that the patient can collect and share their
own personal health data as they wish.

Regarding the increasing rate of smartphones per person in the world [21], gathering health data is
made possible for better treatment. This would perhaps make it easier to change doctors and retrieve
correct treatment when a patient is in need. However, in order to do this frequently, systems has to
change their approach of developing health data systems from a silo-approach (the same as "Stovepipe"
in Figure 2.5) [22] (the lack of collaboration and standardization between other systems) to how the
mHealth data schemes work or else the work of mHealth will be held back by limitations from lack
of collaboration. mHealth also makes it possible for patients to share data to anyone they want to
share with, even without visiting clinics or hospitals. New upcoming mHealth systems is Apple’s new
HealthKit which supports and makes it possible to connect multiple systems into the application for data
analysis.

Figure 2.5: Stovepipe vs mHealth [20]

2.4 Ohmage

Ohmage [3] is an open-source project initiated by Deborah Estrin at Cornell University where it has
become a platform for collecting health data. Ohmage is a system created to collect data from users

10

by either manual registering through the mobile application or by letting the application collects data
automatically (continous data streams). All captured data is timestamped, geocoded and uploaded to the
Ohmage server for analysis. Ohmage is a product of many participatory sensing systems combined to
provide a generic platform with the possible to customize for different scenarios. Before Ohmage, each
focus group created their own system specifically for gathering information by using smartphones. What
all the systems have in common is that they all share the same ideas on how to gather health information,
how the data is stored and that it has to be made simple to manage the data on the system. This approach
discouraged code reuse, which caused high development and maintenance when using multiple systems
at a time [23]. The Ohmage platform offers a big range of applications and features (Figure 2.6), with
a rich featured Application Programming Interface (API). With the Ohmage back-end in the middle of
everything, participatory sensing systems and applications can be built independently and customized
for each purpose revolving around the back-end which meant the data would still be standardized.

Figure 2.6: Applications and features of Ohmage [23]

2.5 District Health Information Software

District Health Information Software (DHIS) [24], version 2 is an open-source project and tool for
collecting data and validation of data initiated and created at University of Oslo and is widely used in
Africa and Asia. The system collects health data in order to group and discover outbreaks of lethal
viruses such as Malaria and Ebola. DHIS2 was created as a Health Information System (HIS), but in the
later years incorporated the participatory sensing approach for data collection, in order to follow up with
the new technologies to add additional ways to register data. As a participatory sensing system, DHIS2
aims for reporting from mobile devices and with low bandwidth usage mainly for countries with bad
cellular coverage. For mobile clients the DHIS2 dashboard has a mobile interface for easier navigation
and one of the focus areas is to not use too much bandwidth for development countries due to the high
cost of data traffic. In addition DHIS2 also supports text message notifications.

One of the goals of DHIS2 is to create a digital framework that supports all the stages of the information
cycle (see figure 2.7), which includes functions such as; collecting data, running quality checks, data
access at multiple levels, reporting, analysis, enable comparison of the data across time and space and
see trends. A web application has to be uploaded as a DHIS2 module to be able to use the API that
DHIS2 provides because cross-domain requests is disabled by default. And one way to bypass the cross-
domain lock is by using JavaScript Object Notation with Padding (JSONP) [25], because web browsers

11

does not enforce the same restriction on <script> tags in JavaScript.

Figure 2.7: The health information cycle [26]

2.6 MilanLab

MilanLab [27] is one of the most known laboratory that does analysis based on a player’s health. The
lab has been operating since March 2002 with Jean-Pierre Meersseman in charge. Meersseman was
a Belgium chiropractor with the idea that it was possible to determine a player’s health, by collecting
data from all sorts of areas (like teeth and feet). His goal was to provide the best possible analysis
and management of individual players in AC Milan and the Italian National team. The whole idea of the
analysis is to prevent injuries of players, which increases the average age of a professional football player
in AC Milan. The lab itself had the responsibility of assessing players in all types of areas (neurology,
biochemistry, psychology etc.) in all stages of a player’s stay in the club, whether it is in the pre-signing
stage or during a season.

Their equipment is state-of-the-art and by using a jumping board connected with electromyography [28]
attached to the leg muscles, they could collect nearly 60.000 data points from one single jump which
would provide them data on the player’s flexibility and speed. It was also mentioned that the prediction
after one of these jumps had a 70% accuracy [29], which is insanely high when you think of the chances
of flipping a coin is 50 per cent. Even though Meersseman left MilanLab in 2011 to open his own clinic,
MilanLab still exists today.

2.7 Summary

To create a participatory sensing system customized for a football team, there is a selected areas that has
to be improved in order to make it useful. From a player perspective, the application used to register
data has to be as fast and effective as possible. The amounts of clicks per screen has to be kept to a
minimal in order to save time, but it also has to be intuitive enough for anyone to use without setting up a
workshop. Ohmage has created a mobile application to register data, both subjective and objective data

12

(Figure 2.6) through the applications Ohmage and Mobility. The problem with these applications is that
it is too generic for our case, but it also lacks features on the platform they support. DHIS2 has yet to
release a mobile application for their system, but as a workaround, DHIS2 has created their web portal
so that it is responsive for mobile devices. This way any user of DHIS2 can use the web portal, no matter
what type of phone the user has (old / new).

From the coaches’ perspective, it is important for them to be able to use the tools to analyze and monitor
the physical state of their players. Ohmage does support this feature, but it is timeconsuming and complex
operation to get the correct data. DHIS2 has solved this by letting the users develop and maintain their
own applications inside of DHIS2, also known as Web application [30]. This way the user of the system
can create anything by using DHIS2 as their back-end, and manipulating the API provided to fetch and
create content as they please.

Another important aspect for a health monitoring system is that they must be able to support third party
hardware and wearables. The way DHIS2 is created, the only way to support this is by creating a web
application, but the complexity of the applications are limited to what HTML, JavaScript and CSS can
do. Ohmage do support this feature, however, adding a new third party system into Ohmage requires a
lot of time and work due to the complexity of how Ohmage has been implemented.

System Responsive web portal Visualization Mobile application Available API Support for third party
Ohmage No Yes Yes Yes Yes
DHIS2 Yes Yes No Yes No

Table 2.1: Ohmage vs DHIS2

For a system such as pmSys, it has to include all the features mentioned above (general functionality is
rhetorical). In addition, be easy to add support for new wearables since we are rapidly moving towards
the era of Internet of Things [31] (IoT, see section 8.3.2). Based on the discussion above, Ohmage
is the most suitable for what we want pmSys to offer regarding functionality. We also want to use
the standardized frameworks for data schemes that Open mHealth has created (which are also partly
implemented in Ohmage), so that pmSys can support all sorts of data from other products and system
without problems in the future. Therefore, in the next chapter, we will discuss what features Ohmage can
provide pmSys. We will also present briefly the most vital parts of Ohmage that pmSys currently uses
and supports.

Chapter 3

Ohmage

In this chapter, we will discuss the Ohmage server that we want to use as pmSys back-end, since this
server could be the core of our system it is important to get a overview on how the system works. We
will start by explaining why we did not choose to go for creating our own back-end and also why we
used Ohmage as our back-end instead. Next, we will get an overview of the features the Ohmage server
can provide and how these features are applied in pmSys.

3.1 Early ideas

In the early stages of our system, we had an idea on how we wanted to build this system. After taking
a course at University of Oslo about Open Source Development, we were eager on trying out a new up
and coming framework written in JavaScript; NodeJS. We had read articles and reviews about NodeJS
as a whole whether it was ready for the enterprise world [32] [33]. After that we wanted to create our
back-end in JavaScript and using NodeJS as our platform, due to the reason that we wanted to test if these
frameworks was a better fit than the more standard back-end solutions (Java, Tomcat and MySQL).

Figure 3.1: (Early) pmSys architecture

The important thing that were different from the early idea for pmSys and how Ohmage is currently
working, is that pmSys were supposed to be one server for both front-end and back-end. Meanwhile
Ohmage’s front-end layer (Figure 3.3) were optional if we chose to use Ohmage, but as a standard the
front-end were installed no matter what if you installed the Ohmage server.

13

14

// SQL-query
SELECT *
FROM users
WHERE status = "Approved"
ORDER BY user_id DESC

// MongoDB No-SQL query
db.users.find({ status: "Approved" }).sort({ user_id: -1 })

Figure 3.2: A simple MongoDB query (NoSQL)

Our vision was to use the new "up and coming" open-source frameworks to create our back-end,
NodeJS [34] as our server back-end and MongoDB [35] as our data storage. NodeJS is a platform
built on Chrome’s JavaScript V8 library written in C and C++. The framework is asynchronous event
driven and one of the main goals are non-blocking I/O compared to other types of servers such as Java.
Meanwhile, MongoDB is one of many NoSQL databases where data entries in the database is no longer
added in tables and rows, but rather added as a JavaScript Object Notation (JSON) objects in a collection
of data objects. Instead of writing queries in SQL to search for data, in NoSQL you query for a document
(see figure 3.2).

After a couple of days had passed, we found out a series of critical points we did not account for when
we discussed the architecture. In other words, we simply did not think of all the features we would be
needing to implement from scratch to create pmSys. Here are some of the features:

• User registration / creation
• Team allocation
• Authentication
• Security (of data and user credentials)
• Surveys
• Reports
• Data storage

Within the timeframe we had, creating the system with NodeJS and MongoDB was possible, but not
to the extent that the system itself would be stable enough to be set into production by summer 2014
(planned release date for The Norwegian National team). It were mentioned that Tromsø IL was currently
using Ohmage for quire some time to collect health data. After hearing this, we did some research on
what Ohmage could provide and how they solved most of our criteria’s (Table 2.1), we began to use
Ohmage to understand the system better. After that we got the idea to replace the Ohmage dashboard
into something more user friendly for coaches, and to recreate the Ohmage mobile application for both
Android and iOS with better functionality for the users (see section 3.6). The Ohmage system itself is too
generic and can be used to collect different type of data, and that is why pmSys will provide an alternative
front-end where the user can use more customized features specifically for football monitoring. As a
result, our original plan had to be scrapped, however, we have kept NodeJS as a part of our master
thesis when we’ve developed other sub-systems of pmSys that we will explain more about later in this
thesis.

3.2 System design

System requirements to run the Ohmage server and can be hosted on all platforms as long as the following
minimum requirements is met:

15

• Java 7 or later.
• MariaDB/MySQL 5.5 or later.
• Tomcat 7.0.28 or later.

Figure 3.3: Overview of Ohmage architecture

3.3 Ohmage back-end API

The Ohmage back-end is written in Java and provides a RESTful API where HTTP calls can be
done towards it in order to do CRUD [36] operations. The back-end has several endpoints where an
authenticated user can access the data in campaigns, this is one of the most crucial parts that the mobile
application needs to do all it’s operations successfully. Even though the back-end has many endpoints
to retrieve data there is still one thing Ohmage lacks, which is customization. The queries can not be
customized enough, some HTTP calls are locked and returns a lot of unnecessary data which takes a lot
of bandwidth and creates extra overhead in the long run.

Operation Description
User Authentication CRUD operations for authenticating
User Manipulation CRUD operations for user information

Campaign Manipulation CRUD operations for campaigns
Survey Manipulation CRUD operations for surveys
Class Manipulation CRUD operations for classes

Table 3.1: Most used operations used by pmSys

In pmSys, we have two systems that use the Ohmage API, pmSys-app and pmSys-Trainer. Both the
mobile application and the web portal we have created uses the back-end to authenticate, collect, validate
and visualize data. The most frequently used operations in pmSys is illustrated in table 3.1. All HTTP
calls to the back-end has to be sent as a JavaScript Object Notation (JSON) [37] which is an open standard
format that uses a human-readable text to transmit data as objects with a key-value pair. All responses
are also returned as JSON objects, which makes it easier to manage the data and the formats when using
the API. By using the API, the developers can get direct access to Ohmage data model when requesting
a resource by providing an endpoint.

16

3.3.1 Authentication

All HTTP calls in Ohmage has to be authenticated, and it exists two types of authentication method in
Ohmage. The first type is Stateless authentication (see figure 3.4), which is a hash returned by the API
when the user has authenticated with the correct username and password. The hash returned is encrypted,
however, if decrypted, it reveals the username and password. The only way to change the returned hash
is to change the password, since the salt and hashed password will remain the same as long as the content
is the same. This type of authentication is created for the purpose of allowing mobile applications to
provide authentication once, and then have access to the API at all time.

{
"result" : "success",
"hashed_password": "42f8l2nmk3p1iuy7"

}

Figure 3.4: Stateless authentication - Hash based

The second type of authentication is Stateful (see figure 3.5). This authentication method is created
for usage in a limited timeframe, which cannot be set by server configuration (even though the API
documentation states otherwise). This authentication method does not suit the way pmSys-app is fetching
data from the Ohmage back-end, but they are still needed for some CRUD calls where the Stateless
authentication do not function (see table 5.2).

{
"result" : "success",
"token": "2i9sh34hjklu"

}

Figure 3.5: Stateful authentication - Token based

3.3.2 User roles

Ohmage has 3 user roles that are slightly different from each other (access-wise). When it comes
to having several roles in Ohmage one user can be both "Priviliged" in one campaign, but also be
"Restricted" in another campaign, which gives the user account the opportunity to become a part of
several campaigns at the same time with different roles.

When the Ohmage system is deployed, an administrator account is created to manage the whole
system. For all newly created accounts after the administrator account, they must follow these
requirements:

• Username - The length of the username has to be between 3 and 25 characters. The system can
only accept usernames that contain A-Z, a-z or digits from 1-9.

• Password - The length of the password has to be between 8 and 16 characters. The password also
requires containing at least one lower case character, and at least one digit. The Ohmage wiki [38]
also states, that the password also has to contain one special symbol. But in pmSys, this default
system requirement has yet to show itself.

17

3.3.2.1 Administrator

The role as "System administrator" is the same on all types of systems; the user has access to do
everything on the web portal.

3.3.2.2 Privileged

Ohmage has a role that they call "Privileged" which have some extra privileges when they are a part of
a campaign. They can read all collected data for all users in a campaign, which means if a user is set as
"Privileged" they must be trusted by the administrator. In pmSys this user role is allocated for coaches
and staff of a team (medical / physical).

3.3.2.3 Restricted

"Restricted" users are more or less the equivalent of "participant" in this context, users with the role as
"Restricted" can only answer and see their own data in a campaign they are assigned to. In pmSys this
user role is allocated for all football players.

3.4 Class roles

A class is the same as a group created to contain users for access control. When creating a class, some
properties must meet in order to be able to create the class:

• A Uniform Resource Name (URN) - This URN has to be unique for the class
• Name - This name is used as an alias for the class
• Description (optional) - This property can be skipped if wanted, but it is just used to describe the

class (example: UiO players)

As stated in section 3.3.2, there is three user roles a user can have. But the "Administrator" role gives
a user the same privileges as "Privileged", and then some more access as a system administrator. For a
more detailed list of what users with different roles shown in table 3.2.

Operation Privileged Restricted
Read the class properties Anytime Anytime

Read list of logins for the class Anytime Anytime
Read detailed information of the class Anytime Never

Read list of campaigns that is associated with the class Anytime Anytime
Add and remove users from the class Anytime Never

Update class information and change user roles Anytime Never

Table 3.2: Class restrictions

3.5 Campaign and surveys

A campaign is a container for surveys [38], which means that it can contain several surveys (1:M-
relation). The campaigns are defined by Extensible Markup Language (XML) which allows the creator

18

to create a survey with serveral types of prompts (Figure 3.7):

• Audio
• Video
• (Custom) Multiple choice
• Number
• Image
• Remote activity
• (Custom) Single choice
• Text
• Timestamp

The idea of using campaigns in pmSys is that every team have their own campaign, this way the users can
be added into classes (which are more or less a list of names) to give them either access as "Restricted"
or "Privileged" (Figure 3.6).

Figure 3.6: An example of how users are listed in Ohmage

When a class has been added to a campaign, their access roles within the campaigns and surveys are
based on their class role. Privileged users receives a new role supervisors, and restricted users become
analysts. The new roles (in the campaign) defines what information will be visible to the user, and also
what the user can do in the campaign. In table 3.3, a more detailed list of what actions the users can do
within the campaigns they belong to.

3.6 Ohmage MWF mobile application

The Ohmage MWF mobile application is released for both iOS and Android, even though their names
are the same their features are somewhat different from each other. MWF stands for Mobile Web
Framework and it is a framework developed by UCLA [39]. The framework is following the principle
develop once, use everywhere [40], by using this framework the developers does not have to create a
spesific implementation for each device, but rather one implementation that works on multiple devices

19

<?xml version="1.0" encoding="UTF-8"?>
<campaign>
<campaignUrn>urn:campaign:demo:eng:srpecoach</campaignUrn>
<campaignName>Surveys for coaches-demo-eng</campaignName>
<surveys>
<survey>
<id>plansrpe</id>
<title>Planned sRPE</title>
<description>Plan sRPE</description>
<submitText>Survey is done. Thank you!</submitText>
<showSummary>true</showSummary>
<editSummary>false</editSummary>
<summaryText>Results</summaryText>
<anytime>true</anytime>
<contentList>
<prompt>
<id>time</id>
<displayLabel>Date and time</displayLabel>
<displayType>event</displayType>
<promptText>Date and start time for the session</promptText>
<promptType>timestamp</promptType>
<skippable>false</skippable>
</prompt>
</contentList>
</survey>
</surveys>
</campaign>

Figure 3.7: Example of a campaign (in XML) for RPE (coaches)

Operation Supervisor Analyst
Read campaign properties Anytime Anytime

Read which classes participates in the campaign Anytime Anytime
Read user roles of other users in the campaign Anytime Only the author is shown

Update campaign state (running/stopped) Anytime Never
Update privacy state (public/private) Anytime Never

Add/remove class, supervisor, analyst to the campaign Anytime Never
Delete campaign Anytime Never

Read own private or shares survey responses Anytime Anytime
Read someone else’s shared survey responses Anytime Only if the campaign is shared
Read someone else’s private survey responses Anytime Never

Table 3.3: Campaign restrictions [38]

[41]. As a supporting tool for reporting health data, Ohmage MWF lacks some vital features that many
of the first users of Ohmage complained about. We received a small list of feedback from the users on
what they found were complicated when using the Ohmage MWF application:

1. It takes too long to register a survey.
2. I cannot see any surveys, how can I answer a survey?
3. Where can I find my own progress in the survey?
4. I would like to answer a survey, but I cannot remember it. A reminder function would be nice.

20

Android has two different versions of Ohmage, one of it is Ohmage MWF where it can only be used on
mHealth’s Ohmage back-end (see figure 3.11(a)). The other version is the "normal" version where you
can choose which server you want to connect to (see figure 3.11(b)). Since we do not have credentials
to access the MWF version, we will focus on the "normal" Ohmage version, and hopefully they have the
same features. The first feature is the "response history" where the user can see when, what and how many
surveys were sent each day. The application also has support for Mobility which supports collecting third
party systems used to register objective data such as step counter, and GPS-tracking. These two features
is missing on the iOS version, which makes it harder to support collecting objective data for users on both
platforms. Meanwhile the iOS version is missing the features mentioned previously, but the iOS version
has the "reminder" functionality (locally only), which the users wished for to be able to remember to
answer surveys. In the sections below, we will go through all the main features of the Ohmage MWF
application for both operative systems. The dashboard for both platforms is quite different from each
other, not only the features but also the naming of the features on the dashboard (see figure 3.8).

(a) Ohmage (iOS) (b) Ohmage MWF (Android)

Figure 3.8: The difference between iOS and Android’s dashboard

3.6.1 Login page

The very first page the user is presented is the login page. Every time the application has been updated,
all data from the application is deleted. This would force the user to login again, if the username and
password is difficult or complicated, or if it has been a while since the last time, then it might be difficult
to log into the application again. Both the server information and user credentials have to be inserted in
order to get access to the surveys.

Another big technical problem the application has is that it only support one format of the URL path
for the back-end. The application did not support direct IP addresses, but it had to be in the format
of: http(s): serverURL.com. It was not possible to change the path of the API since the URL
to the back-end has been hardcoded into the application. It will always try to do requests against
serverURL.com/app, and if the API is not installed under /app, as a result, it will never be able to
authenticate with the back-end or do any requests. The login page will be reloading, and the system
would be in a state where it is not possible to do anything. The only way to reset it is to close
the application, and during the authentication no feedback about the system status is returned to the
user.

21

If the entered URL path is incomplete by missing a period symbol, then the user will be noticed by
the application that the URL is wrong. If you change the URL after getting this error message (see
figure 3.10(a)), you will be met with another error message even though it is the correct path (see
figure 3.10(b)), and the fastest way to reset the state of the application is to simply change the server
path to one of the default servers instead of the custom one. Furthermore, when you have entered the
server URL, you will be greeted with the message that everything is alright (see figure 3.10(c)). It is
important to note that there is no check if the server is actually valid, as long as the URL contains one
period symbol (.) it is counted as valid (ex. ohmage.nktconsulting is valid!).

(a) Ohmage MWF Login on Android (b) Ohmage Login on Android (c) Ohmage MWF Login on iOS

Figure 3.9: Overview of Ohmage Login and Server page

(a) Wrong entered URL (b) Application bug (c) Correct URL

Figure 3.10: Problems when entering Ohmage URL

22

3.6.2 User Interface

Once the user has successfully logged into the application, they will be redirected to the dashboard which
will present all the features the application can provide (see figure 3.11). The most important feature for
collecting data is the surveys. When the user click on the Survey button, they will see that there is no
available survey (see figure 3.11(b)). In order to be able to do the surveys, the user has to download
the campaign and add the surveys to their survey list before they can start answering. This forces the
players to use extra time to set up before they can start register data, and may cause confusion the first
time the player is doing this. Another problem with the UI, the top bar’s margin is pushed lower than
what the default iOS status bar is, which results in buttons being nearly impossible to click and use (see
figure 3.11(a)).

(a) Ohmage MWF surveylist on iOS (b) Ohmage surveylist on Android

Figure 3.11: The difference between iOS and Android Ohmage MWF

3.6.3 Reporting workflow

The current reporting workflow is not optimized for time efficiency, because of this the player is forced
to use extra time to answer their surveys (Figure 3.12(a)). They have to choose an option, and then press
next in order to go to the next question, this is an extra step that can be avoided. Another problem with
the report process is when the player meets the prompt type number (see section 3.5), because each
time the counter is clicked, the number is only increased/decreased by 1 each time. Unless the player is
typing down the number themselves, changing from the standard number (set by the campaign settings)
to the maximal number of 300 can take quite a lot of time (see figure 3.12(b)). When the player wishes to
send the self-assessed response, the Ohmage application will ask for GPS coordinates, hence making the
player easier to identify (for example when the player is registering the survey answer at home).

3.6.4 Survey queue

If the players do not have access to Wi-Fi or cellular network, they can still answer surveys. These
surveys will be stored locally on the mobile device and be shown in the Queue tab (see figure 3.13(a)). If
the player were to not have network connection right at the moment they send their survey, the answer is

23

stored on the phone, however, uploading has to be done manually. The error message shows no indication
that the survey has been stored locally, the chances of the player thinking that they have to answer later
is quite large (see figure 3.13(b)).

(a) Extra forced click per question (b) Counter problem

Figure 3.12: Overview of heatmap and problems during answering surveys

(a) Survey queue (survey sent with no
network)

(b) Error message when the user has no
network

Figure 3.13: Overview of heatmap and problems during answering surveys

24

3.6.5 Survey history

Survey history is one of the best features Ohmage has to offer; the only problem with this feature is that
it is only available on Android. This feature gives the player the opportunity to check if he has answered
the surveys has they should, and this is a great feature to use when you want to know what you answered
at a specific day.

(a) Calender with a counter of survey
answers

(b) List of which surveys has been
answered

Figure 3.14: Overview of Ohmage’s survey history feature

3.6.6 Notifications

It is possible to set up reminders in Ohmage, however, this feature exists on both platforms. The problem
with these reminders is that they has to be setup by the player themselves, which takes time, but it is
also optional. If the player has not set reminders for when to be reminded to answer surveys, then the
player will not be reminded by any outside sources (like through push messages), but rather depend on
themselves to remember in order to answer surveys. What this feature lacks is receiving notifications
when the user is outside of the application (see figure 3.15(d)), and this is one of the biggest bugs the
Ohmage MWF has on iOS. There is no point to have a reminder function if it cannot alert the user when
the application is not active, and the reason is simple. The players wish to answer surveys quickly, and
then do something else in their daily lives instead of keeping the Ohmage application in foreground at
all time. The reminder feature on Android is hidden within the surveys, which makes it more difficult to
find the feature compared to iOS.

3.6.7 Motivational factor

The most important feature and factor for usage of a mobile application to collect data, can be broken
down to one simple question: "What do I get back from using my free time to do this?". By using
their own time to answer the surveys to give the coach data in order to be able to improve has its cost. It
becomes a routine job that has to be followed in order for the quality of the data to be sufficient and useful
for the system. If the player does not get any encouragement from using their own time on answering

25

surveys, the chances for the players to give up answering surveys is much higher than for keep going on.
Especially if they do not see any result over time from using a data collection tool.

(a) Setup of a reminder in Ohmage (b) Notification while Ohmage is open

(c) Pending survey (d) Notification not working

Figure 3.15: Notifications in Ohmage

3.7 Summary

As mentioned in section 3.1, we use the frameworks we wanted to use, the only deviation from the
original plan is the frameworks used in the rest of pmSys. This decision has proven to be the most
important for the success of this master thesis, without this decision we probably would not have gotten
as far as we have. pmSys is currently used by the Norwegian National team and some clubs in the
Norwegian Premier league, and it’s development and interest is growing.

In section 2.7, we came to the conclusion that Ohmage was the most fitting based on what pmSys needed.

26

Even though we have only used the back-end API, we could also use the visualization module integrated
into Ohmage. The problem with this module and why pmSys does not use this module is because it is not
stable enough. It is also problematic when using it, because OpenCPU has fixed parameters on how and
what it accepts of data. The module practically accepted data from the system, and then sent the data to
OpenCPU [42] where the data would be crunched in the cloud. With the data returned from OpenCPU,
static images would be created and then returned to the user.

Ohmage and all its applications is perfect as a base system for beginners, since the implementation is
so generic. Ohmage can be used to collect any type of data, but if the data has to be specific, Ohmage
has to be modified to be able to collect and visualize the data more efficient. The Ohmage MWF mobile
application clearly lacks some vital functionality, which makes it very difficult to be able to collect data
efficient over time (section 3.6). In the next chapter, we will discuss how pmSys and all its systems and
applications is using the Ohmage back-end to collect data and the functional requirements for pmSys’s
health monitoring.

Chapter 4

pmSys-design

In this chapter, we will present briefly all systems under the name pmSys. The goal of pmSys is to
create an optimized digital monitoring system for football teams, with the Ohmage server as the back-
end server. Hence, we need to define our functional and non-functional requirements pmSys has to
fulfill. Then, we present briefly which systems will go under the name pmSys. Finally, we outline the
configurations we had to do on the original Ohmage back-end to make it fulfill our needs as a back-end
system.

4.1 System requirements

For a system such as pmSys to be successful as a health monitoring system, there are several functionality
requirements. We distinguish between functional and non-functional requirements. These functionalities
are critical for any type of system that wishes to monitor health data. That is why we chose to use the
Ohmage back-end since it has already has some of these functional requirements implemented.

4.1.1 Functional requirements

The definition of a functional requirement is that the function a system and the components in the
system. It may be calculations, technical details, data manipulation etc., but in this section, we will be
describing the technical details of the functionality and why it is critical for pmSys that the functionality
is fulfilled.

4.1.1.1 Data capture

The whole idea of monitoring health data also implies that the data has to be captured. There are many
ways to capture health data, but the data is split into two groups; subjective data and objective data.
pmSys currently only supports subjective data through answering a series of customized questions, and
these questions are calibrated to provide the most correct data as possible when answered (as mentioned
in section 2.1)). The Ohmage back-end supports objective data through third party systems, but the
applications needed (Figure 2.6) to collect them is not available on neither Apple Store nor Google Play.
Mobility has been removed, meanwhile AudioSens [43] and SystemSens [44] has their code repository
open, but the projects has not been maintained for several years.

27

28

In order to be able to capture data through surveys presented in pmSys, there has to be some kind of
motivation factor that keeps the football player interested in using the system. By providing the football
player live feedback on their self-assesment throughout the season, the motivational factor increases for
those who keep progressing in a positive manner. Meanwhile for the coaches, the motivational factor
is to be able to monitor the physical state of the players. The coach has to enforce the system into the
team’s schedule in order to get a continuous data flow.

To be able to introduce new ways to capture objective data, it is important to follow the mainstream of
Internet of Things [31] and the wearables that supports the type of data collecting that pmSys needs.
More on objective data and integration in pmSys will be discussed in chapter 8.

4.1.1.2 Presentation and visualization of data

How the data is represented and visualized gives the user a feeling of whether the system being useful
or not. By processing raw data from the surveys and from monitored data, and turning the same raw
data into something meaningful in terms of graphs and bar charts make the system more approachable.
As mentioned in the previous section, this functionality provides a lot of motivation for the user of the
system. The idea of showing just enough relevant data to the user instead of overflowing the user with
all kinds of data goes a long way.

4.1.1.3 System assistance for data quality

It is essential to keep a high level of quality of the captured data. In order for the data to be useable
to forecast injuries and physical state, the data has to be registered every single day at the correct time.
Without this meeting this criteria it is nearly impossible to predict if a player’s physical state is getting
close to injuring himself or if the player is already injured. Therefore it is important that the system
provides the players and the coaches a way to be reminded when to register. By using the remote
notification service provided by Apple and Google, it is possible to remind the player to register the days
survey if the player has forgotten to answer.

4.1.1.4 Platform support

pmSys is available on the two most used mobile platforms, iOS and Android. Due to the nature of pmSys
and the idea of being available for all types of mobile devices, it is also possible to use pmSys without
the most advanced features through the web browser.

4.1.2 Non-functional requirements

4.1.2.1 Availability

The system has to be available to the user no matter what happens to the components or the server itself.
If the server was to go down, an offline mode should detect that the server is down, and then take over
storing the input data temporary until the server is back up. The user should not be able to detect that the
server is down, or if the network coverage is not good enough in the area.

29

4.1.2.2 Usability

In section 3.6, we talked about the Ohmage MWF mobile application not being intuitive enough. This
requirement is a highly prioritized function in any system that wishes to keep the user in focus. The idea
is to be able to deploy the system and all the functionalities that comes with it, and without giving the
user any prior training or instructions and yet be able to record quality data. For a system to become
intuitive enough for anyone to use requires a lot of work, but it will also help create a critical mass of
users to increase future user base, through its reputation and functionalities provided.

4.1.2.3 Scalability

For a health monitoring system like pmSys, it is important that the system can be up scaled or downscaled
whenever the time fits. To be able to support an abnormal load of users in an instant, it is important that
the system can support multiple parallel (concurrent) requests without showing any signs of an imminent
system overload.

4.1.2.4 Privacy and Security measures

pmSys is collecting personal information from the users, and since it is hosted and maintained from
Norway, we are forced to follow the rules when regarding how to manage personal information.
"Personopplysningsloven" [45] is the law on how and what can be stored by the system, and it is created
to protect individuals from having their private information abused. As a default in pmSys, all usernames
have been created with a randomized algorithm where the letters and numbers have nothing in common
with the actual user. All users of pmSys have to accept and give the system permission to collect, store,
analyze and visualize their data in order to use the system. This is an important aspect of pmSys and its
compliance to the Norwegian law.

Real user: Thuc Hoang
pmSys username: uio.2j39sh3j

Figure 4.1: The correlation between real name and username

In 2013, Edward Snowden [46] leaked top secret information that National Security Agency (NSA) [47]
[48] were monitoring people from all over the world. Cryptography and security on social media were
no longer trustable, this was because Snowden also leaked that some of the largest companies such as
Facebook, Google, Microsoft, Skype and Apple had created backdoors specifically for NSA into their
system so that they could monitor in real-time.

This created a massive storm about data stored in USA and on services where their headquartes were
based in USA. As a result, people were looking for ways to store their data where they knew that it was
going to be safe from eavesdropping.

In 2014, a huge bug that leaked information when a query was sent was discovered after being unknown
since it was introduced in 2011. This open source implementation for Secure Socket Layer (SSL) is
known as OpenSSL (Ohmage uses OpenSSL to secure SSL and Transmission Control Protocol (TCP)
connections), where the bug was named Heartbleed [49]. The bug itself was quite simple in the way
it was implemented, a length check of user input was not present, which meant that the user could
extract more data from memory than what it was supposed to be allowed to do. By repeating enough the
same query multiple times on different ranges, sensitive data could be returned and leaked without the

30

knowledge of the administrator knowing about it [50].

What this means for pmSys is that the system needs to be secure enough to protect the users’ data.
Trusting third party libraries has a huge risk of leaking data, however, as long as precautions are
made before using it, the system itself should be acceptable secured. Since we are dealing with health
information, the collecting process is not top secret, but the users would definitely not want their data
leaked to anyone without their consent. Therefore, before data collection can be made, the user has to
give pmSys their consent to collect their data. All data in pmSys also has to be secured, and the data
storage (databases) has to be protected from outside access, by restricting access based on IP addresses.
It is also important that the data itself cannot be somehow linked to a player based on something related
to the player, which meant that the username used has to be randomized (see figure 4.1). In the way
Ohmage (section 3.5) works, it is also important that no teams can access data about each other. Team A
should never be able to access data from Team B and vice versa.

4.1.2.5 Performance

There are several aspects of performance when it concerns this type of systems. It is important that the
system reacts quickly when a user interacts with the system, and it is also expected that the system can
handle new user creations without slowing down. Response time when requesting data from subsystems
should be taken into consideration, the system should be reaching for the fastest possible processing
speed when implemented.

4.1.2.6 Maintainability

For a system in the same size as pmSys, it is crucial that the code is maintainable. A requirement is that
the code has to be well written, effective and commented to achieve the most optimal result, which will
result in having the best chance of being easy to maintain for new developers in the future.

4.2 Architecture

pmSys consists of several subsystems and applications that provide users of the system everything from
visualization, analyzation and message notifications (Figure 4.2). Each of the systems is vital to the
existence of pmSys, and each of the systems fulfills a functionality pmSys provides the users of the
system.

The pmSys-app is a optimized cross-platform mobile application the players use to register they survey
responses. The mobile application also provides visualization of the players’ own subjective data within
the application, and push notification messages sent from the coach. There are only two systems the
pmSys-app has contact with; the first is the pmSys-Push that the application subscribes itself with in
order to retrieve push messages. The second system is the Ohmage back-end, where the campaigns and
surveys are retrieved and shown in the mobile application.

pmSys-Trainer is a web portal developed with the coach and the medical staff in mind, where it allows
the coach and the medical staff to analyze and interact with all the data the player has registered. The
web portal provides team and single player visualization, which makes it easier for the coach and the
medical staff to track a player’s progression throughout a season. The web portal also allows the coach
to send push notifications to players in the team, by sending the message through pmSys-Push.

31

pmSys-Push is the middleware-system between the pmSys-app and pmSys-Trainer which allows a
one-way communication between the coach and the player. The system provides pmSys with access
to Apple’s and Google’s push message system, and this enables to possibility to send mobile push
notifications to both iOS and Android users. pmSys-Push also allows the coach to create cronjobs, which
are automated tasks for when to send push messages to the players (for example a friendly reminder about
registering RPE after their training).

Objective data will be uploaded and processed in pmSys-Tesseract, which is a dedicated system for just
objective data from third party hardware and wearables. Algorithms process the input data, and data can
be retrieved when pmSys-Trainer requests data from the system.

Figure 4.2: pmSys architecture

4.3 Configuration

In this section, we will define some configurations done to suit our needs with pmSys. In order to get the
most optimal experience, we have found the best way to isolate the data to keep the secrecy of the users
of pmSys securely and anonymous.

It is important to note that we have two servers with the same configurations, but different levels of
security behind the database. The first server is our own hosted server, which we use as our test bench
and stage-server before we push all our features to the main system. This has proven to be the most
secure way of deploying our systems after thoroughly testing, which also has prevented a lot of bugs in
the production environment (see figure 4.3).

32

Figure 4.3: Deployment workflow for pmSys

We have also integrated a monitoring system, Keymetrics [51], which is designed specifically for real-
time monitoring of NodeJS applications. We use this monitoring system to troubleshoot and detect if
the system is having problems which has helped us prevent downtime on our systems, and it is also very
useful when we want to pull a new source code from our repositories (see figure 4.4).

Figure 4.4: pmSys monitoring

4.3.1 User creation

There are strict rules regarding access to personal data stored in pmSys. Which means that every time
we wish to create new users on the production environment, we need to contact the system administrator
appointed to create new users. There is only one person that has total access to the production server
where both the web portal and the database is stored. This is to assure that we follow the rules set by
the privacy laws in Norway [45] [52] [53], and that nobody from the outside knows how to access the
system. Instead of using the API endpoints [54] to create the users, the system administrator has a Python
script which writes directly to the database instead of going through the API.

33

4.3.2 Class roles

When the users have been created in the format defined in figure 4.1, we have to assign the users to the
classes they belong to. In a way, we was treating classes as if it was a team, the class represents either
players or coaches in a team. It is important that the players can only access their own data, and the
coaches can access all their players’ data. By using classes we can differentiate between the accesses
given to a user. This way we can separate the access to all the data between players and coaches, and to
do queries against the users of a class to create better analysis. In our first definition of the class roles (see
figure 4.5(a)) all coaches had in reality access to both data of team X and team Y, but since the coaches
had no access at all to the analysis tool, we did not have to account for data separation on the first batch
of users of pmSys from the Norwegian Premier League. But a year later, the national team and new
Tippeliga teams wanted to use pmSys as well, which forced us into finding out the best solution for data
seperation meanwhile also being maintainable for any system administrator of the system. This became
the current definition we have created (see figure 4.5(b)), which gives us the flexibility to do a query
and simply only retrieving data from one team, instead of all the teams like in the old class definition.
A trade off to this solution is that we have to create two new classes and two campaigns for each team.
This makes it more difficult to keep control of all the classes, and the security of the survey data is more
important then anything.

(a) Initial class definition

(b) Current class definition

Figure 4.5: Previous and current class roles in pmSys

4.4 Summary

To be able to create a system like pmSys, we had to define some requirements in section 4.1 which is
vital for our system. Most of these requirements are more of less default requirements for any system,
but in the case of pmSys, these are the minimum demands that we have set for our system. Now that we
have defined the configurations with the Ohmage back-end, we can start to look at the implementations

34

of pmSys applications. This includes the mobile application we have developed, internally known as
pmSys-app, the mobile notification system that is known as pmSys-Push and the web portal for the
coaches, pmSys-Trainer.

These systems present themselves as if it was one, therefore it is possible to consider pmSys (and all its
applications) as a distributed system, since it is giving the users processed data from multiple systems,
but presented as one. This gives the user a seamless image of one system serving them all the content,
since it is either the mobile application that the players use, or the web portal where the coaches can
analyze the data from their players.

In the next three chapters, we will present all the applications under the name pmSys, which is the
mobile application, the web portal and the push notification service we have created for all users of
pmSys.

Chapter 5

The pmSys-App

In this chapter, we present the mobile application that was made to replace the Ohmage MWF application.
We will then present the architecture and frameworks used when developing the mobile application.
Furthermore, we present the implementation of the application and its features. Finally, we will evaluate
the pmSys-app versus Ohmage MWF, and present data from user studies done with objective and
subjective users.

5.1 Motivation

In chapter 3, we discussed how Ohmage has functioned for The Norwegian Premier League
"Tippeligaen" as their data collection system. In section 2.7, we came to the conclusion that Ohmage
were very good at collecting data, but the system itself was to generic for our type of usage. Our focus-
group is football players which meant the system had to be customized to be easy enough to make it
worthwhile, that is why our first goals for the pmSys-App was a proof of concept. Our goals were to
prove that the Ohmage mobile application could get better and more effective for our focus groups. The
mobile application is one of the main sources where data can be collected, and in this case, it is subjective
data that is collected through a series of survey questions. When our prototype was presented we showed
the possibility of what a mobile application could do if it were customized, the project status for pmSys
changed from "proof of concept" to development.

As discussed in section 2.7, the problems with the Ohmage mobile application was that it was not intuitive
and hard to understand for first time users. In pmSys-app, our goal was pretty clear from the start,
we wanted to make it a lot more intuitive, with more features than what Ohmage offered and make
an application that were cross-platform where the GUI (Graphical User Interface) were more or less
similar.

5.2 Architecture

5.2.1 Single Page Application

The old approach was to request a web page from a server, which then would be rendered on the client
side (see figure 5.1(a)). This approach forced a lot of bandwidth usage, and the data on the web pages
could only contain static data. The user experience was limited because there was no way to hide the

35

36

latency between loading the pages, and the lack of offline support made the web application useless
when there were no bandwidth. The second approach to creating web applications changed the way web
developers was thinking, by introducing Asynchronous JavaScript and XML (AJAX) [55] to create
more dynamic web applications.

Single Page Application (SPA) is a web application that is loaded once with the purpose of giving the user
a more fluid user experience, as if it was an desktop application (see figure 5.1(b)). The definition of a
SPA by Mikowski and Powell [56] can be defined as "an application delivered to the browser that doesn’t
reload the page during use". In a SPA, web technologies such as HyperText Markup Language (HTML),
Cascade Style Sheet (CSS) and JavaScript is loaded once the application is running. Interactions with a
SPA often requires communication with a web server which serves the content the user requested, but
this only applies to dynamic web applications that needs their content refreshed once in a while. Instead
of retrieving server rendered webpages, this approach focuses on client side rendering which reduces
both the usage of bandwidth over time and less detectable latency. To be able to do this, Asynchronous
JavaScript and XML (AJAX) can be used. AJAX is not a web technology, but rather a collection
of web technologies that makes web applications more powerful by giving features web applications
previous did not possess, and by using HTML and CSS for rendering the view. The Document Object
Model (DOM) for interaction and dynamic data display, XML to exchange data between the client and
server, XMLHttpRequest for asynchronous data polling from server, and JavaScript to bind all these
technologies together into one web application. In the later years, XML has been changed with JSON
(JavaScript Object Notation) for data exchange since it is more read friendly than what XML is, and
furthermore, it is also easier to use JSON then XML with JavaScript. Simply put, JSON can do the same
as XML, but without the extensibility that XML allows, since it is not needed the way JSON is structured
yet being just as powerful as XML.

(a) Traditional web application (b) Single Page Application

Figure 5.1: Overview of the history of web pages [57]

5.2.2 Model View Controller

The first Model-View-Controller (MVC) framework was created by Trygve Reenskaug and published in
Xerox Parc 1979 [58]. This first implementation of MVC has influenced in most UI frameworks on how
to split the application into the three parts; model, view and controller (see figure 5.2). This approach
encourages reuse of code throughout the application, and it also makes the application easier to maintain
and more scalable.

The model component represents all data in the application, and it includes everything from application
states and content. If the data in the application were to change, the model can contain logic code to
update the controller when change occurs, and the model can also access a database to store further data.
The view component is the visual data representation of its model. A view is attached to each model
component and when the model changes, the view will change to the data accordingly. The controller

37

component is the link between a user and the application; its job is to route requests from the user to the
correct model.

Figure 5.2: The Model-View-Controller model

5.2.3 Cordova

Cordova is a platform making it possible for hybrid mobile applications [59] to become native
applications through wrapping it with Cordova. Cordova supports a set of device API’s which can be
used as if the application was native, and due to how Cordova works building an application for various
platforms (iOS, Android, Windows Phone and Amazon Phone) they all would be similar except for the
plugins which does not support certain platforms.

5.2.4 AngularJS

AngularJS [60] is a web application framework maintained by Google and several other individual
developers. AngularJS provides the developer a set of tools to create single page applications, which
renews how webpages and mobile applications is created compared to earlier (2000s). The goal of
AngularJS is to make it easier to both develop and test code by providing a client-side Model View
Controller architecture to implement the user interface. AngularJS previously used the MVC framework
(see section 5.2.2), but now they follow the framework Model-View-Whatever (MVW) where Whatever
stands for Whatever works for you [61]. The framework devides an application into 3 parts; Controllers,
Services and Views. Features such as Two-way data binding gives the application the possibility to
synchronize (in real-time) between the view (UI) and the model (data). This feature makes it very easy
to create a responsive application without thinking of refreshing the view each time new data is loaded.
Angular also provide a HTML templating syntax were the user can write expressions, as well as making
a view inherit from another view.

38

Another feature Angular provides is directives. A directive is used to introduce a new syntax in the code
(as a module), as a marker on a DOM element with a customized behavior. This enables web applications
to have advanced features without using another framework for the same feature. For example a date
picker, instead of using another framework or library, it is possible to just add a directive (open source or
self-written) into the code to retrieve this feature.

<html ng-app>
<!-- Body tag augmented with ngController directive -->
<body ng-controller="MyController">
<input ng-model="foo" value="bar">
<!-- Button tag with ng-click directive, and

string expression ’buttonText’
wrapped in "{{ }}" markup -->

<button ng-click="changeFoo()">{{buttonText}}</button>
<script src="angular.js">

</body>
</html>

Figure 5.3: AngularJS HTML template syntax

Even though we have listed a few features that make AngularJS excellent, there is one last feature worth
mentioning. This feature is the most important and critical for any web application, and it is called
Dependency injection. By "injecting" a service into the code, it allows an application to reuse previous
code in order to give access for a section of the code. Services can be used as a feature that gives a
view access to data, for example a service that stores user credentials. With a service like this, it can
take care of all authentications between the user and the server it authenticates with. When injecting this
service to other parts of the application, it enables the possibility to extract user credentials in other parts
of the application (ex. visualization) without rewriting the similar piece of code another place. Which
again reduces the size of the application and the need of duplicating snippets of code, thereof the idea of
reusing previous written code.

5.2.4.1 Routes and states

When building a web application, the content is retrieved based on what URL (Uniform Resource
Locator) you are requesting. There are two existing ways of routing with AngularJS. The first one is
by defining the URL, of the view the application wants to show at a certain path (see figure 5.4). The
other type is by combining routes and states, by using states makes it possible to predefine the paths to
certain keywords, and then simply redirect the view there without linking to the correct URL, but instead
linking to the state (see figure 5.5). Routing in AngularJS creates parameters in the URL when the user
clicks on links within the application, and these parameters determines the content the application shows
at all times (see figure 5.6). In the pmSys-app, we have decided to use states because of it is easier to
keep track of states than the URLs when it reaches a certain point in the application for example when
we have sub states.

5.2.5 Ionic

Ionic [62] is a full stack framework/platform created by Drifty Co for developing HTML5 mobile
applications with AngularJS in the back-end. Ionic provides the front-end modules paired with
AngularJS which takes care of how the application works (states, routes and views). Ionic does not
only offer front-end but also some optimizations on the core AngularJS code where it lacks performance
such as smooth scrolling [63].

39

var app = angular.module(’app’, [’ngRoute’]);

// Route configuration
app.config(function($routeProvider) {

$routeProvider.when(’/’, { // Main page
templateUrl : ’pages/main.html’,
controller : ’mainController’

}).when(’/contact’, { // Contact page
templateUrl : ’pages/contact.html’,
controller : ’contactController’

}).otherwise(’/’); // Fallback plan in case of error
});

// Controller creation and inject Angular’s $scope
app.controller(’mainController’, function($scope) {

// Create a variable "Message" in the model with a message for the view
$scope.message = ’This is the main page!’;

});

app.controller(’contactController’, function($scope) {
$scope.message = ’This is the contact page!’;

});

Figure 5.4: AngularJS routeProvider example

.state(’visualization’, {
url: ’/visualization’,
templateUrl: ’app/visualization/visualization.html’,
controller: ’VisualizationController’

})
.state(’visualization.srpe’, {
parent: ’visualization’,
params: [’urn’],
templateUrl: ’app/visualization/visualizationSrpe.html’,
controller: ’VisualizationSrpeController’

})
.state(’visualization.srpe.rpe’, {
parent: ’visualization.srpe’,
params: [’urn’],
templateUrl: ’app/visualization/visualizationSrpeRpe.html’,
controller: ’VisualizationSrpeRpeController’

})
.state(’visualization.srpe.load’, {
parent: ’visualization.srpe’,
params: [’urn’],
templateUrl: ’app/visualization/visualizationSrpeLoad.html’,
controller: ’VisualizationSrpeLoadController’

})

Figure 5.5: The pmSys-app’s visualization using state routing

Figure 5.6: URL example

40

5.3 Features

The goal of the pmSys-app is to improve the existing Ohmage MWF application, with emphasis on
optimization of the most crucial features such as answering surveys and visualization. We have listed
briefly the features the pmSys-app has to offer, and in the next sections, we will elaborate the features
more detailed.

• Cross-platform (Web Browser - iOS - Android)
• Answer surveys
• Visualization
• Notification (local and remote)
• Reminders
• Change password
• Glossary
• Offline mode on iOS and Android

Functions Answer survey Visualisation Push Notification Reminder Change password Glossary Offline mode
Ohmage app Yes No No Yes Yes No Yes
pmSys app Yes Yes Yes Yes Yes Yes Yes

Table 5.1: Detailed list of features available in Ohmage compared to pmSys

5.4 Implementation

Everything in the pmSys-app is modulized, where each of us has been responsible for developing and
maintaining if and whenever bugs occur. This is so that the application can be easier to maintain both for
current developers but also for future developers. Creating large files for the whole application creates a
lot of headache when coding and using revision control such as Bitbucket and Github. The pmSys-app
works exactly the same on iOS and Android, but while on web browser there is no push notification,
reminders or offline mode due to the nature of browsers.

For back-end services, we are using the Ohmage server (see chapter 3) as our data storage and how
the users authenticate in the mobile application. The Ohmage server has a REST (Representational
State Transfer) API, which allows us to do HTTP (HyperText Transfer Protocol) calls to the server for
operations such as authentication and retrieving data from the system in a timely manner.

5.4.1 Authentication

pmSys-app is using both Stateless Authentication (often used for mobile applications) and Stateful
Authentication. The reason for this is due to how the server is built. Out of the box it is supposed to allow
the user to use either Stateless or Stateful, but in reality, some REST calls do not support Stateless.

Stateless Authentication allows the mobile application for a one-time authenticated hashed password.
The hashed password is created by hashing the username, password and a salt string together and then
returned back to the HTTP call.

Stateful Authentication generated a token that lasts for 15 minutes by default; this default has been
hardcoded into the server (the documentation states otherwise). The time limit set on the token is too
small to be usable in a mobile application where it needs to fetch data from certain HTTP calls, which
does not support Stateless Authentication (Table 5.2).

41

Method Authentication User manipulation Classes Campaigns and surveys
Stateless (hashed password) Yes Yes No Yes
Stateful (time limited token) Yes Yes Yes Yes

Table 5.2: Authentication type table

5.4.2 Login

The Ohmage MWF application had problems with adding custom server URLs, and the problem raised
in section 3.6.1 were that Ohmage did not support malformed URLs, and IP addresses. Another problem
the application had were that once the path to the back-end were wrongly entered, the application had to
be reset in order to be able to re-enter the path again. This has been fixed in the pmSys-app, where the
data is persistent even after a update of the mobile application.

Figure 5.7: Login page with custom server enabled

5.4.3 User categories

pmSys-app categorises all users, this is similar to how Ohmage categorize their users (section 3.3.2).
Priviliged users in Ohmage are coaches on pmSys in general, while Restricted are the football
players.

5.4.4 Campaigns and Surveys

While on Ohmage’s official mobile application you need to download and add the campaign (that has
already been allocated to your account), the pmSys-app immediately retrieves the surveys in a campaign
you have access to displayed in your mobile application as soon as you log on. This was a feature that
helped the deployment process go easier, and saved both the coaches and the players a lot of time when
they needed to refresh the program list.

When the campaign data is retrieved from the Ohmage back-end, the data is returned in XML-format.
To make the data easier to work with and to be usable, we have to convert it into a JSON object. To do

42

this we have used the library, x2js [64]. Access to campaigns is decided through the use of classes (see
section 3.4), and that is why it is important that the users has been added into the correct classes for any
campaign to show up in the mobile application.

Figure 5.8: Programlist when logged into pmSys

5.4.4.1 Prompts

In the pmSys-app we are only using single choice, number and timestamp prompts, with only these three
prompt types we can cover all our needs when it comes to creating surveys in pmSys. When we tested
the Ohmage mobile application there was an extra step (section 3.6.3) for each question, which means
only seconds extra.

Seconds can turn into a lot more over time, and our solution to fix this nuisance is to remove that step on
the single choice questions in order to save that extra step. We have also optimized the number prompt,
from having a interval of one per click, we have increased the interval to five since training sessions are
usually rounded up to the closest five or ten (ex. 55 minutes). The results from the optimizations of the
survey answer process has decreased the time needed when answering by nearly 50% (see section 5.6.5)
with the pmSys-app.

5.4.5 Survey response registration

The whole goal of the pmSys-app is to optimize the process of reporting after training sessions, by
answering self-assessment surveys. The reporting process has been optimized to the point of avoiding
unnecessary steps. Hence, the player can answer surveys in matter of seconds and focus more on
developing their football skills.

A survey is defined in a campaign, where one campaign can contain multiple surveys (see section 3.5).
A campaign with surveys must be defined and uploaded in a XML-format (see figure 3.7) to the Ohmage
back-end, and then the system administrator has to attach classes to the campaign in order to see the
surveys in the pmSys-app. A normal player would only require access one campaign since they can only
belong to one team. But it is possible to be a member of multiple campaigns if the player is added, for
example if the player has been picked out to play for the National team.

43

(a) Single promt (b) Number promt (interval set at 5) (c) Summary page

Figure 5.9: Example of a survey in the pmSys-app

In figure 5.9, the most vital part of the survey is shown. There is an extra feature on the summary page,
where the user can register for the previous day if the player has forgotten to answer the survey. The
pmSys-app currently supports number, timestamp and single choice, even though Ohmage has support
for many others (see section 3.5). During the survey registration, a JSON object with the syntax Ohmage
requires [65] is created. When the player has reached the end, the summary page is shown (figure 5.9(c))
where the content is the parsed data of the JSON object (see figure 5.10). When the player presses on
"Send survey", the JSON object is sent to the Ohmage back-end and registered as a survey response for
the specific campaign. Compared to the Ohmage MWF application (see section 3.6.3), the pmSys-app
will never store or try to localize the player through GPS, and the reason for this is the privacy rules in
Norway and the requirements set in chapter 4.

{
"survey_key":"8146f9e9-8136-40d3-98e5-bd2e93bdcf41",
"timezone":"GMT+02:00",
"location_status":"unavailable",
"survey_id":"srpe",
"privacy_state":"private",
"responses":[{
"prompt_id":"srpeType1",
"value":"1"},
{"prompt_id":"srpeType2",
"value":"0"},
{"prompt_id":"srpeLength",
"value":90},
{"prompt_id":"srpeWorkload",
"value":"1"

}]
}

Figure 5.10: An example of the JSON object in required syntax

44

5.4.6 Visualization

The Visualization module does data presentation in the pmSys-app. For the graph plotting, we use an
open source JavaScript library called NVD3 [66]. This module fetches data from the Ohmage API, and
then presents it in a lucid way as shown in figure 5.11. The visualization module is our solution to the
motivational factor-problem discussed in section 3.6.7. In order to motivate the players to use their own
personal time to register their surveys, we have created a range of different graphs with analysis of their
subjective data.

Due to the nature of the data returned after fetching from the Ohmage API, the data has to be sorted and
parsed (step 2 in figure 5.11) before it can become useable with the NVD3 module. Firstly, the data has
to be matched to the player. Secondly, the date of the survey answer has to be appended to the value the
user answered, or else the data can become inapplicable for visualizing (faulty sorting). In order to use
the data with the NVD3 library, the data has to be sorted into an array.

The presentation of the subjective data is presented with graphs with the terms RPE load, monotony and
strain discussed in section 2.1. The graphs gives the player a simple (figure 5.12), but detailed analysis
of what their perceived intensity of a sessions throughout a day. This motivates and allows the players to
monitor their own progress, instead of just submitting reports.

Figure 5.11: The workflow of the Visualization module

5.4.7 Notifications

The pmSys-app receives remote push notifications from pmSys-Push (see chapter 7) where the coaches
can send messages from our webportal; pmSys-Trainer. The push message is delivered instantly after
being sent to the player (see figure 5.14), and the requirement for receiving remote push notifications is
that the players has to allow push messages, and that their mobile devices has an internet connection. If
not the message will be stored for two hours in the notification platforms provided by Apple and Google,
before being deleted permanently.

pmSys-app also supports local notifications [67]. On the mobile application on both platform it’s known
as Reminders (see figure 5.13). Reminders is using the plugin which imitates how the native calendar
behaves, the only way to remove a reminder is to either restart the mobile phone by power shutdown, or
canceling through the mobile application. Every time the mobile application starts up, the application
will subscribe itself with APNS, and then the returned data (token) is sent to our push service in order to
keep the device token refreshed all the time.

45

(a) A week analysis of RPE load,
monotony and strain

(b) Latest registrated wellness data (c) Wellness for a whole month (scrol-
lable)

Figure 5.12: Visualization of survey responses in the pmSys-app

(a) List of notifications (b) Sample of a notification

Figure 5.13: Overview of the (local) notification feature

Figure 5.14: Receiving push message on iOS

46

5.4.8 Cordova Filesystem

pmSys-app is using Cordova’s JavaScript implementation [68] of the native device’s file system through
their own plugin: file. This plugin provides read and write operations towards specific file system paths
on all operative systems, but for pmSys-app that means iOS and Android. The supported functions by
the plugins are quite wide and are easy to use once you get the hang of it. This allows us as developers to
provide the same JavaScript code for both platforms even though they point to different file system paths
on the native device:

function readFromFileSystem() {
window.resolveLocalFileSystemURL(cordova.file.dataDirectory,

function(fileSystem) {
// iOS = /var/mobile/Applications/<UUID>/Library/NoCloud
// Android = file:///android_asset/files
// Data returned in variable fileSystem contains all files and folders

in the native’s filesystem
}, callback);

}

pmSys-app creates files on the mobile system in order to be able to perform the features it supports such
as offline mode (see figure 5.15), and saving the need for polling data from the back-end (battery and
bandwidth draining). There are other ways to store data on mobile devices, more on that is discussed in
section 5.6.

Figure 5.15: iOS file system

5.4.9 Offline support

The pmSys-app has support for offline usage of the application. And by providing the users offline
support, they can still answer and store their answers locally on their phone until the mobile application
has network again. The reason for this feature is due to the network coverage available in Norway,
there is no guarantee that there will be good network or any network wherever the user may be at
the moment they answer their survey. Once the mobile application detects that network coverage is
missing, the application immediately disables all the features that requires network in order to work.
This includes being able to change their password, visualization, fetching new surveys and updating
campaign information.

By standard programmed behavior, surveys will be stored in a file locally on the mobile device in case
network is missing, that way it is possible to load the surveys the user need to answer the daily surveys.
When the mobile application detects that the network is back meanwhile the application is turned on or

47

resumed, it will be checking the file system for unsent survey answers. If any survey is found in the
folder survey (see figure 5.15), then it will send all the survey answers in the folder before recursively
deleting the files after successfully sent.

5.4.10 Bypass functionality on startup of application

When running the mobile application, the variables are filled with data. Global variables needed has
values when logging on for the first time, however, once the mobile application is suspended or turned
off, all the data will be removed. The next time the application is turned back on; it will simply restart
the application. pmSys has randomized usernames and passwords, however, if the user were to be forced
to log into each time, it could take a lot of time before they can answer a survey. As a result, this also
removes the motivation to use pmSys altogether. Without the players, no data can be gathered to provide
visual analysis throughout the system.

Figure 5.16: Memory stack on iOS for background applications

On iOS, the application is suspended when it is kept in the background of the operative system. All
functions is put into sleep mode, and there is possible to wake up the application by sending an interactive
push message which can force the application to download new data from a URL. When the mobile
device is running out of internal memory, the operation system will automatically remove the first
program in the list to free memory [69] [70](see figure 5.16). For a long time we thought that the
application timed out since we were dealing with Stateless authentication (section 3.3.1), the way we
routed in the application and the possibility of the state of the application and AngularJS did not go
well together. Since our biggest user base were using iOS and we managed to reproduce this problem
every day, and after a deeper and more thorough debugging the bug were discovered. This is why we
have created a bypass function that practically fills out all the global variables that we need to make the
mobile application work.

When the user opens the pmSys-app (see figure 5.17), it checks if whether the application has credentials
saved (global variables and login information stored on file), if the application is resumed it will redirect
the player to the "Program" page. If the application started from scratch, the application will fill out
the global variables with the saved data on file. Once this has been done, it will redirect the user to the
"Program" page. If there is no credentials available, it will redirect the user to the "Login" page.

48

Figure 5.17: Bypass workflow

5.4.11 Glossary

A glossary feature is added into the pmSys-app with glossaries for the terms used in the application are
explained. The glossary is available in Norwegian and English even though the application is in English.
Some football players is better at reading and understanding Norwegian, hence the glossary covers both
languages while explaining difficult terms and why a specific survey is important.

5.5 Deployment

5.5.1 App Store (iOS)

The deployment routine for iOS is one of the most difficult tasks to do for first time mobile application
developers [71]. There are many guidelines provided by Apple which every mobile application
developers has to follow, for our case we also needed to know how long it would take to deploy an
application to App Store both for synchronization with Google Play and for predictions when to roll
out the latest versions. Apple requires all applications to be signed with a valid Apple Developer
account (100$/year) which will be responsible for all faulty and bugs associated with the application.
It’s impossible to falsify the signature associated with an account since each signing certificate must be
issued by Apple to become valid in xCode [72].

When we deployed pmSys-app for the first time (September 22th 2014), it took us 14 days (included the

49

weekend) to get our application approved on our first try. The first version was deployed to App Store
October 6th 2014, but the way to send it for review was a nightmare. Apple was right in the middle of
a big change on both OS versions and how to deploy applications, which resulted in outdated guides on
how to do this properly. Due to this, it took us four days to prepare the application and the description
before sending it for review at Apple.

To our surprise, it would take up to 14 days for pmSys-app to change application status from "In Review"
to "Approved", and then another 6 hours for the application to propagate to all App Store app storages
throughout the world for download. Which means if we were to deploy a fault version of the application
or simply quick fix it, it would in the worst case take us two weeks to fix the application for the users.
Two weeks with the planned schedule of answering surveys meant 28 surveys lost per user in pmSys-app
if our app were to be deployed with a faulty function where Apple could not find it when they have
approved it. Because there is always a chance for a double glitch in both the automation Apple has and
the UX developer Apple allocates for review. This meant that every deployment has to be of high-level
quality before pushing it to Apple, the kickback from deploying a faulty version could mean quite a lot
for the reputation and the data collection for pmSys.

For pmSys, a normal developer account has been purchased (99$/year) to deploy the application. There
is possible to pay for an "Enterprise" certificate which costs 299$/year, which makes it possible to deploy
new updates as fast it is possible to update all the CDN’s Apple uses [73].

5.5.2 Google Play (Android)

Google Play [74] has a fully automated system for all new mobile applications, which means that there
is no further quality check than the system itself. This is also one of the problems with Google Play that
nearly all types of mobile applications can get accepted, which makes it harder to be taken serious once
a name has been abused. Before we tried to deploy to Android we tried to find out how long it would
take to deploy to Google Play, however, there was no distinct answer. When we actually tried it, it us
took less than 15 minutes to go from "In Review" to "Approved", but it took 4 hours before starting to
show up on the global Google Play lists.

Due to the nature of how Google Play works quickfixes can be pushed out extremely fast, but the problem
is that the functionality syncronization between Android and iOS users could be vastly different (which
again makes it harder to give a general support on both platforms). Updates of the application takes less
than two hours to be avaiable for all Android users, which are extemely fast compared to how Apple
operates. In a way it is more liberating to have that power to push new versions so quickly, but "with
great power comes great responsibility" [75].

5.6 Evaluation & Discussion

pmSys-app is a hybrid HTML5 application which allows the developers to create a simple mobile
application with little to no knowledge of memory pointers or how to prevent memory leaks, which
is needed if we were to build any application with native code. We decided to use Cordova due to how
it packed our web application so it could run on the phone. By using Cordova, we can easily say that
we have shorten the time used to develop by tenfold, the reason is simple; We do not have to create the
same application in different languages. But only focus on one application for all platforms we wish to
support.

For iOS you can either create applications by writing it in Objective-C or Swift, while for Android you

50

has to write the application in Java. It’s obvious that the languages does not have the same semantics and
they do not have the same function names and such, which would result in a lot of time learning these
languages for each developer to maintain either focus on one platform or both platforms while trying to
create a fix for bugs in a timely manner.

5.6.1 Hybrid versus Web versus Native application

There are endless of discussions of why a native mobile application is better than a web or hybrid
application. It simply breaks down to the fact that it has access and advantage of all the device
features [76]. Even though the arguments may have not changed for why to build native applications, the
reasons why a developer should be building a web or hybrid application has.

Mobile OS type Programming language required
Apple iOS C, Objective C, Swift

Google Android Java
Windows 7, 8 Phone .NET

Table 5.3: OS and their programming language

A native application is an application written in the operative systems language (see table 5.3), it does
not need any third party frameworks to wrap the code around in order to make it work on the platform.
Since it is written in the OS’s language, it has full control of all the features a mobile device can offer.
Camera, GPS, accelerometer, compass or contact list access is just a few of the many functionalities a
mobile device has. It has to be installed on the mobile device before it can be run, which again limits the
portability of the application compared to a web application.

A web application is different from a native application. A web app is in reality websites created to
look and feel as if it were an application, by using HTML and JavaScript any website can become a
web application. Rather than installing the application on the mobile device, it can be run through a web
browser, that way it can be accessed on any device (also desktops) without problems. The limitations of
a web application and any website for that matter, is the fact that it cannot access all the functionalities a
mobile device has to offer. It is impossible for a website to access the contact list on the device, which
makes the usage of such applications limited and more often used for desktops only.

Meanwhile a hybrid application is a mix of both native and web application. It is a web application
encapsulated in a native wrapper that loads the web application in the web browser at runtime. This way
the application gives the user a native feeling since it can be installed through the app stores. The access
to a mobile device’s functionality is limited to the plugins created for a specific platform.

In the case of the pmSys-app, we chose to create a hybrid application, this was due to several reasons
listed in table 5.4. The best part of building a hybrid application is that it is possible to write one web
application wrapped into Cordova, and then deploy it to many other operative systems, this also includes
deploying it as a website.

The biggest reason why we created a hybrid application is due to our limited knowledge of Objective-C
(iOS) when we started this thesis. To create an application as native takes time, and if we were to code
native, we had to create the same across both platforms we wanted to support, which is iOS and Android.
By creating a hybrid application, we saved a lot of time while sacrificing little to nothing due to the
size of our application. If our application was a big application with limited resources, we would have
considered building it as a native application. Facebook invested a lot of time into creating an hybrid
application, which costed them a lot of wasted invested time [77]. In defense, this was in 2012, the
frameworks has been updated since then and this statement might not even be entirely true anymore.
Optimization of the frameworks has been done, and in our case, Ionic has focused a lot on optimization

51

Pros Cons

Maintainability

Plugins that support needed functionality

Same programming language for all platforms

Build once, deploy everywhere
No memory leaks, Cordova takes care of opti-
malization

Not suitable for complex mobile applications
[77]

Performance issues on a few features with the
current framework [63]

Less control of device native functionality

Table 5.4: Pros and cons of pmSys-app as a hybrid application

and fixing the problems web applications had before with sluggish loading. The reason for this sudden
boost of performance is not entirely entitled to the frameworks, but also to the OS’es. In Apple’s iOS8
that was released in 2014 made a simple change where hybrid applications could finally use the same
JavaScript engine as Apple’s native applications.

The engine for all applications below iOS8 uses UIWebView [78], limits the processing power of the
application. The reason for this is that Apple uses a JavaScript library, Nitro (previously known as
SquirrelFish), which boosts the JavaScript operations in Safari (mobile version only). This was due to
security measures that had to be taken because of the way Nitro is built, JavaScript code is compiled
and run as JIT (Just In Time) [79] compilation. This meant that the JavaScript were not compiled and
translated before the application started, but during the application runs, in real-time. This meant that
if Nitro was exposed to malicious code, the mobile device could do a lot of harm since it would then
have direct access to memory. With the new access granted in IOS8, any application has access to
WKWebView [80] with a major boost in performance. A bug in iOS8 made Cordova developers fall
behind the native applications since Cordova could not utilize the newly acquired JavaScript interpreter
engine. As a temporary fix to this bug, a Cordova plugin has been created to fix this problem until iOS8
has fixed the problem [81]. What this means for the pmSys-app is that the new WKWebView makes
hybrid application just as fast as native applications, especially when iOS fixes the bug. This does not
mean that hybrid applications is the best solution for all types of applications, but for applications where
the functionality is not too dependent to the mobile devices functionality, by create hybrid application
you might save a lot of time.

(a) UIWebView (b) WKWebView

Figure 5.18: Overview of the memory usage of pmSys

52

5.6.2 Data storage

We decided to use the filesystem API provided by Cordova, and the reason for this was the great support
of the API itself. Everything was well documented and easy to test manually since the files are visible if
you have access to the file system. Even though the file system API is simple to use, it is also possible to
use other data storage frameworks like SQLite [82].

Instead of creating numerous files like how the pmSys-app is developed, you simply do normal SQL
queries against the SQLite database, which can contain a lot of data through BLOBs (Binary Large
Object). BLOBS is a collection of binary data stored into a single field in a database management
system. At the time this feature was implemented, SQLite was not prioritized nor considered due to our
own bias towards Cordova and all the plugins the framework had to offer. Therefore, when looking back
at how storage of data is currently handled, SQLite might be a better suit for the pmSys-app, even though
the current way work seamlessly.

5.6.3 User case: Which application is preferred

In this section, we present and then discuss the results from our user studies. The groups is split in half,
whereas one half is with users that has never seen or used Ohmage or pmSys and will be categorized
as objective users. The second group is the two most active teams on pmSys, Lørenskog Idrettsforening
(LIF) and Strømsgodset (SIF), that has used pmSys and they will be rating the application after their own
subjective user experience.

All the questions has these possible values, which is inspired by the Likert-Scale [12], to choose from
unless it is a Yes/No-question:

• 1 - Poor
• 2 - OK
• 3 - Good
• 4 - Very good
• 5 - Excellent

5.6.3.1 User study 1: Objective users

We selected 27 independent and objective students from multiple schools in Oslo, such as University of
Oslo, University College of applied studies and the Norwegian Business School. This was to make sure
that the results from the application could be as wide and objective as possible, especially with people
with little to no knowledge on mobile application development. From this user study, we retrieved a lot of
useful information about our application versus Ohmage. Most users liked in general everything pmSys
had significantly more than what Ohmage could offer, which only means that as a first impression, pmSys
did pretty well at being a intuitive application with little to no prior experience or knowledge.

One of the comments we got were; "pmSys is a much easier and more detailed system to use. It seems
more modernized with features that makes it easier to use the application. The visualization is very good,
and I liked that I could see my activity statistics for the last 30 days.". Another one said "The surveys
in pmSys is better constructed. It is easier to select an answer and get through the survey. I liked the
summary page. Very nice with graphs and tracking the data.". The comments is mentioning the whole
motivation factor with the pmSys-app, and this shows that the visualization is a feature that makes the
user more interested in using it over time. In the figures from 5.19 to 5.22, we can see that pmSys is
scoring relatively higher than Ohmage on all categories. One of the most important category and biggest

53

gap between pmSys and Ohmage scores is the usability category. This is a very good sign, since that
means that pmSys has improved the user experience by a lot on the platforms compared to what Ohmage
is scored, which reflects in the data we have retrieved from the user study.

Figure 5.19: Usability

Figure 5.20: Design

5.6.3.2 User study 2: Subjective users

Even though the objective data is giving us an image of how the new users perceive the mobile
applications, it is the actual users of the pmSys-app that can really tell the story. In figure 5.23, we
can see that pmSys overall is scoring above half the scale (positive feedback), which proves that the
pmSys-app has done something right after improving the features Ohmage had to offer, but it is also
important to emphasize that there are still areas with potential to improve even further. Comments such
as "The pmSys-app works phenomenally for me, and I’m very pleased of the application’s impact on
my life (positive)." and "Very good application. Saves me a lot of time!" gives us an indication that the
application helps with saving a lot of time when answering surveys. Most of the players that answered
that they previously had answered surveys by using excel or pen and paper. The fact that the pmSys-app
can help them save a lot of time means that we have reached one of our goals.

54

Figure 5.21: Navigation

Figure 5.22: Content presentation

5.6.4 Answer rate between Ohmage versus pmSys

In 2014, we had three teams from the Norwegian Premier league that used our system with the Ohmage
mobile application, which resulted in a total of 467 survey answers for all the players in pmSys (see
table 5.5), which were 37 active players from tree different teams. If we assume that they equally
answered surveys, the average survey answered the whole year would be 12,6 surveys per player. The
reason for why the total amount of answered surveys is so low is not entirely known, but some of the
reasons might have been raised in the bullet list in section 3.6. With a total count of 467 surveys divided
on three teams is outrageous. For a system that is supposed to help the teams with detecting injuries, and
to help the coaches balance their training so that players do not over train themselves and become injured
for a period of time.

Year # of players Total amount of answered surveys Average surveys answered per player Mobile client used for reporting
2014 37 467 12,6 Ohmage
2015 27 2593 96 pmSys

Table 5.5: Survey statistics for 2014 and 2015

55

Figure 5.23: Statistics from the user study conducted at LIF and SIF

Even though the numbers from 2014 is quite low, the numbers in 2015 is incredible compared to last
year (see table 5.5). There has been 2593 survey answers divided on 27 active football players from
Strømsgodset in the timeframe from January 1st to April 30th. That is a 555% increase of answer
rate, and that is just data for four months for the same team! Even though the numbers is undeniable
impressive, we have also seen a higher rate of participation among the players, and more resources
allocated by the teams into using pmSys as a part of their training schedule.

5.6.5 Performance test of Ohmage versus pmSys

Two users on two different mobile devices performed this performance test, and because of this the data
presented may only be giving an indication on where the problem lies on each platform. The first user
had some differences compared to the second user, because every time the first user wished to submit
the survey data, a message prompt would appear and use 1 second extra. For the second user, this only
appeared once in a while; therefore the data is not entirely correct. It is also important to point out that
the performance test is testing three areas:

• Normal RPE routine (from application bootup) - See figure 5.24(a)
• RPE routine (application already active) - See figure 5.24(b)
• Injury routine1 - See figure 5.24(c)

It is also important to emphasize the difference between the two applications. Ohmage has an extra step
for each question, which takes more time, however, it does not have a summary page which speeds up
the process compared to the pmSys-app. The splash screen on Ohmage is relative to how long it takes
to prepare the application to run, meanwhile on the pmSys-app it has a hardcoded three second delay
before showing anything at all. The idea of the pmSys-app is to optimize the reporting process for the
players, and this can be seen in figure 5.24 by the recorded time spent answering surveys the lower the
number, the better the result.

1All the last options has been chosen to loop through all 11 questions in the survey

56

From the figures you can see that due to the self-inflicted penalty of hardcoded splash screen and
summary page, the time it actually takes to answer is more or less equal to the Ohmage application.
This statement is only true for small surveys such as RPE, but for longer and more advanced surveys
such as injury, the time needed to finish this one takes a lot more time. The rest of the tests is ran by
having the application in the foreground, which speeds up the reporting process a lot. Without the splash
screen timer delay, the time needed to answer a survey is a lot faster on pmSys than Ohmage. Something
we also need to consider is that these performance on time was performed right after each other, which
makes muscle memory a factor in the time used to answer a survey. The more we repeated ourselves
during the test, the less time it took to finish the survey. And this is what happens when a player enters
the same answers every time, they start memorizing the answers, and the time it would take them to
answer is minimal.

5.7 Summary

In this chapter, we have presented the data collection tool that has replaced the Ohmage MWF
application, the pmSys-app. By following the two mobile development approaches, SPA and Hybrid,
has made it possible for us to create a mobile application for both Android and iOS with the same source
code. We have used Cordova as a native-wrapper around our code to make our web application run as
if it were a native mobile application. In section 5.6.5, we evaluated the performance of the Ohmage
MWF mobile application versus the pmSys-app, based on how long it would take to answer the most
answered surveys. If the mobile application were opened from a cold-boot, then the time elapsed to
answer a simple RPE survey the same. But if it were a repetitive process where multiple surveys were
going to be answered, or if there were a long survey (like injury), then the time needed to answer with
the pmSys-app were almost 20% faster than on the Ohmage MWF application.

An objective user study was conducted at the University of Oslo, where the results between the Ohmage
MWF application and the pmSys-app were quite different. The pmSys-app were scored higher than the
Ohmage MWF application in all categories we wanted to conduct tests on. Even though the pmSys-app
is scored higher than the Ohmage MWF application does not mean that it is better, the score were not on
the top. Hence, there is more room for improvements in all categories before the application is "perfect"
for everybody. The subjective user study conducted with two of the most active teams that currently use
pmSys in their teams supports the statistics from the objective user study. The results is more alike than
what we expected before conducting the user studies, but the results shows that the two groups agree
with each other that there is more improvements to be done to the application.

It is safe to say that the pmSys-app is an improvement of the Ohmage MWF application and also a
much better solution than pen and paper. Therefore, we will focus on our second focus group i.e., the
coach and the medical staff. Now that the data collection tool has proven to be a success with a 555%
increased answer rate in just four months, the coach needs a tool to gather all the data where it is presented
neatly and intuitively with graphs. It is important that the size of the data samples has no effect on the
effectivity of the tool; therefore, it is critical that the coach can get an overview of the teams perceived
training intensity for each day within a timeframe. The coach also needs a detailed overview of a single
player’s data if the coach wishes to do a more thorough analysis.

In the next chapter, we will look at the web portal we have created customized for the coach and the
medical staff, pmSys-Trainer.

57

(a) Normal bootup + Normal RPE routine

(b) Normal RPE routine

(c) Normal injury routine

Figure 5.24: Performance tests between Ohmage versus pmSys

58

Chapter 6

pmSys-Trainer

In this chapter, we present the web portal, pmSys-Trainer. The web portal is the tool created specifically
for the coaches and the medical staff for easier data analysis from collected survey data. In order to
be useful for the coach, the data has to be presented in a way that can help the coach and the staff to
detect injuries before it actually happens. Even though the main focus of the web portal is to monitor and
analyze the players, we have also integrated a communication channel between the web portal and the
pmSys-app. By enabling push notification messages, the coaches can remind the players about forgotten
survey registrations. We will present briefly the Ohmage front-end that the first version of pmSys was
deployed with. We then present the architecture, technology and frameworks used to develop this web
portal. Finally, we evaluate the web portal compared to the Ohmage front-end, and we also discuss the
choices done throughout the development process of pmSys-Trainer.

6.1 Motivation

pmSys-Trainer is the web portal we have created for the coaches to analyze the health data for their
team, individual players and for sending push notifications to the players. The problem with Ohmage
(as a system) is that the system itself is superb at collecting data, but the difficult part is to get the data
out as you would like it. To analyze data without the visualization module integrated working meant
that users had to extract all the raw data, format it so that his algorithms worked properly and then use
the programs he needed to generate the graphs by hand. This manual labor was a strong motivation
factor for creating pmSys-Trainer, there are no such thing as a coach with enough time to analyze the
data themselves several times a week and still be able to do his work properly. Even though Ohmage is
equipped with limited HTTP calls where the parameters could be decided we have managed to make it
work seamlessly for the users, by combining the current technologies to do real-time analysis on each
team and players whenever the coach wants it.

6.2 Features

Since the focus of the web portal is data analysis and monitoring of the data, therefore, we wish to add
features that enhance the user experience and also the workflow of the coaches. In the list below, the
implemented features is either optimization or new features to the web portal (compared to the Ohmage
front-end).

• Detailed visualization of team and player’s health data

59

60

• Sending push notifications
• Create cronjobs combined with pmSys-Push

6.3 Related work: Ohmage front-end

As stated in the previous section the limitations of the current Ohmage dashboard is the sole reason why
pmSys-Trainer was created. As a dashboard it has all the advanced features needed for an administrator,
but for coaches it is difficult to try to understand all the features and use it effective enough. This is
solely because of the visualization module that Ohmage created, which uses OpenCPU’s web API [42]
to visualize the data. The graphs OpenCPU returns to Ohmage has limited features, such as data
interaction (see figure 6.1), because of this the data can be different from what the coaches would want
and expect in order to do better analysis. An evaluation of pmSys versus Ohmage will be discussed in
section 6.6.1.

(a) Promt distribution of RPE types

(b) Survey response count of survey type

Figure 6.1: Two examples of what type of graphs OpenCPU returns to Ohmage

61

In order to do content analysis, the user has to export all the raw data for a specific campaign in CSV [83]
format, filter the data into the correct format, and then plot it into a graph to visualize the data. The data
has to be worked with in the state it is exported in, therefore, it would require a lot of manual labor in
order to make the data useful. When the manual analysis is done, the visualization of the data is exported
in PDF-format and then attached to a email. This approach does not allow the user to interact with the
data, hence also not providing the best nor the fastest type of analysis.

Figure 6.2: Ohmage dashboard responses

It is important to note, that the data from OpenCPU is only statistical analysis. The data we get in return
is simple a counter of survey type and total survey registered within a period. For a coach, the statistical
analysis helps nothing in detecting pre-injuries or over trained players. The visualization module also
only allow single player analysis of the same type (statistical analysis), therefore, it is difficult to use
the Ohmage front-end to do effective analysis and monitoring of a players physical state. The Ohmage
front-end do not offer a team visualization, but only a single players response data (see figure 6.2). The
data cannot be visualized in a way that makes analysis easier, but it is simply retrieved and presented as
questions and answers. This is also the only form for "content analysis" the Ohmage front-end can offer
the user by using their visualization module.

62

6.4 Architecture

The pmSys-Trainer architecture consists of NodeJS [34], Express [84] and Nunjucks [85], where NodeJS
is the framework we use for both our client and server side. To keep the system as simple and easy to
maintain, we have selected the best and most suitable front-end framework, Nunjucks with a syntax that
is close to what AngularJS offers.

Figure 6.3: pmSys-Trainer architecture

6.4.1 NodeJS with Express and Nunjucks

In section 3.1, we wanted to try out new technology when developing pmSys. The idea was to use
a lightweight framework for creating a server side system. NodeJS [34]. Traditional solutions would
require us to create a server with features, and then create a web application designed to retrieve data
from the server.

Express is a web framework with feature support for server side, such as routing and session cookies.
Express adds rich functionality to the NodeJS server, by simplifying the complex routines for data
transferring between client and server sides. For example, when uploading a file to a NodeJS server, the
file has to be encoded before it gets uploaded. Express will automatically recreate the file on the server
side when the upload is finished, hence saving a lot of time and programming logic. We use Express as
our internal routing table to serve or retrieve webpages for the client machines, this way we can focus
purely on creating functions in JavaScript to fulfill a HTTP request instead of network protocols or error
handling (see figure 6.4).

In figure 6.4, the code says response.render(. . .), which means it will use the defined view engine. A view
engine is the front-end engine installed to render webpages, and in pmSys-Trainer, we use Nunjucks [85].
What Nunjucks offers is the possibility to inherit or extend webpage layouts and the syntax is close to

63

router.get(’/upload’, function(request, response) {
if(request.header[’secret’] == null) {
response.render(’error.html’); // Uses the view engine
response.end(404, "Secret not found!"); // Returns HTTP request with

error code and content in plain text
}
else {
response.render(’upload.html’);

}
});

Figure 6.4: Sample code of Express routing with error handling

// MainLayout.html
<html>
<body>
{% block head %}
{% endblock %}

</body>
</html>

// Profile.html
{% extends "MainLayout.html" %}

{% block body %}
<h1>Profile</h1>

This is a sub view!

{% endblock %}

Figure 6.5: Sample code for the views in Nunjucks

HTML (see figure 6.5), and with this we can create unlimited webpages with the same main view, but
with different content (see figure 6.6).

Figure 6.6: Extending the main layout in Nunjucks

64

6.4.2 Redis

Redis is an open source key-value database which can contain strings, hashes, lists, sets, sorted sets,
bitmaps and hyperloglogs [86]. As a default Redis support 10.000 concurrent clients (configurable) at
the same time, which makes it perfect for a system like pmSys. Companies such as Twitter, Snapchat,
Stack Overflow and Github are using Redis as a key-value session storage. This has been confirmed by
Github that their response time on their Github webpages went from 500ms to below 100ms in average
after changing their architecture in 2009 [87], Redis was used as a key-value routing server to speed up
searching for data on their data disks. What separates Redis from other NoSQL-databases is that Redis
is a single threaded data store, which stores data in-memory but it also provides presistence of data the
system were to go down (if configured), by creating snapshots stored locally on the host machine and it
is a key-value storage.

6.4.3 Bootstrap

The pmSys-Trainer web portal is responsive, which means that the web application will be automatically
resized if opened in a web browser on a mobile device (see figure). Bootstrap [88] is an open-source
front-end framework, and it is created by Twitter. It has become one of the most popular and "go to"
front-end framework for web developers world wide, and it is very simple to use since the project has an
amazing documentation and support. The specific theme layout that we have used on the web portal is
SB-Admin [89], and it has all the UI-components that we need for a web portal.

6.5 Implementation

6.5.1 Session key storage

When a user have successfully logged into pmSys-Trainer, a hashed password will be stored in the Redis
server as a session storage, which makes it possible for coaches to use the web portal without signing in
each time. The hashed password will not change before the coach changes his password, which would
force the coach to re-enter his credentials to the web portal to be able to use it, but as long as the password
is not changed the coach could log on from the same computer.

Once logged in the user stores a cookie with a session key which is used each time the page loads with
the Redis server to validate the user’s credentials.

Figure 6.7: Session cookie on pmSys-Trainer

6.5.2 Visualization

The visualization module is a tool created to provide the coach and the medical staff with visualization of
response data from the players. The visualization module supports two types of graphs, team and single
player visualization. The process of how the data is processed and visualized is like how it was done in
section 5.4.6, all the request results has to be concatenated before we use C3.js [90] compared to NVD3
as we did in the pmSys-app. The libraries are almost the same, but C3 offers more features within data
interaction and multiple graphs on top of each other. The data format C3 requires is a bit different fron

65

NVD3, by forcing us to use two arrays in order to create one for the dates and one for the response values
(see figure 6.8). Furthermore, it is important to note, that it is not needed to create a date object for each
response, the C3 library will automatically create when generating the SVG canvas with the response
data.

var date = [date_{1}...date_{n}]
var response = [response_{1}...response_{n}]

bind = {
// y- : x-axis
response : date

}

Figure 6.8: Example of the required data format for C3

All the data is fetched by multiple API calls to the back-end, and then concatenated together on the client
side. The web browser has limited resources when it comes down to heavy data processing, therefore,
the coach and the medical staff will not notice the latency when they wish to visualize the response data
at the scale of a single month. But the data from a whole year could slow down the visualization, due to
the fact that the data is processed on the client side and not on the server side before visualization (see
section 6.6.2).

6.5.2.1 Team visualization

When a coach looks at the team visualization, he will see graphs showing the answers of the team that
has registered data over time. All data from RPE, Wellness and Injury will be plotted here for the coach
to analyze. The graphs are interactive where it is possible to select which players the coach wants to
compare their data. By presenting the data this way, it is possible to get an overview of who has reported
higher than the rest of the team for a day. Instead of checking out one and one player at the time,
it is possible to just filter out visually which player that is near the warning zones (yellow/red) which
shows how hard the sessions is each day. All the graphs has a scrollable bar (see figure 6.9) below the
visualization, where the zoom can be adjusted in order to see data more clearly if the responses is too
dense in an area. In figure 6.10, we have decided to make the visualization easier to read off by creating
categories. The categories will show the survey responses from each player, which makes it a lot easier to
focus on only one category at a time. One of the arguments on why the Ohmage front-end’s visualization
is not suitable for what the coach needs, is the possibility of interaction with the graphs. In the pmSys
web portal (see figure 6.11), the graphs offers interaction to find out who is injuried based on a score,
where the higher score value there is, the more injured is the player.

Figure 6.9: RPE visualization

66

Figure 6.10: Wellness visualization

Figure 6.11: Injury visualization

6.5.2.2 Player visualization

On the contrary of the team visualization which may have too much information to be useful in the long
run, a single player visualization gives the coach a more cleaner and detailed visualization of the data the
player has reported (see figure 6.12). The single player visualization does not support the zoom feature
like in the team visualization. The reason for this is that the data is not as dense as it is on the team
visualization, and the visualization can give the coach a more detailed analysis of a player if the player
has abnormal values over time. The data that is shown here is subjective data, more about objective data
will be discussed further in chapter 8.

6.5.3 Push Notification

The push notification UI can do more than just sending push messages, it also gives an overview of
who has answered RPE and wellness. All users that is listed in this feature is users with either iOS or
Android device token registered, this ensures that the users that has unsubscribed themselves from the
push service at logout will not receive push messages over time. See chapter 7 to see more about the
push system.

It is also possible to create automated push messages for when to send push messages to the users (see
figure 6.13), as of now it will send to all users on the list above. It is not possible to select the users you
want to send push messages to, but more on this topic can be found in chapter 8.6. The automated push
messages saves time for the coaches, since they no longer have to log into pmSys-Trainer in order to send
out push messages. Before this feature was created the coaches had to send push messages manually,
which meant that when the push messages was sent to the players, the time the players received the
push notification was not consistent. One day the notification could be sent 9AM, another day were sent
11AM, by creating this feature the time the messages is sent can be predicted and expected.

67

Figure 6.12: Player visualization

Figure 6.13: Automated push messages

68

6.5.4 Survey responses

This module allows the coach to read the survey response from each player. The coach and the medical
staff is the only users defined as privileged (see table 3.2), therefore, they can access all responses in the
campaigns they participates in. As a default, a statistical graph is presented to show which survey and
how many has answered in the last 14 days (see figure 6.14(a)). The coach has to select a date in order
to retrieve a list of who has answered surveys of a specific date. The list is divided into two groups;
responded and not responded. The name of those who has responded is hyperlinked, and by clicking on
a player’s name an overview of the responses is shown (see figure 6.14(b)).

(a)

(b)

Figure 6.14: The response-module in pmSys-Trainer

6.6 Evaluation & Discussion

In this section, we will evaluate some key choices taken when creating the web portal the coaches’
uses. As a tool it is important that the tool is making the analysis more effective, and not more time
consuming.

69

6.6.1 User study: pmSys front-end vs Ohmage front-end

In chapter 3, we evaluated Ohmage and all the systems under the name of Ohmage. In this section
we will evaluate Ohmage’s front-end versus pmSys front-end, since its features is vastly different from
each other. The front-end Ohmage currently uses is meant for both the coach and system administrators,
what it lacks is the features the coaches needs, in this case it is visualization that works correctly when
deployed. Instead of replacing everything Ohmage has to offer, we have replaced the mobile application
and the front-end (pmSys-Trainer) to suit our users better.

Systems User manipulation Class manipulation Campaign manipulation Survey manipulation Visualization Push notifications
Ohmage Yes Yes Yes Yes Yes No
pmSys No No No No Yes Yes

Table 6.1: Ohmage versus pmSys features

The reality is that where pmSys lacks features, Ohmage fulfills the missing functionalities (see table 6.1).
This is especially true for the administration features, since it is not possible to add users or remove
users from campaigns with pmSys. It is also not possible to create new campaigns, this is why the
Ohmage front-end is just as important for system administrators as well at the pmSys front-end is for
the coaches. In a way, both front-ends cannot be compared in the normal way where you analyze the
features against each other. Since Ohmage has created a web portal for both the coaches and system
administrators, whereas pmSys has solely focused on the coaches with analytic capabilities, which makes
the requirements for each system vastly different.

(a) Visualization settings (b) Prompt types

Figure 6.15: Ohmage’s visualization module

If we were to evaluate features between Ohmage and pmSys, only the visualization module would be
comparable in this case. In comparison between Ohmage and pmSys visualization of data, pmSys has a
vastly superior visualization of the data, by giving the users the ability to interact with the data. Another
important aspect of the visualization between pmSys and Ohmage is that Ohmage only offers statistical

70

analysis of the survey answers, meanwhile pmSys offers content analysis. It also requires less steps to
show different types of data parameters, which again can be translated into userability and motivational
factor to use pmSys if you are a coach. Another difference between the visualization of data is the team
visualization, meanwhile pmSys provides this feature, Ohmage does not have this feature at all. It is
not possible to do this without doing the same queries for all the players and then open all the images
it returns in order to see what happens. Even then it would make it impossible to compare the players
against each other, this is why it is safe to say that pmSys is the best web portal of the two when it comes
to team analysis, whereas Ohmage is the best front-end for system administrations.

6.6.2 Client side versus server side processing

pmSys has systems that has client side and server side processing of data, the difference between them
is small, however, the outcome of performance may be quite large over time. To understand what we
mean by client side and server side processing, we need to define them. Client side is the side where the
UI is viewed, the interaction on a web page, the machine the user is using to go into web page X. In the
latest years it has been popular with what you can do with the client machines, now that the machines
are more powerful and cheaper than before, the means needed to process large amount of data is getting
reduced. In our case, we use JavaScript to process the visualization data on the client side, because of
this reason.

Now that the machines are getting faster and more efficient, there is a lot to gain by moving the data
processing from the server side (back-end) to client side. We thought a lot of data had to exist before
the visualization would slow down the whole process, but in reality, it was only after 2 months of real
data when the visualization started to slow down. The problem lies with the library we use to create the
graphs, since it has trouble when there is more than 500 data points on a graph [91]. The problem also
lies in the way the Ohmage back-end serves the data. Instead of one API call to get all data, we need
to do multiple calls, then match the results from all the calls into 1 JavaScript object before creating the
graph (see figure 6.16(a)). This increases the latency for the user even though it is barely noticeable since
client machines are pretty powerful these days. However, with large sets of data, it becomes a lot of load
on the web browser to process all the data.

There are several ways the processing process can be fixed, the first way is to process everything on the
server side (see figure 6.16(b)), and then send it to the client side for simply visualize the data. This
would be the easiest solution for big data sets, but there is also another way (see figure 6.16(c)) that
requires some more work because then the Ohmage back-end has to be modified, to pre-fetch all the data
together (unprocessed) and then returned. The difference between figure B and figure C is that one of
them returns the data pre-processed processed which means the client can simply visualize the data, and
the other way simply gathers all the data the client needs unprocessed, and instead of X calls the data is
returned in one and then it is processed on the client side.

6.6.3 Token storage

In pmSys-Trainer, we chose to use Redis as the session storage, and some of the reasons has been
discussed in section 6.4.2. The reasons listed were due to the speed and the high amount of supported
concurrent connections in Redis, but another reason is that pmSys-Trainer can potentially use a lot
of memory on sessions. Instead of leaving the sessions in memory without a timeout limit (current
configured on pmSys-Trainer), it is possible to let Redis store this in a file to save memory. This way
we can reduce the memory usage instead of using up all the memory needed on session tokens. The
idea of using this technology is to force the coach to login once onto the web portal, after that the coach
should be automatically logged in on to one specific computer. If the sessions were set to be invalid after

71

a couple of minutes or hours the coaches had to use time to log into the portal just to use it.

(a) Client side (b) Server side (c) Client side v2

Figure 6.16: Client side vs Server side with pmSys-Trainer

6.7 Summary

The goal of the web portal was to create a better data analysis tool, which could assist the coach and
the medical staff with analyzing and monitoring their players. An issue that appeared after a couple of
months is the way we processed the data we got from the Ohmage back-end. By processing it on the
client side, we reduced the workload on our own server, however, side effects of the performance on the
client side were much higher than what we anticipated in the early phase of the development process. The
pmSys-web portal is optimized for data analysis and with the coaches in mind, meanwhile the Ohmage
front-end is a general platform for both the coaches and the system administrator. There is no secret
that the web portal is a big improvement of the old analysis methods, such as pen and paper and the
export process in Ohmage. But the web portal lacks supports for system administrators, therefore, it is
impossible to use pmSys without the pmSys-web portal and the Ohmage front-end. There is also a lot
of improvement potential for the web portal, and we have a long list of features that is requested, and
features we want to improve.

We asked two medical analysts that have used the pmSys web portal and analyzed the Tippeliga teams
since the beginning of this project. When the first version of pmSys only offered the Ohmage front-end,
they had to export, fix the data for gaps due to missing survey registrations, plot it into a graph library,
and then be able analyze it. The process was tiresome and it was easy to calculate the values for the graph
wrong. Analyzing the survey responses for a whole team once a month, could take days to complete. And
to avoid injuries, the analysis had to calculate and finish a lot faster than what Ohmage and manual labor
could offer, hence, the motivation for the pmSys web portal. Now that the process has been optimized,
and the web portal does all this automatically, they no longer need to this themselves. The visualization
graphs will be refreshed instantly right after the player has registered their data, which is one of the

72

most crucial and important feature the web portal can offer a coach. When we asked them how they felt
about using pmSys, and if it has been an useful tool, their response were: "The system is very useful as
a monitoring tool. This is also the feedback we get from the (Tippeliga) teams. Furthermore, there is a
big potential to make it even better!". We will present the our ideas and areas with potential to improve
in the future work section in chapter 9.

In the next chapter, we present the system that allows the coaches to open a one-way communication
message with the players, pmSys-Push.

Chapter 7

pmSys-Push

In this chapter, we present the middleware system that creates a one-way communication channel
between the coach and the player, pmSys-Push. Firstly, we present known providers and their pricing for
their services. We will then present the implementation of pmSys-Push, all its features and the services
it uses to be able to send notification messages to the mobile devices with Android and iOS. Finally, we
evaluate the result of integrating push notifications into pmSys with supporting claims.

7.1 Motivation

One of the problems the football players in the Norwegian Premier League had with Ohmage was that
it had reminders that would have to be set up by the users themselves. The trainers had to call them
personally if they wanted contact, it was also challenging and costly to remind the users to remember to
register by text messages. This created an urge by the coaches in the Norwegian Premier teams where
they wanted an easier way to remind their players without creating the reminders on each players phone.
The player have time restrictions on their surveys where the time for the most accurate data collection is
most effective, early in the morning when they wake up for wellness, right after their training sessions
and once a week to report if they have injuries. With a tight schedule they might not remember to do the
survey, which makes it very crucial for the monitoring that the players report at the correct time.

This is one of the goals of pmSys-push, to relieve the time coaches need to use to remind their players
of registering a survey. Sending push notifications to players can be done manually or use the integrated
cronjob function with pmSys-push, and because of this function, the coaches can rest assured that the
push notifications will be sent when they have set it to run.

7.2 Related work: pmSys-push compared to other well-known providers

Push notification messages has given application developers a new of reaching out to their users. It has
given the developers the possibility to gently tap the users on their shoulders to remind them, but it is also
possible to be more intrusive if they really wanted. Most application developers work with one platform
at a time, only iOS or only Android. But for those who wishes to send push notification messages to both
iOS and Android at the same time, has to either build or use existing providers (see table 7.1). The prices
and their features may vary, but what all the providers have in common is the free model. It is possible to
test their system with limited features and limited push messages before upgrading which costs money.
All the providers except for pmSys-Push have one thing in common. They all require that the application

73

74

developer integrate their software development kit (SDK) to be able to send push messages natively. In
pmSys-Push, there is no need for this since we also support hybrid applications. The developers only
need to change two things on the push server; the database path where to store the callback tokens and
the Google Cloud Messaging key needed to send push notifications to Android users.

Service Initial
cost Limitations Comments

pmSys FREE Need to maintain the
server yourself

Unlimited push notifications. Free notification
scheduling. Easy to scale. Zero costs.

Amazon FREE 64 KB counts as 1 push
notification.

0.5$ per 1M after the first 1M free push
notifications. They also sell text message
(0,75$/100) / email (2$/100.000) services.

Appoxee FREE Up to 250K users. Unlimited push notifications. For automation it
costs 500$. No text message costs.

Moblico FREE For 100 users, 250$ for
101 to 1500 users.

Unlimited push notifications. 0.03$ per text
message and 0.01$ per email sent.

Parse FREE

Up to 1M push
notifications/m before
costing money. Up to 1M
API requests/m.

Their next plan costs 100$/m for + 20 requests/s
and 2 concurrent jobs. 0.05$ per 1K extra push
messages.

Pushwizard FREE

Max 8 mobile
applications. Max 4 push
messages every month
per device. For 200$/m
100 messages per device
can be sent.

Their next plan costs 57$/m for 10 applications and
more features. 299$/m (minimum) for unlimited
push notifications.

Pushwoosh FREE
Max 5 mobile
applications. Scheduling
costs 79$/m.

Unlimited push notifications on all plans. Their
next plan costs 49$/m for 10 mobile applications.
749,95$/m for scheduling messages (max at 25
presets).

App Sales FREE
Up to 100K push
notifications/m before
costing money.

Their next plan costs 49C/m for 2M push
notifications. Unlimited push notifications costs
99C/m. No scheduling.

Urbanairship FREE
Up to 1M push
notifications/m before
costing money.

0.001$/push after 1M free push notifications.

PushApps FREE

Up to 1M push
notifications/m before
costing money. Max 5
applications.

Their next plan costs 19,99$/m for unlimited and
scheduled notifications.

Xtreme Push FREE Max 5K devices. Max 2
mobile applications.

The free version comes with scheduled
notifications. For unlimited applications and 100K
devices it costs 299$/m.

Table 7.1: Examples of some push notification providers and their costs

7.3 Features

To be able to send push notifications, the system has to support both platforms. When sending a push
message to a player, the system will automatically find out which OS the player uses before sending
the push notification to the respective push message provider. A extra feature we have added after

75

receiving constant feedback since push notifications were released, is automated push notifications (see
section 7.4.5.

• Push messages to iOS devices
• Push messages to Android devices
• Cronjobs for automatic push messages
• Cold-boot for cronjobs

7.4 Implementation

7.4.1 API endpoints

pmSys-Push has multiple endpoints that is used frequently to provide the rest of the pmSys ecosystem
push notification features, by using these endpoints it is possible access features that this system provides.
The endpoints are used by both by the pmSys-app for subscription of the mobile device, and by pmSys-
Trainer to send push notifications to the users and to setup automated push notifications.

Figure 7.1: pmSys-Push endpoint map

7.4.2 Apple Push Notification service

Apple Push Notification Service (APNS) [92] is the service Apple Inc. provides developers to send push
notifications to devices by using tokens generated by APNS spesifically for the device registered. Apple
has a throughput on 9.000 notifications per second and for all iOS versions below 8.0, the maximum
limit for each push message is 256 bytes, meanwhile for iOS 8+ the payload limit has increased to 2048
bytes due to the introduction of a new type of push messages that allow VOIP [93].

In pmSys, we use the NodeJS module node-apn [94], which is a JavaScript implementation which
enables us to send push messages to APNS. This module is of such a high quality that Microsoft is
using it on their Azure service to provide users the possibility to send push messages [95]. To be able

76

to send out push messages to all devices the push server itself has to get a SSL Certificate issued by
Apple, and the certificate is limited to a single application based on the application’s bundle ID. Apple
also has two development environments, Development and Production. The names are self explanatory,
one is for when the application are still under development (usually used for testing purposes), when
the application is uploaded to the App store the device token will automatically switch to the production
environment. The development and production tokens are unique, which means that the tokens are not
valid on cross of the environments.

7.4.3 Google Cloud Messaging service

Google Cloud Messaging (GCM) [96] is the push service Google provides their developers to send push
messages to Android devices. To send push messages through GCM from pmSys, we use node-gcm [97]
which replaced the old Google push network, C2DM [98]. As with APNs the device tokens is generated
uniquely for each device registered with GCM with a special "senders key" which allows a push server
with "senders key" to push messages to the application. This key is unique for a device; the token itself
is bound to the device and not to an application. Which means that to send push messages to a device
X you need an approved senders key Y. The senders key will be registered for the application’s bundle
ID which will show when a push message is received (see figure 7.2). The only way to get the senders
key is to create a project through Google’s Developer Console, the key is unique for each project (mobile
application) and cannot be duplicated.

Figure 7.2: Overview of Apple Push Notification service and Google Cloud Messaging service

7.4.4 Token storage

We use MySQL [99] as device token storage, the main idea of using MySQL instead of other open source
databases were due to the fact that Ohmage is using MySQL and the idea of merging these two databases
together to make it easier to maintain 1 database. pmSys is only storing data that is vital to be able to

77

send push notifications, data such as which team the user is a part of, device token for their device(s) and
some extra parameters in order to provide sufficient data separation and security.

7.4.5 Cron

Cron is run by a crontab (a table of scheduled jobs), which are what UNIX-like operating systems are
using to schedule shell commands at a specific time [100]. For node we are using node-cron [101] to
do the same job as a cron would do on UNIX OS’es, but instead of using the commands crontab has we
use a node-wrapper (in-memory) that runs native cronjobs (which are persistence on UNIX). To prevent
it from disappearing when the server shuts down we have implemented our own cold-boot function that
practically stores everything in a file, and the cronjobs will be loaded once the push server restarts. In
this way no cronjob will be forgotten or lost due to shortage or OS crash, the file would still exist on the
file system.

While on UNIX-based OS’es the command for running a script at midnight would be (see figure 7.3), but
in node-cron it is possible to point to a JavaScript function instead, so for our use case it is easier to use
this to send a push notification when we can just refer to a method we have created (see figure 7.4).

* * * * * <command to execute>
| | | | |
| | | | |
| | | | ------ day of week (0 - 6) (0 to 6 are Sunday to Saturday)
| | | ----------- month (1 - 12)
| | ---------------- day of month (1 - 31)
| --------------------- hour (0 - 23)
-------------------------- min (0 - 59)

Figure 7.3: Crontab on UNIX

var cron = new Cronjob({
cronTime: ’00 00 00 * * *’,
onTick: function() {

// Everything in this are will run when it’s midnight!
// sendNotification(sendTo, message)

},
start: true

});

Figure 7.4: Node-cron with NodeJS

7.5 Evaluation & Discussion

In chapter 5, we discussed the motivation on why pmSys-app was created. It was simply because the
Ohmage MWF application was not suitable for our focus group, but it also took too much time to set
up and the features were not consistent on all platforms. The pmSys app has several similar features
as Ohmage, however, pmSys have added other features as well. The extra features made it possible
for the coaches to send push messages through pmSys-trainer, push notifications with simple messages
about they need to answer the surveys after each training session or every morning. Even though the
features works seamlessly for the coaches, there is still problems hidden behind the implementation of
push messages that we will discuss. There is a limitation of how much data you can send with each

78

push message (see table 7.2), which makes it harder to send large push messages to the users. There
two main types of push messages that both iOS and Android can accept; standard push messages and
Silent (system) push messages. With a silent push message, it is possible to send a large chunk of data
where the mobile application can fetch the data to update itself (possibility of force update of mobile
application content). In pmSys, we are only using the standard push messages, because it is not needed
for interactive content replacement on the client side.

OS Payload limit
iOS < 8.0 256 bytes
iOS > 8.0 2048 bytes
Android 4096 bytes

Table 7.2: Payload limit on iOS and Android

The way pmSys-Push can offer to enable the possibility to use one service to send push messages to
both iOS and Android could be a game changer. It is arguable that hosting the server yourself could
be a hassle, but if you were to have a massive user base, pmSys-Push could save you for quite a lot of
money compared to the other services listed in table 7.1. All of the services that provide push messages
also requires that you implement and add their software development kit (SDK) to your application, this
is to be able to use all the services that pmSys provides. The main thing that differentiates between
pmSys-app and any other applications that uses SDK’s is that pmSys-app is a hybrid application. There
is no need for SDK to be able to accept push messages, all you need is the senders key for GCM. As
a result, deploying an application with push functionality takes nearly no time, since all you need to
change is the "senderID" (Figure 7.5) in the source code and the application would be receiving push
notifications.

Figure 7.5: SenderID for GCM

When cronjobs was implemented and activated, the Norwegian National football team the answer rate
increased rapidly in matter of days (see figure 7.6). The reason for the increased answer rate is not
entirely because of the automated push notifications, but it might have a supporting role for the specific
timeframe. We received instant feedback that automated push notifications were a long awaited feature,
because they wanted to send notifications at the time every day and that it is difficult to remember to do
so themselves.

Figure 7.6: The Norwegian National football team answer rate after cron was introduced

79

7.6 Summary

In this chapter, we introduced pmSys-Push where it enabled the possibility to open a one-way
communication channel between the coach and the players. The Ohmage application did not have any
support for push notifications, which made it difficult to remind the players to answer their surveys. With
the introduction of remote push notifications, the answer rate instantly increased, and the coaches could
be 100% sure that the push messages would be sent at the specific time defined.

The pmSys-Push system allows anyone to set up their own push notification service with support for
both Android and iOS. The negative thing about the system is that the users has to maintain the server
themselves, if a problem with the system comes up, the users has to troubleshoot themselves or wait for
support. Meanwhile with service providers, they takes care of everything and also notify if something
were to happen.

In the next chapter, we present a system for collecting, storing and processing objective data before
it is presented for the coaches in the web portal. The pmSys-Tesseract inherits all the functionality
requirements defined in chapter 4, and with it, new challenges within security, storage and processing
power comes with it.

80

Chapter 8

Objective data: Integration of third party
hardware

In this chapter, we implement and integrate third party hardware and wearables into pmSys, and this
system has been chosen to be named, pmSys-Tesseract. The idea behind the name comes from the
Marvels Universe, where the Tesseract cube is a vessel for unlimited energy [102]. In the case of pmSys,
the unlimited energy is a metaphor for the objective data that can provide endless possibilities. Even
though subjective data has been one of the main building blocks of the pmSys system, the collected
subjective data could easily be tampered by the football player. Therefore, objective data could be the
confirmation bit of a football player’s physical state. First, we discuss what is needed to integrate third
party hardware and the issues that arise when implementing the support for third party hardware, then
we will present how it has been done to make the whole integration work seamlessly with the rest of
pmSys.

8.1 Motivation

Researches has been using accelerometers to study a player’s physical state since 1980s [103], but it has
been a limit of what the technology could collect. By going from collecting accelerometer data once a
minute into multiple values in a second enables a new way of monitoring physical activity. This also
opens up the possibility of using multiple wearables and systems to analyze even better, because the
more detailed and different types of data a system can have, the higher is the monitored precision of the
actual physical state of a player. This is what Milan Labs has done for a very long time (see section 2.6),
and their results have been undeniable positive. Tromsø IL has also been using accelerometers and other
systems for a couple of years, and their results has also shown that the value of using third party systems
has helped them detect their player’s physical state on areas where the eye cannot analyze [104].

For a system like pmSys, subjective data is not enough to prove whether the player is injured or fatigued.
This is why third party hardware and wearables has been used vividly to capture objective health data for
reaching better results, however, the problems with these systems are that they all have different functions
and the fact that they focus on collecting different type of data. In order to integrate pmSys in the most
efficient way, it is necessary to have an API open to access the data in real time, although there is not a
given fact that a product owner of third party hardware’s wants to share the data collected. With this type
of data follows a lot of problems, the biggest problem of them all is the quantity of the data. The data
may be returned in all sorts of ways, some has a logical structure of the data, some just purely dumps all
their data into XML (eXtensible Markup Language) or comma-separated values [83] formats.

81

82

8.2 Example devices - for objective data

In the beginning, the main focus was to create a new way and optimize that particularly way, so that it
could become easier for the player to answer their surveys. By creating an mobile application, we got rid
of pen and paper which has been used for a very long time within monitoring. The data that came from
these player surveys is categorized as subjective data, which is data relative to a player’s assessment
of themselves. This data can only be trusted to a certain degree, since it only registers what the player
perceives, not how the body perceives the training sessions. It takes a lot of time to just calibrate a
player’s perception of the training sessions before it can become useful to the coach. A new type of data
source has to be added to make the subjective data trustworthier, and that problem can only be solved in
one way.

A way to do this is by finding hardware and third party wearables which collects measurable and
observable data from players, but also a fail-safe way to prevent manipulating the data source (which
is possible with the subjective data). Just in 2014 and 2015, a whole bunch of companies launched a
large scale of wearables that allowed the users to collect and monitor themselves. Not only were they
optimized to collect data, but they were also within the price range of normal users. It is important to note
that even though the wearables were created for an active user in mind, it does not mean that non-active
users cannot use it. Since there is an ocean of sensors and wearables, we have picked out those we know
for sure is suitable for tracking training sessions and daily fitness. The devices can be seen in the list
below:

• Fitbit
• Jawbone
• ZXY sports tracking
• Moves
• HUR Labs Jumping Board

In the pmSys system, we integrate Fitbit and HUR Labs Jumping Board as a proof of concept. These
are the two most used third party hardware by the National team and the Premier teams that have used
pmSys. The early idea of retrieving the data from the HUR Labs Jumping Board [105] was to monitor
the SQLite [82] database HUR Labs use to store all the data from the jumps. The idea was to create a
program locally on the computer that would automatically upload all the data to our Tesseract-system for
data processing. The idea sounded pretty simple, but the problem arose when we started decoding the
binary data stored in the database. Each data point were split into 4 floats, and since the system records
at a rate of 1200 samples per second, the total number of data points was at 6000. The number of data
points were easy to parse, but the real problem is the fact that the decoded values we retrieved were not
similar the values we read of the graphs in the HUR Labs software.

Figure 8.1: HUR Labs Jumping board visualization

In figure 8.1, we can see the visual graph the software produce for each jump, where the selected one
is highlighted (selection can be done on the right side). This visualization is very simple with little

83

interaction, however, the results given from the software, as processed data is remarkable. The values
can easily be computed by using formulas, but since the data must be extracted and then uploaded
to pmSys-Tesseract, hence calculating the same values twice is redundant. All jumpers has their own
profile, where information has to be entered beforehand. Information such as name, weight and height
must be entered before we are allowed to proceed with the tests. The board will automatically re-weight
the test person to make sure that the calculations will be correct, but the board cannot measure the height
of the test person. This means that the values entered must be correct, or the calculations based on these
two values becomes useless.

Another problem we did not consider was the link between each user in the system and the username
in pmSys, and how to do this in a secure manner. We also did not count for offline-support since we
originally wanted it to upload for each time the jump test were taken. This would be problematic if the
computer do not have a network to upload the data, and there would be no guarantee that the medical staff
would remember to upload the data when they got back to their office with a network connection.

8.3 Background

8.3.1 Big data

Big data [106] is a term that has gotten a lot of attention the last couple of years, due to the new
digitalization where everything is available on the internet (see section 8.3.2 for more on this). This
creates the need for more advanced data analysis when reaching large data sets. This is what big data
is all about. It is a term for large data sets with the complexity that normal ways to process data is no
longer possible. The input data is not necessary sorted nor processed before integrated in a system, that
is why it is essential to create data models to make it easier to create correlations between two data sets.
For example, the correlation between how refreshed a player may feel after only sleeping X hours can
be calculated over time, and also give the user a prediction of the next expected "refreshed" value when
sleeping X hours over Y days.

With big data follows big challenges concerning large data sets, such as searching through it all, storing,
transferring, visualization and many others. The reason for these challenges is because of old and new
hardware that enables data collection, such as mobile devices (participatory sensing), software logs and
wearables is now kept and added into the database that increases in size. The idea of collecting a lot of
data can only be useful if it is processed within a useable timeframe. The more data it has to process at
once affects the time used on returning all the data to the user. It is important to keep the response time
within a set time limit, or else it would be redundant in using a system that would use minutes, hours or
even days to process the data. Regarding pmSys, we are still not at the limit where it would be safe to
call our datasets for big data, but by integrating all the third party hardware, it would not take too long
before searching through all the saved records would take quite a bit of time. We also do not need to
create a distributed system for processing all our data, but in the future, if the dataset gets too big for
the traditional way of fetching it, it is possible to use existing tools to process all the data. System such
as Hadoop [107], GridGrain [108] and HPCC [109] offers a lot of functionality. All of them is built on
the idea of a distributed processing system where all the data is scattered on all the nodes, and then use
the power of each cluster to process the data faster (see figure 8.2). Some of them uses a in-memory
approach, however, that is very costly since memory is expensive compared to normal storage space
like on a hard-drive, but what you can gain from it is a much quicker solution since the data is already
in-memory and ready to process on the fly.

Apple announced during their WWDDC 2014 presentation that they will start to focus on big data and
collecting multiple systems into their own health tracking platform; HealthKit [110]. This is big news for

84

Figure 8.2: Traditional database system versus distributed database systems

mobile health monitoring, since Apple also revealed that they had been working with medical clinics the
last six years to develop this platform. This means that the ideology behind Open mHealth and HealthKit
is not too different compared to each other (see section 2.3). Because they encourage reuse of code and
by collecting everything to one centralized platform, it all can be analyzed.

8.3.2 Internet of Things

Figure 8.3: Example of what simple sensors can provide of analytics

There have been a lot of talks about Internet of Things (IoT) [31], i.e., how everything that can record

85

data and connected to the internet goes under this term. Everything with embedded electronics can be
interconnected with each other, and it is possible to create a network of systems to both control and
analyze objectively. Third party hardware and wearables have an important role in pmSys since they are
actively used to collect and monitor football players.

Figure 8.3 shows us how simple old technology can be reused to provide analytic data in real time if it
is configured correctly. The visualization gives us an overview of the temperature in the last couple of
days. This information can tell us when the house has a high humidity (Rh) or when the temperature is
high/low. Companies such as Bekk has for example successfully utilized IoT to analyze their employees
walk patterns in different areas at their headquarters [111]. Using sensors to analyze how much the stairs
is used, or retrieving travel routes for the public transportation available in the area is just a few examples.
This is just a proof of concept, however, the results from the project are interesting and proves that any
piece of data can be valuable if used correctly.

8.3.3 Countermovement Jumps

The Norwegian National team and the Premier teams applies the HUR Labs Jumping Board to do one
specific type of jump in order to analyze the muscle effect of the players legs [112]. If a jump were
performed with a maximal effort when the player is recovered, the value from this jump would be set as
the baseline value for all future jumps during the season. If a jump with maximal effort is performed,
but the jump is less than 92% of the baseline, then the muscle is fatigued. High training loads combined
with too little recovery time in between each day can cause the condition.

8.4 Fitbit

Fitbit [113] offers a lot of wearables for different types of usages, but the main thing all the wearables do
good is to track a lot of things about the human behavior. Step counters, calories burned and sleep are
just some of the few features any Fitbit armband can offer. The company has an open web API where
developers can authenticate themselves, and then gain access to the API to retrieve data. The user has to
grant the developers access to their data, but after that any data that the bands register can be retrieved
from Fitbit if it has been uploaded to their servers.

8.4.1 Features

The basic features can be found in the list below, although they sound pretty simple, the data from this
can help the user a lot when the data is analyzed. By simply using data such as sleep quality can help the
user identify why and when problems occur. Or if the user is feeling sore one day, then the Fitbit band
can show a visual graph with data about how much and how many steps a user has walked.

The Fitbit dashboard has support for manually logging activities, food diets, weight and sleep. By
logging these areas, it is possible to see how much activity the user has done and the changes the user
has done over time. The only problem with this way of logging is that it requires manual labor in order
to be as effective as possible. As a default, the Fitbit automatically logs the steps the user takes, and
this will be calculated into distance and expected calorie consumption for the activity done by the user
(see figure 8.4). There is also support for user input of data for better monitoring of a user’s progress
on their dashboard. This can be used if the user for example is currently charging the band, within the
time it is off, the activity levels are high, i.e., manual activity logging are needed to get the correct data
calculations.

86

Figure 8.4: Fitbit dashboard visualization

8.4.2 Limitations

The band itself has a battery time consisting of 6-10 days depending on which type of Fitbit device the
user has. It is not possible to use the Fitbit while it is charged. It has to be de-assembled and attached to
an external charger in order to be able to charge it. It is also important to note that there are two ways
to synchronize the data from the band to Fitbit’s databases. The first way is by using a given wireless
dongle that is attached to a computer, which will connect to the band through Bluetooth and then upload
the data to the database if there is a network connection. The second way is to synchronize through a
mobile device, which will be uploaded to the database when it has a network connection. One of the
biggest limitations by using these type of bands from Fitbit is that if the user want the best analysis
possible, then it would require a lot of manual work in order to make the data as consistent and effective
as possible.

8.4.3 Uploading data to pmSys

The players can link their Fitbit account to their own pmSys user through the pmSys-app, and give
pmSys read-access to their data from Fibit’s web API. By going into the profile, the player can link his
Fitbit account to his pmSys user account (see figure 8.5). Fitbit uses OAuth [114] which is an open
standard for authorization of users in a system. It is used by numerous systems and services where it is
the middleware-security layer that takes care of authorization by linking users up against access tokens
from their authorization server.

When clicking on the Fitbit image, a login screen is asking the players for their Fitbit user credentials.

87

When the credentials is typed in correctly, they will be asked to give pmSys read-only access to their
data, and this is used purely to visualize the user data so that the coaches can compare the subjective data
(surveys) and the objective data (Fitbit). The whole process takes about one minute, and then the next
time the coach wants to see the objective data, he can gain access freely since pmSys has been given
access to the data of the player.

Figure 8.5: OAuth workflow for read-access to user data

8.4.4 Data processing

The data has already been formatted when pmSys retrieves it from Fitbit’s web API. The only thing
pmSys does with the data from the web API, is to extract the data that is needed for visualization. When
the data is extracted, it is then joined into a JSON object, before returning the object to the client for
visual rendering.

8.4.5 Visualization

The data from Fitbit is also from the selected data and is presented in pie charts, the reason for this is to
show how efficient the day has been. The data the Fitbit device collects as a default is presented here,
and for other information such as weight changes, diet or calorie burned requires manual work. (see
figure 8.6). This information could be useful when a player has a declining performance, and can help
the coach and the medical staff to find out a solution to help the player return back to the peak physical
state.

88

Figure 8.6: Visualization of sleep time and activity levels

8.5 HUR Labs Jumping Board

The HUR Labs Jumping Board (Force platform FP4) [105] is used by the Norwegian Premier teams to
measure how much force the player can apply to the board. This is to detect fatigue of the player based
on a list of jumps. The board itself is full of sensors that registers 1200 times each second, and each
jump has gets allocated 5 seconds in case the player has a delayed jump (not correct timing). The board
has a weight sensor that registers the weight of the jumper when stepping on it, and the board also has a
force sensor that measures in Newton. The players have to jump multiple times with a specific technique
in order to analyze the jump correctly. The Norwegian Premier teams is only doing Counter Movement
Jumps, and therefore pmSys will only support that particularly jump type.

8.5.1 Features

The jumping board has a lot of features, and all of them is concerning evaluating the types of jumps the
board supports. For each jump a set of variables is evaluated and presented in the software for the board,
and with this data the medical staff can analyze the results and look for fatigues players. In the beginning
of each football season, the player is forced to rest before they perform a baseline jump. A baseline
jump [115] is the very first value that is used to compare all other jumps through out the season, and this
value makes it possible to detect fatigues or injured players. If a jump is below 92% of the set baseline,
then the player should be checked more thoroughly for injuries since a result with less than 92% of the
baseline is classified as a muscle injury [112].

The current version of the platform (PF4) supports these type of jumps:

• Squat Jump
• Counter Movement Jump
• Drop Jump
• Elasticity Test
• Fatigue Test

8.5.2 Limitations

The results from a jump may not be entirely correct, since factors such as technique and timing can
heavily affect the result. This is also why the players is forced to jump multiple times to make sure that
the technique is correct, which is time consuming, but it is crucial for a correct diagnosis of a players
leg’s ability to create force in a short amount of time. Another limitation with the board that can affect

89

some teams negatively is the cost of purchasing it. The board is expensive, and unless the teams really
want to invest in digital analyzation of their players then the board may not be the best way to invest
the money. It is also important to note that the software is only compatible with the operating system,
Windows.

8.5.3 Uploading data to pmSys

Figure 8.7: Upload interface for jumping board data

Since the idea of automatically uploading the data to pmSys when the jumps were performed was not a
suitable feature, we had to find a way to upload the data without the data being wrongly linked to the
wrong player. The truth is that there will always exist a chance of data being linked to the wrong player
by mistake. We found out that the best solution was create a dynamic upload page for each player (see
figure 8.7). The extracted text files could be either drag-and-dropped into the box, or the coach could
click on the box to get a prompt where the files could be selected in bulks. The extracted data from the
jumps is split in two files, one of them consists of the raw data of the jump(s) (figure 8.8), and the other
file of the processed data values that the software has computed (figure 8.9).

Figure 8.8: Raw jumping data

If a player performs multiple jumps in the same session, then the extracted data will organize all the
jumps in the same file separated by tab-separated values [116] for each jump, but the next data point for

90

that particular jump will follow in the next 6000 lines. For each jump, the system has to parse through
6000 data points to add it to the data structure we use to store each jump’s data, and also look for the
highest force value of each jump while doing it. Even though it might sound a lot, the system parses
through and stores all the data it needs in a matter of seconds. For a monitoring system such as pmSys,
performance is not the most important feature, but it has not been neglected while we have developed the
system.

The second part of the data that is uploaded to pmSys is the computed values from the HUR Labs
software. The data we get from here is the calculated values of the jump data; from the data we can
retrieve data such as jump height, force, velocity etc. The analysis data is already pre-computed by the
software on extraction, which means that we do not need to calculate the values ourselves, even though
it is possible by using physics formulas [117].

Figure 8.9: Calculated values from the software

8.5.4 Data processing

The only hardware that needs real data processing is the HUR Labs Jumping Board. This gives an output
of 6000 data points for the 5 second window the player has to do a jump while being on the board.
Usually this type of data is split by comma (CSV), but for this application all exported data is printed in
a new line for each data value. This creates a lot of lines to scroll through, although it makes the data
more readable to a certain extent. The real challenge with this data is when to cut the data, since it may
contain 6000 data points for each jump, there is actually only about 2-3K1 data points that is actually
relevant for each jump. If we look at figure 8.1, we can see that the data became non-relevant already at
2200 milliseconds which is less than half the the data size. When storing data of this size, where each
jump would contain from a range of 70-100K characters then it would take about 80 Kilobytes to store
each data entry.

There are several ways to find the timeframe to find only the necessary data; the problem is to find out all
the parameters needed to use some of the algorithms we have tested this on. What both methods needs
is to find out the highest value the specific jump and also record which millisecond it occurred on. In
pmSys we solved this by looping through all the data values which has already been added to an array,
meanwhile searching for the highest possible value (see figure 8.10). A pitfall here could be that the loop
will not stop until it has looped through all the entries, which could potentially take a very long time if
someone were to manipulate the export data from the HUR Labs software.

Each team has about 30 players jumping once a week, and since pmSys is only storing the values of the
highest jump of a player, it means that in one month the estimated space needed to store all the data is
30*4*80/1024 = 9,375 Megabytes for each month. In a year, it would mean that all the data would use
112,5 Megabytes in the database for each team. If we did not cut the data at a certain point, then the
storage would probably be at least double of the estimated storage value.

Next, we evaluate two possible methods for detecting where it would be best most suitable to stop storing
data.

1Kilo = 1000

91

function findRelevantInterval(counter, array) {
var deffered = Q.defer();
var max = 0;
var pos = -1;

for(var i = 0; i < array.length; i++) {
array[i] = parseFloat(array[i]);
if(array[i] > max) {

max = array[i];
pos = i;

}

if(i == array.length-1 && pos != -1) {
var relevantInterval = array.slice(0, pos + 1000);
var json = {}; // Create a JSON object
json["counter"] = counter;
json["data"] = relevantInterval;
deffered.resolve(json);

}
else {

deffered.reject({"code": 404, "msg": "Error! Position not found!"});
// If pos is still -1, then it has not been changed

}
}
return deffered.promise;

}

Figure 8.10: Algorithm to find the highest value in the array

8.5.4.1 Method 1: By cutting data with a hardcoded value after highest value

The current implementation of data selection is hardcoded into pmSys. The current value is set to 1K
data points in case of abnormal jumps, and to make sure that no data is cut off too early. This is the
quickest solution based on time used on calculations, but as a trade-off the system will be storing a lot
more data that takes disk space over time. As a temporary solution it works just fine, but if it is going
to be used in the long run then we believe that this method is not suitable in the long run because of the
unnecessary disk usage. If we reuse the calculations in equation 8.5, this method would cut at 2664 data
points.

Highest value in jump = 1664
Hardcoded value to cut = 1664 + 1000 = 2664

Difference between method 1 and method 2 = 700data points
If each datapoint contain 6 characters * 700 data points = 4200 characters extra to store

Each character uses 3 bytes [118] = 4200 ⇤ 3 = 12600bytes = 12, 3Kilobyte

(8.1)

8.5.4.2 Method 2: By using gravitational and kinetic energy calculations

It is possible to use physics to solve this problem, but only if we have all the variables that is needed to
be able to calculate where the data should be cut off. Because of this, the data has to be pre-processed to
retrieve this data, but due to the time constraints it is not possible to implement at this time. Even though

92

it is not possible to implement this at the moment, it is still a viable way to decide when the data is has
no relevance to the graph statistics at all.

First, we calculate the Gravitational potential energy (GPE) [119] and convert it into Kinetic energy
(KE) [120], to find out how long it would take before all the energy the player has on the way down
is negated by impact. In order to do this, we need to apply the equations 8.2 and 8.3 to find out how
much potential energy the player has before the player is starting to descend down to the ground from
that point.

GPE = mgh (8.2)

Kineticenergy =
1
2

mv

2

v =

r
KE(

1
2

weight)

(8.3)

When the player starts to fall down, the GPE is converted into KE. The longer the player is falling, the
less GPE there is, but the KE is growing until the player hits the ground where all the energy is transfered
into the board. Before we can calculate how long time it takes before the player hits the board, we need
to calculate this value (GPE), and then we can use the equation for Kinetic energy to find out the velocity
of the player before they hit the board (see equation 8.3). The velocity value we receive after doing all
these calculations is needed to be able to calculate the time used before the player hits the ground, by
using the equation in equation 8.4.

Time =
v

Final

� v

Initial

Acceleration

(8.4)

Based on the equations for GPE and KE, we could predict when the player would land, and the data
after landing is practically useless since it does not show anything else than that the force on impact is
disappearing. If we try to calculate the data of jump 1 in figure 8.1, we can see that the jump height
by takeoff is at 30,9 centimeters and the weight is 74,31 kg. By using the equations for GPE and KE it
gives us the understanding that we should cut after the highest value + the next 300 data points that takes
the player to land from that point. In section 8.5.4, each row of jump data used 80 Kilobytes with this
technique, we potentially store 67,8 Kilobytes. A revised calculation would show that a team would use
30*4*67,8/1024 = 7,954 Megabytes, which equals 15,16% less data stored each month.

GPE = 74.31 ⇤ 9.81 ⇤ 0, 309

KE =
1
2

74.31 ⇤ v

2

v = 2.46ms/s

t =
2.46 � 0

9.81
t = 0.25(seconds) ⇤ 1000 = 250milliseconds

Highest value in jump = 1664
Milliseconds to land = 250 ⇤ 1.2(to convert from milliseconds to data points)

Ideal cut value = 1964

(8.5)

93

8.5.5 Visualization

The graph presented to the user is the highest jump recorded among the set of uploaded data for a
specific date, and this data does not particularly say much, however, it shows a couple of variables the
software calculates for us after each jump (see figure 8.11). The area between 1 and 2 in the graph is
the contraction time; this is the time the player use to gather force before jumping. Between 2 and 3 is
the flight time, during this time, the player is in mid-air which means no force on the board. The pointer
at number 4 is the optimized cut method 2 (see section 8.5.4.2), while number 5 is cut method 1 (see
section 8.5.4.1). Below the graph is the analyzed data from the HUR Labs software where the variables
is calculated and exported.

Figure 8.11: Visualization of jumping data

8.6 Evaluation & Discussion

In this section, we evaluate the decisions taken when we implemented the Tesseract system. Objective
data can be valuable information that can give a certain level of analysis, since everything we do can
be analyzed. The type of data that can be collected is endless due to the fact that there is more than
just physical state that can give us a better analysis. It is also possible to use physiological analysis to
cross-reference, and to improve how a team should go forward when an event with high physiological
load can have a big impact on a player. For example missing on an important penalty goal during the
world championship.

Even though pmSys has only started to integrate objective data into the core of the system, the possible
outcome from such an integration can be incredible huge in combination with subjective data. To be
able to find out what type of impact objective data can provide a football team that applies pmSys, can
only be done after running the program throughout the course of at at least one football season. But
unfortunately, there is no correct answer to what it could mean or can do before letting it run for a period,
and therefore also difficult to evaluate the usefulness of objective data.

94

8.6.1 Difference between objective data in Ohmage versus pmSys

In section 4.1.1.1, we discussed briefly the applications Ohmage has integrated to collect objective data
from a users mobile device. The problem with these mobile applications is that both projects (AudioSens
and SystemSens) are no longer maintained and should probably be classified as deprecated. These two
applications are analyzing the surroundings of the player, and not the player’s physical state. Because
of this, pmSys is more suitable for monitoring their physical state and the fact that the system itself is
custom made for a player’s physical analysis.

The potential of the objective system can be extremely big, however, the system is not currently in use
by the test teams. The system needs time to calibrate itself before it can be of any use, hence, the results
of this system cannot be evaluated nor predicted at this time. It is important to note, that objective data
cannot be used as the only input source for physical analysis. Raw data often have limited value, and
the only way to make the data valuable is to process it through multiple interpretations where the data is
correlated with other input sources. In pmSys case, subjective data is the supporting role of making the
objective data relevant and valuable for analysis.

A user scenario where objective data can confirm the subjective data is for example when objective data
can be used to analyze if a player has a decreasing performance during training and matches. By cross
referencing the subjective RPE load with the sleep pattern of the player (see figure 8.6) and the total
amount of steps of the previous days. It is critical that the muscles gets enough time to recover from
the previous hard session, and with this data the medical staff can easier identify why the player has a
decreasing performance.

8.7 Summary

In this chapter, we introduced pmSys-Tesseract, that has a lot of potential of what it can offer to the rest
of pmSys, although it requires some time to both calibrate and retrieve enough data to provide proper
analysis. The whole idea is centered behind objective input sources to support the subjective data from
the players, hence the system can become a vital part of pmSys, but as for now, the system is just an extra
feature with great potential for incredible analysis. This proof of concept is just the beginning, however,
there exists a lot of areas where optimization has to be done to be as effective as it can become. The
biggest challenge for pmSys-Tesseract is the amount of third party hardware it will support in the future,
the more input sources the system has, the more resources has to be allocated to keep the system running.
For each input source added to the system, the complexity of the system will increase drastically.

Chapter 9

Conclusion

9.1 Summary

In section 1.2, we defined the problem of creating a digital monitoring system that optimizes the
collection, the storage of data, the data analyzation and the visualization of a player’s health data. The
system we created mainly supports subjective data through questionnaires, however, the system also
supports objective data through third party hardware.

We have collaborated with NiH throughout this thesis to analyze the usefulness of a reporting and
monitoring system in professional Norwegian football teams. As a result, we created a rich featured
system for both the coach and the players under the name of pmSys. The main objective of pmSys, is
to be an assisting tool for both coaches and the players by replacing the old registration and monitoring
system i.e., pen and paper.

The pmSys-system consists of multiple subsystems created specifically to solve an important task within
the system. We created a mobile application for data collection, named pmSys-app. The mobile
application is available on both iOS and Android, where the users can answer surveys in just a matter of
seconds compared to pen and paper. They can also monitor their own subjective performance through
visualization of their own data; as a result, they can reflect upon their own effort and support them in
improving themselves over time.

A web portal with analysis capabilities has been created specifically for the coaches. This is where
they can monitor their players and get instant analysis of the subjective data through visualization of the
survey answers collected. The idea is to detect early a player’s physical state before they get injured,
which is vital to their performance during training sessions and matches.

A one-way communication system between the coach and the players has also been implemented, to
assist the coaches to remind the players to register their surveys. The coaches can send push notifications
to a player’s mobile device through the web portal, they can also set up automated push notifications to
notify the players when to register surveys. Several user studies has been conducted with objective and
subjective users on their experience with pmSys, and the results indicate that pmSys is an excellent tool
where data collection and data analysis is a vital part of the system. The system has also received positive
remarks from coaches regarding the usefulness of the web portal as an analysis tool.

Finally, we looked at the possibility of integrating third party hardware into pmSys for better analysis.
A new system dedicated for collecting objective data has been created and named pmSys-Tesseract.
Subjective data can provide the coaches with the perceived RPE load, however, objective data can

95

96

monitor the RPE load on the body. By combining these two data types, the coach can enhance the
analysis tool to see variables the naked eye cannot see, whereas the hardware can capture these invisible
variables through sensors. The proof of concept shows the potential of objective data, however, the
system has not been tested nor used by the teams. Therefore, no definite evaluation of the system can be
presented.

9.2 Main Contributions

In this thesis, we have shown all the systems in our monitoring system, pmSys. The system is a collection
of many subsystems created with monitoring of a football player’s physical state in mind. pmSys
is currently deployed for the Norwegian National and several Tippeliga teams. As a part of the NiH
project agreement, we receive feedback from active players and coaches regarding the functionality of
the system.

As a result, we have created a dedicated data collection application for the players on iOS and Android
under the name pmSys-app (pmSys in the app stores). The mobile application received media attention
early in the release phase on NRK’s (Norsk rikskringkasting AS) web news [9]. The reporting process
has been optimized for registering surveys quickly and effective within seconds, with less button clicks
and a summary page for confirmation of the entered data. Furthermore, the mobile application has
support for self-reminders, where the players can set up the reminders themselves. The coach can also
remind the players through push notifications, which is an easier way to contact the players then sending
text messages.

We have developed a monitoring and data analysis tool for the coaches as a web portal, pmSys-Trainer.
The web portal provides the coaches tools in monitoring, assisting and analyzing of the players physical
state. The web portal has tools for data visualization, push notifications to a player’s mobile device and
survey answer statistics. The idea of the web portal is to analyze data instantly, instead of feeding data
into third party software in order to recieve the same results. This is timesaving and can help the coaches
set up correct training sessions without injuring the players due to overtraining.

A good example of how effective the pmSys-app has been for collecting health data with push notification
interaction through the pmSys-Trainer can be seen in section 5.6.4. Furthermore in section 5.1 one of
the feedback we received was that the players wanted to answer the surveys every day but they simply
forgot to do it because of no reminders was integrated in Ohmage (without setting it up themselves on
iOS).

9.3 Future work

During the thesis we received a lot of feedback and requests for improvements and features on pmSys.
In the next sections, a list of features and improvements we think could be done in the future will be
listed.

97

9.3.1 Ohmage back-end

9.3.1.1 Update campaigns

It is not possible to update a campaign with new questions or values with the current Ohmage back-
end. This is a major drawback, since once it is uploaded and active, the data is connected to the
campaign. Hence, if a letter is wrong, the campaign has to be deleted with it all the registered survey
responses.

9.3.1.2 Validation of hashed password

This feature is critical for all systems of pmSys, due to the fact that the REST API’s can be accessed if
they know what to send with the HTTPS requests. By adding this feature, the only way to retrieve data
is by validation of the hashed password with the back-end.

9.3.1.3 Optimalized results

To reduce bandwidth and to increase the performance on both the pmSys-app and the pmSys-Trainer,
the data has to be processed and optimized. If the data is returned pre-processed, then the web browser
can focus on visualizing the data instead of matching the data before being able to visualize it. A prime
example is survey responses, if the responses were returned with the username as key, and the survey
types below it as key where the value is one survey response for each key, then the performance could
potentially increase (see figure 9.1).

{
thuc: {

rpe: {
0: [

// Survey response for RPE
]

},
wellness: {

0: [
// Survey response for Wellness

]
},
injuries: {

0: [
// Survey response for Injuries

]
}

}
}

Figure 9.1: Example of new data format

98

9.3.2 pmSys-App

9.3.2.1 Color highlights of survey list

Players wish to know if they have answered a specific survey, by adding border color to indicate which
surveys has been registered in case of duplicates (see figure 9.2(b)). The reason for this feature request,
is because there is no indication except for the confirmation page after confirming on the summary page
(see figure 9.2(a)). In the example, green means "OK", orange means "Not done today" and red is "Must
answer today!", thus the color codes can be changed to something more intuitive later.

(a) Confirmation of sent survey (b) Color codes

Figure 9.2: Color highlights of survey status

9.3.2.2 Encrypted end-to-end chat between coach and player

The push notification allows the coach a one-way communication channel between the coach and the
player. This feature can enable discussion between the two of them, to confirm the survey responses
before further analysis of the physical state. This can be achieved by implementing (elliptic curve)
Diffie-Hellman [121] with Perfect Forward Secrecy.

9.3.2.3 Language localization (i18n)

This feature allows the players to define their own translation over to their own native language (if
they are not Norwegian or fluent in English). Furthermore, this feature can help pmSys become more
international by supporting multiple languages such as French, Spanish, German etc.

99

9.3.2.4 Rewamp offline mode by using SQLite

As mentioned in section 5.6.2, SQLite might be a better suit for the pmSys-app. Instead of creating a
large amount of files on the mobile device, the SQLite database creates a new BLOB for each survey
response.

9.3.2.5 Security of the mobile application

It is possible to decipher the source code of the pmSys-app, a possible way to avoid this, is to obfuscate
the source code before deploying the application. By using secrecy as a part of the design, known
as Security through obscurity [122]. The data the pmSys-app creates is stored in plain text directly
on the file system. Even though the data is not sensitive, it is important to secure every part of the
application. There is a plugin created to secure files at runtime [123], hence increasing the complexity of
the application for better security.

9.3.2.6 Add Windows Phone support

The pmSys-app supports iOS and Android but it does not support Windows Phone. The reason for this is
due to the plugins used in the application does not have implemented support for Windows Phone. There
are a few users of pmSys that uses Windows Phone, however, these users have to use our web solution to
register their surveys until the pmSys-app is developed further.

9.3.3 pmSys-Trainer

9.3.3.1 Artificial Intelligence (AI) or Machine Learning

As of now, the coaches have to manually check for irregularities among their players. By developing
AI for pmSys-Trainer, the coaches can be notified on their mobile device when the system detects that
something is wrong with a player. AI can also be exchanged for machine learning, where the analysis is
based on previous recorded data for more personal analysis of a player.

9.3.3.2 User mapping

In pmSys, all usernames are obfuscated by random generated letters and numbers in combination.
Only the coach knows which player is behind a username, thus creating extra work for the coach. If
two usernames are similar, the coaches might mix the users and give faulty personalized training. By
creating a secure mapping of the users, the coaches can save a lot of time on skipping the name lookup
phase.

9.3.3.3 Open up the web portal for the players

The web portal is restricted to the coaches of each team, in this way we can focus on the coach. In the
future, it could be a good idea to let the players’ receive a detailed analysis of themselves, without asking
the coach for their own analysis. By doing this, the players can monitor their own performance.

100

9.3.4 pmSys-Tesseract

9.3.4.1 New visualization layout

Instead of showing data for a specific day at a time, the visualization can be extended to show over a
period of time. For example sleep pattern for the last two weeks gives the coach a better understanding
of a player’s sleep pattern if the performance drops in between training days.

9.3.4.2 Storage of latest fetched data from Fitbit

As of now, the pmSys-Tesseract system does not store the data retrieved from Fitbit. The reason for this
is because data from Fitbit is always available, however, the idea of storing the data for faster lookup
might speed up the process.

9.3.4.3 More third party hardware

The system currently supports HUR Labs jumping board and Fitbit, however, there are many other
hardware with other type of monitoring capabilities. By adding new technology, the system will get
more complex, but that is needed for better analysis and it might help for better performance.

9.3.4.4 Data warehouse

Data warehouse (DW or DWH) [124] is a system used for reporting and data analysis. The DWH is a
centralized data point where it integrates multiple data sources before it analyzes the data. By changing
into this, the data can be processed into data models, hence sorting the data where it belongs which
enhances the analysis capabilities and performance of the system (see figure 9.3).

Figure 9.3: Example of how a data warehouse works [125]

Appendix A

Accessing the source code

The source code for the pmSys project is divided into three repositories. Access to the repositories can
be given upon request.

A.1 pmSys-app

https://bitbucket.org/nktteam/pms-app

A.2 pmSys-trainer

https://bitbucket.org/nktteam/pms-trainer

A.3 pmSys-push

https://bitbucket.org/nktteam/pms-pushserver

101

https://bitbucket.org/nktteam/pms-app
https://bitbucket.org/nktteam/pms-trainer
https://bitbucket.org/nktteam/pms-pushserver

102

Appendix B

User Surveys

B.1 pmSys vs. Ohmage

103

Brukerundersøkelse
Fra en skala fra 1 til 5 (helhetsvurdering), hvordan vil du rangere...

*Må fylles ut

1. Hvilken bakgrunn har du?
Studieretning / Yrke

2. Driver du aktivt med sport i fritiden?
Merk av for alt som passer

 Ja

 Nei

3. Brukervennligheten til pmSys? *
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

4. Brukervennligheten til Ohmage? *
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

5. Designet (grensesnittet) til pmSys?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

6. Designet (grensesnittet) til Ohmage?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

7. Navigasjonen i pmSys?
Hvordan er det å manøvrere i applikasjonen?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

8. Navigasjonen i Ohmage?
Hvordan er det å manøvrere i applikasjonen?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

9. Hvordan presenteres innholdet i pmSys?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

10. Hvordan presenteres innholdet i Ohmage?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

Drevet av

11. Hvilken applikasjon foretrekker du?
Merk av for alt som passer

 Ohmage

 pmSys

12. Har du kommentarer til pmSys eller Ohmage? *

107

B.2 Rating of pmSys

Brukerundersøkelse

PmSys brukerundersøkelse

*Må fylles ut

1. Hva synes du om prosessen for RPE, wellness og injury rapportering? *

Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

2. Hvilken rapporteringsverktøy foretrekker du?
Markér bare én oval.

 Penn og papir

 Excel

 Web survey

 Mobil applikasjon

 Annet

3. Hvis annet, hvilke?

4. Sparer pmSys deg for tid ved rapportering?

Er pmSys raskere enn andre verktøy du har brukt?
Markér bare én oval.

 Ja

 Nei

Fra en skala 1 (dårlig) til 5 (utmerket), hvordan vil du

rangere (helhetsvurdering)...

5. Brukervennligheten til pmSys? *

Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

6. Designet (grensesnittet) til pmSys?

Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

7. Navigasjonen i pmSys?

Hvordan er det å manøvrere i applikasjonen?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

8. Hvordan presenteres innholdet i pmSys?

Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

9. Nyttigheten av pmSys sine funksjoner?

Påminnelser for rapportering? Visualisering?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

Drevet av

10. Utbytte ved bruk av pmSys?

Har du fått noe igjen av å bruke pmSys?
Markér bare én oval.

 Dårlig

 Ok

 Bra

 Veldig bra

 Utmerket

11. Har du andre kommentarer til pmSys? *

Forbedringer / Ønskede funksjonalitet / Ris / Ros

Appendix C

Surveys in pmSys

C.1 RPE Survey

111

When?
Within 15 minutes after each training session and match. (typically in the dressing room). If that is
not possible, do it as soon as possible. If you want to register the session you had yesterday,
please check for "yesterday" in the check box on the last page of the registration.

Registration contents
Please answer the following questions:
1. Was this a (match, team session or a individual session)?
2. Which type of session (football session, endurance session, strength/speed session or other)?
3. Duration? (number of minutes)
4. How was your session today (0-10)?

What kind of information do we get?
Session RPE provide information on intensity, duration and frequency of your training sessions and
matches. By tracking these data over time, the coach can supervise the total training load and the
variation in training load.

Clarifications
• Dictionary

- Match: official match or friendly match.
- Team session: Training session that include the team or part of the team
- Individual session:
- Football session: a session on the field which includes the ball
- Endurance session: For example a running, cycling or swimming session ment to improve

endurance
- Strength training: Strength training or core training (typically in the gym)
- Other: Other activity that doesn’t fit into the other (e.g. playing tennis, yoga)

• Rate how intense you experienced the session
• The rating should be an average of the whole session (fig.1). Take into account periods of high

intensity running and periods of standing still.
• 10 is the highest exertion that you can imagine. Imagine pushing yourself running a 3000 m test,

without any break.
• 0 is equivalent to rest, and should not be used in combination with training.
• It is exhausting to sprint, having a high heart rate, fast breathing, but also to tackle, jump and

duel. How exhausted you feel in your muscles and mentally is also a part of the RPE.
• A match is typically rated 6-7-8, but could also be higher or lower.
• A strength training session is typically 2-3-4-5 (because of much pauses)

Rating of Session RPE

Minutes: 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Average

RPE: 8 5 6 3 6 8 5 6 9 8 7 6 4 6 4 6 7 10 6,5

Fig. 1. Example from a 90 minutes session. The assessment should reflect an average of the whole session. Imagine that you rate
every 5th minute of the session and then calculate the average value.

Visualization
• Training load: is the RPE score multiplied by the duration of the session. High training load

occurs either by high RPE score, high duration or both.
• Weekly load: is the average training load the last 7 days.
• Monotony describes the variation in training load over the last 7 days. High monotony means

low variation in training load.
• Strain is the average weekly load multiplied by the monotony. High strain means that the weekly

load is high combined with low variation in training load. High strain means less time for
recovery and is associated with overtraining or injuries.

Session RPE - rate of perceived exertion
Rating Explanation

0 Rest
1 Very, very easy
2 Easy
3 Moderate
4 Somewhat hard
5 Hard
6
7 Very hard
8
9

10 Maximal

Rating of Session RPE

114

C.2 Wellness survey

When?
Please rate your wellness every morning, 7 days a week. The rating must take place after getting
out of bed, but before training. For example before or after breakfast or in the dressing room before
the session.

Registration contents
1. "Readiness to play"
2. "Fatigue"
3. "Sleep Quality"
4. "Hours of Sleep"
5. "General Muscle Soreness"
6. "Stress Levels"
7. "Mood"

What kind of information do we get?
Wellness indicates how well the players overcome or responds to the training load and how well he
recover? A lower score than normal over time may indicate a higher risk of overuse injuries.

Clarifications
• Rate as best as you can according to the questions
• On the scale, 3 is normal, 1 er "worst" and 5 "best".
• "Readiness to play" has a scale from 1-10, where 1 is "not ready at all" and 10 is "maximally

ready".
• Dictionary

- Fatigue: means tiredness resulting from mental or physical exertion or illness.
- Sleep quality: means "how was your sleep last night?"
- Hours of sleep: "how many hours did you sleep last night?"
- General muscle soreness: means general soreness in the musculature (especially in the

legs)
- Stress levels means a state of mental or emotional strain or tension resulting from adverse

or demanding circumstances
- Mood means emotionally state of mind
- Readyness to play: means "how ready (physically and mentally) are you to play if there is a

match today/tonight?"

Visualization
On the visualization page, you can view your latest rating of fatigue, sleep, soreness, stress and
mood. You can also view your ratings for the last 30 days. A thick red line represents the average
of the five wellness parameters.

Rating of wellness

5 4 3 2 1

Fatigue Very fresh Fresh Normal More tired than
normal Always tired

Sleep
quality

Very
restful Good Difficulty falling asleep Restless sleep Insomnia

Hours of
sleep - - - - -

General
muscle

soreness
Feeling
great

Feeling
good Normal Increase in

soreness/tightness Very sore

Stress
levels

Very
relaxed Relaxed Normal Feeling stressed Highly stressed

Mood
Very

positiv
mood

A generally
good mood

Less interested in
others and/or activities

than usual

Snappiness at team-
mates, family and

co-workers
Highly annoyed/

irritable/down

117

C.3 Injury survey

When?
Once a week on a fixed day.

Registration contents
Part 1:Please answer the following questions as best as you can

1. Have you had any difficulties participating in normal training and competition due to
injury, illness or other health problems during the past week?

2. To what extent have you reduced your training volume due to injury, illness or other
health problems during the past week?

3. To what extent has injury, illness or other health problems affected your performance
during the past week?

4. To what extent have you experienced symptoms/health complaints during the past
week?

Part 2: If you have experienced injuries/illnesses, you will continue with these questions
1. Is the health problem an injury or illness?
2. Select the area that best describes the injury / illness?
3. Please state the number of days over the past 7-day period that you have had to

completely miss training or competition du to this problem?
4. Is this the first time you have reported this injury?
5. Have you reported the problem to the medical device?
6. Do you have more injuries to report?

What kind of information do we get?
The injury registration systemize information about acute injury, overuse injuries and health
problems. The registration may detect health problems and symptoms before it develops into an
overuse injury. It also record small injuries/illness that are often overseen in traditional injury
registration

Clarifications
It is important that you register all your health problems every week, even if you have registered
the same problem before, or if you are receiving treatment for it. If you have several injuries/
illnesses within one week, be sure to record all of them by going through the registration several
times. Record the most serious injury/illness first.

Your team physician/physiotherapist/fitness coach will receive a message when you record and
injury. It is important to emphasize that this system does not replace your regular contact with the
medical team. Please continue to make direct contact with the team physician or physiotherapist
when you need it.

Visualization
The visualization indicates a severity score of the injury/illness to be used in research. Each of the
questions (1-4) scores 0-25, and the larger the sum is, the larger the severity score is. It is
important to emphasize that only your team physician or physiotherapist can diagnose and decide
how seriously your injury or illness is.

Injury registration

Bibliography

[1] Belastningsovervåking i fotball.
http://www.nih.no/forskning/prosjektarkivet1/
forskningsprosjekter-ved-nih/belastningsovervaking-i-fotball/.
Accessed: January 20th 2015.

[2] Ohmage MWF. https://oit.ucla.edu/mobile-web-strategy/ohmage-mwf.
Accessed: February 15th 2015.

[3] Ohmage. http://www.ohmage.org/. Accessed: January 4th 2015.

[4] Cong-Nguyen Nguyen. Implementation of a digital player monitoring system: pmsys. Master’s
thesis, University of Oslo, 2015.

[5] Kennet Khang Vuong. Pmsys: a system for sports athlete load, wellness and injury monitoring.
Master’s thesis, University of Oslo, 2015.

[6] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a discipline. ACM, 32, 1989.

[7] Scrum (software development).
http://en.wikipedia.org/wiki/Scrum_%28software_development%29.
Accessed: February 17th 2015.

[8] PMS Project Management.
https://trello.com/b/M1aLlssW/pms-project-management. Accessed:
January 4th 2015.

[9] Ny app skal sikre EM-suksess.
http://www.nrk.no/troms/ny-app-skal-sikre-em-suksess-1.12048486.
Accessed: February 16th 2015.

[10] Carl Foster, Jessica A. Florhaug, Jodi Franklin, Lori Gottschall, Lauri A. Hrovatin, Suzanne
Parker, Pamela Doleshal, and Christopher Dodge. A new approach to monitoring exercise
training. Journal of Strength and Conditioning Research, 15(1):109–115, 2001.

[11] Kid-Edgar Sørensen. Ruoksat: A system for capturing, persisting and presenting the digital
footprint of soccer knowledge and expertise. Master’s thesis, University of Tromø, 2013.

[12] Likert Scale. http://en.wikipedia.org/wiki/Likert_scale. Accessed: March
15th 2015.

[13] Benjamin Clarsen, Ola Rønsen, Grethe Myklebust, Tonje Wåle Flørenes, and Roald Bahr. The

119

http://www.nih.no/forskning/prosjektarkivet1/forskningsprosjekter-ved-nih/belastningsovervaking-i-fotball/
http://www.nih.no/forskning/prosjektarkivet1/forskningsprosjekter-ved-nih/belastningsovervaking-i-fotball/
https://oit.ucla.edu/mobile-web-strategy/ohmage-mwf
http://www.ohmage.org/
http://en.wikipedia.org/wiki/Scrum_%28software_development%29
https://trello.com/b/M1aLlssW/pms-project-management
http://www.nrk.no/troms/ny-app-skal-sikre-em-suksess-1.12048486
http://en.wikipedia.org/wiki/Likert_scale

120

oslo sports trauma research center questionnaire on health problems: a new approach to
prospective monitoring of illness and injury in elite athletes. BJSM Online First, 2013.

[14] Benjamin Clarsen, Grethe Myklebust, and Roald Bahr. Development and validation of a new
method for the registration of overuse injuries in sports injury epidemiology: the oslo sports
trauma research centre (ostrc) overuse injury questionnaire. BJSM Online First, page 3, 2012.

[15] R. Meeusen, M. Duclos, C. Foster, M. Gleeson A. Fry, D. Nieman, J. Raglin, G. Rietjens, and
J. Steinacker. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus
statement of the european college of sport science and the american college of sports medicine.
Med Sci Sports Exerc, 45:186–205, 2013.

[16] Aaron J. Coutts, Karim Chamari, and Ermanno Rampinini Franco M. Impellizzeri. Monitoring
training in soccer: Measuring and periodising training. 2008.

[17] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava.
Participatory sensing. ACM, 2006.

[18] Andel som har smarttelefon.
http://medienorge.uib.no/statistikk/aspekt/tilgang-og-bruk/379.
Accessed: March 15th 2015.

[19] Open mHealth About. http://www.openmhealth.org/about/. Accessed: February
14th 2015.

[20] Deborah Estrin and Ida Sim. Open mhealth architecture: An engine for health care innovation.
Science, 330:759–760, 2010.

[21] One In Every 5 People In The World Own A Smartphone, One In Every 17 Own A Tablet.
http://www.businessinsider.com/smartphone-and-tablet-
penetration-2013-10. Accessed: March 16th 2015.

[22] Silo. http:
//www.oxforddictionaries.com/us/definition/american_english/silo.
Accessed March 17th 2015.

[23] H. Tangmunarunkit, C. K. Hsieh, J. Jenkins, C. Ketcham, J. Selsky, F. Alquaddoomi, D. George,
J. Kang, Z. Khalapyan, B. Longstaff, S. Nolen, T. Pham, J. Ooms, N. Ramanathan, and D. Estrin.
Ohmage: A general and extensible end-to-end participatory sensing platform. UCL Computer
Science Technical Report, 2014.

[24] DHIS2. https://www.dhis2.org/. Accessed: February 14th 2015.

[25] JSONP. http://en.wikipedia.org/wiki/JSONP. Accessed: March 25th 2015.

[26] Use of DHIS 2 in HIS: data collection, processing, interpretation, and analysis.
https://www.dhis2.org/doc/snapshot/en/user/html/ch01s03.html.
Accessed: February 16th 2015.

[27] Milan Lab. http://www.acmilan.com/en/club/milan_lab. Accessed: March 28th
2015.

[28] Inside AC’s MilanLab. http:

http://medienorge.uib.no/statistikk/aspekt/tilgang-og-bruk/379
http://www.openmhealth.org/about/
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://www.oxforddictionaries.com/us/definition/american_english/silo
http://www.oxforddictionaries.com/us/definition/american_english/silo
https://www.dhis2.org/
http://en.wikipedia.org/wiki/JSONP
https://www.dhis2.org/doc/snapshot/en/user/html/ch01s03.html
http://www.acmilan.com/en/club/milan_lab
http://www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html
http://www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html

121

//www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html.
Accessed April 5th 2015.

[29] Jeanne G. Harris, Elizabeth Craig, and David A. Light. Accenture research report. 2010.

[30] DHIS2 Appstore. https://www.dhis2.org/appstore. Accessed: February 14th 2015.

[31] Internet of Things. http://en.wikipedia.org/wiki/Internet_of_Things.
Accessed: April 2nd 2015.

[32] Node.js is taking over the Enterprise – whether you like it or not.
https://www.centurylinkcloud.com/blog/post/node-js-is-taking-
over-the-enterprise-whether-you-like-it-or-not/. Accessed: March 28th
2015.

[33] Stop Fighting Node.Js In The Enterprise.
http://www.wintellect.com/devcenter/dbanister/stop-fighting-
node-js-in-the-enterprise. Accessed: March 28th 2015.

[34] NodeJS. https://nodejs.org/. Accessed: January 20th 2015.

[35] MongoDB. https://www.mongodb.org/. Accessed: January 20th 2015.

[36] Create, read, update and delete.
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete.
Accessed: February 16th 2015.

[37] JSON. http://en.wikipedia.org/wiki/JSON. Accessed: February 15th 2015.

[38] About Users, Classes and Campaigns.
https://github.com/ohmage/server/wiki/About-Users,-Classes-and-
Campaigns. Accessed: February 15th 2015.

[39] MWF Mobile Web Framework. http://mwf.ucla.edu/. Accessed: March 16th 2015.

[40] Home. https://github.com/ucla/mwf/wiki. Accessed: March 16th 2015.

[41] General: Principles and Strategy. https:
//github.com/ucla/mwf/wiki/General%3A-Principles-and-Strategy.
Accessed: March 16th 2015.

[42] OpenCPU. https://www.opencpu.org/. Accessed: March 15th 2015.

[43] AudioSens. https://github.com/cens/audioSens. Accessed: March 22th 2015.

[44] SystemSens. https://github.com/falaki/SystemSens. Accessed: March 22th
2015.

[45] Lov om behandling av personopplysninger (personopplysningsloven).
https://lovdata.no/dokument/NL/lov/2000-04-14-31. Accessed: March 28th
2015.

[46] Edward Snowden.

http://www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html
http://www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html
http://www.meerssemanlab.com/Meersseman_Lab/Inside_AC_Milan_Lab.html
https://www.dhis2.org/appstore
http://en.wikipedia.org/wiki/Internet_of_Things
https://www.centurylinkcloud.com/blog/post/node-js-is-taking-over-the-enterprise-whether-you-like-it-or-not/
https://www.centurylinkcloud.com/blog/post/node-js-is-taking-over-the-enterprise-whether-you-like-it-or-not/
http://www.wintellect.com/devcenter/dbanister/stop-fighting-node-js-in-the-enterprise
http://www.wintellect.com/devcenter/dbanister/stop-fighting-node-js-in-the-enterprise
https://nodejs.org/
https://www.mongodb.org/
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/JSON
https://github.com/ohmage/server/wiki/About-Users,-Classes-and-Campaigns
https://github.com/ohmage/server/wiki/About-Users,-Classes-and-Campaigns
http://mwf.ucla.edu/
https://github.com/ucla/mwf/wiki
https://github.com/ucla/mwf/wiki/General%3A-Principles-and-Strategy
https://github.com/ucla/mwf/wiki/General%3A-Principles-and-Strategy
https://www.opencpu.org/
https://github.com/cens/audioSens
https://github.com/falaki/SystemSens
https://lovdata.no/dokument/NL/lov/2000-04-14-31

122

http://www.biography.com/people/edward-snowden-21262897. Accessed:
April 24th 2015.

[47] National Security Agency. https://www.nsa.gov/. Accessed: April 24th 2015.

[48] Wikipedia: National Security Agency.
http://en.wikipedia.org/wiki/National_Security_Agency. Accessed: April
24th 2015.

[49] Heartbleed. http://heartbleed.com/. Accessed: April 24th 2015.

[50] Everything you need to know about the Heartbleed SSL bug.
http://www.troyhunt.com/2014/04/everything-you-need-to-know-
about.html. Accessed: April 24th 2015.

[51] Keymetrics - NodeJS monitoring. https://keymetrics.io/. Accessed: March 22th 2015.

[52] Act of 14 April 2000 No. 31 relating to the processing of personal data (Personal Data Act).
https://www.regjeringen.no/en/topics/health-and-care/public-
health/Act-of-18-May-2001-No-24-on-Personal-Health-Data-Filing-
Systems-and-the-Processing-of-Personal-Health-Data-Personal-
Health-Data-Filing-System-Act-/id224129/. Accessed: February 18th 2015.

[53] Personal Data Regulation. https:
//www.datatilsynet.no/English/Regulations/Personal-Data-Act1/.
Accessed: February 18th 2015.

[54] User Manipulation.
https://github.com/ohmage/server/wiki/User-Manipulation. Accessed:
March 22th 2015.

[55] Ajax (programming).
http://en.wikipedia.org/wiki/Ajax_%28programming%29. Accessed: March
28th 2015.

[56] Michael S. Mikowski and Josh C. Powell. Single Page Web Applications. B and W, 2013.

[57] An Intro Into Single Page Applications (SPA). http://blog.4psa.com/an-intro-
into-single-page-applications-spa/. Accessed: March 18th 2015.

[58] Trygve Reenskaug. Thing-model-view-editor: an example from a planningsystem. Xerox PARC,
1979.

[59] What is a hybrid mobile app. http://developer.telerik.com/featured/what-
is-a-hybrid-mobile-app/. Accessed: March 18th 2015.

[60] AngularJS. https://angularjs.org/. Accessed: April 24th 2015.

[61] Google+ Angular.
https://plus.google.com/+AngularJS/posts/aZNVhj355G2. Accessed: April
24th 2015.

[62] Ionic Framework. http://ionicframework.com/. Accessed: February 14th 2015.

http://www.biography.com/people/edward-snowden-21262897
https://www.nsa.gov/
http://en.wikipedia.org/wiki/National_Security_Agency
http://heartbleed.com/
http://www.troyhunt.com/2014/04/everything-you-need-to-know-about.html
http://www.troyhunt.com/2014/04/everything-you-need-to-know-about.html
https://keymetrics.io/
https://www.regjeringen.no/en/topics/health-and-care/public-health/Act-of-18-May-2001-No-24-on-Personal-Health-Data-Filing-Systems-and-the-Processing-of-Personal-Health-Data-Personal-Health-Data-Filing-System-Act-/id224129/
https://www.regjeringen.no/en/topics/health-and-care/public-health/Act-of-18-May-2001-No-24-on-Personal-Health-Data-Filing-Systems-and-the-Processing-of-Personal-Health-Data-Personal-Health-Data-Filing-System-Act-/id224129/
https://www.regjeringen.no/en/topics/health-and-care/public-health/Act-of-18-May-2001-No-24-on-Personal-Health-Data-Filing-Systems-and-the-Processing-of-Personal-Health-Data-Personal-Health-Data-Filing-System-Act-/id224129/
https://www.regjeringen.no/en/topics/health-and-care/public-health/Act-of-18-May-2001-No-24-on-Personal-Health-Data-Filing-Systems-and-the-Processing-of-Personal-Health-Data-Personal-Health-Data-Filing-System-Act-/id224129/
https://www.datatilsynet.no/English/Regulations/Personal-Data-Act1/
https://www.datatilsynet.no/English/Regulations/Personal-Data-Act1/
https://github.com/ohmage/server/wiki/User-Manipulation
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://blog.4psa.com/an-intro-into-single-page-applications-spa/
http://blog.4psa.com/an-intro-into-single-page-applications-spa/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
https://angularjs.org/
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
http://ionicframework.com/

123

[63] Collection Repeat: Estimate, Iterate, Improve.
http://blog.ionic.io/collection-repeat-iteration-two/. Accessed:
March 25th 2015.

[64] x2js. https://code.google.com/p/x2js/. Accessed: March 28th 2015.

[65] Survey Upload. https://github.com/ohmage/server/wiki/Survey-
Manipulation#surveyUpload. Accessed: March 24th 2015.

[66] NVD3. http://nvd3.org/. Accessed: February 16th 2015.

[67] cordova-plugin-local-notifications.
https://github.com/katzer/cordova-plugin-local-notifications/.
Accessed: March 24th 2015.

[68] cordova-plugin-file. https://github.com/apache/cordova-plugin-file.
Accessed: March 24th 2015.

[69] The App Life Cycle. https://developer.apple.com/library/ios/
documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/
TheAppLifeCycle/TheAppLifeCycle.html. Accessed: March 24th 2015.

[70] Background Execution. https://developer.apple.com/library/prerelease/
ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/
BackgroundExecution/BackgroundExecution.html. Accessed: March 24th 2015.

[71] App Store Review guidelines.
https://developer.apple.com/app-store/review/guidelines/. Accessed:
February 15th 2015.

[72] Certificates.
https://developer.apple.com/support/technical/certificates/.
Accessed: February 15th 2015.

[73] iOS Developer Enterprise Program.
https://developer.apple.com/programs/ios/enterprise/. Accessed: April
28th 2015.

[74] Google Play. https://play.google.com/store. Accessed: February 15th 2015.

[75] Uncle Ben citation. http://en.wikipedia.org/wiki/Uncle_Ben. Accessed:
February 16th 2015.

[76] Mobile: Native Apps, Web apps, and Hybrid Apps.
http://www.nngroup.com/articles/mobile-native-apps/. Accessed: April
26th 2015.

[77] Mark Zuckerberg: Our Biggest Mistake Was Betting Too Much On HTML5.
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-
mistake-with-mobile-was-betting-too-much-on-html5/. Accessed: April
26th 2015.

[78] UIWebView. https://developer.apple.com/library/ios/documentation/

http://blog.ionic.io/collection-repeat-iteration-two/
https://code.google.com/p/x2js/
https://github.com/ohmage/server/wiki/Survey-Manipulation#surveyUpload
https://github.com/ohmage/server/wiki/Survey-Manipulation#surveyUpload
http://nvd3.org/
https://github.com/katzer/cordova-plugin-local-notifications/
https://github.com/apache/cordova-plugin-file
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
https://developer.apple.com/library/prerelease/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/prerelease/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/prerelease/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/support/technical/certificates/
https://developer.apple.com/programs/ios/enterprise/
https://play.google.com/store
http://en.wikipedia.org/wiki/Uncle_Ben
http://www.nngroup.com/articles/mobile-native-apps/
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/

124

UIKit/Reference/UIWebView_Class/. Accessed: April 26th 2015.

[79] Just In Time Compilation.
http://en.wikipedia.org/wiki/Just-in-time_compilation. Accessed:
March 25th 2015.

[80] WKWebView. https://developer.apple.com/library/ios/documentation/
WebKit/Reference/WKWebView_Ref/. Accessed: April 26th 2015.

[81] WKWebView. https://github.com/Telerik-Verified-Plugins/WKWebView.
Accessed: April 26th 2015.

[82] SQLite Homepage. https://www.sqlite.org/. Accessed: March 28th 2015.

[83] Comma-separated values.
http://en.wikipedia.org/wiki/Comma-separated_values. Accessed: May 4th
2015.

[84] Express. http://expressjs.com/. Accessed: February 15th 2015.

[85] Nunjucks. http://mozilla.github.io/nunjucks/. Accessed: February 15th 2015.

[86] Redis. http://redis.io/. Accessed: February 16th 2015.

[87] How we made GitHub fast.
https://github.com/blog/530-how-we-made-github-fast. Accessed:
February 16th 2015.

[88] Bootstrap. http://getbootstrap.com/. Accessed: March 28th 2015.

[89] SB Admin. http://startbootstrap.com/template-overviews/sb-admin/.
Accessed: April 27th 2015.

[90] C3.js. http://c3js.org/. Accessed: March 25th 2015.

[91] Github: Performance issue on graphs with more than 500 data points. https:
//github.com/masayuki0812/c3/issues/172#issuecomment-41130654.
Accessed: April 26th 2015.

[92] Apple Push Notification Service. https://developer.apple.com/library/ios/
documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html. Accessed: March
24th 2015.

[93] WWDC 2014 Session Videos.
https://developer.apple.com/videos/wwdc/2014/. Accessed: April 27th 2015.

[94] node-apn. https://github.com/argon/node-apn. Accessed: January 16th 2015.

[95] Projects, Applications, and Companies Using Node apn.
https://github.com/argon/node-apn/wiki/Projects,-Applications,-
and-Companies-Using-Node-apn. Accessed: January 16th 2015.

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
http://en.wikipedia.org/wiki/Just-in-time_compilation
https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebView_Ref/
https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebView_Ref/
https://github.com/Telerik-Verified-Plugins/WKWebView
https://www.sqlite.org/
http://en.wikipedia.org/wiki/Comma-separated_values
http://expressjs.com/
http://mozilla.github.io/nunjucks/
http://redis.io/
https://github.com/blog/530-how-we-made-github-fast
http://getbootstrap.com/
http://startbootstrap.com/template-overviews/sb-admin/
http://c3js.org/
https://github.com/masayuki0812/c3/issues/172#issuecomment-41130654
https://github.com/masayuki0812/c3/issues/172#issuecomment-41130654
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/videos/wwdc/2014/
https://github.com/argon/node-apn
https://github.com/argon/node-apn/wiki/Projects,-Applications,-and-Companies-Using-Node-apn
https://github.com/argon/node-apn/wiki/Projects,-Applications,-and-Companies-Using-Node-apn

125

[96] Google Cloud Messaging.
http://developer.android.com/google/gcm/gcm.html. Accessed: January 16th
2015.

[97] node-gcm. https://github.com/ToothlessGear/node-gcm. Accessed: January
16th 2015.

[98] C2DM. https://developers.google.com/android/c2dm/. Accessed: January
16th 2015.

[99] MySQL. http://www.mysql.com/. Accessed: January 14th 2015.

[100] Cron. http://en.wikipedia.org/wiki/Cron. Accessed: April 18th 2015.

[101] node-cron. https://github.com/ncb000gt/node-cron. Accessed: January 16th
2015.

[102] Tesseract. http://marvelcinematicuniverse.wikia.com/wiki/Tesseract.
Accessed: March 28th 2015.

[103] Montoye HJ, Washburn R, Servais S, Ertl A, Webster JG, and Nagle FJ. Estimation of energy
expenditure by a portable accelerometer. Med. Sci. Sports Exerc., 1983.

[104] Schrödingers katt: Fotball.
http://tv.nrk.no/serie/schrodingers-katt/DMPV73000915/09-04-2015.
Accessed: April 16th 2015.

[105] HUR Labs Force Platform (FP4).
http://www.hurlabs.com/tuotteet/hyppytestaus/force-platform-fp4.
Accessed: April 27th 2015.

[106] Big Data. http://en.wikipedia.org/wiki/Big_data. Accessed: April 27th 2015.

[107] Apache Hadoop. http://hadoop.apache.org/. Accessed: May 7th 2015.

[108] Grid Grain. http://www.gridgain.com/. Accessed: May 7th 2015.

[109] High Performance Computing Cluster. http://hpccsystems.com/. Accessed: May 7th
2015.

[110] HealthKit. https://developer.apple.com/videos/wwdc/2014/#203. Accessed:
April 28th 2015.

[111] Bekk øver på IoT-utvikling.
http://www.digi.no/for_utviklere/2015/05/07/bekk-over-pa-iot-
utvikling. Accessed: May 7th 2015.

[112] Stuart J. Cormack, Robert U. Newton, Michael R. McGuigan, and Tim L.A. Doyle. Reliability of
measures obtained during single and repeated countermovement jumps. International Journal of
Sports Physiology and Performance, pages 131–144, 2008.

[113] Fitbit. https://www.fitbit.com/. Accessed: May 2nd 2015.

http://developer.android.com/google/gcm/gcm.html
https://github.com/ToothlessGear/node-gcm
https://developers.google.com/android/c2dm/
http://www.mysql.com/
http://en.wikipedia.org/wiki/Cron
https://github.com/ncb000gt/node-cron
http://marvelcinematicuniverse.wikia.com/wiki/Tesseract
http://tv.nrk.no/serie/schrodingers-katt/DMPV73000915/09-04-2015
http://www.hurlabs.com/tuotteet/hyppytestaus/force-platform-fp4
http://en.wikipedia.org/wiki/Big_data
http://hadoop.apache.org/
http://www.gridgain.com/
http://hpccsystems.com/
https://developer.apple.com/videos/wwdc/2014/#203
http://www.digi.no/for_utviklere/2015/05/07/bekk-over-pa-iot-utvikling
http://www.digi.no/for_utviklere/2015/05/07/bekk-over-pa-iot-utvikling
https://www.fitbit.com/

126

[114] OAuth. http://oauth.net/. Accessed: April 28th 2015.

[115] Baseline (medicine). http://en.wikipedia.org/wiki/Baseline_(medicine).
Accessed April 27th 2015.

[116] Tab-separated values. http://en.wikipedia.org/wiki/Tab-separated_values.
Accessed: May 4th 2015.

[117] Travis Ficklin, Robin Lund, and Megan Schipper. A comparison of jump height, takeoff
velocities, and blocking coverage in the swing and traditional volleyball blocking techniques. J
Sports Sci Med, 2014.

[118] 10.1.10.2 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding).
http://dev.mysql.com/doc/refman/5.0/en/charset-unicode-utf8.html.
Accessed: April 29th 2015.

[119] Potential Energy. http://en.wikipedia.org/wiki/Potential_energy. Accessed:
March 28th 2015.

[120] Kinetic Energy. http://en.wikipedia.org/wiki/Kinetic_energy. Accessed:
March 28th 2015.

[121] Diffie Hellman key exchange.
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange.
Accessed: May 7th 2015.

[122] Security through obscurity.
http://en.wikipedia.org/wiki/Security_through_obscurity. Accessed:
May 9th 2015.

[123] Cordova safe. https://github.com/disusered/cordova-safe. Accessed: May 9th
2015.

[124] Data warehouse. http://en.wikipedia.org/wiki/Data_warehouse. Accessed:
May 9th 2015.

[125] Data warehouse image. http://www.stratebi.com/datawarehouse. Accessed: May
13th 2015.

http://oauth.net/
http://en.wikipedia.org/wiki/Baseline_(medicine)
http://en.wikipedia.org/wiki/Tab-separated_values
http://dev.mysql.com/doc/refman/5.0/en/charset-unicode-utf8.html
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Security_through_obscurity
https://github.com/disusered/cordova-safe
http://en.wikipedia.org/wiki/Data_warehouse
http://www.stratebi.com/datawarehouse

	Introduction
	Background
	Problem Definition
	Limitations
	Research Method
	Main Contributions
	Outline

	Background and related work
	Medical related background / Sport related background
	Athlete Physical Status
	Rating of Perceived Exertion (RPE)
	Wellness
	Injury

	Analysis of RPE

	Participatory Sensing
	Open mHealth
	Ohmage
	District Health Information Software
	MilanLab
	Summary

	Ohmage
	Early ideas
	System design
	Ohmage back-end API
	Authentication
	User roles
	Administrator
	Privileged
	Restricted

	Class roles
	Campaign and surveys
	Ohmage MWF mobile application
	Login page
	User Interface
	Reporting workflow
	Survey queue
	Survey history
	Notifications
	Motivational factor

	Summary

	pmSys-design
	System requirements
	Functional requirements
	Data capture
	Presentation and visualization of data
	System assistance for data quality
	Platform support

	Non-functional requirements
	Availability
	Usability
	Scalability
	Privacy and Security measures
	Performance
	Maintainability

	Architecture
	Configuration
	User creation
	Class roles

	Summary

	The pmSys-App
	Motivation
	Architecture
	Single Page Application
	Model View Controller
	Cordova
	AngularJS
	Routes and states

	Ionic

	Features
	Implementation
	Authentication
	Login
	User categories
	Campaigns and Surveys
	Prompts

	Survey response registration
	Visualization
	Notifications
	Cordova Filesystem
	Offline support
	Bypass functionality on startup of application
	Glossary

	Deployment
	App Store (iOS)
	Google Play (Android)

	Evaluation & Discussion
	Hybrid versus Web versus Native application
	Data storage
	User case: Which application is preferred
	User study 1: Objective users
	User study 2: Subjective users

	Answer rate between Ohmage versus pmSys
	Performance test of Ohmage versus pmSys

	Summary

	pmSys-Trainer
	Motivation
	Features
	Related work: Ohmage front-end
	Architecture
	NodeJS with Express and Nunjucks
	Redis
	Bootstrap

	Implementation
	Session key storage
	Visualization
	Team visualization
	Player visualization

	Push Notification
	Survey responses

	Evaluation & Discussion
	User study: pmSys front-end vs Ohmage front-end
	Client side versus server side processing
	Token storage

	Summary

	pmSys-Push
	Motivation
	Related work: pmSys-push compared to other well-known providers
	Features
	Implementation
	API endpoints
	Apple Push Notification service
	Google Cloud Messaging service
	Token storage
	Cron

	Evaluation & Discussion
	Summary

	Objective data: Integration of third party hardware
	Motivation
	Example devices - for objective data
	Background
	Big data
	Internet of Things
	Countermovement Jumps

	Fitbit
	Features
	Limitations
	Uploading data to pmSys
	Data processing
	Visualization

	HUR Labs Jumping Board
	Features
	Limitations
	Uploading data to pmSys
	Data processing
	Method 1: By cutting data with a hardcoded value after highest value
	Method 2: By using gravitational and kinetic energy calculations

	Visualization

	Evaluation & Discussion
	Difference between objective data in Ohmage versus pmSys

	Summary

	Conclusion
	Summary
	Main Contributions
	Future work
	Ohmage back-end
	Update campaigns
	Validation of hashed password
	Optimalized results

	pmSys-App
	Color highlights of survey list
	Encrypted end-to-end chat between coach and player
	Language localization (i18n)
	Rewamp offline mode by using SQLite
	Security of the mobile application
	Add Windows Phone support

	pmSys-Trainer
	Artificial Intelligence (AI) or Machine Learning
	User mapping
	Open up the web portal for the players

	pmSys-Tesseract
	New visualization layout
	Storage of latest fetched data from Fitbit
	More third party hardware
	Data warehouse

	Accessing the source code
	pmSys-app
	pmSys-trainer
	pmSys-push

	User Surveys
	pmSys vs. Ohmage
	Rating of pmSys

	Surveys in pmSys
	RPE Survey
	Wellness survey
	Injury survey

