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Abstract

Electrocardiogram (ECG) is a simulated recording of heart activity in electrical
signals. It carries essential clinical information in the form of amplitude and timing.
It is used to monitor and analyze the functionality of the cardiovascular system
by doctors in the health care department. The high potential for human error due
to skills, knowledge, and workload stress in manual analyzing ECG can lead to
morbidity and mortality in patients. Therefore, automatic aids are required that can
overcome human errors, eases the load on doctors, and help doctors in the diagnosis
of heart diseases. Artificial intelligence-integrated systems for ECG analysis are
trained on millions of datasets and have seen more ECGs than doctors can see in their
entire careers. Furthermore, it provides results in seconds, and no other factors like
environment, workload stress, etc. affect the accuracy of the results. Therefore, AI-
integrated ECG analysis are more accurate, quick, and reliable than doctors’ manual
analysis. Recently, deep learning-based tools have been the great attention as an aid
to doctors towards accurate analyzing, annotation, and interpretation of ECG data.
In deep learning models, Transformer Networks have become reference models with
superior performance on different natural language processing and vision tasks. In
this work, an evaluation of transformer networks is provided for the analysis of ECG.
For this, two end-to-end deep learning frameworks are implemented for measuring
the relevant intervals and amplitudes from the ECGs. The frameworks incorporated
the transformer network and the multi-layer perceptron to attend to the information
stored in ECG signals and predict the relevant (amplitudes and intervals) values.
However, both frameworks use different variants of the structure of the transformer
to each other.The first framework utilizes the encoder-only structure while the second
utilizes the encoder-decoder structure of the transformer network. To overcome
the problem of privacy issues (collecting and sharing among researchers) in health
care, the implemented framework is evaluated over a realistic synthetic ECG dataset
called DeepFake ECG. According to the training results, the performance of encoder-
only beat the performance of encoder-decoder in ECG analysis. This deep learning
model can aid doctors to perform heart disease diagnosis and improve the health care
system’s efficiency.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are one of the biggest causes of death in the world.
According to World Health Organization (WHO), in 2019, an approximation of 17.9
million people, out of which 70% were under the age of 70, died because of different
CVDs [47]. Cardiac means relating to the heart and vascular means related to blood
vessels, thus, cardiovascular (CV) refers entire system of the heart, veins, and arteries
while CVDs refers to the group of disorders of the heart and blood vessels.

Myocardial Infarction (MI) or heart attack, is also one of the biggest causes of
death and disability of patients globally [41]. It happens for a very short interval
of time to the patient but this small event of heart attack if gone undetected could
cause death to the patient. The cause of heart attack is the presence of a long-
duration of inflammation on the vascular wall. This inflammation refers to another
CV which is called Ischemia. Ischemia is the imbalance between the supply and
demand of oxygen and blood to the heart due to clogged arteries. If early detection
of myocardial ischemia happens then there are significantly low chances of heart
attack. Symptoms of Myocardial infarction usually last for a minimum 20 minutes
and contain various discomfort on the chest, jaw, arm, etc. These symptoms are
sometimes misdiagnosed with other diseases like gastrointestinal, muscular disorder,
etc. or it sometimes happens to patients without any symptoms that made it more
difficult to diagnose. The simplest diagnosis for myocardial infarction is the testing of
heart activity with the help of an electrocardiogram (ECG) recording which provides
the details of the history of past myocardial ischemia and, if hear attack happened in
the near past or is soon to happen to the patient. Therefore, the early diagnosis can be
done with the help of the ECG signal of the patient [41].

ECG is the recording of the electrical activity of the heart of the patient and
is illustrated in the form of a signal. In figure 1.1 an illustration of the ECG signal
with its annotation is provided. Cardiologists interpret the relevant amplitudes,
frequencies, and duration of some waveforms for the diagnosis of CVDs. This
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Figure 1.1: An annotated picture of ECG signal (taken from [15])

process of analyzing ECG signals for interpretation is called ECG analysis [3]. For
example, if the ECG like 1.1 has the high peaked T waves (which is a relevant feature
in ECG signal) before ST-elevation (which is again a relevant feature in ECG signal)
then the interpretations gives the early diagnosis of acute heart attack [50]. The
analysis of such relevant amplitudes, duration, and intervals from ECG is key for
diagnosing CVDs. This task requires a tremendous amount of time and expertise
from cardiologists to explore the ECG signal and find out the relative information
about CVDs from ECG. Mostly, cardiologists end up with errors in reading features
manually which results in failed diagnosis which is risky for patient health. From
the above example of ECG analysis, we can say that how much the amplitude of the
peak of T wave is considered a threat to heart attack and any calculation error might
risk the patient’s health. At this stage when there are chances of error, the computer
science field helps the medical science field by providing aid to doctors with the
research and developments of automatic analyzing systems for ECG analysis. The
automatic analysis measures the relative information and provides it in digitized
and in better interpretable ways. In addition, in recent times, AI researchers are
attracted to aid cardiologists by improving the system by making it more efficient and
intelligent. Several machine-learning modules and recently, majorly deep-learning
modules have been researched and utilized for ECG analysis which is continuously
improving the system efficiency.

The reason behind providing such information about cardiovascular diseases,
its diagnosis using ECG analysis, with the possibility of error by the cardiologist
while reading it, and the development of automatic and efficient tools for ECG
analysis as an aid to the medical sector for its efficiency, is simply carving the ground
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for understanding the motivation behind this thesis work which is provided in next
section.

1.1 Motivation

ECG analysis done by clinicians manually is a traditional method and is widely
used in the health sector. However, the results from such manual analysis are highly
dependent on the clinician’s skills, knowledge, and concentration in stressful work
environments while analyzing, the chances are high for human error and inaccuracy
in ECG analysis. As the accuracy in the analysis of ECG is directly related to the
diagnosis of CVDs and patients’ life, therefore, accurate analysis is required. In
addition, manual ECG analysis consumes a big amount of valuable time for the
clinician to investigate the long-length ECG graph manually and count the big
number of small boxes for measurements which are complicated and requires effort
from the clinician, and again chances for human error are high. Therefore, automatic
ECG analysis is required to shed the workload of the clinicians and provide effortless
and timely analysis of ECG. Furthermore, if this automatic analysis is integrated
with AI algorithms that are trained on a big ECG dataset, then it will work as an
assistant to clinicians and provide more accurate analysis where there will be no
workload stress and time consumption involved from the clinicians. AI-aided ECG
analysis methods are becoming better in performance and popular to use day by day
by clinicians and it has attracted the research community to work on for better AI
algorithm for automatic ECG analysis.

Several famous and well-performed deep-learning modules from different
sub-field of artificial intelligence like convolution neural network (CNN) [27] from
computer vision (CV), recurrent neural network (RNN) [37] from natural language
processing (NLP), etc., are ton-wised researched for ECG analysis [17]. Furthermore,
the mechanism of attention which improved the quality of dependencies of the model
has attracted researcher to include it in above mentioned modules for better results.
There is a network in NLP that solely depends upon its advanced attention called
multi-headed-self-attention and parallel computation of sequence-to-sequence task
has revolutionized the field of NLP and beat the RNN and its advanced modification
with its superior performance, this network is called Transformer network [44]. Soon
after the publication of the transformer network, it is widely been used in almost
every field of AI. Though transformer network has given superior results, still, in
ECG analysis it is comparatively been researched very less than the other modules of
deep learning. Even an article for the collective survey about the transformer network
and its modification for the ECG-related task are not been done by the researchers
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yet. Therefore, the scope of the research for transformer networks for ECG analysis is
quite big and requires a lot of effort from the researchers.

Hence, one of the motivations of this thesis work is to fill the gap in research
and put efforts into researching transformer networks for ECG analysis. Since the
transformer network has provided superior results in other tasks, thus, another
motivation is to research the efficient, intelligent, AI-aided ECG analysis system that
can aid cardiologists with accurate analysis of ECG and reduce the time-cost and
risks of misdiagnosing patients. Finally, the overall motivation of this work is to help
the health sector for increasing its efficiency in providing healthcare necessities to its
users.

1.2 Problem Statement

In recent years, the transformer networks, known for its encoder-decoder structure
with its powerful multi-head self-attention mechanism [44], have widely been used in
almost every domain of computer science due to the superior performance shown by
it. Several different modifications to the structure of transformer networks have been
proposed by the researcher for the designated tasks [9]. For example, it has highly
been researched for its variants in structures like encoder-decoder [26], encoder only
[29], structure for the text generation task of NLP [7]. However, when looking into
the research field of automatic analyzation ECG, the transformer networks have
relatively been less researched, discussed, and debated for its variants in structure
with its powerful multi-head self-attention mechanism on ECG signal for capturing
important features for ECG analysis.

To explore the transformer networks for ECG analysis thorough research is
required where the focus should be done on the variants of the structure of the
transformer networks with its multi-head attention mechanism. Detailed work
is required that can benefit the research community by filling the gap of research
questions in the transformer networks for the task of ECG analysis and providing
the list of potential future objectives. Therefore, this work aims to investigate about
the following research questions:

• Which variant of the structure of transformer networks either encoder-only
structure or encoder-decoder structure, are more effective and efficient in
performing ECG analysis?

• Which factors are important for considering while designing the algorithm for
ECG analysis using different variants of structure the transformer network?
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1.3 Scope

The scope of this research study about the evaluation of using the transformer
networks for ECG analysis is limited to the duration of four months and during this
time, two variants of the structure of transformer networks that is encoder-only and
encoder-decoder-together will be researched for ECG analysis and a maximum of
thirteen thousand data samples from synthetic DeepFake ECG [40] will be used for
evaluation of both variants models. These data samples are uncategorized i.e. dataset
is not categorized into with or without diseases.

1.4 Research Methods

The research study done in this work will follow the paradigm of quantitative
research methods where hypotheses about variants of the structure of the transformer
networks will be formed, followed by the creation of models based on these
hypotheses for ECG analysis. These models will then be examined for their statistical
performance for ECG analysis based on their training on the DeepFake ECG dataset.

1.5 Ethical Considerations

AI-developments started right after the publication of Alan Turing’s article
"Computing Machinery and Intelligence" where he asked the question "Can machine
think?" and proposed a method to find an answer which is called "The Turing Test".
At the same time, started the development of controversies and ethical consideration
complexities about AI’s unpredictable results in almost all fields of science [22]

Ethical considerations for potential benefits from artificial intelligence consists
of questions related to the safety of human being and the moral status of researcher
and artificial intelligence (AI) tools. Medical ethics follow the fundamental ethical
principles for the development and research work involving human subjects which
comprises unharmful, beneficial, respect for autonomy, and justice [22].

Since this project work will come under the umbrella of medical science and
computer science field, Therefore, it is important to consider both scientific research
and medical ethics during the research of the transformer network for ECG analysis.
Some of the ethical considerations for trustworthy research for medical tools that the
participant of this work, and the team of research supervisors showed concern over
and discussed during and even before starting the project are briefly discussed below:

• Privacy, protection and respect
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Information from the human participant should be confidential and protected
from any security breach. Researchers and developers should consider
themselves responsible for keeping the safety of such information about
the research participant [22]. Ethical implications should be done to protect
human dignity from any misuse of products such that they do not interfere
with the fundamental rights and freedom of human beings. The Council of
Europe has expressed the need for proper surveillance and governance over
the developments within biology, medical science, that can protect the dignity,
identity of all human beings and provide respect, freedom and integrity, and
other human rights to everyone. In addition, this governance should also assess
and identify the ethical questions that threaten human dignity and any potential
misuse of the product [2].

• Reliability, fairness, trust, accountability and recoverability

An important consideration for researchers and designers is their collective
responsibility for making the AI tool more user-centric which shall not pose
any danger to its human user. If in case it consists of any possible or potential
threat then the researcher is responsible for publishing the findings rather than
hiding it and the amount of work should be done to rectify it [22]. If AI-tool
or any medical research findings supersede the threat, then this should be the
only way to continue with the product, but in any case sharing of information
about findings is necessary that will generate a bond of trust between the
developer and user. Another important aspect is the only positive intention
for any research/development work and AI tools should not perform any un-
intended jobs for example: storing patient information without their consent.
Furthermore, the medical sector also knows and trusts the researcher for what
the AI tool is intended for [22].

1.6 Main Contributions

The main contributions of this research work consist of following:

• Evaluation of the performance of two end-to-end algorithms for ECG analysis
using the two variants of the structure of the transformer networks i.e. model-A
with encoder-only of transformer network and model-B with encoder-decoder
of the transformer networks. Both models take the single lead ECG data for
analysis.

• Identification of reasons for the difference of components in end-to-end model
for variants of the structure of the transformer network.
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• Identification of gaps of research questions for ECG analysis using transformer
networks.

1.7 Thesis Outline

The rest of this thesis report is organized as follows. In chapter 2, a detailed
literature review is provided which will include the description of ECG analysis
and transformer network architecture. In addition a summarized development
of modifications in transformer network over ECG data is also provided in this
chapter. In chapter 3, a formal description about the collection of information about
ECG-dataset with its pre-processing and techniques used for the components of the
implemented models architecture with its detailed implementation process will be
provided. In chapter 4, results are presented which will be followed by the analytical
discussion in chapter 5. Finally, a conclusive summary about the contributions made
in this project will be provided in chapter 6.
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Chapter 2

Background

The work in this project will start with the research of gathering knowledge about
the topic of Electrocardiogram (ECG) and builds the foundation of it with the
help of previous research work done in this field. A detailed discussion about the
electrocardiograms will be provided, a detailed study of what it is composed of, and
what results the health specialist can provide from it, will be discussed. Building of
concept about the motivation and problem statement of this work where answers
will find out about what automatic ECG analysis is and how is it helping health
care clinicians and what type of relevant research work especially involving artificial
intelligence has been done to improve the performance of automatic analysis of ECG.
This chapter will mainly be divided into three sections. The first section will provide
the background about the project where electrocardiograms, its analysis and available
methods in the deep-learning field for ECG’s automatic analysis will be discussed,
then in second section, a brief introduction about the deep-learning framework "The
Transformer Network" will be provided. The third section will mainly discuss the
relevant research work done for ECG analysis and existing techniques involving the
transformer networks.

2.1 Electrocardiograms (ECG)

The section of background is an important component of this research project and
will provide the fundamental context of this work. It will deliver the overview of the
topic of electrocardiograms and rationale research questions of electrocardiograms’
automatic analysis using deep learning.

ECG is a medical test that records heart activity. It is the most common and
cheapest medical test performed by the health professional to diagnose heart diseases
and monitor the heart condition of the patient [23]. ECG test is done by the placement
of up to 10 ECG electrodes on different positions in between the limbs and chest of
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Figure 2.1: A picture of placement of ECG electrodes on human body (taken
from [43])

the patient and generates 12 leads ECG graph. The process of capturing records are
safe procedure and there is no risk of electric shock from the electrodes as it does
not produce electricity rather it just records the electrical activity. Below a short
description is given about the electrodes, leads of ECG, and what results are arrived
after reading the ECG signals.

• Electrodes of ECG

There is a difference between electrodes and leads. ECG electrode is defined
as a conductor through which the current travels. These electrodes are stickers
with wire connected to the machine which measures the heart activity in the
form of an electrical signal and the system will record it and display it on the
monitor or if nurses need can print it on paper too in the form of signals[10].
The electrodes only sense and pass the current through it to the machine while
the leads are responsible for the representations on the machine in the form of
a graph [23]. Following are the name of the chest electrodes [10]: V1, V2, V3, V4,
V5, and V6 and the following are the limb electrodes: Red (RA), Yellow (LA),
Green (LL) and Black (RL) as shown in figure 2.1 [10].

• Leads of ECG

The 12-lead ECG is looking at the heart from 12 different locations and each
one of them creates a slightly different graph. The first six leads of the ECG are
called limb leads and are placed on the arm and legs and look at the heart from
the right and left frontal planes from top and bottom [10] and are named: lead-
I, lead-I, lead-III, lead-AVr, lead-AVI, and lead-AVf as shown in figure 2.2. The
second six leads are called chest leads due to their placement on the chest of the
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Figure 2.2: A picture of locations of ECG limb leads on human body (taken from
[10])

Figure 2.3: A picture of locations of ECG chest leads on human body (taken
from [10])

patient and look heart from a horizontal plane [10] and are based on positive
electrodes. They are named as V-leads: V1, V2, V3, V4, V5 and V6 and shown in
figure 2.3.

• Results from ECG

Health providers interpret the ECG wave signal and can provide for example
following results or details about the heart.

– Heart rhythm or Heart rate [35] is measured by measuring the pulse
activity of the patient. Without an ECG device, it is difficult to calculate the
irregular and too-fast pulse of the patient by the medical representative.
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Therefore, ECG provides an overview of fast heart rate or slow heart rate.
provides the information about the arrhythmia which is irregular electrical
activities [16]. It can be read by the ECG by an irregular electrical signal.

– Myocardial ischemia [35] or in simple words Heart attack which happen
previously or happening currently can also be determine by ECG by
reading of the unusual previous or current signal waves of ECG.

– Ventricular rate (Vent_rate) is the rate of pumping blood by a ventricle of
the heart which provides details about the Atrial Fibrillation [5] can easily
be interpreted by reading the ECG signal.

– Heart structure which provides the heart position and its details about
relative chamber size and any change to it in size will tell about the defect
present in heart structure and can easily be read because of unusual electric
activity by an ECG machine [35].

– Electrolyte concentrations [35]like blood and oxygen concentration plays
an important role for any healthy heart and any changes to it can cause
heart muscle failure and this also can be detected by ECG.

– Drugs effects [35] also changes the properties of a healthy heart and can be
read through ECG signal.

To land on the above-mentioned results by the cardiologists from ECG, it is
important to understand the ECG signal with its parts and its interpretations.

Interval and Amplitudes in ECG signal

A brief explanation of parts of ECG is provided below [3]:

• P waves interprets the atrial depolarization and in a healthy patient it should
preceding to QRS complex.

• PR intervals is the duration of the start of the wave from P and ends at the
beginning of the Q wave. This interpret as time taken between atria and
ventricles.

• QRS complex represents depolarization of ventricles. It emerges from the three
closely related waves on ECG.

• ST segment represents the time between depolarization and depolarization of
ventricles. It appears at the end of the S wave and ends at beginning of T wave.

• T wave emerges as small wave after the QRS complex and represents
ventricular re-polarization.
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• RR interval is the duration of two peak of R waves.

• QT interval it appears from start of QRS and ends at T wave and represents
time taken for ventricles to depolarize and then re-polarize.

• R-peak Amplitude refers as a the maximum amplitude of R point in QRS
complex.

2.1.1 ECG Analysis

ECG analysis is the process of a detailed examination of the elements of the ECG
signal. During the process the measurement of key elements that the clinician seems
necessary for the diagnosis is done. These key elements from ECG are different
amplitude at different points in the waves, different intervals between the particular
points in ECGs, the shape of the waveform, duration of the different segments of the
ECG wave, and the number of repetitions of the points in ECG.

ECG analysis requires a systematic approach, and for this one simply can
make the procedure by following the approach of clinicians that how they identify
abnormalities in ECG which are crucial for disease diagnosis and which part of the
wave is important for mortality and morbidity of patient.

However, reading the long graphs of ECG signals for the above-mentioned
relevant amplitudes and intervals is a hectic job for clinicians, and mostly ended
up with an inaccurate analysis of ECG. Therefore the automatic analysis is done to
remove the inaccuracy.

2.1.2 Deep-learning models for Electrocardiogram related tasks

Diagnosis of heart disease is a challenging task for doctors. It requires a tremendous
amount of time to explore relative information from the electrocardiogram (ECG)
records of the patients. Numerous cardiovascular diseases are diagnosed with the
help of measuring key intervals and amplitudes which are in the ECG. These are
hard to calculate with the naked eye and require time for that. Therefore, automatic
analysis of ECG data is a hot topic of research in the previous couple of decades. The
traditional and advanced methods are the two types of automatic analysis of ECG. In
the traditional method, two steps are performed where first is to extract the extracted
feature from raw ECG data with the help of the cardiologist, and then machine
learning methods are applied to it to get the automatic results. Due to the human
interaction in expert extraction, traditional methods of ECG analysis consumed a lot
of human time and are still limited in terms of human expertise [17].
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Recently, an advanced method of implementing deep learning over ECG data
has given promising results because it does not require explicit extraction of features
by an expert. This extraction is done by the deep learning algorithm automatically.
Many research studies claim that deep learning models are powerful and flexible
learnable tools with more informative extraction of features than expert extraction.
The work presented by the team of [17] provides a list of multiple deep learning
algorithms with or without desired modifications that are used for the classification,
analysis, and denoising of ECG data or data imbalance challenges. Some of these
deep learning algorithms are described below.

• Convolutional neural network is a widely applied deep learning algorithm
in computer-vision, signal analysis and natural language processing field.
CNN usually is the combinations of convolutions layer followed by batch
normalization layer, nonlinear activation layer,dropout layer and pooling layer.
It extracts the the pattern in data with the help of learn-able filter and kernel
over it. CNNs have achieved good performance and faster computation due
to the ability of parallization [17]. A little amount of pre-processing make it
promising method against expert extraction in task of ECG analysis. Several
algorithm have been proposed by the researcher for ECG analysis and diagnosis
of heart diseases which solely utilizes CNN or have incorporated other deep-
learning or machine learning method along with CNN.

• Recurrent neural network (RNN) is usually used for sequential data based task
like time-series, natural language processing etc. Since ECG is also sequential
and long length data therefore, RNN have been a preferred choice by researcher
for capturing dependencies handling long varied data of ECG. Several RNN
model and its advancement like Long-short term memory (LSTM), GRU have
proposed by scientist where some uses attention module together with it in
order to understand and visualize the attending location of model [17].

• Convolutional-Recurrent neural network (CRNN) is the combination of
CNN and RNN and are used in ECG related tasks. 1-Dimensional CNN or 2-
Dimensional CNN extracts the local feature from the segmented ECG signal.
Then Bidirectional-LSTM (BiLSTM) picks up the global feature for better
performance in classifications [17].

• Another type of deep neural network is auto-encoder (AE) where represent-
ation dimension is reduced by encoder and decoder tries to regenerate data
from representations. Several variants of auto-encoder have been proposed
like denoising auto-encoder(DAE), Sparse auto-encoder (SAE), and Contractive
Auto-encoder (CAE) by researchers and are widely being utilized in denoising
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the ECG signal. As introduced the earlier CNN, RNN, CRNN and BiLSTM are
being used in either solely or in combination in encoder and decoder of these
auto-encoder for better performance [17].

• Generative adversarial network (GAN) a famous framework of deep neural
network where the first part is generative model G which generates the data
similar to the original data distributions from a latent representation while the
second part which is discriminative model D distinguishes between the real and
generative data. IN ECG tasks, GAN are widely used to gear the imbalanced-
data challenge. Data augmentation using GANs are extensively used in ECG
data generation task [17].

Though [17] have listed most of the famous deep learning architectures with
modifications still there were no information provided about the transformer
network architecture with its modifications for ECG tasks. Similarly some of the other
reviews about deep learning modules hardly mention Transformer network or its
modifications used for ECG tasks.

2.2 Transformer Networks

This section of backgrounds will discuss the transformer network for developing the
understanding of the techniques used inside in it.

In 2017, Vaswani et al. [44] presented the Transformer network architecture
based on the self-attention mechanism which attend on dependencies to get the
results. Transformer network takes the sequence as an input and performs parallel
computing therefore it attracted the field of Natural language processing. This
network outperformed sequence to sequence models in natural language processing
like Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM).

• Input Embedding

Simply learned embeddings are done over input and output sequence in order
to convert the token to vectors of dimension dmodel. In [44] case, they put dmodel

= 512. In layers weights are shared between them and in embedding layers
those are multiplied by

√
dmodel .

• Positional Encoding

To benefit from the order of sequence, some of the information about the
position of token in the sequence must be injected to the transformer network.
For this, positional encodings are done over input and output sequence at
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Figure 2.4: Basic architecture of Transformer Network [44]

encoder and decoder stack respectively. [44] opted the learned positional
encoding and using sine and cosine functions of different frequencies.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.1)

• Network Architecture

In natural language processing, transformer generates the output sequence
when given input sequence x= (x1,. . . .xn). This input sequence is the sum of the
embedding of each words in sentence and its positional encoding as shown in
the figure 2.4.

The transformer block is basically a encoder-decoder network where encoder
maps the input sequence to the sequence of continuous representations z=
(z1,.....,zn). Given z, decoder then generate the output sequence y =(y1,. . . ,yn)
auto-regressively and one at a time as shown in figure 2.5.

This encoder decoder is further divided into several identical number layers
where the output of one layer is taken as input for the forthcoming layer. Figure
2.6 shows the layer architecture of the transformer model. For the ease of
understanding, the further details of the architecture within the encoder and
decoder will be discussed separately.

– Encoder: The encoder is made up of several numbers of identical layers
and each layer is further divided into two sub-layer which is multi-head
self-attention system and fully connected feed-forward network. There is a
residual connection around each sub layer which is added to the output of
that sub-layer and then layer normalize before passing it to next step. Each
sub-layer produces outputs into the same dimension (d_model) as of the
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Figure 2.5: Transformer networks with Input, output and Attention sequence
[44]

Figure 2.6: Transformer Network with Encoder and Decoder layers [44]

embedding and positional encoding. Dimension of the network, number of
heads of the self-attention and the dimension of the feed forward network
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is all tune-able and depends upon the requirements of the project.

– Decoder: Similar to the encoder, decoder also have stack of identical layers,
with difference of three sub-layer in each layer. The additional third-sub-
layer is placed between the multi-head self-attention sub-layer and feed
forward sub-layer. This layer does the multi-head attention over the output
of the encoder. Like encoder it also has residual connections to which the
layer normalization is applied. A slight modification is applied to the self-
attention sub-layer in decoder where masks are applied on position and
subsequent position so that the system prevents the position for attending
and made the prediction system depends only on the known output before
it.

– Attention:

Attention mechanism is most valued part of the transformer architecture
which draws the global dependencies between input and output.

* Scaled Dot-Product Attention:
There are two most common attention functions in attention family.
First is called additive function and second is called dot-product
(dot mean multiplicative) attention. Dot-product is faster and more
efficient than additive because it is using highly optimized matrix
multiplication code. Vaswani et al. [44] suspect that if the large values
of dk, dot-product grows largely in magnitude and pushing softmax
function to extremely small gradients. Therefore,the work in [44]
include the dot-product with modification of adding scaling factor
to it by multiplying it with (1/

√
dk) and called "Scaled Dot-Product

Attention" as shown in figure 2.7.
Dot-product computation done on query with all keys with dimension
of dk and dv. Here k, v are values and keys. Then divide each by

√
dk,

and apply softmax function over it to obtain weight on values [44]. The
output can be computed as shown in 2.2.

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V (2.2)

* Multi-head Attention: The number of head time application of
attention function is beneficial than performing only single attention
function to keys, values and queries. Therefore a multi-head attention
is designed to allow model jointly attend on information from different
representation at different positions. These are concatenated and
projected which resulting in final values. This can be calculated as
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Figure 2.7: Structure of Scaled dot-Product Attention [44]

shown in 2.3 and illustrated in figure 2.8.

MultiHead(Q,K,V) = Concat(head1, .., headh)Wo

where head1 = Attention(QWi
Q, KWi

K, VWi
V)

(2.3)

2.3 Related work

This section will provide the information of existing methods for ECG analysis which
develop the understanding of the research questions.

2.3.1 ECG analysis task using CNN

In this section we will understand the existing techniques of ECG analysis using
CNN. the rest of the paper using transformer networks discuss in this work are used
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Figure 2.8: Structure of Multi-head Attention [44]

for classification techniques, therefore, this work is included in order to understand
the task of ECG analysis.

Explaining deep neural networks for knowledge discovery in electrocardiogram
analysis [15]

This work presented a residual convolution neural network-based regression study,
which can quantify relevant interval (time dimension) and amplitudes (voltage
dimension) from the ECG more accurately than doctors. The CNN predictions
outperformed the cardiologist by the huge margin.

The model architecture consists of the blocks of convolution layer, batch
normalization, ReLU activation. The ECGs are passed through these blocks to get
the features and then passed through the average pooling layer. The obtained pooled
features are then passed through the eight residual blocks which are composed of
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two sequential blocks of convolution, batch normalization and ReLU activation. The
features set from the last residual block are then average pooled to get the predictions
of intervals and amplitudes. The prediction from the model includes PR intervals,
QRS duration, heart rate, QT interval etc.

The model is trained and evaluated on either 10s raw 12-lead ECGs or 12SL-
generated median beat from GESUS dataset [21] . The used the uncategorized dataset
i.e. not divided into normal and abnormal groups. The metric used for evaluation
are mean absolute error (MAE) which is easily interpretable, and root-mean-squared
error (RMSE) as it is more sensitive to outliers. Along with the residual CNN model
their novel finding includes visualization of the attention map of the model and
classification of sex of the patient. They incorporate GradCAM approach [38] to
model to visualize the features of ECG that are responsible for that prediction. This
will make the model not only resulting reliable prediction but also explainable. For
classification of sex task, their model visualized the QRS complex as a responsible
feature.

The learning point from their study is that they used the un-categorized data-
set. This is because since the model is predicting intervals and amplitudes present
in ECGs so there is no need of data-set which are categorized into normal and
abnormal groups. This also results in better interpretations of the result rather than
limiting it to a set of categorized. Another knowledgeable fact from their study is
that they also tested the model with an abnormal ECGs consist of the abnormal
values of amplitudes and interval. This will make sure that the model is not only
predicting average but calculating the relevant interval and amplitude either normal
or abnormal present in the ECGs.

2.3.2 ECG tasks using Transformer Network

Recently, researchers of other fields are also attracted to use the transformer network
due to its superior performance, in their respective field of research. Among the
advantages of transformer, its ability to attend on long range sequence is especially
attractive to time-series modeling tasks [46]. Several modifications have been made
in the transformer network by the researcher in order to answer the challenges of
time-series analysis. Since ECG’s task also comes in time-series modeling domain,
several modified transformer network models have been proposed by the researcher
for this task. Though majority of them are classification task for diagnosing diseases
a very little amount of work has been done for predicting the relevant intervals and
amplitudes from the ECG. This section of the chapter will review some of the relevant
transformer-based models which are used for ECG modeling task.
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A WIDE and DEEP Transformer Neural Network for 12-lead ECG Classification
[30]

Their work includes handcrafted and automated feature extractions using
ECG segmented data in order to perform classification of heart diseases . They
named handcrafted features as WIDE and automated feature extraction as
DEEP Transformer Neural Network. For DEEP extraction, firstly they created an
embedding network that extracts ECG information from single lead ECG waveform
segment. Then, they placed the encoder stack to which the embedded filter is feed
as an input sequence. This encoder output the attention tensor which then feed
to the multi-label classification head. Their embedding network is set of series
of convolution layers applied to ECG waveform, in order to extract latent space
representation from the signal. These representation are then summed up with the
positional encodings. The summed result is then feed up to the encoder module of
their model.

For the backbone of our models, a similar approach is acquired for extracting
the embedded features from single lead, 10-second length ECG waveform. One of
our models utilizes only the technique of using only encoder like them which output
embedded attentions. As our objective is to perform the prediction of the relevant
intervals and amplitude [VentRAte, QT-interval, QRS duration, R-peak amplitude]. It
is important to work on the fact that is encoder output enough for predictions? and
why a decoder is needed if we are getting the good results from encoder?

A tutorial blog [14] has also followed similar method [30] and implemented its
work in PyTorch framework where deep method was utilized with only one feature
of WIDE method . Their work was helpful in understanding the implementing
techniques of PyTorch.

Gated Transformer Networks for Multivariate Time Series Classification [28]

Their work presented the gating techniques over the standard transformer network
for multivariate time series classification problems including ECG classification. They
named their model as Gated Transformer Networks. The gating technique merges the
features extracted from the special designed two towers framework of the encoder of
the transformer network. Their method is to capture the key information in the both
step-wise (temporal) and channel-wise (spatial) co-relations in time-series research.

In embedding of time-series data they applied fully connected layer with non-
linear activation tanh then positional encoding is added to it to encode the temporal
information. Simple transpose the channel and time axis as time series is fed to each
encoder.

In step-wise encoder, they encode temporal features using the self-attention
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with mask to attend on each point in all the channel by calculating the pair-wise
attention weights among the time steps. The attention matrix is formulating on all
time steps by the multi-head self-attention layer module called scaled dot-product
attention. The rest of the mechanism of feed-forward, residual connection and layer
normalization are similar as of the standard transformer.

The channel-wise encoder computes the attention among the different channel
across all the time steps. They only include the positional encoding in step-wise
encoder as there is no relative co-relation between the order of channel and the time
series. Attention layers on all channels, capture the correlation among the channels
across all time steps.

A gating mechanism that learns the weight of each tower is applied to the
output of the two-tower transformer encoder. This is the fully connected layer with
non-linear activation then concatenated followed by the linear projection to get
another layer which is then applied with softmax function to get the gated weights
for encoders. Each gating weight is attending on the respective encoder’s output and
packed as the final vector.

Constrained transformer network for ECG signal processing and arrhythmia
classification [11]

This work presented an end-to-end framework for ECG signal processing and
arrhythmia classification, which is based on convolutional neural network (CNN)
where a transformer network is embedded to CNN in order to capture the temporal
information of ECG signals. A new link constraint is introduced by them to the loss
function to enhance the classification ability of the embedding vector.

A record of 12-leads ECG is divided into equal-length segments of ECG signal
according to the window function size and step size provided in pre-processing
phase. This 12-lead data is then feed to CNN with seven layers of convolution, each
with different kernel size, convolution filter, batch normalization layer, active layer,
and pooling layer to capture features with temporal information. These features are
then sent to the transformer layer where they have used only the standard encoder
architecture of the transformer with embedded size of the encoder is limited 256 and
feed forward dimension to 1024. The embedded output from the transformer layers
are then feed to the classification layers for multi-classification. This layer consists
of linear layers and activation layers, which output probability of heart disease in
patient.
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A transformer based deep neural network for arrhythmia detection using
continuous ECG signals [19]

Their work present a model for arrhythmia detection in ECG signals. Their model
incorporated not only the encoder of the transformer but also the decoder. They tried
ECG data on a modified DETR framework which is an end-to-end object detection
framework based on the transformer. DETR [9] is famous modification of transformer
network in computer vision community.

They proposed the CNN backbone which extracted the temporal features
of the ECG signal where they have utilized customized inverted residual block
proposed in MobileNetV2 [36] and Squeeze-and-Excitation module [18] in their CNN
based backbone. These features are feed to the slight modified transformer where
modification is done on the input to the decoder. Since in ECG there is no target
sequence known therefore they fed Object Queries to the decoder is the positional
encoded embedding of number of queries. the output from decoder contains the the
number of queries object embedding. These are then forward to predictions heads
which are the feed forward networks (FFNs) which results in classifying the heart
beats in the ECG.

2.4 Summary

To summarize this chapter, a fundamental understanding of ECG is provided. A brief
discussion about ECG analysis is delivered where the importance of accuracy in the
analysis is mentioned and a discussion was done about how clinicians ended up
with an error reading the ECG signaland talk about the significance of AI-aided ECG
analysis was made. Furthermore, a detailed discussion about the superior results of
the transformer networks is provided with information on its components. Lately,
this chapter mentioned the related existing techniques which help in developing the
models for analysis.
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Chapter 3

Methodology

This chapter will describe the developments made in the project systematically to
evaluate the usage of the Transformer network over the ECG dataset. First of all,
a detailed description of the dataset used for evaluating the proposed methods of
the project is provided and it is then followed by a detailed analysis of selected
methods that are used in the creation of the architecture of the proposed models to
extract information from the ECG dataset. Later, the documented development of the
experimental setup and tools used for setting it up will describe which will help other
researchers to reproduce and double-check the results. The code for reproducing the
results are available at GitHub repository [13].

3.1 Dataset

In medical sciences, the production of good quality ECG data-set has grown
increasingly and will continue to grow in the future. Since a couple of variables
in the ECG data set stored the individual information of the patient. Even after
anonymizing and de-sensitized it, a couple of private information can be taken out
from the data set with the combination of multiple variables [40]. Therefore, due to
privacy issues like General Data Protection Regulation (GDPR) in European Union
(EU), the open-access availability and sharing of this good quality data set among
the researchers is still a considerable problem. Synthetic data which carries similar
information to real data, is the answer to the problem of privacy issues specially
in the medical world where consent from the patients limited the availability of
information. In this work, the ECG signals used for training and evaluating the
proposed models are acquired from DeepFake electrocardiograms [40]. DeepFake
ECGs are 10-second long, 12-lead ECGs that are created using generative adversarial
networks (GANs). The developers trained the GANs with 7,233 real normal ECGs
and produced 150,000 synthetic ECGs, out of which 121977 (81.3%) are classified
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Variables Unit Real-normal DeepFake-normal DeepFake-all
Heart Rate BPM 70 70 70

QT Interval ms 105 117 118

QRS Duration ms 90 92 93

R Peak amplitude µV 1287 1275 1273

Table 3.1: The standard ECG parameters (mean) in real and fake ECGs.
\textit{BPM} beats per minute.∼\cite{ecg-pulse2pulse}

Figure 3.1: A sample from DeepFake ECG dataset (taken from [40])

as normal ECGs by commercial ECG interpretation program (MUSE 12SL, GE
Healthcare). Amplitudes and intervals in synthetic ECGs were similar to the real
ECGs. Despite the fact of being trained on real ECGs, DeepFake ECGs are not
containing any data which are linked to the individuals and are therefore available
for open access with its ground truth [12]. Table 3.1 shows the properties of DeepFake
ECGs in comparison with the real ECGs which are used for its training. A sample of
12-lead ECG signal from the DeepFake dataset is shown in figure 3.1.

• Data pre-processing

The proposed models of this work take the raw single lead ECG signal as an
input to the model. For this purpose extraction of a single lead ECG signal
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and ground truth for ventricular rate, QRS duration, QT interval, and R peak
amplitude from the dataset is done in the data pre-processing step. In this
work for the sake of the evaluation of models, only Lead-I from DeepFake
are used for training and validation purposes. In the Python program, a
function is generated for this extraction of lead-I and ground truths and also its
transformation to tensor done to data because the deep learning framework this
work follows is PyTorch (discussed later in this chapter), then both extracted
lead data and respective ground truth are send to the data-loader of the training
program where it splits into training and validation batches and load for
training and validation program.

3.2 Proposed Model

Before presenting the model or discussing the methodology used for creating it, it is
important to look again at the motivation and problem statement which will make
it easy to understand the reasons to use the presented methods in the project. The
main problem to be solved in this work can be mapped out as follows: Given 12-lead
synthetic all normal ECG signal data, a single lead is extracted and passed through
the model which incorporates the transformer network for learning the prediction of
relevant intervals and amplitudes in ECG signal called ECG analysis.

This work proposed two end-to-end ECG analysis models and named them
as Model-A and Model-B. Both models have three components in their end-to-end
structure. First component is common in both models and called backbone which
is processing the raw one lead ECG signal and output the embedded positional
encoded sequence of ECG. Second component is slight different in both model,
Model-A is using transformer encoder and self attention pooling while Model-B is
using full transformer which means both encoder and decoder is used in it. Third
component is also shared by the both models and called feed-forward predictor head.
The simple overview of end-to-end structure is shown in figure 3.2. This section
now first provide the detailed explanation of the shared components with their
mechanism which is backbone and feed-forward predictor head. Later in this section
Model-A’s and Model-B’s second component which is transformer networks part will
be elaborate in detail with structure figure.

3.2.1 Backbone

After developing the concepts of transformer network in chapter 2, it is now known
that input to the encoder of the transformer should be an embedded sequence with
its positional encoding to obtain the full temporal features of self-attention from
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Figure 3.2: Overall structure of proposed end-to-end models for ECG analysis

the given sequence. In this work, the process of performing embedding of the ECG
sequence and positional encoding of it will be known as a backbone to the model,
which will provide the embedded- positional-encoded sequence to the transformer
part of the model. Below is a detailed explanation of the methods which are used in
the backbone:

• Convolutional Neural Network (CNN) Embedding

In standard Transformer paper [44], input to the encoder is a word sequence
where word embedding is done to it to get each word representation in the
number form, so the further process of the transformer networks can be done.
Since this work is applying transformer network on a synthetic DeepFake
ECG sequence which is the digital representation of the electric activity of 10-
seconds and is in the form of the number, i.e, it is a sequence of 5000 points
represented in numbers, this work will apply the series of one-dimensional
convolutions (1D-Convolutions) over ECG sequence to capture the latent
space representation of the sequence. Results of 1D-convolutions methods
are similar to word embedding where a scalar representation of a word about
the other words in the form of sequence is created. The same goes here in
1D convolutions where different filters with kernel sizes are applied to the
ECG sequence which does the element-wise multiplication then sums the
results and gives the scalar results as the embedding sequence. It is also
worth noting that the required output should be in the same dimension as the
embedding dimension of the transformer networks, therefore, the last of the
convolution layers the out-put channels are set to be similar to the embedding
dimensions of the transformer (d_model in this work). Hence, performing the
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Conv.Layer Input size Output size Kernel size Stride Padding
1 1 128 3 1 0

2 128 d_model 3 1 1

3 d_model d_model 3 1 0

4 d_model d_model 3 1 0

Table 3.2: Convolutional layer configurations. d_model is the embedding
dimension of the transformer network. In this work, it is set to 64

one-dimensional convolution which element-wise multiplication and summing
of result is a possible way of doing the embedding of ECG sequence.

In this work, the embedding of sequence in the backbone is inspired from [14]
and it consists of a stack of four one-dimensional convolution layers (1D-CNN).
The configurations for the convolutional layers used in this work are listed in
table 3.2 where the number of kernel size, strides, and padding for each layer is
defined. Each convolutional layer is followed by the rectified linear unit (ReLU)
activation function which will output the input if it is positive. The last two
layers of the convolution neural network contain a max-pooling layer after
ReLU which does the pooling operation where maximum values are calculated
from the feature matrix. The stacked layers of the convolution neural network
for the embedding of the ECG sequence are shown in figure 3.3.

• Positional Encoding:

According to [44], to make the use of order of sequence, it is required in the
transformer network to introduce the information of the relative and absolute
position of the embedding of the ECG sequence. Without the positional
information, it will be difficult for the attention of the model to understand
the order and might mix the semantics of the sequence which will result in bad
performance of the model [24]. There are two places where positional encoding
is required in Model-B where a full transformer with encoder and decoder is
used. Since the procedure is similar to decoder input, therefore, this backbone
section will only discuss the positional encoding on the embedded sequence
to the encoder of the transformer. The positional encoding mechanism will
have a similar embedding dimension as of transformer (d_model) so element-
wise addition will be done between embedded sequence positional encoding to
get the final positional-encoded-embedded-sequence which will be fed to the
transformer. Instead of element-wise addition, concatenation can also be done
to this but according to [44], they opted element-wise addition method because
it benefits the computation with less requirement of memory and training time
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Figure 3.3: Convolutional layer Architecture

and does not require any further hyper-parameter. The element-wise addition
of embedded ECG sequence and positional encoding is illustrated in figure 3.4.

Methods to encode the positions of sequence uses sine and cosine functions as
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Figure 3.4: Positional encoding: element-wise addition illustration.

shown in equation 2.1 in chapter 2. For ease of understanding let’s assume we
have 20 points in the sequence instead of 5000 and the embedding dimension
(d_model) is 64 then according to equation 2.1 each position is an integer
from 0 to a max-sequence length minus 1 i.e., 0 to 19 with alternative sine and
cosine values will end close to 0 and 1. The author of blog [1] has shown the
visualization of positional encoding which make these functions more easily
interpretable. For the example of 20 sequence length and 64 d_model, figure 3.5
visualizes the positional encoding of the example. Y-axis shows the sequence
of each point whereas the X-axis shows the embedding and colors from dark to
light (-1 to 1) are values of the positions of embedding. The positional encoder
takes the input after a series of convolutions in the shape of [embedded-
sequence, Batch_size, embedding-dimension] and outputs the sequence in the
same shape of [embedded-sequence, Batch_size, embedding-dimension]. This
output is now ready to feed into the second component of the end-to-end model
which is the transformer networks but the detailed description of it will come
with the description of the respective model later.

3.2.2 Feed-forward Prediction Head

The output from transformer networks either decoder or encoder is passed through
the prediction head which consists of a feed-forward multi-layer perceptron (MLP).
Multi-layer perceptron is a neural network consisting of a minimum of one hidden
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Figure 3.5: Positional encoding example illustration with sequence length 20
and embedding dimensions 64

layer. MLP is considered flexible and is designed to learn representations from
inputs. The neural network is often used for prediction tasks. In this work, it is also
the requirement to predict the relevant properties of ECG from the attention sequence
obtained from the transformer networks. Therefore A feed-forward MLP is used for
this task. The prediction head MLP in this work, consists of eight linear layers each
followed by the ReLU activation function, and the final layer is predicting a value for
which the model is trained.

3.2.3 Model A-Transformer-Encoder-only

The proposed model-A is an end-to-end model which is using the first component
as the backbone then the second component which uses a transformer network
variant of encoder only and self-attention pooling mechanism, later it uses the third
component where this model predicted the value for the relevant trained interval or
amplitudes from ECG. The usage of only the encoder of the transformer is inspired
from [14], [11], [30]. It is also important to find out whether the output of the encoder
which is temporal attention of sequence is either good enough for prediction or not.
The overall architecture of Model-A using only the encoder of the transformer in the
second component is shown in figure 3.6. The detailed explanation of the mechanism
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used in transformer encoder and self-pooling attention is described below:

Figure 3.6: Overall Architecture of model-A with Transformer-Encoder-only.

• Transformer Encoder

Embedded-encoded input with shape [embedded-sequence, batch_size,
embedding-dimension] from the backbone enters the encoder of the trans-
former, where we have layers of the encoder, the concepts of layers within the
encoder is already developed in chapter 2. Each layer of the encoder consists of
two sub-layers of mechanism which are self-attention and feed-forward neural
network. Self-attention looks into each point/token in sequence and allows it
to relate with other points in the input sequence and create an understanding
of other relevant points/tokens for the one to which it is currently under atten-
tion [1]. The first step of self-attention calculation will be the creation of three
abstract vectors from each token in the embedded input which are called Query,
Key, and Values with an embedding dimension of 64. These are created by mul-
tiplying the input token with initialized weight matrix which is later learned
by the model during training. In the second step, the score is calculated for the
considered token for itself and against all tokens in the sequence. This is done
by the dot product of the query vector of this token with the key vector of itself
and all the tokens in the sequence. By doing this it will end up creating the score
for the token itself and relative scores for the other tokens in sequence. The third
step will be dividing each score of the token with the square root of the embed-
ding dimension of the key vector. Fourth step will be to apply the softmax func-
tion over it which will normalize it and explain how much each token expresses
relation for that particular token in consideration. The fifth step will be to mul-
tiply the Value matrix of each token with each softmax score and then sum it
up to get the attention matrix which has the little-bit relative information from
all the tokens for the token in consideration [1]. The steps taken from first to
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fifth are done to each token of the sequence provided to the encoder layer. Also,
these steps are detailed explanations of equation 2.2 which is described in the
scaled-dot-product section in chapter 2.

The author of [44] used the multiple self-attention layer by using multi-headed
attention. The number of heads depends upon the requirement for the model
and in this work, a total four number of heads are used after the inspiration of
[14] work, to minimize the computational effort. This multi-head made refined
the self-attention and give broad reference for every token relation and by this
way we have not only one but four multiple randomly initialized weighted
attentions and give different representation subspace i.e., four attention
matrices [1]. Before sending these attention matrices to feed-forward neural
networks, first, concatenate them together and multiply them with initialized
weight which is then learned during training.

The second sub-layer of the encoder layer is position wise feed-forward
Network where a fully connected feed-forward network consists of two linear
transformations with different parameters between layers and ReLU activation
in between is applied to each position of the token [44]. The dimension of the
feed-forward layer is set to 512 for this project.

The residual i.e., skip connections is around each sub-layer of the encoder layer
which is then added with respective sub-layer output matrices, and then layer-
normalization is applied to it. These residual connections are the ones that make
the positional encoding alive til the last of the mechanism in the transformer.
Only the first layer of the encoder requires the positional encoded embedded
sequence, the rest of the layers of the encoder (4 in this work, discussed later
next chapter ) just take the output of the previous encoder layer as input.
Finally, the output from the last layer of the encoder is the matrix of attention
which contains temporal features of the ECG sequence and is ready to be
entered into the next mechanism of the mode. The structure of the transformer
encoder used in Model A is shown in figure 3.7.

• Self attention Pooling

The output of the transformer encoder module is attention weights with shape
[Sequence, Batch_size, Embedding]. A transformation is done to this shape
before feeding it to the feed-forward prediction head. The transformation is a
pooling mechanism that pooled out the attention from the tensor and makes it
compatible with the prediction head. The author of [14] experimented with the
two methods for this purpose, first is to take the average of the attention tensor
and the second is to use the self-attention pooling layer over the attention tensor
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Figure 3.7: Architecture of encoder used for model-A.

and resulting in using the second method of self-attention pooling layer because
it showed the better result than the average of tensor.

Self-attention pooling layer for encoder output was proposed for the research
work of speaker recognition [34] but can be utilized in other cases. This layer
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uses an additive attention mechanism that calculates compatibility using the
feed-forward network with a single hidden layer. This self-attention is a dot-
product where keys and values correspond same representation and the only
query is need to be learned and trainable parameters. Therefore self-attention-
pooling is a weighted average of the encoder sequence of features. This can be
calculated by the equation shown in 3.1.

C = so f tmax(WcHT)H (3.1)

Based on the research work of the team of [14], this work will also utilize the
self-attention pooling layer to the output of the encoder of the transformer
networks. The tensor of attention weighted sequence after self-attention-
pooling is compatible with the next model of the end-to-end model which is
the feed-forward predictor head and helps the model to learn better.

3.2.4 Model B-Transformer Encoder-Decoder

The standard transformer decoder [44] in the natural-language process is fed with
the two inputs. The first input to the decoder is the target sequence with positional
encoding to the first layer of the decoder. Since this project is dealing with ECG
sequence and the goal is not to generate the target sequence nor target sequence
is available in the ECG task. Therefore, an auto-regressive standard transformer
decoder is not required for this project. Instead, a parallel computation of the
target sequence should be done. Keep in the notice that no target sequence is either
available therefore a technique is borrowed from detection transformer (DETR) [8]
where the object-queries are created instead of the target sequence. It is the tensor
of the object which is under consideration for prediction with a similar embedding
dimension as of transformer. Embedding and positional encoding are done to it by
passing it again to the backbone module of the proposed mode. So, in this model two
times backbone is used, first for the ECG sequence’s embedding and then for object
queries’ embedding. The second input is from the final output of the last layer of
the encoder stack. The set of abstract Key and Values vectors from it. These abstract
vectors are then fed as the first input to the decoder. The basic end-to-end structure of
model-B is shown in figure 3.8.

• Transformer Encoder-Decoder

The decoder is also the stack of several decoding layers as discussed in chapter
2.In this project, the number of layers is set to four. Each layer has three sub-
layer where the first and third are the same as of the encoder i.e., the self-
attention layer and feed-forward layer, while the second sub-layer is multi-head
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Figure 3.8: Overall Architecture of model-b with Transformer-Encoder-Decoder
structure.

cross attention which takes the outputs of Key and values of the final encoder
and from the previous decoding sub-layer of self-attention.

The first sub-layer of the first decoder layer performs the multi-headed scaled
dot-product attention to embedded positional encoded object queries. The same
five steps are done for the calculation of attention scores for each head and then
concatenating each head score and multiplying with initialized weight to send it
to the later sub-layer of the decoder layer.

The second sub-layer Multi-head cross attention is doing the same process that
the multi-head attention layer is doing the only difference is that the inputs to
it are from two different places. It takes the abstract Key and value matrix from
the encoder output while the query matrix is from the previous attention sub-
layer. Then it does the same procedure of calculating dot-product attention and
sends further ahead for the feed-forward sub-layer.

The third sub-layer is the position-wise feed-forward layer which has the same
mechanism and does the linear transformations to attention as described in the
encoder of the model-A. Similarly, each sub-layer output is added with residual
connection, and then applied layer normalization is over it to make the output
ready for the next layer of the decoder. The rest of the three decoders do the
same mechanism and finally output the attention weights of the ECG sequence.
Another thing to notice is that the decoder always outputs the same shape as
the object queries. Therefore self-attention pooling is not implemented this
time and the output of the decoder is directly sent to the predictor module. The
architecture of the decoder used in model-B is shown in figure 3.9.
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Figure 3.9: Architecture of decoder used in model-B.

3.3 Implementation details

This section of the chapter will describe the details of the implementation phase of
the project which include the description of the tools used in the implementation of
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methods and schemes for building, training, and validating the models.

3.3.1 Tools

This sub-section of the chapter will describe some of the tools used in the project
during the implementation phase.

Deep-learning framework PyTorch

PyTorch is an open-source deep learning framework available with a Python interface
and is known for its flexibility and simplicity. It provides excellent support for GPUs
which makes it a popular choice for experimentation and building deep learning
algorithms. This work used the PyTorch framework for building and experimenting
with the models for ECG analysis. Some of the key benefits of using PyTorch are
listed below [31]:

• Availability of large collection of built-in libraries.

• Excellent documentation of methods.

• Big, vibrant, and supportive community for discussion.

Colab

Colab is a cloud-hosted notebook from Google. It does not require installing or
upgrade of your computer to meet the requirements of computational load for
the training of AI algorithms [45]. In the early phase of training, only Colab was
used for the training of models for different parameters of ECG, where a limited
number of data units were available free of cost. Since this work requires an extensive
computational load for multiple pieces of training, therefore, a monthly paid service
of Colab-pro was used in the later phase of the project, where quite a few data units
are available for monthly use.

GitHub

GitHub is a cloud-based service where developers can collaborate, show, store, and
manage their codes for their projects in the form of repositories. This work also used
GitHub as their collaborative platform for the development of the code for the project
among the participant and supervisors.
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3.3.2 Building, Training, and Validation Schemes for models

A Python code in the PyTorch framework is created where both training and
validation loss is calculated in each epoch. First the parameters for training like
the number of epochs, learning rate, batch size, and optimizer type for computing
gradients of training were defined. Then the scheme for learning rate scheduler,
early stopping, and saving the checkpoints were put in place. The data for training
called for splitting from the pre-processing unit. Finally, iteration started for training
and validation where the model is fed with the batches of data for ECG analysis and
evaluation using loss-function. Following is a detailed description of the parts of the
training and validation code with its components.

• Loss function

The fundamental goal of every deep-learning algorithm is to improve the
learning of the model. The learning process of the regression prediction task
is inspected by using the loss function on the learning of the model. The goal
is to lessen the loss between the target value and the predicted value. There
are several metrics for loss function but in this work, the mean-squared error
is used as the primary metric for the evaluation of the model training. During
the phase of training, there was the need for better interpretation of model
loss, therefore, mean absolute error was also calculated to easily understand
the model training [20] but the loss function used for training was still mean
squared error due to its maximum penalty for mistakes. In this work, the
PyTorch library for measuring the mean square error and mean absolute error
is used.

– Mean Squared Error (MSE)

L2 loss is known as squared error which is a difference between predictions
and target values as shown in equation 3.2. While the cost function of
squared error is called Mean square error as shown in equation 3.3. The
majority of researcher prefers to mean squared error when it comes to the
regression task, because of the squared penalty which is given more weight
to the outliers and creates a smooth gradient for minor errors [20]. the MSE
loss increases exponentially if models do mistakes in learning.

L2 = (ytarget − ypredicted)
2 (3.2)

MSE =
1
N

N

∑
i=1

(yi − yî)
2 (3.3)
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– Mean Absolute Error (MAE)

L1 loss is known as absolute error which is the difference between
predicted and targeted values as shown in equation 3.4. while the cost
function of absolute error is called mean absolute error as shown in
equation 3.5. MAE loss is simple to compute and robust and simple to
interpret [20] because outliers may not strictly follow Gaussian [32].

L1 =
∣∣ytarget − yprediction

∣∣ (3.4)

MAE =
1
N

N

∑
i=1

|yi − yî| (3.5)

• Learning rate scheduler

Learning rate is an optimization parameter and in this work, a scheme to tune
it was used during the training of the model. If there is no improvement in loss
for eight continuous epochs then a function for shrinking the learning rate to a
specified factor is called during the training.

• Optimizer The job of the optimizer is to adjust and update the weight in the
algorithm. it tries to adjust the parameters so that the model gets closer to
minima. In other words, it is a process of finding the optimal parameters for
minimum loss from the model. In this work, Adam [4] and AdanW [52] is
experimented with as optimizer for model training. These are used from the
PyTorch library in training code. There are several parameters like weights,
learning rate, etc. that this PyTorch library of optimizer, tune automatically for
the model training.

• Early stopping

Similarly, When there are continuous twenty-five epochs where there is no
improvement in loss then a scheme for early stopping triggers and stops the
training program. Early stopping is a form of regularization, to save the model
to move into the overfitting zone. A simple if-else condition of Python is used to
implement the early stopping in the training program.

• Saving checkpoint

During the training program if the epoch reaches the best loss it calls a function
to save this checkpoint and names it Best-Checkpoint, where the optimizer
setting is saved in a file so that it can be loaded again for the ECG analysis. If
another best loss is obtained in later epochs then this file is changed with the
new optimizer setting of the new epoch of best loss.
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• Model Implementation

For building the structure of models PyTorch framework was used. Where in
the __init__() method, components were defined in the form of layers, whereas
computations were done in the forward() methods. The implementations of
components of the models are discussed below.

– Back bone

The backbone comprises CNN and positional encoding components. These
were defined in the __init__() method of the model.

* Convolutional layers
1D convolution, ReLU activation, and 1D-max-pooling were done in
the input sequence of ECG signal using the PyTorch library for 1D-
convolution, activation functions, and 1D-max-pooling.

* Positional Encoding
For positional encoding of embedded sequence from CNN were
done using a designated function that was borrowed from PyTorch
Tutorials for the transformer network. [25]. After positional encoding,
the embedded-encoded-ECG-sequence was ready to go into the
transformer network.

– Transformer Networks

In the beginning phase of implementation, a code for the transformer
network was developed to understand the requirements of every
component of the transformer network. However, for the training and
validation purpose, PyTorch built-in libraries were used and defined in the
__init__() method of the model.

* Model-A (Encoder-only)
In model-A, PyTorch built-in library for encoder-layers and encoder-
stack was used which output the embedded attention tensor which
then sends to the self-attention pooling layer.

* Self-attention pooling layer
A function was created for self-attention pooling where implementa-
tion techniques were borrowed from [14]. This gives the output that is
ready for and compatible with the predictor’s head.

* Model-B (Encoder-Decoder)
Similarly in model-B, the built-in PyTorch library for full transformer
is used and defined in the __init__() method of the model. However,
a query sequence is generated of the same shape as the ground
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truth. PyTorch’s tensor generation method was used to create query
sequences. The output of transformer networks directly sends to the
predictor’s head.

– Feed-forward Prediction Head

A sequential container of PyTorch framework for the neural network was
used for the prediction head and defined in the __init__() method. A total
of eight linear layers of neural network with ReLU activation in between
them were used for the prediction of value for analysis.

3.4 Summary

To summarize this chapter, two end-to-end models were designed for training on
the synthetic DeepFake dataset. The model consists of three components, first is the
backbone, which used the CNN and positional encoding techniques in it, and second
component is the transformer which is different in both models. The first model is
using encoder-only variant and self-attention pooling layer while the second network
is using encoder-decoder variant and the target source is designed for the decoder of
this model. The third component is the feed-forward neural network predictor head
which predicts the parameter value from the given attention from the transformer
networks. The whole project is implemented using the PyTorch framework and the
code is available at [13].
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Chapter 4

Experiments and Results

At this stage of the project when the implementation of codes for extraction of leads
and ground truth, data loaders, model code, and training and validation program
of both Model-A and Model-b is ready then it is time to verify the mechanism and
solutions presented in 3. This chapter will provide the quantitative details of both
models’ training and as well as describe the journey of loss function from the point of
view of learning of models. Below are the subsections that will provide the number
of experiments taking place during the project duration for the evaluation of the
transformer networks in terms of using them for ECG data.

4.1 Experiment 1 (Configurations of Transformer

network parameters)

Firstly, an experimental setup is arranged for the configuration of the transformer
networks’ parameters where the number of layers of encoder and decoder, number of
heads of self-attention sub-layer, embedding dimensions, dimensions of feed-forward
sub-layer in transformer network is all tuned according to the resources available
to run this project. In this project, a trial of standard configuration from the original
paper [44] for the configuration of transformer network parameters was done first.
Standard configurations are shown in the first row of the table shown 4.1.

Since the resources for the project are limited especially in the computational
power aspect, due to this, the first trial with standard configuration gave the out-of-
memory issue. Batch sizes for running the model are also playing an important in this
configuration of transformer networks issue, so the continuous decrease in batch size
was done but still, the result was the same i.e., out of memory. For troubleshooting
the issue, continued reduction in above mentioned standard transformer parameters
in combination with batch sizes was tried as shown in table 4.1, then the trial with
the suggestion from the author of [14] for transformer configuration were done and
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Trials nheads layers d_model ffdm batchsize result
1 8 6 512 2048 128,64,32,16 limitation error

2 6 6 512 2048 128,64,32,16 limitation error

3 4 6 512 2048 128,64,32,16 limitation error

4 6 4 64 2048 128,64 limitation error

5 4 2 64 512 32 successful

Table 4.1: Trials for configuration of transformer network and batch sizes

Variables AdamW-optimizer Adam-optimizer
Learning rate 1e-4 1e-4

Epochs 12 12

Learning rate decay (times) 1 0

Checkpoint epoch 6 12

MSE loss 55.12 46.2

Table 4.2: Configuration of optimizer for training.

the result was a successful run, which is shown in the last row of the table 4.1. These
configurations are used in this project throughout the multiple experiments of Model-
A and Model-B.

4.2 Experiment 2 (Configuration for training paramet-

ers)

The second setup was arranged to set the parameters of training, first, the setting of
the learning optimizer is done. After the valuable information obtained from [14]
about the configuration of transformer parameters, their utilization of the AdamW
optimizer is experimented with a training session of 12 epochs, for the prediction of
ventricular rate with 13000 training data samples and learning rate set to 1e-4. This
experiment is then compared with another experiment where the Adam optimizer is
used for similar training. The results are shown in table 4.2. The training session of
AdamW was with several no improvement epochs that trigger the decay of learning
rate, so there was 1 decay in learning rate in just 12 epochs training session, while
the Adam training was quite stable and continuous decreases in error were noticed.
Therefore, after this experiment, Adam is selected for the rest of the experiments in
this work.

Secondly, for the setting of the rest of the parameters of training like loss
function where mean-square-loss (MSE) loss is considered as a loss function for
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Training Parameters
Training Epochs 100

Batch size 32

Optimizer Adam

Learning rate 1e-4

Learning rate decay
(no improvement in epochs)

8

Early stopping
(no improvement in epochs)

25

Loss function MSE

Transformer Parameters
Number of heads

(nhead)
4

Number of layers 4

Embedding dimension
(d_model)

64

Fees-forward-dimension
(ffdm)

512

Table 4.3: Parameter for training for rest of the experiments

evaluating the learning of the model. MSE helps understand the model performance
over the data samples and this project wants to focus on decreasing the larger error
therefore MSE is best for training. Later, an inclusion of calculation mean-absolute-
error (MAE) of the learning is done because it provides the interpretation of the loss
journey during training. Similarly, learning rate decay and early stopping are set
upon the number of no-improved epochs where there is no improvement in the loss.
After a couple of tries, early stopping and learning rate decay are set for consecutive
25 and 8 no improved epochs respectively. The overall configured parameters for
experiments are shown in table 4.3.

4.3 Experiment 3 (Self-attention Pooling layer)

The component of model-A is using transformer encoder and self-attention pooling
layer to the output of the encoder before sending it to the predictor’s head. While the
transformer network of model-B is not using the self-attention pooling layer.

The reason behind using or skipping the self-attention pooling layer is the
length of the sequence inputs to the transformer network. For model-A, the encoder
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#
Shape

after encoder
Shape before

Predictor
Shape after

predictor
Ground truth

shape
With

Self-attention pooling
layer

[8, 1248, 64] [8, 64] [8, 1] [8, 1]

Without
Self-attention pooling

layer

[8, 1248, 64] [8, 1248, 64] [8, 1248, 1] [8, 1]

Table 4.4: Ablation experiment of self attention pooling layer for model-A

output of embedding attentions is used for prediction purposes and input to it are
long embedded-positional-encoded sequences from the backbone, therefore, the
output from the encoder will also contain the long sequence of embedded attentions.
By passing this long-length sequence to the predictor’s head, it will predict a single
value for each sequence. So the shape of the final output from model-A will not be
the same as ground truth which is a single value of the feature, due to which the
performance of training will be doubtful. Therefore a method is required to extract
useful attention and make it compatible with the prediction head. Therefore, the self-
pooling layer is used to pool out embedded attention from the output of the encoder
of model-A.

While the output from the decoder of model-B is the same as the target
sequence the decoder carries no similarities with the shape of the encoder of the
network. The target sequence provided to the decoder consists of the same shape that
the predictor is expecting from the transformer network, therefore no self-attention is
required to solve the compatibility issue here.

For verification above method of using self-attention, two experiments were
carried out to check the output from the model-A network before starting the
training. The first experiment is with the self-attention layer where the output shape
after the prediction head is the same size as the ground truth which is shown in the
last two columns of the second row of the table 4.4. The second experiment, where
ablation of self-attention pooling layer is done to the model-A network resulted
in differently shaped output from the predictor’s head and is not compatible for
evaluation with ground truth as shown in the last two columns of the last row in the
table 4.4.
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4.4 Experiment 4 (Training of Model-A Transformer-

Encoder Only for Ventricular rate)

Following the configuration of parameters for training and experimental test about
self-attention pooling layer usage in model-A, an experiment was done to evaluate
the performance of model-A. In this experiment, model-A is trained with all normal
DeepFake datasets to predict the ventricular rate (Vent_rate) of the ECG.

The hyper-parameter settings are done similarly to the parameters as shown in
table 4.3. Total 13000 samples of data are used for this experiment from the DeepFake
ECG dataset, out of which 90% is used for training purpose of the model and the rest
of the 10% is for the evaluation purpose of the model-training.

Mean-squared error (MSE) is used as described above as the primary metric to
evaluate the training of the model. The experiment of the training baseline model
went well for 100 epochs and within the very first epoch training loss and validating
loss went to 2344.25 and 55.479 respectively. Training and validating loss continues
to decrease during the epochs. A couple of no improvements were also noticed
during the training but it did not trigger the decay of the learning rate scheduler
which was set during the implementation of the training program as discussed in
3. The training reached the best checkpoint at the epoch 87 where the training and
validating loss were 0.32 and 0.63 respectively. Figure 4.1 illustrates the journey of
training loss while figure 4.2 shows the downward ride of validation loss during the
training. In the figures, the outliers are skipped to focus on lower values for a better
understanding of how the training journey was for the model-A where it learns to
predict the ventricular rate from provided ECG dataset.

Figure 4.1: Training MSE Loss for model-A experiment
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Figure 4.2: Validation MSE Loss for model-A experiment

Variables Training Samples
Validation error

MSE
Zero-R error

MSE
Vent_rate (BPM) 13000 0.63 56.63

Table 4.5: Validation error and Zero-R error on DeepFake ECG (Encoder-only),
training samples 13000.

This is the time when it is best to evaluate the performance of the model. Since
there is no known research work available doing a similar task of ECG analysis where
DeepFake ECG was used, a comparison could be done. Therefore, it is important
to understand whether the results gets from model-A training is predicting actual
values for Ventricular rate from signal or if it just has been learned to predict the
average Ventricular rate (Vent_rate) from the provided training samples. Table 4.5
shows the evaluation of model-A of the Transformer Networks with Encoder only
where it beats the ZeroR-estimate (predicting the mean).

4.5 Experiment 5 (Training of Model-A with limited

data samples)

After the experiment for evaluation of the performance of model-A-encoder-only
with 13000 data samples for predicting ventricular rate, another experiment was
done to evaluate the performance of the model on the limited data samples due to
limitations of resources like GPU and time consumption. In this experiment, the
model is trained with the DeepFake dataset to predict the ventricular rate (Vent_rate),
QRS duration (QRS_duration), QT interval (QT_interval) and R peak amplitude
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(R_amplitude) features from the ECG signal. Four different training sessions were
done with limited data samples as model-A is predicting one value at a time.

Configuration of the model for training is done similarly to the previous
experiment as shown in table 4.3. Total 5000 samples of data are used for this
experiment from all normal DeepFake ECG datasets, out of which 90% is used for
training purposes of the model and the rest of the 10% is for the evaluation purpose
of the model-training. Extraction of ground truth for all four predicting values is
done similarly as described above in the implementation section of 3

For the training session of the second experiment, again mean-square-error
(MSE) is used as the primary metric to evaluate the model with limited data but
the calculation of mean-absolute-error (MAE) for batches and epoch is included in
this experiment because MAE is easily interpret-able as discussed above. Details of
training are briefly explained below:

• Training for ventricular rate with a limited dataset has a different journey as
compared to experiment 1 where training samples were 13000. Within the few
first epochs’ training, MSE loss and validating MSE loss went to 56.27 and
51.85 respectively followed by a couple of no improvements which trigger the
learning rate decay. Training and validating loss still did not start to decrease
after decay and model showed the continuous no improvement in learning and
this triggered the algorithm of early stopping which was set to 25 epochs of no
improvement as discussed in chapter 3. the process of training went to just 36
epochs. The training reached the best checkpoint at epoch 11 where the training
MSE-loss and MAE-loss were 56.27 and 51.85 respectively. Figure 4.3 and figure
4.4 illustrate the journey of MSE and MAE validating loss respectively.

Figure 4.3: Validation MSE Loss (Vent_rate) for model-A training with 5000 data
sample
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Figure 4.4: Validation MAE Loss (vent_rate) for model-A training with 5000
data sample

• For the prediction of QRS duration with 5000 training samples though training
algorithm did not trigger the early stopping and went til 100 epochs but it did
trigger the learning rate decays around seven times during the training process.
Training function loss which is MSE loss dived from 8520.25 in the first epoch
to 74.62 in the second epoch. It continued to decrease with a couple of learning
rates decays as discussed before to a checkpoint point stage at epoch 97 where
the best MSE loss was 69.15 and MAE loss was 6.89. Figure 4.5 illustrates the
story of validation MSE loss while figure 4.6 shows the validation MAE loss of
training for predicting QRS_duration from provided 5000 lead-I synthetic ECGs.

Figure 4.5: Validation MSE Loss (QRS_duration) for model-A training with 5000
data sample
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Figure 4.6: Validation MAE Loss (QRS_duration) for model-A training with
5000 data sample

• Training for QT_interval with 5000 training data samples had couples of
no improvements but it only trigger once the learning rate decayed during
the process of training with no early stopping to the 100 epochs. The best
checkpoint reached at 94 epoch where training function MSE loss was 298.5 and
MAE loss was 16.5. Figure 4.7 shows MSE loss and figure 4.8 shows the MAE
loss graph for the training process.

Figure 4.7: Validation MSE Loss (QT_interval) for model-A training with 5000
data sample

• The process of training for the prediction of R_amplitude with limited data
started the decrease of function loss MSE with 521493 at the first epoch to 61083
at the second epoch. A couple of series of no improvement in function loss
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Figure 4.8: Validation MAE Loss (QT_interval) for model-A experiment with
5000 data sample

made it trigger learning rate decay to four times during the training process.
The checkpoint reached epoch 42 where the validation MSE loss was 4167.65
and the validation MAE loss was 43.16. After that, a series of 25 unimproved
epochs make the process early stop at epoch 67. The process of training
illustrates through the journey of losses, as shown in figure 4.9 and figure 4.10.

Figure 4.9: Validation MSE Loss (R_amplitude) for model-A training with 5000
data sample

Again validation errors of model-B training are compared against Zero-R
estimate error (predicting the average). Table 4.6 provides the statistical details about
the experiment 2, where model-A with encoder is trained with 5000 data samples
of DeepFake dataset and predicting different features of ECGs one at a time. In the
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Figure 4.10: Validation MAE Loss (R_amplitude) for model-A training with 5000
data sample

Variables
Validation error Zero-R error

MSE MAE MSE MAE

Vent_rate (BPM) 51.85 5.74 56.20 5.95

QRS_duration (ms) 69.15 6.89 74.04 6.88

QT_interval (ms) 298.58 16.56 418.42 16.38

R_amplitude (µV) 4167.65 43.162 55911.53 191.57

Table 4.6: Validation error and Zero-R error for model-A training on DeepFake
ECG with training samples 5000.

table, we can see that model-A has almost beat the Zero-R error but it is tricky to
say that it is not predicting average as values are almost near the average-predicting
values.

4.6 Experiment 6 (Training of model-A with 13000-

samples for QRS-duration, QT-interval and R-

amplitude)

The results of experiment number 3 where model-A trained with 5000 show that the
model has beat almost the Zero-R estimate error but it is very close to predicting
the average. Since the training of model-A for predicting ventricular rate with
13000 showed a promising result in experiment 1, So another experimental setup is
arranged where the prediction of QRS-duration, QT-interval, and R-amplitude with
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three different training sessions of Model-A have done with 13000 training samples.
The rest of the configurations in the experimental setup for training are set

similarly to table 4.3 and ground truth extraction are done similarly. The number
of training data samples is set to 13000 from all normal DeepFake ECG with 90%
training data and 10% validation data. Mean square error (MSE) is set as a loss
function to the training and mean absolute error (MAE) is calculated for better
interpretability of the loss journey. Following are the details for each training session:

• QRS_duration prediction’s training had many no-improvement epochs in
its training session. It did trigger three times the learning rate decays and
finally trigger the early stopping at epoch number 37. The best checkpoint
was obtained at the early phase at epoch number 13. The validation loss was
67.94 MSE and 6.62 MAE and figure 4.11 and 4.12 depicts losses journey during
training.

Figure 4.11: Validation MSE Loss (QRS_duration) for model-A training with
13000 data samples

• QT_interval ’s training had several epochs with no improvement in the loss
function. It only triggers two times the learning rates decay in the duration of
100 epochs. The best checkpoint was obtained at epoch 99 where the validation
loss was 278.06 for MSE and 13.07 for MAE. The journey of validation MSE loss
is shown in figure 4.13, while figure 4.14 illustrates MAE validation loss for
QT_interval.

• R_amplitude feature prediction training on model-A has several epochs
with no improvement. Total 5 times decay happened for learning rate but it
did not trigger the early stopping and checkpoint obtained at epoch 78. The
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Figure 4.12: Validation MSE Loss (QRS_duration) for model-A training with
13000 data samples

Figure 4.13: Validation MSE Loss (QT_interval) for model A training with 13000
data samples
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Figure 4.14: Validation MAE Loss (QT_interval) for model A training with 13000
data samples

validation loss at the epoch was 1872 MSE and 26.53 MAE. The whole journey
for validation losses is shown in figure 4.15 and figure 4.16.

Figure 4.15: Validation MSE Loss (R_amplitude) for model-A training with
13000 data samples

At this stage, the losses of zero-R estimates were checked for 13000 training data
samples of DeepFake ECGs and compared against this experiment training results
and are shown in table 4.7. Model-A has shown as expected much better results
with the 13000 samples from the dataset than the experiment before with 5000 data
samples. Model-A has beat the zero-R estimates.
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Figure 4.16: Validation MAE Loss (R_amplitude) for model-A training with
13000 data sample

Variables
Validation error Zero-R error

MSE MAE MSE MAE

Vent_rate (BPM) 0.63 - 56.63 5.94

QRS_duration (ms) 67.94 6.62 74.72 6.89

QT_interval (ms) 278.06 13.07 419.06 16.36

R_amplitude (µV) 1873.08 26.53 56680.3 192.90

Table 4.7: Validation error and Zero-R error on DeepFake ECG for model-A
training with 13000 datasamples.
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4.7 Experiment 7 (Training of Model-B-Encoder-

Decoder with limited data sample)

As model-B incorporated both the encoder and decoder of the transformer network,
there are now more modules of powerful self-attention in comparison with model-
A encoder-only. Therefore, a general expectation from model-B is to perform
better. With this expectation, this work started training model-B with a limited
data set i.e., 5000 samples from the DeepFake ECG dataset to best possibly utilize
the computational resources available for this project. A total of four sessions of
training were done for the model-B which predicted features like ventricular rate
(vent_rate), QRS duration (QRS_duration), QT interval (QT_interval), and R peak
amplitude (R_amplitude) from ECG signal. The configuration for parameters of the
transformer network and training were kept the same as of model-A as shown in
table 4.3. The extraction of lead-I ECGs was the same as model-A but the ground
truth is extracted in a slightly different way where the shape of the ground truth
has three dimensions. Splitting of data sample was similar to model-A with 90%
training and 10% validation samples. MSE is kept training loss function and MAE
is measured too for this experiment. Details about all four training sessions are briefly
described below:

• Ventricular rate prediction training with a limited dataset had many no
improvements in epochs during the session. It did activate the decay of the
learning rate three times which ended the training session with early stopping
at the stage of 33 epoch. The checkpoint was obtained at epoch 8 where the
validation loss was 52.63 for MSE and 5.84 for MAE. The loss journey is
shown in figure 4.17 and figure 4.18. The results were slightly opposite to the
expectation of good results from model-B as compared to the result of the
experiment from the same samples of model-A. Model-A for the prediction of
ventricular rate has performed better than model-B.

• QRS duration prediction training started well in the beginning with a decrease
of loss function but then no improved epochs stick with the training process.
Total 8 learning rate decays were spotted during the session which finally
ended the training session with early stopping at epoch 70. The checkpoint was
achieved at epoch 45 where MSE loss was 71.57 and MAE loss was 6.8.the figure
4.19 and figure 4.20 show the loss graph. Again model-B for QRS duration did
not beat model-A.

• QT interval has three learning rate decays in its training journey but with no
early stopping. The checkpoint obtained at epoch 88 with 354.15 MSE validation
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Figure 4.17: Validation MSE Loss (Vent_rate) of Model-B training with 5000 data
sample

Figure 4.18: Validation MAE Loss (Vent_rate) of Model-B training with 5000
data sample
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Figure 4.19: Validation MSE Loss (QRS_duration) of Model-B training with 5000
data sample

Figure 4.20: Validation MAE Loss (QRS_duration) of Model-B training with
5000 data sample
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loss and 15.10 MAE validation loss. The losses are illustrated in figures 4.21 and
4.22. Again model-B for QT prediction did not beat model-A.

Figure 4.21: Validation MSE Loss (QT_interval) of Model-B training with 5000
data sample

Figure 4.22: Validation MAE Loss (QT_interval) of Model-B training with 5000
data sample

• R peak amplitude prediction training has also three decays of learning rate and
it did trigger the early stopping at epoch 49. the checkpoint achieved at epoch
24 where validation loss were 4151.58 MSE and 32.17 MAE. Figures 4.23 and
4.24 show the graph of the validation loss.

The results of Model-B are then compared with the zero-R errors score and it
did beat the zero-R error in each feature category. But failed to beat the model A with
similar 5000 data samples category.
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Figure 4.23: Validation MSE Loss (R_amplitude) of Model-B training with 5000
data sample

Figure 4.24: Validation MAE Loss (R_amplitude) of Model-B training with 5000
data sample

Variables
Validation error Zero-R error

MSE MAE MSE MAE

Vent_rate (BPM) 52.63 5.84 56.20 5.95

QRS_duration (ms) 71.57 6.80 74.04 6.88

QT_interval (ms) 354.15 15.10 418.42 16.38

R_amplitude (µV) 4151.58 32.17 55911.53 191.57

Table 4.8: Validation error and Zero-R error on DeepFake ECG for model-B with
training samples 5000.
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4.8 Experiment 8 (Training Model-B with 13000 data-

samples)

After the previous experiment where model-B did not show any better result than
model-A, a chance to model-B given to training on large data samples like model-
A was trained with 13000 data samples. All of the parameters for training and
transformer network were kept the same as listed in table 4.3. The four sessions of
training were done to predict ventricular rate, QRS duration, QT interval, and R peak
amplitude. Mean square error (MSE) is the set training loss function for all sessions.
The details of the training sessions are described below:

• Ventricular rate prediction training started well in the beginning with a decrease
of loss function but then no improved epochs stick with the training process.
A total of 3 learning rate decays were spotted during the session. The losses
tended to increase and suddenly at the stage of the 32 epoch, it made the
validation losses to the ’nan’ value. Then later epochs gave a similar nan-
validation loss. The training losses were continuously decreasing but validating
losses were nan. Then forced a stop to train is done because it gives no point
to train the model further. The checkpoint was achieved at epoch 7 where MSE
loss was 49.66 and MAE loss was 5.4. Figure 4.25 and figure 4.26 show the loss
graphs. Again model-B for ventricular rate did not beat model A for the 13000
data samples category.

Figure 4.25: Validation MAE Loss (Vent_rate) of Model-B training with 13000
data sample

• The training session on QRS duration prediction was kept under tight
observation. The training started well in the beginning with a decrease in loss
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Figure 4.26: Validation MAE Loss (Vent_rate) of Model-B training with 13000
data sample

function but then some no improved epochs happens to the training process.
Again losses started to increase and output the nan value for validation loss
at 31 epoch. While the training loss continued to decrease. After obtaining the
’nan’ value, the training was forced to stop to save the computation cost. The
checkpoint was achieved at epoch 26 where MSE loss was 67.75 and MAE loss
was 6.63. The figure 4.27 and figure 4.28 show the loss graph. Model-B loss
functions were slightly little in comparison with model-A for QRS duration
prediction.

Figure 4.27: Validation MAE Loss (QRS_duration) of Model-B training with
13000 data sample

• QT interval prediction training shows a similar manner of spitting nan around
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Figure 4.28: Validation MAE Loss (QRS_duration) of Model-B training with
13000 data sample

a similar stage of the session. This time at 30 epoch then forced stop was done
to training. The checkpoint was achieved at epoch 29 where validation MSE loss
and validation MAE loss were 406.66 and 16.12 respectively. Model-B results
did not beat model-A for the prediction of QT interval from ECG. Figure 4.29
and figure 4.30 show the loss graphs for the validation.

Figure 4.29: Validation MAE Loss (QT_interval) of Model-B training with 13000
data sample

• R peak amplitude prediction training shows a similar manner of where nan as
loss output came around similar or bit earlier stage of the session. This time at
27 epoch then forced stop was done to training. The checkpoint was achieved at
epoch 25 where validation MSE loss and validation MAE loss were 2570.31 and
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Figure 4.30: Validation MAE Loss (QT_interval) of Model-B training with 13000
data sample

32.82 respectively. Model-B results did not beat model-A for the prediction of R
amplitude from ECG.Figure 4.31 and figure 4.32 shows the loss graphs for the
validation.

Figure 4.31: Validation MAE Loss (R_amplitude) of Model-B training with 13000
data sample

Though model-B did not beat model-A in terms of performance based on
loss function it did beat the zero-R error (average estimating) for 13000 samples of
the dataset for the training session. Comparison results are provided as shown in
table 4.9. QT_interval started to give the nan value but since it already had 25 no
improvement epochs so it stops due to early stopping and gave the final graph of
the training and validating loss for the session as shown in figure 4.33. This graph
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Figure 4.32: Validation MAE Loss (R_amplitude) of Model-B training with 13000
data sample

Figure 4.33: Graph illustrating the training and validation loss for (QT_interval)
of Model-B training with 13000 data sample which shows overfitting of the model-B.

69



Variables
Validation error Zero-R error

MSE MAE MSE MAE

Vent_rate (ms) 49.66 5.4 56.63 5.94

QRS_duration (ms) 67.75 6.63 74.72 6.89

QT_interval (ms) 406.66 16.12 419.06 16.36

R_amplitude (µV) 2570.31 32.82 56680.3 192.90

Table 4.9: Validation error and Zero-R error on DeepFake ECG for model-B
training with 13000 data samples

Variables
Datasamples = 5000 Datasamples = 13000

Model-A Model-B Zero-R Model-A Model-B Zero-R
Ventricular rate 51.85 52.63 56.20 0.63 49.66 56.63

QRS_duration 69.15 71.57 74.04 67.94 67.75 74.72

QT_interval 298.58 354.15 418.42 278.06 406.66 419.06

R_amplitude 4167.65 4151.58 55911.55 1873.08 2570.31 56680.3

Table 4.10: Overall, MSE loss comparison between model-A, model-B and zero-
R error for 5000 and 13000 datsamples

is showing the model is in the state of overfitting where training loss in green is
decreasing while validating loss in red is increasing. The graph for the rest of the
pieces of training was not recorded due to the forced stop of the training program
after giving nan as validating loss to avoid the wastage of computational resources in
Colab-pro.

4.9 Summary

To summarize the experiments of the project, this work first set the configuration
parameters of the transformer network due to constraints of computational resources
followed by the experiments for setting the training parameters like batch size,
optimization parameter, etc. Later the training of both models for four parameters of
ECG with 5000 data samples and 13000 data samples and compare the results against
zero-R error. The summary graph for MSE loss and MAE loss for all training sessions
are shown in table 4.10 and table 4.11 respectively. In addition the the zero-r error is
also shown for 5000 and 13000 datasamples.

70



Variables
Datasamples = 5000 Datasamples = 13000

Model-A Model-B Zero-R Model-A Model-B Zero-R
Ventricular rate 5.74 5.84 5.95 - 5.4 5.94

QRS_duration 6.89 6.80 6.88 6.62 6.63 6.89

QT_interval 16.56 15.10 16.38 13.07 16.12 16.36

R_amplitude 43.162 32.17 191.57 26.53 32.82 192.90

Table 4.11: Overall, MAE loss comparison between model-A, model-B and zero-
R error for 5000 and 13000 datsamples
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Chapter 5

Discussion

This section will provide a detailed discussion of the findings of this research work.
This will include a detailed description of the reasons behind the training results
provided in chapter 4, the behavior of models during the training and possible factors
that are affecting it, the role of components for designing of structure and configured
parameters in models for it to learn analysis of ECG task.

This thesis work presented two models to evaluate the use of transformer
networks for predicting the amplitudes and intervals from ECG signals. Both models
did a reliable analysis of ECG and were able to predict the features of ECG like
ventricular rate, QRS duration, QT interval, and R peak amplitude. Both models
beat the zero-R estimate especially when training is done with a large number of
data samples. After the detailed evaluation of the models’ ability of ECG analysis
and results provided in experiments in chapter 4 for validation primary metrics, it
is visible that, model-A performs better than model-B for the task of ECG analysis.

Based on the results shown in chapter 4 of training sessions of both models, the
embedded attentions from the encoder of the transformer networks of model-A did
consist of the relevant information about the predicted feature and were accurate to
perform the ECG analysis. However, the encoder-decoder structure of transformer
networks in model-B was not able to beat the result of model-A (encoder only)
regardless of further computations on embedded-attention from the encoder being
done in the decoder part. So, in comparison to structure, ECG analysis using the
encoder-only structure of transformer networks is less complex and required less
computation and managed to outperformed the encoder-decoder transformer in the
ECG analysis task. This also satisfies the reason behind why a majority of researchers
[30], [28], [11], [14] developed the models using only the encoder of the transformer
networks for different ECG tasks.

In transformer networks, the output from the encoder contains the same
sequence length which was provided to its first encoder sub-layer, in this work
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it was from the backbone component of the model i.e. embedded-encoded-ECG-
signal. Similarly, the decoder output contains the same sequence length as the
target source which provided its first decoder sub-layer which in this work was
embedded-encoded-target-source. Both inputs were different from each other, i.e.,
one was embedded ECG sequence and another was embedded target sequence.
Therefore, both outputs from the transformer network were different from each
other. Encoder output was a long sequence of embedded attention while decoder
output is a single sequence of embedded attention. The experiment for ablation of
self-attention pooling layer 4.3 demonstrated that When keeping the designing of
the structure of both models in mind, the sequence length of the output of either
encoder or decoder played an important role, if its long sequence length then it needs
transformation because prediction head is expecting a single sequence for the task of
prediction, and if it is a single sequence (one) then no transformation is required. This
transformation is called the self-attention pooling layer. Therefore, this self-attention
pooling layer was only applied to Model-A where the output of the encoder was only
used and required to be transformed before sending it to the predictor head of the
model. Likewise, this self-attention was not applied in model-B as its output from the
decoder is compatible with the prediction head, and no transformation was required.

Another important finding from the results is the over-fitting behavior of the
encoder-decoder structure of model-B during the training with larger amount of
data as shown in the figure 4.33 in chapter 4. It tended to increase the validation loss
after a certain training period and after approximately 29 epochs session it started to
give the ’nan’ value as a validation loss. This is general behavior of model when it
is overfitted. This behavior of transformer networks have heavily been questioned
by the fellow researchers and developers on different deep learning community
platform. The nature of ’nan’ value output was different in many cases there but
there was an almost similar story of ’nan’ loss of the transformer networks which
were queried by a user on "stackoverflow" platform [42], but it was not cleared from
the query that the user was getting ’nan’ value in training loss or in validating loss.
If that was a training loss then this could be a different issue then what this thesis
work have experienced i.e, overfitting in the transformer networks of model-B.
However, a follow up solution were posted by same user which suggested the use
of the higher configuration of the transformer networks’ parameters which solved the
issue of increased loss i.e, ’nan’ value. Unfortunately, the lack of computational issues
demonstrated in section 4.1 intervened the process of the evaluation of using the
higher configuration of the transformer networks to avoid overfitting. Nevertheless,
a discussion about the possible factors that tended model-B to overfit[48] are listed
below :
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• One of the reasons could be the over-complexity of the model-B. Since model-A
did not show any overfitting behavior with the utilization of only the encoder
of the transformer networks and model-B utilizes a similar type encoder along
with the decoder. So, the problem could be happen due to the inclusion of the
decoder of the transformer networks in the model-B, which made it complex
to learn. The complexity of the model is an important consideration in deep
learning, it plays an important role in learning the model because learning of
the models depends upon the number of variables and features that a model
needs to look into to make the predictions. Smaller networks might be easier to
train but are not able to look into all information stored in data while bigger
networks can look into different parameters but due to complexity end up
in poor training and over-fitting. Model-B could have avoided attending
to excessive information of parameters by using regularization techniques
like dropout [39] in its transformer networks. This could have reduced the
complexity by reducing the weight of the less important parameter in the
model.

• Another reason for over-fitting could be the bad scheduling of early stopping
[33] for model-B. Early stopping is a strategy to find the best stage of the
training session where the model in neither in the under-fitting phase (i.e., the
model is still learning) nor it is in the over-fitting phase. Therefore, the training
of model-B should be stopped when the validation loss tended to increase.

• The strategy for splitting the dataset for training and validating the model-B
used in this work is fixed and this could also be the reason for overfitting in
model-B. Cross-validation technique [6] should be used in the splitting of data
samples which allow the model to train and validate on different data sample to
prevent overfitting.

The findings of this research work, however, are subjected to some limitations
that intervene in the progress of the work. Some of the limitations of this work are
discussed below:

• Lack of computational resources potentially limited the domain of experiments
and evaluation which were done in this work. Firstly it intervened in some
experiments to test the results with fully configured transformer networks
which required high memory utilization from RAM.

• One of the major limitations this project faced is time constraints. Since this
work is submitted as a short thesis to the educational institute, therefore, a
short time duration i.e. almost four months is given as a timeline for the project.
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During this duration intense work was done for literature research about ECG
analysis and transformer networks, creating models for ECG analysis, dataset
selection for evaluation purposes, implementations of models and training or
validating routine, troubleshooting, and experiments for evaluation including
training of models. Furthermore, the limitation of computational resources
for training highly affects the time consumption of this work, especially, since
Colab and its advanced version Colab-pro are inconsistent in efficiency in terms
of time consumption. Sometimes Colab took three to four hours for training or
sometimes eight or nine hours while data samples were the same. This heavy
time consumption for the training of models constrained the domain of this
research work. Hence a couple of trials for different ideas and methods were
not done due to time constraints.

• As mentioned earlier in chapter 1 and chapter 2 of this report that there is a
lack of availability of previous research where transformer networks were
used for ECG analysis. In addition, the results of different works with their
different methods for ECG analysis that applied to synthetic DeepFake datasets
for ECG analysis were also not known. The prior research of the task usually
helps to compare the results of the model. Therefore, this lack of information
did constrain this project to compare the results of proposed models with
transformer networks for ECG analysis using synthetic data with other methods
available. However, this work considers this constraint as an opportunity to
identify literature gaps in transformer networks and discover new research
questions like the overfitting of transformer networks with larger data samples,
etc. that open a new area of further study.

There were some research questions appeared during the designing phase of
project time. These questions lead to many different methods and ideas that could
have further improved the models. Scope of this project and the limitations faced by
the project made to consider these research questions, ideas, and methods as future
work for the transformer networks for ECG analysis. Some of the ideas are discussed
below:

• The authors of the work [49] have argued that all 12 leads of ECG produced a
better result in the deep-learning model than a single lead and for their work,
the lead I, lead aVR, and lead V5 were best among the other leads. Based on
their argument, the models of this work should also be trained with all 12 leads
together, this will increase the load on computation resources and therefore be
considered as future research work.

• The researchers have utilized segmented ECG signals in their work [19] and the
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motivation behind this was the low computation complexities. Therefore, usage
of segmented the ECG signal in this work may have lessened the input length of
the sequence to the transformer and may have also reduced the computational
load on resources. However, a research study is required to know the size of the
segment of the signal which should contain the relevant information about the
feature which the model is predicting. Therefore, the research of this method
involves the thorough study of relevant features which make it out of the scope
of this work, so, this work considers this method as future work to test the
effectiveness of segmentation over the performance of transformer networks
in ECG analysis.

• Since the model-B of this work showed a tendency of overfitting. One of the
active areas of research for solving this issue could be the designated loss
function for the task of ECG analysis involving transformer networks like the
researchers have created Link constraints in their work [11]. This could also be
done by researching the use of multiple layers of loss function within the model
or including regularization techniques like [51], where dropouts techniques are
developed for the transformer networks.

• It is important to understand which type of information the model is attending
on from the ECG signal for deciding prediction [15]. Therefore, the visualization
of embedded-attention output from the transformer network can give insights
into the valuable parts of the ECG signal that plays a role in making decisions.
This method of inclusion of visualization will make the model explanatory and
reliable to doctors. This is another research area where the study is required
to find out the best visualization methods for embedded- attention from the
transformer networks and thus this work considers this as one of its future
work.

• Ablation experiments are required to test the effect of the number of encoder
and decoder layers, self-attention mechanism, positional encoding, feed-
forward neural network layers of the transformer network, and the number of
convolutional layers in the backbone on the performance of ECG analysis. This
will provide a deep analysis and importance of the parts of the model.

• Another important research question obtained from the results and develop-
ment of model-B is the research study of the designing of the number of queries
as the target sequence to the decoder of model-B. This work believes that the
design of sending ground truth like encoded-embedded-empty tensor, used in
this work is not the quality input to the decoder. This topic requires thorough
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research to find the best method for the creation of a target source for the de-
coder from an ECG signal.

In the reflection of the findings of this work, limitations faced during the
research duration, and with the potential aims for future work, this work considers
that the model-A is capable of predicting relevant features of the ECG signal which
it is trained for. Though this AI-aided ECG analysis using transformer networks
is in the early stage of implementation and several parameters are still required to
be trained for analysis, still this work believes that the utility value of the project
is integral to the motivation of this work of providing aid to doctors for accurate
analyzation and better interpretations of ECG signal which leads to removing
the failure of misdiagnoses of CVDs that usually happen when the doctor failed
to analyze the ECG signal accurately. Model-A and its trained parameter can be
integrated with any reliable ECG measuring machine. So ECG signals are measured
with the help of electrodes and leads will display the different lead signals from
different locations on the patient at the display machine. Before displaying the
signal to the display, each signal is then tested against the model-A training for
the prediction of the parameter ECG signal. Then displaying both the signal and
parameters like amplitude and interval of the signal will provide the doctor with
automatic annotation of the signal.
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Chapter 6

Conclusion

This research study aimed to investigate the deep learning model of the transformer
networks for the task of ECG analysis. The research work majorly focused on the two
variants of the structure of transformer networks that was encoder-only and encoder-
decoder for ECG analysis and investigations were done to find out which one is more
effective and efficient in performing the ECG analysis. This work also wanted to
address the existing gap of research questions for the transformer networks about
the factors that affect the performance of the task while analyzing the ECG.

A thorough study was done for designing and developing the model for ECG
analysis and implemented two end-to-end models i.e. model-A with encoder-only
structure and model-B encoder-decoder structure of the transformer networks. Both
models were given the chance to train up to 100 epochs. The Synthetic DeepFake
ECG dataset with up to 13000 data samples was used for training models for
different features of ECG like ventricular rate, QRS duration, QT interval, and R
peak amplitude. Regression loss metric, mean squared error used to evaluate the
performances of the model training. Based on their training results, both models were
able to perform the ECG analysis and beat the Zero-R (estimating average) error.

Based on the quantitative analysis of the performance of models for ECG
analysis, it can be concluded that model-A i.e. encoder-only variant of the structure
of the transformer network performed better than the encoder-decoder variant for
ECG analysis. This research has shown that the encoder-only variant is enough for
performing ECG analysis and if combined with the decoder as done in model-B then
it increased the complexity of the structure which resulted in overfitting. However,
model-A is in its initial stage of training and only trained for a couple of parameters
of the ECG signal, and further training is required for the rest of the parameters of the
ECG, therefore, this work believes that after full training it can become a proper aid to
doctors in performing ECG analysis.

This report discusses the several factors that play an important role in designing
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the model like the self-attention pooling layer was only required for the encoder-
only variant due to the sequence length of output from the encoder. Similarly, the
creation of the target source is only required for the encoder-decoder variant of the
transformer networks.

This report highlighted the potential methods that might improve the
performance of ECG analysis i.e. instead of single-lead ECG signal input, the method
for all 12 leads input should be designed for the transformer network. Furthermore,
if the input ECG signal is segmented into small sequences then it might shed some
computational load so that a fully configure transformer network could be evaluated
for ECG analysis. Multiple layer loss and regularization techniques in transformer
networks could help the encoder-decoder sequence to improve the results. In
addition, thorough research is required to design the target source for the decoder
for better ECG analysis. Therefor, further research to measure the outcomes of
highlighted methods is needed in future work due to the limitations of this current
work.

• Code availability

The code used for developing, training, and validating the model is available on
GitHub [13].
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