
Mimir: An Automatic Reporting
and Reasoning System for

Screening of the Gastrointestinal
Tract Using Deep Neural

Networks

Steven A. Hicks

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Mimir: An Automatic Reporting
and Reasoning System for

Screening of the
Gastrointestinal Tract Using

Deep Neural Networks

Steven A. Hicks

© 2018 Steven A. Hicks

Mimir: An Automatic Reporting and Reasoning System for Screening of
the Gastrointestinal Tract Using Deep Neural Networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Data is arguably one of the most valuable resources available today. More
than ever, data is collected on such a large scale that we do not have
the capacity to process it efficiently. In healthcare alone, there is an
estimated 162 exabyte of data throughout the world, which is growing at
the speed of approximately 2.5 exabytes per year [18]. Medical data in
and of itself can be used for many things, such as patient follow-ups or
recommendations. Nevertheless, to enable the use of this information to
its fullest potential, we need sophisticated data analysis methods such as
statistics or machine learning. Machine learning is a field where machines
learn from data without explicitly being programmed. This process is
often applied through supervised learning (machines learning from labeled
data), unsupervised learning (machines learning from unlabeled data), or
semi-supervised (machines learning from a combination of labeled and
unlabeled data). Over the past few years, this field has been dominated
by a growing class of algorithms known as deep learning. Inspired by
the neurological connections in the animal brain, deep learning has made
immense strides in the production of state-of-the-art results within many
areas of data analytics [4]. Nowadays, deep learning based methods have
become a popular topic within the medical field as well [7]. This has
brought up some specific challenges which may make the application of
these methods difficult, such as the lack of data or poor understanding
of their internal workings. The latter issue, namely that deep learning is
something of a “black box”, is one of the biggest hurdles since it hinders
the application of deep learning from being used in hospitals due to lack
of trust and understanding. For this reason, we developed a medical
reporting system, which focuses on transparency and understanding of
its internal processes. In this thesis, we present this system and show
how it may aid us in the development and understanding of deep neural
networks.

i

ii

Acknowledgements

I’d like to thank EVERYONE!

iii

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background and Motivation 1

1.2 Problem Statement . 2

1.3 Limitations . 3

1.4 Research Methods . 4

1.4.1 Theory . 4

1.4.2 Abstraction . 5

1.4.3 Design . 5

1.5 Main Contributions . 5

1.6 Thesis Outline . 7

2 Deep Learning and Automatic Reporting for Medical Multimedia 9

2.1 Case Study on Detection and Documentation of Disease in
the Gastrointestinal Tract . 10

2.1.1 The Gastrointestinal Tract 10

2.1.2 Gastrointestinal Endoscopy 12

2.1.3 Wireless Video Capsular Endoscopy 14

2.1.4 Abnormalities and Disease Found in the Gastrointest-
inal Tract . 15

2.1.4.1 Esophagitis 16

2.1.4.2 Ulcerative Colitis 16

2.1.4.3 Polyps . 17

2.1.5 Anatomical Landmarks 17

2.1.5.1 Z-line . 18

v

2.1.5.2 Pylorus . 19

2.1.5.3 Cecum . 19

2.1.6 Polyp Removal Markings 19

2.1.6.1 Dyed and Lifted Polyps 20

2.1.6.2 Dyed Resection Margins 20

2.1.7 Quality of Colonoscopy Reporting 20

2.1.7.1 Standardization of Data Models and Tem-
plates . 22

2.1.7.2 Understanding the Value of Documentation 22

2.1.7.3 Standardization of Terminology 23

2.1.7.4 Current Software Solutions 23

2.2 Machine Learning for Disease Detection and Diagnosis . . . 24

2.2.1 Machine Learning . 25

2.2.1.1 Supervised learning 26

2.2.1.2 Unsupervised learning 26

2.2.1.3 Reinforcement learning 26

2.2.1.4 Deep Learning 27

2.2.2 Neural Networks (Multilayer Perceptrons) 27

2.2.2.1 Perceptron 28

2.2.2.2 Multilayer Perceptron 29

2.2.2.3 Training a Neural Network 30

2.2.3 Convolutional Neural Networks 32

2.2.3.1 Convolutional Layers 32

2.2.3.2 Depthwise Separable Convolution 33

2.2.3.3 Pooling Layers 33

2.2.4 Deep Learning in the Medical Field 34

2.2.4.1 Issue of Interpretability 35

2.2.4.2 Issue of Data 36

2.2.5 Opening the Black Box of Neural Networks 37

2.2.6 Visualization Techniques 37

2.2.6.1 Generating Pixel Level Saliency Maps . . . 38

2.2.6.2 Generating Class Discriminate Activation
Maps . 40

2.3 Summary . 41

vi

3 Mimir: An Automatic Reporting System for Endoscopic Examina-
tions 43

3.1 Mimir . 44

3.1.1 Front-end Architecture, Tools and Technologies . . . 46

3.1.2 Back-end Architecture, Tools, and Technologies . . . 48

3.1.3 Deep learning Tools and Technologies 49

3.2 Neural Network Dissection Tool 52

3.3 Report Generation Tool . 57

3.4 Use Case Scenarios . 58

3.5 Summary . 61

4 Case Study on Mimir for use in Classification Understanding 63

4.1 Training, Datasets and Architectures 64

4.1.1 Architectures . 64

4.1.1.1 VGG Architectures 65

4.1.1.2 Inception Architectures 66

4.1.1.3 Residual Neural Network Architectures . . 67

4.1.1.4 Xception Architecture 69

4.1.2 Datasets . 69

4.1.2.1 ImageNet . 70

4.1.2.2 Kvasir . 71

4.1.2.3 CVC-968 . 72

4.1.3 Training . 73

4.1.3.1 Hyperparameter Selection 75

4.1.3.2 Keeping Track of Experiments 76

4.2 Evaluation Method and Metrics 76

4.2.1 Confusion Matrix . 76

4.2.2 Metrics . 78

4.2.3 Model Evaluation . 80

4.2.3.1 Evaluation of Classification 81

4.2.3.2 Evaluation of Localizations 81

4.3 Initial Training Results . 81

4.4 Analysis of Initial Training Results 84

4.4.1 Comparing Dyed Resection Margin to Dyed Lifted
Polyp . 86

vii

4.4.2 Comparing Esophagitis to Z-line 88

4.4.3 Comparing Cecum to Ulcerative Colitis 90

4.4.4 Comparing Polyp to Cecum 92

4.4.5 Comparing Ulcerative Colitis to Polyp 93

4.4.6 Summary of Findings and Proposed Pre-processing
Techniques . 95

4.5 Results and Comparing New Visualizations Against Initial
Results . 97

4.5.1 Comparing Dyed Resection Margin to Dyed Lifted
Polyp . 97

4.5.2 Comparing Esophagitis to Z-line 98

4.5.3 Comparing Cecum to Ulcerative Colitis 99

4.5.4 Comparing Polyp to Cecum 100

4.5.5 Comparing Ulcerative Colitis to Polyp 101

4.6 Summary . 102

5 Conclusion and Further Work 105

5.1 Summary . 105

5.2 Contributions . 106

5.3 Future Work . 107

A Source Code 123

A.1 Mimir Code . 123

A.2 Training and Evaluation Code 123

B Published Papers 125

B.1 Paper I — Mimir: An Automatic Reporting and Reasoning
System for Deep Learning based Analysis in the Medical
Domain . 125

B.2 Paper II — Comprehensible Reasoning and Automated
Reporting of Medical Examinations Based on Deep Learning
Analysis . 132

B.3 Paper III — Dissecting Deep Neural Networksfor Better
Medical Image Classification and Classification Understand-
ing . 137

viii

List of Figures

2.1 Two illustrations covering the lower and upper gastrointest-
inal tract. 11

2.2 Two illustrations showing two conventional forms of endo-
scopy, colonoscopy and gastroscopy. 12

2.3 A video capsular endoscopy pill on its way into a patients
mouth. 14

2.4 Three images of commonly found disease of the gastrointest-
inal tract. 15

2.5 Three images of anatomical landmarks found in the
gastrointestinal tract. 18

2.6 Two images depciting the before and after markings of a
polypectomy. 19

2.7 The basic building block of a traditional neural network, the
neuron. 27

2.8 A three-layererd multilayer perceptron containing a total of
five computational neurons. 29

2.9 A visual example of how a convolutional layer works. 33

2.10 A visual explination of how the convolutional layer works
depthwise and spatially, in the context of three different
convolutions. 34

2.11 A visual explination of how a pooling layer works, in the
context of max and average pooling. 35

2.12 A comparison of three gradient based saliency maps. 38

2.13 A visual example of how the different ReLU operations work
during backpropagation. 39

3.1 A diagram showing the expected workflow of how Mimir
could be used in practice. 45

3.2 A visual example of how the flow of data works using the
flux pattern. 46

ix

3.3 The web based user interface of the neural network dissec-
tion tool included in Mimir. 51

3.4 Image representations used by Mimir to explain the internals
of a deep convolutional neural network. 51

3.5 An image of the class “polyp” being visualized by a VGG-19
based model at the last layer of each convolutional block. . . 52

3.6 The dialog used by Mimir to upload new Keras based models. 54

3.7 The format of the class file used to determine the classes used
by Mimir. 54

3.8 The dialog used by Mimir to manage previously uploaded
Keras models. 56

3.9 A diagram showing how visualizations are produced
through Mimir. 57

3.10 The web based interface of the report generation tool. 58

3.11 A sample report generated by Mimir. 59

4.1 A visual example of the VGG-19 architecture. 65

4.2 A visual example of the Inception module, used extensively
in Inception based models. 66

4.3 A visual example of the Residule block, used extensively in
ResNet based architectures. 67

4.4 A visual example of the Xception module, used extensively
in Xception based architectures. 68

4.5 Eight example images taken from the ImageNet database. . 70

4.6 Eight example images taken from the Kvasir (v2) dataset. . . 71

4.7 Eight example images taken from the CVC-968 dataset. . . . 72

4.8 A sample confusion matrix taken from one of the conducted
evaluation experiments. 77

4.9 A visual example of how we calculate metrics using the
confusion matrix. 78

4.10 The produced confusion matricies for the VGG-19 and
Inception (v3) based models. 83

4.11 The produced confusion matricies for the ResNet-50 and
Xception (v3) based models. 83

4.12 A collection of sample visualizations taken from models
based on different architectures. 85

4.13 The initial visualization comparison of the confused class
pair “dyed resection margin” and “dyed lifted polyp”. . . . 87

x

4.14 The initial visualization comparison of the confused class
pair “esophagitis” and “z-line”. 89

4.15 The initial visualization comparison of the confused class
pair “cecum” and “ulcerative colitis”. 90

4.16 The initial visualization comparison of the confused class
pair “polyp” and “cecum”. 92

4.17 The initial visualization comparison of the confused class
pair “ulcerative colitis” and “polyp”. 94

4.18 Four example images together with their pre-processed
counter parts taken from the first four classes of Kvasir (v2). 95

4.19 Four example images together with their pre-processed
counter parts taken from the last four classes of Kvasir (v2) . 96

4.20 Comparing visualizations between the confused class pair
“dyed resection margin” and “dyed lifted polyp” after pre-
processing. 100

4.21 Comparing visualizations between the confused class pair
“esophagitis” and “z-line” after pre-processing. 101

4.22 Comparing visualizations between the confused class pair
“cecum” and “ulcerative colitis” after pre-processing. 102

4.23 Comparing visualizations between the confused class pair
“polyp” and “cecum” after pre-processing. 103

4.24 Comparing visualizations between the confused class pair
“ulcerative colitis” and “polyp” after pre-processing. 104

xi

xii

List of Tables

2.1 A few of the most prominent endoscopic electronic medical
record systems. 24

3.1 A few of the most prominent deep learning libraries as of 2018. 50

4.1 A comparison between the various pre-trained models
included in Keras. 64

4.2 The system specifications of the machine used to conduct all
training and evaluation experiments. 73

4.3 The hyperparameters used for each model. 74

4.4 The evaluation results of all models trained on the “vanilla”
version of Kvasir (v2). 82

4.5 The evaluation results of all models trained on the “vanilla”
version of Kvasir (v2), with added polyps from CVC-968
used in evaluation. 82

4.6 A comparison of the evaluation results of all models trained
on all versions of Kvasir (v2). 98

4.7 A comparison of the evaluation results of all models trained
on all versions of Kvasir (v2), with added polyps from CVC-
968 used in evaluation. 99

xiii

xiv

Chapter 1

Introduction

1.1 Background and Motivation

The medical scenario of focus for this thesis will be on the field of
gastrointestinal (GI) endoscopy, which in layman’s terms is the conven-
tional method of screening the digestive system through the use of a spe-
cial type of camera. The digestive system is one of the most diverse and
complex organ systems in the human body. With the sole responsibility of
breaking down food into nutrients, it plays a pivotal role in the growth and
development of any living person. However, this system is prone to many
diseases ranging from minor annoyances to potentially life-threatening ill-
nesses. In the GI tract alone, three of the six most common cancer types
are found, and with an annual detection rate of 2.8 million new cancer
cases, and a five-year mortality rate of 65%, this area is in much need for
improvement. Early detection is vital for patient survival, but a standard
issue among GI cancer types is that they exhibit little to no apparent symp-
toms before its too late. The current best working method for screening the
GI tract for abnormalities is through endoscopy examinations, where one
must rely on the doctor’s ability to detect early signs of cancer in the form
of its precursors (polyps, which are abnormal tissue growths often taking
the shape of a mushroom). This has proven to be an issue in and of itself,
where the doctor’s ability to detect polyps has shown to be a more import-
ant predictor than that of the most common risk factors associated with the
diagnosis of this disease [11].

Looking to improve the state of GI disease detection, one must first have
a metric to measure them by. In the field of GI endoscopy, this is commonly
done through manually written documentation of the performed proced-
ures. This documentation is essential, as it might be the only evidence of
a procedure taking place. Despite the introduction of various standards,
such as colonoscopy reporting and data system (CO-RADS) and Minimal
Standard Terminology (MST), documentation of performed endoscopies is
generally poor, often being submitted incomplete and without the use of
standardized language. Reports attributed this to a general lack of train-

1

ing and knowledge around the beforementioned guidelines and mentioned
that the use of computerized systems in the form of endoscopic electronic
medical records (EEMRs) would most likely improve this field.

In the last few years, a rising trend of using deep learning based
methods has emerged, having seen much success in various fields
including medicine [75]. Automatic detection of disease could be of
great help in lowering the misrate of abnormalities (polyps and other
illness) when screening the GI tract. Additionally, automatic detection of
notable findings in the digestive system, such as anatomical landmarks
and polypectomy markings (surgical markings for polyp removal), could
be of great aid in the generation of documentation, as these findings
mark important information that should be part of any endoscopy report.
Although these methods have shown to work well within the medical
domain [26, 60, 69], often showing improved results over their traditional
counterparts, there is one aspect of deep learning which makes it difficult
to implement in real-world practice. Neural networks are often considered
to be a “black box” because the internal process which leads to a specific
result is neither easy to understand nor easy to interpret. This poor
understanding has led to a lack of trust in these systems, often leading to
medical experts favoring traditional based methods, even though they are
often less accurate than their deep learning counterparts.

With the performance and complexity of deep learning based neural
networks steadily increasing, we see that they have much potential in
aiding medical doctors in the detection of severe disease. However, the
lack of understanding and trust is concerning. Opening this “black box”
through the use of modern interpretability methods would not only aid in
the building of trust and understanding among medical experts but could
also be used to produce quality endoscopy reports. These open questions
motivated our research into the field of deep learning interpretability and
automatic generation of quality endoscopy documentation.

1.2 Problem Statement

Based on the background and motivation presented in the previous section,
we decided to look into improving the area of deep learning understanding
and transparency. We see that this is an important piece in building trust
and increasing the general acceptance of these algorithms. Additionally,
by providing detailed explanations into why and how a model provides a
given result, we may be able to use this information in the production of
complete and standard compliant endoscopy reports. As for the scope of
this thesis, we will be focusing on the completion of three main objectives,
which act as the initial steps of completing this overarching goal. The three
objectives of this thesis are as follows:

Objective 1 Research and develop a system which gives non-technical
users a better understanding of why a neural network presents

2

a given result. This system should be aimed at medical doctors
conducting examinations and documentation abnormalities found in
the GI tract.

Objective 2 Provide a proof-of-concept implementation of automatic GI
report generation based on the findings of automatic analysis done
through the use of a deep neural network.

Objective 3 Use various visualization techniques to get a better under-
standing of the internal working of a deep neural network. This
newly gained knowledge should be used in the development of pre-
processing steps with the purpose of training quality and robust ana-
lytical models based on deep learning.

As part of the three objectives require the research and development of
a system. We also decided to define three requirements which we would
keep in mind when developing the initial prototype of our automatic
reporting system with a focus on transparency and understanding. The
three system requirements are as follows:

Requirement 1 The system should give non-technical users the ability
to understand why a neural network based model suggest a given
disease diagnosis.

Requirement 2 The system should provide tools for medical documenta-
tion and suggest image attachments based on the analysis done by
the underlying analytical model.

Requirement 3 The system should be able to aid in the development and
improvement of deep learning based models and datasets.

With our research objectives in place, we started development on a
system which would meet our stated system requirements. This system
would then aid us in the answering of our previously defined research
objectives.

1.3 Limitations

Based on the research question and its objectives, the scope of this thesis
is researching and developing an automatic reporting system with a focus
on deep neural network understanding and transparency for use in the
medical domain. As a first use case, we will be applying this system to
analysis, detection, and documentation of the anatomy and diseases found
in the GI tract. We have limited ourselves to eight different classes due to
two primary constraints. Firstly, there are far too many parts and diseases
found in the GI tract, so keeping the number of classes to a manageable
number is essential considering our time constraint. Secondly, and most

3

important, there is a lack of publicly available medical data, making it
difficult to be picky when it comes to which medical disease and anatomical
parts we wish to analyze. This lack of medical data is also the reason for
the selection of the eight classes used for classification, as we will be using
the publicly available Kvasir (v2) [76] dataset to train and evaluate our
analytical models. The eight included classes are as follows; Ulcerative
Colitis, Esophagitis, Polyps, Cecum, Z-line, Pylorus, Dyed lifted Polyps
and Dyed Resection margins. Running and verifying the developed system
on further diseases or other application scenarios is out of the scope of this
thesis.

Considering the scope of this thises, we will limit ourselves to focusing
on image classification with the use of deep convolutional neural networks
(CNNs). Although there are other methods commonly used within this
field, e.g., manual feature extraction, recurrent neural networks (RNNs),
etc., we have chosen CNNs as they are currently the most popular methods
of autoamtic image classification.

1.4 Research Methods

Research can be performed in a variety of ways. For this thesis, we have
decided to use Association for Computing Machinerys (ACMs) research
methodology. In 1989, the ACM Education Board assigned a task force
to compile the core fundamentals of computer science and computer
engineering into a detailed report [21]. The report describes the discipline
of computing as being split between three paradigms; (i) theory, (ii)
abstraction, and (iii) design. The work conducted over the course of this
thesis touches upon each of these paradigms in a variety of ways. Below,
we give a brief description of each paradigm and discuss how our work fits
into each of them.

1.4.1 Theory

The “theory” paradigm is rooted in mathematics and relates to the
development of a coherent and valid theory. The report describes
this phase as being made up for four steps, which are described as
follows; (i) characterize objects of study (definition), (ii) hypothesize
possible relationships among them (theorem), (iii) determine whether the
relationships are true (proof), and (iv) interpret results.

This paradigm is supported by the analyzed relationship between the
neural networks feature activations and its predicted output. Using this
information, we applied various pre-processing techniques to the training
data and reran the same analysis, interpreting how the change in dataset
affected the change in class scores.

4

1.4.2 Abstraction

The “abstraction” paradigm is rooted in the experimental scientific method
and relates the investigation of a phenomenon, e.g., hypothesis. The
report describes this phase as a process consisting of four steps, which are
described as follows; (i) form a hypothesis, (ii) construct a model and make
a prediction, (iii) design an experiment and collect data, and (iv) analyze
results.

This paradigm is supported by our experiments performed on the
various models trained over the course of this thesis. Based on the
predictions of a given neural network based model, we developed a
hypothesis on why we thought a given model assigned a particular class
with a probability. This hypothesis was then put to the test using our
developed system, of which we were able to either verify or refute our
original theory.

1.4.3 Design

The “design” paradigm is closely related to engineering and relates to the
construction of a system, e.g., software, hardware, etc. The report describes
this phases as a process consisting of four steps, which are described as
follows; (i) state requirements, (ii) state specifications, (iii) design and
implement the system, and (iv) test the system.

Our work supports this paradigm through the implementation of a
prototypical system called Mimir [46]. This system was used as part of
this thesis to conduct a variety of experiments which proved to show the
usefulness of the system.

1.5 Main Contributions

Over the course of this thesis, we researched and developed a system for
automatic detection and reporting of disease found in the GI tract called
Mimir [45, 46]. This system focused on making the analysis performed by
the underlying neural network transparent and understandable through a
series of intermediate visualizations, which purpose was to further increase
the acceptance and trust. As defined in our problem statement (Section 1.2),
we set three system requirements which our system should meet to be
considered complete (within the context of this thesis). The following
reiterates the requirements and describes what how our system meets
them:

Requirement 1 The system should give non-technical users the ability to
understand why a neural network based model suggested a given disease diagnosis.

5

This requirement is supported by the neural network dissection tool as
part of Mimir, which generate visualizations based on what the neural
network “sees” when making a given prediction.

Requirement 2 The system should provide tools for medical documentation and
suggest image attachments based on the analysis done by the underlying analytical
model.

This requirement is supported by the report generation tool, which
suggests the most relevant images from the automatic analysis done by
the underlying deep neural network.

Requirement 3 The system should be able to aid in the development and
improvement of deep learning based models and datasets.

This requirement is supported by the neural network dissection tool,
which in addition to providing insight into the analysis of a deep neural
network, also provides tools for uploading and managing various deep
learning based models.

With these system requirements fulfilled, we look at how Mimir solves
our three research objectives which define what work should have been
done over the course of this thesis:

Objective 1 Research and develop a system which gives non-technical users a
better understanding of why a neural network presents a given result. This system
should be aimed at medical doctors conducting examinations and documentation
abnormalities found in the GI tract.

This objective is supported by the development of Mimir, which provides
a tool for dissecting the internal layers of a deep CNN. Using this tool, a
doctor may verify that the diagnosis suggested by the system is in fact due
to the detection of said disease, and not due to artifacts or noise commonly
found in medical images.

Objective 2 Provide a proof-of-concept implementation of automatic GI report
generation based on the findings of automatic analysis done through the use of a
deep neural network.

This objective is supported by the report generation tool included in
Mimir, which suggests relevant images based on a diagnosis proposed by
the system. As stated in the objective, this is currently a proof-of-concept,
meaning it is expected to be improved through future work.

Objective 3 Use various visualization techniques to get a better understanding
of the internal working of a deep neural network. This newly gained knowledge
should be used in the development of pre-processing steps with the purpose of
training quality and robust analytical models based on deep learning.

6

This last objective is supported by our use of Mimir to analyze five neural
network based models, each using a different standardized architecture,
with the purpose of finding faults in its training. Based on the performed
analysis, we derived two pre-processing steps applied to Kvasir (v2) [76]
dataset, which showed to improve the classification score of all models
except one. This objective is also supported by a published paper [44],
where we showcase part of the experiments conducted over the course of
this thesis.

Through the work produced in this thesis, we learned that using neural
network based visualizations may provide sufficient knowledge into what
pre-processing steps may lead to improved classification performance.
Specifically, we improved the performance of a deep neural network
trained to detect disease and anatomy of the GI tract.

Each objective is supported by published papers, each paper can be
seen in Appendix B, where Paper B.1 [46] and Paper B.2 [45] relate to the
first two objectives, and Paper B.3 [44] relates to the last objective.

1.6 Thesis Outline

This thesis is split into five chapters, with the first two being introductory
and filling in the necessary background to fully understand the rest of the
thesis. Chapters 3 and 4 describe the work done over the curse of this
thesis, with accompanied published papers for both chapters located in the
appendix. The last chapter is the conclusive chapter, which sums up the
produced results and presents the future work. Below we have included a
summary of each chapter (excluding chapter 1).

Chapter 2: Deep Learning and Automatic Reporting for Medical
Multimedia
We present the medical and technical background of using deep learning
methods in the medical domain, specifically gastroenterology. The overall
structure of this chapter is mainly split into two main parts, one concerning
the medical background, the other regarding the technical details of deep
learning. For the medical background, we present the background to the
current state of endoscopic disease detection and documentation through
endoscopic reports. This includes a look at various parts of the GI anatomy
and the various diseases commonly found there, with a more detailed look
at the eight classes used for classification. We also look at the current state-
of-the-art methods of GI examinations in the form of different types of
endoscopy. Lastly, we dive into the current state of endoscopic reporting,
where we look at its present faults and potential ways it can be improved.

For the more technical deep learning part, we start with the very
basics, explaining what makes up a traditional neural network. We then
expand on this information by introducing more complex networks in
the form of CNNs and describe the various aspects of these networks

7

which make them perform so well for image classification tasks. With a
basic understanding of traditional neural networks and their more complex
extension in the form of CNNs, we discuss current problems with applying
these methods to mission-critical domains, specifically medicine. Lastly,
we look at various methods of trying to get some understanding of how
these methods work, and what this may tell us about their inner workings.

Chapter 3: Mimir: An Automatic Reporting System for Endoscopic
Examinations
We present the automatic reporting system developed over the course
of this thesis. This chapter looks at the technical implementation of the
system, explaining how, what and why we use certain technologies. We
present our system through a detailed guide on how to use its various
included tools and suggest potential use case scenarios which we expect
would be a good fit for this system. This chapter directly relates to our
research objectives 1 and 2, as stated in our problem statement (Section 1.2).

Chapter 4: Case Study on Mimir for use in Classification Understand-
ing
We present the experiments conducted to gain a better understanding
of deep neural networks trained on medical image data, specifically
Kvasir (v2). This includes a brief description of the various architectures
and datasets used for training, how we performed training and evaluation
and how we conducted our analysis of each model. We then present our
results through evaluation metrics and have a look at how some of the pre-
vious visualizations changed after training with the two derived datasets
based on Kvasir (v2) [76]. This chapter directly relates to objective 3 stated
in our problem statement (Section 1.2).

Chapter 5: Conclusion and Further Work
Finally, we conclude this thesis with a summary of what we have
presented, a discussion on potential future work.

8

Chapter 2

Deep Learning and Automatic
Reporting for Medical
Multimedia

In recent years, deep learning has shown to improve on the state-of-the-
art in many fields such as object recognition, language translation, and
robotics. In addition to this, there has been much progress in applying these
methods to the field of medicine as well, where deep neural networks have
successfully aided in the diagnosis of brain disease, skin cancer, and also
used as a risk assessment tool for breast cancer patients [27, 60, 62].

In this chapter, we present the necessary background and related works
of applying deep learning methods to the field of GI disease detection and
diagnosis. This will primarily be covered over the course of two parts, one
covering the necessary medical background and the other looking at the
technical use of deep learning in mission-critical fields such as the medical
domain. The theory and research presented in this chapter was part of the
initial work done to successfully fulfill our three research objectives stated
in Section 1.2.

We begin with a case study on the GI tract, where we start by giving a
short introduction to the purpose of this organ system and how it aids the
human body through the digestion of food. With a good understanding
of the GI anatomy, we look to the current state-of-the-art methods of GI
disease detection through the use of various types of endoscopies. We
then present a detailed look at the eight classes which will later be used for
training and classification. As defined by our research objective, we look
at the current state of GI reporting, reviewing various studies conducted
within this areas, and discuss how this field may be improved.

The second part will focus on machine learning, with on deep learning,
which in includes various architectures, applications, and different meth-
ods of interpreting their inner workings and output. We start by present-
ing the very basics of a traditional neural network, explaining a simple
Multilayer Perceptron (MLP) from the ground up. This will give some in-

9

tuition of the basic structure of a typical neural network and the various
algorithms used to train them. We then move on to a more advanced ar-
chitecture, CNNs, where we cover the unique attributes that make them
specifically tailored for image classification. This should give the necessary
background to fully understand how we use CNNs to analyze medical im-
age data using the neural network dissection tool part of Mimir, and the
various experiments conducted over the course of this thesis. Addition-
ally, we look at multiple methods of applying deep neural networks to the
field of medicine, covering some of the successes and challenges of utiliz-
ing these methods in this domain. Lastly, we cover the various methods
of trying to gain some understanding of how the internal processes of a
deep neural network produces its results, and how this knowledge may
help both researchers and end-users alike.

2.1 Case Study on Detection and Documentation of
Disease in the Gastrointestinal Tract

The GI tract, sometimes referred to as the digestive tract, is the primary
organ of the human digestive system. Along with various accessory organs
(tongue, liver, pancreas, etc.), its main function is to intake food, absorb
nutrients through digestion, and dispose of it through feces or urine.
As an initial use case, we limit our work to focus on the detection and
documentation of eight distinct anatomical parts (including abnormalities
and polypectomy markings) of the GI anatomy. The eight classes are
divided into three categories; abnormalities (3), anatomical landmarks (3)
and polypectomy markings (2). The reason behind this limitation is quite
simply the general lack of annotated image data available for public use.
We, therefore, decided to focus on the image classes part of the Kvasir
(v2) [76] dataset, as this is a publicly available dataset.

2.1.1 The Gastrointestinal Tract

As we briefly mentioned above, the main purpose of the GI tract is to
absorb nutrients through the digestion of food and dispose of it through
waste. We generally draw a distinction between the lower and upper parts
of the GI anatomy, with the upper GI tract spanning from the mouth to
the ileum, and lower GI tract spanning from the cecum to the anus. It
is worth noting that some make a third distinction by denoting the small
intestine as the middle GI tract, the reason for this distinction is that the
two procedures used to inspect the upper and lower GI tract generally do
not cover the small intestine, which requires a more extensive operation
through capsule endoscopy or enteroscopy. As for this work, we will keep
it simple by using the first division. An illustration of the upper and lower
GI tract in seen in Figure 2.1, which will be useful when we next give a brief
description of the digestion process of the GI tract.

10

(a) An image showing what is commonly considered
the lower gastrointestinal tract.

(b) An image showing what is commonly considered
the upper gastrointestinal tract.

Figure 2.1: Two illustrations covering the lower (2.1a) and upper (2.1b)
gastrointestinal tract.

The digestive process starts at the oral cavity (mouth), where food is
inserted and passed along a hollow-like tube, called the esophagus, which
leads into the stomach. Here the food is mixed together and broken down
by acids and enzymes before being passed into the duodenum (the first part
of the small intestine). The small intestine consists of duodenum, jejunum,
and ileum; and is where the majority of nutrient absorption takes place.
Lining the walls of the small intestine is a mucosal membrane, or mucosa,
which secretes enzymes and bile salts from the pancreas and gallbladder to
further break down and digest the partially digested food received from the
stomach, which in turn is absorbed by the bloodstream. Whats left over is
passed into the initial part of the large intestine (colon). The large intestine
consists of the appendix, cecum, ascending, transverse, descending colon,
sigmoid colon, and rectum; and is responsible for absorbing the remaining
water, salts, sugars and vitamins from the indigestible food. It ends at the
anus, where the remaining food is expelled in the form of feces.

11

(a) An image showing the extent of a colonoscopy, note
that the examination starts at the rectum and ends at
the entrance to the small intestine.

(b) An image showing the extent of a gastroscopy, note
that the examination starts at the mouth and ends at the
stomach.

Figure 2.2: Two illustrations showing two conventional forms of endo-
scopy, colonoscopy and gastroscopy.

The GI tract may be home to a multitude of disease, including infection,
inflammation, and cancer. Colorectal cancer (CRC) is a severe disease that
makes up approximately 10% of total cancer cases [28]. A common problem
with CRC is that it generally does not exhibit any apparent symptoms
before it is too late. Therefore, it is crucial that the GI tract is routinely
screened for disease and CRCs precursors in the form of polyps. The
current state-of-the-art method of screening the GI tract is through various
types of endoscopy, which we describe in further detail below.

2.1.2 Gastrointestinal Endoscopy

GI endoscopy is a procedure where the GI tract is examined through
the use of an endoscope for detection of abnormalities in the form of
disease, infection or other special conditions. Unlike other medical imaging
techniques (x-ray, ultrasound, etc.), endoscopes are inserted directly into
the organ to be examined. This is done by inserting a long flexible tube
attached with a small camera into either the mouth (gastroscopy) or anus
(colonoscopy). This is shown in Figure 2.2, where we see Figure 2.2a
is of a colonoscopy and Figure 2.2b is of a gastroscopy. The overall
procedure is considered to be safe, but complications do happen and in
severe cases may be life-threatening. There is a variety of literature on
the subject of endoscopy complications, with different studies presenting

12

slightly varied results. But the overall consensus is that complications of
any kind occur in less than 2% of all endoscopies, with life-threatening
complications occurring in well under 1% [33, 37, 78]. The risk of
endoscopies vary depending on certain risk factors, and what procedures
are performed under examination (such as polypectomy). Common
complications include perforation (tear in the gut wall), a reaction to the
sedation, infection, bleeding, and pancreatitis as a result of endoscopic
retrograde cholangiopancreatography (ECRP).

For a lot of people, endoscopies are expensive, invasive, and the
cause of high anxiety and discomfort. A single endoscopic procedure
(colonoscopy or gastroscopy) averages at about 3000 U.S. dollars [85],
making it a significant investment for a sizable part of the U.S. population.
This may cause patients to forego treatment as they can not justify the
cost. Anxiety is also a large barrier between patients and the surgical
room. A recent study found that most patients are more anxious about
the colonoscopy procedure itself, with factors including no previous
colonoscopies and confusing instructions [93]. This shows that once a
patient has undergone an endoscopic procedure, he/she is more likely to
continue following the recommended five-year routine (looking past the
variable of cost).

Endoscopies are also quite time demanding, requiring about one
medical-doctor-hour and two nurse-hours [59], not including reporting
and eventual follow-ups, and therefore do not scale well to a large pop-
ulation. Also, a recent study showed that about 17% of patients diagnosed
with CRC had been investigated in the previous three years [102]. With
the typical adenomatous polyp taking about five to ten years to become
malignant [95], we can conclude that standard colonoscopies have a high
miss rate due to the endoscopists inability to detect polyps. This is often
referred to as the post-colonoscopy colorectal cancer (PCCRC) rate and is a
key quality indicator of the performance of colonoscopies.

In addition to conventional colonoscopies, a relatively new endoscopic
procedure using camera attached pills has been put to use in the last 20
years. This procedure is commonly called a video capsule endoscopy
(VCE) and may be a solution to the scalability and cost inefficiencies
of conventional endoscopy. However, in its current state, it is mostly
used as an additional method used if conventional endoscopies do find
any abnormalities when the patient is still showing signs of potential GI
disease. Additionally, it is also used as an alternative method of inspecting
the small intestine, as the conventional method of examining this organ
has a higher risk of complications than that of a standard colonoscopy or
endoscopy [36]. In the next section, we will describe VCE in more detail.

13

Figure 2.3: A video capsular endoscopy pill on its way into a patients
mouth.

2.1.3 Wireless Video Capsular Endoscopy

As mentioned in the previous section, the current state of conventional
endoscopy does not scale well to a large population because of its high
costs, time requirements and lack of qualified medical personnel. A
proposed solution to these problems is the usage of a VCE. A VCE is a small
camera placed in a vitamin-sized capsule which is inserted at the mouth
and travels through the GI tract. Figure 2.3 shows an example of such a pill
being swallowed by a patient. The capsule is outfitted with various devices
such as image sensors, bleeding sensors, pH-sensors, antennas, batteries,
light sources and wireless transceivers. The small capsule travels through
the GI tract, taking images of the mucosa and transmits them to an external
transceiver.

The idea here is that when it is time for an examination, the patient
purchases a VCE capsule at their local pharmacy. They synchronize the
pill to a wireless device such as a phone to receive a stream from the
video capsule going through GI tract. This can be in the form of images
or messages (such as notifying that it has reached a particular anatomical
landmark). It is estimated to take about 10 to 12 hours for a procedure, and
about 24 to 72 hours to be excreted [104]. When the pill has passed through
the digestive system, the receiving device relays the data to a server where
analysis is performed. From there, a trained professional can look at the
results and verify that the analysis has been performed correctly and decide
the appropriate next step. This is a bit out of scope for the course of this
thesis, but it may play a pivotal role in the automatic documentation of
endoscopy reports.

With the various methods of screening the GI tract covered, it is
time to take a closer look at different parts of the GI anatomy. This

14

(a) Image of an esophagus inflicted
by esophagitis. Notice the the red
markings on the wall of the esophagus.

(b) Image of the colon mucosa severly
inflicted by ulcerative colitis.

(c) Image of a adenomatous polyp loc-
ated inside the colon.

Figure 2.4: Sample images from each of the three classes of abnormalaites
as part of (and taken from) the Kvasir (v2) dataset.

includes multiple abnormalities, anatomical landmarks, and surgical polyp
markings. The covered parts of the GI tract in the upcoming three chapters
were chosen because of the focus on classifying images related to the
described findings. This will become clearer under Chapter 3.

2.1.4 Abnormalities and Disease Found in the Gastrointestinal
Tract

Gastrointestinal disease is generally split between three areas of the
GI tract; Esophagus disease, gastric disease, and intestinal disease.
Esophagus disease includes various abnormalities and disorders affecting
the esophagus (between the mouth and stomach). Common disease found
here includes gastroesophageal reflux disease (GERD), Barrett’s esophagus,
esophagitis, and Boerhaave syndrome. Gastric disease includes disease
found in the stomach; this includes gastritis, gastroparesis, and various
cancers. Intestinal disease covers the disease found in the small and

15

large intestine, and include ulcerative colitis, colon polyps, and coeliac
disease. Note that disease affecting the oral cavity (mouth) are generally
not included when referring to disease of the GI tract, albeit some disease
found here might be the cause of a GI disease such as GERD, which can
cause acid erosion of the teeth or halitosis (bad breath). In the upcoming
few sections, we give a detailed look at the disease which is part of the
automatic reporting system and can be seen in Figure 2.12.

2.1.4.1 Esophagitis

Esophagitis is an inflammation, irritation or swelling of the esophagus.
This is often caused by gastric acid passing back up the esophagus (often
a result of GERD), vomiting or hernias. An example can be seen in
Figure 2.4a, where we see a highly inflamed esophagus denoted by the
red markings on the wall of the mucosa. Detection is important for proper
treatment and to prevent further irritation. Most patients improve over the
course of two to four weeks depending on the severity of inflammation.
The severity of esophagitis can generally be categorized into four grades
depending on the measured breaks in the mucosa (an area of slough or
erythema which causes a demarcation between it and the mucosa), each
with increasing severity (grades taken from [66]):

Grade A: One (or more) mucosal break no longer than 5 mm, that does not
extend between the tops of two mucosal folds.

Grade B: One (or more) mucosal break more than 5 mm long that does not
extend between the tops of two mucosal folds.

Grade C: One (or more) mucosal break that is continuous between the tops
of two or more mucosal folds but which involves less than 75%
of the circumference.

Grade D: One (or more) mucosal break which involves at least 75% of the
esophageal circumference.

Recent research has provided a treatment method involving surgically
placing a ring of magnetic titanium beads near the lower esophageal
sphincter. The procedure is called magnetic sphincter augmentation device
(MASD) and has shown vast improvements with 70% of patients achieving
normalized esophageal pH levels [89].

2.1.4.2 Ulcerative Colitis

Ulcerative colitis is a chronic inflammatory disease which affects the colon
(large intestine) and rectum. The disease usually begins to develop before
the age of 30 and is most commonly found towards the lower section of the
large intestine (sigmoid colon) and rectum, but can affect the entire colon.

16

Primary symptoms of this disease include abdominal pain, cramping, and
diarrhea mixed with blood, secondary symptoms include weight loss,
fever and anemia 1. The exact cause of ulcerative colitis is still unknown,
with doctors speculating that the immune system overreacts on normal
bacteria found in the digestive tract [24]. The disease can cause long-lasting
inflammation and ulcers in the GI tract. Depending on the severity, it can
be quite uncomfortable and may eventually become life-threatening.

2.1.4.3 Polyps

Colon polyps are small outgrowths from the mucosa and are either flat,
elevated or pedunculated (connected to a thin stalk). They are formed
when mutations in certain genes begin to divide, even though new cells
are not needed. The result of this is a clump of cells, which in its basic form
is referred to as a polyp. We typically divide polyps into two categories,
non-neoplastic and neoplastic. Non-neoplastic polyps include hyperplastic
polyps, inflammatory polyps, and hamartomatous polyps. These are
normally new formations and have little chance of becoming cancerous.
Neoplastic polyps include serrated and adenomatous polyps, of which,
serrated polyps have a higher chance of being malignant, but adenomatous
polyps may become cancerous as well. Figure 2.4c shows an example of an
adenomatous polyp, located approximately in the middle of the image.

A general rule of thumb is that the bigger the polyp is, the more likely it
is to become malignant. As all polyps have a chance of becoming cancerous
over time, they are always removed even though they pose little threat
to the patient at the time of removal. It is therefore vital that polyps are
detected and removed before they reach a dangerous state. Polyps usually
do not exhibit any external symptoms. It is therefore essential to have
regular screenings to have them removed as early as possible.

2.1.5 Anatomical Landmarks

Anatomical landmarks are used as a reference point to determine how
far the endoscopic device (conventional or VCE) has made it into the
colon or esophagus. This reference point is used to determine the location
of potential findings and as an indication of a completed endoscopy.
Additionally, some disease tends to infect the surrounding area of certain
anatomical landmarks, such as GERD, which is commonly diagnosed
through inspection of the z-line. Examples of the following described
landmarks can be seen in figure 2.5.

1Anemia is a decrease in the total amount of red blood cells

17

(a) Image of a healthy z-line where one
can clearly see the transition from the
pink colored mucosa of the eshophagus
to the more red shaded gastric mucosa.

(b) Image of a healthy pylorus connect-
ing the stocmach to the duodenum.

(c) Image of a healthy cecum located at
the beginning of the large insteinte.

Figure 2.5: Sample images from each of the three classes of anatomical
landmarks as part of (and taken from) the Kvasis (v2) dataset.

2.1.5.1 Z-line

The z-line is a section of the gastroesophageal junction (GEJ) which lies in
the intersection between the esophagus and stomach. Endoscopically, it is
the line formed by the transition from the white mucosa of the esophagus to
the red gastric mucosa of the stomach. The z-line is an important landmark
as it signals the exit of the esophagus, but it is also used as an area to detect
disease. Specifically, the z-line is typically inspected in the diagnosis of
GERD, which is caused gastric acid through the GEJ and up the esophagus.
Looking at Figure 2.5a, we see the clear separation of the white and red
mucosa forming the z-line.

18

(a) An image of a dyed lifted polyp
marked for future removal.

(b) An image of a dyed resection-
marign, which shows the presence of a
previously removed polyp.

Figure 2.6: Sample images from each of the three classes of polyp removal
markings as part of (and taken from) the Kvasir (v2) dataset.

2.1.5.2 Pylorus

The pylorus (Latin for “gatekeeper”) connects the stomach to the duo-
denum, which is the first section of the small intestine. Using circum-
ferential muscles, the pylorus regulates the number of intestinal contents
passing through to the small intestine. Looking at Figure 2.5b we see the
pylorus viewed from the perspective of the stomach, this is indicated by
the pinkish color of the mucosa. The small hole contracts and retracts to
regulate food passing into the duodenum.

2.1.5.3 Cecum

The cecum is a tube-like structure receiving undigested food from the
small intestine and is considered the first part of the large intestine (colon).
Reaching the cecum is the signals a complete colonoscopy, which is why
recognition and documentation of the cecum is important. Figure 2.5c
shows an image of a healthy cecum.

2.1.6 Polyp Removal Markings

As discussed in Section 2.1.4.3, polyps found in the lower intestine may
be precursors to CRC and therefore removed even though they pose
no immediate threat. A common technique of polyp removal is called
endoscopic mucosal resection (EMR), which consists of injecting a lifting
agent into the area surrounding the polyp, raising the polyp from the
underlying mucosa, which is then removed using a snare. Detection and
documentation of dyed polyps and resection margins are important to
create complete endoscopic reports. Examples of these markings can be
seen in Figure 2.6.

19

2.1.6.1 Dyed and Lifted Polyps

A Dyed lifted polyp is a polyp injected with a lifting agent to create a clear
separation from the mucosa, making it easier to remove safely. To properly
outline the injection site, blue dye is often added to the lifting agent. This
is shown in Figure 2.6a, where we can see the blue dye surrounding the
polyp. Various agents are used to create lifts, mostly depending on the size
of the polyp. For small polyps (1 cm), saline is sufficient. For larger polyps,
a more viscous agent is preferable, such as indigo carmine or methylene
blue [35, 106].

2.1.6.2 Dyed Resection Margins

Dyed resection margins are the aftermath of a dyed-lifted polyp and are
important to evaluate whether or not the polyp is completely removed.
Residual polyp tissue may lead to continued growth and in worst case
become malignant. Figure 2.6b shows an example of the dyed resection-
site after polyp removal.

2.1.7 Quality of Colonoscopy Reporting

Documentation and reporting of colonoscopies play a pivotal role in the
communication between healthcare providers and patients. Additionally,
these reports provide a good source of data for use in research, quality
assessment, and resource management. Despite the importance of these
reports, and decades of work, studies find that they are often inconsistent,
incomplete and lack standardization [51, 61, 83]. As mentioned in
Section 2.1.2, colonoscopies are largely dependent on the endoscopists
ability to detect signs of CRC in the form of its precursors (polyps). In
severe cases, this is maybe a more important predictor than the key risk
factors often associated with CRC (age, gender, etc.) [11]. This is supported
by an analysis done on Canadian colonoscopy data, where there was a clear
link between the quality measure and the endoscopists ability to detect
CRC [5, 79]. Thus, a standardization and clear documentation practices
could result in a lower rate of PCCRC. This is also supported by the
European Society of Gastrointestinal Endoscopy (ESGE), which lists the
standardization of the medical reporting in endoscopic procedures as a
requirement [8].

In an attempt to measure and improve the quality of colonoscopy re-
ports, the Quality Assurance Task Group of the national colorectal cancer
roundtable (NCCRT) developed a standardized reporting and data collec-
tion system called CO-RADS [64]. This standard was created by compiling
different colonoscopy reports from different hospitals, pulling the best fea-
tures from each to come up with a single standard. Standardized systems
have numerous advantages over non-standardized systems, including bet-
ter communication of test results, standardization of terms and measure-

20

ment criteria, and the establishment of data systems that can be used for
medical audits and continuous quality improvement (CQI). In CO-RADS,
they define 25 key data quality indicators for colonoscopy reports and are
defined as follows:

Patient Demographics and History

i Age

ii Sex

iii Other: Anticoagulation, antibiotic prophylaxis required, im-
plantable defibrillator, or pacemaker present

Assessment of Patient Risk and Comorbidity

i ASA classification

Procedure Indication(s)

i Date of last colonoscopy

ii Previous most advanced histological lesion

iii Family history of CRC, adenoma, or inherited syndrome

iv Reason for examination

Procedure: Technical Description

i Date and time

ii Sedation with medication names and dosages

iii Extent of examination

iv Duration

v Documentation of cecal landmarks

vi Retroflexion

vii Bowel preparation (type and quality)

Colonoscopic Findings

i Mass/polyp (location, size, morphology, and method of re-
moval or biopsy)

ii Other abnormalities

Assessment

i Based on history and colonoscopy findings

Interventions/Unplanned Events

i Type of event ± intervention

Follow-Up Plan

21

i Immediate follow-up and discharge plan (further tests, referrals,
changes in medications, and follow-up appointments)

ii Recommendation for follow-up colonoscopy and tests

Pathology

Despite their efforts, the adoption of standardized electronic medical
records (EMRs) and databases remain poor. In 2016, a study was
conducted by Sharma et al. to review the current state of colonoscopy
documentation [94]. The team collected a list of 30 papers referencing
the quality of colonoscopy reporting and identified five themes for quality
improvement. The five themes are as follows:

1. The need for standardized data models and templates.

2. The need for endoscopists to understand the value of complete and
accurate documentation for effective clinical communication.

3. The need for standardized terminology.

4. The need for endoscopist performance feedback.

5. The need for appropriate health system use of data.

In the following sections, we discuss a few of these issues in more detail.

2.1.7.1 Standardization of Data Models and Templates

The quality of accompanying documentation often measures the mark
of a quality colonoscopy. As this might be the only record of the
performed procedure, it is critical that these reports are as complete
and transparent as possible. Despite the clear guidelines and standards
introduced over the last few decades (such as CO-RADS, MST, etc.), a
large number of reports are still incomplete, often missing key elements
from the procedure. A study done on more than 100 academic endoscopy
centers in the U.S. revealed that key elements such as preparation quality
and diagnostic interpretation were missing from roughly 40% and 58% of
reports respectively [83]. One source attributed this problem to a lack of
knowledge regarding the standardized reporting guidelines, and general
poor agreement among community health workers [73].

A possible solution to this problem is the use of electronic reporting
systems, where multiple health services have reported success in improv-
ing the quality of documentation through the implementation of such soft-
ware [6, 47]. Palmer et al. also stated that they saw an increase in document-
ation quality among clinics/hospitals using automated reporting systems,
but doubted that it would solve all of the standardization problems.

22

2.1.7.2 Understanding the Value of Documentation

As briefly mentioned in Section 2.1.7.1, poor quality colonoscopy reporting
is partly due to disagreements and lack of knowledge surrounding the
proposed guidelines and standards. This indicates that there is a general
lack of training among endoscopists in the field of medical documentation,
and a lack of understanding of how important quality reporting is when
it comes to communication between patients, health care providers, and
doctors. Although our assessment of endoscopic reporting so far has
been in poor light, it is important to note that overall documentation of
these procedures has steadily, but slowly, improved over the last 30 years.
Starting in 1991, Mai et al. reviewed 1408 endoscopy and colonoscopy for
deficiencies and found that only 28.7% included a follow-up plan [68].
Note that this was before the introduction of CO-RADS, but after the
guidelines proposed by American Society for Gastrointestinal Endoscopy
(ASGE). Similarly, in 2002 Robertson et al. found that approximatel£y
59% of colonoscopy in research-affiliated facilities included a procedure
interpretation and plan. Lastly, a study done at the Mayo Clinic found
that 81% of colonoscopy reports included follow-up recommendations and
screening intervals [14].

2.1.7.3 Standardization of Terminology

In 1994, the ESGE, ASGE and Japanese Society for Gastrointestinal
Endoscopy (JSGE) introduced the MST, which was a list “minimal” terms
and descriptors that should be used to denote anatomical structures,
endoscopic findings and their attributes, reasons of endoscopy, endoscopic
diagnosis, procedures and adverse events. The goal of this was to establish
a common vocabulary and structure for EEMR systems [20, 55]. Despite
these guidelines, there is still a disparity between reports, even within
geographically close clinics. Even within the state of Maryland, where Li et
al. conducted a quality assessment on colonoscopy reporting, they found
variations in descriptors such as some endoscopists classifying a 10mm
polyp as large, and others classifying it as small.

2.1.7.4 Current Software Solutions

Software solutions for endoscopic reporting have been around since the
1980s in the form of simple computerized report generation but have
since evolved into full electronic medical record databases incorporating
comprehensive electronic practice management (EPM) software. Many of
these systems include tools for collection of data through video and image
capture directly from endoscopic procedures, going much further than
just supplying reporting services. The implementation of these systems
is essential as they make it easier to follow the MST and allow for quick
analysis through searchable databases for clinical research and quality

23

Software Company Location Discontinued

CORI Clinical Outcomes Research Initiative Portland, Oregon, USA

EndoSoft EndoSoft Schenectady, New York, USA

EndoPro iQ Pentax Medical Montvale, New Jersey, USA

EndoProse Summit Imaging Lee’s Summit, Missouri, USA

EndoWorks Olympus America Center Valley, Pennsylvania, USA 2015

gMed gMed Weston, Florida, USA

MD-Reports Infinite Software Solutions Staten Island, New York, USA

ProVation MD ProVation Medical Minneapolis, Minnestoa, USA

eMerge Endo eMerge Health Solutions Cincinnati, Ohio, USA

Table 2.1: A brief overview of some of the most popular endoscopic
electronic medical record systems.

improvement purposes. Table 2.1 shows a short list of some of the most
prevalent GI reporting systems available. Even though the scope of this
thesis is limited when it comes to the production of a complete endoscopic
analysis and reporting system, it was still important to see what the current
standards for such systems to evaluate the purpose of our included features
better. As we did not have direct access to any of these systems described
above, we will have to shuffle a full evaluation of these systems off to future
work.

2.2 Machine Learning for Disease Detection and Dia-
gnosis

Since 2012, machine learning has grown exponentially in its popularity
and shown to produce state-of-the-art performance on various tasks
including object recognition, language translation, and robotics. The
current application of these algorithms can be found across a wide variety
of different domains, including the field of medicine, wherein 2017, an
Inception (v3) based CNN was able to diagnose skin cancer at the level
of a trained dermatologist [27]. The success of these findings motivate
the efforts of applying deep learning to other areas of medicine as well,
with the purpose of aiding medical doctors in diagnosing different types
of diseases. As for the scope of this thesis, we focus on the application of
deep learning methods to detection and diagnosis of disease found in the
GI tract.

In spite of the impressive results of deep learning, there are some
challenges which make it difficult to implement in specific areas, especially
fields where its output will be used as a basis for serious decision making.
Firstly, deep neural networks generally need massive amounts of training
data to perform well. This means we must have access to sizable datasets

24

of labeled data. This is one of the most significant hurdles when it comes to
applying deep learning methods to medical image analysis, as there is not
enough annotated data to train and evaluate a robust system for many use
cases. There are multiple reasons for this; first of all, there is a general lack
of medical experts dedicated to their respective fields, e.g., gastrologists,
cardiologists, dermatologists, etc. This is a big problem when it comes to
collecting annotated datasets as medical images need to be labeled and
verified by experts within their field. Also, as with most medical data,
there is a legal and ethical challenge of collecting and using other peoples
data.

Secondly, although the general concept of deep neural networks is
relatively easy to grasp, the internal processes and decision making of a
network has become increasingly complex over the past few years, making
it very difficult to interpret why a model produces a given result. This
general lack of understanding has lead to neural networks being treated
as a typical “black box”2, where its users are only concerned with the data
that is put in and the performance of its output. This may be acceptable
when dealing with problems which have little to no consequence (such
as classification of various cat breeds). But when it comes to diagnosing
patients with life-altering diseases, where an incorrect diagnosis could be
at the risk of a persons life, we must trust that the system can detect the
objects in question and understand why it might make mistakes. Multiple
methods have been proposed to open this “black box”, some requiring
a deep mathematical background in the theory of neural networks [72,
105], others focusing on easily interpretable visualizations [109, 112]. In
this thesis, we focus on simple to understand interpretations through
visualizations of various layers of a given network, making the production
of given results easier to interpret by non-technical users such as medical
doctors. In the upcoming sections, we provide a brief introduction to the
field of machine learning, focusing specifically on two different types of
neural networks, MLPs and CNNs.

2.2.1 Machine Learning

Machine learning is a sub-field of artificial intelligence (AI), which uses
statistical techniques to give computer systems the ability to “learn” from
data, without being explicitly programmed. A popular quote taken from
Tom A. Mitchell’s 1998 book, Machine Learning [70], summarizes the field
of machine learning quite nicely;

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E. — Tom A.
Mitchell [70]

2In the context of science, a black box is a device which can be viewed concerning its
inputs and outputs, without any knowledge of its inner workings.

25

Machine learning can be applied in a variety of means, but to gain a
good understanding of its most popular applications. Machine learning
algorithms generally fall into three categories; Supervised learning, unsu-
pervised learning and reinforcement learning. In the upcoming sections,
we will give a brief introduction to each of these.

2.2.1.1 Supervised learning

Supervised learning is a collection of algorithms which learn from labeled
data. This is done through an iterative process, where the algorithm
predicts a given sample, then aptly shifts its internal weights based on
how incorrect its prediction was. This process is continuously repeated
until it either stops improving or reached a set boundary of iterations. One
could argue that supervised learning algorithms such as CNNs sparked
the renewed interest in machine learning applications with great results
of Krizhevsky’s et al. AlexNet, which won the imageNet large scale visual
recognition challenge (ILSVRC) challenge of 2012 [56]. Algorithms part of
the supervised learning family include support vector machines (SVMs),
traditional neural networks (MLP), CNNs and decision trees to name a
few. Common applications for supervised learning are image classification,
language translation and speech recognition.

2.2.1.2 Unsupervised learning

Unsupervised learning is a collection of algorithms which learn from
unlabeled data. It does this by automatically detecting patterns in
the provided data and performing some task. Traditionally, the most
common unsupervised learning methods have been cluster analysis. These
algorithms analyze unlabeled data for common patterns between data
points, then automatically groups similar data into “clusters”. Typical
applications of this can be sorting a large dataset of unlabeled images
or automatically grouping people with similar tastes in a social network.
A few examples of these algorithms are k-Means clustering, hierarchical
clustering, and self-organizing maps.

In recent years, however, the popularity of unsupervised learning
methods has shifted to focus more on generative models. The goal of
generative models is to generate something entirely new. A more formal
description could be using a dataset to learn the true data distribution and
generate new data points with slight variations. Popular algorithms in this
area of research include autoencoders, generative adversarial networks,
and latent dirichlet allocations (LDAs). Possible applications for these
algorithms include the generation of new media (such as music, images,
etc.), text generation, and even as an aid in the development of new
medicinal drugs [63].

26

x1

x2

x3

output

w
1

w2

w3

f∑i wixi + b

Figure 2.7: A visualization of a typical artificial neuron taking three inputs
and producing a single output. Note that the vectors pointing into the
neuron are weighted, and the weighted sum of the inputs are passed
through an activation function before exiting the neuron.

2.2.1.3 Reinforcement learning

Reinforcement learning algorithms are greatly inspired by behaviorism,
in that they consist of agents trying to maximize some reward in a given
environment (i.e., an agent learns from the consequence of its actions).
Popular algorithms within this family of machine learning are Q-learning,
state-action-reward-state-action (SARSA) and Deep Q-networks [71, 87,
108].

These algorithms are often classed outside of the traditional supervised
and unsupervised categories, as it has specific proprieties which make it
suitable for neither. It does not fit into the class of supervised learning as
it does not strictly learn from labeled data, but from a response based on
an action taken. Neither is it unsupervised as we already know a target
reward for which the algorithm should optimize.

2.2.1.4 Deep Learning

Deep learning is a broader class of algorithms which directly relate to
artificial neural networks (ANNs). Deep learning is used to denote “deep”
neural networks, meaning neural networks consisting of many internal
layers. A common misconception is that deep learning only relates to
supervised learning problems. This is not true as there are plenty of “deep”
algorithms related to reinforcement and unsupervised problems as well,
such as Deep Q-networks and Deep belief networks [48, 71]. As for the
work produced in this theses, we will only be using deep learning in the
context of supervised image classification problems, using “deep” CNNs.

2.2.2 Neural Networks (Multilayer Perceptrons)

ANNs or neural networks are computational models, loosely based on the
neurological constructs that make up the “animal” brain. Historically, the
development of networks has been strongly motivated by this biological

27

system but has since diverged and become more a principle of engineering
with the goal of achieving excellent results in machine learning tasks.
Similar to how humans learn, neural networks learn by example. However,
unlike humans, neural networks generally need thousands, if not millions,
of examples before being able to perform nearly as well (although there is
an exciting field of research called one-shot learning, where networks only
need a few examples [32]). This section will cover the basics of supervised
neural networks, starting at the very basic building block, the neuron, and
build up towards how these are organized in networks to perform the
machine learning tasks for which they now are so well known.

2.2.2.1 Perceptron

Artificial neurons, or neurons, are the basic computational units of a neural
network. Typically, neural networks may consist of tens of thousands, or
even millions, of neurons, each working in tandem to solve one specific
problem. To gain some intuition into why these networks work so well,
it is important to have a basic understanding of how each neuron works
individually. In Figure 2.7, we a typical representation of a generic neuron.
It takes three weighted inputs denoted by the three vectors pointing to the
neuron, note that there are no restrictions on the number of inputs. The
neuron performs a weighted sum of its inputs, together with an additional
bias term (typically −1 or 1). The role of the bias term is to shift the output
in a negative or positive direction. The result of this weighted sum is
then passed through a function (often called the activation function and
is denoted by f in Figure 2.7), the purpose of this function is to add some
non-linearity to the solution. This is arguably the most important piece of
the neuron as, without it, a full network of neurons would work no better
than a single one. This function is what differentiates neurons from each
other, as there have been a variety of activation functions proposed over the
years. After passing through the activation function, the output is either
sent to a neuron in the proceeding layer or given as output of the network.

f =

{
0 if ∑i wixi + b ≤ 0
1 if ∑i wixi + b > 0

(2.1)

To get a better understanding of how these neurons may be used in
practice, we look back in history to the implementation of some of the
first neural networks implemented, the Perceptron. Based on the work
done by Warren McCulloch and Walter Pitts (therefore also sometimes
referred to as McCulloch-Pitts Neuron), Frank Rosenblatt developed the
Perceptron between the 1950s and 1960s [84]. The Perceptron is a binary
linear classifier based on threshold logic, structured like the typical neuron
shown in Figure 2.7. The activation function of the Perceptron is a simple
threshold algorithm which fires if the sum of its inputs is greater than 0
(this computation is expressed in equation 2.1). At the time, Perceptrons

28

Input

Hidden

Output

Figure 2.8: A three-layered multilayerer perceptron containing a total of
five computational neurons (excluding the input).

showed much promise in being used as learning devices, from which
Rosenblatt wrote a book on many different Perceptrons and the various
applications. This excitement diminished in the late 1960s when Minsky
and Papert published a book called “Perceptrons”, which analyzed what
Perceptrons could do and showed their limitations. The main issue with
the Perceptron was that it was limited to only solving linearly separable
problems, meaning that it can only distinguish between classes that can
be separated by a single straight line. A typical example used to show
this limitation is taught a perceptron to learn the bit-wise operations AND,
OR, and XOR. A single Perceptron can quickly learn the AND and OR
operation, but it is impossible to learn it the XOR function.

2.2.2.2 Multilayer Perceptron

The solution to the XOR problem lies in the fact that we can combine
multiple Perceptrons in sequence to gain some non-linearity. By using a
two-layered network of Perceptrons, two Perceptrons in the first layer and
one the output layer, we are successfully able to combine the outputs of
each node to solve the XOR problem. In fact, we only require three layers
to build a neural network that can approximate any function according to
the universal approximation theorem [19]. Arranging the Perceptrons in
such a way we get what is called a MLP, and is what we today consider
a “vanilla” neural network. Looking at Figure 2.8, we see each layer is
categorized into one of three classes; input, hidden, and output. The input
layer is where data passed into the network and forwarded to the first
hidden layer (or output layer in the case of a single-layered network). There
are no learned parameters or computations performed in this layer (and is
therefore excluded when referencing the size of a network). The output
layer is always the last layer of the network and is commonly domain-
specific, meaning the number of neurons equal the number of classes to
be classified. In the case of classification, the output layer is typically a

29

classifier (such as softmax), containing a node for each classification class.
The hidden layers are what lies between the input and output layers. Note
that data is always input into the input layer, passes through the hidden
layers, and is output in the output layer. This puts the MLP together
with the feed-forward class of neural networks. These networks employ a
unidirectional data flow, meaning there are no cyclic connections between
neurons. The alternative to this class of networks is recurrent neural
networks, which allows networks to make previous decisions affect the
output of a neuron (sort of like a memory of previous decision).

2.2.2.3 Training a Neural Network

In the previous section, we presented the typical neural network architec-
ture in the form of a MLP. This covered how neural networks are structured
as layers of neurons, each adding some non-linearity to the solution. But
we are still missing a crucial part of what makes neural networks work
so great, how a network learns through updating the weighted connec-
tions between each layer. This section will cover the algorithms used to
update the weights of a typical neural network. This includes a look at
backpropagation, a few optimization functions and how we calculate the
loss of a network.

For supervised neural networks to learn, we need some way of
calculating how wrong the predicted output of the network is. This is done
in a variety of ways and is commonly referred to as the loss function of a
network (also known as the error function and cost function). The most
common method of calculating the loss for a modern neural network is
through the use of an algorithm called cross-entropy, which measures the
difference between the predicted output and the actual ground truth.

C(x, y) = −∑
i

xi log yi (2.2)

Looking at the Equation 2.2, we see how cross-entropy is calculated
where x denotes the predicted output, y denotes the ground truth, and i
denotes the class in question. This function has to attributes which makes
it work particularly well for a loss function. Firstly, it is non-negative,
meaning values will never go below zero. Secondly, the better the network
performs, the closer to zero the loss will be (a loss of zero would be a perfect
score), making it mainly fit for optimization using the typical optimization
method of gradient descent.

Now that we have a way of calculating the score of our network, we
need some way of minimizing this loss. The functions used for minimizing
the loss is often referred to as the networks optimization function, of which
the most commonly used algorithms are based on variations of gradient
descent. Gradient descent can primarily be split into three variants;
batch gradient descent, stochastic gradient descent (SGD) and mini-batch

30

gradient descent. The traditional gradient descent algorithm (batch
gradient descent) takes the entire dataset into account when calculating
the gradient of the loss function with regards to the weights w. This can
be seen in Equation 2.3, where η denotes the learning rate (how much
the weights should update), and ∇w J(w) means the gradient of the loss
function accounting for the entire training set. This method of gradient
descent is typically not used in practice as it is particularly slow and is
limited by hardware memory requirements needing to fit the entire training
dataset. Additionally, batch gradient descent has the issue of converging to
the nearest lowest valley.

w = w− η · ∇w J(w) (2.3)

SGD (Equation 2.4) solves the issues of slow updates and large memory
requirements by performing updates for each training sample (each item
in the dataset). By updating for each training sample, we are also able
to fluctuate the results to potentially find a better local minimum than
that which would be found by batch gradient descent. However, this
fluctuation may cause some issues as well. By continually optimizing for
the local minimum, SGD often overshoots the local minimum, making it
difficult to find the exact best solution. This issue is partly solved by a
technique known as momentum, where we gradually decrease the learning
rate of the optimizer as the number of epochs grows.

w = w− η · ∇w J(w; x(i); y(i)) (2.4)

Mini-batch gradient descent is a compromise between the two methods,
updating weights based on a set number of data samples (a batch size).
This is shown in Equation 2.5, where we that n denotes the of samples
included in each weight update. This is the most popular variant of
gradient decent and has shown to produce the best results.

w = w− η · ∇w J(w; x(i:i+n); y(i:i+n)) (2.5)

The above-explained variants of gradient descent are rarely used as is.
In most cases, we use extended algorithms which help us help us in making
our models converge. An extended look at there algorithms is outside the
scope of this thesis, but to name a few popular ones we have Adagrad,
Adam, and Nadam [22, 23, 54]. For the most part, these extended algorithm
helps us tune the learning rate to have a higher guarantee of convergence
(such as lowering the learning rate after some iterations).

Now that we have explained how to calculate the score of a network
(loss function), and how to update a given set of weights based on
its gradients (optimization function), we now look at the method of

31

applying these methods to our network through backpropagation [86]. The
backpropagation algorithm propagates the error (loss) calculated by the
loss function back through the network to optimize the weights to be closer
to the desired output.

2.2.3 Convolutional Neural Networks

Similar to the MLPs described in the previous section, CNNs are feed-
forward neural networks which learn through similar means (i.e., updat-
ing weights through backpropagation). What sets a CNN apart from tra-
ditional neural networks is that it uses a grid-like topology, making it es-
pecially adept at processing data of multiple dimensions such as samples
taken at regular time intervals or the pixel dimensions of an image. Al-
though a CNN has a variety of use cases, it is today most well known for
its performance on the field of image classification. In the past few years,
CNNs have continuously achieved excellent results in many areas of com-
puter vision, including its domination of the ILSVRC since 2012. The secret
behind the CNNs success lies in its ability to express computationally large
models while keeping the number of parameters3 relatively low. This is
all done by introducing two new concepts to the traditional network archi-
tecture, convolutional and pooling operations. But before diving into the
details of how these two operations work, we first give some background
into why we typically do not want to use a standard neural network for
image classification.

Recall a MLP consists of one input layer, an optional number of hidden
layers, and one output layer. The input layer takes a single vector as input
and transforms it through a series of hidden layers before it is classified in
the output layer. Each hidden layer consists of a set of neurons, each fully
connected to every neuron in the previous layer. Let us first calculate the
number of parameters used by such a network when training on a dataset
consisting relatively small images, such as CIFAR-10 where images are only
of size 32× 32× 3 (32 wide, 32 high, 3 color channels). The input would
be in the form of a single vector with the size 32× 32× 3 = 3072, meaning
with just a single hidden layer consisting of one neuron we already have
3072 learnable weights. If we were to use a network similar to the one
in Figure 2.8, the total number of learnable weights would be equal to
(32× 32× 3× 2) + (2× 2) + 2 = 6150. This might not sound like much,
but we typically do not want to train on images of such small size, and we
typically want more than two neurons in a single hidden layer.

32

0

1

0

1

0
1

0
0

1
1

1

1
0

1
1

1
0

0

1
1

1
0

0
1

1

1

0

1

0

Filters

1

0

1

0

1

3

Feature Map

4

3

4

Figure 2.9: This diagram shows an example of a convolutional operation
on a 4× 4× 1 image using a kernel size of 3× 3× 1 and a stride of 1.

2.2.3.1 Convolutional Layers

The convolutional layer is arguably the most important piece of a CNN. It
is centered around the convolution operation, which sort of blends two
functions together to produce a third function (which in the context of
CNNs is a mixture between the input function and the kernel function). Its
parameters are a set of learnable filters (Sometimes called kernels) with a
set spatial size (i.e., width and height), typically spanning the entire depth
dimension of its input. During the forward pass, each filter slides across
the input, performing a dot product between the weighted filter and input
at any given position. The result is what is often referred to as a feature
map. This is illustrated in Figure 2.9 where we see a filter of size 3× 3× 1
slide across a 4× 4× 1 input to produce a 2× 2 feature map.

2.2.3.2 Depthwise Separable Convolution

In recent years, a new type of convolutional operations has become popular
among CNN architectures, notably Inception and Xception. This new
form of convolution is called depthwise separable convolution and splits
separates the standard convolution into two separate steps. Recall that
the standard convolution convolves simultaneously across both spatial and
cross-channel dimensions. In depthwise separable convolution, these two
operations are separated, by first performing a depthwise convolution,
then following it up with a pointwise convolution. Figure 2.10 shows a
visual depiction of how this works in three-dimensional space.

33

Standard
C× C× D

(a) An illustration of a standard convolutional operation.

Pointwise
1× 1× D

(b) An illustration of a pointwise convolution.

Depthwise
C× C× 1

(c) An illustration of a depthwise convolution.

Figure 2.10: A set of illustrations demonstrating three types of convolu-
tional operations. Note that pointwise and depthwise convolution is used
extensivley in the Xception CNN architecture

2.2.3.3 Pooling Layers

Pooling layers, sometimes referred to as downsampling layers, are com-
monly placed in-between convolutional blocks 4. Their purpose is to re-
duce the spatial size of the internal representation, thus reducing the num-
ber of parameters, number of computations and the ease of large neural
networks. This is typically done through either a max or average pool-
ing [114], which similar to the convolution operation works as a sliding
window across the representation. The values within the window are

3The parameters of a neural network is typically a reference to the parameters learned
by the model itself, this is different from the hyper-parameters which are chosen by the
networks implementer.

4Convolutional blocks are a shorthand way of describing blocks containing many
successive convolutional layers

34

18

8

12

10

12

21

19

9

9

4

10

3

9

8

7

12

18

8

12

10

12

21

19

9

9

4

10

3

9

8

7

12

12

15

7

9

18

21 12

10Max Pooling
2× 2

Average Pooling
2× 2

Figure 2.11: A visual representation of how the max and average pooling
operations work on a two dimensional matrix using stride and pool size of
2.

“pooled” using either operation and placed in the corresponding space of
the output. The size and stride of the window is set during the implement-
ation of the network and is most commonly set to 2 and 2 respectively. This
is shown in Figure 2.11 where we see an example of the two most com-
mon pooling operations, max and average pooling, sliding over the input
with a spatial size of 2 and stride of 2. Note that there are no weights tied
to the polling layer, meaning its only purpose during backpropagation is
correctly routing the gradients.

2.2.4 Deep Learning in the Medical Field

With the ongoing success of applying deep learning methods to almost any
field, it is only natural to start using it to mission-critical areas as well.
In the case of medicine, deep learning has already found its footing in an
array of different medical tasks such as disease detection, drug discovery,
radiology, and epidemic outbreak prediction [3, 10, 49, 69]. This is just a
few examples, but researchers believe that deep learning has much promise
within the field of medicine [39]. As we have previously discussed, our
work will be focused on applying deep learning methods to the area of GI
disease detection and diagnosis.

Applying deep learning to the GI tract is relatively new, with most
research focusing on the detection and documentation of polyps [82,
107]. This is understandable as polyps pose the highest risk for CRC.

35

Additionally, polyps are already well documented beforehand, meaning
there is already extensive datasets containing annotated polyp images. This
is not to say that it is the only area of deep learning application, research
also shows that deep neural networks may be used to detect lesions, detect
bleeding, and detect various other diseases found in the GI tract [50, 77,
115]. In the upcoming two sections, we discuss two issues with applying
deep learning methods to the fields of medicine.

2.2.4.1 Issue of Interpretability

A common issue of applying deep neural networks to the field of
medicine, among other mission-critical areas, is that they are neither easy
to understand or easy to interpret. We do not necessarily mean that their
outputs are difficult to understand, but the process that produces this
output is generally referred to as a “black box”, especially among non-
technical users. This lack of understanding can often lead to a trade-off
between intelligibility and accuracy. Where traditional statistical models
such as logistic regression and decision trees are preferred over the high
accuracy yielding neural networks.

A good example of this took place in the 1990s, where a large multi-
institutional project was funded by Cost-Effective HealthCare (CEHC) to
evaluate the use of machine learning algorithms on important problems
within health care, using the prediction of pneumonia risk as an example [9,
17]. The goal of this study was to predict the probability of death for
patients with pneumonia such that high-risk patients could be submitted
to the hospital, while low-risk patients were treated locally before being
sent home. After conducting their experiments, they found that the neural
network based algorithms outperformed the traditional methods such
as logistic regression by quite a large margin (0.86 compared to 0.77).
Although the neural network based model was undoubtedly the most
accurate one, the team decided it was too risky to apply this method to
real-world patients, and adopted the logistic regression method instead
because the rules for classification were more intelligible than those for the
neural network. This goes to show that having a good understanding of
the internal workings of applied algorithms is an essential piece in gaining
the trust and adoption of the medical community. Now, even though this
study was conducted in the mid-1990s, deep learning based algorithms
have not become any more interpretable, one could argue that they have
become less so, as new architectures using hundreds of layers have become
commonplace in the high performing models.

2.2.4.2 Issue of Data

As we briefly discussed in Section 2.2.2.3, deep neural networks typically
need to train on large amounts of data to obtain a high level of classification
performance and generalizability. This is among the most significant

36

hurdles when it comes to its application in the medical field. Finding
large public datasets related to medical imaging is difficult in itself, but
this dataset must also refer to the problem at hand, i.e., it may be easier
to find a large dataset of polyp related images (as they are commonly
documented) than a dataset containing images of inked polyps (as they
are not commonly recorded). This is an issue as both datasets would
be meaningful in their own sense, but cannot be used interchangeably.
In addition to this, there is the issue of having the data annotated by
a trained expert within each respective field, i.e., preferably a trained
gastroenterologist for GI related images. This is mainly due to a lack of
experts within the respective medical field willing to perform the tedious
work of manually annotating thousands of medical images. Work has been
done to make this process easier, such as batch annotation through the
use of various unsupervised clustering methods. But there is still an issue
with fundamental ethical and privacy concern when handling any form of
medical data.

2.2.5 Opening the Black Box of Neural Networks

As previously mentioned, deep neural networks have become a crucial
tool in a variety of applications and extensively used in a wide range of
academic research. However, it is often essential to verify that for a given
task, the measurement accuracy and performance is due to the specific
problem at hand, and not due to artifacts or noise present in the training
data. This has been a frequent criticism of deep learning methods as
they are often used a “black box”, without question of whether or not the
predicted classes are in fact being detected. For some areas, this might
be acceptable. But in mission-critical fields such as medicine, the criminal
justice system, and financial markets, this has been problematic as being
able to understand, validate, and trust the output of these models is very
important. The consequence of this is that many critical areas choose to
implement simpler, less accurate models, as they are often more intelligible
when compared to most deep learning methods. With the performance
of deep neural networks often tied to their “deepness”, we do not foresee
this problem being solved by its own. With a goal of gaining a deeper
understanding of the decisions made by a deep neural network, motivated
by achieving the right amount of trust and increased intuition on ways
to boost the performance of these methods, a new field of research has
emerged with a focus on the interpretation of deep neural networks.

2.2.6 Visualization Techniques

To build trust among those who use the systems built on neural networks,
we must develop transparent models which can explain why they produce
a given result. These explanations must be easy to understand as
most users will neither have the technical or mathematical knowledge

37

(a) Input Image (b) Backpropagation (c) Deconvolution (d) Guided Backpropaga-
tion

Figure 2.12: A comparison of three gradient based saliency maps. Images
taken from Selvaraju’s blog [91] 5

to understand how such as system works at a fundamental level. A
commonly used practice among deep learning practitioners is using
visualizations such as heat maps and saliency maps to gain a better
understanding of a models faults, thus increasing the intuition to rectify
these issues through additional training. These visualizations, however,
are often lost when serving the model to the non-technical end users, i.e.,
visualizations are only used in the production of high-quality models, not
used to give end-users a better understanding of why a network returns a
given result.

But before we start looking at various visualizations, we must first
define what makes a good visualization. As CNNs are classification mod-
els, visualizations which are class specific are preferable, i.e., visualizations
which can be used to localize a target class within the given image. Addi-
tionally, these visualizations should capture the minute detail of the image,
i.e., visualizations should be high-resolution without losing quality. Vari-
ous methods have been proposed over the past few years, but as for the
scope of this thesis we have decided focus solely on the visualization of
deep CNNs in the context of image classification, although much excit-
ing research is being done on understanding other types of networks as
well [52]. In the following few sections, we give a brief introduction to
various types of visualization methods in the form of saliency maps and
heat maps.

2.2.6.1 Generating Pixel Level Saliency Maps

A standard issue among early CNN visualization methods was that
they were mostly limited to the initial layers where the projections can
be mapped directly back to the input image pixel space. Interpreting
latter layers are tricky, as typically represent features which are more

5https://ramprs.github.io/2017/01/21/Grad-CAM-Making-Off-the-Shelf-Deep-
Models-Transparent-through-Visual-Explanations.html

38

Forward Pass
Relu

-5

-3

1

9

-4

15

2

-1

3

0

0

1

9

0

15

2

0

3

Backward Pass
Relu

0

0

1

-4

0

-3

-2

0

3

4

-2

4

-4

-1

-3

-2

7

3

Backward Pass
Deconv Relu

4

0

1

0

0

0

0

7

3

4

-2

1

-4

-1

-3

-2

7

3

Backward Pass
Guided Relu

0

0

1

0

0

0

0

0

3

4

-2

1

-4

-1

-3

-2

7

3

Figure 2.13: This is a diagram showing how the guided ReLU operation
works compared to a traditional ReLU operation. Note that in the guided
ReLU operation, all values under 0 are set to 0 (including the values under
0 during the forward pass). Note that the yellow colored cells represent
negative values, orange colored cells represent the thresholded valuies in
the forward pass, and red colored cells represent the values set to 0 in each
operation.

complicated and correspond to a combination of lower level features [25].
In 2013, Zeiler et al. proposed a method which aims to resolve this
issue by presenting a way of mapping these activations back to the
input pixel space, thus creating feature maps directly correlated to the
input image [110]. This mapping is done using a deconvolutional
neural network [111], which in simple terms a can be described as a
reversed CNN, i.e., instead of mapping pixels to features, it does the

39

opposite. The deconvolutional neural networks were initially proposed
as a form of unsupervised learning but are here merely used as a tool to
inspect an already trained CNN. Without getting too specific on the exact
operations, the deconvolutional neural network employs deconvolutional
layers and depolling layers in place of convolutional layers and polling
layers respectively.

As we discussed in Section 2.2.3, a typical CNN consists of convolu-
tional layers, followed by some non-linearity (often rectified linear unit
(ReLU)), and is then optionally followed by a polling operation. For decon-
volutional based visualizations, we attach the deconvolutional counterpart
to each of the corresponding convolutional layers, i.e., we attach decon-
volutional layers to convolutional layers and depolling layers to polling
layers. To generate the visualizations, one selects a single feature map from
a selected convolutional layer, then pass this filter through the deconvolu-
tional network. The result is a generated image showing what is detected
in a given feature map. As we previously discussed, the initial layers of a
typical CNN detect basic features such as edges and colors, with features
becoming more abstract as layers progress. This theory can be visualized
using the deconvolution approach using feature maps from the first layers
and the last layers. Looking at Figure 2.12c, we see some example visual-
izations using the deconvolutional approach. This is an improvement over
the straight mapping of activations, but do not exhibit any class-specific
properties.

In the same year Zeiler and Fergus [110] proposed the deconvolu-
tional method of generating image feature map visualizations, Simonyan,
Vedaldi and Zisserman [96] proposed a generalized method displaying
class-specific properties together with a much simpler implementation.
This generalized method is based on the gradients produced during back-
propagation by taking the derivative of the projected output of a CNN
with respect to an image. This greatly simplifies the method proposed by
Zeiler et al. as we only need a single backward pass to produce the saliency
map. Similar to the deconvolution approach, this gradient-based method
aims to show which pixels are most significant in the classification of the
given image using a certain class. However, as we see in the example im-
age shown in Figure 2.12b, mapping “raw” gradients produce images that
are quite vague, noisy and not distinct. Springenberg et al. [98] proposed
a solution to this problem. By making a slight change to the ReLU activ-
ation, they were able to reconstruct images which were significantly more
accurate, especially for the last layers of the network. An example of these
improved gradients can be seen in Figure 2.12d.

In sum, the main difference between the three methods of generating
saliency maps is the way they handle the non-linearity, i.e., ReLU.
Figure 2.13 shows an overview of the three variations of ReLU used. Of
the three methods discussed, we use the guided backpropagation method
as this yields the best results.

40

2.2.6.2 Generating Class Discriminate Activation Maps

A popular computer vision task is the localization of objects through
bounding boxes or object segmentation. Typically, in order to train a
network to create these boxes, we need the standard annotated image
dataset in addition to a dataset containing the localization of each object,
i.e., a corresponding dataset showing where the class in question is located
inside the given image. Under training, the loss is then calculated by
how well the predicted bounding box compares against the ground truth.
As some fields already have an issue with finding datasets containing
labeled data, this additional requirement is even more cumbersome. In
2015, Zhou et al. discovered that the layers of a CNN could act as object
detectors without any supervision, i.e., without the need for annotated
bounding boxes [113]. However, this ability was lost when using fully-
connected layers before classification. A recent approach in reducing the
parameters of a CNN is replacing fully-connected layers with polling
layers. It turns out that using global average pooling (GAP) layers in
place of the fully-connected layers before classification retains the object
localization features. These visualizations were coined class activation
maps (CAMs) because of their class discriminate features.

Building on the work done by Zhou et al., Selvaraju et al. proposed
a new method of generating these CAMs without the need for altering
the existing architecture [92] called gradient-weighted class activation
mapping (grad-CAM). By performing GAP after calculating the gradients
of a given convolutional layer, Selvaraju et al. was able to apply the CAM
technique to a variety of different architectures and for entirely different
purposes. In essence, to produce these visualizations we first calculate the
gradient of target class C with respect to the feature maps of a convolutional
layer. These gradients are then run through a GAP operation to get the
most important weights of class C. The resulting weights are then passed
through a ReLU function to produce the final grad-CAM. It is important
to note that if the existing architecture is already CAM compliant, grad-
CAM produces the same localization maps as a standard CAM. In the same
paper, Selvaraju et al. proposed another visualization method of combining
the class discriminate properties of the grad-CAM with the pixel level
quality of saliency maps. To do this, one performs a linear combination
of the grad-CAM with saliency map, specifically guided backpropagation,
to produce what they called a guided grad-CAM. For the work done in this
thesis, we use both the grad-CAM and guided grad-CAM to give users
a better understanding of the analysis performed by our trained neural
network based models.

2.3 Summary

In this chapter, we discussed the background and related works of the
fields related to our three primary research objectives. This included a

41

case study on the GI tract, where we looked at various types of endoscopy,
two of which (colonoscopy and gastroscopy), are the current conventional
methods of inspecting the upper and lower GI tract. Regular screening of
the GI tract is essential for the discovering of disease, which in some cases
may be life-threatening.

In conclusion, we learned that the current state of endoscopy reporting
is generally considered weak, and depending on the complexity of the
report (number of notable findings), they can take upwards towards 15
minutes or more to make. These aspects lend themselves well for automatic
generation, as much of this work is repetitive, it can be much improved
through the use of modern automation methods such as deep learning.
However, for such systems to be trusted and accepted into the medical
domain, the underlying analysis must be understandable and interpretable
by the medical experts using them. Based on these open questions, we
researched and developed an automated reporting system which makes
the neural network based analysis transparent through the use of various
intermediate visualizations, and enables the user to use this information to
generate an editable, standard-compliant medical examination report. This
system, called Mimir, is presented in the next chapter.

42

Chapter 3

Mimir: An Automatic
Reporting System for
Endoscopic Examinations

With the goal of aiding medical doctors in the analysis and documentation
of GI endoscopies, and to further increase the understanding and trust
in a neural network based automated detection systems. We developed
a system, Mimir, which attempts to make the analysis performed by a
deep neural network understandable through intermediate visualizations
of a CNNs inner layers [44–46]. As we discussed in Section 2.2.4,
understanding the algorithms behind a diagnosis is essential because of the
high-risk often associated with medical decisions, e.g., a cancer diagnosis.
Also, Mimir includes tools for generating endoscopy reports through a
web-based interface, with options for attachment of images related to the
systems suggested diagnostic.

The motivation behind this system is broadening the acceptance of
deep learning within the medical community, and improving on the
general lack of standardization and quality among colonoscopy reports
(which was discussed in Section 2.1.7), something which an automated
system may very much improve. This relates back to the three research
objectives stated in Section 1.2. A complete overview of Mimir can be
seen in Figure 3.1, which shows the expected workflow, beginning at the
endoscopic procedure (colonoscopy, gastroscopy, etc.), and ending at the
generated report. Please note that the system is not complete, it is merely
a prototype and requires further work to be production ready in a medical
environment. As such, we will be discussing Mimir as it is in its current
state. As of now, Mimir mainly consists of three main functionalities, each
related to the requirements set in Section 1.2.

1. The system was designed to aid medical doctors in making informed
decisions regarding the diagnosis of diseases found during examin-

43

ations, such as diagnosis of disease found in the GI tract during a
colonoscopy.

2. Mimir creates automatic reports based on the automatic analysis of
images and videos and reduces the time spent on the administrative
tasks that follow an endoscopic examination, e.g., documentation by
written reports. This is shown in Figure 3.1 where a doctor uses
the system to understand the analysis done by the neural network
and use this information to reach a diagnosis and generate the
accompanying report.

3. Mimir can be used by researchers and engineers designing deep
learning architectures such as CNNs to gain a better understanding of
the evaluation and reactions of their models, e.g., by understanding
which parts of an image confuse the algorithm and if additional pre-
processing steps are needed.

This chapter will give a detailed look of Mimir, starting with a technical
overview, we discuss the various tools and technologies used for the
implementation of Mimir’s server and client. Here we will mostly present
and argue the use of these technologies, showing how they affected the
development of Mimir, and on what premise they were chosen. With
a basic understanding of the technology behind Mimir, we present a
detailed look at each tool included in the system. Starting with the
neural network dissection tool, we show how it may be used to gain a
deeper understanding of a CNNs decision process through analysis of the
intermediate layers of a CNN. Secondly, we look at the report generation
tool, which aims to assist medical doctors in writing endoscopy reports
through a what you see is what you get (WYSIWYG) interface. With a
thorough look at each tool complete, we end this chapter by looking at
some use case scenarios which we imagine Mimir would be a good fit.

3.1 Mimir

Mimir [44–46] is structured around a client-server architecture. The benefit
of this arrangement is offloading the computational costs of deep learning
onto a reasonably powerful central server, which any client can make use of
without having to worry about hardware requirements. Additionally, our
client is implemented as a web application, which has the added advantage
of being easily accessible from any device that supports a modern web
browser. In our case, the client and server code are separated into their
respective directory and workflow, making it easy to develop and run them
independently.

As with most modern software projects, Mimir is not written from
scratch, but with the aid of various tools, libraries and frameworks. To
keep a certain level of quality and maintainability, we decided to set some
ground rules to which technologies would be used in the development of

44

Image
or Video

Server

Figure 3.1: This diagram shows a complete overview of the Mimir system.
Starting at the endoscopic procedure, image or video data is collected and
sent to a central server. This server is accessed by a medical doctor through
a web-interface where he/she can perform analysis on the endoscopic
media. Based on the performed analysis, the doctor can generate a report
using the WYSIWYG editor and produce the final endoscopy report.

Mimir. These criteria are not necessarily there to be followed slavishly,
but more to make a mental note of whether or not a certain technology
is necessary. The criteria are listed below:

• The technology in question should be mature, and widely used in
the industry. The reason behind this is that we want to use tools
which are thoroughly tested,x where we do not need to waste time
on anything else but our bugs. In addition to this, it is important that
the software is (to an extent) easily maintainable by developers other
than the author. This is especially true for open-source software as it
is available to the public.

• The technology in question should save us significant time in one way
or another. If we can implement the functionality ourselves, we will
do so. The main reasoning behind this is that by limiting the number
of dependencies, we have more control over the software that we
develop. In addition to this, we would like to avoid bloat that often
comes with libraries where we only need one piece of functionality.

With these requirements in mind, we started the development of Mimir.
In the upcoming sections, we take a closer look at the front-end and back-

45

Action Dispatcher Store View

Action

Figure 3.2: This diagram shows how data flows when structuring a project
using the Flux pattern. We see that it starts with an action being triggered,
this could be through some deliberate interaction done by the user or an
automatic request sent by the application. This action is passed into a
dispatcher, which signals the store to update the internal state according
to the described action. As the store is updated, the view notices a change
in its state and updates accordingly. Note that it is impossible for the view
to directly modify the store, all steps must be performed in sequence.

end implementation of Mimir, with an additional part for the use of deep
learning libraries.

3.1.1 Front-end Architecture, Tools and Technologies

Mimir’s front-end (client) is developed using a combination of HTML5,
Sass, and JavaScript. HTML5 is the fifth and latest version of the
Hypertext Markup Language (HTML) standard, and is the standard
markup language for creating web pages and web applications. Sass is
a well known and widely used extension to the Cascading Style Sheet
(CSS) language, which adds some additional features such as support for
variables, functions and module imports. It is fully compatible with all
versions of CSS, so the cost of including this in our project negligible.
Mimir is written using single page application (SPA) principles, meaning
that a single web page is loaded and dynamically updated as the end-
user interacts with the application. This is mainly done through the use of
JavaScript features such as AJAX and direct modification of the document
object model (DOM). The system’s front-end is mostly developed using
JavaScript (accounting for roughly 80% of the codebase), using the latest
standard of ECMAScript (ECMAScript 2017). As such, the remainder of
this section will be discussing the JavaScript applications architecture.

In recent years, modern websites have become more dynamic or
“desktop-like”, and are starting to replace many traditionally desktop-
based applications, such as word processors or accounting systems. This
phenomenon is commonly referred to as web 2.0 and can be seen across
all fields of software. These websites, often referred to as web applications,
are mainly dependent on JavaScript to make the user experience fluent and

46

without hiccups (e.g., removing the need for page refreshes), resulting in
monolith sized applications written purely in JavaScript.

In Mimir, we use the web interface library ReactJs (React) [31] to
achieve this “desktop-like” environment. React is a user interface (UI)
library developed and maintained by Facebook, which has been growing
in popularity ever since its release a little over five years ago (March of
2013). It uses a concept known as the virtual DOM to quickly update the
contents of a web page. Choosing a JavaScript library/framework as a base
of our application is an important decision as it will have profound effects
on how we organize our project and may potentially limit the compatibility
with other libraries. At the time of starting Mimir, we limited our choice
of framework down to three potential candidates; React, Angular, and
Vue [31, 38, 100]. Of which, React, and Angular have undoubtedly the
largest market share, with Vue quickly gaining traction within the web
development community. We decided to use React because of its JavaScript
centric design, significant market share (compared to Vue), and relatively
light size (file and feature wise) compared Angular. One could argue
why we decided to use a framework at all, as our codebase is relatively
small and could probably be developed without the need of any of these
frameworks. This decision mainly came down to the ease prototyping
and ingrained structure imposed by using such frameworks. At the
start of Mimir, we did not know exactly how extensive the application
would be, meaning we did not want to have to migrate our application
mid-way through development, so we decided to play it safe an start
using a framework from the beginning. Additionally, our sole developer
was already familiar with the frameworks in use, alleviating us from the
learning curve associated with using new technology.

From a front-end architectural point of view, Mimir is implemented
using the Flux pattern [29], which in recent years has become popular
among web applications. Unlike the more traditional model-view-
controller (MVC) [67], flux uses a unidirectional data flow, making the
application state and data flow less complicated and easier to reason about.
In general, Flux consists of three major parts; a dispatcher, stores, and the
views. As a user interacts with the web-interface (view), the interaction
triggers an action, of which the dispatcher signals various stores to update
the application state, which in turn, is reflected in the affected application’s
interface. A basic illustration of the general Flux process is shown in
Figure 3.2, which shows the underlying agenda of how state moves in a
single direction as denoted by the directed vertices. In Mimir, this pattern
is implemented using a library called Redux [80], which simplifies the Flux
pattern only to use a single store (meaning all application state is located
in the same place). This library goes hand-in-hand with React, so it was a
natural choice.

As a means to test the web application, Mimir includes an automatic
test suite implemented in Jest and Enzyme [2, 30]. Jest is JavaScript testing
framework developed and maintained by Facebook and works with React

47

out-of-the-box. Enzyme is a testing utility, specifically used to aid in testing
React components. Automated tests are essential for any application, but
as Mimir is marketed as opensource, tests are especially important as
contributing members need an easy way to see if their contributions break
anything in the main codebase.

3.1.2 Back-end Architecture, Tools, and Technologies

Mimir’s back-end (server) is a python based representational state transfer
(REST) [81] API, implemented using the microframework Flask [34]. Flask
is a microframework based on the Werkzeug toolkit and Jinja2 templating
engine. It is referred to as a microframework because it aims only to include
the core features of a modern web framework, and instead of bloating it up
with potentially useless features, make it easy to extend through the use
of first and third-party plugins/extensions. In contrast, the typical “fully-
fledged” framework used for python development is Django, which comes
out-of-the-box loaded with multiple features such as an administration
panel, database abstraction through a built-in object relational mapping
(ORM), and web templating engine to name a few. Choosing Flask over
Django comes from a minimalist point of view, as we would rather begin
small and build towards something bigger. Additionally, Mimir was never
intended to be a production-ready product at the end of this thesis, so
using such a “heavy” framework would most likely get in the way rather
than save us time. For the most part, Mimir’s server is used to interact
with the underlying neural network. Mimir uses a SQLite database to hold
necessary information about uploaded images and CNN models.

As previously discussed, Mimir is structured as a REST API, meaning
it exposes simple stateless endpoints for interaction with various parts
of the system. The advantage of using a REST based architecture is the
complete separability between server and client, meaning one could easily
separate the two and only use the API exposed by the server. As of now,
the endpoints exposed by Miimr fall into one of three categories:

• Endpoints related to uploading, modifying and deleting images and
videos from the system.

• Endpoints related to uploading, modifying and deleting CNN classi-
fication models to be used for multimedia analysis.

• Endpoints related to the analysis of multimedia.

Images and videos uploaded to Mimir are stored in the SQLite database
together with an identifier and basic meta-information. As videos are
uploaded, they are automatically split into individual frames and stored
together with the uploaded images. The identifiers are later used for
retrieval when requesting an analysis, which takes the form of either
classification or the generation of various visualizations. Classifications

48

and visualizations are stored together with their respective image as
requested. The CNN models used for analysis follow a similar pattern to
that of the multimedia endpoints. Using the API, one can upload, modify,
remove and selected models for use in Mimir. Analysis endpoints allow
for the classification and visualization of various layers of a selected neural
network. Additionally, it exposes an endpoint for a full analysis, which
bundles all forms of classification and visualization into a single request.

3.1.3 Deep learning Tools and Technologies

As the popularity of deep learning has increased over the last few years,
so has the number of deep learning libraries and tools used to aid in
the development and implementation of these algorithms. Some of these
libraries are better suited for specific scenarios, such as targeting particular
architectures or distinct problem sets. Some libraries even come with pre-
trained networks, making it very easy to get started using various popular
neural network architectures. In this section, we will give a brief overview
of some of the most prominent deep learning libraries commonly used
in real-world applications and research. Please note that there seems to
be some confusion surrounding the terms library and framework when
it comes to the description of these deep learning technologies, so for
consistencies sake, we will be referring to all the described technologies
as libraries unless explicitly stated otherwise.

As we have previously discussed, training a deep neural network
is computationally expensive, and may take a long time depending
on the machine used to train it. The resurgence of deep learning in
computer vision tasks is primarily due to the introduction of powerful
graphics processing units (GPUs), allowing for high parallelization among
its many neurons used for computing. GPUs are exceptionally well
suited for deep learning as a typical neural network consists of layers
containing many identical neurons which may efficiently be computed in
parallel. Additionally, there are other benefits such as a higher memory
bandwidth when compared to a central processing unit (CPU). This is
an important consideration when choosing a deep learning framework,
as not supporting GPUs would result in significantly longer training
time. Thankfully, most libraries now fully support GPUs, although they
are typically aimed towards Nvidia produced GPUs, with few openly
supporting AMD GPUs.

In an effort of making the deep learning accessible and easy to use,
yet still, keep it computationally efficient, most deep learning libraries
utilize an interface language, often called host language, different from the
underlying implementation. This means that much of the mathematical
complexity is abstracted away, and the researcher can entirely focus on
the implementation of the network in question, without having to worry
too much about the efficiency of the mathematical operations. The
host language is generally implemented in a high-level language, most

49

Library License Interface Opensource CPU GPU Graph

Tensorflow Apache 2.0 Python, C++ Pre-built

Torch BSD license Lua, C Pre-built

PyTorch BSD license Python Dynamic

Caffe BSD license
Python, C++,

MATLAB Pre-built

Theano BSD license Python Pre-built

Deeplearning4j Apache 2.0
Java, Scala,

Clojure, Kotlin Pre-built

CNTK MIT license Python, C++ Pre-built

Keras MIT license Python, R Pre-built

Table 3.1: A brief overview of some of the most prominent deep leanring
libraries as of 2018.

commonly Python, making it accessible among scientists who may not be
programmers by trade.

Most deep learning libraries utilize symbolic computing, meaning the
host language describes an underlying computational graph, which is the
compiled and executed. A comprehensive look at computational graphs is
outside the scope of this thesis, but in simple terms, a computational graph
is a directed graph where the edges correspond to either operations or
variables. This allows for efficient use of memory and fast execution as all
operations are known before runtime, in contrast to imperative programs
where one must account for all possible outcomes. The downside of such
an architecture is that it must be setup before execution, not allowing for
the dynamic execution of code as the graph is being computed. This has
partly been solved through the use of a dynamic computational graph [65],
implemented in various libraries such as PyTorch [74].

Most deep-learning libraries come with pre-built and pre-trained
models, which may be used straight out-of-the-box. This is useful for
the most common computer vision tasks which relate to objects found in
everyday life, e.g., cats, dogs, flowers, etc. But when it comes to medical
imaging data, one can assume that these models won’t work quite as well
and need some form of tuning before being served. This may be in the way
of training a network from scratch or using transfer learning (explained in
Section 4.1).

As previously mentioned, there are plenty of deep learning libraries
on the market today. Looking to choose a library which fit our needs,
we decided to narrow the selection down to the most prominent libraries
on the market today. The libraries we considered were Tensorflow, Torch,
Pytorch, Caffe, Theano, Deeplearning4J, CNTK, and Keras [12, 15, 74, 90,
101, 103]. A brief over of each library can be seen in Table 3.1. In the
end, we decided to use Keras as merely because of its simplicity. Keras
comes with several pre-trained CNN architectures, making it quick and

50

Figure 3.3: The web based user interface of the neural network dissection
tool included in Mimir.

(a) Original image (b) Grad-CAM (c) Saliency Map (d) Grad-CAM

Figure 3.4: Image representations used by Mimir to explain the internals of
a deep convolutional neural network.

easy to get started experimenting with various deep neural networks. In
addition to this, Keras also includes various tools for data preparation
and data generation, making training a neural network from scratch (or
through transfer learning) relatively easy. Although the base API of Keras
is quite simple, it still allows access to the complexity of the underlying
back-end. This is done through Keras’s back-end, which translates the called
operations into the used back-end counterparts. We use the Keras back-end
API to produce the various visualizations of Mimir, which we will go into
more detail in Section 3.2.

51

Original Block 1 Block 2 Block 3 Block 4 Block 5

C
A

M
Sa

lie
nc

y
G

ui
de

d-
C

A
M

Figure 3.5: An image of the class “polyp” being visualized by a VGG-19
based model at the last layer of each convolutional block. Note that the
saliency image is not presented in Mimir, but generated as an intermediate
step to produce the guided-CAM.

3.2 Neural Network Dissection Tool

As we briefly discussed at the start of this chapter, part of the Mimir’s
objective is to make the analysis of deep CNNs transparent enough that
a non-technical user may be able to understand what features of a given
image lead to the model suggesting a diagnosis. This phase is supported by
the neural network dissection tool, which attempts to demystify the inner
workings of a deep CNN by presenting a variety of visual representations
of the given image, seen as by the network, as the image moves through its
various layers. Each of visualization gives a slightly different perspective
of what the network is “seeing” at a given point the network (layer) for a
target class. Through the use of this tool, the user may verify that the object
itself signals an object detection, and not by noise or other artifacts. This
is not only useful for medical doctors who need additional background
to give a thorough diagnosis but may also be handy for researchers
needing a way to diagnose issues within a trained CNN, of which the
tool may give pointers to additional pre-processing steps that might lead
to better results (classification performance and generalizability). An
example of the three visualizations generated for a given image is shown
in Figure 3.4, where we see the original image (Figure 3.4a) together with
the grad-CAM (Figure 3.4b), saliency map (Figure 3.4c), and guided grad-
CAM (Figure 3.4d) visualizations.

52

The tool works for both images and videos, with videos being split
into individual frames and processed one by one, in the same way as
for single images. In its current state, the only way to get data (images
or video) into the system is by manually uploading content through the
upload button located in the upper right corner of the UI (as seen in
Figure 3.3). In a deployed system, it would be natural that frames would be
captured directly from an ongoing colonoscopy through a live video stream
in addition to this manual option.

As an image or video is uploaded to the system, it is automatically
scanned and classified into the categories of the underlying CNN. The
user is then presented with the uploaded material as seen in the right
pane of the UI (Figure 3.3), and can from here select an image/frame for
further analysis. Note that each image in this panel has a label, this label
corresponds to the classification it got under analysis. Upon selection,
visualizations are generated on the fly based on the selected image, a
target layer, and a target class (target layer and target class have a default
value if not selected). Once the visualizations are complete, the user is
presented with the predicted image class, a grad-CAM visualization of
the image, a guided grad-CAM visualization of the image, a list of the
convolutional layers corresponding to the selected CNN, and a list of
possible categories accompanied with each respective probability. From
here, the user can select different target classes and target layers to generate
further visualizations. Selecting different target classes may be useful when
there are traces of multiple classes within the same image. By targeting
different classes, the user can view what regions of an image directly
correlate to the predicted output of the system. For example, if a polyp
is discovered near the cecum, the system is likely to give a relatively high
probability for both the polyp and cecum class. By targeting each of these
classes, one will be able to see which regions of an image directly correlate
to the given probability (hopefully the area surrounding the polyp), and
which areas correlate to the cecum probability. For layer selection, the
system defaults to the last convolutional layer of the CNN, showing what
the network recognizes right before it makes its prediction. For the most
part, this is what we want. But it may also be useful to look further back
in the network to see what less abstract features are detected in previous
parts of the network. An example of this is shown in Figure 3.5, where we
visualize an image containing a polyp at the last convolutional layer of each
convolutional block of a VGG-19 CNN. Looking at the last convolutional
block in the figure, we see that the network correctly detects the polyp
located in the central region of the image, verifying that the network at the
very least has some notion of what features relate to polyps. Please note
that the saliency map is not viewable from the Mimir’s UI. We decided to
exclude this representation as it did not add any meaningful information
to the classification process not already present within the grad-CAM
and guided grad-CAM representations. It is however needed to produce
the guided grad-CAM visualization, so it still plays a pivotal role in the
generation of these visualizations.

53

Figure 3.6: The upload dialog presented to the user when uploading new
models to Mimir. Please note that it requires both a model file and class
file, with the model file being a Keras HDF5 model file, and the class file
being a JSON file foramtt as seen in Figure 3.7.

Figure 3.7: An example of the contents of a class file, formatted as required
by Mimir for uploading new models to the system. Please note that the
file is in complience with the JSON standard, using a key-value store to tie
relations between class id and label.

In its current state, Mimir has official support for a variety of standard
CNN architectures, including VGG-16, VGG-19, Inception (v3), ResNet-50

54

and Xception. For this work, we focused on this small list of architectures
as we needed a starting point for the system. Although the official support
is limited to the models described, it should work on any CNN architecture
as long as it contains convolutional layers. To add additional models, one
can manually upload a Keras HDF5 model file, which will automatically
be added to the system’s database and ready for immediate use. This
feature is currently limited to Keras HDF5 files, as our implementation
is based on this assumption. To upload new models to Mimir, one starts
by clicking the “Upload Model” button located in the upper right part
of the UI. This brings up a dialog (shown in Figure 3.6) where the user
can set some meta-information about the model, such as its name, its base
architecture, the dataset used to train it, and a brief description noting other
features one may wish to include. In addition to a model file, a class file
in the form of a simple key-value JSON file is needed in order to match
labels to the given prediction of the model correctly. This JSON file must
list the index and label in key-value pairs as shown in Figure 3.7. After a
model has been successfully uploaded to the system, one can manage all
uploaded models through the model manager (shown in Figure 3.8), which
is opened through the button labeled “Manage Models” located to the right
of the “Upload Model” button. Here the user sees a list of all uploaded
models and has the option to activate, modify or delete models from the
system. Upon activating a model, it is automatically loaded by the server
and ready to use once the UI has finished loading. One can verify what
model is selected by looking at the title located between the two before
mentioned buttons, which may also be clicked to get a brief overview of the
currently active model. As one may think, this feature is not intended for
medical doctors or non-technical end users. It is mostly targeted towards
researchers or other professionals testing various models without having
to reload the system every time one wants to switch model. Additionally,
it played an essential role in our experiments when diagnosing issues with
the Kvasir (v2) dataset, which will be covered in Chapter 4.

Now that we have a good understanding of how the neural network
dissection tool is used, we will in this section take a more detailed look
at the generated visualizations used to give context to the prediction
of a deep CNN. As we previously mentioned, the three visualizations
generated by Mimir is a grad-CAM, saliency map (made through guided
backpropagation), and guided grad-CAM. Of which, the grad-CAM and
saliency map is created independently from each other, and the guided
grad-CAM being a combination of the two. We use the guided grad-
cam representation together with a grad-cam to give two perspectives on
what the CNN is “seeing” when making its prediction, which in turn will
hopefully distill a higher amount of confidence in the correctness of the
network in use. Principally, the grad-CAM and guided grad-CAM show
the same information, albeit the guided grad-CAM includes a bit more
detail, we decided to include both as the grad-CAM may be more evident in
its explanation. The overall visualization process can be seen in Figure 3.9,
and the following explains it in a bit more detail.

55

Figure 3.8: Mimir includes a model manager for managing all uploaded
models. From here the user may activate, modify or delete any previously
uploaded model.

The visualization process starts once the user has selected an image,
layer, and class for further inspection. With an image, target layer and
target class chosen, we calculate the gradient of the target layer using the
loss of the target class in regards to the image. These gradients are globally
average pooled to get the weights, which is multiplied by the output of
the target layer and passed through a ReLU function to produce the grad-
CAM. The grad-CAM is then re-sized back to the original dimensions of
the image and has its values squashed between 0 and 1 before applying a
blue-red heat map filter.

To generate the saliency map (done through guided backpropagation),
we start by replacing the activations of our original network with a
modified ReLU function. During backpropagation, a traditional ReLU
would let all gradients whose inputs were larger than 0 pass. We change
the ReLU by adding the additional rule of discarding all gradients that
are below 0, thereby only back-propagating the positive influence on the
activations. With this modified network, we calculate the gradients of the
target layer with respect to the input image, i.e., these gradients represent
our saliency map.

Once the grad-CAM and saliency map has been computed, we multiply
them together to produce the guided grad-CAM representation. As
one can deduce from this process, the grad-CAM representation is class
specific visualization, which looks at what areas of an image activates the
most based on the loss of a given class. The saliency map is not class
specific, showing only what areas of the image have a positive influence
on activation. Although not class specific, it gives a more detailed look at

56

Layer
and class
selection

CNN

Visualizer

Figure 3.9: An overview of how we produce the two visualizations
included in the image analysis, and how it is presented in the user interface
where a visualization of the different convolutional blocks can be selected.

what features are being detected at any given layer. By combining these
two visualizations, we can get the best of both representations, taking the
class-specific properties of the grad-CAM and applying them to the pixel-
detail features of the saliency map.

3.3 Report Generation Tool

To support documentation phase of a completed endoscopy, Mimir
provides a basic tool for generating endoscopy reports. A screenshot
of the tool can be seen in Figure 3.10, where we see the preview of a
sample colonoscopy report produced by the system. As we discussed
in Section 2.1.7, the quality of endoscopy reports is undoubtedly lacking,
with many reports being submitted incomplete and with a lack of
standardization [51, 61]. This tool aims to aid in this issue through the
use of a WYSIWYG interface, where doctors can make direct modifications
to the suggested report. At its current state, the report generation tool

57

Figure 3.10: The web based interface of the report generation tool.

provides basic functionalities such as changing text and adding images
through the image selector located to the right of the report in Figure 3.10.
The images in this pane are sorted after highest probability of a given
class, thereby having the system suggest which images are most relevant
for a given diagnosis. The automatic suggestion of images is favorable
as doctors mentioned that manually adding findings to a standard report
generally takes about two minutes [40, 57]. But for complex reports,
where many findings were found of which would have to be documented,
reporting these findings could take 15 minutes or more to produce.

The need for automatic reporting systems based on automated multi-
media analysis is essential in the improvement of documentation precision,
standardization of report through the suggestion of terminology supported
by the MST and world endoscopy organization (WEO) [1], and decrease the
amount of time needed to produce complex reports. As the first iteration
of Mimir focused on the understanding and interpretation of deep neural
network analysis, this tool in its current form is a proof-of-concept. Plans
for this tool include the automatic suggestion of text, based on the con-
cluding analysis of a medical examination, support for multiple templates,
and a variety of quality of life (QOL) improvements such as support for
drop-down menus and drag and drop interfaces.

3.4 Use Case Scenarios

Below we have proposed a series of use case scenarios which we imagine
Mimir could be a good fit. Scenario A, B, and C will focus on medical use
cases, i.e., how a doctor may use this system. Scenario D and E will focus

58

Figure 3.11: An example of an automatic generated report. The red area
marked (1) shows the editable text fields. The green area (2) shows the
images chosen for the report. Image taken from [46] and report based on
sample taken from Wrestling the Octopus [41].

on a more neural network optimization point of few, i.e., how a researcher
or scientists may use the system to improve trained CNNs.

Example Scenario A — Verify the Prediction of a Diagnosis After
getting the diagnosis based on the analysis of the colonoscopy examination
video, we would like to verify that the network does, in fact, detect the
diagnosed abnormality presented. After the examination, the frames where
abnormalities are detected are automatically presented to the user on the
image analysis web-page. For a given frame, the user can look through the
network and verify that the network does, in fact, detect the abnormality
related to the diagnosis.

59

Example Scenario B — Getting Relevant Images for Documentation
After a successful colonoscopy, a doctor is presented with the produced
image data, already analyzed and suggests a diagnosis of Polyp. As
a doctor, one would like to quickly find the images that correlate the
most to the diagnosis and add them as attachments to the endoscopy
documentation. Through the use of Mimir, one can quickly sort images
by order of correlation (highest probability) and pick among a selection of
suggested images. The selected images will automatically be added to the
report in the form of image attachments. In its current form, Mimir allows
up to five images attachments for any given report.

Example Scenario C — Generating a Colonoscopy Report After a suc-
cessful colonoscopy, the video produced is automatically passed through
the system and analyzed for abnormalities. Based on the diagnosis, the
system would present images that support the diagnoses (which can be
further examined as described above in Section 3.4). This would save the
user time by not having to screen the frames of the video for the diagnosed
abnormality and manually select image candidates.

Exampled Scenario D — Comparing Different Models After having
trained a variety of models on the same dataset, a scientist wants to
see which of the trained models has the highest chance of generalizing
to unseen datasets apart from the evaluation set used under training.
This could be useful as it is not always easy to gather large datasets for
any given problem, meaning that the evaluation set may not be a good
enough indication of whether or not the model will generalize well to data
outside the current dataset. The scientists upload the models to Mimir
and analysis which models seem to have correctly learned the features
of the categories in question. Through this analysis, the scientist can
identify which model learned the features of each class, thus has a higher
probability of classifying unseen images of such classes in new, unseen
images.

Exampled Scenario E — Determine which Pre-processing Steps to Apply
Before Training After having trained a variety of models on a given
dataset, a scientist is not happy with the general performance of each
model. By uploading the models to Mimir, he/she can analyze the layers of
the neural network to potentially find incorrect activations for a given task,
such as activations related to noise or other artifacts. After discovering
that a given class activates on a given artifact, e.g., reflections, the scientist
can apply additional pre-processing steps the dataset before training, thus
hopefully making the network learn the intended features, instead of the
artifacts.

60

3.5 Summary

In this chapter, we presented the work of developing Mimir, an automatic
reporting system with a focus on the trust and understanding of the applied
deep learning algorithms. The purpose of this system is to aid medical
doctors in producing multimedia-enriched reports through the aid of deep
neural networks. An essential piece of this process is making the analysis
done by the CNN understandable and interpretable among non-technical
users, e.g., medical doctors. This is motivated by the need for transparency
and understanding when it comes to diagnosing a patient with any serious
disease. We achieve this through a variety of visualizations generated
by the system, which allows the doctor to verify a diagnosis set by the
Mimir. The development of this system relates back to the first two research
objectives. Where we stated the need for a automatic disease detection
system, whick gave background into why it produces a given result. Each
of the first two objectives is supported by their own respective tool as part
of the system.

With all system requirements met with the development of Mimir,
we use this system to conduct a series of experiments to verify how it
could be used to improve the performance of various models based on
different architectures. This relates to our third research objective, where
we wanted to test how this new found understanding of how a CNN
classifies an image could be used to increase the performance of existing
models. The method behind each experiment, together with their results,
will be explained in the next chapter.

61

62

Chapter 4

Case Study on Mimir for use in
Classification Understanding

As algorithms based on deep learning techniques are setting record high-
performance levels across a vast number of fields, it is only natural that
these algorithms would be applied to mission-critical areas as well. This,
however, has brought up an important issue. Even though these algorithms
show an improvement over the state-of-the-art, they are typically not
trusted among the practitioners of these high-risk areas, such as doctors,
as there is no tangible way of understanding why these algorithms
work, i.e., what ground their output is based on. As we discussed in
Section 2.2.4.1, the CEHC board decided against using neural network
based algorithms for treatment against pneumonia as they were simply
too hard to understand, even though they showed better performance
than their counterparts. These methods have only become more complex
with time, going from simple three-layered neural networks containing a
countable number of parameters, to networks consisting of hundreds of
layers.

In this chapter, we look at using Mimir for the analysis of deep
CNNs with the purpose of discovering potential methods of improving the
quality of models trained on the Kvasir (v2) dataset. Although initially
meant for a medical audience, we found that Mimir could be a useful
debugging tool for researchers and scientists developing deep CNNs, or
determining what pre-processing steps could potentially lead to higher
quality training data for a given dataset. To put our system to the test,
we trained a variety of CNNs and analyzed their layers using Mimir’s
neural network dissection tool to find out why the trained models confuse
certain classes, and what we could do to rectify this. Before presenting our
results, we first look at the various networks and datasets used to train
and evaluate our system. We then discuss the training and evaluation
procedure for each model, showing what hyperparameters were utilized
under training and how each model was assessed. With the initial results
in place, we describe the process of using Mimir to analyze each model

63

Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

VGG16 528 MB 0.715 0.901 138 357 544 23

VGG19 549 MB 0.727 0.910 143 667 240 26

ResNet50 99 MB 0.759 0.929 25 636 712 168

InceptionV3 92 MB 0.788 0.944 23 851 784 159

Xception 88 MB 0.790 0.945 22 910 480 126

Table 4.1: The various pre-trained models supplied by Keras [12] 1,
evaluated on the ImageNet ILSVRC validation dataset.

and show the pre-processing steps implemented before re-training the
models using the modified datasets. Finally, we will present our results
and confirm whether or not the analysis gathered through Mimir helped
us build higher models of higher quality.

4.1 Training, Datasets and Architectures

As we discussed in Chapter 3, Mimir supports a variety of CNN
architectures, with official support for VGG-16, VGG-19, Inception (v3),
ResNet-50 and Xception. To gain a good understanding of how a CNN
trained on the Kvasir (v2) dataset “sees” a class, we decided to test each
of the supported networks through the use of Mimir’s neural network
dissection tool. This, however, requires a training and evaluation strategy
of how we may compare networks and dataset pre-processing steps. In
this section, we give a brief description of each supported architecture, a
look at the datasets which played some part in the training and evaluation
process, and finally discuss how each network was trained and evaluated.

4.1.1 Architectures

Since the introduction of convolution based neural networks in 1998s [58],
many CNN architectures have emerged, with most using different tech-
niques to create “deep” models without being too computationally expens-
ive. Below we present some of the most common architectures within the
field of image classification, describing their structure and what makes
them unique. Each of the described networks is implemented in Keras,
of which we used the standard configuration. Table 4.1 shows some ne-
cessary information about each of the trained models, giving some insight
into how they differ on a high-level.

1https://keras.io/applications/

64

Convolution
Max Pooling

Fully Connected

Softmax

Figure 4.1: A visual representation of the VGG-19 architecture, with the
different layer types color coded. White layers are convolutional layers,
red layers are polling layers, yellow layers are fully connected layers and
the green layer is the softmax classification layer. Note that the width and
depth of a layer is reflected in the spatiality (width and height) and depth
of each layer.

4.1.1.1 VGG Architectures

The VGG neural network2 architecture describes a set of straightforward
models which were introduced by Simonyan et al. in their 2014 paper “Very
Deep Convolutional Networks for Large Scale Image Recognition” [97].
The network is built up by a series of five convolutional blocks with
increasing depth, with each block being followed by a max pooling layer
to reduce dimensionality. Each convolutional block contains some 3 × 3
convolutional layers, with the number of layers being dependent on the
implemented configuration. The network ends with two fully connected
layers with each 4096 nodes before softmax is applied for classification.

In its standard configuration, the network expects an RGB image with
the size 224× 224, but this may change depending on how the network is
trained. VGG architecture comes in a variety of configurations, each with
a different amount of weighted layers. The most prevalent of these is the
VGG-16 and VGG-19 architecture containing 16 and 19 weighted layers
respectively. Figure 4.1 shows a visual depiction of a VGG-19 network,
displaying how the network becomes smaller in width and height, yet more
in-depth, as the blocks progress. The VGG architecture has become popular
for its simplicity and its high performance. In 2014, it took first and second
place in the ImageNet Challenge for the localization and classification
tracks [97].

2VGG is an acronym for “Visual Geometry Group”, which is the group that submitted
the network to the ILSVRC in 2014.

65

Previous layer

1× 1 convolutions 1× 1 convolutions 3× 3 max pooling

1× 1 convolutions

3× 3 convolutions 5× 5 convolutions 1× 1 convolutions

Concat layer

Figure 4.2: A visual example of the Inception module, used extensively in
Inception based models.

4.1.1.2 Inception Architectures

The simplest way to improve the performance of a deep neural network is
by increasing its size. This can be done through either (or both) increasing
its depth (number of layers), or increasing its width (number of units per
layer). Although this might be the simple and straightforward way of
improving the quality of a model, it comes with two significant drawbacks.
Firstly, increasing the size of a network means increasing the number of
parameters. This makes the network more prone to overfitting, especially
if the dataset used for training is limited (which in the medical field, is
common). The second drawback of increased network size is the increase in
computational consumption. For example, if two convolutional layers are
chained in a convolutional neural network, any uniform rise in the number
of their filters results in a quadratic increase of computation. Since the limit
of the computational resource will always be finite, it is preferred to keep
the computational cost of a network relatively low while also improving its
performance.

With the presence of these drawbacks, Szegedy et al. presented an
architecture with the goal of reducing the computational cost of training
large neural networks by decreasing its number of parameters [99]. The
produced architecture was called Inception (based on the movie of the
same name), because of its core building block, the inception module, is
a mini neural network in its own right. The inception module stems from
the question of which convolution should we use for a given layer. This
is not always obvious, so the inception network lends this decision to
the network itself. For each inception module, a series of convolutions
are performed, e.g., 1 × 1, 3 × 3, and 5 × 5 convolution, in addition to
a pooling operation. Then the output of all operations are concatenated,
and we trust that the network figures out what information is useful. The

66

x

weight layer

ReLU

weight layer

+

Figure 4.3: A visual example of the Residule block, used extensively in
ResNet based architectures.

reason we perform a polling operation in addition to the convolutions is
simply that high performing networks typically use polling operations,
this is at least the purpose stated in the paper. Figure 4.2 shows such a
module, where we see the three beforementioned convolutions and the
polling layer. Additionally, we see that each of the convolutions is preceded
by a 1× 1 convolution (except for the 1× 1). As we previously mentioned,
part of the goal of the inception architecture was reducing the number of
parameters in the network, adding multiple convolutional operations to
each layer inevitably increased it. This is where the 1 × 1 convolution
is handy. The 1 × 1 convolution is used to reduce dimensionality, thus
reducing the number of computations performed in the larger convolution.

4.1.1.3 Residual Neural Network Architectures

Residual neural networks (ResNet) is a neural network architecture
proposed by Microsoft as a solution to the issue of training very deep
neural networks [42]. Before we explain how the ResNet architecture
improved the training process of very deep neural networks, we will
first present some background to why training very deep neural network
was difficult. In theory, a deep neural network should always be able
to perform as good, if not better, than a network containing fewer layers
during training (when overfitting is not an issue). For example, a network
containing n + 1 layers should be able to perform as well as a network
containing n layers, even if only by copying over the same first n layers
and performing an identity mapping3 for the last layer. This, however,
does not work in the real world. The first issue with training very deep
neural networks is the problem of vanishing gradients. As explained in

3An identity mapping ensures that a node’s input is equal to its output, in the context of
a layer in a neural network there should be no change in the layers input as its output.

67

Previous layer

1× 1 conv

3× 3 conv3× 3 conv3× 3 conv3× 3 conv 3× 3 conv 3× 3 conv 3× 3 conv

Concat layer

Figure 4.4: A visual example of the Xception module, used extensively in
Xception based architectures. The illustration is based on the figure present
in the original paper ??

Section 2.2.2.3, neural networks learn by multiplying the gradient of its
output with a learning rate. If the gradient becomes too small, then the
network will stop learning. This becomes more of an issue the deeper
the network gets, resulting in a hard time in making them converge. This
issue was primarily solved using normalization layers, spread across the
network, which made training deep networks to convergence a much
easier task. However, this sheds light on another problem with training
these deep networks. Network accuracy would degrade as network depth
increased (commonly known as the degradation problem). This degradation
problem is what He et ai. set out to solve when developing the ResNet
architecture [42].

ResNet solves the accuracy degradation problem by instead of learning
the underlying mapping from x → f (x), we learn the difference between
x and f (x). Then, to calculate f (x), we can add the difference to the input.
This process has implemented the use of so-called residual blocks, which
looking at Figure 4.3 shows a ‘shortcut’ connection of adding the input to
the output of the block. This technique led to the possibility of creating
very deep neural networks that still performed well. The paper proposes
networks of varying depths including 50, 101 and 152, with performance
increasing with the depth. ResNet was used in the 2015 ILSVRC and comon
objects in context (COCO), and secured 1st-place in all five of the main
tracks.

68

4.1.1.4 Xception Architecture

Of the architecture discussed, the Xception architecture is the newest
(although not by much). Xception stands for “extreme inception”, which
as the name suggests, takes the concept of the inception architecture to
the extreme. The architecture was proposed by François Chollet, which
is also the author of Keras, in his paper “Xception: Deep Learning with
Depthwise Separable Convolutions” [13]. The Xception network is based
on the hypothesis that one can assume that cross-channel correlations
and spatial correlations can be mapped separately. What this means in
practice is that unlike a standard convolution, where we simultaneously
look at the spatial dimension and depth dimension, Xception separates
the two operations by first performing a depthwise convolution and
following this up with a pointwise convolution (this is further explained
in Section 2.2.3.2). Intuitively, we can think of this as first looking for
correlations in two-dimension space, followed by searching for correlations
in the one-dimensional space. Performing a linear combination of these
two operations, we can learn the mapping of all three dimensions. This
type of convolution is referred to as a pointwise-separable convolution
and is also found in the Inception architecture, albeit to a lesser degree.
Figure 4.4 shows a visual example of the Xception modules, where we see
how the input is first passed through a 1 × 1 convolution to map cross-
channel (depth) correlations, then separately map the spatial correlations
of every output channel. Comparing Figure 4.2 and Figure 4.4 we see that
the Xception module is based on the dimensionality reduction ideas of the
Inception module but to a more extreme degree.

4.1.2 Datasets

Training and evaluation of selected models involve various datasets. As
previously mentioned, the networks are primarily trained on the Kvasir
(v2). But as we are not training these networks from scratch, we are
essentially re-training a network that was previously trained on the
ImageNet dataset. Repurposing a model for a new task is called transfer
learning, and has become a popular approach to training deep neural
networks. Transfer learning can typically be split into three distinct phases;

1. Select a set of pre-trained weights corresponding to the selected
model (or train one from scratch).

2. Remove the top layer of the network responsible for classification
(typically softmax) and add a new one corresponding to the new
problem set.

3. Optionally fine-tune the model by re-training parts of it (this is
generally done if the re-purposed problem set is very different from
the original).

69

Figure 4.5: Eight example images taken from the ImageNet image database.
Notice that ImageNet contains a wide veriery of objects, ranging from
different types of animals to everyday household objects [88].

The consensus behind transfer learning is that we can re-use the learned
features from a pre-trained network, such as shapes and curves, and apply
them to a new domain. If the problem area is very similar to the original,
one may be able to get away with only re-training the layer responsible for
classification (typically softmax), but this is usually not the case. This is
where fine-tuning comes into play. Under fine-tuning, we re-train (on top
of the original weights) a set number of layers going back from the output
layer, e.g., the five layers before classification. The reason behind no re-
training the initial layers of the network, is because as we move closer to
the output, the network becomes increasingly abstract. This means that
the initial layers typically learn fundamental features such as edges or
lines, while latter layers frequently learn features related to the target set
(such as the shape of a dog). This is why we generally have to re-train
more substantial parts of the network when dealing with vastly different
problem sets. In the following sections, we take a brief look at the datasets
which served some purpose for this work.

4.1.2.1 ImageNet

ImageNet [88] is a large database of images designed for object recognition
software. It currently consists of over 14 million hand-annotated images,
categorized to over 20 thousand categories. Since 2010, ImageNet hosts
a competition, called the ImageNet ILSVRC, where research teams can
compete against each other to achieve the highest accuracy on several
visual recognition tasks. For each competition, the ILSVRC provides a
slimmed down list of categories of which the submitted algorithms will
be evaluated. The validation dataset provided in the ILSVRC hosted in

70

Figure 4.6: Eight example images taken from the Kvasir (v2) dataset [76],
one from each class.

2012 is often used to evaluate general purpose convolutional networks as a
metric of how well the network performs. The dataset itself contains a vast
number of classes, ranging from different species of animals (cats, dogs,
horses), to everyday objects (vehicles, furniture, etc.). In Figure 4.5, we
see a few sample images taken from eight different classes included in the
ImageNet validation dataset.

Keras provides pre-trained convolutional neural networks, trained on
images from the ImageNet database, which we will be using as the base
weights for our implementation. A table of the various Keras models
evaluated against the ImageNet ILSVRC validation dataset can be seen in
Table 4.1. The ImageNet validation dataset is often used as an evaluation
metric for how well a convolutional neural network performs on everyday
objects such as cats, vehicles or furniture to name a few. Using a top-1 and
top-5 error score to determine the accuracy of a network. The top-1 error
is calculated by taking the highest predicted class and comparing it to the
ground truth. The top-5 error is calculated by checking if the target class is
part of the five highest predicted classes of the network.

4.1.2.2 Kvasir

Kvasir [76] is a dataset consisting of colored images taken from the GI tract
with resolutions ranging from 720× 576 to 1920× 1072 pixels. The images
were collected using endoscopic equipment from Vestre Viken Health Trust
(VV) in Norway, with each image being carefully annotated by trained
endoscopists. There are currently two versions of the dataset, Kvasir (v1)
and Kvasir (v2), consisting of 4000 and 8000 images respectively. Each
version of the dataset splits its content equally between 8 classes of either

71

Figure 4.7: Eight example images taken from the CVC-968 dataset. Note
that all images are of polyps and have already been pre-processed, with
artifacts such as the navigation box removed [16].

anatomical landmarks, pathological findings or endoscopic procedures.
Some of the included images (more prevalent in some classes than others)
include a green picture illustrating the position and configuration of the
endoscope inside the bowel. When visible, it is located in the lower left
corner of the image and is used by electromagnetic imaging systems, such
as ScopeGuide, Olympus Europe, to extract additional meta-information
from the performed endoscopy. This is the main dataset we used for
training, meaning it is from this dataset we are trying to learn the features
of the eight different classes. As for which version, we used Kvasir (v2) as
it contains double the number of images (8000 total). Figure 4.6 shows an
example of each of the eight classes of Kvasir.

4.1.2.3 CVC-968

CVC-968 [16] consisting of videos taken from a GI examination. Of the
provided videos, we compiled a set of 500 video frames containing signs
of polyps. The main use of this dataset was to further evaluate our
trained models by introducing images taken from an entirely different
dataset. Figure 4.7 shows eight example images taken from different video
segments.

The video frames take from CVC-968 differ from the polyp images from
the Kvasir (v2) dataset in a variety of ways. Firstly, the video frames
from CVC-968 do not contain any artifacts in the form of overlaid text,
navigation box (green box located in some images found in Kvasir (v2)),
and noise that would otherwise distract from the contents of the image.
Secondly, the video frames from CVC-968 are spatially smaller compared to

72

Level Category Name Version

Hardware

GPU Nvidia GTX 1080 TI

CPU Intel i7-7700K

Memory Corsair 16Gb DDR4

Software

Operating System Ubuntu Xenial Xerus 16.4

Library

Python 3.6.2

Tensorflow 1.3.1

Keras 2.0.8

CUDA 8 8.0.61

cuDNN 6 6.0.21

Table 4.2: A table showing the system specifications for the machine used
for all trainnig and evaluation sessions.

those of the Kvasir (v2) dataset. Sizes in the CVC-968 vary from 240× 240 to
270× 270, where images from Kvasir range from 720× 570 to 1280× 1024.
This should not be too much of a problem though, seeing as all images will
be re-sized before being sent into the neural network for classification.

4.1.3 Training

In anticipation of training multiple networks, using a variety of CNN
architectures and potentially different dataset pre-processing steps, we
had to prepare some strategy to make sure each model performance
measure was consistent. As we were not too worried about the overall
performance of each network (we were not aiming for record numbers),
choosing the perfect hyperparameters were not too concerning as long as
we got a relatively okay score (hyperparameter selection will be discussed
in Section 4.1.3.1). We were, however, anticipating that we would have
to train each network multiple times depending on which pre-processing
steps we decided to test based on the analysis done on the initial training
of each model. To make sure the change in score was due to the pre-
processing steps and not other variables, each network would be trained
using the same hyperparameters (independently of each architecture of
course). As for the training process of each model, we would use the pre-
built Keras models together with the pre-trained weights to perform the
initial testing of each architecture. As we were going to use Keras’ weights
trained on the ImageNet dataset, we were going to have to use a technique
of re-training trained networks called transfer learning.

Transfer learning is the process of reusing pre-trained weights and
applying them to a different domain. This is commonly used among pre-
built architectures, such as VGG, ResNet, etc., as training these networks
can take a considerable amount of time. Additionally, when the amount
of data is a constraint, such as in the medical sector, transfer learning can

73

Model Epochs Batch Size Layers Freezed Optimizer Learn Rate

VGG-16 50 32 15 Nadam 0E-6

VGG-19 50 32 17 Nadam 0E-6

ResNet-50 50 32 148 Nadam 0E-6

Inception (v3) 50 32 249 Nadam 0E-6

Xception 50 32 132 Nadam 0E-6

Table 4.3: A table showing the hyperparameters selected for each model.

aid in training the network in basic features for which the smaller dataset
can be trained on top. The most basic form of transfer learning is only re-
training last block of the network, the block responsible for classification.
Let us say that we wanted to train a network to detect ten different types of
animals. We could then use a pre-built model for Keras using the weights
trained on ImageNet (as ImageNet is already well trained on different types
of animals) and apply it to our problem. There is, however, a problem here,
the pre-built network is set up to classify 1000 different classes of ImageNet
and not the ten classes we want. To use the pre-trained weights, all we
have to do is pop off the last block of the network, and replace it with a
classification block suitabl£e for our needs (10 classes in this case). Then
we freeze the layers leading up to this classification block to withhold the
already learned features and train the classification block using the dataset
for our ten classes. The result is a model with the knowledge of features
obtained from millions of images taken ImageNet, applied to the ten classes
for our new problem set. This, however, only works well if the pre-trained
problem set is relatively similar to the new domain. In the case of images
take from GI endoscopy, where images show little resemblance to those
from for example ImageNet, we must perform an additional step where
we re-train other parts of the network as well.

This additional step is commonly referred to as fine-tuning the model.
Under fine-tuning, we re-train different parts of the model in addition to re-
training the classification block. This re-training of the network is mostly
dependent on how different the original problem is from the new one. As
we previously discussed, CNNs learn more abstract features increasingly
as layers get deeper. This is the general hypothesis of fine-tuning, as we
assume that the initial layers of the network learns features such as basic
edges and curves, and therefore do not need to be re-trained. As we get
closer to the classification block, learned features get more abstract and
become more specific to the problem at hand. It is, therefore, most common
to re-train layers moving back from the classification block, where we often
set a fixed boundary to which we freeze layers moving backward. Please
note that the number of layers frozen under fine-tuning is considered a
hyperparameter.

74

As for our training strategy, we will be using the pre-built Keras models
with the included weights trained for validation on the ImageNet dataset,
and apply transfer learning by re-training the network on the Kvasir (v2)
dataset. Keep in mind that the difference between ImageNet classes and
the ones contained in Kvasir (v2) is quite significant, so the rule of transfer
learning may not apply as well as if we were training a more traditional
network. It is important to note that for the visualizations to work when
replacing the classification block of each network, one must use a global
pooling layer in place of the more traditional fully connected layers before
classification. This was further explained in the Section 2.2.6.2, where we
described the production of CAMs.

As we knew that we would be training many networks, sometimes
maybe multiple times, we decided to develop a simple way of training and
re-producing each network. This system uses JSON based configurations
to painlessly train a network without having to make changes in the
codebase. The system works by automatically reading configuration files
located in a directory, which then automatically trains and evaluates the
network based on the parameters set in the JSON file. For fine-tuning,
the system allows for linking configuration files so that configurations for
base training and fine-tuning are entirely separate. The main advantage
of such a system is that it makes it much easier to reproduce previous
experiments by wrapping all model configurations into a single file (two
in the case of fine-tuning), something that is undoubtedly lacking among
deep learning literature. The system in its entirety together with the
configuration files used for training can be found on GitHub [43], along
with some documentation of how to use it. Additionally, the configuration
files for all experiments are visible within the repository as well.

With this system in place, we were ready to select our hyperparameters
and start training our models. In the upcoming two sections, we will
discuss the process of choosing these hyperparameters and have a brief
look at how we kept track of each trained model, making sure not to mix
results and model configurations.

4.1.3.1 Hyperparameter Selection

As is quite common in the field of deep learning, the selection of
hyperparameters did not follow a strict scientific process. Although we
use pre-built architectures, there is still the case of selecting optimization
parameters, e.g., learning rate, epochs, batch size, etc. For the most part,
these hyperparameters were chosen through a combination theory based
on existing literature regarding the various networks, and a tiny bit of trial
and error to get somewhat decent performance out of the networks. In
addition to the existing literature, there was an influence on the selection
based our machine specifications (such as the memory requirements for
large batch sizes), and the constraint of working with such a small dataset.
As the performance of our models is not the objective of this thesis, we

75

decided not to spend too much time on tuning the hyperparameters for
maximum accuracy. With that said, Table 4.3 shows the hyperparameters
selected for each model.

4.1.3.2 Keeping Track of Experiments

As one can image, training multiple networks using different hyperpara-
meters can quickly become messy. To keep track of our experiments, we
used the python package “Sacred”, which is a tool to help organize, log
and reproduce experiments, specially fitted for training neural networks.
This allowed us to easily keep track of which networks were trained using
which hyperparameters, without accidentally mixing up the performance
number of the various models.

4.2 Evaluation Method and Metrics

To evaluate whether or not the data augmentation techniques made any
difference in the performance of our models, we trained each network
using a method of k-fold cross-validation, 2-fold in our case, resulting in
500 images per class being used for training and validation. In k-fold cross-
validation, the dataset is split into k sub-samples (in our case 2), where
one sub-sample is used for validation, and the rest are used for training.
This process is repeated k times, once for each split in the dataset. After a
network has been trained and evaluated k times, we calculate our metrics
and average the result. The advantage of this method is maximizing the
utility of our dataset, i.e., every image will play a part in the total score,
and be part of both training and evaluation. This is especially important
when the dataset used is particularly small (which in our case, it is). As
discussed in Section 4.1.3, the evaluation phase of our network is part of the
training system developed over the course of this thesis. In the upcoming
few sections, we will discuss the various evaluation techniques and metrics
used to evaluate each model. Additionally, it is important to mention that
we did not mix the variations of the Kvasir (v2) dataset, meaning each
network is validated on the same dataset used for training (unseen data
from the same dataset of course).

4.2.1 Confusion Matrix

Before we look at the specific metrics used to evaluate each model, it
is important to understand how these metrics are produced. During
the evaluation of our models, we pass each image form the validation
split through our network to get a prediction. The highest prediction is
the suggested class by the network. This prediction is then plotted into
what is commonly referred to as a confusion matrix, or confusion table,
which compares what the model predicted against the actual ground truth.

76

HGFEDCBA

H

G

F

E

D

C

B

A 376 28 1 11

122 470 1 16

0 0 424 0

0 0 0 436

0 0 0 0

0 0 73 0

2 2 1 33

0 0 0 4

0 1 92 16

1 0 27 32

45 186 4 7

0 0 8 30

431 5 8 2

22 308 1 1

1 0 352 80

0 0 8 332

Figure 4.8: A confusion matrix taken from the evaluation of one of our
model. Please note that the each class has been replaced by the first letters
of the alphabet.

Figure 4.8 shows one of the confusion tables produced during one of the
evaluation sessions, here we see a table of values, each corresponding
to a prediction and the actual label. The vertical and horizontal axis
represents each class in our models, denoted by the initial letters of the
English alphabet, where the vertical axis is what the model predicted, and
the horizontal axis is the ground truth. Note that all presented confusion
tables will have each class denoted as alphabetic letters, so for clarity’s sake,
we have included a legend showing the mapping between each class and
letter:

A: Dyed Lifted Polyps

B: Dyed Resection Margins

C: Esophagitis

D: Cecum

E: Pylorus

F: Z-line

G: Polyp

H: Ulcerative Colitis

77

HGFEDCBA

H

G

F

E

D

C

B

A 376 28 1 11

122 470 1 16

0 0 424 0

0 0 0 436

0 0 0 0

0 0 73 0

2 2 1 33

0 0 0 4

0 1 92 16

1 0 27 32

45 186 4 7

0 0 8 30

431 5 8 2

22 308 1 1

1 0 352 80

0 0 8 332

True Negatives TN

TN TN

TP

Fa
ls

e
Po

si
ti

ve
s

FP

False Negatives FN

Figure 4.9: An example of how we calculate TPs, TNs, FPs and FNs from a
confusion table.

The results is that correct prediction are found in vertical line of cells
starting at the top left and ending at the bottom right. Numbers outside
this vertical line are incorrect predictions. The confusion table is useful
when calculating the true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) of a given evaluation. Figure 4.9 gives a good
intuition of how we use the confusion table to calculate these metrics.

4.2.2 Metrics

After creating the confusion table, we calculate the TP, TN, FP and
FN. These values are calculated using a confusion matrix as shown in
Figure 4.9. The Metrics we use for evaluation are as follows; accuract
(ACC), precision (PREC), recall (REC), specificity (SPEC), F1-score (F1) and
the Matthews correlation coefficient (MCC). Note that each of the described
metrics aims to be as close to 1 as possible, meaning lower numbers are not
preferred.

The Accuracy is merely the percentage of correct predictions made by
the network (calculated as seen in equation 4.1). This is probably the most
common way to measure the performance of the network but does not give
a comprehensive overview of how well the models are doing. We therefore
often use additional performance metrics to get a more real sense of its
competence.

78

ACC =
TP + TN

TP + FP + FN + TN
(4.1)

Precision, sometimes called the positive predictive value, is a measure
of relevance, meaning a how many of the positive cases were correctly
classified. It is calculated using the formula seen in equation 4.2. This
measure is highly correlated with the REC measure, as together they are
used to indicate the success of classification when class results are very
imbalanced.

PREC =
TP

TP + FP
(4.2)

Recall, also known as sensitivity, is a measure of how many relevant
cases were found, meaning how many of a particular class were correctly
identified as such. It is calculated using the formula seen in equation 4.3. As
we mentioned in the description of PREC, PREC and REC are commonly
used together and give a more wholesome view of the performance
compared to looking at each metrics independently. This is a little difficult
to understand but lends itself well to an example. Let us say we have a
dataset containing 10000 total cases, where 9990 cases are negative, and 10
cases are positive. If we were to classify all cases as negative, we would
have an easy 99.9% accuracy. On the other hand, calculating the REC
and PREC for this instance would result in an undefined number (0 in the
numerator position) and would give a terrible score. This simple example
shows that the accuracy does not show the entire picture, definitively when
classes may be imbalanced. However, using two scores, REC and PREC, to
score a model is a bit cumbersome when it comes to comparison between
different models, it would be convenient if we could compare just a single
number. This is where the F1 measure is useful.

REC =
TP

TP + FN
(4.3)

The F1-score, sometimes called F-measure, is a weighted average of
the precision and recall and is commonly used to directly compare the
performance of two (or more) classification models. This measure is
frequently weighted dependent on the problem at hand, i.e., PREC and rec
are commonly weighted differently. Areas where incorrect classifications
pose a significant risk, such as diagnosing cancer patients, PREC should
be more heavily weighted than REC. Same goes the other way. If
misclassification is not that important, such as incorrectly classifying two
species of cats, one can weight REC higher than PREC. In our case, even
though the target classificatio£n is on medical imaging data for diagnosis
of severe disease, for our current experiments, misclassifications are not too
alarming, so for all models, we will be weighting REC and PREC equally.

79

F1 = 2 · precision · recall
precision + recall

(4.4)

Specificity, also called the negative rate, measures the number of
negative cases correctly classified as such. This measure is closely related
to REC, and often referenced together as specificity and sensitivity (REC).
In the same way, REC and PREC gave a more wholesome view of the
performance of the model, so does specificity and sensitivity. Increasing
specificity, i.e., increasing the likelihood that a given case is true, decreases
sensitivity, while increasing sensitivity, i.e., increasing the probability of
a positive result, decreases specificity. One sees how these two metrics
compliment each other and should be weighted in the same way as PREC
and REC.

SPEC =
TN

TN + FP
(4.5)

The last metric we will be using is the Matthews correlation coefficient,
which is a measure that takes all TP, TP, TP and TP into account. Similarly
to the F1, the MCC gives us a better indication of the total performance of a
model compared to looking at the previous metrics individually. The MCC
differs from the other metrics in that its value can be between −1 and 1
depending on the distribution of data.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.6)

By taking the average F1-score of each split of our models, we can
directly compare what models perform better or worse depending on their
F1-score. Note that comparisons are between the same type of model,
e.g., we will not make comparisons between an Xception and a VGG-19
network as we are not necessarily testing performance between networks,
but testing the quality of the dataset used to train them. In addition to
performing 2-k cross-validation, we will be re-evaluating each model using
images from a different dataset to test the generalizability of each network
further. To do this, we will be adding 400 polyp images taken from the CVC
dataset [16].

4.2.3 Model Evaluation

There are multiple ways of evaluating a model. Firstly, the most common
way to measure the performance of a model is through simple classification
and verification, e.g., classify an image and log the results using the
beforementioned metrics. Secondly, one may measure the performance of
a model by looking at what the model "sees". This mode of evaluation
is more extensive and is common among models trained for image
segmentation, locating objects and boundaries within an image. Both are

80

essential methods, but require different types of labeled data to perform.
In the next couple of sections, we describe our evaluation process, which
solely relies on evaluation the classification ability of each model. Sadly,
we did not have the required labeled image data to perform evaluations on
the produced visualizations but have included a section on the topic.

4.2.3.1 Evaluation of Classification

Using 2-fold cross-validation, in addition to evaluating each architecture
using both the base set of Kvasir and Kvasir with an added 500 polyps
taken from CVC-968, each architecture is evaluated a total of four times.
After training a model split, we first evaluated using the standard
validation set of Kvasir. This is done by loading the highest performing
weights produced during the training session and running each image of
the validation set through the model. The highest predicted class is then
compared against the ground truth and logged in the confusion matrix
(seen in Figure 4.8). After having run through all the images, we calculate
the TP, TN, FP and FN using the confusion matrix in the manner shown in
Figure 4.9. These metrics are then used to calculate the evaluation metrics
described in Section 4.2.2. With the produced metrics for one split of the
model produced, we repeat this process for the second split. With both
splits evaluated, we average the scores to get the final metrics for the
trained architecture. This same process is done when evaluating using the
additional Polyp images, the only thing that changes is that we move the
500 images to the validation set before evaluating. This described process
is repeated for each of the trained architectures.

4.2.3.2 Evaluation of Localizations

With the various evaluation metrics explained, we would also like to
include the process for evaluating image localization techniques, even
though we were not able to perform this evaluation as we lack the
necessary ground truth maksing of Kvasir (v2). This method of evaluating
each model gives a true sense of the performance of a CNN, as it shows
how many images were correctly classified based on the localization of
activations for the given image. This means that even though a model
might correctly classify an image, it might not necessarily detect the
object in question. Evaluation using this method requires more than just
annotated images, but also requires a bounding box to validate the object
in question. With a CAM and bounding box pair, we can verify if the
classification was correct or not by how much of the activations fall within
this box, thus correctly verifying that the image is collected. This measure
would be beneficial for this work, but we sadly lack the necessary data to
perform these experiments. We will therefore only be looking at the general
evaluation metrics.

81

Evaluated on Kvasir (v2)

Model PREC REC SPEC ACC MCC F1

VGG-16 0.977 0.841 0.813 0.959 0.834 0.833

VGG-19 0.975 0.830 0.799 0.955 0.822 0.822

Inception (v3) 0.975 0.830 0.802 0.956 0.825 0.825

Xception 0.980 0.859 0.838 0.964 0.858 0.858

ResNet-50 0.980 0.864 0.841 0.965 0.860 0.860

Table 4.4: The evaluation results of all models trained on the “vanilla”
version of Kvasir (v2).

Evaluated on Kvasir (v2) + CVC-968

Model PREC REC SPEC ACC MCC F1

VGG-16 0.966 0.770 0.743 0.940 0.791 0.768

VGG-19 0.966 0.771 0.739 0.940 0.784 0.766

Inception (v3) 0.971 0.803 0.774 0.949 0.806 0.801

Xception 0.976 0.836 0.816 0.959 0.843 0.838

ResNet-50 0.975 0.826 0.805 0.956 0.837 0.827

Table 4.5: The evaluation results of all models trained on the “vanilla” ver-
sion of Kvasir (v2), with added polyps from CVC-968 used in evaluation.

4.3 Initial Training Results

Tables 4.4 and 4.5 show the results of our initial training and evaluation
of the described architecture trained on the Kvasir (v2) dataset, using the
hyperparameters detailed in Table 4.3. Looking at the metrics, we see that
each model performs somewhat well, perhaps not well enough for medical
usage, but well enough for us to conduct our experiments. Notice that, for
the most part, all metric scores drop when introducing the polyps from the
CVC-968 dataset. This indicates that the models do not generalize well to
completely new data, i.e., data that is different from what was seen under
training. Of the bunch, we see that the model based on Xception retains
most of its score, with the VGG-16 model falling the most. It is worth noting
the images contained within the CVC-968 dataset have gone through some
pre-processing, and are clear of any artifacts commonly found in Kvasir,
e.g., green navigation box, text, etc. This may be one of the reasons why our
models do not work too well on these images, as they may have learned to
associate some of these artifacts with the class of “polyp”, which is the only
additional class images added by CVC-968. Note that we only add 500
additional polyp images, accounting for approximately 11% of the overall
validation set, the drop in metrics is relatively high (almost 7 points for

82

HGFEDCBA

H

G

F

E

D

C

B

A 865 151 0 8

111 841 0 0

0 0 829 0

0 1 0 795

0 0 7 0

0 0 157 0

18 5 2 113

6 2 5 84

2 1 51 6

0 0 7 6

32 380 6 5

0 0 12 10

919 14 11 5

27 600 5 5

11 4 805 46

9 1 103 919

(a) VGG-19 Confusion Matrix

HGFEDCBA

H

G

F

E

D

C

B

A812 248 0 2

122 716 0 2

0 0 790 0

6 4 0 889

0 0 3 0

0 0 202 0

47 16 1 58

13 16 4 49

1 1 28 6

0 1 4 5

35 238 3 4

1 0 44 29

898 6 7 4

39 751 3 0

16 3 851 59

10 2 60 893

(b) Inception (v3) Confusion Matrix

Figure 4.10: The confusion matrices produced under the initial evaluation
of our trained VGG-19 (4.10a) and Inception (v3) (4.10b) based models.

HGFEDCBA

H

G

F

E

D

C

B

A 889 199 1 5

98 794 3 0

0 0 730 0

0 2 0 916

1 0 2 0

1 0 260 0

9 3 0 46

3 2 4 33

2 3 26 2

0 0 0 0

4 202 0 1

1 0 42 28

964 2 5 3

4 787 1 0

24 5 878 29

1 1 48 937

(a) ResNet-50 Confusion Matrix

HGFEDCBA

H

G

F

E

D

C

B

A829 191 0 0

120 789 1 0

0 0 802 0

5 6 0 946

0 0 8 0

0 0 185 0

40 6 1 38

6 8 3 16

1 0 16 2

0 0 0 4

16 245 0 1

1 0 34 40

949 5 11 4

24 748 0 0

7 2 904 56

2 0 35 893

(b) Xception Confusion Matrix

Figure 4.11: The confusion matrices produced under the initial evaluation
of our trained ResNet-50 (4.11a) and Xception (4.11b) based models.

VGG-16). However, looking at the metrics alone does not give us the full
picture. Looking to the confusion matrices might give us a better indication
of where our models are failing.

Figure 4.10 and Figure 4.11 show the calculated confusion matrices
for each model (combined across both validation splits and excluding the

83

added polyps). Looking at the confusion matrices, we see that some classes
are generally confused with others, and this usually goes both ways, i.e.,
if class A gets confused with class B, class B typically gets confused with
class A. Looking at which classes get confused is a good starting point for
discovering potential training improvements. It is important to mention
that some classes within the Kvasir dataset look inherently similar to each
other, but there are also non-natural similarities such as an imbalance of
different artifact types which may be the cause for the confusion. With this
in mind, we looked at the confusion matrices to see what classes we should
analyze further.

What we found was a collection of five class pairs, each commonly
mistaken by each of the trained models. The class pairs were as
follows (note that we have denoted each class with a letter from the
English alphabet, denoting their label in the confusion matrix);“dyed lifted
polyps” (A) and “dyed resection margins” (B), “esophagitis” (C) and “z-
line” (F), “cecum” (D) and “polyp” (G), “cecum” (D) and “ulcerative
colitis” (H), and “polyp” (G) and “ulcerative colitis” (H). Some of these
confusions may be well founded, e.g., classes that look very similar to each
other or contain traces of multiple classes, but this needs further analysis
before concluding.

4.4 Analysis of Initial Training Results

Based on our findings in the previous section, we decided to conduct
further analysis on the confused class pairs with the purpose of finding the
cause of this confusion. This analysis was primarily done using Mimir’s
neural network dissection tool, for which we looked at what areas of the
confused image activated for the confused class. But, before starting the
analysis, we first had to do some preparation work, i.e., set up a strategy of
how we were going to analyze each class pair using each trained model.
The reason behind setting up a plan beforehand was to avoid blending
results, leading to incorrect model assumptions. This might not have been
too useful in the first round of analysis where we only have to keep track
of five models, but came in handy when we later had to keep track of the
analysis coming from 15 different models. The analysis process can be split
into four separate stages, and are performed as follows:

1. Start by selecting one model to analyze and look up the correspond-
ing confusion table to see what classes were commonly confused with
each other.

2. With a class pair selected, upload images of the confused class to the
neural network dissection tool through the manual upload button
located in the upper right corner of the UI.

3. Select an image where the model gets confused with the other class
and use the visualization tool to look at what regions activate for both
the confused class and the confused image.

4. Clear the uploaded images and repeat for all models and class pairs.

84

VGG-19 Inception (v3) Xception ResNet-50

O
ri

gi
na

l
C

A
M

Sa
lie

nc
y

G
ui

de
d-

C
A

M

Figure 4.12: A table of images showing the different visualizations
across different architectures, using an image containing a polyp. Each
visualizations is done using the last convolutional layer of the network and
has the polyp class as target. Note that the “last” convolutional layer in an
architercure may be a bit missleading as some networks (suchs inception
(v3)) have parallel convolutional layers. To keep things simple, we decided
to go with the last convolutional layer as they are ordererd in Keras.

But, before performing analysis on confused class pairs, we decided to
have a look at a case where each model correctly identified and localized
an image. This is interesting as it shows, at the very least, that our models
have some knowledge regarding the features which belong to a given class.
Additionally, it is a nice way showcase how each architecture “sees” a

85

given image at the point of classification. Figure 4.12 shows the selected
image, visualized for each of the trained architectures using “polyp” as the
target class. Looking at the visualizations, we see that each model correctly
localized the polyp, with the Xception architecture seemingly performing
the best out of the four models (which in retrospect, makes sense as it was
the best performing model when introducing the additional polyp images
as shown in Table 4.5).

With at least some knowledge regarding the correctness of our models,
we move on to further analyze each confused class pair, which we discuss
in further detail in the upcoming few sections. For each of the confused
class pairs, we present a collection of three image sets, each set being
classified and visualized by a different model. Each image set contains
one image, visualized using both the correct class and confused class as
targets. Each section will contain a brief discussion regarding each image
set, where we look at potential reasons for why each model got confused.
With a basic strategy described above, we were ready to started analyzing
each model, one by one. Note that due to the amount of data collected
during this analysis, we opted only to include the visualizations of models
based on VGG-19, ResNet50 and Xception architecture. In the upcomming
few section, we give a brief summary of the analysis done on each of the
five confused class pairs discussed in Section 4.3. Each section will provide
a figure as basis for discussion, which show a comparison between how
each network “sees” a given class when making a prediction. This analysis
was done using Mimir’s neural network dissection tool, which allows us
to inspect the final convolutional layer of a given CNN to directly see what
correlates to the produced confidence (further explained in Section 3.2).

4.4.1 Comparing Dyed Resection Margin to Dyed Lifted Polyp

First, we looked at cases where the class “dyed resection margin” (A) was
misclassified as “dyed lifted polyp” (B), which based on the confusion
matrices was common among all models (as seen in Figures 4.10 and 4.11).
We already had suspicions in regards to the similarity between these
two classes, as they both relate to polypectomy and have a stark blue
coloring associated with each of them. Despite their similarities, each class
should be visually distinct enough to easily be determined which is which.
Figure 4.13 shows the three selected images used for further analysis.

VGG-19 This model barley misclassified the model, missing the correct
class by approximately 3%. Looking for the reason behind this misclassi-
fication, we start by looking at what the network “sees” when predicting
the correct class, “dyed resection margin” (Figure 4.13a). Here we see that
the network is correctly able to identify the resection mark, located near
the center of the image. This shows that the network has at least learned
the specific features of a resection mark, but still manages to classify it as
a “dyed lifted polyp”. Looking at the confused class visualizations (Fig-

86

VGG-19

Dyed
Resection

Margin

Dyed Lifted
Polyp

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 47% (b) 50%

ResNet-50

Dyed
Resection

Margin

Dyed Lifted
Polyp

(c) 42% (d) 58%

Xception

Dyed
Resection

Margin

Dyed Lifted
Polyp

(e) 28% (f) 54%

Figure 4.13: Three visualization sets taken from a VGG-19, ResNet-50 and
Xception based network, taken from cases where the respective model
misclassified the image as “dyed lifted polyp” when the actual class
is “dyed resection margin”. By looking at the visualization sets, we
set out to determine what regions of the image in question led to the
misclassification. Each visualization set shows what areas of the given
image directly contributes to the predicted score.

ure 4.13b), we see that the network mostly activates on the bottom and top
border, in addition to the text and partly on the green navigation box. This
is incorrect, as we do not want the network thinking that these artifacts
(such as those previously mentioned) are features of a given class. Perhaps
the removal of these artifacts would lead to a lower score for “dyed lifted
polyps”, and thereby correctly predict this image as “dyed resection mar-
gin”. We note our findings and move on to the next model.

ResNet-50 Similar to that of the VGG-19 model, we see that the network
has given both the correct and confused class a relatively high classification
score (42% and 58% respectively). Looking at the visualizations for the
correct class (Figure 4.13c), we see that the network completely misses the
resection mark located near the center of the image. Instead, the network
mostly activates on the upper right corner (part of the black border), and

87

partly on the text and navigation box. Looking at the visualizations for
the incorrect class (Figure 4.13c), we see a more sensible activation pattern,
with the network mostly activating on the blue dye next to the resection
mark. This part is correct, as the network is correctly focusing on the
features part of the confuse class (“dyed lifted polyp”) and therefore we
conclude that the artifacts present in the image distract the network from
learning the true features of the correct class.

Xception Similar to the case of VGG-19, the Xception based network is
successfully able to localize the resection mark as seen in Figure 4.13e,
although its score is much lower. Unlike the VGG-19 model, the Xception
model has slight activations on the text located on the right side of the
image. This may be partly to blame for this lower score. Looking at the
incorrect visualization (Figure 4.13f), we see that no part of the predicted
score is attributed to the presence of artifacts. Instead, the network focuses
on the back mucosal wall. This is a bit strange, as one would think that the
network would instead focus on the blue mucosal, rather than the plain
back wall. We conclude that the text is partly to blame for the misclassified
image and move on.

In conclusion, we see that the misclassification of each image was due
to, in some part, to the presence of text, navigation box, and borders. We
marked these artifacts as potential candidates for removal and moved on
to the next class pair which was comparing esophagitis to z-line.

4.4.2 Comparing Esophagitis to Z-line

Second, we looked at cases where the class “esophagitis” (C) was
misclassified as “z-line” (F) (as seen in the Figures 4.10 and 4.11). Again,
we suspected that this class would have some overlap, as esophagitis is
a commonly found disease around the z-line [53]. This, however, should
not excuse the model from distinguishing a healthy z-line form that of one
afflicted with esophagitis. As in the previous comparison, we look at each
visualization pair of each model, starting with VGG-19.

VGG-19 Looking at visualizations for the correct class (Figure 4.14a), we
see that, for the most part, the network can correctly localize the mucosal
breaks located close to the center of the image. This is good, as it has
learned to associate this feature with the disease esophagitis. Looking
at the visualizations for the class “z-line” (Figure 4.14b), we see that the
network activations are quite sporadic. For the most part, these activations
are centered around the border edges between the main image and black
borders. This can be seen looking at the guided grad-CAM representation
of Figure 4.14b. Perhaps removal of these borders would lessen the score
for this class, thus resulting in a correct classification. We noted our
findings and moved on to the ResNet-50 based model.

88

VGG-19

Esophagitis Z-line

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 30% (b) 70%

ResNet-50

Esophagitis Z-line

(c) 15% (d) 85%

Xception

Esophagitis Z-line

(e) 19% (f) 81%

Figure 4.14: Three visualization sets taken from a VGG-19, ResNet-50 and
Xception based network, taken from cases where the respective model
misclassified the image as “esophagitis” when the actual class is “z-line”.
By looking at the visualization sets, we set out to determine what regions
of the image in question led to the misclassification. Each visualization set
shows what areas of the given image directly contributes to the predicted
score.

ResNet-50 In a similar case to that of the VGG-19 model, the ResNet-
50 based visualizations show that the network correctly identifies features
of “esophagitis” when targeting this class (Figure 4.14c). However, in
addition to activating on right areas of the image, it also activates heavily
on the upper right corner (similar to how the ResNet-50 also focused on
the upper right corner when classifying a dyed resection margin). For the
visualizations of the incorrect class (Figure 4.14d), we see a similar case to
the last, but much more focused on the border and text located in the left
region of the image.

Xception Finally, we look at an image misclassified by our Xception
based network. This image is a bit different from the previous two, as it
shows the z-line afflicted with esophagitis (as suspected at the beginning
of this section). First, looking at the visualizations for the correct class
(Figure 4.14e), we see that the network mostly focuses on each of the black

89

VGG-19

Cecum
Ulcerative

Colitis

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 19% (b) 73%

ResNet-50

Cecum
Ulcerative

Colitis

(c) 12% (d) 84%

Xception

Cecum
Ulcerative

Colitis

(e) 12% (f) 86%

Figure 4.15: Three visualization sets taken from a VGG-19, ResNet-50 and
Xception based network, taken from cases where the respective model
misclassified the image as “cecum” when the actual class is “ulcerative
colitis”. By looking at the visualization sets, we set out to determine
what regions of the image in question led to the misclassification. Each
visualization set shows what areas of the given image directly contributes
to the predicted score.

corners of the image, mostly missing the signs of esophagitis located in
the central left part of the image. The incorrect visualizations, however
(Figure 4.14e), show that the network correctly identifies the parts of the
image related to the z-line, specifically the transition from esophageal to
gastric mucosa. This is good, but the black border activations of the correct
class seem to be getting in the way of the true features of the image.
Again, these black borders look to be playing a significant role in the
misclassification of many of these images.

In conclusion, we see that the border and text play a large role in the
classification of these images, making them good candidates for removal.

90

4.4.3 Comparing Cecum to Ulcerative Colitis

Third, we looked cases where “ulcerative colitis” (H) was incorrectly
classified as “cecum” (C) (as seen in the Figures 4.10 and 4.11). Similar
to the last class pair, signs of both classes may present in the same
image, as ulcerative colitis may affect the cecum. However, as the
class “cecum” denotes a healthy cecum, each network should be able to
distinguish between the two classes. We begin with looking at at the image
misclassified by our trained VGG-19 model (as seen in Figure 4.15).

VGG-19 Looking at the visualizations using “cecum” as target class 4.15a,
we see that the network mostly focuses on the green navigation box and
moves up towards the text. Similar to some of our previous cases, the net-
work has incorrectly learned to associate the green navigation box and text
the class “cecum”. However, this leads to a relatively low score. Looking
at the visualizations using “ulcerative colitis” as target class 4.15b, we see
that the network the network again mostly focuses on incorrect parts of the
image. In this case, it heavily focuses on the anchor object located on the
border in the lower right corner. It is strange that neither of the highest
predicted classes focused solely on features of each class, perhaps remov-
ing the text, navigation box, and anchor would allow the network to learn
the true features of each class. We noted our findings and moved on to look
at the visualizations generated using the ResNet-50 based model.

ResNet-50 Similar to the visualizations of the VGG-19 based model,
visualizing the network using “cecum” as the target class we see that it
heavily activates on the navigation box and text (Figure 4.15c). It seems like
these artifacts are distracting the network form the true features of the class.
Visualizations for the “ulcerative colitis” class shows that the network has
learned to associate features of the cecum with this disease (Figure 4.15d).
This is partly expected, as ulcerative colitis can often be found in the cecum.
However, these features should be more indicative of the “cecum” class,
and not “ulcerative colitis”. Again, we see that the network gets confused
by the presence of various artifacts.

Xception For the Xception based model, we see a very similar case to that
of the ResNet based model. Figure 4.15e shows that when visualizing for
the correct class (“cecum”), the network mostly focuses on the navigation
box. Looking at Figure 4.15f, we again see that the network associates
features of cecum with the “ulcerative colitis” class. With all classes
seemingly associating the navigation box as a true feature the “cecum”
class, we decided to look if there was some disparity between the two
classes when it comes to the inclusion of this navigation box. What we
found was that the navigation box was part of almost every image included
within the “cecum” class, with the “ulcerative colitis” class containing
much fewer instances of this artifact. As this artifact is also part of many

91

VGG-19

Polyp Cecum

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 4% (b) 86%

ResNet-50

Polyp Cecum

(c) 24% (d) 71%

Xception

Polyp Cecum

(e) 15% (f) 84%

Figure 4.16: Three visualization sets taken from a VGG-19, ResNet-50 and
Xception based network, taken from cases where the respective model
misclassified the image as “polyp” when the actual class is “cecum”. By
looking at the visualization sets, we set out to determine what regions of
the image in question led to the misclassification. Each visualization set
shows what areas of the given image directly contributes to the predicted
score.

other images, it seems like this feature is considered “lesser”, thus resulting
in the relatively lower score.

In conclusion, the navigation box seems to play a significant role in the
classification of some images. And that the removal of this box could lead
to better classification performance.

4.4.4 Comparing Polyp to Cecum

Fourth, we looked at cases where “polyp” (G) was mislabeled as the
“cecum” (C) class (as seen in the Figures 4.10 and 4.11). We again expected
some overlap here, as polyps do appear in the cecum. But as polyps are
quite visually distinct, we do expect that each network should prioritize a
“polyp” classification over “cecum”. We start looking at the visualizations
for the VGG-19 based model (As seen in Figure 4.16).

92

VGG-19 Looking at the activations related to the correct class “polyp” for
the VGG-19 based model (4.16a), we see that the network focuses almost
exclusively on the artifacts present within the image. Mostly focusing
on the lower right corner near the anchor like object. Visualizations
for the incorrect class, “cecum”, show that the network activates on the
mucosal wall, with some activations being targeted at the navigation
box (Figure 4.16b). This is mostly correct, as the network correctly identifies
the cecum part of the image, but is not able to see the polyp. Removing the
corners might shift the focus of the network to look at the polyp, potentially
leading to a correct classification.

ResNet-50 For the ResNet-50 based model, we see that it correctly
identifies the polyp located in the upper right corner (Figure 4.16c). It is
therefore strange that the network gives the “polyp” class such a low score.
We see in the visualizations for the “cecum” target class that the network
mostly focuses on the clear part of the mucosa wall (Figure 4.16d), with
lighter activations in the lower right corner. It is difficult to say why this
misclassification happens, but perhaps lighter activations are distracting
the network, thus resulting in the lower score.

Xception Similar to the ResNet-50 based model, the Xception model
correctly detects the polyp located in the images left region (Figure 4.16e),
but still gives the class “polyp” a relatively low score. It seems like the
Xception network is more distracted by the text and borders then that of the
ResNet-50 model, but the main activations still lie on the polyp. Looking at
the incorrect class, we see that the network correctly identifies the part of
the mucosal wall of the cecum (Figure 4.16f). We again see that the network
does not emphasize the detection of the polyp, and therefore mispredicts
the class.

In conclusion, not all visualizations are clear when it comes to
explaining the exact faults of the classification. Sometimes the incorrect
classifications are looking at the correct regions of the misclassified image,
but incorrectly emphasizing what is important, i.e., not prioritizing a
disease detection. This may be improved by the removal of artifacts, which
we saw some light activity, but this may not entirely solve this issue.

4.4.5 Comparing Ulcerative Colitis to Polyp

Lastly, we looked at was comparing cases where “ulcerative colitis” (H)
was misclassified as “polyp” (G) (as seen in the Figures 4.10 and 4.11).
We begin by looking at the visualizations produced by the VGG-19 based
network.

VGG-19 Figure 4.17a shows the VGG-19 network visualized for the
“ulcerative colitis” class. We see here that network can identify the white

93

VGG-19

Ulcerative
Colitis

Polyp

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 31% (b) 65%

ResNet-50

Ulcerative
Colitis

Polyp

(c) 32% (d) 66%

Xception

Ulcerative
Colitis

Polyp

(e) 26% (f) 48%

Figure 4.17: Three visualization sets taken from a VGG-19, ResNet-50 and
Xception based network, taken from cases where the respective model
misclassified the image as “ulcerative colitis” when the actual class is
“polyp”. By looking at the visualization sets, we set out to determine
what regions of the image in question led to the misclassification. Each
visualization set shows what areas of the given image directly contributes
to the predicted score.

ulcers located in the upper right region of the image. There are some
slight activations on the navigation box, but these seem to be quite low in
comparison. The visualizations for the “polyp” (Figure 4.17b) class show
that the network confuses the transitional depth of the edge (located in
the middle of the image) for raised edges of a polyp. This is, of course,
incorrect, but it is difficult to determine what one could do to remedy this
fault. Based on the two visualizations, we could remove the navigation
box with the hope that the network prioritizes the white ulcers seen in
Figure 4.17a.

ResNet-50 Moving on to the ResNet-50 based model, we see the visualiz-
ations for the correct class heavily activates on the right border of the image
(Figure 4.17c). This is yet another case where the border seems to confuse
the network. Similar to the last case, the visualizations for the incorrect

94

Dyed Polyps Dyed Resection Esophagitis Cecum

St
an

da
rd

Bl
ac

ke
d-

ou
t

Bl
ac

ke
d-

ou
t+

bo
rd

er
s

Figure 4.18: Four example images taken from the classes “dyed lifted
polyp”, “dyed resection margin”, “esophagitis” and “cecum”, showing
Kvasir (v2) after pre-processing.

class seem to indicate that the network confuses the edge depth with the
raised edge of a polyp (Figure 4.17d).

Xception In a similar case to that of the last, the Xception based network
seems to be activating heavily on the border of the image, distracting
the network from the true features (Figure 4.17e). When visualizing the
network for the class “polyp”, we again see that the network detects the
transitional depth edge in addition to parts of the text (Figure 4.17f).

In conclusion, we again see that the various networks associated
different image borders with specific classes. This should be taken into
consideration when pre-processing data before training.

95

Pylorus Z-line Polyps Ulcerative Colitis

St
an

da
rd

Bl
ac

ke
d-

ou
t

Bl
ac

ke
d-

ou
t+

bo
rd

er
s

Figure 4.19: Four example images taken from the classes “pylorus”, “z-
line”, “polyps” and “ulcerative coltiis”, showing Kvasir (v2) after pre-
processing.

4.4.6 Summary of Findings and Proposed Pre-processing Tech-
niques

Based on the analysis done on each of the trained models in the previous
section, we decided on two pre-processing techniques in which we hy-
pothesized would lead to better classification results and generalizability.
Firstly, looking at some of the confused activations, we saw that the green
navigation box distracted from the actual features of some classes, result-
ing in either misclassifications or incorrect feature localizations. Prime ex-
amples of this can be seen in Figures 4.14d and 4.15e. Additionally, other
artifacts located in the borders of the image (mostly text) played some role
in some classification cases. Based on these findings, we decided just to
black out these features, e.i., replace all appearances of the green navigation
box and artifacts located in the outskirts of the image with a black cover.
Note that we did not black out artifacts which overlaid parts of the image,

96

such as text and the small anchor located in the lower right corner of some
images. This was the first of two pre-processing steps derived from the
previously described analysis, which we decided to call the “blacked-out”
pre-processing step.

Secondly, we noticed that borders themselves played some role in the
misclassifications, specifically the transition from the colored image to the
black border. This can be seen in Figures 4.14b and 4.17c, where we see that
the highest activations are on the border itself, and not the class defining
object. This border is present in all classes, albeit some to a lesser degree.
This error in our networks leads to the second pre-processing step, which
builds on the first. In addition to blacking out various artifacts, we also
completely remove the vertical and horizontal borders of every image. We
do not remove the diagonal borders due to the loss of image data that
would occur. If we were to remove the diagonal borders, we would have to
crop the rest of the image accordingly, resulting in potential loss of the class
defining object, this is perhaps well suited for future work. This was the
second and last pre-processing step derived from the analyses performed
in the previous section, and we decided to call this pre-processing step
“blacked out and borders removed”.

We applied pre-processing techniques to the Kvasir (v2) dataset,
leaving us with a total of three datasets used for comparison [44]. Examples
from each class and pre-processing step can be seen in Figure 4.18 and
Figure 4.19. With the two additional datasets, it was now time to train
and re-evaluate each architecture using each of the pre-processed datasets.
The result would be 15 trained models used for comparison. Each of
the additional models was trained in the same way as we described in
Section 4.1, using the hyperparameters shown in Table 4.3. This was done
to make sure that the only variable in evaluating the models is due to the
difference in the dataset used for training.

4.5 Results and Comparing New Visualizations Against
Initial Results

Having trained and evaluated each of the five networks using the
two pre-processed datasets, and re-analyzed each of them using the
strategy described in Section 4.4. We present the results of what
effect the pre-processing techniques had on the quality of each model.
Firstly, by comparing the F1-score for each model trained on the pre-
processed datasets against the models trained on the non-processed dataset
(Table 4.6), we see that every model, except for Xception, improved
between 1% to 2%. Furthermore, when introducing the additional 500
images from the CVC-982 dataset [16], the pre-processed models retain
more of its score than its non-processed counterparts (Table 4.7). These
results go to show that removing the different artifacts and borders part
of Kvasir (v2) does give better training results in the form of metrics and

97

Kvasir (v2) PREC REC SPEC ACC MCC F1

VGG-16

non processed 0.977 0.841 0.813 0.959 0.834 0.833

blacked out 0.979 0.856 0.833 0.963 0.854 0.852

blacked out + borders 0.977 0.842 0.816 0.960 0.839 0.838

VGG-19

non processed 0.975 0.830 0.799 0.955 0.822 0.822

blacked out 0.976 0.837 0.811 0.958 0.833 0.833

blacked out + borders 0.976 0.838 0.813 0.959 0.835 0.836

ResNet-50

non processed 0.980 0.864 0.841 0.965 0.860 0.860

blacked out 0.980 0.865 0.843 0.966 0.862 0.862

blacked out + borders 0.981 0.871 0.848 0.966 0.865 0.865

Inception (v3)

non processed 0.975 0.830 0.802 0.956 0.825 0.825

blacked out 0.977 0.843 0.819 0.960 0.841 0.841

blacked out + borders 0.977 0.843 0.820 0.960 0.842 0.842

Xception

non processed 0.980 0.859 0.838 0.964 0.858 0.858

blacked out 0.979 0.854 0.832 0.963 0.853 0.853

blacked out + borders 0.977 0.842 0.818 0.960 0.821 0.841

Table 4.6: A comparison of the evaluation results of all models trained on
all versions of Kvasir (v2).

generalizability to new datasets. Now, there is the anomaly of the Xception
architecture trained on the pre-processed datasets result in overall worse
performance. The exact reason for this is hard to pinpoint from the metrics
alone, but looking at some visualizations may shed some light on this topic.
In the following few sections, we take a closer look at one of the previously
analyzed image sets from each of the confused class pairs.

4.5.1 Comparing Dyed Resection Margin to Dyed Lifted Polyp

Figure 4.20 shows the extended analysis on the “dyed resection margin”
image misclassified by the VGG-19 model in Section 4.4.1. Firstly,
comparing how the prediction scores changed over each pre-processing
step, we see that the network becomes increasingly confident in the correct
classification. Looking at the visualizations, we see that when targeting the
correct class (“dyed resection margin”), the activations continue to focus
on the resection mark. Targeting the wrong class of “dyed lifted polyp”,
we see that the activations move as artifacts are removed from the image,

98

Kvasir (v2) + CVC-968 PREC REC SPEC ACC MCC F1

VGG-16

non processed 0.966 0.770 0.743 0.940 0.791 0.768

blacked out 0.969 0.786 0.748 0.944 0.808 0.786

blacked out + borders 0.973 0.812 0.789 0.953 0.823 0.812

VGG-19

non processed 0.966 0.771 0.739 0.940 0.784 0.766

blacked out 0.967 0.778 0.748 0.941 0.794 0.773

blacked out + borders 0.970 0.805 0.777 0.948 0.813 0.801

ResNet-50

non processed 0.975 0.826 0.805 0.956 0.837 0.827

blacked out 0.978 0.843 0.823 0.961 0.850 0.843

blacked out + borders 0.978 0.850 0.824 0.961 0.848 0.843

Inception (v3)

non processed 0.971 0.803 0.774 0.949 0.806 0.801

blacked out 0.974 0.819 0.795 0.954 0.825 0.819

blacked out + borders 0.974 0.821 0.797 0.955 0.826 0.820

Xception

non processed 0.976 0.836 0.816 0.959 0.843 0.838

blacked out 0.976 0.833 0.811 0.958 0.838 0.834

blacked out + borders 0.973 0.813 0.789 0.953 0.821 0.814

Table 4.7: A comparison of the evaluation results of all models trained on
all versions of Kvasir (v2).

ending with heavy activations on the overlaid text. This provides further
proof that the removal of the text would most likely further increase the
model’s confidence. Nevertheless, we managed to go from an incorrect
classification to a near 100% certainty with the application of two simple
pre-processing steps.

4.5.2 Comparing Esophagitis to Z-line

Figure 4.21 shows the extended analysis on the “esophagitis” image
misclassified by the ResNet-50 model in Section 4.4.2. Looking at the
visualizations for the model trained on the “blacked out” pre-processed
dataset (Figures 4.21c and 4.21d), we see an improvement in the correct
class score. However, when applying the more extensive pre-processing
step of “blacked out and borders removed”, the class score drops to a mere
5%, reverting the previous improvement. Looking at the visualizations in
Figure 4.21f, we see that the high score of “z-line” is mostly due to the

99

Standard

Dyed
Resection

Margin

Dyed Lifted
Polyp

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 47% (b) 50%

Blacked Out

Dyed
Resection

Margin

Dyed Lifted
Polyp

(c) 95% (d) 05%

Blacked Out + Borders

Dyed
Resection

Margin

Dyed Lifted
Polyp

(e) 99% (f) 01%

Figure 4.20: A collection of images showing the how activations changed
between the various models trained on the standard, blacked out and
blacked out and borders removed Kvasir (v2) datasets. Each column
corresponds to visualizing for the label located over each column, with
the predicted probability listed below. The visualizations in this figure
correspond to the case where a VGG-19 based network misclassified an
image as “dyed lifted polyp” when the actual class was “dyed resection
margin”.

presence of black corner borders. This provides further evidence that the
removal of these corners would most likely rectify this misclassification.

4.5.3 Comparing Cecum to Ulcerative Colitis

Figure 4.22 shows the extended analysis on the “cecum” image misclas-
sified by the ResNet-50 model in Section 4.4.3. Looking at the original
activations for the correct class (Figures 4.22a), we see that the network
mostly activates on the navigation box and overlaid text. After applying
the “blacked out” pre-processing step (Figure 4.22c), we see that this at-
tention then moved the mostly to activate on the left black border, which
drops the confidence of the correct class down to 1%. Applying the fi-
nal pre-processing step, “blacked out and borders removed”, rectifies this

100

Standard

Esophagitis Z-line

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 47% (b) 50%

Blacked Out

Esophagitis Z-line

(c) 83% (d) 17%

Blacked Out + Borders

Esophagitis Z-line

(e) 5% (f) 95%

Figure 4.21: A collection of images showing the how activations changed
between the various models trained on the standard, blacked out and
blacked out and borders removed Kvasir (v2) datasets. Each column
corresponds to visualizing for the label located over each column, with
the predicted probability listed below. The visualizations in this figure
correspond to the case where a ResNet-50 based network misclassified an
image as “z-line” when the actual class was “esophagitis”.

misclassification (Figure 4.22e). However, its activations focus mostly on
the upper right black corner. In a slightly different case from the last, the
“blacked out” pre-processing made the network perform worse, while the
more extensive pre-processing step led to better classification, yet focuses
on the wrong image features.

4.5.4 Comparing Polyp to Cecum

Figure 4.23 shows the extended analysis on the “polyp” image misclassified
by the Xception model in Section 4.4.4. This case differentiates itself
from the rest, as both pre-processing steps led to considerably worse
classification results. Looking at the visualizations for the non-processed
Kvasir (v2) (Figures 4.23a and 4.23b), we see that the network does, in
fact, detect the polyp. Yet, the network still manages to misclassify it
as “cecum”. After applying the “blacked out” pre-processing step, we

101

Standard

Cecum
Ulcerative

Colitis

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 12% (b) 84%

Blacked Out

Cecum
Ulcerative

Colitis

(c) 1% (d) 95%

Blacked Out + Borders

Cecum
Ulcerative

Colitis

(e) 74% (f) 14%

Figure 4.22: A collection of images showing the how activations changed
between the various models trained on the standard, blacked out and
blacked out and borders removed Kvasir (v2) datasets. Each column
corresponds to visualizing for the label located over each column, with
the predicted probability listed below. The visualizations in this figure
correspond to the case where a ResNet-50 based network misclassified an
image as “ulcerative colitis” when the actual class was “cecum”.

see that the network still detects the polyp, yet the score drops to a 4%
confidence. Applying the last pre-processing step of “blacked out and
borders removed”, we see that the classification then dropped to 0%, with
the network 100% confident that this image is part of the “cecum” class.
In conclusion, this was a strange case, but it seems like the artifacts play
into most of the problems here. It would be interesting to see how the
removal of text and complete removal of black borders would change this
classification.

4.5.5 Comparing Ulcerative Colitis to Polyp

Figure 4.24 shows the extended analysis on the “ulcerative colitis” image
misclassified by the ResNet-50 model in Section 4.4.5. Looking at the
visualizations from the initial analysis (Figures 4.24a and 4.24b), we see

102

Standard

Polyp Cecum

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 15% (b) 84%

Blacked Out

Polyp Cecum

(c) 4% (d) 96%

Blacked Out + Borders

Polyp Cecum

(e) 0% (f) 100%

Figure 4.23: A collection of images showing the how activations changed
between the various models trained on the standard, blacked out and
blacked out and borders removed Kvasir (v2) datasets. Each column
corresponds to visualizing for the label located over each column, with
the predicted probability listed below. The visualizations in this figure
correspond to the case where a Xception based network misclassified an
image as “cecum” when the actual class was “polyp”.

the “ulcerative colitis” score was mostly due to the borders and navigation
box, and the “polyp” score was based on the change in depth of the image.
Firstly, after applying the first pre-processing step of “blacked out”, we see
that the activations for “ulcerative colitis” shift to the reflections in the right
region of the image, which decreases the score to a 9% confidence in the
correct class. Applying the “blacked out and borders removed” processing
step rectified the misclassification, but similar to that of the “cecum” case,
the network bases this prediction on the lower right corner. In conclusion,
we see that the black corners should be removed for both classification and
localization reasons, as even though the network might correctly classify
an image, it might not be due to the correct features.

103

Standard

Ulcerative
Colitis

Polyp

O
ri

gi
na

l
C

A
M

G
ui

de
d-

C
A

M

(a) 32% (b) 66%

Blacked Out

Ulcerative
Colitis

Polyp

(c) 9% (d) 90%

Blacked Out + Borders

Ulcerative
Colitis

Polyp

(e) 81% (f) 12%

Figure 4.24: A collection of images showing the how activations changed
between the various models trained on the standard, blacked out and
blacked out and borders removed Kvasir (v2) datasets. Each column
corresponds to visualizing for the label located over each column, with
the predicted probability listed below. The visualizations in this figure
correspond to the case where a ResNet-50 based network misclassified an
image as “polyp” when the actual class was “ulcerative colitis”.

4.6 Summary

Pre-processing of data before training deep neural networks is a common
practice among high achieving models, but finding what pre-processing
steps to apply to every piece of data is not always clear. Through
the use of our CNN visualization techniques, we gain some insight
into what areas of a given image is highly activated for a variety of
different deep learning architectures. In this chapter, we look at using
three visualization techniques; grad-CAM, guided backpropagation, and
guided grad-CAM, to get a better understanding of models trained on
the Kvasir (v2) dataset with the purpose of improving the quality and
generalizability. To do this, we use our Mimir system [44–46] (described
in the previous chapter) to analyze five different architectures; VGG-16,
VGG-19, Inception (v3), Xception and ResNet-50, trained on Kvasir (v2) to
derive two pre-processing steps, which are then applied to each of the five
models and compared against their initial results. This work relates to the

104

third and final research objective, where we wanted to see how a deeper
understanding of the analysis done by a CNN could lead to better training
results. The experiments conducted in this chapter relate back to our last
research objective, where we wanted to test our system to see how getting
a better understanding of the decision process to a deep neural network
could result in knowledge to better improve the performance of existing
models.

After conducting our experiments, we found that all models except for
one improved after applying the derived pre-processing steps to training.
This proves that having a better understanding of how trained models
“see” a given class may be used to improve the quality of that model.

105

106

Chapter 5

Conclusion and Further Work

5.1 Summary

Nowadays, deep neural networks are used in a wide variety of different
fields ranging from the automatic detection of fraud to automatically trans-
lating text from images. However, these methods are rarely understood
and are often treated as if they were a “black box”. This common fault may
not be much of an issue when dealing with problems of little consequence,
such as the automatic distinction between cats and dogs. But, when apply-
ing these methods to problems where a mistake may result in life-altering
consequences, we often need some rationale behind why these algorithms
suggest a given result. As a consequence, less complex analytical models
are often preferred, even though they might be less accurate. With these
open problems, we researched and developed a system for automatic en-
doscopy reporting called Mimir, which focuses on transparency and un-
derstanding of the analysis done by a deep CNN used for the detection
and diagnosis of disease found in the GI tract. This improved understand-
ing of the Mimir’s analysis is then used to generate standard compliant
endoscopy reports, which the user may edit and format as they please.

To test the usefulness of this system, we performed a case study using
Mimir to see how a better understanding of a deep neural networks
internal process may lead to finding methods of improving a given models
classification result. This was done through the analysis of five models,
each based on a different CNN architecture, trained on the endoscopy
image dataset called Kvasir [76]. By analyzing the last convolutional layer
of each network, we derived two pre-processing techniques which we
hypothesized would increase model performance. Our results showed an
overall increase of about 2% (looking at the calculated F1-score), except
for one network, which saw a decrease in performance. Additionally, we
saw a general increase in localization performance based on a selection
of images. However, we were not able to conclusively validate the
localization performance of each network, seeing as we did not have access
to an annotated masking dataset for Kvasir.

107

5.2 Contributions

As discussed in the problem statement of this thesis, we derived three
research objectives. Below, we restate each objective together with a
description of how our work solves the stated problems.

Objective 1 Research and develop a system which gives non-technical users a
better understanding of why a neural network presents a given result. This system
should be aimed at medical doctors conducting examinations and documentation
abnormalities found in the GI tract.

This objective is supported by the development of Mimir [45, 46], which
provides a tool for dissecting the internal layers of a deep CNN. Using
this tool, a doctor may verify that the diagnosis suggested by the system
is in fact due to the detection of said disease, and not due to artifacts or
noise commonly found in medical images. Also, the system allows for
direct targeting of different classes, showing what regions of a given image
directly contributes to the assigned score.

Objective 2 Provide a proof-of-concept implementation of automatic GI report
generation based on the findings of automatic analysis done through the use of a
deep neural network.

This objective is supported by the report generation tool included in
Mimir [45, 46], which suggests relevant images based on a diagnosis
proposed by the system. As stated in the objective, this is currently a proof-
of-concept, meaning it is expected to be improved through future work.

Objective 3 Use various visualization techniques to get a better understanding
of the internal working of a deep neural network. This newly gained knowledge
should be used in the development of pre-processing steps with the purpose of
training quality and robust analytical models based on deep learning.

This last objective is supported by our use of Mimir to analyze five
neural network based models, each using a different CNN architecture,
with the purpose of finding faults in its training. This was done using
Mimir’s neural network dissection tool, where we inspected what regions
of a given image correlated to the incorrect classification score. Based on
the performed analysis, we derived two pre-processing steps applied to
Kvasir (v2) [76] dataset, which showed to improve the classification score
of all models except one. This objective is also supported by a published
paper [44], where we showcase part of the experiments conducted over the
course of this thesis.

Through the work produced in this thesis, we learned that using neural
network based visualizations may provide sufficient knowledge into what
pre-processing steps may lead to improved classification performance.
Specifically, we improved the performance of a deep neural network
trained to detect disease and anatomy of the GI tract.

108

Each objective is supported by published papers, which have also been
included in the Appendix of this thesis. Paper B.1 [46] and Paper B.2 [45]
relate to the first two objectives, and Paper B.3 [44] relates to the final
objective.

5.3 Future Work

Getting a better understanding of the internal workings of a deep neural
network is an essential first step in increasing trust and acceptance in
systems based on this technology. In Chapter 3, we presented a system
for analysis of such deep neural networks with the purpose of using
this information in the reporting of GI disease. For future work, we
would like to expand on the report generation portion of the system by
adding support for features such as automatic text suggestions, support for
different reporting templates, and a more robust system for producing and
exporting generated reports. Even though doctors listed an automatic text
generation as a low priority, it would still improve on the implementation
of the MST as suggested by the ESGE.

In addition to improving the reporting system of Mimir, we see that
additional experiments using the neural network dissection tool could be
useful to the quality of Kvasir. Through further inspection, we see other
pre-processing steps that may give train higher quality models. In addition
to the proposed pre-processing steps, we could remove the text located on
some of the images, entirely remove the anchor found in the lower right
corner of some images. Lastly, thoroughly remove all borders by cropping
the entire image, leaving no black borders of any kind (although this would
require more than a simple pre-processing step as we would not like to crop
out the class defining object).

109

110

Bibliography

[1] Lars Aabakken, Alan N Barkun, Peter B Cotton, Evgeny Fedorov,
Masayuki A Fujino, Ekaterina Ivanova, Shin-ei Kudo, Konstantin
Kuznetzov, Thomas Lange, Koji Matsuda et al. ‘Standardized endo-
scopic reporting’. In: Journal of gastroenterology and hepatology
29.2 (2014), pp. 234–240.

[2] Airbnb. Enzyme. 2018. URL: https://github.com/airbnb/enzyme.

[3] Dinu A.J, R Ganesan and F. Knight Joseph. ‘A study on Deep
Machine Learning Algorithms for diagnosis of diseases’. In: 2017.

[4] Davide Bacciu, Paulo J. G. Lisboa, José D. Martín, Ruxandra Stoean
and Alfredo Vellido. ‘Bioinformatics and Medicine in the Era of
Deep Learning’. In: CoRR abs/1802.09791 (2018). arXiv: 1802.09791.
URL: http://arxiv.org/abs/1802.09791.

[5] Nancy N Baxter, Rinku Sutradhar, Shawn S Forbes, Lawrence F
Paszat, Refik Saskin and Linda Rabeneck. ‘Analysis of Administrat-
ive Data Finds Endoscopist Quality Measures Associated With Post-
colonoscopy Colorectal Cancer’. In: Gastroenterology 140.1 (Apr.
2018), pp. 65–72. ISSN: 0016-5085. DOI: 10.1053/j.gastro.2010.09.006.
URL: http://dx.doi.org/10.1053/j.gastro.2010.09.006.

[6] Daphnée Beaulieu, Alan Barkun and Myriam Martel. ‘Quality audit
of colonoscopy reports amongst patients screened or surveilled for
colorectal neoplasia’. In: World Journal of Gastroenterology : WJG
18.27 (July 2012), pp. 3551–3557. ISSN: 1007-9327. DOI: 10.3748/wjg.
v18 . i27 . 3551. URL: http : / /www . ncbi . nlm . nih . gov / pmc/ articles /
PMC3400856/.

[7] R. Bhardwaj, A. R. Nambiar and D. Dutta. ‘A Study of Machine
Learning in Healthcare’. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). Vol. 2. July
2017, pp. 236–241. DOI: 10.1109/COMPSAC.2017.164.

[8] Michael Bretthauer, Lars Aabakken, Evelien Dekker, Michal F Kam-
inski, Thomas Rösch, Rolf Hultcrantz, Stepan Suchanek, Rodrigo
Jover, Ernst J Kuipers, Raf Bisschops et al. ‘Requirements and
standards facilitating quality improvement for reporting systems
in gastrointestinal endoscopy: European Society of Gastrointestinal
Endoscopy (ESGE) Position Statement’. In: Endoscopy 48.3 (2016),
pp. 291–4.

111

https://github.com/airbnb/enzyme
http://arxiv.org/abs/1802.09791
http://arxiv.org/abs/1802.09791
http://dx.doi.org/10.1053/j.gastro.2010.09.006
http://dx.doi.org/10.1053/j.gastro.2010.09.006
http://dx.doi.org/10.3748/wjg.v18.i27.3551
http://dx.doi.org/10.3748/wjg.v18.i27.3551
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400856/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400856/
http://dx.doi.org/10.1109/COMPSAC.2017.164

[9] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm
and Noemie Elhadad. ‘Intelligible Models for HealthCare: Predict-
ing Pneumonia Risk and Hospital 30-day Readmission’. In: Pro-
ceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’15. Sydney, NSW,
Australia: ACM, 2015, pp. 1721–1730. ISBN: 978-1-4503-3664-2. DOI:
10.1145/2783258.2788613. URL: http://doi.acm.org/10.1145/2783258.
2788613.

[10] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona
and Thomas Blaschke. ‘The rise of deep learning in drug discovery’.
In: Drug Discovery Today (2018). ISSN: 1359-6446. DOI: https://doi.
org/10.1016/j.drudis.2018.01.039. URL: http://www.sciencedirect.com/
science/article/pii/S1359644617303598.

[11] Shawn Chen and Douglas K. Rex. ‘Endoscopist Can Be More Power-
ful than Age and Male Gender in Predicting Adenoma Detection
at Colonoscopy’. In: The American Journal of Gastroenterology 102
(2007), pp. 856–861.

[12] François Chollet et al. ‘Keras: Deep learning library for theano and
tensorflow’. In: URL: https://keras. io/k (2015).

[13] François Chollet. ‘Xception: Deep Learning with Depthwise Separ-
able Convolutions’. In: CoRR abs/1610.02357 (2016). arXiv: 1610 .
02357. URL: http://arxiv.org/abs/1610.02357.

[14] Susan G Coe, Chakri Panjala, Michael G Heckman, Mihir Patel,
Bashar J Qumseya, Yize R Wang, Benjamin Dalton, Philip Tran,
William Palmer, Nancy Diehl, Michael B Wallace and Massimo
Raimondo. ‘Quality in colonoscopy reporting: An assessment of
compliance and performance improvement’. In: Digestive and Liver
Disease 44.8 (Apr. 2018), pp. 660–664. ISSN: 1590-8658. DOI: 10.1016/
j.dld.2012.03.022. URL: http://dx.doi.org/10.1016/j.dld.2012.03.022.

[15] R. Collobert, K. Kavukcuoglu and C. Farabet. ‘Torch7: A Matlab-like
Environment for Machine Learning’. In: BigLearn, NIPS Workshop.
2011.

[16] ‘Comparative Validation of Polyp Detection Methods in Video
Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision
Challenge’. In: IEEE Transactions on Medical Imaging (99 2017).

[17] Gregory F. Cooper, Constantin F. Aliferis, Richard Ambrosino, John
Aronis, Bruce G. Buchanan, Richard Caruana, Michael J. Fine, Clark
Glymour, Geoffrey Gordon, Barbara H. Hanusa, Janine E. Janosky,
Christopher Meek, Tom Mitchell, Thomas Richardson and Peter
Spirtes. ‘An evaluation of machine-learning methods for predicting
pneumonia mortality’. In: Artificial Intelligence in Medicine 9.2
(1997), pp. 107–138. ISSN: 0933-3657. DOI: https://doi.org/10.1016/
S0933-3657(96)00367-3. URL: http://www.sciencedirect.com/science/
article/pii/S0933365796003673.

112

http://dx.doi.org/10.1145/2783258.2788613
http://doi.acm.org/10.1145/2783258.2788613
http://doi.acm.org/10.1145/2783258.2788613
http://dx.doi.org/https://doi.org/10.1016/j.drudis.2018.01.039
http://dx.doi.org/https://doi.org/10.1016/j.drudis.2018.01.039
http://www.sciencedirect.com/science/article/pii/S1359644617303598
http://www.sciencedirect.com/science/article/pii/S1359644617303598
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://dx.doi.org/10.1016/j.dld.2012.03.022
http://dx.doi.org/10.1016/j.dld.2012.03.022
http://dx.doi.org/10.1016/j.dld.2012.03.022
http://dx.doi.org/https://doi.org/10.1016/S0933-3657(96)00367-3
http://dx.doi.org/https://doi.org/10.1016/S0933-3657(96)00367-3
http://www.sciencedirect.com/science/article/pii/S0933365796003673
http://www.sciencedirect.com/science/article/pii/S0933365796003673

[18] CrowdMM ’14: Proceedings of the 2014 International ACM Work-
shop on Crowdsourcing for Multimedia. Orlando, Florida, USA:
ACM, 2014. ISBN: 978-1-4503-3128-9.

[19] G. Cybenko. ‘Approximation by superpositions of a sigmoidal
function’. In: Mathematics of Control, Signals and Systems 2.4
(Dec. 1989), pp. 303–314. ISSN: 1435-568X. DOI: 10.1007/BF02551274.
URL: https://doi.org/10.1007/BF02551274.

[20] M Delvaux, L.Y Korman, J.R Armengol-Miro, M Crespi, O Cass, F
Hagenmüller and F.M Zwiebel. ‘The minimal standard terminology
for digestive endoscopy: introduction to structured reporting’. In:
International Journal of Medical Informatics 48.1 (1998), pp. 217–
225. ISSN: 1386-5056.

[21] Peter Denning, Douglas E. Comer, David Gries, Michael C. Mulder,
Allen B. Tucker, A. Joe Turner and Paul R. Young. ‘Computing as
a discipline: preliminary report of the ACM task force on the core
of computer science’. In: Proceedings of the Nineteenth SIGCSE
Technical Symposium on Computer Science Education 20.1 (1988),
p. 41. ISSN: 00978418. DOI: 10.1145/52964.52975. URL: http://doi .
acm.org/10.1145/52964.52975%0Ahttp://doi.acm.org/10.1145/52965.
52975.

[22] Timothy Dozat. ‘Incorporating Nesterov Momentum into Adam’.
In: 2015.

[23] John Duchi, Elad Hazan and Yoram Singer. ‘Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization’. In: J.
Mach. Learn. Res. 12 (July 2011), pp. 2121–2159. ISSN: 1532-4435.
URL: http://dl.acm.org/citation.cfm?id=1953048.2021068.

[24] Nicola Eastaff-Leung, Nicholas Mabarrack, Angela Barbour, Adrian
Cummins and Simon Barry. ‘Foxp3+ Regulatory T Cells, Th17
Effector Cells, and Cytokine Environment in Inflammatory Bowel
Disease’. In: Journal of Clinical Immunology 30.1 (Jan. 2010),
pp. 80–89. ISSN: 1573-2592. DOI: 10.1007/s10875-009-9345-1. URL:
https://doi.org/10.1007/s10875-009-9345-1.

[25] Dumitru Erhan, Yoshua Bengio, Aaron Courville and Pascal Vin-
cent. ‘Visualizing higher-layer features of a deep network’. In:
Bernoulli 1341 (2009), pp. 1–13. URL: http : / / igva2012 .wikispaces .
asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+
of+a+deep+network.pdf.

[26] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M
Swetter, Helen M Blau and Sebastian Thrun. ‘Dermatologist-level
classification of skin cancer with deep neural networks’. In: Nature
542.7639 (Feb. 2017), pp. 115–118. ISSN: 0028-0836. DOI: 10 . 1038 /
nature21056. URL: http ://dx .doi .org/10 .1038/nature21056%2010 .
1038/nature21056%20http://www.nature .com/doifinder/10.1038/
nature21056.

113

http://dx.doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1145/52964.52975
http://doi.acm.org/10.1145/52964.52975%0Ahttp://doi.acm.org/10.1145/52965.52975
http://doi.acm.org/10.1145/52964.52975%0Ahttp://doi.acm.org/10.1145/52965.52975
http://doi.acm.org/10.1145/52964.52975%0Ahttp://doi.acm.org/10.1145/52965.52975
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dx.doi.org/10.1007/s10875-009-9345-1
https://doi.org/10.1007/s10875-009-9345-1
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://igva2012.wikispaces.asu.edu/file/view/Erhan+2009+Visualizing+higher+layer+features+of+a+deep+network.pdf
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056

[27] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan
M Swetter, Helen M Blau and Sebastian Thrun. ‘Dermatologist-
level classification of skin cancer with deep neural networks’. In:
Nature 542.7639 (2017), pp. 115–118. ISSN: 0028-0836. DOI: 10.1038/
nature21056. URL: http ://dx .doi .org/10 .1038/nature21056%2010 .
1038/nature21056%20http://www.nature .com/doifinder/10.1038/
nature21056.

[28] Estimated Cancer Incidence, Mortality and Prevalence Worldwide
in 2012. [last visited, May. 12, 2018]. 2012. URL: http://globocan.iarc.
fr/Pages/fact_sheets_population.aspx.

[29] Facebook. Flux. 2018. URL: https://facebook.github.io/flux/.

[30] Facebook. Jest. 2018. URL: https://facebook.github.io/jest/.

[31] Facebook. React. 2018. URL: https://reactjs.org/.

[32] Li Fei-Fei, R. Fergus and P. Perona. ‘One-shot learning of object
categories’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 28.4 (Apr. 2006), pp. 594–611. ISSN: 0162-8828. DOI: 10.
1109/TPAMI.2006.79.

[33] Deborah A Fisher, John T Maple, Tamir Ben-Menachem, Brooks D
Cash, G Anton Decker, Dayna S Early, John A Evans, Robert D
Fanelli, Norio Fukami, Joo Ha Hwang, Rajeev Jain, Terry L Jue,
Khalid M Khan, Phyllis M Malpas, Ravi N Sharaf, Amandeep K
Shergill and Jason A Dominitz. ‘Complications of colonoscopy’.
In: Gastrointestinal Endoscopy 74.4 (Oct. 2011), pp. 745–752. ISSN:
0016-5107. DOI: 10.1016/j.gie.2011.07.025. URL: http://dx.doi.org/10.
1016/j.gie.2011.07.025.

[34] Flask. Flask. 2018. URL: http://flask.pocoo.org/.

[35] Christopher J Fyock and Peter V Draganov. ‘Colonoscopic polypec-
tomy and associated techniques’. In: World Journal of Gastroenter-
ology : WJG 16.29 (Aug. 2010), pp. 3630–3637. ISSN: 1007-9327. DOI:
10.3748/wjg.v16.i29.3630. URL: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2915422/.

[36] Lauren B Gerson, Jeffrey Tokar, Michael Chiorean, Simon Lo, G
Anton Decker, David Cave, Doumit BouHaidar, Daniel Mishkin,
Charles Dye, Oleh Haluszka, Jonathan A Leighton, Alvin Zfass
and Carol Semrad. ‘Complications Associated With Double Balloon
Enteroscopy at Nine US Centers’. In: Clinical Gastroenterology and
Hepatology 7.11 (Nov. 2009), 1177–1182.e3. ISSN: 1542-3565. DOI: 10.
1016/j.cgh.2009.07.005. URL: http://dx.doi.org/10.1016/j.cgh.2009.07.
005.

[37] Gregory G. Ginsberg. ‘Risks of Colonoscopy and Polypectomy’. In:
Techniques in Gastrointestinal Endoscopy 10.1 (2008). Volume 2.
Risks of Endoscopy and the Endoscopist, the Endoscopy Staff, and
the Patient, pp. 7–13. ISSN: 1096-2883. DOI: https://doi.org/10.1016/
j.tgie.2007.08.005. URL: http://www.sciencedirect.com/science/article/
pii/S1096288307000484.

114

http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056
http://dx.doi.org/10.1038/nature21056%2010.1038/nature21056%20http://www.nature.com/doifinder/10.1038/nature21056
http://globocan.iarc.fr/Pages/fact_sheets_population.aspx
http://globocan.iarc.fr/Pages/fact_sheets_population.aspx
https://facebook.github.io/flux/
https://facebook.github.io/jest/
https://reactjs.org/
http://dx.doi.org/10.1109/TPAMI.2006.79
http://dx.doi.org/10.1109/TPAMI.2006.79
http://dx.doi.org/10.1016/j.gie.2011.07.025
http://dx.doi.org/10.1016/j.gie.2011.07.025
http://dx.doi.org/10.1016/j.gie.2011.07.025
http://flask.pocoo.org/
http://dx.doi.org/10.3748/wjg.v16.i29.3630
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915422/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915422/
http://dx.doi.org/10.1016/j.cgh.2009.07.005
http://dx.doi.org/10.1016/j.cgh.2009.07.005
http://dx.doi.org/10.1016/j.cgh.2009.07.005
http://dx.doi.org/10.1016/j.cgh.2009.07.005
http://dx.doi.org/https://doi.org/10.1016/j.tgie.2007.08.005
http://dx.doi.org/https://doi.org/10.1016/j.tgie.2007.08.005
http://www.sciencedirect.com/science/article/pii/S1096288307000484
http://www.sciencedirect.com/science/article/pii/S1096288307000484

[38] Google. Angular. 2018. URL: https://angular.io.

[39] H. Greenspan, B. van Ginneken and R. M. Summers. ‘Guest
Editorial Deep Learning in Medical Imaging: Overview and Future
Promise of an Exciting New Technique’. In: IEEE Transactions on
Medical Imaging 35.5 (May 2016), pp. 1153–1159. ISSN: 0278-0062.
DOI: 10.1109/TMI.2016.2553401.

[40] Marcel Groenen, Ernst Kuipers, Gerard van Berge Henegouwen,
Paul Fockens and Rob Ouwendijk. ‘Computerisation of endoscopy
reports using standard reports and text blocks’. In: The Netherlands
journal of medicine (2006).

[41] Nigel H. The Crohnoid Blog. 2015. URL: http : / / www .
wrestlingtheoctopus.com/the-a-to-z-of-my-crohns/.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. ‘Deep Re-
sidual Learning for Image Recognition’. In: CoRR abs/1512.03385
(2015). arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385.

[43] Steven Hicks. Master Training Scripts. https : / / github . com /
Stevenah/master-training-scripts. 2018.

[44] Steven Hicks, Michael Riegler, Pogorelov Konstantin, Kim V. Ånon-
sen, Thomas de Lange, Dag Johansen, Mattis Jeppsson, Kristin Ran-
heim Randel, Sigrun Eskeland and Pål Halvorsen. Dissecting Deep
Neural Networksfor Better Medical Image Classification andClas-
sification Understanding. 2018.

[45] Steven Hicks, Michael Riegler, Pogorelov Konstantin, Thomas de
Lange, Dag Johansen, Mattis Jeppsson, Kristin Ranheim Randel,
Sigrun Eskeland and Pål Halvorsen. ‘Comprehensible Reasoning
and Automated Reporting ofMedical Examinations Based on Deep
Learning Analysis’. In: InProceedings of 9th ACM Multimedia
Systems Conference, Amsterdam, Netherlands, June 12–15, 2018
(MMSys’18). ACM, 2018. DOI: 10.1145/3204949.3208113. URL: https:
//doi.org/10.1145/3204949.3208113.

[46] Steven Hicks, Michael Riegler, Pogorelov Konstantin, Thomas de
Lange, Dag Johansen, Mattis Jeppsson, Kristin Ranheim Randel,
Sigrun Eskeland and Pål Halvorsen. ‘Mimir: An Automatic Re-
porting and Reasoning System for DeepLearning based Analysis
in the Medical Domain’. In: InProceedings of 9th ACM Multime-
dia Systems Conference, Amsterdam, Netherlands, June 12–15, 2018
(MMSys’18). ACM, 2018. DOI: 10.1145/3204949.3208129. URL: https:
//doi.org/10.1145/3204949.3208129.

[47] Robert J Hilsden, Alaa Rostom, Catherine Dubé, Darlene Pontifex,
S Elizabeth McGregor and Ronald J Bridges. ‘Development and
implementation of a comprehensive quality assurance program
at a community endoscopy facility’. In: Canadian Journal of
Gastroenterology 25.10 (Oct. 2011), pp. 547–554. ISSN: 0835-7900.
URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206550/.

115

https://angular.io
http://dx.doi.org/10.1109/TMI.2016.2553401
http://www.wrestlingtheoctopus.com/the-a-to-z-of-my-crohns/
http://www.wrestlingtheoctopus.com/the-a-to-z-of-my-crohns/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://github.com/Stevenah/master-training-scripts
https://github.com/Stevenah/master-training-scripts
http://dx.doi.org/10.1145/3204949.3208113
https://doi.org/10.1145/3204949.3208113
https://doi.org/10.1145/3204949.3208113
http://dx.doi.org/10.1145/3204949.3208129
https://doi.org/10.1145/3204949.3208129
https://doi.org/10.1145/3204949.3208129
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206550/

[48] Geoffrey E. Hinton, Simon Osindero and Yee-Whye Teh. ‘A Fast
Learning Algorithm for Deep Belief Nets’. In: Neural Comput. 18.7
(July 2006), pp. 1527–1554. ISSN: 0899-7667. DOI: 10.1162/neco.2006.
18.7.1527. URL: http://dx.doi.org/10.1162/neco.2006.18.7.1527.

[49] Najihah Ibrahim, Nur Shazwani Md. Akhir and Fadratul Hafinaz
Hassan. ‘Predictive analysis effectiveness in determining the epi-
demic disease infected area’. In: AIP Conference Proceedings 1891.1
(2017), p. 020064. DOI: 10 . 1063 / 1 . 5005397. eprint: https : / / aip .
scitation.org/doi/pdf/10.1063/1.5005397. URL: https://aip.scitation.
org/doi/abs/10.1063/1.5005397.

[50] X. Jia and M. Q. H. Meng. ‘A deep convolutional neural network
for bleeding detection in Wireless Capsule Endoscopy images’. In:
2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). Aug. 2016, pp. 639–642.
DOI: 10.1109/EMBC.2016.7590783.

[51] Vincent de Jonge, Jerome Sint Nicolaas, Djuna L Cahen, Willem
Moolenaar, Rob J.Th. Ouwendijk, Thjon J Tang, Antonie J P van
Tilburg, Ernst J Kuipers and Monique E van Leerdam. ‘Quality
evaluation of colonoscopy reporting and colonoscopy performance
in daily clinical practice’. In: Gastrointestinal Endoscopy 75.1 (Apr.
2018), pp. 98–106. ISSN: 0016-5107. DOI: 10.1016/j.gie.2011.06.032.
URL: http://dx.doi.org/10.1016/j.gie.2011.06.032.

[52] Andrej Karpathy, Justin Johnson and Fei-Fei Li. ‘Visualizing and
Understanding Recurrent Networks’. In: CoRR abs/1506.02078
(2015). arXiv: 1506.02078. URL: http://arxiv.org/abs/1506.02078.

[53] Ji Hyun Kim, Jin Ki Hwang, Juhyung Kim, Sehe Dong Lee, Beom
Jae Lee, Jae Seon Kim and Young-Tae Bak. ‘Endoscopic findings
around the gastroesophageal junction: an experience from a tertiary
hospital in Korea’. In: The Korean Journal of Internal Medicine 23.3
(Sept. 2008), pp. 127–133. ISSN: 1226-3303. DOI: 10.3904/kjim.2008.23.
3.127. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686963/.

[54] Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for Stochastic
Optimization’. In: CoRR abs/1412.6980 (2014). arXiv: 1412 . 6980.
URL: http://arxiv.org/abs/1412.6980.

[55] Louis Y Korman. ‘Standardization in Endoscopic Reporting: Implic-
ations for Clinical Practice and Research’. In: Journal of Clinical
Gastroenterology 28.3 (1999). ISSN: 0192-0790. URL: https://journals.
lww . com / jcge / Fulltext / 1999 / 04000 / Standardization% 7B% 5C_
%7Din%7B%5C_%7DEndoscopic%7B%5C_%7DReporting%7B%
5C_%7D.6.aspx.

[56] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘ImageNet
Classification with Deep Convolutional Neural Networks’. In:
Advances in Neural Information Processing Systems 25. Ed. by F.
Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger. Curran
Associates, Inc., 2012, pp. 1097–1105. URL: http ://papers .nips . cc/

116

http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1063/1.5005397
https://aip.scitation.org/doi/pdf/10.1063/1.5005397
https://aip.scitation.org/doi/pdf/10.1063/1.5005397
https://aip.scitation.org/doi/abs/10.1063/1.5005397
https://aip.scitation.org/doi/abs/10.1063/1.5005397
http://dx.doi.org/10.1109/EMBC.2016.7590783
http://dx.doi.org/10.1016/j.gie.2011.06.032
http://dx.doi.org/10.1016/j.gie.2011.06.032
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1506.02078
http://dx.doi.org/10.3904/kjim.2008.23.3.127
http://dx.doi.org/10.3904/kjim.2008.23.3.127
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686963/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://journals.lww.com/jcge/Fulltext/1999/04000/Standardization%7B%5C_%7Din%7B%5C_%7DEndoscopic%7B%5C_%7DReporting%7B%5C_%7D.6.aspx
https://journals.lww.com/jcge/Fulltext/1999/04000/Standardization%7B%5C_%7Din%7B%5C_%7DEndoscopic%7B%5C_%7DReporting%7B%5C_%7D.6.aspx
https://journals.lww.com/jcge/Fulltext/1999/04000/Standardization%7B%5C_%7Din%7B%5C_%7DEndoscopic%7B%5C_%7DReporting%7B%5C_%7D.6.aspx
https://journals.lww.com/jcge/Fulltext/1999/04000/Standardization%7B%5C_%7Din%7B%5C_%7DEndoscopic%7B%5C_%7DReporting%7B%5C_%7D.6.aspx
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

paper/4824- imagenet - classification-with- deep- convolutional - neural -
networks.pdf.

[57] K Kuhn, W Gaus, JG Wechsler, P Janowitz, J Tudyka, W Kratzer,
W Swobodnik and H Ditschuneit. ‘Structured reporting of medical
findings: evaluation of a system in gastroenterology’. In: Methods
of information in medicine 31.04 (1992), pp. 268–274.

[58] Yann LeCun, Patrick Haffner, Léon Bottou and Yoshua Bengio.
‘Object Recognition with Gradient-Based Learning’. In: Shape,
Contour and Grouping in Computer Vision. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 319–345. ISBN: 978-3-540-
46805-9. DOI: 10.1007/3- 540- 46805- 6_19. URL: https ://doi .org/
10.1007/3-540-46805-6_19.

[59] Baopu Li and M.Q.-H. Meng. ‘Tumor Recognition in Wireless
Capsule Endoscopy Images Using Textural Features and SVM-
Based Feature Selection’. In: IEEE Trans. Information Technology
in Biomedicine 16.3 (May 2012), pp. 323–329.

[60] Hui Li, Maryellen L. Giger, Benjamin Q. Huynh and Natasha
O. Antropova. ‘Deep learning in breast cancer risk assessment:
evaluation of convolutional neural networks on a clinical dataset
of full-field digital mammograms’. In: Journal of Medical Imaging
4 (2017), pp. 4–6. DOI: 10.1117/1.JMI.4.4.041304. URL: https://doi.
org/10.1117/1.JMI.4.4.041304.

[61] Jun Li, Marion R Nadel, Carolyn F Poppell, Diane M Dwyer, David
A Lieberman and Eileen K Steinberger. ‘Quality Assessment of
Colonoscopy Reporting: Results from a Statewide Cancer Screening
Program’. In: Diagnostic and Therapeutic Endoscopy 2010 (Sept.
2010), p. 419796. ISSN: 1070-3608. DOI: 10.1155/2010/419796. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948883/.

[62] Rongjian Li, Wenlu Zhang, Heung-Il Suk, Li Wang, Jiang Li, Ding-
gang Shen and Shuiwang Ji. ‘Deep Learning Based Imaging Data
Completion for Improved Brain Disease Diagnosis’. In: Medical
Image Computing and Computer-Assisted Intervention – MICCAI
2014. LNCS, volu. 2014, pp. 305–312. DOI: 10.1007/978-3-319-10443-
0{_}39. URL: http://link.springer.com/10.1007/978-3-319-10443-
0_39.

[63] Yibo Li, Liangren Zhang and Zhenming Liu. ‘Multi-Objective De
Novo Drug Design with Conditional Graph Generative Model’. In:
(2018). eprint: arXiv:1801.07299.

[64] David Lieberman, Marion Nadel, Robert A. Smith, Wendy Atkin,
Subash B. Duggirala, Robert Fletcher, Seth N. Glick, C. Daniel
Johnson, Theodore R. Levin, John B. Pope, Michael B. Potter,
David Ransohoff, Douglas Rex, Robert Schoen, Paul Schroy and
Sidney Winawer. ‘Standardized colonoscopy reporting and data
system: report of the Quality Assurance Task Group of the National

117

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
http://dx.doi.org/10.1117/1.JMI.4.4.041304
https://doi.org/10.1117/1.JMI.4.4.041304
https://doi.org/10.1117/1.JMI.4.4.041304
http://dx.doi.org/10.1155/2010/419796
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948883/
http://dx.doi.org/10.1007/978-3-319-10443-0{_}39
http://dx.doi.org/10.1007/978-3-319-10443-0{_}39
http://link.springer.com/10.1007/978-3-319-10443-0_39
http://link.springer.com/10.1007/978-3-319-10443-0_39
arXiv:1801.07299

Colorectal Cancer Roundtable’. In: Gastrointestinal Endoscopy 65.6
(2007), pp. 757–766. ISSN: 00165107. DOI: 10.1016/j.gie.2006.12.055.

[65] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins and Peter
Norvig. ‘Deep Learning with Dynamic Computation Graphs’. In:
CoRR abs/1702.02181 (2017). arXiv: 1702.02181. URL: http://arxiv.
org/abs/1702.02181.

[66] L Lundell, J Dent, J Bennett, A Blum, D Armstrong, J Galmiche, F
Johnson, M Hongo, J Richter, S Spechler, G Tytgat and L Wallin.
‘Endoscopic assessment of oesophagitis: clinical and functional
correlates and further validation of the Los Angeles classification’.
In: Gut 45.2 (Aug. 1999), pp. 172–180. ISSN: 0017-5749. URL: http :
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1727604/.

[67] Trygve M. H. Reenskaug. ‘Thing-Model-View-Editor – an Example
from a planningsystem’. In: (May 1979). Erste Notiz zum Modell-
View-Controller-Paradigma mit exemplarischen Beispielen verfasst
vom Erfinder persönlich. URL: http://heim.ifi.uio.no/~trygver/1979/
mvc-1/1979-05-MVC.pdf.

[68] Hugh D Mai, Robert A Sanowski and J Patrick Waring. ‘Improved
patient care using the A/S/G/E guidelines on quality assurance:
a prospective comparative study’. In: Gastrointestinal Endoscopy
37.6 (Apr. 2018), pp. 597–599. ISSN: 0016-5107. DOI: 10.1016/S0016-
5107(91)70861-4. URL: http://dx.doi.org/10.1016/S0016-5107(91)
70861-4.

[69] Maciej A. Mazurowski, Mateusz Buda, Ashirbani Saha and Mustafa
R. Bashir. Deep learning in radiology: an overview of the concepts
and a survey of the state of the art. 2018. eprint: arXiv:1802.08717.

[70] Thomas M Mitchell. Machine Learning. 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997, pp. 2–3. ISBN: 0070428077.

[71] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra and Martin A. Riedmiller.
‘Playing Atari with Deep Reinforcement Learning’. In: CoRR
abs/1312.5602 (2013). arXiv: 1312.5602. URL: http://arxiv.org/abs/
1312.5602.

[72] Grégoire Montavon, Wojciech Samek and Klaus-Robert Müller.
‘Methods for Interpreting and Understanding Deep Neural Net-
works’. In: CoRR abs/1706.07979 (2017). arXiv: 1706 . 07979. URL:
http://arxiv.org/abs/1706.07979.

[73] Lena B Palmer, David H Abbott, Natia Hamilton, Dawn Provenzale
and Deborah A Fisher. ‘Quality of colonoscopy reporting in com-
munity practice’. In: Gastrointestinal endoscopy 72.2 (Aug. 2010),
321–327.e1. ISSN: 0016-5107. DOI: 10.1016/j .gie .2010.03.002. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087434/.

118

http://dx.doi.org/10.1016/j.gie.2006.12.055
http://arxiv.org/abs/1702.02181
http://arxiv.org/abs/1702.02181
http://arxiv.org/abs/1702.02181
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1727604/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1727604/
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://dx.doi.org/10.1016/S0016-5107(91)70861-4
http://dx.doi.org/10.1016/S0016-5107(91)70861-4
http://dx.doi.org/10.1016/S0016-5107(91)70861-4
http://dx.doi.org/10.1016/S0016-5107(91)70861-4
arXiv:1802.08717
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1706.07979
http://arxiv.org/abs/1706.07979
http://dx.doi.org/10.1016/j.gie.2010.03.002
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087434/

[74] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga and Adam Lerer. ‘Automatic differentiation in PyTorch’. In:
(2017).

[75] Konstantin Pogorelov, Olga Ostroukhova, Mattis Jeppsson, Håvard
Espeland, Carsten Griwodz, Thomas de Lange, Dag Johansen,
Michael Riegler and Pål Halvorsen. ‘Deep Learning and Hand-
crafted Feature Based Approaches for Polyp Detection in Medical
Videos’. In: 2018.

[76] Konstantin Pogorelov, Kristin Ranheim, Carsten Griwodz, Thomas
de Lange, Sigrun L Eskeland, Dag Johansen, Peter Thelin Schmidt,
Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Mi-
chael Riegler and Pål Halvorsen. ‘Kvasir: A Multi-Class Image-
Dataset for Computer Aided Gastrointestinal Disease Detection’. In:
ACM Multimedia Systems. 2017, pp. 1–6. ISBN: 1234567245. DOI:
10.1145/3083187.3083212.

[77] Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland,
Thomas de Lange, Dag Johansen, Carsten Griwodz, Peter Th-
elin Schmidt and Pål Halvorsen. ‘Efficient disease detection in
gastrointestinal videos – global features versus neural networks’. In:
Multimedia Tools and Applications 76.21 (Nov. 2017), pp. 22493–
22525. ISSN: 1573-7721. DOI: 10.1007/s11042-017-4989-y. URL: https:
//doi.org/10.1007/s11042-017-4989-y.

[78] Linda Rabeneck, Lawrence F Paszat, Robert J Hilsden, Refik Saskin,
Des Leddin, Eva Grunfeld, Elaine Wai, Meredith Goldwasser, Rinku
Sutradhar and Therese A Stukel. ‘Bleeding and Perforation After
Outpatient Colonoscopy and Their Risk Factors in Usual Clinical
Practice’. In: Gastroenterology 135.6 (Dec. 2008), 1899–1906.e1. ISSN:
0016-5085. DOI: 10.1053/j.gastro.2008.08.058. URL: http://dx.doi.org/
10.1053/j.gastro.2008.08.058.

[79] Linda Rabeneck, Lawrence F Paszat and Refik Saskin. ‘Endoscop-
ist Specialty Is Associated With Incident Colorectal Cancer After a
Negative Colonoscopy’. In: Clinical Gastroenterology and Hepato-
logy 8.3 (Apr. 2018), pp. 275–279. ISSN: 1542-3565. DOI: 10.1016/j.
cgh.2009.10.022. URL: http://dx.doi.org/10.1016/j.cgh.2009.10.022.

[80] Redux. 2018. URL: https://redux.js.org/.

[81] Leonard Richardson and Sam Ruby. Restful Web Services. First.
O’Reilly, 2007. ISBN: 9780596529260.

[82] Michael Riegler. ‘EIR - A Medical Multimedia System for Efficient
Computer Aided Diagnosis’. PhD thesis. University of Oslo, 2017,
pp. 1–102.

119

http://dx.doi.org/10.1145/3083187.3083212
http://dx.doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1007/s11042-017-4989-y
http://dx.doi.org/10.1053/j.gastro.2008.08.058
http://dx.doi.org/10.1053/j.gastro.2008.08.058
http://dx.doi.org/10.1053/j.gastro.2008.08.058
http://dx.doi.org/10.1016/j.cgh.2009.10.022
http://dx.doi.org/10.1016/j.cgh.2009.10.022
http://dx.doi.org/10.1016/j.cgh.2009.10.022
https://redux.js.org/

[83] Douglas J Robertson, Laura B Lawrence, Nicholas J Shaheen, John
A Baron, Electra Paskett, Nicholas J Petrelli and Robert S Sandler.
‘Quality of colonoscopy reporting: a process of care study’. In:
American Journal Of Gastroenterology 97 (Oct. 2002), p. 2651. URL:
http : / /dx . doi . org / 10 . 1111/ j . 1572 - 0241 . 2002 . 06044 . x%20http :
//10.0.4.87/j.1572-0241.2002.06044.x.

[84] F. Rosenblatt. ‘The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in The Brain’. In: Psychological Re-
view (1958), pp. 65–386.

[85] Elisabeth; Rosenthal. The $2.7 Trillion Medical Bill. 2013.

[86] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams.
‘Learning representations by back-propagating errors’. In: Nature
323 (Oct. 1986), p. 533. URL: http://dx.doi.org/10.1038/323533a0%
20http://10.0.4.14/323533a0.

[87] G. A. Rummery and M. Niranjan. ‘On-Line Q-Learning Using
Connectionist Systems’. In: (1994).

[88] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ‘Im-
ageNet Large Scale Visual Recognition Challenge’. In: International
Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:
10.1007/s11263-015-0816-y.

[89] Greta Saino, Luigi Bonavina, John C Lipham, Daniel Dunn and
Robert A Ganz. ‘Magnetic Sphincter Augmentation for Gastroeso-
phageal Reflux at 5 Years: Final Results of a Pilot Study Show Long-
Term Acid Reduction and Symptom Improvement’. In: Journal of
Laparoendoscopic & Advanced Surgical Techniques. Part A 25.10
(Oct. 2015), pp. 787–792. ISSN: 1092-6429. DOI: 10 . 1089/ lap . 2015 .
0394. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624249/.

[90] Frank Seide and Amit Agarwal. ‘CNTK: Microsoft’s Open-Source
Deep-Learning Toolkit’. In: Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 2135–
2135. ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2945397. URL:
http://doi.acm.org/10.1145/2939672.2945397.

[91] Ramprasaath R. Selvaraju. Yes, Deep Networks are great, but are
they Trustworthy? 2017. URL: https://ramprs.github.io/2017/01/21/
Grad-CAM-Making-Off-the-Shelf-Deep-Models-Transparent-through-
Visual-Explanations.html.

[92] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam,
Michael Cogswell, Devi Parikh and Dhruv Batra. ‘Grad-CAM:
Why did you say that? Visual Explanations from Deep Networks
via Gradient-based Localization’. In: CoRR abs/1610.02391 (2016).
arXiv: 1610.02391. URL: http://arxiv.org/abs/1610.02391.

120

http://dx.doi.org/10.1111/j.1572-0241.2002.06044.x%20http://10.0.4.87/j.1572-0241.2002.06044.x
http://dx.doi.org/10.1111/j.1572-0241.2002.06044.x%20http://10.0.4.87/j.1572-0241.2002.06044.x
http://dx.doi.org/10.1038/323533a0%20http://10.0.4.14/323533a0
http://dx.doi.org/10.1038/323533a0%20http://10.0.4.14/323533a0
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1089/lap.2015.0394
http://dx.doi.org/10.1089/lap.2015.0394
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624249/
http://dx.doi.org/10.1145/2939672.2945397
http://doi.acm.org/10.1145/2939672.2945397
https://ramprs.github.io/2017/01/21/Grad-CAM-Making-Off-the-Shelf-Deep-Models-Transparent-through-Visual-Explanations.html
https://ramprs.github.io/2017/01/21/Grad-CAM-Making-Off-the-Shelf-Deep-Models-Transparent-through-Visual-Explanations.html
https://ramprs.github.io/2017/01/21/Grad-CAM-Making-Off-the-Shelf-Deep-Models-Transparent-through-Visual-Explanations.html
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391

[93] L. A. Shafer, J. R. Walker, C. Waldman, C. Yang, V. Michaud, C. N.
Bernstein, L. Hathout, J. Park, J. Sisler, G. Restall, K. Wittmeier and
H. Singh. ‘Factors Associated with Anxiety About Colonoscopy:
The Preparation, the Procedure, and the Anticipated Findings’. In:
Digestive Diseases and Sciences 63.3 (Mar. 2018), pp. 610–618. ISSN:
1573-2568. DOI: 10.1007/s10620-018-4912-z. URL: https://doi.org/10.
1007/s10620-018-4912-z.

[94] Robyn S Sharma and Peter G Rossos. ‘A Review on the Quality of
Colonoscopy Reporting’. In: Canadian Journal of Gastroenterology
and Hepatology 2016.i (2016), pp. 1–6. ISSN: 2291-2789. DOI: 10 .
1155/2016/9423142. URL: 2016Sharma%20http://www.hindawi.com/
journals/cjgh/2016/9423142/.

[95] Noam Shussman and Steven D Wexner. ‘Colorectal polyps and
polyposis syndromes’. In: Gastroenterology Report 2.1 (Feb. 2014),
pp. 1–15. ISSN: 2052-0034. DOI: 10 .1093/gastro/got041. URL: http :
//www.ncbi.nlm.nih.gov/pmc/articles/PMC3920990/.

[96] Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. ‘Deep
Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps’. In: CoRR abs/1312.6034 (2013). arXiv:
1312.6034. URL: http://arxiv.org/abs/1312.6034.

[97] Karen Simonyan and Andrew Zisserman. ‘Very Deep Convolu-
tional Networks for Large-Scale Image Recognition’. In: CoRR
abs/1409.1556 (2014). arXiv: 1409.1556. URL: http://arxiv.org/abs/
1409.1556.

[98] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox and
Martin A. Riedmiller. ‘Striving for Simplicity: The All Convolutional
Net’. In: CoRR abs/1412.6806 (2014). arXiv: 1412 .6806. URL: http :
//arxiv.org/abs/1412.6806.

[99] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and
Andrew Rabinovich. ‘Going Deeper with Convolutions’. In: CoRR
abs/1409.4842 (2014). arXiv: 1409.4842. URL: http://arxiv.org/abs/
1409.4842.

[100] Vue Team. Vue. 2018. URL: https://vuejs.org.

[101] TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. URL: https : //
www.tensorflow.org/.

[102] Mary Than, Jolene Witherspoon, Javed Shami, Prachi Patil and
Avanish Saklani. ‘Diagnostic miss rate for colorectal cancer: An
audit’. In: Annals of Gastroenterology 28.1 (2015), pp. 94–98. ISSN:
17927463.

[103] Theano Development Team. ‘Theano: A Python framework for
fast computation of mathematical expressions’. In: arXiv e-prints
abs/1605.02688 (May 2016). URL: http://arxiv.org/abs/1605.02688.

121

http://dx.doi.org/10.1007/s10620-018-4912-z
https://doi.org/10.1007/s10620-018-4912-z
https://doi.org/10.1007/s10620-018-4912-z
http://dx.doi.org/10.1155/2016/9423142
http://dx.doi.org/10.1155/2016/9423142
2016Sharma%20http://www.hindawi.com/journals/cjgh/2016/9423142/
2016Sharma%20http://www.hindawi.com/journals/cjgh/2016/9423142/
http://dx.doi.org/10.1093/gastro/got041
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920990/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920990/
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://vuejs.org
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1605.02688

[104] Cedric Van de Bruaene, Danny De Looze and Pieter Hindryckx.
‘Small bowel capsule endoscopy: Where are we after almost 15 years
of use?’ In: World Journal of Gastrointestinal Endoscopy 7.1 (Jan.
2015), pp. 13–36. ISSN: 1948-5190. DOI: 10.4253/wjge.v7.i1.13. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295178/.

[105] Rene Vidal, Joan Bruna, Raja Giryes and Stefano Soatto. ‘Mathemat-
ics of Deep Learning’. In: CoRR abs/1712.04741 (2017). arXiv: 1712.
04741. URL: http://arxiv.org/abs/1712.04741.

[106] Michael B Wallace. ‘Endoscopic Removal of Polyps in the Gastrointest-
inal Tract’. In: Gastroenterology & Hepatology 13.6 (June 2017),
pp. 371–374. URL: http : / / www . ncbi . nlm . nih . gov / pmc / articles /
PMC5495043/.

[107] Yi Wang, Wallapak Tavanapong, Johnny Wong, Jung Hwan Oh and
Piet C de Groen. ‘Polyp-Alert: Near Real-time Feedback during
Colonoscopy’. In: Computer methods and programs in biomedicine
3 (2015), pp. 164–179.

[108] Christopher J. C. H. Watkins and Peter Dayan. ‘Technical Note: Q-
Learning’. In: Mach. Learn. 8.3-4 (May 1992), pp. 279–292. ISSN:
0885-6125. DOI: 10.1007/BF00992698. URL: https://doi.org/10.1007/
BF00992698.

[109] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs and Hod
Lipson. ‘Understanding Neural Networks Through Deep Visualiza-
tion’. In: ArXiv e-prints (2015). URL: http://arxiv.org/abs/1506.06579.

[110] Matthew D. Zeiler and Rob Fergus. ‘Visualizing and Understanding
Convolutional Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013’.
In: Computer Vision–ECCV 2014 8689 (2014), pp. 818–833. ISSN: 978-
3-319-10589-5. DOI: 10.1007/978-3-319-10590-1{_}53. URL: http:
// link . springer . com/10 .1007/978 - 3 - 319 - 10590 - 1_53%5Cnhttp :
//arxiv.org/abs/1311.2901%5Cnpapers3://publication/uuid/44feb4b1-
873a-4443-8baa-1730ecd16291.

[111] Matthew D Zeiler, Graham W Taylor and Rob Fergus. ‘Adaptive
deconvolutional networks for mid and high level feature learning’.
In: Proceedings of the IEEE International Conference on Computer
Vision. ICCV ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 2018–2025. ISBN: 9781457711015. DOI: 10.1109/ICCV.2011.
6126474. URL: http://dx.doi.org/10.1109/ICCV.2011.6126474.

[112] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva and Ant-
onio Torralba. ‘Learning Deep Features for Discriminative Localiza-
tion’. In: CoRR abs/1512.04150 (2015). arXiv: 1512.04150. URL: http:
//arxiv.org/abs/1512.04150.

[113] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva and
Antonio Torralba. ‘Object Detectors Emerge in Deep Scene CNNs’.
In: CoRR abs/1412.6856 (2014). arXiv: 1412.6856. URL: http://arxiv.
org/abs/1412.6856.

122

http://dx.doi.org/10.4253/wjge.v7.i1.13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295178/
http://arxiv.org/abs/1712.04741
http://arxiv.org/abs/1712.04741
http://arxiv.org/abs/1712.04741
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495043/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495043/
http://dx.doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
http://arxiv.org/abs/1506.06579
http://dx.doi.org/10.1007/978-3-319-10590-1{_}53
http://link.springer.com/10.1007/978-3-319-10590-1_53%5Cnhttp://arxiv.org/abs/1311.2901%5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1_53%5Cnhttp://arxiv.org/abs/1311.2901%5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1_53%5Cnhttp://arxiv.org/abs/1311.2901%5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1_53%5Cnhttp://arxiv.org/abs/1311.2901%5Cnpapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://dx.doi.org/10.1109/ICCV.2011.6126474
http://dx.doi.org/10.1109/ICCV.2011.6126474
http://dx.doi.org/10.1109/ICCV.2011.6126474
http://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1412.6856
http://arxiv.org/abs/1412.6856
http://arxiv.org/abs/1412.6856

[114] Y.T. Zhou and Rama Chellappa. ‘Computation of optical flow using
a neural network’. In: (Aug. 1988), 71–78 vol.2.

[115] R. Zhu, R. Zhang and D. Xue. ‘Lesion detection of endoscopy
images based on convolutional neural network features’. In: 2015
8th International Congress on Image and Signal Processing (CISP).
Oct. 2015, pp. 372–376. DOI: 10.1109/CISP.2015.7407907.

123

http://dx.doi.org/10.1109/CISP.2015.7407907

124

Appendices

125

Appendix A

Source Code

A.1 Mimir Code

The source code for the open-source project Mimir is located at https:
//github.com/stevenah/mimir.

A.2 Training and Evaluation Code

The source code for the training and evaluation scripts used to test our
system against is located at https://github.com/stevenah/mimir.

127

https://github.com/stevenah/mimir
https://github.com/stevenah/mimir
https://github.com/stevenah/mimir

128

Appendix B

Published Papers

B.1 Paper I — Mimir: An Automatic Reporting and
Reasoning System for Deep Learning based Ana-
lysis in the Medical Domain

129

Mimir: An Automatic Reporting and Reasoning System for Deep
Learning based Analysis in the Medical Domain

Steven Alexander Hicks
Simula Research Laboratory, Norway

University of Oslo, Norway

Sigrun Eskeland
Department of Medical Research

Bærum Hospital
Vestre Viken Hospital Trust, Norway

Mathias Lux
Klagenfurt University, Austria

Thomas de Lange
Department of Transplantation

Oslo University Hospital, Norway
University of Oslo, Norway

Kristin Ranheim Randel
Cancer Registry of Norway

Mattis Jeppsson
ForzaSys AS, Norway

Konstantin Pogorelov
Simula Research Laboratory, Norway

University of Oslo, Norway

Pål Halvorsen
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

Michael Riegler
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

ABSTRACT
Automatic detection of diseases is a growing field of interest, and
machine learning in form of deep learning neural networks are
frequently explored as a potential tool for themedical video analysis.
To both improve the "black box"-understanding and assist in the
administrative duties of writing an examination report, we release
an automated multimedia reporting software dissecting the neural
network to learn the intermediate analysis steps, i.e., we are adding
a new level of understanding and explainability by looking into the
deep learning algorithms decision processes. The presented open-
source software can be used for easy retrieval and reuse of data for
automatic report generation, comparisons, teaching and research.
As an example, we use live colonoscopy as a use case which is the
gold standard examination of the large bowel, commonly performed
for clinical and screening purposes. The added information has
potentially a large value, and reuse of the data for the automatic
reporting may potentially save the doctors large amounts of time.

ACM Reference format:
Steven Alexander Hicks, Sigrun Eskeland, Mathias Lux, Thomas de Lange,
Kristin RanheimRandel,Mattis Jeppsson, Konstantin Pogorelov, Pål Halvorsen,
and Michael Riegler. 2018. Mimir: An Automatic Reporting and Reasoning
System for Deep Learning based Analysis in the Medical Domain. In Proceed-
ings of 9th ACM Multimedia Systems Conference, Amsterdam, Netherlands,
June 12–15, 2018 (MMSys’18), 6 pages.
https://doi.org/10.1145/3204949.3208129

Contact author’s address: Michael Riegler, Simula Research Laboratory, Oslo, Norway,
email: michael@simula.no .
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3208129

1 INTRODUCTION
Machine learning has the potential in becoming an important tool
in assisting medical professionals to perform medical diagnosis and
giving aid in the administrative work that follows. Deep learning
has already been shown to work well in various medical fields such
as screening for skin cancer, where Esteva et al. [5] (in 2017) pre-
sented a deep convolutional neural network (CNN) with the ability
to diagnose skin cancer at the level of a trained dermatologist. This
shows that deep learning can successfully be applied to fields of
medical expertise, but experts are still left with the work of docu-
menting the procedure through written reports. With the amount of
data gathered through medical examinations rapidly increasing, we
need a way to process this information without drowning clinicians
in administrative work.

One solution to this problem is through automatic methods, e.g.
deep learning, where the collected data is automatically compiled
into summaries, conveying key aspects from the medical procedure.
This would not only relieve doctors from parts of the adminis-
trative process, but could be used as a teaching tool for medical
students. Through multimedia enriched reports, medical doctors
in training can learn based on real data according to case-based
teaching and problem-based learning strategies. Thus, multimedia
summarization for automated report generation is a much needed
feature [25].

A major obstacle with using complex automatic methods is that
the inner workings are often hard to understand, making it difficult
to determine how and why it produces its results, i.e., deep learning
is often used as a "black box". This is especially problematic in the
field of medicine among others, where the doctors need to justify
a decision besides referring to the system itself. To the best of our
knowledge, this is yet an unexplored area of research. Moreover,
no open-source software exists that could support researchers in
both domains, computer science and medicine, to perform much
needed research in this direction.

In an effort to open this "black box" and assist in the documen-
tation of medical examinations, we present Mimir, an automated

130

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands Hicks et. al.

multimedia reporting system, which goes beyond the creation of
medical reports by adding a level of understanding and explain-
ability through methods of looking into a deep neural networks
decision process. The presented open-source software can be used
for easy retrieval and reuse of data for automatic report generation,
comparisons, teaching and research. As a first use-case, we use live
colonoscopy, which is the conventional (and gold standard) method
of screening the large intestine. Through insertion of a long flexible
tube equipped with a tiny camera into the anus, it allows for direct
inspection of the bowel mucosa. This plays an essential role in the
diagnosis of various abnormalities commonly found in the lower
gastrointestinal (GI) tract, such as inflammation, colorectal cancer
and its precursors (polyps). Before starting Mimir, we developed a
live detection system [26, 27] which analyses a direct video stream
from a colonoscopy, and gives live visual feedback whether or not
anything is detected [28]. This however, does not explain why the
system signaled a detection and does not provide any form of text
summaries of the overall examination process.

We aim not to just create reports containing text and most rep-
resentative multimedia content such as images or videos, but also
to explain to the users why a certain image has been identified as
relevant. The main contribution therefore is to provide researchers
and domain experts a novel way of using intermediate visual rep-
resentations of deep neural network layers and results to increase
understanding, trust and usefulness. The representations created by
the system can be used for example in disease detection scenarios.

Below, we briefly describe the system based on Google’s Ten-
sorFlow, give a brief introduction to the code and installation, and
discuss some examples of how to use Mimir.

2 RELATED WORK
Over the last few years, deep learning has proved to be a powerful
tool in many fields and is now (2018) considered the gold standard
in many areas such as language translation, object recognition
and image captioning [17]. However, generation of quality medical
reports goes beyond transforming explicit information from one
media to another. It often involves multiple different forms of media,
which must be combined in order to argue and justify the diagnosis
of a medical expert.

The current practice of reporting medical procedures is an es-
sential, yet cumbersome, part of a clinicians’ daily work. Research
shows that approximately one-sixth of U.S. physicians working
time is spent on administrative tasks, taking time away from direct-
patient care and lessening job satisfaction [35].

In addition, within GI endoscopy, there is a general lack of lan-
guage standardization, which may result in poor communication
between health care providers. Thus, following a systematic ap-
proach to document the findings of an endoscopic procedure would
be favorable in an attempt to achieve a certain level of consistency
within GI reporting. An automated reporting system based on au-
tomatic video analysis would be extremely helpful in this regard,
and help contribute to the implementation of the Minimal Stan-
dard Terminology (MST) recommended by the World Endoscopy
Organization (WEO). Additionally, the standardization of medical
reporting related to endoscopic procedures is listed as a requirement
by the European Society of Gastrointestinal Endoscopy (ESGE) [4].

In the field of medicine, data driven methods can be questionable
if the results are not reproducible or comprehensible by the medical
experts using them. With deep learning in particular, the results
of automatic recognition are extremely helpful, but we are still
unable to fully understand the rationale behind the decisions made
by the algorithm. This has lead to a trade-off between more com-
prehensible models and models that yield a higher accuracy, where
simpler models are often chosen over those with higher accuracy
as they are typically easier to interpret. Recent developments have
provided theoretical and visual approaches to better understand the
decisions made by a deep neural network. Theoretical approaches
rely on describing the underlying mathematics, taking a closer look
at how the individual mathematical properties produce a given
result [18, 34]. This is useful, but interpreting such descriptions
require a deep understanding of the math and technology of deep
learning, something we cannot expect end-users to have. Visual
approaches try to present layers using a variety of visualization
techniques such as saliency maps or other forms of visual represen-
tations (texture maps, heat maps, etc.) [29, 37] and come closer to
gaining a better understanding of the classification process without
detailed technical knowledge of the underlying system.

It is worth noting that medical doctors indicated that a tool for
automatic text generation was not that important to them. It was
more important for them to understand the underlying analysis
process, and receive support in generating high quality documents
through consistent means [25]. Mimir aims to meet them halfway.
By including the doctors in the analysis process, we give them an
intuitive way to understand how and why the system produces its
results.

In sum, the goal is to create a tool that aids in the production
of a structured and semantically correct reports, composed of text
and images taken from a medical procedure (GI endoscopy in our
case). Moreover, the tool needs to make the process understandable
and reproducible for non-technical users to ensure the trust of the
doctors and patients involved.

A recent approach [15] investigates the possibility of creating
reports from x-ray images employing neural image captioningmeth-
ods [36]. A network is trained from a dataset of images along with
the reports. Closest to our approach is the work described in [38],
where microscope images are fed to a neural network to generate
reports and retrieve relevant images of symptoms in addition to
visualization of the attention of the network to support the ratio-
nale of the decision made by the network. Both approaches focus
on images already classified as relevant by being part of a diagnos-
tic process, whereas the second paper adds the dimension of the
rationale of the generated report.

3 SYSTEM DESCRIPTION
Mimir can be described as a framework with three main function-
alities:

• The system was designed to aid medical doctors in making
informed decisions regarding diagnosis of diseases found
during examinations, such as diagnosis of disease found in
the GI tract during a colonoscopy.

• Mimir creates automatic reports based on the automatic
analysis of images and videos and reduces the time spent

131

Mimir: An Automatic Reporting and Reasoning System MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

on the administrative tasks that follow an endoscopic ex-
amination, e.g., documentation by written reports. This
is shown in figure 1 where the doctor uses the system to
understand the analysis done by the neural network, and
use this information to reach a diagnosis and generate the
accompanied report.

• Mimir can be used by researchers and engineers designing
deep learning architectures such as CNNs to gain a better
understanding of the evaluation and reactions of their mod-
els, e.g., by understanding which parts of an image confuse
the algorithm and if additional pre-processing steps are
needed.

In Mimir, we use a deep CNN to analyse image or video data
to perform different classification task, e.g., automatic detection of
diseases. This process is made transparent to the users through a
tool that dissects the individual layers of a CNN, making it possible
to see the basis for the decisions made by the system and on what
regions of an image the algorithm activates for a target class. This
is a critical piece in building trust among users of the system like
medical professionals who need to rely on the systems output
without the technical knowledge of the internal workings of a CNN.
Additionally, it allows for discovering fallacies within the model
itself and the dataset used to train it.

Using the guided grad-CAM technique [30], we generate visual
representations of an image as it moves through the network, show-
ing what regions of the image correspond to a target class at the
point of a selected layer. The process is shown in figure 4, and starts
with the user selecting an input image, target layer and target class
using the web-interface (Shown at the bottom of figure 4). Based on
the selection, the system generates three visualizations of the image
(the three visualizations are shown in figure 2 together with the
original image). Figure 2a is the original image before any process-
ing. Figure 2b is a grad-CAM (A generalization of class activation
map (CAM) [39]) representation of the image which shows what
regions of the image correspond the the selected target class. Figure

Image
or Video Server

Figure 1: Reporting systemworkflow. Images and videos are
collected and analyzed during the examination. After the ex-
amination, the system can give intermediate insights from
the neural network for the presented findings and a modi-
fiable report draft is presented in order to produce a final
report including text, representative images and video clips.

2c is the saliency map generated using guided back-propagation,
this shows the positive activations of the target layer, and is not
class specific. Figure 2d depicts the guided grad-CAM representa-
tion of the image, which is a combination of the grad-CAM and
saliency map. From the three visualizations, the system presents
the grad-CAM and the guided grad-CAM to the user.

Figure 3 shows five guided grad-CAM representations of an
image containing a polyp using polyp as the target class, each cor-
responding to the last convolutional layer in the five convolutional
blocks of a VGG-19 CNN. The written reports are produced through
a "what you see is what you get" (WYSIWYG) editor, with additional
options for image attachments.

4 CODE
The code repository [14] contains the server and web application,
clearly separated in their respective directories. Theweb application
uses a standard flux architecture [6], implemented using React [8]
and Redux [1]. The code is fully documented and tested using the
testing framework Jest [7]. The advantage of making a client web
application is the ease of access and portability of being available
on any device that supports a web browser. The server is written
in Python (using the micro-framework Flask[10]), and is accessible
through a RESTful [24] API, with endpoints for interaction with
the underlying deep neural network. As mentioned previously, the
image/frame analysis is done using deep learning, specifically a
deep CNN. The CNN uses a standard VGG-19 architecture [31]
trained on the Kvasir version 2 dataset [22] and is implemented
using the Keras deep learning framework [16] with a Tensorflow
backend [2].Mimir is licensed under the terms of the GNU General
Public License (GPL) version 3, as published by the Free Software
Foundation and available on Github [14].

The image/frame visualizations are done using the guided grad-
CAM approach [30], and is generated on the fly once the user
selects an image, target layer and target class to visualize. A tar-
get layer and target class can be selected individually from their
respective lists (as seen in the web-interface of figure 4). The layer
selection list contains each convolutional layer in the underlying
CNN, and the class selection list contains each class supported by
the system. The guided grad-CAM technique combines the class
discriminative properties of a CAM with pixel level detail of guided
back-propagation saliency maps [32]. Our implementation is based
on the Selvaraju et al. paper [30] and is implemented using Keras
backend functions. The current system uses two image representa-
tions to explain the CNN, grad-CAM and guided grad-CAM. The
overall process of generating these two visualizations can be broken
into three parts;

(1) Generate a grad-CAM representation using the a target
layer and target class with respect to the input image.

(2) Generate a guided back-propagation saliency map using
the same target layer as used when generating the grad-
CAM with respect to the input image.

(3) Combine the grad-CAM with the saliency map made in
the previous two steps to produce the guided grad-CAM
visualization.

Evidently, the grad-CAM is an intermediate step of the guided
grad-CAM process, so both representations are created through the

132

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands Hicks et. al.

(a) Original Image (b) Grad-CAM (c) Guided Backprop (d) Guided Grad-CAM

Figure 2: Image representations used by the reporting system to explain decisions.

(a) Original (b) Block 1 (c) Block 2 (d) Block 3 (e) Block 4 (f) Block 5

Figure 3: Guided grad-CAM representation of an image at the last convolutional layer of each convolutional block.

same process. A visual representation of the process can be seen in
figure 4.

The visualization process starts once the user has selected an
image, layer and class for further inspection. With an image, target
layer and target class selected, we calculate the gradient of the target
layer using the loss of the target class in regards to the image. These
gradients are globally average pooled to get the weights, which is
multiplied with output of the target layer and passed through a relu
function to produce the grad-CAM. The grad-CAM is re-sized back
to the dimensions of the original image and its values squashed
between 0 and 1 before a blue-red heat map filter is applied.

In order to generate the guided back-propagation saliency map,
we start by replacing the activations of the original network with a
slightly modified relu function. During back-propagation, a tradi-
tional relu would let all gradients whose inputs where larger than 0
pass. We change this by adding an additional rule which discards all
gradients that have value below 0 (i.e. negative gradients), thereby
only back-propagating the positive influence on the activations.
With this modified network we calculate the gradients of the target
layer with respect to the input image, these gradients represent our
saliency map.

Once the grad-CAM (Figure 2b) and saliency map (Figure 2c)
have been computed, we simply multiply them together to produce
the guided grad-CAM (Figure 2d) representation. This together
with the grad-CAM is used in our system.

5 INSTALLATION
As mentioned in section 4, the system is built using the micro-
framework Flask, which includes a built-in development sever,

making it easy to start a local instance of the application. Note
that the development server is not meant to be deployed to a pro-
duction environment. For a production environment we recom-
mend deployment using a popular web server such as Nginx [19] or
Apache HTTP Server [3], or by using the pre-built Docker Image
available through Docker hub [13]. There are two primary ways
of getting the system up and running, pulling the git repository
from Github [14] or pulling the pre-configured docker image from
Docker hub [13].

Setting up the system using the git repository requires multiple
steps of pre-configuration before we can launch the local develop-
ment server. This includes;

(1) Setup a Python 3.6 run-time environment with the neces-
sary dependencies.

(2) Configure Keras (2.0.8) [16] to use Tensorflow [11] as a
backend.

(3) Install OpenCV [33] with FFmpeg [9] support.
(4) Install CuDNN [21] and CUDA toolkit [20] for GPU support

(this step is optional, but highly recommended).

A more detailed setup and configuration guide can be found in
the applications Github repository. With the environment setup,
we can launch a local development server by running app.py using
Python 3.

For an easier setup, we recommend using the pre-built Docker
image available at Docker hub [13]. The container includes a pre-
configured Python environment with all the necessary dependen-
cies installed, CUDA 8 and cuDNN 6 for Nvidia GPU support, and
served using an Ngnix server instance.

133

Mimir: An Automatic Reporting and Reasoning System MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Layer
and class
selection

VGG-19

Visualizer

Figure 4: An overview of how we produce the two visualiza-
tions included in the image analysis, and how it is presented
in the user interface where a visualization of the different
convolutional blocks can be selected.

6 USAGE
The web application can be accessed using the configured host IP
and port. The following examples will describe typical scenarios
we imagine this tool being used for.

6.1 Example Scenario A - Verify the Prediction
of a Diagnosis

After getting the diagnosis based on the analysis of the colonoscopy
examination video, we would like to verify that the network does in
fact detect the diagnosed abnormality presented. After the examina-
tion, the frames where abnormalities are detected are automatically
presented to the user on the image analysis web-page. For a given
frame, the user can look through the network and verify that the
network does in fact detect the abnormality related to the diag-
nosis. An example is shown in figure 2 where we clearly see that
the network detects the polyp located in the lower right corner of
the image. Note that not all detections are this obvious, and the

Figure 5: An example of an automatic generated report. The
red area marked (1) shows the editable text fields. The green
area (2) shows the images chosen for the report. Report
based on sample taken fromWrestling the Octopus [12].

additional image representations are thus even more useful when
abnormalities are difficult to detect.

6.2 Example Scenario B - Generating a
Colonoscopy Report

After a colonoscopy, the video produced is automatically passed
through the system and analysed for abnormalities. Based on the
diagnosis, the system would present images that support the di-
agnoses (which can be further examined as described above in
section 6.1). This would save the user time by not having to screen
the frames of the video for the diagnosed abnormality and manually
select image candidates.

The report generation tool provides basic text editing through
a WYSIWYG interface, with additional options for adding images
to support the findings described in the report. The tool presents
a live preview of the printed document, which may be modified
by clicking the various text fields of the report. Images may be
manually or automatically added through image uploads or by
taking images already part of the system. Note that the current
format of the report is taken from Wrestling the Octopus [12], and
is used just as an example. In a real world use-case, the format of
the report would be tailored to the needs of the institution. An

134

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands Hicks et. al.

example report can be found in Figure 5 with text and pre-selected
images (that the user can change).

7 CONCLUSION
Nowadays, neural networks are widely used, but there is still a lack
of understanding when it comes to how they operate and on what
their output is based on, even more so among non-technical users.
This is may be sufficient for many fields, but in mission-critical
areas such as medicine (among others), the clinicians often need
to understand why a particular marking is detected. To improve
the understanding of the internal decision process of a deep neural
network, and to build trust among its users, we made the source
code of our system publicly available. Mimir allows for dissecting
of deep neural networks, enabling investigation and understanding
of the networks layers and outputs. Our system can also use this
information to create automatic reports from the analysis of im-
ages or videos. In this paper, we have briefly described the system
based on Google’s TensorFlow, given a introduction to the code and
installation, and discussed some examples of how to use Mimir.

REFERENCES
[1] 2018. Redux. (2018). https://redux.js.org/
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, and
others. 2016. Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Apache. 2018. Apache HTTP Server Project. (2018). https://httpd.apache.org/
[4] Michael Bretthauer, Lars Aabakken, Evelien Dekker, Michal F Kaminski, Thomas

Rösch, Rolf Hultcrantz, Stepan Suchanek, Rodrigo Jover, Ernst J Kuipers, Raf
Bisschops, and others. 2016. Reporting systems in gastrointestinal endoscopy: Re-
quirements and standards facilitating quality improvement: European Society of
Gastrointestinal Endoscopy position statement. United European gastroenterology
journal 4, 2 (2016), 172–176.

[5] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, He-
len M Blau, and Sebastian Thrun. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature 542, 7639 (feb 2017), 115–118.
https://doi.org/10.1038/nature21056

[6] Facebook. 2018. Flux. (2018). https://facebook.github.io/flux/
[7] Facebook. 2018. Jest. (2018). https://facebook.github.io/jest/
[8] Facebook. 2018. React. (2018). https://reactjs.org/
[9] FFmpeg. 2018. FFmpeg. (2018). https://www.ffmpeg.org/
[10] Flask. 2018. Flask. (2018). http://flask.pocoo.org/
[11] Google. 2018. Tensorflow. (2018). https://www.tensorflow.org/
[12] Nigel H. 2015. The Crohnoid Blog. (2015). http://www.wrestlingtheoctopus.

com/the-a-to-z-of-my-crohns/
[13] Steven Hicks. 2018. Mimir Docker Repository. (2018). https://hub.docker.com/r/

stevenah/mimir/
[14] Steven Hicks. 2018. Mimir Github Repository. (2018). https://github.com/

Stevenah/mimir
[15] Baoyu Jing, Pengtao Xie, and Eric Xing. 2017. On the Automatic Generation of

Medical Imaging Reports. arXiv preprint arXiv:1711.08195 (2017).
[16] Keras. 2018. Keras: The Python Deep Learning library. (2018). https://keras.io/
[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature

521, 7553 (2015), 436.
[18] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. 2017. Meth-

ods for interpreting and understanding deep neural networks. Digital Signal
Processing (2017).

[19] NGINX. 2018. NGINX. (2018). https://nginx.org/en/
[20] Nvidia. 2018. Nvidia CUDA Toolkit. (2018). https://developer.nvidia.com/

cuda-toolkit
[21] Nvidia. 2018. Nvidia CuDNN. (2018). https://developer.nvidia.com/cudnn
[22] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada

Eskeland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien
Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and Pål
Halvorsen. 2017. KVASIR: A Multi-Class Image Dataset for Computer Aided
Gastrointestinal Disease Detection. In Proc. of MMSYS. 164–169. https://doi.org/
10.1145/3083187.3083212

[23] Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland, Thomas de
Lange, Dag Johansen, Carsten Griwodz, Peter Thelin Schmidt, and Pål Halvorsen.
2017. Efficient disease detection in gastrointestinal videos – global features

versus neural networks. Multimedia Tools and Applications 76, 21 (01 Nov 2017),
22493–22525. https://doi.org/10.1007/s11042-017-4989-y

[24] Leonard Richardson and Sam Ruby. 2007. Restful Web Services (first ed.). O’Reilly.
[25] Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas

de Lange, Sigrun L Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Pe-
ter T Schmidt, Cathal Gurrin, and others. 2016. Multimedia and Medicine:
Teammates for Better Disease Detection and Survival. In Proc. of ACM MM.
968–977.

[26] Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas de Lange, Carsten
Griwodz, Peter Thelin Schmidt, Sigrun L. Eskeland, and Dag Johansen. 2016. EIR -
Efficient Computer Aided Diagnosis Framework for Gastrointestinal Endoscopies.
In Proc. of CBMI.

[27] Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux,
Håkon Kvale Stensland, Thomas de Lange, Carsten Griwodz, Pål Halvorsen,
Dag Johansen, Peter T Schmidt, and Sigrun L. Eskeland. 2016. Computer Aided
Disease Detection System for Gastrointestinal Examinations. In Proc. of MMSys.

[28] Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux,
Håkon Kvale Stensland, Thomas de Lange, Carsten Griwodz, Pål Halvorsen,
Dag Johansen, Peter T. Schmidt, and Sigrun L. Eskeland. 2016. Computer Aided
Disease Detection System for Gastrointestinal Examinations. In Proc. of MMSYS.
29:1–29:4. https://doi.org/10.1145/2910017.2910629

[29] Christin Seifert, Aisha Aamir, Aparna Balagopalan, Dhruv Jain, Abhinav Sharma,
Sebastian Grottel, and Stefan Gumhold. 2017. Visualizations of Deep Neural
Networks in Computer Vision: A Survey. In Transparent Data Mining for Big
and Small Data. Springer, 123–144.

[30] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say
that? Visual Explanations from Deep Networks via Gradient-based Localization.
CoRR abs/1610.02391 (2016). arXiv:1610.02391 http://arxiv.org/abs/1610.02391

[31] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arXiv:1409.1556 http://arxiv.org/abs/1409.1556

[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. 2014. Striving for Simplicity: The All Convolutional Net. CoRR
abs/1412.6806 (2014). arXiv:1412.6806 http://arxiv.org/abs/1412.6806

[33] OpenCV team. 2018. Open Source Computer Vision Library (OpenCV). (2018).
https://opencv.org/

[34] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. 2017. Mathematics of
Deep Learning. arXiv preprint arXiv:1712.04741 (2017).

[35] Steffie Woolhandler and David U Himmelstein. 2014. Administrative Work
Consumes One-Sixth of U.S. Physicians’Working Hours and Lowers Their Career
Satisfaction. 44 (10 2014), 635–42.

[36] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention. In Proc. of ML. 2048–2057.

[37] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[38] Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough, and Lin Yang. 2017.
Mdnet: A semantically and visually interpretable medical image diagnosis net-
work. In Proc. of IEEE CVPR. 6428–6436.

[39] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. 2015. Learning Deep Features for Discriminative Localization. CoRR
abs/1512.04150 (2015). arXiv:1512.04150 http://arxiv.org/abs/1512.04150

135

B.2 Paper II — Comprehensible Reasoning and Auto-
mated Reporting of Medical Examinations Based
on Deep Learning Analysis

136

Comprehensible Reasoning and Automated Reporting of
Medical Examinations Based on Deep Learning Analysis
Steven Alexander Hicks

Simula Research Laboratory, Norway
University of Oslo, Norway

Konstantin Pogorelov
Simula Research Laboratory, Norway

University of Oslo, Norway

Mathias Lux
University of Klagenfurt, Austria

Mattis Jeppsson
ForzaSys AS, Norway

Kristin Ranheim Randel
Cancer Registry of Norway

Thomas de Lange
Department of Transplantation

Oslo University Hospital, Norway
University of Oslo, Norway

Sigrun Eskeland
Department of Medical Research

Bærum Hospital
Vestre Viken Hospital Trust, Norway

Pål Halvorsen
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

Michael Riegler
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

ABSTRACT
In the future, medical doctors will to an increasing degree be as-
sisted by deep learning neural networks for disease detection during
examinations of patients. In order to make qualified decisions, the
black box of deep learning must be opened to increase the un-
derstanding of the reasoning behind the decision of the machine
learning system. Furthermore, preparing reports after the examina-
tions is a significant part of a doctors work-day, but if we already
have a system dissecting the neural network for understanding,
the same tool can be used for automatic report generation. In this
demo, we describe a system that analyses medical videos from the
gastrointestinal tract. Our system dissects the Tensorflow-based
neural network to provide insights into the analysis and uses the
resulting classification and rationale behind the classification to
automatically generate an examination report for the patient’s med-
ical journal.
ACM Reference format:
Steven Alexander Hicks, Konstantin Pogorelov, Mathias Lux, Mattis Jepps-
son, Kristin RanheimRandel, Thomas de Lange, Sigrun Eskeland, Pål Halvorsen,
and Michael Riegler. 2018. Comprehensible Reasoning and Automated Re-
porting of Medical Examinations Based on Deep Learning Analysis. In
Proceedings of 9th ACM Multimedia Systems Conference, Amsterdam, Nether-
lands, June 12–15, 2018 (MMSys’18), 4 pages.
https://doi.org/10.1145/3204949.3208113

1 INTRODUCTION
Machine learning has shown much potential in becoming an impor-
tant asset to medical doctors performing disease detection during
patient examinations. As a result of this, we may see a decrease

Contact author’s address: Michael Riegler, Simula Research Laboratory, Oslo, Norway,
email: michael@simula.no .
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3208113

in diagnostic errors (in the form of missed disease), increase in
number of patients, and further improve the quality of medical
care. Additionally, a significant part of a medical professional’s
time is spent preparing reports after the performed procedures.
Multimedia research can significantly support this phase by col-
lecting patient and examination data and providing automatically
generated summaries conveying key information of the performed
procedures, e.g., video frames with detected objects. An automati-
cally generated report is also useful for training medical experts:
through multimedia enriched reports, medical doctors in training
can learn based on real data according to case-based teaching and
problem-based learning strategies. Thus, multimedia summariza-
tion for automated report generation is a much needed feature [20],
but it is still in its infancy. One major obstacle is that it is not al-
ways comprehensible or reproducible why an automatic detection
system marks a finding, i.e., the machine learning system is a black
box. In the field of medicine, among others, this is not acceptable
as medical doctors often need the underlying rationale behind a
decision besides the decision from the system itself. To the best of
our knowledge, this is yet an unexplored area of research.

To both improve the "black box"-understanding and assist the
examination reporting, we research automated multimedia sum-
marization methods with a semantic nature exploiting domain
ontologies. Based on the detection system, the video backend may
be used for easy retrieval and reuse of data for automatic report
generation, comparisons, teaching and research. As a case study,
we use live colonoscopy. This is the gold standard examination of
the large bowel, commonly performed for clinical and screening
purposes. It allows inspection of the bowel mucosa, essential for
the diagnosis of abnormalities such as inflammation, colorectal
cancer and its precursors (polyps). We have previously developed
a live detection system [21, 22]. Under a colonoscopy, the system
analyses the captured video frames and gives visual feedback to
the doctor if something abnormal is detected [23]. In this paper,
we demonstrate how this system can be extended to colonoscopy
documentation. After the colonoscopy, an overview (Figure 1) is
given where the doctors can make changes or corrections, and add

137

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands Hicks et. al.

Figure 1: Report and feedback interface, where you may browse through the different neural network layers.

additional information. This can then be stored for later purposes
or used in a written endoscopy report. Further, it can be practical to
store high quality images of the most important parts [5], i.e., our
reporting system also recommends images (frames) to be included
in the report and dissects the neural network to give a reasoning
why the image is selected.

2 MEDICAL AUTOMATIC REPORTING
Deep learning has greatly improved automatic methods for speech
to text conversion, object recognition and image captioning [13].
Structured reporting for colonoscopy procedures, however, is be-
yond transforming explicit information from one media to another.
It also involves finding relevant pieces from multiple modalities
and putting them together into a readable report, that supports and
argues the diagnosis of a medical expert. In the field of medicine,
written reporting of medical procedures is an essential, but cum-
bersome, part of the physicians’ daily work, and the quality and
completeness of the reports are critical to the patients care and
well being. A more automated reporting system based on auto-
matic video analysis would be extremely helpful for medical ex-
perts and contribute to a standardization of the medical report and
the implementation of the Minimal Standard Terminology (MST)
recommended by the World Endoscopy Organization (WEO). Also,
the European Society of Gastrointestinal Endoscopy lists the stan-
dardization of medical reporting in endoscopic procedures as a
requirement [4].

In mission-critical domains, such as the medicine, data driven
methods can be questionable if the results are not reproducible or
comprehensible by experts within their field. With deep learning
in particular, the results of automatic recognition are extremely
helpful, but we are still not able to fully understand the rationale of
every decision of a network. Theoretical approaches to explain the
decisions of a deep neural network have been discussed [14, 29],
but it is important to address the problem of understanding and
trust among non-technical users, i.e., medical experts and doctors.
More visual approaches that present layers using tools such as heat
maps or visual representations (texture, heat maps, etc.) [24, 31]
come closer to what users can grasp without detailed technical
knowledge. All in all, the goal is a tool that generates a structured
and readable report composed of text and images from a medical

procedure. Moreover, the tool has to this understandable and re-
producible for non-technical users to ensure the trust of doctors
and patients involved. A recent approach [11] investigates the pos-
sibility of creating reports from x-ray images employing neural
image captioning methods [30]. A network is trained from a dataset
of images along with the reports. Closest to our approach is the
work described in [32], where microscope images are fed through
a neural network to generate reports and retrieve relevant images
of symptoms in addition to an attention map to support the ratio-
nale of the networks decision. Both approaches focus on images
already classified as relevant by being part of a diagnostic process,
whereas the second paper adds the dimension of the rationale of
the generated report.

Medical doctors indicated that generating automatic text is not
themost important feature for them.More importantly, they need to
understand the decisions of the algorithms in an easy and intuitive
way, and at the same time, receive support for generating high
quality, structured reports [20].

3 ARCHITECTURE AND IMPLEMENTATION
The objectives of our system is to increases classification under-
standing and reduce the time spent on administrative tasks related
to a colonoscopy, e.g., documentation by written reports. The sys-
tem reports abnormalities commonly found in the gastrointestinal
(GI) tract, such as polyps and esophagitis, based on analysis of
frame data taken from a video stream. The frames with detected
abnormalities are presented to the user for further analysis, with
the most prominent images (highest probability of abnormality
detected) suggested as attachments to be included in the written
report. It is important that the process of disease detection is trans-
parent, i.e., by being able to comprehend why the system concluded
as it did and on what basis the diagnosis was set. This is a key
component in building trust among the medical professionals who
rely on the system to make qualified medical decisions. In addition
to building truest among our expected users, it allows us to detect
weaknesses in the tool itself and the dataset used to train it. Insight
into the analysis process is done using various visualization tech-
niques to generate intermediate representations of an image as it
moves through a neural network, specifically as it moves through
the convolutional layers of a convolutional neural network (CNN).

138

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

This gives us a peek into the decision process of the neural net-
work, showing what regions in the image correspond to a given
prediction. This process will be discussed further in section 3.1.

The system is accessed through a React [6] based web applica-
tion, backed up by a RESTful server API written in Python (using
the micro-framework Flask [8]). Image analysis is done using a
CNN, specifically a standard VGG-19 model [26] trained on the
Kvasir version 2 dataset [18] and is implemented using the Keras
deep learning framework [12] with a Tensorflow backend [2]. Fig-
ure 2 shows the typical case in how we imagine this tool being
used for visualizing the analysis process of passing images/frames
through the CNN and report generation based on the results from
the analysis.

Image or
video data Server

Figure 2: The expected work flow of the reporting system.
Images and videos are collected and analyzed during the ex-
amination. After the examination, a modifiable report draft
is presented to themedical expert in order to produce a final
report including text, representative images and video clips.

3.1 Image/Frame Visualization
The visualizations process works on images and videos, with videos
being split into frames and processed individually in the same way
as a single image. The neural network image representations are
generated using a guided grad-cam approach [25], which combines
the pixel-level detail of guided back-propagation saliency maps [33]
with the class discriminative properties of class activation maps
(CAMs) [27]. The result is a high quality image with class discrim-
ination on a pixel level. Each image representation is done with
respect to a target class and layer, making it possible to look back
through the network and seewhat less abstract features were picked
up by the network.

Figure 3 shows the original image (Figure 3a) and three addi-
tional presentations generated by the tool. Figure 3b (grad-CAM)
shows the the class-specific regions of the image with respect to
a target class at a given layer of the network. Figure 3c (guided
back-propagation saliency map) shows a pixel-level representation
of what the network sees at a given layer. Figure 3d is a combination
of the first two representations, combining the pixel-level detail
of the saliency map with the class discriminative features of the
grad-CAM.

We start the visualization process by selecting a target layer
and class we wish to visualize for a given image. We calculate
the gradient of the target layer using the loss for the target class
in regards to the input image. The gradients are globally average
pooled and multiplied with the output of the target layer. The result
is passed through a relu function before it is re-sized back to the

(a) Original Image (b) Grad-CAM (c) Guided Backprop (d) Guided Grad-CAM

Figure 3: Image representations used to explain decisions.

dimensions of the original image. Finally, we squash the values
between 0 and 1, and apply a red-blue heatmap filter.

To generate the guided back-propagation saliency map, we start
by replacing the activations of our original network with a mod-
ified relu activation. During back-propagation, a traditional relu
activation would let all gradients whose inputs where larger than 0
pass. We change relu by adding the additional rule of discarding
all gradients that are below 0, thereby only back-propagating the
positive influence on the activations. With this modified network
we calculate the gradients of the target layer with respect to the
input image which gives us the saliency map.

Once the grad-CAM and saliency map have been computed,
we simply multiply them together to get the guided grad-CAM
visualization. This together with the grad-CAM is used in our tool.

3.2 Report Generation
The current state of report generation provides basic functionalities
such as changing text and adding additional images. The system
presents a preview of the printed report to the users, with direct
modification available by clicking and editing the various reports.
Images from the analysis can be manually or automatically added
or removed. An example report can be found in Figure 4 with text
and pre-selected images that the user can change.

4 SETUP AND USAGE
The system is built using the micro-framework Flask [8], which
includes a built-in development sever, making it easy to start a local
instance of the system. Note that this is not meant to be deployed
to a production environment. For a production environment, we
can either deploy the application using a popular web server such
as Nginx [15] or Apache HTTP Server [3], or by using the pre-
built Docker Image available through Docker hub [9]. Setting up
the system using the git repository requires several steps of pre-
configuration before we can launch the local development server.
This includes setting up a Python 3.6 run-time environment and in-
stalling the necessary Python dependencies, installing OpenCV [28]
with FFmpeg [7] support, configuring Tensorflow and Keras, and
optionally (but highly recommended) configuring cuDNN [17] and
CUDA [16] for GPU support. With the environment setup, we
can launch a local development server by running app.py using
Python 3. A more detailed setup and configuration guide can be
viewed at the application’s Github repository [10], but for an easier
setup, we recommend using the pre-built Docker image available
at Docker hub[9]. The image includes a pre-configured Python en-
vironment with the necessary dependencies, CUDA 8 and cuDNN
6 for Nvidia GPU support, and hosted using Nginx. Once the tool
is up and running, it can be accessed through a web browser using
the configured host IP and port.

139

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands Hicks et. al.

Figure 4: An example of an automatic generated report. The
green area marked (1) shows the editable text fields. The
blue area (2) shows the images chosen for the report. Report
based on sample taken fromWrestling the Octopus [1].

5 DEMO
In the proposed demo, the participants will be able to see how the
system works in real time. In particular, video(s) with disease will
be available, and the participants may run it through the system.
After the deep learning neural network has analysed the video
frames, a screen as shown in Figure 1 will be displayed showing
the results of the analysis for each layer. From the list of images
selected by the system, the user can select one and see how it
has been processed through the network by showing images of
the intermediate representations and saliency maps (or heatmaps).
Finally, a report can be automatically generated from this interface
including both text and images (frames). This report can also be
modified after it is created.

REFERENCES
[1] 2015. The Crohnoid Blog. (2015). http://www.wrestlingtheoctopus.com/

the-a-to-z-of-my-crohns/
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, and
others. 2016. Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Apache. 2018. Apache HTTP Server Project. (2018). https://httpd.apache.org/
[4] Michael Bretthauer, Lars Aabakken, Evelien Dekker, Michal F Kaminski, Thomas

Rösch, Rolf Hultcrantz, Stepan Suchanek, Rodrigo Jover, Ernst J Kuipers, Raf
Bisschops, and others. 2016. Reporting systems in gastrointestinal endoscopy: Re-
quirements and standards facilitating quality improvement: European Society of
Gastrointestinal Endoscopy position statement. United European gastroenterology
journal 4, 2 (2016), 172–176.

[5] Thomas de Lange, Stig Larsen, and Lars Aabakken. 2005. Image documenta-
tion of endoscopic findings in ulcerative colitis: photographs or video clips?
Gastrointestinal Endoscopy 61, 6 (2005), 715–720.

[6] Facebook. 2018. React. (2018). https://reactjs.org/

[7] FFmpeg. 2018. FFmpeg. (2018). https://www.ffmpeg.org/
[8] Flask. 2018. Flask. (2018). http://flask.pocoo.org/
[9] Steven Hicks. 2018. Demo Docker Repositoryma. (2018). https://hub.docker.

com/r/stevenah/mmsys-demo/
[10] Steven Hicks. 2018. Demo Github Repository. (2018). https://github.com/

Stevenah/mmsys-demo
[11] Baoyu Jing, Pengtao Xie, and Eric Xing. 2017. On the Automatic Generation of

Medical Imaging Reports. arXiv preprint arXiv:1711.08195 (2017).
[12] Keras. 2018. Keras: The Python Deep Learning library. (2018). https://keras.io/
[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature

521, 7553 (2015), 436.
[14] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. 2017. Meth-

ods for interpreting and understanding deep neural networks. Digital Signal
Processing (2017).

[15] NGINX. 2018. NGINX. (2018). https://nginx.org/en/
[16] Nvidia. 2018. Nvidia CUDA Toolkit. (2018). https://developer.nvidia.com/

cuda-toolkit
[17] Nvidia. 2018. Nvidia CuDNN. (2018). https://developer.nvidia.com/cudnn
[18] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada

Eskeland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien
Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and Pål
Halvorsen. 2017. KVASIR: A Multi-Class Image Dataset for Computer Aided
Gastrointestinal Disease Detection. In Proc. of MMSYS. 164–169. https://doi.org/
10.1145/3083187.3083212

[19] Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland, Thomas de
Lange, Dag Johansen, Carsten Griwodz, Peter Thelin Schmidt, and Pål Halvorsen.
2017. Efficient disease detection in gastrointestinal videos – global features
versus neural networks. Multimedia Tools and Applications 76, 21 (01 Nov 2017),
22493–22525. https://doi.org/10.1007/s11042-017-4989-y

[20] Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas
de Lange, Sigrun L Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Pe-
ter T Schmidt, Cathal Gurrin, and others. 2016. Multimedia and Medicine:
Teammates for Better Disease Detection and Survival. In Proc. of ACM MM.

[21] Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas de Lange, Carsten
Griwodz, Peter Thelin Schmidt, Sigrun L. Eskeland, and Dag Johansen. 2016. EIR -
Efficient Computer Aided Diagnosis Framework for Gastrointestinal Endoscopies.
In Proc. of CBMI.

[22] Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux,
Håkon Kvale Stensland, Thomas de Lange, Carsten Griwodz, Pål Halvorsen,
Dag Johansen, Peter T Schmidt, and Sigrun L. Eskeland. 2016. Computer Aided
Disease Detection System for Gastrointestinal Examinations. In Proc. of MMSys.

[23] Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux,
Håkon Kvale Stensland, Thomas de Lange, Carsten Griwodz, Pål Halvorsen,
Dag Johansen, Peter T. Schmidt, and Sigrun L. Eskeland. 2016. Computer Aided
Disease Detection System for Gastrointestinal Examinations. In Proc. of MMSYS.
29:1–29:4. https://doi.org/10.1145/2910017.2910629

[24] Christin Seifert, Aisha Aamir, Aparna Balagopalan, Dhruv Jain, Abhinav Sharma,
Sebastian Grottel, and Stefan Gumhold. 2017. Visualizations of Deep Neural
Networks in Computer Vision: A Survey. In Transparent Data Mining for Big
and Small Data. Springer, 123–144.

[25] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael
Cogswell, Devi Parikh, and Dhruv Batra. 2016. Grad-CAM: Why did you say
that? Visual Explanations from Deep Networks via Gradient-based Localization.
CoRR abs/1610.02391 (2016). arXiv:1610.02391 http://arxiv.org/abs/1610.02391

[26] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
arXiv:1409.1556 http://arxiv.org/abs/1409.1556

[27] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. 2014. Striving for Simplicity: The All Convolutional Net. CoRR
abs/1412.6806 (2014). arXiv:1412.6806 http://arxiv.org/abs/1412.6806

[28] OpenCV team. 2018. Open Source Computer Vision Library (OpenCV). (2018).
https://opencv.org/

[29] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. 2017. Mathematics of
Deep Learning. arXiv preprint arXiv:1712.04741 (2017).

[30] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention. In Proc. of ML. 2048–2057.

[31] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[32] Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough, and Lin Yang. 2017.
Mdnet: A semantically and visually interpretable medical image diagnosis net-
work. In Proc. of IEEE CVPR. 6428–6436.

[33] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. 2015. Learning Deep Features for Discriminative Localization. CoRR
abs/1512.04150 (2015). arXiv:1512.04150 http://arxiv.org/abs/1512.04150

140

B.3 Paper III — Dissecting Deep Neural Networksfor
Better Medical Image Classification and Classific-
ation Understanding

141

Dissecting Deep Neural Networks
for Better Medical Image Classification and

Classification Understanding
Steven Alexander Hicks1, Michael Riegler2,3, Konstantin Pogorelov1,2, Kim V. Ånonsen5, Thomas de Lange5,

Dag Johansen4, Mattis Jeppsson6, Kristin Ranheim Randel8, Sigrun Eskeland7 and Pål Halvorsen1,2

1University of Oslo, Norway 2Simula Research Laboratory, Norway 3SimulaMet, Norway
4UiT - Artic University of Norway 5Oslo University Hospital, Norway

6ForzaSys AS, Norway 7Bærum Hospital, Norway 8Cancer Registry Norway

Abstract—Neural networks represent a technology that is
becoming an important tool with assisting medical doctors in
disease detection during patient examinations. At the same time,
deep neural networks are also somehow known as being a black
box making it hard to understand what is going on inside and
how decisions are made. This is especially true if the users
are not familiar with the technology and use it out of the
box. To make qualified decisions and increase acceptance and
trust in the algorithms output, we present a system that allows
partially opening the black box. This includes an investigation on
what the neural network reacts on, to both, improve algorithm
understanding and data pre-processing resulting in better image
classification performance and a stronger intuition of why the
system makes a decision. Furthermore, a significant part of
a medical expert’s time is spent preparing reports after the
examinations, and if we already have a system dissecting the
network for understanding, the same tool can be used for
automatic report generation after the examination. In this paper
a system is presented that is able to look into the layers of a
deep learning network and present the network’s decision in an
understandable way to the doctors. Furthermore, we present and
discuss how this information can possibly be used for automatic
reporting. Our initial results are very promising.

Index Terms—computer aided diagnosis, deep learning

I. INTRODUCTION

Machine learning, in context of image and video analysis
using deep learning, is nowadays commonly used in a lot of
different fields such as the financial sector, image retrieval or
robotics, etc. One important area is to assist medical doctors in
disease detection during patient examinations in order to avoid
overlooking abnormalities [1]. However, such deep neural
networks are also somewhat black boxes (especially for end
users like in our case medical doctors) where only a few
understand how they make a prediction. To be able to make
qualified decisions and to gain the trust of the medical domain,
this black box must be opened as the medical doctors often
need a rationale of why the system signals a detection. To
the best of our knowledge, this is yet an unexplored area of
research, especially when it comes to giving explanation to the
doctors and involving them in the system pipeline. To improve
the black box-understanding, we examine an automatic disease
detection system where we dissect a neural network to explore

what happens inside its layers and use this information to
increase understanding of how it makes a prediction. As a
case study, we use live colonoscopy, which is a common
gastrointestinal (GI) examination, essential for the diagnosis of
most mucosal diseases in the GI tract, particularly diagnosis
of colorectal cancer and its precursors. We have previously
developed such a live detection system [2]–[4], and compared
various machine learning techniques [5]. In the previously
developed system, the endoscopist performs the colonoscopy
while video frames are automatically analysed. Furthermore,
the system provides visual feedback to the doctor if something
abnormal is detected [6]. In this paper, we open the black box,
with the goal of gaining a deeper understanding and insight
into the detection process of a convolutional neural network
(CNN) for three different purposes and contributions:

• better decision support: The medical doctors often need
a reasoning of why the system returns a detection. To
the best of our knowledge, this is yet an unexplored
area of research, by providing intermediate heat maps
from the internal process of the neural network, we gain
more insight into how and why a particular prediction is
produced.

• improved data augmentation: There are several ways to
improve and augment input data in order to improve the
detection rates. Using the gained intermediate informa-
tion, we can observe which parts of an image is marked
in each layer so that we can identify which regions result
in false positives and false negatives. This can be used
to improve both classification performance and training
data.

• automatic report generation: A system dissecting the
network for understanding it better, can also be used for
automatic examination report generation proposing both
images or video clips to include and giving a reason why.

With these target improvements, we present a system look-
ing deeper into a neural network used for GI disease detec-
tion. Using the open Kvasir [7] and CVC-968 [8] datasets,
we evaluate the base performance and improvements using
insights gained by the system. Based on the dissection of

142

the network, we demonstrate how the system can be used
to improve data augmentation by identifying artifacts in the
images that confuse the algorithm. This information is used
to perform data pre-processing which improves the detection
rate and more important the generality of the model. Then,
we show how the intermediate network layer information can
be used to help medical experts in understanding the decisions
made by the network. Finally, we demonstrate how the system
can help generating automatic documentation and reports in a
standardized way potentially moving more medical expert time
from paper work to patient examinations.

II. RELATED WORK

Understanding layers of deep learning architectures has
been a topic of research for quite some time. Some researchers
try to solve this problem by using a more theoretical basis
and mathematical approach such as [9], [10]. While this is
important, it does not help the end users like medical experts
understand the algorithmic decisions and improve their trust
in the system. Other researchers try to apply a more visual
approach on the problem and visualize layers using different
methods such as heat maps or visual representations (texture,
heat maps, etc.) [11], [12]. Based on visual content, the next
natural step in the process is to generate text from the visual
layers to create automatic tags or descriptions of images and
videos. In the medical imaging domain, Zhang et al. [13]
propose a method to generate automatic reports for automatic
image diagnosis networks. The goal is to create semantically
meaningful reports. As an example, they used bladder cancer
detection. A similar approach can be found in [14]. Both
methods can create text from the images and visualizations
of the regions the algorithm reacted to.

In comparison to these approaches, our system is not
focused on creating automatic text, but rather use the visual
attention heat maps to get an understanding of the algorithms
decisions, presenting them to medical experts and to improve
these decisions by pre-processing the data in a different more
effective way. To the best of our knowledge, there is no related
work that does this.

Furthermore, pre-processing in deep learning is an often
used practice, but it is hard to find a clear description about
when to apply which methods. It often depends on the data and
the understanding of the data [15], [16]. Therefore, a system
that can give visual explanations of the data and show how it
connects with the algorithms can be helpful when looking to
improve performance.

Finally, our system tries to recommend which images or
parts of the videos represent the most important findings.
Medical experts indicate that generating automatic text is not
the most important feature, but rather to give them a tool that
helps them understand the decisions made by the algorithms,
and at the same time, supports them in creating reports that
represent the case in a unified way [1]. Therefore, taking the
user into the loop of system development is an important
aspect and requires tools such as the here presented system.

Layer
and class
selection

VGG-19

Visualizer

Fig. 1: An overview of how we produce the two visualizations
included in the image analysis, and how it is presented
in the user interface where a visualization of the different
convolutional layers can be selected.

III. SYSTEM DESCRIPTION

The proposed system can be described as a framework with
three main functionalities. (i) The system was designed to aid
medical doctors in making informed decisions regarding diag-
nosis of diseases found during examinations, such as diagnosis
of disease found in the GI tract during a colonoscopy. (ii) The
system creates automatic reports based on the automatic anal-
ysis of images and videos and reduces the time spent on the
administrative tasks that follow an endoscopic examination,
e.g., documentation by written reports. This is shown in Figure
3 where the doctor uses the system to understand the analysis
done by the neural network, and use this information to reach
a diagnosis and generate the accompanied report. (iii) The
system can be used by researchers and engineers designing
deep learning architectures such as CNNs to gain a better
understanding of the evaluation and reactions of their models,
e.g., by understanding which parts of an image confuse the
algorithm and if additional pre-processing steps are needed.

The basis of the system is a deep CNN which is used to
analyse image or video data to perform different classification
tasks, e.g., automatic detection of diseases. This process is
made transparent to the users through a tool that dissects the
individual layers of a CNN, making it possible to see the basis
for the decisions made by the system and on what regions of
an image the algorithm activates for a target class. This is a
critical piece in building trust among users of the system like
medical professionals who need to rely on the systems output

143

(a) Original
image

(b) Grad-CAM (c) Saliency
Map

(d) Guided
Grad-CAM

Fig. 2: Image representations used by the reporting system to
explain decisions.

without the technical knowledge of the internal working of a
CNN. Additionally, it allows for discovering fallacies within
the model itself and the dataset used to train it.

Using the guided grad-CAM technique [17], we generate
visual representations of an image as it moves through the
network, showing what regions of the image correspond to a
target class at the point of a selected layer. The process is
shown in Figure 1, and starts with the user selecting an input
image, target layer and target class using the web-interface
(shown at the bottom of Figure 1). Based on the selection, the
system generates three visualizations of the image (all shown
later in Figure 4). Figure 2a is the original image before any
processing. Figure 2b is a grad-CAM (a generalization of class
activation map (CAM) [18]) representation of the image which
shows what regions of the image correspond the the selected
target class. Figure 2c is the saliency map generated using
guided back-propagation, this shows the positive activations
of the target layer, and is not class specific. Figure 2d depicts
the guided grad-CAM representation of the image, which is
a combination of the grad-CAM and saliency map. From the
three visualizations, the system presents the grad-CAM and
the guided grad-CAM to the user.

IV. IMPLEMENTATION DETAILS

The system is accessed through a web-interface, backed
up by a RESTful server written in Python (using the micro-
framework Flask [19]). As mentioned in section III, the server
uses a deep neural network, specifically a CNN using the
standard VGG-19 architecture [20], to perform frame analysis.
It is important to point out that the architecture used can be
changed if needed. The neural network is implemented using
the deep learning framework Keras [21] using Tensorflow as
a backend [22]. The visualizations are generated on the fly as
the user selected an input image, target layer and target class.

V. NEURAL NETWORK DISSECTION

As mentioned previously, we use a deep CNN to perform
analysis on frames collected from a endoscopic examination
taken from a video stream. One of the criteria we set in the
previous section was that the system must back up its claims
by showing the reasoning behind its decision. To achieve
this, the system uses a guided grad-cam [17] approach to
visualizing the convolutional layers of a CNN given a target
class. Guided grad-cams combine the discriminative properties
of CAMs together with a more detailed saliency map [23] to

Image data Server

Fig. 3: The expected workflow using the system to analyse data
from an endoscopic procedure and produce a written report.

create high quality feature maps, showing detailed localization
regions for a target class.

We use the guided grad-cam representation together with a
grad-cam to give two perspectives on what the CNN is detect-
ing when making its prediction, which in turn will hopefully
distill a higher amount of confidence in the correctness of our
network. Principally, the grad-cam and guided grad-cam show
the same information, albeit the guided grad-CAM includes a
bit more detail, we decided to include both as the grad-CAM
is clearer in its explanation. Visualizations are created on a
layer by layer basis, making it possible to go back and view
the detections made by the lower layers of the network. This
might be useful to see what less abstract features are picked
up by the network.

The visualization process starts once the user has selected an
image, layer and class for further inspection. With an image,
target layer and target class selected, we calculate the gradient
of the target layer using the loss of the target class in regards
to the image. These gradients are globally average pooled to
get the weights, which is multiplied with output of the target
layer and passed through a relu function to produce the grad-
CAM. The grad-CAM is re-sized back to the dimensions of
the original image and its values squashed between 0 and 1
before a blue-red heat map filter is applied.

To generate the guided back-propagation saliency map, we
start by replacing the activations of our original network with a
modified relu function. During back-propagation, a traditional
relu would let all gradients whose inputs where larger than
0 pass. We change the relu by adding the additional rule of
discarding all gradients that are below 0, thereby only back-
propagating the positive influence on the activations. With this
modified network, we calculate the gradients of the target layer
with respect to the input image, i.e., these gradients represent
our saliency map.

Once the grad-CAM and saliency map have been computed,
we simply multiply them together to produce the guided grad-
CAM representation. This together with the grad-CAM is used
in our system.

144

(a) Original (b) Grad-CAM (c) Grad-CAM

Fig. 4: An image that has been correctly identified as contain-
ing a polyp by our CNN, together with the grad-CAM and
guided grad-CAM representation.

VI. UNDERSTANDING THE DETECTIONS

As mentioned in section IV, we visualize the the convolu-
tional layers of a VGG-19 CNN to understand what each layer
detects as the image moves through the network. This is not
only useful when trying to detect abnormalities in endoscopic
images, but also gives insight into what features the network
”thinks” are relevant to a certain class. For example, Figure 4a
shows an image containing a polyp located in its upper region.
Looking at the grad-CAM representation (Figure 4b), we see
the the network correctly identifies the polyp (area in red).
Although the used example is quite obvious, this shows that
the network, at least, has some knowledge about what a polyp
is when it comes to its basic shape. Using the guided grad-
CAM representation (Figure 4c), we get a more detailed view
of what the network detects, such as texture detection. Looking
closely at Figure 4c, we see that the network detects the edge
of the polyp, noting that the polyp is raised above the mucosa
(blue outline surrounding the polyp).

Figure 4 depicts the image at the last convolutional layer
of the network, showing what the network recognizes right
before making its prediction. For the most part, this is what
we want. But, it may also be useful to look further back in the
network to see what less abstract features are detected early in
the network. Looking at Figure 5, we see a guided grad-CAM
representation of an image at the last convolutional layer of
each convolutional block of a VGG-19 CNN. Looking at the
first couple of layers (Figures 5b and 5c), we see that the
network picks up basic textures of the mucosa. Looking at the
latter images, we see that the network starts to see the visual
shape of the polyp.

Note that the visualizations are made with respect to a
target class, meaning we can see what regions of an image
correspond to another class apart form the predicted one. This
comes in handy when the network detects multiple classes
in a single image. For example, an image may contain signs
of ulcerative colitis and polyps, using the visualizations we
are able to see the class specific regions of each abnormality.
This is also useful when diagnosing issues with the network,
understanding why a network ”thinks” it detects a certain class
that is not there, this will be discussed further in section VII.

VII. ENHANCING INPUT DATA FOR BETTER DETECTION

In the previous section, we used the two image represen-
tations (grad-CAM and guided grad-CAM) to gain insight

(a) Kvasir v2
Kvasir v2 PREC REC SPEC ACC MCC F1
Non-processed 0.966 0.791 0.736 0.940 0.762 0.758
Navigation box 0.968 0.798 0.753 0.944 0.778 0.778
Navigation box + border 0.968 0.943 0.749 0.943 0.775 0.771

(b) Kvasir v2 + CVC
Kvasir v2 Extra Polyps PREC REC SPEC ACC MCC F1
Non-processed 0.957 0.722 0.673 0.924 0.723 0.702
Navigation box 0.959 0.738 0.691 0.927 0.739 0.719
Navigation box + border 0.964 0.773 0.724 0.937 0.760 0.750

TABLE I: CNN evaluation using 2-fold cross-validation.

into what the network sees when it makes a prediction for
a certain class. This not only helps us detect diseases in
the GI tract, but can also be used to diagnose issues with
a network making incorrect predictions. Using the Kvasir
v2 dataset [24], we looked at various samples where the
network got confused and mistakenly predicted the wrong
class. Figure 6a shows an image of a clean cecum (beginning
of the bowel), as part of the normal cecum class. The network
mistakenly predicted that the image depicts a colon inflicted
by ulcerative colitis (inflammatory bowel disease) as part of
the ulcerative colitis class, with an 86.5% certainty. Using
the system to diagnose what the network detects with respect
to the class normal cecum at the final convolutional layer,
we get the grad-CAM (Figure 6b) and guided grad-CAM
(Figure 6c) representations, which show us that the algorithm
gets confused by the navigation box located in the lower
left corner. This indicates that the network has learned the
”noise” of an image, and associated it with a class, i.e., it
has associated the navigation box with a normal cecum. This
is an important observation, as we might be able to use this
information to improve the performance of our network.

After finding incidents of incorrect predictions because
of ”noise” in the image, we have two possible options for
improving the class detection of our network, i.e., change the
network itself or apply additional pre-processing steps to the
dataset. For the scope of this paper, we will limit it to applying
additional pre-processing steps to the Kvasir version 2 dataset
as following: (i) blacked out navigation box and (ii) blacked
out navigation box and cropped black borders.

After applying these steps, we re-trained the model and
ran the image analysis again. This time we found that that
normal cecum prediction had fallen down to 28.3%, and the
network now correctly classifies it as ulcerative colitis with
a 53.22% certainty. The change in prediction is promising,
but the network still activates on the blacked out navigation
box, which causes the still high prediction value fro ulcerative
colitis, i.e., additional pre-processing steps may lead to better
results. In this particular case, a possible reason for the
confusion is an imbalance of ”noisy” images between the
classes, e.g. some classes include many images that have the
navigation box located in the lower left corner, while other
classes barely contain such images. This is supported by the
class ulcerative colitis, having few images with a navigation
box, often being confused with polyps and normal cecum,
which contain many images with the navigation box.

145

(a) Original (b) Block 1 (c) Block 2 (d) Block 3 (e) Block 4 (f) Block 5

Fig. 5: Guided grad-CAM representation of an image at the last convolutional layer of each convolutional block.

N
on

-p
ro

ce
ss

ed

(a) Original (b) Grad-CAM (c) Grad-CAM

Pr
e-

pr
oc

es
se

d

(d) Original (e) Grad-CAM (f) Grad-CAM

Fig. 6: An incorrectly identified image with its grad-CAM
and guided grad-CAM representation with respect to the class
normal cecum.

(a) Non processed (b) Navigation box (c) Navigation box
+ borders

Fig. 7: Examples of data enhancements.

Based on the findings of described in section VII, we trained
and evaluated a VGG-19 CNN on three different variations of
Kvasir v2; (i) non-processed images (Figure 7a), (ii) naviga-
tion box blacked out (Figure 7b), and (iii) navigation box and
borders removed (Figure 7c). From this, we observe that the
non-processed and pre-processed datasets are distinguishable,
but the navigation box/borders removed and the blacked out
dataset look quite similar. The difference between the two
pre-processed datasets are in the surrounding border. Each
dataset was trained and evaluated using 2-fold cross-validation
resulting in 500 images used for training and evaluation per
class. Table I(a) shows the result of the model evaluation.
Looking at the F1 score, we see that the pre-processed datasets
perform a couple points better than the non-processed dataset.

As with any neural network, it is important that it gen-
eralizes well rather than overfitting on a specific dataset.
Therefore, we performed another evaluation on the three
dataset variations using additional 400 polyp images taken

randomly from the CVC-968 dataset [8] added to the test set.
The reason therefore was to show how general the trained
model is and that it does not work well on just the dataset
used for training (which would be a sign for overfitting).
The outcome of this experiment revealed that the non pre-
processed dataset was less general than the pre-processed on
and most probably dataset specific (overfitted). The result of
this evaluation is shown in Table I and further supports the
case that the pre-processed datasets perform better than the
non-processed. Looking at the individual F1 scores we see that
the non-processed dataset fell by 5.6 points, the blacked out
dataset fell by 5.9 points, and the border and navigation box
removed pre-processing fell by only 2.1 points. This shows
that the border and navigation box removed pre-processing
training creates a model that generalizes better then the other
variations. Even if the general overall performance goes down
compared to Table I(b) for a real world scenario a more general
model is more important than a dataset specific one.

VIII. CREATING AUTOMATIC REPORTS

Being able to understand the output of an algorithm better
can also be very important to create automatic reports. The
written reporting of medical procedures is an essential, but
cumbersome, part of the physicians daily work. Although high
quality and completeness of the reports is important [25],
it is frequently not complying with existing standards [26].
Within GI endoscopy, both a standardized language and a
systematic description of endoscopic findings are needed [27].
Including the findings of a GI endoscopy manually into a
simple report takes typically around two minutes [28], [29].
However, complex reports that include description of several
abnormalities may take 10-15 minutes or longer to generate.
A high-end automatic reporting system based on automatic
video analysis has the potential to improve the time needed,
the precision and the standardisation of the report in line with
the World endoscopy Organisations recommendations [27] and
to decrease the time to generate complex reports.

A significant part of a medical expert’s time is spent
documenting the examination and preparing reports after the
examinations, e.g., one study reports that physicians spent
52.9% of the time on direct clinical face time and 37.0%
on Electronic Health Record (EHR) and desk work [30], and
some claim doctors waste in average 48 minutes per day
using electronic medical records [31]. Finally, an automatic
reporting system could also help following standards [32]. As
mentioned before, a system that can extract information from
deep learning layers can also be used for generating automatic

146

reports by providing images or video clips to include and at
the same moment providing a reason why the algorithm came
to a certain decision. Nevertheless, this is out of focus for
this paper and will be more in focus in future work including
studies with medical experts.

IX. CONCLUSIONS

Neural networks are widely used in all types of detec-
tion, classification and localization of objects in an image
or video frame. However, the understanding of how deep
neural networks operate and on what their output is based
on is in general very limited – even more so among non-
technical users. In many domains such as medicine (among
others), the users often need to understand why a particular
decision is made. To improve the understanding of the internal
decision process of deep neural networks and to build trust
among its users, we have developed a system that allows to
dissect deep neural networks, enabling investigation and un-
derstanding of the networks layers and outputs. We presented
a detailed explanation about how such a system can be used to
increase understanding and performance and evaluated it using
two different datasets. The evaluation is showing promising
results indicating better performance and generalization of
deep learning models after applying improvements based on
insights gained using the presented system. Furthermore, we
presented and discussed how the intermediate knowledge
provided by the system can be used to automatically generate
a modifiable report including both text and images increasing
the understanding and potential trust of medical experts. For
future work we will evaluate the reporting part of the system
with the help of medical doctors and improve the automatic
report generation part based on this evaluation.

REFERENCES

[1] M. Riegler, M. Lux, C. Griwodz, C. Spampinato, T. de Lange, S. L.
Eskeland, K. Pogorelov, W. Tavanapong, P. T. Schmidt, C. Gurrin,
D. Johansen, H. Johansen, and P. Halvorsen, “Multimedia and medicine:
Teammates for better disease detection and survival,” in Proc. of ACM
MM, 2016, pp. 968–977.

[2] M. Riegler, K. Pogorelov, J. Markussen, M. Lux, H. K. Stensland,
T. de Lange, C. Griwodz, P. Halvorsen, D. Johansen, P. T. Schmidt,
and S. L. Eskeland, “Computer aided disease detection system for
gastrointestinal examinations,” in Proc. of MMSys, 2016.

[3] M. Riegler, K. Pogorelov, P. Halvorsen, T. de Lange, C. Griwodz, P. T.
Schmidt, S. L. Eskeland, and D. Johansen, “EIR - efficient computer
aided diagnosis framework for gastrointestinal endoscopies,” in Proc. of
CBMI, 2016.

[4] K. Pogorelov, M. Riegler, P. Halvorsen, P. T. Schmidt, C. Griwodz,
D. Johansen, S. L. Eskeland, and T. de Lange, “GPU-accelerated real-
time gastrointestinal diseases detection,” in Proc. of CBMS, 2016.

[5] K. Pogorelov, M. Riegler, S. L. Eskeland, T. de Lange, D. Johansen,
C. Griwodz, P. T. Schmidt, and P. Halvorsen, “Efficient disease detection
in gastrointestinal videos – global features versus neural networks,”
Multimedia Tools and Applications, 2017.

[6] M. Riegler, K. Pogorelov, J. Markussen, M. Lux, H. K. Stensland,
T. de Lange, C. Griwodz, P. Halvorsen, D. Johansen, P. T. Schmidt,
and S. L. Eskeland, “Computer aided disease detection system for
gastrointestinal examinations,” in Proc. of MMSYS, 2016, pp. 29:1–29:4.

[7] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange,
D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt,
M. Riegler, and P. Halvorsen, “Kvasir: A multi-class image dataset for
computer aided gastrointestinal disease detection,” in Proc. of ACM
MMSYS, 2017, pp. 164–169.

[8] J. Bernal and H. Aymeric, “Miccai endoscopic vision challenge
polyp detection and segmentation,” https://endovissub2017-giana.
grand-challenge.org/home/, accessed: 2017-12-11.

[9] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digit. Signal Proc., 2017.

[10] R. Vidal, J. Bruna, R. Giryes, and S. Soatto, “Mathematics of deep
learning,” arXiv preprint arXiv:1712.04741, 2017.

[11] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel,
and S. Gumhold, “Visualizations of deep neural networks in computer
vision: A survey,” in Transparent Data Mining for Big and Small Data.
Springer, 2017, pp. 123–144.

[12] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-
standing neural networks through deep visualization,” arXiv preprint
arXiv:1506.06579, 2015.

[13] Z. Zhang, Y. Xie, F. Xing, M. McGough, and L. Yang, “Mdnet: A se-
mantically and visually interpretable medical image diagnosis network,”
in Proc. of IEEE CVPR, 2017, pp. 6428–6436.

[14] B. Jing, P. Xie, and E. Xing, “On the automatic generation of medical
imaging reports,” arXiv preprint arXiv:1711.08195, 2017.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[16] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[17] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and
D. Batra, “Grad-cam: Why did you say that? visual explanations from
deep networks via gradient-based localization,” CoRR, 2016.

[18] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” CoRR, 2015.

[19] “Flask.” [Online]. Available: http://flask.pocoo.org/
[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[21] “Keras.” [Online]. Available: https://keras.io/
[22] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/
[23] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,

“Striving for simplicity: The all convolutional net,” CoRR, vol.
abs/1412.6806, 2014. [Online]. Available: http://arxiv.org/abs/1412.6806

[24] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange,
D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt,
M. Riegler, and P. Halvorsen, “Kvasir: A multi-class image dataset for
computer aided gastrointestinal disease detection,” in Proc. of MMSYS,
2017, pp. 164–169.

[25] M. Bretthauer, L. Aabakken, E. Dekker, M. F. Kaminski, T. Rösch,
R. Hultcrantz, S. Suchanek, R. Jover, E. J. Kuipers, R. Bisschops
et al., “Requirements and standards facilitating quality improvement
for reporting systems in gastrointestinal endoscopy: European society
of gastrointestinal endoscopy (esge) position statement,” Endoscopy,
vol. 48, no. 3, pp. 291–4, 2016.

[26] T. De Lange, B. Moum, J. Tholfsen, S. Larsen, and L. Aabakken,
“Standardization and quality of endoscopy text reports in ulcerative
colitis,” Endoscopy, vol. 35, no. 10, pp. 835–840, 2003.

[27] L. Aabakken, A. N. Barkun, P. B. Cotton, E. Fedorov, M. A. Fujino,
E. Ivanova, S.-e. Kudo, K. Kuznetzov, T. Lange, K. Matsuda et al.,
“Standardized endoscopic reporting,” Journal of gastroenterology and
hepatology, vol. 29, no. 2, pp. 234–240, 2014.

[28] M. Groenen, E. Kuipers, G. van Berge Henegouwen, P. Fockens, and
R. Ouwendijk, “Computerisation of endoscopy reports using standard
reports and text blocks,” The Netherlands journal of medicine, 2006.

[29] K. Kuhn, W. Gaus, J. Wechsler, P. Janowitz, J. Tudyka, W. Kratzer,
W. Swobodnik, and H. Ditschuneit, “Structured reporting of medical
findings: evaluation of a system in gastroenterology,” Methods of infor-
mation in medicine, vol. 31, no. 04, pp. 268–274, 1992.

[30] C. Sinsky, L. Colligan, L. Li, M. Prgomet, S. Reynolds, L. Goeders,
J. Westbrook, M. Tutty, and G. Blike, “Allocation of physician time in
ambulatory practice: A time and motion study in 4 specialties,” Annals
of Internal Medicine, vol. 165, no. 11, pp. 753–760, 2016.

[31] M. CJ, C. FM, W. A, G. RM, M. M, and K. T, “Use of internist,s
free time by ambulatory care electronic medical record systems,” JAMA
Internal Medicine, vol. 174, no. 11, pp. 1860–1863, 2014.

[32] T. H. Baron, “Endoscopy: Gastrointestinal endoscopy reporting: time
for standardization?” Nature Reviews Gastroenterology and Hepatology,
vol. 11, no. 3, p. 145, 2014.

147

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Statement
	Limitations
	Research Methods
	Theory
	Abstraction
	Design

	Main Contributions
	Thesis Outline

	Deep Learning and Automatic Reporting for Medical Multimedia
	Case Study on Detection and Documentation of Disease in the Gastrointestinal Tract
	The Gastrointestinal Tract
	Gastrointestinal Endoscopy
	Wireless Video Capsular Endoscopy
	Abnormalities and Disease Found in the Gastrointestinal Tract
	Esophagitis
	Ulcerative Colitis
	Polyps

	Anatomical Landmarks
	Z-line
	Pylorus
	Cecum

	Polyp Removal Markings
	Dyed and Lifted Polyps
	Dyed Resection Margins

	Quality of Colonoscopy Reporting
	Standardization of Data Models and Templates
	Understanding the Value of Documentation
	Standardization of Terminology
	Current Software Solutions

	Machine Learning for Disease Detection and Diagnosis
	Machine Learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Deep Learning

	Neural Networks (Multilayer Perceptrons)
	Perceptron
	Multilayer Perceptron
	Training a Neural Network

	Convolutional Neural Networks
	Convolutional Layers
	Depthwise Separable Convolution
	Pooling Layers

	Deep Learning in the Medical Field
	Issue of Interpretability
	Issue of Data

	Opening the Black Box of Neural Networks
	Visualization Techniques
	Generating Pixel Level Saliency Maps
	Generating Class Discriminate Activation Maps

	Summary

	Mimir: An Automatic Reporting System for Endoscopic Examinations
	Mimir
	Front-end Architecture, Tools and Technologies
	Back-end Architecture, Tools, and Technologies
	Deep learning Tools and Technologies

	Neural Network Dissection Tool
	Report Generation Tool
	Use Case Scenarios
	Summary

	Case Study on Mimir for use in Classification Understanding
	Training, Datasets and Architectures
	Architectures
	VGG Architectures
	Inception Architectures
	Residual Neural Network Architectures
	Xception Architecture

	Datasets
	ImageNet
	Kvasir
	CVC-968

	Training
	Hyperparameter Selection
	Keeping Track of Experiments

	Evaluation Method and Metrics
	Confusion Matrix
	Metrics
	Model Evaluation
	Evaluation of Classification
	Evaluation of Localizations

	Initial Training Results
	Analysis of Initial Training Results
	Comparing Dyed Resection Margin to Dyed Lifted Polyp
	Comparing Esophagitis to Z-line
	Comparing Cecum to Ulcerative Colitis
	Comparing Polyp to Cecum
	Comparing Ulcerative Colitis to Polyp
	Summary of Findings and Proposed Pre-processing Techniques

	Results and Comparing New Visualizations Against Initial Results
	Comparing Dyed Resection Margin to Dyed Lifted Polyp
	Comparing Esophagitis to Z-line
	Comparing Cecum to Ulcerative Colitis
	Comparing Polyp to Cecum
	Comparing Ulcerative Colitis to Polyp

	Summary

	Conclusion and Further Work
	Summary
	Contributions
	Future Work

	Source Code
	Mimir Code
	Training and Evaluation Code

	Published Papers
	Paper I — Mimir: An Automatic Reporting and Reasoning System for Deep Learning based Analysis in the Medical Domain
	Paper II — Comprehensible Reasoning and Automated Reporting of Medical Examinations Based on Deep Learning Analysis
	Paper III — Dissecting Deep Neural Networksfor Better Medical Image Classification and Classification Understanding

