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Abstract

Applying machine learning to problems in medicine is a rapidly growing trend in nearly

all areas of healthcare. The immense performance attained by using deep learning on

tasks like image and time series analysis can profoundly impact how computers are used

in hospitals or clinics. There is a lot to gain in developing these systems, both monetary

and societal, where deep neural network-based models may someday be in charge of mon-

itoring our health. However, despite the massive responsibility that we give these models,

the approach of developing and evaluating these methods is often not clear. Medical ar-

tificial intelligence (AI) research usually has imprecise method descriptions, private data,

closed-source implementations, and incomplete evaluations. This thesis studies at how

AI can be used in different areas within medicine, where a primary focus is to look at the

current state of transparency within medical AI systems research and aims to contribute

to a more open and public research community. To achieve this, we collected and pub-

lished several medical datasets, developed several AI models in various medical domains,

performed an assortment of different experiments to validate the collected datasets, or-

ganized many competitions on medical AI applications, and examined adequate model

evaluation methods. The work was done across four fields of medicine to get a thor-

ough understanding of how transparent AI can be applied to different medical domains,

which includes cardiology, assisted reproductive technology, gastroenterology, and mental

health.
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Abstract - Norwegian

Å bruke maskinlæring p̊a problemer innen medisin er en raskt voksende trend i nesten

alle omr̊ader av helsevesenet. Den enorme ytelsen som oppn̊as ved å bruke dyp læring p̊a

oppgaver som bilde- og tidsserieanalyse kan ha stor innvirkning p̊a hvordan datamaskiner

brukes p̊a sykehus eller klinikker. Det er mye å vinne p̊a å utvikle disse systemene, b̊ade

monetære og samfunnsmessige, der dype nevrale nettverksbaserte modeller en dag kan ha

ansvaret for å overv̊ake helsen v̊ar. Til tross for det enorme ansvaret vi gir disse model-

lene, er tilnærmingen for å utvikle og evaluere disse metodene ofte ikke klar. Medisinsk

kunstig intelligens (AI)-forskning har vanligvis upresise metodebeskrivelser, private data,

implementeringer med lukket kilde og ufullstendige evalueringer. Denne oppgaven stud-

erer hvordan AI kan brukes p̊a ulike omr̊ader innen medisin, hvor et primært fokus er å

se p̊a dagens åpenhet innen medisinsk AI-systemforskning og har som mål å bidra til et

mer åpent og offentlig forskningsmiljø. For å oppn̊a dette, samlet og publiserte vi flere

medisinske datasett, utviklet flere AI-modeller i ulike medisinske domener, utførte et ut-

valg av forskjellige eksperimenter for å validere de innsamlede datasettene, organiserte

mange konkurranser om medisinske AI-applikasjoner og undersøkte adekvate modelleval-

ueringsmetoder. Arbeidet ble utført p̊a tvers av fire felt av medisin for å f̊a en grundig

forst̊aelse av hvordan transparent AI kan brukes p̊a ulike medisinske domener, som inklud-

erer kardiologi, assistert reproduktiv teknologi, gastroenterologi og mental helse.
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Chapter 1

Introduction

Artificial intelligence (AI) has in the last few years shown immense progress in advancing

the state-of-the-art in areas such as computer vision [158], robotics [82], and natural

language processing (NLP) [155]. As a research field, AI has been around since the

mid-1950s [156, 124]. Still, it is not until recently that we have obtained the amount of

data and the computational power required to truly see the potential in the algorithms

developed during its early years [139]. These days, when we refer to AI, we often mean

the subfield machine learning. Figure 1.1 shows the Google search trend for the terms

artificial intelligence and machine learning, where we see that both terms have exploded in

popularity over the last ten years. Machine learning encompasses deep learning, which is

currently the most popular family of algorithms in AI research and practice. Deep learning

uses deep neural networks to automatically extract features from data to perform tasks like

regression or classification. These methods have shown an extreme range in the problems

they can be applied to, stretching from self-driving cars to automatically detecting and

diagnosing different types of diseases.

1.1 Motivation and Background

AI-based systems, or AI systems, are slowly making their way into clinical practice [118].

At the same time, the research that goes into developing these systems is often clouded by

closed-source implementations, private data, lackluster evaluations, and non-reproducible

results [140]. We are on the verge of living in a world where machines will determine what

medicine we should take, perform surgeries on us, or diagnose us with a specific illness or

1
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Figure 1.1: The Google search trend over the last ten years for the terms artificial intel-
ligence and machine learning.

disease. As these algorithms obtain more authority over our everyday lives, transparency

in how they were built and how they work becomes essential. In this context, transparency

can be seen as an important principle of ethics, where Dr. David Leslie defines it as a

combination of two meanings [85]; (i) transparency in the sense of a clear, see-through

object and (ii) transparency as in a justified and explained process open for inspection

and free from secrets. The first statement relates to explaining the internal processes and

output of the complex models currently being used today. The second statement is tied to

open and publicly available data, implementations, and evaluations used to develop and

deploy AI systems in practice. Modern AI systems are complex and made up of multiple

parts, where each can have a substantial effect on the final prediction. Therefore, it is

crucial that each part of the system, from data collection to final evaluation, is transparent

for data scientists, engineers, health care professionals, and patients.

1.2 A Definition of Terms

This thesis contains several terms and concepts that are important to understand in order

to fully comprehend its content. The following gives a brief description of some terms

that will be continuously mentioned throughout this thesis.

2



1.2. A Definition of Terms

1.2.1 Basic Artificial Intelligence Terms

The following describes some common terms relating to basic AI concepts.

Artificial Intelligence Artificial intelligence (AI) refers to the simulated human intelli-

gence demonstrated by machines. Applications include computer vision, natural language

processing, robotics, and reasoning systems to name a few.

Machine Learning Machine learning is an application of AI that uses algorithms to

automatically learn specific tasks using data. This can either be done using labeled data

(supervised learning) or unlabeled data (unsupervised learning). Machine learning is

currently the most popular application of AI both in research and in practice.

Deep Learning Deep learning is class of algorithms within machine learning that is

based on deep neural networks, meaning neural networks that consists of several hidden

layers.

1.2.2 Transparency Terms

Terms such as explanations, transparency, and interpretability are often used interchange-

ably, and although the terms are quite similar, they have different meanings. An inter-

pretation of a prediction does not necessarily lead to more transparency, neither does it

make the model more explainable. For full transparency, we need to know the whole

pipeline used to develop an AI system. This aspect of AI has started to get some atten-

tion, and we expect it to become more important as these algorithms begin making their

way into production. In this section, we discuss the meaning of the words interpretability,

explainability, and transparency in the context of medical AI.

Interpretability Interpretation of a model refers to the ability to infer how changes

to the input will affect the output. For example, if we train a model to predict whether

or not an image contains a polyp, we expect the output to be polyp when an image of a

polyp is passed through the model. If we modify the image by replacing the polyp with

a black box, we expect the output to change. By this definition, one does not necessarily

3
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know why a model is making these predictions. Still, we can determine the relationship

between the polyp in the image and the output of the model.

Explainability Model explainability concerns the ability to understand why a model

is making a specific prediction. Using the example of the polyp prediction model again,

if the model predicts that a image contains a polyp, explainability would also tell us why

this image contains a polyp. This could be visual description, like the presence of certain

features visualized through feature maps. It could also be through similarity scores, like

showing similar images that also contains polyps. Model explanations should not only

be inheritable through cause and effect, but should also explain why this prediction was

made.

Transparency Model transparency not only looks at the model itself but also takes

the entire system into account, from the data used for training to final evaluation. For an

AI system to be truly transparent, we need to know everything about it. This includes

information about the data used to train it, how the model was implemented (which

frameworks and libraries), which methods were used for evaluation, where the models fail

(failure analysis), which parts of the model contribute to the prediction (ablation study),

and a thorough description of how the model was trained.

1.3 Problem Statement

The aim of this thesis is to research how medical AI systems can be developed and be

more transparent across data use, model development, and model evaluation. With this

in mind, we present the primary research research question:

Can medical AI-based systems be made more transparent?

This research question is rooted in a general lack of transparency found in medical AI

research [140], and will be the foundation for the work presented in this thesis. To make

the main question more tangible, we break it down into three objectives that, in the end,

will give us enough information to provide a conclusion on our research question.

Objective 1 Obtain a better understanding of the role and challenges of data in med-

ical AI systems by collecting, preparing, and publishing datasets from different medical

4



1.4. Scope and Limitations

domains in close collaboration with experts. Each dataset should be collected with the

purpose of solving real medical problems, and all related materials should be made public

for other researchers to extend and improve. Public data is an essential aspect of any

transparent AI system as it will determine the strengths and weaknesses of the underlying

machine learning model.

Objective 2 Research and develop efficient methods for medical data analysis that

aim to solve real medical problems defined by experts. The methods should cover a

wide variety of different approaches, including those based on classical machine learning

and more modern approaches like deep learning. Furthermore, explore different methods

surrounding the training of the model, such as data preprocessing, data augmentation,

and multimodal analysis. Transparency in the methods used for analysis is important for

reproducibility and comparability.

Objective 3 Evaluate the results using different methods to assess an AI system before

being deployed to the real world, such as using AI explanation methods to interpret model

predictions, measuring the quantitative performance using standard evaluation metrics,

and benchmarking methods for reproducibility and comparability. Transparency in the

evaluation and interpretation of the results is crucial for understanding how the model

may perform in a production environment.

1.4 Scope and Limitations

The work for this Ph.D. project started with the development of efficient ML models for

medical applications with the question of how explainable AI could help medical doctors

gain more trust and confidence in black-box models such as deep neural networks. After

some time researching this problem and working closely with the doctors, we realized

that faith and trust do not come from explainability alone and that there is a much larger

problem in medical AI research, namely transparency. Therefore, we switched the main

focus of this thesis from only explainable AI to look at the broader picture about how the

process of developing and evaluating an AI-based system can be more transparent.

We believe our findings are relevant for various medical areas, but the research is

primarily limited to the following four medical fields; gastroenterology, assisted repro-
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ductive technology, cardiology, and mental health. This limitation is rooted mainly in

the collaboration and relationships we have with hospitals and clinics. Although some of

the methods presented in this thesis are specialized in their application, the underlying

principles and theory still apply to other areas as well. Furthermore, the data collected

with our collaborating parties is limited to the equipment available at the point of collec-

tion. This includes the microscopes used to capture video footage of human semen, the

endoscopes used to collect image data from colonoscopies, the wristbands used to collect

activity data, and the various other equipment used for data collection.

Clinical trials are a time-consuming and costly process, with many unknowns when

it comes to the evaluation of AI-based systems. None of the systems described in this

thesis have been deployed or are currently being used in clinics or hospitals. Having

these systems deployed in the real world requires legal approvals making sure the systems

follow all regulations, such as meeting the requirements for data collection, using approved

equipment, and several other factors. We hope to one day integrate the research into the

existing workflow of medical doctors, but for the purpose of this Ph.D. project, we focus

purely on the development and evaluation of transparent AI systems from a research point

of view.

1.5 Research Methods

Research can be performed in a many different of ways. For this Ph.D. project, the

research mainly consists of building prototypes and implementing AI-based systems that

perform a given task. In a more formal context, we generally follow the Association for

Computing Machinerys (ACMs) research methodology. In 1989, the ACM Education

Board assigned a task force to compile the core fundamentals of computer science and

computer engineering into a detailed report [25]. The report describes the discipline of

computing as being split between three paradigms; (i) theory, (ii) abstraction, and (iii)

design. The research done for this thesis covers all three of the explained paradigms. In

the case of this work, the theory paradigm relates to defining a medical problem together

with domain experts and collecting data that can be used to solve it. The abstraction

paradigm relates to developing the algorithms devised by the previous paradigm and

interpreting the results together with the domain experts. The design paradigm relates

6



1.5. Research Methods

to the development of the full system, which includes setting the requirements, stating the

specifications, implement the system, and having medical doctors test it. In the following,

we explain in more detail how our research falls under each paradigm.

1.5.1 Theory

The ”theory” paradigm is rooted in mathematics and relates to developing a coherent and

valid theory. The report describes this phase as being made up of four steps, which are

described as follows; (i) characterize the objects of study (definition), (ii) hypothesize the

possible relationships among them (theorem), (iii) determine whether the relationships

are true (proof), and (iv) interpret the results.

This paradigm is reflected in collaboration with medical doctors in collecting and

developing medical datasets aimed at solving clinical relevant problems in medicine. For

example, we hypothesized that we could use videos of human semen to automatically

predict the quality of a given semen sample. We collected a dataset and created machine

learning models to predict sperm quality in terms of the motility and morphology of the

sperm. The results were analyzed and compared against simple baselines to verify that our

hypothesis was correct. These steps were repeated several times as each published dataset

was accompanied by a set of baseline experiments as a means of technical validation.

1.5.2 Abstraction

The ”abstraction” paradigm is rooted in the experimental scientific method and relates

the investigation of a phenomenon, e.g., hypothesis. The report describes this phase as

a process consisting of four steps, which are described as follows; (i) form a hypothesis,

(ii) construct a model and make a prediction, (iii) design an experiment and collect data,

and (iv) analyze results.

This paradigm is supported by the numerous experiments performed on solving dif-

ferent problems in medicine across multiple different fields. These experiments started

with a hypothesis on how a problem may be solved, for which we developed a machine

learning-based model to validate the hypothesis and evaluated the results. For example,

we hypothesized that we could generate synthetic images of colorectal polyps that could

replace real data and still achieve desirable results. From this hypothesis, we constructed

a generative adversarial network (GAN) and generated a large set of synthetic polyp im-
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ages and performed several experiments that showed that the synthetic data could be

used in place of actual polyp data.

1.5.3 Design

The ”design” paradigm is closely related to engineering and relates to the construction

of a system, e.g., software, hardware, etc. The report describes this phase as a process

consisting of four steps, which are described as follows; (i) state requirements, (ii) state

specifications, (iii) design and implement the system, and (iv) test the system.

This paradigm is supported by the AI systems developed to perform the experiments

for this thesis. The development of each system consists of several steps, from data

preparation to performance evaluation, which was implemented and tested using different

configurations.

1.6 Main Contributions

The general lack of transparency in medical AI applications motivated us to research this

area in more detail, where this thesis is a culmination of our work. Through the three years

of this Ph.D. project, we released ten open datasets [17, 39, 50, 58, 67, 67, 69, 137, 143,

151], organized seven medical machine learning challenges [111, 52, 59, 59, 54, 71, 55] (one

more ongoing), published many papers on applying AI to different medical problems [60,

53, 32, 154, 120, 161], and looked at how more transparency, or lack thereof, can impact

medical AI research [61, 62, 57, 121]. An overview of the papers and how they relate to

each part of a transparent AI system is shown in Figure 1.2. The work was primarily

performed over four branches of medicine, namely gastroenterology, cardiology, assisted

reproductive technology, and mental health. The reason for spreading the research across

several medical fields was to get a better understanding of how transparent AI systems

can be deployed in different environments. The main contributions of this thesis are

supported by publications in top-tier conferences or journals. In the following, we detail

the contributions in relation to the research question and research objectives defined in

Section 1.3.
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Paper I, Paper V, Paper VII, Paper XII, Paper XVII,
Paper XXVII, Paper XXVII, Paper XXVIII, Paper XXX,

Paper XXXI

Paper III, Paper VIII, Paper X, Paper XIII, Paper XV,
Paper XVIII, Paper XIX, Paper XX, Paper XXI,

Paper XXIII, Paper XXIV, Paper XXVI, Paper XXVII,
Paper XXIX, Paper XXXII, Paper XXXIII,

Paper XXX, Paper XXXIV, Paper XXXV, Paper XXXVI

Paper II, Paper IV, Paper VI, Paper IX,
Paper XI, Paper XIII, Paper XIV, Paper XV,

Paper XVI, Paper XXII, Paper XXV, Paper XXXVII

Objectives

Objectives

Objectives

Transparent Data

Transparent Analysis

Transparent Evaluation

Figure 1.2: An overview of all published papers and how they relate to each part of a
transparent AI system.

Contributions to Objective 1 Objective one is supported by the collection and pub-

lication of several medical datasets in the field of gastroenterology [17, 137], assisted re-
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productive technology [50], mental health [67, 58], and cardiology [152]. Each dataset was

developed in collaboration with health experts within each respective field and is made

publicly available and free to use for research and educational purposes. The datasets

were used as a basis for most of the research presented in this thesis and have been used

to organize several challenges and benchmarks [56, 52, 59, 54, 71, 55]. Each dataset is

accompanied by a research article published in a top-tier conference or journal, where

we also include a set of benchmark experiments and possible research directions. The

contribution to transparency in medical AI systems comes from the open and publicly

available datasets published under non-restrictive licenses that can be used to develop

and benchmark machine learning models. We also include information on how the data

was collected and verified by the medical experts, including details on the equipment used

to collect the data.

Contributions to Objective 2 Objective two is supported by our work on devel-

oping and training machine learning models to support medical doctors and clinicians

in performing different tasks within medicine. This includes methods for automatically

determining the quality of a given semen sample [60], predicting the sex, waves, and

intervals of a standard 12-lead ECG [61], detecting disease and other findings in the

gastrointestinal (GI) tract [98, 75], and recognizing disorders such as attention deficit

hyperactivity disorder (ADHD) or schizophrenia from activity data [58, 67, 37]. The con-

tribution to transparency comes from the implementation descriptions, where we detail

how the models are trained, which hyperparameters are used, and usually include an open

implementation that is freely available online.

Contributions to Objective 3 Objective three is supported by our work on through

evaluation and post validation of machine learning models after training. This work in-

cludes using explainable AI to discover new features related to the relationship between

sex and electrocardiogram (ECG) signals [61], exploring how evaluation metrics may be

used to give an incomplete view of a models predictive performance [62, 121], and the

organization of several machine learning challenges for benchmarking and comparability

purposes [56, 55, 52, 59, 54, 71, 111]. Openness and accurate reporting of evaluation

methods is a key attribute of transparency within the evaluation of a AI system. There-
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fore, we aimed to show both the negative and positive sides of our developed systems,

reporting all relevant metrics and measuring performance against several benchmarks.

Additional Contributions We also contributed to areas that fall outside the afore-

mentioned research question and objectives. Still, these contributions follow the principles

of transparency and helped us better understand the requirements for the medical-based

case studies. We researched and developed systems for automatically detecting and clip-

ping events from soccer games [101, 123]. These systems were built on open datasets and

gave us experience with analyzing video data using deep learning. We also used model

interpretation methods to generate explanations over the time-dimension to explain the

predictions of the deep neural network. We looked at how machine learning can be used

to predict latency in mobile networks, where we used both traditional machine learn-

ing methods and deep learning. Through this work we gained experience in analyzing

large time-series data. We collected and published a dataset for performing sentiment

analysis on disaster-related images and are currently organizing a challenge using this

dataset [49, 168]. We collected and published a dataset on developing emotional intelli-

gence machines using the video game Super Mario Bros. as an initial use case for building

emotional intelligent machines [143]. This work spawned from the idea of incorporating

human ethics into machine learning algorithms. We collected and published a dataset for

analyzing sports activity in relation to other personal attributes like sleep and weight [151].

We collected and published a dataset containing activity data from everyday tasks like

brushing teeth or watching television together with audio recordings [39]. We collected

and published a dataset for predicting cloud fractional cover using satellite observations.

The aforementioned objectives were completed to progress towards our overarching

research question, which was as follows.

Can medical AI-based systems be made more transparent?

Through our work developing medical AI systems, we gained a better understanding of the

problems medical doctors face in their everyday work. Collecting and publishing datasets

for objective 1 gave us a better understanding of the intricacies of making medical data

public and the potential obstacles that make this difficult. Developing AI systems for
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different tasks within medicine for objective 2 helped us to recognize the issues and re-

quirements that medical doctors and clinicians face every day. Researching the evaluation

of AI systems in medicine and organizing several machine learning challenges for objective

3 gave us the experience of realizing that there is still a lot of research to be conducted in

medical AI research, and a good way to accelerate this process is through public events

that encourage collaboration, reproducibility, and comparability. The lessons learned

from the fulfillment of these objectives is that a medical AI system can be more trans-

parent if both medical doctors and computer scientists have a solid understanding of why

transparency in AI research is important.

1.7 Thesis Structure

The structure of this thesis is organized as a paper collection and is primarily split between

two distinct parts. The first part is an introduction to our research and aims to provide

the reader with an overview of the research area itself and tie the various papers together

in one complete story. The second part contains the published papers, where the reader

may obtain more details regarding the specific research areas. In the following, we give a

short summary of the following chapters.

Chapter 2: Medical Artificial Intelligence Systems This chapter covers the re-

lated work of developing AI systems in medicine. This includes a description on the

different stages of developing an AI system, how AI systems are currently being used in

medicine today, some of the problems of bringing AI research into the clinic or hospital,

and a discussion on safe and ethical use of AI.

Chapter 3: Transparent Artificial Intelligence Systems in Medicine This chap-

ter covers our research on developing transparent AI systems within four medical case

studies; a GI tract case study, assisted reproductive technology case study, electrocar-

diogram case study, and mental health case study. The chapter is organized into three

sections, each targeting a different aspect of transparent research in AI systems develop-

ment.
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Chapter 4: Conclusion This chapter summarizes the contributions of this thesis

and discuss future works in applying transparent machine learning to different areas of

medicine.

Chapter 5: Papers and Author’s Contributions In this final chapter, we present

all core research papers included and discussed in this thesis. We describe the author’s

contributions for each paper and recount how it contributes to the thesis’ overall mission.
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Chapter 2

Medical Artificial Intelligence

Systems

Ever since the introduction of AlexNet [78] in 2012, AI has been applied to nearly all facets

of society [116, 65], medicine being no exception [20]. AlexNet showed that using graphics

processing units (GPUs) could greatly accelerate the training and processing time of deep

neural networks, making them a good alternative to what we now refer to as traditional

machine learning. Now, research is published on how AI systems are being used to aid in

diagnoses or automate specific tasks to alleviate part of the workload of medical doctors.

Many works show highly promising results, where some systems claim to perform certain

tasks better than the trained professionals [45]. However, one should be careful about

comparing the results of an AI system against human experts. The predictions of an AI

system can contain unforeseen biases, and the metrics used for measuring performance

may be skewed in favor of the algorithm. AI systems are not very different from standard

automation or software systems. Both involve several parts that work together in order

to provide the user with some value or perform a given task. What differentiates an AI

system from its counterparts is that it aims to mimic the actions of a person by learning

to do so automatically from data. This chapter looks at the current state of AI systems

used in medicine. This includes a discussion on how AI systems are developed, how AI

systems are used in medicine, the process of deploying a medical AI system in practice,

and some of the ethical dilemmas that keep most AI systems pure research. The subjects

covered in this chapter will establish the groundwork for the subsequent chapters and

support the papers published throughout this Ph.D. project.
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Evaluate
Results

Deploy
Model

Test
Model
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Model
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Data
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Data
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Aim

Model EvaluationModel DevelopmentDataset Development

Figure 2.1: This diagram describes a basic machine learning pipeline from data collection
to model deployment.

2.1 Artificial Intelligence Systems Development

Developing an AI system can largely be broken into three distinct steps; data collection

and preparation, model development and training, and model evaluation and testing.

Each step builds on the last and are equally important when developing a safe and high-

performing system. In the following, we give a more detailed description of the three

steps, which are also showed in Figure 2.1.

Data Collection and Preparation The first step of developing a AI system is defin-

ing its purpose. Data should be collected with a specific goal in mind [121]. This could

be, for example, collecting magnetic resonance imaging (MRI) images of the human brain

to diagnose a specific type of brain disease. Problems should be developed in close col-

laboration with domain experts, like a neurologist in the aforementioned example. Before

a dataset can be used for anything useful, it must first be cleaned and prepared for anal-

ysis. This usually consists of removing corrupted samples and organizing the data in a

format that makes it easy to use [119]. Depending on the method used for analysis, fea-

tures may be extracted from the data. This is very common for complex data types like

images [108], where complexity is reduced by extracting visual features that represent spe-
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cific certain characteristics like color distribution [106], coarseness [10], directional [104],

and roughness [68].

Model Development and Training After collecting and preparing data for a spe-

cific task, the next step is to develop an algorithm that can harness the information

contained within and solve the target task. For traditional algorithms like linear regres-

sion or decision trees, this can be a simple as applying the respective algorithms using

standard hyper-parameters. However, we usually want to tailor the configuration to the

task at hand by either manually turning the hyper-parameters or optimizing them using

hyperparameter optimization algorithms [165, 36, 90] like random search [14] or Bayesian

optimization [131].

Model Evaluation and Testing The last part of the machine learning pipeline is

testing and evaluating that the model works as expected. This is usually done by using

a set of quantitative evaluation metrics that measure the performance related to the task

at hand. This could be, for example, measuring the precision and recall for a classifica-

tion [62] task or using mean squared error to estimate the error for a regression task [34].

However, basing an evaluation purely on a set of evaluation metrics could yield ill results

in a production environment [93]. These metrics are highly dependant on the test dataset,

meaning that any scenarios that are not present in the testing dataset will not be reflected

in the evaluation metrics [153]. This is why it is important to test the model under certain

conditions and use AI explanation methods to ensure that the model works as intended.

2.2 The Role of Artificial Intelligence in Medicine

Data generated by the healthcare industry is astronomical and growing steadily year by

year [27]. The amount of data collected far exceeds the ability of any human to accurately

analyze and interpret, making a lot of information go unused. At the same time, medical

doctors are overwhelmed with work and are losing time used for direct patient care to

analysis and administrative tasks. As previously explained, recent machine learning algo-

rithms based on deep neural networks, also called deep learning, have found much success

in automatically analyzing large amounts of data. Thus, many see the potential of using

deep learning to support doctors in analysis and automate simple mundane administrative
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tasks [63]. Some AI systems have already made their way into clinics and are currently

helping doctors perform surgeries [48] and diagnose different types of disease [81]. There

are also several systems that are in the process of being or have been approved by the

Food and Drug Administration (FDA) [13]. However, most systems do not make it to

this stage and remain pure research. There are several reasons why AI systems fail in

production [93, 11]. For example, AI systems can have a hard time adapting to new and

unforeseen scenarios [74]. This problem usually stems from a lack of quantity and varied

training samples, which translates into the model not understanding how to handle cer-

tain situations. This is especially common in medicine where AI have a document track

record of not working consistently across different hospitals and clinics [12]. Another issue

that AI systems face is that they may learn unintended biases between specific inputs and

outputs. An example from the real world is a case where a machine learning model used to

predict patient risk determined that black patients were sicker than white patients [102],

thus providing black patients with less medical support.

Different medical fields have different needs and requirements regarding the problems

they are trying to solve and the data collected. To get a broad overview of how AI systems

are integrated into healthcare, we used four medical case studies to focus our research,

namely a GI tract case study, a ECG case study, an assisted human reproduction case

study, and a mental health case study. There are several reasons why these case studies

were selected. First, as our goal was to obtain a broad overview of how transparent AI

systems could work within different areas of medicine, selecting case studies that primarily

depend on different types of data was paramount. The GI tract case study mostly focuses

on analyzing video frames collected from colonoscopies or gastroscopies. The findings

generally do not require any temporal information to detect, meaning that analyzing a

single video frame at a time is often enough. On the contrary, analysis for the assisted

reproductive technology case study is often based on video data and highly dependant on

temporal information. For example, if we wish to predict the motility of a given sperm,

one needs to know the direction and speed, which a single frame can not determine. The

ECG case study uses time-series data to analyze specific intervals and waves that make

up a standard ECG. This time-series data is made up of multiple channels that represent

the different leads of the ECG, which require algorithms that can utilize this information

and make connections across the different channels. For the mental health case study,
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Figure 2.2: Images collected from colonoscopies that contain colon polyps.

we mainly focused on analyzing mental health in terms of how it affects the patient’s

activity. This data is also time-series but contains a single channel and must be analyzed

for a much larger period of time, usually consisting of several days.

2.2.1 Gastrointestinal Computer-Aided Diagnosis

Gastroenterology is the branch of medicine that deals with the digestive system and the

various diseases that afflict it. This includes the GI tract and the different organs that

support it, like the liver and pancreas. The research for this thesis is mainly focused

on automatically detecting different lesions and findings found in the GI tract. This is

a rapidly growing area of research, where arguably the most common task is automatic

colon polyp detection [146, 144, 147]. Polyps are small growths that grow on the mucosal

wall of the colon (shown in Figure 2.2) and are a precursor to colon cancer, one of the

most deadly types of cancer according to [142]. Despite being among the most deadly,

colon cancer is also one of the most treatable if detected early enough. By removing

a polyp, it eliminates the chance of it becoming cancerous. The current gold standard

for detecting these lesions is through a procedure called endoscopy, where a long flexible

tube attached to a tiny camera, called an endoscope, is inserted into either the mouth or

anus. However, one major limitation of this procedure is that it is highly dependant on

the skill and experience of the person handling the endoscope [117]. The consequence is

polyp miss-rates that varies between 6% and 27% [4], which is a high range when dealing

with something as life-threatening as colon cancer. Researchers see the potential of using

machine learning to act a digital third-eye to catch the lesions that go overlooked during

the endoscopy procedure.
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(a) Two tails. (b) Large midpiece. (c) Large head.

Figure 2.3: Examples of abnormal sperm taken from the VISEM dataset [50].

Several works and research directions for developing computer-aided diagnosis systems

to analyze the video feed from endoscopies have been explored [73, 42, 31]. Like previ-

ously mentioned, automatic polyp detection is especially sought-after. Several approaches

have been applied with different levels of detection granularity. The simplest approach

is classifying whether a video frame contains a polyp or not [105], without giving any

information regarding the lesion’s spatial properties. Other works focus on locating the

polyp using bounding boxes or segmentation masks [18]. Beside polyp detection, there are

other important findings that can be supported by machine learning. Finding and doc-

umenting anatomical landmarks is an important aspect of any endoscopy procedure and

a recommendation by the European Society for Gastrointestinal Endoscopy (ESGE) [19].

There are also other lesions besides polyps that may be difficult to spot and diagnose

during mucosal inspection. Machine learning may also be used to aid in surgery, such as

verifying that the entire polyp has been removed after resection.

2.2.2 Assisted Reproductive Technology

Fertility rates have been dropping steadily in most parts of the developed world [135, 121].

This is partially explained by socioeconomic factors but also due to a rising trend of human

infertility. Infertility affects about 12% of all couples worldwide, with about 40% being

due to male infertility factors [79]. Concurrent with the drop in fertility rates, several

studies have indicated that the sperm count has declined globally during the last few

decades [21, 86, 72]. Semen quality is a key component of determining male fertility, but

results are not consistent with regards to which parameters are best suited to predict
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this metric [16, 44, 28, 136]. To measure the quality of a semen sample, laboratory

personnel look at certain key attributes of spermatozoa including sperm motility, sperm

morphology, sperm vitality, and the concentration of spermatozoa per volume of semen

(million/mL). These attributes are measured up against a manual for semen analysis

published by World Health Organization (WHO) [164], which lists a set of reference

values for semen attributes (parameters) based on semen quality of fertile men, whose

partners had a time to pregnancy of 12 months or less. However, a common issue is

that manual semen analysis requires trained laboratory personnel. If not performed in

agreement with the WHOs guidelines, it might be subjective and prone to intra- and

interlaboratory variability. Machine learning algorithms have shown immense power in

analyzing visual data, making the visual aspects of semen analysis especially interesting

from a machine learning perspective.

Sperm motility and morphology are two aspects of semen analysis that are highly

visual and ripe for automation. Motility is measured by the number of progressive, non-

progressive, and immotile sperm in a given semen sample. Progressive sperm are forward

moving at a consistent pace. Progressive sperm are sometimes split into slow-progressive

and rapid-progressive categories to differentiate the sperm that move fast and slow, but

this dataset does not make this distinction. Non-progressive sperm is sperm that move

but do not have any forward progression. This includes sperm that move in a circle or

generally do not swim in a straight line. Immotile sperm are non-moving sperm and

can be considered dead. The motility of a given semen sample is often measured as the

percentage of sperm that fall into each respective category. Sperm morphology looks at

the different parts that make up the sperm, namely the tail, midpiece, and head. Like

motility, the sperm morphology of a given semen sample is measured by the number of

sperm with tail defects, midpiece defects, and head defects. Common defects include

multiple tails or heads, abnormally large or small heads, very short tails, or very long

midpieces. Some images of abnormal sperm are shown in Figure 2.3.

2.2.3 Automatic Electrocardiogram Interpretation

Cardiology is the field of medicine that focuses on the heart and the treatment of the

diseases that may affect it. The heart is the most important muscle in the human body

and is exposed to a wide range of disorders, where one of the cheapest and most popular
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Figure 2.4: An illustration of a standard ECG showing waves and complexes.

procedures used for diagnosis are ECGs. ECGs is essential for a doctor’s assessment of a

patient’s health and well-being, and may uncover a wide range of different cardiovascular

diseases and dysfunctions. The examination is done by measuring the electrical signals

(voltage) and conduction through the heart in each heartbeat. Every wave or spike

depicts the depolarization or repolarization of the cardiac cells in a specific part of the

heart. In order to evaluate the heart’s electrical conduction system, analysis of certain

intervals such as the PR interval, QT interval, and QRS duration is important (shown in

Figure 2.4). The timing and the amplitude of these waves contain essential information

about morbidity and mortality [26, 43, 100, 99] and automatic analysis of ECGs has been
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a topic of research since the early 1960s [138]. Still, the recent emergence of deep neural

networks has led to more advanced approaches, including feature extraction [92, 113],

noise reduction [112, 103], and heart rhythm classification [2, 167, 46].

2.2.4 Mental Health Detection and Aid

Mental health is currently on the decline in many countries, where rising suicide rates

and substance abuse are just some of the consequences of mental illness becoming more

common [157]. This is especially true since the start of the COVID-19 pandemic, where

many have become more isolated and less social [107]. Furthermore, the continuing rise of

social media platforms among the younger generation has shown to be a source of anxiety

and depression [163]. Early detection and treatment have proven to significantly prevent

mental health problems from developing [83]. However, many do not seek professional

help before it starts becoming a real problem [51]. This is partially due to social factors

such as the negative stigma around mental illness [133], but also due to many not realizing

they have a problem in the first place.

Activity data has shown to be effective applied to studies to psychiatric diagnosis like

bipolar disorder [127], ADHD [33, 96], and Schizophrenia [145]. For example, a recent

systematic review summarized several motor activity studies of schizophrenia [160], which

showed that patients with schizophrenia are associated with lower motor activity levels

and repetitious and rigid patterns of behavior compared to healthy controls.

2.3 Ethics and Safety

The need for transparency in medical AI is rooted in ethics and safety [85]. Although AI

systems have the capability of providing tremendous benefits to both health care providers

and patients, several risks accompany the integration of AI into the current health care

system [122]. First, there are no guarantees that the integrated AI system will always

provide a accurate answer. Of course, one would not expect a medical doctor to be correct

100% of the time either, but in the case of AI, the reason behind a faulty prediction may

be difficult to determine. Studies have shown that certain models do not provide the same

level of fairness across race, gender, or socioeconomic status [22]. This may be justified

in some cases, but it could also be a problem stemming from the development data used
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to build the AI system. Since these systems may be unreliable, explanation methods and

through transparency provided with any system meant to be involved with patient care.

2.4 Summary

AI systems making their way into hospitals are inevitable. However, the point in time in

which they will replace existing systems is still far away. Despite there being many useful

applications that could potentially help save lives, there are still too many unknowns when

it comes to deploying complex models like deep neural networks in the real world. This

chapter presented some background on how AI systems are used in the four medical case

studies that are the primary focus of this thesis, namely a GI tract case study, assisted

reproductive technology case study, ECG case study, and mental health case study. First,

we gave a brief introduction on how AI systems are developed by breaking it down into

three primary stages; data collection, model development, and model evaluation. Then,

we presented how AI systems are currently being used in each of the aforementioned case

studies. Lastly, we looked at some of the risks of using AI in medicine, mainly focused

on ethics and safety. In the next chapter, we present our work developing efficient and

transparent AI systems within our four primary case studies.
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Transparent Artificial Intelligence

Systems in Medicine

The primary research objective of this thesis was to understand how medical AI systems

can be made more transparent. To answer this question, we need a solid understanding

of how AI systems are developed and implemented for medical use cases, and recognize

what problems medical doctors and clinicians want to be solved. With this in mind, we

aimed to develop efficient transparent AI systems that solve medical problems faced by

health care professionals. These systems were developed using four medical case studies,

namely a case study on the GI tract, assisted reproductive technology, ECG analysis, and

a mental health case study. Each system was built on the concept of transparent AI,

which we define by the following three principles.

Data Transparency The principle of data transparency is built on open and publicly

available data. This includes being transparency about how the data was collected

and how it was prepared for analysis. The data used to develop and test an AI

system should be publicly available so that other researchers may reproduce the

work, inspect the dataset for any potentially missed biases or other drawbacks,

and test their methods to ensure generalizability. Furthermore, public data can

incentivize a common benchmark to measure future research and motivate new

researchers to contribute to the field.

Analysis Transparency The principle of data transparency is built on open and pub-

licly available data. The data used to develop and test an AI system should be
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publicly available so that other researchers may reproduce the work, inspect the

dataset for any potentially missed biases or other drawbacks, and test their meth-

ods to ensure generalizability. Furthermore, public data can incentivize a common

benchmark to measure future research and motivate new researchers to contribute

to the field.

Evaluation Transparency The principle of analysis transparency is built on public and

reproducible implementations of methods used for data analysis. The algorithms

and methods used for analysis should be easily accessible, the configuration in terms

of the hyperparameters and the architectural design used should be clear, and differ-

ent approaches should be used and compared to related works to better understand

how a system fits into the current research landscape.

This chapter is primarily split into three sections, one for each of the aforementioned

principles of transparency in medical AI systems. First, we look at our contributions to

making medical data more open and transparent through publishing multiple datasets

in our four aforementioned medical case studies. Next, we show how we leveraged these

datasets to implement AI systems to solve different problems in medicine. Last, we

describe how these models were evaluated and tested to measure the performance, and

how we may interpret the results to ensure that they worked as intended.

3.1 Transparent Data

Data is the lifeblood of any AI system. The quality of the data used for training and testing

will determine the success and longevity of a model deployed in production. Gathering

high-quality data is often easier said than done, as even if the number of data samples

is high, it could still be skewed towards or against a particular population. Machine

learning algorithms trained on data that does not properly reflect the target distribution

could produce models that do not work as intended and become biased towards certain

demographics such as sex, race, age, or specific symptoms or conditions. Therefore,

knowing the data used to train and evaluate a model is essential when determining whether

a model is ready for production. In high-risk fields like medicine, one could argue that this

is even more essential because the models may be used as a basis for making life-critical

decisions. However, data collected at hospitals is often buried behind laws and regulations
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in order to protect the privacy of the patient, which makes it difficult to make this data

available to the public. Making data private as a means to protect patient privacy is not

necessarily a bad thing but seriously impacts the accessibility of conducting research in

the area. The following dives a bit deeper into some of the obstacles that make collecting

and publishing medical data difficult.

1. The number of data samples for specific problems may be scarce and far below what

is usually needed to train a complex model. For example, if we are trying to build

a model that detects the presence of a rare disease, the number of real-world data

points for this disease would naturally be low. A potential solution to this issue

could be using artificial data or transfer learning, but a sufficient number of data

points is still needed.

2. The collected data should be annotated by domain experts, meaning specialists

within the field that the data is collected. For example, for data collected from

colonoscopies, each frame should be viewed and annotated by an experienced gas-

troenterologist. This is an issue in medicine as medical doctors are often under

extreme time constraints, making data annotations expensive and difficult to fit

into an already busy schedule.

3. As with any private or sensitive information, there are rules and regulations in place

that could make using the data a challenge. These vary between countries and can

be quite restrictive. However, if the data is properly anonymized by removing

any associations between the data sample and patient, it can usually be published

without any possible harm to the provider. There are a few exceptions to this.

For example, if the collected data is in and of itself identifiable information, like a

recognizable mole or lesions that require affect the patient’s face. These types of

data would require additional measures before being made public.

Motivated by these obstacles, we collected and published several medical datasets across

different areas of medicine. This section focuses on the importance of data transparency,

where we present the datasets that were developed and published across three medical

case studies; GI tract case study, assisted reproductive technology case study, and mental

health case study. Subsequently, we present the synthetic datasets we developed as a

response to not being able to publish certain data due to legal constraints. Then, we
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discuss why public medical data is important and how it can contribute to an overall

better research community. Last, we discuss the ethical ramifications of making medical

data public and consider potential methods of circumventing the regulations that prevent

it from going public.

3.1.1 Medical Datasets

Dataset development is a complicated process that involves tasks like deciding what data

should be collected and how and how it should be annotated. For this to be successful,

several parties need to be involved. First, data scientists need to be involved as they

understand how the data should be prepared and what labels should be included for

it to be viable for model training and evaluation. Then, there are the domain experts

who know the data itself and understand the value of the information contained within.

Without close collaboration between domain experts and data scientists, a dataset may

be positioned to solve the wrong problems or contain faulty samples, thereby making it

practically useless. Each dataset published during this thesis was developed together with

domain experts, both in terms of collecting and annotating the data, but also in building

the potential prospects for the dataset. Furthermore, the datasets are published together

with an article explaining the primary use case, baseline experiments, and discussing

future directions. Baseline experiments are important as they demonstrate the technical

validity of the dataset and act as a benchmark for future researchers. In the following,

we briefly describe all published datasets and an overview of the currently available open

datasets, organized under each case study.

3.1.1.1 Gastrointestinal Tract

For the GI case study, we developed three datasets [17, 69, 137] consisting of data collected

from standard endoscopy and capsule endoscopy procedures. Findings such as anatomical

landmarks, surgical interventions, and lesions are essential to document for an endoscopy

to be considered complete [19]. Most currently open datasets (see Table 3.1) focus on

automatic polyp detection, thereby overlooking many other findings. The main aim of

developing the GI datasets was to compile a variety of findings, which could be used to

build models for different tasks like classification or segmentation.
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Table 3.1: An overview of the currently available open datasets containing images from the
GI tract. Please note that the size of the datasets may have changed since the publication
of this thesis.

Dataset Target Ground Truth # Images # Videos

[134] Polyps Classification 196 -
[15] Polyps Classification 612 -
[77] Capsule endoscopy Classification 2, 371 47
[7] GI findings Classification 386 -
[97] GI findings Classification - 5, 138
[110] GI findings Classification 8, 000 -
[6] Polyps Segmentation 3, 446 -
[6] Polyps Segmentation 1, 000 -
[109] Bowel cleanliness Classification - 21

Our Datasets

[17] GI findings Various 110, 079 374
[137] Capsule endoscopy Various 47, 238 117
[69] Instruments Segmentation 560 -

The first developed dataset was HyperKvasir [17], which is currently the largest pub-

licly available GI dataset consisting of videos and images collected from colonoscopies

(lower GI tract) and gastroscopies (upper GI tract) using standard endoscopy equipment

from Olympus and Pentax at Bærum Hospital in Norway. The dataset contains both

labeled and unlabeled data, where the labeled data is made up of 10, 662 images split

between 23 different classes (examples shown in Figure 3.1) and 374 labeled videos. The

unlabeled data contains 99, 417 image frames that have not yet been annotated. Hyper-

Kvasir also contains 1, 000 images of colon polyps that have corresponding hand-made

segmentation masks. What differentiates HyperKvasir from most other GI datasets is

that it also contains less-common findings, like dyed polyps and resection margins, which

are important to document during an endoscopy procedure. The main goal of creating

HyperKvasir was to compile a large dataset that could be used for a variety of different use

cases, including classification, detection, and segmentation. This required a close collab-

oration with several medical doctors and export gastroenterologists in order to categorize

and segment the different classes contained within the dataset. The number of classes,

which classes were included, and the annotation protocol was decided upon by both the

medical doctors and computer scientists. Both were necessary to ensure that the dataset

was both usable from a medical and machine learning perspective.
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Figure 3.1: Example images taken from each class contained within the labeled part of
HyperKvasir [17].

The second published dataset was Kvasir Capsule [137], which is a dataset containing

images and videos collected from capsule endoscopy procedures. The data was captured

from a Olympus EC-S10 endocapsule using an Olympus RE-10 endocapsule recorder. Like

HyperKvasir, this dataset includes both labeled and unlabeled data. The labeled data

is made up of 44, 228 images spread between 13 different classes and 44 labeled videos,

where the class labels cover standard lesions like polyps and anatomical landmarks. An

image sampled from each class is shown in Figure 3.2. The unlabeled data contains 74

videos, which is approximately 25 hours of raw video footage and 2, 785, 829 frames. The

aim of this dataset was to target capsule endoscopy which is gaining increased attention

for analyzing the small bowel. Similar to HyperKvasir, this dataset was developed in close

collaboration between both expert gastroenterologists and computer scientists.

Lastly, the final GI dataset we published was Kvasir Instrument [69]. Kvasir Instru-

ment is a GI instrument segmentation dataset containing images and masks of instruments

such as snares, balloons, and biopsy forceps. The dataset can be used to develop tool

segmentation models that may assist medical doctors in performing surgery during the
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Figure 3.2: Example images taken from each class contained within the labeled part of
Kvasir Capsule [137].

Figure 3.3: Examples taken from the development part of the instrument segmentation
dataset Kvasir-Instrument [69].

endoscopy. The ground truth segmentation masks were drawn by a computer science stu-

dent with much experience in analyzing GI-related data. Still, each segmentation mask

was manually verified by an expert gastroenterologist to ensure correctness. Figure 3.3

shows a few examples of the images contained within the dataset together with the cor-

responding bounding box and segmentation mask.

3.1.1.2 Assisted Reproductive Technology

Machine learning is slowly being adopted by the assisted reproduction community [121], so

the number of open datasets is very few. A list of the currently available datasets for both

semen and embryo analysis is shown in Table 3.2. For the area of assisted reproductive

technology, we published a dataset containing video recordings of human semen with

associated analysis and participant-related data [50]. Our dataset, VISEM, contains data
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Figure 3.4: Example frames collected from the VISEM dataset [50].

Table 3.2: An overview of the currently available open datasets containing visual data
related to assisted reproduction (embryo and semen). Please note that the size of the
datasets may have changed since the publication of this thesis.

Dataset Target Ground Truth # Images # Videos

[8] Sperm Classification 1, 540 -
[132] Sperm Classification 725 -
[66] Sperm Classification 200 -
[94] Sperm Classification 1, 064 -
[126] Embryo Segmentation 235 -

Our Datasets

[50] Sperm Regression - 75

from 85 participants aged 18 years or older that were collected in association with a study

on how body mass index (BMI) affects male fertility [9]. The videos were recorded using

an Olympus CX31 microscope at 400× magnification at 50 frames per second and had

a resolution of 640 × 480. Figure 3.4 shows a few frames taken from videos included in

the dataset with different levels of sperm density. In addition to the video data, each

semen sample also comes with a set of meta-data, which includes participant-related

information (age, days of abstinence, and BMI), a fatty acid profile of the sperm and

serum phospholipids, sex hormone levels, and a preliminary quality analysis done by an

expert clinician following the WHO guidelines.

The primary aim of developing this dataset was to develop AI systems that can auto-

matically evaluate the quality of a given semen sample. With this goal, we tried to only

include high-quality semen samples that contain minimal drift (moving serum) and videos
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Table 3.3: An overview of the currently available open datasets containing activity-related
mental health data. Please note that the size of the datasets may have changed since the
publication of this thesis.

Dataset Target Ground Truth # Samples

[125] Healthy Classification 22
[38] Depression Classification 55

Our Datasets

[39] Schizophrenia Classification 32
[58] ADHD Classification 103

where the microscope is correctly focused. Looking back at that decision now, it may have

been better to include the videos with poor quality for a more realistic varied dataset.

This would increase the size of the dataset and introduce samples that the clinicians need

the most help with analyzing. Furthermore, adding annotations for sperm tracking would

make the dataset immensely more interesting from a machine learning perspective as one

could then analyze the individual sperm rather than just the sample as a whole. We

started on an annotation tool for assisting clinicians in adding tracking annotations to

the data, but this is still a work in progress.

3.1.1.3 Mental Health

The world is becoming more smart, where seemingly every accessory has some feature to

measure specific biometrics about the wearer. Data measured by these devices include

information like activity measurements, quality of sleep, heart measurements, and several

metrics regarding personal health and fitness. A lot of research is being done analyzing this

data as it can discover and support people with disorders such as anxiety or depression [80,

115]. Table 3.3 shows the currently open dataset that primarily target a mental health

use case. We developed and published two datasets containing activity data collected

from patients hospitalized at a long-term open psychiatric ward at Haukeland University

hospital.

The first dataset, Psykose [67], consists of activity data collected from schizophre-

nia patients, which was obtained through a wrist-worn actigraph device (Actiwatch 4

accelerometer) sampled at 32Hz and movements over 0.05g. In total, data was col-

lected from 22 schizophrenia patients and 32 healthy controls. In addition to the activity

data, the dataset also contains information about the patient like their age, sex, type of
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(a) Plotted activity data from a patient taken from the HYPERAKTIV dataset.

0

200

400

600

800

1,000

Time

A
ct

iv
it

y
L

ev
el

00:00 06:00 12:00 18:00 00:00

(b) Plotted activity data from a patient taken from the PSYKOSE dataset.

Figure 3.5: Activity measurements from two patients taken from the HYPERKVASIR
and PSYOKSE dataset respectively.

schizophrenia, Brief Psychiatric Rating Scale (BPRS) sum score, or if the patient used

some certain types of medication during study period. Figure 3.5b shows an example of

the activity data collected from one of the patients plotted over a 24 hour period.

The second dataset, Hyperaktiv [58], contains activity and heart rhythm data collected

from patients diagnosed with ADHD. Like the Psykose dataset, the data was collected

using a wrist-worn actigraphy device (Actiwatch 4 accelerometer) that registers acceler-

ation in the three-dimensional space. Overall, we collected data from 51 patients with

ADHD and 52 clinical controls. We also include a series of patient attributes such as their

age, sex, and information about their mental state and output data from a computerized
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neuropsychological test. The primary purpose of this dataset is to analyze the activity

and heart rhythm data to detect whether the patient has ADHD or not. Figure 3.5a

shows an example of the activity data collected from one of the patients plotted over 24

hours.

3.1.2 Synthetic Data

As mentioned earlier, medical data is highly personal and is almost always subject to

laws and regulations preventing it from being made public. In some cases, making a

dataset open is just not feasible due to the legal ramifications or simply because the

owners do not want to release it to the public. An alternative could be to release a

synthetic version of the dataset that represents the distribution found in the real data.

This removes the privacy barriers as the data is fake and not associated with any single

patient. Furthermore, Synthetic data could also be useful if the number of data points is

relatively small, where more variations could lead to a more general model. Motivated by

the privacy barriers that prevented us from publishing datasets and the general lack of

data samples in medical datasets, we developed a framework to replace real medical data

with synthetic data of equal quality. The idea behind this framework is to select specific

parts of the human body and have synthetic data generated from this part. The project

is fully open-source and is access online1.

Currently, the framework supports two types of medical data, synthetic ECGs and

synthetic colon polyps. The synthetic ECG data is generated using a GAN, which was

trained to represent real ECGs collected from Denmark [47, 40]. Using the GAN, we

produced 121, 977 synthetic ECGs and published them online for other researchers to

use. We also published the GAN architecture together with the trained weights so other

researchers can generate synthetic ECGs by themselves. An example taken from the

synthetic ECG dataset is shown in Figure 3.6, which also includes a real ECG for com-

parison. The synthetic polyp data was generated similarly, using a GAN but with a

different architecture. As with the synthetic ECGs, we generated 10, 000 synthetic polyp

images with corresponding segmentation masks and made them publicly available through

DeepSynthBody.

1https://deepsynthbody.org
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(a) Fake ECG.

(b) Real ECG.

Figure 3.6: An example ECG generated by our GAN (top) compared to a real ECG
(bottom).

3.1.3 Ethical Considerations

Collecting and publishing sensitive information comes with serious ethical considerations.

First of all, any information collected from a patient should be fully anonymized before

being made public. Data that may seem harmless to some could potentially be devastat-

ing for others if leaked depending on a person’s situation. Besides being an important

ethical point, it is also part of several legal and regulatory requirements of publishing

data collected from humans. Therefore, all datasets presented and used in this thesis

have been fully anonymized without the possibility of tying a data sample back to the

original paper.

There are some ethical dilemmas that can be considered open research questions. For

example, as mentioned in Section 3.1.2, we circumvented the privacy-related issues of

public medical data by using synthetic data generated by a GAN trained on real samples
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from a private dataset. The open question here is that assuming that the trained GAN

has some recollection of the real data within its weights, would it be possible to reverse

engineer the weights to come back to the original data sample? Currently, there is no

method for doing this, but one could imagine a model that could learn the association

between the fake and real data. Another open question could be if one could identify a

patient’s data samples in an anonymized dataset using data from that patient at another

point in time. Imagine a time series dataset that contains activity data from several

different persons. Suppose one were to collect new data from one of the participants in

the dataset. Would it be possible to use this new data sample to identify which samples in

the dataset belong to that participant? These are some questions that would be interesting

future research topics that could have an impact on how we publish data in the future.

3.1.4 Lessons Learned

Through collecting and publishing the aforementioned datasets, we gained a better under-

standing of the importance of close collaboration between medical doctors and computer

scientists in each step of the dataset development process. None of the aforementioned

datasets would be possible if neither part were there to make sure the requirements from

both sides were met. We as computer scientists can often find problems that seem impor-

tant but are actually not an issue when speaking directly with the medical doctors we are

trying to help. On the other side, medical doctors often misunderstand the requirements

of what type of data is needed to solve a specific problem and have either too high or too

low expectations of what AI-based solutions can bring. Furthermore, we identified several

factors that make publishing medical data especially important.

A Common Benchmark State-of-the-art machine learning models are often determined

based on their performance on a common benchmarking dataset. For example, Ima-

geNet [29] is a benchmark for image classification and detection. A common bench-

mark ensures that all methods are trained and tested on the same data, making the

results a cause of the methods rather than the data. A common issue in medicine is

that methods are often trained and tested on data that is private, without means of

comparing against other works. This is not an oversight from the authors’ side but a

general lack of public benchmarking datasets in medicine. However, benchmarking

datasets are starting to appear in medicine as well, but there are so many different
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application areas that this is still a problem. By making more medical data public,

we have the opportunity to develop benchmarks for popular medical problems, but

also in areas that often go overlooked by the majority of medical research.

Increased Awareness Most researchers do not have the luxury of having an established

relationship with a hospital or clinic to supply them with medical data for research.

Furthermore, those who do have access usually only receive data for a few problems.

This lack of data accessibility severely hinders the number of people that are able

to work on any given medical problem. Previous works have shown that with the

introduction of large open datasets it accelerates the amount of research produced in

that field by a lot [114]. By making data public, we open the opportunity for other

researchers to contribute to a field that would have otherwise gone unnoticed by

the majority. We know that there is interest by both independent and institutional

researchers based on the number of contributions to publicly hosted challenges avail-

able on sites like Kaggle2. Moreover, we have hosted several challenges that confirm

the interest in medical multimedia, which will be further discussed in Section 3.3.2.

Transparent Research As we touched upon earlier, knowing what data a machine

learning model is trained and evaluated on is an important aspect of understanding

its potential limitations. Without knowing the data, it is difficult to understand

whether a model is good or bad based on a set of evaluation metrics alone.

3.2 Transparent Analysis

If data is the lifeblood of machine learning, the methods used for analysis are the brain.

The parameters and architectural design of a machine learning model determine how well

it is able to learn from the provided data. This data comes in all shapes and sizes, of which

different methods should be used to exploit the nuances of each modality in order to fully

use the potential of the information contained within. As we described in Section 2.1,

collecting and preparing data is the first step of building an AI system. The next step is

developing and implementing the methods to analyze this data. Throughout this work,

we implemented and experimented with several different types of methods. Publications

2https://www.kaggle.com
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were associated with several of these experiments, where we aimed to follow the following

principles of transparency.

Open and Reproducible Implementation The implementation of the analysis meth-

ods should be fully reproducible. Ideally, the code should be made publicly available

through a service like GitHub or GitLab. If not made open source, the methods pa-

per should at the very least contain enough information to implement the method from

scratch. This includes the architecture and implementation type of the methods used and

the hyperparameters used to train it.

Developed on Open Datasets The methods should be trained and developed on open

datasets. This ties in with the previous principle of reproducibility as methods developed

as one can not reproduce the results of a method developed on closed data.

In this section, we describe how we leveraged the developed datasets to develop systems

within the four main case studies of this thesis. This is organized by case study, where

we first look at the systems developed for analysis of data collected from the GI tract.

Then, we present our work on automatically assessing the quality of a given semen sample

under the assisted reproduction case study. Last, we present our work on automatically

analyzing ECG using deep neural networks.

3.2.1 Gastrointestinal Track

The primary aim of developing AI systems for the GI case study was to automatically

detect different findings in the GI tract. Previously, we developed a system meant to

support medical doctors by automatically generating endoscopy reports from a supplied

video [1]. The system scanned through a provided video and presented the user with the

findings detected by an underlying convolutional neural network (CNN). The detected

findings could be further scrutinized by using a model visualization feature that allowed

the doctors to gain more insight into how and why the model categorized a specific image

to particular class. Building from this work, we looked at enhancing the AI system by

improving the underlying CNN by expanding the scope to cover more GI findings and also

include analysis of data collected from capsule endoscopies. The work here can largely be
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split into two groups; findings classification and findings detection. Both groups aim to

automatically find notable findings in the GI tract, where findings are objects that are of

particular interest to the gastroenterologist like lesions, anatomical landmarks, or surgical

landmarks. In the following, we describe the methods and experiments developed for the

GI case study.

3.2.1.1 Endoscopy Image Classification

Image classification is the task of predicting what class or category an image belongs

to. This could be, for example, categorizing images of different animals or automatically

annotating frames of a video that contain cancer. In the context of GI endoscopy analysis,

image classification can help us detect important findings during or after an endoscopy

procedure. We experimented with several approaches to endoscopy image classification.

Transfer learning is a common technique where we use the weights of one model to

initialize the weights of another. The advantage is that we start the model with some

sense of the real world, making the new task easier to learn. This is especially convenient

if our target task has a low number of training samples. Usually, we want the transferred

weights to be as close to the target domain as possible so that the model does not have to

relearn several new concepts. For medical imaging, studies have found that transferring

the weights from natural images (like the images found in ImageNet) works very well and

leads to faster convergence and a more general model [159]. To get a better understanding

of how the domain relevance of the transferred weights affects a model during transfer

learning, we trained several models for automatic GI findings classification using two

transfer learning domain sources [64]. The first domain was natural images, where we

used ImageNet [29], which a huge database of natural images ranging from inanimate

objects to different types of animals. The second domain was medical images collected

from surgeries, where we used a combination of different medical datasets collected from

procedures such as laparoscopy [84]. The results showed that the weights trained on the

larger and more diverse dataset, ImageNet, performed better than weights trained on

lower quantity but more domain-relevant data.

Annotating every piece of data collected at hospitals is expensive, takes too much

time, and requires excessive work from the medical doctors. The consequence is that

unlabeled data is substantially more difficult to use for training machine learning models.
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We developed a system using unlabeled data for training classification models in standard

and capsule endoscopies using a teacher-student framework [41]. The framework consists

of a teacher and student, thus the name. The teacher is trained in a standard supervised

manner on labeled data and is used to assign pseudo-labels to the unlabeled data that the

student model then uses for training. The labels assigned to the unlabeled data are called

pseudo-labels because they do not adhere to any actual ground truth and merely reflect

what the teacher model has learned from the labeled data. The experiments were run

using HyperKvasir [17] and Kvasir-Capsule [137], where we show that using the unlabeled

data produce better results than the standard classification paradigm. This showed us

that if we have data that experts have not labeled, we can still use this to improve the

generalization and predictive performance using pseudo labels. The framework and the

source code used to implement the experiments were open-sourced on GitHub3.

Medical data is sometimes collected with certain artifacts or overlays that may interfere

with a model’s predictions during training. We experienced this ourselves as some of

the data collected in HyperKvasir contain artifacts such as a green navigation box, text

overlays, black borders, and some icons placed on certain parts of the frame [63]. Using

GradCAM [128] to visualize the predictions, we confirmed that the models had learned

to associate the green navigation box with colon polyps, meaning that the model had

incorrectly learned that the navigation box is an attribute of colon polyps. Based on

these findings, we looked at different methods to replace these artifacts with what would

be a natural extension of the image. This task is commonly referred to as image inpainting,

where we trained an autoencoder and GAN to replace green navigation boxes and black

corners with a colon background. The results showed an improvement over using the raw

images which contained the artifacts [76]. These experiments reinforce the principle of

collecting high-quality data when the primary purpose is for training a machine learning

model. Had we collected the data without these artifacts, this step would be unnecessary,

and we may have seen a general increase in performance among the models trained on

the dataset. Still, with medical data, we do not always have the privilege to choose what

state we receive data and that sometimes overcoming these challenges will be part of the

solution.

3https://github.com/henriklg/teacher-student-framework
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(a) A diagram of the architecture used for TriUNet.
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(b) A diagram of the architecture used for DivergentNets.

Figure 3.7: A diagram of the two neural network architectures used to segment polyps
for the EndoCV 2021 challenge.

3.2.1.2 Polyp Detection and Segmentation

Image classification signifies the presence of a specific finding somewhere in the given

image. However, doctors often want a more granular prediction that can show what

regions of the image or frame contain the predicted finding. This can be done through

either object detection or object segmentation, where object detection is the process of

locating the object encasing it in a bounding box, and object segmentation is locating

the object with pixel-level precision. To satisfy this request for more precise prediction,

we performed additional experiments that automatically segment colon polyps in a given

endoscopy video frame.

Segmentation models are often complex and have had several new contributions in

terms of neural network architectures in the last few years [130]. While participating

in the 2021 edition of EndoCV [5], we developed multiple ensemble-based segmentation
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models for automatic polyp segmentation [150]. The main contributions of this work

were two architectures, TriUNet and DivergentNets, both of which use an assortment of

popular segmentation models. TriUNet consists of three UNet architectures organized in

a triangular-like shape. The input is passed through two separate UNet models, whose

output is concatenated and passed through a final UNet model. The three models are in-

terconnected, and their weights are updated based on the loss calculated from the output

of the final model. The second model, DivergentNets, is a standard ensemble model con-

sisting of five separately trained segmentation models, whose output is produced through

majority voting on the pixels. The five model architectures used were UNet++ [166],

FPN [87], DeepLabv3 [23], DeepLabv3+ [24], and TriUNet [150]. The architecture of both

models is shown in Figure 3.7. Overall, the results showed that the combination of the

five different models performed better than any single alone, where some models seemed

to tackle certain situations better than others. Still, the added predictive performance

gain came at the cost of a substantially larger model and much slower processing speeds,

making it questionable whether this model is appropriate depending on the requirements.

The proposed solution achieved the best scores among all other participants [150], and

the implementation was open-sourced on GitHub4.

Data augmentation is often used to make models generalize to samples with slight

variations and is also used to increase the overall training size of a dataset. We developed

a novel method for augmenting the masks of a segmentation pair (image and mask), which

aims at making the model learn the features of a class at several levels of granularity.

The augmentation framework is called Pyramid-Focus-Augmentation (PYRA) [149], and

augments the masks by dividing the region of interest into grids. The number of grids

is a hyperparameter, but the remainder should be 0 when dividing the resolution by the

grid size. Augmenting the training data resulted in overall better performance. The

augmentation framework was open-sourced as a Python library5.

3.2.2 Assisted Reproductive Technology

In the area of assisted reproductive technology, we developed methods for automatically

analyzing the quality of human reproductive data, which includes data from semen and

4https://github.com/vlbthambawita/divergent-nets
5https://github.com/vlbthambawita/pyra-pytorch
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embryos. Although the main focus of our work was aimed at semen, we also performed

some experiments on analyzing time-lapse videos of human embryos [53]. The motivation

behind automatic semen analysis is that current methods are time-consuming and could be

significantly accelerated through automation. Although automatic systems like computer-

aided sperm analysis (CASA) exist [95], they are not considered good enough to be

recommended for in-clinic use [148]. Using the VISEM dataset described in Section 3.1.1.2,

we developed and compared several machine learning methods to predict the morphology

and motility of human sperm using videos and the associated meta-data. For the embryo

scenario, we used a private dataset to build models that predict human embryo viability.

In the future, we hope to make this dataset public but this still requires some work together

with the clinicians. This section describes the methods used for analyzing human semen

samples and human embryos in detail and shows how we utilized the video data in different

ways to make the most of the spatial and temporal information contained within.

3.2.2.1 Semen Analysis using Traditional Machine Learning

As an initial benchmark, we experimented with using traditional machine learning meth-

ods and handcrafted features to analyze the sperm videos for motility and morphology

prediction [60]. Even though deep learning is the most popular approach today, deep

learning does not always outperform traditional methods using handcrafted features. Fur-

thermore, traditional methods are usually more explainable when compared to those based

on deep neural networks, making them a viable alternative even though they may per-

form slightly worse than more modern methods. For these experiments, features were

extracted from the first and middle frame of the first 60 seconds of the semen videos

using the open-source library Lucene Image Retrieval (LIRE) [91], a Java-based image

retrieval library that contains several feature extraction algorithms. We experimented

with over 30 different visual features such as Tamura, auto color correlogram, and pyra-

mid histogram of oriented gradients, to name a few. The extracted features were used to

train a series of differed algorithms implemented in the Waikato Environment for Knowl-

edge Analysis (WEKA) [162] machine learning software. For predicting semen quality,

our findings showed that, in general, Tamura features seemed to capture the information

within the video frames best, where the best performing algorithms were random forests

and SMOreg. The results were compared to a ZeroR baseline generated over the ground
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truth, where both algorithms beat the baseline over the tree predicted categories of the

motility of sperm.

3.2.2.2 Embryo Analysis using Traditional Machine Learning

Building off the semen analysis experiments, we started analyzing time-lapse videos of

human embryos of early embryonic development up to day 5 to predict the likelihood of a

successful birth [53]. Using the same setup as for the semen, we again found that Tamura

features together with random forests yielded the best predictive performance. In addition

to the supervised algorithms, we applied unsupervised clustering methods to group the

embryo videos using a set and dynamic number of classes. The results showed that both

the supervised and unsupervised methods could correctly categorize the embryos with

high accuracy. However, the study was performed on a very small dataset, so further

experiments using more data collected from various sources are required before making a

solid conclusion.

3.2.2.3 Semen analysis using Deep Learning

One of the advantages of using deep learning is that it automatically learns what features

are associated with a given task. This allows us to directly insert the raw frames into the

deep neural network without stripping out any potentially helpful information. However,

as a single video can contain several million different values per sample, we need a strategy

to compress this information before sending it through the model. We tested several

different methods of preparing the video data for analysis [60].

First, we applied the simplest approach of predicting the semen quality in terms of

sperm motility by using a single frame as input to the CNN and averaging the predictions

across the video. This approach has some obvious limitations in that it does not take

the temporal information into account when making its predictions, something that is

important for motility prediction. This is reflected in the results, where we found that the

single-frame approach provided limited predictive performance. Overall, the performance

is similar to that of the traditional machine learning algorithms, which makes sense as

they both base their predictions on a single frame.

Another approach we tried was to concatenate a sequence of video frames in the chan-

nel dimension or flatten the frames and concatenate them spatially (shown in Figure 3.8).
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Figure 3.8: Examples of images from videos of semen samples with different concentrations
(columns) and the four image representations used to train the sperm neural network-
based algorithms (rows). Image representation by row; 1) original video, 2) sparse optical
flow, 3) dense optical flow, and 4) vertical frame matrix.

This retains the temporal information present in the video sequence, which improved the

results compared to the naive single-frame approach. Despite providing better perfor-

mance, stacking multiple frames increases the size of the input drastically, making the

overall model slower and more computationally hungry.

As an alternative to processing raw frame data, we explored using optical flow gen-

erated from extracted video sequences and using this as input to the model. Optical

flow generates temporal representations of a sequence of frames into a single image. We

use two different methods of generating optical flow, one method based on sparse optical

flow and one method based on dense optical flow. For sparse optical flow, we used the

Lucas–Kanade method [88] for optical flow estimation, which assumes that the flow is

always in a local neighborhood of the tracked feature. We use Gunner Farneback’s algo-
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Figure 3.9: The convolutional neural network architecture used to analyze ECGs.

rithm [35] for dense optical flow, which compares two images and measures the overall

change between one frame and another. The results showed comparable results to that of

concatenating multiple frames but at a fraction of the input size.

3.2.2.4 Multimodal semen analysis

All aforementioned semen analysis methods were also tested with the insertion of participant-

related data into the analysis. Overall, the results of the experiments showed that deep

learning is considerably better at analyzing video. Moreover, for both the traditional

machine learning and deep learning experiments, the addition of participant-related data

seemed to confuse the models, making the models perform worse than without the addi-

tional information.

3.2.3 Electrocardiogram Analysis

For the ECG case study, we developed a system for automatically predicting specific

attributes of a given ECG like the QT interval, QRS duration, PR interval, R-peak

amplitude, T-peak amplitude, and J-point elevation. These waves and intervals should be

part of any healthy patient and can be determined from a single median ECG complex. A

median ECG complex is a representative heart beat calculated as the median complex over

a set interval visualized in Figure 2.4. We also tried to predict other parameters such as the

heart rate and the sex of the patient. To measure the hear rate, we used 10-second rhythm

strips that include several heart beats. For sex classification, the median complex was
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used. We developed a novel CNN-based architecture that takes either a 12-lead median

ECG complex or a 10-second rhythm strip to make a prediction (architecture shown

in Figure 3.9). We evaluated the model by using quantitative metrics and a qualitative

evaluation by comparing the prediction of a subset of the ECG against expert cardiologists.

When predicting the waves and intervals, the results showed that the neural network was

overall more precise and consistent in the predictions when compared to real world experts.

Using the model to predict sex from a given ECG showed an even larger discrepancy, where

the neural network was much more accurate than the experts.

3.2.4 Lessons Learned

The process of designing and implementing the presented systems for analysis taught

us the importance of experimenting across data modalities and classes of algorithms.

Although deep learning is currently a trending topic in AI, classical algorithms can still be

preferable due to them often being less computationally expensive and more interpretable.

With regards to the experiments performed for automatic semen analysis, the classical

machine learning algorithms were able to outperform the simple baselines but performed

worse than the deep learning-based methods. Choosing an approach for analysis should

be done based on the requirements of the task at hand, where the choice should take data

properties, interpretability, efficiency, and predictive performance into account.

3.3 Transparency in Evaluation and Results

Measuring the performance of a model is critical when deciding whether it is safe to

use or not. Models that perform well in an experimental setting often do not shown

the same level of success when deployed in real medical practice. Therefore, thoroughly

understanding the vulnerabilities and weaknesses of a model before it reaches this stage

is essential for preventing inaccurate, biased, and unintelligible predictions. Through the

process of collecting data and implementing machine learning algorithms for medical use

cases, we observed a large amount of medical AI research that lack thorough quantitative

evaluation, miss related work to compare against, and make little effort to explain the

results and potential biases of the developed model. This section focuses on transparency

in the evaluation and presentation of results for medical AI systems. Our work can
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be broken down into three main areas of model evaluation, namely evaluating models

using quantitative metrics, evaluation through challenges and benchmarks, and explaining

model predictions using explainable AI. These three areas are further motivated in the

following.

Quantitative Metrics Assessing a model through the metrics achieved on a given task

is among the simplest forms of evaluation. The metrics used differ depending on the task;

for example, precision and recall are two metrics commonly used in medicine to evaluate

the model’s predictive performance. Using multiple metrics to measure the performance

of a model is an important step in understanding how a model will perform once deployed

in a real-world setting.

Reproducible and Comparable Results One way of assessing the current state

of machine learning is through organizing challenges or benchmarks that gather data

scientists and engineers in order to solve a specific task. Although not directly tied

to evaluating one specific model, these events may help future researchers have a set

benchmark to compare against and can encourage researchers to contribute to a new

field.

Explainable Artificial Intelligence As mentioned before, the most common approach

in machine learning today is using deep neural networks, as they have shown a profound

ability to perform well on almost any given task. However, despite these promising results,

deep neural networks are not easy to interpret and are generally labeled a ”black box”.

Explainable AI aims to open this black box by providing an explanation as to why the

model produces a given prediction. Furthermore, these explanations can be used to

discover new correlations between an input and outcome.

3.3.1 Quantitative Metrics

The most common way of evaluating the correctness of a machine learning model is using

quantitative metrics that measure the direct performance in terms of a number. Different

metrics tell a different story about how we can expect a model to perform when deployed

into the real world. For example, a high precision indicates that when a model predicts

a specific class, it is quite certain about its prediction. On the other hand, a model that
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achieves a high recall with low precision will make a lot of positive prediction but most

incorrect. Evaluating a model with a wide range of different metrics is essential to get

a full understanding of the model’s potential. It is simple to make a model look like it

performs better than it actually does by only presenting certain metrics and excluding

others. While going through the related research for our selected medical case studies,

we realized that a lot of studies that apply machine learning to medical problems do not

evaluate their methods as thoroughly as research published in machine learning journals.

Medical machine learning studies often show a few metrics to measure the performance of

their methods, and with most data being private, any chance of reproducing the results

to further check the performance is quite slim. To bring more awareness to this issue and

provide more information about why different metrics are useful, we performed a study

where we looked at research within GI machine learning applications and recalculated

the results to see if the performance was as reported [62]. This study was focused on

binary classification, but the same principles apply to all sets of metrics used to evaluate,

for example, multi-classification and segmentation tasks. Together with this study, we

developed a web-based tool that can be used to reverse-engineer the missing metrics of a

given study. The tool is called Medimetrics6 and is made publicly available online, and

the source code is published on GitHub7.

3.3.2 Reproducible and Comparable Results

Machine learning benchmarks and challenges can help bring more awareness to specific

problems in medicine and also establish a common standard for medical machine learning

systems. These events are a good opportunity to introduce a new audience of expert data

scientists to a field that is unknown and can potentially have a real impact on someones

life. Throughout the three years of this Ph.D. project, we organized several challenges

held at well-established multimedia conferences and workshops. The challenges fall into

one of two categories; challenges for GI image analysis and challenges for semen video

analysis.

6https://medimetrics.no
7https://github.com/simula/medimetrics
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3.3.2.1 Gastrointestinal Image Analysis Challenges

The first group of challenges were on automatic GI findings detection, where we held a to-

tal of six different competitions across four different venues. The first set of GI challenges

were held at the MediaEval Multimedia Benchmark, which is a long-running workshop

meant to challenge participants with solving different tasks using multimedia data. We

organized the Medico Multimedia Task, which proposes several sub-tasks involving effi-

cient detection of different findings in the GI tract. Overall, three editions of Medico were

held at MediaEval, each with a different focus. First, in 2018, the main focus of Medico

was to efficiently classify images collected from colonoscopies [111]. Second, in 2020, the

main focus was to efficiently segment colon polyps [71]. Third, in 2021, the main focus

was transparency in the development of colon polyp segmentation systems [55]. In addi-

tion to the GI-related challenges at MediaEval, we also organized a competition at ACM

Multimedia in 2019 called BioMedia [59]. This was an extension of the task held in 2018

at MediaEval and provided a larger training and testing dataset. After organizing these

challenges, we performed a meta-analysis study across the GI-related challenges held from

2017 to 2019. The results of this study showed that the best submissions improved year

over year, showing that the field is progressing [70].

3.3.2.2 Semen Video Analysis Challenges

The second group of challenges were on automatic semen analysis using the VISEM

dataset [50]. Here, we organized two a total of two challenges, one at the MediaEval

Benchmark in 2019 [52] and one at ACM Multimedia in 2020 [59]. Both years, we pro-

posed three different subtasks, one for both motility and morphology prediction, and one

for automatic sperm tracking. The sperm motility task asked participants to predict the

percentage of progressive, non-progressive, and immotile sperm in a given semen sample.

This would account for every sperm contained in the video, making the sum of all predic-

tion 100%. The sperm morphology task asked participants to predict the number of sperm

that contain head defects, tail defects, and midpiece defects. Here, the model should only

predict the sperms that contain defects, making each category independent. The sperm

tracking task asked participants to track the individual sperm and calculate the highest

and average speed of a sperm in a given sample. The participants were provided with a
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pre-partitioned version of the VISEM dataset, for which they were asked to train their

model over three-fold cross-validation.

3.3.3 Explainable Artificial Intelligence

One part of making an AI system more transparent is providing explanations together

with a prediction. Explainable AI is a field that has been gaining a lot of attention

recently, especially in high-risk domains such as medicine and law. Researchers often

cite a lack of trust in black-box models and that a better explanation of how a model

makes a prediction would help discover biases and increase adoption [140]. Some models

are inherently explainable, which means that one can directly infer how the input is

associated with a produced output. These models are often categorized as white-box

models and include algorithms such as decision trees and linear regression. Complex and

difficult to explain models are often referred to as black-box models, which encompass the

now popular deep neural networks. Explaining these models requires specialized methods

that aim to interpret the model’s inner workings to make an explanation that its end users

can understand. There are several approaches to do this [129, 89, 3, 30], and the methods

vary depending on the type of data used as input. A question may arise in that if complex

models like deep neural networks work so well, why is it important to understand why

they work? There are many reasons why explainable AI is essential for any domain, not

just high-risk fields such as medicine. Blindly trusting models to perform the same in the

real world as in a controlled experimental environment is irresponsible and could lead to

many unforeseen consequences. In the following, we identify a few of the primary reasons

why explainable AI has become such a booming area of research.

Model development Developing a high-performing model is difficult. This is espe-

cially true for complex models where we are unsure of which architectural and parameter

choices lead to better results. Somewhat jokingly, deep learning development has been

likened to randomly guessing different configurations until something works. As we do

not know what features are learned from the data, it is difficult to assess what changes

should be made to further improve the model. By understanding a model’s internals, we

can make more educated decisions based on the desired outcome. Furthermore, even if

a model seems to perform well, it is essential to verify that its decisions are based on
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rational grounds. An urban legend in AI research describes a model trained to detect

tanks in rough terrain. After the model was fully developed and showed an almost per-

fect performance score, the researchers realized that all images of tanks were taken on a

cloudy day. In contrast, images not containing tanks were taken on a sunny day, meaning

that the model had learned to rely on the lighting to make its decision. By visualizing

the features detected by the model, one would be able to forgo such simple mistakes as

we could verify that model does indeed focus on the object in question and not other

artifacts.

Knowledge discovery As humans, we do not have a perfect view of the world. There

are certain patterns and structures that are hard for us to discover and exploit for efficiency

gain. Models such as deep neural networks automatically find and extract features that

most efficiently lead them to their end goal. Sometimes, these may be unwanted artifacts,

as previously described. Other times, the model may find unknown features that we

humans have not yet discovered. By interpreting the features extracted by a model, we

may gain new insights into what causes certain diseases or relationships in seemingly

unstructured data. Through model interpretations, complex models may teach us some

of the undiscovered laws of biology, physics, or chemistry.

Legal requirements As AI is applied to fields that may cause serious physical, men-

tal, or financial harm, we need ways to assign responsibility to all affected parties. For

example, if an autonomous car crashes into a pedestrian, who is to blame? The right to

an explanation has also become a legal requirement in many countries. For example, in

the United States, if a person is denied credit, they are legally entitled to an explanation

of why they were denied. The right to an explanation has also been incorporated into

the General Data Protection Regulation (GDPR), where businesses are legally required

to give an explanation on why certain decisions were made. The legal aspects of AI are

still in their infancy and will most likely be a long and rigorous process. Nevertheless,

identifying why certain decisions are made will be an essential part of lawful judgment.

Ethics and transparency Explanations play a significant role in avoiding unintended

biases towards certain demographics such as age, race, or sex. Based on the data used

to train a model, biases that discriminate against certain demographics could potentially

53



Chapter 3. Transparent Artificial Intelligence Systems in Medicine

(a) PR interval (b) QT interval (c) QRS duration

(d) J-point elevation (e) T-wave amplitude (f) R-wave amplitude

(g) Heart rate

Figure 3.10: Visualizations generated for the interval and amplitude prediction models.
As we can see from the plots, the model learns to inspect the waves and and intervals
that are related to the predicted variable.

occur. These issues also motivate for more transparency regarding how a model has

trained apart from solely relying on explanations produced after a model is developed.

However, it is important to mention that even though model explanation methods may

give us some insight into why a model makes a certain prediction, it could also provide a

false sense of security. Trust and confidence in a model should not only depend on whether

the explanations fit the mental model of the user interpreting them. Explanations should

always be interpreted in the context of their application, where the users understand what

the explanation is based on and how it is produced.
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3.3.3.1 Using Model Explanations for Knowledge Discovery

Using the ECG case study, we aimed to get a better understanding of how the model

analyzes the ECG by explaining the predictions [61]. The motivation behind this was

two-fold. First, we wanted to visualize how the deep neural network analyzes the ECG

to predict the various waves and intervals in order to verify that it had learned the

correct features. Visualizations were generated using a method based on the GradCAM

technique [129], which was modified to work with the dimensionality constraints of the

ECG. The results showed that the network does highlight the expected areas when making

a prediction. For example, the QRS complex is highlighted when we predict QRS duration,

and the end of the T-wave is delineated along with the beginning of the QRS complex for

QT interval measurement. Figure 3.10 shows some example visualizations of the wave and

interval predictions. The second motivation behind explaining the ECG model predictions

was to understand what features that correlate to sex. As mentioned in Section 3.2.3,

predicting the sex of an ECG is very difficult for even expert cardiologists, but our neural

network was able to do this with ease. When visualizing the predictions for sex prediction,

we discovered that the model used the downslope of the R-wave to determine sex. This

finding was further verified through a set of logistic regression experiments and wave-

blocking experiments, where the results showed that the R-wave is an essential feature in

predicting the sex of an ECG.

3.3.3.2 Evaluating Explanations

As with any research contribution, we need a way of assessing the quality of said contri-

bution against previous work. This is no different when it comes to evaluating machine

learning model explanations. Attempts at coming to a standard explanation metric have

been made, but there is still no quantitative metric used to measure whether one expla-

nation is better than another. Measuring the quality of an explanation is quite different

than evaluating predictive performance as the quality explanations may mean different

things depending on the context. For example, in the context of polyp detection, a lay-

man may find certain explanations more useful than a trained gastroenterologist that has

more pre-existing knowledge. This adds a human component to the evaluation that may

differ between fields and backgrounds. Furthermore, drawing a line where one measures

the quality of the explanation or the quality of the model can be difficult. Using visual
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explanations as an example, one may postulate that if the explanation highlights areas

of an image that correspond to a given class, like the tail of a cat when classifying cat

images, that it is a good explanation. However, the explanation method is merely a proxy

to explaining what the model is looking at, without any knowledge regarding what is

present in the image. By this standard, if the explanation highlights nonsensical regions

of an image, it may not be a fault of the explanation method but a fault of the model

itself.

3.3.4 Lessons Learned

Diving into the current literature in medical applications of AI, we learned that several

areas are lacking in the evaluation part of the research. This observation can perhaps

be explained by a lack of experience in developing AI systems by the medical research

community, but can also be attributed to the general level of confidentiality applied to

the medical research. This secrecy extends across the entire pipeline of an AI system,

from the data used to build the model, the specific methods used for analysis, and the

metrics and methods used to evaluate and interpret the results.

The numerous benchmarks and challenges we organized taught us that there is im-

mense interest in building machine learning models for medical applications among the

computer science community. Given an open dataset and task, researchers with little ex-

perience within medical image and video analysis are able to produce high-quality models.

Our work on producing explanations for the ECG predictions showed that even domain

experts could learn something new from the deep neural networks. What makes this work

especially interesting is that we found that the doctors were continuously surprised about

how the neural network performed its analysis, likening it to how experts in the filed

perform their analysis. As computer scientists, this was very motivating as we could

directly see the value that the explanation brought to the analysis.

3.4 Summary

This chapter presented our work in developing transparent AI systems within four areas

of medicine. The development of medical AI systems can generally be split into three

distinct steps; dataset development, model development, and model evaluation.
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The data used to train and evaluate a model will substantially affect how it will per-

form in a real-world setting. Medical data is usually protected by laws and regulations,

making it difficult to publish. In the context of AI systems, this is a problem as any

research published on private data will not be reproducible. Furthermore, without having

access to the underlying data used to train and evaluate a system, one can not assess the

potential biases and shortcomings that may have affected the presented results. This moti-

vated us to develop several public medical datasets to encourage transparent research and

public benchmarks. Overall, we developed and published seven medical datasets across GI

endoscopy [17, 69, 137], assisted reproductive technology [50], and mental health [67, 58].

To understand the intricacies of medical AI systems, we used our developed datasets

to implement several AI systems using different medical case studies. First, we looked

at analyzing data collected from the GI track to detect different findings such as lesions,

anatomical landmarks, and instruments. Several different approaches were implemented,

including methods for both standard classification [141] and segmentation [150]. Overall,

our findings show that the systems are able to perform the given tasks with high accu-

racy. Second, we developed a system for automatically determine the quality of a human

semen sample. The system used a deep neural network to analyze frames from a micro-

scopic recording of semen to predict the motility and morphology of the sperm contained

within [60]. Lastly, we implemented a system for detecting the various waves and inter-

vals of a given ECG. The system used median and 10-second rhythm strips from standard

12-lead ECGs as input and showed comparable results to that of expert cardiologists [61].

Proper evaluation and testing of any AI system is essential before being deployed

in a real-world environment. In medicine, this is especially important as biases and

imprecision in a model could have fatal consequences. We examined the evaluation of

medical AI systems from three perspectives; evaluation through quantitative metrics,

evaluation through challenges and benchmarks, and explaining the predictions of complex

deep neural networks. We looked at the current landscape of evaluating AI systems

in medicine, where we discovered that a lot of studies present incomplete evaluation

metrics of their system. In response to this, we selected five research papers and reverse-

engineered the metrics to show how one may gain a different perspective of a model if

presented with a more robust set of evaluation metrics [62]. The study was supported

by a tool we developed that can automatically calculate missing binary classification
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metrics using the ones included in a given study. As a means to promote open and

collaborative research within medical AI systems, we organized eight medical machine

learning challenges across four different venues. Finally, we explored using explainable

AI to understand the predictions of our ECG prediction model, which helped us discover

new features in the prediction of sex for a give ECG [61].
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Conclusion

The conception of this thesis began with a recognition of the many transparency issues

plaguing medical AI research. Although the initial plan for this work was to target ex-

plainability in medical AI applications, the transition to focus on transparency was merely

an expansion on the subject matter. Throughout this research project, we published sev-

eral medical datasets, performed extensive experiments across several medical application

scenarios, looked at the current state of machine learning in different medial fields through

AI-based challenges and reviews, and contributed to explainable methods in medical AI.

Much of this work has been published at top-tier conferences and journals, and we are

currently in the process of submitting several more.

This chapter concludes this thesis by recollecting the main research question and

objectives, where we look back on the work done during this project and tie it back to the

original ambitions. We present our plans for future work and discuss potential research

directions that build on values of transparency in medical AI.

4.1 Main Contributions

This thesis presents our work on developing transparent AI systems in different medical

domains. We developed and published several datasets, organized multiple medical AI

challenges, benchmarked existing and novel AI-based methods, and looked at different

methods of evaluating AI systems. The main contributions of this thesis are supported

by publications in top-tier conferences or journals. In the following, we detail the contri-

butions in relation to the research question and research objectives defined in Section 1.3.
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Contributions to Objective 1 Objective one is supported by the collection and pub-

lication of several medical datasets in the field of gastroenterology [17, 137], assisted re-

productive technology [50], mental health [67, 58], and cardiology [152]. Each dataset was

developed in collaboration with health experts within each respective field and is made

publicly available and free to use for research and educational purposes. The datasets

were used as a basis for most of the research presented in this thesis and have been used

to organize several challenges and benchmarks [56, 52, 59, 54, 71, 55]. Each dataset is

accompanied by a research article published in a top-tier conference or journal, where

we also include a set of benchmark experiments and possible research directions. The

contribution to transparency in medical AI systems comes from the open and publicly

available datasets published under non-restrictive licenses that can be used to develop

and benchmark machine learning models. We also include information on how the data

was collected and verified by the medical experts, including details on the equipment used

to collect the data.

Contributions to Objective 2 Objective two is supported by our work on devel-

oping and training machine learning models to support medical doctors and clinicians

in performing different tasks within medicine. This includes methods for automatically

determining the quality of a given semen sample [60], predicting the sex, waves, and in-

tervals of a standard 12-lead ECG [61], detecting disease and other findings in the GI

tract [98, 75], and recognizing disorders such as ADHD or schizophrenia from activity

data [58, 67, 37]. The contribution to transparency comes from the implementation de-

scriptions, where we detail how the models are trained, which hyperparameters are used,

and usually include an open implementation that is freely available online.

Contributions to Objective 3 Objective three is supported by our work on through

evaluation and post validation of machine learning models after training. This work

includes using explainable AI to discover new features related to the relationship between

sex and ECG signals [61], exploring how evaluation metrics may be used to give an

incomplete view of a models predictive performance [62, 121], and the organization of

several machine learning challenges for benchmarking and comparability purposes [56,

55, 52, 59, 54, 71, 111]. Openness and accurate reporting of evaluation methods is a key

attribute of transparency within the evaluation of a AI system. Therefore, we aimed to
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show both the negative and positive sides of our developed systems, reporting all relevant

metrics and measuring performance against several benchmarks.

Additional Contributions We also contributed to areas that fall outside the aforemen-

tioned research question and objectives. Still, these contributions follow the principles of

transparency and helped us better understand the requirements for the medical-based case

studies. We researched and developed systems for automatically detecting and clipping

events from soccer games [101]. These systems were built on open datasets and gave us

experience with analyzing video data using deep learning. We also used model interpreta-

tion methods to generate explanations over the time-dimension to explain the predictions

of the deep neural network. We looked at how machine learning can be used to predict

latency in mobile networks, where we used both traditional machine learning methods

and deep learning. Through this work we gained experience in analyzing large time-series

data. We collected and published a dataset for performing sentiment analysis on disaster-

related images and are currently organizing a challenge using this dataset [49, 168]. We

collected and published a dataset on developing emotional intelligence machines using the

video game Super Mario Bros. as an initial use case for building emotional intelligent

machines [143]. This work spawned from the idea of incorporating human ethics into

machine learning algorithms. We collected and published a dataset for analyzing sports

activity in relation to other personal attributes like sleep and weight [151]. We collected

and published a dataset containing activity data from everyday tasks like brushing teeth

or watching television together with audio recordings [39]. We collected and published a

dataset for predicting cloud fractional cover using satellite observations.

Through our work developing medical AI systems, we gained a better understanding of the

problems medical doctors face in their everyday work. Collecting and publishing datasets

for objective 1 gave us a better understanding of the intricacies of making medical data

public and the potential obstacles that make this difficult. Developing AI systems for

different tasks within medicine for objective 2 helped us recognize the issues and require-

ments that medical doctors and clinicians face every day. Researching the evaluation of

AI systems in medicine and organizing several machine learning challenges for objective

3 gave us the experience of realizing that there is still a lot of work to be done in medi-
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cal AI research, and a good way to accelerate this process is through public events that

encourage collaboration, reproducibility, and comparability.

4.2 Future Work

There are several future directions we want to explore that we did not have time to during

this Ph.D. project, some of which have been mentioned throughout this thesis. First,

for the assisted reproductive technology case study, we would like to further explore the

analysis of embryo data in conjunction with the sperm data to find what features between

the two produce a healthy child. We would also like to extend the sperm dataset, VISEM,

with tracking data to add an additional challenge of counting and measuring attributes of

specific sperm contained within a video. Furthermore, we would like to publish a dataset

containing time-lapse videos of human embryos. This is currently a popular research

direction, and not many public datasets exist. Analyzing both the sperm and embryo

data together would be an excellent scenario to apply model explanation methods to

learn what features contribute to a healthy child.

For the ECG case study, we would like to apply our models on abnormal ECGs to

detect to diagnose different diseases and disorders. Furthermore, we would like to research

how to incorporate different parameters into the analysis, like adding information about

the person’s age and sex. Another aspect of ECG analysis we would like to explore is

ECG reconstruction from a given set of parameters. For example, given a set of human

traits like age, sex, BMI, and information about the person’s genes, can one reconstruct

that person’s heart rhythm? This could potentially help us emulate the heart rate of a

person under different scenarios.

For the mental health case study, we would like to apply more advanced time-series

analysis to the activity data contained in the published schizophrenia and ADHD datasets.

Furthermore, we want to combine the data from the two datasets as mentioned earlier

and one containing data from patients with depression to perform a more comprehensive

study on mental health analysis. This is also an area where we were not able to host a

challenge or benchmark, something we wish to do in the future.

Another area we would like to explore more thoroughly is the evaluation of model

interpretation and explanation methods. Unlike standard predictive performance metrics,

62



4.3. Final Remarks

an explanation is subjective and dependant on the context for which they are presented.

Having quantitative metrics to measure the quality of an explanation against others would

be very useful in developing new explanation methods. We are also working on a survey

on evaluating different explanation methods on domain experts, where the current case

study is explanations for a model that detects polyps in GI-related images. We want

to expand this study to evaluate how different medical fields can use model explanation

methods.

4.3 Final Remarks

This thesis presented our work on making machine learning-based research in medicine

more open and transparent. I think machine learning has and will continue to profoundly

impact our everyday lives, medicine being no exception. Applying these methods without

having any insight into the development and evaluation of the proposed models is irre-

sponsible and could potentially have fatal consequences. I hope that this thesis inspires

more transparent research and wish for an overall more open scientific process in medical

AI going forward.
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Chapter 5

Papers and Author’s Contributions

In this chapter, we list each paper published during the span of this Ph.D. project, and

discuss my contributions to each paper and how it relates to the research objectives defined

in Section 1.3. The articles themselves have been included in the appendix of this thesis.
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5.1 Paper I - HyperKvasir, a comprehensive multi-

class image and video dataset for gastrointestinal

endoscopy

Auhtors Hanna Borgli, Vajira L Thambawita, Pia H Smedsrud, Steven Hicks, Debesh

Jha, Sigrun L Eskeland, Kristin Ranheim Randel, Konstantin Pogorelov, Mathias Lux,

Duc-Tien Dang-Nguyen, Dag Johansen, Carsten Griwodz, H̊akon K Stensland, Enrique

Garcia-Ceja, Peter T Schmidt, Hugo L Hammer, Michael A Riegler, P̊al Halvorsen, and

Thomas de Lange.

Abstract Artificial intelligence is currently a hot topic in medicine. However, medical

data is often sparse and hard to obtain due to legal restrictions and lack of medical

personnel for the cumbersome and tedious process to manually label training data. These

constraints make it difficult to develop systems for automatic analysis, like detecting

disease or other lesions. In this respect, this article presents HyperKvasir, the largest

image and video dataset of the gastrointestinal tract available today. The data is collected

during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and

partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079

images and 374 videos, and represents anatomical landmarks as well as pathological and

normal findings. The total number of images and video frames together is around 1

million. Initial experiments demonstrate the potential benefits of artificial intelligence-

based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable

role in developing better algorithms and computer-assisted examination systems not only

for gastro- and colonoscopy, but also for other fields in medicine.

Published Nature scientific data, 2020.

Candidate contributions Steven contributed to the dataset development by cleaning,

organizing, and preparing the online repositories (GitHub and OSF). This includes com-

piling data from different sources, ensuring that the dataset contains a minimal number

of duplicates, creating image/video annotation files, and writing various splits to aid in

the data preparation. He contributed to the initial experiments using a ResNet 50 imple-

mented in TensorFlow and contributed to analyzing the unlabeled clustering experiments.
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5.1. Paper I - HyperKvasir, a comprehensive multi-class image and video dataset for
gastrointestinal endoscopy

For the writing of the paper, he contributed by drafting and reviewing all parts of the

article, but with a particular focus on the technical validation section. He also contributed

by making Figure 1, Figure 8, and a figure that was used in the initial submission but

excluded from the final manuscript.

Thesis objectives Objective 1.
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5.2 Paper II - Medico multimedia task at mediaeval

2018

Auhtors Konstantin Pogorelov, Michael A Riegler, P̊al Halvorsen, Steven Hicks, Kristin

Ranheim Randel, Duc-Tien Dang-Nguyen, Mathias Lux, Olga Ostroukhova, and Thomas

de Lange.

Abstract The Medico: Multimedia for Medicine Task, running for the second time as

part of MediaEval 2018, focuses on detecting abnormalities, diseases, anatomical land-

marks and other findings in images captured by medical devices in the gastrointestinal

tract. The task is described, including the use case and its challenges, the dataset with

ground truth, the required participant runs and the evaluation metrics.

Published Working Notes Proceedings of the MediaEval 2018 Workshop.

Candidate contributions Steven presented the task at the workshop and contributed

to the paper by drafting and revising of the manuscript.

Thesis objectives Objective 3.
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5.3. Paper III - Machine learning-based analysis of sperm videos and participant data
for male fertility prediction

5.3 Paper III - Machine learning-based analysis of

sperm videos and participant data for male fer-

tility prediction

Auhtors Steven A Hicks, Jorunn M Andersen, Oliwia Witczak, Vajira L Thambawita,

P̊al Halvorsen, Hugo L Hammer, Trine B Haugen, and Michael A Riegler.

Abstract Methods for automatic analysis of clinical data are usually targeted towards

a specific modality and do not make use of all relevant data available. In the field of

male human reproduction, clinical and biological data are not used to its fullest poten-

tial. Manual evaluation of a semen sample using a microscope is time-consuming and

requires extensive training. Furthermore, the validity of manual semen analysis has been

questioned due to limited reproducibility, and often high inter-personnel variation. The

existing computer-aided sperm analyzer systems are not recommended for routine clini-

cal use due to methodological challenges caused by the consistency of the semen sample.

Thus, there is a need for an improved methodology. We use modern and classical machine

learning techniques together with a dataset consisting of 85 videos of human semen sam-

ples and related participant data to automatically predict sperm motility. Used techniques

include simple linear regression and more sophisticated methods using convolutional neu-

ral networks. Our results indicate that sperm motility prediction based on deep learning

using sperm motility videos is rapid to perform and consistent. Adding participant data

did not improve the algorithms performance. In conclusion, machine learning-based auto-

matic analysis may become a valuable tool in male infertility investigation and research.

Published Nature Scientific Reports, 2019.

Candidate contributions Steven contributed to the conceptualization, design, and

development of the study. He performed several deep learning-based experiments using

optical flow and raw frame analysis. The experiments used a variety of different data,

including patient information, sensor data, and image data. For the manuscript, he

contributed to all parts of the paper.

Thesis objectives Objective 2.
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5.4 Paper IV - Medico multimedia task at mediaeval

2020: Automatic polyp segmentation

Auhtors Debesh Jha, Steven A Hicks, Krister Emanuelsen, H̊avard D Johansen, Dag

Johansen, Thomas de Lange, Michael A Riegler, and P̊al Halvorsen.

Abstract Colorectal cancer is the third most common cause of cancer worldwide. Ac-

cording to Global cancer statistics 2018, the incidence of colorectal cancer is increasing

in both developing and developed countries. Early detection of colon anomalies such as

polyps is important for cancer prevention, and automatic polyp segmentation can play a

crucial role for this. Regardless of the recent advancement in early detection and treatment

options, the estimated polyp miss rate is still around 20%. Support via an automated

computer-aided diagnosis system could be one of the potential solutions for the overlooked

polyps. Such detection systems can help low-cost design solutions and save doctors time,

which they could for example use to perform more patient examinations. In this paper, we

introduce the 2020 Medico challenge, provide some information on related work and the

dataset, describe the task and evaluation metrics, and discuss the necessity of organizing

the Medico challenge.

Published Working Notes Proceedings of the MediaEval 2020 Workshop.

Candidate contributions Steven contributed to the organization of the challenge and

presented it at the workshop. He also contributed to drafting and revising the manuscript.

Thesis objectives Objective 3.
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5.5. Paper V - Visem: A multimodal video dataset of human spermatozoa

5.5 Paper V - Visem: A multimodal video dataset of

human spermatozoa

Auhtors Trine B Haugen, Steven A Hicks, Jorunn M Andersen, Oliwia Witczak, Hugo

L Hammer, Hanna Borgli (Rune Borgli), P̊al Halvorsen, and Michael A Riegler.

Abstract Real multimedia datasets that contain more than just images or text are rare.

Even more so are open multimedia datasets in medicine. Often, clinically related datasets

only consist of image or videos. In this paper, we present a dataset that is novel in two

ways. Firstly, it is a multi-modal dataset containing different data sources such as videos,

biological analysis data, and participant data. Secondly, it is the first dataset of that

kind in the field of human reproduction. It consists of anonymized data from 85 different

participants. We hope this dataset paper will inspire people to apply their knowledge

in this important field, generate shareable results in the domain, and ultimately improve

human infertility investigation and treatment.

Published The ACM Multimedia Systems Conference, 2019.

Candidate contributions Steven performed all the experiments and contributed to

drafting and revising the manuscript.

Thesis objectives Objective 1.
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5.6 Paper VI - The EndoTect 2020 Challenge: Evalu-

ation and Comparison of Classification, Segmen-

tation and Inference Time for Endoscopy

Auhtors Steven Alexander Hicks, Debesh Jha, Vajira L Thambawita, P̊al Halvorsen,

Hugo L Hammer, and Michael A Riegler.

Abstract The EndoTect challenge at the International Conference on Pattern Recog-

nition 2020 aims to motivate the development of algorithms that aid medical experts in

finding anomalies that commonly occur in the gastrointestinal tract. Using HyperKvasir,

a large dataset containing images taken from several endoscopies, the participants com-

peted in three tasks. Each task focuses on a specific requirement for making it useful in a

real-world medical scenario. The tasks are (i) high classification performance in terms of

prediction accuracy, (ii) efficient classification measured by the number of images classified

per second, and (iii) pixel-level segmentation of specific anomalies. Hopefully, this can

motivate different computer science researchers to help benchmark a crucial component

of a future computer-aided diagnosis system, which in turn, could potentially save human

lives.

Published ICPR International Workshops and Challenges, 2020.

Candidate contributions Steven was responsible for being the main lead of the chal-

lenge. He prepared the development and testing datasets, communicated with the partic-

ipants, evaluated the submissions, presented the task at the workshop, and handeled the

logistics related to organizing the challenge. He also contributed to drafting and revising

the overview paper.

Thesis objectives Objective 3.
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5.7 Paper VII - Kvasir-Capsule, a video capsule en-

doscopy dataset

Auhtors Pia H Smedsrud, Vajira L Thambawita, Steven A Hicks, Henrik L Gjestang,

Oda O Nedrejord, Espen Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek Berstad, Sigrun

L Eskeland, Mathias Lux, H̊avard Espeland, Andreas Petlund, Duc-Tien Dang-Nguyen,

Enrique Garcia-Ceja, Dag Johansen, Peter T Schmidt, Ervin Toth, Hugo L Hammer,

Thomas de Lange, Michael A Riegler, and P̊al Halvorsen.

Abstract Artificial intelligence (AI) is predicted to have profound effects on the future

of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly de-

tection while reducing manual labour. Existing work demonstrates the promising benefits

of AI-based computer-assisted diagnosis systems for VCE. They also show great potential

for improvements to achieve even better results. Also, medical data is often sparse and

unavailable to the research community, and qualified medical personnel rarely have time

for the tedious labelling work. We present Kvasir-Capsule, a large VCE dataset collected

from examinations at a Norwegian Hospital. Kvasir-Capsule consists of 117 videos which

can be used to extract a total of 4,741,504 image frames. We have labelled and medically

verified 47,238 frames with a bounding box around findings from 14 different classes.

In addition to these labelled images, there are 4,694,266 unlabelled frames included in

the dataset. The Kvasir-Capsule dataset can play a valuable role in developing better

algorithms in order to reach true potential of VCE technology.

Published Nature Scientific Data, 2021.

Candidate contributions Steven contributed to the dataset development by organiz-

ing, structuring, cleaning, and preparing/uploading the data to online repositories (OSF

and GitHub). He contributed to the analysis, conception, and interpretation of the base-

line experiments, where he made the scripts that generated the confusion matrices and

evaluation results. Concerning the paper writing, he drafted and reviewed all parts of the

paper, but with a particular focus on the technical aspects.

Thesis objectives Objective 1.
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5.8 Paper VIII - Deep Learning Based Disease De-

tection Using Domain Specific Transfer Learning

Auhtors Steven Alexander Hicks, Pia H Smedsrud, P̊al Halvorsen, and Michael A

Riegler.

Abstract In this paper, we present our approach for the Medico Multimedia Task as

part of the MediaEval 2018 Benchmark. Our method is based on convolutional neural

networks, where we compare how fine-tuning, in the context of transfer learning, from

different source domains (general versus medical domain) affect classification performance.

The preliminary results show that fine-tuning models trained on large and diverse datasets

is favorable, even when the model’s source domain has little to no resemblance to the new

target.

Published Working Notes Proceedings of the MediaEval 2018 Workshop.

Candidate contributions Steven contributed to the conceptualization and design of

the study. He aided i the analysis and interpretation of ther data and results, performed

the machine learning experiments, and contributed to the drafting and revision of the

manuscript.

Thesis objectives Objective 2.
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5.9 Paper IX - ACM Multimedia BioMedia 2020 Grand

Challenge Overview

Auhtors Steven A Hicks, Vajira L Thambawita, Hugo L Hammer, Trine B Haugen,

Jorunn M Andersen, Oliwia Witczak, P̊al Halvorsen, and Michael A Riegler.

Abstract The BioMedia 2020 ACM Multimedia Grand Challenge is the second in a

series of competitions focusing on the use of multimedia for different medical use-cases.

In this year’s challenge, participants are asked to develop algorithms that automatically

predict the quality of a given human semen sample using a combination of visual, patient-

related, and laboratory-analysis-related data. Compared to last year’s challenge, partic-

ipants are provided with a fully multimodal dataset (videos, analysis data, study par-

ticipant data) from the field of assisted human reproduction. The tasks encourage the

use of the different modalities contained within the dataset and finding smart ways of

how they may be combined to further improve prediction accuracy. For example, using

only video data or combining video data and patient-related data. The ground truth was

developed through a preliminary analysis done by medical experts following the World

Health Organization’s standard for semen quality assessment. The task lays the basis

for automatic, real-time support systems for artificial reproduction. We hope that this

challenge motivates multimedia researchers to explore more medical-related applications

and use their vast knowledge to make a real impact on people’s lives.

Published Proceedings of the 28th ACM International Conference on Multimedia.

Candidate contributions Steven was responsible for organizing the challenge and

communicating with the participants. He prepared the development and testing datasets

and evaluated the results for the submitted runs. He created the website (https://biomediachallenge.com),

created the public repositories (GitHub), made the video presentations, and chaired the

session at ACM MultiMedia 2020. He drafted, revised, and submitted the manuscript.

Thesis objectives Objective 3.
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5.10 Paper X - Unsupervised preprocessing to im-

prove generalisation for medical image classifi-

cation

Auhtors Mathias Kirkerød, Rune Borgli, Vajira L Thambawita, Steven Hicks, Michael

A Riegler, and P̊al Halvorsen.

Abstract Automated disease detection in videos and images from the gastrointestinal

(GI) tract has received much attention in the last years. However, the quality of image

data is often reduced due to overlays of text and positional data. In this paper, we

present different methods of preprocessing such images and we describe our approach to GI

disease classification for the Kvasir v2 dataset. We propose multiple approaches to inpaint

problematic areas in the images to improve the anomaly classification, and we discuss the

effect that such preprocessing does to the input data. In short, our experiments show that

the proposed methods improve the Matthews correlation coefficient by approximately7.

Published Proceedings of the 13th International Symposium on Medical Information

and Communication Technology (ISMICT), 2019.

Candidate contributions Steven contributed to the conception, design, and drafting,

and revising of the manuscript.

Thesis objectives Objective 2.
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5.11. Paper XI - Medico Multimedia Task at MediaEval 2019

5.11 Paper XI - Medico Multimedia Task at Medi-

aEval 2019

Auhtors Steven Alexander Hicks, P̊al Halvorsen, Trine B Haugen, Jorunn M Ander-

sen, Oliwia Witczak, Konstantin Pogorelov, Hugo L Hammer, Duc-Tien Dang-Nguyen,

Mathias Lux, and Michael A Riegler.

Abstract The Medico: Multimedia for Medicine Task is running for the third time as

part of MediaEval 2019. This year, we have changed the task from anomaly detection

in images of the gastrointestinal tract to focus on the automatic prediction of human

semen quality based on videos. The purpose of this task is to aid in the assessment of

male reproductive health by providing a quick and consisted method of analyzing human

semen. In this paper, we describe the task in detail, give a brief description of the provided

dataset, and discuss the evaluation process and the metrics used to rank the submissions

of the participants.

Published Working Notes Proceedings of the MediaEval 2019 Workshop.

Candidate contributions Steven was responsible for being the main lead of the chal-

lenge. He prepared the development and testing datasets, communicated with the partic-

ipants, evaluated the submissions, presented the task at the workshop, and handeled the

logistics related to organizing the challenge. He also contributed to drafting and revising

the paper.

Thesis objectives Objective 3.
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5.12 Paper XII - Kvasir-instrument: Diagnostic and

therapeutic tool segmentation dataset in gas-

trointestinal endoscopy

Auhtors Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A Hicks, Vajira L Tham-

bawita, Enrique Garcia-Ceja, Michael A Riegler, Thomas de Lange, Peter T Schmidt,

H̊avard D Johansen, Dag Johansen, and P̊al Halvorsen.

Abstract Gastrointestinal (GI) pathologies are periodically screened, biopsied, and re-

sected using surgical tools. Usually, the procedures and the treated or resected areas are

not specifically tracked or analysed during or after colonoscopies. Information regarding

disease borders, development, amount, and size of the resected area get lost. This can

lead to poor follow-up and bothersome reassessment difficulties post-treatment. To im-

prove the current standard and also to foster more research on the topic, we have released

the “Kvasir-Instrument” dataset, which consists of 590 annotated frames containing GI

procedure tools such as snares, balloons, and biopsy forceps, etc. Besides the images, the

dataset includes ground truth masks and bounding boxes and has been verified by two

expert GI endoscopists. Additionally, we provide a baseline for the segmentation of the

GI tools to promote research and algorithm development. We obtained a dice coefficient

score of 0.9158 and a Jaccard index of 0.8578 using a classical U-Net architecture. A sim-

ilar dice coefficient score was observed for DoubleUNet. The qualitative results showed

that the model did not work for the images with specularity and the frames with multiple

tools, while the best result for both methods was observed on all other types of images.

Both qualitative and quantitative results show that the model performs reasonably good,

but there is potential for further improvements. Benchmarking using the dataset pro-

vides an opportunity for researchers to contribute to the field of automatic endoscopic

diagnostic and therapeutic tool segmentation for GI endoscopy.

Published MultiMedia Modeling (MMM), 2021.

Candidate contributions Steven made the Simula dataset page and revised the manuscript.

Thesis objectives Objective 1.
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electrocardiogram analysis

5.13 Paper XIII - Explaining deep neural networks

for knowledge discovery in electrocardiogram

analysis

Auhtors Steven A Hicks, Jonas L Isaksen, Vajira L Thambawita, Jonas Ghouse, Gustav

Ahlberg, Allan Linneberg, Niels Grarup, Inga Strümke, Christina Ellervik, Morten Salling

Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, P̊al Halvorsen, Mary

M Maleckar, Michael A Riegler, and Jørgen K Kanters.

Abstract Deep learning-based tools may annotate and interpret medical data more

quickly, consistently, and accurately than medical doctors. However, as medical doctors

are ultimately responsible for clinical decision-making, any deep learning-based prediction

should be accompanied by an explanation that a human can understand. We present an

approach called electrocardiogram gradient class activation map (ECGradCAM), which

is used to generate attention maps and explain the reasoning behind deep learning-based

decision-making in ECG analysis. Attention maps may be used in the clinic to aid diag-

nosis, discover new medical knowledge, and identify novel features and characteristics of

medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask

how a novel deep learning model measures both amplitudes and intervals in 12-lead elec-

trocardiograms, and we show an example of how attention maps may be used to develop

novel ECG features.

Published Nature Scientific Reports, 2021.

Candidate contributions Steven contributed to the conception, implementation, and

design of the study. He wrote the pipeline for which the different models were trained

and evaluated. He was part of the development of the proposed neural network and

implemented the visualization methods described in the paper. Furthermore, he also did

many preliminary experiments that did not end up in the final paper but were used to

guide the study. He contributed to the drafting and revision of the manuscript.

Thesis objectives Objective 2 and Objective 3.

79



Chapter 5. Papers and Author’s Contributions

5.14 Paper XIV - Deep learning for automatic gen-

eration of endoscopy reports

Auhtors Steven Hicks, Pia H Smedsrud, Michael A Riegler, Thomas de Lange, Andreas

Petlund, Sigrun L Eskeland, Konstantin Pogorelov, Peter T Schmidt, and P̊al Halvorsen.

Abstract In an effort to achieve consistent, high-quality endoscopy reports, the World

Endoscopy Organization (WEO) recommends using both a minimal standard for reporting

(MSR) and a minimal standard terminology (MST) for describing anatomical landmarks

and mucosal lesions found in the gastrointestinal (GI) tract. But creating reports which

adhere to these standards is often time-consuming, and with opinions varying vastly

between endoscopists, there is still a large issue of inconsistencies found in endoscopy

reports worldwide. Methods within Artificial Intelligence (AI), like neural networks, have

a proven capability of automatically detecting GI mucosal lesions and has shown much

potential in eliminating the inherent human variation of GI disease diagnosis. However,

deep neural networks are commonly known as black boxes, where the underlying decision

process which led to a conclusion is relatively unknown, especially among end-users. Thus,

we aim to open this black box and use the gained knowledge to develop a technology for

automatically generating standardized endoscopy reports.

Published Gastrointestinal Endoscopy, 2019.

Candidate contributions Steven built the system that the study is based on and

performed the experiments. He presented the work at the conference and contributed to

drafting and revising the paper.

Thesis objectives Objective 3.
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5.15. Paper XV - One-dimensional convolutional neural networks on motor activity
measurements in detection of depression

5.15 Paper XV - One-dimensional convolutional neu-

ral networks on motor activity measurements in

detection of depression

Auhtors Joakim Ihle Frogner, Farzan Majeed Noori, P̊al Halvorsen, Steven Alexander

Hicks, Enrique Garcia-Ceja, Jim Torresen, and Michael A Riegler.

Abstract Nowadays, it has become possible to measure different human activities using

wearable devices. Besides measuring the number of daily steps or calories burned, these

datasets have much more potential since different activity levels are also collected. Such

data would be helpful in the field of psychology because it can relate to various mental

health issues such as changes in mood and stress. In this paper, we present a machine

learning approach to detect depression using a dataset with motor activity recordings of

one group of people with depression and one group without, i.e., the condition group

includes 23 unipolar and bipolar persons, and the control group includes 32 persons with-

out depression. We use convolutional neural networks to classify the depressed and non-

depressed patients. Moreover, different levels of depression were classified. Finally, we

trained a model that predicts Montgomery-Åsberg Depression Rating Scale scores. We

achieved an average F1-score of 0.70 for detecting the control and condition groups. The

mean squared error for score prediction was approximately 4.0.

Published Proceedings of the 4th International Workshop on Multimedia for Personal

Health & Health Care.

Candidate contributions Steven contributed to drafting and revising the paper.

Thesis objectives Objective 2.
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5.16 Paper XVI - ACM MM BioMedia 2019 Grand

Challenge Overview

Auhtors Steven Hicks, Michael A Riegler, Pia H Smedsrud, Trine B Haugen, Kristin

Ranheim Randel, Konstantin Pogorelov, H̊akon K Stensland, Duc-Tien Dang-Nguyen,

Mathias Lux, Andreas Petlund, Thomas de Lange, Peter T Schmidt, and P̊al Halvorsen.

Abstract The BioMedia 2019 ACM Multimedia Grand Challenge is the first in a series

of competitions focusing on the use of multimedia for different medical use-cases. In

this year’s challenge, the participants are asked to develop efficient algorithms which

automatically detect a variety of findings commonly identified in the gastrointestinal tract

(a part of the human digestive system). The purpose of this task is to develop methods

to aid medical doctors performing routine endoscopy inspections of the GI tract. In this

paper, we give a detailed description of the four different tasks of this year’s challenge,

present the datasets used for training and testing, and discuss how each submission is

evaluated both qualitatively and quantitatively.

Published Proceedings of the 27th ACM International Conference on Multimedia.

Candidate contributions Steven was responsible for being the main lead of the chal-

lenge. He prepared the development and testing datasets, communicated with the partic-

ipants, and evaluated the submissions. He also contributed to drafting and revising the

paper.

Thesis objectives Objective 3.
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5.17. Paper XVII - PSYKOSE: A Motor Activity Database of Patients with
Schizophrenia

5.17 Paper XVII - PSYKOSE: A Motor Activity Database

of Patients with Schizophrenia

Auhtors Petter Jakobsen, Enrique Garcia-Ceja, Lena Antonsen Stabell, Ketil Joachim

Oedegaard, Jan Øystein Berle, Vajira L Thambawita, Steven Alexander Hicks, P̊al Halvorsen,

Ole Bernt Fasmer, and Michael A Riegler.

Abstract Using sensor data from devices such as smart-watches or mobile phones is

very popular in both computer science and medical research. Such movement data can

predict certain health states or performance outcomes. However, in order to increase

reliability and replication of the research it is important to share data and results openly.

In medicine, this is often difficult due to legal restrictions or to the fact that data collected

from clinical trials is seen as very valuable and something that should be kept ’in-house’.

In this paper, we therefore present PSYKOSE, a publicly shared dataset consisting of

motor activity data collected from body sensors. The dataset contains data collected from

patients with schizophrenia. Schizophrenia is a severe mental disorder characterized by

psychotic symptoms like hallucinations and delusions, as well as symptoms of cognitive

dysfunction and diminished motivation. In total, we have data from 22 patients with

schizophrenia and 32 healthy control persons. For each person in the dataset, we provide

sensor data collected over several days in a row. In addition to the sensor data, we also

provide some demographic data and medical assessments during the observation period.

The patients were assessed by medical experts from Haukeland University hospital. In

addition to the data, we provide a baseline analysis and possible use-cases of the dataset.

Published Proceedings of the IEEE 33rd International Symposium on Computer-Based

Medical Systems (CBMS).

Candidate contributions Steven made the Simula dataset website for the dataset and

contributed to drafting and revising the manuscript

Thesis objectives Objective 1.
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Chapter 5. Papers and Author’s Contributions

5.18 Paper XVIII - Divergentnets: Medical image

segmentation by network ensemble

Auhtors Vajira L Thambawita, Steven A Hicks, P̊al Halvorsen, and Michael A Riegler.

Abstract Detection of colon polyps has become a trending topic in the intersecting

fields of machine learning and gastrointestinal endoscopy. The focus has mainly been on

per-frame classification. More recently,polyp segmentation has gained attention in the

medical community. Segmentation has the advantage of being more accurate than per-

frame classification or object detection as it can show the affected area in greater detail.

For our contribution to the EndoCV 2021 segmentation challenge, we propose two sepa-

rate approaches. First, a segmentation model named TriUNet composed of three separate

UNet models. Second, we combine TriUNet with an ensemble of well-known segmentation

models, namely UNet++, FPN, DeepLabv3, and DeepLabv3+, into a model called Diver-

gentNets to produce more generalizable medical image segmentation masks. In addition,

we propose a modified Dice loss that calculates loss only for a single class when performing

multi-class segmentation, forcing the model to focus on what is most important. Overall,

the proposed methods achieved the best average scores for each respective round in the

challenge, with TriUNet being the winning model in Round I and DivergentNets being

the winning model in Round II of the segmentation generalization challenge at EndoCV

2021. The implementation of our approach is made publicly available on GitHub.

Published Proceedings of EndoCV 2021.

Candidate contributions Steven contributed to the conception, development, and

design of the work presented in this manuscript. He was part of the development models

used in the study. He also contributed by drafting and revising the manuscript and

presented the work at the 3rd International Endoscopy Computer Vision Challenge and

Workshop.

Thesis objectives Objective 2.
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5.19. Paper XIX - Pyramid-Focus-Augmentation: Medical Image Segmentation with
Step-Wise Focus

5.19 Paper XIX - Pyramid-Focus-Augmentation: Med-

ical Image Segmentation with Step-Wise Focus

Auhtors Vajira L Thambawita, Steven Hicks, P̊al Halvorsen, and Michael A Riegler.

Abstract Segmentation of findings in the gastrointestinal tract is a challenging but also

an important task which is an important building stone for sufficient automatic decision

support systems. In this work, we present our solution for the Medico 2020 task, which

focused on the problem of colon polyp segmentation. We present our simple but efficient

idea of using an augmentation method that uses grids in a pyramid-like manner (large to

small) for segmentation. Our results show that the proposed methods work as indented

and can also lead to comparable results when competing with other methods.

Published Working Notes Proceedings of the MediaEval 2020 Workshop.

Candidate contributions Steven contributed to the conception of pyramid-focus-

augmentation, drafting, and revising the manuscript.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.20 Paper XX - Data Augmentation Using Gener-

ative Adversarial Networks for Creating Real-

istic Artificial Colon Polyp Images: Validation

Study by Endoscopists

Auhtors Vajira L Thambawita, Inga Strümke, Steven Hicks, Michael A Riegler, P̊al

Halvorsen, and Sravanthi Parasa.

Abstract Artificial intelligence is increasingly used to detect and classify colon polyps.

However, small datasets are a major obstacle, especially for supervised machine learn-

ing. Data collection is challenging, and synthetic data generation, using models such as

generative adversarial networks (GANs), may help overcome this hurdle. To determine

the clinical utility of synthesized images, we generate images containing colon polyps,

and eight endoscopists assess their anatomical correctness. Method: Using training data

from the Kvasir dataset, a large colonoscopy dataset, an image inpainting GAN is used

to generate artificial colon polyp images. The GAN is pre-trained with colon images and

fine-tuned to generate synthetic polyps using colon images as input. The discriminator

of the GAN is used to assess the global and local quality of generated images, in addition

to discriminating real from generated. The quality of the generated images is evaluated

by 2 expert endoscopists, 3 non-expert endoscopists, and 3 internal medicine residents.

The experience of the physicians ranges from 0 to 20 years. Five synthesized and five real

images are selected for the evaluation. For each image, the physicians assessed whether

the polyp appeared real or generated on a scale from 1-10. Results: To measure the

agreement among the raters, we calculate Fleiss’ kappa for all questions regarding visual

appearance across all participants. For all questions, over all, only generated and only real

instances, respectively, the Fleiss kappa values are (0.0352, 0.0206, 0.0347) with p-values

of (0.00034, 0.176, 0.00909). Similarly, the Fleiss kappa values for the question “Does the

polyp appear generated?” are (0.0115, -0.0159, -0.0222). Limiting the included responses

to only our two gastroenterologists, the Fleiss’ kappa reduces to Cohen’s kappa, and the

respective values are (-0.235, -0.316, -0.282) with p-values (0.108, 0.193, 0.208). Landis

and Koch (1977) provide guidelines for interpreting Fleiss’ kappa, and according to these,
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5.20. Paper XX - Data Augmentation Using Generative Adversarial Networks for
Creating Realistic Artificial Colon Polyp Images: Validation Study by Endoscopists

values in the range 0.01-0.2 indicate only slight agreement between the raters. Moreover,

we observe higher reported confidences on generated polyps than real ones. We clearly see

that the participants do not find a strong agreement for real or generated, even not the

most experienced gastroenterologists. Conclusion: We develop and validate a GAN gen-

erating high-quality synthetic polyp images. Our evaluation by medical experts indicates

only little assessors agreement, even among the most experienced gastroenterologists. We

also observe higher reported confidences on generated polyps than real ones. This does

not mean that generated polyps are indistinguishable from real ones, but that they share

visual and anatomical properties. These promising results show GANs could contribute

synthetic data for training and unrestricted sharing.

Published Gastrointestinal Endoscopy, 2021.

Candidate contributions Steven contributed to the testing of the study, and drafting

and revision of the abstract.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.21 Paper XXI - Impact of Image Resolution on

Convolutional Neural Networks Performance in

Gastrointestinal Endoscopy

Auhtors Vajira L Thambawita, Steven Hicks, Inga Strümke, Michael A Riegler, P̊al

Halvorsen, and Sravanthi Parasa.

Abstract Convolutional neural networks (CNNs) are increasingly used to improve and

automate processes in gastroenterology, like the detection of polyps during a colonoscopy.

An important input to these methods is images and videos. Up until now, no well-

defined, common understanding or standard regarding the resolution of the images and

video frames has been defined, and to reduce processing time and resource requirements,

images are today almost always down-sampled. However, how such down-sampling and

the image resolution influence the performance in context with medical data is unknown.

In this work, we investigate how the resolution relates to the performance of convolutional

neural networks. This can help set standards for image or video characteristics for future

CNN based models in gastrointestinal endoscopy. This study examines the changes in the

performance of CNNs when trained with different resolutions. For all experiments, we

rely on the Kvasir data set, consisting of 10,662 GI images from 23 different findings. We

evaluate two state-of-the-art CNN models, ResNet-152 and DenseNet-161, for classifica-

tion under quality distortions with image resolutions for training and testing ranging from

32×32 to 512×512 pixels as shown in Figure 1. For training the models transfer learning

is performed with ImageNet weights. The model performance is evaluated using two-

fold cross-validation and F1-score, MCC, precision, and sensitivity as metrics. Increased

performance was observed with higher image resolution for all findings in the data set.

Lower resolution has a significantly lower performance with an MCC of 0.34 for the lowest

and 0.9 for the highest. Table 1 shows the evaluation results in terms of precision, sensi-

tivity, F1-score and MCC for the evaluated ResNet-152 and DenseNet-161 models. The

presented numbers are the average over both folds in the cross-validation. Increasing the

resolution leads to increased performance measured in almost all metrics. There is a slight

decrease in sensitivity for the highest resolution, but taking MCC into account, there is

still an overall improvement. For both CNNs, we observe the same behavior. Different
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5.21. Paper XXI - Impact of Image Resolution on Convolutional Neural Networks
Performance in Gastrointestinal Endoscopy

image resolutions and their effect on CNNs are explored. We show that image resolution

has a clear influence on the performance which calls for standards in the field in the future.

Currently, CNNs usually operate on low to mid-level resolutions. Higher resolution data

sets might require new methods, architectures and hardware. As hardware improvements

and algorithmic advances continue to occur, developing deep learning applications for en-

doscopy at higher image resolutions becomes increasingly feasible. Nevertheless, although

the full potential of high-resolution data sets might not be exploitable yet, it is evidently

important to collect data with the highest resolution possible.

Published Gastrointestinal Endoscopy, 2021.

Candidate contributions Steven contributed to drafting and revising the abstract.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.22 Paper XXII - On evaluation metrics for medical

applications of artificial intelligence

Auhtors Steven Hicks, Inga Strümke, Vajira L Thambawita, Malek Hammou, P̊al

Halvorsen, Michael A Riegler, and Sravanthi Parasa.

Abstract Clinicians and model developers need to understand how proposed machine

learning (ML) models could improve patient care. In fact, no single metric captures all the

desirable properties of a model and several metrics are typically reported to summarize

a model’s performance. Unfortunately, these measures are not easily understandable by

many clinicians. Moreover, comparison of models across studies in an objective manner

is challenging, and no tool exists to compare models using the same performance metrics.

This paper looks at previous ML studies done in gastroenterology, provides an explanation

of what different metrics mean in the context of the presented studies, and gives a thorough

explanation of how different metrics should be interpreted. We also release an open source

web-based tool that may be used to aid in calculating the most relevant metrics presented

in this paper so that other researchers and clinicians may easily incorporate them into

their research.

Published Submitted for publication, preprint is available at medRxiv.

Candidate contributions Steven contributed to the conception, design, analysis, and

development of the work presented in this paper. He developed the initial prototype of

the app (medimetrics) and led the development of the final version. He was part of the

selections of papers that were to be used for the main analysis in this paper. He also

contributed by drafting and revising the manuscript.

Thesis objectives Objective 3.
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5.23. Paper XXIII - Using Deep Learning to Predict Motility and Morphology of
Human Sperm

5.23 Paper XXIII - Using Deep Learning to Predict

Motility and Morphology of Human Sperm

Auhtors Steven Alexander Hicks, Trine B Haugen, P̊al Halvorsen, and Michael A

Riegler.

Abstract In the Medico Task 2019, the main focus is to predict sperm quality based

on videos and other related data. In this paper, we present the approach of team LesCats

which is based on deep convolution neural networks, where we experiment with different

data preprocessing methods to predict the morphology and motility of human sperm.

The achieved results show that deep learning is a promising method for human sperm

analysis. Out best method achieves a mean absolute error of 8.962 for the motility task

and a mean absolute error of 5.303 for the morphology task.

Published Working Notes Proceedings of the MediaEval 2019 Workshop.

Candidate contributions Steven contributed to designing and performing the exper-

iments, and by drafting and rivising the manuscript.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.24 Paper XXIV - Predicting Sperm Motility and

Morphology Using Deep Learning and Hand-

crafted Features

Auhtors Steven Alexander Hicks, P̊al Halvorsen, Trine B Haugen, Jorunn M Ander-

sen, Oliwia Witczak, Konstantin Pogorelov, Hugo L Hammer, Duc-Tien Dang-Nguyen,

Mathias Lux, and Michael A Riegler.

Abstract This paper presents the approach proposed by the organizer team (Simu-

laMet) for MediaEval 2019 Multimedia for Medicine: The Medico Task. The approach

uses a data preparation method which is based on global features extracted from multiple

frames within each video and then combines this with information about the patient in

order to create a compressed representation of each video. The goal is to create a less

hardware expensive data representation that still retains the temporal information of the

video and related patient data. Overall, the results need some improvement before being

a viable option for clinical use.

Published Working Notes Proceedings of the MediaEval 2019 Workshop.

Candidate contributions Steven contributed to designing and performing the exper-

iments, and by drafting and rivising the manuscript.

Thesis objectives Objective 2.
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5.25. Paper XXV - Artificial intelligence in the fertility clinic: status, pitfalls and
possibilities

5.25 Paper XXV - Artificial intelligence in the fertil-

ity clinic: status, pitfalls and possibilities

Auhtors Michael A Riegler, Mette H Stensen, Oliwia Witczak, Jorunn M Andersen,

Steven Hicks, Hugo L Hammer, Erwan Delbarre, P̊al Halvorsen, Anis Yazidi, Nicolai

Holst, and Trine B Haugen.

Abstract In recent years, the amount of data produced in the field of ART has increased

exponentially. The diversity of data is large, ranging from videos to tabular data. At the

same time, artificial intelligence (AI) is progressively used in medical practice and may

become a promising tool to improve success rates with ART. AI models may compensate

for the lack of objectivity in several critical procedures in fertility clinics, especially embryo

and sperm assessments. Various models have been developed, and even though several of

them show promising performance, there are still many challenges to overcome. In this

review, we present recent research on AI in the context of ART. We discuss the strengths

and weaknesses of the presented methods, especially regarding clinical relevance. We

also address the pitfalls hampering successful use of AI in the clinic and discuss future

possibilities and important aspects to make AI truly useful for ART.

Published Human Reproduction, 2021.

Candidate contributions Steven contributed to the tables, figures, literature review,

writing and revision of the text and tables.

Thesis objectives Objective 3.
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Chapter 5. Papers and Author’s Contributions

5.26 Paper XXVI - Assessment of sperm motility

according to WHO classification using convo-

lutional neural networks

Auhtors Trine B Haugen, Steven Hicks, Oliwia Witczak, Jorunn M Andersen, Lars

Björndahl, and Michael A Riegler.

Abstract Manual sperm motility assessment according to WHO guidelines is regarded

as the gold standard. To obtain reliable and reproducible results, comprehensive training

is essential as well as running internal and external quality control. Prediction based

on artificial intelligence can potentially transfer human-level performance into models

that perform the task faster and can avoid human assessor variations. CNNs have been

groundbreaking in image processing. To develop AI models with high predictive power,

the data set used should be of high quality and sperm motility assessment based on WHO

guidelines.

Published Human Reproduction, 2021.

Candidate contributions Steven designed and performed the deep learning experi-

ments, and contributed to drafting and revising the manuscript.

Thesis objectives Objective 2.
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5.27. Paper XXVII - SinGAN-Seg: Synthetic Training Data Generation for Medical
Image Segmentation

5.27 Paper XXVII - SinGAN-Seg: Synthetic Train-

ing Data Generation for Medical Image Seg-

mentation

Auhtors Vajira L Thambawita, Pegah Salehi, Sajad Amouei Sheshkal, Steven A Hicks,

Hugo L Hammer, Sravanthi Parasa, Thomas de Lange, P̊al Halvorsen, and Michael A

Riegler.

Abstract Processing medical data to find abnormalities is a time-consuming and costly

task, requiring tremendous efforts from medical experts. Therefore, artificial intelligence

(AI) has become a popular tool for the automatic processing of medical data, acting as

a supportive tool for doctors. AI tools highly depend on data for training the models.

However, there are several constraints to access to large amounts of medical data to

train machine learning algorithms in the medical domain, e.g., due to privacy concerns

and the costly, time-consuming medical data annotation process. To address this, in this

paper we present a novel synthetic data generation pipeline called SinGAN-Seg to produce

synthetic medical data with the corresponding annotated ground truth masks. We show

that these synthetic data generation pipelines can be used as an alternative to bypass

privacy concerns and as an alternative way to produce artificial segmentation datasets

with corresponding ground truth masks to avoid the tedious medical data annotation

process. As a proof of concept, we used an open polyp segmentation dataset. By training

UNet++ using both real polyp segmentation dataset and the corresponding synthetic

dataset generated from the SinGAN-Seg pipeline, we show that the synthetic data can

achieve a very close performance to the real data when the real segmentation datasets are

large enough. In addition, we show that synthetic data generated from the SinGAN-Seg

pipeline improving the performance of segmentation algorithms when the training dataset

is very small. Since our SinGAN-Seg pipeline is applicable for any medical dataset, this

pipeline can be used with any other segmentation datasets.

Published Submitted for publication, preprint is available at arxiv.

Candidate contributions Steven contributed to drafting and revising the manuscript.
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Thesis objectives Objective 1 and Objective 2.
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5.28. Paper XXVIII - HYPERAKTIV: An Activity Dataset from Patients with
Attention-Deficit/Hyperactivity Disorder (ADHD)

5.28 Paper XXVIII - HYPERAKTIV: An Activity

Dataset from Patients with Attention-Deficit/Hyperactivity

Disorder (ADHD)

Auhtors Steven A Hicks, Andrea Stautland, Ole Bernt Fasmer, Wenche Førland, Hugo

L Hammer, P̊al Halvorsen, Kristin Mjeldheim, Ketil Joachim Oedegaard, Berge Osnes,

Vigdis Elin Giæver Syrstad, Michael A Riegler, and Petter Jakobsen.

Abstract Machine learning research within healthcare frequently lacks the public data

needed to be fully reproducible and comparable. Datasets are often restricted due to

privacy concerns and legal requirements that come with patient-related data. Consequen-

tially, many algorithms and models get published on the same topic without a standard

benchmark to measure against. Therefore, this paper presents HYPERAKTIV, a public

dataset containing health, activity, and heart rate data from adult patients diagnosed

with attention deficit hyperactivity disorder, better known as ADHD. The dataset con-

sists of data collected from 51 patients with ADHD and 52 clinical controls. In addition

to the activity and heart rate data, we also include a series of patient attributes such as

their age, sex, and information about their mental state, as well as output data from a

computerized neuropsychological test. Together with the presented dataset, we also pro-

vide baseline experiments using traditional machine learning algorithms to predict ADHD

based on the included activity data. We hope that this dataset can be used as a starting

point for computer scientists who want to contribute to the field of mental health, and as

a common benchmark for future work in ADHD analysis.

Published The ACM Multimedia Systems Conference, 2021.

Candidate contributions Steven contributed by performing the machine learning ex-

periments, presenting the study at the conference, and drafting and revising the manuscript.

Thesis objectives Objective 1.
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Chapter 5. Papers and Author’s Contributions

5.29 Paper XXIX - A self-learning teacher-student

framework for gastrointestinal image classifica-

tion

Auhtors Henrik L Gjestang, Steven A Hicks, Vajira L Thambawita, P̊al Halvorsen, and

Michael A Riegler.

Abstract We present a semi-supervised teacher-student framework to improve classifi-

cation performance on gastrointestinal image data. As labeled data is scarce in medical

settings, this framework is built specifically to take advantage of vast amounts of unla-

beled data. It consists of three main steps: (1) train a teacher model with labeled data,

(2) use the teacher model to infer pseudo labels with unlabeled data, and (3) train a

new and larger student model with a combination of labeled images and inferred pseudo

labels. These three steps are repeated several times by treating the student as a teacher

to relabel the unlabeled data and consequently train a new student. We demonstrate

that our framework can classify both video capsule endoscopy (VCE) and standard en-

doscopy images. Our results indicate that our teacher-student framework can significantly

increase the performance compared to traditional supervised-learning-based models, i.e.,

an overall increase in the F1-score of 4.7% for the Kvasir-Capsule VCE dataset and 3.2%

for the HyperKvasir colonoscopy dataset. We believe that our framework can use more of

the data collected at hospitals without the need for expert labels, contributing to overall

better models for medical multimedia systems for automatic disease detection.

Published Proceedings of the IEEE 34th International Symposium on Computer-Based

Medical Systems (CBMS).

Candidate contributions Steven contributed to the conception and design of the

experiments, and contributed to the drafting and revision of the manuscript. He also

presented the paper at CBMS.

Thesis objectives Objective 2.
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5.30. Paper XXX - DeepSynthBody: the beginning of the end for data deficiency in
medicine

5.30 Paper XXX - DeepSynthBody: the beginning

of the end for data deficiency in medicine

Auhtors Vajira L Thambawita, Steven A Hicks, Jonas L Isaksen, Mette H Stensen,

Trine B Haugen, Jørgen K Kanters, Sravanthi Parasa, Thomas de Lange, H̊avard D

Johansen, Dag Johansen, Hugo L Hammer, P̊al Halvorsen, and Michael A Riegler.

Abstract Limited access to medical data is a barrier on developing new and efficient

machine learning solutions in medicine such as computer-aided diagnosis, risk assess-

ments, predicting optimal treatments and home-based personal healthcare systems. This

paper presents DeepSynthBody: a novel framework that overcomes some of the inherent

restrictions and limitations of medical data by using deep generative adversarial networks

to produce synthetic data with characteristics similar to the real data, so-called Deep-

Synth (deep synthetic) data. We show that DeepSynthBody can address two key issues

commonly associated with medical data, namely privacy concerns (as a result of data

protection rules and regulations) and the high costs of annotations. To demonstrate the

full pipeline of applying DeepSynthBody concepts and user-friendly functionalities, we

also describe a synthetic medical dataset generated and published using our framework.

DeepSynthBody opens a new era of machine learning applications in medicine with a

synthetic model of the human body.

Published Proceedings of the International Conference on Applied Artificial Intelli-

gence (ICAPAI), 2021.

Candidate contributions Steven contributed to the conception of DeepSynthBody.

He contributed to drafting and revising the manuscript. Also, he came up with the name.

Thesis objectives Objective 1.
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Chapter 5. Papers and Author’s Contributions

5.31 Paper XXXI - DeepFake electrocardiograms us-

ing generative adversarial networks are the be-

ginning of the end for privacy issues in medicine

Auhtors Vajira L Thambawita, Jonas L Isaksen, Steven Hicks, Jonas Ghouse, Gustav

Ahlberg, Allan Linneberg, Niels Grarup, Christina Ellervik, Morten Salling Olesen, Tor-

ben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Inga Strümke, Hugo L Hammer,

Mary M Maleckar, P̊al Halvorsen, Michael A Riegler, and Jørgen K Kanters.

Abstract Recent global developments underscore the prominent role big data have

in modern medical science. Privacy issues are a prevalent problem for collecting and

sharing data between researchers. Synthetic data generated to represent real data carrying

similar information and distribution may alleviate the privacy issue. In this study, we

present generative adversarial networks (GANs) capable of generating realistic synthetic

DeepFake 12-lead 10-sec electrocardiograms (ECGs). We have developed and compare

two methods, WaveGAN* and Pulse2Pulse GAN. We trained the GANs with 7,233 real

normal ECG to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a

commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate

that the Pulse2Pulse GAN was superior to the WaveGAN to produce realistic ECGs.

ECG intervals and amplitudes were similar between the DeepFake and real ECGs. These

synthetic ECGs are fully anonymous and cannot be referred to any individual, hence they

may be used freely. The synthetic dataset will be available as open access for researchers

at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for

generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic

ECGs using adversarial neural networks on normal ECGs from two population studies,

i.e., there by addressing the relevant privacy issues in medical datasets.

Accepted Nature Scientific Reports, 2021.

Candidate contributions Steven contributed in the inception and discussion of the

experiments and work. He contributed to drafting and revising the manuscript.

Thesis objectives Objective 1.
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5.32. Paper XXXII - Vid2Pix-A Framework for Generating High-Quality Synthetic
Videos

5.32 Paper XXXII - Vid2Pix-A Framework for Gen-

erating High-Quality Synthetic Videos

Auhtors Oda O Nedrejord, Vajira L Thambawita, Steven A Hicks, P̊al Halvorsen, and

Michael A Riegler.

Abstract Data is arguably the most important resource today as it fuels the algorithms

powering services we use every day. However, in fields like medicine, publicly available

datasets are few, and labeling medical datasets require tedious efforts from trained special-

ists. Generated synthetic data can be to future successful healthcare clinical intelligence.

Here, we present a GAN-based video generator demonstrating promising results.

Published Proceedings of the IEEE International Symposium on Multimedia (ISM),

2020.

Candidate contributions Steven contributed to the conception, design, discussion,

and analysis of the models and results presented in the paper. He also contributed to

drafting and revising the manuscript.

Thesis objectives Objective 2.
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5.33 Paper XXXIII - Big data is not always better-

prediction of live birth using machine learning

on time-lapse videos of human embryos

Auhtors Steven Hicks, Trine B Haugen, Mario Iliceto, Hugo L Hammer, Jorunn M

Andersen, Oliwia Witczak, Michael A Riegler, and Mette H Stensen.

Abstract Time-lapse technology is considered an exceptional tool when observing the

dynamic processes of early embryonic development. However, there is not enough evidence

to conclude that the introduction of this technology has improved live birth rates after

ART. Machine learning has proven its capability in analyzing images at a level above many

humans and may uncover unseen patterns of predictive value when assessing embryos

from time-lapse videos. Few studies using ML have been done. However, it is not known

whether these methods may be used to predict live births.

Published Human Reproduction, 2020.

Candidate contributions Steven contributed to the experiments and to drafting and

revising the manuscript.

Thesis objectives Objective 2.
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5.34. Paper XXXIV - Artificial intelligence as a tool in predicting sperm motility and
morphology

5.34 Paper XXXIV - Artificial intelligence as a tool

in predicting sperm motility and morphology

Auhtors Michael A Riegler, Jorunn M Andersen, Hugo L Hammer, Steven Hicks, Oli-

wia Witczak, and Trine B Haugen.

Abstract Although computer-aided sperm analysis (CASA) has been available for sev-

eral decades, manual semen analysis according to WHO guidelines is still regarded as the

gold standard. The assessment of sperm motility by CASA systems is rapidly performed,

however, the tracking for spermatozoa in fresh semen is prone to error, and results may

differ from manual analysis. Assessment of sperm morphology is performed on stained

cells for both manual and CASA and is time-consuming. AI methods may have a large

potential in classification and interpretation of sperm imaging and thereby replace the

subjective and time-consuming methods.

Published Human Reproduction, 2019.

Candidate contributions Steven contributed by performing the experiments, and

drafting and revising the manuscript.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.35 Paper XXXV - Artificial intelligence predicts

sperm motility from sperm fatty acids

Auhtors Oliwia Witczak, Jorunn M Andersen, Steven Hicks, Hugo L Hammer, Michael

A Riegler, and Trine B Haugen.

Abstract Omega-3 FAs are abundant in the sperm and are positively associated with

sperm motility, especially progressive motility. Other sperm FAs present in lower levels

may also be associated with sperm characteristics. AI may have the potential to predict

sperm motility based on FA composition and thereby provide more insight into FAs impact

on sperm function.

Published Human Reproduction, 2019.

Candidate contributions Steven contributed by performing the experiments, and

drafting and revising the manuscript.

Thesis objectives Objective 2.
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5.36. Paper XXXVI - Using 2D and 3D Convolutional Neural Networks to Predict
Semen Quality

5.36 Paper XXXVI - Using 2D and 3D Convolutional

Neural Networks to Predict Semen Quality

Auhtors Jon-Magnus Rosenblad, Steven Alexander Hicks, H̊akon K Stensland, Trine

B Haugen, P̊al Halvorsen, and Michael A Riegler.

Abstract In this paper, we present the approach of team Jmag to solve this year’s

Medico Multimedia Task as part of the MediaEval 2019 Benchmark. This year, the task

focuses on automatically determining quality characteristics of human sperm through the

analysis of microscopic videos of human semen and associated patient data. Our approach

is based on deep convolutional neural networks (CNNs) of varying sizes and dimensions.

Here, we aim to analyze both the spatial and temporal information present in the videos.

The results show that the method holds promise for predicting the motility of sperm, but

predicting morphology appears to be more difficult.

Published Working Notes Proceedings of the MediaEval 2019 Workshop.

Candidate contributions Steven supervies Jon-Magnus in his work and contributed

by aiding in the conception and design of the experiments, and by drafting and revising

the manuscript.

Thesis objectives Objective 2.
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Chapter 5. Papers and Author’s Contributions

5.37 Paper XXXVII - Artificial Intelligence in Medicine

- Gastroenterology

Auhtors Inga Strümke, Steven Alexander Hicks, Vajira L Thambawita, Debesh Jha,

Sravanthi Parasa, Michael A Riegler, and P̊al Halvorsen.

Abstract The holy grail in endoscopy examinations has for a long time been assisted

diagnosis using Artificial Intelligence (AI). Recent developments in computer hardware are

now enabling technology to equip clinicians with promising tools for computer-assisted

diagnosis (CAD) systems. However, creating viable models or architectures, training

them, and assessing their ability to diagnose at a human level, are complicated tasks. This

is currently an active area of research, and many promising methods have been proposed.

In this chapter, we give an overview of the topic. This includes a description of current

medical challenges followed by a description of the most commonly used methods in the

field. We also present example results from research targeting some of these challenges,

and a discussion on open issues and ongoing work is provided. Hopefully, this will inspire

and enable readers to future develop CAD systems for gastroenterology.

Published Artificial Intelligence in Medicine, 2021

Candidate contributions Steven contributed to drafting and revising the manuscript.
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Rodŕıguez, and Fernando Vilariño. Wm-dova maps for accurate polyp highlighting

in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical

Imaging and Graphics, 43:99–111, 2015.

[16] Jens Peter E Bonde, Erik Ernst, Tina Kold Jensen, Niels Henrik I Hjollund,

Henrik Kolstad, Thomas Scheike, Aleksander Giwercman, Niels Erik Skakkebæk,

Tine Brink Henriksen, and Jørn Olsen. Relation between semen quality and fer-

tility: a population-based study of 430 first-pregnancy planners. The Lancet,

352(9135):1172–1177, 1998.

[17] Hanna Borgli, Vajira Thambawita, Pia H. Smedsrud, Steven Hicks, Debesh Jha,

Sigrun L. Eskeland, Kristin Ranheim Randel, Konstantin Pogorelov, Mathias Lux,

Duc-Tien Dang Nguyen, Dag Johansen, Carsten Griwodz, H̊akon K. Stensland,

Enrique Garcia-Ceja, Peter T. Schmidt, Hugo L. Hammer, Michael A. Riegler, P̊al

Halvorsen, and Thomas de Lange. HyperKvasir, a comprehensive multi-class image

and video dataset for gastrointestinal endoscopy. Scientific Data, 7(1):283, 2020.

[18] Patrick Brandao, Evangelos B. Mazomenos, Gastone Ciuti, Renato Caliò, Federico
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