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Abstract

Instrumentation is ubiquitous in computer software today though its

use in parallel processing frameworks is not widespread. In this thesis,

we have developed an instrumentation framework, which we have

integrated with the P2G framework. The instrumentation framework

feeds a high and low level scheduler with detailed instrumentation data,

while inducing a minimal of overhead. Our instrumentation framework

also collects a wealth of information about the machine it runs on,

including capabilities, enabling P2G to support specialized hardware. To

demonstrate the feasibility of our framework, we have run a series of

tests that shows promising results, both for the schedulers and developers

seeking to locate a performance bottleneck, even though P2G, at the time,

was not able to use this data for enhancing the decision making process
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Chapter 1

Introduction

Instrumentation is ubiquitous in computer software today; the operating

system keeps statistics on each process currently executing, the download

tab in your browser shows how fast a download goes and some games

show you the current frame rate achieved. Such instrumentation data can

be used in a number of ways. For example, schedulers use instrumenta-

tion data provided by the operating system to weight their choice when se-

lecting the next task to run [2], i.e., how much CPU time a task demands, is

used as feedback to the scheduling algorithm. By carefully selecting which

tasks to run, the schedulers can attain less overhead or fairer scheduling,

all depending on what the scheduler is trying to accomplish. Another ex-

ample where instrumentation data is used is for billing purposes. Some

Internet Service Providers (ISP) bill their customers based on network us-

age. Even though instrumentation is important, with so many possibili-

ties, a general solution for all instrumentation has yet to surface, and may

be impossible. We are therefore required to write custom solutions for

most problems.

1
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1.1 Background and motivation

Ever since the inception of programmable computers, both hardware and

software have become increasingly complex. This increase in complexity

is the result of the never ending quest for better performance. Already

in 1965 it was noted that the number of transistors on one integrated

circuit had doubled every two year from the invention of the integrated

circuit in 1958, and it was predicted that this trend would continue. This

prediction is what is now known as Moore’s law [3]. It has been proven

to be remarkably accurate, to the degree that is has become a self-fulfilling

prophecy, because it is used as a target for product development [4].

To keep up with Moore’s law, engineers have in the last years had to

increase the number of CPU cores, because adding logic to one core got

diminishing returns in terms of performance. While the increase in CPU

cores in one machine does offers an increase in theoretical performance,

it does not automatically provides a program written for only one CPU,

more speed. So, as the hardware becomes more complex, the software

has to follow suit. This leaves us with very complicated hardware and

software designs, that contain numerous different parts that interact with

each other in various undeterministic ways.

On the hardware front, the latest attempts to increase performance of

single machines include the introduction of heterogeneous machines,

where a specialized co-processor can perform some tasks at a very high

speed. An example of this is seen in the current trend in decoding H.264 [5]

and other video codecs by offloading as much of the processing as possible

to the Graphics Processing Unit (GPU) [6–8]. The GPU can perform many

of the steps required to decode a video stream at a rate much higher

than the general purpose CPU the GPU is connected to. Another popular

heterogeneous architecture is the Cell Broadband Engine [9], first used in

the Sony PlayStation 3. It has a general-purpose Power Architecture CPU



1.1. BACKGROUND AND MOTIVATION 3

and several RISC co-processors with 128-bit SIMD support [10].

On the software front, we are beginning to look into using more than

a single machine to do the processing by distributing tasks between

machines in a cluster. There are many frameworks written to utilizing a

computer cluster for parallel processing, like MapReduce [11], Dryad [12]

and Nornir [13]. They all need a scheduler to decide where to run each

workload, but the use of instrumentation data for scheduling in a cluster

of computers is still a fairly new field of study. In Hadoop [14], an open-

source implementation of MapReduce, the task scheduler assumes that

all tasks progress linearly. While that holds true on an homogeneous

cluster, it can severely impede performance in an heterogeneous cluster.

However, in [15], Zaharia et al design a new scheduling algorithm,

Longest Approximate Time to End (LATE) that tries to work around the

shortcoming of the default scheduler, by using instrumentation data to

estimate time left for each running task, and using that as a feedback into

the speculative task scheduler.

A less simple system for distributed computing, Condor [16], uses

instrumentation data to decide whether or not a machine is idle. Condor

does not otherwise make use of the instrumentation data for scheduling

but it has another feature that is interesting; it has the ability for jobs

to have certain requirements for the system it should be executed on,

like operating system and hardware. This maps nicely to heterogeneous

systems.

In an attempt to simplify writing and running multimedia processing on

an heterogeneous computer cluster, a new framework, with a new way

for expressing parallelism, is under development. It is called P2G, and as

with several other frameworks, the P2G runtime consist of a central node,

and several worker nodes. The central node partitions the workload, and

then delegate parts to the worker nodes. Because of the way the low

level scheduler on each machine can combine tasks, and the way different
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implementation for a task, compiled for different architectures, can be

scheduled by the central high level scheduler in P2G, we believe that it

can greatly benefit from instrumentation data. We discuss P2G more in

depth in chapter 3.

While the use of instrumentation data in distributed systems is not

wide spread, schedulers have used instrumentation data, often called

accounting data, to make decisions since the move from non-multitasking

operating systems to preemptive scheduling [17]. Today, a variety of

scheduling algorithms are used, but most are based on the same idea of

using a multilevel feedback queue [18]. This approach has worked well

on a single machine, since all of the accounting is done inside a context

switch and keeps the overhead low.

1.2 Problem statement

Instrumentation is used successfully on single machine systems to not

only help the scheduler, but also for many other tasks, like aiding a

developer track down a performance bottleneck. We therefore want to

research and develop an instrumentation framework for P2G, so that

we can provide both the developers writing P2G programs and the P2G

scheduler with useful and valid data. We investigate what kind of data

we can provide and discuss what possible use the data might have. We

look at how we should report missed deadlines, and investigate how to

detect and report the different capabilities, load and status of a machine.

To help P2G avoid scheduling task onto machines that are overloaded or

dying, we also look at ways to detect failing machines before they fail.

Our framework must not introduce much overhead, because that would

render it less useful in a high performance setting.
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1.3 Research method

We chose to use what in [19] is called evolutionary prototyping, because

we are unsure about the exact requirements of the final instrumentation

framework. We researched, designed and implemented a working moni-

toring and instrumentation framework prototype. We then integrated the

prototype with the P2G framework and focused on minimizing the over-

head of collecting the data and the process of making data available to

both the low level and high level schedulers and to the developers.

1.4 Contributions

During the master studies, we have published a demo poster to EuroSys

2011 [20], and submitted a paper to the 2011 International Conference on

Parallel Processing (ICPP-2011) [21], which is currently pending review.

We have seen that instrumentation is important for a scheduler to make

the correct decisions, and the goal of this thesis has been to design and

implement an efficient framework with a low overhead for data gathering.

With this goal in mind, we have explored different ways to obtain

timing information (Section 2.4), and created a proof-of-concept prototype

(Chapter 5) proving the chosen method is viable. The instrumentation

framework we have made is capable of collecting detailed system status,

make precise measurements and reporting it back to to the master node,

without adding too much overhead. We have also gained valuable insight

into what data a scheduler could use.
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1.5 Outline

Since the focus in this thesis is on providing information to a scheduler

in a parallel processing framework, i.e., P2G, quite a lot of background

material is needed. Both schedulers and parallel processing frameworks

are quite complex, so in chapter 2, we give some background on data

gathering, time sources, graphs and more. Chapter 3 introduces the P2G

framework and explains how it differs from other parallel processing

frameworks. It also explains the details of how P2G works.

In chapter 4, we explain the reasoning behind the design choices we have

made with respect to our instrumentation daemon, and go into detail on

how we set up the timers and why. Chapter 5 contains the specifics of the

implemented instrumentation framework and shows how well it fits into

the P2G framework.

In chapter 6 we evaluate our implementation. We go trough each data

point gathered and discuss if the scheduler could make use of it in

chapter 7.

Finally, we give conclusions and directions for future work in chapter 8.



Chapter 2

Background

In this chapter, we first introduce high performance clusters in section 2.1,

and discuss the two methods used to split a workload to many machines.

We then go through the basics of graphs in section 2.2. In section 2.3, we

explain how different kinds of instrumentation work. Later in this chapter,

we go into detail on how timing information can be acquired on current

Linux systems, and finally, we discuss related work.

2.1 High performance clusters and types of par-

allelism

The usage of high performance clusters (HPC) is the only solution

when a lot of processing power is needed. HPC is in use for many

different purposes when applications are computationally bound, such

as predicting the weather, and rendering high quality 3D graphics. In a

HPC, several machines, each called a node, are connected by a network.

The nodes work together to complete a workload faster than any single

node could be capable of.

7
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The first step towards parallel execution, is to decompose the workload

in to self contained parts. Such workload partitioning requires a certain

degree of parallelism inherent to the problem, or, at least, a possibility of

expressing computationally intensive parts of the problem as a paralleliz-

able algorithm. There are two main approaches to split a workload so that

each node can process the work in parallel.

The first approach, called data decomposition, or domain decomposition,

obtain its parallelism from splitting the input data and have each node

work on a different part. When execution with all parts of the input data

has finished, the workload is done. Exploiting this kind of parallelity is

relatively easy; a program must be written that can work on a subset of the

data, and then a generic framework can split the input data and distribute

the parts. The framework can then start the execution on each node as

fast as each node get its own data. Even with a heterogeneous computer

cluster it is fairly easy for the framework to balance the work, so that no

node is idling, waiting for data. Since the nodes do not share any data

or state with each other, the workload completes with the same result,

regardless of scheduling order and without the possibility of a deadlock.

The second approach, task decomposition, or functional decomposition,

describes an approach where the data processing is split into several

different computational steps, which, in turn, could be assigned to

different nodes. It is potentially harder to exploit task parallelisation like

this, but with a heterogeneous cluster, some tasks may be better suited for

certain types of nodes, and the gain by using task parallelisation correctly

can be substantial.

When a workload has been decomposed, it can be scheduled onto different

nodes to leverage their combined processing power.
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2.2 Scheduling

The job of the scheduler in a HPC is to balance workloads across the nodes

in order to achieve the highest throughput. Graphs and graph partitioning

is used by the scheduler to decide where to schedule different jobs, since

workloads can be represented as a graph, with vertices being nodes, and

edges being communication demand between nodes. How much CPU

time a given task demands, or how much data it have to communicate

to other nodes is often not known in advance. We want to provide the

scheduler with actual measured data. The scheduler can then use that

data to weight the scheduling graph. We have a small introduction into

graph theory and graph partitioning in the following sections.

2.2.1 Introduction to graphs

A graph consists of an ordered pair G = (V, E), where V is a set of vertices

and E is a set of edges. The edges are simply pairs of vertices, so every

edge is connected to two vertices. We have two kinds of graphs, one where

the vertices consist of unordered pairs, called an undirected graph, and

one where the pairs are ordered, called a directed graph. The difference is

illustrated in figure 2.2.1.

In an undirected graph, there is no direction associated with a vertex. This

is illustrated in figure 2.1.2. In an undirected graph, each vertex of an

edge must be different, i.e., a vertex can not loop back on the same edge

it originates from, so an edge like e9 in figure 2.1.1 is not possible. In a

directed graph, as shown in figure 2.1.1, you can see that the edges have

a direction. An undirected graph can be changed into a directed graph by

change each edge into two edges in opposing directions, like edge e4 and

e8 in figure 2.1.1.
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2.1.1: Directed graph
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2.1.2: Undirected graph

Figure 2.1: Different kind of graphs

A weighted graph is a normal graph, where weight is assigned to each

edge, vertex or both. To split the graph into several different partitions is

called partitioning the graph, which we discuss further in the following

section.

2.2.2 Graph partitioning and the need for instrumentation

Graph partitioning is used to split a graph into two or more partitions.

Various criteria can be used for how the graph should be split. In our case,

a high level scheduler might have a graph of a workload, weights assigned

to each of the vertices, obtained through instrumentation. If different

nodes communicate, the edges connecting the vertices can be weighted
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Figure 2.2: Example of a graph that is partitioned

by using instrumentation data for how much data is transmitted on each

edge. From that graph, the scheduler can then partition the graph into

K-partitions, where K is the number of nodes available in the HPC.

Depending on what the scheduler wants to achieve, it can partition the

graph with a given criteria, for example, it can try to make each partition

contain about the same weight of vertices. In figure 2.2, we can see a

graph that has been partitioned into two parts, one red and one blue,

both containing an equal weight of the vertics. The partition also has

minimized the weight of the edges that leave or enter each partition. The

same would a scheduler do to keep task that transfer a lot of data to each

other on the same node in order to avoid transferring it over the network.

We do not go into how the different graph partitioning algorithms work,

but interested readers may want to read more in [22].
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2.3 Instrumentation

So far we have mentioned instrumentation, but not gone into any detail.

We now discuss different kind of instrumentation and what they can be

used for. Instrumentation can be of help for understanding the dynamic

behavior of an application, both for the programmer, who wishes to

improve his application, and for a scheduler that tries to find an optimal

execution plan. Other uses include monitoring performance and adapt the

code path taken, based on load, and admission control, that only allows

new tasks to be scheduled if there is enough free capacity.

There are several different types of instrumentation; Profilers record a

variety of metricses for a program, tracers record which code path are

followed in a program, and timers record how long a section of code take

to complete. We now explore these in detail.

2.3.1 Profiling

There are several types of program profilers; some profile memory usage,

and other metricses, but we focus on those that profile by counting how

many times each basic block of code is executed, called a flat profiler. An

example of a profiler that can output a flat profile is GNU Gprof [23].

Profilers are a helpful tool for the programmer. It can help to determine

where the optimization efforts should be focused. A common adage

of software development is that 80% of the time is spent in 20% of the

code [24]. Profiling can then identify where optimization is most useful.

It is of little use to optimize code that is executed rarely, but of much

value to speed up code that is executed often. figure 2.3, even a minor

improvement in code that takes up most of the processing time is better

than a big improvement in code that constitutes only a small portion of

the processing time. Assume a program consisting of two separate parts,
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A and B. When A is optimized so it runs 10 times faster, the whole program

still takes more time to complete than if B is optimized so it runs twice as

fast.

Two separate code parts A B

Original process

Speed up by 10x

by 2xSpeed up

A

B

Figure 2.3: Speedup for various parts

Just in time (JIT) compiling uses profiling to estimate execution times for

optimization. If a code block is executed frequently, the gain obtained by

compiling that block into native, efficient code can be larger than the time

lost by actually compiling it [25].

An accurate and straightforward way of doing profiling, is to insert code

at the start of every code block. The code inserted at each place will have a

counter assigned to it, which it increases each time it is executed. This can

introduce significant overhead, because the inserted code is also executed

on each branching of the original code. Alternatives have been developed,

which can eliminate the recording at many of the branches, by careful

analysis of the original code. If a code path that is profiled has a branch,

and each arm of the branch ends up in the same position, only one of

the branches needs to be recorded, since the number of times the code

has gone down the other branch can be calculated by the total number

of times the execution has gone into the code before the branch, minus

the times it has taken the branch with the profiling code. This reduces

the instrumentation overhead, while still obtaining a full profile for every

block of code [25].

Take figure 2.4; It has five code blocks, connected in a simple layout. If

this is the entire program, we could get away with three counters, one in
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A B

C

D

E

Figure 2.4: Code blocks

B, C and D, and still know how many times each block of code has been

executed.

Another instrumentation approach is interrupt-based: a program’s ex-

ecution is interrupted at periodic intervals and the program counter is

recorded. Over time, the numbers average out and should represent an

accurate view of where the program is spending time. We discuss how a

machine can get a periodical interrupt in section 2.4.

2.3.2 Tracing

Program tracing counts how many times each block is executed, and

in what sequence they are called. GNU Plot, as discussed earlier, also

support to output a call graph, showing how each code path was reached,

and how many times it was reached that way. This is useful in code path

analysis, which is used to audit code for possible errors. For example, the

Linux kernel has a built in tracing framework, Linux Trace Toolkit next

generation (LTTng) [26]. LTTng is designed to be used to debug problems

that show up rarely, so it needs to be present in production code without

being enabled. It works by inserting special probes in the code before
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compilation. Each probe has a very low overhead in the normal case when

it is not enabled. Once a situation arises that needs to be monitored, the

probes can be enabled at run time and tracing information can be collected.

2.3.3 Timing

There are two ways to time a program. We can either time the execution

of the whole program under one, or we can time specific code parts

separately. The first is possible under Linux by invoking the time [27]

command. The output of time gives us three different numbers. The first

number is the time the program took to execute, it would be equal to the

time a user would have to wait for it to complete. The second number is

the amount of CPU time the program used, it could amount to more than

the first number. The last number, is the CPU time spent in the kernel on

behalf of the program.

The time command is only useful if we are interested in the execution time

of the entire program. If the program runs indefinitely it is apparent that

time does not work. We then have to resort to inserting timing code into

the program around those pieces of code we are interested in. This would

usually be a function or an inner loop to measure just how much time is

spent in that particular location. The timing of one or more small, specific

pieces of code is called a microbenchmark, and usually tells us how fast that

piece of code runs.

Another way to obtain timing information during the execution of a

program, is to call getrusage [28]. It returns various statistics on either the

calling process, all of its children, or the calling thread.
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2.3.4 Early failure warning

Given a computational cluster of a certain size, we are almost guaranteed

that there are malfunctioning components within the cluster at any given

time. An investigation performed for the Internet Archive [29] on failures

of hardware in their cluster showed failure rate as high as 2% for hard

disk drives (HDD), and 2.54% [30] for motherboards, CPU, memory, etc.

combined. Other studies have shown failure rates for HDDs as high as

4–8% annually [31, 32].

When a machine fails, its behavior can be undefined, it is therefore of

interest to try to take machines out of service before they break down.

There are several approaches to predict failures in different hardware [33].

We here discuss two common strategies, the S.M.A.R.T. data provided by

HDDs, and the CPU temperatures provided by temperature sensors inside

CPUs.

S.M.A.R.T. data

Self-Monitoring, Analysis, and Reporting Technology (SMART) is a

system for monitoring the health of HDDs built into most new HDDs. It

monitors several key parameters of the HDD, and tries to predict failures.

Google observed over 100,000 HDDs and analyzed the data returned by

those HDDs that did fail and by those that did not fail. They found some

correlation between the SMART data returned and failures. A problem

with SMART data is that the values returned are not standardized.

Core temperature

New CPUs contain not one, but several temperature sensors. Those

additional temperature sensors are added because we want to know how
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2.5.1: With different workloads 2.5.2: With a single core application

Figure 2.5: CPU Hot-spots, illustrations is from [1]

warm the hottest spot on the CPU is. For example, if the workload stresses

the floating point unit (FPU), that is where the CPU is the warmest. As

we can see from figure 2.5, the hot-spot of the die varies a lot depending

on the workload. Each temperature sensor is checked and the warmest

temperature sensor for each core is selected and that is the temperature

that is returned when queried in the legacy way [1].

Many modern CPUs monitor the temperature sensors themselves, and

throttle back the clock speed if a certain thermal threshold is exceeded.

Some even go into a complete shutdown if the temperature increases

enough.
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2.4 Time sources

Modern computers have implemented several methods of acquiring

timing information from the system. All current timer sources have one or

more problems, they are either slow or not very accurate, and in some

cases even both. Certain time sources, like the time stamp counter on

many AMD processors, do not even guarantee that two successive calls

return monotonically increasing timestamps [34], the last call might return

a time stamp that is earlier than the time stamp returned by the second call.

A programmer must be aware of such idiosyncrasies to choose a reliable

and sufficiently accurate timing strategy. We now describe some of the

methods, and their strengths and weaknesses.

2.4.1 Hardware timers

Hardware timers require dedicated circuitry to operate. They are usually

based on a crystal oscillator, and either contain a register that can be read

by the CPU or output an interrupt periodically. Different hardware timers

have been implemented with various goals in mind. Hardware timers are

used as a backend for all software timers. In this section we introduce the

most common hardware timers available on modern computers. All of the

following timers are in use today.

Intel 8253

When the IBM PC was introduced in 1981, it contained an Intel 8253

Programmable Interval Timer (PIT). While all modern IBM compatible

computers contain an Intel 8253, it is no longer on a separate chip on the

motherboard, since it has been integrated into the south bridge chipset.

It has three channels, each implemented as a 16-bit counter that counts
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down to zero. Each channel can be in one of six modes, and depending

on the mode configured, it can be used for different things. Channel 0 is

connected to IRQ 0, and channel 2 is connected to the PC-speaker. Channel

1 is not always present, and if present, it is not very useful because it

was used to refresh the Dynamic Random Access Memory (DRAM) on

early machines featuring the chip, and that functionality is not needed

any more.

Access to the PIT is through four fixed I/O Ports. While relatively simple

to use, it does take 3 microseconds to read it [35]. It is possible to use it

as an aperiodic timer, but since it is slow to program a new timeout value,

it is only used as a way to generate a periodic clock interrupt on systems

without other suitable timers. The PIT is also used for tone generation on

the PC-speaker.

Real Time Clock

A real time clock (RTC) was added to the IBM PC in 1984, as a way to

keep track of the clock even when the system was not connected to the

mains. It has a small battery to keep the clock running when the rest of the

system is without power. As with the Intel 8253, the RTC is now integrated

into the south bridge chipset. It can also be used to generate periodic

timers, to free the PIT for aperiodic tasks. However, this is not what it

was designed for and it has proven to be unreliable [36] and slow [37].

The interrupt generated by the RTC is on IRQ 8, which is of lower priority

than every IRQ with a lower value. Linux only read the value at boot and

after resuming from a low power state [38].
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Time Stamp Counter

Every Intel x86 CPU since the Pentium has had a 64-bit register called

TSC. The TSC register is incremented on every tick, and is initialized to 0

when the CPU is reset. When introduced in 1993 it was very well suited

for achieving fast and accurate timing due to the fact that the tick-rate was

known because it was tied to the CPU clock rate. It is low overhead since

all that was needed to read it was to run one instruction, RDTSC (opcode

0F 31). When executed the result would be returned in the two 32-bit

registers EDX and EAX [39]. The TSC has no way to generate an interrupt,

so it can only be polled for time.

Since the introduction of multi-core CPUs and CPUs with different levels

of power saving modes, some obstacles have been introduced that make

it less desirable to use it as a time source.

On some multi-core CPUs, not all cores tick at the same rate. This means

that over time the values diverge. This can create problems for programs

that use the TSC to measure the elapsed time. If the program reads

the TSC while running on one of the cores, and is then later scheduled

onto another core, where it again reads the TSC, it can appear that the

time has gone backwards. This is especially true for AMD CPUs [34],

where AMD has released a windows driver that tries to avoid the problem

by synchronizing the TSC by periodically adjusting them so they are in

sync [40]. This mitigates the problem, but allows for the possibility of

having the TSC value go backwards for successive reads.

When some power saving modes are activated the tick rate of the CPU

might be affected, skewing the results if it was calibrated when the tick

rate was different. So unless great care is taken, this is a potential source

of error. On new Intel CPUs the TSC is incremented at a constant speed

regardless of the current clock rate.
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The Intel Pentium Pro introduced out-of-order execution, that removes the

guarantee that instructions are executed in order. This means the CPU is

free to reorder the instructions, which means you no longer know what

you are timing. To work around this the CPU must be told to finish all

previous instructions before continuing. It is accomplished by executing a

serializing instruction before RDTSC. This slows down the execution, but

it is still very fast [35].

Another problem encountered with the TSC is that not all x86 clones have

implemented the RDTSC instruction, and even if the CPU supports it, the

OS can disable it. This comes in addition to the problems described earlier,

and makes the TSC unsuited as a general method of timing.

Since the rate at which the TSC increases is unknown, it can not be used

as a source to calculate elapsed time, without first calibrating it by using a

known timer. To calibrate it, we read the TSC at a known interval, and the

tick rate can then be calculated. This only give us an approximation, that

can not be more accurate than the clock used as an reference.

To summarize; The TSC, used correctly on the correct hardware, can

work as expected. However, its use as a general method of timing is

discouraged [41].

Local APIC Timer

The advanced programmable interrupt controller (APIC) was introduced

to solve the problem for how to serve interrupts efficient on multiproces-

sor systems. Each CPU has its own local APIC (LAPIC). It contains a 32-bit

counter and counter input register. The speed of the counter is not known,

but is usually the same as the processor’s front side bus (FSB) [42].

Several implementations of the APIC timers are buggy [43] [37]. It also

suffers from the same problem the TSC has, in that the speed the counter
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is increasing is not known. To use it, we must follow the same calibration

technique as the TSC.

PM Timer

The PM timer is also known as the ACPI timer. According to the ACPI

specifications [44], it is required to be present on any ACPI compatible

systems. It can either have a 24 bit or a 32 bit counter, and the counter

is increased at a frequency three times that of the PIT. Reading from the

PM timer is also fast, only 0.7 microseconds [35]. It can be configured to

raise an interrupt when the high bit changes. However, the counter value

cannot be set, and when reached its maximum value it overflows and start

at zero again, so it is not very flexible. The PM timer keeps running even

in some of the power saving modes where some of the other timers stop

or slow down, and can therefore be more reliable than other timers.

High Precision Event Timer

Intel and Microsoft developed the high precision event timer (HPET), and

it was presented in Intel ICH8 chipset. It was introduced because the

other available timers had flaws which made them undesirable to use. The

HPET counters run at a minimum of 10 MHz, and each chip has several

32 and 64 bit counters. Each counter can have several registers associated

with it, and when the value in the counter matches the value stored in one

of its registers an interrupt is raised.

Access is almost as fast as the PM Timer, at 0.9 microseconds [35]. One

problem with the HPET timer is that the registers for a timer only trigger

when the counter is an exact match, and since there might be a large

enough delay from reading the current value, to the new register value

has been calculated and written back, that the counter might have passed
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that number. This results in the timer not triggering before the counter has

rolled over and started again, which could be a long time.

2.4.2 Software timers under Linux

We focus on software timers in Linux because that is the operating system

we are using for our implementation. Other operating systems have

different but similar interfaces to the timers, so much of the information

here may be applied to other operating systems.

When it comes to timers, the Linux kernel has two main tasks it must

accomplish. The first is to keep track of the current time and make it

available through various APIs discussed later, and the other is to have

a framework that allows both the kernel and user space applications to

sleep for a given interval [45]. We focus on the first part, since that is what

we use in our instrumentation framework later.

Software timers are the way the OS exposes the hardware timers to the

applications. Some of the hardware timers can be interfaced directly from

software, but even then they usually require special privileges. The TSC

is a notable exception and is usually readable from user space software

running as an unprivileged user.

Linux used to be based on ticks, where it scheduled a periodic timer to

trigger at a given interval. Typical values have been 100, 250, 512, 1000 and

1024 times per second for different kernels. One such interrupt is called a

tick. On each new tick the value of the tick-counter is increased, and since

the time since the last tick was a fixed value, the kernel could increase the

system time value by the same amount. When the timer interrupt occurs

the current value of TSC is also saved for later use in calculation of inter-

tick time. If the kernel had 100 ticks per second the system time increased

at 10ms intervals.
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When ticks are used and gettimeofday is called, the kernel reads the TSC

again, calculated the time from the last tick and add that to the time saved

as system time at the last tick. This method is error prone, because there

are several race conditions and the possibilities of missed ticks made the

time drift. These problems are also exacerbated when running under

virtualization [42].

On newer Linux kernels, the entire timing subsystem is rewritten. The

new system use something they call clocksource abstraction. In the new

system, the time is calculated from scratched and returned when it is asked

for and not updated during a tick. This means that kernels using the

clocksource abstraction can run tick-less, i.e., they do not need to have

a periodic interrupt configured.

Tick-less kernels have several advantages. They are immune to problems

with lost ticks, since there are no ticks to be lost. This is a huge gain when

running under virtualization, removing the need for complex logic in the

hypervisor to compensate for lost ticks. Tickless kernels also eliminate a

lot of unnecessary waking up, where all that is done is to update a few

timers.

time

The time system call returns the number of seconds since the Epoch

(00:00:00 UTC, January 1, 1970) [46]. Its resolution is in seconds and it

is useless for all but the most coarse instrumentation.

gettimeofday

Gettimeofday returns a data structure containing the number of seconds

since the Epoch, just like the time system call, but it also contains the
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number of microseconds in the current second [47]. A problem when

using the gettimeofday system call for measuring time is that it is affected

by changes to the system clock. If the clock is adjusted, the time returned

from a call before the adjustment and a time returned after the adjustment

cannot be compared. Even with that problem, gettimeofday is widely used

in a lot of software.

clock_gettime

The clock_gettime system call takes a clock-id as a parameter, that way the

program can choose between multiple clocks. Recent versions of Linux

have a clock-id called CLOCK_MONOTONIC_RAW which gives access

to raw hardware-based time that is unaffected by changes to the system

clock like NTP adjustments [48]. Because it is guaranteed to increase

monotonically, linearly, and is unaffected by adjustments to the system

clock, CLOCK_MONOTONIC_RAW is the preferred clock-id for timing

uses. Unfortunately it can not be used to tell the current time, or use in

conjunction with timeout values used like in select [49].

2.4.3 Distributed time

In a machine cluster it is desirable to have a common clock on all machines.

Since that is not usually possible we are left with trying to synchronize

the clocks. This is achieved by using NTP to synchronize clocks over the

local network and even over the Internet. It can compensate for variable

latency to the time server, and if the time server is on the local network,

accuracies down to tens of microseconds can be achieved [50]. To increase

accuracy, parts of the NTP clock phase-locked loop is inside the Linux

kernel, running in kernel space.
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Another way to distribute the clock is to use a GPS connected to each

machine. Embedded in the GPS signal is a very accurate clock stream,

which enables the machines to be synchronized with an maximum error

of around 10 microseconds [51].

Since the local clocks on all machines drift, and in what direction and

by how much is different on every machine, a daemon is usually run

to continuously adjust the time to keep it in sync. Even with such a

daemon running it is not advisable to rely in the distributed time being

synchronized any better than to the same second.

2.5 Parallel processing frameworks

To implement instrumentation in a parallel processing framework is not

a new idea. In the Nornir [13] run-time system for parallel programs,

Vrba et al. implemented something they called accounting, where they

could record various performance related values, like CPU time used by

each process, number of context-switches, number of loop iterations while

waiting to acquire a spinlock, and more. They found that this added

around 0.72 microseconds in overhead, most of it from two system calls

for obtaining data on per-process CPU time. However, they did not use

this for any scheduling decisions, and it was mainly used to give data to

the programmer about where bottlenecks are.

In Dryad [12], Isard et al. have implemented a manager. The manager can

detect if some parts of the job is finishing slower than comparable parts. It

can then spawn a duplicate job to make sure one slow computer does not

slow the whole job down. This behavior is similar to MapReduce’s backup

task.
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2.6 Summary

In this chapter we have introduced HPC and how scheduling work. We

have also explained how they can use a weighted graph to schedule more

efficiently. We then made the argument that we can use instrumentation

data as an input to the weighting of nodes in the graph. We gave

a thorough introduction to various implementation of timers, both in

hardware and in software. Finally we looked at other parallel processing

frameworks that use instrumentation.

In the next chapter we explain the P2G framework, and why it was

created. We then explain how it can benefit from instrumentation data.





Chapter 3

P2G

In the previous chapter we introduced a lot of background information,

we now show how it fits in with P2G, a framework for distributed

real-time processing of multimedia data. We start by explaining the

motivation to build such a framework. Then we show an example

workload implemented in P2G, and explain how it would be executed.

Last, we go into details about the inner workings of P2G.

3.1 Background and motivation

In recent years, it has become evident that the future development in

performance of general-purpose processors will come from concurrent

processing [52]. For years, the improvements in execution speed of single-

threaded applications were chiefly due to ever increasing clock speeds,

cache sizes and the efficiency of instruction level optimization. Around

2002, increases in clock speed stopped. You could buy a 3.06 GHz Intel

Pentium 4 processor in late 2002 [53], and Intel had planned to release a

4 GHz Pentium 4 but later abandoned that plan due to transistor leakage

29
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and power density [54]. Now, 9 years later, Intel’s fastest CPU in term

of clock speed has still not reached 4 GHz, instead Intel and other CPU

manufactures have moved to increase the number of cores in a CPU. The

trend is such that even mobile phones are equipped with multi core CPUs.

We are now at a place in time when parallel processing has taken over as

the main strategy for speed improvements. While multi-core CPUs offer

more theoretical speed, a sequential program has to be re-written to use

more than one core to exploit the possible concurrency.

Transitioning from a single to multi-threaded application is complicated

and often requires domain specific knowledge of the hardware it runs on,

to take full advantage of the computational capacity available. To ease

this work, several frameworks have been introduced, such as Microsoft’s

Dryad [12] and Google’s MapReduce [11].

As discussed in section 2.1, there are two main axis of expressing par-

allelism, and different frameworks usually only use one of the methods.

For example, MapReduce uses a data parallel model, where each machine

runs the same task on different parts of the data. P2G tries to improve the

situation by supporting to express both data and task parallelism in a new

way that is well suited for multimedia processing.

3.2 Overview

P2G is split into one master node, and an arbitrary number of execution

nodes, as shown in figure 3.1. The master node contains the High Level

Scheduler (HLS), Instrumentation manager and the communication man-

ager. The HLS dispatches work to the execution nodes and the instrumen-

tation manager gathers instrumentation data. Using the instrumentation

data, the HLS optimizes where, and how, work is dispatched.
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Figure 3.1: Overview of nodes in the P2G system.

Execution nodes can join the cluster at any time, and the HLS dynamically

distributes the workload onto all available execution nodes. Each execu-

tion node contains a Low Level Scheduler (LLS), Instrumentation Dae-

mon, Storage Manager and a Communication Manager. Instrumentation

data that the instrumentation daemon collects is provided to the HLS via

the network and to the local LLS. The LLS can, using instrumentation data

to guide it, combine multiple tasks into a single execution unit, a batch, in

order to reduce overhead. This is explained more in detail in section 3.2.10

A vital concept in P2G is the virtual fields, which are used to store

data between each step in the processing. In reality, the virtual field is

represented as a memory area on each machine that uses that virtual

field, limited to the ages and indexes that the machine work on. Even

when a virtual field is represented in memory, it is not guaranteed to be

continuous. When more than one machine share the same virtual field,

the store manager has to transport data from the machine that writes to

the virtual field, to all the machines that read from the same part of the

virtual field.



32 CHAPTER 3. P2G

3.2.1 Kernel language

The kernel language developed for P2G defines how a programmer

interacts with P2G, and expresses the parallelity of the program. A P2G

Program consists of an arbitrary number of field declarations, and code for

an arbitrary number of kernels. The field declaration defines which fields

the kernels works on, and the kernel code does the work on the data in the

fields.

The kernel interacts with the P2G fields through fetch and store com-

mands. Depending on how the fetch and store commands are written,

one kernel might be executed once per age, or for each index for each age.

3.2.2 Kernel code

The kernel code is the P2G code the programmer writes for their program.

Each kernel consists of sequential pieces of code, that work on data stored

in the virtual fields. The goal is to have each kernel express as much of an

decomposition as possible, so the scheduler can combine them as it sees fit,

based on instrumentation data for how long a kernel takes to execute. The

code for describing a kernel is currently implemented in a C-like language

that expose many of P2G’s central concepts. In the next section we see an

example workload written in kernel code.

3.2.3 Code example

Here is an example workload consisting of four kernels. When run the

print kernel writes out {10, 11, 12, 13, 14}, {20, 21, 22, 23, 24} for the first

age, and then {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for the second age.
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Since there is no termination condition in this workload, it continues to

run and print increasing values indefinitely.

All of the following listings are usually contained in one P2G program.

field declaration

Listing 3.1: Field declaration

int32[] m_data age;

int32[] p_data age;

The field declaration defines two global fields, m_data and p_data.

Depending on how the fields are declared, the fields can be write

once constants, or multi aged, multi dimensional arrays. Fields are

discussed further in section 3.2.5.

init

Listing 3.2: Kernel code for init

init:

local int32[] values;

%{

for(int i = 0; i < 5; ++i)

{

put( values, i+10, i);

}

%}

store m_data(0) = values;
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The init kernel initializes an array with five values from 10 to 14, and

stores the values in m_data for age 0. It has no fetch statements, and it

can therefore be scheduled at start, since no fetch statements means

it does not have any data dependencies that has to be met in order

for it to run.

mul2

Listing 3.3: Kernel code for mul2

mul2:

age a;

index x;

local int32 value;

fetch value = m_data(a)[x];

%{

value *= 2;

%}

store p_data(a)[x] = value;

The mul2 kernel fetches a single value from m_data because of index-

variable x, and multiplies it by 2. It then saves the value in p_data

in the same location, and same age. Because of its fetch statement, it

has a data dependency that is not met when P2G first starts up, and

it must wait for init to run first and fill m_data first, with the position

given by x and a.

plus5

Listing 3.4: Kernel code for plus5

plus5:
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age a;

index x;

local int32 value;

fetch value = p_data(a)[x];

%{

value += 5;

%}

store m_data(a+1)[x] = value;

The plus5 kernel reads a single value from p_data, that the mul2 kernel

has put there, and adds 5 to it, it then stores that value back in m_data

in the same location, but next age.

print

Listing 3.5: Kernel code for print

print:

age a;

local int32[] p, m;

fetch p = p_data(a);

fetch m = m_data(a);

%{

for(int i = 0;i < extent(p,0); ++i)

{

cout << "p: " << get(p, i);

cout << "m: " << get(m, i);

}

%}

The print kernel prints out all p and m values for the current age.

After the init kernel has run, half of its data dependencies are met,
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but that is not enough. It has to wait until the mul2 kernel has run

in order for all its data dependencies to be met. The reason the print

kernel fetches all the values for one age at the same time is that it

lacks the x variable in the fetch statements.

3.2.1: Intermediate implicit static depen-
dency graph

3.2.2: Final implicit static dependency
graph

Figure 3.2: Dependency graphs

From the kernel code, P2G can build an implicit static dependency graph,

see figure 3.2.1. This is because the store and fetch statements return fields

and kernels gives the relationship between kernel definitions, were edges

are represented by store and fetch statements on fields. Since the fields are

virtual, the HLS can merge edges connecting two kernels through a field,

producing the final implicit static dependency graph seen in figure 3.2.2.

3.2.4 Example walk through

When we start the execution of this program in P2G the only kernel that

can run is init, since the data dependencies for the rest of the kernels

are not met yet for any age. After the init-kernel starts to run, the

data dependencies for some instances of mul2 gets met and they can be

scheduled to run.
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For each instance of mul2 that is run, a dependency for an instance of plus5

is met, and that instance of plus5 can be scheduled. Since print needs an

age to be complete before it can run, all instances of both mul2 and plus5

for a given age must be completed before print for that same age can be

run.

Plus5 needs the output from mul2, but writes to the input of mul2 for the

next age. Plus5 and mul2 therefore form a loop, which is easily identified

in figure 3.2.2.

3.2.5 Field

In P2G, kernels fetch data from fields, which they perform operations on.

Each field can be looked at as a global multi dimensional array, where age

is one dimension, and an arbitrary number of dimensions is available for

use with indexes. Fields are write-once, which means that if you have a

kernel that applies a filter to all pixels in an array, it can not just write back

the processed data to the same index. In the code example we had two

fields, m_data and p_data. After the init kernel wrote to m_data(0), it can

not be written again for the same age. Since multimedia algorithms often

write back to the same data structure it reads from P2G need to support

that. The way P2G lets a kernel do that is by introducing the Age concept,

which is illustrated in figure 3.3.

3.2.6 Age

Age is introduced as a way to get around the write-once semantic of fields.

To write to the same index in a field you need to increase the age of that

field. For example, when the plus5 kernel has added 5 to the value it

fetches for the first time it can not write it back to m_data for the same age,
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because the init kernel has already written to it. In plus5, that is solved by

writing to the next age which for the first invocation would be 1. Ages

makes it possible to create loops between kernels like the one created by

mul2 and plus5, see figure 3.2.2.

3.2.7 Kernel definition

A kernel definition consists of local variable declarations, fetch and store

statements, and the kernel code. The kernel code can embed native code,

and that code can be as complex as necessary.

3.2.8 Kernel instance

An instance of a kernel definition is for example mul2 with x = 2 and a =

30. Each kernel definition can lead to many kernel instances. The number

of instances being executed depends on the fetch, and store statements in

the kernel code. In our code example the mul2 kernel had a fetch statement

that fetched one item from one age. This makes it possible to have 5 kernel

instances of mul2 per age. However, the LLS is free to combine several

kernel instances into one batch job, to limit the overhead of processing

each fetch statement and the overhead of timing each kernel as seen in

figure 3.2.2.

To provide feedback to the LLS about the overhead for each kernel

instance we need to insert instrumentation code before and after each

execution of a kernel instance.
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3.2.9 Fetch and store

A fetch command can appear before the code section of a kernel. In listing

3.1, first the age and index variables are defined, and then a local 32bit

variable is declared, called value. Then next, right before the code part, we

have the fetch statement. It fetches only a single value from the current age

a, and index x. Since the m_data array is of length 5, P2G, when executing,

spawns up to 5 instances of the mul2 kernel per age. In section 3.2.10,

we can see how P2G, using feedback from the instrumentation daemon,

can decrease the number of separate executions of the kernels in order to

reduce overhead.

A store command is very much like a fetch command. It has the same

syntax and slice the same way as a fetch command. The only difference is

that, because of the write-once semantic, store commands are always used

to store to another global field, the next age, or both.

3.2.10 Dependency graph

As we already saw earlier in figure 3.2.2, P2G has a cyclic dependency

graph of the workload. At run time P2G dynamically expands the

dependency graph into a directed acyclic graph (DAG), as seen in figure

3.3. The move from a cyclic to acyclic graph is because of P2Gs write once

semantic, where each field can have an age, so a cycle becomes a sequence

of ages.

To partition the work, the HLS may use graph partitioning to distribute

the load fairly onto the resources available, as seen in figure 3.2.2. With

our framework we can provide information about how large the load of

each kernel is, so that the HLS can use that as input to its algorithms.

With the directed acyclic dependency graph (DC-DAG) the LLS can
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Figure 3.3: Directed acyclic dynamically created dependency graph

combine several instances of a kernel to reduce the overhead in the

framework. From figure 3.3, we can see an example of how the LLS might

schedule data and tasks. In age 2 the LLS has reduced data parallelity by

combining the fetch statement in mul2 to cover an entire age. The reason

the LLS might do this is if the work done in the kernel is fast in contrast to

the fetch statement, it then tries to reduce the overhead by fetching more

data at once.

In age 3 the LLS has removed the task parallelity, and combined mul2 and

plus5, but kept data parallelity. This is done if plus5 and mul2 exchange a

lot of data without doing much work, in order to reduce the overhead of

network traffic. Finally, in age 4 all parallelity is removed and all data and

tasks are combined.

We see that both the LLS and HLS can use data from our instrumentation

framework to optimize how to execute the kernels.

3.2.11 Compiler

To transform the P2G kernel code into usable machine code the P2G

framework consists of a special P2G compiler. It transforms P2G kernel

code into code for different architectures. To leverage all the hard work

that has been put into various compilers for various architectures the P2G
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compiler transforms the kernel code into valid C or C++ code and then

execute the highly optimized native compiler for each architecture, i.e.,

gcc for normal C-code, Nvidia’s compiler for CUDA-code and any other

specialized compiler for any exotic hardware.

3.2.12 Runtime

The P2G runtime consists of a daemon that you run on every machine you

want to participate in the computation, and a server that controls them,

see figure 3.1. The server must have all the compiled code available, so it

can transmit the code to the execution nodes and tell them to run it. The

runtime is responsible for dynamically load the distributed binaries and

execute them safely.

The P2G runtime contains the instrumentation code, and the timing

probes are inserted right before and after the execution of one kernel

instance, or a batch of kernel instances.

3.3 Summary

In this chapter we have discussed the reasons behind making P2G, and

shown how P2G works. We have gone into depth on how the HLS and

LLS use a dynamic graph to make scheduling choices. It should be clear

that in order for the LLS to be able to know when to combine single

kernel instances into a batch, it needs feedback from our instrumentation

framework. The HLS is also in need of feedback, so it can weight each

edge and vertices in its scheduling graph, with accuracy.

In the next chapter we look at how the instrumentation framework should

be design so it can provide the data P2G needs, while still being easy to
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integrate and having a low overhead.



Chapter 4

Design

In this chapter, we discuss the design of our instrumentation framework

for P2G, and the reasons for choosing this design. Our goal is to make a

flexible framework that is modular and not coupled with P2G more than

needed, while still providing valuable information to both the LLS and

HLS in P2G.

We start this chapter by giving an introduction to how we want our frame-

work to fit in with P2G. We then move on to discuss each requirement for

our design. We summarize the design in section 4.7.

4.1 Introduction

The intent of this instrumentation framework is to provide instrumenta-

tion data, on a distributed platform, to a master that controls the other

machines, but also to the local machine.

Our goal is to provide data to the local LLS and to the HLS. Worker nodes

do not need to know anything about each other, and communication is

43
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Figure 4.1: Overview of the communication between nodes

therefore only between the master node and the worker nodes, as seen in

figure 4.1. Since P2G already has a communication module, we use it for

all communication.

4.2 Requirements

An absolute requirement for anything that is used in a high performance

computing setting is that it should be efficient, i.e., the overhead of using

the instrumentation framework should be as low as possible. The main

purpose is to have the scheduler make smart decisions to speed up the

processing, and if the instrumentation framework consumes all the gain

from applying the information it provides, there is not much point in

having it. The framework should also be as non-intrusive as possible, to

make the integration with P2G easier. It should also be easy to switch

on/off instrumentation code, to be able to debug performance issues.

Since the goal is to use the framework in the LLS to combine kernel

instances into batches based on execution time, we need to measure the
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execution time for each kernel instance.

We also want to use the data provided from our instrumentation frame-

work in the HLS to combine kernels that exchange a lot of data, on one

machine, so we can avoid saturating the network. For this to work, we

also have to monitor the network traffic.

Another goal, is to provide data in a human readable format, to help

developers locating bottlenecks in their code, so we also need a way to

display the measured data.

4.3 Data gathering

We need to gather a lot of different information, and we try to keep each

part separated into self contained units so they can easily be exchanged,

extended or removed. Our focus is on making the solution as generic as

possible, so we can adapt to different needs fast, as we do not know what

kind of data our framework needs to provide in the future.

4.3.1 Capabilities

The scheduler is interested in the capabilities of the machines P2G is

running on, because some of the kernels might require a CUDA capable

GPU, a specific CPU-type or other specific piece of hardware. As the

number of machines increases, the job to manually configure each node,

becomes less viable. It is therefore vital for the scalability of P2G that

the framework can detect capabilities automatically, without any human

interaction. As discussed in chapter 2, certain heterogeneous systems

can perform tasks at a much higher speed than a general purpose CPU.

To leverage that, the program must be written and compiled for that
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specific architecture. To let P2G be architecture aware and enable it to

have different implementation for the same kernel, we must provide it

with capabilities.

Another reason to collect capabilities is for later use to alert the HLS about

conditions that should not happen. If a machine has four cores and is

using only one core, it is 100% busy according to Linux. If we know that it

is a quad core, we can calculate that it is still 300% idle. We might want to

send an alert to the HLS informing it that this machine is not utilized well

enough, while if it only has one core 100% busy is very good. We discuss

how the HLS should be informed about this in section 4.4.

Linux does not have a unified way of acquiring system capabilities, so

we are left to write subroutines for each piece of system info we want.

Since different architectures might provide different kinds of capabilities

we need to make the solution so general that more types of capabilities are

easily added later.

Since, at the time of design of this module, a distributed version of P2G

still did not exist, we only planned to collect basic capabilities that we

felt would probably be a minimum required to make a choice for running

certain workloads.

As a minimum we would need to provide information about the three

basic parts that influence how suitable a machine is to run a specific

workload: CPU, GPU and memory. The framework should collect

information about the following:

• CPU layout

• CPU type

• GPU type

• GPU memory
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• System memory

The CPU type and GPU type data enable the HLS to only assign workloads

that machines can run. The CPU layout is used in our framework for

load calculation. The LLS can also use the CPU layout to decide how

many threads it should run. Lastly, the system memory is collected so

that the HLS can assign memory intensive kernels on machines with a lot

of memory.

Capabilities are not expected to change, so they can be detected once,

when the capabilities are first requested. They can then be kept in memory

for later use. This means that detecting capabilities is not a performance

critical operation.

4.3.2 Timing and statistics

There are several aspects that we take into consideration for timing. As

discussed in section 2.3, multiple approaches for instrumenting a program

exists. We propose to use a simple timing and counting regime, both on

the kernel definition and on the kernel code. This is because the LLS is

interested in the overhead for setting up the data for a kernel and might

combine several executions of a kernel definition into one batch job, as

seen in figure 3.3. We time each execution of a kernel definition, and the

number of times the kernel definition is executed is counted. We also do

the same with the kernel code. This gives us an average execution time

for each kernel and each kernel definition. By subtracting the kernel time

from the kernel definition code we also get the overhead.

We modify the P2G compiler to inject our timing code at the start and end

of a kernel definition and just before and after the call to kernel code in the

kernel definition. This avoids the need to patch the code after it has been

compiled.
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Listing 4.1: Pseudo code for timing

_kernel_def_mul2(...)

{

/* Start the kernel definition timer */

timer _kernel_def_time = time.start();

/* Set up everything for this execution of the mul2 kernel.

*/

...

/* Start the kernel timer */

timer _kernel_time = time.start();

/* Call the kernel code */

_mul2_kernel(...);

/* Stop the kernel timer, and register it in the "

_kernel_mul2"-bin */

time.stop(_kernel_time, "_kernel_mul2");

/* Save data and do the rest of the clean up after a kernel

execution. */

....

/* Stop the kernel definition timer and register it in the

* "_kernel_def_mul2"-bin */

time.stop(_kernel_def_time, "_kernel_def_mul2");

}

This approach gives us valuable timing data, while still providing us

with some profiling data. If programmers follow the recommendation,

and decompose the kernels as much as possible, we would get very fine

grained instrumentation data. Even if the programmer does not follow the

recommendation, P2G can only combine kernel instances, not split them

up, so any finer grained instrumentation data would be useless.

We do not need to trace the program, as P2G builds a DC-DAG during

runtime and that corresponds to how the program flows. It is therefore

unnecessary to record the trace.

Each machine has its own timing data structure, where the collective time
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spent in each of the kernel and kernel definition is saved, along with the

number of times they have been run. We also provide a way for the server

to signal that the client should send the current statistics back, and reset it

to zero.

It is critical that the performance penalty from including the timing code

is as low as possible, and it is therefore important that the code is highly

optimized. Since one kernel definition can be executed concurrently on

the same machine, it is also important that the code is thread safe.

4.3.3 Computer status

We also want to provide the HLS with information about the status of the

machine. It is probably a bad idea to schedule more work to a machine

that has run out of memory and started using swap space, and the HLS

can avoid this if the status of each machine is known

This information about the computer status is periodically collected but

only sent to the main server on demand. Since we can not assume P2G is

the sole program running on the machine, it can take into consideration

that moving a workload to a machine that already has a high load from

other programs running, outside of P2G, might prove less advantageous

than moving it to an idle machine.

Workloads usually consume four different resources; storage space,

memory, processing power and network traffic. We therefore focus

to collect statistics about those four main areas. Since memory can

be swapped out, we also need to collect information about the swap

utilization. The following information should be collected:

• CPU utilization

• GPU utilization
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• Used swap

• Free swap

• Free memory

• Free storage space

• Network traffic

CPU utilization together with the CPU layout found in capabilities tells

us if there is any free capacity left on the CPU. Used swap, free swap and

free memory can tell us if the machine has used up all its memory and

has begun swapping. This is normally something that is not desirable,

and scheduling more work when the machine is in this state, only makes

matters worse. The network traffic data can tell us if we are saturating the

network link, and if it is, the HLS should use that as an input to its graph

partitioning algorithm as discussed in section 2.2. The HLS can then find

a way to move kernels so it can avoid having the network as a bottleneck.

4.3.4 Computer health

As discussed in section 2.3.4 there are several ways of detecting situations

before they actually become a problem. We want to periodically check the

local machine for possible problems, and the main server should ask all of

its clients to report back if it has a condition that requires attention. The

reason to not immediately raise an alarm to the main server is to avoid

flooding it in the event of a misconfigured threshold value. As a proof

of concept we monitor the following aspects of the computer for possible

problems:

S.M.A.R.T. data

S.M.A.R.T. is used to check many parameters of the hard drives
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health, including overheating, CRC errors on transfers, bad sectors

and a lot more.

CPU Temperatures

We monitor the temperature of the CPU if possible. Some CPUs

come with one or more integrated temperature sensors in their cores.

4.4 Alarms

When certain conditions arises we want to send an alarm to the master.

The other subsystems should be able to use the alarms, to inform the

master that something is wrong. When the computer status thread,

discussed in section 4.3.3, detects that memory trashing has started, it

should, by using the alarm subsystem, notify the HLS.

4.5 Configuration

All threshold values should have a sane default value, but the server

should have the ability to reconfigure the thresholds. This is to centralize

the configuration of all the nodes, and add the possibility to change the

default value on all nodes in one place.

4.6 Distribution

Since we want the instrumentation framework to scale with P2G, we have

opted for a pull based model, where the high level scheduler asks for

instrumentation data from each node when it requires this information.
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The last thing we want is to flood the high level scheduler with data, and

possibly slow it down.

4.7 Summary

In this chapter we have introduced our design for the instrumentation

framework, and shown how the framework would fit in with P2G. The

main task for the instrumentation framework is to provide as much data

as it can, while keeping the overhead low. To satisfy our goal of providing

data to the HLS and LLS, the instrumentation framework must provide

data about the execution time for each kernel instance, or each batch of

kernel instances, in addition to statistics about the network traffic. In the

next chapter we look at how this is implemented.
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Implementation

In this chapter we explain how we implemented the instrumentation

framework designed in the previous chapter. We start this chapter by

discussing what programming language we chose, and then go into the

details of the implementation.

5.1 Programming Language

We have chosen the C++ [55] programming language to implement our

instrumentation framework. This is because C++ provides us with the

speed needed for the performance critical parts of the framework since it

is a low level programming language by today’s standards. In addition to

providing the performance needed it still has the high level of abstraction

we need to make the implementation modular and extensible.

Since P2G is also written in C++, it means that the instrumentation

framework can plug straight into P2G without problems. C++ provides

many abstractions that are not available in C [56], we therefore believe

53
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that C++ is a better choice than C for splitting up each of the parts into

self-contained modules.

5.2 Capabilities

We chose to save all capabilities in a standard C++ map with both the

key and the value made up of strings, making it easy to dump the map

in human readable format when debugging. The use of a map had the

added benefit of putting the least amount of limitations on what kind of

capabilities can be saved, and that fits well since we do not know what

kind of capabilities we would have to implement in the future.

We implemented capabilities as its own class, since it does not rely on

anything else of the framework. We made it a singleton [57] and detect all

the capabilities in the constructor, so detection only happens once.

From the sysinfo [58] syscall we collect the total memory, as seen by the

OS, and the total swap space available. The sysinfo syscall is very easy to

use and the entire code, including converting the unsigned long value to

a string took only four lines.

Listing 5.1: Using sysinfo to collect RAM and SWAP info

struct sysinfo curstat;

sysinfo(&curstat);

capabilities["TOTAL_RAM"] = boost::lexical_cast<std::string>(

curstat.totalram);

capabilities["TOTAL_SWAP"] = boost::lexical_cast<std::string>(

curstat.totalswap);

In listing 5.1 capabilities is the name of the map we fill in the capabilities in.

To detect the CPU type and layout we found it best to just parse

/proc/cpuinfo. A lot of work has been put into Linux so it can detect the
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Figure 5.1: FSM for CPU mapping

CPU layout reliably, and we wanted to leverage that work by using the

CPU layout that Linux exposes. To parse the CPU layout we made a

simple finite state machine (FSM), see figure 5.1. After each successful

core is found it is added to the capabilities map.

To show how the map over capabilities looks, we wrote code to dump

it to the terminal, and the output of that is shown in listing 5.2. The

CPU-lines have three trailing numbers, the first number is the physical

CPU number, the second is the core number on that physical CPU and the

last number is the virtual core number. In the example, both CPUs have

0 as their physical CPU number, meaning they are both in one physical

package, sharing a slot/socket on the motherboard. Since the number of

cores equals the number of virtual cores, the CPU does not have hyper

threading enabled.

Listing 5.2: Capabilities-map for a dual core machine without any swap space

CPU-0-0-0-BOGO: 1994.63

CPU-0-0-0-FLAGS: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht

syscall nx mmxext fxsr_opt rdtscp lm 3dnowext 3dnow

rep_good pni cx16 lahf_lm cmp_legacy svm extapic

cr8_legacy

CPU-0-0-0-MHZ: 1000.000

CPU-0-0-0-MODEL: AMD Athlon(tm) 64 X2 Dual Core Processor
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4200+

CPU-0-0-0-VENDOR: AuthenticAMD

CPU-0-1-1-BOGO: 1994.63

CPU-0-1-1-FLAGS: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht

syscall nx mmxext fxsr_opt rdtscp lm 3dnowext 3dnow

rep_good pni cx16 lahf_lm cmp_legacy svm extapic

cr8_legacy

CPU-0-1-1-MHZ: 1000.000

CPU-0-1-1-MODEL: AMD Athlon(tm) 64 X2 Dual Core Processor

4200+

CPU-0-1-1-VENDOR: AuthenticAMD

TOTAL_RAM: 4022812672

TOTAL_SWAP: 0

5.3 Timers

The timing framework is the most performance critical part of the entire

instrumentation framework. While the other parts of the framework

are executed rarely, or once each second, the timers can be used several

hundred thousand times per second. We try to minimize the overhead by

doing as little as possible when timing sections of code.

Looking at the code in listing 4.1 we see that the code has to get the current

time twice, once at the start of the section we are timing, and once at the

end of the section. In reality, the timer code is implemented as a couple of

macro functions for speed reasons, see listing 5.3. Since we need a central

place for all the timers to report the time, and that central place needs to

be protected by a mutex to make it thread safe, we can easily run into

problems of lock contention. To avoid having several threads trying to

obtain the same mutex to time code the macros introduce a concept of

probes. Each probe has its own mutex, which greatly reduce the chance of
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having two threads competing for the same mutex.

Listing 5.3: High speed timers implemented as a macro

#define MSTARTTIME(var, fullname) static P2G::Instrumentation

::probe probe_##var; \

struct timeval t_##var; \

P2G::t->regProbe(probe_##var,(fullname)); \

pthread_spin_lock( &(probe_##var.mutex)); \

gettimeofday(&t_##var,NULL); \

probe_##var.count += 1; \

pthread_spin_unlock( &(probe_##var.mutex))

#define MSTOPTIME(var) struct timeval ts_##var; gettimeofday(&

ts_##var,NULL); \

time_t sec_##var; \

long usec_##var; \

sec_##var = ts_##var.tv_sec - t_##var.tv_sec; \

usec_##var = ts_##var.tv_usec - t_##var.tv_usec; \

usec_##var += sec_##var * 1000000; \

pthread_spin_lock( &(probe_##var.mutex)); \

probe_##var.time += usec_##var; \

pthread_spin_unlock( &(probe_##var.mutex));

#define STARTTIME(fullname) MSTARTTIME(var, fullname)

#define STOPTIME MSTOPTIME(var)

The probes posed an interesting challenge, with regard to how we could

avoid having lock contention. We solved this by having each probe

registered at a central place, but operate on its own after it has been

registered. Looking at listings 5.4 we can see that as long as p.init is true,

the call just returns and no global lock is needed. This is the common path

that is taken every time after the first call to regProbe for that probe, and

should not induce a lot of overhead.

Listing 5.4: regProbe code

inline void Timer::regProbe(probe& p, const std::string& bin)

{
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if(p.init){

return;

} else {

pthread_mutex_lock( &_timer_mutex);

if (!(p.init)){

pthread_spin_init(&(p.mutex), 0);

proben[probeNum] = bin;

probes[probeNum++] = &p;

p.init = true;

}

pthread_mutex_unlock( &_timer_mutex);

}

}

On the first entry into regProbe, that fast path with just the return is

not taken, instead the global timer mutex is acquired. Once it has been

obtained, we again have to check if this probe has been initialized, because

several instances of the same static probe could have raced its way into the

regProbe function. If it still has not been initialized, the probes own mutex

is initialized as a spin lock, and the probe is registered in the global probe

array. The last thing we do before releasing the global timer mutex is to set

p.init to true. If we had done this earlier, other threads might incorrectly

have started using the uninitialized mutex.

When stopping the timer we can assume that the probe has already been

initialized, and all that is needed is to get the current time, calculate

the time difference from when the timer was started, acquire the mutex,

update the total time spent in this probe and increase the count by one.

We discuss the overhead of this solution in section 6.1
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5.4 Computer status

As with the capabilities, we chose a map with both the key and the value

made up of strings. We did this for the same reasons mentioned in section

5.2.

The computer status has been implemented in its own class, and when

created it spawns a thread that has a timer that triggers each second so

it can update the statistics. As with the capabilities, computer status is

implemented as a singleton. This is done to avoid having more than one

thread collecting status information.

We use the sysinfo system call to get data on memory and swap utilization

and load, in a similar way as we got total memory and swap in section 5.2.

We found that extracting the traffic of each network card in a machine was

a bit more complicated. The solution we chose was to parse /proc/net/dev

and save how many bytes were transferred. We then compared the value

with the previous value we saved and then calculated the use for the last

second. Special care had to be taken when the first measurement was

taken, because we did not have any values to compare it with, and when

the counter overflows it calculates the correct usage.

Overflowing counters is not so much a problem on 64-bit install of Linux,

because it also saves the network statistics in 64-bit counters. However,

on a 32-bit install of Linux, a fully utilized 10 gigabit per second Ethernet

connection would wrap after 3.43 seconds. This is in part why we chose to

collect info each second. Even when a overflow occurs every 3.43 second

we can detect that and still record the correct usage. If the collection of

statistics only ran each five second, it would be impossible to know if the

counter had overflowed once or twice during that period.

CPU usage was found in a similar fashion, by parsing /proc/stat. Among
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other values, it contains the number of ticks since boot that the CPU has

spent in user mode, user mode with low priority, system mode and idle.

All these numbers are provided both in total and for each CPU, but we

chose to only save the combined numbers. To turn those numbers into

something meaningful we must save the value for later use, and compare

it with the previous value so we can obtain the change for the last second.

We then divide that change with the tick-rate to obtain how much of the

last second was spent in each mode.

5.5 Computer health

For the SMART data, we parsed the output of the smartctl program. We

then put the parsed data into a text map as with the other data points.

5.6 Distribution

For the distribution we, as explained earlier, decided to use the P2Gs event

library. It hides the underlying socket layer from our framework, and

all that is needed is a service for a given service ID. We have assigned

different service IDs to the different service handlers. We have four service

handlers, one that returns capabilities, one for returning timing statistics

and the two discussed in more depth later.

5.6.1 Alarm service handler

The alarm service handler gets invoked when the master node connects

and queries for any alarms. It then goes through each of the alarm settings
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and check if any values have exceeded the threshold. A map for all

exceeding values is returned.

5.6.2 Configuration service handler

The master node can send new thresholds for the alarms to the configura-

tion service handler, which saves the new thresholds.

5.7 Summary

We have in this chapter explained the implementation of the framework

outlined in chapter 4, and shown that it is feasible to provide the data

we proposed. Our implementation is flexible, and since we have very

compartmented code it would be able to adapt to many new forms of

instrumentation without touching existing code. We now move on to the

evaluation of our implementation.





Chapter 6

Evaluation

We have presented the design in chapter 4 and the implementation in

chapter 5 of our instrumentation framework. It, in addition to collecting

timing information for each kernel, also provides information about the

capabilities of each machine and other machine metrics. Since we have

discussed the rationale for both the design and implementation we do

not discuss that any further here. Instead, we first quantify the execution

overhead introduced by our framework, and discuss what impact that has

on P2G. We then go through the data we provide, and discuss how the

scheduler could benefit from that data.

6.1 Microbenchmarks

A critical part of making our instrumentation framework a success, is

to have a low overhead. With a low overhead we do not increase the

execution time by much. To quantify how much overhead is introduced,

we have run two tests. One where we simply loop around and measure

the time. This gives us the minimum overhead, since we can assume the
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entire code is resident in the CPU cache and since it is run as a single thread

to avoid lock contention. The other test is to insert the instrumentation

code into P2G and verify that the measurements from the first test still

applies.

6.1.1 Timing in a tight loop

We wrote a small program to run for an arbitrary number of iterations and

in each iteration start and stop the timer as fast as possible. This gives us

information about the granularity of the results, and also tell us how small

the overhead is when everything is ideal. We show the source code of the

program in listing 6.1.

Listing 6.1: Timer test

#include <instrumentation/Timer.h>

#include <boost/lexical_cast.hpp>

#include <stdlib.h>

namespace P2G{

P2G::Instrumentation::Timer* t = P2G::Instrumentation::

Timer::getInstance();

void takeTime(int iterations){

int i;

for(i=0;i<iterations;i++){

STARTTIME("timer1");

STOPTIME;

}

t->dumpAll();

}

}

int main(int argc, char **argv)

{
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int iterations;

iterations = atoi(argv[1]);

P2G::takeTime(iterations);

return 0;

}

When the program is executed, the first parameter decides for how many

iterations the program should run. After the program has run through

every iteration it prints out the timing statistics.

All of the following tests were run on an otherwise idle machine, with

a Dual Core Intel i5 CPU, running at 2.67GHz. The machine runs

Ubuntu [59], and the kernel version is 2.6.32-24-generic.

gettimeofday

In figure 6.1.1, we plotted the results of running the timer-test code for

a range of iterations, all with the gettimeofday system call as a backend

for our framework. The execution time was obtained by running the

code with the time [46] command, and dividing that with the number of

iterations. As we see in the figure, the execution time per iteration, drops

fast when we increase the number of iterations. We believe this is due

to the cost of starting a new process, but it is interesting to see that the

measured time also goes down with more iterations. The reason for the

measured time to decreased is more complicated, but could be attributed

to warming up the CPU cache. Because the CPU use Intel SpeedStep

technology, the CPU cores are actually running at 1.2GHz when idle. They

transition to the full speed when they have work to do. The transition to

full speed is not instantaneous and we believe that the dip in the measured

time, after the first plateau, match up with when the CPU has time to

change speed from 1.2GHz to 2.67GHz. We see that as the number of

iterations increases enough, both the measured time and executed time
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stabilizes. This is because the overhead of starting the executable, and

the effect of both the warming of the CPU cache and the transition to full

speed is negligible when averaged out over so many iterations.

A problem with using gettimeofday is that the granularity for measuring

so small code blocks, in this example 0 lines of code, is too low.

At 1 microsecond resolution, trying to measure something that takes

significantly less time, is not a good idea; we get an average of less than 1

microsecond, which means most timings actually produce 0 as a result.

The total running time was 12.064 seconds for 100000000 iterations, giving

an average overhead for each iteration of less than 121 nanoseconds,

which at the 2.67GHz the CPU run on, equals around 322 cycles.

clock_gettime

When we change our framework over to using clock_gettime as a back-

end, the speed decreases. In figure 6.1.2, we can see that it follows the

same form as in figure 6.1.1, but with higher values. While clock_gettime

is slower, it does solve the problem we had with the granularity of get-

timeofday, since clock_gettime returns results with nanoseconds resolution,

instead of in microseconds.

The total running time was 21.075 seconds for 100000000 iterations, which

is 9 second slower, giving an average of 210 nanoseconds per iteration,

or around 558 cycles. This 73% increase in execution time is clearly

something we would want to avoid.

RDTSC

To test with the last time source, we changed over to reading the TSC.

Since the TSC does not track time, we first had to calibrate how fast the
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TSC increases. Luckily the computer we ran our test on has the TSC

synchronized across cores, and also keeps it ticking at a constant rate,

regardless of how fast the CPU is clocked. Since it was a 2.67GHz CPU the

tick rate for the TSC should be that, even when the CPU ran at 1.2GHz.

To convert from the TSC measurements into time, we first had to calibrate

our conversion factor. Since we do not have access to any of the other

hardware timers when running in user space, we used the sleep system

call, provided by the operating system, to sleep for a known amount of

time. By using the following equation we get our conversion factor.

c =
m1 − m2

n
(6.1)

c is our conversion factor, m1 is the TSC right before the call to sleep, m2

is the TSC right after the call to sleep and n is the number of seconds we

sleep for. Since we can not assume that the operating system wakes us up

after precisely the time specified in the call to sleep, we make n large, so

the error introduced by the operating system get smaller. When we ran it

with a sleep for 10 second we, as expected, got a value very close to the

2.67GHz the CPU is rated at.

From figure 6.1.3, we again see that it follows the same shape as the other

timers. As expected the execution time was low, but interestingly not very

much lower than gettimeofday. However, since the TSC have a very high

resolution, it does not suffer from the same drawback that gettimeofday

have with resolution, and the measurements should therefore be more

accurate.

RDTSC without serializing

As discussed in section 2.4.1, a serializing instruction is needed to avoid

out of order execution when reading the TSC. To see how much of an
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Time source measured execution diff
gettimeofday() 0.030 µs 0.121 µs 0.091 µs
clock_gettime() 0.127 µs 0.211 µs 0.084 µs
RDTSC 0.080 µs 0.119 µs 0.039 µs
RDTSC non serializing 0.052 µs 0.068 µs 0.016 µs

Table 6.1: Average for 100000000 iterations

impact that had on our execution time, we tried running it without

serializing. The result, as shown in figure 6.1.4 was that it ran almost

twice as fast. Unfortunately, the measurements done without serialization

is unreliable, and how unreliable it is could change depending on the code

executed around the RDTSC instruction.

Results

In 6.1 we have listed the numbers for 100000000 iterations, and we can see

that it looks like the time not spent measuring is different on every timing

method. While the overhead of our framework, and the overhead of the

loop, should be constant, the system calls may spend a different amount

of time before and after the timestamp was taken.

It is interesting to note how close the execution time is between gettimeof-

day and rdtsc. The reason for this is because gettimeofday actually use rdtsc

as a clock source, only adding some glue code to calculate the difference

since the last kernel tick, and converting it to microseconds. Gettimeofday

should still be noticeably slower than using rdtsc by it self, since it should

add the overhead of a system call. A system call normally adds a context

switch, which is rather expensive, however gettimeofday is implemented in

a special way. Since it only reads data, a shared copy of the code and the

counters it needs access to is mapped into each process on the system. This

reduces the overhead for that system call to the overhead of a function call,
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which is much lower.

Out of the 5 different ways to acquire a time stamp we evaluated, we

found that gettimeofday is the best choice for us, on the machine we tested

on. While the resolution is not high, we can expect that each P2G kernel

instance takes more time than one microsecond, and if it does not, the LLS

should combine both the timing and execution of several instances into

one to get lower overhead.

If gettimeofday was not backed by RDTSC, both methods would be

unsuitable. The only method which is guaranteed to work correctly is

clock_gettime, and is the one we would use for anything that is to be

distributed to many machines with unknown architectures. Since we do

have full control over the test setup, we use gettimeofday in the rest of the

tests.

6.1.2 Timing of K-means clustering in P2G

The results in the previous section may not be representative for what we

would get in a real scenario. To see if the numbers still applied when used

to actually time something, we ran a program compiled with and without

the timing code and compared the execution time.

The workload we use is an implementation of K-means clustering. It is

an iterative algorithm that takes n datapoints and clusters them into k

clusters. Each datapoint is assigned to the nearest cluster using euclidean

distance as a metric. The new centroid for each cluster is calculated as the

mean for each datapoint in that cluster, and another iteration is run. This

continues until convergence has been reached. In our example however,

we do not run it until convergence, because of the random input data

would make comparison between runs meaningless. Instead we have



6.1. MICROBENCHMARKS 71

Figure 6.2: Overview of the K-means clustering algorithm

inserted a limit, so that the algorithm runs for a set number of iterations

before terminating.

As seen in figure 6.2, the K-means workload consists of three kernels. First

the init kernel generates n data points and stores them in the datapoints

field. k of the data points are then selected at random and are written to

the centroids field. The assign kernel, then reads a single point from the

datapoints field and the last calculated centroids field. It then stores the data

points back to the clusters field. Then the refine kernel reads a cluster and

calculates the new mean, which is then stored in the centroids field. In

figure 6.2, we can see that the assign and reform form a loop.

When we run this example workload 20 times and compare the running

times with and without the timing enabled it is clear that there is some

overhead introduced as expected. As we see in figure6.3, the overhead

seems to increase with the number of threads above 4. We believe this

increase is attributed to lock contention, which is increased when the

number of threads increases beyond the number of CPU cores.
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Figure 6.3: Benchmark of K-means clustering algorithm

From a sample run with four threads we got 4138452 measurements in 9.79

seconds, or 422722 measurements per second. As we calculated in section

6.1.1, each measurement should have an overhead of 0.121 µs. If that still

holds true in our real world scenario, it would add half a second to the

running time with one thread.

As we can see from table 6.2, it adds 0.72 seconds, almost 50% more

than we measured in the optimal case. We believe that this is due to our

Average stddev Minimum Maximum
Without timing 19.1925 0.1695 19.0450 19.8283
With timing 19.9093 0.0897 19.7980 20.1741

Table 6.2: K-means, with and without timing running with 1 thread.
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Figure 6.4: Overview of the MJPEG encoding process

instrumentation code dirtying the CPU cache and is to be expected. In all

it is not at all a bad result, however, it is clear that P2Gs lack of ability to

combine kernel instances and thus reducing the number of measurements

is severely impacting performance.

6.2 Motion JPEG in P2G

Motion JPEG is a sequence of JPEG images compressed individually and

concatenated together. It is an embarrassingly parallel workload, and how

we decompositioned it is shown in figure 6.4. The read + splitYUV kernel,

reads the raw video from disk in YUV-format. It then stores the data in

three global fields, one for each DCT-kernel. Each of the DCT kernels then

perform DCT on the data, creating 1584 instances of for the yDCT kernel,

and 396 instances for the uDCT and vDCT kernels. We did not include

tests for the overhead of the instrumentation data for Motion JPEG as those

gave the same results as for K-means clustering.
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4-way Intel Core i7
CPU-name Intel Core i7 860 2,8 GHz
Physical cores 4
Logical threads 8
Microarchitecture Nehalem (Intel)

8-way AMD Opteron
CPU-name AMD Opteron 8218 2,6 GHz
Physical cores 8
Logical threads 8
Microarchitecture Santa Rosa (AMD)

Table 6.3: Overview of test machines

6.3 Comparison of Motion JPEG and K-means

clustering

We ran the two different workloads on two different machines. The

specification for each machine is listed in table 6.3.

We executed each workload on both machines and the results is plotted in

figure 6.5, and the output from the instrumentation framework is listed in

table 6.4 and table 6.5. These tables are examples of output provided by the

instrumentation framework. This data then forms part of the information

that could be utilized in descision making processes. From figure 6.5, we

can see that the Motion JPEG scaled much better than K-means clustering

when we added more threads. When we look at the data provided by

the instrumentation framework, we can see that in the case of Motion

JPEG, the dispatch time is not large in comparison with the kernel time.

However, for K-means clustering, the kernel time for the assign kernel is

very low, almost as low as the dispatch time. This makes the overhead for

each kernel instance large, and many assign kernel instances could have

been merged in order to decrease the overhead.
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Figure 6.5: Workload execution time

Kernel Instances Dispatch Time Kernel Time
init 1 69.00 µs 18.00 µs
read/splityuv 51 35.50 µs 1641.57 µs
yDCT 80784 3.07 µs 170.30 µs
uDCT 20196 3.14 µs 170.24 µs
vDCT 20196 3.15 µs 170.58 µs
VLC/write 51 3.09 µs 2160.71 µs

Table 6.4: Micro-benchmark of MJPEG encoding in P2G

Kernel Instances Dispatch Time Kernel Time
init 1 58.00 µs 9829.00 µs
assign 2024251 4.07 µs 6.95 µs
refine 1000 3.21 µs 92.91 µs
print 11 1.09 µs 379.36 µs

Table 6.5: Micro-benchmark of k-means in P2G
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6.4 Usefulness of data

When we started this thesis, we aimed to integrate our framework with the

distributed version of P2G, and verify that the LLS and HLS could use the

information we could provide. Unfortunately, the P2G development was a

bit slower than anticipated, and we have been unable to test a distributed

version.

We can therefore not show any improvement in P2G with the data we

provide. While we do believe that both the LLS and HLS can make

good use of the data, especially when the overhead of collecting it is so

low. As a side note, the microbenchmarks were widely used during the

development of P2G to locate bottlenecks.

6.5 Scalability and extensibility

We have seen that there are some scaling issues when moving to more

threads than there are CPU cores, but we think that when the LLS gain

knowledge of the system, and is informed with timing information, that

those problems are solved. The framework is made with extensibility in

mind, and we believe that it is very flexible. During the development

we have added and removed several things with ease. Since the data is

stored in a map container, and all data is handled as strings, it is up to

the data consumer to parse the data provided into meaningful data. The

framework therefore does not impose any artificial restrictions to what can

be added.
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6.6 Summary

We have measured the overhead of the timing framework, and shown

that it, under ideal conditions were not large. We then moved on to real

workloads, where we verified that the overhead grew, but not more than

expected. We then evaluated the data provided. While the P2G schedulers

still do not make use of the instrumentation data, we showed how the

scheduler could use the provided data in the K-means clustering example,

to make a decision to combine kernel instances.





Chapter 7

Discussion

In this chapter we discuss the results evaluated in the previous chapter,

and various issues we have discovered with the instrumentation frame-

work.

7.1 Hardware timers

All the hardware timers we have looked at, and used, have flaws

that manifest them self as being either unreliable, slow, not universally

available or any combination of those. In our test setup, the cores

had synchronized TSCs, but unfortunately that is not the case for most

computers today. To ensure the availability of high speed and reliable

time stamps, new hardware specifications have to be introduced. The

best would have been something like the TSC, but with a known,

predetermined tick rate, which would be in sync for all CPU cores on

a machine. In an optimal solution, the timestamp would relate directly

to a given date and time, without having to calculate it based on other

counters. If it was directly related to date/time it would by extension also
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continue to tick at the same rate in all CPU sleep modes.

We do believe that software timers is not part of the problem, as they

merely inherit the problems of the underlying hardware. If an optimal

hardware timer would be exposed to the operating system, we think the

current software timers under Linux would be able to leverage it.

7.2 P2G schedulers

Unfortunately, we were unable to see if our instrumentation framework

could help the P2G schedulers, because the LLS is currently only imple-

mented as simple round-robin placeholder scheduler, and the distributed

version and the HLS is still not operational. This limited the options we

had to validate our framework, but the results in section 6.3 shows that

the data provided can be used once the schedulers get advanced enough.

7.3 Visualization

Our instrumentation framework has proven itself when it comes to

visualization of how the P2G framework spend its time. As the tables

in section 6.3 shows, a developer can get a pretty detailed picture of where

time is spent.



Chapter 8

Conclusion

In this thesis, we have designed an instrumentation framework, based

on the premise that data we provide could be used by a scheduler in

P2G to optimize execution, and for developers to find bottlenecks. Here

we shorty summarize the results of our work, and our most significant

contributions. Finally, we discuss possible directions that future work can

take.

8.1 Summary and contributions

We have implemented a working prototype for the instrumentation

framework, thus validating its feasibility. Because a distributed version

of P2G was still under development, and had not reached a stable state

at the time this thesis was concluded, we evaluated the framework based

on what kind of data it could provide to a developer and based on the

overhead our instrumentation framework added with its timing probes.

During our investigation, we examined the various methods of acquiring a

time stamp under Linux, and the implications of using the different timing
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sources. While none of the investigated timing sources were perfect, we

argued that some of them were good enough for our purpose, and that our

framework, if used correctly, would provide quality data, without adding

too much overhead.

The field of parallel processing is a constantly evolving area of computing.

As such, we have written an article [21] about P2G, where our instrumen-

tation framework was vital to measure and visualize where the bottleneck

in P2G is. The paper is pending review, and if accepted, will appear in

the proceedings of the ICPP 2011 conference, held in Taipei, Taiwan. We

have also had a demo and poster [20] accepted and presented at EuroSys

2011, held in Salzburg, Austria. Again, the instrumentation framework

was central for explaining the running time of different workloads in P2G.

8.2 Ongoing and future work

In addition to the functionality mentioned earlier, there are some loose

ends left, which we were unable to follow. We now present some of the

more promising expansions possible.

P2G is currently under heavy development, and a drawback of our work is

that we have been unable to verify that the LLS and HLS can leverage data

from our framework. Once the schedulers in P2G has matured enough,

they should start using instrumentation data provided, and we believe it

could increase throughput in P2G.

In [60], Vitter proposes an algorithm to only sample a random selection,

to reduce overhead, and in [61], Cormode et al. use forward decay to

reduce the importance of old measurements, without eliminating their

influence. We believe these two methods can be used to provide a more

complete picture of how execution times varies, without introducing too
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much overhead.





Appendix

The source code and documentation is available at http://heim.ifi.

uio.no/~staalebk/m/
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