
Cosinus

Monitoring Electric Vehicles

Son Thanh Vo

Thesis submitted for the degree of
Master in Programming and Network

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Cosinus

Monitoring Electric Vehicles

Son Thanh Vo

© 2019 Son Thanh Vo

Cosinus

http://www.duo.uio.no/

Printed: Simula Research Laboratory, Fornebu

http://www.duo.uio.no/

Acknowledgements

We want to thank you everyone who has assisted us with the work regarding
this master thesis — especially those who have engaged in discussions without
any consideration to time and place. Through our discussion, we have received
and deepened our knowledge regarding a wide variety of different domains
and polished our general programming skills. We would also like to give a huge
thanks to everyone who has kept out mental state healthy during this time.

Moreover, we appreciate the human body and the things it is capable of
achieving — specifically our legs, which has carried us through adventures and
battles, which has assisted in keeping the mind healthy.

Another notable contributor to this thesis is our dear laptop, which has
survived almost five years of rough use. It became a part of our life when
it replaced its predecessor, right before an assignment was due, and has been
running flawlessly ever since.

Thank you to everyone who has assisted us in some way through the master
degree!

i

ii

Abstract

Advances in the development of electric vehicles along with policy incentives
have resulted in a tremendous growth of private electric transportation.
However, the fast-paced adoption of electric cars could lead to unfavorable
effects on residential power distribution networks. The effects include
overloading of power components and instability in voltage throughput and
will occur mainly during simultaneous charging of large numbers of electric
vehicles.

Data on charging trends and driving trends is required to support the
growth of renewable transportation. Battery technology and capacity continue
to grow, and the key to a sustainable green future is how well we understand
the power demands of an electric vehicle.

Our work aims to address the lack of driving data and charging data to
improve the understanding of electric vehicles power demand. We develop the
Cosinus system to monitor electric vehicles and interact with electric vehicle
owners and researchers who are interested in the data. Understanding power
demands are the first step to creating charging schedules that provide sufficient
power to electric vehicle owners while minimizing the risk of component
overload and voltage instability.

We conclude that a system that collects driving data and charging data
must prioritize security, to protect its users and flexibility, to allow the system
to grow and change rapidly with the introduction of new electric vehicle
brands and APIs. Electric vehicle batteries are increasing in capacity and
understanding driving patterns will help tremendously in the development of
more advanced and sophisticated charging methods that will result in more
economical charging for the car owner and power distributors.

iii

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Definition . 3
1.3 Limitations . 4
1.4 Research Method . 4
1.5 Main Contributions . 5
1.6 Thesis Outline . 5

I Background 9

2 Background 11
2.1 Security . 11

2.1.1 OWASP Top 10 . 11
2.1.2 General Data Protection Regulation 13
2.1.3 Authorization . 14

2.2 Django . 17
2.2.1 Overview of Django . 17
2.2.2 Django Models . 18
2.2.3 Django rest-framework . 20
2.2.4 Serializers . 21
2.2.5 Views . 22

2.3 Hosting . 23
2.3.1 Cloud Computing . 23
2.3.2 Services . 26
2.3.3 Compute Engine . 26
2.3.4 App Engine . 26

v

2.3.5 Cloud Functions . 26
2.4 Data . 27

2.4.1 Power Market and Power Data 27
2.4.2 Vehicle Usage Data . 28

2.5 Vehicle Communication . 29
2.5.1 Tesla . 30
2.5.2 BMW . 32

2.6 Terminology . 33
2.6.1 CPU Scheduler . 33
2.6.2 Process . 34
2.6.3 Thread . 34
2.6.4 Coroutine . 35
2.6.5 User Experience . 35
2.6.6 Native Applications . 35
2.6.7 Cross-platform Applications 36
2.6.8 Technical Debt . 36

2.7 Summary . 36

3 Related work 39
3.1 Summary . 41

II Design & Development 43

4 Cosinus 45
4.1 Overview . 45

4.1.1 Infrastructure . 45
4.1.2 Architecture . 47
4.1.3 Database . 49

4.2 Authentication and Authorization 50
4.2.1 Authentication . 51
4.2.2 Authorization . 54

4.3 Brand Manager . 54
4.3.1 Service Interface . 56
4.3.2 Brand Manager Core . 58
4.3.3 Service Components . 60

4.4 Interacting with the system . 61
4.4.1 Resource addresses . 61
4.4.2 Query The Collected Data 61
4.4.3 Connect vehicles to the system 63
4.4.4 Interaction with the auth endpoints 65

vi

4.5 Summary . 67

5 Monitor Optimization 69
5.1 Cron Jobs . 69
5.2 Current Data Collection Design . 70
5.3 Benchmarking . 71
5.4 Approaches . 73

5.4.1 Multiprocessing . 73
5.4.2 Multithreading . 74
5.4.3 Coroutines . 76
5.4.4 Grid Computing . 77

5.5 Conclusion . 77
5.6 Summary . 79

6 Tailored Charging Schedules 81
6.1 Charging Plan . 81
6.2 Automated Charging . 83
6.3 Estimating Driving Range . 85
6.4 Discussion . 89
6.5 Summary . 90

7 Client Application 91
7.1 Architecture . 91
7.2 Cross-platform frameworks . 92
7.3 Navigation . 93
7.4 Building Interfaces . 94
7.5 Device and Network Communication 95
7.6 Programming Language . 96
7.7 Conclusion . 96
7.8 Summary . 97

III Conclusion 99

8 Conclusion 101
8.1 Summary . 101
8.2 Main Contributions . 102
8.3 Future Work . 103
8.4 Final Remarks . 104

vii

IV Appendices 105

A Monitor Optimization 107

B Tailored Charging Schedules 111

C Client Application 121

viii

List of Tables

2.1 Session token overhead with 20 runs 15
2.2 JSON Web token overhead with 20 runs 16
2.3 Cloud Categories . 25

4.1 Essential system resource addresses 61
4.2 Available arguments for data retrieval 64

5.1 Multiprocessing I/O test results . 74
5.2 Multithreading I/O test results . 75
5.3 Coroutines I/O test results . 77
5.4 Accumulated I/O test results . 78

ix

x

List of Figures

2.1 Illustration of session token flow 15
2.2 Illustration of JSON web token flow 16
2.3 Caption place holder . 18
2.4 Django models lazy evaluation example 19
2.5 Django model . 19
2.6 Custom Django model field example 20
2.7 Django models inheritance . 21
2.8 Serializer example . 22
2.9 Login serializer . 22
2.10 Login view . 23
2.11 Correlation between price and consumption 27
2.12 Weekly vehicle trends . 28
2.13 Simple CPU scheduler . 34

4.1 Illustrations of the system architecture 48
4.2 Illustrations of the database schema for vehicle data 50
4.3 Creating a new user . 52
4.4 Generate access and refresh token 53
4.5 Authorization filter . 55
4.6 Service interface . 57
4.7 Brand Manager Core . 58
4.8 Data Django models . 60
4.9 Service components pseudo code 62
4.10 Connect curl command . 64
4.11 Registration curl command . 66
4.12 Login curl command . 66
4.13 Refresh access curl command . 66

5.1 Screen grab of monitor execution times 70
5.2 Performance of various test cases 72
5.3 Multiprocessing performance . 73
5.4 Threading performance . 75

xi

5.5 Coroutines performance . 76
5.6 Parallelization test results . 78

6.1 Accumulation of trend data . 82
6.2 Charging recommendation . 83
6.3 Correlation between battery efficiency and temperature 86
6.4 Estimated monthly driving range 87
6.5 Estimated monthly driving range 88

7.1 Client Application Architecture . 92
7.2 Navigation Examples . 94
7.3 HTTP request example . 95

A.1 System specification . 108
A.2 Source code: Busy waiting . 108
A.3 Source code: Find all prime numbers below n 109

B.1 Heatmap of vehicle one charging trends 112
B.2 Heatmap of vehicle two charging trends 112
B.3 Power prices and Consumption data for the first two weeks of

February . 113
B.4 Hourly with distance filters . 113
B.5 Daily with distance filters . 114
B.6 Daily Simple with distance filters 114
B.7 Greedy with distance filters . 115
B.8 Hourly with efficiency filters . 115
B.9 Daily with efficiency filters . 116
B.10 Daily Simple with efficiency filters 116
B.11 Greedy with efficiency filters . 117
B.12 Hourly with distance and efficiency filters 117
B.13 Daily with distance and efficiency filters 118
B.14 Daily Simple with distance and efficiency filters 118
B.15 Greedy with distance and efficiency filters 119

C.1 Flutter: rendering list of vehicles 122
C.2 react native: rendering list of vehicles 123

xii

Chapter 1

Introduction

1.1 Background and Motivation

Electric Vehicles (EVs) is an environmentally friendly product that will reduce
local and global pollution generated from both private and public transporta-
tion. EVs is rising in popularity as the preferred choice of transportation, es-
pecially here in Norway, which is a world leader in the adoption of EVs. The
tremendous growth in EV sales is due to government incentives to make EVs
an attractive option for car buyers, to reach their goal of having all vehicles sold
after 2025 to be emission-free [23].

The aggressive push for a greener future with less local pollution is,
however, not without its complications. The big batteries installed in the EVs
require adequate power to operate the vehicle and travel between destinations.
The rising power demand present problems for power distributors. Many
residential areas power grid cannot stably support the high throughput
required to simultaneous charging a high number of EVs [10, 32].

Charging a single EV can be the equivalent of adding three houses to
the power grid. The added pressure does, however, vary depending on the
charging method, with charging through a standard outlet resulting in the least
amount extra stress on the power grid and dedicated EV chargers drawing
a significant amount of power in a short amount of time [6]. Dedicated EV
chargers can charge EVs swiftly to allow for quick pit-stops whenever needed.

The high voltage throughput is, however, not healthy for the batteries [30].
The added stress will result in quicker deterioration of the batteries. The
power grid of residential areas can exceed their capacity, resulting in power
components overloading and voltage instability [10, 32, 36]. The increased
power demand does, however, present the potential to fill the valleys in the load
curve, which will result in more electricity sales without the need for power grid

1

upgrades.
Additionally, modern vehicles make use of a tremendous amount of sensors

to ensure stable operation. All the captured information from the sensors
give investigators and car manufacturers and accurate representation of the
operation of the vehicle. All the sensor information results in a tremendous
amount of logged data which is an untapped source of information which can
be analyzed by third-parties. Especially for EVs, where the data can provide an
accurate representation of the EVs power demands and their EV owners trends.
The data present significant potential for an analyst to improve current charging
solutions.

The challenge, however, is that the car manufacturers carefully protects
the data, which makes it almost impossible for others to retrieve and access
the information stored in the driving logs. However, car manufacturers have
begun to allow access for a subset of the information through dedicated
mobile applications. Additionally, the introduction of the General Data
Protection Regulation (GDPR) has further added pressure on full transparency
for remotely stored personal data. However, the data is still challenging to
retrieve and access, which discourages researchers who have an interest in the
data from attempting to access the data.

In the last few years, a rising trend of using machine learning has emerged
to understand large amounts of data. Machine learning is a field of computer
science where the goal is to give algorithms the ability to learn and improve
their performance on a specific task. The advances in analyzing methods such
as machine learning have turned data into a valuable resource.

In the last few years, a rising trend of using machine learning has emerged
to understand large amounts of data. Machine learning is a field of computer
science where the goal is to give algorithms the ability to learn and improve
their performance on a specific task. We have observed success with machine
learning methods in various fields, including power and health-care. However,
machine learning requires a large amount of data to understand and categorize
problems.

With the rise of cloud services, we see opportunities for solutions to retrieve
and store vehicle data across car manufacturers. Cloud services have made it
easier than ever before to deploy systems capable of interacting with thousands
of users and services. Especially services like Google App Engine, where
infrastructure is configured and operated by the cloud provider has resulted
in a decrease in time between project initialization and production ready
deployment compared to conventional methods.

We see that cloud services can be leveraged to monitor and collect
information about individual EVs. The monitorization process will, in turn,

2

generate enough data for machine learning models to understand and optimize
the charging procedure in respect to the vehicle owners usage. This process
will result in a more advanced system which solves the problem better than the
available state of the art solutions, as it can predict and account for future usage.

The technological advances in transportation and cloud technology, com-
bined with data regulations has resulted in an excellent opportunity to make
data more accessible for both EV owners and researchers. The vehicle data can
result in better individual and collaborative charging optimization, in addition
to gaining a better understanding of driving trends.

1.2 Problem Definition

As indicated in the previous section, EVs are a technological feat which is crucial
to decrease pollution from private and public transportation. The problem,
however, is that EV sales are moving at a tremendous rate, which brings new
user patterns and problems for power distributors. Charging an EV adds a
considerable amount of load on the power grid, which can cause voltage drops
and power components such as transformers and feeders to overload, which
decreases the components life-span.

To prevent power grids from experiencing voltage drops and power
components from overloading, we will design and develop a system capable
of interacting with EVs to retrieve and store vehicle states to analyze and
understand EV needs. Car manufacturers hide driving data from the users and
retrieving a copy for researchers can be quite the challenge. We are therefore in
need of a solution that is capable of collecting driving and vehicle state data for
a considerable amount of vehicles.

In this thesis, we will investigate the following:

1. How should a system be built that can fulfill the task of automatically retrieving
and storing driving data?
Driving data has been, and still is, a challenge for vehicle owners and
researchers to access. The rising trend of wireless interaction with
mundane items has encouraged car manufacturer to create opportunities
for car owners to retrieve the current state of their car through a mobile
app. We examine different cloud services and architectural choices to
determine how to create a driving data collection system.

2. How can the driving data be used for smarter and more economical charging?
Understanding the vehicle and the owner’s patterns will result in
flexibility when it comes to charging times. We will, therefore, use the
acquired data to improve our understanding of user trends and vehicle

3

capabilities, to provide a more flexible charging schedule compared to a
general off-peak charging routine.

The ultimate goal of this thesis is to make driving data more accessible for
the vehicle owner and researchers to improve current collaborative charging
approaches. Hopefully, the data acquired through the developed system
will aid future research in their work on component overload prevention
and improve power components utilization. Additionally, the data will
potentially result in the development of more sophisticated collaborative
charging schedules that provide an economic advantage for power distributors
and vehicle owners.

1.3 Limitations

Based on our questions defined in the previous section, the scope of this thesis
is to design and develop a system capable of automatically retrieve and store
driving data and exploring potential charging scheduling approaches made
possible by the collected data.

We limited the scope of potential programming languages and cloud
providers based on criteria presented by Flexibility AS, which is one of the
collaborators for the work done in this thesis. Flexibility had a desire of having
the system developed using the Python programming language. Further, the
system must use a cloud service provided by Google Cloud Platform. We
decided to limit the number of cloud services evaluated to the three we deemed
to be most flexible in use, which are Google Compute Engine, Google App
Engine, and Google Cloud Functions.

Additionally, instructions for remote vehicle interaction is limited, where
most of the information is reverse engineered by dedicated software engineers
around the globe. We, therefore, limited the number of supported vehicle
brands to two, with Tesla, because of the detailed and accurate instructions
found on their forums and BMW, which agreed to assist the work.

1.4 Research Method

We chose the Constructive Research methodology, better known as Design
Science Research (DSR), to conduct our research in this thesis. DSR is a
form of scientific knowledge production that involves the development of
constructions, intended to solve problems we face in the real world, and
simultaneously make a prescriptive scientific contribution [9].

4

DSR occupies a middle ground between traditional scientific approaches,
mostly descriptive and context-related problem-solving knowledge produced
in practical situations. The research methods aim is to the solving of specific
problems and obtains a satisfactory solution for the situation, even if the
solution is not optimal [9].

During our research, we will follow the design cycle method, which is a
subgenre of DSR. Research following the design cycle method begins with the
identification of the problem and understanding how they should define the
performance required to benchmark the solutions. Afterward, the researcher
compares a variety of solutions to find a suitable solution for the problem [9].

1.5 Main Contributions

We have provided a system capable of retrieving and storing driving data and
charging data for vehicles which support remote communication. We have used
data collection and storage of vehicles as a scenario to explore how different
architectural choices affect the maintainability of the systems and its capabilities
to operate as an aggregation platform. We have also analyzed the historical
driving data and charging data to improve our understanding of EVs power
demands and mileage trends.

To achieve this, we identified problems and explored a variety of techniques
to create loosely coupled components and abstraction throughout the system.
The resulting system can rapidly expand in features and components can be
changed without directly affecting the operational ability of the system. The
most significant challenge of the system was to provide an acceptable security
level. We protected the data through the use of customized Data Access Objects
(DAO) to provide an intuitive interface for developers without the requirement
of understanding how the database operates.

1.6 Thesis Outline

We divided the thesis into three parts, with the first containing crucial
information to understand architectural choices and present related work
associated with EV charging. The second part contains the work done
throughout the thesis, and the final part is the thesis conclusion. The thesis
is structured as follows:

Part 1: Background

5

Chapter 2: Background: We give essential insight into topics which
has shaped the design and development of the Cosinus system.
We introduce privacy regulations and security attack vectors, which
we mitigate through the use of customized Data Access Objects,
input validation, and hierarchical access control with the help of
complementary libraries and frameworks. Further, we present a
description regarding the Application Programming Interfaces used
to collect driving data.

Chapter 3: Related Work: We present related work focused on
raising concerns related to the dangers EVs present on the power
grid and how near real-time power profiling combined with voltage
manipulation can mitigate the problem. Finally, we discuss why our
solution is a necessity to complement existing voltage manipulation
methods and support a green future.

Part 2: Design & Development

Chapter 4: Cosinus We introduce the Cosinus system and the
thought process that went into designing and developing the system
with security and privacy in mind. Most importantly, we describe
how we modularized the system to keep the maintainability of the
system at an acceptable level. Through the use of design principles
like "Do not repeat yourself" and object-oriented design, we made it
possible to support more brands with no prerequisite knowledge of
the system.

Chapter 5: Monitor Optimization: We initially designed the data
collection process to run chronologically. However, we had to reduce
the time needed for the data collection process, to operate inside the
boundaries given by the cloud provider. We present and discuss a
small experiment to highlight how common parallelization strategies
compare with our use-case in mind.

Chapter 6: Tailored Charging Schedules: Encouraging EV owners
to share their driving data requires us to reward the participant in
some fashion. The chapter takes a closer look at the driving data
and discusses how the data can be used to provide each EV owner
with their custom charging plan in addition to a historical view of
their EVs range throughout the time of monitorization. Finally, we
discuss how the minimum charging necessary approach presented
can impact collaborative charging methods, especially in conjunction
with existing voltage manipulation methods.

6

Chapter 7: Client Application: Developing and maintaining a mo-
bile application is crucial to reach and interact with users. This chap-
ter presents the comparison of a new framework which is currently
rising in popularity, Flutter, with a framework which is a near iden-
tical copy of the popular web development framework React, react
native. Both frameworks provide a hierarchical structure over the
user interface elements. However, their internal structure and ac-
companying libraries result in one being better for collaborative and
long-time development, while the other being better for prototyping,
where quick changes and easy manipulation of position and size is
favored.

Part 3: Conclusion & Future Work

Chapter 8: Conclusion: Finally, we summarize and conclude
this thesis and present ideas and suggestions for further studies
surrounding the work done.

7

8

Part I

Background

9

Chapter 2

Background

2.1 Security

Information security refers to the process and tools designed to protect sensitive
information from modification, disruption, destruction, and inspection. It is
essential to be aware of vulnerabilities to develop a secure system.

This section introduces vital topics which shape the system, to protect the
information stored inside our software. We begin by introducing a few of the
most common exploits used by malicious actors to access and tamper with the
system.

After the introduction of common threats, we provide a brief introduction
to the General Data Protection Regulation, which affects all services used by
a European Union citizen. Finally, we introduce two common authorization
methods, session token, and JSON Web Token.

2.1.1 OWASP Top 10

The Open Web Application Security Project (OWASP) is an open community
dedicated to enabling organizations to develop and maintain applications
and APIs that can be trusted. OWASP provides information and tools to
educate organizations and raises awareness for the most common security
vulnerabilities in existence [31].

This section introduces the most common risks associated with service
development and maintenance. Some of the exploit mentioned here can put an
organization out of business and cannot be avoided under any circumstances.

11

Injection

An injection attack is an attack where a malicious actor tricks the system into
executing foreign code. The purpose of an injection attack is to read, modify or
change data stored on the system. Injection attacks, such as SQL injection are
among the oldest and most dangerous attack vectors, which can result in the
attacker gaining control over the system [21, 31].

The biggest problem with injection attacks is the broad attack surface. All
input that goes into the system or is used by the system is a possible entry point
for an attack. Environment variables, parameters, libraries, internal services,
and external services can all be used to carry out an attack [21].

Injection prevention requires a separation between data, commands, and
queries. Escaping special characters or using Object Relational Mapping
tools is the most straightforward method to prevent SQL injection. Another
conventional method is to validate inputs before use [31].

Broken Authentication

A broken authentication attack attempts to find vulnerabilities in the systems
authentication process. The purpose is to gain system access with the goal of
accessing the system as an administrator [3, 31].

Broken authentication attacks attempt to brute force their way through, by
attempting multiple different usernames and password combinations, either
manually or automatically [3].

The most straightforward method to prevent an attack is to implement
password strength validation. Other excellent measures are to blacklist
common passwords, implement multi-factor authentication and limit number
of login attempts allowed [31].

Sensitive Data Exposure

Sensitive data exposure, as the name implies, concern unprotected or poorly
protected data. The data in question can be everything from passwords and
tokens to sensitive data such as financial or health information [31, 38].

An attacker either acts as a man-in-the-middle or acquires the data through
other means, like an injection attack. From there, they try to break through the
encryption if present. The retrieved data can then be used to cause financial
loss, discrimination or, worst-case, start a witch hunt [31].

Adequately protecting all information which enters or leave the system
is the best and only method to prevent this from happening. Avoid storing
unnecessary data and encrypt sensitive information. Moreover, encryption

12

algorithms should be up to date and follow reliable standards. System
administrators should also ensure that encryption keys are secure, both in their
content and the location they are stored [31].

Broken Access Control

Access control enforces policies such that users cannot act outside their
intended permissions. Broken access control can result in sensitive data being
exposed, with the possibility of losing control over the system [31].

Access control is legitimate only when enforced, which is why the easiest
prevention method is to enforce access policies. The access control must
be enforced in a trusted environment where attackers are unable to modify
metadata and disable validation processes. Other prevention methods are to
ensure that resources can only be viewed and modified by the resource owner
[31].

Rouge Extensions

Relying on third-party software, such as libraries and frameworks, is a common
strategy to speed up development time and increase quality. It provides
abstractions and can result in more maintainable code. There is, however, risks
associated with importing third-party software.

The impact of using rouge extensions varies depending on the protected
assets. However, data is not the only aim of the attack. Rouge extensions might
even result in lost control over the system, and further use it to attack others.

The most straightforward procedure to avoid rouge extensions is to avoid
unmaintained libraries and frameworks, in addition to monitoring activity
from the maintainers. Other methods are to remove unnecessary and unused
extensions and ensure that all files come from a trusted source [31].

2.1.2 General Data Protection Regulation

The General Data Protection Regulation (GDPR) is a regulation in Europe on
data protection and privacy. The regulation aims to protect all individuals
within the European Union (EU) and the European Economic Area (EEA). It
addresses all data, either inside or outside of EU and EEA that affect an EU
citizen [11].

GDPR aims to protect EU and EEA citizens from privacy and data breaches
in a digital age. It focuses primarily on reducing the severity of data breaches
and informs citizens of organizations who store personal data. In the following
sections, we will cover some of the essential features of GDPR.

13

Consent

Organizations are no longer able to use terms of service and conditions which is
difficult to read and understand. A request for consent must be simple to read
and understand. It must also be easily accessible, and the purpose of storing
the information must be attached to the consent. In other words, a consent
must explain how the company or organization use the information. Further, it
must be as easy to withdraw consent as it is to give it [11, 17, 35].

Right to Access

All EU and EEA citizens have the right to receive a confirmation whether an
organization or company has information associated with them stored in their
systems. If that is the case, then the organization is obligated to explain the
purpose of storing the information. Further, organizations and companies are
obligated to provide a digital copy of the data, free of charge, on request [11,
17].

2.1.3 Authorization

This section introduces authorization followed by an introduction to two
conventional methods for authorization toward a system. More precisely, the
section will introduce session token and JSON Web Token.

Authorization is the process of specifying and granting a users rights to
system resources. More formally, authorization is to define an access policy.
E.g., a bachelor student cannot enter the school buildings on Sunday after 6 pm.
A master student, on the other hand, can enter the school buildings whenever
they want.

Tokens are digital artifacts used to identify the token holder, similar to a
building access card. The system provides the tokens after the authentication
process, where a user is required to present their credentials, usually a
username and password, which is validated by a trusted source.

Session Token

A session token is a unique data-element generated by the system. The
token is preferably difficult to forge, such as artifacts that are digitally signed
or encrypted. The token must be present whenever the client request to
communicate with the system and acts as a key to session information which
is stored in the system’s database.

14

Figure 2.1: Illustration of session token flow

threads requests\thread avg. microseconds
20 1000 16.211914999999998
20 20000 15.521109
20 40000 15.372620374999997

Table 2.1: Session token overhead with 20 runs

Storing session information inside the system has the advantage of reducing
data exposure and a reduced amount of transmitted data, compared to JSON
Web Tokens. Besides, storing meta information grants the opportunity of
storing a large amount of detailed information, with the possibility of locking
tokens to the users IP [26].

The consequence of this process is that it relies heavily on the database.
Every incoming request must be validated with a database read operation.
There are however methods to reduce the database dependency by storing
information inside the token, which might weaken the protection.

Figure 2.1 illustrates the usual request flow while table 2.1 shows the average
time used for a database read to illustrate the overhead associated by using
session token. The test was run locally with both the server and database
present to reduce network latency as much as possible.

The most significant advantage of using session tokens regarding security
is the ability to revoke access privileges whenever needed and its ability to
prevent tokens from being used by other IPs.

15

Figure 2.2: Illustration of JSON web token flow

threads requests\thread avg. microseconds
20 1000 13.02477
20 20000 12.35035575
20 40000 12.372653875

Table 2.2: JSON Web token overhead with 20 runs

JSON Web Token

A JSON Web Token (JWT) is a unique data-element produced by the system.
JWTs consists of two JSON objects (head and payload) and a digital signature
(tail) to verify the content and authenticity of the token.

JWTs represent a set of claims as a JSON object that is encoded. This JSON
object is the JWT claim set. The JSON object consists of name-value pairs, where
the names are strings, and the values are arbitrary JSON values. A claim is the
names present in the object [24].

The contents of the head describe the cryptographic operations applied to
the token, while the body contains the shared information between user and
system. The token is represented as a sequence of URL-safe parts separated by
a period character. Each part contains a base64url-encoded value.

The advantage of JWTs is that it is stateless. With stateless, we refer to the
process of remembering information. The token has all the necessary data to
inform the system about who the user is in addition to meta information about
the token itself.

Figure 2.2 illustrates the usual request flow while table 2.2 shows the average

16

overhead associated with authorizing the request. The test was run locally to
reduce overhead related to network latency as much as possible.

Another advantage of JWTs is its ability to be used by multiple services
and systems. It can, for example, be created by Google and used by Gmail
and YouTube. Additionally, it has excellent performance, because of the
computational validation compared to a database lookup.

The disadvantage, however, is that the system can not reject non-expired
token. Compromised tokens have access right to the system until the expiration
date. The set life-span of a token is a significant contributor to the level of
security the token is capable of providing.

2.2 Django

Using libraries and framework reduces development time with the possibility
of assisting the developers in producing maintainable software. Using third-
party libraries is, however not without any risks, as we mentioned in chapter
2.1.

Choosing the correct combinations of frameworks and libraries to comple-
ment a system is difficult. Choosing many small libraries might result in much
technical debt, as there would be many dependencies to monitor and maintain.
On the other hand, using a broad framework or library will also result in some
technical dept, as the system will become tightly coupled with the extensions.

After considering the options available, we chose to use extensions with
broad feature sets instead of small libraries, to reduce the risk of encountering
a rouge extension, while keeping the number of dependencies to a minimum.

This section introduces the framework and libraries which the system relies
on the most, Django and Django rest-framework. The reason why we chose
Django was that it has an extensive feature set in addition to its built-in security
features to assist us in avoiding vulnerabilities mentioned in section 2.1.1.

Django is a full-stack web framework, with an extensive feature list. The
framework has everything a system need to administrate their users and
database. During this chapter, we introduce the database related features of
Django in addition to Django rest-frameworks APIView and serializer.

2.2.1 Overview of Django

Django is an open-source web framework based on the programming language
Python. It follows a model-view-template (MVT) based architectural pattern,
which facilitates server rendered views.

17

(a) Django initial tree view (b) Django hello world

Figure 2.3: Caption place holder

Django makes it easy to create database-driven websites with its Data Access
Objects (DAO), which is an Object Relational Mapping (ORM) tool. In addition
to a straightforward API for database interaction, Django also protects against
vulnerabilities such as SQL injection, Cross-site scripting (XSS), and Cross-Site
Request Forgery (CSRF).

A Django project is simple to set up with the Command Line Tool (CLI)
which generates everything that is needed to begin a project. Figure 2.3 displays
all the generated from the project initiation command and module creation
command. The only thing needed for a simple hello world response from
the system is to insert code into views and register an endpoint in URLs as
illustrated in the figure.

There is also a file named manage, which is generated by the CLI tool.
Manage is a utility that assists in project management. It is capable of creating
users, creating modules, such as ’api’ in figure 2.3b and ensure a one to one
relation between defined schemas and the database tables.

2.2.2 Django Models

Django models which are a DAO implementation creates an abstraction layer
around the database. The models provide an extensive interface for interacting

18

1 q = Entry.objects . filter (headline__startswith="What")
q = q. filter (pub_date__lte=datetime.date.today())
q = q.exclude(body_text__icontains="food")
print(q)

Figure 2.4: Django models lazy evaluation example

class Person(models.Model):
name = models.CharField()
age = models.IntegerField()

Figure 2.5: Django model

with the database in addition to preventing SQL injection.
Another significant benefit is SQL query optimization. Django models

are lazy, which means that filter operations can be applied multiple times as
illustrated in figure 2.4. The database hit occurs at the moment information is
retrieved from the object, which means that an object can be modified multiple
times before the hit occurs.

A model is defined similarly as a Java class, where global attributes are
defined as illustrated in figure 2.5. The model inherits from the superclass
’Model,’ which provides the necessary interface to interact with the database.
Also, each defined model is a representation of a database table with similar
column names, which the ’manage’ tool uses to check whether or not the
database is up to date with the application.

The model interface provides a broad amount of different fields to support
most use cases. However, it does not come with any method to automatically
encrypt data. Creating custom fields is however a simple process. Figure 2.6
illustrates a simple method to create a custom field, where the class inherits the
binary field and modifies how data is read and written.

The functions from_db_value and get_db_prep_value is invoked automati-
cally whenever a read or write operation occurs respectively. Inside the func-
tions, we can manipulate and change the values as demonstrated.

Another great feature with Django models is its integration with the
programming paradigm object-oriented programming. The models have
inheritance, as demonstrated earlier. However, there is more to the inheritance
capabilities than illustrated in the earlier figures. There are three styles of
inheritance which is supported, with multi-table inheritance being the most
interesting for our system. The three styles provide a good set of options too

19

1 class EncryptionField(models.BinaryField):
def get_db_prep_value(self, value, connection, prepared=False):

f = Fernet(settings .CRYPTOGRAPHY_KEY.encode())
value = f .encrypt(str(value).encode())

5 return super().get_db_prep_value(value, connection, prepared)

def from_db_value(self, value, expression, connection):
if value is None:

9 return value
elif isinstance(value, memoryview):

f = Fernet(settings .CRYPTOGRAPHY_KEY.encode())
value = f .decrypt(bytes(value))

13 return value if value != b’None’ else None
return value

Figure 2.6: Custom Django model field example

represent different database needs.

Abstract base class: The parent is provides a template and does not have
its own database table.

Multi-table inheritance: Every model defined has its database table
where children has a direct pointer to a row in its parent table.

Proxy models: Modifies a models behavior without changing its fields.

Multi-table inheritance, as illustrated in figure 2.7, automatically maintains
a link between the two models, the superclass and the subclass. The subclass
has a pointer (foreign key) automatically inserted whenever the system creates
a new row. Information inserted into the subclass is divided between the parent
and child wherever applicable.

The advantage is the option to retrieve name and address whenever a park
or restaurant is retrieved. Also, ’place’ operates as a gathering spot for all
the data, which means that the ’place’ table has information related to all
restaurants and parks.

2.2.3 Django rest-framework

Django’s request and response features are mundane with the minimum needed
to for API development. We, therefore, decided to include Django rest-
framework to improve the system’s request handling capabilities.

20

class Place(models.Model):
2 name = models.CharField(max_length=50)

address = models.CharField(max_length=80)

class Restaurant(Place):
6 serves_hot_dogs = models.BooleanField(default=False)

serves_pizza = models.BooleanField(default=False)

class Park(Place):
10 has_fountain = models.BooleanField(default=False)

Figure 2.7: Django models inheritance

Django rest-framework is an extension library for Django. The library
provides a set of pre-defined request handling cases in addition to serializers,
which is a Django model like feature for request and responses. The library does
not differ substantially from Django’s procedure of creating class-based views,
which provide seamless integration between the framework and library.

This section provides a fundamental introduction to the library with the
focus of providing information regarding the essential features of the library.
We begin by introducing serializers and finish with a brief introduction to
views.

2.2.4 Serializers

Serializers allow for a complex data type, such as JSON, XML and URL
query parameters to be translated to a native python datatype and vice versa.
Serializers also provide automatic and manual validation of the incoming data,
which provide security assistant whenever applicable.

Declaring a serializer is similar to declaring a Django model as illustrated
in figure 2.8. Serializers can replicate a model, which provides a correct
representation between the endpoint interface and database schema. We can
also specify the desired fields, by specifying column names in a tuple instead of
the illustrated ’__all__’ keyword.

Serializers provide object level and field level validation. Object level
validation is primarily used to validate the relationship between two fields,
while field level validation provides isolated data validation. The superclass
provides automatic validation based on the type of field specified. However,
manual validation is added with a validate function.

Figure 2.9 illustrates how we use field level validation to reduce the

21

class PlaceSerializer (serializer . Serializer) :
2 name = serializer .CharField(max_length=50)

address = serializer .CharField(max_length=80)

class ParkSerializer(serializer . Serializer) :
6 class Meta:

model = Park
fields = ’__all__ ’

Figure 2.8: Serializer example

class LoginSerializer(serializers . Serializer) :
email = serializers .EmailField(required=True)
password = serializers .CharField(required=True)

4

def validate_password(self, value: str) −> str:
pattern = r" ^(?=.*[a−z])(?=.*[A−Z])(?=.*[0−9])(?=.{8,})"
if re .match(pattern, value) is None:

8 raise serializers .ValidationError(
’Password does not meet strength constraints’

)

12 return value

Figure 2.9: Login serializer

likelihood of a broken authentication vulnerability from manifesting. Field
level validation functions follows the format validate_<field_name>. Object
level validation functions, on the other hand, are named validate, which takes
a single dictionary as the argument.

2.2.5 Views

Django rest-framework provides a basic class, APIView, which subclasses
Django’s view class in addition to providing a set of views which provide
commonly used patterns, such as retrieving a list of database entries.

Figure 2.10 illustrate how we created an endpoint which only accepts post
request. The class forwards requests to a function of a corresponding method
name, which provides a clear distinction between logic handling separate cases.

22

class LoginView(APIView):
def post(self , request: Request) −> Response:

payload = LoginSerializer(data=request.data)
4 if not payload.is_valid() :

return Response(payload.errors, status=status.
HTTP_400_BAD_REQUEST)

return Response(<auth_pair>, status=status.HTTP_200_OK)

Figure 2.10: Login view

Additionally, Django rest-framework provides mixins, which is pre-built
views to take common idioms and patterns found in API development and
abstracts them to reduce development time. The mixins allow us to build
quickly build abstractions between the client interface and the systems database
schema.

2.3 Hosting

As mentioned in section 1.2, our system must be running on Google Cloud
Platform, which is a cloud computing provider. Cloud computing is a relatively
new paradigm which presents many architectural opportunities in addition to
simplifying the process of making software publicly available.

This section introduces the cloud computing paradigm and the three
services we considered for our system. Compute Engine, App Engine, and
Cloud Functions provide different levels of infrastructure abstractions. We
decided on these services because of their simplicity. Compute Engine and
App Engine are both virtual machines with the difference in infrastructure
configuration options, while Cloud Functions provides a simple environment
for event-driven development.

2.3.1 Cloud Computing

Cloud Computing is a concept of outsourcing infrastructure management and
maintenance. Traditional hosting solutions, like Digital Ocean, provides a fixed
amount of computational resources. The other option is for companies and
organizations to manage and maintain the infrastructure themselves, which
again result in a fixed amount of computational resources [2, 15, 18, 47].

23

Cloud computing offers a theoretically limitless amount of computational
resources, which is managed and maintained by the cloud provider. In other
words, the cloud provider provides computational resources as a general
utility, which can be rented by companies and organizations in an on-demand
fashion. Cloud services will, as a result, remove the need for companies and
organizations to manage and maintain their server hardware.

The result of using a cloud service is that more time can be allocated to
developing software instead, which can provide a positive effect on the financial
budget. The separation between infrastructure and software development has
brought forward several compelling advantages and features, as listed below,
in addition to increased specialization in their respective domains.

No upfront investment is needed as cost related to infrastructure is
transferred from buying and configuration to renting resources from an
infrastructure provider.

Lowering operational cost as the operational cost is dynamically allo-
cated depending on service demand. Service providers do not need to
allocate resources according to peak load which provides savings when-
ever service demand is low.

Highly scalable services because infrastructure providers pool high
amount of resources and make them easily accessible. A service provider
can easily expand geographically and handle surges of traffic thanks to
infrastructure providers many data-centers which are located around the
world.

Easy access to deployed service because services hosted the cloud are
generally web-based, which is why they are easily accessible through a
wide variety of artifacts (e.g., laptop and car).

Reducing business risk: Risks associated with infrastructure manage-
ment such as hardware failure and staff training as well as knowledge.
Infrastructure providers have staff who are highly trained in network and
server maintenance, which result in better infrastructure then many busi-
nesses can afford to maintain.

However, cloud services are not a perfect service which is capable of
replacing every company or organizational need. There are security risks of
relying on a third-party, where sensitive information might leak. For example,
how hard-drives are re-used or disposed of effects the likelihood of leaked data.

Cloud providers offer a wide variety of services so everyone can find some-
thing that fits their needs. The services vary in their environment configuration

24

Category Description
Infrastructure-as-a-Service Provides a highly configurable virtual

environment and infrastructure
Platform-as-a-Service Provides pre-configured environment

and infrastructure with the option to
configure them to a slight degree

Software-as-a-Service Provides a locked environment and in-
frastructure which is fully managed by a
third-party.

Table 2.3: Cloud Categories

and the amount of control which is available over the infrastructure. Users can
choose to use a simple service such as Compute Engine, where they have com-
plete control over the environment and infrastructure. On the other side, users
who do not want to manage their infrastructure can use a service such as App
Engine, which is a pre-configured environment, and focus solely on the devel-
opment of their software.

Table 2.3 lists the three categories which cloud services fall under, and
indicate the user’s ability to affect the infrastructure. Infrastructure-as-a-
Service (IaaS) provides the most flexibility, where users have the opportunity to
configure most of their infrastructure. Software-as-a-service (SaaS), on the other
hand, is the most rigid, where users are unable to influence the infrastructure.

IaaS services are highly configurable, where the user is essential renting an
empty virtual machine which gives full control over the operating system, a
significant degree of hardware configuration options in addition to a low degree
or non-existent vendor lock-in. An advantage of IaaS compared to the other
two services is the low amount of dependency on the cloud provider and their
service enhancing features [44].

PaaS, on the other hand, is a pre-configured environment which is managed
by the cloud provider. PaaS builds further on IaaS and is in many cases a pre-
configured IaaS instance. PaaS restrict its users to a set of options provided by
the cloud provider, which makes it easier for them to scale the instance. Users
are, however, able to slightly change the configuration [45].

SaaS is a locked pre-configured environment which cannot be affected by
the user. SaaS is, as the name implies, a fully functional service which the user
leverage to achieve their goal. An example of a SaaS product is Gmail, which
is fully managed and maintained by Google. The consequence of using SaaS
service is the instant vendor lock-in, which provides complication whenever a
user wants to move over to a new provider.

25

2.3.2 Services

The three services which we considered is IaaS (Compute Engine) and PaaS
(App Engine and Cloud Functions). The three options are, theoretically, built on
top of each other, which is why we will begin by introducing Compute Engine,
then move on to App Engine and finally Cloud Functions.

2.3.3 Compute Engine

Compute Engine is highly configurable and scalable virtual machines. Com-
pute Engine provides all necessities for a system, such as persistent storage and
low network latency. The service provides an empty virtual machine with a
highly configurable infrastructure to perform acceptably under any given cir-
cumstance. The instances can be created and managed through multiple meth-
ods, such as the online console, the gcloud CLI or a REST API.

2.3.4 App Engine

App Engine is one or more pre-configured Compute Engine instances which
collaborate to form an application. Google Cloud Platform partially manages
the instances and provides a list of run-time environments. The environments
provide more predictable behavior, which makes it easier for Google to scale
the application.

Google provides two different environments, a standard environment, and a
flexible environment. The standard environment is a sandboxed and restricted
environment to make it as easy as possible for Google to respond to sudden
or extreme spikes of traffic. The flexible environment, on the other hand,
allows for more configuration options and supports a broader range of run-
times compared to the standard environment.

2.3.5 Cloud Functions

Cloud Functions is a further advancement of the PaaS paradigm, with a
much more restricted environment. Cloud Functions is a serverless execution
environment, which means that the work of managing servers, configure
software, updating extensions and patching the operating system. Further, the
service itself encourages fast development and deployment of small features
inside isolated environments.

26

Figure 2.11: Correlation between price and consumption

2.4 Data

2.4.1 Power Market and Power Data

The power industry here in western Europe is a competitive industry in which
market forces dictate the price of electricity and reduce the net cost through
increased competition [39]. In other words, supply and demand dictate the
value of available products on the power market.

Supply and demand play a central role in theoretical economics. In its purest
form, the concept can be described roughly in the following terms: In a free
market, the price of each commodity depends on the extent to which consumers
demand it. If at a given set of cost, the demand for a good exceeds the available
supply, then its price will rise, thus causing the demand to decrease. However,
if the supply exceeds the demand, then the price will decrease, and demand
will thereupon increase [16].

As visualized in figure 2.11, the electricity price varies throughout the day in
correlation with electricity consumption. Most of the expenditure on electricity
goes toward mornings, where everyone wakes up and eat breakfast.

We observe another peak during evening hours, which is after work when
families gather for dinner after a long day. The valleys, on the other hand,

27

Figure 2.12: Weekly vehicle trends

occurs during night time, where most people sleep and is therefore incapable
of actively consuming electricity through procedures such as cooking and
entertainment.

The presented information describes the trends here in the Oslo area,
which means that variations in patterns might vary depending on the location.
However, we are confident that the trends will be nearly identical as presented.

Another significant trend of note is that night from Sunday to Monday is
generally the most reasonable time for vehicle charging. Weekends have lower
power rates during a week, which carries over to the next week to some degree.
Appendix B.3 provide an extended window, which illustrate the phenomenon.

2.4.2 Vehicle Usage Data

Weekly driving trends provide valuable information for third-party systems,
such as Cosinus, when assisting vehicle owners in their charging decisions and
moving charging times to hours with less power consumption.

Most people have a predictable trend, which follows the power usage to
some degree. Morning usage consists of traveling to work and driving the
children to school or kindergarten, while evening usage consists of picking up
the kids on the way home from work, with the occasional detour to the grocery.
Additionally, late driving includes hobbies, sports, and fitness.

Figure 2.12 visualize the weekly trends recorded by the Cosinus system,
with deep colors representing high frequency, while light colors represent low
frequency. Each column in the figure represents one form of information. From
left to right, we have mileage information, battery percentage throughout the
week and charging trends. We further divide the figure into rows, with the top
row representing all vehicles connected to the Cosinus system. The following
two rows represent a vehicle, to provide a more intimate understanding of how
usage varies between cars.

28

In the top left corner, we see that vehicles are usually standing still during
nighttime, with most of the driving is occurring during the morning and
evening hours as discussed earlier. Additionally, the usage stretches further
into the night, which is caused by interests such as hobbies, sports, and fitness.

We observe the same patterns for the two vehicles presented in the figure.
Car one (middle row), however, seems to have a consistent usage throughout
the day, while car two (bottom row) has a more general usage, where the vehicle
is most likely to stand still during working hours.

Current battery charge trends and charging trends provide additional meta
information to understand the conditions which the vehicle operates under
regularly. We see vehicle one have a larger interval between each charging cycle,
compared to vehicle two, which is most likely due to one of two factors, or both.
It can be due to battery capacity differences or traveling distance differences
between the two. The most significant feature of note, however, is that vehicle
two is most likely to have a high charge during the working hours. This state
is most likely due to free charging during at the workplace or the absence of a
charging station at home.

Charging patterns indicate that most EV owners plug-in their charging cable
whenever the vehicle is either not in use, right away when they come home. We
observe a high frequency of charging during night-time, which begins already
at around 6 pm - 8 pm. We see the same trends for our two vehicles. Vehicle
two, however, seem to have a mismatch between the battery charge trend and
charging pattern trend. We believe the most likely cause is the instability we
experienced between the Cosinus server and the external API 1 in addition to
the pre-processing method used on the extracted dataset.

The trends presented highlights two crucial pieces of information. EV
owners are prioritizing convenience rather than power cost when they decide
on whether or not they should charge their vehicle. The other portion of data
is that charging can be postponed to nighttime. We see in our dataset that the
chance of nighttime use is on the lower end.

2.5 Vehicle Communication

This section introduces information regarding methods to communicate with
Tesla and BMW. Tesla does not provide any official documentation to commu-
nicate with their service. Therefore, the presented information regarding Tesla
where scraped from their official forum [28] and the unofficial documentation

1Application Programming Interface: A predefined communication protocol to interact with
a service.

29

provided by Tim Dorr [42]. BMW, on the other hand, provides documentation
to communicate with their service. The information regarding BMW is, there-
fore, a small snippet, with the entire documentation located in the appendix
section.

2.5.1 Tesla

We achieved communication with Tesla vehicles by mimicking app requests.
As such, the whole process begins with user authentication. The authentication
process requires user credentials, in the form of an email and password
combination as illustrated in the example below. Another alternative to the
traditional authentication method is a token refresh procedure. Both methods
result in a similar behavior from the API. The access token is then used for
further communication following the bearer schema, where the token is present
in the header.

1 # Login
curl −X POST \
−H "content−type: application/json" \
−d ’{"grant_type": "password", "client_id ": "abc", " client_secret ":

"123", "email": "johndoe@company.com", "password": "password123
"}’ \

5 https://owner−api.teslamotors.com/oauth/token

Refresh token
curl −X POST \

9 −H "content−type: application/json" \
−d ’{"grant_type": "refresh_token", " client_id ": "abc", " client_secret ":

"123", "refresh_token": "<token>"}’ \
https://owner−api.teslamotors.com/oauth/token

13 { # Response payload
"access_token": "<token>",
"token_type": "bearer" ,
"expires_in" : 3888000,

17 "refresh_token": "<token>",
"created_at" : 1538359034

}

A valid access token is then used to retrieve information about a single
vehicle, or list all cars connected to the user. Depending on the request, we
receive either a list of JSON objects or a single object. These JSON objects contain

30

all information that is needed to collect data. As the example below illustrates,
each car object has an id and vehicle id. In addition to identifiers, we received
the VIN, name and enabled options for each car.

1 # GET url: / api /1/ vehicles /{ id }
[{

"id" : 12345678901234567,
"vin": "5YJSA11111111111",

5 "display_name": "Nikola 2.0",
"option_codes": "MDLS,RENA,AF02...",
...

}],

Car data is then accessible through GET requests to various endpoints when
an access token and ID is retrieved. Tesla provides access to multiple types
of information. However, the information we are interested in for the thesis
is battery and vehicle information. Also, Tesla offers the option to retrieve the
temperature around the car and its location at the time of the request, which is a
complementary data source which is good to complement the battery data. The
examples below illustrate responses for each type of data request.

GET url: / api /1/ vehicles /{ id }/ vehicle_data
{

"vin": "5YJSA11111111111",
4 ...,

"drive_state" : {
" latitude " : 33.111111,
"longitude": −88.111111,

8 ...
},
"climate_state" : {

"inside_temp": null ,
12 "outside_temp": null,

...
},
"charge_state": {

16 "battery_level" : 64,
"charging_state": "Disconnected",
...

},
20 "vehicle_state " : {

"odometer": 33561.422505,
...

31

},
24 "gui_settings" : {...},

"vehicle_config": {...}
}

2.5.2 BMW

BMW provides an API intended for business use and differs significantly from
Tesla. The most significant difference lies in the authorization procedure.
Moreover, BMW requires a configuration step to enable interaction with its
vehicles. As mentioned earlier, we provide the BMW documentation in the
appendix section.

Data retrieval regarding BMW vehicles is a simple and straightforward
process. The interaction begins by adding a VIN to a specific container, as
illustrated below, which is BMW’s method manage vehicles and data. The event
triggers an access request which is sent to the vehicle owner in the form of an
email. The user is then required to accept the request if they permit us to access
data access regarding their vehicle.

curl −X POST \
2 −H <API_KEY> \

https://api.bmwgroup.com/otpclearance/api/thirdparty/v1/test/
applications/containers/<CONTAINER_ID>/vehicles/<VIN>/
clearances

Successful post response
6 {

"clearanceId": "11111111−1111−1111−1111−111111111111"
}

10 # Invalid VIN response
{

"errorCode": "TP−101",
"message": "No permission for specified VIN"

14 }

A clearance number identifies a vehicle and is used for further com-
munication. Moreover, BMW uses the clearance number to notify the
server regarding vehicle permissions. In other words, BMW informs us
whenever the user approve, decline or revoke our permission to col-
lect data. The notification arrives in the form of a GET request as

32

shown below, where the identifier and event description present this url:
/v1/clearances/<clearance_id>/<event_type>/<event_value>. When permis-
sions are approved, we can collect said information through a GET request.

curl −X GET \
2 −H <API_KEY> \

"https://api.bmwgroup.com/otpdatadelivery/api/thirdparty/v1/test/
clearances/<CLEARANCE_ID>/telematicdata"

{
6 "telematicKeyValues": [

{
"name": "bmwcardata_mileage",
"timestamp": "Wed Feb 01 01:44:07 CET 2017",

10 "unit" : "km",
"value": "98511"

},
...

14]
}

2.6 Terminology

2.6.1 CPU Scheduler

The CPU scheduler is an essential part of a modern operating system. It is
central in the operating system’s design and affects the overall performance of
the system. The schedulers task is to maximize the systems CPU utilization by
allowing many processes to run concurrently [40].

The scheduler determines which process to run whenever there are multiple
runnable processes. CPU scheduling is important because it can have a
significant effect on resource utilization and other performance parameters.
There exist many CPU scheduling algorithms like First-Come-First-Server,
Shortest-Job-Scheduling, Round Robin, etc. But due to many disadvantages,
these are rarely used, except Round Robin scheduling in timesharing and real-
time operating system [37].

A basic scheduling algorithm works by distributing process on two types
of queues, a ready queue, and a waiting queue as illustrated by figure 2.13.
The ready queue simulates a line of workloads which can be run and waits for
their time to utilize system resources. The waiting queue, on the other hand,

33

Figure 2.13: Simple CPU scheduler

is reserved for processes which are waiting for I/O input and cannot continue
without it. The processes are moved from the waiting queue to the ready queue
when they receive their respective I/O, while processes in the ready queue are
transferred to the waiting queue if they need to wait for I/O to continue.

2.6.2 Process

All runnable software on the computer, including the operating system itself,
is organized into many processes. A process is just an executing program,
including the current values of the program counter, registers, and variables.
In other words, a process is a set of instructions. Depending on the process, it
may be made up of multiple threads which assist the process in accomplishing
its goal [41].

2.6.3 Thread

A thread is a dispatchable unit of work. Threads are light-weight processes
within a process and can be assumed to be a subset of a process [7]. A process
operates inside an isolated memory space and can consist of multiple threads,
as mentioned earlier. Threads, on the other hand, can share a memory space
inside the parent process [5], which a significant advantage when it comes to
co-operative problem-solving. Another significant difference between a thread
and a process is the scheduler. Threads are managed by the parent process,
compared to processes, which is controlled by the operating systems CPU
scheduler [41].

34

2.6.4 Coroutine

The concept of coroutines is one of the oldest proposals of a general control
abstraction [27, 29]. Researchers in fields such as artificial intelligence
and concurrent programming explored coroutines widely during its first 20
years after introduction. However, most general purpose language designers
disregarded this powerful control construct, partly attributed to the lack of a
uniform view of the concept, which was never precisely defined [29].

Coroutines is a general control mechanism for multitasking. However,
coroutines are a non-preemptive control structure, which means that coroutines
provide concurrency but not parallelism [29]. The advantage, however, is
that coroutines can pass control among themselves. Passing execution control
without the need for system calls or blocking calls makes coroutine an excellent
lightweight option to threads and processes. Coroutines are especially useful
when applied to certain kinds of programming problems such as networking
or distributed computation — for example, creating a processing pipeline [4].

2.6.5 User Experience

The term user experience refers to the usability of a technological product. User
experience looks beyond the functional aspects of the product. User experience
is a term used to describe the emotional characteristics of a product, in other
words, user experience looks into the psychological aspects related to the
product, to understand the user’s feelings and design more positive interfaces
[19].

There are a lot of variables which affect the user experience in technological
products, from the hardware device itself to the software running on the
machine. Everything from button placements, responsiveness, and user flow
affect the overall user experience, which can result in either frustrated users
who refuse to use the product further or happy users who preach the greatness
of the product.

2.6.6 Native Applications

Native applications refer to applications developed using tools and software
provided by the platform owner. Native applications target one single
platform and are in general more difficult to develop and require a high
level of experience and expertise compared to other types of applications.
However, native apps have the possibility of providing the best user experience.
Dedicated compilers, programming languages, and tools, for the targeted
platform result in fast performance, consistent interface and full access to the

35

underlying hardware and data [20, 46]. The tight coupling between application
and device provides the developers with everything needed to craft rich and
responsive user interfaces.

2.6.7 Cross-platform Applications

Cross-platform applications refer to applications developed using tools or
software provided by a third-party instead of the platform owner. Cross-
platform applications can run on multiple platforms with the same codebase,
which makes it an attractive option in comparison to native apps, which is
developed for a single platform. Cross-platform applications strive to achieve
native performance while running on as many platforms as possible, without
limiting the capabilities of the application. [20, 46].

There are multiple variations of cross-platform applications, where devel-
opment speed and applications speed varies significantly between the options.
The purest form of a cross-platform app is web and hybrid apps, which is use
web technology. The most significant disadvantage of web and hybrid apps,
however, is the limited access and communication with the underlying device.
Hybrid apps run inside an embedded native container, compared to web apps
which are browser based. Finally, we have generated apps, which compiles the
codebase into individual versions for each respective platform. The advantage
of generated apps compared to web and hybrid apps are near-native perfor-
mance [20, 46].

2.6.8 Technical Debt

Technical debt is a concept in software development that reflects the implied
cost of additional rework caused by choosing an easy solution now instead of
using a better approach that would take longer. The original description of the
metaphor reads: "not quite right code which we postpone making it right." The
metaphor is often used to describe things that stand in the way of deploying,
selling or evolving a software system [25].

2.7 Summary

In this chapter, we presented an extensive amount of topics, from infrastructure
related topics to more abstract topics such as security. Building a system
that handles personal data requires much consideration to security, which we
mitigate to some degree through the use of database access objects, input
validation and a feature-rich back-end framework such as Django. Further,

36

we presented power data and aggregated driving data collected by the system,
to improve our understanding of EV usage trends. Finally, we describe basic
terminologies which we use in our main work.

37

38

Chapter 3

Related work

The widespread adoption of EVs has been a research topic and concert for quite
some time. The vehicles introduce new user patterns and demands that could
result in disadvantageous effects on the network.

Rahman and Shrestha [32] investigates the challenges associated with EV
charging in residential areas as early as in 1993. Earlier research was optimistic
and concluded that charging the batteries during off-peak hours would be
sufficient to prevent instability and overload. However, as discussed by
Rahman and Shrestha, off-peak charging will not be sufficient to prevent
overloads from occurring. Early off-peak hours will spike up, with the
possibility of exceeding the regular peaks experienced, which is why it would
be necessary to stagger the charging process to mid or late off-peak hours.
Further, they discuss how technological advances in battery and charging
technology will be able to ensure faster charging, which bestows the ability to
start charging at late off-peak hours. However, as they mention, technological
advances in battery technology will increase battery capacity and increase the
power demand even further.

Richardson et al. [36] investigate the problem through linear programming,
to reduce and remove the need for historical data. To ensure that the power
grid never exceeds its capabilities, he explores the possibility of active charging
management. By continually lowering or increasing vehicles charging rate, he
can ensure an acceptable result, while preventing network components from
overloading. Through a standard approach of lowering and increasing the
output for each car, he saw that those close to the transformers were favored,
which resulted in several EVs not reaching a desirable charging state of 100%.
To combat the issue, he introduced a weighted formula where vehicles with
low battery charge state were favored and allocated a higher charging rate
compared to cars with a high charge state, which resulted in a much more
desirable outcome, with fully charged cars.

39

Similarly, Clement-Nyns et al. [8] investigate the problem through voltage
manipulation in addition to bi-directional power flow through the use of plug-
in hybrid electric vehicles. Clement-Nyns et al. apply dynamic programming
and quadratic programming to maintain a fully utilized and stable power
grid with the added possibility of having plug-in hybrid vehicles as a
complementary power source. Further, using a bi-directional power flow to
support the power grid, will reduce the risk of large voltage drops. The benefits
are, however, minimal unless done during the moment of power peaks.

Rahman and Shrestha provided an accurate prediction for the future.
Advances in battery and charging technology have increased battery capacity in
addition to speeding up the charging time, which has resulted in more flexibility
when it comes to charging time. Some vehicles can even drive multiple days
between each charging cycle, which present the opportunity for more dynamic
charging schedules and better prevention of sharp power peaks.

Further, Richardson et al. and Clement-Nyns et al. present collaborative
charging in an area through continues power profiling and voltage manipula-
tion. The most significant weakness of their approach, however, is the goal of
reaching full charge for all vehicles connected to the grid. User patterns and
demands vary considerably, which present more flexibility in the charging of
vehicles.

EVs who require long charging cycles must begin their charging cycle during
the early off-peak hours. Others, however, have the opportunity to charge
during mid or late off-peak hours, which leave more capacity for the vehicles in
need of the extra time and power to pull more voltage in the first hours of the
charging cycle.

Profiling of EVs is required to enable charging with a staggered start. EV
profiling does, however, require driving data for every vehicle in the area for
full optimization, which is a challenge to retrieve. However, new opportunities
have presented itself with the introduction of GDPR. Another driver for more
accessible data is mobile applications. Mobile apps which give EV owners
the ability to manipulate their car and see instant data related to the vehicle
provides value to the car manufacturer and encourages the development of
proper infrastructure to display instant vehicle data for their customers.

For better EV charging methods to be developed and better utilization of the
power grid, we need driving data to profile as many vehicles as possible. A car
data aggregation platform which can improve our understanding of EVs power
demands and trends. The need for smarter charging grows with EVs popularity.
Based on the need for more advanced and sophisticated charging methods, we
developed an automatic vehicle data collection system, called Cosinus, which
we present in the next chapter.

40

3.1 Summary

In this chapter, we introduce and discuss old and modern research related to
the threats introduced with EVs. EVs add considerable load on the local power
grid, which can result in power components overloading and voltage to drop.
Rahman and Shrestha discussed that the problem might resolve itself, with
better batteries and charging technology. However, better batteries would also
result in increased power demand. Richardson et al. and Clement-Nyns et al.
further discuss how we can mitigate the tremendous power demand. Through
local power profiling, we monitor the power grid in close to real-time and adjust
the voltage distribution to each household to prevent overload and instability.

41

42

Part II

Design & Development

43

Chapter 4

Cosinus

With our goal of making driving data more accessible and support future
research in individual and collaborative charging, we designed and developed
the Cosinus system. From related work, we found that current methods rely on
power profiling and voltage manipulation to optimize power grid utilization.
However, the current methods do not consider mileage trends, which is caused
by the challenges associated with retrieving driving data. In this chapter, we
will provide detailed information on how we designed and implemented a
system for autonomous collection of driving and charging data. We discuss
design decisions and provide a detailed explanation of the data collection
process.

4.1 Overview

In chapter 2, we introduced our choice of libraries along with a variety of
technologies, concepts, and challenges that have shaped the system to allow
for a flexible, yet secure system. During this section, we provide discussions on
the infrastructure, architecture, and database of the system.

4.1.1 Infrastructure

The infrastructure is one of the most crucial parts of a system. The server
environment has a significant effect on the overall security and performance
of the system. Most importantly, the infrastructure will have a considerable
effect on the systems ability to move between cloud vendors and server
environments. To ensure an acceptable level of technical debt, we evaluated
three cloud services, Compute Engine, App Engine, and Cloud Functions to
determine the best service for growth.

45

All three services offer a python supported server environment in addition
to automatic resource allocation to ensure that the service is operational and
responsive with a large volume of traffic. The difference between them lies
mainly in the amount of control we have over the environment configuration
and system architecture.

Cloud Functions offered the most exciting service, promoting full partition-
ing of the code-base into small independent features. The service takes full
control over the server environment and ensures a highly scalable system that
can quickly grow in features without affecting existing parts of the system. The
most significant advantage, however, is the ability to change out existing parts
of the system without worrying adjacent features. After experimenting with
the service, we found it to be promising, yet constraint and unorganized. Each
feature receives a separate deployment configuration, and the isolated aspect
quickly results in repeated code, to reduce the overhead from communication
across features.

Compute Engine offers the most flexibility when it comes to environment
configuration. We had full control over the server environment and architec-
ture, which allows for specific configuration to match our demands. We could,
for example, configure the environment increase the memory of our instance,
to allow for a massive amount of processor or thread spawning, or increase
the number of virtual CPUs to accommodate a significant computational load.
However, the service requires experience and knowledge for secure and full uti-
lization. With full control of the environment entails vigilance over new and old
attack vectors. The server environment is configured and maintained by the de-
veloper, and must, therefore, be manually secured and updated. An unattended
server instance can result in malicious actors gaining control over the system,
which can result in a tremendous amount of damage.

App Engine provides the middle ground between the two extremes. The
service offers complete control to choose whichever system architecture we
would like while managing the server environment. The service offers a
variety of combinations for computing resource classes to match our needs
as close as possible. On the other hand, we lose precise control over the
hardware configuration, which can discourage specific tasks, such as GPU
heavy computation. However, giving the cloud provider full control over the
server environment means that parts of the security are maintained by a third-
party, which is a benefit in this case. Google experience a tremendous amount
of network traffic every day and has experience with malicious activity.

App Engine did not have official support for Python 3 when we began our
work on the system, which is why we initially chose Compute Engine as our
service of choice. Having complete control over the environment makes it easier

46

to develop a cloud provider independent system. The threshold to configure
and maintain the environment is higher than we initially imagined. Server
configuration consumed much of our time, which is why we, later on, moved
over to App Engine when official support for Python 3 came to their standard
environment. App Engine allowed for a quick and easy move without affecting
the design of the system, which made it easy to decide to move.

4.1.2 Architecture

The systems architecture is the most crucial part of the system that either
allows or restricts the system from growing and adapting to changes in
system requirements. We developed the system with Django and Django rest
framework as the core dependencies of the system. We chose a feature-rich
framework which contains more feature than needed to minimize the total
amount of third-party library dependencies. Micro frameworks such as Flask
are lightweight and a pleasure to use. However, the minimalistic nature of
the framework results in a high number of extra dependencies to prevent the
development of customized features for many aspects of the system. Many
custom features can result in a high degree of technical debt and security flaws,
which is why we wanted to rely on trusted open source options instead of
creating a tailored solution.

Many things affect the systems ability to adapt to changes, which is why
we designed and developed the system with a variety of combinations to gain
insight into how the system is affected by individual architectural choices. We
created a variety of architectural layouts, ranging from compact designs to more
abstract and expanded designs. We began with a super compact version, with
heavy request handlers that contained almost all the logic to full abstraction
using an object-oriented approach.

A version of the compact design which relied on helper functions was
quite favorable for quick changes in the data handling flow. However, adding
new features required a full understanding of the flow, which was especially
apparent when one of our fellow students attempted to add a new feature to the
system. The full abstraction version was much easier to add features. However,
changes to existing features required considerable more time to grasp how the
data flowed through the system.

Figure 4.1 illustrate the initial design which we were satisfied with and the
final design of the system. The initial design was compact and incorporated a
few object-oriented components to assist with the introduction of new features.
However, after re-evaluating the design, we felt that incorporating the brand
manager into the request handlers added more logic into the request handlers

47

(a) Inital system architec-
ture

(b) Final system architec-
ture

Figure 4.1: Illustrations of the system architecture

than desirable. Similarly, we isolated the authentication endpoints in a separate
part of the system were everything was contained. However, the request
handler was too heavy in our opinion.

The final design has two fundamental changes to the design: a flexible
authorization system and a complete abstraction of the brand manager.
Creating an automatic hierarchical authorization system is advantageous. We
define the lowest possible security clearance at a given endpoint, and every
above automatically gain access to the resource. The automatic clearance
system can confuse and result in restricted resources opening up, which is
why we moved over to a verbose approach instead. The final authorization
filter requires a clear definition of each security category to ensure a full
understanding of who has access and who do not have access to a specific
resource.

We also separated the core logic of the authorization provisioning logic
from the authentication endpoints, to reduce code duplication caused by

48

the authorization filters verification process. The separation of authorization
provisioning and verification logic will also allow for a contained environment
which can be changed later on without digging into the request handlers.

For the brand managing logic, which is responsible for multiplexing
between car Application Programming Interfaces (API), we wanted to make it
easier for future features to interact with a vehicle. The current feature set if the
system is quite small, which made is blind to specific future opportunities. To
allow for more the incorporation of more advanced features without changing
the request handlers, we decided to contain vehicle communication logic inside
a specialized component. Providing a generic interface that multiple parts of
the system can use is the best action to ensure future growth and would allow
for more refined changes in the component.

The most notable difference in the brand manager is the change from the
declarative object initialization and function parameters to the use of static
functions with flexible parameters. We decided to leverage pythons ability to
group unknown parameters into a dictionary, to allow for more flexibility in
the sent information between stages in the data flow. The destination is then
responsible for confirming the presence of required information.

4.1.3 Database

Choosing the database was arguably the most difficult choice. The system
generates a massive amount of I/O operations. There is network traffic to
collect vehicle data and database interaction to store the data and retrieve
vehicle authorization information every hour. We had to decide between a
solution with low overhead or a high degree of data transaction validity.

A time-series database would be the best option. The collected vehicle data
is time sensitive and informs the system of changes from one data point to
another. Similarly, a document based database provides a flexible data structure
allowing for the storage of new attributes with minimal changes to the code-
base. We decided to use an SQL database, precisely because of the high degree
of flexibility introduced by a document based database. The most critical data
to store at this point is driving and charging data. The introduction of specific
validation tests before storage to ensure the presence of our desirable attributes
will create confusion for other developers. We decided that a meaningful design
of a SQL database is the better option at this point. However, we did not rule
out the possibility for future migration to a time-series database and designed
the database for a smooth migration. Additionally, a SQL database allows for
optimal utilization of Django and Django rest-framework.

Figure 4.2 illustrate the initial database schema, where we prioritized data

49

(a) Initial database design (b) Final database design

Figure 4.2: Illustrations of the database schema for vehicle data

storage based on origin, and the final database schema which allow for better
integration with Django models. We initialized stored everything we could
collect inside separate database tables. For Tesla, this meant four large tables,
and for BMW, this meant one. We could have combined the Tesla tables into
one, but there was just too many attributes and would result in over a hundred
columns inside one table. After a few days, we took a closer look at the
data to investigate what each piece informed on. Some of the data was not
obvious, combined with two letter attribute names and we were in for a treat to
understand what each piece of information contained.

The initial plan was to remove attributes that correlate to user settings and
continue to use the schema. However, extracting the data resulted in a massive
SQL statement, which is not maintainable in any sense. We incorporated object-
oriented design on the database schema to allow for more optimal use of Data
Access Objects (DAO) with the added benefit of automatic encryption and
decryption of data. The final schema discarded many attributes and combined
and linked the tables to create an object-oriented database schema. CoreData
contains the most critical information, while more detailed information have a
foreign key to its respective pair inside the CoreData table.

4.2 Authentication and Authorization

Authentication and authorization play an essential role in securing the system
from malicious actors. Authentication confirms user identity and authorization
grant access to system resources. Deciding between a variety of authentication
and authorization options was the first task. Django has built-in authentication
and authorization capabilities that can operate independently or collaborate.
Django rest-framework provides an extension of Django’s authentication and
provides a variety of authentication opportunities. Finally, designing and

50

developing a custom authentication and authorization system would also be
a viable option.

Django has separate tables for storing user passwords and user information.
Another benefit of the authentication process is automatic password hashing,
to protect user passwords. The accompanying interface is feature rich and
intuitive in use, resulting in an easy decision to use the built-in authentication
feature. The authorization feature, on the other hand, is session-based which is
not desirable in the system. A session-based authorization has more overhead
than JWTs and relies on information stored in the database. The data collection’s
performance relies on fast database write, which is why we want to avoid
session-based authorization if possible.

Django rest-framework combines a plug-and-play mentality to the autho-
rization process while leveraging Django’s authentication feature. The avail-
able authorization options offered both session-based and JWT options. How-
ever, the authorization options relied on third-party libraries which had low
activity. Additionally, the use of a third-party authentication feature abstracts
the code from the process, which is desirable in many scenarios. However, the
system needs a flexible hierarchy of security classifications to allow for growth
in different directions, from regular users to businesses and researchers. Full
control over the authorization process will give the system the ability to grow
with minimal effort.

To provide a flexible level of protection and maintain an acceptable level of
security, we decided to create a custom solution that follows security standards
to ensure the protection of driving data from malicious actors. Creating
the custom authorization combined with JWT would allow for quick request
authorization with minimal overhead. We incorporated the PyJWT library into
the system to ensure correct implementation of the standard. PyJWT is an auth0
sponsored library which is a company that focuses on system security and is,
therefore, relatively a safe addition to our list of dependencies.

4.2.1 Authentication

Authentication is the first line of security where users have to prove their
identity by supplying the system with a username and password combination.
The system uses Django’s authentication module which provides developers
with an object-oriented interface to create new users and validate user
credentials. The provided user objects allow for user categorization through
the use of groups. Groups are metadata structures that describe additional user
permission in addition to general permissions.

Figure 4.3 demonstrate the user creation procedure and the authentication

51

1 from django.contrib.auth.models import User
from django.contrib.auth import authenticate

Register user
5 User.objects .create_user(

username=email,
email=email,
password=password,

9 first_name=first_name,
last_name=last_name

) .save()

13 # Authenticate user
authenticate(username=username, password=password)

Figure 4.3: Creating a new user

procedure. The only required arguments for user creation is username and
password. However, supplying the system with a name will allow for more
personal interaction between the system and its users. We decided to use
email as the username, resulting in two arguments needed for a successful
registration. We left the name as an optional argument to leave the final choice
to the client application.

A successful login or registration attempt triggers the production of two
tokens for further interaction with the system. Figure 4.4 illustrate the
procedure to create an access and refresh token. JWTs are vulnerable to man-
in-the-middle attacks, which is why we decided to keep the access tokens life-
span at a reasonably low time-span without affecting the user experience. The
refresh token received a considerable higher life-span to allow for a single sign-
on system where we expect the user to interact with the system at least once
every six months. Additionally, the inclusion of the user’s security level allows
for quick provisioning of resources without confirming with the database.

New token pairs are retrieved by either resupplying user credentials or
through an access refresh process. The access refresh process is a two-step
verification process. The refresh tokens authenticity is validated through a
JWT validation process. We create a new JWT with an identical payload to the
supplied token and compare the signature. For valid refresh tokens, we added
a second step with a database confirmation, to reject users were suspicious
activity. Another benefit of the database validation is prevention against fake
tokens that surpassed the first check.

52

def get_auth_pair(cls , user: User) −> dict:
2 try :

user.groups.get(name=’researcher’)
security_level = ’researcher’

except Group.DoesNotExist:
6 security_level = ’superuser’ if user.is_superuser or user.

is_staff else ’user’

general_token = {
’usr’ : user.pk,

10 ’ lvl ’ : security_level ,
’ iss ’ : settings .TOKEN_ISSUER,
’ iat ’ : datetime.now()

}
14

access_token = encode(
payload={

’exp’: datetime.now() + timedelta(minutes=15),
18 **general_token

},
key=settings.ACCESS_SECRET_KEY,
algorithm=settings.JWT_HASHING_ALGORITHM

22)
refresh_token = encode(

payload={
’exp’: datetime.now() + timedelta(days=182),

26 **general_token
},
key=settings.REFRESH_SECRET_KEY,
algorithm=settings.JWT_HASHING_ALGORITHM

30)

Figure 4.4: Generate access and refresh token

53

4.2.2 Authorization

The authorization mechanism is the systems main security feature for regular
use. The session-based option included with Django did not fit the system,
while the plug-and-play options provided by Django rest-framework did not
give a satisfying amount of control over the authentication process. Developing
a new middleware would create a rigid solution with little to no hierarchy,
which is why we developed two decorators to protect the systems resources. A
regular decorator to protect typical endpoints and a decorator to protect system
specific endpoints.

Decorators are a flexible mechanism that allows fine-tuned adjustment
to provide a considerable amount of control over the resource provisioning
process. The security groups combined with decorators allow for separate
behavior depending on the permission level which results in better use of
existing endpoints and request handlers. As such, by using decorators, we
can provide different capabilities depending on the user’s clearance level in
addition to restricting a specific user from using a given resource.

Figure 4.5 show the implemented decorator used to protect regular end-
points. All authorized users have permission by default. For more vulnerable
endpoints, a list of strings, specifying the permitted security levels must be pro-
vided to ensure adequate protection of the respective endpoint. Additionally,
the authorization filter is automatically disabled when the system runs in debug
mode, to allow developers to test features manually without the authorization
process.

The authorized user’s security level and unique identification in the system
is appended to the request header, as seen on line 16 and 17. Injecting user
meta information allows for variations in behavior, as mentioned earlier in
addition to the identification of the requester for accurate data retrieval and
storage operations.

4.3 Brand Manager

The brand manager is the heart of the system. The module manages
communication with external resources and ensures data collection and
vehicle connection. The module consists of four components; the core,
Tesla component, BMW component, and a programming interface to ensure
consistency in the brand’s interface. The following sections provide a detailed
description of each element, beginning with the programming interface, then
the module core followed with the Tesla and BMW module.

54

def protected(arg) :
2 security_level = [’user’ , ’researcher’ , ’superuser’]

def __validate_request(request: Request):
if settings .DEBUG:

...
6 return

if ’HTTP_AUTHORIZATION’ not in request.META\
or not request.META[’HTTP_AUTHORIZATION’].

startswith(’Bearer ’):
raise PermissionDenied

10 token = request.META[’HTTP_AUTHORIZATION’].replace(’
Bearer ’, ’’)

if not JWTManager.is_valid_access_token(token.encode()):
raise PermissionDenied

token = JWTManager.get_claims(token)
14 if token[’ lvl ’] not in security_level :

raise PermissionDenied
request.META[’APPLICATION_USER’] = token[’usr’]
request.META[’APPLICATION_RESTRICTION’] = token[’lvl’]

18 def __initiated_without_arg(*args, **kwargs):
__validate_request(args[1])
return arg(*args, **kwargs)

def __initiated_with_arg(api_view):
22 def __inner_wrapper(*args, **kwargs):

__validate_request(args[1])
return api_view(*args, **kwargs)

return __inner_wrapper
26 if callable(arg) :

return __initiated_without_arg
elif isinstance(arg, list) :

security_level = arg
30 return __initiated_with_arg

else :
raise TypeError(

’Unexpected argument: expected List[str] received {} ’ % type
(arg)

34)

Figure 4.5: Authorization filter

55

4.3.1 Service Interface

The service interface is an abstract base class (ABC) which dictates a minimum
required implementation for classes which inherits it. There were problems
which surfaced quite early on the implementation of the system. We decided
to support Tesla and Nissan1 at the beginning, and the difference between the
protocol was huge.

The big difference in the confirmation process of user credentials resulted
in a significant difference between the components interfaces. The differences
affected the request handler, which handled the work in the beginning,
resulting in individual tests to verify and multiplex correctly between brands.

The result was that the complexity of the system grew quicker than lines of
code. To prevent the complexity from increasing further, we decided to refactor
to achieve lightweight request handlers and more maintainable code.

ABC is a blueprint which enforces a minimum set of functions which must
be implemented. Similarly to Java’s interfaces, an error, or exception on this
case, is raised whenever a class which inherits the ABC does not fulfill the
requirements.

To achieve maintainable code with low complexity, we had to define the
ABC with all the nuances in mind. After looking into Nissan and Tesla, and
how evaluating the database models which would accompany the system, we
decided on a simple and explicit interface.

As illustrated by figure 4.6, we kept the ABC simple. There are four
fundamental tasks which are necessary for our system to function. Those are
registering a vehicle to a user, retrieving information about a car, store the
extracted data and renew access privileges whenever necessary to collect data.

The most significant obstacle and the part which introduces most of the
complexity we encountered were the procedure to get authorization rights for
vehicle data extraction. Which is why the function, connect, is crucial for the
system to function correctly.

The most significant obstacle and the part which introduces most of the
complexity we encountered were the procedure to get authorization rights for
vehicle data extraction. Which is why the function, connect, is crucial for the
system to function correctly. The connect signature allow rigidity in the sense
that all services would have the same entry point.

We decided to separate the logic of retrieving and storing information
related to a vehicle. The separation allows for easier debugging which is why
we decided to separate the two, even though persistent storage is a crucial part
of the data collection procedure. For example, when debugging, we sometimes

1We attempted to integrate Nissan in the beginning, however, as it were unstable and
unpredictable, we decided to discard it as an potential supported brand at its current state.

56

from abc import ABC, abstractmethod
2

class ServiceInterface (ABC):
@abstractmethod
def connect(self , **kwargs: dict) −> None:

6 pass

@abstractmethod
def get_vehicle_state(self , **kwargs: dict) −> dict:

10 pass

@abstractmethod
def save_data(self , **kwargs: dict) −> None:

14 pass

@abstractmethod
def refresh_access(self , **kwargs: dict) −> dict:

18 pass

Figure 4.6: Service interface

57

class BrandManager:
2 SUPPORTED_BRANDS = [’TESLA’, ’BMW’]

def connect(class, user_id: int , **kwargs: dict) −> None:
service .connect(user_id = user_id, **kwargs)

6

def monitor(class) −> None:
for vehicle in vehicles :

tokens = vehicle . tokens
10 class .__monitor_helper(vehicle, tokens)

def __monitor_helper(class, vehicle, tokens):
data = service . get_vehicle_state(vehicle , tokens)

14 service .save_data(**data)

Figure 4.7: Brand Manager Core

do not want to store the information. To disable storage the necessary step is to
comment out the one line which invokes the function. However, if persistent
storage had been a side-effect from retrieving data, we would be forced to
comment out the necessary code for each service component which exists in
the system (The components which handle communication with the external
car APIs).

A vital signature which is essential to note is the kwargs argument which
is present in each function. Kwargs stands for keyworded arguments. In
other words, kwargs is a dictionary and is used to provide flexibility in which
arguments that is necessary. By sending and extending the dictionary, each
function and service is guaranteed to have the information it needs without
implementing edge cases to ensure compatibility between services.

4.3.2 Brand Manager Core

The brand managers core acts as a glue and creates an abstraction to hide the
service modules. The core’s foremost responsibility is to direct request towards
the correct service module. Second, it ensures a stable data collection flow.

Figure 4.7 provides pseudo-code which illustrate the content of the core in
addition to describing its functionality. The class consists of three features, a list
of supported brands, and two functions, connect and monitor.

The list of supported brands is meta information, to determine if a request
should be rejected or accepted before entering the module. The brand

58

validation takes place in a serializer, which handles request payloads.
The serializer is a class which provides a model to our expected payload

in addition to providing validation of the arguments. In this case, we use the
serializer to reject invalid requests when it enters the request handler before
moving on to other parts of the system. We will provide more information
regarding the serializer later in the section regarding the format of requests
intended for vehicle registration.

The connect feature is straightforward in logic as one might expect. The
function retrieves the correct service module based on the brand keyword,
located in kwargs, and invokes the service modules connect function. From
there, the service module handles all the necessary work related to registering
a vehicle to our system.

Each service has a different protocol for validating and connecting a vehicle.
When it comes to BMW, the user is required to provide the cars VIN, while Tesla
can retrieve all vehicles related to a Tesla user. This difference in protocol made
it challenging to implement a general database logic unless we added tests to
detect the difference, which is why we decided to isolate the persistent storage
logic inside each respective module. The consequence is that a change in the
database model requires a manual update of every single module.

The last feature is the monitorization of the vehicles. The feature is
responsible for collecting and storing information related to every active car
in the system. With active, we refer to vehicles which the system are permitted
to monitor. Users can change their mind and remove the permit whenever they
want. Also, providing the option to stop information collection of a vehicle
increases the chance for users to register.

The monitor and monitor helper collaborates to gather information and
refresh access privileges whenever necessary. The get_vehicle_state function
triggers an HTTP request which might fail because of an expired token.
Whenever an expired token is detected, the function refreshes the token and
attempts again. However, successful requests are redirected to the save_data
function, which stores the vehicles state with an timestamp in our database.

Storing Vehicle State

The amount of information retrieved depends on the brand. BMW and
Tesla provide different meta-information about their cars. Tesla, for example,
provides the settings of the vehicle in addition to its state. BMW, on the other
hand, has a much more restricted approach, offering only the state of the car.

The differences resulted in a database table inheritance schema, to provide
the ability to store the minimum necessary information, in addition to meta-
information if possible. We decided on a core set of attributes, with the option

59

class CoreData(models.Model):
2 vehicle = models.ForeignKey(

Vehicle, on_delete=models.CASCADE
)
odometer = models.DecimalField(

6 max_digits=8, decimal_places=3
)
battery_level = models.IntegerField()
charging_state = models.CharField(

10 max_length=12, null=True, blank=True
)
...

14 class TeslaData(CoreData):
battery_heater = models.BooleanField(null=True, blank=True)
conn_charge_cable = models.CharField(

max_length=25, null=True, blank=True
18)

...

Figure 4.8: Data Django models

for each brand to extend the table if the opportunity presents itself.
Figure 4.8 provides the source code for CoreData and TeslaData. As

presented in the figure, CoreData inherits from the base class Model, which
provides an interface for data storage and retrieval. Further, TeslaData inherits
from CoreData, which results in the creation of a new table with an extra
attribute. More specifically, the TeslaData table has the listed attributes in
addition to a foreign key pointing to the CoreData table.

Designing the database with inheritance provides one significant advantage
compared to having separate tables, which is a unified table. CoreData provides
a common connection point for all the data, resulting in easy retrieval of core
information related to all brands. We can, in other words, retrieve all data in
one query without any join operations.

4.3.3 Service Components

This section presents the BMW and Tesla service components. The explanation
and straightforward, as it is a translation from the information provided in
section 2.5 to working python code.

60

Resource address Description Methods
auth/login/ Generate new access and refresh tokens

with an email and password combination
POST

auth/refresh/ Generate new access and refresh tokens
with a refresh token

PUT

auth/registration Register new user and generate access and
refresh tokens

POST

api/connect/ Connect a new vehicle for monitoration POST
api/data/ Retrieve information regarding vehicle(s)

present in the database
GET

Table 4.1: Essential system resource addresses

The two components outline are similar because of the service interface we
introduced in section 4.3.1, which is why we present and explain both through
the use of the same pseudo code which presented in figure 4.9.

The service interface defines the available functions. Both connect and
get_vehicle_state has a single task, create a URL and payload which is handed
off to api_request.

Further, save_data retrieves all column names from the relevant table
and create a new dictionary with keys that are present in both the retrieved
information and list of column names. Afterward, we store the data with a
single command as illustrated.

4.4 Interacting with the system

4.4.1 Resource addresses

There are a variety of resource addresses (endpoints) to perform actions, table
4.1 describe what we believe to be the essential endpoints of the system. During
this chapter, we will explain the interface for the various resource addresses. As
represented by the table, there are two main endpoints; auth and api. The auth
endpoints are related to authorization and authentication, while api is a general
endpoint for everything else, except automated tasks such as data gathering
and database cleaning.

4.4.2 Query The Collected Data

This section introduces the /api/data/ endpoint with information regarding
data extraction and the implementation of the request handler. The /api/data/

61

1 from urllib .request import Request, urlopen
from urllib .parse import urlencode
from json import loads

5 class Service(ServiceInterface) :
__ENDPOINTS: dict = {

’BASE’: ’Service base endpoint’,
’AUTH’: ’Service authentication endpoint’,

9 ’DATA’: ’Service data retrieval endpoint’
}

def __init__(self , **kwargs: dict) :
13 self .access_token = kwargs[’access_token’]

def __api_request(self , req_type, url , payload, headers) −> dict:
req = Request(

17 url , data=payload, headers=headers, method=req_type
)

res = urlopen(req)
21 return loads(res .read())

def connect(self , **kwargs) −> dict:
Retrieve access privileges for vehicle

25 Retrieve the vehicles id
Store retrieved information in database

def get_vehicle_state(self , vehicle_id, **kwargs):
29 Generate url with the vehicle id

Retrieve vehicle state
Pre−process data
return data

33

def save_data(self , **kwargs):
Get column names from database model
Get intersection between kwargs and column names

37 Data(**intersection) .save() # Store data

Figure 4.9: Service components pseudo code

62

endpoint serves two purposes depending on the user privilege. For general
users, the endpoint helps to retrieve information to comply with GDPR. On the
other hand, researchers can retrieve the data to support their research. Briefly
explained, researchers have the capability of extracting all the data present in
the database while regular users are restricted to information related to them.

The current implementation has a few restrictions to reduce the amount
of data and information. Additionally, we decided to restrict the amount of
information regular users are capable of extracting until we confirm the systems
security capabilities. Information such as GPS location and the temperature,
which are sensitive information informing the reader of the vehicle location is
only available for researchers. Additionally, each desirable attribute has to be
requested explicitly, to reduce the amount of data traveling from our server as
much as possible.

Table 4.2 describe a list of optional arguments which are used to interact
with the endpoint. The available parameters provide flexibility in the
type of data retrieved, to potentially reduce the amount of necessary pre-
processing required of the data. Parameters such as created__<lt|gt> and
battery_level__<lt|gt> provides the ability to reduce the scope of the queried
data, while fields are used to declare which fields the user desires. For users
who want a dump of all existing attributes, we provided the ’*’ symbol as a
shortcut, removing the need to mention each end every field explicitly.

Further, all request requires an authorization header following the bearer
schema, which is illustrated in figure 4.10.

4.4.3 Connect vehicles to the system

The method to connect a vehicle to the system depends on the brand in
question. BMW connection relies on the VIN while Tesla requires access to
the users Tesla account credentials. To accommodate both through the same
endpoint, we decided to separate the two depending on a single argument,
brand, which validate the remaining request parameters.

BMW, which is VIN based, makes a simple validation of the VIN argument
and forwards the identification number to BMW afterward. Tesla, on the
other hand, requires a client-side authentication toward the Tesla endpoint,
to retrieve a refresh token. The refresh token can then be sent with the
refresh_token argument, which is forwarded and validated by Tesla to retrieve
a fresh authorization pair. Additionally, the serializer with validates request
parameters become more manageable, because of the separation in logic.

Figure 4.10 provides an example of an attempt to register a Tesla vehicle
to the system. All communication with the system requires an authorization

63

Argument name Argument description
sort_by Sort the result on the timestamp either in

ascending or descending order. The default
order is ascending.

created__gt Retrieve data which were collected after
the provided date. The date follows the
standard ISO format (YYYY.MM.DD).

created__lt Retrieve data which were collected before
the provided date. The date follows the
standard ISO format (YYYY.MM.DD).

vehicle_state Retrieve data which are connected to a
vehicle of a certain state. Vehicles of all
states are returned by default. However,
active (A), pending (P) and deactivated (D)
vehicles can be retrieved separately.

vehicle_brand Retrieve data related to a specific brand.
battery_level__gt Retrieve only data instances which are

greater then the provided value.
battery_level__lt Retrieve only data instances which are

lower then the provided value
charging_state Retrieve only data instances where the

charging state is either Disconnected,
Charging, Stopped, Complete or Error.

fields Append the provided fields to the re-
trieved dataset. Available fields are
est_battery_range and charging_state. In
addition, the fields longitude, latitude, in-
side_temp and outside_temp is available
for researchers and admin users.

Table 4.2: Available arguments for data retrieval

curl −X POST \
2 −H "Content−Type: application/json" \

−H "Authorization: Bearer xxxx.yyyy.zzzz" \
−d ’{"brand": "Tesla ", "refresh_token": "token"}’ \
http://127.0.0.1:8000/api/connect/

Figure 4.10: Connect curl command

64

header, following the bearer schema, as illustrated. Registering a BMW is
similar to the illustration, where the difference lies with a VIN argument instead
of the refresh_token which is present in the figure.

4.4.4 Interaction with the auth endpoints

The sections above introduced data extraction and connecting vehicles to the
system. Both endpoints require the user to be authenticated. This section
describes how users are authenticated and authorized to interact with the
system. Each of the following sections provides examples and describe
restrictions related to the required and optional arguments.

Each endpoint responds similarly, with an access_token and refresh_token
when successful and a JSON which describes why an argument is invalidated.
The access token has a life-span of 15 minutes and is required to further interact
with the system. The refresh token, on the other hand, has a life-span of six
months and is used to retrieve a new authorization pair, through the refresh
endpoint described later in this section.

Registration

The registration endpoint has two required arguments (email and password)
and an optional argument (name). All three parameters are validated according
to simple rules, to enforce a minimum level of security for the user.

Email validation confirms the correctness of the value while the password
validation ensures a minimum strength level for all passwords. All passwords
must be at least eight characters long and contain at least one lower case
character, one upper case character, and a numeric character. A valid email,
on the other hand, must consist of two parts, a local part and a domain part,
separated by the symbol ’@.’ Finally, the optional argument, name, must consist
of at least two parts separated by a space (’ ’). The name parts are reasonably
flexible, where everything is allowed as long as there are some alphanumeric
characters separated by a space.

Figure 4.11 demonstrate a successful registration attempt, where the input
conforms to the restrictions mentioned above. A name has the capability of
consisting of multiple parts, as mentioned earlier. When that occurs, the system
extracts the last part as the last name while everything else handled as the first
name.

65

curl −X POST \
−H "Content−Type: application/json" \

3 −d ’{"email":"example@mail.com", "password":"greatPassw0rd", "
name": "John Doe"}’ \

http://127.0.0.1:8000/auth/registration/

Figure 4.11: Registration curl command

curl −X POST \
−H "Content−Type: application/json" \
−d ’{"email":"example@mail.com", "password":"greatPassw0rd"}’ \

4 http://127.0.0.1:8000/auth/login/

Figure 4.12: Login curl command

Login

The login procedure is similar to registration and adopts the same restrictions.
Authentication requires an email and password combination, as illustrated by
figure 4.12, where passwords must be at least eight characters long and contain
at least one lower case character, one lower case character, and a numeric
character. Additionally, emails must consist of a local part and a domain part,
separated by the ’@’ symbol.

Refresh Access

Retrieving new authorization pairs are achieved by sending a valid and unused
refresh token as demonstrated in figure 4.13. As described in section 4.2.1,
refresh tokens authenticity is validated in two steps, which is why there are
three requirements for generating new tokens. (1) The tokens must contain an
authentic signature. (2) The token cannot be expired and (3) The token must be
present in the database of the system.

curl −X PUT \
−H "Content−Type: application/json" \
−d ’{"refresh_token":"xxxx.yyyy.zzzz"}’ \

4 http://127.0.0.1:8000/auth/refresh/

Figure 4.13: Refresh access curl command

66

4.5 Summary

In summary, we present and discuss the systems architecture. There are many
nuances which affect the systems ability to grow, and many choices which
introduce a significant amount of technical debt. E.g., using Cloud Functions
to partition and isolate the code-base based on the feature will allow the system
to grow independent of existing code. However, the aggressive partitioning of
the code-base results in repeated code and vendor lock-in, introducing technical
debt which is troublesome to relieve at a later point in time. On the other hand,
collecting the entire code-base in one place, e.g., inside request handlers, will
prevent quick changes to fix or change a feature. Creating a system, therefore,
requires consideration to different abstraction methods, to allow the system to
grow without introducing bugs.

However, abstraction is not the only thing to consider when we consider
flexible design. State management plays an essential role in how tightly
coupled each piece of the system is connected. Stateful objects require a good
understanding of the data flow throughout the system, while stateless objects
result in more data passing between objects than necessary. A stateless design,
however, introduces more flexibility and allow the system to change without
directly changing the interface, which is not always possible with a stateful
design.

Additionally, we developed the data gathering process as an assembly line
with four stations. (1) Retrieve vehicles from the database, (2) map the correct
service component to each vehicle, (3) fetch the data and (4) store the data. The
assembly line design introduces a few limitations which we will discuss more
in the next chapter. The advantage of the assembly line design, however, is the
ability to change each stations procedure without affecting the other stations.

Finally, we introduce the interface for a subset of endpoints, giving
developers a good indication over how to interact with the system. Most
importantly is the authorization header. The interface requires the presence
of a JWT following the bearer schema.

67

68

Chapter 5

Monitor Optimization

The data collection process is the heart of the system. The monitor is responsible
for retrieving and storing driving and charging data, to make it accessible for
EV owners and researchers. In chapter 4.3, we described the implementation
of the arguably most important part of the system. The brand manager, which
handle everything related to external communication with the vehicles and car
manufacturer.

The presented information regarding the monitor illustrates an assembly
like design to allow for safe modification of various parts of the process. This
chapter provides more in-depth information on the monitor and the limitations
associated with the implementation presented. We begin with an overview of
the monitor and its limitations and present alternative methods to improve the
data collection process.

5.1 Cron Jobs

The data collection process relies on the cron service as a trigger to begin the
collection procedure. The cron service is a service provided by Google which
lives inside the same environment as the system. The cron service allows for
the executed of tasks at regular intervals.

Tasks trigger a specific feature through an HTTP request which has a
maximum execution time of 60 minutes. The cron service considers a task as
failed if there are no replies or if the system returns a response code outside the
range of 200-299 [1]. In other words, the system has a time limit of 60 minutes
to retrieve and store data for all active vehicles registered.

The system is currently averaging around 2.5 seconds to retrieve and store
data for the five vehicles which are present in the system as visualized by figure
5.1. With the current performance of the system, we are capable of handling

69

Figure 5.1: Screen grab of monitor execution times

1440 vehicles, best case scenario. One thousand four hundred forty cars are
only 0.73% of the registered EVs here in Norway as of March 20191.

5.2 Current Data Collection Design

Section 4.3.2 described the mechanics behind the collection process at this point.
Vehicle data is collected chronologically, from the oldest to the newest vehicle
in the system in a method similar to an assembly line. The process requires four
steps to achieve its goal, beginning with (1) the retrieval of all vehicles from
the database. Afterward, the monitor (2) locate the correct service interface to
interact with the vehicle. When the correct service component is retrieved, it
(3) attempts to retrieve the current state of the vehicles. Finally, the monitor (4)
store the retrieved information.

There are two critical problems with the current data collection design. The
first and most crucial problem is that the data is retrieved chronologically. The
retrieval process is an I/O task, which means that the system is idle while
waiting for the data. The result is, as presented earlier, where the system is
incapable of handling any significant number of EVs.

The second problem is associated with the final step of the process, the
storage process. The current design establishes a new database connection, send
the data over for persistent storage and cuts the connection for every single
vehicle. In other words, there is a significant amount of overhead associated
with the current data storage process. It is, however, possible to mitigate the
problem through by accumulating the collected data and write to the database
in one massive operation. The result is less network between the server and

1As of 29 of March 2019, SSB reported 195 351 registered electric vehicles [34]

70

header in addition to a reduced amount of bytes sent2.
The first problem is not quite as simple to solve. Retrieving data for multiple

vehicles at once is outside our capabilities, and some form of concurrency or
parallelization strategy is therefore required to increase the capabilities of the
system.

A variety of strategies exist to provide a system with concurrency or
parallelization abilities. The different strategies range from local methods
like multiprocessing to distributed methods such as clusters. To maintain
an acceptable level of flexibility and maintainability in the system, we will
make use of local approaches such as multiprocessing, multithreading, and
coroutines. The reason is that the system is still young and the challenges
associated with maintaining the system is not clear. Local optimization of
the data retrieval process will provide more time to understand the challenges
associated with maintaining the system while the user-base grows.

5.3 Benchmarking

We will benchmark the different optimization methods inside a familiar
environment with a constant amount of computing resources. The optimal
environment for the benchmarking is inside a similar environment as the server.
However, the system runs inside an environment which automatically increases
and decreases its computational resources based on load, which can result in a
misrepresentation of the capabilities of the optimization methods for our use-
case. Additionally, a significant amount of memory is required to run the tests
due to the nature of how we benchmark the performance, which would result
in huge costs associated with the experiment. We, therefore, decided to run the
experiment inside a familiar environment with a constant amount of computing
resources.

The experiments will be conducted on our local laptop, which is a MacBook
Pro early 2015 model, with a 2,7 GHz Intel Core i5 with four cores, 8 GB of
memory and Intel Iris Graphics 6100 1536 MB graphic card. All programs will
be shut down during the experiment to ensure little to no interference with the
results from external applications.

We perform two types of tests to gain insight into the optimization strategies
benefits for our use-case. An I/O bound test in the form of busy waiting and
a computational bound test in the form of finding prime numbers. The I/O
bound test will provide a good representation of the data retrieval procedure,
with a significant amount of idle time. The computational bound test, on the

2Reduced amount of headers sent between the two nodes to establish a connection

71

Figure 5.2: Performance of various test cases

other hand, will provide an excellent contrast to the I/O bound test, where the
CPU is continuously working.

We initially wanted to include a third test, which provides an almost
identical reproduction of the data retrieval procedure. The test case required a
high amount of HTTP GET requests towards a remote endpoint, which created
a few complications. We, therefore, decided to use the busy waiting method
instead as our primary indicator instead, because it creates a similar effect to
the CPUs waiting and ready queue.

Figure 5.2 visualize an initial benchmark of our test cases and show why
we use a combination of busy waiting and finding prime numbers. The
busy waiting test produces approximately constant output every time while
the computational test varies in the elapsed time. Busy waiting produced an
average of 1.29 seconds while the computational load provided an average of
0.85 seconds.

To represent a similar scenario to the data retrieval process, we decided
to run each test a hundred times. We can then observe the performance of
each strategy based on the elapsed time each strategy used to finish the test.
Additionally, performing the same operation many times will result in a similar
scenario as our monitorization process.

72

Figure 5.3: Multiprocessing performance

5.4 Approaches

This section introduces the available optimization strategies to increase the
number of vehicles the system is capable of supporting. We begin by describing
multiprocessing and the results achieved with the strategy. Then, introduce
multithreading and coroutines in a similar style and finish with a comparison
between the three approaches.

5.4.1 Multiprocessing

Multiprocessing is a parallelization strategy where a new process is spawned
to parallelize work. Multiprocessing is the procedure of creating new processes
and assigning them a specific workload. Processes are handled by the operating
systems CPU scheduler, as mentioned earlier.

Figure 5.3 illustrate how the tests were affected by the number of processes
we used, while table 5.1 show the first results of the I/O bound test. As shown,
employing more than one process provides a performance benefit. Using many
processes for our busy waiting test resulted in a growing waiting queue without
obstructing the CPU in any significant way. We can see that the total elapsed
time continues to decrease as the number of processes grows.

73

Nr. of Processes run 1 run 2 run 3 run 4 run 5 mean
1 107.532 107.584 107.753 108.323 108.521 107.943
2 57.1807 59.2712 59.2903 59.0499 56.3454 58.2275
3 39.0480 39.0234 39.0441 39.0117 39.0023 39.0259
4 30.3512 31.0456 30.3994 30.3750 30.4232 30.5189
5 21.7117 21.7905 21.6860 21.7653 21.7185 21.7344
6 21.7066 21.7004 21.7006 21.7001 21.5014 21.6618

Table 5.1: Multiprocessing I/O test results

Our computational bound test, on the other hand, have an evident
improvement in the beginning, which levels off quickly. More processes for a
computationally heavy process result in a more massive ready queue, where the
wait time between each time a process uses the CPU increase. Spawning more
processes then the number of CPU cores introduce overhead which eliminate
the advantage of parallelization.

For both tests, we see a performance boost of approximately 45% from
one to two processes. The difference in performance then levels off for
our computational test while the I/O bounded test continue to receive a
performance boost that decreases slowly.

5.4.2 Multithreading

Multithreading is a parallelization strategy similar to multiprocessing. Multi-
threading initializes and assign specific workload to threads in an attempt to
reduce the overall elapsed time and is commonly used to split a workload into
smaller pieces.

Figure 5.4 illustrate how the tests were affected by the number of threads we
used, while table 5.2 show the first results of the I/O bound test. As shown,
employing more than one thread provides a performance benefit, especially to
I/O bound operations. Using many threads for our busy waiting test resulted
in a similar effect to the multiprocessing strategy.

On the other hand, the computational bound test provides little to no
improvement with the increase of threads. The result is most likely due to a
non-preemptive nature of the thread scheduler, where the threads are allowed
to run until the finish. The best use of threads would be to split up the prime
number search space into smaller pieces and assign the search space to each
thread, instead of having each thread search the entire number space as we did
in our test here.

As visualized in the results, the computational bound test has little to no

74

Figure 5.4: Threading performance

Nr. of Threads run 1 run 2 run 3 run 4 run 5 mean
1 115.442 114.594 114.183 116.199 116.502 115.384
2 60.4978 60.4673 63.6874 67.2007 66.8974 63.7501
3 46.5573 46.4054 46.0974 41.5111 42.0293 44.5201
4 32.6949 32.6088 32.5944 32.5793 32.5900 32.6135
5 23.2082 23.2568 23.2310 24.9441 25.7813 24.0843
6 25.7665 25.2915 22.7485 23.0459 23.2834 24.0272

Table 5.2: Multithreading I/O test results

75

Figure 5.5: Coroutines performance

correlation with the increase of threads. The I/O bound test, on the other hand,
experiences a 44%, 30% and 26% initial performance gain which continues to
level off with the increase in threads.

5.4.3 Coroutines

Coroutines are generators which can be used for either asynchronous execution
of tasks or cooperative multitasking. One of the advantages of coroutines is
that they can as a producer and consumer where one coroutine is responsible
for gathering while another is responsible for storing.

Figure 5.5 illustrate how the different tests were affected by the number of
coroutines we used, while table 5.3 show the first results of the I/O bound test.
As shown, employing coroutines provides a similar effect to the use of threads.
Increasing the number of coroutines provides a steady and stable stream of
results, especially for our I/O bound test.

On the other hand, the computational test provides a similar effect as the
threading performance, where we see little to no performance with the increase
of coroutines. The results offer near identical numbers throughout the test
because of the non-preemptive nature of coroutines, where it is up to the
programmer to yield.

76

Nr. of Coroutines run 1 run 2 run 3 run 4 run 5 mean
1 109.694 109.932 110.157 110.358 110.229 110.074
2 57.1813 57.7926 57.8345 57.9279 57.9162 57.7305
3 39.2756 39.3874 39.3894 39.3697 39.4079 39.3660
4 28.9191 28.9457 28.8639 28.9100 28.9314 28.9140
5 23.1643 23.0922 22.6156 22.1225 22.0981 22.6185
6 18.8025 18.6561 18.8209 18.7957 18.8137 18.7778

Table 5.3: Coroutines I/O test results

5.4.4 Grid Computing

Grid computing combines multiple computers to attain a common goal, to
solve a single goal [14], which is the collection of vehicle states in our case.
Grid computing can be combined with the parallelization strategies mentioned
above to increase the scalability of the system further.

Grid computing is best used with heavy computational tasks because of
its distributed nature, where computers might be located at separate locations.
Coordinating the different machines can also become a complex task, especially
if the flow of information moves bidirectionally.

5.5 Conclusion

The monitor consists purely of I/O operations and is heavily dependent on
HTTP requests and database communication to achieve its goal. We will,
therefore, take a closer look at the busy waiting results, as those are the most
interesting for our problem.

As visualized in figure 5.6 and table 5.4, we can see that, from an elapsed
time standpoint, there is little difference between the three strategies. However,
we can see that there is one feature from one of our approach, which is not
present in the others. We can see that coroutines are more stable in their
performance compared to the other two.

Both coroutines and multiprocessing produce near identical results for each
test run. However, the performance advantages seen is most likely due to the
ability to pass control without system calls or blocking calls, resulting in less
overhead, especially in an I/O task such as our data collector, where switching
occurs frequently. Another peculiarity observed is the minimum to non-existing
advantage from using four threads or processes to five. We observe a similar
effect for seven to eight and nine to ten threads or processes.

After evaluating the results and traits of the three control structures, we saw

77

Figure 5.6: Parallelization test results

Nr. of X Multiprocessing Multithreading Coroutines
1 107.943 115.384 110.074
2 58.2275 63.7501 57.7305
3 39.0259 44.5201 39.3660
4 30.5189 32.6135 28.9140
5 21.7344 24.0843 22.6185
6 21.6618 24.0272 18.7778

Table 5.4: Accumulated I/O test results

78

coroutines as an excellent alternative for our problem. The ability to pass control
among themselves is an advantage in the future when the system handles
thousands of vehicles. Additionally, we can optimize the database interaction
procedure, by extending the pipeline with a bulk write operation.

We were unable to conduct our experiment inside a similar environment as
the server, as mentioned earlier, which is why the test result might not reflect
the actual performance of the server. However, we believe the trends displayed
during the experiment will most likely be similar in both environments, with a
tweak to the elapsed time and maximum number possible for either processes,
threads or coroutines. Both processes and threads require a higher amount of
memory compared to coroutines, which means that the amount used during
our test does not apply to the current server configuration.

5.6 Summary

The assembly line design limits the systems ability to support a large number
of vehicles. In this chapter, we introduced and discussed a variety of local
parallelization techniques to improve the speed of the data gathering station
of the assembly line. We created an imitation of the data gathering process
using the multiprocessing, multithreading, and coroutines, to simulate the
real scenario as accurate as possible. We saw that the different approaches
perform nearly identical for our use-case. However, the overhead advantage
of coroutines resulted in an advantage compared to the use of processes and
threads.

79

80

Chapter 6

Tailored Charging Schedules

We designed and developed the Cosinus system to make driving data more
accessible and to aid future research into individual and collaborative charging.
To encourage EV owners to share their driving data, we have to provide
something in return. This chapter takes a closer look at the collected data to
present data contributors with general information based on their driving data.

Section 2.4 introduce aggregated information extracted the historical data.
Displaying the aggregated information can bring awareness to the EV owners
trends. However, the real value lies with combined data sources and finding
hidden information in the dataset. During this chapter, we present a simple
charging plan to help EV owners to determine when they should charge.
Additionally, to ensure some degree of accuracy, we analyzed the driving data
find the maximum driving range. Combining mileage trends and driving range
estimates will result in a good indication for when to charge the EV in regards
to power cost. Complementary figures and source code for the information
presented during this chapter are in Appendix B.

6.1 Charging Plan

To assist EV owners in their daily charging decisions and alleviate some of the
stress introduced by EVs, we need a charging plan or charging schedule that
determine charging times based on the EV owners mileage trends and the areas
power trends. By combining the power and driving data presented in section
2.4, we can create a personalized charging schedule for each vehicle.

Figure 6.1 present the result from combining a specific vehicle’s data with
the areas power trends. For simplicity, we chose vehicle one as a reference. The
patterns will differ slightly depending on the car. However, the information
presented applies to all EV cars. The most significant difference between

81

Figure 6.1: Accumulation of trend data

vehicles, however, is due to the battery capacity and average daily mileage.
We normalized the data for easier processing. What we observe, is that

mileage trends follow a similar pattern as the power data. Creating a custom
charging plan which is of value for the user and power distributors requires
us to find time-slots with low usage probability and power trend valleys. The
best case scenario is to locate times where mileage, power price, and power
consumption valleys overlap. However, considering those who work and drive
during the night, the optimal solution is low power trends inside time-slots
where the user is less likely to drive.

For the chosen vehicle, we observe what we describe as a general mileage
trend. Additionally, valleys of mileage, price and consumption trends overlap
every night, giving the algorithm the optimal scenario when we consider
power price and EV load. The overlapping valleys provide flexibility when
an algorithm decides on charging times. A vehicle with low power demand
for a given night can charge on low voltage or discard charging entirely.
Additionally, the charging schedule can charge during the valley bottoms, to
discourage adding load during the early and late off-peak hours.

Using the accumulated information, we created an algorithm which takes
weekly mileage trends and power prices as parameters to determine the opti-
mal charging schedule for a given vehicle. We discarded power consumption

82

Figure 6.2: Charging recommendation

because it provides little extra information with the current trends experienced.
The arguments take the form of matrixes which represent each day and hour
and returns a similar matrix with the recommendation. Additionally, we added
a third argument to determine charging priority, resulting in more accurate lo-
calization of optimal charging times.

Figure 6.2 illustrate recommended charging times with varying charging
priorities. Given the previously mentioned data, we get night to Thursday and
night to Sunday as the best time to charge. Additionally, the most optimal time
to charge at any given day seems to be between 1 and 4 am.

The heatmap visualizes time-slots during the week which is beneficial
for charging without obstructing the EV owners daily chores. Darker colors
represent a higher benefit in regards to power cost, compared to the lighter
shades of red. The charging priority we mentioned earlier adjusts the power
cost consideration which decreases in correlation with an EVs power demand.
Using the charging priority setting, we can ensure charging below a given
threshold for the power price valley, resulting in the avoidance of charging
during early and late off-peak hours.

The most significant weakness of the generated charging plan is that
we currently can’t adjust the charging priority automatically. The charging
schedule at its current state attempts to find time-slots which minimize charging
cost, instead of ensuring that the user has enough power for their daily chores.
Charging priority is, therefore, adjusted by the EV owner to prevent power
deficiency.

6.2 Automated Charging

Before we discuss how the charging priority can be adjusted automatically,
we would like to discuss the process of automatic charging and its current

83

challenges. Generating a good schedule itself is a considerable obstacle.
However, there is an even more significant problem which needs to be
mentioned, which is the ability for third-party systems to control the charging
process itself.

Our current knowledge indicates that advanced EV’s such as Tesla model
S and BMWi3 is capable of remote user controlled toggling of the vehicles
charging state. Another significant feature is the ability to schedule charging,
which blocks the charging until charging is scheduled.

These two features result in the ability for vehicle owners to follow the
generated plan manually. A problem with manual toggling and scheduling is
that it is easy to forget to turn on charging when we relax before bed. It is also
impossible to expect people to wake up at 1 am to turn on charging, and again at
6 am to turn it off. This problem is invalidated if the charging schedule feature
is used, which leads to a new challenge — remembering whether or not the
schedule is configured correctly from day to day. Additionally, reconfiguring
the schedule frequently can be inconvenient for the user.

Which brings us to the question: is it possible to automate the scheduling
process? The answer to that question is, yes, but it depends. Depending on the
available features, a third-party system can actively check a vehicle charging
state, and toggle the charging procedure by mimicking the mobile application.

Actively checking and changing the charging state for large quantities of
vehicles result in scaling problems, which brings us to the next topic, scheduled
charging. Tesla can schedule charging start, which is a great feature. It gives
third-party systems such as Cosinus the ability to adjust the schedule at regular
intervals automatically.

There are a wide variety of car manufacturers and brands, where everyone
has their API which operates differently from their competitors. Many of those
API’s are not intended for third-party use and supporting every brand would
be near impossible.

Achieving automatic charging scheduling on a scale which is beneficial for
power distributors will, therefore, a solution which does not require active
charging state validation and toggling. Directly adjusting multiple brands
scheduling is a doable task when most of the population use the same brands.
However, the best solution would be interaction with the chargers directly to
adjust the charging schedule.

Chargers which are connected to the cloud and interacts with other entities
have recently surfaced in an attempt to solve the same problem as us.
The number of charging station brands is much lower than the number of
vehicle brands. To achieve fully automatic management of a vast quantity of
vehicles will, therefore, require the co-operation with charging stations to more

84

effectively ensure charging during off-peak hours.

6.3 Estimating Driving Range

In the previous section, we introduced a charging plan which use a priority
argument to finds time-slots during the week to charge a vehicle. One of the
weaknesses of the generated plan is the requirement of manual input. During
this section, we will take a closer look at the historical data, to find the estimated
driving range for a given vehicle, which will be used to change the priority
value automatically.

The estimator will then, to some degree, be able to take the driving
environment and style into consideration to give a realistic estimate of the
vehicles current capacity. We took a closer look at two features which directly
describe the cars battery consumption rate: the current battery charge and
odometer reading at the time of collection. The hourly data will provide
information regarding travel distance and charge used during the travel.

We took a fairly basic approach, by analyzing the information given different
timespans, but with similar techniques, we designed four different analyzing
approaches which work on a flexible time series. Looking at the data from
an hourly, daily and longest possible perspective, we were able to find an
estimation for the driving range at max capacity.

We named our four approaches (1) Hourly, which is the most straightfor-
ward approach. Hourly looks at the difference in odometer and battery charge
usage from hour to hour, and produce an estimate based on the hourly changes.
(2) Daily Simple is the second approach, which expands the timeframe from
hourly, to daily changes, in an attempt to iron out small and inefficient journeys
which are likely to pull down the result. Further, we created (3) Daily and (4)
Greedy, which extract every journey present in the presented dataset. Dividing
the dataset into smaller pieces would result in a more effective filter, to remove
noise.

We designed the four approaches to be reasonably flexible, giving us the
ability to add and adjust the filter by sending a complementary dictionary
which specifies which field we want to filter on, and how aggressive it should
be. Additionally, giving the flexible timeframe which the four approaches
operate under, we can adjust the input, giving us a day to day, week to week
or month to month. In other words, the approaches operate on an arbitrary
timeframe.

For simplicity, we chose to use a vehicle which we are familiar with, which
also have the most substantial amount of data in our system as a test subject
for fine-tuning and an indication of whether or not our approaches provide a

85

Figure 6.3: Correlation between battery efficiency and temperature

reasonable result. The vehicle in question is a Tesla Model S that has a driving
range at max capacity of approximately 150 km during sub-zero temperatures
and around 220 km during warmer temperatures.

Our first course of action is to verify the correlation between the produced
data points, from our approaches, with the recorded temperature. Battery
capacity is affected by the temperature in its environment, in addition to other
factors such as degradation [30]. The correlation check will provide a pointer to
how accurate the produced estimates are.

Figure 6.3 provides a visualization of the correlation between temperature
and the extracted information from our approaches. Hourly is more prone to
noise, and performs the worst, as we suspected. Similarly, Daily, which looks
at trips taken each provides a more similar trend between the two, as some of
the noise is flattened out. Greedy, which operate similarly as Daily, produced
an equally positive correlation. Finally, we have our Daily Simple approach,
which provided the best result when comparing extracted information with
the recorded temperature. Most likely due to noise being less aggressive when
looking at a timeframe compared to individual journeys.

With noise, we refer to small and ineffective trips which consume a lot
more power than usual. Noise is created by trips where the driver frequently
accelerates and decelerate, in addition to really small journeys where the

86

Figure 6.4: Estimated monthly driving range

procedure of ignition consumes a significant amount of that journeys battery
usage.

Following the verification between extracted data points and temperature,
we began to apply filters and experiment with a variety of timeframes. Figure
6.4 illustrate a small subset of the results produced from our tests when we
looked at the data from in a month to month perspective. We see excellent
results based on our knowledge of the car, from the raw output (no filter). With
an estimated range of approximately 150 km for sub-zero temperature and 220
km for more optimal conditions, we see the approaches generating resembling
numbers. Especially considering how driving environment can result in worse
efficiency than systems might be able to predict.

While the results were satisfying, considering how hills and acceleration
and deceleration effects the battery consumption negatively, we felt that the
output was a little pessimistic. We, therefore, began to experiment with filters,
to reduce the amount of noise in the dataset.

Removing data-points based on a variety of criteria affected the output
positively, where the estimated range rose, just as desired. The method of
removal did, however, change the result in different ways. Removing data-
points based on distance traveled provided the most volatile and optimistic
results. Filtering based on consumption rate, on the other hand, resulted in

87

Figure 6.5: Estimated monthly driving range

a much more stable change, where the result looks more realistic and authentic
to our knowledge of the performance of the vehicle. Additionally, combining
distance and consumption rate filters yielded similar results to applying only
a distance filter, which informs us that filtering based on distance is too
aggressive, especially for vehicles which experience little use.

Following the application of different filters, and finding what we believe to
be a threshold for filter aggression, we ran the Daily Simple algorithm with a
consumption rate filter of one on a few other vehicles in the system. The other
cars are BMWi3’s, which has a lot of holes in the dataset, caused by instability
in the external BMW API. The results, however, seems reasonable, given that
pre-2018 performs a little bit worse compared to the Tesla Model S we used.

Figure 6.5 visualize a few other vehicles registered in the Cosinus system.
The results seem reasonable, especially considering the instability we experi-
ence at regular intervals. Our method of pre-processing of the data is, therefore,
a considerable factor in the result. The most significant finding is that the filter
is too aggressive for one of the vehicles, as seen by the missing bar for March.

Our dataset covers the timespan of November 1st - March 7th, which
indicates that a weeks worth of information is not sufficient if we want to apply
filters on the data-points extracted by Daily Simple. Another essential artifact
found in the dataset is unrealistically low consumption rate, where the vehicle

88

was able to travel up to ten kilometers each battery percent consumed. We
believe the introduction of such spikes is due to our pre-processing method
to patch up holes in the data. The consequence, however, is that our the pre-
processing might have introduced a lot of fake data-points which is not easily
detected.

6.4 Discussion

With the historical data collected by Cosinus, we were able to distinguish an
EVs driving range and their owner’s mileage demand. Understanding mileage
trends and driving range allow for more flexible charging where charging can
elapse over a few hours or be discarded entirely for a given day. We get a better
grasp of how much power an EV requires to operate normally while adding the
minimum necessary stress on the power grid.

Weekends are the best time of the week to charge an EV considering power
cost and power loads generally experienced. An optimal charging schedule
should, therefore, aim to charge as little as possible during weekends, and
retrieve a full charge during the weekends. Minimum charging necessary is
the optimal charging method, but will only an acceptable strategy for EVs with
enough capacity for two or three charging cycle during the weekends. EVs who
has a high power demand will benefit from starting charging after midnight,
but won’t be able to take full advantage of weekends.

A minimum charging approach will look at the EVs demand from day to
day and determine whether charging is necessary that night. If not, we will
charge the vehicle for a few hours on low voltage, to prolong the need a full
charge. An added benefit of charging a small subset of EVs during power
consumption valleys is the weighted aspects. EVs with high power demand
will begin charging earlier, while EVs with a low power demand will begin
their charging cycle closer to the valley bottom depending on the need. Further,
by actively profiling an area’s power load, we can prevent vehicles with low
power demand from charging, to avoid components from overloading.

Additionally, we can combine the minimum charging approach with voltage
manipulation and weighted strategies, as presented by both Richardson et al.
[36] and Clement-Nyns et al. [8] Creating a priority list each night and filtering
out vehicles with low power demand will result in more leeway for existing
algorithms to ensure proper utilization of the power grid.

The most exciting opportunity with a minimum charging approach is the
ability of intertwined charging and combining techniques. Vehicles with high
power demand can charge unobstructed, while EVs with a low power demand
can alternate charging, resulting in a high number of vehicles receiving some

89

level of power during the charging process.
However, a minimum charging approach won’t necessarily be the best

choice when we consider battery health. Frequent charging can result in quicker
deterioration of the battery. However, low voltage charging is better for the
batteries health, which can have the possibility of offsetting the disadvantages
of more frequent charging. It is, however, essential to understanding that
frequent charging might result in increased maintenance costs as the batteries
can deteriorate faster than regular.

On the other hand, valleys will be filled up, resulting in better utilization
of the power components and power distribution lines. Better use of the
power delivery chain will result in more efficient use of money, from a power
distributors point of view, which can result in lowered power prices.

6.5 Summary

In summary, we analyzed the driving data and combined the data with power
trends to generate a weekly charging schedule with day to day adjustment.
From overlapping mileage and power price valleys, we determine the optimal
time of day to charge the vehicle without interfering with the EV owners daily
chores. Further, we use the driving data to estimate a maximum driving range,
to make day to day adjustment on the charging scheduler. Additionally, the
driving range estimator draws a picture of the EVs performance from month to
month.

90

Chapter 7

Client Application

With the Cosinus server and basic analytical algorithms in place, we need a
client application for users to interact with the system. Either to contribute
to the data collection procedure or to view the collected data. This chapter
investigates two different cross-platform frameworks, react native and flutter,
and highlights advantages and disadvantages. We design a simple architecture
to gain insight into the learning curve of the two technologies and their ease of
use.

This chapter begins with an introduction to the client app architecture and
the frameworks, react native and Flutter. Afterward, we present the results, in
regards to usability and maintainability. Finally, we discuss the strengths and
weaknesses of both frameworks, highlighting what we believe to be excellent
use-cases for the two technologies.

7.1 Architecture

We designed the architecture to include regular interface elements and use
patterns. With features such as one-time sign in, navigation between views and
interaction with an external API (The Cosinus system). Figure 7.1 provides an
overview of the interface layout and navigation flow.

On startup, the application validates the presence of an authorization token
and determines which view to present the user. A landing page giving the user
two options, log in or registration, is presented if no valid JWT is present. On the
other hand, for validated users, a dashboard is displayed, with a navigation bar
at the bottom to switch between two views, the dashboard page, and a profile
page.

The dashboard page provides the user with quick information such as
battery level and temperature and odometer reading, while the profile page

91

(a) Client view overview (b) Client interface

Figure 7.1: Client Application Architecture

offers more in-depth information related to each vehicle. Additionally, both
pages provide quick access to add cars to the system. We initially had a desire to
include event registration, to give EV owners the ability to inform the charging
schedule of mileage outside general trends. However, a feature capable of
handling such events requires more time than we have available.

We believe the current architecture will provide much insight into the
capabilities of the two frameworks. It offers a variety of interface elements
which exists in much mobile application. Additionally, shifting between views
will give us an indication of the performance.

7.2 Cross-platform frameworks

There are different cross-platform frameworks as mentioned in chapter 2.6.
The various concepts strive for a common goal, quick development of mobile
applications with acceptable speed. They differ, however, in their approach.
Web apps are essentially websites, with little to no connection to the underlying
hardware. Hybrid and generated apps, on the other hand, provides a tighter
coupling between the application and device, resulting in better-performing
apps, which can provide better user experience, compared to web apps.

We decided to investigate the frameworks, react native and flutter, which
is a hybrid alternative and generated app alternative. Response time and local
storage are essential for a good user experience, which is why we discarded
web apps as an alternative, because of the significant overhead associated with
web applications. [20, 46].

React native and flutter are backed by Facebook and Google respectively and
have a lot in common. Both use the reactive paradigm, which is a declarative

92

paradigm concerned with application state. The use of the reactive paradigm
makes it possible to express both static and dynamic layouts in an object-
oriented manner while keeping the application state as the core driver for
interface behavior.

The difference between the two frameworks lies with the programming
language used and accompanied tools and libraries. React native leverage
web technology and compiles down to native widgets while Flutter compiles
to native code [13]. The difference between compilation level provides Flutter
with a performance advantage, bringing it closer to the device hardware.

Another difference between the two is the learning curve associated with the
frameworks. React native is similar to web programming and the popular web
framework react in many ways. They are giving developers who are familiar
with the web a quick and easy entry point into mobile app development.
Flutter, on the other hand, use a new programming language created by Google,
Dart, which can create some initial difficulties for some. However, with the
react developers will have a natural entry point into Flutter, with similar design
patterns.

The most significant difference between the two, on the surface, is the
complementary interface libraries which come with the frameworks. React
native provide fundamental building blocks, which is easily configurable by
the developer. The interface components which arrives with react native have
no design elements applied to them, and it is up to the developers to maintain
a consistent feel and look throughout the application. Flutter, on the other
hand, is shipped with pre-designed components following their material design
guidelines.

7.3 Navigation

Navigation between views is an essential feature to provide a rich user
experience while avoiding massive view controllers. In the architecture
proposed by section 7.1, either application state or user actions trigger a change
of view. Both frameworks represent current views as a stack and provide a
global object to manipulate the stack. The interface for stack manipulation is
also similar, with pop, push and replace operations.

The use of both is also reasonably similar. A first route is defined in the
root of the project, resulting in a default entry point during start-up. Afterward,
a new view is pushed on the stack as illustrated by figure 7.2. The difference
between the twos navigation capabilities lies with platform support and feature
set. Flutter provides a more extensive feature set, out of the box, giving
developers the option to create pre-defined routes which will result in more

93

// react native
this .props.navigator.push({

component: SecondView,
4 title : ’Foo Bar’,

}) ;

// Flutter
8 Navigator.push(

context,
MaterialPageRoute(builder: (context) => SecondView()),

) ;
12

// Flutter with predefined route
Navigator.pushNamed(context, ’/second’);

Figure 7.2: Navigation Examples

maintainability. All views can be defined in the same file, resulting in a quicker
replacement process of view components.

The most significant difference, however, is the platform support. React
native rely on third-party libraries to support both iOS and Android [33], while
Flutter has built-in navigation support for both platforms. Including third-
party libraries into the equation results in similar feature sets, the consequence,
however, is the introduction of a new dependency. Introducing third-party
dependencies has the possibility of adding rouge extensions into the project,
which can result in security concerns.

7.4 Building Interfaces

React native and Flutter uses reactive-style views which result in similar
organization of the code-base. The reactive-style encourages the definition of
reusable components, where we define interface elements as generic elements
that receive their functionality from the parent. The result is a pyramid
hierarchy with data travels mainly in one direction.

The difference between react native and Flutter is the extent of the
predefined components. Flutter components are pre-styled, which makes it
quick in use in addition to streamlining the application’s design. React native,
on the other hand, give the developers all the responsibility for the look and feel
of the app, resulting in much more freedom for creativity.

94

// react native
2 _getIPAddress = () => {

fetch("https://httpbin.org/ip")
. then(response => response.json())
. then(responseJson => {

6 this . setState ({ _ipAddress: responseJson.origin }) ;
})
.catch(error => {

console.error(error) ;
10 }) ;

};

// Flutter
14 _getIPAddress() async {

final url = Uri.https(’httpbin.org’ , ’ ip’) ;
final httpClient = HttpClient();
var request = await httpClient.getUrl(url) ;

18 var response = await request.close () ;
var responseBody = await response.transform(utf8.decoder).join();
String ip = json.decode(responseBody)[’origin’];
setState (() {_ipAddress = ip;}) ;

22 }

Figure 7.3: HTTP request example

7.5 Device and Network Communication

Interacting with the device and the Internet is straightforward thanks to
asynchronous operations and support for promises. Writing and reading from
the local storage is reasonably quick and does not create complications for
the user under regular use. We did, however, notice a slight delay between
reading from local storage to updating the interface. The consequence is the
requirement of a loading screen to hide the quick switch between two views as a
result (The landing page appears for a few milliseconds, which is then replaced
by the dashboard).

The HTTP libraries which accompanies the frameworks are easy to use. Both
make use of promises to handle the request without blocking the main thread,
resulting in good user experience and transition between user actions and app
response.

95

7.6 Programming Language

The programming language used in react native, and flutter development is
Javascript and Dart, as mentioned earlier. We won’t go into detail about the
differences in performance and syntax between the two. However, it is essential
to know about what we believe to be the most crucial difference between the
two and is most likely one of the causes for why flutter is a more structured
framework compared to react native, which is quite flexible in use.

Dart is compiled, compared to Javascript which is interpreted in most
scenarios. The advantage of code compilation is type validation while
compiling, which prevent simple errors such as non-existing variables and
mismatch between arguments and return values. The disadvantage, however,
is that the language is strict when it comes to combining types. E.g. Javascript
lists support strings, numbers and booleans to exist in the same array, while
Dart only allow one type for each list defined.

Some form of type-safety can, however, be achieved in react native with a
complementary static type checker such as Flow [12] or through the use of the
Javascript dialect Typescript [43]. However, using typescript require the use of
typescript supported libraries, which introduce extra external libraries into the
project.

7.7 Conclusion

Both react native, and flutter is attractive options for mobile app development.
React native is similar in many ways to web development, which result in a
gentle learning curve. There are, however, a few weaknesses. The accompanied
building blocks are the bare minimum necessary, which lead to a lot of time
used styling the application instead than perfecting the functionalities.

On the other hand, the lightweight components result in the ability to
create several different prototypes. Flutter is similar to react native in many
ways, but with more type-safety and structure. The pre-designed components
give developers more time to focus on functionality and ensure consistency
throughout the application.

The most promising of the two seems to be flutter. Flutter is more refined
as a whole, with a much more structured code-base and type-safety, which
is an essential tool to prevent simple bugs from occurring. The pre-designed
components and layout components will also speed up development time, as
less time is required on designing and developing the interface.

96

7.8 Summary

In this chapter, we took a closer look at two frameworks which uses the same
concept of using small building blocks to describe the user interface for a given
app state. We developed the application using both frameworks to determine
which one would be better to use in a proper app implementation. While
the use and feel are similar across both frameworks, we saw clear advantages
depending on the use-case. React native is a lightweight framework which
shines when it comes to high-fidelity prototypes. Flutter, on the other hand,
is much more rigid and structured, which is a desirable trait when it comes to
team development and long-time maintenance.

97

98

Part III

Conclusion

99

Chapter 8

Conclusion

8.1 Summary

In this thesis, we explored a variety of strategies to design and develop a
vehicle data collection system. We have also analyzed the data to improve our
understanding of EV power demand, driving trends and EV driving range.

We began with the design and development of the data collection system,
where we prioritized security and maintainability to minimize technical debt.
We explored different hosting services and architectural design principles to
devise a solution which would not prevent the systems from growing or
moving between cloud providers.

We deployed the system inside a Google App Engine instance rather
than a Google Compute Engine instance to give Google the responsibility
of securing the server environment. A Compute Engine instance allows for
full customization of the environment and computing resources. However,
maintaining the server environment should be left to experienced engineers.
The most significant sacrifice is the loss of configurable elements such as
memory and virtual CPU configuration. However, giving Google control
over the infrastructure allow for more resources on research and development.
Further, the systems only cloud provider dependency is the cron service. Many
other cloud providers offer a similar service, which is why we would argue that
the system at its current state is still portable across cloud providers.

Further, we experimented with a variety of different architectural layouts to
investigate and understand how different variations affected the outcome. We
began with abstraction through functions and state-driven objects. Functions
did not create sufficient abstraction, and state-driven objects were fragile
against changes in its environment. We, therefore, chose a stateless driven
design for the system.

101

To improve charging decisions, we began to analyze the collected driving
data to improve our understanding of EVs power demand and capabilities.
We found mileage trends and estimate a maximum driving range based on the
last 30 days of data. Combining the two, we can roughly estimate when to
charge the EV to meet power demand without creating inconvenience for the
EV owner. We also leverage the range estimation feature to inform EV owners
of the performance of their vehicles throughout the year.

Finally, we developed a cross-platform mobile application to interact with
EV owners, giving them an interface to register their EV for monitorization and
see aggregated data. To compare and ensure that the developed application
is maintainable, we decided to develop the mobile app using two options
we considered to be great options for the task, react native and Flutter. We
found valuable insight into the strength and weaknesses of using the two
frameworks and decided to move forward with Flutter. The type-safety, pre-
styled components, and UI element hierarchy make Flutter an excellent option
for collaborative and longtime development.

8.2 Main Contributions

We have provided a system capable of collecting and retrieving vehicle data to
map out changes throughout the day. We have used data collection and storage
of vehicle data as a scenario to explore how different architectural choices affect
the maintainability of the system and its capabilities. We have also analyzed
the collected data to improve our understanding of EV needs and capabilities
by using conventional statistical approaches.

In order to achieve this, we have explored a variety of techniques to
create loosely coupled components and abstraction throughout the system.
The resulting system has a data collection pipeline which can be changed
without affecting other parts of the pipeline. The most significant challenge
of the system, however, is security. The vehicle data present an accurate
representation of the EV owner trends, and must, therefore, be protected
appropriately. We used a combination of different techniques to protect user
data at different levels of the system. We used input validation at the systems
interface, to prevent injection attack and automatically encrypt vehicle data in
case database credentials is leaked due to bad key management. We achieved
automatic encryption of vehicle data through the use of customized DAOs, to
secure the data without affecting the maintainability, resulting in developers to
interact with the database like any other ordinary objects.

In section 1.2, we outlined two questions that we can answer as follows:

102

1. How should a system be built that can fulfill the task of automatically retrieving
and storing driving data?
An I/O extensive system which relies heavily on external APIs must
adapt quickly to changes in external dependencies. The system will
grow to be a car aggregation system with time, with multiple different
systems connected. Breaking changes can occur at any given moment,
and a flexible system which supports quick changes without affecting the
overall functionality of the system is therefore crucial. A flexible design is,
however, no excuse to down-prioritize security. The system operates with
sensitive data, and must always ensure that data protection stands at the
top. The flexible system design will allow for rapid changes and allow the
system to grow in features without prior knowledge of the system.

2. How can the driving data be used for smarter and more economical charging?
Mileage trends can be extracted and analyzed to understand specific
EVs needs. The analyzed data will provide insight into the EV owners
trends and result in more flexibility when deciding the time to charge
a vehicle. For individual charging, the data can ensure charging during
the most economical hours without affecting the users daily chores. For
collaborative charging, the data can introduce strategies such as voltage
manipulation and a variety of scheduling algorithms to provide vehicles
with enough power to fulfill their regular demand.

8.3 Future Work

For future work, researchers can further improve the scalability of the system.
The thesis provided insight into local optimization, with traditional approaches
such as multiprocessing and multithreading in addition to coroutines. Addi-
tionally, the driving range estimator has substantial overhead.

The local optimization applied during this thesis has its limits. Spawning
thousands of coroutines are possible, but will most likely add considerable
overhead in regards to managing them, in addition to the memory needed for
each coroutine. Future work should, therefore, explore options for distributed
optimization of the data collection process to further increase the number of
vehicles the system is capable of handling — additionally, a distributed system
distribution of network traffic between multiple destinations which prevents
bottlenecks from forming.

A distributed strategy which is rising in popularity is data streams with the
use of Apache Kafka. Apache Kafka is a distributed streaming platform with
three key capabilities. Kafka is similar to a message queue and stores the data

103

in a fault-tolerant durable way. Additionally, data can be processed as they
appear, resulting in real-time processing of events. Kafka introduces exciting
concepts which can result in a more responsive and scalable system [22].

Future work can also explore mileage forecasting to support the develop-
ment of collaborative charging strategies which fulfill an EVs needs without
providing a full charge. Driving trends can change depending on the season
and weather. A system which is capable of forecasting daily mileage trends
with weather data as a supporting parameter will prevent a charging scheduler
from underperforming and create inconveniences for the EV owner.

Another area of work is the driving range estimation used to support a
charging scheduler. The current implementation analyzes a month worth of
driving data to provide an estimate for the current driving range. The method
of analyzing only a month worth of data makes the method rigid and incapable
of adjusting to rapid changes in temperature. Future work should explore
strategies to profile a vehicle based on the accumulated driving data and present
an estimate based on the current temperature or future temperatures. A driving
range estimator that changes based on weather reports will provide a more
accurate estimate for the situation, and increase the accuracy of the EVs power
demand forecasting.

8.4 Final Remarks

The comparison between the use of processes, threads or coroutines makes use
of time as the only value of comparison. However, memory use is another
critical parameter that was left out. We left out memory use due to problems
related to monitoring the usage. The results provided by the memory profilers
tested provided an increase during the first instances and leveled off for the
remainder of the test. We, therefore, determined the results to be unreliable.

Additionally, in retrospect, the comparison conducted for the mobile
application should have included more variety. Template based frameworks,
for example, is a common approach to client based development, and should,
therefore, have been included.

104

Part IV

Appendices

105

Appendix A

Monitor Optimization

107

OS: macOS Mojave 10.14.4 18E226 x86_64
2 Host: MacBookPro12,1

Kernel: 18.5.0
Packages: 64 (brew)
Shell : bash 3.2.57

6 Resolution: 1440x900@2x
DE: Aqua
WM: Quartz Compositor
WM Theme: Blue (Dark)

10 Terminal: iTerm
CPU: Intel i5−5257U (4) @ 2.70GHz
GPU: Intel Iris Graphics 6100
Memory: 8192MiB

Figure A.1: System specification

def busy_sleeping(n):
for i in range(n*1000):

3 time.sleep(0.001)

Figure A.2: Source code: Busy waiting

108

1 def primes(n):
primes = [True for a in range(n+1)]
primes[0] = False
primes[1] = False

5 primes[2] = True
check = 0
while(check <= len(primes) / 2 + 1):

while(not primes[check]):
9 check += 1

flag = check * 2
while(flag < len(primes)):

13 primes[flag] = False
flag += check

check += 1

Figure A.3: Source code: Find all prime numbers below n

109

110

Appendix B

Tailored Charging Schedules

111

Figure B.1: Heatmap of vehicle one charging trends

Figure B.2: Heatmap of vehicle two charging trends

112

Figure B.3: Power prices and Consumption data for the first two weeks of
February

Figure B.4: Hourly with distance filters

113

Figure B.5: Daily with distance filters

Figure B.6: Daily Simple with distance filters

114

Figure B.7: Greedy with distance filters

Figure B.8: Hourly with efficiency filters

115

Figure B.9: Daily with efficiency filters

Figure B.10: Daily Simple with efficiency filters

116

Figure B.11: Greedy with efficiency filters

Figure B.12: Hourly with distance and efficiency filters

117

Figure B.13: Daily with distance and efficiency filters

Figure B.14: Daily Simple with distance and efficiency filters

118

Figure B.15: Greedy with distance and efficiency filters

119

120

Appendix C

Client Application

121

Widget _buildRow(Map<String, dynamic> vehicle) {
Color state = _getStateColor(vehicle[’ state ’]) ;
return ListTile (

4 title : Text(vehicle[’nickname’]),
leading: Icon(Icons. blur_circular , color : state ,) ,
onTap: () {
Navigator.of(context).push(

8 MaterialPageRoute(builder: (context) => Vehicle(metaData:
vehicle))

) ;
},

) ;
12 }

Widget _buildVehicles() {
if (this .data == null || ! this .data.containsKey(’vehicles’)) {

return Placeholder(color: Colors.amber);
16 }

List<dynamic> vehicles = this.data[’vehicles’];
return ListView.builder(

padding: const EdgeInsets.all (16.0) ,
20 itemBuilder: (context, i) {

if (i . isOdd) return Divider();
final index = i~/2;
if (index < vehicles . length) {

24 return _buildRow(vehicles[index]);
} else if (index == vehicles.length) {

return ListTile (
title : Text(’Add Vehicle’),

28 leading: Icon(Icons.add_circle) ,
onTap: () {Navigator.of(context).push(’/addvehicle’);},
) ;

} else {
32 return null ;

}
},

) ;
36 }

Figure C.1: Flutter: rendering list of vehicles

122

export class VehicleButton extends React.Component {
render() {

const { state , nickname, created, brand } = this .props;
4 ...

return (
<View>

...
8 <TouchableOpacity

{ ... this .props }
style = { styles .paddedButton}
onPress = {_ => this . setState ({visible_modal: true}) }

12 />
<View style={[styles .statusIcon, color]}></View>
<Text style = { styles .buttonText }>

{ nickname }
16 </Text>

</TouchableOpacity>
</View>
)

20 }
}
{vehicles .map((vehicle, i) => (

<VehicleButton
24 key={’vehicle−’+vehicle[’id’]}

{... vehicle}
/>

)) }
28 <AddVehicleButton

addHandler={this.props.addVehicle}
fetchProfile ={this .props. fetchProfile }
error={error}

32 errorMsg={errorMsg}
/>

Figure C.2: react native: rendering list of vehicles

123

124

Bibliography

[1] App Engine Cron Jobs. online: accessed: 12/12-2018. URL: https : //cloud .
google.com/appengine/docs/flexible/python/scheduling-jobs-with-cron-yaml.

[2] Michael Armbrust et al. “A view of cloud computing”. In: Communications
of the ACM 53.4 (2010), pp. 50–58.

[3] Authentication hacking. online: accessed 9/11-2018. URL: https : / / www .
acunetix.com/websitesecurity/authentication/.

[4] David M Beazley. Python essential reference. Addison-Wesley Professional,
2009.

[5] Andrew D Birrell. An introduction to programming with threads. Digital.
Systems Research Center, 1989.

[6] Kevin Bull. Could Electric Cars Threaten the Grid. Online: accessed 25/5-
2018. URL: https://www.technologyreview.com/s/518066/could-electric-cars-
threaten-the-grid/.

[7] Rajkumar Buyya, S Thamarai Selvi, and Xingchen Chu. Object-oriented
Programming with Java: Essentials and Applications. Tata McGraw-Hill, 2009.

[8] Kristien Clement-Nyns, Edwin Haesen, and Johan Driesen. “Analysis of
the impact of plug-in hybrid electric vehicles on residential distribution
grids by using quadratic and dynamic programming”. In: World Electric
Vehicle Journal 3.2 (2009), pp. 214–224.

[9] Aline Dresch, Daniel Pacheco Lacerda, and José Antônio Valle Antunes
Jr. Design science research: A method for science and technology advancement.
Springer, 2014.

[10] Enova. Marketevaluation. Online: accessed 12/4-2018. 2017. URL: https :
/ / www . enova . no / om - enova / om - organisasjonen / publikasjoner / rapport -
markedsutviklingen-2017/.

[11] Council of the European Union Presidency. DATAPROTECT 97. online:
accessed 9/11-2018. 2015. URL: http : / / data . consilium . europa . eu / doc /
document/ST-9565-2015-INIT/en/pdf.

125

https://cloud.google.com/appengine/docs/flexible/python/scheduling-jobs-with-cron-yaml
https://cloud.google.com/appengine/docs/flexible/python/scheduling-jobs-with-cron-yaml
https://www.acunetix.com/websitesecurity/authentication/
https://www.acunetix.com/websitesecurity/authentication/
https://www.technologyreview.com/s/518066/could-electric-cars-threaten-the-grid/
https://www.technologyreview.com/s/518066/could-electric-cars-threaten-the-grid/
https://www.enova.no/om-enova/om-organisasjonen/publikasjoner/rapport-markedsutviklingen-2017/
https://www.enova.no/om-enova/om-organisasjonen/publikasjoner/rapport-markedsutviklingen-2017/
https://www.enova.no/om-enova/om-organisasjonen/publikasjoner/rapport-markedsutviklingen-2017/
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf

[12] Flow - Static type checker for javascript. online: accessed 30/4-2019. URL:
https://flow.org/.

[13] Flutter for react native devs. online: accessed 29/4-2019. URL: https://flutter.
dev/docs/get-started/flutter-for/react-native-devs.

[14] Ian Foster. “What is the grid?-a three point checklist”. In: GRIDtoday 1.6
(2002).

[15] Armando Fox et al. “Above the clouds: A berkeley view of cloud
computing”. In: Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS 28.13 (2009), p. 2009.

[16] David Gale. “The law of supply and demand”. In: Mathematica scandinav-
ica (1955), pp. 155–169.

[17] GDPR Key Changes. online: accessed 9/11-2018. URL: https://eugdpr.org/
the-regulation/.

[18] Joel Gibson et al. “Benefits and challenges of three cloud computing
service models”. In: Computational Aspects of Social Networks (CASoN),
2012 Fourth International Conference on. IEEE. 2012, pp. 198–205.

[19] Marc Hassenzahl and Noam Tractinsky. “User experience-a research
agenda”. In: Behaviour & information technology 25.2 (2006), pp. 91–97.

[20] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. “Evalu-
ating cross-platform development approaches for mobile applications”.
In: International Conference on Web Information Systems and Technologies.
Springer. 2012, pp. 120–138.

[21] Injection Attacks. online: accessed 9/11-2018. URL: https://www.acunetix.
com/blog/articles/injection-attacks/.

[22] Introduction to Apache Kafka. online: accessed 30/4-2019. URL: https://kafka.
apache.org/intro.

[23] Harvey Jones. What’s put the spark in Norway’s electric car revolution?
Online: accessed 17/10-2018. 2018. URL: https ://www.theguardian .com/
money/2018/jul/02/norway-electric-cars-subsidies-fossil-fuel.

[24] Michael Jones, John Bradley, and Nat Sakimura. Json web token (jwt). 2015.

[25] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. “Technical debt:
From metaphor to theory and practice”. In: Ieee software 29.6 (2012),
pp. 18–21.

[26] Kevin Kunzelman and Sterling Hutto. Common session token system and
protocol. US Patent 6,041,357. Mar. 2000.

126

https://flow.org/
https://flutter.dev/docs/get-started/flutter-for/react-native-devs
https://flutter.dev/docs/get-started/flutter-for/react-native-devs
https://eugdpr.org/the-regulation/
https://eugdpr.org/the-regulation/
https://www.acunetix.com/blog/articles/injection-attacks/
https://www.acunetix.com/blog/articles/injection-attacks/
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://www.theguardian.com/money/2018/jul/02/norway-electric-cars-subsidies-fossil-fuel
https://www.theguardian.com/money/2018/jul/02/norway-electric-cars-subsidies-fossil-fuel

[27] Zhen Li and Eileen Kraemer. “Programming with concurrency: Threads,
actors, and coroutines”. In: 2013 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum. IEEE. 2013, pp. 1304–
1311.

[28] Model S REST API. online: accessed 12/12-2018. URL: https : / /
teslamotorsclub.com/tmc/threads/model-s-rest-api.13410/.

[29] Ana Lúcia De Moura and Roberto Ierusalimschy. “Revisiting coroutines”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
31.2 (2009), p. 6.

[30] Gang Ning and Branko N Popov. “Cycle life modeling of lithium-ion
batteries”. In: Journal of The Electrochemical Society 151.10 (2004), A1584–
A1591.

[31] Open Web Application Security Project. OWASP Top 10 2017. online:
accessed 1/11-2018. 2018. URL: https://www.owasp.org/index.php/Top%
5C_10-2017%5C_Top%5C_10.

[32] S Rahman and GB Shrestha. “An investigation into the impact of
electric vehicle load on the electric utility distribution system”. In: IEEE
Transactions on Power Delivery 8.2 (1993), pp. 591–597.

[33] React Native Navigation between screens. online: accessed 29/4-2019. URL:
https://facebook.github.io/react-native/docs/navigation.

[34] Registered vehicles. online: accessed 16/1-2019. URL: https://www.ssb.no/
transport-og-reiseliv/statistikker/bilreg.

[35] Protection Regulation. “The General Data Protection Regulation”. In:
INTOUCH (2018).

[36] Peter Richardson, Damian Flynn, and Andrew Keane. “Optimal charging
of electric vehicles in low-voltage distribution systems”. In: IEEE Transac-
tions on Power Systems 27.1 (2012), pp. 268–279.

[37] Fariza Sabrina et al. “Processing resource scheduling in programmable
networks”. In: Computer communications 28.6 (2005), pp. 676–687.

[38] Sensitive Data Exposure. online: accessed 9/11-2018. URL: https : / / blog .
detectify.com/2016/07/01/owasp-top-10-sensitive-data-exposure-6/.

[39] Mohammad Shahidehpour, Hatim Yamin, and Zuyi Li. Market operations
in electric power systems: forecasting, scheduling, and risk management. John
Wiley & Sons, 2003.

[40] Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating system
concepts. Wiley, 2018.

127

https://teslamotorsclub.com/tmc/threads/model-s-rest-api.13410/
https://teslamotorsclub.com/tmc/threads/model-s-rest-api.13410/
https://www.owasp.org/index.php/Top%5C_10-2017%5C_Top%5C_10
https://www.owasp.org/index.php/Top%5C_10-2017%5C_Top%5C_10
https://facebook.github.io/react-native/docs/navigation
https://www.ssb.no/transport-og-reiseliv/statistikker/bilreg
https://www.ssb.no/transport-og-reiseliv/statistikker/bilreg
https://blog.detectify.com/2016/07/01/owasp-top-10-sensitive-data-exposure-6/
https://blog.detectify.com/2016/07/01/owasp-top-10-sensitive-data-exposure-6/

[41] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design
and implementation. Vol. 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

[42] Tesla JSON API. online: accessed 12/12-2018. URL: https://tesla-api.timdorr.
com/.

[43] TypeScript - Superset of JavaScript. online: accessed 30/4-2019. URL: https:
//www.typescriptlang.org/.

[44] What is IaaS. online: accessed 10/12-2018. URL: https : //azure .microsoft .
com/en-in/overview/what-is-iaas/.

[45] What is PaaS. online: accessed 10/12-2018. URL: https ://azure .microsoft .
com/en-in/overview/what-is-paas/.

[46] Spyros Xanthopoulos and Stelios Xinogalos. “A comparative analysis
of cross-platform development approaches for mobile applications”. In:
Proceedings of the 6th Balkan Conference in Informatics. ACM. 2013, pp. 213–
220.

[47] Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: state-of-the-
art and research challenges”. In: Journal of internet services and applications
1.1 (2010), pp. 7–18.

128

https://tesla-api.timdorr.com/
https://tesla-api.timdorr.com/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://azure.microsoft.com/en-in/overview/what-is-iaas/
https://azure.microsoft.com/en-in/overview/what-is-iaas/
https://azure.microsoft.com/en-in/overview/what-is-paas/
https://azure.microsoft.com/en-in/overview/what-is-paas/

129

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem Definition
	Limitations
	Research Method
	Main Contributions
	Thesis Outline

	I Background
	Background
	Security
	OWASP Top 10
	General Data Protection Regulation
	Authorization

	Django
	Overview of Django
	Django Models
	Django rest-framework
	Serializers
	Views

	Hosting
	Cloud Computing
	Services
	Compute Engine
	App Engine
	Cloud Functions

	Data
	Power Market and Power Data
	Vehicle Usage Data

	Vehicle Communication
	Tesla
	BMW

	Terminology
	CPU Scheduler
	Process
	Thread
	Coroutine
	User Experience
	Native Applications
	Cross-platform Applications
	Technical Debt

	Summary

	Related work
	Summary

	II Design & Development
	Cosinus
	Overview
	Infrastructure
	Architecture
	Database

	Authentication and Authorization
	Authentication
	Authorization

	Brand Manager
	Service Interface
	Brand Manager Core
	Service Components

	Interacting with the system
	Resource addresses
	Query The Collected Data
	Connect vehicles to the system
	Interaction with the auth endpoints

	Summary

	Monitor Optimization
	Cron Jobs
	Current Data Collection Design
	Benchmarking
	Approaches
	Multiprocessing
	Multithreading
	Coroutines
	Grid Computing

	Conclusion
	Summary

	Tailored Charging Schedules
	Charging Plan
	Automated Charging
	Estimating Driving Range
	Discussion
	Summary

	Client Application
	Architecture
	Cross-platform frameworks
	Navigation
	Building Interfaces
	Device and Network Communication
	Programming Language
	Conclusion
	Summary

	III Conclusion
	Conclusion
	Summary
	Main Contributions
	Future Work
	Final Remarks

	IV Appendices
	Monitor Optimization
	Tailored Charging Schedules
	Client Application

