
Reducing Packet Loss in Real-Time
Wireless Multicast Video Streams

with Forward Error Correction

Simen Fonnes

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2018

Reducing Packet Loss in
Real-Time Wireless Multicast
Video Streams with Forward

Error Correction

Simen Fonnes

© 2018 Simen Fonnes

Reducing Packet Loss in Real-Time Wireless Multicast Video Streams
with Forward Error Correction

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Wireless multicast suffers from severe packet loss due to interference and
lack of link layer retransmission. In this work, we investigate wether the
most recent Forward Error Correction (FEC) draft is suitable for real-
time wireless multicast live streaming, with emphasis on three main points:
packet reduction effectivity, and latency and overhead impact. We design
and perform an experiment in which we simulate wireless packet loss in
multicast streams with a Gilbert model pattern of ≈ 16% random packet
loss. We check all FEC configurations (L and D values) within several
constraints: maximum 500 milliseconds repair window (latency impact),
66.67% overhead, and a maximum L value of 20. For all these L and D
values we stream the tractor sample three times, to avoid possible outliers
in the data. We show that packet loss reduction in the most recent FEC
draft is effective, at most reducing from ≈ 16% down to ≈ 1.02%. We
also show that low latency streaming can be conducted, but it requires a
minimum of 160 milliseconds additional latency for our stream file. The
overhead for such low latency can be as high as 66.67%.

i

Acknowledgments

I would like to thank my supervisors, Professor Dr. Carsten Griwodz and
Professor Dr. P̊al Halvorsen, for providing me with excellent guidance
throughout this thesis. I would like to thank my girlfriend Ina Alette
Fosberg, for making illustrations and for her continuous support throughout
this work. Additionally, I would like to thank my friend and co-student
Fredrik Løberg for having several helpful discussions with me during the
time of this thesis. Finally, I would like to thank my parents Øyvind and
Anita Fonnes, for providing feedback and support throughout this thesis.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 4
1.3 Approach . 5
1.4 Scope . 5
1.5 Outline . 6

2 Wireless Streaming in Dense Places 9
2.1 Video Streaming . 9

2.1.1 Dynamic Adaptive Streaming over HTTP 10
2.1.2 UDP Streaming . 10
2.1.3 Live Streaming . 11

2.2 Real-time Transport Protocol 11
2.2.1 RTP . 12
2.2.2 RTCP . 12
2.2.3 RTP discussion & mechanisms 12
2.2.4 Development of the RTP-standard 14
2.2.5 2000s . 15
2.2.6 The history of RTP based research ideas & applications 17

2.3 IP Multicast . 20
2.3.1 Internet Group Management Protocol (IGMP) 22

2.4 Discussion and conclusions 23

3 Generic Forward Error Correction in RTP 25
3.1 Overview . 25
3.2 History . 26

3.2.1 RFC 2733 . 26
3.2.2 RFC 5109 . 28
3.2.3 SMPTE 2022-1 . 28

3.3 draft-ietf-payload-flexible-fec-scheme-10 29

v

vi Contents

3.3.1 Schemes . 29
3.3.2 FEC Repair Packet Construction 32
3.3.3 FEC Packet Reconstruction 33

3.4 Discussion and Conclusions 35

4 Design 37
4.1 Hardware Configuration . 37

4.1.1 Server . 37
4.1.2 Client . 38
4.1.3 Network Node . 38
4.1.4 Server Client Communication 38

4.2 Preliminary Testing . 38
4.2.1 Findings . 39

4.3 Experiment Design . 39
4.3.1 Multimedia . 39

4.4 FEC Capture Procedure . 42
4.4.1 Loss Pattern . 43
4.4.2 FEC Configuration 44

4.5 Discussion and Conclusions 45

5 Implementation 47
5.1 Live555 Streaming Media . 47

5.1.1 Flow of Operation 48
5.2 Streaming Applications . 50

5.2.1 Sender Application 50
5.3 FEC Components . 53

5.3.1 Sender Side . 54
5.3.2 Receiver Side . 55

5.4 FEC Encoding & Decoding 59
5.4.1 FECEncoder . 59
5.4.2 FECDecoder . 61

5.5 Limitations . 63
5.6 Discussion and Conclusions 64

6 Evaluation 67
6.1 Experiment Summary . 67

6.1.1 Constraints . 67
6.2 Video Encoding . 67
6.3 Packet Loss . 68
6.4 Latency . 69

6.4.1 Correlation between latency and overhead 69
6.5 Discussion and conclusions 69

Contents vii

7 Conclusion 71
7.1 Summary of Contributions 71

7.1.1 Evaluation of the most recent FEC draft 71
7.2 Critical Assessment . 72
7.3 Future Work . 72

Bibliography 75

Appendices 81

Code Manual 83

Experiment Results 85

List of Figures

2.1 IP Multicast tree structure 21

3.1 FEC packet structure in RTP (Zanaty et al. 2018, pp. 12) . 26
3.2 FEC Bitmask Packet (Zanaty et al. 2018, pp. 15) 30
3.3 FEC Parity Packet (Zanaty et al. 2018, pp. 16) 31
3.4 FEC Parity Packet (Zanaty et al. 2018, pp. 18) 32

4.1 Hardware setup . 39
4.2 Encoding of the tractor sample 42
4.3 Wireless transmission range 43

5.1 Live example (Fosberg 2018) 49
5.2 FEC interleaved and non-interleaved sender (Fosberg 2018) . 52
5.3 FEC receiver . 53
5.4 Special case for RTP sequence number overflow 57
5.5 Insert packet in FEC cluster 58
5.6 Example of how to run the test programs in our FEC imple-

mentation. 65

6.1 Average packet loss before and after FEC 68
6.2 Correlation between overhead and latency 70

ix

List of Tables

1 First 30 experiment results. 86
2 Next 30 experiment results. 87
3 Next 30 experiment results. 88
4 Next 30 experiment results. 89
5 Next 30 experiment results. 90
6 Next 30 experiment results. 91
7 Next 30 experiment results. 92
8 Next 30 experiment results. 93
9 Next 30 experiment results. 94
10 Next 30 experiment results. 95
11 Last 6 experiment results. 96

xi

Listings

xiii

Chapter 1

Introduction

1.1 Background and Motivation

Live video broadcasting remains a popular medium for distributing ac-
tivities such as sporting events or video games over the internet. From
the origin of the internet and until the late 2000s, video broadcasting was
mostly carried out using push-based UDP streams. UDP streams were
utilized because TCP’s retransmission mechanism can cause undesirable
delays if there is not sufficient bandwidth (B. Wang et al. 2008). However,
receivers behind firewalls and proxies had problems with connectivity be-
cause these devices often block UDP ports. Additionally, receivers with
arbitrary bandwidth had issues buffering the streams because the bitrate
would exceed their bandwidth. Therefore, in the late 2000s, broadcasting
hosts moved from using push-based UDP streams to pull based adaptive
bitrate streams over HTTP.

The current standard for adaptive bitrate streams over HTTP is DASH
(Dynamic Adaptive Streaming over HTTP). DASH addresses the issues
with UDP streaming by dividing videos into proportionate time slices.
Each slice is firstly duplicated in various bitrates and then uploaded to
a HTTP server. Receivers then pull slices with an appropriate bitrate for
their bandwidth. Because the streams are carried over HTTP, they easily
traverse any firewall or proxy because the data is requested, rather than
pushed.

DASH solves some of the issues with UDP streaming. However, in live video
broadcasting, it has its problems and limitations. Firstly, it is typical for
receivers in the same live stream to pull identical slices concurrently from
the HTTP server. Because DASH streams are transmitted over unicast
connections, the slices have to be sent separately to each receiver. These

1

2 Chapter 1. Introduction

redundant data transmissions lead to excessive workload usage, as well as
excessive bandwidth consumption for the server. Secondly, a video slice
cannot be made available until it is captured. 1 For example, the stream
is delayed by three seconds if each slice contains three seconds of video.
Third, when receivers join the DASH stream, they play the first acquired
slice from the beginning regardless of when the slice was acquired. This
is necessary because it gives sufficient time for the next slice to be pulled.
However, this makes receivers out of sync if they receive their first acquired
slice at different offsets. These offsets increases if the slice size is large. 2

Finally, it is typical for broadcasting hosts to distribute workload and band-
width usage by using web caches. These web caches are typically located
geographically close to the receivers, but they need to be synchronized.
Therefore, every slice has to be sent out to all web caches before they are
made available, which further increases the delay. Note that write-through
caches such as Squid can be utilized to reduce latency.

The main problems with DASH in live streaming is scalability, latency,
and synchronization. To solve these issues, we propose the idea of using
push-based multicast UDP streams. In contrary to unicast streams, data
in multicast streams is only transmitted once from the server and then
duplicated by the network nodes on the way to their destination. This is
done in a push-based manner where every receiver subscribes to a multicast
group. Because the data sent in UDP streams do not have to wait for the
creation of a slice, the data can be transmitted directly after being encoded
and compressed. This results in significantly reduced latency. Also, UDP
streaming does not have any significant synchronization issue because the
data is pushed directly to its receivers. The only exception is latency caused
by geographically separated receivers.

The primary goal of this thesis is to improve live streaming in a football
stadium. In this scenario, the receivers are physically present and are
watching the stream on their mobile devices. The receivers connect to a
server over Wi-Fi. As previously mentioned, one of the significant issues of
UDP streaming is that firewalls and proxies block them. However, in this
scenario, we control the communication endpoints. Therefore, we can allow
the UDP streams to pass through the local wireless network. It is, therefore,
a requirement that our tests should involve receivers connected over LAN
Wi-Fi. Additionally, because the receivers are using their own devices, it is

1. While not beneficial, it is possible to deliver instant DASH streaming by sending
H.264 slice instantly.

2. It is, however, possible to synchronize DASH participants by using Merge and
Forward by Rainer et al. (2018).

1.1. Background and Motivation 3

vital that our solution must support the major mobile operating systems.

Media platforms such as IPTV uses multicast for video streaming services.
However, there is a lack of support for multicast in most routers on the
internet. Multicast Technologies (2008) measured that less than 5% of the
internet support multicast. There are several reasons for this, both from a
commercial and technical standpoint. Because there is no direct correlation
between a receiver and host in multicast, it makes it complicated for the
hosts to know who it is serving, and thus who to bill.

Additionally, from an ISPs standpoint, unicast is profitable because
users can be charged higher for more bandwidth usage and therefore sav-
ing bandwidth using multicast does not make commercial sense. From a
technical standpoint, multicast invokes security implications such as lack
of IPSec support, in addition to constant bandwidth occupation, because it
pushes data continuously through the network. For that reason, multicast
is usually only used in closed environments such as local area networks or
services directly from the Internet Service Provider (ISP) such as IPTV.
IPTV is also often not a part of a users internet bill and thus saving band-
width makes sense.

While wired multicast is underdeveloped and has several issues, wireless
multicast has even more problems. Perkins et al. (2018) are currently
working on an internet-draft discussing the most significant issues of wire-
less multicasting. Firstly, wireless multicasting has high error rates in con-
gested networks. It is impossible for the host to provide retransmission
of lost packets because link layer acknowledgment is turned off. Secondly,
receivers in wireless networks adapt transmission rates based on the dis-
tance to the access point. However, in multicast, the transmission rate is
most commonly set low to provide data to the furthest receiver. Addition-
ally, mimo schemes cannot be applied as they are only for single receivers.
Third, as a consequence of the low transmission rate, the packet transmis-
sion is taking longer compared to a higher transmission rate. Because more
data is in the air, there is also more interference. Fourth, every receiver
has to wake up frequently because the host is continuously pushing data
through the network. Since the host never backs off this leads to high
power consumption.

While push-based RTP multicast streams over Wi-Fi has several issues, in
theory, it presents a better alternative to DASH regarding latency, scala-
bility, and synchronization. It is, however, important to note that in our
scenario we are streaming live video within a closed Wi-Fi environment. In
this environment, issues with blocking firewalls and proxies, as well as low

4 Chapter 1. Introduction

multicast support are no problem because we control the communication
endpoints. The main problem using multicast in our scenario is handling
congestion without sacrificing latency. However, even with these issues, it
does not mean that multicast streams cannot be applied. Taking all of
this in regard, we are left with one enclosing question: Can push-based
multicast UDP streams replace pull-based unicast DASH streams?

1.2 Problem Statement

Before we can provide a sustainable multicast video stream, we must first
address the issues with multicasting video. One of the significant problems
is packet loss as a result of no link layer retransmission as well as high
interference. Nayarasi (2012) performed a multicast video streaming test
over Wi-Fi and reported the stream as being not viewable. Additionally,
(Perkins et al. 2018) state that it is not uncommon for packet loss rates
of 5% while streaming over Wi-Fi using multicast. Therefore, we limit our
focus in this thesis to reduce packet loss, which we consider a reasonable
step towards replacing unicast with multicast streams.

The most common way to handle error rates in wireless multicast networks
is to apply multicast over unicast. Multicast over unicast transforms multi-
cast packets to unicast at the wireless endpoints. By modifying the packets
to unicast, each packet yields the benefit of retransmission as well as lower
power consumption. However, it comes at the price of higher bandwidth
consumption.

Another approach for reducing packet loss is Forward Error Correction
(FEC). In environments where retransmission is expensive or impossible
such as satellite transmission or video streaming it is typical to use FEC.
By applying FEC, we proactively send control data to rebuild packets lost
in transmission. The amount of FEC protection is dependent on the inter-
ference in the network. In severely congested networks, FEC may duplicate
entire streams. In less congested networks, however, a single parity product
may protect multiple of the original packets.

At this time, Zanaty et al. (2018) are constructing a new standard for
generic FEC in RTP. This FEC draft addresses scalability issues with the
earlier specifications including RFC 2733, RFC 5109 and SMPTE 2022-1,
and offers several improvements. Therefore, we will implement this FEC
draft and test its effect on reducing packet loss. To the best of our knowl-
edge, there have not been conducted any tests regarding packet loss in
wireless multicast video streams using this draft.

1.3. Approach 5

In summation, our problem statement comes down to if we can reduce
packet loss in wireless multicast streams using FEC. We address this by
breaking the problem statement into the following questions:

• How effective is FEC at reducing packet loss in Wi-Fi Multicast Net-
works?

• Can FEC maintain low latency in real-time video streams?

• Can FEC preserve acceptable bandwidth consumption?

1.3 Approach

We approach the problem statement in the three following parts:

• Determine why and how packet loss effects wireless video streams.

• Design and execute an experiment where we investigate the effects of
the most recent FEC draft in multicast video streaming.

• Evaluate the results of the experiment.

In the first part, we discuss in depth of how video streaming works with an
emphasis on RTP and wireless multicast. We consider the problems with
wireless multicast and how we can make the problems tolerable.

In the intermediate part, we design an experiment where we capture data
from a congested multicast video stream with FEC protection. This ex-
periment design contains the packet loss patterns during the stream, as
well as the different FEC configurations we apply. We collect the packet
loss pattern from related literature. Our goal is to make the experiment as
reliable as possible by testing as many FEC configurations as possible.

In the final part, we evaluate the experiment as mentioned above by com-
paring the captured video before and after it is passed through the FEC
decoder. In the comparison, we examine the effects of the FEC decoder in
regard to inflicted packet loss and latency, as well as overhead.

1.4 Scope

The scope of this thesis covers the effects of the most recent FEC draft
in congested and delay sensitive WLANs. Due to our limited time and

6 Chapter 1. Introduction

resources, we will not compare our implementation with a unicast DASH
solution. To see the true benefit of multicast vs. DASH, we would need a
large test environment with multiple access points, and numerous clients
per access point. We, therefore, consider this future work.

Our thesis is structured around improving bandwidth consumption for mul-
tiple clients watching live video over a congested WLAN in a football sta-
dium. In addition to video streaming, it is also important for clients to be
able to rewind the video stream, either to custom points in time or points
in time provided by the server. These timestamps provided by the server
are manually marked by employees which correspond to significant points
in time (e.g., goals and fouls) which in turn yields high re-watch rate for
clients in contrary to random rewinds. On-demand multicast approaches
have been studied extensively such as Pull Patching by Jacobsen et al.
(2010), which we discuss in Chapter 2. However, in this thesis, we only
focus on improving the primary video stream and thus do not study this
portion of the scenario.

1.5 Outline

This master’s thesis is structured in the following order:

• Chapter 2 — Wireless Streaming in Dense Places
This chapter presents an overview of video streaming with emphasis
on multicast wireless streaming.

• Chapter 3 — Generic Forward Error Correction in RTP
In this chapter, we discuss how generic forward error correction in
RTP has evolved over the years. Additionally, we provide an in depth
discussion of the most recent FEC draft.

• Chapter 4 — Design
This chapter presents the design of our experiment, which includes
both the environmental setting and preliminary testing, as well as
the details of the experiment itself.

• Chapter 5 — Implementation
This chapter presents our C++ implementation of the most recent
FEC draft in the Live555 Media Streaming Library. We utilize this
implementation during the experimentation described in the previous
chapter.

• Chapter 6 — Evaluation
In this chapter, we evaluate the experiment results which includes a
detailed analysis as well as a thorough discussion.

1.5. Outline 7

• Chapter 7 — Conclusion
In the final chapter, we summarize our findings and contributions, as
well as provide possible directions for future work.

Chapter 2

Wireless Streaming in Dense
Places

In this chapter, we discuss how video streaming is carried out today and
what problems it faces, especially with live and wireless streaming. In Sec-
tion 2.1 we discuss how video streaming is carried out today. In Section 2.2
we discuss the Real-time streaming protocol and how it has developed over
the years. In Section 2.3, we provide an overview of the inner workings
of IP multicast. Finally, in Section 2.4, we summarize and conclude the
chapter.

2.1 Video Streaming

Consumption of video is an important part of human life in 2018. eMarketer
(2017), estimates that a United States adult spends, on average in 2018,
5 hours and 13 minutes watching video, every day. They also show that
the total time of video consumption has more or less stayed the same. TV
delivers the majority of video, but in the recent years, more time has shifted
over to consumption from digital video devices. This shift has made Video
on Demand and Live streaming companies such as Youtube and Twitch
more significant.

As mentioned in the introduction, video streaming is primarily carried out
using unicast connections. Unicast is a one to one connection between a
server and a client and does not scale when redundant data is sent. There-
fore, because we consume more and more video with higher and higher qual-
ity, the bandwidth requirement has also increased both for the providers
and consumers of video.

9

10 Chapter 2. Wireless Streaming in Dense Places

2.1.1 Dynamic Adaptive Streaming over HTTP

DASH (Dynamic Adaptive Streaming over HTTP) is an adaptive stream-
ing technique proposed by Carmel et al. (2002). Briefly explained, DASH
separates a media resource into small segments and encodes these segments
in different qualities; ranging from low to high. When a client requests a
specific resource, and receives it, the flow of segments is measured. Based
on this measurement, the next segment to pull is chosen if the bandwidth
can handle the potential new flow of segments. In other words: The quality
of the segment is chosen based on the client’s bandwidth, which results in
stability for the clients.

To account for the multiple redundant streams in DASH, web caches are
typically used. This would be, in simple terms, multiple small servers
placed in different areas containing popular streaming content. This means
that a participant would not have to retrieve the stream from the main
server, if the stream was stored in the web cache. This web cache will be
geographically closer than the main server to the client (e.g, same country
or city). This effectively reduces the main server’s bandwidth requirement,
and provides less latency, due to its geographic location. An example of
web cache usage would be Netflix’ streaming service, which as of 2017, uses
EVCache. This is a RAM based cache, with several micro services around
the world (Siddiqi 2016).

2.1.2 UDP Streaming

UDP video streaming is a technique used when low latency is more impor-
tant than maintaining the integrity of the information sent. UDP streaming
streams a resource continously without waiting for any acknowledgement,
in contrary to DASH. However, there is usually a need for metadata in
UDP videostreaming. Therefore, protocols such as SDP and RTSP is used
to receive metadata and negotiate terms for the stream. These protocols
are carried over TCP. After this exchange has occured, the stream is sent
continously. UDP doesn’t have any built in error recovery, and therefore in
congested networks, it can be affected by high loss rates. It also does not
support any adaption of quality out of the box. However, research ideas
for these exists such as pull patching.

Pull Patching

Pull patching is an idea by Jacobsen et al. (2010) that combines the Patch-
ing idea mentioned in Section 3.1.2 with DASH. In this article, we learn
that the majority of the logic is placed with the client rather than the host.
They argue that the client has the most accurate information about it’s own

2.2. Real-time Transport Protocol 11

bandwidth condition, which is the reason for this architectural choice. We
can think of the client as the consumer and the host as the distributor. A
client asks for a certain resource and is delegated to a multicast stream for
the main media content, and a patching stream to compensate for poten-
tial packet loss, and receiving the beginning of the stream. The multicast
stream is distributed in four different qualities (DASH), from which the
clients selects one, according to their current bandwidth condition.

2.1.3 Live Streaming

Before digital video stremaing we used analog video streaming. The sig-
nals were sent as scanned lines and broadcast directly to consumers using
radio. This yielded very low latency, basically the speed of light minus
overhead. When the internet became popular, there was live streaming
using UDP. This introduced latency problems because the video had to be
compressed befrore transmitted to its destination, to save bandwith. Ad-
ditionally, UDP streaming has several issues. In many consumers firewalls
it is blocked and therefore we have to use SDP or RTSP but these are not
sucessfull if blocked. Therefore, several companies started to use DASH for
live streaming. Since DASH uses TCP as its undelying protocol it is not
blocked.

DASH yields several benefits, but also issues in live streaming. Because
of its native adaptivity, the users gets the best quality for their bandwith.
In addition, DASH makes it easy to rewind, and pause, because the client
simply pulls its desired segments. That is, unless the segments are deleted.
However, DASH divides videos into segments. This adds an additional
delay of the length of the segment, because it has to be created before it
is made available. Another problem is syncronization. When clients pulls
segments at different times they always play the segment from start. This
adds additional delay. Also, if another client is playing the middle of that
segment the two will not be syncronized. When using web caches etc,
additional buffer time might be added for the segments to be transmitted
to these caches. This further increases the delay.

2.2 Real-time Transport Protocol

RTP is a protocol designed to transport real time and diagnostic data, by
Schulzrinne et al. (1996). The real time and diagnostic data are trans-
ported using two sub protocols: RTP and RTP Control Protocol (RTCP),
respectively. It is important to note that RTCP does not handle packet
loss or other issues with the participants; it only provides the data needed

12 Chapter 2. Wireless Streaming in Dense Places

to solve these issues. In the end, the responsibility to handle these issues
lies with the developers. In RTP, different payload formats are described
in RFCs.

2.2.1 RTP

The RTP protocol uses RTP packets, which consist of a header and a
payload. The first two bytes of the header consist of fields describing: the
version of RTP used, if padding is used, if the packet is extended, how many
participants there are, marker and the payload type. A sequence number
is defined for the next two bytes. This is incremented for each packet sent,
which makes it simple to detect packet loss. In the next word, a timestamp
is provided. This is used to play the content of the payload relative to each
other, even if packet loss has occurred. One can imagine it as two clocks
on each side of the connection that the timestamps are compared to. Next,
we have the SSRC, which is the ID for the host in the current stream.
Finally, we have the contributing sources (CSRC identifiers). This is a list
containing the sources that contribute to the given packet, merged by a
mixer. A mixer is a mechanism to merge streams (e.g, to save bandwidth
for participants with restricted bandwidth). The RTP payload consists of
the data being transported, with some additional padding if it was defined
in the padding header field.

2.2.2 RTCP

RTCP serves two main purposes: Provide diagnostic data among the
participants, and inform the participants of the different host identifiers
(CNAMEs). In RTCP, five different packets are used: Sender report,
Receiver report, Source description, Goodbye and Application-specific mes-
sage. These packets can be sent together in a compound packet, to reduce
packet overhead. The sender and receiver reports contain the actual di-
agnostic data, either sent from an active sender or from a receiver. A
compound packet should always include one of these reports along with
a source description, because these fulfill the main purposes of RTCP. To
inform the other participants if a participant is leaving the conversation, a
Goodbye packet is sent. This packet also includes a description of why the
participant is leaving. The Application-specific message is a packet used
for developers to create custom RTCP packets.

2.2.3 RTP discussion & mechanisms

Several principles and ideas for mechanisms were proposed in the RFC
1889, as there are many issues to handle with varied bandwidth and a

2.2. Real-time Transport Protocol 13

variable number of participants. All the discussion and mechanisms in this
Section are derived from Schulzrinne et al. (1996).

Scalability

With RTP packets, scalability should not become a problem, as it is not
expected for more than two participants to speak simultaneously in a con-
ference call. In RTCP on the other hand, the amount of control packets
would increase linearly to the participants without some control mecha-
nism. We resolve this growth by limiting the control packet flow to a
fraction of the session bandwidth. The senders are given more headroom,
so new participants can receive the CNAME as soon as possible. Describing
the algorithm itself is not within the scope of this essay.

Mixers and translators

RTP also introduces the terms mixers and translators. A mixer is a mech-
anism to handle bandwidth variations, among the participants. Simply
put, mixers multiplex signals from participants with higher bandwidth, to
a single signal. This signal is then compressed, based on the bandwidth
of the lower bandwidth participants; and finally sent to these participants.
This will provide participants with the quality their bandwidth can handle.

A translator is a mechanism that yields several responsibilities in RTP Mul-
ticast. When passing RTP/RTCP packets through a firewall, the firewall
may drop some of the packets, if the firewall’s criteria are not matched. In
that case two translators are used, one outside and one inside the firewall.
The translator outside the firewall tunnels the packets through a secure
channel. When the packets are inside the firewall, the other translator del-
egates the packets into the original multicast stream. A translator can also
keep track of the original CSRC when combining packets, IPv4 to IPv6
conversion etc.

SSRC identifier collision

If a SSRC identifier is not unique, we get a collision and looping of packets
might occur. An example of looping could be if a mixer receives data,
and sends it back to the same multicast group. Before the duplication
is handled, the receivers should discard packages from one of the senders,
until the problem is fixed. Duplicate SSRC identifiers are the sender’s
responsibility to fix, and are fixed by leaving the chat using a Goodbye
packet, followed by generating a new random SSRC identifier and rejoining
the conversation.

14 Chapter 2. Wireless Streaming in Dense Places

Security

As mentioned, in both RTP and RTCP headers, there is a padding count
field to add padding at the end of the packet. This is used for block ciphers
that require a specific static length to be encrypted. Only the payload
is encrypted, because that is where the sensitive information lies. When
encrypting, the padded amount of bits is added at the end of the packet, and
when decrypting the process is reversed. By the time the RFC 1889 paper
was published, DES (NIST 1995) was the default encryption algorithm. As
of 2017, AES (NIST 2001) is the default encryption algorithm, but is also
a block cipher which makes it fully compatible.

Don’t mix audio and video

Originally in RTP, audio and video were to be sent in separate packets.
One of the reasons for this separation is the fact that: If a participant
only needs one entity of either video or audio, it is a simple procedure to
provide one of these entities when the packets are separate, for obvious
reasons. Examples of this can be if a participant only wants to receive the
audio in a conference call, and if the audio track of a movie is dubbed in
multiple languages. Other reasons describe issues with synchronization if
video and audio is combined, such as sequence number handling. This is
however not relevant using MPEG streams because audio and video consist
of the same format, which is discussed further in Section 3.1.1.

2.2.4 Development of the RTP-standard

Development of the RTP-standard is defined by a set of Request for Com-
ments (RFC). The first standardization of RTP was presented in the RFC
1889 document, which is what Section 2 of this document describes. In
Section 3, we discuss how RTP has developed as a protocol over the years,
from its origin in the 1990s and to today.

Prior to the RFCs, there were Internet Engineering Notes (IENs). The
internet stream protocol (ST) by Forgie (1979), shows early ideas for audio
conferences, and was later converted to RFC 1190, by Topolcic (1990).
However, we will only concern ourselves with RFCs directly attached to
RTP in this Section.

1990s

The world wide web’s popularity grew rapidly during the 1990s, and with
it came the possibility of performing Internet conferences, streaming media
etc. With low bandwidth being a major issue, the engineers had to look

2.2. Real-time Transport Protocol 15

towards multicast solutions, as unicast solutions were too demanding for
the bandwidth. However, there was a necessity to time-align packets as well
as multicast diagnostic information about the participants in the multicast
group. As a result; in 1996, H. Schulzrinne, GMD Fokus & S. Casner
presented RTP, combining a fast, scalable, jitter handling protocol, with
bandwidth saving multicast.

RFC 2038 In Section 2.4.5, we discussed the idea to never mix audio
and video in the same RTP packets, which was promoted in the RFC 1889.
However, in RFC 2038, optimization for sending MPEG1/MPEG2 video
was presented (Hoffman et al. 1996). MPEG is combining both audio and
video into a single format, using the system streams for MPEG 1 and
transport streams for MPEG 2; and thus sending both audio and video
in the same RTP packets. This is nonetheless not a replacement of the
original idea, but rather an expansion. This document was quite significant
for RTP, as we still use MPEG1/MPEG2 to this day. This includes services
such as IPTV, which is discussed in Section 4.2.1.

2.2.5 2000s

In summary, the 1990s were the origin of RTP, which yielded the first
standards of the protocol. As we move into the 2000s, we see several RFCs
being presented, expanding the standard in many different areas. These
areas include video streaming, text and music communication, etc.

RFC 3190 RFC 3190 describes the sampling of 12-bit nonlinear, 20-bit
linear, and 24-bit linear audio, and how to pack it into the RTP pay-
load. The main motivation behind this RTP expansion, by Kobayashi et
al. (2002), was to transport high quality audio over the Internet. It was in-
tended for media such as DAT (digital audio tape) and DV (digital video),
which were relevant in the 2000s. Workarounds could have been used, such
as to convert 12-bit nonlinear audio into 16-bit linear, sending it over RTP
and then decode it back. This would use 33% more of the network capacity
than needed, which was also a key motivation.

RFC 3550 RFC 3550 is the current standard for RTP, proposed by
Schulzrinne et al. (2003). This document explains that RFC 3550 obso-
letes RFC 1889. It is mostly identical, except for improvements to rules
and algorithms used in the protocol. There is no change in the packet
structure, nor the protocol principles. Schulzrinne et al. (2003., 1) explains
it as:

“The biggest change is an enhancement to the scalable timer
algorithm for calculating when to send RTCP packets in order

16 Chapter 2. Wireless Streaming in Dense Places

to minimize transmission in excess of the intended rate when
many participants join a session simultaneously.”

RFC 3640 In RFC 3640, standardization of transporting MPEG-4
streams over RTP was proposed by van der Meer et al. (2003). In this
document, we learn that MPEG-4 streams combine both audio and video
in Access units. Some of the MPEG-4 elementary streams contain bits
that prevent the stream from being playable if lost. In this case, it was
proposed that this can be handled by using either access points or TCP.
This is a generic streaming technique, so every MPEG-4 stream can be
sent, no matter the encoding. However, for this to work, the modes given
in RFC 3640 needs to be followed.

RFC 4103 In RFC 4103, real-time text (RTT) was introduced by Hell-
strom and Jones (2005). This document explains the design of RTT, which
is a sending letter by letter approach in conferences. It can be used si-
multaneously with other media, but the document suggest that separate
RTP streams should be used. In Linux, talk was an application that used
RTT. When every keystroke is seen by the people in the conference, it can
provide a real-time feel. This actually turned out to be a major problem
as the participants saw all the letters when someone was typing. If a per-
son misspelled a lot it could become embarrassing and the feel of being
monitored would frequently occur.

RFC 4175 In RFC 4175, Gharai and Perkins (2005) describe a stan-
dard for packing uncompressed video into the RTP payload, for transport.
Uncompressed video is typically used in television and was therefore the
main motivation behind this document. The formats chosen were recom-
mended by ITU, and include standard and high quality formats. These
video formats use scan lines in either progressive or interlaced scanning. In
progressive scanning, a frame is displayed using the scanned lines in a top-
down fashion. In interlaced scanning, the frames are used in pairs, where
the first contains the even scan lines and the second the odd scan lines.

RFC 4696 RFC 4696 describes a recommended way of streaming MIDI
over RTP by Lazzaro and Wawrzynek (2006). We learn that the main
motivation behind this document is for musicians to play together, without
the need to be in the same room. A digital keyboard instrument’s keys can
be mapped directly to MIDI, which further can be sent over the Internet
and played on the receiver’s side. In other words, we are sending the
inputs, not the actual sound, as these are reproduced on the endpoints of
the conversation.

2.2. Real-time Transport Protocol 17

2010s

In the 2010s, as media streaming becomes progressively more used, we
see a few RFCs that expand the different video formats the protocol can
transport, along with an update of RFC 3550.

RFC 6184 RFC 6184 is a description of transporting H.264 encoded
video using RTP by Y.-K. Wang et al. (2011). In this document, it is
discussed that H.264 produces an Internet friendly format, which separates
the payload into packets. In these packets, the first byte contains the type
of Network Abstraction Layer (NAL) unit used, and the rest of the bytes
are the payload. NAL units are (put easily) segments of frames, which
combined produces the actual frames of the stream. RTP can contain one
or more of these formats, but as every packet is independent, a generic
transportation of different data is achieved. This makes it easy to adapt
to different formats.

RFC 7587 RFC 7587 describes the payload format for Opus-encoded
speech and audio data by Spittka et al. (2015). In this document we learn
that the Opus encoding was designed to be lightweight and scalable with
bitrate and complexity. It is also adaptive, e.g if there is silence in a conver-
sation a lower bit-rate of data can be sent (Discontinuous Transmission).
As for the RTP payload, a varying number of frames are placed in Opus
packets, which are then placed in the RTP payload. However the RTP
payload should only contain one Opus packet, while Opus packets can con-
tain any number of frames. The first byte of the Opus packet describes the
encoding used in the packet. The Opus packet is an octet of bytes, which
means no padding is needed in the RTP payload.

RFC 7656 RFC 7656 was presented as a further explanation of RFC
3550 by Lennox et al. (2015). The reason behind this update was due to
critics claiming RFC 3550 was confusing and inconsistent. Therefore, RFC
7656 digs deeper into the core fundamentals of the protocol.

2.2.6 The history of RTP based research ideas & ap-
plications

In Section 3, we discussed the viewpoint of how the RTP standard has
developed over the years. Taken this development into account, we discuss
some of the research ideas and applications which use these standards,
through the years.

18 Chapter 2. Wireless Streaming in Dense Places

1990s

As mentioned in Section 3, the world wide web’s popularity grew rapidly
during the 1990s, and with it came the possibility of performing Internet
conferences, streaming media etc. With RTP being a candidate to handle
the increasing bandwidth demand for media streaming, a few ideas emerged
to use RTP Multicast for this task. Among these were Patching and Re-
ceiver driven layered multicast (RLM). More specifically, these ideas were
invented around media streaming services called Video on Demand (VoD),
which is the ability for clients to receive a video any time, while not being
limited by a broadcast. VoD had its first trials in the early 1990s.

Patching When using RTP multicast to perform VoD services, there are
many obstacles to overcome, among them are participants watching the
same content at slightly different times. Patching by Hua et al. (1998)
presents a solution to this problem by letting clients buffer an initial multi-
cast stream, while simultaneously watching an additional provided unicast
patch stream, containing the missing content. This is maintained until the
client has caught up to the original multicast stream, in which case the
patching stream is dropped. If the original stream is too far ahead, e.g the
client doesn’t have enough space to buffer the multicast stream, a new mul-
ticast stream can be created (graceful patching), or a new patching stream
can be created, while buffering from the original multicast stream (greedy
patching).

When using graceful patching, late joining participants will always use
the latest multicast stream as the original stream. In the original paper,
experiments were run where Patching was tested, with both graceful and
greedy patching. In most cases, graceful patching resulted in more shared
resources than greedy patching did, because the expense of creating addi-
tional multicast streams, using graceful patching, was significantly low.

Receiver driven layered multicast RLM is a solution for handling
varied network speeds among the participants, in the multicast stream,
proposed by McCanne et al. (1996). RLM divides the stream into different
layers, with each stream building on top of the other, with the combination
of layers providing the highest quality. This is called a cumulative model.
In the original paper, there is also mention of an independent model. This
model includes separate streams containing all the data, but in different
qualities. However, this paper focuses on cumulative sessions, as it is argued
that these make a more effective use of the bandwidth. While the cumu-
lative model is in focus, compatibility towards the independent model is
maintained.

2.2. Real-time Transport Protocol 19

The logic is moved from the server to the client, as it is the client’s
responsibility to change between the different layers. The logic behind the
switches are join experiments, which is a trial and error approach: Attempt
to upgrade layer, and check if packet loss occurs. If packet loss was detected
we downgrade one layer. However if not, we maintain the upgraded layer.

2000s

The 1990s were the origin of RTP, which yielded some early research ideas,
using the protocol. As we move into the 2000s, we see several applications
make use of the protocol. In this Section we discuss an excerpt of these
applications.

IPTV IPTV is a technique of broadcasting TV signals using the Internet,
rather than satellite or cable. It uses plain RTP multicast to stream to
all the participants. In the 2000s, most of the TV content was streamed
in a singular fashion, e.g the content is only streamed once, and at the
same time to all its participants. Therefore, it is only logical to use a
multicast solution. Although invented in the 1990s, during the early to mid
2000s, a few IPTV services were commercialized. These included services in
countries such as Canada in 1999 (Thompson 2011), USA in 2005 (Amino
Communications 2005) and Sweden in 2005 (Ericsson AB 2005). IPTV has
in general suffered a rather slow growth due to limited bandwidth, which
made cable and satellite superior.

Media player applications Several media player applications support
RTP in some way, but some of the more popular are Quicktime Player and
Windows Media player (previously called Media Player). Although both
were developed in the early 1990s, both of these media players supported
RTP in the 2000s, and still do to this date.

2010s

Providing adequate bandwidth for unicast Video on demand (VoD) services
has been a problem since VoD services was commercialized in the 1990s;
and the 2010s are no exception. As media streaming becomes progressively
more used, along with growing media content size, bandwidth remains a
significant issue. VoD providers such as Youtube and Netflix have imple-
mented DASH with web caches, to target this issue (Weil 2014). This works
well when clients are spread out geographically, far away from the server.
In addition, some ideas for using multicast are emerging this decade. Pull
Patching and WebRTC are examples of these ideas, which will be presented
in this Section, along with RTP in 4G conversations.

20 Chapter 2. Wireless Streaming in Dense Places

Pull patching Pull patching is an idea by Jacobsen et al. (2010) that
combines the Patching idea mentioned in Section 3.1.2 with DASH. In this
article, we learn that the majority of the logic is placed with the client
rather than the host. They argue that the client has the most accurate
information about it’s own bandwidth condition, which is the reason for
this architectural choice. We can think of the client as the consumer and the
host as the distributor. A client asks for a certain resource and is delegated
to a multicast stream for the main media content, and a patching stream
to compensate for potential packet loss, and receiving the beginning of
the stream. The multicast stream is distributed in four different qualities
(DASH), from which the clients selects one, according to their current
bandwidth condition.

Web Real-Time Communication Web Real-Time Communication
(WebRTC) is an open API for development of integrated video conference
calls in a web browser, described by Singh et al. (2013). Further in this
article, it is explained that WebRTC uses RTP as its main protocol for
transporting media. As discussed earlier, RTP is very suitable for Internet
conferences. WebRTC is still under development, yet applications such as
Talky can be used for video conferences. As of 2017, mobile support has
been implemented.

For handling congestion, WebRTC uses Google’s implementation: the
Real-Time Congestion Control (RRTCC). Please note that discussing the
algorithm in depth is out of scope of this essay. In a brief summation
with a sender and a receiver: The sender uses the observed loss rate (p),
measured RTT and the bytes sent with the TFRC equation. This is used
to estimate the data rate, unless a receiver report is received, in which
case this is used instead. The receiver on the other hand compares the
interval between timestamps of incoming frames with the interval between
generation timestamps to calculate the overuse or underuse of the bottle-
neck link.

RTP in 4G conversations One of the more recent uses of RTP is in
conversations in mobile phones. It does not use multicast, only RTP for
its real time data transportation purposes.

2.3 IP Multicast

In traditional unicast streaming systems, a separate stream is provided for
each client. If the clients are watching the same content simultaneously,
packets containing the same content are created and sent concurrently by

2.3. IP Multicast 21

the server to the participants, as opposed to IP multicast systems. In
IP multicast systems, proposed by Deering (1989), a single stream sends
packets, and the packets are duplicated in the network nodes along the way
to the receiver.

IP Multicast is essentially a tree structure, as shown in Figure 2.1. Each
relation represents a single packet sent, and the “x”s represent duplication.
Duplication occurs when the network node has more than one child, e.g, if
two or more participants on the same router watch the same stream. As for
the direct connection between the server and the clients, the host naively
sends packets one by one to a Multicast address. A multicast address is
nothing more than an IP address, but the participants have to subscribe
to it to receive the content.

Figure 2.1: IP Multicast tree structure

When participants have subscribed to a multicast address, we define these
participants as to be in a Multicast group. The participants in a multicast
group can either communicate using a one-to-many or many-to-many ap-
proach. The many-to-many approach is crucial in a conference call, where
every participant needs to send video and/or audio, and adapt to each
other’s network capacity. Note that IP multicast was originally only de-
fined for many-to-many multicast. Protocol support for one-to-many has

22 Chapter 2. Wireless Streaming in Dense Places

only recently been added as a standardized interpretation for some multi-
cast address ranges.

2.3.1 Internet Group Management Protocol (IGMP)

IGMP by Holbrook et al. (2006) is a protocol used to establish multicast
groups in IP networks. IGMP version 1 defines two message types: IGMP
Query (general query) and IGMP report. It is transported via the IP
protocol, where the protocol field is set to 2, which indicates IGMP content.
A receiver sends am IGMP membership report to the router to imply that
it is listening to multicast, also called IGMP join.

IGMP membership report

If a receiver would like to observe an audio stream it follows the following
steps. The receiver begins by sending an IGMP packet with IP source ad-
dress of the receivers machine, and the destination address as the multicast
address. In the IGMP part of the packet, we set the group address to the
multicast address we would like to listen to.

IGMP Query

When a receiver is finished listening to a multicast stream it is important
to signal to the router that the receiver does not want more multicast
traffic. If not, the receiver might be flooded and receive a reduced quality
of service. However, the receiver cannot send a new membership report to
unsubscribe, because there is no way to signal multicast rejection within
a membership report. Instead, we use a IGMP query. A IGMP query is
sent from the router in an IP packet with destination address 224.0.0.1,
and 0.0.0.0 within IGMP. 224.0.0.1 indicates all multicast hosts address.
Within this packet is the aforementioned query. If a receiver is still listening
to the multicast traffic, the receiver will start a random timer. When this
timer has elapsed, the receivers sends out a new membership report, to
signal that it is still listening to the multicast traffic. The router sends
queries out every 60 seconds to verify which receivers it should forward
multicast to. A receiver exits the multicast stream by not responding. If
no receivers respond the stream is cancelled by the host. This is done after
three queries have been sent out without any answer.

IGMP Snooping

IGMP Snooping is a technique to limit which receivers multicast is for-
warded to. The router initially cannot know what mac address to forward
multicast to, because it uses a ip-table with unicast addresses to lookup

2.4. Discussion and conclusions 23

receivers. IGMP Snooping uses a multicast lookup table in order to keep
track of the multicast receivers. If IGMP snooping is now used, the sender
has to flood every receiver with the multicast traffic because it does not
know who to forward the traffic to, but using IGMP snooping the receivers
can be filtered with the multicast lookup table.

2.4 Discussion and conclusions

In this section, we discussed how video streams are carried out today. Ad-
ditionally, we discussed in depth RTP, multicast and wireless streaming.
We learned that wireless multicast is possible to conduct, but it suffers
from packet loss issues, due to a lack of link layer retransmissions. We,
therefore, investigate FEC in RTP in the next chapter to investigate if it
can be applied to wireless multicast streams.

Chapter 3

Generic Forward Error
Correction in RTP

In this chapter, we present an explanation of how generic FEC is carried
out in RTP. We begin in Section 3.1, by presenting an overview of the
procedures used in RTP forward error correction. Next, in Section 3.2, we
discuss the development of generic FEC standard in RTP. In Section 3.3
we discuss the most recent FEC draft in depth, because we implement and
test this draft in this thesis. Finally, we conclude the chapter in Section 3.4.

3.1 Overview

As previously mentioned, FEC is a proactive mechanism for reducing
packet loss in connections. The core idea of FEC is to transmit additional
control data generated by the main stream. This control data can in turn
be used to repair the stream if any of it is lost. In this section, we present
a general overview of how generic FEC works in RTP.

Generic Forward Error Correction in RTP protects RTP source packets
by generating FEC repair packets. These repair packets are encapsulated
in regular RTP packets, and sent in separate RTP streams, parallel to
the source stream. A receiver can use the repair packets to repair lost
or corrupted source packets if any. The FEC error correction scheme is
generic, because it is independent of the payload content. It simply protects
RTP packets regardless of the packet content. Additionally, receivers that
have not implemented FEC are still compatible with the source stream.
In RTP, receivers ignore packets which it does not recognize, and thus
receivers that have not implemented FEC ignore incoming FEC packets.

Simply put, the FEC protection mechanism applies the XOR operation on

25

26 Chapter 3. Generic Forward Error Correction in RTP

+------------------------------+

| IP Header |

+------------------------------+

| Transport Header |

+------------------------------+

| RTP Header |

+------------------------------+ ---+

| FEC Header | |

+------------------------------+ | RTP Payload

| Repair "Payload" | |

+------------------------------+ ---+

Figure 3.1: FEC packet structure in RTP (Zanaty et al. 2018, pp. 12)

a set of source packets to generate one repair packet. If any of the source
packets in this set is missing when the set arrives at the receiver, the missing
information can be recovered by applying the XOR operation on the intact
source packets and the repair packet. It is important to note that there
can be a maximum of one lost packet when attempting to repair, including
the repair packet. If not, the information cannot be retrieved from this
packet set. The less FEC scheme the more packets can be repaired and
more overhead.

At the receiver side of a RTP and FEC session, it is important to be able
associate the RTP source packets with the FEC repair packets, in order to
attempt to repair lost RTP packets, if any. This information is provided
in the FEC header, typically by using a bitmask or non-interleaved and
interleaved offsets from a base sequence number, also present in the FEC
header.

3.2 History

In this section, we discuss how generic FEC in RTP has evolved over the
years.

3.2.1 RFC 2733

RFC 2733 by Rosenberg and Schulzrinne (1999), is the first standard that
defines protocol support for FEC in RTP. The motivation for adding FEC
into RTP was that voice over IP technology caused packet loss which lead to
low quality voice conversations. The packet loss issues could not be solved

3.2. History 27

by retransmission of lost data, because retransmission increases latency,
which is inappropriate for real-time communication.

In this version of FEC in RTP, each repair packet is associated with a set
of source packets using a sequence number base and bitmask. The sequence
number base is the RTP sequence number of the earliest source packet
protected by this repair packet. The bitmask is a bit string indicating
which source packets are protected and which are not. The bitmask is also
called the offset mask, because it works as an offset to the sequence number
base. In the bitmask, if a bit is set, it indicates that the packet with offset i
from the sequence number base is protected. If it is not set, it indicates that
the source packet at that offset is not protected. For example: if we have
the bitmask 1010 with the base sequence number 1000, this FEC packet
is protecting RTP the source packets with RTP sequence number 1000
and 1002. This FEC scheme can be used to protect any arbitrary pattern
of packet association, including non-interleaved, interleaved protection, 2d
parity, and staircase codes.

This RFC also describes several schemes. By protecting each packet with
its neighbors, e.g. a with b and b with c, the stream can tolerate some
burst loss of two packets. Another scheme defines that FEC can be sent
even without a source stream, by repairing all packets continuously. This
requires that all packets are protected together, meaning double overhead.
Finally it describes a scheme which is similar to retransmission scheme,
crazy stuff, 3x overhead.

The bitmask in the FEC header of RFC 2733 has a length of 24 bits, setting
the maximum number of packets protected by one packet to 24 which makes
it restricted for interleaved protection. Because every interleaved packet
has a gap of L between each source packet the bitmask would have to be
able to use 25 bits for associating a 5 by 5 cluster. In a 10 by 10 cluster the
bit mask would have to be 100 bits. In addition to the limited bit mask,
P, X, and CC fields in the RTP header were not consistent with the RTP
header design. This did prevent payload-independent validity check of the
RTP packets, because these bits were removed. This issue was later fixed
in RFC 5109, which we discuss in Section 3.2.2.

Other problems, in the media packets, e.g. source packets, the CC, E and P
must be set to 0. Also marker. ”An implementation MAY copy these fields
into the recovered packet from another media packet, if available.” The E
is for extending the FEC header. This is what is done in PRO MPEG.

28 Chapter 3. Generic Forward Error Correction in RTP

3.2.2 RFC 5109

RFC 5109 is the second generic FEC standard by (Li 2007). The main
motivation behind this RFC, was to fix inconsistencies in RFC 2733 and
preserve bandwidth, e.g. reduce FEC overhead. ULP is used to preserve
bandwidth. it adds extra protection to the front of the packet, e.g. the
frame header.

In RFC 2733, the P, X, and CC fields were removed in the source RTP
media packets. This is not consistent with the RTP design, because the
bits were removed and only recoverable from another media packet, if it
was available. It was also not possible to validate the media packets by
using the header, because the bits were removed. This issue is fixed in
this version of FEC in RTP, RFC 5109, by using a length recovery field in
the FEC packet. This field is calculated by combining the aforementioned
fields into one number carried by the FEC packet. This number can be
reversed at the receiver side to re generate the original fields.

Uneven layer protection protects packets in different layers. Each layer has
a protection length and bitmask and sn base. The bitmask describes which
packets are protected by using a 1 if it is and 0 if not. This is used with the
offset of the sn base. Additionally, if the L bit is set the packet uses a long
bitmask which is 48 bit which can protect a maximum of 48 packets. The
protection length indicates how much of a packet is protected in this fec
layer. A fec packet can use multiple layers, but the layers can be completely
independent. How does it know which part of the packet it is protecting?

There are some limitations to this scheme. First, by using multiple layers,
there might be an issue with big packet overhead. Additionally, UDP
packets are typically dropped if they are corrupted. This is due to UDP
checksum, IP checksum and frame detection of packet loss. Therefore, the
use of protecting different parts of a packet is limited.

3.2.3 SMPTE 2022-1

We derive information of SMPTE 2022-1 standard from Edwards (2017).
The SMPTE 2022-1 Forward Error Correction scheme is used to provide
non-interleaved and interleaved packet protection, e.g. 2d parity FEC.
SMPTE 2022-1 is an extension of the aforementioned RFC 2733 FEC
scheme.

It uses one FEC header which extends RFC 2733 header. In this header,
the bitmask used in RFC 2733 is ignored, and therefore, 24 bits are not

3.3. draft-ietf-payload-flexible-fec-scheme-10 29

used. SMPTE 2022-1 uses an offset and number of packets associated field,
for example 4, and 4. That means every fourth packet from the sequence
number base, with a total of four packets. The downside is that this is
extended on RFC which uses an bitmask. This field is not used in SMPTE,
and is therefore wasted 24 bits. This version of FEC also need the offset
and number of packets associated which uses one byte each.

There are some issues with SMPTE 2022-1. In the FEC header, as men-
tioned the bitmask is not used, thus creating overhead. Additionally, the
header includes one field of sn base ext bits. This is the high bits of sequence
number if needed. However, since RTP sequence number only requires 2
bytes, there is no need for this field, in RTP. This finally results in a header
of 16 bytes.

3.3 draft-ietf-payload-flexible-fec-scheme-10

Zanaty et al. (2018) is currently working on a draft for a new generic
FEC scheme. This scheme offers a payload format for interleaved and non
interleaved FEC packets in addition to bitmask and retransmission support.

One of the main benefits is the new FEC packet with row and column. We
can use 256 x 256 by only using 2 bytes of header. In the previous bitmask
drafts we could only use bitmask, which needs the length, in bits, of L *
D. For example, 5 L 5 D would need 25 bit bitmask, and 10 L 10 D would
need 100 bit bitmask.

3.3.1 Schemes

This draft contains five schemes named: Bitmask, non-interleaved, inter-
leaved, 2d parity, and retransmission. Note that 2d parity is a combination
of the non-interleaved and interleaved scheme.

Bitmask

In this draft, the bitmask scheme uses a flexible bitmask. It has its own
packet, the bitmask packet, see Figure 3.2. Firstly, a bitmask packet is
identified by having 0 and 0 in the R and F fields of the FEC packet. The
bitmask is flexible because it can either be 14, 45, or 109 bits in length. The
minimum is 14 bits. There are two k flags in the packet which can be set to
indicate a longer bitmask. For example if the first k bit is set, but not the
second the bitmask has a length of 45 bits. As previously mentioned, the
source packets protected by this packet is indicated using this bitmask and

30 Chapter 3. Generic Forward Error Correction in RTP

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|0|0|P|X| CC |M| PT recovery | length recovery |

+-+

| TS recovery |

+-+

| SN base_i |k| Mask [0-14] |

+-+

|k| Mask [15-45] (optional) |

+-+

| Mask [46-109] (optional) |

| |

+-+

| ... next SN base and Mask for CSRC_i in CSRC list ... |

+-+

: Repair "Payload" follows FEC Header :

: :

Figure 3.2: FEC Bitmask Packet (Zanaty et al. 2018, pp. 15)

sequence number base. By using offsets from the sequence number base,
each bit set to 1 indicates that a packet is protected and a 0 indicates that
it is not. For example if the sequence number base is 1000 and the bitmask
is 14 bits: 10101010010101, the packets 1000, 1002, 1004, 1006, 1009, 1011,
and 1013 are protected.

Non-interleaved

Non-interleaved FEC protection is a mechanism where a row of packets is
protected by a single FEC repair packet. The FEC repair packet is a xor
product of the source packets in this row. The row length is determined
by a value L. This scheme is efficient for protecting against random loss,
because a single packet lost within a row can be repaired. This does,
however, require that the row is short enough to handle the random losses.
If multiple packets within a row is lost, the row cannot be repaired, by this
scheme.

Interleaved

Interleaved FEC protection is a mechanism where a column of packets
is protected by a single FEC repair packet. The FEC repair packet is
a xor product of the source packets in this column. The column length

3.3. draft-ietf-payload-flexible-fec-scheme-10 31

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|0|1|P|X| CC |M| PT recovery | length recovery |

+-+

| TS recovery |

+-+

| SN base_i | L (columns) | D (rows) |

+-+

| ... next SN base and L/D for CSRC_i in CSRC list ... |

+-+

: Repair "Payload" follows FEC Header :

: :

Figure 3.3: FEC Parity Packet (Zanaty et al. 2018, pp. 16)

is determined by a value D. This scheme is efficient for protecting against
burst loss, because multiple packets lost in a row are protected by a column
of repair packets.

2d Parity

2d parity protection is combining row non-interleaved and interleaved pack-
ets to protect a stream against burst and random loss. We show the FEC
header for the 2d parity packet in Figure 3.3. We indicate this packet by
using 0 and 1 as R and F fields. In order to associate the source packets
to this header we use a combination of the sequence number base and L
(columns) and D (rows). We know that each matrix of source packets begin
at the sequence number base. We can then associate the non-interleaved
packets by sequence number base + i up to L. With the interleaved packets
we can use sequence number base + i * D.

Retransmission

The FEC header for the retransmission scheme is shown in Figure 3.4.
This header is the most simple of the three. In this packet we use one
sequence number which is the sequence number of the source packet this
repair packet is protecting. This packet is indicated by using the 0 and 1
for R and F fields. R indicating retransmission. This packet has the same
layout as a regular RTP packet, including SSRC at the end. Therefore,
this packet can simply be extracted without any complexity if it is needed.

32 Chapter 3. Generic Forward Error Correction in RTP

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|1|0| P|X| CC |M| Payload Type| Sequence Number |

+-+

| Timestamp |

+-+

| SSRC |

+-+

: Retransmission "Payload" follows FEC Header :

: :

Figure 3.4: FEC Parity Packet (Zanaty et al. 2018, pp. 18)

3.3.2 FEC Repair Packet Construction

We discuss step by step how we create one repair FEC packet from a set
of RTP source packets. At this point we assume that we already have
associated the appropriate source packets for the given scheme. We create
a repair packet in three steps. We begin by calculating a bit string for each
source packet. This bit string represents the header information as well
as payload information of that source packet. Next, we combine these bit
strings and finally generate a fully functional repair packet from these bit
strings.

RTP Bit String

The bit string is 10 bytes long. We create the bit string by firstly extracting
the first two bytes of the RTP header, which includes RTP version, padding
flag, extension header flag, contributing source count, marker flag, and
payload type. Next, we calculate a two byte representation of the length of
the RTP packet. We do this by adding the RTP payload length, the list of
contributing sources, the extension header, and RTP padding length. Next,
we extract the timestamp. We then concatenate the first two bytes, the
representation count, and the RTP timestamp. Additionally, we append
the RTP payload at the tail of the bit string.

FEC Bit String

We calculate the RTP bit strings on a set of packets and apply the XOR
operation on all of these bit strings. We begin by xoring the first and second
packet, and the product of this xor is then applied to the next packet, and
so forth. After this operation, we end up with the FEC Bit String. The

3.3. draft-ietf-payload-flexible-fec-scheme-10 33

RTP packets are the packets one FEC packet is protecting. We use the
FEC bit string to create the FEC packet.

FEC Header

First we calculate padding. We use the FEC Bit String to calculate the
FEC header. We begin by skipping the first two bits in the FEC bit string.
These bits contain the RTP version, but the first two bits of the FEC packet
contains what kind of FEC packet it is. We therefore set this accordingly,
e.g. 00 for flexible mask, 10 for non-interleaved and interleaved, and 01
for retransmission. We only support RTP version 2. Next, we copy the
third bit into the P recovery field. Next, we copy the fourth bit into the X
recovery bit. Next, we copy the following four bits into CC recovery field.
Next, we copy the eight bit into the marker recovery. Next, we copy the
following seven bits into the PT recovery. Next, we copy 16 bits into the
length recovery. Next, we copy the 32 bits into the timestamp recovery.
We write the lowest sequence number of the RTP packets into the base
sequence number field. If mask is selected we set it with 1 if packet or 0
if not, if non-interleaved and interleaved, we set row and column fields, if
retransmission, we don’t do anything. Next, we copy the rest of the bit
string.

3.3.3 FEC Packet Reconstruction

We can reconstruct one lost source packet from a set of source packets and
one repair packet. Note that only one source packet can be lost, and the
repair packet must be present. It is, however, possible to repair multiple
lost packets in one set when using for example 2d parity matrixes. However,
in this section, we discuss how to repair one source packet from a single set
of source packets and one repair packet. This process effectively reverses
the FEC packet construction, but firstly we discuss how we associate the
repair packets with the repair packet. This is important, because the repair
packet is sent in a different RTP session and is not directly linked to the
set of source packets.

Associating Packets

We associate bitmask packets by collection packets with offset from base
sequence number. If 1 in bitmask there is a packet, if 0 there is none. In
non-interleaved and interleaved we collect the source and repair packets
in a matrix with one repair packet for each row and column. To actually
associate the packets, we must account for overflow. The RTP sequence
number is an unsigned 16 bit integer. When it wraps around the max
value of 65535 we have to account for that. We therefore find a sequence

34 Chapter 3. Generic Forward Error Correction in RTP

number by using sequencenumberbase + i * X 1 mod 65536. Note that we
use 65536 instead of 65535 because the sequence number starts at 0. It is
trivial to associate the retransmission packet because its sequence number
is directly connected to the RTP packet, e.g. they share the same sequence
number.

Recover RTP Source Packet

We recover one missing source RTP packet in a set of multiple source
packets and one repair packet. We do this by firstly recovering the 10 byte
bit string from the repair packet. Next, we extract the fields from this bit
string. Finally we recover the source payload using the latter of the FEC
packet.

Recover Source Packet Header

We recover the source packet header by firstly generating a 10 byte bit
string for all the source packets. We do this by combining the first eight
bytes of the RTP headers with the 2 bytes of length representation from
the repair packet. We also need to calculate the bit string from the FEC
packet. We do this by extracting the first 10 bytes of the FEC packet. Now,
we apply the xor operation on all the bit strings from the source packets
with the bit string of the repair packet. We now have a representation of
the packet header. Next, we create a new RTP packet and set the version
to 2, by setting the first two bits to 10. Note that this packet is empty,
including payload. We skip the first two bytes of the bit string because
this describes the FEC version, we do not need that. Next, we set padding
in the next bit, extension in the next bit, CC in the next four bits, marker
in the next bit, payload type from the next seven bits. We set sequence
number to the sequence number. We get this by looking at the cluster. We
skip 16 bits in the bit string. Next, we copy TS recovery into next four
bytes. Next, we calculate variable Y which is the length representation,
we collect this from the next 16 bits. We use this later. Finally set SSRC
collected from source session. At this point the RTP header is recovered.

Recover Source Packet Payload

We recover the source packet payload by using the variable Y from the
header recovery. This is the length, we therefore set the payload size to
y. Note that this includes not only payload, but also extension, CSRC list
etc. We allocate Y bytes of data for this payload. Next we extract Y bytes
from byte 13 and onwards in all RTP packets present. We do the same
for FEC payload starting after FEC header. We apply XOR operation on
these payloads. Note that all payloads must be padded to Y length with

3.4. Discussion and Conclusions 35

zeros at the end. Finally we copy Y bytes into the RTP payload of the
packet we are creating. There is no need to remove padding because we
are only copying Y bytes.

Interative repair

In order to repair a cluster of non-interleaved and interleaved packets we
use an iterative repair algorithm described in the FEC draft. As previ-
ously mentioned, we cannot recover more than one source packet from a
set of source packets and one repair packet. It is therefore beneficial to
run the repair over rows and columns iteratively, because a packet that is
not recoverable per se can be recovered using a different row or column
mechanism.

We use two variables: num recovered until this iteration and num recovered so far.
We init both to zero. Next we run the recovery first over rows and then
over columns. If we successfully recover a packet on either scheme,
we increase num recovered so far by one. At the end, we compare
num recovered until this iteration and num recovered so far. If num recovered so far
is greater, we run the algorithm again, because the algorithm was able
to recover packets, and thus more packets may be recoverable. We
also set num recovered until this iteration equal to num recovered so far
to keep track of how many packets we have repaired. However, if
num recovered until this iteration is greater or equal to num recovered so far
we terminate. This is because if no packets were recovered this iterations,
no more iterations will recover any further.

3.4 Discussion and Conclusions

In this chapter we discussed how generic forward error correction in RTP
works, and how it has evolved through the years. The most recent FEC
draft yields benefits over the other FEC schemes, such as reduced overhead.
To the best of our knowledge, there has not been conducted any tests using
this draft to protect wireless multicast video streaming. We, therefore, in
the following chapter, present a design where we test the effects of this
draft.

Chapter 4

Design

Wireless multicast streaming suffers from packet loss due to wireless inter-
ference and lack of link layer retransmission; resulting in packet loss. In
light of this problem, we investigate wether an implementation of the most
recent Forward Error Correction (FEC) draft (Zanaty et al. 2018) reduces
packet loss and can be performed with low latency and overhead. We de-
termine this by streaming multimedia with FEC protection, and compare
the packet loss before and after the reparation. In this chapter, we design
these tests. Additionally, we perform preliminary tests and present the test
environment used.

In Section 4.1, we discuss the hardware configuration we use for the exper-
iment. In Section 4.2 we explore abnormalities with our test environment.
In Section 4.3, we discuss how we perform a procedure to determine the
effectivity of FEC. Finally, in Section 4.5, we conclude the chapter.

4.1 Hardware Configuration

To perform the multimedia streaming tests, we need several hardware com-
ponents. We need a server machine to send the stream, client machines to
receive the stream, and a network node to connect the machines. These
requirements are fulfilled by Simula Reaseach Laboratory who provide hard-
ware for this thesis. In this section, we discuss the benefits and limitations
of this hardware.

4.1.1 Server

For multimedia streaming, we use one desktop machine. The machine has
8 GB memory, Intel Core i5-4590 CPU, and a 120 GB SSD. There is no
PCI-E GPU and we install Ubuntu 18.04.1 LTS 64bit. Since the CPU is
of generation Haswell (3) it supports Quick-Sync for H.264, but not for

37

38 Chapter 4. Design

H.265. This is relevant for the choice of multimedia encoding which we
discuss in Section 4.3.1. The server is transparent to clients and thus the
requirements for the server are loose. As long as it can stream multimedia
at an acceptable speed it is sufficient enough for the main tests.

4.1.2 Client

For the client we use one Macbook Pro 2018 with 16GB ram. As we discuss
later in this chapter, we use wired connectivity between the server and client
for our experiments. The Macbook does not have a ethernet port, therefore
we supplement this by utilizing a ASUS USB 2.0 to Ethernet Adapter.

4.1.3 Network Node

For network communication, we use one Linksys WRT54GL Wi-Fi
Wireless-G Broadband router. The router has built in multicast sup-
port with several transmission rates ranging from 1 mbps to 54 mbps.
However, as mentioned, we use only ethernet communication between the
server and client. As of the sixth of June 2018, the most recent firmware
for the router is Ver4.30.18. This version is from 2016, which we use with
this router for our tests.

4.1.4 Server Client Communication

We show the configuration for our hardware setup in Figure 4.1. We con-
nect the server machine and Linksys router using one CAT 5e ethernet
cable. The cable is connected to the integrated motherboard LAN input,
in the server machine. The Macbook client is also connected to the router
using a CAT 5e ethernet cable. As mentioned, this ethernet cabled is
connected via the ASUS USB 2.0 to Ethernet Adapter to the Macbook
client.

4.2 Preliminary Testing

We conduct preliminary tests to find any abnormalities in our test environ-
ment. The first test is streaming H.264 video over unicast and multicast
WI-FI with 1 minute samples. We conduct this test to investigate the
packet loss distribution and wireless latency. Additionally, we conduct one
test to replay a captured packet capture (pcap) file containing multicast
video. We intend to replay a packet trace in our main experiment, there-
fore, it is important to explore any problems this might introduce.

4.3. Experiment Design 39

Figure 4.1: Hardware setup
(Fosberg 2018)

4.2.1 Findings

In our first test we found that there was drift when comparing timestamps
of the packets received. We realized that this is due to our system being
without access to the Internet and therefore no clock synchronization oc-
curred. We therefore conclude that it is not feasible to conduct latency
monitoring for the transmissions in our experiments. We argue that wire-
less latency is not as significant as the potential latency introduced by
our FEC implementation. We, therefore, limit our design to only monitor
the latency of FEC by only monitoring the incoming source stream and
outgoing repaired stream in our experiments.

In our second test, we replayed a pcap file containing H.264 encoded video
over RTP multicast. We performed this test on one machine to capture the
data. When replaying the stream, we quickly realized that the packets were
not showing up. We realized, that this was due to multicast not forwarding
the packets to the same address. By instead replaying the capture over LAN
the packets were showing up at the client. We therefore conclude that our
experiment must be between two machines, one hosting and one receiving.

4.3 Experiment Design

4.3.1 Multimedia

Today, the streams conducted in the football stadium live stream contains
video and audio. Video demands the most throughput of the two and

40 Chapter 4. Design

we therefore decided to only concern ourselves with video for the main
experiment. Additionally we discarded audio to reduce complexity in the
network transmission. With us choosing video, we therefore discuss how we
prepare a video for transportation and what tools we use for encoding and
compression. As discussed in Section 4.2 we are restricted to certain data
transmission rates. It is therefore important to calculate the throughput
requirement for the video so we can choose the appropriate transmission
rate.

We have defined requirements for video which are presented here:

• The video format must be standardized as a payload format in RTP
and must also be decodable on the major mobile platforms, e.g. iOS
and Android.

• The video encoding must be optimized for lossy network transmis-
sions.

• The video compression should be optimal for user experience versus
bandwidth consumption.

• The video file source should be picked from reliable sources.

Format

The newest and most efficient encodings as of 2018 are MPEG-4 Part 10
H.264/AVC and MPEG-H Part 2 H.265/HEVC. RTP packing for both is
standardized in RFC 6184 (Y.-K. Wang et al. 2011) and RFC 7798 (Y.-K.
Wang et al. 2016), respectively. The main difference between the two is
that while H.265 reduces the file size by a higher factor than H.264, it
also requires more processing power, and in some cases a newer generation
CPU for hardware acceleration. Additionally H.264 is the current video
standard, which means that most applications support it.

There are also a variety of video containers to hold the H.264 or H.265 video
frames such as MP4 and MKV. Video containers provide metadata which
simplifies synchronizing of video and audio streams and playback options
such as rewinding or fast forwarding. Not using a container also increases
complexity because indexes have to be calculated on the go. In this case
each NAL unit can be packetized directly into RTP payloads which they are
optimized for. This works well because it supports different requirements
from low to high bitrates.

Although H.265 is to be the standard in the future, it remains to be de-
ployed to major applications. We therefore decided to use H.264 video for

4.3. Experiment Design 41

testing in the main experiment. Additionally we decided not to encapsulate
the stream in a video container to take full advantage of direct packing of
NAL units described in RFC 6184.

Encoding

NAL Unit Size If a NAL unit is not regulated, we could get NAL units
which are bigger in size than MTU. RTP handles this by fragmenting the
NAL units and putting them in different packets. Since the header infor-
mation for the NAL unit is placed first in the NAL unit, if the first packet
is lost we have no metadata for the rest of the frame. The frame will then
be dropped. This is called IP fragmentation. We can avoid this by setting
a max slice size when encoding the file. This will force the NAL units to be
less than that size. The value chosen, also include overhead for the NAL
Unit header.

The max transfer unit (MTU) is the maximum amount of bytes which
can be carried in a link layer frame. MTU is most commonly set to 1500,
therefore we will use 1500 as the MTU in our calculations. In order to
find the maximum size for each NAL unit, we must subtract the MTU by
packet overhead. As mentioned, MTU is the size inside a link layer frame
which means we must take in account the network layer and inwards. The
IP header is the first header of each packet. We ignore the options because
we are not using it. This leaves us with an IP header of 20 bytes. Next
the UDP header is always 8 bytes. Next, there is the RTP header, and
because it is single source and no extension header is involved, the header
is 12 bytes. This leaves us with an overhead of 40 bytes per packet.

However, we also need to account for FEC overhead. The protected
RTP packet is placed in the payload of a FEC packet. Therefore the
NAL Unit cannot exceed this size as well. As previously mentioned, we
exclusively use the FEC interleaved and noninterleaved scheme. Therefore,
the size of a FEC packet is 12, because a interleaved and non interleaved
packet is of this size. Additionally, we do not have any contributing sourcers
nor extension header. Finally the FEC packet is also incapsulated in an
additional RTP header, which adds another 12 bytes. This leaves us with
a total overhead of 64 bytes, which makes the max size of each NAL unit
to be 1436 bytes.

Compression

The most common methods of compressing video is to either use constant
rate factor crf or quantization parameter qp. Constant rate factor adjust

42 Chapter 4. Design

ffmpeg -i tractor_1080p25.y4m -c:v libx264

-crf 25 -slice-max-size 1432 output.264

Figure 4.2: Encoding of the tractor sample

the bitrate to a average defined by a parameter. When there is more
motion, the bitrate is increased and when little motion the bitrate it is
decreased. This results in a file with variable quality and average bitrate.
On the contrary, quantization parameter applies a constant quantization
rate to all the frames. This results in a file with a variable frame rate with
constant quality.

We decided to use constant rate factor when encoding our video file. This
setting is more commonly used than qp, and we therefore use it to provide
a realistic video stream.

Sample File

As mentioned in Section 4.3.1, we decide to use video for the main exper-
iment and exclude audio. Xiph (2018) offers several free and raw video
samples with a wide range of resolutions. Based on this and the afore-
mentioned requirements, we decide to use the sample video called Tractor
because it has our desired resolution of 1080p. Anyhow, the file might not
be too representative for football matches because it is not a sequence from
a football stadium. We do, however, not have the time nor resources to
test wether or not there are significant differences amongst different video
files. Therefore, we focus only the Tractor sample.

Bandwidth

4.4 FEC Capture Procedure

In this section, we design a procedure to capture data from various packet
loss affected video streams, repaired by our FEC implementation. This
design is, in other words, a fully functional step by step algorithm of how
we capture this data. We aim to make our result as reliable as possible by
using a single stream pattern from a H.264 video file. We apply different
FEC configurations to this stream pattern and save these to different trace
files. Next, we apply packet loss to these files collected from the literature
to simulate wireless packet loss. Finally, we play the trace files over a LAN
and attempt to repair them at the receiver side of the connection. We can

4.4. FEC Capture Procedure 43

Figure 4.3: Wireless transmission range
(Linksys 2015)

therefore know how well our FEC implementation works for this specific
video, with these FEC configurations, at this packet loss.

4.4.1 Loss Pattern

The first thing we do is to establish a loss pattern for our wireless multicast
stream. Tang and McKinley (2003) made a model for modeling packet
loss in multicast WLANs. In our case we only have one client, and thus a
simpler model is sufficient. We therefore use the Gilbert-model, also known
as simplified Gilbert Elliot model.

The Gilbert Model is a very simple model which can be used to generate
packet loss in trace files. Each packet is put in a state. There are two states,
a good and a bad state. When a packet is in the good state, no packets are
lost. In the bad state packets are lost. There is also a transitional property
between the two states. By doing this we can calculate the state for loss
and not very simply and end up with two probability values.

Mochnáč et al. (2010) explored the packet loss rates in wired and wireless
networks. They found that burst loss was more common in wireless net-
works. They present the following Gilbert values: 0.838026 and 0.161974.
They also reported observing a maximum of 15 packets lost in a burst and
the most common burst to be two and four. We use these loss rates in our
experiment because they simulate wireless networks using RTP transported

44 Chapter 4. Design

over UDP.

4.4.2 FEC Configuration

We were unable to find any recommendation for appropriate FEC L and
D values to utilize in wireless multicast. Previous test have been done
by Westerlund (2015), but the chosen L and D values were not explained.
We, therefore, find it necessary to simulate different L and D values for a
given loss pattern. However, the theoretical maximum combinations of L
and D values are 256 ∗ 256, because both L and D are unsigned one byte
fields in the 2d parity FEC header. A test involving all these combinations
would not be possible within our time limit. A higher product of L and D
results in a bigger repair window, because we have to wait for the packets to
arrive at the receiver. We, therefore, in this subsection, explore constraints
to narrow down the simulation requirement.

Narrow down

To narrow this down we begin by setting a limit of delay tolerance and over-
head cost. We allow a maximum of 500 milliseconds of delay. Note that as
we stream our main experiment over cable. We consider the wireless delay
irrelevant and therefore only concern ourselves with the delay introduced
by FEC. This means that our repair window can be at max 500ms. We
argue that 500ms is tolerable because it is faster than the current DASH
implementation. We do not know the current segment size of DASH in the
live stream, we do however know that it is in the seconds range. We calcu-
late the FEC repair window by dividing the amounts of packets in the FEC
matrix by the packets produced by the RTP source and FEC stream each
second (pps). Additionally, we multiply it by a factor of 1000 to convert it
from seconds to milliseconds.

RepairWindow =
fecSize

pps
∗ 1000

In addition to the cap of 500ms delay, we also introduce a cap of 66.67%
overhead, meaning that our FEC configuration must not exceed this
amount of overhead. At any higher rate than 66.67% the effect of FEC
would seize to exist because it has the same overhead as retransmitting
packets. We learn the following overhead calculation from the most recent
FEC draft (Zanaty et al. 2018):

Overhead =
1

L
+

1

D

4.5. Discussion and Conclusions 45

In addition to cap the repair window and overhead, we can further narrow
down our L and D values by analyzing the loss pattern we decided to use
in Section 4.4.1. In 2d parity FEC, burst loss is protected by interleaved
packets. However, if the burst would be longer than our L value, the repair
algorithm would fail, because a burst larger than L would occupy more
than one row. We can therefore calculate the longest feasible L value by
analyzing the P11 value. Mochnáč et al. (2010), noted that the maximum
burst length they observed on wireless transmissions were 15. To cover our
basis, we decided to limit our L value to 20. The probability of a 20 packet
burst loss is 0.16197420, which is so tiny that a burst of size is infeasible.

4.5 Discussion and Conclusions

In this chapter, we presented the experiment we conduct in this thesis,
based on literature and preliminary testing. In summation, the algorithm
to reproduce the experiment is as follows:

• Encode the video file.

• Stream the video file and capture the packets to a pcap file. This
pcap file is used to determine FEC repair window.

• Stream the video file with all FEC configurations which pass our
restrictions in regards to overhead and latency. Capture this data to
a pcap file.

• Split the file above into separate pcap files for each of the fec config-
urations.

• Apply packet loss to all of these separate pcap files, and exclude the
first cluster to optimize for our implementation.

• Stream the lossy pcap files over LAN and attemp to repair them at
the receiver side.

Next, in the following chapter, we discuss the FEC implementation we
use for the experiment above.

Chapter 5

Implementation

In this chapter, we present an implementation of the most recent FEC draft
to measure the benefit of the FEC repair scheme, and also the disadvantage
of introduced latency. This implementation consists of FEC encoding and
decoding operations, as well as a fully operational FEC protected streamer
and receiver. We intend to utilize this implementation in the main exper-
iment, described in Chapter 4, by generating FEC repair packets from a
source media stream, as well as combining the source and repair stream to
attempt to repair the source stream. We only intend to use the 2D parity
scheme for our main experiment and thus we present an implementation of
this scheme only. It is nonetheless trivial to extend our implementation to
support the bit mask and retransmission schemes, in potential future work.

In Section 5.1, we provide an overview of the Live555 Streaming Media
framework. In Section 5.2, we discuss our applications for streaming and
receiving FEC protected RTP streams. These applications make use of
our FEC extension. In Section 5.3, we discuss the FEC components we
have made for our FEC extension. In Section 5.4, we discuss the core FEC
operations for our FEC extension. Section 5.5 presents the limitations with
our FEC extension. Finally, in Section 5.6, we summarize and conclude this
chapter.

5.1 Live555 Streaming Media

Live555 Streaming Media is a well-maintained collection of C++ libraries
for streaming multimedia over RTP unicast and multicast in IP networks.
In addition to streaming multimedia, it also offers playback options and
metadata negotiation using protocols such as RTSP and SIP, and QoS
monitoring via RTCP. Furthermore, Live555 is also used in the wild by
well-known applications such as VideoLan and MPlayer. In addition to
providing a complete RTP stack, Live555 also offers several schemes for

47

48 Chapter 5. Implementation

packing video, audio and text in RTP. These schemes are defined in Internet
Standard documents such as RFCs, for example RFC 6184 (Y.-K. Wang
et al. 2011).

In this thesis, we implement the most recent FEC draft using Live555
Streaming Media as our base RTP-implementation, primarily because it
offers most of what we need to conduct the experiments. This includes
a complete RTP/RTCP stack and H.264 video streaming and receiving
applications. Finlayson (2018), the CEO and founder of Live Networks Inc.,
recommends to extend Live555 via C++ subclassing rather than changing
the existing codebase. One major benefit of this method is that we face
no obligation under the Live555’s current license, LGPL. As a result, we
follow this recommendation, which naturally results in our implementation
being created in C++.

Live555 supports all major operating systems, Windows, MacOS and
Linux. We do, however, only have access to Mac and Linux machines.
These operating systems are very similar because they are both based on
the UNIX architecture. As a result, we develop the FEC implementation
to support these platforms, and do not focus on Windows. On MacOS, we
support the clang compiler, and on Linux, we support the gcc compiler.

5.1.1 Flow of Operation

Live555 is an event-based C++ library running an event loop in a single-
threaded task scheduler, eliminating the risk of race conditions and com-
plexity of multi-threadedness. In this loop, the task scheduler looks for
available tasks, either in the delayed queue, or the list of network read han-
dlers. When a task is found, it is executed. In addition to delayed tasks
and network read handlers, tasks can also be set by using watch variables
or event triggers. These event handlers are applied whenever manual event
triggering is needed.

Live555 utilizes three core components: sources, filters, and sinks. A filter
is actually a source receiving data from another source, i.e., filtering or
manipulating the data in some way. Media streams in Live555 are con-
structed by combining components into a pipeline. Each pipeline consists
of primarily one sink, one source, and an optional set of filters. We provide
a visual example of streaming H.264 video in live, in Figure 5.1.

The sink is the initiator of each pipeline. A sink requests a frame of data
and sets off a chain of events, eventually retrieving the frame from the
source. On the sender side, when a source is requested by a sink to fetch

5.1. Live555 Streaming Media 49

Figure 5.1: Live example (Fosberg 2018)

data, the source schedules a background task to fetch this data from a
media resource. When the data is ready, the source fetches data and packs
it into a frame, appropriate for the media resource type (i.e., H.264). When
the frame is fetched, it is instantly delivered to the sink. The sink then
encapsulates this frame into an RTP packet, and sends the packet over a
network via a socket. On the receiver side, the same logic applies. However,
the source fetches network packets when they are available using a socket.
The source extracts the network packet payload and deliver this data as a
frame to the sink. The sink then uses this data for different applications,
such as playback or file recording.

Every source in Live555 is a child of the FramedSource class. This class
has an important virtual method called doGetNextFrame. This method is
implemented in the parent FramedSource class method getNextFrame. In
a child class of FramedSource, this method is overridden to deliver a frame
of appropriate data. Then either a filter or a sink calls the getNextFrame of
its connected source. Upon execution, we register a afterGetting function
in the source class. When the source has finished fetching the frame, it calls
the afterGetting function which delivers the frame to the filter or sink.

50 Chapter 5. Implementation

5.2 Streaming Applications

In this section, we discuss our applications for streaming and receiving FEC
protected raw H.264 video over RTP. We utilize the testH264VideoStreamer
and testMP3Receiver applications provided within Live555s testProgs di-
rectory. We use these programs as a starting point to develop our streaming
and receiving applications. With the concepts defined in these applications
in mind, we add the components from our FEC extension accordingly. We
discuss our FEC extension in detail in Section 5.3.

There are several similarities in the sender and receiver applications.
Firstly, they both use one main and one afterPlaying procedure. The main
function is the startup point of the program. In this function we do all
initiation for the streams. In the afterPlaying function we clear up the
streaming components and make ready for a new stream to be conducted.

• In the main procedure, we firstly create a new instance of the Basic-
TaskScheduler class. Additionally, we create a new BasicUsageEnvi-
ronment while passing in the BasicTaskScheduler instance. We can
now assign the same usage environment to every component in our
application. Second, we setup appropriate instances for the Group-
sock class, assigning port number 18888 to the source stream. For
every protection stream we increment the host port number by two.
This is in case we want to use RTCP for any of the streams, because
we assign RTCP port number one more than the original stream.
Third, we initiate the sources and the sinks. We connect each sink to
its appropriate source by passing the sink instance into the source’s
constructor.

• In the afterPlaying procedure we stop playing all the sinks, and close
all sources. We pass this function into each sink, so that sink can call
this function when it is done streaming.

5.2.1 Sender Application

Our sender application is called testH264Video2DFECStreamer. We
use one instance of ByteStreamFileSource, H264VideoStreamFramer, and
H264VideoRTPSink to read a H.264 file from disk, packetize the received
data into frames and encapsulate the frames into RTP packets. All of these
classes are provided by Live555. Additionally, we use two sources from
our FEC implementation: FECNonInterleavedSource and FECInterleaved-
Source. We push the RTP packets produced by the H.264 Sink into these
sources in order to generate FEC repair packets. These FEC sources are
in turn connected to two SimpleRTPSink classes. These sinks packetize

5.2. Streaming Applications 51

the repair packets into RTP packets and transmit them over the network.
We show the flow of operation for the FEC sources in Figure 5.2.

We copy packets from the H.264 Sink into the FEC Sources by using
an additional class from our FEC extension called FECGroupsock. FEC-
Groupsock is a child class of the aforementioned Groupsock class, and thus
we can pass it into to any sink using a Groupsock instance. Groupsock
was intended to be Live555’s implementation of multicast sockets but it
supports unicast as well. The Groupsock handles both network reads and
writes using the virtual methods handleRead and output. Both methods
return a boolean result on wether the read or write was successful. In
our FECGroupsock class, we override the output function and copy the
incoming packets directly to our FECNonInterleavedSource and FECIn-
terleavedSource. We save an instance of these fec sources as fields in the
FECGroupsock class. We apply our FECGroupsock to our H.264 sink and
regular groupsocks to our FEC sinks, as we only want to protect the H.264
stream. We use use 255 ttl to prevent the packet from being tossed.

In addition to the H.264 sink, we setup sinks for both FEC sources. We
use the SimpleRTPSink provided by the Live555 framework. We have
to use separate sinks because the payload format in Live555 is set by
the sink. Therefore, since FECNonInterleavedSource and FECInterleaved-
Source need different payload types, we use two sinks. FEC packets are
sent in RTP packets, which adds an additional RTP header. Live555 has
a max size of 1448 for the RTP payload. We exceed this limit when we
create FEC packets, because we append an additional 12 bytes of FEC
header. We resolve this by changing the payload sizes of the H.264 sink.
We change the MTU by calling the function setPacketSizes with the values
1444 and 1444, which sets the preferred and max size, respectively. Note
that Live555 supports jumbo frames. However, since most routers use 1500
MTU, we also apply it to our implementation.

Receiver Application

Our receiver application is called testH264Video2DFECReceiver. The core
idea of this application, is to receive, multiplex, repair (if needed) and for-
ward incoming source and repair packets. We use three instances of the
Live555 provided class BasicUDPSource; one to receive source packets, and
two to receive noninterleaved and interleaved repair packets. We cannot
use any RTP Sources at this point, because we need complete RTP packets
in order to apply the FEC scheme. Using a RTP Source would remove the
RTP header. Next, we multiplex the source and repair packets into a cus-
tom FEC2DParityMultiplexor class. We achieve this by using another class

52 Chapter 5. Implementation

Figure 5.2: FEC interleaved and non-interleaved sender (Fosberg 2018)

5.3. FEC Components 53

Figure 5.3: FEC receiver
(Fosberg 2018)

from our FEC extension called FECSink. We utilize this sink by connect-
ing one instance to the noninterleaved source and one to interleaved source,
and then pushing the repair packets into our FEC2DParityMultiplexor. We
use an additional FECSink connected to our source stream to also push
the source packets into our FEC2DParityMultiplexor. Finally, we connect
one instance of the BasicUDPSink to the FEC2DParityMultiplexor and
forward the packets to localhost. This can in turn either be decoded in
video applications or recorded for further analysis.

5.3 FEC Components

In this section, we discuss the components of our FEC extension of Live555
Streaming Media. In Live555, a FramedSource is requested by a sink or
source to fetch data from some resource and deliver frames to a correspond-
ing filter or sink. In our scenario, we envision every RTP packet we wish
to protect as a frame. We, therefore, use our custom FEC sources to push
RTP packets, packed into FEC packets, as frames to an RTP sink.

The receiver side of the connection uses several Live555 provided classes and

54 Chapter 5. Implementation

some custom classes. We use pre build BasicUDPSource classes to receive
source and repair packets. Because the entire RTP packet is needed to
rebuild lost packets, we cannot remove any RTP header at this point; and
thus no RTPSource object. Instead, we use custom FEC sinks connected
to the UDP sources and push the packets into a custom FEC multiplexor.
In the multiplexor we aligning packets in clusters and repair lost packets, if
any. The computed source packets are at last forwarded to a local address.

5.3.1 Sender Side

FEC Groupsock

As mentioned previously, we need complete RTP source packets to
generate appropriate FEC repair packets. In our scenario, we use a
H264VideoStreamFramer to encapsulate H.264 frames in RTP packets
and a H264VideoRTPSink to send source packets over the network using
an instance of the Groupsock class. All of these classes are included in
the Live555 framework. The last chain in creation of RTP packets is a
sink. Therefore, we cannot use this sinks source to request frames with an
additional sink, because the packets are not complete at this point in time.
Instead, we extend the Groupsock class and make copies of the packets
that are passed through. We push these packets to custom FEC sources
which we discuss in below. Because every source uses an instance of the
Groupsock class to transfer data over a network, this extension works
regardless of the media type.

FECSource

We use two FEC source classes to create non interleaved and interleaved
FEC repair packets. These classes are called FECNonInterleavedSource
and FECInterleavedSource, respectively. In the most recent FEC draft it is
stated that the non-interleaved and interleaved source packets should have
different payload formats to distinguish them from another. In Live555,
the payload format is set in the sink, and there is only sink per pipeline
endpoint. Therefore, we cannot use a single source to generate both non
interleaved and interleaved FEC repair packets.

The main responsibility of these classes is to receive source packets and
place them in a packet array, with the intention of generating repair packets.
When a sufficient amount of source packets have been placed in the array,
we generate repair packets for that sequence of source packets. When the
repair packets are complete, they are placed in a queue, and the temporary
source packets are deleted. When these operations have concluded, we

5.3. FEC Components 55

perform an event-trigger. When this event-trigger, triggers, we deliver a
repair packet to the connected sink.

There are a few differences between FECNonInterleavedSource and FECIn-
terleavedSource. In FECNonInterleavedSource the array of source packets
is the size of D. Note that the constants D and L are the row and column
length of the source packets, respectively. Since the packets are generated
for each row, there is no need to hold more than D source packets. In
FECInterleavedSource we maintain an array of D * L size. This is because
the packets are protected by column and we must therefore hold all packets
until the array is filled. Additionally, when we generate repair packets, we
only do this once for FECNonInterleavedSource, because only one row is
done at once. In FECInterleavedSource we perform the operation L times
because we need to protect each column.

For both FECNonInterleavedSource and FECInterleavedSource we use the
same FECEncoder function: repairRow. This function returns a new FEC
repair packet generated by a row of source packets sent in as a parameter.
Therefore, in FECInterleavedSource, as we have columns not rows, we ex-
tract a column of packets and convert them to a row. We send this row into
the repairRow procedure. Next, we push this FEC packet into the FEC
Packet queue and clear out the temporary RTP array. At last, we trigger
an event via the event-trigger. This event signals to the task scheduler that
there is data ready in the FEC packet queue.

5.3.2 Receiver Side

FEC Sink

We receive the source and repair packets in multiple sources, and therefore,
we use several FECSinks to request these packets from the correspond-
ing source and forward them to our FEC2DParityMultiplexor. We were
not able to connect our FEC2DParityMultiplexor directly to the receiving
sources, because multiple calls to the getNextFrame method in Framed-
Source are not allowed in Live555. Multiple calls to getNextFrame are
not allowed because it causes race conditions. However, connecting the
FEC2DParityMultiplexor and the receiving sources might be possible in
future work.

FEC2DParityMultiplexor

FEC FEC2DParityMultiplexor is a class which attempts to repair RTP
source packets, if any are lost. This implementation is specifically for re-

56 Chapter 5. Implementation

pairing matrixes of RTP source packets, protected by non-interleaved and
interleaved FEC repair packets. We apply some of the base ideas as we
did in Section 5.3.1. We use a queue of RTP packets to hold our outgoing
repaired packets. When there are available repaired packets, we use an
event-trigger to signal to the task scheduler that there are available pack-
ets. When the task scheduler executes this task, the packets are delivered
to the appropriate sink.

As mentioned in Section 5.3.2, packets are pushed into this class using
a callback procedure. Within this procedure, we forward both source and
repair packets to into appropriate FECClusters. We discuss FECCluster in
detail in Section 5.3.2. In short terms, FECCluster is a matrix containing
the source and repair packets for interleaved and non interleaved protection.
In FEC FEC2DParityMultiplexor we maintain a vector of these clusters.
When packets arrive, we search through this vector for a corresponding
cluster for the current packet. If no cluster is found, we create a new one
and insert the packet. Additionally, in order to know which cluster we
should insert an packet into, we hold a variable with the current sequence
number base. We update this base when a new cluster is created.

When FEC2DParityMultiplexor is instantiated we start a delayed task
which executes every 20ms. Note that this number is completely arbi-
trary, as we do not know if we should schedule it more or less frequent.
It is, nonetheless a low cost operation. In this task we loop through the
vector of FECClusters to determine if either all source packets have arrived
intact, or the repair window of a cluster has expired. If a repair window
has expired and not all source packets have arrived, we attempt to repair
the cluster. We use the repairCluster procedure, defined in Section 5.4.2.
When we have completed repairing the packets, or all the packets did arrive
intact, we push the packets into the aforementioned queue of ready RTP
packets. When we push ready packets into the queue, we also trigger the
event-trigger to signal to the task scheduler that the packets are ready for
delivery.

The RTP sequence number is chosen at random and is an unsigned 16 bit
integer. When the sequence number reaches the maximum number for 16
bits (65535) the sequence number overflows and reverts back to 0. This
causes problems if the sequence number overflows in the middle of our
cluster. Therefore, we compute the potential next sequence number by
adding the cluster size to the current sequence number. If the potential
new sequence number is smaller than the current sequence number, we have
a special case. Figure 5.4 shows how we handle this scenario. Note that

5.3. FEC Components 57

1 if (newSeq < currentSequenceNumber) { /*Special case*/

2 if (seq >= currentSequenceNumber || seq < newSeq) { /*Find

cluster*/↪→

3 FECCluster* fecCluster = findCluster(seq);

4 if (fecCluster != NULL) fecCluster->insertPacket(rtpPacket);

5 }

6 else { /*Make cluster*/

7 u_int16_t diff = seq - currentSequenceNumber;

8 if (diff > 30000) { /*Arbitrary failsafe.*/ }

9 else {

10 updateCurrentSequenceNumber(seq, sourcePacketCount);

11 FECCluster* fecCluster =

FECCluster::createNew(currentSequenceNumber,

fRow, fColumn);

↪→

↪→

12 fecCluster->insertPacket(rtpPacket);

13 superBuffer.push_back(fecCluster);

14 }

15 }

16 }

Figure 5.4: Special case for RTP sequence number overflow

we also use an arbitrary failsafe. We do this in case a packet arrives late
within the sequence number wraparound at 65535.

FECCluster The FECCluster class holds an array of RTP packets
(source and repair), the size of this array and a timestamp of when
the cluster was created, e.g. when the first packet was inserted into
the cluster. As mentioned previously, when we repair the clusters in
FEC2DParityMultiplexor we check wether the repair window has expired
or not. We calculate this by comparing the difference between the times-
tamp of the cluster and the repair window. We also include a procedure
to insert a packet at the appropriate index within the cluster. In this
procedure, we differentiate between source and different repair packets by
checking the payload type. We also account for the previously mentioned
overflow by using 16 bit unsigned variables and whole number division.
Figure 5.5 shows this scenario in detail.

RTPPacket and FECPacket

We use two container classes for holding RTP and FEC packets. These
classes only hold a size and a buffer. The buffer contains the entire packet
as bytes and the size is the volume of the buffer. While it is technically
unnecessary to separate this logic into two classes, we still do it to make
the code more readable.

58 Chapter 5. Implementation

1 void FECCluster::insertPacket(RTPPacket* rtpPacket) {

2 int index = getIndex(rtpPacket);

3 fRTPPackets[index] = rtpPacket;

4 }

5

6 int FECCluster::getIndex(RTPPacket* rtpPacket) {

7 int payload = EXTRACT_BIT_RANGE(0, 7,

rtpPacket->content()[1]);↪→

8 if (payload == 115) { /*Non-Interleaved*/

9 u_int16_t base =

(((u_int16_t)rtpPacket->content()[20]) << 8) |

rtpPacket->content()[21];

↪→

↪→

10 u_int16_t prelimIndex = base - fBase;

11 return prelimIndex / fColumn * (fColumn + 1) +

fColumn;↪→

12 }

13 else if (payload == 116) { /*Interleaved*/

14 u_int16_t columnBase =

(((u_int16_t)rtpPacket->content()[20]) << 8) |

rtpPacket->content()[21];

↪→

↪→

15 u_int16_t prelimIndex = columnBase - fBase;

16 return prelimIndex + fRow * (fColumn + 1);

17 }

18 else { /*Source*/

19 u_int16_t seqNum =

(((u_int16_t)rtpPacket->content()[2]) << 8) |

rtpPacket->content()[3];

↪→

↪→

20 u_int16_t prelimIndex = seqNum - fBase;

21 return prelimIndex + prelimIndex / fColumn;

22 }

23 }

Figure 5.5: Insert packet in FEC cluster

5.4. FEC Encoding & Decoding 59

5.4 FEC Encoding & Decoding

In this section, we present our implementation of the core FEC Encoding
& Decoding operations, in the most recent FEC draft. We separate these
two classes so that the sender only needs to import the FECEncoder and
the receiver only needs to import the FECDecoder. These classes are really
not classes, as they have no constructor, only static methods. We only use
static methods, because there is no need for state. These collections of
operations only executes one operation at a time, without internal side-
effects.

5.4.1 FECEncoder

Our FECEncoder class consists of one public method: protectRow. As
mentioned previously, this function generates a FEC packet by combin-
ing a row of RTP packets. We use four additional helper methods to
aid this operation. These are called calculateLongestPayload, generateBit-
String, getPaddedRTPPayload, and createFECPacket. We present these in
the following subsection.

protectRow

The protect row function takes an array of RTP packets (with size) and
returns a newly created FEC packet. The idea is that a FEC packet will be
computed regardless of the amount of RTP packets. We can then use this
logic for both the FEC non-interleaved and interleaved protection schemes,
and also others schemes. We begin by finding the longest payload of in the
source packet array, by utilizing our calculateLongestPayload method. We
need this size to apply optional padding to packets with shorter sizes. This
is because the FEC repair scheme requires each packet to be of the same
length when we generate the final FEC packet. Next we compute the bit
string for every packet in the source packet array, using the generateBit-
String procedure. This bit string is a representation of the source packet
which is used to generate the FEC header.

When we have the bit string representation of all the source packets, we
apply the xor operation on every source packet. This includes both the
bit strings and source packet payloads. This is the base of the FEC repair
scheme, as this process can be reversed to generate any of the source pack-
ets, if missing. Before we combine the payloads we pad them to the longest
packet size of the source packets, using the getPaddedRTPPayload method.
This is necessary to match the length of each payload when we apply the
xor operation. After this computation, we end up with one FEC bit string

60 Chapter 5. Implementation

and one FEC payload. Next, we extract the sequence number of the first
packet in the array because we include this in the FEC packet to indicate
the base sequence number this FEC packet is protecting. Finally, we create
a FEC packet by combining the FEC bit string, packet size, FEC payload,
sequence number base, l, and d in our createFECPacket procedure.

calculateLongestPayload

We calculate the longest payload of each source packet by comparing their
payload lengths. In the most recent FEC draft it is stated that we should
pad the payload to the longest source packet size to protect all bits. We
also deduct the RTP header size because we are calculating the longest
payload.

generateBitString

The bit string is a ten byte string which contains what we need to repair.
We generate the source packet bit string by combining several elements
from the source packet. In our implementation, we begin by copying the
first eight bytes of the RTP header to the FEC bit string. In the FEC
draft, the first two bits are skipped, but we copy these bytes directly for
simplicity, and we change these bits later. Next, we calculate a sixteen bit
number which is the sum of the CRSC list, extension header, RTP- payload
and padding. We copy this sum to the last two bits of the bit string.

getPaddedRTPPayload

The padded payload function takes a RTP packet and longest packet size.
We compute the padded payload by appending 0x00 bytes at the end of
the payload until the length matches the longest payload.

createFECPacket

We begin making the FEC packet by allocating a buffer of the parameter
packet size to hold the packet content. Be begin by copying the first two
bytes of the FEC bit string into the first two bytes of the buffer. We also
add 10 as the first two bits to indicate that this is a 2d parity packet.
Next, we copy the aforementioned sum of CRSC list, extension header,
RTP- payload and padding into the next two bytes of the buffer. Next, we
copy the timestamp, sequence number base, l, and d into the eight bytes
of the buffer. Finally, we copy the payload directly onto the end of the
FEC header. We now how a buffer containing the FEC packet, and we
instantiate a FECPacket object with this buffer and size, before returning.

5.4. FEC Encoding & Decoding 61

5.4.2 FECDecoder

Our FECDecoder implementation handles the core operations of FEC de-
coding, which is to repair a FECCluster. This function, as mentioned
previously, is called repairCluster and is the only function used directly
outside this class. repairCluster uses an additional nine helper functions
which are called: repairNonInterleaved, repairInterleaved...

repairCluster

Our repairCluster procedure is our implementation of the iterative repair
algorithm from the most recent FEC draft. The purpose of this function
is to loop through the cluster of packets and attempt to repair as many
lost packets as possible. In this function, we use two variables: num-
RecoveredUntilThisIteration and numRecoveredSoFar, both set to 0. We
loop through the rows and columns and attempt to repair them, using our
repairNonInterleaved and repairInterleaved functions. In these functions,
we increase the numRecoveredSoFar if we repair a row or column success-
fully. At the end of the loop, we compare numRecoveredUntilThisIteration
and numRecoveredSoFar. If numRecoveredSoFar is greater than numRe-
coveredUntilThisIteration, we set numRecoveredUntilThisIteration equal to
numRecoveredSoFar. If not, we break out of the loop. Essentially, we loop
through the rows and columns and attempt to repair them. If we encounter
an iteration where we cannot repair any packet, we stop the repair process.

repairNonInterleaved and repairInterleaved

The repairNonInterleaved and repairInterleaved functions are very similar.
The main idea of each function is to loop through either the rows or columns
in a cluster and attempt to repair them using the repairRow function. In
both functions we loop through the rows or columns accordingly. If one of
these is either missing more than one RTP packet or just the FEC packet,
we do not attempt to repair it. This is because more than one RTP packet
cannot be recovered using the reversed xor scheme. Additionally, we do not
care if the FEC packet is missing, because our intention is to repair RTP
packets. In repairInterleaved we have to convert each column to a row,
because we utilize the repairRow function. If we have a suitable row or
column for repair, we perform the repair row function and on completion,
we receive a repaired RTPPacket. Finally we insert this RTPPacket into
the cluster and increase the numRecoveredSoFar by 1.

repairRow

The repairRow function takes a row of source and repair packets, and re-
turns one repaired RTPPacket, by utilizing several helper functions. We

62 Chapter 5. Implementation

begin by finding the sequence number of the missing packet in the row,
using the findSequenceNumber function. Next, we use our calculateRow-
BitString method to acquire a bit string for the row, and use this bit string
to create a repaired RTP header, using the createHeader function. Next
we extract the variable y from byte eight through nine in the bit string.
The variable y is the sum of CRSC list, extension header, RTP- payload
and padding. We use this variable to calculate the payload, using the
calculatePayload function.

Next, we calculate the new RTP packet’s size by combining the static RTP
header size (12 bytes) and y which accounts for the payload of the packet.
We allocate a buffer of this size and copy the header and payload into this
array. Finally we create and return a new RTPPacket using this buffer and
size.

findSequenceNumber

The findSequenceNumber function finds the sequence number of the missing
packet in a row of RTP packets and one FEC packet. We extract the base
sequence number from the FEC packet, since we do not know which RTP
packet is missing, but we know that the FEC packet is present. We loop
through the source packets, and when we find the missing packet we return
the iterator count plus the sequence number base. If the packet is protected
by an interleaved column, we multiply the iterator by l.

calculateRowBitString

The purpose of the calculateRowBitString is to apply the xor operation to
the bit strings of all the available RTP packets and FEC packet. We begin
by generating the FEC bit string by utilizing the generateFECBitString
method. We do this prior to the RTP packets, because this packet must
be present. Next, we iterate over the RTP packets in the row. If a packet
is missing, we do nothing. If the packet is present, we calculate the bit
string of the packet, using the generateBitString method. We then apply
the xor operation on this bit string and the previous bit string. Note that
we override the previous bit string, always calculating the xor product of
the old and new bit string.

generateFECBitString In generateFECBitString, we calculate the
FEC bit string from the provided FEC packet. We firstly allocate a 10
byte array, because the FEC bit string is 10 bytes. We copy the first two
bytes and the timestamp from the FEC packet to the FEC bit string at
the same offsets. We also copy the length recovery from the FEC packet

5.5. Limitations 63

into the eight and ninth byte of the FEC bit string. Note that we add
12 bytes for each copying on the FEC packet, because the FEC packet is
encapsulated within a RTP packet.

generateBitString The generateBitString method generates a bit string
for a given RTP packet. This method is identical to the method with the
same in FECEncoder, Section 5.4.1. We copy the first eight bytes of the
RTP header into the bit string and compute the variable y, which we copy
into the last two bytes of the bit string. Note that while these methods are
identical, we keep them in separate files to improve code readability.

createHeader

In the createHeader function, we generate the RTP repair packet header,
using the acquired bit string, sequence number and ssrc. We begin by
allocating a 12 byte buffer, which holds the new RTP header. We copy
the first two bytes from the bit string into the RTP header. Note that we
also change the first two bits of the first byte to 10, which indicates RTP
version 2. Next, we copy the sequence number into byte three and four
of the RTP header. We also copy the timestamp and ssrc into the RTP
header, respectively. At last we return the new RTP header.

calculatePayload

In calculatePayload, we combine the payloads of the available RTP packets
and one FEC packet to create the missing RTP packet payload. We also
use the previously computed variable Y, to determine the size of the new
payload. We begin by allocating the new payload as a buffer of size Y. As
mentioned previously: the payloads of source packets on the sender side are
padded 0x00 on the end of each packet, to match the length of the longest
packet. This is done prior to generate the FEC bit string. Therefore, we
have to pad the FEC and RTP packets to the length of Y to replicate this
process. We copy the padded FEC payload into the payload buffer, because
the FEC packet must be present. Next we apply the xor operation on this
buffer with the available RTP packet payloads.

5.5 Limitations

Due to the limited time and resources of this thesis, we avoid implementing
all of the specifications of the FEC draft, which leads to some limitations in
our implementation. In order to protect the wireless multicast stream from
both random as well as burst packet loss, it is recommended in the most
recent FEC draft to use 2d parity FEC protection. For this reason, we only

64 Chapter 5. Implementation

implement the 2d parity FEC scheme and disregard implementing the bit
mask and retransmission scheme. However, as previously mentioned, it is
trivial to extend our implementation to support these schemes, in future
work.

We also do not implement FEC support for RTSP or SDP. Instead we use
fixed payload types for the FEC stream with 115 for non interleaved repair
packets and 116 for interleaved repair packets. We also set the column and
row count statically, on both receiver and sender side, in addition to a static
repair window at the receiver side. However, because we the RTP sequence
number is generated randomly for each RTP session, we cannot know the
offset of each FEC cluster base prior to the stream. The only way we know
how to synchronize this is to find one non-interleaved and one interleaved
FEC packet with the same base sequence number. In that case we know
that sequence number and can calculate the offsets for later clusters. We
do this in FEC2DParityMultiplexor by using a emergencyBuffer. Before
we know the FECCluster offset, we place incoming packets in this buffer.
For each packet we place in the buffer we look for the non-interleaved and
interleaved packets with the same sequence number base. When we find
it, we flush the packets and continue the stream in the regular fashion.
Additionally, because we do not that metadata negotiation, we do not
know the ssrc of the stream. We cannot know this prior to the stream,
because this is also generated randomly. Therefore, we save the ssrc from
the first packet we receive into a local variable which we use when repairing
RTP packets.

Finally, we do not support RTP extension header in our FEC implemen-
tation. This is not a priority for us, because we stream H.264 video in our
main experiment, which does not require RTP extension. This is, however,
simple to add in future work.

5.6 Discussion and Conclusions

In this chapter we implemented a fully functional FEC streamer and re-
ceiver as an extension in Live555 Media Streaming. This implementation
follows the instructions of the most recent FEC draft (Zanaty et al. 2018),
with exceptions which we state in Section 5.5. The FEC streamer can be
connected to most media sources in Live555, and produces repair pack-
ets. The receiver combines source and repair packets to produce a stream
of repaired source packets. We provide an example of how to execute the
streaming and receiving in Figure 5.6. In this example we use L = 4, D = 5
and repair window = 300ms. The multicast address used is 232.126.107.222,

5.6. Discussion and Conclusions 65

#Sender

$./testH264VideoStreamer 4 5 test.264

#Receiver

$./client 232.126.107.222 4 5 300

Figure 5.6: Example of how to run the test programs in our FEC imple-
mentation.

and the input file is test.264. In the following chapter, we evaluate the ex-
periment of this thesis. The experiment utilize this implementation.

Chapter 6

Evaluation

In Chapter 4, we designed and executed an experiment where we streamed
multiple instances of a source trace file containing an RTP stream of H.264
encoded 1080p video. These instances contained several FEC configura-
tions, but were limited by a L value of 20, a maximum FEC repair window
of 500ms, and a maximum overhead of 66.67%. We ran these trace files
through our FEC implementation and captured the packet loss reduction.
In this chapter, we evaluate these results and explore how the most recent
FEC draft can be applied to low latency wireless multicast streams.

6.1 Experiment Summary

We ran the experiment three times, and therefore we imagine the graphs
would be more smooth if we ran it more times.

6.1.1 Constraints

As we discussed in Chapter 4, we have set some hard constraints concerning
both FEC latency and overhead. The latency constraint is set at 500
milliseconds. We chose this constraint because we consider it reasonable
and it, nonetheless, faster than the current DASH approach in the football
stadium. The overhead is set at a maximum of 66.67%. If we go above this
limit, it is effectively the same as retransmission.

6.2 Video Encoding

For this experiment we used the tractor sample from (Xiph 2018). We en-
coded this file with a NAL unit size of 1432 to prevent RTP fragmentation.
Additionally, we used variable bitrate, with a crf value of 25. We decided
to use crf value of 25 to simulate an approximately 6 mbps stream. By

67

68 Chapter 6. Evaluation

2
x
6

3
x
3

4
x
3

5
x
3

6
x
2

7
x
2

8
x
2

9
x
2

1
0
x
2

1
1
x
2

1
2
x
2

1
3
x
2

1
4
x
2

1
5
x
2

1
6
x
2

1
7
x
2

1
8
x
2

1
9
x
2

2
0
x
2

0%

5%

10%

15%

LxD

A
ve
ra
ge

p
ac
ke
t
lo
ss

—
p
er
ce
n
ta
ge

%

Figure 6.1: Average packet loss before and after FEC

keeping it at 6 mbps we maintain our restriction of total bandwidth con-
sumption of 10 mbps. The reason for using variable bitrate was to simulate
real case scenarios.

6.3 Packet Loss

Figure 6.1 presents the average packet loss before and after the FEC repair
scheme. They are ordered by increasing L and D value. The packet loss
before our FEC implementation is ≈ 16%, which is expected, because we
used the simple Gilbert Model to apply packet loss at a rate of 0.838026.
This rate was collected from Mochnáč et al. (2010). The average packets
loss after our FEC implementation ranges from ≈ 1.02% to ≈ 11.02%.

Figure 6.1 shows a clear sawtooth pattern. This pattern is expected because
bigger L and D clusters yield lower protection, but does provide lower
overhead. Note that the sawtooth pattern is more abrupt when reaching
higher L values. This is simply because there were fewer values which met
our requirements when L was increased.

The packet loss is most efficient with smaller clusters and less efficient with
larger clusters. The graph does indicate, however, that it is not a linear
curve. For example, on the L = 2 values, we see a rapid increase in packet
loss in the beginning and then it gets more even. This indicates that when

6.4. Latency 69

reaching a certain cluster size, the packet loss will not increase as rapidly
as for the lower D values.

Figure 6.1 indicates that when L increases, but D is equal to 2, the clusters
are less efficient. This is also expected, as the overall cluster size is bigger.

6.4 Latency

In live streaming, low latency is an important priority, which is why we
examine streams with the lowest latency in ??. This table shows an ordered
list of the 30 streams with lowest latency. Not surprisingly, smaller clusters
yield lower latency. There are a few at the beginning at approximately
160ms. 3 by 3 has the highest overhead, but yields higher packets in regards
to for example 10 by 2.

6.4.1 Correlation between latency and overhead

Figure 6.2 shows the correlation between latency, e.g. the repair window
and the overhead. The natural conclusion would be that as the overhead
increases the latency would drop, due to smaller clusters. We do, however
se that the pattern is quite arbitrarily distributed. However, towards the
higher overhead values we see that the repair window is still quite high.
This is because while having big overhead does not necessarily mean small
clusters. When either L or D is small such as 2 small cluster sizes it is
possible to have large cluster with high overhead.

6.5 Discussion and conclusions

What is the best configuration for live streaming? We therefore need to
consider packet loss and latency. If packet loss is high, the quality of expe-
rience for users will drop. If the overhead is too large we have to sacrifice
quality when encoding the file, also resulting in lower quality of experience
for users. We, therefore, look at the FEC configurations which yielded
the lowest packet error rate after FEC, and consider the cost of overhead.
FEC configuration 3x3 seems promising for live streaming because it has
low latency and low packet loss.

70 Chapter 6. Evaluation

15 20 25 30 35 40 45 50 55 60 65 70

200

300

400

500

FEC Overhead

R
ep
ai
r
W

in
d
ow

Figure 6.2: Correlation between overhead and latency

Chapter 7

Conclusion

In this chapter, we begin in Section 7.1 by providing a brief summary of our
contributions, which includes packet loss, overhead and latency considera-
tions. In Section 7.2, we provide a critical assessment of our work. Finally,
in Section 7.3, we discuss several possible directions for future work.

7.1 Summary of Contributions

In this work, we investigate wether the most recent FEC draft is suitable
for real-time wireless multicast live streaming, with emphasis on three main
points: packet reduction effectivity, and latency and overhead impact. We
design and perform an experiment in which we simulate wireless packet loss
in multicast streams with a Gilbert model pattern of ≈ 16% random packet
loss. We check all L and D values within several constraints: maximum
500ms repair window (latency impact), 66.67% overhead, and a maximum
L value of 20. For all these L and D values we stream the tractor sample
three times, to avoid possible outliers in the data.

7.1.1 Evaluation of the most recent FEC draft

To the best of our knowledge, no other studies have evaluated the most
recent FEC draft in regards to wireless multicast RTP streaming. We
evaluate this FEC draft’s effectivity on its ability to reduce packet loss,
maintain low latency and overhead costs.

Packet Loss Reduction

Our results show that some FEC configurations (L and D values) are very
effective at reducing packet loss. The best configurations are able to reduce
the packet loss from ≈ 16% down to ≈ 1.02% (3x3 FEC configuration). The
worst case reduces it from ≈ 16% to ≈ 11.02% (13x11 FEC configuration).

71

72 Chapter 7. Conclusion

The pattern is very clear: the bigger the cluster the worse packet loss
reduction. As we can see from these results 3x3 provides also the best
packet loss reduction.

Latency Impact

In real-time streams latency is critical for a good user experience. It is,
therefore, important to analyze its impact in depth. Our results show that
the lowest latency overhead is 160ms, and the highest is 481ms (due to our
constraint at 500ms). With the lowest being 160ms this FEC draft may
or may not be suitable for real-time scenarios. For most video streams
though, 160ms is not noticeable though.

Overhead Cost

Because we have to send additional packets with FEC some overhead is in-
evitable. It is especially critical to minimize overhead in multicast streams
because the bandwidth is restricted. Our results show that small clusters
have the highest overhead, and the bigger clusters have lower overhead.
There are some exceptions, where small values of either L or D combined
with a large value causes the cluster to be large, but also the overhead to
be large. This is as expected.

Takeaway points

As we can see, a smaller cluster reduces packet and the latency the most,
however, it also has the most overhead, as expected. So, the conclusion is
that, as expected, for each scenario we have to make an educated choice to
wether sacrifice packet loss, overhead or latency.

7.2 Critical Assessment

If more time was in our hands, we would certainly have ran the experiment
in more iterations to reduce the effect of even more outliers. Additionally,
we used the simple gilbert model, but it might have been better to use the
more advance wireless multicast packet loss model.

7.3 Future Work

In this thesis we have established a basis for streaming live H.264 video
over wireless multicast with FEC protection. There are, of course, plenty
of open ends for which future work can be based.

7.3. Future Work 73

For example, we have not ran our experiments in a real case football sta-
dium scenario with real interference and nodes. So, it is critical for future
work to assess the effectiveness of this FEC draft out in the field.

In this thesis, we evaluate a static FEC scheme. However, in certain sce-
narios a more adaptive approach might be more appropriate. For example,
in periods of burst loss, it might be better to switch to a higher L value
and lower D value. In periods of low random loss, it might be better to
switch to a lower L and D value to reduce latency.

Bibliography

Amino Communications. 2005. “Amino selected for first HD IPTV de-
ployment in USA.” November. Accessed April 28, 2017. https://

investor.aminocom.com/story-EMQ1314.

Carmel, S., T. Daboosh, E. Reifman, N. Shani, Z. Eliraz, D. Ginsberg, and
E. Ayal. 2002. Network media streaming. US Patent 6,389,473, May.
https://www.google.com/patents/US6389473.

Edwards, Thomas. 2017. SMPTE ST 2022: Moving Serial Interfaces (ASI
& SDI) to IP. https://www.smpte.org/sites/default/files/

2017-08-17-ST-2022-Edwards-V4-Handout.pdf.

eMarketer. 2017. Average Time Spent per Day with Video by US Adults,
by Device, 2015-2019 (hrs:mins), September. Accessed July 16, 2018.
http://www.emarketer.com/Chart/Average-Time-Spent-per-

Day-with-Video-by-US-Adults-by-Device-2015-2019-hrsmins/

211432.

Ericsson AB. 2005. “B2 sharpens its competitive edge with ADSL2+ from
Ericsson.” Accessed April 28, 2017. http://archive.ericsson.net/
service/internet/picov/get?DocNo=1/21331-FGB101063&Lang=

EN.

Finlayson, Ross. 2018. “What is the best way to modify or extend the
functionality of the code?” Accessed September 8, 2018. http://www.
live555.com/liveMedia/faq.html#modifying-and-extending.

Forgie, James W. 1979. ST — A Proposed Internet Stream Protocol,
September. http://www.cis.ohio-state.edu/htbin/ien/ien119.
html.

Fosberg, Ina Alette. 2018. Hardware setup.

Holbrook, H., B. Cain, and B. Haberman. 2006. Using Internet Group
Management Protocol Version 3 (IGMPv3) and Multicast Listener
Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast.
RFC 4604. RFC Editor, August. https://tools.ietf.org/rfc/
rfc4604.txt.

75

https://investor.aminocom.com/story-EMQ1314
https://investor.aminocom.com/story-EMQ1314
https://www.google.com/patents/US6389473
https://www.smpte.org/sites/default/files/2017-08-17-ST-2022-Edwards-V4-Handout.pdf
https://www.smpte.org/sites/default/files/2017-08-17-ST-2022-Edwards-V4-Handout.pdf
http://www.emarketer.com/Chart/Average-Time-Spent-per-Day-with-Video-by-US-Adults-by-Device-2015-2019-hrsmins/211432
http://www.emarketer.com/Chart/Average-Time-Spent-per-Day-with-Video-by-US-Adults-by-Device-2015-2019-hrsmins/211432
http://www.emarketer.com/Chart/Average-Time-Spent-per-Day-with-Video-by-US-Adults-by-Device-2015-2019-hrsmins/211432
http://archive.ericsson.net/service/internet/picov/get?DocNo=1/21331-FGB101063&Lang=EN
http://archive.ericsson.net/service/internet/picov/get?DocNo=1/21331-FGB101063&Lang=EN
http://archive.ericsson.net/service/internet/picov/get?DocNo=1/21331-FGB101063&Lang=EN
http://www.live555.com/liveMedia/faq.html#modifying-and-extending
http://www.live555.com/liveMedia/faq.html#modifying-and-extending
http://www.cis.ohio-state.edu/htbin/ien/ien119.html
http://www.cis.ohio-state.edu/htbin/ien/ien119.html
https://tools.ietf.org/rfc/rfc4604.txt
https://tools.ietf.org/rfc/rfc4604.txt

76 Bibliography

Hua, Kien A., Ying Cai, and Simon Sheu. 1998. “Patching.” In Proceedings
of the sixth ACM international conference on Multimedia - MULTI-
MEDIA ’98, 191–200. New York, New York, USA: ACM Press. isbn:
0201309904. doi:10.1145/290747.290771. http://portal.acm.org/
citation.cfm?doid=290747.290771.

Jacobsen, Espen, Carsten Griwodz, and P̊al Halvorsen. 2010. “Pull-
patching.” In Proceedings of the international conference on Mul-
timedia - MM ’10, 799. New York, New York, USA: ACM Press. isbn:
9781605589336. doi:10.1145/1873951.1874081. http://dl.acm.
org/citation.cfm?doid=1873951.1874081.

Li, A. 2007. RTP Payload Format for Generic Forward Error Correction.
RFC5109, December. http://tools.ietf.org/rfc/rfc5109.txt.

Linksys. 2015. “How to resolve poor or no signal from a wireless router.”
Accessed May 24, 2018. https://www.linksys.com/ca/support-
article?articleNum=136786.

McCanne, Steven, Van Jacobson, and Martin Vetterli. 1996. “Receiver-
driven layered multicast.” In Conference proceedings on Applications,
technologies, architectures, and protocols for computer communications
- SIGCOMM ’96, 117–130. New York, New York, USA: ACM Press.
isbn: 0897917901. doi:10.1145/248156.248168. http://portal.
acm.org/citation.cfm?doid=248156.248168.

Mochnáč, J., S. Marchevský, and P. Kocan. 2010. “Simulation of packet
losses in video transfers using real-time transport protocol.” In 20th
International Conference Radioelektronika 2010, 1–4. April. doi:10.
1109/RADIOELEK.2010.5478577.

Multicast Technologies. 2008. “The Relative Size of the Multicast Enabled
Internet.” Multicast Technologies. Accessed February 24, 2008. http:
//www.multicasttech.com/status/.

National Institute of Standards and Technology. 1995. FIPS PUB 46-3:
DATA ENCRYPTION STANDARD (DES). Withdrawn on May 19,
2005. October. http://csrc.nist.gov/publications/fips/fips
46-3/fips46-3.pdf.

. 2001. FIPS PUB 197: Advanced Encryption Standard (AES).
November. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197.pdf.

Nayarasi. 2012. “Wireless Multicast is not working – Why ?” Accessed
March 30, 2018. https://mrncciew.com/2012/12/20/why-wireles
s-multicast-is-not-working/.

http://dx.doi.org/10.1145/290747.290771
http://portal.acm.org/citation.cfm?doid=290747.290771
http://portal.acm.org/citation.cfm?doid=290747.290771
http://dx.doi.org/10.1145/1873951.1874081
http://dl.acm.org/citation.cfm?doid=1873951.1874081
http://dl.acm.org/citation.cfm?doid=1873951.1874081
http://tools.ietf.org/rfc/rfc5109.txt
https://www.linksys.com/ca/support-article?articleNum=136786
https://www.linksys.com/ca/support-article?articleNum=136786
http://dx.doi.org/10.1145/248156.248168
http://portal.acm.org/citation.cfm?doid=248156.248168
http://portal.acm.org/citation.cfm?doid=248156.248168
http://dx.doi.org/10.1109/RADIOELEK.2010.5478577
http://dx.doi.org/10.1109/RADIOELEK.2010.5478577
http://www.multicasttech.com/status/
http://www.multicasttech.com/status/
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://mrncciew.com/2012/12/20/why-wireless-multicast-is-not-working/
https://mrncciew.com/2012/12/20/why-wireless-multicast-is-not-working/

Bibliography 77

Perkins, C., M. McBride, D. Stanley, W. Kumari, and JC. Zuniga. 2018.
Multicast Considerations over IEEE 802 Wireless Media draft-ietf-
mboned-ieee802-mcast-problems-02. https://tools.ietf.org/html/
draft-ietf-mboned-ieee802-mcast-problems-02.

Rainer, Benjamin, Stefan Petscharnig, and Christian Timmerer. 2018.
“Merge and Forward: A Self-Organized Inter-Destination Media Syn-
chronization Scheme for Adaptive Media Streaming over HTTP.”
In MediaSync: Handbook on Multimedia Synchronization, edited by
Mario Montagud, Pablo Cesar, Fernando Boronat, and Jack Jansen,
593–627. Cham: Springer International Publishing. isbn: 978-3-319-
65840-7. doi:10.1007/978-3-319-65840-7_21. https://doi.org/
10.1007/978-3-319-65840-7_21.

Deering, S.E. 1989. Host extensions for IP multicasting. RFC 1112 (Internet
Standard). RFC. Updated by RFC 2236. RFC Editor, RFC Editor,
Fremont, CA, USA, August. doi:10.17487/RFC1112. https://www.
rfc-editor.org/rfc/rfc1112.txt.

Topolcic, C. 1990. Experimental Internet Stream Protocol: Version 2 (ST-
II). RFC 1190 (Experimental). RFC. Obsoleted by RFC 1819. RFC
Editor, RFC Editor, Fremont, CA, USA, October. doi:10 . 17487 /
RFC1190. https://www.rfc-editor.org/rfc/rfc1190.txt.

Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson. 1996. RTP: A
Transport Protocol for Real-Time Applications. RFC 1889 (Proposed
Standard). RFC. Obsoleted by RFC 3550. RFC Editor, RFC Editor,
Fremont, CA, USA, January. doi:10.17487/RFC1889. https://www.
rfc-editor.org/rfc/rfc1889.txt.

Hoffman, D., G. Fernando, and V. Goyal. 1996. RTP Payload Format for
MPEG1/MPEG2 Video. RFC 2038 (Proposed Standard). RFC. Ob-
soleted by RFC 2250. RFC Editor, RFC Editor, Fremont, CA, USA,
October. doi:10.17487/RFC2038. https://www.rfc-editor.org/
rfc/rfc2038.txt.

Rosenberg, J., and H. Schulzrinne. 1999. An RTP Payload Format for
Generic Forward Error Correction. RFC 2733 (Proposed Standard).
RFC. Obsoleted by RFC 5109. RFC Editor, RFC Editor, Fremont,
CA, USA, December. doi:10.17487/RFC2733. https://www.rfc-
editor.org/rfc/rfc2733.txt.

https://tools.ietf.org/html/draft-ietf-mboned-ieee802-mcast-problems-02
https://tools.ietf.org/html/draft-ietf-mboned-ieee802-mcast-problems-02
http://dx.doi.org/10.1007/978-3-319-65840-7_21
https://doi.org/10.1007/978-3-319-65840-7_21
https://doi.org/10.1007/978-3-319-65840-7_21
http://dx.doi.org/10.17487/RFC1112
https://www.rfc-editor.org/rfc/rfc1112.txt
https://www.rfc-editor.org/rfc/rfc1112.txt
http://dx.doi.org/10.17487/RFC1190
http://dx.doi.org/10.17487/RFC1190
https://www.rfc-editor.org/rfc/rfc1190.txt
http://dx.doi.org/10.17487/RFC1889
https://www.rfc-editor.org/rfc/rfc1889.txt
https://www.rfc-editor.org/rfc/rfc1889.txt
http://dx.doi.org/10.17487/RFC2038
https://www.rfc-editor.org/rfc/rfc2038.txt
https://www.rfc-editor.org/rfc/rfc2038.txt
http://dx.doi.org/10.17487/RFC2733
https://www.rfc-editor.org/rfc/rfc2733.txt
https://www.rfc-editor.org/rfc/rfc2733.txt

78 Bibliography

Kobayashi, K., A. Ogawa, S. Casner, and C. Bormann. 2002. RTP Pay-
load Format for 12-bit DAT Audio and 20- and 24-bit Linear Sampled
Audio. RFC 3190 (Proposed Standard). RFC. RFC Editor, RFC Ed-
itor, Fremont, CA, USA, January. doi:10.17487/RFC3190. https:

//www.rfc-editor.org/rfc/rfc3190.txt.

Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson. 2003. RTP:
A Transport Protocol for Real-Time Applications. RFC 3550 (Internet
Standard). RFC. Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160,
7164, 8083, 8108. RFC Editor, RFC Editor, Fremont, CA, USA, July.
doi:10.17487/RFC3550. https://www.rfc-editor.org/rfc/rfc
3550.txt.

J. van der Meer, D. Mackie, V. Swaminathan, D. Singer, and P. Gen-
tric. 2003. RTP Payload Format for Transport of MPEG-4 Elemen-
tary Streams. RFC 3640 (Proposed Standard). RFC. Updated by RFC
5691. RFC Editor, RFC Editor, Fremont, CA, USA, November. doi:10
.17487/RFC3640. https://www.rfc-editor.org/rfc/rfc3640.txt.

Hellstrom, G., and P. Jones. 2005. RTP Payload for Text Conversation.
RFC 4103 (Proposed Standard). RFC. RFC Editor, RFC Editor, Fre-
mont, CA, USA, June. doi:10.17487/RFC4103. https://www.rfc-
editor.org/rfc/rfc4103.txt.

Gharai, L., and C. Perkins. 2005. RTP Payload Format for Uncompressed
Video. RFC 4175 (Proposed Standard). RFC. Updated by RFC 4421.
RFC Editor, RFC Editor, Fremont, CA, USA, September. doi:10.
17487/RFC4175. https://www.rfc-editor.org/rfc/rfc4175.txt.

Lazzaro, J., and J. Wawrzynek. 2006. An Implementation Guide for RTP
MIDI. RFC 4696 (Informational). RFC. RFC Editor, RFC Editor,
Fremont, CA, USA, November. doi:10.17487/RFC4696. https://

www.rfc-editor.org/rfc/rfc4696.txt.

Wang, Y.-K., R. Even, T. Kristensen, and R. Jesup. 2011. RTP Payload
Format for H.264 Video. RFC 6184 (Proposed Standard). RFC. RFC
Editor, RFC Editor, Fremont, CA, USA, May. doi:10.17487/RFC6184.
https://www.rfc-editor.org/rfc/rfc6184.txt.

Spittka, J., K. Vos, and JM. Valin. 2015. RTP Payload Format for the
Opus Speech and Audio Codec. RFC 7587 (Proposed Standard). RFC.
RFC Editor, RFC Editor, Fremont, CA, USA, June. doi:10.17487/
RFC7587. https://www.rfc-editor.org/rfc/rfc7587.txt.

http://dx.doi.org/10.17487/RFC3190
https://www.rfc-editor.org/rfc/rfc3190.txt
https://www.rfc-editor.org/rfc/rfc3190.txt
http://dx.doi.org/10.17487/RFC3550
https://www.rfc-editor.org/rfc/rfc3550.txt
https://www.rfc-editor.org/rfc/rfc3550.txt
http://dx.doi.org/10.17487/RFC3640
http://dx.doi.org/10.17487/RFC3640
https://www.rfc-editor.org/rfc/rfc3640.txt
http://dx.doi.org/10.17487/RFC4103
https://www.rfc-editor.org/rfc/rfc4103.txt
https://www.rfc-editor.org/rfc/rfc4103.txt
http://dx.doi.org/10.17487/RFC4175
http://dx.doi.org/10.17487/RFC4175
https://www.rfc-editor.org/rfc/rfc4175.txt
http://dx.doi.org/10.17487/RFC4696
https://www.rfc-editor.org/rfc/rfc4696.txt
https://www.rfc-editor.org/rfc/rfc4696.txt
http://dx.doi.org/10.17487/RFC6184
https://www.rfc-editor.org/rfc/rfc6184.txt
http://dx.doi.org/10.17487/RFC7587
http://dx.doi.org/10.17487/RFC7587
https://www.rfc-editor.org/rfc/rfc7587.txt

Bibliography 79

Lennox, J., K. Gross, S. Nandakumar, G. Salgueiro, and B. Burman. 2015.
A Taxonomy of Semantics and Mechanisms for Real-Time Transport
Protocol (RTP) Sources. RFC 7656 (Informational). RFC. RFC Editor,
RFC Editor, Fremont, CA, USA, November. doi:10.17487/RFC7656.
https://www.rfc-editor.org/rfc/rfc7656.txt.

Siddiqi, Faisal Zakaria. 2016. “Caching for a Global Netflix.” March. Ac-
cessed April 28, 2017. http://techblog.netflix.com/2016/03/
caching-for-global-netflix.html.

Singh, Varun, Albert Abello Lozano, and Jorg Ott. 2013. “Performance
Analysis of Receive-Side Real-Time Congestion Control for WebRTC.”
In 2013 20th International Packet Video Workshop, 1–8. IEEE, De-
cember. isbn: 978-1-4799-2172-0. doi:10.1109/PV.2013.6691454.
http://ieeexplore.ieee.org/document/6691454/.

Tang, Chiping, and Philip K. McKinley. 2003. “Modeling Multicast Packet
Losses in Wireless LANs.” In Proceedings of the 6th ACM International
Workshop on Modeling Analysis and Simulation of Wireless and Mo-
bile Systems, 130–133. MSWIM ’03. San Diego, CA, USA: ACM. isbn:
1-58113-766-4. doi:10.1145/940991.941015. http://doi.acm.org/
10.1145/940991.941015.

Thompson, Hugh. 2011. “IPTV in Canada: An update.” December. Ac-
cessed April 28, 2017. http://www.digitalhome.ca/2011/12/iptv-
in-canada-an-update/.

Wang, Bing, Jim Kurose, Prashant Shenoy, and Don Towsley. 2008. “Mul-
timedia Streaming via TCP: An Analytic Performance Study.” ACM
Trans. Multimedia Comput. Commun. Appl. (New York, NY, USA)
4, no. 2 (May): 16:1–16:22. issn: 1551-6857. doi:10.1145/1352012.
1352020. http://doi.acm.org/10.1145/1352012.1352020.

Wang, Y.-K., Y. Sanchez, T. Schierl, S. Wenger, and M. M. Hannuksela.
2016. RTP Payload Format for High Efficiency Video Coding (HEVC).
RFC7798, March. http://tools.ietf.org/rfc/rfc7798.txt.

Weil, Nicolas. 2014. “The State of MPEG-DASH Deployment.” April. Ac-
cessed April 28, 2017. http://www.streamingmediaglobal.com/

Articles/Editorial/Featured-Articles/The-State-of-MPEG-

DASH-Deployment-96144.aspx.

Westerlund, Johan. 2015. “Forward Error Correction in Real-time Video
Streaming Applications.” Master’s thesis, Umeaa University.

Xiph. 2018. “Xiph.org Video Test Media [derf’s collection].” Accessed
June 4, 2018. https://media.xiph.org/video/derf/.

http://dx.doi.org/10.17487/RFC7656
https://www.rfc-editor.org/rfc/rfc7656.txt
http://techblog.netflix.com/2016/03/caching-for-global-netflix.html
http://techblog.netflix.com/2016/03/caching-for-global-netflix.html
http://dx.doi.org/10.1109/PV.2013.6691454
http://ieeexplore.ieee.org/document/6691454/
http://dx.doi.org/10.1145/940991.941015
http://doi.acm.org/10.1145/940991.941015
http://doi.acm.org/10.1145/940991.941015
http://www.digitalhome.ca/2011/12/iptv-in-canada-an-update/
http://www.digitalhome.ca/2011/12/iptv-in-canada-an-update/
http://dx.doi.org/10.1145/1352012.1352020
http://dx.doi.org/10.1145/1352012.1352020
http://doi.acm.org/10.1145/1352012.1352020
http://tools.ietf.org/rfc/rfc7798.txt
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/The-State-of-MPEG-DASH-Deployment-96144.aspx
https://media.xiph.org/video/derf/

80 Bibliography

Zanaty, M., V. Singh, A. Begen, and G. Mandyam. 2018. RTP Payload For-
mat for Flexible Forward Error Correction (FEC) draft-ietf-payload-
flexible-fec-scheme-10. https : / / tools . ietf . org / html / draft -

ietf-payload-flexible-fec-scheme-10.

https://tools.ietf.org/html/draft-ietf-payload-flexible-fec-scheme-10
https://tools.ietf.org/html/draft-ietf-payload-flexible-fec-scheme-10

Appendices

81

Code Manual

The implementation of the most recent FEC draft used in this thesis can
be found here: https://bitbucket.org/mpg_code/generic_fec/src/

master/ The scripts used in the main experiment can be found here:
https://bitbucket.org/mrfonnes/mainexperiment/src/master/

83

https://bitbucket.org/mpg_code/generic_fec/src/master/
https://bitbucket.org/mpg_code/generic_fec/src/master/
https://bitbucket.org/mrfonnes/mainexperiment/src/master/

Experiment Results

The experiment results are presented in the following tables.

85

86 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

2 6 15.97% 1.07% 201ms 66.67%

2 7 16.22% 1.22% 201ms 64.29%

2 8 16.15% 1.48% 201ms 62.50%

2 9 16.02% 1.42% 280ms 61.11%

2 10 16.06% 1.67% 160ms 60.00%

2 11 16.14% 1.62% 280ms 59.09%

2 12 16.07% 1.93% 201ms 58.33%

2 13 16.34% 1.99% 161ms 57.69%

2 14 16.46% 2.26% 201ms 57.14%

2 15 16.44% 2.23% 280ms 56.67%

2 16 16.04% 2.51% 320ms 56.25%

2 17 16.01% 2.51% 280ms 55.88%

2 18 15.99% 2.78% 320ms 55.56%

2 19 16.06% 2.69% 320ms 55.26%

2 20 16.00% 2.53% 320ms 55.00%

2 21 16.03% 2.88% 239ms 54.76%

2 22 15.91% 2.75% 280ms 54.55%

2 23 16.15% 3.01% 320ms 54.35%

2 24 16.04% 3.15% 239ms 54.17%

2 25 15.99% 3.08% 320ms 54.00%

2 26 15.96% 3.07% 319ms 53.85%

2 27 16.16% 3.27% 280ms 53.70%

2 28 16.19% 3.45% 240ms 53.57%

2 29 16.50% 3.50% 400ms 53.45%

2 30 16.15% 3.56% 440ms 53.33%

2 31 16.01% 3.53% 320ms 53.23%

2 32 16.03% 3.71% 320ms 53.13%

2 33 16.07% 3.78% 479ms 53.03%

2 34 16.15% 3.90% 479ms 52.94%

2 35 16.09% 3.50% 480ms 52.86%

Table 1: First 30 experiment results.

87

L D Original Loss FEC loss Repair Window Overhead

2 36 16.10% 3.89% 320ms 52.78%

2 37 16.36% 3.91% 320ms 52.70%

2 38 16.22% 3.88% 320ms 52.63%

2 39 16.14% 4.07% 479ms 52.56%

2 40 15.92% 4.06% 320ms 52.50%

2 41 16.02% 3.96% 321ms 52.44%

2 42 16.07% 3.82% 321ms 52.38%

2 43 16.32% 4.03% 320ms 52.33%

2 44 16.14% 4.10% 479ms 52.27%

2 45 16.34% 4.40% 321ms 52.22%

2 46 16.04% 4.00% 480ms 52.17%

2 47 16.28% 4.16% 480ms 52.13%

2 48 16.21% 4.29% 479ms 52.08%

2 49 16.22% 4.19% 480ms 52.04%

2 50 16.18% 4.29% 480ms 52.00%

2 51 16.29% 4.58% 361ms 51.96%

2 52 15.99% 4.24% 479ms 51.92%

2 53 15.81% 4.34% 480ms 51.89%

2 54 16.08% 4.20% 480ms 51.85%

2 55 15.95% 4.54% 400ms 51.82%

2 56 16.26% 4.50% 480ms 51.79%

2 62 15.95% 4.36% 480ms 51.61%

2 63 16.09% 4.47% 480ms 51.59%

2 64 16.00% 4.44% 481ms 51.56%

2 65 16.12% 4.57% 480ms 51.54%

2 66 15.68% 4.31% 480ms 51.52%

2 68 15.71% 4.51% 481ms 51.47%

2 70 15.97% 4.70% 481ms 51.43%

2 73 16.14% 4.49% 481ms 51.37%

2 74 16.04% 4.77% 481ms 51.35%

Table 2: Next 30 experiment results.

88 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

3 3 16.41% 1.02% 161ms 66.67%

3 4 16.50% 1.28% 201ms 58.33%

3 5 16.70% 1.69% 200ms 53.33%

3 6 15.99% 1.77% 280ms 50.00%

3 7 16.05% 2.05% 201ms 47.62%

3 8 16.22% 2.17% 201ms 45.83%

3 9 16.41% 2.53% 280ms 44.44%

3 10 16.18% 2.55% 280ms 43.33%

3 11 15.93% 2.78% 320ms 42.42%

3 12 16.24% 3.27% 320ms 41.67%

3 13 16.20% 3.04% 320ms 41.03%

3 14 16.20% 3.30% 239ms 40.48%

3 15 15.89% 3.35% 280ms 40.00%

3 16 15.77% 3.47% 239ms 39.58%

3 17 16.01% 3.81% 280ms 39.22%

3 18 16.08% 3.92% 280ms 38.89%

3 19 16.40% 4.36% 479ms 38.60%

3 20 16.20% 4.31% 440ms 38.33%

3 21 15.80% 4.21% 479ms 38.10%

3 22 16.08% 4.53% 479ms 37.88%

3 23 16.18% 4.75% 479ms 37.68%

3 24 16.06% 4.77% 320ms 37.50%

3 25 15.90% 4.87% 480ms 37.33%

3 26 16.06% 5.19% 479ms 37.18%

3 27 16.12% 5.22% 320ms 37.04%

3 28 16.12% 5.22% 321ms 36.90%

3 29 16.01% 5.24% 400ms 36.78%

3 30 16.19% 5.88% 321ms 36.67%

3 31 16.23% 5.50% 321ms 36.56%

3 32 15.87% 5.32% 479ms 36.46%

Table 3: Next 30 experiment results.

89

L D Original Loss FEC loss Repair Window Overhead

3 33 15.94% 6.25% 321ms 36.36%

3 34 16.02% 5.84% 361ms 36.27%

3 35 16.28% 6.14% 400ms 36.19%

3 36 15.93% 5.73% 480ms 36.11%

3 37 15.92% 5.83% 401ms 36.04%

3 41 16.32% 6.39% 480ms 35.77%

3 42 16.12% 5.94% 480ms 35.71%

3 44 16.24% 6.39% 480ms 35.61%

3 45 15.94% 6.46% 480ms 35.56%

4 3 16.00% 1.30% 201ms 58.33%

4 4 16.33% 1.56% 201ms 50.00%

4 5 16.15% 2.27% 160ms 45.00%

4 6 16.17% 2.27% 201ms 41.67%

4 7 15.99% 2.48% 201ms 39.29%

4 8 16.31% 2.89% 320ms 37.50%

4 9 16.05% 3.12% 320ms 36.11%

4 10 16.05% 3.26% 320ms 35.00%

4 11 16.13% 3.76% 280ms 34.09%

4 12 16.06% 4.03% 239ms 33.33%

4 13 16.06% 4.12% 319ms 32.69%

4 14 16.16% 4.79% 240ms 32.14%

4 15 15.74% 4.43% 440ms 31.67%

4 16 15.90% 5.22% 320ms 31.25%

4 17 16.48% 5.40% 479ms 30.88%

4 18 16.08% 5.51% 320ms 30.56%

4 19 15.83% 5.51% 320ms 30.26%

4 20 16.45% 6.37% 320ms 30.00%

4 21 15.89% 6.07% 321ms 29.76%

4 22 16.04% 6.63% 479ms 29.55%

4 23 16.27% 6.60% 480ms 29.35%

Table 4: Next 30 experiment results.

90 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

4 24 15.97% 6.25% 479ms 29.17%

4 25 16.21% 6.73% 480ms 29.00%

4 26 15.94% 6.78% 479ms 28.85%

4 27 15.99% 6.87% 480ms 28.70%

4 28 16.15% 7.30% 480ms 28.57%

4 31 16.03% 7.03% 480ms 28.23%

4 32 15.84% 6.86% 481ms 28.13%

4 33 15.93% 7.34% 480ms 28.03%

4 34 16.10% 7.64% 481ms 27.94%

4 35 16.08% 7.42% 481ms 27.86%

4 37 16.27% 7.87% 481ms 27.70%

5 3 16.09% 1.50% 200ms 53.33%

5 4 16.39% 1.92% 160ms 45.00%

5 5 16.28% 2.35% 241ms 40.00%

5 6 15.78% 2.44% 280ms 36.67%

5 7 16.20% 3.16% 320ms 34.29%

5 8 16.37% 3.56% 320ms 32.50%

5 9 16.03% 4.05% 280ms 31.11%

5 10 15.76% 4.00% 320ms 30.00%

5 11 16.20% 4.99% 320ms 29.09%

5 12 16.21% 5.65% 440ms 28.33%

5 13 16.02% 5.61% 320ms 27.69%

5 14 15.99% 5.78% 480ms 27.14%

5 15 16.09% 6.11% 480ms 26.67%

5 16 16.42% 6.88% 320ms 26.25%

5 17 16.19% 6.89% 320ms 25.88%

5 18 16.03% 7.30% 321ms 25.56%

5 19 16.27% 7.47% 400ms 25.26%

5 20 15.93% 7.45% 480ms 25.00%

5 21 16.10% 7.48% 400ms 24.76%

Table 5: Next 30 experiment results.

91

L D Original Loss FEC loss Repair Window Overhead

5 22 16.01% 7.77% 400ms 24.55%

5 25 16.49% 8.68% 441ms 24.00%

5 26 15.97% 8.35% 480ms 23.85%

5 27 15.99% 8.36% 480ms 23.70%

5 28 16.05% 8.53% 481ms 23.57%

6 2 16.62% 1.25% 201ms 66.67%

6 3 16.29% 1.72% 280ms 50.00%

6 4 15.85% 1.90% 201ms 41.67%

6 5 16.45% 3.05% 280ms 36.67%

6 6 16.02% 3.28% 320ms 33.33%

6 7 16.22% 4.00% 239ms 30.95%

6 8 16.16% 4.24% 239ms 29.17%

6 9 16.34% 5.01% 280ms 27.78%

6 10 16.07% 5.25% 440ms 26.67%

6 11 15.91% 5.48% 479ms 25.76%

6 12 15.88% 6.09% 320ms 25.00%

6 13 16.04% 6.27% 479ms 24.36%

6 14 16.12% 6.73% 321ms 23.81%

6 15 15.80% 7.40% 321ms 23.33%

6 16 16.07% 7.87% 479ms 22.92%

6 17 16.05% 8.20% 361ms 22.55%

6 18 16.01% 8.29% 480ms 22.22%

6 21 16.18% 9.03% 480ms 21.43%

6 22 16.44% 9.56% 480ms 21.21%

7 2 15.99% 1.23% 201ms 64.29%

7 3 16.33% 1.86% 201ms 47.62%

7 4 15.96% 2.41% 201ms 39.29%

7 5 16.08% 3.23% 320ms 34.29%

7 6 16.03% 3.83% 239ms 30.95%

7 7 16.08% 4.45% 320ms 28.57%

Table 6: Next 30 experiment results.

92 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

7 8 16.08% 5.14% 240ms 26.79%

7 9 16.02% 5.66% 479ms 25.40%

7 10 16.32% 6.47% 480ms 24.29%

7 11 16.15% 6.91% 360ms 23.38%

7 12 16.23% 7.20% 321ms 22.62%

7 13 16.11% 8.01% 440ms 21.98%

7 14 16.44% 8.58% 480ms 21.43%

7 15 16.10% 8.51% 400ms 20.95%

7 16 15.84% 8.31% 480ms 20.54%

7 18 16.03% 9.43% 480ms 19.84%

7 19 15.85% 9.45% 481ms 19.55%

7 20 16.27% 10.22% 481ms 19.29%

8 2 16.27% 1.32% 201ms 62.50%

8 3 16.47% 2.38% 201ms 45.83%

8 4 16.09% 2.83% 320ms 37.50%

8 5 15.87% 3.21% 320ms 32.50%

8 6 16.12% 4.60% 239ms 29.17%

8 7 16.32% 5.48% 240ms 26.79%

8 8 15.96% 5.87% 320ms 25.00%

8 9 16.15% 6.74% 320ms 23.61%

8 10 15.90% 6.92% 320ms 22.50%

8 11 16.35% 8.27% 479ms 21.59%

8 12 16.44% 8.63% 479ms 20.83%

8 13 16.25% 8.95% 479ms 20.19%

8 14 16.09% 9.21% 480ms 19.64%

8 16 16.36% 10.27% 481ms 18.75%

8 17 16.31% 10.73% 481ms 18.38%

9 2 15.97% 1.31% 280ms 61.11%

9 3 15.89% 2.31% 280ms 44.44%

9 4 16.38% 3.44% 320ms 36.11%

Table 7: Next 30 experiment results.

93

L D Original Loss FEC loss Repair Window Overhead

9 5 16.33% 4.34% 280ms 31.11%

9 6 16.22% 4.77% 280ms 27.78%

9 7 16.40% 5.77% 479ms 25.40%

9 8 15.83% 6.41% 320ms 23.61%

9 9 16.24% 7.17% 320ms 22.22%

9 10 16.11% 8.24% 321ms 21.11%

9 11 15.87% 8.29% 321ms 20.20%

9 12 15.87% 9.04% 480ms 19.44%

9 14 16.14% 10.08% 480ms 18.25%

9 15 16.36% 10.80% 480ms 17.78%

10 2 16.22% 1.74% 160ms 60.00%

10 3 15.73% 2.24% 280ms 43.33%

10 4 16.19% 3.52% 320ms 35.00%

10 5 16.18% 4.27% 320ms 30.00%

10 6 16.29% 5.61% 440ms 26.67%

10 7 16.15% 6.28% 480ms 24.29%

10 8 15.96% 7.03% 320ms 22.50%

10 9 15.90% 7.96% 321ms 21.11%

10 10 16.05% 8.67% 480ms 20.00%

10 11 16.34% 9.63% 400ms 19.09%

10 13 15.77% 9.99% 480ms 17.69%

10 14 16.16% 10.86% 481ms 17.14%

11 2 15.93% 1.89% 280ms 59.09%

11 3 16.32% 2.71% 320ms 42.42%

11 4 16.33% 3.89% 280ms 34.09%

11 5 16.06% 4.74% 320ms 29.09%

11 6 16.08% 6.00% 479ms 25.76%

11 7 16.04% 6.79% 360ms 23.38%

11 8 15.95% 7.50% 479ms 21.59%

11 9 16.37% 9.25% 321ms 20.20%

Table 8: Next 30 experiment results.

94 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

11 10 16.23% 9.61% 400ms 19.09%

11 12 15.92% 10.38% 480ms 17.42%

11 13 15.68% 10.45% 481ms 16.78%

12 2 16.23% 2.14% 201ms 58.33%

12 3 16.10% 2.92% 320ms 41.67%

12 4 16.06% 4.00% 239ms 33.33%

12 5 16.15% 5.26% 440ms 28.33%

12 6 16.34% 6.96% 320ms 25.00%

12 7 16.14% 7.55% 321ms 22.62%

12 8 16.03% 8.19% 479ms 20.83%

12 9 16.07% 9.00% 480ms 19.44%

12 11 16.16% 10.78% 480ms 17.42%

13 2 15.99% 1.84% 161ms 57.69%

13 3 16.09% 3.02% 320ms 41.03%

13 4 16.27% 4.38% 319ms 32.69%

13 5 16.23% 5.81% 320ms 27.69%

13 6 16.11% 6.82% 479ms 24.36%

13 7 16.27% 8.00% 440ms 21.98%

13 8 16.20% 8.82% 479ms 20.19%

13 10 16.06% 10.50% 480ms 17.69%

13 11 15.95% 11.02% 481ms 16.78%

14 2 16.57% 2.16% 201ms 57.14%

14 3 15.93% 3.24% 239ms 40.48%

14 4 16.06% 4.55% 240ms 32.14%

14 5 16.00% 5.86% 480ms 27.14%

14 6 16.47% 7.67% 321ms 23.81%

14 7 15.87% 7.67% 480ms 21.43%

14 8 16.12% 9.25% 480ms 19.64%

14 9 16.18% 10.13% 480ms 18.25%

14 10 16.19% 10.94% 481ms 17.14%

Table 9: Next 30 experiment results.

95

L D Original Loss FEC loss Repair Window Overhead

15 2 16.28% 2.04% 280ms 56.67%

15 3 15.94% 3.43% 280ms 40.00%

15 4 16.03% 4.78% 440ms 31.67%

15 5 15.95% 5.73% 480ms 26.67%

15 6 16.43% 8.29% 321ms 23.33%

15 7 16.10% 8.59% 400ms 20.95%

15 9 15.96% 10.26% 480ms 17.78%

16 2 16.24% 2.12% 320ms 56.25%

16 3 16.40% 3.89% 239ms 39.58%

16 4 16.23% 5.35% 320ms 31.25%

16 5 16.07% 6.53% 320ms 26.25%

16 6 16.07% 7.69% 479ms 22.92%

16 7 15.89% 8.55% 480ms 20.54%

16 8 15.83% 9.78% 481ms 18.75%

17 2 16.11% 2.45% 280ms 55.88%

17 3 15.91% 3.64% 280ms 39.22%

17 4 16.36% 5.43% 479ms 30.88%

17 5 15.93% 6.51% 320ms 25.88%

17 6 15.90% 7.84% 361ms 22.55%

17 8 16.09% 10.16% 481ms 18.38%

18 2 16.35% 2.56% 320ms 55.56%

18 3 16.33% 4.29% 280ms 38.89%

18 4 16.11% 5.76% 320ms 30.56%

18 5 15.86% 6.76% 321ms 25.56%

18 6 16.40% 8.61% 480ms 22.22%

18 7 15.94% 9.07% 480ms 19.84%

19 2 16.39% 2.43% 320ms 55.26%

19 3 16.39% 4.41% 479ms 38.60%

19 4 16.03% 6.03% 320ms 30.26%

19 5 15.93% 7.21% 400ms 25.26%

Table 10: Next 30 experiment results.

96 Appendix . Experiment Results

L D Original Loss FEC loss Repair Window Overhead

19 7 15.92% 9.40% 481ms 19.55%

20 2 16.42% 2.64% 320ms 55.00%

20 3 16.03% 4.17% 440ms 38.33%

20 4 16.28% 6.30% 320ms 30.00%

20 5 16.17% 7.46% 480ms 25.00%

20 7 15.79% 9.50% 481ms 19.29%

Table 11: Last 6 experiment results.

	Abstract
	Acknowledgments
	Introduction
	Background and Motivation
	Problem Statement
	Approach
	Scope
	Outline

	Wireless Streaming in Dense Places
	Video Streaming
	Dynamic Adaptive Streaming over HTTP
	UDP Streaming
	Live Streaming

	Real-time Transport Protocol
	RTP
	RTCP
	RTP discussion & mechanisms
	Development of the RTP-standard
	2000s
	The history of RTP based research ideas & applications

	IP Multicast
	Internet Group Management Protocol (IGMP)

	Discussion and conclusions

	Generic Forward Error Correction in RTP
	Overview
	History
	RFC 2733
	RFC 5109
	SMPTE 2022-1

	draft-ietf-payload-flexible-fec-scheme-10
	Schemes
	FEC Repair Packet Construction
	FEC Packet Reconstruction

	Discussion and Conclusions

	Design
	Hardware Configuration
	Server
	Client
	Network Node
	Server Client Communication

	Preliminary Testing
	Findings

	Experiment Design
	Multimedia

	FEC Capture Procedure
	Loss Pattern
	FEC Configuration

	Discussion and Conclusions

	Implementation
	Live555 Streaming Media
	Flow of Operation

	Streaming Applications
	Sender Application

	FEC Components
	Sender Side
	Receiver Side

	FEC Encoding & Decoding
	FECEncoder
	FECDecoder

	Limitations
	Discussion and Conclusions

	Evaluation
	Experiment Summary
	Constraints

	Video Encoding
	Packet Loss
	Latency
	Correlation between latency and overhead

	Discussion and conclusions

	Conclusion
	Summary of Contributions
	Evaluation of the most recent FEC draft

	Critical Assessment
	Future Work

	Bibliography
	Appendices
	Code Manual
	Experiment Results

