
Processing Multimedia
Workloads with Intel Many

Integrated Core Architecture

A comparative study with work
scheduling

Sigurhjörtur Snorrason

Thesis submitted for the degree of
Master in Programming and Network

60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2016

Processing Multimedia
Workloads with Intel Many
Integrated Core Architecture

A comparative study with work
scheduling

Sigurhjörtur Snorrason

© 2016 Sigurhjörtur Snorrason

Processing Multimedia Workloads with Intel Many Integrated Core
Architecture

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

This thesis has a main goal of measuring how the Xeon Phi coprocessor
performs withmultimedia, especially video encoding. The research focused
on utilizing OpenMP and Cilk, both of which are language extensions for C,
with an Intel Xeon Phi coprocessor and CUDA, also a language extension
for C, with an NVidia GeForce Titan GPU to optimize a simple video
encoder. The encoder used was Codec63 which uses a 2D Discrete Cosine
Transform JPEG compression and motion estimation. We optimized the
encoder through parallelization and used offloading, which is when you
use the host CPU to transfer data to the Xeon Phi through instructions in
the code as a way to communicate between the host CPU and the Xeon
Phi coprocessor. The testing also focused on work scheduling algorithms
for parallel execution and we used static, dynamic and guided scheduling
for OpenMP along with the work stealing algorithm Cilk uses. Our focus
was mostly on parallelizing the motion estimation as the analysis proved
it to be the most time consuming part of the encoder. We compared
the improvements between the three language extensions and found that
OpenMP with static scheduling performed best on the Xeon Phi requiring
about 40% of the time the other scheduling algorithms needed. We also
found that a comparable CUDA implementation still performed better than
the Xeon Phi by about 10%.

i

ii

Acknowledgements

A thesis is never work of the author alone. There are a number of people
that assist and help, both directly and indirectly. This is certainly the case
with this thesis and I would like to acknowledge the people who have helped
me.

First of all any research like this can never be completed without backing of
both family and friends. So I would like to thank my family for supporting
me both in days of frustration and happiness. Special thanks to my partner
for her patience towards me while I have written this thesis and my mother
who has helped me with both support and proofreading.

Also to my friends and fellow students, whom I have shared the study room
Assembler with. They have always been willing to give advice in times of
need.

And last but not least to my supervisors, Preben Olsen and Håkon Kvale
Stensland, for the help they given by answering any questions I have had
throughout the research. I would also like to offer a special thanks to
professor Pål Halvorsen who helped read through the thesis and gave
advice towards the end of the research.

I hope you as a reader enjoy this thesis and it offers you some insight into
both the field of multimedia and the hardware used in the research.

iii

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Limitations . 4
1.4 Research Method . 6
1.5 Main Contribution . 6
1.6 Outline . 7

2 Hardware and Scheduling 9
2.1 Intel Many Integrated Core Architecture 9

2.1.1 Capabilities of the Knight’s Corner 11
2.1.2 Using the Xeon Phi . 11
2.1.3 OpenMP . 13
2.1.4 Cilk . 14
2.1.5 SIMD Intrinsic . 15

2.2 Graphics Processing Units and CUDA 15
2.2.1 Kepler GK110 . 17
2.2.2 CUDA . 17
2.2.3 Difference in Coding Environments 19

2.3 Work Scheduling . 20
2.3.1 History of Work Scheduling 21
2.3.2 Work Stealing . 21
2.3.3 Work Sharing . 22
2.3.4 Work-requesting . 24
2.3.5 Work Scheduling Algorithms on the Xeon Phi 24
2.3.6 CUDAWork Scheduling 26

2.4 Summary . 28

3 Video Processing 29
3.1 MJPEG . 29

3.1.1 JPEG . 30
3.2 H.264 and Motion Estimation 32
3.3 Summary . 33

4 Designing Optimizations for Codec63 35
4.1 Codec63 . 35

4.1.1 Inter-frame Prediction . 36

v

4.1.2 The Flow of Codec63 . 37
4.2 Profiling Codec63 . 39
4.3 What to Improve . 40

4.3.1 Motion Estimation . 41
4.3.2 Quantization and Dequantization 42
4.3.3 Motion Compensation . 43
4.3.4 Offloading . 43

4.4 Related Applications . 44
4.5 Summary . 44

5 Parallelizing Video Processing for Xeon Phi and NVidia
GPUs 47
5.1 Setting up the Machine . 47

5.1.1 Software for the Xeon Phi 48
5.2 Programming the Encoder with OpenMP 49

5.2.1 Preparing to Offload with OpenMP 50
5.2.2 OpenMP Optimizations 53
5.2.3 Testing OpenMP with Offloading 55
5.2.4 Measuring Encoding Only 56

5.3 Cilk . 59
5.4 Fixing the Baseline Code . 62
5.5 Results from Encoding on the Xeon Phi 64

5.5.1 General Results from OpenMP Encoding 64
5.5.2 Increased Run Time with 32 Threads 66
5.5.3 Encoding Only . 67
5.5.4 Running Natively on the Xeon Phi 68
5.5.5 Cilk . 70

5.6 Implementing in CUDA . 70
5.7 Results from the CUDA Implementation 74
5.8 Problems During Implementation 74
5.9 Comparing All Three . 75
5.10 Complexity . 76
5.11 What Does It Mean? . 77
5.12 Summary . 77

6 Conclusion 79
6.1 Summary and Main Contributions 79
6.2 Future Work . 80

A Execution times 83
A.1 Baseline . 83
A.2 OpenMP first attempts . 83
A.3 Fully parallel OpenMP tables . 84
A.4 Encoding times with ME only . 87
A.5 CILK . 88
A.6 CUDA execution times . 88
A.7 Encoding only measurements . 89

vi

B Code details 91
B.1 OpenMP . 92
B.2 Cilk . 94
B.3 CUDA . 95

C Codec63 101

vii

viii

List of Figures

2.1 Xeon Phi Architecture [14] . 10
2.2 OpenMP language extensions [26] 14
2.3 Kepler GK110 Architecture [41] 18
2.4 CPU vs GPU [29] . 19
2.5 Child Stealing [46] . 23
2.6 Work Stealing . 23
2.7 Example of work stealing Cilk threads 26
2.8 A streaming multiprocessor in CUDA 27
2.9 A warp scheduler . 27

3.1 2D DCT Cosine Wave Table [5] 31
3.2 1D DCT formula [49] . 31
3.3 2D DCT formula [49] . 31
3.4 Equation for sum of absolute differences [2] 33

4.1 Codec 63 [42] . 36

5.1 Full motion estimation parallelization vs loops only 49
5.2 Motion estimation and optimized best SAD 54
5.3 OpenMP Foreman execution graph 56
5.4 OpenMP Tractor execution graph 56
5.5 OpenMP Bagadus execution graph 57
5.6 OpenMP Foreman_4K execution graph 57
5.7 OpenMP Foreman encoding only 58
5.8 OpenMP Tractor encoding only 58
5.9 OpenMP Bagadus encoding only 59
5.10 OpenMP Foreman_4K encoding only 59
5.11 Cilk Foreman . 61
5.12 Cilk Tractor . 61
5.13 Cilk Bagadus . 62
5.14 Cilk Foreman_4K . 62
5.15 Baseline execution times without language extensions 64
5.16 Combined scheduling for Foreman 65
5.17 Combined scheduling for Tractor 66
5.18 Combined scheduling for Bagadus 66
5.19 Combined scheduling for Foreman_4K 67
5.20 The faster 32 thread run . 68
5.21 The slower 32 thread run . 68

ix

5.22 Measurement of encoding only on Foreman 69
5.23 Measurement of encoding only on Foreman_4K 69
5.24 Profiling Cilk . 70
5.25 CUDA Foreman execution time graph 72
5.26 CUDA Tractor execution time graph 73
5.27 CUDA Bagadus execution time graph 73
5.28 CUDA Foreman_4Kexecution time graph 74

x

List of tables

2.1 Kepler GK110 and related architectures [31] 16

4.1 Profiling of the Foreman video 40
4.2 Profiling of the Foreman_4k video 40

5.1 Profiling full parallelization . 50

A.1 Baseline execution times . 83
A.2 Execution Time with motion estimation parallelized 83
A.3 Improved Parallel motion estimation 84
A.4 Motion estimation and optimized best SAD 84
A.5 Foreman execution times without offload 84
A.6 Tractor execution times without offload 84
A.7 Bagadus execution times without offload 85
A.8 Foreman_4k execution times without offload 85
A.9 Foreman with offload . 85
A.10 Tractor with offload . 85
A.11 Bagadus with offload . 86
A.12 Foreman_4k with offload . 86
A.13 Foreman encoding per frame - 100 frames 87
A.14 Tractor encoding per frame - 100 frames 87
A.15 Bagadus encoding per frame - 100 frames 87
A.16 Foreman_4k encoding per frame - 100 frames 87
A.17 Cilk without offload . 88
A.18 Cilk with offload . 88
A.19 Cilk without shared memory updates 88
A.20 CUDA execution times. Each block has 16x16 threads 89
A.21 Encoding only without offload 89
A.22 Encoding only with offload . 89
A.23 Encoding only without offload on Foreman_4k 90
A.24 Encoding only with offload on Foreman_4k 90

xi

xii

List of Code Examples

2.1 Example of an offload . 12
2.2 Example of Cilk code . 15

4.1 common_C63 struct . 37
4.2 A frame struct . 38
4.3 Loops in Codec63 . 41

5.1 How we offloaded data . 52
5.2 Original way of finding the best SAD 53
5.3 SIMD operation to find index of lowest value 54
5.4 Comparing Cilk and OpenMP loops 60
5.5 Allocating and freeing in Cilk . 60
5.6 The next frame function . 63
5.7 Our loops in CUDA . 71
5.8 Motion estimation loop example in CUDA 71
5.9 Find smallest value reduction . 72

B.1 The full c63_common for OpenMP after optimization 92
B.2 Optimizing SAD calculations . 93
B.3 The looped reading of a frame . 94
B.4 The method executing our CUDA kernels 95
B.5 The first encoding method CUDA 96
B.6 The second encoding method for CUDA 96
B.7 The third encoding method CUDA 97
B.8 The setup for SAD calculations in CUDA 98
B.9 The parallel reduction to find the lowest value 99

xiii

xiv

Chapter 1

Introduction

In recent years, the evolution of computational power has moved to being
focused onmulti-cores. This comes as a result of hardware reaching a point
where we can no longer cool it down at higher CPU frequencies than we
currently have [36]. The key to utilize the power of a CPU then is concurrent
programing on multiple CPUs. The most commonly used method for
concurrent programming is threads. Threads, however, are not just threads
as there are multiple ways of setting up and using threads, both in regards
to hardware and then various scheduling algorithms. Multimedia is also an
important part of daily life and to get the most out of computers we need to
consider parallelism for multimedia.

1.1 Background and Motivation

The research in this thesis focused on parallel multimedia code which is
likely to be important due to the recent explosion in multimedia [28] of
all types. We are moving more towards a world were we can find all
we want in a streamable format. YouTube is one of the more popular
websites [3] [38] where everything is streamed, and there are a number of
similar sites. As multimedia calculations can be very complex and require a
lot of computational power using single threaded programs is not optimal.
Especially as some of the calculations can often be done in parallel without
problems. Research into multimedia use is therefore more important than
ever.

One type of hardware utilizing multiple cores is the Xeon Phi. It is
based on the Larrabee microarchitecture [21]. Originally, the Larrabee
microarchitecture included graphics processing support and there were
plans to create a graphics processing unit (GPU) from the research on the
Larrabee [37]. As the Xeon Phi was based on this architecture, it bears
a bit of resemblance to GPU with the cores it has. However, the actual

1

Xeon Phi is purely meant as a High Performance Computing (HPC) device.
We will call the Xeon Phi non-heterogeneous because of how it requires a
host processor for the work we do even if the internals of the Xeon Phi are
heterogeneous.

Another type of hardware is the General-purpose computing on graphics
processing units (GPGPU). The GPGPU has come a long way from being
just a GPU [10]. GPGPU is in short the ability to do calculations on a
GPU, and originally, almost solely applied to computations in relation to
graphics. However, more recently, they have become more accessible for
all types of other calculations that benefit from parallelism.

What will be interesting to see is how the Xeon Phi coprocessor fares
against the GeForce Titan GPU as the media encoding done in this thesis
will have little load imbalance between threads. This is true as media
encoding contains a lot of calculations based on balanced vectors. The
GeForce Titan GPU is optimized towards drawing, shading and in general
doing smaller calculations. It is therefore expected that the GeForce Titan
will achieve better results than the Xeon Phi. All our runs will also be done
on the host machine where both the GPU and the Xeon Phi are hosted so
that we can compare runs to how they would do on just the host computer.

It is important to do studies on how suited CPU andHPC are formultimedia
workloads and comparative studies between GPGPU and HPC. GPU’s have
been the go to hardware for calculating graphics, including images and
other code that could be run in parallel. However, the Xeon Phi is starting
to offer new ways of doing so, and it is therefore important to follow how
viable the Xeon Phi is. Especially interesting also, is to see how various
scheduling algorithms can affect execution times of the parallelization and
the speed of the Xeon Phi.

It is also intersting to see how easy it is to manage moving code onto multi-
core platforms. The same can be said about the CUDA platform. The coding
is not something you can access straight away but will require a somewhat
step learning curve to get benefits of running code through it.

As can be understood, there are a lot of potential problems that have to be
solved for multimedia. To keep up with demands we need to be able to
process multimedia faster and faster. Not only that, but we also need to
find a way to do it in a smarter way as CPU power has a limit to how much
help it can offer us.

1.2 Problem Statement

With this in mind, the aim in this thesis is to test various ways of utilizing
multi-core architecture to optimize a naive and simple video encoder, called

2

Codec63. Manycore architectures will be examined, specifically the Intel
Xeon Phi, in regards to usability. Another examination will be done on
a GPU. The thesis will also compare the three language extensions for C
we have available, Open Multi-Processing (OpenMP), Cilk and Compute
Unified Device Architecture (CUDA) along with a baseline code written in
plain C. All three language extensions offer various ways of handling our
Codec63 encoder with Cilk and OpenMP running through the Xeon Phi and
CUDA through the GeForce Titan GPU.

We will be looking at both the hardware and the ease of programmability.
The main hardware used, as stated, is the Xeon Phi and we will compare
it to both a GPU and a CPU. The focus will be on how efficient it is to
compare hardware and how easily you can code optimized code. We also
want to be able to predict problem areas with using the Xeon Phi, which
complexities does it give and which areas suffer from badly optimized
code? As is known, the Xeon Phi is mostly used as a high performance
computing (HPC) accelerator [34] so the aim is also to find out how well it
performs in regards to multimedia. Furthermore, the aim is to find more
and better ways to handle multimedia. This is important as more and more
of computing is going into handling exactly multimedia. Seeing how GPUs
have always been the best setup for multimedia it will be interesting to find
out how the non-heterogeneous architecture of the Xeon Phi compares.

Part of the research will also be focused on checking how various scheduling
methods affect the Xeon Phi. We will test the code with static, dynamic
and guided scheduling. We will also look at testing with a mix between the
scheduling methods during a single run. We expect that static scheduling
will perform better than the other two, but when doing runs with much
code and very broad loops that guided and dynamic would outperform and
therefore that a mix between static and the other two methods will produce
the best results.

We will use the Codec63 [39], a modified variant of the MJPEG encoder.
The main difference is that the Codec63 adds intra-frame dependencies
compared to MJPEG. This means that Codec63 behaves much like H.264,
but in a much less complex way. The Codec63 is meant for teaching and is
therefore not how you would assume an encoder would behave but serves a
purpose due to the stripped down functionality.

Due to the structure of the Codec63 it is expected that most of the
improvements can be found within the motion estimation. This is because
of the amount of data each macroblock will go through to reach a result
about what the best motion vector is. Because of how the search is done for
the motion vectors we can easily share data between threads without many
memory access problems for the macroblocks as they cover a relatively
large area. However, the deeper into the search pattern one would go with
the parallelization the closer each memory access gets. Finding this cut-off
point is therefore important. The DCT part however is a much smaller area

3

of data which will require a very strong division between work areas.

The proposal is that it should be easily achievable to get a speed increase
for the code with parallelization. However, reaching the full potential
of the hardware will require a lot of effort due to how the encoder is
constructed. We also expect to see serious effects from incorrect use of
memory access. Due to how the parallelization works in for example
OpenMP the expectation is that controlling these memory conflicts will be
very hard.

It is expected that the results will fit with what has currently been
researched. That good use of the Xeon Phi is a bit harder to do than
one would expect. That means that everyone should be capable of some
improvements over the original code but not on par with what the Xeon Phi
can offer. This is because of how simple OpenMP is and memory control
is more done by the compiler than the actual programmer, meaning that
while everyone should be able to get results the advanced users can expect
to be limited by this [18]. We also expect to see that getting stronger results
should be easier on the GPU than the Xeon Phi, although smaller difference
on videos with smaller resolution.

We also expect a big ramp up in complexity based on howmuch we attempt
and manage to get out of the Xeon Phi. That is the most optimal coding
on the Xeon Phi requires a lot of work so reaching the max theoretical
computing speed of the Xeon Phi will be very hard.

The goal of the CUDA part is to compare it to the OpenMP and Cilk
implementations so we will be making a implementation mimicking the
OpenMP and Cilk setup. CUDA has a very different approach as everything
is set up in warps and each thread is more lightweight. That alsomeans that
each thread requires less overhead to start. With that in mind the approach
would usually be more on maximizing thread usage than ease of coding.
As such, the OpenMP and Cilk codes are usually more based on portability
and ease of implementation making a portable CUDA code is a challenge
on its own, and will be interesting to see how it compares when created in
a portable way.

This, however, is not as easy as one would expect as the CUDA language
expects that total threads and threads per block should be set up before
compiling meaning that dynamic loops based on variable thread counts
require some extra calculation when coding. The same setup in both
OpenMP and Cilk much simpler to do and if this is as we expect using the
Xeon Phi would be easier than the GPU.

4

1.3 Limitations

All the tests will be done with Codec63 encoder. The experiments will only
cover the parts of Codec63 that are relevant, which are the ones relating
to the actual encoding. Hard disk drive input and output operations are
not relevant to this research. However, other input and output operations,
like offloading, are. The reason we exclude hard drive operations is that
both the Xeon Phi and the Kepler GK110 do not directly interact with them.
They always use some intermediary device. Hard disk drive optimizations
are therefore outside the scope of this research.

Codec63 will be run with four different videos, foreman.yuv, tractor.yuv,
bagadus.yuv and foreman_4k.yuv. Each of these videos are raw YCbCr
format videos with each frame split into the three aspects with no
extra data. Foreman.yuv is a 352x288 resolution video, tractor.yuv is a
1920x1080 resolution video, bagadus.yuv is a 4096x1680 resolution video
and foreman_4k.yuv is a 3840x2160 resolution video.

We will do 100 frames of encoding per video. The keyframe interval is set
by default to 100 frames, so we get the full content between frames per
run. Even if the videos do contain varying amount of motion and frequency
changes which wemight get more of as we runmore than 100 frames this is
outside the scope of the thesis. This would be more a measurement of how
well the Codec63 works in regards to compression and loss of quality and
the efficiency of the codec. However, our goal is to see how the Xeon Phi
does and compares to the Kepler.

This thesis is will not be looking towards finding the best and fastest use of
either the Xeon Phi or the GeForce Titan. The goal is a comparative study
and looking at how the Xeon Phi does with multimedia work. As such the
code still has other potential optimizations that will not be explored.

We only compare the Xeon Phi to a Kepler GPU. The Kepler GPU is closest
to the Xeon Phi we have based on the time of release and it therefore offers
the best comparison.

We have decided on using C, Cilk, OpenMP and CUDA for our program-
ming. Even if the Xeon Phi supports Fortran through OpenMP as well,
including it should not give us any new results. Fortran would utilize the
same paralellization extensions through OpenMP. The encoder we use for
testing is also written in C so to test Fortran the encoder would need to be
fully rewritten in Fortran. This would only give us a comparision between
our encoder written in C and another one written in Fortran which is not
what we are looking for in this thesis.

We will not compare SIMD operations on either the Xeon Phi or the Kepler
GPU or do assembler instructions specific to the Xeon Phi. This is as Intel’s
C++ Compiler (ICC) is based on C++ compiler and does not do well with

5

C based SIMD instructions. As we are limiting the Xeon Phi to non-SIMD
instructions we also do so with the GPU. This is something that should be
considered for a different thesis and we discuss that in chapter 6.2.

The thesis will also not look towards improving the way the Codec63
encoder works or different encoding algorithms. We will not look at
ways to improve either the encoder without parallelization or other related
applications. The Codec63 has plenty of areas which can be improved
directly, but we chose a very simple encoder to be able to monitor
performance. In addition only the basic difference between H.264 and
Codec63 will be covered. H.264 has more complex set up and does not suit
well for our experiments. Improving the Codec63 encoder directly would
therefore hinder the research.

1.4 Research Method

Most of the research will be based on themethodology specified by the ACM
Task Force on the core of computer science [16]. The main methodical
approach will be quantitative as most of the actual research will be focused
on implementing prototypes of Codec63 and from running experiments on
the Xeon Phi compared to other platforms.

The project focuses mainly on an actual implementation while being
independent from other projects. This means that our role in the whole
project covers mostly everything required. The key studying points are
therefore the actual performance of the implementation and how easy it
is to implement. Also, the data collected is not sensitive so there is a very
limited ethical aspect to this research.

1.5 Main Contribution

This thesis will show that getting better results on the Xeon Phi is verymuch
possible. However, offloading operations, where we transfer data to the
Xeon Phi, limit the results, especially in regards to multimedia. It will be
shown that static work scheduling will provide best results for multimedia
when only using a single scheduling algorithm. This is due to how much of
multimedia code is structured and does not cause load imbalance. The best
result, however, comes from a combination of scheduling algorithms.

We found out that doing to much parallelization impeded the performance
of the Xeon Phi. This was specially apparent when we parallelized
operations in our sum of absolute differences. All the calculations there
happen in a 8x8 pixel block and the Xeon Phi suffered heavily from cache
misses.

6

We also found out that GPUs are still better at parallelizing multimedia
code than the Xeon Phi, even if the Xeon Phi has taken big strides towards
reaching the level of the GPU. We did this by creating as identical code as
possible in C, Cilk, OpenMP and CUDA. This should give the best way of
comparing. A few tests were made that aimed at looking into code for the
Xeon Phi that are more advanced than what we will do in CUDA to see how
the Xeon Phi fares at an even higher level.

The results show that the actual encoding was faster on the Xeon Phi. But
because the overhead from offloading the results from our runs show that
the native execution was faster. What also has to be taken into account is
that the native PC is fairly powerful meaning that the native encodingmight
be faster just in this case.

The Xeon Phi did not do well with code that allocated and freed memory
per frame as the Codec63 encoder was set up to do. A much better
approach was reusing memory as much as possible. We therefore altered
the encoders basic behavior more than was expected.

Generally according to the study, Cilk performed worse. Mostly this was
due to memory control with shared memory but also because of the work
stealing algorithm Cilk uses. Changing the behavior to not update the
shared memory per memory access but instead only when the offloaded
section was completed gave us results that should be expected with work
stealing.

1.6 Outline

In this chapter the thesis was introduced. This includes the goal and
limitations along with the motivation behind it.

In the next chapter the detail of the software and hardware we use will
be presented, along with a bit of history behind it. The work scheduling
algorithms in general will be discussed and the ones used with our
hardware.

Chapter three is about video processing. This includes the theory behind
MJPEG, JPEG and H.264. It includes the algorithms we will mostly be
looking at.

The fourth chapter contains an explanation of Codec63, the encoder we will
be using for encoding. Chapter four also details the design decisions made
in this thesis in regards to how to work on the code. This includes the ideas
for what can be optimized for Codec63.

Chapter five details on how the implementation was made, results from the
implementations and a discussion about them.

7

We conclude the thesis in chapter six by summarizing our work and
discussing potential future work based of this thesis.

There are two appendices at the back, one containing the tables with the
runtime data and the other with code examples of the optimizations done
to the code.

8

Chapter 2

Hardware and Scheduling

In this chapter, it will be described how the hardware for the thesis works.
The chapter starts with explaining the Many Integrated Core Architecture
(MIC) and the language extensions that apply to it. MIC in this case is the
core structure in the Xeon Phi. This is followed by details around GPU
and GPGPU programming. A GPU is mostly meant to render and display
images. However, the thread structure it has for displaying images makes
it also very useful for parallel calculations. Lastly, the chapter discusses the
work scheduling algorithms that will be looked at and used in the hardware
being used.

We will discuss a bit in chapter 2.3 that we want to find out how the
hardware does with multimedia. A part of that is to understand how
our hardware and scheduling algorithms work, to get an idea on both
how to implement and how to recognize the results we get from the
implementation. This will both help us understanding what the hardware
does and then what code is good code and what code might not be that
good.

2.1 Intel Many Integrated Core Architecture

The Xeon Phi is a multiprocessor PCI card made by Intel. The idea
is that one can use it for multithreaded computations, but unlike their
CPU counterparts it has a much higher number of cores. This is then
comparative to normal GPU’s of the same type [37] even if GPU’s tend to
have higher number of threads.

Xeon Phi is the branding name of the Intel Many Integrated Core
Architecture (MIC). It started out with Intel adding 512-bit SIMD units
to the x86 architecture, with capability of four-way multithreading. This
was based on research done with the Larrabee architecture. This was the

9

basis for the Knight’s Ferry, the Knight’s Corner and the Knight’s Landing.
The Knight’s Ferry is the prototype of the MIC and was announced 2010.
It had 32 cores with 4 threads per core and reportedly reached over 750
GFLOPS. The first generation was the Knight’s corner which has 50 cores
per chip. Second generation is the Knight’s Landing, which includes 72
cores, while Intel has announced that it will release the third generation
with 10nm cores [34].

The basic structure of the Xeon Phi evolves around a ring interconnect
connecting caches, tag directories, memory controllers and a PCIe Client
Logic [14] as we see in figure 2.1. Each core comes with a private
cache connected to this ring interconnect and the cache is kept full by a
tag directory. The memory controllers provide a direct interface to the
GDDR5 memory on the coprocessor and the PCIe Client Logic does the
same towards memory through the PCIe bus. The interconnect ring is a
bidirectional ring with each direction having three rings. These rings are
a data block ring, address ring and an acknowledgement ring. They then
communicate between the various controllers and are for example used
on cache misses to check other caches and memory. This allows for a
streamlined and high bandwidth performance between multiple cores.

Figure 2.1: Xeon Phi Architecture [14]

The Xeon Phi with a Knight’s Corner MIC will be the basis for testing the
theories with how to be handle migration of work between processors. As
the Xeon Phi is fairly simplistic in use while very powerful, we should be
able to get many details around how to best do native work stealing. The
MIC has support for OpenMP, OpenCL, Cilk and then specialized versions
of Fortran and C++ from Intel.

This gives excellent ways of testing in various languages that have different

10

setups when it comes to work scheduling in regards to work stealing and
work sharing, both of which are discussed in chapter 2.3.

2.1.1 Capabilities of the Knight’s Corner

The Xeon Phi used in the experiment is based on the 22nm Lithography
with a base frequency of 1.2ghz with 61 cores along with 8MB shared
coherent cache and 2GB DDR5 memory. The Xeon Phi has excellent
computing power, well exceeding that of your normal CPU. The Intel Xeon
Phi is a heterogeneous platform, but can be considered not being one
because of how much work it does in collaboration with the CPU.

However, to utilize it, one has to be proficient in coding in a multi-
core environment. Even if compilers have gotten far with improving
performance, they are far from perfect and require a lot of help from the
programmer. Therefore, without proper coding techniques, one can not
except to achieve the capabilities that the Xeon Phi can reach [19]. A key
thing to consider when parallelizing code, is false positives on memory
accesses. A false positive memory access happens when a core tries to
access a memory region that is in close proximity to another region that has
just been access. The proximity here is a few bytes at most. The cache will
then think that memory is also accessible through it, but it is not. This will
then cause a second lookup where the memory is moved. This can cause a
big degradation in performance in the code and is something that is very
important to consider when optimizing code.

2.1.2 Using the Xeon Phi

The Xeon Phi supports multiple ways of utilizing it. In this section the
primary focus will be on the OpenMP language and on the Cilk language
for testing. OpenMP has an easy way of taking current C code and utilizing
the threads on the Xeon Phi. Cilk is then a C dialect based purely on
having multi-threaded purpose. There are also other languages that can
be used but they are outside the scope of this thesis. One way of running
the code can then be through offloading, where certain areas of the code
get transferred to the Xeon Phi during execution time. Other options to
offloading are for example by using a Message Passing Interface (MPI),
which lets processors and coprocessors communicate without offloading,
or by running the code directly on the Xeon Phi [24]. We can still
use offloading with MPI though. Both ways will be tested to see how
comparable they are. A big factor to consider though is that code can
not always run natively as data might often be transmitted from other
sources, such as the hard disk, various types of PCI cards and other
ways. In those cases the data would also first need to be transferred
which makes transferring only certain calculations more effective. This is

11

also very important to consider as GPUs can not be used directly as host
environments for calculations as the Xeon Phi can.

A very important thing to consider is that it is possible to utilize multiple
Xeon Phis as the same time. The research in this thesis is only aimed
towards one but using multiple cards can alter the way you need to think
in regards to transfers of data. In that way, one card might become the
host offloading to another one, or you might divide work by offloading to
both cards from the host computer. This might alter if the way you want to
communicate or transfer data between various processors or coprocessors.
The biggest thing one has to consider though is the overhead of the transfer
versus the limitedmemory on Xeon Phi when deciding on offloading versus
using other methods like MPI.

Offloading

Offloading work and data to the Xeon Phi is most common way of utilizing
the Xeon Phi. Offloading uses pragmas to allocate and deallocate data areas
and to transfer data to these areas. Offloading can be done by moving
data in before the start of the offloaded section, moving data out after the
offloaded section, moving data both in and out and then by not transferring
any data. Not transferring data usually applies to data that has already been
transferred or just to allocate memory to store other data.

Code Example 2.1: Example of an offload
1 int a = 0, *b, *c;
2

3 b = malloc(N);
4 c = malloc(N);
5

6 #pragma offload target(mic) inout(a) \
7 in(b : length(N) alloc_if(1) free_if(1)), \
8 out(c : length(N) alloc_if(1) free_if(0))
9 {}
10

11 #pragma offload target(mic) \
12 nocopy(c : length(N) alloc_if(0) free_if(1))
13 {}

An example of how to offload can be seen in code example 2.1. In this
example we can see three variables being transferred. The integer named
a gets transferred in and then out. As this is a single integer we do not
need to specify the size of it. Then we see a integer pointer called b being
transferred in. As this is a pointer we need to specify the size of it. This is
done by the length(N) in the call. We then allocate that memory area on
Xeon Phi with alloc_if(1) and at the end of the offloaded section we free the

12

memory with free_if(1). The c variable is also an integer pointer but will
only be transferred from the Xeon Phi after the offloaded section ends. It
has the same setup as b otherwise except we do not free the memory used
after the offloaded section. This is denoted by the free_if(0). We then have
a second offload. This offloaded says we will use the c variable again, but
this time without any data transfer. It was allocated earlier so we do not
need to allocate it again and say so with the alloc_if(0) specifier. We then
free thememory when we are done with free_if(1). These are the basic ways
we can transfer data and work.

In regards to offloading, it is important to be aware of what is transferred
to the Xeon Phi, what is declared on the Xeon Phi and what does not need
transferring. Also, it is important to be aware of what gets transferred back.
These operations have varying costs and need to be cost efficient to be worth
it. According to Jeffers and Reinders [24] the offloadmodel of the Xeon Phi
is quite rich, and the syntax and semantics are generally a superset of other
offload models. This is the reason that OpenMP can so easily manage and
control multiple offload targets during execution time and is an important
consideration when deciding if offload is the best way.

Native Xeon Phi Execution

There are other ways of running code through the Xeon Phi. It is also
possible to run the code natively on the Xeon Phi. This, instead of moving
parts of the code during execution time to the Xeon Phi, moves all the
code before execution time to the Xeon Phi memory. Then you got options
of running the code on either platforms but communicate important data
between processors and coprocessors with message passing. The native
code works much like a host running it and we got all the options we would
in the host. The message passing lets us transfer important information
between various processors and coprocessors that are running [24].

The project will be utilizing offloads most of all. There will be a small test
with native executions but considering the size of the data we are working
with, we are somewhat limited. By using just one Xeon Phi the research
itself is also directed towards offloads as message passing requires multiple
Xeon Phis to effectively test.

2.1.3 OpenMP

OpenMP is an API for programming in C and C++. It can also be used
for Fortran based programs but this thesis will not cover any details about
Fortran. It is used by giving directives to the compiler, library routines and
environment variables to control the parallelism of programs. The core

13

is the constructs for thread creation using so called pragmas. This way it
creates work sharing between cores on a given environment. See figure 2.2.

The key goal with OpenMP is to make it easy to convert linear code to
parallel programs [20]. This is done by these pragmas that can easily
convert loops into parallel executions. However, one must be truly careful
withmemory access during preprocessing of the pragmas. It is also possible
to select if you want to run the whole thing natively or by offloading certain
regions of the code. While in short this is fairly easy, it adds a big complexity
factor to it.

The key part of OpenMP is as stated the actual use of pragmas to parallelize
code regions. As these are just compiler instructions, they are fairly easy to
implement, meaning even programs that have no parallel support can with
a few lines become fully parallel. However, this does not guarantee a speed
up as best parallel performance happens through contiguousmemory while
you should not have two threads accessing the same memory area. If two
threads access the same memory area you can get so called false sharing
hits.

In figure 2.2 you can see the various extensions that OpenMP offers. These
include parallel control structures, synchronization directives and runtime
functions. It is important to know these to be able to utilize OpenMP.

Figure 2.2: OpenMP language extensions [26]

2.1.4 Cilk

The Cilk language started as three separate research projects at MIT [15].
Later on, it was carried on by the Cilk foundation and made into Cilk++
before being acquired by Intel. The key factor with the language is that
the programmer is responsible for assigning the areas that can be run in
parallel while the scheduler takes care of the actual multi-threading. To
assign which things can run in parallel, one sets a so called spawn on a
function call. This defines that the function can be run in parallel and the
language takes care of the rest.

14

Code Example 2.2: Example of Cilk code
1 void runaround() {
2 int i;
3 cilk_for(i = 0; i < 10; i++) {
4 sleep(1);
5 }
6 }
7

8 int main() {
9 cilk_spawn runaround();
10 printf("Hello World");
11 cilk_sync;
12 return 0;
13 }

So as an example, we can create a simple loop as we see in code examples
2.2. The loop should be run in parallel with the cilk_for instruction while
we also execute a simple instruction, the printf, in parallel before syncing
all the threads on the cilk_sync call. As we can see the code changes are
minimal compared to normal code and the coder does not need to do much
work.

2.1.5 SIMD Intrinsic

As noted before the Xeon Phi is based on the Larrabee architecture.
Part of what remains from the Larrabee architecture is SIMD intrinsics.
SIMD intrinsics are CPU instruction specially targeted towards vector
calculations. The basis for graphics calculations is vector instructions,
often in 2D or more. So, SIMD instructions are mostly used for graphics
processing. The biggest difference from what you find on standard CPUs,
which is AVX today, compared to our Xeon Phi is that you have amaximum
size of 512 bit registers instead of 256 bit.

2.2 Graphics Processing Units and CUDA

A GPU is in short a piece of hardware meant for processing images or
videos. As images consist of a lot of pixels that are independent of each
other, a parallel drawing of it often tends to be more efficient. You can then
assign a pixel or many pixels if needed to a single thread, which then draws
it while the other threads draw other ones. As they are independent of each
other there is little parallel synchronization required.

GPU’s have in general been based on having many but smaller cores than
the average CPU. Thismakes rendering images a lot easier [9]. The first and

15

most important detail starts with the fact that GPU threads are extremely
lightweight and have very little overhead in creation. However, it also
means that to gain a proper effect a GPU requires thousands of threads
to be effective compared to a standard CPU.

With this in mind, it is worth considering that given a large data calculation
we can do lots of smaller calculations faster with the multiple threads a
GPU offers than is possible with fewer but more powerful CPU threads in
our programs. So, using a GPU or a GPU based setup is something that
could easily help with these large data calculations. This is something that
NVidia has started working on with their GPU’s and especially in regards to
how CUDA works [10]. CUDA is in short a basic application programming
interface that allows software developers to access core mechanics of a
GPU. This is further backed by the fact that GPU’s have also been used in
games for various non graphical calculations, such as physics effects.

Commonly with a normal CPU you got very large caches with a much more
sophisticated control. This includes branch prediction and data forwarding,
all to reduce latency. However, a commonGPU setup has very small caches,
with simpler control. It does not have branch prediction or data forwarding.
In general, this low latency setup of a CPU lowers run time on things like
sequential code, which is where the GPU suffers a bit. Both in regards to
latency and with things like individual thread control. However, as can be
understood, with GPU based programming you overcome the latency issues
with very heavily pipelined throughput. This means that the actual starting
setup is somewhat shared but as soon as the starting part is done and the
pipeline starts we have a very easy way of starting a very high number of
threads at once.

Table 2.1: Kepler GK110 and related architectures [31]

16

2.2.1 Kepler GK110

The GTX Titan was launched by NVidia in 2013, based on the Kepler
GK110 core [25]. The GK110 is mainly based on a refresh of the
Kepler microarchitecture and as such the Titan card inherits much of the
Kepler architecture from before. It also has noticeable improvements
and differences from the Fermi cores, see table 2.1. The most noteable
difference being the max amount of warps and max registers per thread.
A warp is the amount of threads that can and should run in unison. This
will be explained in more detail later.

The card draws it name from the supercomputer Titan in Oak Ridge
National Laboratory in the United States [13]. The reason for drawing the
name from the supercomputer is that the GeForce Titan uses an identical
GPU to the ones designed for the Oak Ridge supercomputer, although the
supercomputer had 18,688 of them. The design and cooling is based of
the GeForce GTX 690. The card has 2,688 CUDA cores and can run 14
warps at the same time. This obviously gives a gigantic potential GFLOPS
but reaching that potential is not that easy and might even be impossible.
This is due to how little overhead each thread has meaning that things like
caching for non aligned memory is severely limited. With very streamlined
memory access and aligned programs, however, it is easier to reach this
limit. The structure of the Kepler GK100 can be seen in figure 2.3. From
the structure we can see that we have 32 cores for every operand collector.
This is the most important thing for us to consider from the GK110 for our
research which we cover in more detail later.

A GPU works much like a CPU. Still, they have more cores that are each
smaller with a smaller overhead but also run at a lower speed. They are,
however, focused on processing vertices. To lower the overhead it has
smaller controllers and cache and use more cores per controller and cache.
This way you can havemultiple threads working in parallel in a smaller area
within a matrix. The CPU has a bigger cache but for fewer threads meaning
that work within said matrix requires more overhead to set up. This lets
us do parallel operations that are closer to each other in memory without
many issues and is the main difference between the CPU and the GPU. One
can obviously draw the conclusion that CPUs does better when it comes to
calculations that can not be as easily shared or with varying workload per
core.

2.2.2 CUDA

CUDA is a parallel computing platform and an application programming
interface invented by NVIDIA [30]. It allows programmers direct access
to the GPU cores through the GPU’s virtual instruction set and parallel
computation elements. This allows execution of GPU kernels. Much like

17

Figure 2.3: Kepler GK110 Architecture [41]

OpenMP and Cilk, CUDA is designed to work with C, C++ and Fortran,
although our focus will be on the C part only. Having the language
work with other well known languages makes them more easily accessible
to more programmers compared to previously when you needed to be
sufficient at graphical programming.

In the beginning, GPU’s were meant to be graphics accelerators only
that only supported specific fixed function pipelines. Over time GPU’s
becamemore andmore programmable with people utilizing the capabilities
for parallel programs on them. However, before CUDA, programming
on them was not straightforward. You needed to map your problem
solving calculations to triangles and polygons. This obviously meant that
programming on a GPU was not for everyone.

In 2003, however, researchers from Stanford lead by Ian Buck [11]
made the first compiler and execution time implementation of stream
programming aimed at highly parallel GPU’s. This allowedmost of the GPU
to be exposed as a general purpose processor. NVidia then got Ian Buck to
join them and together they developed CUDA for an efficient way of coding
on GPU’s.

CUDA is in short a way to communicate directly with the GPU through
various APIs. The basic idea is that the user starts a number of batches

18

of threads making the GPU into a super-threaded massively data parallel
co-processor. This is possible as each thread in the GPU has very little
overhead and is therefore very cheap to start up, so you would want to have
multiple threads running. We can see the structure of the Kepler GK110
in figure 2.4. As we can see the cores are blocked together in groups of
32. This block is often called a streaming multiprocessor (SM). The cores
in the SM are then called a warp. To explain a warp we can say that each
SM has 8 streaming processors. Each of these streaming processors can
execute 4 instructions each concurrently through threads. As our work
is done per multiprocessor in regards to cache and controllers each SM
executes 4x8 instructions or 32. This is also apparent in the figure as we
can see a single dispatch unit (DP unit) for every four cores. Because of this
communication between these cores tends to be very low and they perform
badly with separate instructions between each other. In CUDA threads
should therefore always have a minimum of 32 threads running per block.
This block can then also run any multiple of 32 threads. However, being so
lightweight we also require up to thousands more threads per normal CPU
thread.

Figure 2.4: CPU vs GPU [29]

2.2.3 Difference in Coding Environments

All three languages extensions, OpenMP, Cilk and CUDA, bring something
different to the table and all have big variations on what you need to think
about. The biggest difference is allocation and usage of memory, especially
in relation between the host memory and the platform memory. Cilk uses
mostly shared memory, that is, the compiler will create a memory area on
both the host and the platform and then keep both sides up to date [24].

OpenMP will create a memory area on when an offload starts through the
offload pragmas before transferring data to it. This gives more control on
the actual offload but makes it so that you must allocate stuff inside the
CPU first in most cases. There are special cases where you can allocate first
in the offloaded area before doing so on the CPU, but that is outside the
research within this paper.

19

CUDA requires that memory is allocated on the platform first in a specific
command before you can transfer data to it. The data transfers in CUDA
are also a potentially big bottleneck and CUDA therefore supports that the
transfers can be run asynchronously.

All three methods have benefits and disadvantages. Having memory on
the platform directly accessible from the host like in the case of Cilk gives
potentially big benefits on heavily I/O based applications, but itmight cause
drawbacks with more compute intensive applications. The OpenMP way
gives very strong control over memory and memory allocation without the
user needing to know much about how it does it. As you can also keep
certain memory section available between offloads with the correct use
of allocation, transfers are potentially faster after the first setup. CUDA,
however, has a much more controllable way of handling memory with each
step needing to be very carefully calculated. This way you know exactly
where each segment you work on is. Still, at the same time, this means
that CUDA demands more from the user implementing code to get good
execution times. One can easily increase the execution time with badly
controlledmemory access and allocation. All this control, however, helps in
cases where you can have very streamlined and aligned memory which are
vital to utilizing the potential power of the GPU. In our case, our encoder is
very easily streamlined so we should expect to see bigger benefits from the
GPU than the Xeon Phi.

2.3 Work Scheduling

Work scheduling is the way one distributes work to a processor or multiple
processors and can have important effects on execution of a program. As
an example we can take what Vrba discusses in his paper [44] where he
finds that work stealing on fine-grained parallelism has problems. To solve
this a simple alteration gives considerably speedup. As a result using a
optimal and good work scheduling can change much for the code running.
With parallel programs, it is important to know what kind of scheduling
you are using to get the best effect. However, as Lee [27] states, “For
concurrent programming to become mainstream, we must discard threads
as a programming model.” Currently, we rely too heavily on threads to
do all the concurrent work for us. Threads are not native and need to
be explicitly set up for the program. As multi-core architectures are here
to stay, there is a need for a native way to create programs that can use
the power available. Creating a program that is portable and adaptive to
different hardware is very complex though. As different hardware might
have different amount of cores or communication between cores we need
something that can handle it. Work stealing offers us a way to control
data loads between cores while being portable. However, currently work
stealing has severe limiting factors and [8] [1] that shows, given certain
conditions, work stealing can have a negative effect on run speed on multi-

20

core platforms compared to a single core. Therefore a key part of being
able to create a programming language that can intuitively use all the power
available to it in an efficient way is by having a more efficient way of various
work scheduling algorithms.

There are also other methods available such as work sharing. In work
sharing, instead of threads trying to take work from each other, the work
gets split up. The threads get assigned parts of the work, complete it and
get more work, if there is any work left. The benefits of this are substantial,
especially in cases where the workload is evenly balanced. This removes the
overhead between threads as they search for more work by just grabbing
work from a queue.

2.3.1 History of Work Scheduling

Around 1980, computers starting having an issue with scheduling work
properly with regards to parallel execution of programs. This came as
a result of computers having increased processors which meant better
scheduling was required. The idea stems from the start of the 1980’s
with Burton and Halstad doing research on parallel execution of functional
programs [8]. Halstead then implements it with his programing language
Multilisp [22]. The idea is that Multilisp uses an unfair scheduling. By
giving each task an active pending status the language can pick up the
task that’s pending if there are free processors to do so. This is done by
creating queues which, unless someone takes it, are just executed on the
same processor. But, if one processor gets free, it checks the queue and
grabs it. That way we get parallelism between both.

2.3.2 Work Stealing

Above the basic idea of the work stealing is described. Most of the
research early on is done by people looking towards getting parallelism in to
functional programming languages. Later, people moved to languages such
a Cilk for multi-threading. Cilk is a multi-purposed programming language
with a clear C style feel. It has been upgraded to include much of the C
capabilities. The newer versions Cilk have support for both child stealing
and continuation stealing [15].

Work stealing is in short a scheduling mechanism. The goal is to even out
the load per processor and make sure that no processor runs out of work.
During the runtime of a computer, it will be granted many tasks. These
are then divided in a queue per processor. Each one of these processors
might then spawn other tasks from their current tasks that they can run in
parallel with its current one. However, this means that a processor might
not have any tasks currently while another has a number of tasks. These

21

tasks might be runnable in parallel. So, to make sure the system operates
optimally, these tasks should be running at the same time on two different
processors, instead of having one idling while the other one does all the
tasks. If the task is queued on the working processor and not the idling
one, the idling one should go and steal it from the running one. This way we
can ensure optimal load and work rate with the tasks it gets. Work stealing
can, however, suffer from to much communication or to little time given to
process each task [45].

You then have the variations between how to steal work. The two most
common are continuation stealing [8] and child stealing [6].

Child Stealing

As a process runs, it might spawn a new thread of execution, a so called
child as we see in figure 2.5. This then gets placed in a double sided queue.
The work can then be stolen from the bottom while the current process
works from the top. The process then creates a child process to execute
that task that report back to the parent. However, sometimes the work can
not be fetched out of the queue straight away. As the waiting task waits
another process might finish somewhere else and become idle. When that
happens, it will try to take work from others and by stealing the childs that
are waiting in line to be executed.

Continuation Stealing

The other way is so called continuation stealing like in figure 2.6. This is
done by the parent thread executing the new threads much like one would
execute function calls in C. That way a given function call completes before
the next one. As such, the parent executes the child directly and queues
the function calls. However, the function call might be stolen by a different
process. This is then continuation stealing.

2.3.3 Work Sharing

This differs from the so called work stealing algorithms. In work sharing,
the scheduler tries to move certain tasks to processors that look to be
underutilized [8]. The key difference here is that in work stealing there
is no migration of tasks unless the processors requests them, while in work
sharing there is regular migration. As a result, work stealing results in only
data needing to be transferred being transferred. However, this does have
the side effect that the actual processors have to look for work to migrate to
themselves.

22

Figure 2.5: Child Stealing [46]

Figure 2.6: Work Stealing

The work can then be divided between all threads where each thread has a
queue and will be the only one working on that queue. We could also have a
single queue of jobs where each thread grabs the first task in the queue and
completes it. Both have benefits and drawbacks like in most cases. Having
a single queue per thread removes much of the overhead but if the work
is not evenly distributed between threads we might get bottlenecks from
waiting for certain threads. A single queue will give us more overhead but

23

minimize the risk of the workload not being balanced.

2.3.4 Work Requesting

There is a third algorithm, work requesting. Then we have requests
sent between workers that the other works grant by sending tasks. This
algorithm works in such a way that when a worker requires more work, it
contacts another worker and asks for more work. The other then replies, if
it has time it either gives work or refuses. The drawback is that if the other
worker is busy, it can not answer until it is ready. It would be ready each
time it finishes a task and gets to find its next item in queue. However, this
removes some of the overhead from work stealing, as that requires a bit of
synchronization between both threads when a job has been stolen.

The more processors you have the more checking you need to do as well
which means that key time that could be spent on actual calculations is
being spent on looking for more work. As we get more andmore processors
on machines, especially with regards to the Intel Xeon Phi this effect
becomes more visible. This will in the end result with mass migration to
even out the work load. This means that we might get a higher workload
just keeping the workload up, rather than just doing the work needed.

2.3.5 Work Scheduling Algorithms on the Xeon Phi

In general, there are three different work scheduling algorithms on the
Xeon Phi with OpenMP and one for Cilk that should be considered. These
are static, dynamic and guided for OpenMP [7] and work stealing for Cilk.
The biggest difference can be found between static and both dynamic and
guided. The difference between the scheduling methods in OpenMP on
the surface seems to be only the dynamic allocation of work versus static
allocation [12], but this can have big effect on various execution times
along with the smaller differences between them. All of them divide the
work between threads before the threads start executing, but the difference
being that static divides all the work while both guided and dynamic might
not, keeping the remaining work in a queue giving it out when there are
available workers. This obviously means that the overhead for dynamic
scheduling is higher but this can often work better with imbalance in
load between iterations. It is also very important to consider the effect
each scheduling method has on memory accesses in regards to the size of
chunks. A chunk that is too small can sometimes cause memory access that
cause problems like cache misses, as we discussed around the Xeon Phi,
or problem with too big chunks that can among other things leave some
workers without work.

24

Static Scheduling

Static scheduling divides the work into evenly sized chunks or as equal as
possible between the threads running. This means that during execution
time, each thread already has a predefined part of the work needing to
be done. It is important that this is done beforehand and therefore very
suitable for easily dividable tasks. When tasks get more dynamic or
irregular, it gets harder to determine the actual load per iteration and as
such load imbalance is more likely.

Dynamic Scheduling

Dynamic scheduling divides the work up into chunks with size equal to
each iteration. The chunk size can, however, be controlled and increased
if needed. By default the chunk size is one, meaning each thread gets
one iteration of the work, until finishing before grabbing the next one. All
chunks are uniform at all times, so the only work the scheduler gets after the
initial setup is handing out each task. This means large overhead compared
to other scheduling methods as there is constant communication between
workers and the scheduler. It does mean, nonetheless, that during very
unbalanced workloads that no worker should expect to get multiple high
workload tasks limiting the chance of single threads causing waiting and
bottlenecks.

Guided Scheduling

Guided scheduling is a method that starts with very large chunks that then
get smaller as works continues. This chunk size resembles static scheduling
while still being dynamic. By default, the chunk size is approximately the
task being evenly distributed between threads. If we consider each task a
loop the chunk is usually close to the size of dividing each iteration in the
loop between threads. This can be beneficial as a point between dynamic
and static. Seeing how we start with very big chunks at the start, we
resemble static a lot while still maintaining a dynamic way of dividing work.
Initially, we hand out much bigger chunks than dynamic which cuts down
on the overhead while still offering some flexibility to the scheduler.

Cilk Work Stealing

Cilk uses work stealing to optimize load between threads. This means
threads will actively look to find extra work upon completing their work.
The work stealing is based off the work by Blumofe and Leiserson in their
article called Scheduling Multithreaded Computations by Work Stealing

25

from 1999 [8]. That paper puts forth the idea of that the scheduling
algorithm must be able to keep all running threads occupied during
execution time, even if you consider unbalanced programs. The best way
to do so according to the article is to let the threads themselves grab extra
work from other threads when in need. The algorithm is a randomized
work stealing algorithm for fully strict multithreaded computations. By
fully strict they mean that all join edges from a thread go to the thread’s
parent. Figure 2.7 shows an example of threads stealing in Cilk.

Figure 2.7: Example of work stealing Cilk threads

This might, however, mean that with the fairly evenly balanced code the
overhead from the cross communication between threads trying to find
work causes a huge increase in execution time. As work stealing has
potentially more overhead than dynamic work sharing, it would not be
surprising that work stealing does not work as well as work sharing for our
project.

2.3.6 CUDAWork Scheduling

The scheduling in CUDA works a bit differently compared to the Xeon Phi.
This is because CUDA works in so called warps. A warp is a set of threads
that works in unison, see figure 2.4. Each time you start something in
CUDA, the scheduler will start up the required streaming multiprocessors
(SM), see figure 2.8. The figure shows how the scheduler is setup up within
each core, where dispatcher can instruct different warps. Each of these
can control 4 warp schedulers each which has two warps of 32 threads
each through the instruction dispatch unit, see figure 2.9. As we can see
the figure is very like figure 2.4 but has a wider view with the scheduler
parts visible. The scheduler then reschedules a SM each time it blocks,

26

making sure that each SM is active. So, the CUDA scheduler then does
the scheduling on a SM level instead of a per thread level.

Figure 2.8: A streaming multiprocessor in CUDA

Figure 2.9: A warp scheduler

This means that we got one warp per core, as each core has up to 32 ALU’s.
This is also why we must consider that each execution has a multiple of 32
as its thread setup, otherwise we are not utilizing each core to its fullest as
it will have some threads not doing any work. It also needs to be taken into
consideration that the amount of overhead each core has is very low so that
things like branching is very hard to schedule with the way the scheduler
works. This means that we want all threads in a warp to execute the same
code, even if some of the values might differ.

This adds to the idea that CUDA does better with streamlined and aligned
calculations while suffering more from imbalance than the Xeon Phi. This,
however, should give a better result on fairly structured and streamlined
programs.

27

2.4 Summary

In this chapter the hardware used in the research has been discussed. The
hardware includes a detailed discussion on the IntelManycore architecture,
the Xeon Phi, Kepler GK110 and the Geforce Titan. We discussed how it
works along with the scheduling algorithms they use. In addition, a bit of
the history around both the hardware and the scheduling algorithms were
covered. This included parts of what to keep in mind when optimizing code
for this hardware.

The most important things we have learnt from this chapter are that while
the languages used on the Xeon Phi are meant to be easy to use we still
must take care implementing. We can still get parallelization problems
with incorrect memory use. We also spent time understanding both work
scheduling in general and work scheduling algorithms we will use in our
research. This chapter thus serves an important role of being the basis for
how to utilize what we have to solve the problem we are trying to with this
thesis and makes it easier to plan on how to solve our problem statements.

In the next chapter, we will discuss video processing, with focus on MJPEG
and Codec63. The next chapter also covers H.264 a bit as it relates to
Codec63.

28

Chapter 3

Video Processing

In this chapter a discussion will be given on how video encoding works.
Understanding video processing gives knowledge about where and what
can be optimized. To do this we will detail how Motion JPEG (MJPEG)
works, especially how the JPEG part works insideMJPEG.We alsomention
H.264 as our Codec63 encoder uses motion estimation which MJPEG does
not use but H.264 uses.

Like the previous chapter, this helps us understand what we need to do
to be able to solve our problem statement with using different hardware
for improved video encoding. As mentioned before, video encoding is
becoming a bigger part of our lives. More and more of our use on internet
depends onmultimedia, with everything from standard images to graphical
interactive websites to videos. While it is possible to use raw image
and video data when transferring data between computers over internet,
minimizing the size of the data helps us utilize our network better. Video
encoding does exactly that by compressing the data. Compressing and
decompressing data costs CPU power so we also must make sure that both
our hardware and encoding software utilizes the power available well. This
chapter will help to understand one way of encoding which we can take
forward into our design and implementation.

3.1 MJPEG

MJPEG is a video compression format where each frame is compressed
separately as a Joint Photographic Experts Group (JPEG) image. MJPEG
is a intraframe only compression scheme and not a intraframe prediction
scheme like our Codec63 encoder. Intraframe would be compression that
is only done on a per frame basis and not between frames. This limits the
compression rate of the MJPEG compared to other intraframe prediction
schemas but is also easier on both the CPU and the memory. It also means

29

that MJPEG is insensitive to motion complexity and it does not get helped
by static videos or hindered by highly random motion.

3.1.1 JPEG

As stated, the MJPEG just compresses each frame as an JPEG image. The
JPEG group was founded in 1986 by CITT and ISO Standards organizations
to create a standard for video compression [47]. The standard was finished
in 1992 with some modifications later on. In short, the standard was to be
a fully covering standard where each encoder and decoder had all possible
options to select from. This included things like color aspects and JPEG
variations. Implementing this, however, was very complex so people just
opted for a single format from the JPEG standard. They selected JFIF so
when we talk about JPEG today we really mean JPEG File Interchange
Format (JFIF). There are other formats within the JPEG standard used
today like Exchangeable Image File (EXIF), but JFIF is the most common
one [33].

JPEG utilizies how humans detect things through their eyes, both things
detected easily and things that are harder to detect. Because of how the
human eye works, we can more easily detect difference in brightness than
color. That is because we got more brightness sensitive receptors than
color receptors [35]. Low frequency changes human eyes detect but we
start having issues with higher frequency changes or with chrominance and
the JPEG uses this to its advantage. This means that the best option we
have is to transform the picture from the usual red, green and blue color
model (RGB), which is the color model we detect things in, into the YCbCr
model [40]. The Y is the greyscale, or the brightness of the picture, while the
Cb and Cr is chrominance, blue and red respectively. So as we know how
the eyes work we can safely assume that reducing the size of the chroma
parts will not change how we perceive the image. In most cases we reduce
the chroma part by halving the horizontal and the vertical aspects of the
chroma part of the image. This then gives us one fourth of the size on both
the Cb and Cr. We can then start the encoding where we work on each part
separately, although all are done in a very similar manner.

The work starts by dividing the image into macroblocks [32]. These
macroblocks are 8x8 pixels in size. First, we get a frequency chart of the
image. After this, we move the range of the frequency to have a midpoint
around zero instead of a pure positive range. The usual range we get is
from zero to 255 but subtracting 128 from it gives us a range of -128 to 127.
This gives us the ability to apply a Discrete Cosine Transformation (DCT)
to our frequencies. The formulas can be seen in figures 3.2 and 3.3. The
top left of this frequency map as can be seen in figure 3.1 is the overall hue
of the image, while the other 63 values are the alternating components of
the image. That is certain patterns in brightness levels. The application
of the DCT means we get how often a certain wave setup shows up in the

30

Figure 3.1: 2D DCT Cosine Wave Table [5]

Figure 3.2: 1D DCT formula [49]

Figure 3.3: 2D DCT formula [49]

given block. By applying a coefficient to them we can then quantize these
values. The quantization matrix is a table with a spread going from higher
values in the top left to zero in the bottom right. This gives us more of the
top left type of waves and less of the bottom right ones. This is possible
because the human eye is good at detecting brightness at a large area but
not the exact difference in brightness. So the higher the compression ratio,
the more zeros we will have in this quantized table. We can then take this
table and create a sequence by gathering the numbers in a zigzag pattern.
We do so by starting at index 0,0 then moving to 0,1 followed by 1,0 before
going to 2,0, then 1,1 and then 0,2 and so on, until we reach 8,8. This way
we cover the top left corner first before moving towards the bottom right.
Our resulting sequence then has a few numbers in the start and ending in
a long row of zeros in the end. The reason we got most of our numbers
in the start and a lot of zero in the end is because of the quantization and
the coefficient meaning we aim for more of those numbers as the numbers
towards the bottom right are higher frequency ones. We can then use
Huffman encoding to write this to a file, which will compress a lot of data
because of all the zeros.

31

This happens by generating a Huffman tree from these numbers. With the
frequency of zero being so high it will occupy the highest slot in the list.
Most our checks will therefore go towards the zero, which can easily be
written as a single bit. We can decode our decompressed image by reversing
the steps back. We extract the data from our Huffman encoded file, before
dequantizing to get back to the pre quantized state. This will then show us
the image as it was before the compression.

JPEG uses therefore a lossy compression. Other formats, such as Portable
Network Graphics (PNG), use lossless compression. That means that when
you compress it and then uncompress it, you do not lose any data and
it exactly the same as when you compressed it. JPEG, however, loses a
bit of the data due to the quantization but will still be very close to the
original. The advantage of it is that you get a lot more compression from it.
The biggest negative effects we get from the compression is the frequency
between pixels. That is, most of the high end frequency we seen in our
cosine table gets a bit lost. This means that high contrast areas get more
affected. As we also scale the chroma part of the image we lose a bit of
color. This can be specially noticed as part of the idea with JPEG is to
take advantage of how well our eyes detect color so small changes are not
noticeable.

3.2 H.264 and Motion Estimation

The H.264 codec is also known as MPEG-4 making it part of the Motion
Picture Experts Group (MPEG) family. The main goal of H.264 was
to provide a standard that could provide a better bitrate than previous
standards while not increasing the complexity of it [48]. The H.264 works
much like MJPEG but has added inter and intra frame prediction.

The frame prediction is the important difference and what Codec63 uses
from H.264. Motion estimation works with the idea that a video will
contain multiple images where there is little change between frames or in
cases where a block of pixelsmight havemoved between frames. As we have
already encoded these in the previous frame we can reuse that encoding in
our new frame. To do so we use a search for similar pixel blocks between
the frames.

H.264 has more complex options available for motion estimation than
Codec63. This includes more advanced search patterns for the best match
and varying sized macroblocks. The motion estimation Codec63 uses from
H.264 works by considering the location of the macroblock we are looking
for in the current frame and using that location as the center of the search
in the previous frame. We then search all pixels within a predefined
search. With each 8x8 pixel block we calculate the differences between the
blocks. To find the difference we use an equation called the sum of absolute

32

differences. We see the annotation for it in image 3.4.

Figure 3.4: Equation for sum of absolute differences [2]

This sums up the absolute values in difference in all pixels in the same
block. The closer this value is to zero the more alike the two blocks are.
As we only use absolute values the value is never below zero and we remove
the chance that two of the blocks get a similar value by having big negative
and positive differences. When we have searched all the possible blocks
within the search range we find the lowest value, which is also closest to
zero, and assume that this is where that block in the previous frame moved
to.

This makes it able to compress the image a lot more but increases both
complexity and time it takes to encode a video. However, the prediction
in H.264 is more complicated than in our Codec63 encoder, which we will
explain very briefly. First of all the macroblocks in inter frame prediction
it uses are varying in size, from 16x16 to 4x4 pixels. This means we can
use fewer bits on areas which stay relatively the same between frames
with larger blocks while still keeping the detail in areas with high energy.
This is known as tree structured motion compensation [43]. The intra
frame prediction also uses varying size on the macroblocks with up to nine
predictions modes for each 4x4 luma pixel blocks and four for 16x16 pixel
blocks. All of these are optional. Then we have a single mode that is always
applied to all 4x4 chroma pixel blocks. These modes depend on the motion
vector. H.264 also uses other algorithms like context adaptive variable
length coding and context adaptive binary arithmetic coding. Both of which
we will not detail here.

This was as stated a very brief description of H.264. As most of our
encoding are based on MJPEG and Codec63 a more detailed explanation
of H.264 is outside the scope of this thesis.

3.3 Summary

We have now explained video encoding works with regards to the encoder
we plan to use. This is vital to understanding how we can improve
our Codec63 encoder which is what our next chapter will do. We
have gone through exactly how JPEG encodes and compresses images
through DCT. We have also mentioned how H.264 works which Codec63
borrows some methods from. This makes us able to estimate where

33

potential improvements can be made so we can both test our hardware and
understand the results we get.

What we learnt was that JPEG aims at using the strength and weaknesses
of how our eyes perceive images. To do so it uses the DCT algorithm that
allows us to quantize parts of the image. This lets us then compress the
image through Huffman encoding. We also learnt that there is a slight loss
of data during compression.

The next chapter will look at how our Codec63 encoder works and design
what optimizations we are aiming for to be able to run it in parallel.

34

Chapter 4

Designing Optimizations
for Codec63

In this chapter there will be a discussion on how our video encoder works
and how it differs from standard practices. The encoder is based onMotion
JPEG (MJPEG) but uses inter-frame prediction. This means it resembles
H.264 which we described earlier. We also go through how we plan on
implementing the research, what we need to look at andwhy it is important.

To be able to optimize our Codec63 encoder understanding the code itself
and how it runs is vital. As we mentioned in our problem statement to
be able to test our hardware we must parallelize our code. To be able to
optimize and create fair tests for CUDA, OpenMP and Cilk we must first
understand the design choices in regards to Codec63. To be able to get
good results the optimization has to be smart and we need to know why we
are optimizing what we are optimizing. To do so profiling the execution of
Codec63 is important to understand what design choices should be made.

4.1 Codec63

The baseline code used will be the single-threaded Codec63 [39]. The codec
is available as an open source project on Bitbucket [17] and instructions on
using it can be found in appendix C. The code in the Codec63 is based on
the MJPEG encoding algorithm with added frame intra-prediction. This
means that it adds both motion estimation and motion compensation. It
also has an more efficient Discrete Cosine Transformation that runs in 2D
instead of 1D. As such it is far from optimal for actual encoding use, but is
an excellent tool for studying and teaching. This is because it does all the
steps required for encoding very clearly and visibly. See figure 4.1.

It must be considered as well that it only uses motion vectors between

35

Figure 4.1: Codec 63 [42]

frames in the encoding it does. The motion vectors is the estimated
movement of a object in the frame between frames. These are often referred
to as P-frames in encoding discussions and in our case our P-frames only
consider the frame just before the current one. It does not consider so called
B-frames or bidirectionally-predictive-coded frames. B-frames are frames
that can consider any other frame in the video.

4.1.1 Inter-frame Prediction

The inter-frame prediction is the main bottle neck of our Codec63 encoder.
What we do is split the frame into macroblocks that are 8x8 pixels in size,
much like in the JPEG example, and then find the frame that is the most
like that frame within a certain search range. By finding a macroblock that
is almost the same we can skip saving a lot of data. This will compress the
image as a result a lot more. Over time, however, the frames will degrade
so we need to reset the frame we compare to, the so called keyframe. The
key part of the inter-frame prediction is the motion estimation, where an
attempt was made to find a motion vector. This vector points to where the
macroblock can be found closest to the current macroblock. The motion
vector can then be used to predict our predicted frame. This is done with

36

motion compensation. This way there is compensation for the movements
within the frame and it is not required to write each frame fully as most of
the data is stored already. All of this is possible because in most cases the
change between frames in a video is very minimal. The frame prediction
in Codec63 has a very simple setup. What we do is we take the previous
frame and encode it through DCT. The frame is then stored and after that
compared to the current frame. We do so by splitting it into macroblocks,
which are 8x8 blocks of pixels in the frame. We then compare these
macroblocks to areas from the previous frame. This way we try to find a
new macroblock that looks exactly like this one. The closer we get to zero
the closer the macroblock resembles the macroblock in the previous frame.
This we can then use to compress the between frames as well.

4.1.2 The Flow of Codec63

To explain the codec a bit better we must consider the flow inside it, see
figure 4.1. We start initialize the standard details like height, width and the
input and output file. Then we set up the data areas required, all inside
a struct we call c63_common. This struct will store all the data required
while running, see code example 4.1.

Code Example 4.1: common_C63 struct
1 int width, height;
2 int ypw, yph, upw, uph, vpw, vph;
3 int padw[COLOR_COMPONENTS], padh[COLOR_COMPONENTS];
4 int mb_cols, mb_rows; //Amount of columns and rows
5

6 uint8_t qp; // Quality parameter
7 int me_search_range; //Motion estimation range
8 uint8_t quanttbl[COLOR_COMPONENTS][64]; //Quantization
9

10 struct frame *refframe; //The previous encoded frame
11 struct frame *curframe; //The frame being encoded
12

13 int framenum;
14 int keyframe_interval;
15 int frames_since_keyframe;
16

17 struct entropy_ctx e_ctx; //Output file data

As seen the struct contains all the data that would be needed. Specially
important is to note the frames, both the reference frame and the current
frame. The frame struct can be seen in code example 4.2

37

Code Example 4.2: A frame struct
1 yuv_t *orig; // Original input image
2 yuv_t *recons; // Reconstructed image
3 yuv_t *predicted; // Predicted frame
4 // from intra°prediction
5

6 dct_t *residuals; // Difference between original
7 // image and predicted frame
8

9 struct macroblock *mbs[COLOR_COMPONENTS];
10 int keyframe;

The frame has three normal image structs, the original frame, the
reconstructed frame from dequantizing the quantized image and the
predicated frame from the motion compensation. The residuals are the
results from the quantization and are stored in a dct_t struct, which is
just three int16_t values. We then have the macroblocks. The macroblocks
contain the motion vectors for each 8x8 pixel block.

Each frame then gets read into yuv_t struct. This struct only contains three
uint8_t pointer, one for each spectrum in the image. After this the encoding
of the image can start.

Keyframes are important things to consider. Each keyframe resets our
motion estimation. This is important as each time we refer to the
previous frame the data gets a bit less accurate. There might be subtle
changes happening that get lost in the approximation of motion estimation.
Therefore, there is a need to reset the original reference frame at set
intervals. The keyframes are used to reset the original reference frame. It
should then be obvious that the first frame is a keyframe and does not do
any motion estimation or compensation.

So we go straight to the DCT. The DCT then splits the frame into eight
pixel tall rows before splitting each row into eight pixel wide blocks. This
gives us 8x8 pixel blocks required for our encoding as covered earlier.
We then multiply the raw image with the dctlookup table which is our
quantization matrix. We transpose the result, before doing the same again
with multiplying and again we transpose. We then scale the block before
doing the actual quantization. As soon as we complete the quantization
we dequantize the frame. The reason being that to be able to estimate the
motion in the imagewe need to do sowith our encoded image. This encoded
image, therefore, has to be decoded. Decoding the image happens exactly
the same was as the encoding except in reverse order.

We then write the frame. When the frame is written we start with putting
two bytes at the start to denote the start of a frame. We then define the
Quantization tables followed by some important header information like

38

size and keyframe details. At this point, we write the Huffman tables. We
then write the start of the scan followed by the interleaved image. The
interleaved image is the residuals from the DCT and the macroblocks from
the motion estimation. On keyframes the macroblocks are all zero. After
having written the interleaved data we write two bytes marking the end of
the frame.

This brings us to the second frame. The only time the second frame is
a keyframe is when the keyframe interval is one. In our case, therefore,
the second frame is not a keyframe and we do motion estimation and
compensation on it. When we have read the image in we start by doing the
motion estimation. The motion estimation happens by splitting the image
again into 8x8 pixel blocks. It then uses the search range to find the frame
that is most like it in the previous frame. The search range is by default
16 so the Y part of the image search 16 pixels in each direction, up, down,
left and right while the U and V parts are scaled so the search range there
is 8. It finds the closest frame by calculating the lowest sum of absolute
differences. After that we compensate the estimation straight away as we
use this in the quantization on the same frame. The compensation is just
values from the closest previous frame. We then do the same again with the
quantization and the dequantization, write it to the output file and carry on
to frame 3.

4.2 Profiling Codec63

So we must first understand where most of the execution time for the
Codec63 lies. The best way to do so would be to profile it. We will use
Gnu’s profiling tool (gprof) to do so. In table 4.1 and table 4.2 we can
see the results from basic profiling on foreman.yuv, the 352x288 video
and on foreman_4k.yuv, the 3840x2160 video. On the smaller video we
do 100 frames but the larger one we opt for just 10 frames due to the
amount of time it takes encoding. It is important to note that the method
sad_block_8x8 is a submethod for motion estimation. As we can see in
the tables more than 90% of the execution time happens inside the motion
estimation while we get minor parts of the execution time happening in the
quantization and dequantization methods. With this knowledge we know
that most of the results will come with improving motion estimation. As
listed in chapter 4.1.1 the motion estimation includes a search range that
does a calculation on the sum of absolute differences between two 8x8
blocks.

This then becomes the main target for our optimization and where we
will focus most of our tests on. Understanding the bottleneck in motion
estimation lies with knowing how the code searches. For every macroblock,
that is every 8x8 pixel block, we will look in a 32x32 grid with our
macroblock as the center for the best approximation to that block. This

39

Foreman
% execution time Seconds Method
90.26 9.25 sad_block_8x8
4.49 0.46 c63_motion_estimate
1.46 0.15 dequant_idct_block_8x8
1.46 0.15 dct_quant_block_8x8
0.1 0.01 dequantize_idct
0.1 0.01 c63_motion_compensate
0 0 dct_quantize

Table 4.1: Profiling of the Foreman video

Foreman_4k
% execution time Seconds Method
91.21 77.57 sad_block_8x8
4.05 3.44 c63_motion_estimate
1.67 1.42 dequant_idct_block_8x8
1.28 1.09 dct_quant_block_8x8
0.21 0.18 c63_motion_compensate
0.09 0.08 dequantize_idct
0.07 0.06 dct_quantize

Table 4.2: Profiling of the Foreman_4k video

becomes a very large search area as the best approximation is found by
the difference in the sum of absolute values between the blocks. So these
areas can be very spread out while requiring large amounts of lookups
and summing to get results. As such we can easily optimize these areas
by running them in parallel as they do not overlap per macroblock being
searched with. However, if we have multiple macroblocks running through
the search at the same time the size of the search range almost guarantees
we get overlap. So it is very important that the effictivization of the motion
estimate considers this. It must also be taken into consideration that the
overlap inside the comparison between two macroblocks is fairly high as
they contain about the same memory areas. So care must be taken there.

4.3 What to Improve

With this in mind we can start planning on what parts of the code we would
want to see improved. We will start with the most obvious areas before
moving into smaller areas and discussing how we plan to offload.

40

4.3.1 Motion Estimation

Starting with motion estimation we got a double loop at the start which
finds our macroblock. We then do a double loop to search for other
macroblocks and end up with a double loop to calculate the sum of absolute
differences. We can see the three in code example 4.3.

Code Example 4.3: Loops in Codec63
1 //Outermost loops:
2 for (mb_y = 0; mb_y < cm°>mb_rows; ++mb_y)
3 {
4 for (mb_x = 0; mb_x < cm°>mb_cols; ++mb_x)
5 {
6 me_block_8x8(cm, mb_x, mb_y, cm°>curframe°>orig°>Y,
7 cm°>refframe°>recons°>Y, Y_COMPONENT);
8 }
9 }
10

11 //Middle loops:
12 int best_sad = INT_MAX;
13

14 for (y = top; y < bottom; ++y)
15 {
16 for (x = left; x < right; ++x)
17 {
18 int sad;
19 sad_block_8x8(orig + my*w+mx,
20 ref + y*w+x,
21 w,
22 &sad);
23

24 if (sad < best_sad)
25 {
26 mb°>mv_x = x ° mx;
27 mb°>mv_y = y ° my;
28 best_sad = sad;
29 }
30 }
31 }
32

33 //Innermost loops:
34 for (v = 0; v < 8; ++v)
35 {
36 for (u = 0; u < 8; ++u)
37 {
38 *result += abs(block2[v*stride+u] °
39 block1[v*stride+u]);
40 }
41 }

Consequently, the obvious part is to improve the first and outermost loops.

41

This double loop runs the rows first with each row being 8 pixels high while
the inner runs through the columns where each is 8 pixel wide. This gives
us macroblocks. The easiest way to improve this, as there is not much else
than calling a method inside them, is to make each thread grab an index in
the looping, or if there are more indices than threads, hand them out in as
an even spread as possible. This will apply to all three languages extensions
we use.

The double loop inside the outermost loops can also be parallelized.
However, these loops depends on a few shared values. The content on the
macroblock and the best sum of absolute differences we have found. If we
opt to just straight up parallelize the loop we will probably have memory
conflicts that affect the execution time. We do have options of using locks
or atomic operations on the shared values but this probably would not
improve things much. So the idea is that each thread stores the values it
has found, before running some kind of reduction to find the best value.
We then use a single thread to update the values in the macroblock.

The innermost loops are probably best left alone for the Xeon Phi while they
might be improved for CUDA. On the Xeon Phi we will have problems with
how close each lookup call will be, causing unnecessary bank conflicts. In
CUDA, however, as each thread is so lightweight and that every 32 threads
work together as a whole, they should still do fine. We do need to consider
though the difference between CUDA and Xeon Phi so we do not make
unfair challenges for the Xeon Phi with the code structure we have. We
will, nonetheless, test by optimizing the 3 loops and then being selective on
the loops we optimize.

4.3.2 Quantization and Dequantization

Quantization and dequantization both follow closely the path of motion
estimation when finding the 8x8 blocks. The real difference lies within each
8x8 block.

Considering the Xeon Phi, however, we know that it does not do to well
with smaller memory areas and using multiple threads. Seeing how the
code in both the quantization and dequantization is very close to each other
memory wise, for example we do a transpose on our 8x8 block during DCT
calculations where everything happens within the 8x8 pixel block. All our
DCT calculations are like that as well containing only calculations from
within the 8x8 pixel block and potentially other tables. The code, however,
does have the usual setup where we loop each macroblocks multiple times,
or in the case of the base code a total of seven times. This means that
we do have options of optimizing these loops. Still, as all the memory
overlaps we would be better of just to optimize the code by removing some
of the loops and doing parts of it at the same time. This, however, does
not have anything to do with the optimizations we are trying to do on the

42

Xeon Phi and we will consider the integral workings of the quantization and
dequantization outside the scope of the research.

4.3.3 Motion Compensation

Motion compensation has a very low execution time so expectations is that
any alterations here will not change much. It uses the same structure
as motion estimation, dequantization and quantization. That is it goes
through each frame height and lengthwise finding 8x8macroblocks. It then
uses the calculated motion vector to find the approximate location of the
same macroblock in the previous frame, the so called reference frame. This
then becomes the predicated frame which is used by the quantization and
dequantization.

We still have a fairly large search range and this is mostly just reading
values between frames. By doing this we should be able to run the motion
compensation in parallel. However, seeing how little execution time it
requires we should not expect a big change from it. The optimization here
would probably be better as soon as we find themotion vector, removing the
need for looping the same code again. Still, these are again optimizations
that are not directly related to the research.

4.3.4 Offloading

The key choices that may be taken into consideration are what and when to
offload. We can for example offload everything in the common_c63 struct
if we want to and move it all back out again, but seeing how we do not use
all the data on both sides it might not be the smartest thing to do. So we
will focus on getting key values like height andwidth stored on both the host
and the coprocessor and thenmoving the raw image over to the coprocessor
while moving the residuals and macroblocks back out. This would be the
only data we require to be shared so it would be the smart way to offload.
We need to consider though that if we test offloading parts, we might not
want to transfer the same data but the same idea applies.

There are also certain points where we might consider that not all the
calculations should be offloaded. For example, the Xeon Phi suffers a bit
frommemory access with areas that are to close to each other. So we should
consider just offloading the motion estimation and doing the other three
parts natively. However, this might mean that the cost of offloading is to
high as we still need to transfer the same amount of data. This might mean
we actually can not get any real advantage.

To make sure that the parallel code is working, we should start by only
creating a parallel code that does not utilize the Xeon Phi in any way. This

43

will make it easier to test that the actual parallel implementation works as
intended without potential side effects caused by data transfers.

4.4 Related Applications

Something that also has to be considered are related applications of
our algorithms. This regards both the algorithms themselves and other
software using them. We have discussed how the algorithms our encoder
uses and also stated that it is fairly naive. We should therefore consider
the actual algorithms and how they are used and other software that might
benefit from the research.

The motion search in our encoder is in short a simple grid search. As a
grid search is in most cases a lookup of all possible values within a grid of
some type there are multiple potential applications for it. While there are
variations on how a grid search is done they all share the same basic idea.
These are used in multiple video encoders and in statistical analysis of DNA
among other things. So effective parallelization of a grid search, like our
motion estimation, can have widespread effect. Testing how our hardware
works with an optimized grid search can hint towards the potential of the
hardware in other fields of study as well.

The DCT algorithm gets used in all types of multimedia compression,
among other video encoding and audio encoding, and also in applied
mathematics for spectral methods. As both can be time extensive in
execution optimizing them can also have a widespread effect.

A related field of research is computer vision. Computer vision deals with
how computers gain understanding from images and videos at a high level.
Our motion estimation relates directly to this as we are trying to identify
similar parts of frames between frames. We also have other similar fields
like neural network research. This makes our research also interesting for
studying other related fields.

4.5 Summary

We have now detailed how our Codec63 encoder works along with making
important choices for what we want to improve for it. This has been the
first step in trying to answer our problem statement. We have found that
the main bottleneck in Codec63 is the motion estimation. We have also
identified potential loops that should be optimized. The most important
part to optimize is the motion estimation. We have also discussed how to
utilize the Xeon Phi.

44

We have detailed how our encoder implements the algorithms we discussed
in the previous chapter. We have also learnt that while there are optimiza-
tion opportunities in a number of places for Codec63, the expectation is
that we will not notice much of the optimizations outside the motion esti-
mation. The reason being that the motion estimation is just that big of a
factor for the computation time.

We have also touched on how our research affects other areas. This is
important as our encoder might not be very practical, it still contains
algorithms and methodology that can be applied to other software and
algorithms.

Our next chapter will implement what we have decided and discuss the
results from our implementation.

45

46

Chapter 5

Parallelizing Video
Processing for Xeon Phi
and NVidia GPUs

In this chapter the implementation will be discussed along with any
variations from the design. Most of the variations are due to problems we
had during implementation but some came as a direct follow up to things
we found during the implementation. This chapter will give us answers to
our problems statements and discuss our results.

We will also go through our host computer setup and the software we are
using. We also talk about issues we had with installing and running the
software.

5.1 Setting up the Machine

The hardware used to run the experiments on will be a Dell T620. The
computer has two Intel Xeon 2GHz E5-2650 CPU with 8 cores each
giving us a total of 32 hyperthreaded threads, 8 DIMM DDR3 1600MHz
memory chips, giving 64GiB memory and a GeForce GTX Titan GPU.
The computer is part of the Media Performance Group (MPG) at Simula
Research Laboratory and is meant for multimedia research. The computer
is using CentOS 6.5 as the operating system with Gnu C Compiler (GCC)
version 4.7.3, Intel C Compiler (ICC) version 16.0.3 and NVidia C Compiler
(NVCC) version 7.5.17.

The computer also has a Xeon Phi card from the 3120 series [23]. The card
has 57 cores each with a base frequency of 1.1 GHz a 28.5 MB L2 cache and
uses 22nm lithography. The maximum memory size on the card is 6 GB
with a bandwidth of 240 GB/s.

47

All the software setup has been done as parts of this thesis and has been
maintained throughout the work. The software has been kept up to date
as much as possible, as there are a few limits to updates for CentOS with
regard to specific software.

As we are using numerous different types of hardware we needed to spend
some time setting up software for it. The operating system had to be setup,
along with compilers for all four languages, CUDA, OpenMP, Cilk and C.
This was done with ICC, GCC and NVCC. We also needed drivers for both
the GeForce Titan and the Xeon Phi along with profiling software.

5.1.1 Software for the Xeon Phi

As the Xeon Phi is relatively new there are a few things to consider before
using it. The Xeon Phi has support for SUSE and Red Hat Enterprise when
it comes to which systems it will run on. We are, however, running on
a CentOS so to be able to run the Xeon Phi Intel has provided a script
that allows rebuilding the package to fit with the kernel running on the
OS. Without this the system will be missing much of its capabilities and
probably be incapable of running. As CentOS is a variation of Red Hat,
the difference between kernels is usually just a small build difference.
Rebuilding and installing is fairly user friendly with the scripts given by
Intel.

However, during our installation attempts we missed the rebuilding script.
The installation documentation they have for download only contains
details on installing the package directly, without any rebuilding. This
meant that a number of both OS upgrades and other software upgrades
were attempted to be able to install, before finding a separate document
about rebuilding the package to fit the kernel. As soon as we found
the script the software required to run the Intel Xeon Phi was installed
properly. This still caused a few issues regarding login and user account
creation as the system had issues moving SSH keys between the card and
the OS. This was bypassed by using the root access to reset passwords and
user accounts as needed. This was obviously a incomplete fix but we were
unable to find the reason why normal way did not work and even after
contacting Intel we were still unable to find out why.

The Xeon Phi also requires software from Intel to be useable. To compile
runnable code it needs Intel’s C++ compiler, also known as ICC. However,
as with most Intel programs this is not free and will require licensing. The
licenses are available though for students but only in a limited way and
only as a one year license. So another issue we ran into was that our license
expired during the work on this project. Renewing the license did not come
without problems as Intel’s suggested way of doing this would be to reinstall
all programs and get a new license. Having done so, however, the license
for some of the products from the Intel package still did not work. After

48

many attempts we did a full reinstall, which solved the licensing issue and
updated all the software. This way we finally were able to test on as up to
date software as possible for the Xeon Phi.

5.2 Programming the Encoder with OpenMP

With functioning software and hardware setup we started with basic ideas
on how to parallelize the code we had for the Xeon Phi. We focused first
on getting the code working with OpenMP before adapting it to the other
language extensions. As discussed before in the design the first option was
to focus on motion estimation. Our first steps were to add pragmas to
the loops making them run in parallel. The first test we started with was
parallelizing all the loops, from the outermost all the way to the innermost
loop. This gave us the results in figure 5.1. Our Y axis represents seconds
or the time it took to encode each video. The blue line, marked full parallel,
shows the time it took when we had when using 32 threads and static
scheduling for each of the four videos with all loops parallelized in motion
estimation. The red line shows the time required to encode when we were
more selective with what we chose to parallelize. We discuss what we chose
in the next few paragraphs.

Figure 5.1: Full motion estimation parallelization vs loops only

The first issue we saw was that the sum of absolute differences calculation
all relied on a single value being increased. This would either cause a race
condition or a bottleneck in the code. So we changed it to calculate all
answers into a separate array and then using reduction to find the sum. This
caused a huge spike in the amount of time the program required. When
profiling the run we could notice that it was due to thread synchronization.
See table 5.1.

49

Table 5.1: Profiling full parallelization

Sowe reverted back to using just the outer loops to decrease the granularity,
ignoring the loops inside the sum of absolute differences calculation.
Considering the shared variable that we use to find the best result we
also knew this would cause the same problem as in our sum of absolute
difference calculation. So we ended up only using parallel operations
between macroblocks and not in the actual search. This gave us improved
results that were good enough to start looking at other parts. This is then
the red line in figure 5.1. A table showing the results can be found in
appendix A.2

We then proceeded to do tests on the motion compensation. As we
discussed before the motion compensation is very simple giving us a very
minimal result on execution time when using pragmas on all the loops.
After this we went to the quantization and dequantization. We did as
planned with the design and optimized the outside parts. This gave us a
decent speedup which can be seen in figures 5.3, 5.4, 5.5 and 5.6. These
figures also contain data from offloaded runs so they are discussed in more
details later in this chapter.

So we moved towards testing optimizations inside the quantization and
dequantization. There are a number of loops through the 8x8 pixel blocks
there. However, as expected we found that these details increased the
execution time. With this we had the basic outline for our parallel code
in OpenMP which had optimized most of the outer loops.

5.2.1 Preparing to Offload with OpenMP

The main work then consisted of offloading the already parallel code we
had. A limitation of offloading through OpenMP is that structs with
pointers require some extra work. So our initial idea was to flatten out
the common_c63 struct as it contained a lot of pointers to structs that
again contained pointers. So we started by removing all the pointers in
the internal structures to the common_c63 struct. The struct then required
less work to be transferred. However, we still can not offload the struct
directly and expect it to also offload the values pointed to by the pointers

50

inside the struct. So we created separate pointers, pointing to the same
area as the pointers in the struct. We were then able to offload each value
that the struct had to the Xeon Phi while also offloading the values pointed
to by the pointers.

This would then move all the data both in and out from the Xeon Phi. As a
result, we started with doing so in the motion estimation part. We moved
all the values in and all the values out again. However, as discussed in our
design there is no reason to offload all the data and then transfer it back.
So we altered the code to initially allocate space for the data that was to
be offloaded and then did the transfer afterwards. The initial setup has no
actual calculations, just allocations through nocopy directives. The code we
used can be seen in code example 5.1.

51

Code Example 5.1: How we offloaded data
1 uint8_t *Yrecons = cm°>ref_recons_Y;
2 uint8_t *Urecons = cm°>ref_recons_U;
3 uint8_t *Vrecons = cm°>ref_recons_V;
4 uint8_t *Ypredicted = cm°>curr_predicted_Y;
5 uint8_t *Upredicted = cm°>curr_predicted_U;
6 uint8_t *Vpredicted = cm°>curr_predicted_V;
7 int16_t *Uresiduals = cm°>curr_residuals_U;
8 int16_t *Vresiduals = cm°>curr_residuals_V;
9 int16_t *Yresiduals = cm°>curr_residuals_Y;
10 struct macroblock *Ymbs = cm°>curr_mbs_Y;
11 struct macroblock *Umbs = cm°>curr_mbs_U;
12 struct macroblock *Vmbs = cm°>curr_mbs_V;
13 #pragma offload_transfer target(mic:0) in(cm:length(1) ALLOC RETAIN) \
14 nocopy(Yrecons:length(cm°>ypw * cm°>yph) ALLOC RETAIN) \
15 nocopy(Urecons:length(cm°>upw * cm°>uph) ALLOC RETAIN) \
16 nocopy(Vrecons:length(cm°>vpw * cm°>vph) ALLOC RETAIN) \
17 nocopy(Ypredicted:length(cm°>ypw * cm°>yph) ALLOC RETAIN) \
18 nocopy(Upredicted:length(cm°>upw * cm°>uph) ALLOC RETAIN) \
19 nocopy(Vpredicted:length(cm°>vpw * cm°>vph) ALLOC RETAIN) \
20 nocopy(Yresiduals:length(cm°>ypw * cm°>yph) ALLOC RETAIN) \
21 nocopy(Uresiduals:length(cm°>upw * cm°>uph) ALLOC RETAIN) \
22 nocopy(Vresiduals:length(cm°>vpw * cm°>vph) ALLOC RETAIN) \
23 nocopy(Ymbs:length(cm°>mb_rows * cm°>mb_cols) ALLOC RETAIN) \
24 nocopy(Umbs:length(cm°>mb_rows/2 * cm°>mb_cols/2) ALLOC RETAIN) \
25 nocopy(Vmbs:length(cm°>mb_rows/2 * cm°>mb_cols/2) ALLOC RETAIN)
26 {
27 }
28

29 //Read image and setup loop to run the below
30

31 #pragma offload_transfer target(mic:0) \
32 nocopy(cm, Ypredicted, Upredicted, Vpredicted, Yrecons, Urecons, Vrecons) \
33 in(image_Y:length(cm°>vpw * cm°>vph) ALLOC FREE) \
34 in(image_U:length(cm°>upw * cm°>uph) ALLOC FREE) \
35 in(image_V:length(cm°>vpw * cm°>vph) ALLOC FREE) \
36 out(Yresiduals:length(cm°>ypw * cm°>yph) REUSE RETAIN) \
37 out(Uresiduals:length(cm°>upw * cm°>uph) REUSE RETAIN) \
38 out(Vresiduals:length(cm°>vpw * cm°>vph) REUSE RETAIN) \
39 out(Ymbs:length(cm°>mb_rows * cm°>mb_cols) REUSE RETAIN) \
40 out(Umbs:length(cm°>mb_rows/2 * cm°>mb_cols/2) REUSE RETAIN) \
41 out(Vmbs:length(cm°>mb_rows/2 * cm°>mb_cols/2) REUSE RETAIN)
42 {
43 c63_encode_image(cm, image_Y, image_U, image_V);
44 }

It should be noted that in the code example above we use allocation and not
memset for each image pointer we read to. We found that the difference
between reusing the data areas pointed to by image pointers with memset
versus allocating new areas for each frame had no difference on runtime.

52

The nocopy lets us set up data areas before we start offloading and as we
loop around the second offload clause we would have either had to do the
first frame there or by just setting them up beforehand. Third option would
have been to allocate all the time but that gives worse results. Especially
complications would also happen with the areas being just moved out and
areas that are not affected by transfers. This then let us move things as we
needed between areas.

5.2.2 OpenMP Optimizations

A key thing to consider is how the motion estimate handles finding the best
sum of absolute differences (SAD). For each result we get we compare it to
a variable called best_sad and see if our newer result is better. While this
is acceptable for a sequential execution, it does cause problems in a parallel
one. We can see the code in code example 5.2.

Code Example 5.2: Original way of finding the best SAD
1 int best_sad = INT_MAX;
2

3 #pragma omp parallel for schedule(SCHEDULE)
4 for (y = top; y < bottom; ++y)
5 {
6 for (x = left; x < right; ++x)
7 {
8 int sad;
9 sad_block_8x8(orig + my*w+mx, ref + y*w+x, w, &sad);
10

11 if (sad < best_sad)
12 {
13 mb°>mv_x = x ° mx;
14 mb°>mv_y = y ° my;
15 best_sad = sad;
16 }
17 }
18 }

There had to be a better way of handling this. Instead of having a single
variable holding the best value we stored all the SAD values we found in an
array that we treated like a 2D array. We consider it a 2D array as the search
range applies to a 2D space. We then used a parallel SIMD operation from
OpenMP to find the index of the lowest value. We could then use this index
to find the motion vector from our current macroblock. This then gave us
the correct macroblock. This improved our execution time from before as
we can see in figure 5.2. We can see the code for it in code example 5.3.

Figure 5.2 shows the time to encode 100 frames for each of our four test
videos, with the y-axis showing time in seconds. All the runs are done on the

53

Figure 5.2: Motion estimation and optimized best SAD

host CPU only. The optimizations that have been done are parallelization
of motion estimation loops and optimized comparison for finding the best
matching block between frames in the motion estimation. We can see that
our performance improves for each added thread but the most notable
improvements come from going from one to eight threads. We also notice
something interesting when using 32 threads. This will be examined better
in section 5.5.2.

Code Example 5.3: SIMD operation to find index of lowest value
1 int sad[(bottom°top)*(right°left)];
2 int best_sad = INT_MAX;
3 #pragma omp parallel for schedule(SCHEDULE)
4 for (y = top; y < bottom; ++y)
5 {
6 for (x = left; x < right; ++x)
7 {
8 sad_block_8x8(orig+my*w+mx, ref+y*w+x, w, &sad[(y°top)*(right°left)+x°left]);
9 }
10 }
11 best_sad = __sec_reduce_min_ind(sad[0:(right°left)*(bottom°top)]);
12 mb°>mv_x = (best_sad%(right°left)) ° mx + left;
13 mb°>mv_y = (best_sad/(right°left)) ° my + top;

This meant we had now also parallelized the only potential race condition
calculation which was the biggest bottleneck left from the original adapta-
tion. The work was completed by setting up multiple ways of running the
code. As stated earlier we wanted to check the timings of both a encoder
that had all the calculations offloaded and where we just offload the motion

54

estimation. We also wanted to record the time the encoding alone took, ex-
cluding the data transfers and running the code on the Xeon Phi directly
without offloads. All this was then to be compared to just running the code
with offloading.

5.2.3 Testing OpenMP with Offloading

The code was then ready to be tested. Up to 64 threads were done without
offloading and 512 with offloading. Results can be seen in figures 5.3, 5.4,
5.5 and 5.6. The tables with the results can be found in appendix A.3.
The figures show us the execution time for encoding with varying amount
of threads. The y-axis shows time in seconds. We have split the four
videos into separate figures as the runtimes for the largest videos removed
all detail from the smaller ones. We have also limited the y-axis to 100
seconds for tractor and 300 seconds for Bagadus and Foreman_4k. First
of all we can notice the difference between static scheduling and the other
two scheduling algorithms. The difference between offloading and running
the encoder on the host CPU is also minimal compared to the difference
between the scheduling algorithms. In all our runs we also see that going
above 16 threads gives almost no improvement.

In the first graph with our Foreman encoding, the execution times with one
thread have a very large difference between the statically scheduled runs
and the other scheduling algorithms. The improvement per added thread
in the static scheduling is lesser than we have in the other two. This mostly
comes from the fact that the single thread times for dynamic and guided
scheduling is much higher than in static. As tasks are not divided in the
preprocessing the extra time spent on getting tasks for a single or even two
threads caused a big increase in runtime. We saw, however, as the amount
of threads increase, how the effect of the scheduling algorithm and that the
overhead when dividing out tasks becomes proportionally less. This is less
apparent in the larger videos as the larger and longer a task that needs to
be performed per thread means less time spent with overhead on dividing
tasks.

In all four videos the difference between the types of runs are about the
same. The code that is offloaded is in general a tiny bit slower than the code
on the host CPU. We also see a correlation in the improvements between
the scheduling algorithms.

We even ranwith justmotion estimation being offloaded. No real difference
could be seen, and if there was some it was closer to being a slight increase
in total execution time.

55

Figure 5.3: OpenMP Foreman execution graph

Figure 5.4: OpenMP Tractor execution graph

5.2.4 Measuring Encoding Only

Another part of what we measured was the per frame time on encoding
only to see how much of an effect the offloading had. This way it was

56

Figure 5.5: OpenMP Bagadus execution graph

Figure 5.6: OpenMP Foreman_4K execution graph

possible to see the execution time of the encoder without interference from
the transfers. We only measured in regards to a full offload and we also did
fewer threads. We did fewer threads as we had already noticed a big cut-off

57

in increased speed with more threads than we ran here and this also made
it easier to see the comparison between offloading the code to the Xeon Phi
and running it natively on the host CPU. The results from static scheduling
can be seen in tables 5.7, 5.8, 5.9, 5.10. Each of these runs are 100 frames
with a y-axis based on seconds.

Figure 5.7: OpenMP Foreman encoding only

Figure 5.8: OpenMP Tractor encoding only

We notice that the difference between offloading the code to the Xeon Phi
and running it on the native host CPU is not very big. But we do see that
as the videos get larger and we require more work per frame that the Xeon
Phi encoding times get a bit lower.

58

Figure 5.9: OpenMP Bagadus encoding only

Figure 5.10: OpenMP Foreman_4K encoding only

5.3 Cilk

Cilk offered a different setup. Cilk is more based on shared memory than
the offload structure we found in OpenMP. The creation of parallel loops,
however, is much the same. An example of this can be seen in code example
5.4.

59

Code Example 5.4: Comparing Cilk and OpenMP loops
1 #pragma omp parallel for

2 for(i = 0; i < 10; i++) {
3 //code
4 }
5

6 _Cilk_for(i = 0; i < 10; i++) {
7 //code
8 }

Both then created the same result, although the actual dividing and sharing
of work ends up being very different between the two. The second major
difference was that instead of offloading data Cilk used so called shared
memory. Thus instead of every normal allocation of memory call we used
the Cilk shared memory allocation call and during deallocation the Cilk
shared memory freeing. In Cilk the memory can then be worked on by
both the native CPU and the coprocessor and will be synced between them.
In our case there is no work happening on the native part while the offload
runs so we can use an environment variable removing the synchronization
during the offload and then performs a pure transfer afterwards instead of
merging. An example of allocation and freeing on our reconstructed frame
can be seen in code example 5.5.

Code Example 5.5: Allocating and freeing in Cilk
1 f°>recons = _Offload_shared_malloc(sizeof(yuv_t));
2 _Offload_shared_free(f°>recons);

The actual calculations in Cilk are pretty much the same though. The same
setup is used in motion estimation with finding the lowest index instead of
sharing a shared variable. So in the end the only key difference is memory
in regards to code. The other thing that can not be controlled as well is the
work scheduling based on the work stealing. For our code this proves to be
very inefficient with a increase in execution time compared to work sharing.
We can see the results in figures 5.11, 5.12, 5.13 and 5.14. We can also see
the results in appendix A.5

The four figures, 5.11, 5.12, 5.13 and 5.14, show encoding time in seconds
on the y-axis with the amount of threads used in the x-axis. The blue bars
show the time required when we ran the Cilk code directly on the host CPU
with the red and green bars showing the encoding time when we offloaded
data. The green bars, called no updates, are the encoding times when we
instructed that there should be no updates of the shared memory until after
the offloaded finished.

As mentioned, one part of what Cilk does is that it has to update shared

60

Figure 5.11: Cilk Foreman

Figure 5.12: Cilk Tractor

memory for read and writes for both sides. This is because we might
expect that both the coprocessor and the native processor work on the same
memory. This causes a lot of extra writes and read into shared memory.
Our model, however, does not have the native processor doing anything
while the offload is working on it. As a result we can skip this by setting
an environment variable. This obviously only affects the execution time of
offloading but it gave a strongly improved result as seen in figures 5.11, 5.12,
5.13 and 5.14 with the data in table A.19.

61

Figure 5.13: Cilk Bagadus

Figure 5.14: Cilk Foreman_4K

5.4 Fixing the Baseline Code

Most of the initial experiments were donewith a very low number of frames,
as some of the execution times where very high with some of the worse
optimizations. So after finishing a decently fast code in both languages
extensions we tested with the test setup we discussed in chapter 4. What we
found was that this caused big memory issues later in the program. In most
cases we ran out of memory on the Xeon Phi. The basic code allocated new
memory for every frame, including the residual frames, predicated frames,

62

original frame andmacroblocks. This meant we were allocating and freeing
a very large amount of memory per run. The Xeon Phi, however, did not
manage to sync up fast enough so in the end we ran out of memory crashing
the program. We also realized that allocating and deallocating memory like
the code does instead of resetting all the values inside it was not the best
way to do it. So we started working on redoing the basecode by removing
the allocations. Unneeded data areas were also removed. The residuals are
only used as part of the previous frame and are also the only thing used in
the previous frame. So we removed the setup with two frames inside the
struct and used one only. We also altered the code so that instead of using
two methods, one destroying the old frame and one creating a new frame
we just memset the current frame, except for the reference data which we
memset after doing the motion estimation. We can see the new function in
code example 5.6.

Code Example 5.6: The next frame function
1 void set_frame(struct c63_common *cm, yuv_t *image) {
2 cm°>curframe°>orig =image;
3

4 memset(cm°>curframe°>predicted°>Y, 0,
5 cm°>ypw * cm°>yph * sizeof(uint8_t));
6 memset(cm°>curframe°>predicted°>U, 0,
7 cm°>upw * cm°>uph * sizeof(uint8_t));
8 memset(cm°>curframe°>predicted°>V, 0,
9 cm°>vpw * cm°>vph * sizeof(uint8_t));
10

11 memset(cm°>curframe°>residuals°>Ydct, 0,
12 cm°>ypw * cm°>yph * sizeof(int16_t));
13 memset(cm°>curframe°>residuals°>Udct, 0,
14 cm°>upw * cm°>uph * sizeof(int16_t));
15 memset(cm°>curframe°>residuals°>Vdct, 0,
16 cm°>vpw * cm°>vph * sizeof(int16_t));
17

18 memset(cm°>curframe°>mbs[Y_COMPONENT], 0,
19 cm°>mb_rows * cm°>mb_cols * sizeof(struct macroblock));
20 memset(cm°>curframe°>mbs[U_COMPONENT], 0,
21 cm°>mb_rows/2 * cm°>mb_cols/2 * sizeof(struct macroblock));
22 memset(cm°>curframe°>mbs[V_COMPONENT], 0,
23 cm°>mb_rows/2 * cm°>mb_cols/2 * sizeof(struct macroblock));
24 }

We then tested the old baseline code towards our new baseline code to see
what effect it had on the code. Surprisingly the effect was much larger than
we expected and halving the time required. See figure 5.15. Again the y-
axis is the time in seconds for encoding the four videos we used. As can
be seen, on the smaller videos our improvement is substantial while still
being good in the larger videos. The reason we get a better improvement
with smaller videos is that they spend proportionally more time with setup

63

between frames than the larger ones. This is because the larger videos
require more time per frame encoding.

Figure 5.15: Baseline execution times without language extensions

This was then brought into our OpenMP and Cilk implementations. Both
worked afterwards without issues with any amount of frames and both had
marked improvements in execution time. We do not have any direct time
measurements between them though as we only had limited amount of
frames we could run and especially on the larger videos we barely had any
frames.

5.5 Results from Encoding on the Xeon Phi

So with these results, it is necessary to understand their meaning. There
are a number of interesting details to consider, like any unexpected data
and how they compared.

5.5.1 General Results from OpenMP Encoding

For OpenMP we can see that we get a good speedup until about 16 threads,
at which point the speedup is limited. We showed this earlier with figures
5.3, 5.4, 5.5 and 5.6. This happens both in regards to code we offload to
the coprocessor and native code and with all three scheduling methods. We
do note, however, that the cut off point for guided and dynamic scheduling

64

is more extreme than for static scheduling in both offloading and native
running.

The important difference to notice is between static and the other two
scheduling methods, dynamic and guided. What can be seen, as mentioned
in chapter 1, is that static performs much better than dynamic and guided.
This is because of the extra overhead during the sum of absolute differences
(SAD) calculations. By looking at figures 5.16, 5.17, 5.18 and 5.19 which
has our execution time where we use static scheduling on the SAD parallel
calculations while using either dynamic or guided on all other parallel
loops. This gave us a performance increase, albeit a small one, compared to
just having static scheduling. This is very interesting as we know that static
scheduling works better when work is evenly divisible and in thread size
chunks but dynamic works better withmore uneven balance and potentially
varying chunk sizes with guided scheduling. So we can easily stipulate that
with the varying size of width and height per video, we can have unbalanced
workload. In the example of Tractor, the frame size is 1920x1080 which
when divided by eight gives a natural number but with 16 it does not so we
get unbalanced. Static in this case would divide all the work meaning that
some threads get more work while dynamic would divide it on a per need
basis giving the extra work to the threads that are done first. However,
our SAD loop is always evenly distributed with the number of threads we
tested with. This means that static can create a very even and balanced
workload between threads and the overhead of dynamic has a bigger effect.
The reason for the big difference in execution time though is that almost all
our time is spent calculating SAD so an inefficient setup there will have a
bigger effect.

Figure 5.16: Combined scheduling for Foreman

65

Figure 5.17: Combined scheduling for Tractor

Figure 5.18: Combined scheduling for Bagadus

5.5.2 Increased Run Time with 32 Threads

Interestingly, we saw that when running the code with 32 threads we got
a spike in the execution time. This happened in both offloading to the
coprocessor, in native running on the host CPU and with all scheduling
methods. This required further analysis as there was no direct reason for
it. We could consider the size of the frames with the first logical reason
being unbalanced workload. However, as we have the same problem with
all videos and some videos having sizes that are dividable by 32 this did not
seem like the reason. When doing thorough testing on why this happened
we noticed that there was a very high variation in the execution time with
32 threads. We did consider that the CPU did some caching with multiple
runs of the program and we did repeated runs to test for it. What we

66

Figure 5.19: Combined scheduling for Foreman_4K

noticed was that other thread counts seemed to stay fairly steady or within
5% difference between runs on Foreman_4K while 32 threads had a much
more fluxuating execution time. Variance between runs there was about
30%.

So we profiled the run with 32 threads to see if we could spot anything.
However, given how random the difference seemed to be it was hard to
detect the problem. What we did notice was that CPU utilization seemed
to drop from time to time as seen in figure 5.21 compared to when the runs
did execute in a timely manner, which can be compared with figure 5.20.
The two figures show us the load per worker thread with the brown parts
being actual work and the green idle time. During the slower run the idling
is much more common. Seeing how this happens on regular occasions
the more threads we have the more likely it is. Still, going above the 32
threads the machine has the utilization seemed more even. This was the
only conclusion we were able to reach as this requires more research. This
will be discussed further in chapter 6.2. It is also extremely important to
note that we also see these spikes in other runs as well, but not as frequently
as we do with 32 threads. This is something we consider during our analysis
of our results.

5.5.3 Encoding Only

Another comparison done was to see the time the actual encoding required,
removing the timing for reading and writing the image and offloading the
data. We can see that encoding during offloading is a bit faster. We would
expect it to be and but we would have expected more than that. We can
see that when comparing the same number of threads the time is about
the same, but as we add more threads the offloaded code gets faster. The

67

Figure 5.20: The faster 32 thread run

Figure 5.21: The slower 32 thread run

difference is still not as big as we would expect. We assume though that the
difference is not bigger because of how powerful our native processors are.
In figures 5.22 and 5.23, we can see the execution times for our foreman
video and our foreman_4K video. In general, we do not see much of a
difference between threads when using the same amount of threads but we
do see a substantial difference between when comparing 32 threads to 128
threads or more on the foreman_4k video. The difference on the smaller
video, however, is very small and if any skewed towards not offloading. We
can find the tables with values in appendix A.7.

5.5.4 Running Natively on the Xeon Phi

We also ran the encoding of foreman and tractor on the Xeon Phi directly,
that is we used the Xeon Phi as the native host. When we ran with 128

68

Figure 5.22: Measurement of encoding only on Foreman

Figure 5.23: Measurement of encoding only on Foreman_4K

threads for tractor andmeasured the encoding only it took 36.1857 seconds
and foreman took 2.167 seconds. This does fit with what Intel says about
what code can be run natively [4]. Comparable execution times, with
offloading, where 5.321 seconds for tractor and 0.437 seconds for foreman.
Native applications most of all require that as much as possible of the code
is parallel and a modest memory footprint. As much of the I/O operations
in our code are sequential and we have a fairly complex memory footprint
our execution time is higher than with offloading. This was fully expected.

69

5.5.5 Cilk

As suspected Cilk suffers a bit from the scheduling it uses. After fixing
how it handled shared memory, removing the constant updating as was
discussed in chapter 5.3, our biggest effect on the execution time is the
scheduling. We could see a lot of downtime between worker threads as
we are doing a lot of updates in memory between the native processor and
the coprocessor. But as discussed in chapter 2.1.4 Cilk uses a random work
stealing algorithm. When profiling the runs, as seen in figure 5.24, that the
biggest difference compared to OpenMP is exactly the work stealing. This
is as expected and discussed in chapter 1. As the work is mostly evenly
distributable, especially the SAD function where most of the execution
happens, the overhead for the work stealing results that can not compete
with OpenMP.

Figure 5.24: Profiling Cilk

What also is interesting is that as the thread count goes up we see a increase
in runtime as can be seen in figures 5.11, 5.12, 5.13 and 5.14. This is another
proof that the effect of the overhead is to big. This is specially noticeable on
the smaller videos as there is not enough work to go between all the threads
for them to be effective. With the larger videos the effect is not as extreme
as the smaller ones but still present. This is thoughmostly as the low thread
number require such a long execution time and the increase at high thread
number does not share as steep a curve.

5.6 Implementing in CUDA

The CUDA code offered a different challenge. The aim was to create a code
that resembled the OpenMP code, being highly portable. CUDA on the
other hand, expects a lot of manual setup in regards to how many threads
and blocks you use. So the first challenge was to find out a way to do
loops dynamically in CUDA instead of the general static way with thread
and block ID’s. As we are also working in a 2D environment all loops are
double. So to create dynamic loops we opted for the code seen in 5.7.

70

Code Example 5.7: Our loops in CUDA
1 for(i = (blockIdx.y * blockDim.y + threadIdx.y) * blockDim.x * gridDim.x +
2 (blockIdx.x * blockDim.x + threadIdx.x);
3 i < height*width;
4 i += blockDim.y * gridDim.y * blockDim.x * gridDim.x)
5 {
6 x = i/width; //x is here the outer value
7 y = i%width; //y is here the inner value
8 //code
9 }

This gave us very portable loops that could run with any setup of threads in
each kernel as we wanted. However, the loops were a bit more complicated.
As we had varying amounts of depth in the loops we had to consider. In
the case of motion estimation we had first a double loop finding our 8x8
block of pixels followed by a 2D search for similar blocks. To adapt to
this we used the block dimensions to create these dynamic loops in the
outer parts where we found the pixel blocks and the thread dimensions
in the inner part. An example of both can be found in code example 5.8.

Code Example 5.8: Motion estimation loop example in CUDA
1 for(i = blockIdx.y * gridDim.x + blockIdx.x;
2 i < columns*rows;
3 i += gridDim.y * gridDim.x) {
4 //Find best sad
5 }
6

7 for (i = threadIdx.y * blockDim.x + threadIdx.x;
8 i < search_range;
9 i += blockDim.x * blockDim.y) {
10 //Start motion estimation on block
11 }

We applied these types of loops to the same loops as in our OpenMP code.
However, considering how lightweight threads are in CUDA it would not be
a fair comparison so we added the inner loop inside the motion estimation,
as it would guarantee our threads running code that fit with the warp size.
In the same regard we could have taken loops even deeper, all the way into
the DCT calculations, but that would not have created a fair comparison
with OpenMP.

We also tried to mimic how the Xeon Phi found the best SAD value. To
do so we created our own reduction method to run in parallel finding the
best index. We created an array initialized with indices and then stored
all results in an array from the sad calculations. See code example 5.9.

71

Code Example 5.9: Find smallest value reduction
1 for(; half > 0; half>>=1) {
2 for(i = threadIdx.y * blockDim.x + threadIdx.x;
3 i < half;
4 i += blockDim.x * blockDim.y) {
5 if(values[i] >= values[i+half]) {
6 values[i] = values[i+half];
7 ind[i] = ind[i+half];
8 }
9 }
10 }

The only real issue with this code is the branching based on the if but that
is a general issue with parallel programs. This returned the index based on
where we were in the image. The same method as in OpenMP was applied
to calculate the actual point in regards to where we were in the image to get
the right motion vector.

The only real difference then became the offload part, or in the case of
CUDA, the allocation and copying. So to start with we initialized the
c63_common struct on the host processor before allocating it on the GPU.
After this we started the encoding, much like in the baseline code. However,
we did need to split the encoding into three parts due to synchronization
between blocks between the motion estimation, motion compensation and
quantization and dequantization. We did not need to split the quantization
and dequantization as each block would work on the same area so we only
had to synchronize the threads. Our moving between frames also required
extra work as we had to both copy and memset on the GPU for each run.

Figure 5.25: CUDA Foreman execution time graph

In the end the execution time results showed strong improvements in
regards to increased amount of blocks we ran. We can also see a strong cut-

72

Figure 5.26: CUDA Tractor execution time graph

Figure 5.27: CUDA Bagadus execution time graph

off in improvements from about 6x9 blocks with only minimal increases.
On around 18x27 we notice no more notable improvements in execution
times. It should also be noted that each block had 16x16 threads. As we
know running code with less than 32 threads is a big waste of potential
as each warp has a multiple of 32 threads running. We can also see that
execution times with just 1x1 blocks with 16x16 threads are extremely slow
and much slower than both Cilk and OpenMP when they run with a single
thread. We therefore did not test with less than a minimum of 256 threads.
See figures 5.25, 5.26, 5.27 and 5.28. These figures show us the encoding
time needed in seconds on the y-axis and the amount of blocks we used for
each run. A table with the runtimes in can be seen in appendix A.6.

73

Figure 5.28: CUDA Foreman_4Kexecution time graph

5.7 Results from the CUDA Implementation

CUDA offers us a bit of a different setup and requires different thinking.
Most of our data is done with a minimum of 256 threads compared to the
lowest in both OpenMP and Cilk being one thread. And at the same time
our increases in the amount of threads is much bigger. So when looking at
the results this is something that is important to consider. As can be seen in
figures 5.25, 5.26, 5.27 and 5.28, we do not gain much when moving above
54 blocks or 13824 threads.

Most important to note is that we still got better execution times with CUDA
thanwe did with anything on the Xeon Phi. This was even if we tried to keep
as close in implementation to the Xeon Phi as we could. However, we need
to consider that we still optimized the actual SAD calculation. As expected,
though, the Xeon Phi would not have as good results as the Titan. We can
both deduct this from the fact that the less overhead we have the better our
results and the fact that everything we do works in a 2D vectorized space.
These are areas where CUDA based programs should excel.

5.8 Problems During Implementation

There were two notable problems that occurred while implementing our
solutions.

The first real problem we had was with shared memory allocation for Cilk.
As we were trying to allocate fairly big parts of memory as we were reading
each frame we noticed something we could not find documented. So if we
tried to use fread to read more than 524.287 bytes of data into our memory

74

area we got weird segfaults. However, reading 524.287 bytes multiple
times in a row into the area worked fine. We can see our looped reading
method in appendix B.3. We also noticed that if we memset the whole area
before reading into it it worked fine. We therefore drew the assumption
that memory allocated as shared memory in Cilk got lazily allocated. As
fread uses a bit of buffering and other optimizations we can assume that
the memory just was not ready when we tried to write into it. It is worth
noting that 524.287 is exactly 19 bits so we can assume that is the limit of
the eager part of the allocation.

The second problem during our implementation was with the paralleliza-
tion of our SAD calculations. As the calculation is basically a summation
of numbers our idea was to use a parallel reduction to calculate the value,
much like we ended up doing in CUDA. This did in no way go as we planned
and we saw probably the biggest negative effect out of any optimization.
The new execution times were about 10 times slower than our other at-
tempts. We quickly deducted from profiling that this was a result of the
massive amount of thread synchronization. We still used it in the CUDA
code as the threads there are muchmore lightweight meaning it was almost
required to get meaningful results.

5.9 Comparing All Three

When we compare the execution time based on threads between all three
language extensions we most of all notice that much of the results fit with
what we discussed in chapter 1. Static scheduling proves to be better
than both work stealing in Cilk and the other two scheduling methods in
OpenMP. The difference, however, between dynamic, guided and Cilk when
running on the native processor is minimal at best. We also notice that the
actual encoding on the Xeon Phi is a bit faster than the on the host CPU. The
time spent transferring data, on the other hand, makes the actual encoding
time close to the same.

Comparing Cilk to the rest it is important to notice that the single thread
executions are slower than the comparable ones in OpenMP. As can be
seen the scheduling has no effect on single threads between OpenMP we
can conclude that the difference relates to the memory management of
Cilk. Removing the constant updates on shared memory during offloads
removed most of the time required to the difference in time required to
encode the videos on the Xeon Phi compared to the host CPU. Cilk still
performed slower than our OpenMP and CUDA solutions. We attribute
this to the scheduling used.

Like we stated CUDA performed better than both OpenMP and Cilk. This is
directly related to the fact work stealing and dynamic work sharing perform
worse than static work sharing. As the code which requires most of the CPU

75

time is very structured with little imbalance CUDA should perform better in
all cases with the lightweight threads that it has. This was also the case and
we saw the best results with CUDA. Most interesting was that we mainly
created optimizations for Xeon Phi and tried to mimic these in CUDA but
still managed to get better encoding times.

5.10 Complexity

An important aspect of our research was how easily the language extensions
are in regards to optimizing the code. So far this has not discussed much at
all. First of all, as both Cilk and OpenMP can be run without the need for
specific hardware, adapting the code is possible from the start. Compared
to CUDA which requires a GPU to be executable OpenMP and Cilk have an
advantage.

However, the important thing to look at is the utilization of a Xeon Phi
compared to a GPU. This complicates things a bit more. First problem
came due to our baseline code not being very well set up. There were to
many allocations and data transfers became very complicated and not at
all easy to transfer between the host and the coprocessor. This applied to
both Cilk and OpenMP.While Cilk had an easier setup with sharedmemory
we could see the effect, even on a optimized code, the sharedmemory had if
not used correctly. Tomuch synchronization between host and coprocessor
meant that the Cilk worker threads were idling a lot. OpenMP had another
challenge with it requiring a more controlled memory setup, not unlike
CUDA. You could allocate new areas every time you do an offload section
but this creates a plenty of overhead and is generally negative. So setting
up a dummy offload with no executable code beforehand might not be the
most intuitive way of doing things. It is also necessary to setup areas only
used in offloaded code which also provided a challenge.

Comparing OpenMP and Cilk the actual functioning code through Cilk
was easier. This was as a result of shared memory saving us from any
real thought when it came to doing the Cilk part. However, due to the
constant synchronization of memory and the work stealing algorithm any
code written in Cilk had low speedups meaning it was not very viable.
OpenMP however had good speedup with static scheduling.

CUDA in our case was more complicated. It requires calculation on registry
and kernel usage as our goal was create portability we had to do extra
calculation to figure out how to do the loops. Synchronization between
blocks is also limited so we had to finish an execution kernel execution
before we moved to the next step in our encoding calculations.

76

5.11 What Does It Mean?

So what can be learnt from our experiment is that while CUDA still gives us
faster results OpenMP is not far behind when it comes to execution times.
We did discover that not offloading OpenMP code in our cases was better
than offloading, however it has to be noted that the host CPU was more
powerful and better suited than most CPU’s. OpenMP in itself is easier
in implementation with less knowledge required from the programmer
than CUDA. Offloading though did require some knowledge, especially in
regards to knowing what we to offload and controlling when and where
things get offloaded. This was a bit more intuitive in CUDA compared to the
other extensions although, still, very similar. Cilk was probably the hardest
to set up in regards to getting decent execution times but at the same time
easiest to get executable code with. The reason being how control one has
over communication between the host and the coprocessor.

It is important to note that the encoder we optimized is far from effective
so the results are a bit exaggerated. However, it is possible to transfer the
results towards better encoders with both the workload being similar and
we can see the effect of the work schedules on theway our data is structured.
As was mentioned it would be interesting to see what effect the schedules
have on varying size macroblocks.

So in the end we learnt that the smaller the overhead the better the
performance. This comes from CUDA with the lowest overhead per thread,
towards static scheduling in OpenMP then to dynamic scheduling types
until we reach the work stealing in Cilk. However, CUDA requires a bit
more expertise to get the desired results meaning that OpenMP is still a
very viable option.

With all this inmind even if the GPU is potentially more powerful, using the
Xeon Phi can give strong benefits. Especially in regards to older code that
might be hard to optimize, making the real question how much a few extra
milliseconds saved matter. If they are not that important the time saved
with the potentially easier portability of the Xeon Phi can have a bigger
value.

5.12 Summary

In this chapter the implementation used was discussed. All the steps taken
in all the language extensions and variations of the design were listed in
detail. We also went through our results and any problems we had. In the
end we discussed what all of this meant in a broader context.

Our initial work went into creating a basic parallelized version of the
Codec63 encoder. We then started working towards offloading data to

77

the Xeon Phi to run before creating a similar implementation for Cilk.
We discovered a problem with how the basic behavior of the code when
offloading and worked on improving the code. We then finished by
implementing our CUDA code.

We tested all the work scheduling algorithms we had available, as we set out
to in our problem statement, and learnt that static scheduling performed
best on the Xeon Phi when only using a single algorithm. However, a mix
between guided and static proved to be the best setup even if the difference
in results was minimal. We also discovered that CUDA still performed
better than anything on the Xeon Phi.

Finally, we discussed a bit around how complex the coding was and did a
comparison on all three.

78

Chapter 6

Conclusion

To draw a conclusion from our results it can be stated that most of our
theories that had been outlined were confirmed. As expected evenly
chunked work division with little overhead gave better results. It is also
obvious that the offloading is not as expensive as we thought even though
it has an effect. Finally, GPGPU proved to be better than HPC as was
expected.

6.1 Summary and Main Contributions

The thesis started by going through the basic background and ideas on why
we wanted to do this research. It defined the problem we were looking
at and any limits of the research we did. We discussed the hardware and
scheduling algorithms before detailing video processing. We described
Codec63 and howwe planned on implementing our optimizations. We then
covered how we implemented our solutions and described our results.

As mentioned in our problem statement we compared the hardware we
had and the three language extensions we used. What we learnt was that
GPU still performed better although Xeon Phi offered an easier way of
implementing a parallelized version of our encoder. Utilizing the Xeon
Phi and CUDA still requires a lot of attention to fine detail and very broad
knowledge.

This all worked towards our goal of finding better ways to handle multime-
dia. This is especially important as multimedia is becoming ever so impor-
tant. We tested various scheduling algorithms with the goal of seeing how
they did with the encoding algorithms we used. We found out that static
scheduling performed best although mixing the algorithms also provided
good results.

79

We looked at how Codec63 worked and where we could look towards
parallelizing it. We discovered that the Codec63 has some issues with
memory allocation during offloads so we improved memory usage in it.
We noticed that that most of the time was spent on motion estimation.
This meant that most of our work was targeted towards improving motion
estimation.

A big factor in optimizing the codewas thatmemory serves a very important
part. If there were tomany threads trying to accessmemory within a certain
boundary we started having synchronization problems and noticed that our
encoding time increased substantially. Our optimizations also have some
room to work with, like SIMD instructions.

CUDA still proved to have better encoding times but required more
complex work. Especially important was thread synchronization and
selecting the amount of threads to utilize. This was specially the case with
the larger videos as with the smaller the difference between Xeon Phi and
CUDA was too small to measure.

6.2 Future Work

There are a number of things that require further research. As multimedia
keeps evolving we need to improve our methods for encoding it. We only
looked at a 2D DCT algorithm and a very standard grid search for motion
estimation. Potential future work would include other motion search
algorithms such as a diamond search and other types of DCT algorithms.
Our motion estimation only depends on the previous frame but motion
estimation in modern encoder usually depends on previous frames and
future frames. Researching improvements on these algorithms should also
be of interest.

We barely touched the fall in execution time on 32 threads when running
the code natively on the CPU. We did see that there seemed to be more
idling on the CPUs but not if that was caused by overhead or something
else.

We also did not do any research on an optimized encoder. Something
that would be especially interesting to research is an encoder with varying
macroblock size and what effect this would have on the scheduling
algorithms. We can theorize that the workload would become more
unbalanced this way which can potentially make a scheduling algorithm
with more overhead more effective. We also did not try doing work on both
the native and coprocessor at the same time. Using the encoder multiple
Xeon Phis as a distributed system should also be of interest. Researching
the potential of using the Xeon Phi to encode incomming data over a
network should also be considered as potential future research.

80

We have not tried any SIMD vectorization optimizations. These require us
to do work on how our code is written along with large parts of the code
needing to be changed. This would therefore be an excellent next step in
this research.

The research we did also has potential implications for workload in related
applications. Computer vision is a growing field that requires more
research. A computer could use much of the same algorithms we used,
especially motion estimation, to process images. Our research could,
therefore, be used in relation to computer vision. Another growing field
is the research into neural networks which also relies on some of our
algorithms.

81

82

Appendix A

Execution Times

A.1 Baseline

Baseline code Improved baseline
Foreman 25.993 9.996
Tractor 564.324 217.454
Bagadus 1038.436 713.742
Foreman_4K 1258.794 864.991

Table A.1: Baseline execution times

A.2 OpenMP First Attempts

These are the first attempts at parallelization with OpenMP. They contain
data were we optimize all of the loops in motion estimation, just the outer
loops of motion estimane and a combination of optimized outer loops and
optimized sad.

Foreman 10.661
Tractor 132.187
Bagadus 342.264
Foreman4k 405.748

Table A.2: Execution Time with motion estimation parallelized

83

Foreman 3.907
Tractor 48.804
Bagadus 108.463
Foreman4k 130.910

Table A.3: Improved Parallel motion estimation

Foreman Tractor Bagadus Foreman_4k
1 Thread 3.619 77.750 245.507 301.492
2 Threads 2.510 44.102 132.715 165.689
4 Threads 1.783 25.712 78.133 98.483
8 Threads 1.462 18.954 53.571 70.678
16 Threads 1.452 14.677 53.242 70.689
32 Threads 1.830 23.150 47.602 72.113
64 Threads 1.381 14.021 37.560 50.914

Table A.4: Motion estimation and optimized best SAD

A.3 Fully Parallel OpenMP Tables

These are execution times for our fully parallelized OpenMP executions.

Foreman Static Dynamic Guided
1 Thread 3.707 11.856 11.809
2 Threads 2.212 6.379 6.309
4 Threads 1.868 3.618 3.652
8 Threads 1.388 2.393 2.362
16 Threads 1.39 1.716 1.669
32 Threads 1.672 2.376 2.328
64 Threads 1.373 1.686 1.818

Table A.5: Foreman execution times without offload

Tractor Static Dynamic Guided
1 Thread 68.081 247.516 247.521
2 Threads 35.389 127.496 126.506
4 Threads 20.2 67.735 66.823
8 Threads 13.374 40.13 39.093
16 Threads 11.374 24.824 23.208
32 Threads 14.865 26.145 24.58
64 Threads 9.953 22.455 22.316

Table A.6: Tractor execution times without offload

84

Bagadus Static Dynamic Guided
1 Thread 210.51 811.454 810.457
2 Threads 108.359 411.622 4087.795
4 Threads 57.796 212.052 208.38
8 Threads 35.012 121.161 118.962
16 Threads 27.063 69.202 67.948
32 Threads 30.501 67.774 66.912
64 Threads 21.027 64.933 64.074

Table A.7: Bagadus execution times without offload

Foreman_4K Static Dynamic Guided
1 Thread 259.007 983.146 983.06
2 Threads 135.582 501.539 498.277
4 Threads 75.069 259.947 256.074
8 Threads 47.985 151.267 148.943
16 Threads 39.77 89.886 87.171
32 Threads 42.096 88.972 88.694
64 Threads 32.204 82.652 81.652

Table A.8: Foreman_4k execution times without offload

Foreman Static Dynamic Guided
1 Thread 5.082 13.393 13.428
2 Threads 3.831 8.011 7.867
4 Threads 3.267 5.198 5.074
8 Threads 2.883 3.969 3.925
16 Threads 2.855 3.241 3.386
32 Threads 3.175 4.033 3.819
64 Threads 3.578 3.232 3.261
128 Threads 8.821 3.457 3.959
256 Threads 2.941 3.343 3.442
512 Threads 3.367 3.601 3.633

Table A.9: Foreman with offload

Tractor Static Dynamic Guided
1 Thread 68.379 247.926 247.914
2 Threads 37.661 128.417 127.437
4 Threads 22.43 67.808 67.083
8 Threads 15.223 40.715 39.982
16 Threads 14.92 25.95 25.806
32 Threads 16.421 27.311 27.094
64 Threads 11.901 24.574 24.402
128 Threads 11.631 24.572 24.362
256 Threads 11.595 24.74 24.504
512 Threads 11.883 24.779 24.712

Table A.10: Tractor with offload

85

Bagadus Static Dynamic Guided
1 Thread 211.414 811.344 811.53
2 Threads 110.081 414.298 409.79
4 Threads 64.861 213.284 210.528
8 Threads 39.831 122.936 121.295
16 Threads 32.508 71.326 69.19
32 Threads 29.509 68.07 67.667
64 Threads 23.721 65.743 64.718
128 Threads 22.59 65.717 64.71
256 Threads 22.318 65.647 65.063
512 Threads 22.531 65.708 65.035

Table A.11: Bagadus with offload

Foreman_4K Static Dynamic Guided
1 Thread 260.318 986.819 984.343
2 Threads 136.703 505.489 501.195
4 Threads 79.11 261.888 259.431
8 Threads 51.135 154.02 153.103
16 Threads 44.197 94.015 92.302
32 Threads 45.309 90.708 89.745
64 Threads 34.042 83.604 82.605
128 Threads 33.406 83.947 83.054
256 Threads 35.27 84.411 83.71
512 Threads 33.683 84.951 84.155

Table A.12: Foreman_4k with offload

86

A.4 Encoding Times with ME Only

Foreman Native Offload
1 Thread 2.832 2.83
2 Threads 1.434 1.434
4 Threads 0.764 0.76
8 Threads 0.437 0.439
16 Threads 0.255 0.429
32 Threads 0.594 0.618
64 Threads 0.376

Table A.13: Foreman encoding per frame - 100 frames

Tractor Native Offload
1 Thread 62.772 62.884
2 Threads 31.587 31.934
4 Threads 16.512 16.568
8 Threads 9.503 9.811
16 Threads 4.87 4.879
32 Threads 8.216 8.184
64 Threads 5.494

Table A.14: Tractor encoding per frame - 100 frames

Bagadus Native Offload
1 Thread 212.152 217.207
2 Threads 106.777 109.318
4 Threads 54.664 57.138
8 Threads 30.762 31.254
16 Threads 30.372 30.551
32 Threads 30.627 15.948
64 Threads 17.883

Table A.15: Bagadus encoding per frame - 100 frames

Foreman_4k Native Offload
1 Thread 251.86 253.231
2 Threads 126.994 127.19
4 Threads 64.962 65.675
8 Threads 36.325 37.952
16 Threads 31.167 20.528
32 Threads 24.263 28.794
64 Threads 20.744

Table A.16: Foreman_4k encoding per frame - 100 frames

87

A.5 Cilk

These are the execution times for Cilk.

Foreman Tractor Bagadus Foreman_4k
1 Thread 11.399 249.049 802.719 973.861
2 Threads 6.387 128.227 414.196 501.552
4 Threads 3.886 70.336 222.945 272.561
8 Threads 2.503 41.352 120.693 151.912
16 Threads 2.09 24.721 72.745 97.202
32 Threads 1.838 23.17 67.935 86.821
64 Threads 2.846 25.301 68.964 97.226

Table A.17: Cilk without offload

Foreman Tractor Bagadus Foreman_4k
1 Thread 68.976 1658.854 5195.592 6538.103
2 Threads 45.956 919.136 2828.585 3619.548
4 Threads 28.463 540.767 1536.767 2180.474
8 Threads 21.327 343.777 892.757 1319.767
16 Threads 17.665 246.058 574.136 930.477
32 Threads 16.037 200.997 402.648 702.666
64 Threads 13.466 165.885 324.708 600.117
128 Threads 16.307 151.119 311.872 579.945
256 Threads 16.359 175.085 315.788 563.936
512 Threads 27.127 217.299 372.156 621.518

Table A.18: Cilk with offload

Foreman Foreman Tractor Bagadus Foreman_4k
1 Thread 72.37 1528.584 4966.935 6025.113
2 Threads 39.034 770 2559.096 3062.186
4 Threads 22.165 402.165 1304.897 1596.666
8 Threads 14.056 213.468 687.016 833.214
16 Threads 10.245 118.818 368.818 450.926
32 Threads 8.157 70.766 210.807 259.73
64 Threads 7.546 48.614 137.88 167.838
128 Threads 7.554 41.577 115.579 140.961
256 Threads 11.186 51.597 125.937 150.027
512 Threads 19.305 87.948 154.968 184.458

Table A.19: Cilk without shared memory updates

A.6 CUDA Execution Times

88

CUDA Foreman Tractor Bagadus Foreman_4k
1x1 blocks 17.435 201.063 637.251 780.698
2x2 blocks 4.729 54.484 164.415 203.926
2x3 blocks 3.282 37.776 111.964 140.276
3x4 blocks 2.549 21.806 59.111 76.211
3x5 blocks 2.268 19.231 49.285 65.916
4x6 blocks 1.927 14.159 33.807 46.163
6x9 blocks 1.82 10.231 21.352 31.752
8x12 blocks 1.842 11.228 24.015 34.61
10x15 blocks 1.783 10.02 21.127 31.32
12x18 blocks 1.824 10.134 20.936 31.572
14x21 blocks 1.782 10.072 20.942 30.918
16x24 blocks 1.963 10.083 20.369 30.477
18x27 blocks 1.737 10.021 19.765 29.764
20x30 blocks 1.82 10.049 20.111 30.345
22x33 blocks 2.231 10.111 19.785 29.845
24x36 blocks 1.863 10.107 19.823 29.735
26x39 blocks 1.789 10.134 19.84 29.816

Table A.20: CUDA execution times. Each block has 16x16 threads

A.7 Encoding Only Measurements

Foreman Static Dynamic Guided
1 Thread 2.832 11.832 11.881
2 Threads 1.434 5.611 5.57
4 Threads 0.764 2.837 2.819
8 Threads 0.437 1.617 1.591
16 Threads 0.255 0.935 0.956
32 Threads 0.594 1.114 1.442

Table A.21: Encoding only without offload

Foreman Static Dynamic Guided
1 Thread 2.83 11.865 11.836
2 Threads 1.434 5.61 5.576
4 Threads 0.76 2.869 2.86
8 Threads 0.439 1.581 1.553
16 Threads 0.429 1.971 0.993
32 Threads 0.618 1.83 2.85
64 Threads 0.376 0.902 0.944
128 Threads 0.437 0.935 0.956
256 Threads 0.538 1.222 1.173
512 Threads 0.692 1.198 1.116

Table A.22: Encoding only with offload

89

Foreman_4k Static Dynamic Guided
1 Thread 251.86 970.16 970.482
2 Threads 126.994 491.423 487.648
4 Threads 64.962 249.102 246.167
8 Threads 36.325 139.224 137.143
16 Threads 31.167 74.998 75.518
32 Threads 24.263 72.553 71.763

Table A.23: Encoding only without offload on Foreman_4k

Foreman_4k Static Dynamic Guided
1 Thread 253.231 974.303 836.706
2 Threads 127.19 492.293 418.512
4 Threads 65.675 250.191 209.959
8 Threads 37.952 140.111 117.131
16 Threads 30.528 75.991 76.785
32 Threads 28.794 72.551 71.949
64 Threads 20.744 71.631 70.798
128 Threads 19.641 71.476 70.624
256 Threads 19.5 71.563 70.662
512 Threads 19.805 71.625 71.1

Table A.24: Encoding only with offload on Foreman_4k

90

Appendix B

Code Details

This appendix contains a list of encoding optimization done in the thesis.
This will not include the full code, just the important optimizations.

91

B.1 OpenMP

Code Example B.1: The full c63_common for OpenMP after optimization
1 struct c63_common
2 {
3 int width, height;
4 int ypw, yph, upw, uph, vpw, vph;
5

6 int padw[COLOR_COMPONENTS], padh[COLOR_COMPONENTS];
7

8 int mb_cols, mb_rows;
9

10 uint8_t qp; // Quality parameter
11

12 int me_search_range;
13

14 uint8_t quanttbl[COLOR_COMPONENTS][64];
15

16 int framenum;
17

18 int keyframe_interval;
19 int frames_since_keyframe;
20

21 struct entropy_ctx e_ctx;
22

23 //Refframe (we only need recons)
24 uint8_t *ref_recons_Y;
25 uint8_t *ref_recons_U;
26 uint8_t *ref_recons_V;
27

28 //Curframe (We do not use recons on current frame)
29 uint8_t *curr_orig_Y;
30 uint8_t *curr_orig_U;
31 uint8_t *curr_orig_V;
32 uint8_t *curr_predicted_Y;
33 uint8_t *curr_predicted_U;
34 uint8_t *curr_predicted_V;
35

36 // Difference between original image and predicted frame
37

38 int16_t *curr_residuals_U;
39 int16_t *curr_residuals_V;
40 int16_t *curr_residuals_Y;
41

42 struct macroblock *curr_mbs_Y;
43 struct macroblock *curr_mbs_U;
44 struct macroblock *curr_mbs_V;
45

46 int curr_keyframe;
47 };

92

Code Example B.2: Optimizing SAD calculations
1 __declspec(target(mic:0)) static void me_block_8x8(struct c63_common *cm, int mb_x,
2 int mb_y, uint8_t *orig, uint8_t *ref, int color_component)
3 {
4 struct macroblock *mb = 0;
5 if(color_component == 0) {
6 mb = &cm°>curr_mbs_Y[mb_y*cm°>padw[color_component]/8+mb_x];
7 } else if(color_component == 1) {
8 mb = &cm°>curr_mbs_U[mb_y*cm°>padw[color_component]/8+mb_x];
9 } else {
10 mb = &cm°>curr_mbs_V[mb_y*cm°>padw[color_component]/8+mb_x];
11 }
12

13 int range = cm°>me_search_range;
14

15 /* Quarter resolution for chroma channels. */
16 if (color_component > 0) { range /= 2; }
17

18 int left = mb_x * 8 ° range;
19 int top = mb_y * 8 ° range;
20 int right = mb_x * 8 + range;
21 int bottom = mb_y * 8 + range;
22

23 int w = cm°>padw[color_component];
24 int h = cm°>padh[color_component];
25

26 if (left < 0) { left = 0; }
27 if (top < 0) { top = 0; }
28 if (right > (w ° 8)) { right = w ° 8; }
29 if (bottom > (h ° 8)) { bottom = h ° 8; }
30

31 int x, y;
32

33 int mx = mb_x * 8;
34 int my = mb_y * 8;
35

36 int sad[(bottom°top)*(right°left)];
37 int best_sad = INT_MAX;
38 #pragma omp parallel for schedule(SCHEDULE)
39 for (y = top; y < bottom; ++y)
40 {
41 for (x = left; x < right; ++x)
42 {
43 sad_block_8x8(orig + my*w+mx, ref + y*w+x, w, &sad[(y°top)*(right°left)+x°left]);
44 }
45 }
46 best_sad = __sec_reduce_min_ind(sad[0:(right°left)*(bottom°top)]);
47 mb°>mv_x = (best_sad%(right°left)) ° mx + left;
48 mb°>mv_y = (best_sad/(right°left)) ° my + top;
49 mb°>use_mv = 1;
50 }

93

B.2 Cilk

Code Example B.3: The looped reading of a frame
1 size_t read_file(char *buf, int amount_to_read, FILE* file) {
2 int read_so_far = 0;
3 int max_read = 524287;
4 size_t len = 0;
5 while (amount_to_read) {
6 if(amount_to_read > max_read) {
7 len += fread(buf+read_so_far, 1, max_read, file);
8 read_so_far += len ° read_so_far;
9 amount_to_read °= max_read;
10 } else {
11 len += fread(buf+read_so_far, 1, amount_to_read, file);
12 read_so_far += len ° read_so_far;
13 amount_to_read °= amount_to_read;
14 }
15 }
16 return len;
17 }

94

B.3 CUDA

Code Example B.4: The method executing our CUDA kernels
1 dim3 blocks(BLOCKY,BLOCKX);
2 dim3 threads(16,16);
3 void c63_encode_image(struct c63_common *cm, yuv_t *image) {
4 /* Advance to next frame */
5 set_frame(cudaCm, image);
6 //Encode
7 cudaDeviceSynchronize();
8 //We use 3 encode methods to sync between parts
9 cuda_encode1<<<blocks,threads>>>(cudaCm, image);
10 cudaDeviceSynchronize();
11 cuda_encode2<<<blocks,threads>>>(cudaCm, image);
12 cudaDeviceSynchronize();
13 cudaMemset(cudaCm°>curframe°>recons°>Y, 0, cm°>ypw * cm°>yph * sizeof(uint8_t));
14 cudaMemset(cudaCm°>curframe°>recons°>U, 0, cm°>upw * cm°>uph * sizeof(uint8_t));
15 cudaMemset(cudaCm°>curframe°>recons°>V, 0, cm°>vpw * cm°>vph * sizeof(uint8_t));
16 cudaDeviceSynchronize();
17 cuda_encode3<<<blocks,threads>>>(cudaCm, image);
18 cudaDeviceSynchronize();
19

20 cudaMemcpy(cm°>curframe°>residuals°>Ydct, cudaCm°>curframe°>residuals°>Ydct,
21 cm°>ypw * cm°>yph* sizeof(int16_t), cudaMemcpyDeviceToHost);
22 cudaMemcpy(cm°>curframe°>residuals°>Udct, cudaCm°>curframe°>residuals°>Udct,
23 cm°>upw * cm°>uph* sizeof(int16_t), cudaMemcpyDeviceToHost);
24 cudaMemcpy(cm°>curframe°>residuals°>Vdct, cudaCm°>curframe°>residuals°>Vdct,
25 cm°>vpw * cm°>vph* sizeof(int16_t), cudaMemcpyDeviceToHost);
26

27 cudaMemcpy(cm°>curframe°>mbs[Y_COMPONENT], cudaCm°>curframe°>mbs[Y_COMPONENT],
28 cm°>mb_rows * cm°>mb_cols * sizeof(struct macroblock), cudaMemcpyDeviceToHost);
29 cudaMemcpy(cm°>curframe°>mbs[U_COMPONENT], cudaCm°>curframe°>mbs[U_COMPONENT],
30 cm°>mb_rows/2 * cm°>mb_cols/2 * sizeof(struct macroblock), cudaMemcpyDeviceToHost);
31 cudaMemcpy(cm°>curframe°>mbs[V_COMPONENT], cudaCm°>curframe°>mbs[V_COMPONENT],
32 cm°>mb_rows/2 * cm°>mb_cols/2 * sizeof(struct macroblock), cudaMemcpyDeviceToHost);
33 cudaDeviceSynchronize();
34 }

95

Code Example B.5: The first encoding method CUDA
1 __global__ void cuda_encode1(struct c63_common *cm, yuv_t *image)
2 {
3 if(cm°>framenum == 0) cm°>curframe°>keyframe = 1;
4 /* Check if keyframe */
5 if (!cm°>curframe°>keyframe)
6 {
7 /* Motion Estimation */
8 c63_motion_estimate(cm);
9 __syncthreads();
10 /* Motion Compensation */
11 }
12 }

Code Example B.6: The second encoding method for CUDA
1 __global__ void cuda_encode2(struct c63_common *cm, yuv_t *image){
2 if (!cm°>curframe°>keyframe)
3 c63_motion_compensate(cm);
4 }

96

Code Example B.7: The third encoding method CUDA
1 __global__ void cuda_encode3(struct c63_common *cm, yuv_t *image){
2 /* DCT and Quantization */
3 dct_quantize(cm°>curframe°>orig°>Y, cm°>curframe°>predicted°>Y, cm°>padw[Y_COMPONENT],
4 cm°>padh[Y_COMPONENT], cm°>curframe°>residuals°>Ydct,
5 cm°>quanttbl[Y_COMPONENT]);
6

7 dct_quantize(cm°>curframe°>orig°>U, cm°>curframe°>predicted°>U, cm°>padw[U_COMPONENT],
8 cm°>padh[U_COMPONENT], cm°>curframe°>residuals°>Udct,
9 cm°>quanttbl[U_COMPONENT]);
10

11 dct_quantize(cm°>curframe°>orig°>V, cm°>curframe°>predicted°>V, cm°>padw[V_COMPONENT],
12 cm°>padh[V_COMPONENT], cm°>curframe°>residuals°>Vdct,
13 cm°>quanttbl[V_COMPONENT]);
14 /*}
15

16 __global__ void cuda_encode4(struct c63_common *cm, yuv_t *image){*/
17 __syncthreads();
18 /* Reconstruct frame for inter°prediction */
19 dequantize_idct(cm°>curframe°>residuals°>Ydct, cm°>curframe°>predicted°>Y,
20 cm°>ypw, cm°>yph, cm°>curframe°>recons°>Y, cm°>quanttbl[Y_COMPONENT]);
21 dequantize_idct(cm°>curframe°>residuals°>Udct, cm°>curframe°>predicted°>U,
22 cm°>upw, cm°>uph, cm°>curframe°>recons°>U, cm°>quanttbl[U_COMPONENT]);
23 dequantize_idct(cm°>curframe°>residuals°>Vdct, cm°>curframe°>predicted°>V,
24 cm°>vpw, cm°>vph, cm°>curframe°>recons°>V, cm°>quanttbl[V_COMPONENT]);
25 /* Function dump_image(), found in common.c, can be used here to check if the
26 prediction is correct */
27 if(threadIdx.x == 0 && threadIdx.y == 0 && blockIdx.x == 0 && blockIdx.y == 0) {
28 ++cm°>framenum;
29 ++cm°>frames_since_keyframe;
30 }
31 //Having this at start means we must sync after it, we skip that now
32 if(threadIdx.x == 0 && threadIdx.y == 0 && blockIdx.x == 0 && blockIdx.y == 0) {
33 if (cm°>framenum == 0 || cm°>frames_since_keyframe == cm°>keyframe_interval)
34 {
35 cm°>curframe°>keyframe = 1;
36 cm°>frames_since_keyframe = 0;
37 }
38 else { cm°>curframe°>keyframe = 0; }
39 }
40 }

97

Code Example B.8: The setup for SAD calculations in CUDA
1 __device__ static void me_block_8x8(struct c63_common *cm, int mb_x,
2 int mb_y, uint8_t *orig, uint8_t *ref, int color_component)
3 {
4 struct macroblock *mb =
5 &cm°>curframe°>mbs[color_component][mb_y*cm°>padw[color_component]/8+mb_x];
6

7 int range = cm°>me_search_range;
8

9 /* Quarter resolution for chroma channels. */
10 if (color_component > 0) { range /= 2; }
11

12 int left = mb_x * 8 ° range;
13 int top = mb_y * 8 ° range;
14 int right = mb_x * 8 + range;
15 int bottom = mb_y * 8 + range;
16

17 int w = cm°>padw[color_component];
18 int h = cm°>padh[color_component];
19

20 if (left < 0) { left = 0; }
21 if (top < 0) { top = 0; }
22 if (right > (w ° 8)) { right = w°8; }
23 if (bottom > (h ° 8)) { bottom = h°8; }
24

25 int x, y, i;
26

27 int mx = mb_x * 8;
28 int my = mb_y * 8;
29

30 //This is the boundary of our search range. If we have a limited
31 //search range it will apply to just the the area as if the lower and
32 //right most parts are not there
33 int __shared__ sad[32*32];
34

35 for (i = threadIdx.y * blockDim.x + threadIdx.x;
36 i < (bottom ° top) * (right ° left);
37 i += blockDim.x * blockDim.y)
38 {
39 y = i/(right ° left) + top;
40 x = i%(right ° left) + left;
41 sad_block_8x8(orig + my*w+mx, ref + y*w+x, w, &sad[(y°top)*(right°left)+x°left]);
42 }
43 __syncthreads();
44 reduce_best_sad(mb, mx, my, top, bottom, right, left, sad);
45

46 mb°>use_mv = 1;

98

Code Example B.9: The parallel reduction to find the lowest value
1 __device__ void reduce_best_sad(struct macroblock *mb, int mx,
2 int my, int top, int bottom, int right,
3 int left, int* values) {
4 int half = ((bottom°top)*(right°left))/2; //This is the middle of the array
5 int i;
6 int __shared__ ind[32*32];
7

8

9 for(i = threadIdx.y * blockDim.x + threadIdx.x;
10 i < 32*32;
11 i += blockDim.x * blockDim.y) {
12 ind[i] = i;
13 }
14 __syncthreads();
15 for(; half > 0; half>>=1) {
16 for(i = threadIdx.y * blockDim.x + threadIdx.x;
17 i < half;
18 i += blockDim.x * blockDim.y) {
19 if(values[i] >= values[i+half]) {
20 values[i] = values[i+half];
21 ind[i] = ind[i+half];
22 }
23 }
24 }
25 __syncthreads();
26 if(threadIdx.x == 0 && threadIdx.y == 0) {
27 mb°>mv_x = (ind[0]%(right°left)) ° mx + left;
28 mb°>mv_y = (ind[0]/(right°left)) ° my + top;
29 }
30 }

99

100

Appendix C

Codec63

Codec63 can be found at https://bitbucket.org/mpg_code/inf5063°codec63 and
is an open source encoder. The easiest way to download and use the
codec is through git. Using git the code can be downloaded with either
clone or fetch. git clone git@bitbucket.org:mpg_code/inf5063°codec63.git or
git fetch git@bitbucket.org:mpg_code/inf5063°codec63.git.

The encoder uses a makefile for automated building. make c63enc builds
the encoder while make c63dec builds the decoder.

The encoder requires parameters about height, width, input file and output
file to run. An example of how it is run on the foreman.yuv video
is ./c63enc °h 288 °w 352 °o foreman.c63 foreman.yuv which will encode the
video. The video can be decoded through ./c63dec foreman.c63 foreman.yuv.

101

102

Bibliography

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. “The Data
Locality of Work Stealing”. In: Proceedings of the Twelfth Annual
ACM Symposium on Parallel Algorithms and Architectures. Bar
Harbor, Maine, USA: ACM, 2000, pp. 1–12.

[2] Siddhant Ahuja. Sum of Absolute Differences (SAD). Accessed:
2016-07-14. 2010. URL: https://siddhantahuja.wordpress.com/tag/
sum-of-squared-differences/.

[3] Alexa. The top 500 sites on the web. Accessed: 2016-07-14. 2016.
URL: http://www.alexa.com/topsites.

[4] AmandaS. Building a Native Application for Intel® Xeon Phi™
Coprocessors. Accessed 2016-07-09. URL: https://software.intel.com/
en - us /articles /building - a - native - application - for- intel - xeon - phi -
coprocessors.

[5] Anonymous. DCT-8x8. Accessed: 2016-04-25. n.d. URL: https : / /
upload.wikimedia.org/wikipedia/commons/2/24/DCT-8x8.png.

[6] Andrew W Appel. Compiling with continuations. Cambridge Uni-
versity Press, 2006.

[7] Eduard Ayguadé et al. “Is the Schedule Clause Really Necessary
in OpenMP?” In: OpenMP Shared Memory Parallel Program-
ming: International Workshop on OpenMP Applications and Tools,
WOMPAT 2003 Toronto, Canada, June 26–27, 2003 Proceedings.
Ed. by Michael J. Voss. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2003, pp. 147–159.

[8] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multi-
threaded Computations by Work Stealing”. In: J. ACM 46.5 (Sept.
1999), pp. 720–748.

[9] Ian Buck. GPU Computing with NVIDIA CUDA. Accessed: 2016-
06-09. 2007. URL: http : / / www - hep . uta . edu / ~stradlin / GPGPU /
International%20Conference%20on%20Computer%20Graphics%
20and%20...%202007%20Buck.pdf.

[10] Ian Buck. The Evolution of GPUs for General Purpose Computing.
Accessed 2016-07-14. 2010. URL: http: / /www.nvidia .com/content /
GTC-2010/pdfs/2275_GTC2010.pdf.

103

[11] Ian Buck et al. “Brook for GPUs: Stream Computing on Graphics
Hardware”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 777–786.

[12] J Mark Bull. “Measuring synchronisation and scheduling overheads
in OpenMP”. In: Proceedings of First European Workshop on
OpenMP. Vol. 8. 1999.

[13] Andrew Burnes. Introducing the GeForce GTX TITAN. Accessed
2016-06-09. URL: http : / / www. geforce . com / whats - new / articles /
introducing-the-geforce-gtx-titan.

[14] George Chrysos. Intel® Xeon Phi™ X100 Family Coprocessor - the
Architecture. Accessed: 2016-07-14. 2012. URL: https : / / software .
intel .com/en- us/articles / intel - xeon- phi - coprocessor- codename-
knights-corner.

[15] Cilk. A brief History of Cilk. Accessed: 2015-06-29. n.d. URL: https:
//www.cilkplus.org/cilk-history.

[16] D. E. Comer et al. “Computing As a Discipline”. In: Commun. ACM
32.1 (Jan. 1989). Ed. by Peter J. Denning, pp. 9–23.

[17] Håvard Espeland, Preben Olsen, and Håkon Kvale Stensland.
inf5063-codec63. Accessed: 2016-08-11. 2013. URL: https : / /
bitbucket.org/mpg_code/inf5063-codec63.

[18] Jianbin Fang et al. “Test-driving Intel Xeon Phi”. In: Proceedings
of the 5th ACM/SPEC International Conference on Performance
Engineering. Dublin, Ireland: ACM, 2014, pp. 137–148.

[19] Jianbin Fang et al. “Test-driving intel xeon phi”. In: Proceedings
of the 5th ACM/SPEC international conference on Performance
engineering. ACM. 2014, pp. 137–148.

[20] Richard Friedman. What problem does OpenMP solve? Accessed:
2016-08-04. n.d. URL: http : / / openmp . org / openmp - faq . html #
Problems.

[21] Rupert Goodwins. Intel unveils many-core Knights platform for
HPC. Accessed 2016-07-14. URL: http://www.zdnet.com/article/intel-
unveils-many-core-knights-platform-for-hpc/.

[22] Robert H. Halstead Jr. “MULTILISP: A Language for Concurrent
Symbolic Computation”. In: ACM Trans. Program. Lang. Syst. 7.4
(Oct. 1985), pp. 501–538.

[23] Intel. Intel® Xeon Phi™ Coprocessor 3120A. Accessed 2016-06-
13. URL: http : / / ark . intel . com / products / 75797 / Intel - Xeon - Phi -
Coprocessor-3120A-6GB-1_100-GHz-57-core.

[24] James Jeffers and James Reinders. Intel Xeon Phi coprocessor high-
performance programming. Newnes, 2013.

[25] Hwancheol Jeong et al. “Performance of Kepler GTX Titan GPUs and
Xeon Phi System”. In: arXiv preprint arXiv:1311.0590 (2013).

[26] Khazadum. OpenMP language extensions. Accessed: 2015-06-29.
2008. URL: https : / / commons . wikimedia .org / wiki / File :OpenMP _
language_extensions.svg.

104

[27] E.A. Lee. “The problem with threads”. In: Computer 39.5 (May
2006), pp. 33–42.

[28] Michael Masnick, Michael Ho Joyce Hung, and Leigh Beadon. The
sky is rising. Accessed 2016-07-14. 2014. URL: https://www.ccianet.
org/wp-content/uploads/2014/10/Sky-Is-Rising-2014.pdf.

[29] NVIDIA. CPUvsGPU. Accessed: 2016-06-07. n.d. URL: http://docs.
nvidia.com/cuda/cuda-c-programming-guide/.

[30] NVIDIA. CUDA Parallel Computing Platform. Accessed 2016-06-
09. URL: http://www.nvidia.com/object/cuda_home_new.html.

[31] NVIDIA. Kepler GK110 Whitepaper. Accessed: 2016-06-07. 2012.
URL: http: / /www.nvidia.com/content/PDF/kepler/NVIDIA- Kepler-
GK110-Architecture-Whitepaper.pdf.

[32] Mike Pound. JPEG DCT, Discrete Cosine Transform. Accessed:
2015-06-29. Computerphile. 2015. URL: https://www.youtube.com/
watch?v=Q2aEzeMDHMA.

[33] Mike Pound. JPEG ’files’ & Colour. Accessed: 2015-06-29. Com-
puterphile. 2015. URL: https : / / www. youtube . com / watch ? v = n _
uNPbdenRs.

[34] Rezaur Rahman. Intel® Xeon Phi™ Coprocessor Architecture and
Tools: The Guide for Application Developers. Apress, 2013.

[35] Austin Roorda and David RWilliams. “The arrangement of the three
cone classes in the living human eye”. In: Nature 397.6719 (1999),
pp. 520–522.

[36] P. E. Ross.Why CPU frequency stalled. Accessed: 2014-11-23. 2008.
URL: http : / / spectrum . ieee . org / computing / hardware / why - cpu -
frequency-stalled.

[37] Larry Seiler et al. “Larrabee: a many-core x86 architecture for visual
computing”. In: ACM Transactions on Graphics (TOG). Vol. 27.
ACM. 2008, p. 18.

[38] SimilarWeb. Website Ranking. Accessed: 2016-07-14. 2016. URL:
https://www.similarweb.com/global.

[39] Håkon Kvale Stensland. Home Exam 1: Video Encoding on Intel
x86 using Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX). Accessed: 2016-03-29. 2015. URL: http : / /www.
uio.no/studier/emner/matnat/ifi/INF5063/h15/slides/inf5063-exam-
01.pdf.

[40] Håkon Kvale Stensland. (M-)JPEG. Accessed: 2016-03-29. 2015.
URL: http : / /www.uio .no /studier /emner /matnat / ifi / INF5063 /h15 /
slides/inf5063-mjpeg-code-figures.pdf.

[41] Håkon Kvale Stensland. “Processing Multimedia Workloads on
Heterogeneous Multicore Architectures”. PhD thesis. UiO, 2015.

105

[42] Kristoffer Robin Stokke, Håkon Kvale Stensland, and Pål Halvorsen.
The Workload, Codec 63. Accessed 2015-03-25. n.d. URL: https :
/ / www. simula . no / file / gtc2015embeddedsystems01p5193webpdf /
download.

[43] Vcodex. H.264 Advanced Video Coding. Accessed: 2016-07-14. n.d.
URL: https://www.vcodex.com/h264-resources/.

[44] éeljko Vrba, Paal Halvorsen, and Carsten Griwodz. “A simple im-
provement of the work-stealing scheduling algorithm”. In: Complex,
Intelligent and Software Intensive Systems (CISIS), 2010 Interna-
tional Conference on. IEEE. 2010, pp. 925–930.

[45] éeljko Vrba et al. “Limits of work-stealing scheduling”. In:Workshop
on Job Scheduling Strategies for Parallel Processing. Springer.
2009, pp. 280–299.

[46] Dmitry Vyukov. Child Stealing. Accessed: 2015-06-29. 2008. URL:
http : / /www.1024cores .net /home/parallel - computing /concurrent -
skip-list/work-stealing-vs-work-requesting.

[47] G. K. Wallace. “The JPEG still picture compression standard”.
In: IEEE Transactions on Consumer Electronics 38.1 (Feb. 1992),
pp. xviii–xxxiv.

[48] T. Wiegand et al. “Overview of the H.264/AVC video coding stan-
dard”. In: IEEE Transactions on Circuits and Systems for Video
Technology 13.7 (July 2003), pp. 560–576.

[49] Wikimedia Foundation Inc. Discrete cosine transform. Accessed:
2016-07-14. n.d. URL: https://en.wikipedia.org/wiki/Discrete_cosine_
transform.

106

