
Exploration of time-series models
on time series data

A case study on athlete monitoring

Siarhei Kulakou

Thesis submitted for the degree of
Master in Programming and Networks

30 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Autumn 2021

Exploration of time-series
models on time series data

A case study on athlete monitoring

Siarhei Kulakou

© 2021 Siarhei Kulakou

Exploration of time-series models on time series data

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

In this thesis, we tried to use machine learning capabilities to process
time-series data. We tried to find more modern implemented algorithms
applicable to solve regression problems for the univariate and multivariate
time series. Having compared and selected the found algorithms, we
carried out experiments and compared our results. The experiments were
carried out in several stages since their primary purpose was to analyze
the results and adjust the parameters to obtain better results. In parallel,
we conducted tests to measure the performance of our models to compare
this performance with the prediction accuracy and select the best models
for further training. After our experiments, we discussed the results in
terms of precision and resources consumed. In the end, we tried to
draw conclusions from work done and provide ideas for further research.
We have tried to structure this thesis so that it is easy for the reader
to go through each chapter and analyze the information. In the initial
chapters, we provide theoretical knowledge regarding the research, and
in the subsequent chapters, we give an account of the experiments done.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Outline . 3

2 Background and Related work 4
2.1 PMSys . 4

2.1.1 Introduction . 4
2.1.2 Architecture . 5

2.2 Data collection in PMSys . 7
2.3 Short introduction to time series 9
2.4 Machine learning . 11

2.4.1 Introduction . 11
2.4.2 Models appropriate for time series processing 12

2.5 Previous Machine Learning Research related to PMSys . . . 13
2.6 Brief description of ’Tsai’ library 16
2.7 Summary . 17

3 Methodology 18
3.1 System specification . 18
3.2 Machine learning models chosen for experiments 18
3.3 Data set . 24

3.3.1 Overview of use cases 24
3.3.2 Data set for prediction of ’Readiness’ to play using

univariate time series 26
3.3.3 Data set for prediction of ’Readiness’ to play using

multivariate time series 27
3.3.4 Description of splitting the data set for one player

into ’training’, ’validation’ and ’test’ sets 27
3.3.5 Detailed explanation of considered ’test’ data sets for

different cases . 28
3.4 Metrics . 29

3.4.1 Machine learning metrics 29
3.4.2 Metrics for performance measurement 30

3.5 Summary . 31

ii

4 Experiments and results 33
4.1 Experiments overview . 33
4.2 Initial experiments . 34

4.2.1 Overview . 34
4.2.2 Results for the case with univariate time series 35
4.2.3 Results for the case with multivariate time series . . . 36

4.3 Experiments with corrected number of epochs 39
4.3.1 Overview . 39
4.3.2 Results for the case with univariate time series 40
4.3.3 Results for the case with multivariate time series . . . 41

4.4 Discussion of the intermediate results 42
4.5 Experiments with the best models and one player’s data

without gaps filled with ’0’ 43
4.5.1 Overview . 43
4.5.2 Description of the results for the cases with uni- and

multivariate time series 44
4.6 Experiments with the best models and data for all players

with / without ’0’ . 46
4.6.1 Overview . 46
4.6.2 Description of the results 46
4.6.3 Description of the results 49

4.7 Results of performance measurement 53
4.8 Discussions . 55
4.9 Summary . 56

5 Conclusion and future work 58

A Tables 61
A.1 Tables from the experiments 61

B Figures 64
B.1 Figures from the experiments 64

iii

List of Figures

2.1 Example of entering wellness data into the PMSys smart-
phone application [4]. 6

2.2 Overview of the architecture of the PMSys data storage
system [4]. 7

2.3 Example of time series that shows values of the parameter
’Readiness’ to play for one player. The plot was made during
the experiments to this thesis. 9

2.4 Example of univariate time series. Values of parameter
’Readiness’ from PMSys data. 10

2.5 Example of multivariate time series. Values of parameter
’Readiness’, ’Mood’, ’Stress’, ’Soreness’ and ’Fatigue’ from
PMSys data. 10

2.6 Example of dependency between Artificial Intelligence (AI),
Machine Learning (ML), and Deep Learning (DL). 11

2.7 Actual data and predictions for a random player from team 1
based on the model trained on the specific player in the team
1 [4]. 14

2.8 Actual data and predictions for a random player from team
1 based on the model trained on all players in the team 1 [4]. 15

2.9 Actual data and predictions for a random player from team 2
based on the model trained on the specific player in the team
2 [4]. 15

2.10 Actual data and predictions for a random player from team
2 based on the model trained on all players in the team 2 [4]. 15

3.1 Inside the Inception module for time series classification. For
simplicity a bottleneck layer of size m = 1 is illustrated. This
picture was taken from this paper [15]. 20

3.2 RNN example. Source https://medium.com/@kangeugine/long-
short-term-memory-lstm-concept-cb3283934359. 21

3.3 LSTM example. Figure and description to it was taken from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/. 22

3.4 Illustration of gated recurrent units. r and z are the reset
and update gates, and h and h̃ are the activation and the
candidate activation. 23

3.5 RNN-FCN, LSTM-FCN and GRU-FCN architecture. 24
3.6 MRNN-FCN, MLSTM-FCN and MGRU-FCN architecture. . 25

iv

3.7 Diagram describes predicting ’Readiness’ to play using
univariate and multivariate time series. 25

3.8 Parameter ’Readiness’ for one player. Values ranged
between 0 and 10. There are 914 data units in total. 27

3.9 Parameters ’Readiness’, ’Mood’, ’Stress’, ’Soreness’, ’Fa-
tigue’ for one player used as multivariate time series. Values
of ’Mood’, ’Stress’, ’Soreness’, ’Fatigue’ are ranged between
0 and 5, of ’Readiness’ between 0 and 10. 28

3.10 General example of splitting the data for one player into
training and validation sets. 28

4.1 Scheme for initial experiments. 34
4.2 Results of the initial experiments. Best models. Window

length 3. Univariate time series for one player. Test data
without ’0’. 37

4.3 Results of the initial experiments. Best models. Window
length 3. Multivariate time series for one player. Test data
without ’0’. 38

4.4 Scheme for experiments with corrected number of epochs. . 39
4.5 Results for GRU. Window length 3. Univariate time series

for one player after correction of number of epochs. Test data
without ’0’. New MSE = 1.350 40

4.6 Results after corrected number of epochs. Best models.
Window length 3. Multivariate time series for one player.
Test data without ’0’. 42

4.7 Scheme for experiments with the best models and one
player’s data without gaps filled with ’0’. 43

4.8 Scheme for experiments with the best models and data for
all players with / without gaps filled with ’0’. 46

4.9 Results for the ’all but one player’ case. Best models.
Window length 3. Univariate time series. Data with gaps
filled with ’0’. 48

4.10 Results for the ’all but one player case’. Best models.
Window length 3. Multivariate time series. Data with gaps
filled with ’0’. 49

4.11 Results for the ’all but one player’ case. Best models.
Window length 3. Univariate time series. Data without gaps
filled with ’0’. 51

4.12 Results for the ’all but one player’ case. Best models.
Window length 3. Multivariate time series. Data without
gaps filled with ’0’. 52

B.1 CPU, memory and disk usage. Univariate time series.
Second 5 best models. All but one player case. Data without
gaps/’0’. 65

B.2 CPU, memory and disk usage. Univariate time series.
Second 5 best models. All but one player case. Data without
gaps/’0’. 66

v

B.3 CPU, memory and disk usage. Best models. All but one
player case. Multivariate time series. Data without gaps/’0’. 67

vi

List of Tables

2.1 Example of the gradation of the parameters ’mood’, ’stress’,
’soreness’, ’fatigue’, ’sleep quality’. 8

3.1 System specifications. 19
3.2 Default configuration of the InceptionTime model. 21
3.3 Default configuration of the RNN, LSTM and GRU models. 23
3.4 Default configuration of the RNN-FCNPlus, LSTM-FCNPlus,

GRU-FCNPlus, MRNN-FCNPlus, MLSTM-FCNPlus and
MGRU-FCNPlus models. 26

4.1 Configurations for initial experiments. Univariate time series. 35
4.2 Models with their MSE values after initial experiments.

Sliding window size 3. Univariate time series. 36
4.3 Best models after initial experiments. Multivariate time series. 38
4.4 Best models after corrected number of epochs. Univariate

time series. 40
4.5 Best models after corrected number of epochs. Multivariate

time series. 41
4.6 Updated configurations, were used for the experiments with

the best models from tables 4.4 and 4.5. 44
4.7 Best models with MSE values. Data for one player without

gaps. Uniivariate time series. 45
4.8 Best models with MSE values. Data for one player without

gaps. Multivariate time series. 45
4.9 Best models with MSE values. Training on all but one and

testing on the one. Data with gaps. Univariate time series. . 47
4.10 Best models with MSE values. Training on all but one and

testing on the one. Data with gaps. Multivariate time series. 47
4.11 Best models with MSE values. Training on all but one and

testing on the one. Data without gaps. Univariate time series. 50
4.12 Best models with MSE values. Training on all but one and

testing on the one. Data without gaps. Multivariate time
series. 52

4.13 Configurations used for performance measurement. 53
4.14 Performance measurement. Best models. Multivariate time

series. ’Training on all but one and testing on the one’ case. . 53
4.15 Performance measurement. Best models. Univariate time

series. ’Training on all but one and testing on the one’ case. . 54

vii

A.1 Results of the ’MSE’ metric from the experiments for all
window sizes for univariate data set. Test data without/with
’0’ (upper/lower values in the table cells correspondingly). . 62

A.2 Results of the ’MSE’ metric from the experiments for all win-
dow sizes for multivariate data set. Test data without/with
’0’ (upper/lower values in the table cells correspondingly). . 63

viii

Chapter 1

Introduction

Machine learning and artificial intelligence have become technological
breakthroughs. Face substitution and aging applications, voice assistants
can reserve a table or book a ticket, solutions that recognize atrial
fibrillation and heart attack, and that’s just what happened recently in the
past few decades.

The popularity of AI technologies is growing, which means that their
demand is also increasing. This popularity leads to an increase in the
entire developer community and the appearance of modern AI libraries
that make learning and work easier in various fields of science.

1.1 Motivation

Nowadays, professional sports is not just sports, but a form of art,
where the achieved results combine not only the individual physical
abilities of athletes but also the most modern technologies in such areas
as medicine, equipment production, nutrition, and physical and mental
health monitoring. Proper diet, rest, and training regimens, selected
by specialists for each athlete, monitoring and making the appropriate
conclusion of his condition at a certain point in time can lead him or his
team to a victory depending on whether it is an individual competition or
a team sport.

It is not a secret that a professional athlete must constantly adhere to a
strict nutrition plan, training process, and rest regime so that the athlete’s
body should be in the required state at some particular moment. The
athlete’s condition is influenced not only by the amount of consumed and
burned calories, the duration and intensity of the training process but also
by parameters such as the duration and quality of sleep and the general
mental state or some others.

It turns out that if it would be possible to try to compile a set of
parameters describing the general state of the athlete’s body at a certain
point of time and collects data belonging to these parameters, then it would
be possible to try to predict the state/behavior of the athlete’s body in the
near future.

This idea was taken into consideration by Simula Research Laboratory,

1

University of Tromsø, and ForzaSys. The first aim was to create a player
monitoring system (PMSys) for collecting and storing information about
the athlete’s condition based on a list of particular parameters.

Also, there is the fact that computer technology is constantly being
improved. This improvement leads to increased computing power and
presents the ability to process more significant amounts of data, and pushes
for more sophisticated but more efficient machine learning models to be
developed. So, the further intent was to try to expand this application to
use modern deep learning algorithms to predict the athlete’s well-being,
readiness for the upcoming competition, and the occurrence of possible
injuries.

1.2 Problem statement

As discussed earlier in this chapter, Simula Research Laboratory has
worked with other partners to develop an athlete monitoring system. This
system was put into operation and is currently being actively used to collect
and store data on the status of each player individually of football teams
from the Norwegian championship and the Norwegian national football
team. The data registered in PMSys application at different points in time
includes the measurement time, so one can easily refer it to a definition of
a time series. In addition to collecting and storing information, no modern
data processing method, which is based on machine learning, has yet been
introduced into this system. Also, not much research has been done to find
any suitable algorithms. Based on these facts, it was decided to set the
following overall aim for research in this work:

’Research and compare various machine learning models for
processing time-series data. Predict readiness to play using
the compared models and the collected data from PMSys.
Evaluate the results, and propose the best model for further
research/implementation in PMSys.’

For a deeper understanding of the central task, it can be broken down into
smaller ones:

1. explore the various time-series models on the data from PMSys,

2. compare in terms of accuracy and resources consumed the models’
terms of time used and accuracy,

3. give an interpretation of the results, both in terms of machine learning
and PMSys (sports) data analysis.

It is hoped that the work done in this thesis will bring good, objective,
and structured results that can be applied in the further development of
PMSys, or that these results can become a good starting point for other
studies of this problem.

2

1.3 Outline

This thesis is divided into five main chapters. In the first chapter, we
describe the motivation for this job and state the problem for research. In
Chapter 2, we will give a short overview of the player monitoring system,
its purpose, architecture, how data is collected, and what that data is.
Also, in this chapter, we will make a short introduction to the concept of
time series and machine learning. At the end of this chapter, we’ll take
a quick look at the ’Tsai’ machine learning library. In Chapter 3, we will
provide data about the specification of our system, discuss and select the
machine learning models of interest to us for research in this thesis. We
will also detail the dataset that will be used for our experiments. At the
end of this chapter, we list the main metrics for assessing the prediction
accuracy of our models, as well as metrics for measuring the performance
of our models. In Chapter 4, we will provide a sequential description of all
experiments, providing prediction results and system performance. At the
end of the chapter, we will discuss the results obtained. In Chapter 5, we
will summarize the work done in this thesis and suggest ideas for future
work.

3

Chapter 2

Background and Related work

This chapter will give a brief presentation of PMSys, its main aim,
users, and architecture. Also, it will describe the data collection process
with detailed descriptions of the meaning of gradation for each registered
parameter. Since all registrations include timestamps, the collected data
can be classified as time series; therefore, we will briefly present what
time series is. At the end of the chapter, we will briefly describe the Deep
Learning research related to PMSys, which was done previously.

2.1 PMSys

2.1.1 Introduction

PMSys is a digital monitoring system that was developed for collection,
storage, analysis, and visualization of athletes’ health data [1]. The
intention for creating this system was to replace the manual method
of collecting information, and its storage on paper, with a digital one.
According to the idea of the creators of this system, its primary users
should be sportsmen (football players), coaches, and medical personnel [1].

One assumed that the primary tool for information registration should
be a questionnaire that the players in a mobile application could easily and
quickly fill out [2]. This approach allows athletes to manage their own time
when filling out the questionnaire without the coach’s insistent control of
this process.

Another intention was to ensure that the data from the questionnaire
should be stored in digital form and be accessible by the coach and medical
staff [1]. This accessibility would help to improve communication between
all users. Since the collected information should be analyzed, another
purpose in developing this application was to replace the old-fashioned
methods of analyzing data stored on paper with more modern digital ones
for data processing and analysis [3].

It was one more aim in further developing the system in addition to the
implemented opportunity of assessing the current state of an athlete using
actual data. Creators considered the possibility of expanding functionality
to introduce modern deep learning algorithms. These algorithms would

4

help predict such parameters as readiness to play, possible injuries, and
the health status of athletes in the future. These predictions could play the
primary role in adjusting the training plan or deciding on participation in
competitions.

2.1.2 Architecture

In this subsection, we will present a brief description of PMSys
architecture. Since PMSys supplied the data for processing in this thesis, it
would be a good idea to familiarize readers with the system’s architecture.
The main units it consists of are [4]:

• PMSys mobile app,

• the Open mHealth compliant Data Storage Unit (DSU),

• Policy Server Unit (PSU),

• PMSys trainer.

The PMSys mobile app [5] is a modern application for smartphones. It
contains a real-time questionnaire [2], consisting of a sequence of various
input forms. Each athlete sequentially fills these forms, and the collected
data is sent to the DSU for further storage. This mobile application is
currently available for iOS and Android systems to make data collection
for players more OS independent. An example of the questionnaire one
can find in figure 2.1.

DSU is settled on the Amazon AWS cloud service and is designed to
store and share this data from athletes for further analysis. DSU is a
cluster of servers, and player’s reports can be distributed between different
servers depending on the level of isolation or replication required [4]. Each
athlete is assigned a unique id, which allows data to be stored on servers
anonymously.

PSU is a component taking care of policies that can include
coach/trainer access, aggregation functions, time limited access. The PSU
is managed centrally by the data owner. Access to the data on the DSU is
limited, and obtaining it requires profile information from the PSU to ob-
tain an identity, allowing policies for sharing pseudonymous player data
in real-time to aggregate functions and deep learning [4].

Also, based on the fact that when the PMSys was in development,
it was provided such kind of functionality that it should be responsible
for processing and analyzing the collected data. And for this purpose
was developed the PMSys web application called PMSys trainer. This
application made it possible to get away from processing and analyzing
data using the old-fashioned ’pen and paper’ technology to make this
process more efficient and less time-consuming. Currently, PMSys trainer
can receive data from the server, visualize it graphically using various
diagrams, which makes the analysis much faster and more convenient [3].
Also, during the development of this service, it was provided the
possibility of further expanding the functionality in data analysis. One of

5

Figure 2.1: Example of entering wellness data into the PMSys smartphone
application [4].

6

Figure 2.2: Overview of the architecture of the PMSys data storage
system [4].

the proposals was the possible usage of modern deep learning algorithms,
which could become helpful for the prediction of the state of athletes in the
nearest future, based on the collected and processed data from the past.

2.2 Data collection in PMSys

Players used questionnaires for data registration. The data was
collected and saved in real-time by completing the questionnaire in the
PMSys mobile app by each player individually. The following list of
parameters was presented in the questionnaires:

• Readiness to play (graded 0-10)

• Mood (graded 1-5)

• Stress levels (graded 1-5)

• General Muscle Soreness (graded 1-5)

• Fatigue (graded 1-5)

• Sleep quality (graded 1-5)

• Sleep duration (number of hours)

• Perceived Exertion (graded 1-10)

Parameters such as ’Mood’, ’Stress’, ’Soreness’, ’Fatigue’ and ’Sleep
Quality’ could take numerical values in the range between 1 and 5, where 1
is the worst case, and 5, respectively, the best. Explanation of the gradation
can be found in the table 2.1.

Another parameter that will be of our interest is ’Readiness’ to play.
The gradation of the registered numerical values of this parameter differs
from the parameters in the table 2.1. The values of the ’Readiness’ could

7

5 4 3 2 1

Fatigue Very
fresh Fresh Normal More tired

than normal
Always

tired

Sleep
Quality

Very
restful Good

Difficulty
falling
asleep

Restless
sleep Insomnia

Soreness Feeling
great

Feeling
good Normal

Increase in
soreness/
tightness

Very
sore

Stress Very
relaxed Relaxed Normal Feeling

stressed
Highly
stressed

Mood
Very

positiv
mood

Generally
good
mood

Less interested
in others
and/or

activities
than usual

Snappiness
at teammates,

family and
co-workers

Highly
annoyed/
irritable/

down

Table 2.1: Example of the gradation of the parameters
’mood’, ’stress’, ’soreness’, ’fatigue’, ’sleep quality’.

be chosen between 0 and 10, where 0 is the worst and 10 is the best case,
respectively.

Summing up the description of the collected data, we can assume that
this data becomes of high value for all users of PMSys. With the proper
machine learning model, one can try to predict the players’ conditions and
readiness either for training or for upcoming matches, or, for example,
predict possible injuries.

It is also worth remembering that this data is personal for each
player who registers it; therefore, this data’s collection, storage, and
processing should be considered from the technical point of view, ethics,
and confidentiality. The collection, storage, and processing of data must,
at a minimum, comply with a set of generally accepted standards of
professional and ethical conduct that participants, acting in good faith
and reasonably, must acknowledge and comply with. There needs to be
a democratic approach to this issue that does not threaten the players’
privacy. It is also necessary to have some compromise that would ensure
that there is no excessive control over the players’ conditions by those who
will analyze and use their data.

8

2.3 Short introduction to time series

The data registered in the PMSys application at different points in time
includes the measurement time, so one can easily refer it to a definition of a
time series. Therefore, it is possible to use suitable models and algorithms
to set and try to solve different kinds of regression problems with this time
series.

A time series is an ordered collection of data points where each data
point is an observation in time [6], [7]. The specified measurement time
is the main characteristic distinguishing a time series from a simple data
sample. Time series are used for analytics and forecasting when it is
essential to determine what will happen to features in the future. For
example, it is possible to try to predict how many users will download
a mobile application per day. Features for compiling time series can be
technical and economic, social, and even natural.

Figure 2.3 shows a simple example of time series. This figure is a plot
taken from experiments predicting readiness to play. We used values of
only one parameter called "Readiness" for this plot. The X-axis is used for
timestamps indicating each day when submitting of questionnaires took
place. Y-axis is used for values of the parameter "Readiness" itself. The
plot shows changing of the ’Readiness’ in time, which corresponds to the
definition of time series. To remind that the definition says that ’time series’
is a sequence taken at successive equally spaced points in time.

Figure 2.3: Example of time series that shows values of the parameter
’Readiness’ to play for one player. The plot was made during the

experiments to this thesis.

Based on the number of time-dependent variables, one can classify time
series as:

• a univariate time series is a series with a single time-dependent
variable. Measuring only readiness to play in PMSys at equally
spaced points in time can be an excellent example of a univariate time
series which we can see in figure 2.4,

9

• a multivariate time series, on the other hand, has more than one time-
dependent variable. If we measure ’Mood’, ’Stress’, ’Soreness’ and
’Fatigue’ along with the ’Readiness’, then we get a multivariate time
series which we can see in figure 2.5.

Figure 2.4: Example of univariate time series. Values of parameter
’Readiness’ from PMSys data.

Time series analysis is a set of statistical methods for the current time
series and its forecasting. Time series analysis methods differ significantly
from simple sample data analysis methods. When analyzing a time series,
the researcher is interested in the statistical characteristics of the time series
and considers the relationship of measurements with time.

Figure 2.5: Example of multivariate time series. Values of parameter
’Readiness’, ’Mood’, ’Stress’, ’Soreness’ and ’Fatigue’ from PMSys data.

The primary purpose of time series analysis is to forecast its values for
future periods. The main tasks of time series analysis are:

• understand under the influence of which parameters the value of the
time series is formed,

• build a mathematical model for each parameter or combination.

10

Any time series can be decomposed into a trend, seasonal, cyclical, and
random components. The first three components form the non-random
component of the time series. The random component is present in any
time series, but components of a non-random constituent in the time series
structure are not necessary.

This section gave a brief definition of time series. Also, we introduced
the PMSys data in terms of time series and showed how this data could
be used in uni- and multivariate cases during experiments. One of the
main areas for time series research is machine learning, so we will briefly
describe machine learning in the next section.

2.4 Machine learning

2.4.1 Introduction

One of the subtasks in this thesis is to research and compare various
machine learning models for time series processing. In the previous
section, we outlined what time series data were and gave some examples
of what time series are used for. This section will describe one of the main
areas of research in which time series is actively used. This area is machine
learning (ML).

Figure 2.6: Example of dependency between Artificial Intelligence (AI),
Machine Learning (ML), and Deep Learning (DL).

ML is a part of a massive area of research called artificial intelligence
(AI). One can think of AI as a robot/machine capable of imitating human
behavior by learning from previously obtained information/experience.
The creation of this machine is a complicated task. Therefore, ML and
DL concepts were introduced. These concepts were classified as artificial
intelligence subsystems, which you can see in figure 2.6.

For solving machine learning problems, one usually tries to find
appropriate models. The main tools for these models are mathematical
statistics and analysis, probability and graph theory, and methods for
processing large amounts of data. The main types of problems solved using
machine learning models are:

11

• classification - most often used to determine the object type, for
example, what or who is in the picture,

• regression - most often a prediction of the value of the parameter of
interest to us.

These tasks can often be independent but sometimes can be used in
combination. To give an example of the combination of these tasks, let say
we can first try to predict some parameter and then classify it by referring
to one or another group.

The main types of machine learning are:

• supervised learning,

• unsupervised learning.

The primary difference between these two types of training is that we have
the opportunity to test our models on ground truth data in the first case, but
for unsupervised training, we have no valid data for testing. In this thesis,
we will predict readiness to play using PMSys data, which, as shown in
the previous section, are time series. Therefore, we need to use machine
learning models suitable for processing this data type which is discussed
in the next subsection.

2.4.2 Models appropriate for time series processing

It is known that the prototype of an artificial neural network is
the structure of the human brain, which consists of a vast number of
neurons. The simplest type of neural network is the ’perceptron’. This
is a mathematical model of information perception by the human brain,
consisting of one layer of neurons. Each neuron has a certain weight, which
indicates the importance of processing input information. The input data is
processed individually by the neurons at the first step. Then the processed
pieces of the data are added together and form some final output.

The described neural network is straightforward, called ’feed-forward
neural networks’, and its capabilities are minimal. Such a network would
not be able to solve serious problems. To achieve a more significant effect,
one can increase the number of layers in the network. After that, the new
one can be classified as deep learning neural networks. It’s also possible
to add an operation of ’convolution’, after which we get a ’convolutional’
neural network. This type of network was successful with video processing
and image classification. But, to summarize, from a mathematical point of
view, this type of network is a function that has a fixed number of input
parameters and a fixed type of the result obtained.

A completely different type of tasks if we need to process data with the
following conditions:

• the inputs are long contiguous sequences,

• in these sequences, the order in which the data is received matters.

12

When solving this kind of tasks, it becomes necessary to store somehow
the previous state of the network. Unlike feed-forward neural networks,
where information is transmitted through layers only forward, in our case,
it is necessary to refer to the state of the network to the previous layers.
For this purpose, recurrent neural networks (RNN) have been developed.
In these networks, for the first time, such a concept as ’memory’ was
used. This concept means that neurons receive basic information as input
data and information about the state of the network in the past, which is
responsible for the order of the data in the sequence. The neural network
designers agreed that if convolutional neural networks can be compared
to a mathematical function, as described above, then recurrent neural
networks can be called a program.

The development of RNN made a significant contribution to the study
and solving regression problems associated with time series. Therefore,
recurrent neural networks are applicable in tasks where something holistic
is broken into parts. One of the most popular types of recurrent neural
networks is the Long Short-Term Memory (LSTM) network. Some of the
most outstanding achievements of using LSTM are:

• revolutionization of speech recognition, outperforming traditional
models in specific speech applications [8],

• improving large-vocabulary speech recognition [9], [10],

• breaking records for improved machine translation [11].

Also, in 2014, it was introduced a gate mechanism called (Gated
Recurrent Units, GRU) for recurrent neural networks. One found that its
effectiveness in solving problems of modeling music and speech signals is
comparable to the use of long short term memory [12]. Compared to LSTM,
this mechanism has fewer parameters because there is no output gates [13].

2.5 Previous Machine Learning Research related to
PMSys

The work called ’Predicting Peek Readiness-to-Train of Soccer Players
Using Long Short-Term Memory Recurrent Neural Networks’ [4] was
independent research of player performance using LSTM model. This
work was carried out at the Simula Research Laboratory.

The paper [4] presented an extended version of PMSys, which included
a machine learning algorithm based on the LSTM model. The data used in
the experiments were taken from PMSys. This study aimed to investigate
the possibility of using the LSTM model to predict readiness to play.

Two data sets from different football teams from the Norwegian
championship were used for all experiments with information about the
players’ well-being. As indicated in the papers, every player recorded the
data daily, and this was the standard list of parameters described in section
2.2. Table 2.1 provides a complete data set specified in the papers.

13

Both data sets contained gaps, which means that not all players logged
data daily for the specified period. One data set included data from 19
players and another from 22 players. The gaps were not replaced or
removed for the initial experiments to create a more realistic picture. Two
different options were used to train and validate the model:

1. training on all other players on the team and then predicting
readiness for the selected player,

2. training and predicting on the data of the same player.

As the tests showed, the best results were achieved when training on all
other players and predicting on one, see figures 2.8 and 2.10. The prediction
graph followed the actual data graph, but the peaks often did not coincide.

Figure 2.7: Actual data and predictions for a random player from team 1
based on the model trained on the specific player in the team 1 [4].

Further, using the LSTM model and the same training methods ended
up with two models for each team. As stated in the document, it is likely
that due to the lack of sufficient data for training, accurate prediction of
"Readiness" is not possible, so the experiments were extended to identify
positive and negative peaks. The following gradation was performed to
determine the peaks for "Readiness":

• positive peak - values from 8 to 10,

• negative peak - value from 0 to 3.

The positive peaks were reasonably well predicted, as stated by the
author [4], but it was not easy for the model to distinguish these high
values from each other. Negative peaks were also well predicted, and the
predictions varied well between the lower extremes.

As a result, it was concluded that the models trained on the data of
both teams gave better predictions than the models trained on individual

14

Figure 2.8: Actual data and predictions for a random player from team 1
based on the model trained on all players in the team 1 [4].

Figure 2.9: Actual data and predictions for a random player from team 2
based on the model trained on the specific player in the team 2 [4].

Figure 2.10: Actual data and predictions for a random player from team 2
based on the model trained on all players in the team 2 [4].

15

players [4]. It was assumed that this was possible because, in the first
case, there was more data for training. Figures 2.8 and 2.10 show, that the
results obtained with machine learning in the related research in predicting
’Readiness’ to play based on the data registered in PMSys are promising;
therefore it was decided to continue the same research in this thesis, but
using a broader range of machine learning models for processing time-
series data.

2.6 Brief description of ’Tsai’ library

Due to the development of computing power, the number of problems
related to time series and wanting to be solved is constantly increasing. As
a result, it becomes possible either to develop more complex architectures
of neural networks or to use an increasing number of layers or various
combinations of already existing neural networks.

After some time searching for modern deep learning models suitable
for further research in predicting readiness to play, a library called ’Tsai’
was found. Here is a link 1 to ’Tsai’ documentation. This library is
positioned as ’State-of-the-art Deep Learning library for Time Series and
Sequences’, which is currently presented as an open-source project, but
at the same time contains some ready-made deep learning models that is
possible to apply to solving the problems posed in this thesis.

’Tsai’ is an open-source deep-learning package built on top of Pyt-
orch and fastai [14] focused on state-of-the-art techniques for time series
tasks like classification, regression, forecasting, imputation. This inform-
ation was taken from the main page 5. The ’Tsai’ documentation has
the four main machine learning sections (information taken from ’Tsai’
documentation5):

• ’Data’ - this section mainly contains functionality for working with
data, namely for loading existing data sets, data preparation to
experiments, splitting, preprocessing, and some other operations,

• ’Training’ is the next section that contains fastai [14] Learner exten-
sions, a new set of time series learners, some optimizers, some metrics
that are not in tsai, and other functionality referring to the training
step in a machine learning pipeline,

• ’Inference’ is the section that contains implemented functionality for
the inference step,

• ’Models’ - this section contains some helper functionality used to
build PyTorch time-series models and a list of ’ready-to-use’ models.

After doing some initial research and getting more details about this
library and the examples given in it for solving various classification and
regression problems, we concluded that this library may be well suited for

1https://timeseriesai.github.io/tsai/

16

further research in predicting readiness to play; therefore, the functionality
from this library will be used for experiments in this thesis. In the next
chapter, we will describe the models and other functionality chosen from
’Tsai’ for experimenting with predicting readiness to play.

2.7 Summary

In section 2.1, we presented a brief description of the player monitoring
system. It was described the main purpose of creating this system, who
the users are, how the users register the data. Further, it was indicated
which intention exists regarding developing this system, considering the
introduction of machine learning algorithms for processing the collected
data and the possible prediction of various parameters. At the end of this
section, we briefly described the architecture and purpose of all the central
units.

In section 2.2, the data collection process was presented with a detailed
description of all the main recorded parameters, their possible values,
and interpretation. Since the collected data can be defined as time series,
section 2.3 was used to introduce time series. We described univariate and
multivariate time series with pictures as examples and introduced briefly
some types of modern machine learning models used to process time-series
data. Also, some achievements that were achieved in the recent decades by
the LSTM model were mentioned here.

Since the problem considered in this thesis refers to machine learning
problems, in section 2.4, we presented a short introduction to this
technology, briefly described the types of problems that machine learning
can solve. We also explained the difference between supervised and
unsupervised machine learning. After that, we gave examples of some
modern models from the RNN family for processing time series and listed
some of the problems solved by these models.

In section 2.5, we summarized some research that was done previously
regarding making predictions based on the data from PMSys. Also, we
referred to the section 2.6, in which we explained why the ’Tsai’ library is
of our interest for this thesis and briefly described the content of this library.

In the next chapter, we are going to discuss our research methodology
in more detail. We will discuss the specification of our system with an
indication of the hardware characteristics and a brief description of the
software used. Then we will select a list of models to experiment with,
indicating their configurations. Next, we will describe the data set used in
the experiment; we will demonstrate how this data will be used to train
and test our models. We will also list the metrics that will be used to assess
the accuracy of the models and their performance.

17

Chapter 3

Methodology

In this chapter, we will briefly describe the specification of our system,
the programs used to build the pipeline. We will also look at the ’Tsai’
library and select a list of models for our experiments. After that, we will
describe the data set that will be used in the experiments; we will show
how this data will be divided into sets for training and testing our models.
At the end of the chapter, we will list and describe the metrics that will be
used to test the accuracy and performance of our models.

3.1 System specification

Table 4.1 shows the central hardware units with an indication of their
type and version and the stack of technologies used to process data and
build a pipeline for training and testing our models. Python is a suitable
language for working with large data sets since it is easy to use and has
many already implemented libraries related to machine learning. To extract
data from a file and prepare it for experiments, we used the functionality
of the pandas library. Pandas’ data functionality is built on the NumPy
library, a lower-level tool. Includes special techniques for working with
numeric tables and time series. ’Tsai’ was used as the main library
providing functionality for preparing data for training models, as well as
some ready-to-use machine learning models for various types of tasks,
such as classification and regression. Torch is the core machine learning
library on top of which the fastai and ’Tsai’ libraries are built. To test the
performance of our models, we will use the process and system utilities
library (psutil). Now we move closer to describing those models and their
configurations used in our experiments. This description will be presented
in the next section.

3.2 Machine learning models chosen for experiments

One of the tasks set in this thesis was to research and compare various
machine learning models for processing time series. After some searching,
we found the ’Tsai’ library, represented as the ’State-of-the-art Learning

18

Type Name Version Description

Ubuntu 18.04.6 LTS OS

Python 3.6.9 Implementation language

Tsai 0.2.22 Machine Learning library

Software Fastai 2.5.2 Machine learning library

Torch 1.9.0+cu102 Machine Learning library

Pandas 1.1.5 Data analysis library

Psutil 5.8.0 Performance measurement
library

Memory DDR4, 46.9 GiB -

Hardware Hard disk SSD, 491.2 GiB -

CPU
Intel

Core i7-9700,
8 cores

-

Table 3.1: System specifications.

library for Time Series and Sequences’, and containing a set of already
implemented models for classification and regression tasks using time
series. There are two possibilities for using these models: either use
their default configurations or create the same models using our desirable
configurations. Since this library is entirely new for us, we decided to
use models with default configurations in this thesis first and then make
changes to these configurations if we have enough time. Otherwise, we
can recommend testing these models with other configurations for further
work with the ’Tsai’ library if we get satisfactory initial results.

The set of models presented in ’Tsai’ is quite diverse. There are purely
recurrent models such as RNN, LSTM, GRU. There are also models of
mixed recursive-convolutional types. One can also select convolutional
models only. We decided to choose models of different types and
architectures for our experiments for a more objective assessment. These
models are:

• InceptionTime,

• RNN, LSTM, GRU,

• RNNPlus, LSTMPlus, GRUPlus,

• RNN-FCNPlus, LSTM-FCNPlus, GRU-FCNPlus,

• MRNN-FCNPlus, MLSTM-FCNPlus, MGRU-FCNPlus.

19

Further in this section, we will present short descriptions and configura-
tions for all these models.

InceptionTime
InceptionTime is an ensemble of deep Convolutional Neural Network
(CNN) models inspired by the Inception-v4 architecture [15].

Figure 3.1: Inside the Inception module for time series classification. For
simplicity a bottleneck layer of size m = 1 is illustrated. This picture was

taken from this paper [15].

This model [15] consists of the following layers:

• A bottleneck layer to reduce the dimensionality (i.e. the depth) of
the inputs. This cuts the computational cost and the number of
parameters, speeding up training and improving generalization.

• The output of the bottleneck is fed to three one-dimensional convolu-
tional layers of kernel size 10, 20 and 40.

• The input of the inception module is also passed through a Max
Pooling layer of size 3 and in turn, through a bottleneck layer.

• The last layer is a depth concatenation layer where the outputs of the
four convolutional layers at step 2 are concatenated along the depth
dimension.

More detailed information about the ’InceptionTime’ model can be found
in the paper ’InceptionTime: Finding AlexNet for Time Series Classifica-
tion’ [15]. Table 3.2 shows the configuration of this model.

RNN - Recurrent Neural Network [16]
Some tasks in machine learning have been defined as tasks that are
associated with the processing of sequential data. For these purposes,
regular neural networks were not appropriately adapted. It became a
reason for developing a new kind of neural network called a recurrent
neural network. This class of neural networks is very well suited
for working with tasks that are based on the processing of sequences.
Recurrent neural networks have proven themselves very well in many

20

Parameter Value

Number of filters (nf) 32

Residual True

Depth 6

Kernel size 40

Bottleneck True

Table 3.2: Default configuration of the InceptionTime model.

Figure 3.2: RNN example. Source
https://medium.com/@kangeugine/long-short-term-memory-lstm-

concept-cb3283934359.

neuro-linguistic programming problems.
RNN training is similar to training a regular neural network. It also

uses the backpropagation algorithm but with a slight change.The same
parameters are used during the training at all time steps in the network.
The gradient at each output depends not only on the calculations of
the current step but also on the previous time steps. This algorithm is
called the Backpropagation Through Time (BPTT) algorithm. Recurrent
neural networks trained with BPTT have difficulty learning long-term
dependencies. Two main factors affect the magnitude of the gradients:

• weights,

• derivatives of the activation function.

If one of these factors is more than 1, then exploding of gradients can oc-
cur, and if less than 1, then gradients can vanish over time. The picture 3.2
shows that input Xt and the previous hidden state ht−1 are used as input
parameters.

LSTM - Long Short Term Memory [17]
’The next event builds on the previous one’. This approach was taken as

21

a basis when developing RNN. When taking the following action, it is ne-
cessary to focus on the experience from the past. Conventional neural net-
works do not possess this property, and the developed RNN turned out
to be limited in the long-term storage of memory about events from the
past. Therefore, the next step in the development of RNN was the devel-
opment of networks that could store data about previous occasions for a
more extended period. The LSTM network became such a network. LSTM

Figure 3.3: LSTM example. Figure and description to it was taken from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

do not have a fundamentally different architecture from RNN, but it uses
a different principle for computing a hidden state, see figure 3.3. The main
component of LSTM is called the ’cell state’. The state of the cell resembles
a pipeline. Information can easily flow through it without being subject to
change. However, LSTM can modify information from the cell state. Such
units as gates manage this process. They consist of a sigmoid neural net-
work layer and a pointwise multiplication operation. Numbers between
’0’ and ’1’ is a result of this sigmoid layer. ’0’ and ’1’ are the peak val-
ues, where ’0’ says ’let nothing through’, and ’1’ means ’everything goes
through’. More detailed information about LSTM can be found in the pa-
per ’LONG SHORT-TERM MEMORY’ [17] or using this link 1.

GRU - Gated Recurrent Unit [12]
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural
networks, introduced in 2014 by Kyunghyun Cho et al [18]. Compared to
LSTM, this mechanism has fewer parameters because there is no output
gate [13]. Table 3.3 shows the configuration of the RNN, LSTM, and GRU
models from the ’Tsai’ library. This configuration was found here 2. By
default, these models have the same base RNN configuration. They differ
only in the architecture of the cells in the network layers.

RNNPlus, LSTMPlus, GRUPlus [16]
We didn’t find much information on how RNN, LSTM, and GRU dif-
fer from RNNPlus, LSTMPlus and GRUPlus. The only difference
we found was that a feature extractor was included in the RNN,
LSTM, and GRU. One can read here 3 that the idea of including a

1https://colah.github.io/posts/2015-08-Understanding-LSTMs/
2https://github.com/timeseriesAI/tsai/blob/main/tsai/models/RNN.py
3https://timeseriesai.github.io/tsai/models.RNNPlus.html

22

Figure 3.4: Illustration of gated recurrent units. r and z are the reset and
update gates, and h and h̃ are the activation and the candidate activation.

Parameter Value

Number of layers 1

Hidden size 100

Bias True

RNN dropout 0

Bidirectional False

Type of cells
RNN for RNN model

LSTM for LSTM model
GRU for GRU model

Table 3.3: Default configuration of the RNN, LSTM and GRU models.

feature extractor in the RNN network comes from the solution de-
veloped by the UPSTAGE team (https://www.kaggle.com/songwonho,
https://www.kaggle.com/limerobot, and https://www.kaggle.com/jungikhyo).
They finished in 3rd position in Kaggle’s Google Brain - Ventilator Pressure
Prediction competition. They used a Conv1d + Stacked LSTM architecture.

RNN-FCNPlus, LSTM-FCNPlus, GRU-FCNPlus [16]
RNN-FCNPlus, LSTM-FCNPlus and GRU-FCNPlus are extensions of the
regular RNN, LSTM and GRU models. Fully convolutional neural net-
works (FCN) have successfully solved sequential time series classification
problems. Therefore, it was decided to change the architecture of conven-
tional recurrent networks by combining them with FCN. As indicated in
the papers [19][20], these model architectures significantly improve the per-
formance of fully convolutional networks and require minimal data pre-
processing. In the proposed models, a fully convolutional block is sup-
plemented with an RNN / LSTM / GRU block followed by a dropout, as
shown in figure 3.5. In these works [19][20], one can be familiarized in more
detail with the architecture of these networks and get complete information
about their use and capabilities. Table 3.4 shows the configuration of RNN-

23

FCNPlus, LSTM-FCNPlus, and GRU-FCNPlus used in experiments for this
thesis.

Input

Conv 1D (128)

Softmax

BN + ReLU

Conv 1D (256)

BN + ReLU

Conv 1D (128)

BN + ReLU

Global Pooling Concat

Dimension Shuffle

Basic RNN/
Basic LSTM/
Basic/GRU

Dropout

Figure 3.5: RNN-FCN, LSTM-FCN and GRU-FCN architecture.

MRNN-FCNPlus, MLSTM-FCNPlus, MGRU-FCNPlus [16]
Multivariate time-series models such as MRNN-FCNPlus, MLSTM-

FCNPlus, and MGRU-FCNPlus were extended from the univariate time-
series models RNN-FCNPlus, LSTM-FCNPlus, and GRU-FCNPlus. This
modification is made by augmenting the fully convolutional block with a
squeeze-and-excitation block to improve accuracy, as shown in figure 3.6.
Our experiments will use uni- and multivariate cases to predict readi-
ness to play; therefore, it will be interesting to test these models. In the
work [21], one can be familiarized in more detail with the architecture of
these networks and get complete information about their use and capab-
ilities. Table 3.4 shows the configuration of MRNN-FCNPlus, MLSTM-
FCNPlus, and MGRU-FCNPlus used in experiments for this thesis.

3.3 Data set

3.3.1 Overview of use cases

Based on the fact that the data set to be used for experiments (see
section 2.2) contains several parameters, it was decided to predict readiness
to play using uni- and multivariate time series, as shown in figure 3.7.
In predicting with univariate time series for training our models, we

24

Input

Conv 1D (128)

Softmax

BN + ReLU

Conv 1D (128)

BN + ReLU

Global Pooling Concat

Dimension Shuffle

Basic RNN/
Basic LSTM/
Basic/GRU

Dropout

Squeeze
and excite

Conv 1D (128)
BN + ReLU

Squeeze
and excite

Figure 3.6: MRNN-FCN, MLSTM-FCN and MGRU-FCN architecture.

Figure 3.7: Diagram describes predicting ’Readiness’ to play using
univariate and multivariate time series.

25

Parameter Value

Number of layers 1

Hidden size 100

Bias True

RNN dropout 0.8

Bidirectional False

Shuffle True

Conv layers 128, 256, 128

Kernel sizes 7, 5, 3

Squeeze-and-excite block
for MRNN-FCNPlus,

MLSTM-FCNPlus,
and MGRU-FCNPlus

16

Type of cells

RNN for RNN-FCNPlus and
MRNN-FCNPlus models

LSTM for LSTM-FCNPlus and
MLSTM-FCNPlus models

GRU for GRU-FCNPlus and
MGRU-FCNPlus models

Table 3.4: Default configuration of the RNN-FCNPlus, LSTM-FCNPlus,
GRU-FCNPlus, MRNN-FCNPlus, MLSTM-FCNPlus and MGRU-FCNPlus

models.

will use only one parameter, ’Readiness’, as training data. In contrast,
with multivariate time series, we will use five parameters ’Readiness’,
’Mood’, ’Stress’, ’Soreness’ and ’Fatigue’. The target parameter for uni-
and multivariate predictions will be ’Readiness’.

3.3.2 Data set for prediction of ’Readiness’ to play using univari-
ate time series

As discussed earlier in this chapter, only one parameter called ’Readi-
ness’ from the entire data set is used for the ’univariate’ case of predicting
readiness to play.

Unfortunately, for some reason, the data was not recorded every day,
and as a result, the data array turned out with gaps. Several solutions were
considered to fill these gaps:

• replace all gaps with ’0’ assuming that this is a natural process, that a
person forgets to register the data,

• fill in the gaps with averaged values,

26

• remove all gaps and concatenate the array.

At the initial stage was decided to start with the data of only one player
because we will have a lot of experiments and we are restricted in time.
Also, it was decided to use the first option and fill in all the missing data
with ’0’, considering that it is a natural process to forget to register the data.
This option turned out to be attractive regarding the regression models’
results with the natural presence of gaps. We got the following data array,
a plot of which is shown in figure 3.8. This figure shows how the parameter
’Readiness’ values are spread in time.

Figure 3.8: Parameter ’Readiness’ for one player. Values ranged between 0
and 10. There are 914 data units in total.

3.3.3 Data set for prediction of ’Readiness’ to play using mul-
tivariate time series

As it was shown in figure 3.7 we decided to use five parameters
for the case with multivariate time series since all the parameters can
influence readiness to play. Plot of the data for these five parameters is
shown in figure 3.9. This figure shows how the values of the ’Readiness’,
’Mood’, ’Stress’, ’Soreness’, ’Fatigue’ parameters are placed corresponding
to equally spread timestamps.

3.3.4 Description of splitting the data set for one player into
’training’, ’validation’ and ’test’ sets

As mentioned earlier, due to time constraints, it was decided to use the
data of only one player at the initial stage. As a result, we’ve got a data
array with a length of 914 units. One can see in the picture 3.10 the ratio
of the data divided into testing and validation sets. The balance was 80 to
20 percent of the ’training + validation’ set correspondingly. We used the
functionality provided by the ’Tsai’ library to separate the data.

It was also decided to test predictions of ’Readiness’ for the last ten
days. For more objective results, the test data must not be a part of training

27

Figure 3.9: Parameters ’Readiness’, ’Mood’, ’Stress’, ’Soreness’, ’Fatigue’
for one player used as multivariate time series. Values of ’Mood’, ’Stress’,
’Soreness’, ’Fatigue’ are ranged between 0 and 5, of ’Readiness’ between 0

and 10.

Figure 3.10: General example of splitting the data for one player into
training and validation sets.

and validation sets or overlap them in any way. The following subsection
will give a detailed explanation of test data sets for different experiments.

3.3.5 Detailed explanation of considered ’test’ data sets for
different cases

Here we consider that for training and validation, we use data from one
player only. Therefore we can have two different cases we want to check,
namely:

1. if the training data contains gaps filled with ’0’, then we want to have
two test data sets:

• one test data set containing ’0’ to check how well models can
predict gaps,

• one test data set without ’0’,

2. if gaps filled with ’0’ are removed from the training data set, then we
want to have two data sets:

• but one data set must have some peak values to check how well
our models can predict them

28

It was also discussed that we could train and test our models with more
data if we get enough time. Then we can try training on all data for all
players but one, and testing on this one. In this case, we can also consider
both cases with first having gaps with ’0’ and then removing them.

3.4 Metrics

To understand how effective a model is, we need to evaluate it
regarding the accuracy of the prediction and the resources expended. This
section describes metrics that we will use to evaluate our models.

3.4.1 Machine learning metrics

Regression models are a family of machine learning and statistical
models used to predict continuous target values. They have a wide range
of applications, from house price forecasting, e-commerce pricing systems,
weather forecasting, stock market forecasting to super-resolution images,
feature exploration with autoencoders, and image compression.

Our research is related to predicting readiness to play, and this problem
belongs to the regression family, so we will use the metrics that are used for
this type of models.

The metrics used to evaluate models related to prediction problems
must operate on a set of continuous values (with an infinite number of
items) and therefore differ slightly from the classification metrics. The most
popular metrics for regression models are mean square error (MSE), root
mean square error (RMSE), and mean absolute error (MAE).

MAE.
MAE is a metric that defines the average absolute distance between
predicted and target values. MAE is defined as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi|

MAE is known to be more resilient to emissions than MSE. The main
reason is that in MSE, by squaring the errors, outliers (which usually have
higher errors than other samples) receive more attention and dominate the
final error and affect the model’s parameters.

MSE.
MSE measures the average sum of the square of the difference between the
actual value and the predicted value for all data points. Exponentiation
is performed, so negative values are not compensated with positive ones.
Due to the properties of this metric, the influence of errors increases by
quadrature from the original value. This increase means that if in the
original measurements we were mistaken by 1, then the metric will show

29

1, 2-4, 3-9 and so on. The lower the MSE, the more accurate our prediction
is.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

Compared to the mean absolute error, MSE has several advantages: it
emphasizes big mistakes over more minor mistakes. It is differentiable,
which allows it to be more efficiently used to find the minimum or max-
imum values using mathematical methods.

RMSE.
Sometimes people use RMSE to have a metric with a scale as target val-
ues, which is essentially the square root of the MSE. The RMSE shows the
average deviation in our model of predicted readiness to play from target
values (the actual values of ’Readiness’ to play).

RMSE =

√
(

1
n
)

n

∑
i=1

(yi − ŷi)2

RMSE is easy to interpret since it has the same units as the original
values (opposed to MSE). It also operates with smaller values in absolute
value, which can be helpful for computing on a computer.

3.4.2 Metrics for performance measurement

The primary metrics for measuring performance are usually time spent
on training and testing models, processor, memory, disk, and GPU usage.
The computer on which the experiments will be carried out has no GPU;
therefore, we will measure all other parameters except the GPU usage. Be-
low we describe how the measurement will be done.

Time usage
Time will be measured in seconds. For measuring the time to train and test
each model, we will use the ’time’ module 4 from the python standard lib-
rary, which provides various time-related functions. The form of usage of
this ’time’ module is shown in the listing 3.1.

import time as t

s t a r t = t . time ()
<some code>
end = t . time ()
p r i n t (’ Time used f o r learn ing of the <model_name>

4https://docs.python.org/3/library/time.html

30

model : ’ , end − s t a r t , ’ sec ’)

Listing 3.1: Example of ’Time’ module usage from Python library.

CPU, memory and disk usage
To measure CPU, memory, and disk usage, we will use a cross-platform lib-
rary called psutil 5. This library has a set of utilities for obtaining inform-
ation about system performance. Since our processor consists of 8 cores,
we will use the utility ’cpu_percent()’ to get information about a load of
each core in percentage. We will also use psutil to measure memory and
disk usage. The ’virtual_memory()’ utility function provides information
about various memory parameters. We are interested in the parameter
’used’, which shows the amount of memory used at a given time. The
’disk_usage()’ function also has the parameter ’used’ that provides inform-
ation about the used disk space at a given time. We will measure the used
memory and disk in GiB. We will measure CPU, memory, and disk usage
with an interval of one second, store this data in a list, and after the meas-
urement is performed, we will make a plot of this list. The form of usage of
psutil module for measuring of CPU, memory and disk usage is shown in
the listing 3.2.

import p s u t i l
import m a t p l o t l i b . pyplot as p l t

<some code>

while count < s ec s :
cpu . append (p s u t i l . cpu_percent (i n t e r v a l =1 , percpu=True))
memory_used_GB . append (p s u t i l . virtual_memory () . used /10**9)
disk_used_GB . append (p s u t i l . disk_usage (’ / ’) . used /10**9)
count += 1

p l o t (cpu , memory_used_GB , disk_used_GB)

<some code>

Listing 3.2: Example of ’psutil’ usage from Python library.

3.5 Summary

In section 3.1 we have listed the main hardware parameters of the
computer on which the experiments will be carried out. We also briefly
described the technology stack used in the experiments. In section 3.2,

5https://pypi.org/project/psutil/

31

we selected a set of ready-made models for experiments on predicting
readiness to play, described these models, and tried to justify why we chose
these particular models. We also described the configurations of the models
and indicated additional sources in which the reader can get acquainted
with them in more detail.

Section 3.3 detailed the use cases (usage of uni- and multivariate time
series), based on which we prepared our data sets for experiments. We also
described in detail the data set for each use case, gave examples of uni- and
multivariate time series, described how the data will be split for training
and testing of our models, and indicated with a description which cases
we will use consider when testing our models.

In section 3.4, we described the metrics with which we will test our
models for prediction accuracy and performance. For prediction accuracy,
we have listed and described the main metrics that are usually used in
regression problems. As a result, it was decided to use MSE as the
primary metric for assessing the accuracy of predictions. We have also
listed metrics for evaluating the performance of our models. We described
the cross-platform library psutil, which contains utilities for measuring
CPU, memory, and disk usage, and gave examples of their use in our
experiments.

In the next chapter, we will make a detailed review of our experiments
and present the obtained prediction results for all the cases we consider.
We will also measure the performance of our models. At the end of the
chapter, we will discuss the results obtained.

32

Chapter 4

Experiments and results

This chapter will give a detailed overview of our experiments, describe
in detail how they were performed, and describe the results. We will
explain how we changed our experiments at each step to determine the
dependence of the results obtained on various parameters and determine
which models were the best in predicting readiness to play. We will also
present the results of measurements of the performance of our models and
draw conclusions. At the end of the chapter, we will discuss the results
obtained.

4.1 Experiments overview

Exploring the new ’Tsai’ library, we decided to check which results we
can achieve using ready-made models with default configurations. We
selected 13 models from this library for our research. These models belong
to the family of recurrent neural networks and should be suitable for time
series processing. The list of models can be found in table A.1. Before the
experiments, it was decided to highlight a list of parameters for research
that can significantly affect the outcome. During the experiments, we will
compare the influence of using the following parameters on the results:

• type of input data (univariate vs. multivariate time series),

• sliding window size,

• data for testing with and without gaps filled with ’0’, saying that it is
missing in registrations,

• number of epochs,

• amount of input data.

We will execute our research in two stages. We have developed a series
of experiments detailed in the following sections based on the above
parameters. We will run these experiments at the first stage. The idea
behind these initial experiments is to determine the most promising models
based on the best results of predictions of readiness to play obtained. At

33

the second stage, the best models will be tested for performance on the
following parameters:

• CPU usage,

• memory usage,

• time usage.

After that, we will evaluate the models in terms of prediction results vs.
the results of performance measurements and propose the best models for
further study.

4.2 Initial experiments

4.2.1 Overview

The initial experiments will give us the first results, based on which
we will draw some conclusions and perform further research. We are
interested in obtaining the broadest possible range of outcomes for getting
an objective picture of the behavior of the models we have chosen. Based
on these goals, we have drawn up a plan for the initial experiments, shown
in figure 4.1.

univariate
time series

multivariate
time series

sliding window sizes
3, 5, 7, 14, 21, 28, 35, 42, 49

Test data last 10 days with / without ‘0’

Figure 4.1: Scheme for initial experiments.

Figure 4.1 briefly describes executing the initial experiments to predict
readiness to play. First, we choose the input data type. Next, we prepare
the data using the sliding window algorithm. After that, we train our
models on the prepared data and test predictions for the last ten days in the
end. The top boxes in the figure indicate that experiments will separately
be performed on two types of input data, univariate- containing only one
parameter, ’Readiness’ and multivariate time series with five parameters
’Readiness’, ’Mood’, ’Stress’, ’Soreness’, ’Fatigue’. The middlebox in the
figure means that we will prepare our input data using a different sliding
window size. And the lowest box in the figure indicates that testing of

34

predictions of readiness to play will be performed on two types of test data.
One test data set will contain gaps filled with zeros, indicating missing
registrations. The second test data set will be without gaps. At all steps of
our research, except for testing models with the best prediction results, we
will use data from PMSys for only one player. It will allow us to execute
more experiments and get more analyses at the initial and intermediate
stages.

4.2.2 Results for the case with univariate time series

In the initial experiments, we tested our 13 models (see table A.1). For
these experiments we had to set some configurations shown in table 4.1.

Type Parameter Value

Number of epochs 200

Data Batch size 128

Sliding window size 3, 5, 7, 14, 21, 28, 35, 42, 49

Univariate time series ’Readiness’

Number of input data 914

Other Gaps filled with ’0’ yes

Test data with gaps
filled with ’0’ yes

Test data without gaps
filled with ’0’ yes

Table 4.1: Configurations for initial experiments. Univariate time series.

Initial values of the parameters batch size and number of epochs were
chosen based on examples of experiments found in the documentation 1

to the ’Tsai’ library. It was planned to correct the number of epochs for
subsequent experiments. As for the sliding window size, it was initially
decided to consider as many values as possible to determine the impact of
this parameter on the final result.

Also, it was decided to use the data of only one player for the initial and
intermediate experiments to have time to execute as many experiments as
possible. This can be a significant advantage on one side. This data belongs
to the same person and is more homogeneous. We also used two kinds of

1https://github.com/timeseriesAI/tsai/tree/main/tutorial_nbs

35

test data, with and without gaps, to see how our models could handle these
cases.

Model MSE Model MSE

InceptionTime 1.191 MGRU-FCNPlus 1.280

MLSTM-FCNPlus 1.299 RNN-FCNPlus 1.321

LSTM 1.331 MRNN-FCNPlus 1.350

GRU-FCNPlus 1.369 LSTM-FCNPlus 1.409

LSTMPlus 1.480 GRUPlus 1.763

Table 4.2: Models with their MSE values after initial experiments. Sliding
window size 3. Univariate time series.

After executing the initial experiments we got a lot of results which one
can find in the table A.1. We analyzed the results and selected the best
10 models for further experiments (table 4.2), based on the value of the
MSE metric. MSE measures the average sum of the square of the difference
between the actual value and the predicted value for all data points. This
metric has the advantage of emphasizing big mistakes over more minor
ones.

Now we can make some conclusions based on the results of these initial
experiments. First, as it turned out, all the best results were obtained using
the following values of these parameters: for a sliding window of size three
and test data without gaps/’0’. The results were much worse for the other
sliding window sizes and test data with gaps/’0’. Also, the chosen value
of the number of epochs was suitable for almost all models, except for the
GRU. In figure 4.9, one can see the graphical approximation of the obtained
predictions compared to the ground truth for the best ten results. The
results look promising since we didn’t use much data to train the models.
As we can see from the figure, almost all models (except for GRUPlus),
with a slight deviation, could reproduce the ground truth contour quite
well. Some models also were able to predict positive and negative peaks
successfully. Especially the InceptionTime, MGRU-FCNPlus, MLSTM-
FCNPlus, RNN-FCNPlus, MRNN-FCNPlus, GRU-FCNPlus, and LSTM-
FCNPlus models managed this pretty well.

4.2.3 Results for the case with multivariate time series

We used almost the same parameters’ values indicated in table 4.1 to
carry out the initial experiments for multivariate case. The difference was
only in the input data type. In this case, we used not univariate but

36

(a) InceptionTime, MSE = 1.191 (b) MGRU-FCNPlus, MSE = 1.280

(c) MLSTM-FCNPlus, MSE = 1.299 (d) RNN-FCNPlus, MSE = 1.321

(e) LSTM, MSE = 1.331 (f) MRNN-FCNPlus, MSE = 1.350

(g) GRU-FCNPlus, MSE = 1.369 (h) LSTM-FCNPlus, MSE = 1.409

(i) LSTMPlus, MSE = 1.480 (j) GRUPlus, MSE = 1.763

Figure 4.2: Results of the initial experiments. Best models. Window length
3. Univariate time series for one player. Test data without ’0’.

37

(a) LSTMPlus, MSE = 1.668 (b) InceptionTime, MSE = 1.721 (c) LSTM, MSE = 1.735

Figure 4.3: Results of the initial experiments. Best models. Window length
3. Multivariate time series for one player. Test data without ’0’.

multivariate times series consisting of these five parameters: ’Readiness’,
’Soreness’, ’Mood’, ’Stress’, ’Fatigue’. The ’target’ parameter we wanted to
predict was ’Readiness’.

Model MSE

LSTMPlus 1.668

InceptionTime 1.721

LSTM 1.735

Table 4.3: Best models after initial experiments. Multivariate time series.

Results of MSE for all initial experiments using multivariate time series
are stored in table A.2. Generally, the results were much worse compared
to the univariate case, and we chose only three neural networks shown
in table 4.3 with MSE value below 2. It turned out that the best results
for multivariate and univariate time series were obtained for a sliding
window of size three and test data without gaps / ’0’. However, unlike
the initial experiment with univariate time series, the value of the number
of epochs played a significant role in the initial research with multivariate
one. Initially, we used 200 epochs, and many of the models were overfitted
already after 20 epochs. Based on this, we performed further experiments
for uni- and multivariate cases, in which we corrected the value of the
number of epochs for some models and presented the results in the next
section.

In figure 4.3, one can see the graphical approximation of the obtained
predictions compared to the ground truth for the best three results. Again,
as in the previous case with the univariate time series, InceptionTime was
among the best models. Also, if we look at the plots in figure 4.3, we can
see that, overall, the predictions turned out to be very good. The LSTMPlus
and InceptionTime predictions were close to ground truth, except for value
number 4, which is very different from ground truth and significantly
affected the MSE value.

38

4.3 Experiments with corrected number of epochs

4.3.1 Overview

The cycle when all input data passes through a neural network in the
forward direction and an error propagates in the opposite direction and
changes all the neural network’s weights on all data is called one epoch.
Usually, at least 30 - 50 epochs are recommended for simple regression and
classification problems. The number of epochs can reach several tens of
thousands for image classification.

The data is usually divided into training and validation sets to train the
neural network. An error is calculated for both data sets during training.
Usually, at the beginning of the training process, the error value for training
and validation sets decreases, but after a certain number of epochs, the
error calculated using the validation set may start to move up. This is a
clear sign that the system is being overfitted. Otherwise, if the training
process stops when errors for training and validation sets still decrease,
this is an indicator that the system is underfitted.

Therefore, choosing the optimal number of epochs for training is
essential for better results when testing the model. This hyperparameter is
often challenging to select right away in the initial experiment, and it needs
to be adjusted later. Choosing the more appropriate number of epochs is
a common practice, and we will also figure out the optimal value of this
hyperparameter for different types of input data in our experiments. This
value can differentiate a lot while using uni- and multivariate time series.

univariate
time series

multivariate
time series

sliding window sizes
3, (5, 7), 28, 49

Test data last 10 days with / without ‘0’

Figure 4.4: Scheme for experiments with corrected number of epochs.

In figure 4.4, one can see how this experiment will be executed. After
the initial experiments, we will select underfitted or overfitted models for
both univariate and multivariate time series and use the upper, lower, and
average sliding window sizes to rerun the experiments. Then compare the
results of prediction of readiness with ones from the initial experiments.
If, for example, the new results for models with a sliding window size of
3 are improved, we will run more experiments for the adjacent window
sizes; in this case, these are sizes 5 and 7. Testing of readiness to play

39

predictions will be performed in the same way as it was performed for
the initial experiments.

4.3.2 Results for the case with univariate time series

As described in the previous section, we selected 200 epochs for our
initial experiments. In the case of the univariate time series, this value
turned out to be suitable for most models, only for the GRU model it was
necessary to correct this value. According to the results of the loss function
graph, it was seen that after 100 epochs, the error began to increase.
Therefore, we repeated the initial experiment for the GRU model with all
the parameters from table 4.1, only reducing the number of epochs from
200 to 100. The prediction results for this model improved significantly,

Model MSE Model MSE

InceptionTime 1.191 MGRU-FCNPlus 1.280

MLSTM-FCNPlus 1.299 RNN-FCNPlus 1.321

LSTM 1.331 MRNN-FCNPlus 1.350

GRU 1.375 GRU-FCNPlus 1.369

LSTM-FCNPlus 1.409 LSTMPlus 1.480

Table 4.4: Best models after corrected number of epochs. Univariate time
series.

and the list of the ten best neural networks after the initial tests is presented
in table 4.4).

Figure 4.5: Results for GRU. Window length 3. Univariate time series for
one player after correction of number of epochs. Test data without ’0’.

New MSE = 1.350

In figure 4.5 is shown the graphical approximation of the improved

40

predictions for the GRU model. As we can see from this figure, the
prediction line, with a slight deviation, but rather well repeats the ground
truth contour, especially evident in the positive peaks. The only rather
serious deviation occurred in the prediction of the sixth value. Here it
is the largest. As we can see from the ground truth values, there was a
relatively sharp drop from seven to one, and the next day the readiness to
play returned again to seven. It is not entirely clear how this difference can
be explained. If this happened for health reasons, then the player quickly
recovered to the previous level of readiness. If it was for some other non-
health reason, it most likely should be classified in some other way. We see
that this model did not cope with this drop in our case.

4.3.3 Results for the case with multivariate time series

After doing the initial experiments for the multivariate time series,
200 epochs turned out to be very many and influenced the results of
predictions. As the plots of the loss function for various models showed,
many of them were already trained after 20 epochs. Therefore, we decided
to correct the number of epochs for all models and rerun the initial
experiments with sliding window sizes of 3, 5, 7, 28, and 49.

Model MSE Model MSE

LSTM-FCNPlus 1.325 InceptionTime 1.567

GRU-FCNPlus 1.600 MLSTM-FCNPlus 1.603

Table 4.5: Best models after corrected number of epochs. Multivariate time
series.

The results for some models have improved significantly after adjusting
the number of epochs. Table 4.5 shows the updated data for the models
with the best MSE. Comparing the data in tables 4.3 and 4.5, we can
conclude that only InceptionTime was among the best models from the
old list after adjusting the number of epochs. Also, the best were LSTM-
FCNPlus, GRU-FCNPlus, and MLSTM-FCNPlus, which after the initial
experiments, showed more modest results.

Figure 4.10 shows the improved approximation after the correction of
the number of epochs. From this figure, one can see that the position of
the prediction peaks is similar to the peaks of ground truth values but with
relatively large deviations. The LSTM-FCNPlus model showed the best
MSE. Also, this model obtained the best match among all other models
from the table 4.5 in almost all peak values between predictions and ground
truth.

41

(a) LSTM-FCNPlus, new MSE = 1.325 (b) InceptionTime, new MSE = 1.567

(c) GRU-FCNPlus, new MSE = 1.600 (d) MLSTM-FCNPlus, new MSE = 1.603

Figure 4.6: Results after corrected number of epochs. Best models.
Window length 3. Multivariate time series for one player. Test data

without ’0’.

4.4 Discussion of the intermediate results

To this point, we have carried out initial experiments; as a result, we
can already draw some intermediate conclusions. During the execution
of the initial experiments, we were able to evaluate the influence of such
parameters as the number of epochs and the size of the sliding window on
the results obtained. We were also able to tentatively assess the impact of
the input data type such as uni- and multivariate time series. In addition,
we looked at how the type of test data affects predictions depending on
whether it has gaps filled with ’0’ or not. Now we will describe which of
the parameters ultimately led to the best result. Recall that the only data
of one player was used for both training and testing up to this point. Also,
this data was with gaps, which we decided to fill in with ’0’. So, we have
achieved the best result:

• with a sliding window size of 3 for all models that showed the best
outcome.

• MSE for the top ten models with univariate time series was within
1.191 -:- 1.480, while MSE for only four best models with multivariate
time series is within 1.325 -:- 1.603, which means using the univariate
time series was more efficient.

• A higher value of the number of epochs (for most it was about
200), turned out to be more effective for training models using

42

the univariate time series, while for the multivariate time series, a
lower value of epochs, about 20, turned out to be more effective; at
higher values than 20, the models for the multivariate case became
overfitted.

• All the best results were obtained using the test set without gaps filled
with ’0’.

In the next section, we will continue our research using the training and
testing data for one player with removed gaps.

4.5 Experiments with the best models and one player’s
data without gaps filled with ’0’

4.5.1 Overview

After experimenting with some corrected hyperparameters, we selected
the models that showed the best predictions. We used data from one player
in previous experiments, but this data had gaps in registrations that we
filled with ’0’. These gaps were more chaotic since it is inexplicable for
what reasons the player skipped data registration. The length of the non-
recording period was also challenging to explain. In previous experiments,
we tested our models with different test data sets. One set was with gaps
filled with ’0’, and another one was without them. All the best results have
been obtained using the test data without gaps. Therefore, it will now be
interesting to see how different the results will be if we run experiments on
input data with removed ’0’ removed.

univariate
time series

multivariate
time series

best models, train on one
player’s data

Training and test data without ‘0’

Figure 4.7: Scheme for experiments with the best models and one player’s
data without gaps filled with ’0’.

The process of carrying out these experiments will look like this. First,
we need to prepare the input data. To do this, we take the data of the same
player as in the previous experiments and remove all gaps from them. Then
we will use the best models we got using the uni- and multivariate time
series. We train the selected models on the prepared data and predict the
readiness. Figure 4.7 shows the described flow of these experiments.

43

4.5.2 Description of the results for the cases with uni- and
multivariate time series

As it was said in the overview of the experiments described in this
section, we decided to continue the research using the data of the same
player as before, but with removed gaps. We continued using the
models from tables 4.4 and 4.5 that performed best for the uni- and
multivariate time series. Since we changed some parameters after the initial
experiments, it would be right to reflect these updates in configurations in
table 4.6.

Type Parameter Value

Number of epochs,
univariate

100 (for GRU)
200 (for other models)

Data Number of epochs,
multivariate 20 (for all models)

Batch size 128 (for all models)

Sliding window size 3 (for all models)

Univariate time series ’Readiness’

Multivariate time series ’Readiness’, ’Soreness’,
’Mood’, ’Stress’, ’Fatigue’

Other Number of input data 468

Gaps filled with ’0’ no

Table 4.6: Updated configurations, were used for the experiments with the
best models from tables 4.4 and 4.5.

After removing all the gaps before the experiments, the input data
size was reduced from 914 to 468 units. By the standards of machine
learning, this amount of data is too small, and it could be affecting the
results obtained in experiments.

The results of these experiments for uni- and multivariate time series
are shown in tables 4.7 and 4.8. As we can see from both tables, the MSE
score got worse for both univariate and multivariate cases. Nevertheless,
it remained much lower than the MSE indicator obtained by some neural
networks with other sliding window sizes in the initial experiments
(tables A.1 and A.2).

44

Model MSE Model MSE

LSTM 1.381 LSTMPlus 1.482

GRU 1.573 InceptionTime 1.709

MGRU-FCNPlus 1.745 MRNN-FCNPlus 1.756

RNN-FCNPlus 1.764 MLSTM-FCNPlus 1.773

LSTM-FCNPlus 1.820 GRU-FCNPlus 1.916

Table 4.7: Best models with MSE values. Data for one player without gaps.
Uniivariate time series.

It is rather challenging to say with certainty what could have led to this
result, but with a very high degree of probability, it can be assumed that the
reason for this was precisely the lack of data. We can check this assumption

Model MSE Model MSE

LSTM-FCNPlus 1.622 MLSTM-FCNPlus 1.645

GRU-FCNPlus 1.730 InceptionTime 1.798

Table 4.8: Best models with MSE values. Data for one player without gaps.
Multivariate time series.

by executing experiments with the increased amount of data for training
and testing of the best models. The results of these experiments will be
presented in the next section.

45

4.6 Experiments with the best models and data for all
players with / without ’0’

4.6.1 Overview

Up to this point, we did our research with the data of only one player,
which consisted of 914 points. We selected two lists of models that showed
the best MSE values for uni- and multivariate cases. Now, we will carry
out final experiments in this thesis to test the best models on more inputs.
General scheme of these experiments is shown in figure 4.8.

The previous section described the results obtained using data without
gaps for one player. These results turned out to be worse than the initial
ones. We assumed that the reason for that was most likely the small amount
of input data after removing gaps filled with ’0’, only 468 data points.

univariate
time series

multivariate
time series

best models, train on all but one,
test on the one

Training and test data with / without ‘0’

Figure 4.8: Scheme for experiments with the best models and data for all
players with / without gaps filled with ’0’.

For further experiments, we decided to use the data of all players. To
increase the amount of points in training and test data sets, we applied the
strategy from this paper [4]. We concatenated data of all but one player
with gaps filled with ’0’ to train our models. To test the accuracy of the
predictions of the readiness to play, we used the data from the remaining
player. These experiments are described later in this section. For the
experiments described in the next section, we removed the gaps from the
data. As before, we considered both uni- and multivariate cases.

4.6.2 Description of the results

In this subsection we will describe the results of the experiments with
the best models and data with gaps for ’training on all, but one and
predicting on the one’ case. The overall outcome we got when executing
experiments on the principle of ’training on all, but one and predicting on
the one’ is very similar to the one we described in the previous section.
4.5.2. The results of the MSE value that we can see in tables 4.9 and 4.10
are very close to each other but far below our expectations. It looks like the

46

Model MSE Model MSE

GRU-FCNPlus 3.351 LSTMPlus 3.352

MGRU-FCNPlus 3.354 LSTM-FCNPlus 3.357

RNN-FCNPlus 3.360 MLSTM-FCNPlus 3.360

MRNN-FCNPlus 3.376 GRU 3.377

LSTM 3.388 InceptionTime 4.700

Table 4.9: Best models with MSE values. Training on all but one and
testing on the one. Data with gaps. Univariate time series.

reason is the same for both uni- and multivariate time series. Therefore, we
decided to combine the description of the results into one subsection. All
plots showed a very bad approximation, which we can see in figures 4.9
and 4.10.

As we can see from tables 4.9 and 4.10, MSE values of most of the
models are in the range of 3.235 -:- 3.377, which indicates that these models
handle the data with gaps that we used in these experiments with almost
the same accuracy. In figure 4.9, all the plots showed very similar outlines
of predicted values. We can say the same about the plots in figure 4.10,
where all the plots look very similar except for the InceptionTime model,
which generally showed better results.

Model MSE Model MSE

LSTM-FCNPlus 3.235 MLSTM-FCNPlus 3.238

GRU-FCNPlus 3.250 InceptionTime 3.252

Table 4.10: Best models with MSE values. Training on all but one and
testing on the one. Data with gaps. Multivariate time series.

In total, after concatenation, we obtained about 31,000 data instances.

47

(a) GRU-FCNPlus, MSE = 3.351 (b) LSTMPlus, MSE = 3.352

(c) MGRU-FCNPlus, MSE = 3.354 (d) LSTM-FCNPlus, MSE = 3.357

(e) RNN-FCNPlus, MSE = 3.360 (f) MLSTM-FCNPlus, MSE = 3.360

(g) MRNN-FCNPlus, MSE = 3.376 (h) GRU, MSE = 3.377

(i) LSTM, MSE = 3.388 (j) InceptionTime, MSE = 4.700

Figure 4.9: Results for the ’all but one player’ case. Best models. Window
length 3. Univariate time series. Data with gaps filled with ’0’.

48

(a) LSTM-FCNPlus, MSE = 3.235 (b) MLSTM-FCNPlus, MSE = 3.238

(c) GRU-FCNPlus, MSE = 3.250 (d) InceptionTime, MSE = 3.252

Figure 4.10: Results for the ’all but one player case’. Best models. Window
length 3. Multivariate time series. Data with gaps filled with ’0’.

Only about 7000 of these data were registrations. The rest of the data
turned out to be gaps. Moreover, these gaps were located in different
places without any particular order. Also, the length of the gaps was
chaotic. In this case, it can be assumed that our models did not cope with
their prediction due to the not entirely clear reason for the appearance of
these gaps and due to their chaotic duration. Although during the training
process, the training loss and validation loss values were minimal and
promising.

Even though we did not get good predictions for the readiness to play
from the experiments described in this section, the results allowed us to
gain a deeper insight into the ability of the models to handle such chaotic
gaps. The appearance of these gaps in data registration in PMSys should
be understandable and more controllable. At the moment, there is no clear
understanding of how these gaps must be properly handled. First of all,
we need to understand how to classify them. This analysis could be one
of the topics for further research on the processing of data from PMSys
and the key to creating more accurate models for predicting the state of
athletes. Now we turn to the description of the last type of experiments
in this thesis, namely experiments with the best models and data without
gaps for ’training on all, but one and predicting one’ case.

4.6.3 Description of the results

In this subsection we will describe the results of the experiments with
the best models and data without gaps for ’training on all, but one and

49

predicting on the one’ case. As we saw in the previous section, our best
models failed to handle the gaps in data registration in PMSys. We have
suggested that these gaps are chaotic and should be more predictable to
handle them more successfully. This section presents the results of recent
experiments in this thesis. These experiments are a continuation of the
experiments from the previous section. The only difference here is that
we will use concatenated data with gaps removed in advance. The size of
the data without gaps is about 7000 units. We also tested the predictions
of our models on the last 60 values from the initial data set. As we can see
from tables 4.11 and 4.12, the MSE values for both uni- and multivariate
time series are very close, so we can try to combine the presentation of the
results of these experiments.

As noted above, the results of the MSE values for all the best models
used in the latest experiments can be found in tables 4.11 and 4.12. The
approximation of the prediction results of these models can be seen in
figures 4.11 and B.3. The first thing to notice is that the MSE values from
the tables are very close to each other within the range 1.203 -:- 1.486.

Model MSE Model MSE

MRNN-FCNPlus 1.346 InceptionTime 1.349

LSTM-FCNPlus 1.351 MGRU-FCNPlus 1.352

GRU-FCNPlus 1.354 MLSTM-FCNPlus 1.362

RNN-FCNPlus 1.365 GRU 1.414

LSTM 1.424 LSTMPlus 1.486

Table 4.11: Best models with MSE values. Training on all but one and
testing on the one. Data without gaps. Univariate time series.

This means that the models processed the input data and made
predictions with approximately the same accuracy. One can also observe
in the figures that the prediction lines for readiness to play are pretty close
to the ground truth lines.

Another point worth noting is that this was the first experiment in
which the case with multivariate time series, based on the values of
the MSE metric, performed better than univariate. Further, comparing
the results obtained when processing concatenated input data, we can
conclude that with the absence of gaps, the final result is several times
better than in their presence.

Now we can summarize the entire sequence of experiments that we
went through. The main task in these experiments was to apply our chosen
models to processing data from PMSys. The models that we have chosen

50

(a) MRNN-FCNPlus, MSE = 1.346 (b) InceptionTime, MSE = 1.349

(c) LSTM-FCNPlus, MSE = 1.351 (d) MGRU-FCNPlus, MSE = 1.352

(e) GRU-FCNPlus, MSE = 1.354 (f) MLSTM-FCNPlus, MSE = 1.362

(g) RNN-FCNPlus, MSE = 1.365 (h) GRU, MSE = 1.414

(i) LSTM, MSE = 1.424 (j) LSTMPlus, MSE = 1.486

Figure 4.11: Results for the ’all but one player’ case. Best models. Window
length 3. Univariate time series. Data without gaps filled with ’0’.

51

Model MSE Model MSE

InceptionTime 1.203 GRU-FCNPlus 1.314

LSTM-FCNPlus 1.350 MLSTM-FCNPlus 1.376

Table 4.12: Best models with MSE values. Training on all but one and
testing on the one. Data without gaps. Multivariate time series.

(a) InceptionTime, MSE = 1.203 (b) GRU-FCNPlus, MSE = 1.314

(c) LSTM-FCNPlus, MSE = 1.350 (d) MLSTM-FCNPlus, MSE = 1.376

Figure 4.12: Results for the ’all but one player’ case. Best models. Window
length 3. Multivariate time series. Data without gaps filled with ’0’.

were taken from a library unknown to us before. At the initial stage, we
set the task of obtaining the first results, analyzing which and changing the
parameters of the experiments to arrive at the best outcomes. The next step
in this thesis will be to evaluate the performance of the best models and
their final comparison based on the performance results and readiness to
play predictions.

52

4.7 Results of performance measurement

Parameter Univariate case Multivariate case

Number of
data points/

training
7100 7100

Number of
data points/

testing
72 63

Sliding window
size 3 3

Number of epochs 100 for GRU/
200 for other models 20

Batch size 128 128

Table 4.13: Configurations used for performance measurement.

Table 4.13 shows the values of the main parameters at which the per-
formance was measured. As one can see from the table, the measurement
was executed for uni- and multivariate cases. We did measurements for the
best models with a sliding window size of 3 and a batch size of 128. For all
models for the multivariate case, the number of epochs was 20, and for the
univariate case, for all models except GRU, the number of epochs was 200,
for GRU 100. Training data set for both uni- and multivariate cases con-
sisted of 7100 data points, but the test data set for the univariate case was
72 and for multivariate case 63. The following two tables show the results
of performance measurements.

Model MSE
Training

time
(sec)

Testing time
for 10

repetitions
(sec)

CPU
used

min/max
(%)

Memory
used

min/max
(GB)

Disk
used

min/max
(GB)

InceptionTime 1.203 46 0.295 80/100
17.875/
17.895

34.048/
34.050

GRU-FCNPlus 1.314 111 0.204 85/100
17.772/
17.787

34.0534/
34.0546

LSTM-FCNPlus 1.350 141 0.203 75/100
17.762/
17.784

34.0502/
34.0514

MLSTM-FCNPlus 1.376 147 0.240 75/100
17.690/
17.800

34.0550/
34.0575

Table 4.14: Performance measurement. Best models. Multivariate time
series. ’Training on all but one and testing on the one’ case.

In tables 4.14 and 4.15, along with the main performance metrics, we

53

have indicated the MSE value for each model to easily compare these
models in terms of prediction and measurement at the same time. Before
analyzing these results, it is worth recalling that the computer had the
following hardware characteristics, which are indicated in the table:

• CPU Intel Core i7-9700, 8 cores,

• memory DDR4, 46.9 GiB,

• disk SSD 491.2 GiB.

Table 4.14 shows the performance results for the best models for the
multivariate case. Plots of these measurements for multivariate case can be
seen in figure B.3. As we can see from table 4.14, the InceptionTime model

Model MSE
Training

time
(sec)

Testing time
for 10

repetitions
(sec)

CPU
used

min/max
(%)

Memory
used

min/max
(GB)

Disk
used

min/max
(GB)

MRNN-FCNPlus 1.346 381 0.370 45/100
18.450/
18.540

34.0400/
34.0480

InceptionTime 1.349 554 0.539 60/100
18.130/
18.200

34.0600/
34.0675

LSTM-FCNPlus 1.351 341 0.324 50/100
18.330/
18.400

34.0440/
34.0540

MGRU-FCNPlus 1.352 387 0.306 45/100
18.500/
18.570

34.0460/
34.0560

GRU-FCNPlus 1.354 341 0.308 50/100
18.390/
18.470

34.0575/
34.0450

MLSTM-FCNPlus 1.362 452 0.391 50/100
18.450/
18.720

34.0620/
34.0450

RNN-FCNPlus 1.365 312 0.326 50/100
18.310/
18.370

34.0535/
34.0415

GRU 1.414
81

(after 100
epochs)

0.235 60/100
18.185/
18.210

34.0420/
34.0420

LSTM 1.424 209 0.227 50/100
18.190/
18.400

34.0350/
34.0380

LSTMPlus 1.486 216 0.261 60/100
18.210/
18.270

34.0440/
34.0510

Table 4.15: Performance measurement. Best models. Univariate time
series. ’Training on all but one and testing on the one’ case.

showed the best training time, which turned out to be several times less
than the time for other models. A testing time for all models turned out to
be approximately the same, and we see that testing proceeded very quickly.
To calculate the CPU usage, we used a utility that measured the utilization
for each core separately. The CPU utilization was measured only in the
process of training the models. As a result, it turned out that the usage

54

increased several times at the start of the training process and remained at
the level of 75-:-100 percent for all models. After the end of the training, the
CPU utilization also immediately decreased. All this is very clearly visible
in figure B.3. The values of memory and disk usage in the training process
turned out to be insignificant. The minimum and maximum amount of
memory and disk usage differed by about a few hundred MB. Graphs of
these metrics can also be viewed in figure B.3.

Table 4.15 shows the performance results for the best models for the
univariate case. Plots of these measurements for the univariate case can be
seen in figures B.1 and B.2. As one can see from the table, the LSTM model
spent the least time on training. The training time of the GRU model turned
out to be the lowest since we used 100 epochs when training this model.
It can also be noted that if for the multivariate case, in terms of the time
used for training, InceptionTime turned out to be the leader, and its time
was noticeably lower than for other models, then for the univariate case for
training InceptionTime, on the contrary, the most time was spent.

The CPU usage for the univariate case is very similar to that for the
multivariate case. CPU usage increased several times at the start of the
training process and remained at 65-:-100 percent for all models. After the
end of the training, the CPU utilization also immediately decreased. All
this is very clearly visible in figures B.1 and B.2. The values of memory and
disk usage in the training process turned out to be insignificant, like for the
multivariate case. The minimum and maximum amount of memory and
disk usage differed by about a few hundred MB. Graphs of these metrics
can also be viewed in figures B.1 and B.2.

4.8 Discussions

We selected 13 models from the new machine learning library ’Tsai’. We
used these models to execute experiments to predict readiness to play using
data from PMSys. This data contained registration gaps, which we decided
to fill in with ’0’ and see what kind of results we can get if we train and test
our models on data sets with and without gaps. During initial experiments,
many models performed poorly. All the best results were obtained using
a sliding window size of 3 for both uni- and multivariate cases. We also
noticed that many multivariate case models were overfitted already after
20 epochs. The InceptionTime model performed best and did a perfect job
of predicting peaks. Models such as MGRU-FCNPlus, MLSTM-FCNPlus,
and RNN-FCNPlus also showed similar results. In total, after initial
experiments for the univariate case, there were ten models whose MSE
indicator was in the range of 1.191-:-1.763. For the multivariate case, the
results of the initial experiments were much worse. Only three models
showed results comparable to those from the univariate case. However,
these models predicted some peaks well. Since many models, especially
in multivariate cases, quickly turned out to be overfitted, we decided
to carry out the following experiments, adjusting the number of epochs.
These experiments did not significantly improve the results of the initial

55

experiments for the univariate case, but did significantly improve the MSE
for some of the multivariate case models. After these experiments, we
came to an intermediate conclusion that the best results were obtained for
uni- and multivariate cases with a sliding window size of 3, as well as 200
epochs for most models for a univariate case and 20 for a multivariate case.
This number of epochs for the multivariate case turned out to be entirely
unexpected since it is usually recommended to set the size of this parameter
to at least 30-50.

Up to this point, we have used data with gaps filled with ’0’. We
had an assumption that these gaps could significantly affect the results
because these gaps could not be explained in any way. They were chaotic.
Therefore, it was further decided to try to remove these gaps from the
input data set and experiment with this new data set for the models that
showed the best results. Another question arose here. After removing
the gaps, the number of data points decreased to 468, which is quite a
bit by the standards of machine time. After experimenting with a new
data set, our prediction results became much worse than the initial ones
for both uni- and multivariate cases. Most likely the reason for this was
the small amount of data in the new set. Therefore, we came up with the
following thought about increasing the amount of data for training models.
Since there was not enough data for one player, we decided to increase the
number of data points by concatenating all players into one array. Then
we decided to train our models on the data of all players except one and
test on the data of this one player. As before, we filled in the ’0’ gaps
and decided to conduct experiments both on data with and without gaps,
using the models that showed the best results in previous experiments.
In the end, we did not improve the prediction results on data with gaps,
but on data without gaps, we repeated the best results obtained after the
initial experiments. Approximations of predictions on plots were also
promising after these last experiments. We also measured the performance
parameters of our models. We measured CPU, memory, disk usage, and
time for training our models. As the results of our measurements showed,
the CPU load in most cases reached 100 percent during the training of the
models. What turned out to be quite interesting is that memory and disk
resources were used in small amounts. The most indicative metric was the
time spent on training.

4.9 Summary

In section 4.1, we presented a list of parameters that were of our interest
in terms of changing the results during the experiments due to these
parameters. In section 4.2, we described how the initial experiments went,
specifying all cases and parameters. Next, we presented the results and
described them in detail for uni- and multivariate cases. We made the first
intermediate conclusions based on the results obtained and proceeded to
the following experiments.

Section 4.3 described how the experiments proceeded after adjusting

56

the number of epochs. After that, we presented the results and described
them in detail for both uni- and multivariate cases. In section 4.4 we
discussed the intermediate results and summarized how the various
parameters affected them. The results of many models when using some
combinations of parameters turned out to be unacceptable, so we chose
those models and varieties of parameters for which the best results were
shown and continued to experiment with them.

In sections 4.5 and 4.6 we described how we executed experiments with
the models that performed best in previous ones. Next, we have detailed
the results for cases with and without gaps filled with ’0’. In section 4.7, we
summarized and briefly discussed the performance measurements of our
models. In section 4.8, we discussed the results obtained throughout the
study in more detail. In the next chapter, we will draw conclusions based
on the results obtained during the research and provide our suggestions
for future work.

57

Chapter 5

Conclusion and future work

The main goal of this work was to compare different models for
processing time series, predict readiness to play using model data and data
from PMSys, evaluate the results, and suggest the best models for further
research. We were able to find a new machine learning library called ’Tsai’
that offers a wide range of machine learning functionality. Also, this library
contains a relatively extensive list of ready-made models. We compared
ordinary models belonging to the recurrent family with models that are a
combination of recurrent-convolutional ones. Then we used these models
in our experiments and got pretty good results. We got the best results for
the models shown in tables 4.14 and 4.15. In terms of performance, the
best model for the multivariate time series turned out to be InceptionTime,
and for the univariate time series case, the LSTM model turned out to be.
Despite this, many of the results turned out to be quite close to each other,
so it will likely be correct to continue the research using all the models from
tables 4.14 and 4.15. In this thesis, we have used the default configurations
for our models. However, the ’Tsai’ library provides the ability to change
the configuration of the models depending on the user’s needs. Therefore,
it will be like one of the proposals for future work. Also, for further
research, it would be correct to suggest paying more attention to how gaps
in data registrations by PMSys users should be handled or classified.

58

Bibliography

[1] T. T. Hoang, ‘Pmsys: Implementation of a digital player monitoring
system,’ M.S. thesis, 2015.

[2] C. N. Nguyen, ‘Implementation of a digital player monitoring
system: Pmsys,’ M.S. thesis, 2015.

[3] K. K. Vuong, ‘Pmsys: A monitoring system for sports athlete load,
wellness & injury monitoring,’ M.S. thesis, 2015.

[4] T. Wiik, H. D. Johansen, S.-A. Pettersen, I. Baptista, T. Kupka, D.
Johansen, M. Riegler and P. Halvorsen, ‘Predicting peek readiness-
to-train of soccer players using long short-term memory recurrent
neural networks,’ in 2019 International Conference on Content-Based
Multimedia Indexing (CBMI), IEEE, 2019, pp. 1–6.

[5] H. D. Johansen, D. Johansen, T. Kupka, M. A. Riegler and P.
Halvorsen, ‘Scalable infrastructure for efficient real-time sports
analytics,’ in Companion Publication of the 2020 International Conference
on Multimodal Interaction, 2020, pp. 230–234.

[6] R. Adhikari and R. K. Agrawal, ‘An introductory study on time series
modeling and forecasting,’ arXiv preprint arXiv:1302.6613, 2013.

[7] R. H. Shumway, D. S. Stoffer and D. S. Stoffer, Time series analysis and
its applications. Springer, 2000, vol. 3.

[8] S. Fernández, A. Graves and J. Schmidhuber, ‘An application of
recurrent neural networks to discriminative keyword spotting,’ in
International Conference on Artificial Neural Networks, Springer, 2007,
pp. 220–229.

[9] H. Sak, A. W. Senior and F. Beaufays, ‘Long short-term memory re-
current neural network architectures for large scale acoustic model-
ing,’ 2014.

[10] X. Li and X. Wu, ‘Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition,’
in 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2015, pp. 4520–4524.

[11] I. Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to sequence learning
with neural networks,’ in Advances in neural information processing
systems, 2014, pp. 3104–3112.

59

[12] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, ‘Empirical evaluation
of gated recurrent neural networks on sequence modeling,’ arXiv
preprint arXiv:1412.3555, 2014.

[13] D. Britz, ‘Recurrent neural network tutorial, part 4 implementing
a gru/lstm rnn with python and theano,’ URL http://www. wildml.
com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-
rnn-with-python-and-theano, 2015.

[14] J. Howard and S. Gugger, ‘Fastai: A layered api for deep learning,’
Information, vol. 11, no. 2, p. 108, 2020.

[15] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J.
Weber, G. I. Webb, L. Idoumghar, P.-A. Muller and F. Petitjean,
‘Inceptiontime: Finding alexnet for time series classification,’ Data
Mining and Knowledge Discovery, vol. 34, no. 6, pp. 1936–1962, 2020.

[16] I. Oguiza, Tsai - a state-of-the-art deep learning library for time series and
sequential data, Github, 2020. [Online]. Available: https://github.com/
timeseriesAI/tsai.

[17] S. Hochreiter and J. Schmidhuber, ‘Lstm can solve hard long time lag
problems,’ Advances in neural information processing systems, pp. 473–
479, 1997.

[18] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk and Y. Bengio, ‘Learning phrase representations using
rnn encoder-decoder for statistical machine translation,’ arXiv pre-
print arXiv:1406.1078, 2014.

[19] F. Karim, S. Majumdar, H. Darabi and S. Chen, ‘Lstm fully convolu-
tional networks for time series classification,’ IEEE access, pp. 1662–
1669, 2017.

[20] N. Elsayed, A. S. Maida and M. Bayoumi, ‘Deep gated recurrent
and convolutional network hybrid model for univariate time series
classification,’ arXiv preprint arXiv:1812.07683, 2018.

[21] F. Karim, S. Majumdar, H. Darabi and S. Harford, ‘Multivariate lstm-
fcns for time series classification,’ Neural Networks, vol. 116, pp. 237–
245, 2019.

60

Appendix A

Tables

A.1 Tables from the experiments

61

3 5 7 14 21 28 35 42 49

Incept
Time

1.191
2.660

3.307
3.428

2.856
2.668

3.753
2.856

3.306
2.988

2.256
2.524

2.840
2.843

2.393
2.780

2.766
2.720

RNN 2.300
2.550

2.209
2.635

2.314
2.796

2.927
3.232

2.164
2.396

1.997
2.444

3.814
3.065

2.067
2.839

3.724
3.561

LSTM 1.331
2.711

2.407
4.187

3.152
3.686

3.866
3.088

2.455
4.003

2.729
3.952

2.908
3.249

3.459
4.635

2.589
2.579

GRU 1.993
2.571

1.708
3.106

2.335
3.299

4.011
3.735

1.938
4.546

4.179
3.455

4.199
3.367

3.371
3.330

3.074
3.884

RNN
Plus

2.251
2.571

2.200
2.831

2.172
2.403

3.037
3.246

2.231
2.437

1.994
2.513

3.199
3.793

2.158
2.491

2.580
2.511

LSTM
Plus

1.480
2.641

2.779
4.208

2.540
3.580

3.167
3.129

2.432
3.571

2.903
3.234

2.429
2.727

2.304
4.760

3.474
2.659

GRU
Plus

1.763
2.636

2.626
3.449

2.462
3.090

3.594
2.111

4.619
2.514

3.279
3.351

3.558
4.321

2.983
2.842

3.246
2.502

RNN
FCN
Plus

1.321
2.714

3.018
3.878

2.964
3.852

2.248
2.309

3.247
3.272

2.289
2.472

5.320
5.809

5.259
6.692

3.421
4.154

LSTM
FCN
Plus

1.409
2.744

3.189
4.012

3.258
3.292

2.868
2.350

2.595
3.850

3.160
2.833

3.918
3.959

5.043
5.975

2.585
3.086

GRU
FCN
Plus

1.369
2.683

3.220
3.813

3.079
3.059

2.628
2.423

2.995
4.362

3.215
3.062

4.607
4.788

4.831
5.606

2.237
2.981

MRNN
FCN
Plus

1.350
2.755

3.061
3.562

2.949
3.070

2.495
2.317

2.286
3.380

2.633
2.891

6.159
5.553

4.012
5.764

1.727
2.782

MLSTM
FCN
Plus

1.299
2.591

3.060
3.425

2.766
3.043

3.360
2.365

2.250
3.191

2.083
2.619

6.485
6.005

6.379
6.933

2.367
3.110

MGRU
FCN
Plus

1.280
2.514

3.390
3.623

2.931
3.135

2.615
2.330

2.579
3.927

2.835
2.402

5.448
6.419

5.612
5.599

3.919
4.158

Table A.1: Results of the ’MSE’ metric from the experiments for all
window sizes for univariate data set. Test data without/with ’0’

(upper/lower values in the table cells correspondingly).

62

3 5 7 14 21 28 35 42 49

Incept
Time

1.721
2.378

2.865
2.203

2.465
3.168

3.794
2.421

4.083
2.875

3.292
2.332

3.762
2.853

3.329
2.683

2.269
2.214

RNN 2.134
2.569

2.468
2.552

2.860
2.764

4.305
3.226

2.816
2.870

4.227
3.736

3.228
3.740

2.559
3.201

3.487
3.963

LSTM 1.735
3.010

2.766
3.248

2.576
2.660

3.053
2.933

3.286
3.460

2.483
4.306

3.448
3.495

3.322
3.491

3.422
3.081

GRU 2.115
2.673

2.922
3.352

3.976
4.350

4.373
3.300

4.640
3.392

4.636
3.675

3.338
2.642

4.567
2.813

3.860
2.741

RNN
Plus

2.047
2.541

2.292
2.441

2.769
2.654

3.046
2.105

3.147
2.637

2.973
2.395

3.115
3.744

6.255
2.829

3.118
3.999

LSTM
Plus

1.668
2.519

2.795
3.572

2.789
3.839

2.849
2.706

4.010
3.400

3.974
3.378

2.191
2.072

2.203
3.071

1.942
3.939

GRU
Plus

2.205
2.939

3.369
3.271

2.466
3.113

4.554
2.924

4.247
2.928

3.893
4.001

3.989
2.748

3.781
3.522

4.491
3.792

RNN
FCN
Plus

2.079
2.703

3.094
2.624

3.092
3.238

1.989
2.479

2.539
3.858

2.397
2.863

3.425
3.795

3.088
3.816

4.725
5.815

LSTM
FCN
Plus

2.577
2.525

3.091
2.311

2.767
3.088

2.041
2.129

2.581
2.856

3.946
3.338

2.738
2.621

2.852
2.853

3.291
2.880

GRU
FCN
Plus

2.088
2.668

3.164
2.639

3.091
2.834

2.369
2.905

2.812
3.866

2.874
2.647

3.113
2.945

3.045
2.613

3.416
3.998

MRNN
FCN
Plus

2.436
2.979

3.365
2.871

2.882
3.004

1.928
2.558

2.530
4.233

3.231
3.377

3.265
3.309

4.878
4.464

4.320
5.629

MLSTM
FCN
Plus

2.066
2.660

3.423
2.637

3.037
2.946

2.690
2.223

3.133
3.746

3.464
3.312

3.876
3.987

2.820
2.457

3.185
2.446

MGRU
FCN
Plus

2.459
2.790

2.909
2.376

2.984
2.940

2.833
2.547

2.418
3.650

2.914
2.682

2.710
2.859

2.737
2.492

3.123
2.653

Table A.2: Results of the ’MSE’ metric from the experiments for all
window sizes for multivariate data set. Test data without/with ’0’

(upper/lower values in the table cells correspondingly).

63

Appendix B

Figures

B.1 Figures from the experiments

64

(a) MRNN-FCNPlus. CPU
usage.

(b) MRNN-FCNPlus. Memory
usage.

(c) MRNN-FCNPlus. Disk
usage.

(d) InceptionTime. CPU usage. (e) InceptionTime. Memory
usage.

(f) InceptionTime. Disk usage.

(g) LSTM-FCNPlus. CPU usage. (h) LSTM-FCNPlus. Memory
usage.

(i) LSTM-FCNPlus. Disk usage.

(j) MGRU-FCNPlus. CPU usage. (k) MGRU-FCNPlus. Memory
usage.

(l) MGRU-FCNPlus. Disk usage.

(m) GRU-FCNPlus. CPU usage. (n) GRU-FCNPlus. Memory
usage.

(o) GRU-FCNPlus. Disk usage.

Figure B.1: CPU, memory and disk usage. Univariate time series. Second
5 best models. All but one player case. Data without gaps/’0’.

65

(a) MLSTM-FCNPlus. CPU
usage.

(b) MLSTM-FCNPlus. Memory
usage.

(c) MLSTM-FCNPlus. Disk
usage.

(d) RNN-FCNPlus. CPU usage. (e) RNN-FCNPlus. Memory
usage.

(f) RNN-FCNPlus. Disk usage.

(g) GRU. CPU usage. (h) GRU. Memory usage. (i) GRU. Disk usage.

(j) LSTM. CPU usage. (k) LSTM. Memory usage. (l) LSTM. Disk usage.

(m) LSTMPlus. CPU usage. (n) LSTMPlus. Memory usage. (o) LSTMPlus. Disk usage.

Figure B.2: CPU, memory and disk usage. Univariate time series. Second
5 best models. All but one player case. Data without gaps/’0’.

66

(a) InceptionTime. CPU usage. (b) InceptionTime. Memory
usage.

(c) InceptionTime. Disk usage.

(d) GRU-FCNPlus. CPU usage. (e) GRU-FCNPlus. Memory
usage.

(f) GRU-FCNPlus. Disk usage.

(g) LSTM-FCNPlus. CPU usage. (h) LSTM-FCNPlus. Memory
usage.

(i) LSTM-FCNPlus. Disk usage.

(j) MLSTM-FCNPlus. CPU
usage.

(k) MLSTM-FCNPlus. Memory
usage.

(l) MLSTM-FCNPlus. Disk
usage.

Figure B.3: CPU, memory and disk usage. Best models. All but one player
case. Multivariate time series. Data without gaps/’0’.

67

