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Abstract

In recent years, research in machine intelligence has gained increased momentum,
where neural network models have made significant contributions in various fields,
like image classification and language understanding. Recurrent neural networks
(RNNs) are often the preferred approach for tasks like language understanding and
time-series analysis. However, a known problem is their inefficiency to capture
long-term dependencies, giving rise to alternative RNNs. Long short-term memory
(LSTM) and gated recurrent units (GRU) solve this problem, but on the expense of
computational effort. As a result, convolutional neural networks (CNNs) have been
explored for sequence modelling in recent years and shown to outperform RNNs in
general. This efficiency, however, is examined only by a few comparative studies,
where most primarily focus on language tasks. Similar studies are far more absent in
the time-series classification domain, where traditional methods are often used.

To address this shortcoming and further understand the effects of CNNs and RNNs
in the time-series classification domain, we evaluate two shallow networks in this
thesis, a CNN and an LSTM. We extend the few existing comparisons through an
experimental approach and provide a baseline comparison of both for the time-series
classification domain, where such studies are almost absent.

To do so, we created an easily extensible system for running experiments and
evaluated our models on three different datasets using cross-validation. We classify
depressed patients using motor activity, predict the energy demand of Electric
Vehicles (EVs) and classify readiness of football players. The system was used to
evaluate CNN and LSTM separately for each dataset and is generalisable for multiple
neural network models that can be used for similar comparative studies.

We show that simple CNN achieves the same performance as LSTM and is faster to
train. For two of our use cases, CNN is more than 30 times faster in terms of seconds
used, but we see a trade-off between training time used in seconds and iterations, as
CNN uses more training iterations. We conclude that for time-series classification,
CNNs should be the preferred choice over LSTM, because of their effectiveness in
performance and faster training.
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Chapter 1

Introduction

RNNs have gained increased popularity in recent years due to their efficiency in
sequential modelling problems. While various architectures like LSTM and GRU
have achieved state-of-the-art results, mostly in language processing tasks, the rise
of CNNs for sequential problems have emerged in recent years. This thesis research
the use of CNNs with a comparison against LSTM in the time-series domain, a field
where traditional methods have usually been used. Motivated by the recent trends of
CNNs on language problems, we aim to understand the potential application area on
time-series classification. Opposed to other comparative studies with language tasks
as default benchmarks, we analyse the application on three use cases in the medical
domain, energy domain and sports domain.

1.1 Background and motivation

A time-series is an ordered collection of data points where each data point is an
observation in time [2, 82]. A series with observations on multiple variables at
any given timestep t is known as a multivariate series. On the other hand, a
univariate time-series includes observations on one variable over time. For instance,
temperature measurement is considered univariate. If other variables like humidity,
wind and cloud coverage are included, the series is multivariate. Figure 1.1 shows
two different time-series of energy prices and energy consumption in Norway,
whereas Figure 1.2 shows motor activity levels of patients from one of our use cases.

Time-series analysis is a field concerned with the analysis and development of models
that capture the underlying temporal dependencies in time-series data. Modelling
temporal data is important in many fields like econometrics, financial analysis,
weather forecasting and medicine [82] and enables a possibility of understanding the
future based on historical observations [51, 83]. Some examples include:

• Energy consumption - Understanding future energy consumption is relevant
for power generators in order to prevent excessive power production that
increases production costs.

• Weather forecasting - Multivariate time-series analysis can be used to forecast
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(b) 16-hour average of energy consumption in Norway

Figure 1.1: The figures illustrate two different time-series of 16-hour average energy prices
and consumption in Norway. The data used to generate this figure is accesible through
Nordpool [25]

the weather, which depends on multiple factors, including the temporal
element, like time of the day or month of the year.

• Anomaly detection - Detecting inconsistencies and anomalies in time-series can
be important to prevent disastrous outcomes. Detecting failures in industrial
components or finding anomalies in network traffic are some examples.

Although there are various application areas, it is common to apply time-series
analysis to develop predictive models that take time dependencies into account.
Conventional modelling approaches often assume time-independent observations
[82] and do not work equally well for time-series data. However, various approaches
have been trending in the field of Machine Learning (ML) in recent years, with the
development of sequential models like Recurrent Neural Networks (RNNs). They
are one type of neural network models that take temporal dependencies into account
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Figure 1.2: Patient activity levels from the depression dataset [91]. The plots show hourly
average activity levels for 2 depressed (top row) and 2 control patients (bottom row). Note
that all series are not from the same period.

and have had successful applications in later years. Many applications is in the field
of language processing [14, 34, 35, 79, 97], but another example is self-driving cars [6].

While the examples mentioned above are naturally sequential problems, they are not
time-series. As described earlier, traditional methods are often applied to modelling
time-series. Most approaches use simple regression analysis or more extensive
methods, like autoregressive (AR), autoregressive moving average (ARMA) or state-
space models [82]. With gained popularity around neural network models like RNNs,
the potential application area of such models to time-series is only recent [26, 44, 84]
or relatively limited. Fawaz et al. [26] present a review on the application of deeper
neural networks to time-series classification, which is one of few extensive studies
that look at the application of neural network models to time-series.

Despite the rise of RNNs and limited application to time-series, there are still certain
shortcomings of this kind of models. Various RNN architectures have different
shortcomings. The vanilla RNN has an architecture that makes it challenging to
learn longer temporal dependencies. In order to overcome this problem, so-called
gated architectures were introduced, like Long Short-Term Memory-based networks
(LSTMs) and Gated Recurrent Units (GRUs). However, these architectures are more
complex and require extensive computational effort [8, 16, 67].

Although LSTM and GRU have proven to be efficient, research on different neural
network architectures to sequential problems has been explored, like Convolutional
Neural Networks (CNNs). CNNs are one type of network architecture mostly known
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for applications in the image analysis and image processing domain [4, 39, 52, 70]
because of their ability to preserve spatial information. However, they have proven to
be applicable to sequential tasks like machine translation and sentence classification
[24, 48, 49] as well.

Furthermore, the studies of RNNs are often benchmarked across various language
processing tasks. Moreover, the empirical evaluations of CNNs, which is relatively
limited on sequential problems, also focus on language tasks [5, 48, 49]. In the time-
series domain, such comparative studies are not extensive, and the application of
RNNs and CNNs in the field and predictive modelling has only emerged recently [12,
56, 78, 93]. Because of this lack in comparative studies and benchmarks in the domain
of time-series classification, it is difficult to determine how CNNs are preferable. The
thesis further aims to explore this through an experimental study to provide empirical
evidence on the application of CNNs on time-series classification with a comparison
against LSTM.

1.2 Problem statement

As we have described, there are limited comparative studies of RNNs and CNNs
in the time-series domain, where traditional statistical models are often used.
While RNNs and CNNs have been evaluated on time-series data, research in the
same domain is fairly limited. To better understand the application of alternative
architectures like CNN for the time-series domain, we aim to answer the following
research question:

RQ: How do CNNs compare to LSTMs for time-series classification?

To answer this question, we compare CNN and LSTM on three different use cases
across the medical-, energy- and sports domain. Moreover, our proposed research
question further motivates for understanding the following two sub-questions:

1. SQ1: How does LSTM perform for time-series classification?

2. SQ2: How does CNN perform for time-series classification?

Our sub-questions are implied in RQ. The aim of SQ1 and SQ2 is to answer how
the architectures perform in the context of the classification tasks. The overall aim of
this thesis is to show how CNNs compare to LSTMs for time-series classification in
general. Hopefully, the work can provide a good baseline for future comparative
studies and also empirical evidence on the application of CNNs to time-series
classification.

1.3 Limitations and scope

Based on the outlined problem statement, the scope of this thesis is to research
the effect of uni-dimensional CNNs for time-series classification and provide both
a systematic and experimental comparative study against LSTM. For reliable and
empirical evaluations, we test both architectures on three different use cases.
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Furthermore, within this scope, we develop a system that runs experiments
automatically. We limit this system to be specific enough in the context of our
proposed research question, that is, comparing LSTM and CNN, but general enough
to be extended for later use.

We decided to limit this comparative study to LSTM and CNN. First of all, because
gated architectures have shown to be more promising in various sequential modelling
tasks in recent years. Second, because of time and resource constraints as the topic
of this thesis changed over time, and extensive comparisons became less practical.
Although GRU is another gated architecture, we chose LSTM due to its popularity.

Furthermore, in a comparative study like this, understanding the underlying
mechanisms and performance of each architecture requires lowering the complexity
of the models. We decided to keep our models shallow to easily compare the
performance of both in the classification tasks and against each other.

1.4 Research method

Data Experiments Evaluation

Hypotheses Exploratory
experiments

Initial	results	and
evaluation

Selective
experiments

Optimised
results	and
evaluation

Figure 1.3: General level experiment design. Hypotheses formed during the data analysis are
explored iteratively through exploratory experiments with multiple configurations. The initial
results and evaluations are used to perform specific experiments in order to try to achieve
optimised results, by configuring more specific hyperparameters.

Within the field of Computer Science, which is a relatively new field of study, there
are various existing research methods. Some approaches may include both theoretical
and experimental methods [37]. In this thesis, we apply the research method in
the report Computing as a discipline [21], proposed by the Association for Computing
Machinery (ACM) in 1989. The report divides the discipline of computing into three
distinct paradigms; (i) theory, (ii) abstraction/modelling and (iii) design. Figure 1.3
shows a general-level design for the experiments in this thesis, and shows how the
two former paradigms fit into this scheme.

Theory - The theory paradigm is rooted in the discipline of mathematics. The
paradigm is concerned with the development of a coherent and valid theory. ACM
divides this paradigm into four steps; (i) characterise objects of study (definition), (ii)
hypothesise possible relationships among them (theorem), (iii) determine whether
the relationships are true (proof) and (iv) interpretation of results.

In this thesis, the objects of study is a comparison of LSTM and CNN for time-series
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classification. While doing so, we discuss different neural network architectures like
recurrent- and convolutional architectures, their shortcomings and benefits, and how
they differ in terms of application domains. We perform multiple experiments to
understand how one architecture performs compared to the other and determine their
effectiveness based on the results.

Abstraction - The abstraction/modelling paradigm is rooted in the experimental
scientific method. The report describes this is a four-step process when researching
and investigating a phenomenon; (i) form a hypothesis, (ii) construct a model and
make a prediction, (iii) design an experiment and collect data and (iv) analyse results.

The thesis provides an extensive comparison with multiple experiments. First, the
hypotheses are formed based on data analysis for each use case. The design of
experiments is based on the data analysis, and the initial hypotheses form based on
this. Upon experiment execution, we try different hyperparameters, in which the
results are analysed separately for each use case. Both models are compared on a use
case level, before a general-level discussion and analysis of results is presented.

Design - The design paradigm is the last paradigm rooted in engineering principles,
which is described as a four-step process. The process is concerned with the
construction of a system or device that solves a given problem; (i) state requirements,
(ii) state specifications, (iii) design and implement the system and (iv) test the system.

This thesis has a theoretical approach in the comparison of two algorithms. To
compare both, we develop an experimental framework that facilitates for comparison
of LSTM and CNN on our use cases. An additional requirement is that the system
enables the opportunity to extend to other models or use cases in the future. The
implemented framework is general enough to be used in research projects where
comparisons of neural network algorithms are relevant. With minor modifications,
the framework can be used with other use cases and datasets, in addition to other
model architectures.

1.5 Contributions

The main contribution of this thesis is a systematic comparison of uni-dimensional
CNNs and LSTM on various time-series classification tasks, a field where such studies
are relatively limited, and explored by only a few. In general, our work can be
attributed to our primary research question and summarised as follows:

Our empirical evidence suggests that a simple CNN can achieve at least the same
results as an LSTM, and in many cases, it is marginally better. CNN is faster to train
in terms of seconds used, where we see a speedup factor of more than 30 for two
out of three use cases. However, we also see that LSTM is more efficient in learning
underlying data distributions and uses less training iterations to do so. This trade-off,
however, is marginal in which we conclude that CNNs should be the preferred choice
over LSTM, because of their effectiveness in performance and faster training.

Moreover, the proposed models are tested on three use cases. First, we classify
depressed patients based on motor activity levels [29, 91] in a binary classification
problem. With existing baselines on 73% and 0.43 for accuracy and MCC, respectively,
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our CNN achieves an accuracy of almost 80%±~2% across all results, and an MCC of
0.54 on average. Comparably, our LSTM achieves an average accuracy of 82%±~1.5%
and an MCC of 0.59 at its best. Additionally, CNN outperforms LSTM in terms of the
number of seconds used for training, being 46 times faster.

Second, we predict the energy demand for Electric Vehicles (EVs) in a multiclass
classification problem using a smaller dataset to showcase the potential in this
domain. Applications of neural networks in this domain are limited. However, we
have acquired a smaller dataset and provide a simple baseline for future research.
We report an average accuracy of 60% and an MCC of 0.04 for CNN. Comparably,
LSTM achieves an accuracy of 58% and MCC of -0.01. Moreover, both models use
approximately the same training time in seconds. Overall this showcase the potential
improvement area in the field of EV charging optimisation.

Lastly, we classify the readiness of football players [69, 94] in a multilabel classifica-
tion problem. We predict four qualitative features describing the readiness of football
players, namely, mood, stress, soreness and fatigue. Overall, we report average accu-
racies of almost 89% for our CNN and 90% for LSTM, in which the CNN is 35 times
faster when comparing the number of seconds used for training.

To perform this comparative study, we also developed an experimental framework,
which automatically configures and builds, compiles, trains our models and runs
experiments and stores results accordingly. We used the Python programming
language and Keras framework for model development. Overall, it was developed
specifically to the use cases and models in this thesis but is flexible enough to
be used for similar comparative studies of neural network models, with minor
modifications. Our system can be separated into three parts, where we first set
initial hyperparameter configurations manually and specify use cases and model
architecture. We then run the experiment pipeline based on these configurations
which automatically builds and trains the models, before running the evaluation
pipeline at last, which stores various experiment results, training history, evaluations,
confusion matrices, metrics and other statistics required for evaluation. These
evaluations are saved to persistent storage automatically, based on the given
configurations.

1.6 Outline

The current chapter, Chapter 1, introduces a general level background and motiva-
tion, presents the research question, research method and lastly, the scope and various
limitations. Overall, the outline of the thesis separates into five chapters.

Chapter 2 - Background: We present the necessary background in the theoretical part
of the thesis. We discuss machine learning, artificial neural networks, recurrent neural
networks and convolutional neural networks. They are defined in separate sections,
where each presents a definition, the learning process in each architecture and related
work within the context of the research question of this thesis.

Chapter 3 - Methodology: We present our methodological approach. The first part of
this chapter gives a general level overview of the methodology and how it underpins
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the problem statement. Further on, we present system specifications and overview
of our experiment framework. We then discuss each use case, present the dataset
and perform data analysis, before explaining the model training process and chosen
hyperparameters. At last, we discuss our evaluation methods and metrics before
summarising the methodology in the last section.

Chapter 4 - Experiments: We present the results for each use case. For each use case,
we give an overview of the experiment design before presenting results for LSTM and
CNN. Further on, we present a discussion and comparison in the context of each use
case. We then summarise our findings for each use case. At the end of this chapter,
we provide a general-level discussion and a summary of all experiments and results.

Chapter 5 - Conclusion: We summarise this thesis, our findings and conclude our
contributions. At last, we discuss the potential future work of our presented work.

8



Chapter 2

Background

This chapter presents the related work and theoretical background. In the first
section, we present related work of comparative studies of RNNs and CNNs. We
then define the concepts in machine learning and give an overview of supervised
learning and unsupervised learning. Further on, we present the general concept
of artificial neural networks and describe the various underlying mechanisms of
training these, followed by definitions and overview on recurrent neural networks
and convolutional neural networks, which build on the same concepts.

2.1 Related work

While the popularity of RNNs and CNNs have increased in recent years, many of
their common applications are found in language processing [14, 35, 79] and image
classification tasks [38, 43, 52, 88], respectively. Although traditional models like
autoregressive/moving average models like ARIMA [2, 82] and Hidden Markov
Models (HMM) [47, 78] are often used for time-series, there has been some research
in recent years looking at the effect of RNNs [26, 28, 44, 83, 84] and CNNs [12, 56, 78,
93]. While some studies explore CNNs and RNNs on time-series separately, hybrid
approaches have been explored as well [17, 93]. However, there are limited studies on
the comparison of both architectures, and less so in the time-series domain. Some of
the following research papers aim to provide relevant baselines for such comparisons.

2.1.1 An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling

Of all the literature we have looked at, this study presents the most extensive
comparison of RNNs and CNNs. In their paper, Bai, Kolter, and Koltun [5] present
an empirical comparison of different RNN architectures against CNN on various
sequence modelling tasks. They address the question of whether the recent successes
of CNNs on sequential problems [48, 66] are specific to the studied application
domains, or if they are applicable to sequence tasks in general. In their paper, they
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study the effect of CNNs on various problems in which they conclude how CNNs are
indeed applicable to different domains.

Their CNN, named TCN for Temporal Convolutional Network, outperforms canon-
ical recurrent architectures like LSTM and GRU. Through the experiments, they use
the same configurations with various kernel sizes and layers. Dilated convolutions
are used with Adam-optimiser and a learning rate of 0.002. For the RNNs, automatic
hyperparameter optimisation is applied, where they use grid search to find optimal
configurations. Moreover, the study further analyses the effect on how the TCN cap-
tures temporal patterns and how the memory mechanism works. Overall, they find
that the CNN-based network shows the ability to capture long history more efficiently
than the RNNs as well.

While this comparison study is essential to our research, the effect on time-series is not
explored in their paper. This further motivates for our proposed research question,
in which we extend the study to understand how CNNs can be used for time-series
classification.

2.1.2 Time Series Classification from Scratch with Deep Neural Networks:
A Strong Baseline

This paper explores the application of CNNs for time-series classification. In their
study, Wang, Yan, and Oates [93] present a comparison of their Fully Convolutional
Neural Network (FCN) to various traditional time-series classification models. Their
proposed FCN is, in essence, a CNN without pooling in the hidden layers and
applies global average pooling instead of using a dense optimisation layer in the last
layer. Additionally, two neural network models are compared as well, the first being
a vanilla neural network (MLP), whereas the second is a residual neural network
(ResNet)[38]. The models are tested across 44 distinct time-series datasets, in which
their study aims to present a baseline for neural network-based models in the time-
series classification domain.

Their results suggest CNNs are indeed applicable to time-series in which the
compared models are outperformed across almost all tested use cases. Further on,
they also show how their FCN, which is shallow with only three layers, outperforms
architectures like ResNet. Overall, Wang, Yan, and Oates [93] show how shallow
CNNs can effectively be applied to time-series classification, although a comparison
against recurrent architectures is not present.

2.1.3 Deep learning for time series classification: a review

Fawaz et al. [26] presents an extensive empirical comparison in their paper, in
which they aim to explore different deep neural network architectures and find the
current state-of-the-art for time-series classification. Overall, they train 8730 deep
learning models on 97 time-series datasets, the most extensive to date. In their paper,
their comparison includes the vanilla architecture (MLP) and different convolutional
architectures like FCN/CNN, (used by Wang, Yan, and Oates [93]) and ResNet.
However, they include one type of RNN in their comparative study, namely Time
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Warping Invariant Echo State Networks (TWIESN), although we consider this out of
the scope of this thesis.

While all of the tested networks are relatively shallow, with anything between
three and eleven layers, the overall findings suggest that deep learning models
can achieve state-of-the-art performance with architectures like FCN and ResNet
in the time-series classification domain. In the context of our proposed research
question, the compared recurrent model, TWIESN, achieved competitive results to
the convolutional architectures in many cases. However, the convolutional models
seemed to work most efficient overall, which further poses an interesting question of
whether this applies to LSTMs as well.

2.1.4 Forecasting Economics and Financial Time Series: ARIMA vs. LSTM

In this paper, Siami-Namini and Namin [83] study the effect of LSTM on forecasting
of financial time-series where they compare the model against the more traditional
ARIMA. The aim of their research is to present a comparison of ARIMA and LSTM, in
which they explore the questions (i) which algorithm, ARIMA or LSTM, performs more
accurate of time series data? and (ii) Does the number of training times in deep learning-
based algorithms influence the accuracy of the trained model?. They evaluate both models
across twelve different datasets with a train/test split of 70/30, ranging from 200
to 600 monthly observations and one dataset with 1200 weekly observations. Their
results suggest that LSTM is efficient across all use cases with an overall average
reduction of approximately 85% in RMSE, which is the metric they use to evaluate
the models. Although their study shows that increased iterations do not contribute
to better performance, they showcase how traditional approaches like ARIMA is
outperformed.

2.1.5 Summary of related work

In this section, we presented relevant literature. The first study by Bai, Kolter, and
Koltun [5] is one of few, which provides an empirical evaluation on the comparison of
CNNs and RNNs, but focus on different language tasks. Further on, the second paper
explored the effects of CNNs on time-series classification, in which the models were
compared to traditional time-series classification models. The third paper provides
a similar study and is more extensive, in which they explore various CNNs to find
the current state-of-the-art. However, one shortcoming of this study is their lack of
RNNs as baseline comparisons. The last study compares LSTM and provides a more
systematic review with a comparison against ARIMA, showing how neural networks
can outperform traditional time-series models in general.

Nevertheless, from the presented literature, it is evident that there is an absence of
comparative studies of RNNs and CNNs, in which the few existing ones focus on
various language tasks. Moreover, such studies are almost non-existent in the field of
time-series classification, where current studies, like those presented, mostly focus on
comparisons of RNNs or CNNs against traditional time-series classification models.
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2.2 Machine Learning

Machine Learning (ML) is a field in computer science concerned with developing
data-driven computer algorithms/systems. This class of algorithms can learn from
observations and data, without explicit instructions or where explicit instructions
are not conventional. It is a cross-disciplinary field that combines techniques from
optimisation, statistics, computer science and information theory and is considered a
fundamental branch in the field of Artificial Intelligence.

Machine Learning is a recently trending field, although research and different
approaches already originated in the 1940s and 1950s [4]. McCulloch and Pitts-
neurons [58] forms the basis of neural networks today and originated in the 1940s.
Samuel [80] researched on developing efficient computer programs for playing chess
without explicit programming approaches as a method during the 1950s.

In recent years due to advanced development of algorithms and hardware, it has
been possible to develop efficient algorithms. Many are good at learning complex
tasks, otherwise impractical with explicit approaches. Neural networks, for instance,
are very popular these days, and they have proven to be great models in multiple
domains. In image classification and object recognition, with the breakthrough
of AlexNet [52] in the ImageNet 2012 challenge [77], it was shown how deeper
networks could improve the performance of the models, hence the trending name
Deep Learning [30]. More recently, the same technology is one of the core elements
behind the current development of autonomous vehicles [6, 54] and there are also
numerous successful applications in other domains like language processing [61]
and generation/translation tasks in language processing [14, 34, 35, 66]. In general,
computer vision and language understanding may seem like trivial tasks for humans.
However, developing generic computer algorithms with explicit programming that
solves these tasks well is difficult.

Further on, we provide an overview of the main categories in ML. The methods
in this thesis are concerned with supervised methods. We explain two of the two
main categories, supervised learning and unsupervised learning. Although various
categories like semi-supervised learning, reinforcement learning and feature learning
[4] exist, they are considered out of the scope of this thesis.

2.2.1 Supervised Learning

Supervised learning methods [45] use labelled data and the goal of supervised
algorithms is to determine a good approximation between a set of inputs and correct
outputs. More formally, supervised methods approximates some function f that
maps from some input space X to an output space Y, formally f : X → Y. The
iterative process of optimising this function to achieve a good approximation is
known as the learning process.

An example is if we want an algorithm that classifies a specific object such as a ball.
The input image has a corresponding output target that tells if the input image has a
ball or not. By using labelled data, such an algorithm can iteratively be optimised to
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learn particular features describing a ball. Hence, for unseen images, the algorithm
can correctly determine whether or not an image contains a ball.

2.2.2 Unsupervised Learning

Unsupervised learning methods [45] does not use labelled data, and there is no
explicit description of how an algorithm should optimise the understanding of
observations. Unsupervised methods are concerned with finding patterns or groups
in data, for instance, by clustering similar observations which seemingly belong in
the same categories. For example, an unsupervised algorithm cannot tell if it is a ball
or not. It may, however, group all similar images that potentially contains a ball in
the same category.

2.2.3 Short on the curse of overfitting

Overfitting is a concept in statistical modelling and machine learning concerned with
problems in which modelling a set of observations becomes too specific. That is,
given a set of data points, any given model or function overfits the data if it draws too
specific boundaries that are not general enough for the modelled problem. A simple
example of overfitting is found in Appendix A.1.

2.2.4 Summary of machine learning

This section presented a general definition of machine learning and how the field has
been trending in recent years. The development of advanced methods has resulted
in algorithms that can solve complex tasks that usually are impractical with explicit
approaches. We discussed how neural networks, one type of machine learning
models, have successfully been applied in the field of image classification, language
processing and various other areas, like self-driving cars and speech recognition
and machine translation. Conclusively, we also discussed two different learning
methods in the field, namely, supervised learning and unsupervised learning. The
prior is concerned with the development of algorithms that use input-output pairs,
to make a generalised and efficient approximation of the mapping from input to
output. One example is neural networks. The second, unsupervised learning, does
not use input-output pairs, and there are no explicit instructions on how to make a
good approximation. Unsupervised methods try to find patterns and groups in data
through clustering similar observations.

2.3 Neural Networks

A neural network, also referred to as a feedforward network is a supervised learning
method that draws inspirations from how the human brain works [42, 74]. The
"vanilla" neural network we know today is based on the Multilayer Perceptron (MLP),
developed by Rosenblatt [74] in the 1950s. However, the MLP was developed as a
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linear classifier that used threshold activation functions, which we will explain in
detail in the following sections. On the other hand, neural networks as we know
them today use non-linear activation functions [65, 68], which enables them to learn
more complex patterns and decision boundaries. Nonetheless, the MLP is widely
considered as the foundation for neural networks today.

A neural network f is a network of nodes that are computational models of the
biological neuron. The most widely known model today is the McCulloch and Pitts-
neuron [58] which originated in the 1940s, and motivated for the development of
the MLP by Rosenblatt. Figure 2.1 shows an example of a simple network, which
has multiple layers with each layer encapsulating a set of nodes. Each node has
connections between units in the preceding and succeeding layers and generates a
signal, which is the output of a function and can be optimised, known as the learning
process.

X1

X2

g1

g2

g3

g1

g2

g3

f

Figure 2.1: A simple neural network with 2 hidden layers. Note that we exclude the layer
subscript for simplicity, hence the same subscript for the nodes in the hidden layers, which
only indicates the j-th node.

2.3.1 Definition

Consider a node g to be a computational model, a function with some inputs [58]. We
can also understand this as an extension of the simple linear regression model [45]. It
is a model concerned with predicting some output variable Y (the response variable),
given some input variable X (the predictor), where the relationship between these
two is assumed to be approximately linear. We can define the relationship as the
following, where g represents the output variable Y, and is usually the conventional
notation.

1

X
g

β0

β1 g ≈ β0 + β1X (2.1)

Equation 2.1: The simple linear regression model.

β0 and β1 are the weights of the linear model, and is often interpreted as the intercept
and slope for a linear fit to some observations [45]. In order to find the optimal
approximation between X and Y, the weights of the model are iteratively optimised.
This is usually referred to as the learning process, and we provide a more detailed
overview in Section 2.3.2.
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By definition, a neural network f is a collection of these nodes/functions, parame-
terised by all β in the network; f (X; β) [33]. Each node g has multiple inputs rather
than only one, where they are weighted independently. More formally, this is known
as the multiple linear regression model [45], which is an extension of Equation 2.1.
For any given node gj, the model encapsulating multiple variables (regressors) Xi, is
shown in Equation 2.2. Note that we refer to the i-th variable as Xi and a value of that
variable as xi.

1

X1

X2

...

Xi

gj

β1

β2

βi

β0

gj ≈ β0j + β1jX1 + β2jX2 + · · ·+ βijXi

≈ β0j +
N

∑
i=1

βijXi
(2.2)

Equation 2.2: The multiple linear regression model.

2.3.2 The learning process

The learning process in a neural network can be considered as an iterative
optimisation of the network f with a set of weights β, and is comprised of three steps;
forward propagation, error computation and backward propagation. As an overview
on a general level, we can understand this process as the following:

1. Propagating input signals x forward in the network to generate some output.
The output is either a probability distribution P in classification problems or a
continuous value/quantity ŷ in regression problems.

2. Measure how far off the predicted output or distribution is from the ground
truth output/distribution with a loss function L to determine the loss.

3. Use the loss to adjust the weights β of the model in order to improve the function
approximation.

In the following sections, we will refer to the prediction of a network as ŷ = f (x; β),
indicating that the predicted output is a function of the input value x for the given
weights β.

Forward propagation

Forward propagation is the process of propagating the inputs forward in the network,
generating some prediction ŷ. We earlier gave an overview of the general definition of
a node g (Equation 2.2), which generates a weighted sum of the inputs. The forward
propagating step generates a signal a (also referred to as the activation) as a function
of node g, and is commonly known as the activation function. We can explain this in
a general form, by denoting the activation function as φ:
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aj = φ(gj) (2.3)

Equation 2.3: The activation function for the j-th node, as a general scheme.

The idea behind the activation is that neurons "fire", when the accumulated signal
is above some threshold, similar to the chemical process in the neurons in the
human brain. Rosenblatt [74] originally used the threshold function as defined in
Equation 2.4. In recent years, however, there have been researched on many different
activation functions that adds non-linearity to the networks [65, 68], in which they
have been proven to be efficient for learning complex patterns. Examples of common
activation functions as discussed by Nwankpa et al. [65] includes the sigmoid, tanh,
ReLU, maxout and variants of these. Some of the commonly known activation
functions are visualised in Figure 2.2.

aj =

{
1 if gj > 0
0 if gj ≤ 0

(2.4)

Equation 2.4: The threshold activation of the j-th node.

When predicting a quantity, a linear activation in the output layer can be applied, but
for classification problems it is common to apply softmax [19, 52]. Softmax is also
an activation function often applied on the output layer as a classifier in a network,
because of its characteristics on providing class probabilities [19]. We will see in
the following section how this enables us to compare probability distributions in
classification problems.

Error computation

So far, we have looked at how a neural network generates predictions, either in the
form of continuous values or probability distributions. Error computation is the step
where the predicted output is compared against the ground truth, the labelled data.

The comparison can be done with a loss function L [45], and the result is often
just referred to as the loss. The loss is used to determine how the weights should
be adjusted to improve the approximation of the network f : X → Y with the
backpropagation algorithm, which we will look at in the next section. Note that a
common description for the loss between quantities in regression problems is also
referred to as residuals [45] and there exist multiple approaches for comparing them.
Equation 2.5 shows the most common one, residual sum of squares (RSS).

RSS =
N

∑
i
(yi − ŷi)

2 (2.5)

Equation 2.5: The residual sum of squares [45].

RSS is applicable to the simple linear regression model we defined in Equation 2.1.
Variants of this loss function is also used, such as mean squared error (MSE) [45]
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Figure 2.2: Commonly known activation functions used in neural network models. The
Softmax activation function is often used in the output layer of a network.

which is the RSS average over all N samples. Nevertheless, RSS accumulates the
differences in the predictions and ground truth values for all input samples. This
gives us en estimate of how much the prediction deviates from the ground truth
observations in quantitative measures, but is not ideal when comparing probability
distributions in classification problems.

The common measure for comparing probability distributions [33] is the cross-
entropy loss [45]. With this approach, we compare the predicted distribution P to
the true distribution Q over all classes C. We formalise this in Equation 2.6, where i
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denotes the i-th class.

L(P, Q) = −
C

∑
i

P(ŷi) log Q(yi) (2.6)

Equation 2.6: The cross-entropy loss [45].

From the equation we can see that there are some important characteristics with this
loss function. First, the loss output is guaranteed to be non-negative, as James et
al. [45] describes in the book An introduction to statistical learning. Second, a loss
converging towards zero indicates increased prediction accuracy and decrease in
prediction loss, implying better model performance of the network as a result of the
model distribution P approximating the true distribution Q.

Backward propagation

We have now defined how we generate some predicted output and how we measure
the prediction against the ground truth to find the loss. The learning process in
neural networks is concerned with minimising this loss. We do this by adjusting
the weights of the model slightly, with a delta, in the direction that minimises
the loss. The backpropagation algorithm applies this rule iteratively, and is in
essence an application of the gradient descent algorithm [33, 76]. An intuition of
the backpropagation algorithm is described in Algorithm 1.

Algorithm 1 The backpropagation algorithm [76]

for each prediction ŷ do
1. find the loss with loss function L
2. find the delta to determine how much to adjust the weights; ∇Lβ

3. propagate the deltas backwards for each layer in the network ∇Lβ and adjust
the weights accordingly

end for

The common approaches for adjusting the weights are variants of the gradient
descent method, which all take basis in the batch gradient descent method [33]. Before
we explain these variants, we briefly describe how the general gradient descent, the
weight update rule, works.

Gradient descent is concerned with minimising the loss function with respect to the
weights of the model, by computing the gradients of the loss function1. The loss
optimisation of the total loss, often denoted as J, is seen in Equation 2.7. This equation
defines the update rule of the weights of the network, where η is the learning rate and
determines how much the weights are updated at each optimisation step.

Optimising the weights with batch gradient descent requires that the entire dataset is
passed to the model as input for a given number of iterations. As Goodfellow, Bengio,

1In general terms, gradient is a concept used in optimisation to define rate of change of any given
function at any given point, with respect to the input. This is considered out of the scope of this thesis,
but is mentioned because of strong presence in neural network optimisation.
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β̂ = β− η · ∇Jβ ≡ β− η · ∂J
∂β

(2.7)

Equation 2.7: The batch gradient descent for updating the weights of a neural network, where
β̂ is the updated weight values, and β is the current weight values.

and Courville [33] mention in the book Deep Learning, this method is deterministic
because the gradients will be the same.

Stochastic gradient descent methods (SGD), on the other hand, are usually concerned
with optimising the weights with multiple smaller batches of the entire dataset [33].
One the far left side of this scale, we can optimise the weights with one training
sample at the time (on-line training). This means that the gradients will deviate more
and contribute to more "noisy" optimisation because of the varying gradients from
each sample [95].

On the other side of the stochastic gradient descent methods, we can train with larger
fixed subsets of samples, known as mini-batches, hence the name mini-batch gradient
descent. The size of these subsets is often referred to as the batch size. Compared
to on-line training, we could think that larger batches are more preferred, which
would result in less deviations. However, as Wilson and Martinez [95] discusses, on-
line learning has also shown to outperform mini-batch gradient descent with larger
batches. The batch size is thus a hyperparameter and choosing the right size may
depend on the use case.

Nevertheless, the mentioned variants of the gradient descent method are often not
used as is. Further extensions of gradient-based optimisation methods have been
proposed in recent years, like Adam, AdaGrad and RMSprop [50, 75] and have more
common applications. In general, they are more practical because of their adaptive
nature on factors like the learning rate in addition to faster optimisations.

2.3.3 Summary of artifical neural networks

Neural networks are conceptual models that works well as optimisers. We have
described how a node is modelled as a simple linear regression model (Equation 2.1),
and how this can be extended for multiple nodes (Equation 2.2). By constructing
a network of these nodes, a neural network can be defined as an optimisable
function f that approximates some mapping between a set of input variables X
and an output variable Y, where the optimisation is known as the learning process.
The learning process is achieved by propagating some signals forward, generating
some predictions, comparing the predictions with some loss function and then
backpropagating gradients of the loss function to update the network weights.

2.4 Recurrent neural networks

In this section, we give a theoretical overview of recurrent neural networks (RNNs),
one type of neural networks designed for sequential modelling. First we present
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formal definitions, followed by an overview of the learning process. Further on, two
RNN architectures that have common applications today are discussed, followed by
a summary in the end.

2.4.1 Definition

Consider a simple neural network as described in Section 2.3, but where nodes in
each layer now has in-between connections (recurrent connections). The result is
a recurrent neural network (RNN) as shown in Figure 2.3, where the connections
represent temporal dependencies (dependencies in time) and introduce an extra set
of optimisable weights. RNNs are another family of neural networks designed for
applications on sequential problems like language processing [14, 35, 79] and the most
simple RNNs only introduces these recurrent connections.

Figure 2.3: An illustration of 4 standard recurrent units in a layer with their respective
recurrent connections. The output signal is a function of the current input and recurrent
input at time t and t− 1, respectively.

Formally, as shown in Equation 2.8, we let the input at time t be defined as xt and
recurrent inputs from the previous timestep be defined as at−1, both being vectorised
inputs. Similar to the weighted sum we described earlier, the latter denotes the signals
of the weighted sum gt−1 of the previous recurrent unit. By introducing recurrent
inputs, we introduce a new set of weights. We let the input weight set be defined as
βih and the recurrent input weight set be defined as βhh, respectively denoting input-
hidden and hidden-hidden weights.

gt = β0 + [βih · xt] + [βhh · at−1]

at−1 = tanh(gt−1)
(2.8)

Equation 2.8: Model of the recurrent unit in simple recurrent networks (RNNs). The input
signal is a function of the input at time t and time t − 1, forming two sets of optimisable
parameters where · denotes the dot-product. The recurrent input is the previously generated
output signal as a result of the tanh-activation.
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2.4.2 The learning process

The learning process in recurrent networks is similar to earlier definitions for
feedforward networks. Signals propagate forward through the network and tanh
is usually applied for non-linear activation of the weighted sum, hence at = tanh(gt)
being its specific form. Lastly, because RNN units are recurrent applications of
themselves, the backpropagation of gradients is an ordered operation through each
timestep. This is an extension of the ordinary backpropagation algorithm known as
backpropagation-through-time (BPTT).

2.4.3 The difficulty of learning

We have now described the mechanism around vanilla RNNs. This is an architecture
designed for solving sequential problems, as ordinary neural networks does not take
temporal dependencies into consideration. Nonetheless, a common problem in these
networks is the vanishing- and exploding gradient problem [8, 40, 67] which makes
it difficult for the networks to capture temporal dependencies over longer timespans.
Although this is a widely known problem for vanilla RNNs that use gradient-based
optimisation techniques, alternative approaches have been proposed [8, 57, 67] to
overcome the problem. The most notable contribution however, is the introduction of
gating mechanisms in RNNs, giving rise to new architectures like Long Short-Term
Memory units (LSTM) and Gated Recurrent Units (GRU).

Long Short-Term Memory units

Long Short-Term Memory (LSTM)-based networks [41] use carefully designed LSTM-
cells. These are computational units in networks controlling information flow
through gating mechanisms. Initially proposed by Hochreiter and Schmidhuber
[41], the architecture was designed to overcome the above-mentioned problem of
learning long-term dependencies. One LSTM unit is composed of multiple gating
mechanisms, namely, the forget gate, output gate and update gate. Collectively, they
enable a possibility to maintain the overall cell state in each unit such that a LSTM-
layer is able to effectively capture longer temporal dependencies.

As the names imply, the subset of information to be removed from the cell state is
determined by the forget gate and the new information to add to the cell state is
controlled by the update gate. The output gate is concerned with controlling the
output flow from the cell state, and thus determines what information is passed
onwards to the succeeding LSTM-unit.

Gated Recurrent Units

The Gated Recurrent Unit (GRU) [14] is a relatively new contribution compared to
the LSTM-units introduced in 1997, and is quite similar. They were initially proposed
by Cho et al. [14] and have also shown to be at least as good as LSTM-based networks
in recent years [16, 46]. The popularity around the GRU-architecture is primarily
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because of their less complex structure. It differs from LSTM by reducing the overall
complexity of the unit. In general, it does not include an output gate that controls
the output flow from the cell state. By doing this, the overall number of optimisable
parameters is reduced, and hence the model complexity is lowered.

2.4.4 Summary of recurrent neural networks

Recurrent neural networks (RNNs) is a specific type of neural network architecture
designed for solving sequential problems. The core principle is introducing recurrent
connections between nodes in each layer, which makes it possible to model temporal
dependencies. We explained the vanilla RNN unit and how it is a function of
multiple inputs, the current input at timestep t and the recurrent input from t − 1.
This architecture works well for sequential modelling, but one shortcoming is the
learning problem in RNNs, making it difficult to learn dependencies over longer
timespans. Two architectures that overcome this problem is the LSTM-unit and GRU,
both introducing gating mechanisms which enables recurrent networks to learn long-
term dependencies as well.

2.5 Convolutional neural networks

We give a theoretical overview of convolutional neural networks (CNNs). First, we
look at formal definitions and the learning process, in which the most important
components in CNNs are described. We describe convolutions and pooling, before
giving a summary in the end.

2.5.1 Definition

Convolutional neural networks (CNNs) are a family of neural networks that are
commonly applicable to problem domains where spatial information and other grid-
like topologies are of importance [33, 55]. The most common application is image
classification [52], as images can be considered 2D-grids. However, CNNs are also
applicable on time-series [66], which in essence are 1D grids with samples at fixed
time intervals. Overall, the main difference between standard feedforward networks
and CNNs, is the architecture.

Consider a standard feedforward neural network which we described in Section 2.3
about neural networks. There are two concerns when applying a feedforward
network to grid-like topologies with more than one dimension. The first is that the
spatial information is not preserved, as the grid has to be flattened to the networks.
Secondly, an application like this does not scale for use cases like image classification
and other grid-like topologies, due to the increased number of parameters as a result
of many interconnected neurons on the grid. An increase like this would require more
computational resources, as the optimisation problem require more effort.

CNNs solves these problems by only looking at a subset of the input, known as
local connectivity. The number of weights are reduced and spatial information is
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still preserved by applying two additional mechanisms; the convolution- and pooling
operation. We further explain these in detail in the following section on the learning
process in CNNs.

2.5.2 The learning process

Similar to what we described earlier in Section 2.3.2 about learning in feedforward
networks, inputs propagates forward in the network and generates some predictions.
Backpropagation and forward propagation of signals is conceptually equal to vanilla
neural networks. However, the difference in CNNs exists in their architecture, where
convolutional- and pooling layers are introduced. The general scheme of a CNN is
shown in Figure 2.4.

Convolutional layers

Convolutional layers in a CNN takes advantage of the convolution operation,
a mathematical operation on two functions, which generates a third function
explaining an estimated relationship between both [33]. In the context of grid-like
topologies, the convolution operation can be considered as a sliding window over the
grid input, usually referred to as convolving a filter or kernel on the input. Figure 2.4
illustrates the convolution operation in CNNs.

Each convolutional layer contains a set of learnable filters, more specifically a set
of weight matrices. The number of learnable filters is equivalent to the number of
nodes in a layer, as each node represents a filter learning different features. The filters
are spatially small and are convolved on the input by computing a weighted sum to
generate an output volume, the set of feature maps. Because one feature map is a
linear activation, each map is passed through a non-linear activation function, similar
to the process in feedforward vanilla networks.

However, the output volume of a convolution layer is not fixed. The process of
adjusting the output volume is dependent on multiple factors, introducing some
additional hyperparameters. For instance, step size (stride), filter bank (number
of filters), filter size, padding and dilation rate are additional mechanisms in the
convolution layer that determine depth and spatial dimensions of the output volume.
We will not describe these in detail in this thesis, but their importance in the process
of model optimisation should not be disgarded.

Tuning these hyperparameters share one common motivation, which is to reduce
the model complexity by reducing the number parameters and increase local
connectivity. This enables filters to look at larger proportions of input, without
introducing additional computational complexity.

Pooling layers

A pooling layer in a CNN is an additional mechanism controlling spatial dimensions
and reduces model complexity and the number of optimisable weights. They are
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Figure 2.4: Illustration of the convolition operation in CNNs for 2D-grids. The operation
is performed for each filter on the input, resulting in an output volume with the same spatial
size as the number of filters and the filter size. Three 2x2-filters, thus results in an output
dimension of 3x2x2.

more common to use for downsampling activations to lower spatial dimensions,
but pooling layers are also applicable for upsampling in networks, for instance in
encoder-decoder architectures.

As shown in Figure 2.5, two different pooling techniques are max pooling and
average pooling. The names are as intuitive as they imply. By dividing the input to
the pooling layer into multiple smaller sub-grids, each sub-grid represents a portion
of the input volume. Max pooling is a technique indicating that the maximum
value in a sub-grid is the representative pixel value for that portion of the input
volume. Average pooling computes the average of each sub-grid, yielding a smoother
representation.

2.5.3 Summary of convolutional neural networks

Convolutional neural networks (CNNs) are derivations of the standard feedforward
neural network described in Section 2.3. They have common applications in domains
where spatial information is of importance, or in general where data emits certain
grid-like topologies like images (2D-grids) or time-series (1D-grids). We have
described why vanilla neural networks are impractical for these types of problems. In
essence, the computational complexity increases as a result of many interconnected
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Figure 2.5: Illustration of 2x2 max pooling and average pooling. As the names imply, the
2x2 sub-grid of the input downsamples to either the maximum value in the grid or the average
value.

nodes and the spatial information is not preserved. To avoid this problem, CNNs
introduces the convolution- and pooling mechanism, which distinguishes them from
the vanilla neural networks. These are mechanisms that looks at portions of the input
and thus preserves spatial information and reduces overall complexity with localised
connections.

2.6 Summary of background

In this section, we first discussed related work. First, we looked at the work by Bai,
Kolter, and Koltun [5], who compared CNNs and RNNs on various language tasks.
Although their comparative study presents a good baseline for language tasks, the
application in the time-series classification domain is yet to be explored. We then
discussed the work by Wang, Yan, and Oates [93], who present a stronger baseline for
how neural networks are applicable to this domain. In their paper, they particularly
showed how CNN/FCN outperforms traditional time-series classification models
across 44 datasets. Moreover, a similar study was performed by Fawaz et al. [26],
who presented a more comparative study on various deep learning architectures as
well, which is the most extensive to date. However, the latter only explored one
type of recurrent networks, namely, Echo State Networks. Although Fawaz et al. [26]
show that their compared CNNs overall seemed to be more efficient, it is uncertain
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how the application of LSTMs, a state-of-the-art architecture, compares in a similar
study. Although the last paper by Siami-Namini and Namin [83] explores LSTMs in
the time-series classification domain with canonical results, the comparison focused
on ARIMA, a traditional statistical model used in time-series analysis.

In the following sections, we first outlined definitions in the field of Machine Learning
and discussed supervised and unsupervised learning. Further on, we discussed the
theoretical aspect of neural networks. We first presented Artificial Neural Networks
(ANNs), the vanilla neural network models. We looked at formal definitions,
described the learning process and presented a summary.

We then presented the two main architectures, Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs), following the same scheme by
providing definitions, describing the learning process and at last, a summary. For
the RNN, we explained how they differ from vanilla networks through an additional
parameter between nodes in each layer, modelling temporal dependencies. We also
described various derived architectures like LSTM and GRU, which are designed
to overcome a general problem in vanilla RNNs of capturing long-term temporal
dependencies. For CNNs, on the other hand, we described how they are designed to
preserve the spatial structure of the input. We explained the two main mechanisms in
this regard, the convolution operation and pooling operation. Both enable (i) localised
connections that look at portions of the input and thus require less computational
effort and (ii) still preserves spatial information.

Nevertheless, we have seen that LSTM, RNNs in general and CNNs have many
applications areas, in which they have proven to be efficient in various tasks,
especially in language processing. Their applications have also been notable in
the time-series classification domain in recent years. Evidently, there are limited
comparative studies of RNNs and CNNs in general, in the time-series classification
domain. Therefore, this thesis aims to provide such a comparison using various case
studies, and in the following chapter, we present our methodology.
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Methodology

To evaluate LSTM and CNN and provide a comparison, we develop a system testbed
to perform experiments and analyse results. Recall from the related work in the
previous chapter, where we observed that there are limited comparisons on RNNs
and CNNs on sequential problems, and even less in the time-series domain. While
these architectures have been applied separately or used in hybrid approaches on
various use cases, relatively few studies present an empirical comparison of both.
This further, highlights the importance of our research question in Section 1.2. In
this chapter, we present the methodological approach in answering this question.
We describe design decisions in terms of model development and hyperparameter
selection and the process from data analysis to experiment execution.

3.1 Overview

CNN

Use
case	1

Use
case	2

Evaluation

Use
case	3

LSTM

Use
case	1

Use
case	2

Evaluation

Use
case	3

Figure 3.1: General-level overview of the methodology. Each use case is tested separately
for each model and evaluated accordingly. First, we select a use case, perform data analysis
and run initial experiments for a given model with corresponding evaluation. Further on, we
perform manual hyperparameter optimisation, run experiments for model optimisation and
evaluate the results correspondingly.

Figure 3.1 illustrates the general overview of the method of this thesis, which
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highlights how CNN and LSTM are evaluated across the following three tasks:

• U1: Depression detection - In Section 4.1, we compare CNN and LSTM on
a binary classification problem with a publicly available dataset to classify
depressed patients based on motor activity levels.

• U2: Energy prediction - In Section 4.2, we compare CNN and LSTM on a
multiclass classification problem with a dataset collected from Electric Vehicles
(EVs) the past year to classify energy demands for EVs.

• U3: Football readiness classification - In Section 4.3, we compare CNN and
LSTM on a multilabel classification problem with a dataset from an existing
performance monitoring system called PMSys to classify readiness of football
players.

We explore the mentioned datasets use case by use case, comparing both architec-
tures. Vanilla RNN is not used, because as we have described, gated architectures
have shown to be more promising in recent years. Moreover, we exclude the GRU
architecture in this comparison as well because of two reasons. The first is related to
time and resource constraints and the second is because we aim to present a thorough
comparison of one gated architecture. We look at both LSTM and CNN in addition to
the performance of CNNs in the time-series classification domain. Ideally, a compar-
ison of CNN against both GRU and LSTM would be preferable, similar to the work
presented by Bai, Kolter, and Koltun [5], to provide better empirical evaluations.

Data
preprocessing

and	analysis

Data	collection

Experiment

Model	selection
and	configuration

Model	evaluation

Data Experiment Evaluation

Figure 3.2: Detailed flow of the overall methodological process. The data-part of the
methodology relates to collection, analysis and preprocessing. The experiment part explains
how we select models, set configurations and hyperparameters and run experiments. The
evaluation part relates to how we evaluate each run and adjust initial hypotheses formed
during the data analysis, motivating for other hyperparameter configurations.

Moreover, Figure 3.2 illustrates a more detailed overview of the flow in our
methodology, which separates into three steps. The data-related step concerns with
the collection of data, the preprocessing and data analysis. Through the data analysis,
we form initial hypotheses, and with a combination of earlier best practice, the initial
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hyperparameters are chosen. In the experiment step, we select a model and use these
initial configurations. Lastly, we evaluate the results, explore the hypotheses further
based on the model performance and tune the hyperparameters accordingly.

3.1.1 Data preparation and data analysis

As described above, we evaluate the models across three different tasks. The first use
case, U1, is a univariate time-series whereas U2 and U3 are multivariate time-series1.

For each dataset, we perform explorative data analysis and visualisations to
understand the underlying data distribution, topology and temporal dependencies.
One standard method we apply to all use cases to understand temporal patterns and
underlying time structure is the autocorrelation function (ACF). The result of this
analysis is also used to determine initial input sequences for the models.

ACF is a function that calculates a correlation coefficient of a set of observations and a
copy of itself [82] with n delayed timesteps. This delay factor is also known as lag, and
the coefficient is a value between -1 and 1, where -1 indicate a negative correlation and
1 indicates a positive correlation. For instance, if the coefficient is higher for smaller
lags, it indicates that there is a positive correlation between a given observation xt at
time t and a recent observation at xt−n.

Apart from ACF, we also analyse the data through visualisations, like heatmaps and
line charts. The overall aim is to understand the underlying data distributions and
form initial hypotheses that prove as a basis for initial hyperparameter configurations.

3.1.2 Initial experiments and optimised experiments

Recall from Figure 1.3 about the general-level experiment design, where we
illustrated the flow in our experiments. As we described above, we form some
initial hypotheses which motivate for how we configure our models through initial
hyperparameter configurations. Overall, the model optimisation is separate from
the initial experiments, only differentiated by which hyperparameters we choose
to explore in detail for optimisation. General observations made in the initial
hyperparameters motivate for how we choose which ones to optimise further. For
instance, on some occasions, the models showed bad convergence, in which we tried
various configurations on learning rate and momentum to explore how the models
could be optimised well.

3.2 System specifications

The Python programming language [71] is used to perform data analysis, develop
models, run experiments and evaluations. With a rich ecosystem and a diverse set

1Time-series with one time-dependent variable is considered univariate and multivariate series are
series with multiple time-dependent variables. For instance, EV energy demand may not only depend
on historical observations but other factors such as temperature and driven distances, thus being
multivariate.
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of supported libraries and frameworks, tasks related to data analysis and neural
network modelling are more convenient. Further on, Table 3.1 summarises what
software, hardware and frameworks that are used.

Software

Name Version Description
Ubuntu Bionic Beaver (LTS) 18.04.2 Operating System
Python 3.6.7 Used for implementation
Keras 2.2.4 Used for building models
Pandas 0.23.4 Used for data analysis
Tensorflow 1.12.0 Used as backend for Keras
CUDA 9.0.176 Required for Tensorflow
cuDNN 7.4.1 Required for Tensorflow

Hardware

Name Description
CPU Intel i7-2600
GPU NVIDIA GeForce GTX 980
Memory Kingston 8 GB DDR3
GPU Memory 4 GB, GDDR5

Table 3.1: System specifications of hardware and software.

Pandas [59] and Keras [15] have most direct applications in this thesis. The former is
extensively used in the field of data analysis and especially for time-series analysis.
Keras however, is a high-level framework for developing neural network models.
It is designed to be built on top of existing platforms like Tensorflow [1], which is
used as the backend for Keras and facilitates for computational efficiency. In this
thesis, the GPU-release of Keras is used, enabling GPU-optimised computations.
The corresponding drivers and interfaces responsible for the underlying interaction
between Tensorflow and hardware require additional installation and configuration.
Namely, CUDA [62] and cuDNN [13] are additional underlying requirements when
installing Keras with Tensorflow.

3.2.1 Tensorflow

Tensorflow [1, 90] is an open-source framework designed for large scale numerical
computations. It has particular support for machine learning and deep neural
networks and is supported on most platforms. Additionally, there is an extensive
open-source community actively engaging in the development of Tensorflow [89].

In general, Tensorflow represents computations in a computational graph, where
nodes represent operations and edges represents tensors transitioning from one state
of the graph to another. A tensor is a multi-dimensional array flowing in-between
each operation. This model of computing is referred to as the dataflow paradigm,
where information is a functional transformation of operations.

In terms of architecture, Tensorflow is implemented as a layered architecture.
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Applications and libraries like Keras utilise underlying computations, hardware
interactions and optimisations implemented in the Tensorflow core/kernel as an
application on top. For instance, implementations in Python and C++ are initial
implementations whereas other examples include JavaScript, Java and Go support.
A detailed overview of the architecture is discussed in the original paper by Abadi
et al. [1].

Further on, because Tensorflow is built for optimised numerical computations, it is
thus important to describe the core elements like CUDA and cuDNN, required for the
GPU distribution. In this thesis, we utilise the underlying performance gain of using
GPUs for computations. Because Tensorflow has a specific release tailored towards
GPU-applications, it uses CUDA [62] and cuDNN [13] to achieve this. They are both
interfaces to Nvidia GPUs, tailored for deep learning and being a general interface,
respectively. Although being implied requirements for Tensorflow, the libraries are
not discussed in detail in this thesis.

3.2.2 Keras

Keras [15] is a machine learning library primarily designed for neural network
modelling. It is also open-source and has gained popularity in recent years. Keras
has a simple and intuitive interface for the development of neural network models.
An example of the application of Keras is found in Appendix C.1. Moreover, the
library can be run on top of multiple machine learning platforms like Tensorflow and
Theano and reduces the threshold of complexity when developing neural network
models. Overall, the framework works well as a high-level application interface.

Keras has a modular implementation of core elements in neural network models,
which includes different optimisers, layers and layer types, activation functions,
metrics and regularisers. Keras also includes pre-trained models, many of the models
being implementations of earlier ImageNet contributions, which can be applied
easily. Examples include more complicated classification and prediction tasks that
require such models or transfer learning tasks [11, 39].

In general, Keras functions as an abstraction layer on top of the more technical
platforms like Tensorflow. The application interfaces are consistent and intuitive,
which provide modular functionality. For instance, implementations of the more
complex gating units in recurrent networks, like LSTM-units, are applied in
this thesis. Such modules are also easily extensible, facilitating for custom
implementations as well. In this thesis, however, custom units and implementations
were not required, and thus not used.

3.2.3 Pandas

Pandas [59] is a library used for data analysis. It is open-source and provides a
good interface for advanced analytics and data manipulations. The library is tailored
well for time-series analysis in particular. For instance, Pandas has an interface for
grouping and aggregating observations, upsampling/downsampling of a time-series
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and well-defined interfaces applicable to data interpolation and cleaning. A simple
example of the use of Pandas illustrated in Appendix C.2.

Moreover, Pandas takes advantage of structured data, tabular datasets and vectorised
operations and represents the data in Pandas data frames or Pandas series. Each
data type has its own set of data manipulation operations. For time-series data,
Pandas is also able to automatically infer and parse timestamps and creating an
index so that operations on a time-series becomes a less tedious task. While Python
provides similar parsing features, this functionality is highly preferable and less time-
consuming.

Many of these features are used extensively in this thesis, especially for data analysis.
They lower the complexity of exploratory data analysis, making it easier to derive
descriptive statistics and intuitive visualisations. We aggregate, filter, clean and
resample the time-series with Pandas, which would otherwise become a manual task.
Additionally, Pandas is used for generating descriptive statistics and figures through
the built-in plotting interface2

3.2.4 Experiment framework

Figure 3.3 shows the overall file-structure of the implemented experiment frame-
work, which we divide into three steps. The first step is concerned with setting con-
figurations in a JSON-file named config.json for each experiment. Second, we run the
implemented experiment pipeline with a Python-script named run.py, which loads the
configurations and sets up the experiment accordingly. Both these files can be found
in Appendix C.3 and Appendix C.4, respectively.

{
" _usecase " : " depression " ,
" _experiment_folder " : " exp_depression " ,
" network " : {

" a r c h i t e c t u r e " : " cnn " ,
}

}

Listing 3.1: Smaller subset of config.json where use case, experiment folder and network
architecture is selected. Upon execution, the configurations are loaded, and models are built
and trained.

$ ( t h e s i s ) python3 run . py

Listing 3.2: Example of how to execute experiments after configurations are set in config.json.
run.py runs the experiment and evaluation pipeline automatically.

Overall, as illustrated in Listing 3.1 and Listing 3.2, the described process runs au-
tomatically after configurations are set. Our pipeline loads the JSON-configurations
through config.py and builds and trains the models through model.py. history .py tracks
the training- and validation history across cross-validations. The last step is saving

2The plotting interface for Pandas is built on top of Matplotlib, a Python library used for creating
figures. Matplotlib is used in the thesis for generating figures, but is not explained in detail here.
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thesis/
data/
logs/
requirements/

requirements.txt
src/

analysis/
depression.py
energy.py
figures.py
football.py

usecases/
depression.py
energy.py
football.py

utils/
metrics.py
plotting.py
utils.py

config.json
config.py
history.py
model.py
run.py

Figure 3.3: Tree structure of implemented experiment framework.

evaluations and experiment results to persistent storage, which we describe in more
detail further down.

Figure 3.4 gives an in-detail overview of our proposed framework from use case
selection and data analysis to experiment pipeline and evaluation pipeline. Each
module in our pipeline is generic and can be extended to include other architecture
types or custom implementations. In order to extend this system, like adding data-
formatting scripts related to specific use cases, we can include this in the usecases-
folder and integrate it accordingly. Overall, the tree structure observed in Figure 3.3
illustrates the in-detail overview of the proposed framework.

For the evaluation pipeline, however, the tree structure is seen in Figure 3.5. As seen,
we save most experiment-related information to persistent storage, most importantly
the configuration file. We store the raw matrices and generated heatmaps, in addition
to various other outputs like training- and validation history, related figures, models,
history statistics and training times. Overall, this output is standardised and created
based on the settings in the configuration file, where an output folder for a given
experiment can be specified as well.
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Evaluation	pipelineExperiment	pipeline

Datasets

Depression EV

PMSys

Analytics	modules

Depression EV

PMSys

1.	Select	use	case

3.5.	Build	and	compile	model

2.	Data	analysis

3.3.	Select	model	class	from	Keras

3.2.	Format	data	for	selected	use	case

3.4.	Cross-validation	split

3.6.	Model	training

4.1.	Save	trained	models	and	best
model

4.2.	Save	confusion	matrices

4.3.	Save	training-	and	validation	history,
statistics	and	metrics

4.4.	Save	configurations	and
hyperparameters

3.	Set	configurations	and	select	model,	config.json

4.	Evaluate

3.1.	Start	experiment	pipeline,	run.py

3.4.1	-	For	each	split

Figure 3.4: Overvew of developed experiment framework and pipeline from data analysis
through experiment execution and evaluation. Each color can be attributed to the figure
defined in the first section of the general overview.

3.3 U1: Depression detection

This section gives an overview of the first use case. We present a general level
background, the dataset and the data analysis which provides motivations on initial
hypotheses that are explored.
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logs/
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Figure 3.5: General tree structure of stored results and generated logs from the experiment-
and evaluation pipeline in our experiment framework. Confusion matrices are stored,
accordingly with their respective heatmaps. Our evaluation pipeline also saves the models,
best models, history statistics, history, configuration file and history figures.
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3.3.1 Medical background

Depression

Depression is a common mental disorder which has a broad definition. In general it
is considered as a mood disorder and is characterised by reduced pleasure (or low
mood) or in most day-to-day activities like sleeping, eating and working [22, 63].
Common symptoms include the feeling of hopelessness or guilt, decreased energy
levels and in more extreme cases, suicidal thoughts [63]. As reported by the World
Health Organisation [23], close to 800 000 people die due to suicide every year as a
result of depressive disorders. The experience and severity of the symptoms vary,
as some experience every symptom and others experience only a few. It is thus
important to understand the causes of a depressed patient, and the severity of it,
in order to treat patients appropriately.

As mentioned by The National Institute for Health and Care Excellence (NICE) [22],
the severity of depression, which can range from mild to severe is related to multiple
factors. Some factors include number of symptoms, their seriousness, duration and
how it affects day-to-day activities and general functional aspects of daily life. With
4-5 vary symptoms over 2 weeks with higher severity, the general agreed diagnostic
systems diagnoses this as major depression.

Various degrees and forms of depression can have multiple side-effects and causes
in general. More often, causes include genetic, biological, environmental and
psychological factors [22].

Forms of depression

As mentioned, depression has a broad definition. We described how the severity
of depression can vary but there are also multiple forms of depression. To mention
some few, this includes seasonal affective disorder, postpartum depression and
unipolar/bipolar depression [63], the latter being the form of depression included
in the depression dataset we describe in the next section.

Compared to unipolar depression, which is the common form of depression with
diagnosed symptoms for at least two weeks [63], bipolar depression is a form of
depression where there are unusual and intense shifts in energy, activity levels and
day-to-day activities. A bipolar depressed patient experience periods of depression
or mania (periods of extreme excitement), where the latter does not occur in unipolar
depressed patients [64].

Within the bipolar depression spectrum there are four basic types, where we will
focus on bipolar 1 and bipolar 2 depression, as these are the main disorders included
in the depression dataset in addition to unipolar depresssed patients. The difference
in both bipolar types is that the prior include more intense shifts with longer periods
of depressed and manic episodes, or in some cases, mixed episodes [64].
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Depression detection and machine learning

Because depression is a broad spectrum and the severity of depression varies from
mild to severe, it is important to diagnose patients appropriately. A significant
motivation is thus how data-driven models can contribute and provide a better basis
for medical staff to provide appropriate and effective diagnosis of depressed patients.

Medical data, and especially data related to depression is not common. Recent
research on detecting depression have been proposed by using audio and text data
[3]. The study shows how sequential models like LSTM-networks can be used, where
responses from patients undergoing depression screening was analysed.

However, there are multiple causes and severities of depression, one of them
potentially being physiological, like motor activity. Garcia-Ceja et al. [29] present a
dataset on motor activity levels collected from depressed patients, where they apply
multiple machine learning models to provide a baseline for further research and
potential improvement. The overall findings suggests that the measured sensor data
can be used to detect depression.

3.3.2 Dataset

Overview

The depresjon dataset [91], further referred to as the depression dataset, consists of data
collected from 23 conditioned/depressed patients and 32 control patients. It includes
minutely motor activity recordings acquired with sensor readings from an actigraph
watch3, and is originally collected for study of motor activity in schizophrenia and
major depression [10].

Patients Average SD Min Max Total

Condition 23 12.65 2.77 5 18 291
Control 32 12.56 2.31 8 20 402

Table 3.2: Overview of depression dataset [29]. The table shows the total number of patients,
and statistics on number of days. We can see in the table that the total number of days collected
is higher for the control group, resulting in a class imbalance in the dataset.

The actigraph watch measures activity levels by registering movements above 0.05g.
Movement above the threshold is considered as activity, further accumulated as an
activity count [29]. A higher count is thus proportional with the activity intensity,
representing higher activity levels. In the following section, data analysis is carried
out for both groups, in which the motivation is to form initial hypotheses and design
of experiments.

3An actigraph is a watch monitoring physical activity
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Data analysis

The activity counts for both groups are compared to provide an overview of the
activity levels and intensity in general. Figure 3.6 shows the average level intensity
and a heatmap of the average activity levels during night for both groups. Notably,
the overall intensity on a hourly basis is lower for the depressed group, whereas
the intensity in activity is more consistent for the control group during the evenings
and mornings. Additionally, the overall sleeping pattern during the night indicates
irregularities among the depressed patients.
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Figure 3.6: Activity intensity average for all patients. The top two figures show minutely
activity levels during the night from 8pm to 10am, where the irregularities in sleeping patterns
among depressed patients (top figure) and reduced activity levels is more distinct. The middle
figure shows the same for the control group, whereas the last indicates the total activity count
on hourly basis.

The activity count for the control group is notably higher in the evenings and in
the mornings, and the overall sleeping patterns are more consistent. Further on, to
analyse how this pattern is on a weekly level, we generate a heatmap to observe the
average intensity over a week with a hourly distribution, as shown in Figure 3.7.

The overall indication shows that activity levels on weekly basis is also clearly less for
the depressed group, where in terms of sleeping pattern, the depressed patients also
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Figure 3.7: Heatmap of the total hourly activity over a week, averaged over all patients.
The top figure shows an activity heatmap for depressed patients, whereas the bottom figures
illustrates the same for control patients.

sleeps in longer. Not only does this analysis show that depressed patients are less
active on a general level, but sleeping patterns are also less consistent with increased
irregularities. To understand the activity cycles and the temporal dependencies, a
correlation analysis is performed.

The autocorrelation function (ACF) is used to analyse the temporal correlation in
activity levels. Based on the earlier analysis the initial hypothesis is that depressed
patients have less consistent activity patterns, further evident in Figure 3.8, which
shows the correlation coefficients for multiple resamples of the dataset. The figure
shows multiple correlation plots with different resampling frequencies, but explains
the same pattern. In this case, multiple resamples are used to illustrate how the
average level activity correlation decreases over longer timespans,

With an hourly-, 8- and 12-hour based resampling the overall correlation shows a
cyclic trend, indicating that the correlation in daily activities is more positive, hence a
higher correlation for specific time periods. Further on, the observations suggests that
over longer timespans, the activity levels for the depressed group is less consistent,
similar to earlier observations. Hypothetically, this is may be related to irregularities
in day-to-day activities compared to the control group. The inconsistency is also more
notable when observing the correlation over daily activity levels. Nevertheless, The
analysis suggests that analysing timespans of approximately daily or weekly activity
levels should capture the temporal dependencies well.
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Figure 3.8: Correlation coefficients from ACF that shows temporal correlations with various
lags for different resampling averages of motor activity levels. Each lag represents the average
activity level within the specific time period, hence the correlations show the average pattern
across all patients for both groups.

3.3.3 Summary of use case

In this section, we first presented a general level medical background for U1, the
depression detection use case. We defined the term depression, various forms and
the application of machine learning as an approach for depression detection.

Further on, we presented the depression dataset [91] and provided an analysis using
visualisations and correlation analysis. In this analysis, we showed how activity
levels differ between the depressed and non-depressed groups on average. Overall,
we saw that depressed patients sleep in longer, have less consistent activity levels and
show increased irregularities in sleeping patterns during the night. The irregularity
pattern and inconsistency in activity levels were further evident in the correlation
analysis. The analysis showed that the correlation coefficient decreased faster for the
depressed group on a daily level, which indicate that the activity levels vary over
time.
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3.4 U2: Energy prediction

3.4.1 Energy background

Renewable energy

In recent years, focus on using renewable energy sources has increased. This is mostly
a response to the goal of achieving a more sustainable future in regards to energy
consumption and production. A recent report from the International Renewable
Energy Agency (IRENA) [73] includes data from approximately 200 countries, both
from official and unofficial sources. Statistics in the report suggests that the overall
trend globally is increasing in terms of generation and production from renewable
sources. The investment in renewable sources are also increasing, and the trend is not
only observable in industrialised countries, but is similar in developing countries.

Electric vehicle ownership

Global EV Outlook [31] is an annual publication that discusses the global state of
electric vehicles (EVs). It is published by the International Energy Agency (IEA)
and includes research on a multitude of countries that are members of IEA, mostly
industrialised countries. According to the report from 2018 [31, 32], there is an
increasing number of EV ownership in the world and the growth rate since 2015
is over 50%. The interest in general is also increasing, especially in countries like
Norway because of supportive policies and incentives provided by the government
discussed by IEA in their 2018 report.

The power grid

As the report mention, because of this innovation of electrification, there is an
increased demand for energy. In general, one important implication is the discussion
on how the power grid responds to the increased demand of EV charging, such as
how to avoid grid overload and reduce cost for grid upgrades. These are primary
problems, because of how the power grid is designed today.

The traditional power grid is based on a one-directional model from generation on
a power plant to distribution among consumers. The generation of the power is
decided in advance with prior knowledge on demand profiles, which usually varies
between residential, commercial and industrial users. In general, as IEA describes,
there are peak hours during a day where the demand is at its highest. This usually
affects the electricity prices and how the power is generated, with minor possibility
for flexibility in the power grid.

An important motivation is how we can overcome these problems by distributing
the energy demand over time. Not only will this affect the demand which influences
the energy prices positively but the distribution of demand reduces the power load
during peak hours.
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Energy optimisation and machine learning

As described earlier, the increase in energy demand requires a flexible power grid
where load distribution is optimised. Distribution companies, such as Hafslund in
Norway experiment on developing grid systems to determine how to reduce cost
and and provide a sustainable infrastructure for increased energy demand [36].

However, the research and experimental studies done on EVs specifically are far less
as it is a recently trending field. Sundstrom and Binding [86, 87] discusses in some
of their papers on how to optimise charging processes with traditional optimisation
methods, such as linear and quadratic optimisation. With an increased popularity
around EVs and some research in energy and EV charging optimisation, there is still
relatively limited research on how machine learning models are applicable for this
optimisation problem. The field has recently emerged in recent years, similar to the
popularity around EVs and applied research using machine learning approaches are
thus limited.

3.4.2 Dataset

Overview

The EV dataset is a multivariate time-series with hourly frequencies and contains
observations on percentage battery levels, temperature, odometer4, vehicle brand and
charging state. The dataset is originally intended for research and development on
energy optimisation techniques and energy demand prediction.

Car ID Observations Days Period

1 4395 199 28.10.18 - 15.05.19
3 4239 187 09.11.18 - 15.05.19
4 4170 181 15.11.18 - 15.05.19
6 3893 169 27.11.18 - 15.05.19
7 3856 167 29.11.18 - 15.05.19
5 3503 150 16.12.18 - 15.05.19

11 1740 96 08.02.19 - 14.05.19
10 1955 84 08.02.19 - 02.05.19
12 755 67 09.03.19 - 15.05.19

Total 9 28506 1300 28.10.18 - 15.05.19

Table 3.3: Overview of the EV dataset. The table shows statistics on number of vehicles,
collection period in days and number of data points both before and after cleaning. We see
there is an increase data points after cleaning, indicating that certain hourly observations
were initially missing.

The data is collected from individual participants through a system developed as part
of another project. During time of writing, data is still being collected with additional

4An odometer is the device/instrument that is used for measuring travel distance on cars.
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cars registered gradually. Overall, the dataset contains observations on 9 different
cars in total, from two different brands. Namely, Tesla and BMW. Data collection
for the first car dates back to Ocobter 2018, whereas the most recent car includes
observations from March 2019. Due to data still being collected, this thesis uses the
latest extraction of the dataset, briefly summarised in Table 3.3.

Data analysis

To understand the underlying data distribution and form hypotheses prior to initial
model configurations, a visual overview and analysis of the dataset is performed.
First, a prior assumption is related to usage patterns of EVs, which can be explained
through driven distances, similar to regular cars. Second, specifically for EVs,
charging patterns and battery levels may also be an equally good indicator of future
usage behaviour, like daily commutes and activites in general. To better understand
this, the relative percentage battery levels are analysed. Further on, driving distances
are also analysed through odometer data.

Figure 3.9 shows the distribution of hourly battery levels across a week with a
heatmap. Although there are variations in the relative battery levels, we observe a
notable pattern. Evidently, many cars are charged during work hours on weekdays
and not surprisingly in the evenings and over the night, despite some EVs are not.
For instance, car 5, 6 and 7 charge more often during work hours and 1, 10 and
11 show a more regular pattern of charging during the evenings and over night.
This observation correspond well with usage patterns in general. Evening activites
may contribute to decrease in capacity, whereas charging also may be economically
beneficial at work, if charged at the workplace.

Nevertheless, the indication is more frequent cyclic patterns throughout the day
although we observe a more general level pattern on a weekly basis. We derive this
from the decrease in battery throughout the week, whereas the capacity increases
again at the end of the week for most of the cars. However, this is not the case
for all EVs, such as car 4 and 12. To further understand this temporal pattern, we
perform a correlation analysis using the autocorrelation function (ACF), similar to
earlier in Section 3.3.2 for our depression detection experiments. Arguably, we want
to understand the dependencies in time and correlations on how often charging is
present which is implied by the increase in battery levels. We perform this analysis
on 4 different resampling averages, illustrated in Figure 3.10.

Although the figure shows multiple correlation plots with different resampling
frequencies, the subfigures in essence explains the same pattern. With 24 lags with
an hourly frequency there are no regular patterns in battery levels. However, there
is a notable temporal structure with longer lags, of approximately 1 week. With 4-
hour average there is an increasing correlation and we observe a cyclic pattern which
we discussed earlier, possibly explaining the charging cycles. Similarly, we this for
the 8-hour resampling and daily average, hence, we argue that sequence windows
representing weekly battery levels captures the temporal dependencies well.

Despite this analysis explaining correlation on average battery levels, we are aware
how certain driving and charging patterns affects the outcome of this analysis. From
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Figure 3.9: Weekly battery level distribution for each car with an hourly frequency. The
percentage battery level relative to each car shows variations in overall usage, and some car
are charged far less than others, possibly being hybrid EVs. Car 12 is an exception due to
the timespan of observations, where the collected number of days is less, hence the smaller
intensity in the heatmap.

the heatmap we presented earlier, we observe certain outliers. Cars like number 4 and
7 have battery capacities no more than 40%-50%, and we argue this may be related to
types of vehicles, such as hybrid EVs.

Notably, we do know that hybrid EVs are present in the dataset, although we are
unaware of which ones. Nevertheless, one implication of this is a different charging
and driving pattern, in which we observe the prior in our heatmaps, especially for car
4 and 7 where we see irregularities. There are higher variations, and higher battery
levels are less frequent throughout the week. Hence, it is of importance to account
for this when predicting the energy capacity. As we can see, percentage battery levels
would not be a sufficient predictor, and is dependent on both type of vehicle but as
we argue, the vehicle brand is also of importance as it gives an indication of absolute
capacity used.

For instance, the electric range for a Tesla model S varies from 400 to 600 kilometers
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Figure 3.10: Correlation coefficients from ACF that shows temporal correlations with various
lags for different resampling averages of battery levels. Each lag represents the average battery
level within the specific time period, hence the correlations show the average pattern across all
EVs.

depending on total battery capacity, whereas the distance capacity for a BMW i3
ranges from 100 to 200 kilometers, both being the only types in the dataset. The
EV dataset only contains the brand name and as such, the absolute capacity range
for each car is unknown. However, with the absence of this information, we aim
to better explain the mentioned variations related to hybrid EVs and vehicle brands
by looking at the driven distances and battery level distribution. Performing such
an analysis allows us to better understand which cars are most representative in our
dataset. Firstly, we observe the distribution of battery levels using histograms, as
illustrated in Figure 3.11.

Notably, an even distribution across all bins indicates both higher charging frequency
and usage frequency. We argue this because more observations on the lower end
indicates low battery levels, hence frequent usage. Similarly for the higher end
with higher battery levels, indicating frequent charging. A distribution which is
right-skewed however, indicates higher battery levels, and therefore higher charging
frequency with possible less usage. However, another explanation to a right-skewed
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Figure 3.11: Histograms for all vehicles in the EV dataset, annotated with vehicle ID and
brand. The X-axis denotes the hourly percentage battery levels, intervalled into 10 bins,
whereas the Y-axis denotes the frequency of battery levels within each bin, which is equivalent
to a 10 % interval.

distribution is also frequent usage, in which the usage is often shorter distances
driven. Hence, access to chargers is more probable. A left-skewed distribution would
explain the opposite, with less charging but high usage, for instance in the case of
hybrid EVs where charging can be less intense.

Ideally, an even distribution would be the most representative for cars that are used
and charged often. For instance, vehicle 1 has evenly distributed battery levels,
indicating both frequent charging and usage. This assertion may hold for vehicle
3 and 5, whereas this is not the case for vehicle 6. The distribution of this car is right-
skewed, and as we argued it may be an indication of less usage. On the contrary,
it may indicate higher usage in terms of shorter distances driven, but possibility of
charging is higher between each shorter trip. Comparably, vehicle 4 and 7 have left-
skewed distributions. For most observations the range of battery level is no more than
10%, although vehicle 4 has some observations with higher battery levels, potentially
explaining longer trips. As we discussed above, these vehicles may be hybrids.

Nevertheless, recall that we initially described hybrid vehicles as potential outliers in
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our analysis, due to less frequent charging patterns. We also see this from the left-
skewed distributions in the histograms in Figure 3.11. Additionally, we also argued
why EV brands is of importance for energy prediction, because it gives an indication
of absolute capacity. Our analysis suggests that there is a particular variability in
general and percentage battery levels are only relative measures for battery capacity.
We emphasise however, that additional features should be included for the modelling
problem, to better capture the underlying distribution. This may include features
such as actual used capacity for each observation. Despite this information being
unavailable in the EV dataset, there is a possibility of including it based on the
available car brands, although this is more of an estimate based on model capacity. We
further explain choice of input features in Section 4.2.1 about experiment overview,
but aim to provide an additional analysis on the driven distances to better explain
the usage patterns, which gives an indication on day-to-day driving behaviours in
general.
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Figure 3.12: 4-day rolling median driving distances for all EVs in the EV dataset. The Y
axis denotes the driven distance in kilometers, whereas the X-axis denotes the timespan. We
constrain the Y-axis to 60 kilometers and the figure shows that only some cars drive more than
this. For car 11 and 12, there are also missing observations in the period April-May.

Figure 3.12 shows the median level driving distance on a 4-day rolling basis.
Arguably, median level provides a better indication on usage, compared to the
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average which may be subject to outliers like longer trips. The overall suggestion
is that driving distances have higher variations across all cars. The median driving
distance on a 4-day basis is 15 to 30 kilometers for most cars although some vehicles
are used more. The cyclic patterns correspond day-to-day usage, whereas the spikes
are possible longer trips. For car 1, 3 and 4 the general driven distance is around 15 to
20 kilometers. Vehicle 5, 6 and 7 however, shows higher variations possibly explained
by day-to-day usage like commuting being longer.

3.4.3 Summary of use case

To summarise, we first presented a general level background of the energy domain
in the context of EVs. We discussed renewable energy has been trending in recent
years, how the ownership of EVs has increased drastically, and the effect they have
on the traditional power grid. Lastly, we presented various approaches regarding
energy optimisation and how the application of machine learning is relatively new in
the context of energy prediction and optimisation.

Furthermore, we presented the EV dataset with an overview and data analysis. The
analysis showed how battery levels between EVs vary throughout the day. Some
people charge more during work hours, although in most cases, EVs are charged
during the night or early in the morning. Overall, the charging cycles were shorter
on a daily level and longer on weekends, which we also observed in the correlation
analysis. Hence, EV users charge daily, but in shorter periods, whereas the vehicles
are charged longer by the end of the week.

Moreover, we performed a simple analysis of the battery level distribution and
driving distances, through histograms and line charts. The distribution in battery
levels suggested high variations between EVs. Some were used more frequently than
others, but the distribution of battery levels was left-skewed, which we argued could
be hybrid vehicles.

3.5 U3: Football readiness classification

In this section, the last use case is presented and discussed. First, we look at a general
level background of performance optimisation in the context of the football domain.
Furthermore, the dataset is discussed with corresponding data analysis, before we
summarise the resulted insights.

3.5.1 Football performance background

Performance optimisation and football

Performance in sports is not an unknown concept, and it is a general understanding
that professional athletes train to optimise their performance. Top athletes use a
lot of time and effort to be better, considering it is part of their daily life. Factors
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contributing to optimal performance often include proper restitution, sufficient
nutrition and intensive workouts [72].

However, in recent years, with the advancement in technology, sensors and
wearables, another aspect is concerned with the application of data-driven and
analytical methods to boost performance [53, 92]. Most wearables and sensors
today can detect physiological signals like heart rate and respiration frequency.
With such information quantified, the potential application areas within performance
enhancement are diverse.

For instance, the ability to predict peak readiness in training [94] based on self-
reports is beneficial both in terms of optimal performance, but also tactical decisions.
Similarly, there exist tools for game analysis to optimise game-play as well, such as
the Forzify LiveCam, which is built on the real-time system Bagadus [85].

Emerging technologies and innovation hubs

Data-driven approaches and adaption of technology in football has only emerged in
recent years. However, because it serves a competitive advantage, football teams
invest more in innovations that advance player and team performance. For instance,
FC Barcelona, one of the largest football clubs in the world, has an innovation hub
[7]. The facility focus on advancing research within various fields in the organisation,
like performance optimisation, health and restitution and technological applications
[92]. Similarly, Liverpool FC is also one of many clubs investing in technological
innovations in football [81].

Nevertheless, such organisations possess quantitative data on performance from the
best football players in the world. However, it is not easy to acquire such information
in general without having an existing framework. Hence, the dataset used for
this particular use case presents multiple opportunities in the domain of readiness
prediction.

3.5.2 Dataset

Overview

The dataset used for this use case is part of an existing performance monitoring
system called PMSys [69]. It is a mobile application built on the real-time system
Bagadus [85] and was developed by Simula Research Laboratory, University of
Tromsø and ForzaSys. As of today, various teams are using or have used the PMSys-
system, including multiple Norwegian football teams and the Norwegian national
team as well.

Data collection happens through individual questionnaires submitted through a
mobile application by players. In total, the current dump of the dataset includes
quantitative data from 36 different players, where the series contains observations
from late 2016 and early 2017 to September 2019. Each player records ratings on
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mood, stress, soreness, fatigue, sleep quality, sleep duration and perceived exertion
(PE).

Description Count (raw)

Players 27 (33)
Fatigue 5911 (6006)
Mood 5911 (6006)
Perceived Exertion 5911 (6006)
Readiness 5911 (6006)
SleepDuration 5911 (6006)
SleepQuality 5911 (6006)
Soreness 5911 (6006)
Stress 5911 (6006)

Table 3.4: Overview of the PMSys dataset [69]. The table shows total observations for all
variables in the dataset and the total number of players, both before and after cleaning. In
total, the dataset includes data on 33 players, although 6 of them are excluded, conditioned on
the number of observations being less than 31 days.

The variables are numerical ratings, mostly on the same scale from one to five. In each
category, one is the lowest rating, whereas five is the highest. For instance, a mood
rating of one indicates a bad mood and a score of 5 on sleep quality implies sufficient
restitution [94]. However, PE is an exception from this scale, ranging from one to ten
and explains the perceived form of the player.

While PMSys is a system already in production, the potential application areas of
the collected data are valuable in various ways. Not only is the information useful for
performance improvement, but additional insights can be used to better plan training
sessions or make tactical decisions. One such use case, for instance, as discussed by
Wiik et al. [94], is predicting peak readiness-to-train, which showcase the possibility
of understanding when players can perform optimally.

Data analysis - understanding correlations

This section presents the initial findings and analysis of the PMSys dataset. Primarily,
the analysis is limited to extracting insights from player readiness and stress levels.
Mostly, because the classification tasks focus on predicting readiness and stress levels.
Because the dataset includes multiple variables, the initial analysis is concerned with
understanding the overall correlation between them. Correlation coefficients can be
visualised through a correlation matrix, as illustrated in Figure 3.13.

The correlations are generated based on the average scores across all unique players in
the dataset and thus explains the variable relationships on average. Lighter colours
represent a weaker or negative correlation between a variable pair, while a darker
colour indicates the opposite.

Further on, when considering readiness as the target variable, a positive correlation
can be seen when compared to the variables Soreness and Fatigue. In a way, these
observations are reasonable, considering how energy levels and muscle soreness
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Figure 3.13: Correlation matrix of variables in the PMSys dataset. The matrix shows the
correlations between each variable pair. Because the correlation between a given variable Vi
and Vj is symmetrical, the coefficients below and above the diagonal are the same.

potentially affects physical effort. On the other hand, when considering stress as
the target variable, there is a positive correlation between mood, fatigue and sleep
quality. A higher score on the stress level implies that a player is very relaxed, and
the mood, fatigue and sleep quality seems to correlate positively with this. Hence, a
good mood, low fatigue and better sleep quality reduce the overall stress level among
players.

Although these variables positively correlate with the target variables, there are other
indicators which are negatively correlated as well. For instance, the relationship
between readiness and mood is -0.28, which indicate that the readiness of players
is affected negatively by their mood levels. Similarly, the sleep quality of players
affects their readiness negatively. Lastly, when looking at the stress levels of the
players, the sleep duration looks to be the only factor contributing to increased stress.
However, in general, for both the stress and readiness scores, the negative coefficients
are closer to zero, which may indicate weaker correlations. Nevertheless, they may
still be contributing input features in the classification task itself.
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Data analysis - understanding temporal correlations

Although the analysis above discusses the correlations between variables directly, it
does not consider the temporal relationship. Hence, the correlation Cij between the i-
th and j-th variable explains the relationship between both variables at the same time
step t. As outlined in Section 3.1.1 in the methodology-chapter, the autocorrelation
function (ACF) is applied to understand temporal correlations in variables.

0.10

0.03

0.04

0.11

0.18

0.25
Fatigue

0.2

0.0

0.2

0.4

0.6

0.8
Mood

0.2

0.1

0.0

0.1

0.2

0.3
Perceived Exertion

0.1

0.0

0.1

0.2

0.3

0.4
Readiness

0 8 16 24 32 40
0.05

0.00

0.05

0.10

0.15

0.20
SleepDuration

0 8 16 24 32 40
0.10

0.02

0.14

0.26

0.38

0.50
SleepQuality

0 8 16 24 32 40
0.10

0.02

0.06

0.14

0.22

0.30
Soreness

0 8 16 24 32 40
0.10

0.02

0.14

0.26

0.38

0.50
Stress

Co
rre

la
tio

n 
co

ef
fic

ie
nt

Lag n

Figure 3.14: Correlation coefficients for each variable in the PMSys dataset up to 40 days lag.
The black dashed line highlights zero. Overall, decreasing coefficients indicate that scores for
a given variable over longer periods are less relevant, as seen for stress, soreness and readiness
correlations. Slower decreasing coefficients imply that the scores reported longer back in time
are closely correlated with recent reports, as can be seen from the sleep quality and mood
coefficients.

Figure 3.14 shows the correlation coefficients on an average level, for each variable
up to a 40-days lag, thus, from t − 40 up to timestep t. While it may seem that the
overall coefficients are relatively low, the temporal dependencies for each variable
emit different patterns. For instance, it looks like there are higher variations over time
for variables like fatigue, perceived exertion, sleep duration, readiness and soreness.
In general, the coefficients are decreasing over time, implying how factors like fatigue,
sleep duration and soreness from multiple days back have little or no correlation to
the levels reported in more recent days.

Moreover, mood, sleep quality and stress are almost constant factors over longer
timespans. Compared to the abovementioned variables, the coefficients are also
higher, which may indicate that these factors are explanatory factors for optimal
performance over time. For instance, a constant higher correlation in mood and
sleep quality indicates on an average level, that most players have a good mood and
feel like they sleep better over an extended period. Another aspect, however, is how
correlation in sleep duration decreases over time, where sleep quality is more or less
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constant. While it can explain better restitution among players, it may as well explain
how sleep duration has a smaller impact on quality. Further on, one implication
is how sleep quality is potentially explained better by other factors than only sleep
duration.

Note that the correlation analysis performed in this and the previous section is only
concerned with understanding the temporal patterns. It is emphasised, however, that
understanding the significance in the correlations and pairwise correlations are of
importance. However, due to time and resources constraints, we consider this outside
the scope of this analysis.

Data analysis - underlying distributions

The last analysis is concerned with understanding the underlying distribution of
reported readiness scores. In terms of a classification perspective, it is arguably
important because categorical variables like readiness may contribute to imbalanced
scores.
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Figure 3.15: Distribution of readiness scores for all players in the PMSys dataset. The X-axis
denotes the readiness scores intervalled into ten bins, one for each score. The Y-axis denotes
the frequency for each bin. Overall, the figure shows how most reported readiness scores are
evenly distributed around five, where most variations range from three to eight.

As illustrated in Figure 3.15, which shows the distribution of reported readiness
scores for all players, there is one notable observation. Most scores range from three
to eight with an even distribution around the centre score of five. The implication
is an average reported readiness score for each player being around five, which is
of importance when formulating the classification task. There is an underlying class
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imbalance in terms of readiness scores.

For instance, consider a binary classification task where readiness is thresholded to a
score of seven. According to the distribution shown above, many of the classes reside
in the not ready class. However, from a performance and coach decision perspective,
such a classification model may not be a useful contribution. Most specifically,
because a score of seven can still be a reasonable score in terms of readiness, despite
classified as not ready. Hence, this also shows why developing a model that outputs
a quantitative measure [94] is beneficial, compared to a qualitative measure and crisp
output.

Nevertheless, one interesting aspect is the possibility to predict multiple qualitative
outcomes based on historical reports. For instance, one formulation of the
classification task is applying a multilabel-classification model5 which outputs a
set of classes. In this case, a multilabel-classification model may be a significant
contribution, as it outputs a set of classes for a given player. However, it is still of
importance to determine the threshold of the reported scores in developing such a
model.

3.5.3 Summary of use case

In this section, we first discussed the background in terms of football performance
optimisation. We shortly described performance optimisation in football and how
recent advances in technology, sensors, wearables and data-driven analysis have
been applied to enhance performance. Further on, we presented how emerging
technologies and innovation hubs are used in two larger football clubs in Europe to
advance research within the field of performance optimisation.

Moreover, we presented the PMSys dataset [27] and corresponding data analysis.
First, we performed a simple correlation analysis between each variable on an average
level. We observed how soreness, fatigue and perceived exertion positively correlated
with readiness scores. On the other hand, mood and sleep quality had a negative
correlation. Further on, to we analysed the relationship in time with the ACF, to
understand the temporal structure for each variable. We showed how mood, sleep
quality and stress scores were relatively constant over time with positive coefficients.
We argued these variables could be a contributing factor for optimal performance
over extended periods because of this consistency. At last, we gave an overview of
the distribution of readiness scores for each player in the dataset. It was evident that
the mass of readiness scores was centred around five, and ranged from three to eight
in most cases.

5A multilabel-classification model is a classification model where the output distribution includes
multiple classes and not one class. One example is predicting the presence of a feature from a set of
categorical variables like stress, readiness, mood and fatigue, e.g. understanding if a player is stressed
and in a bad mood but still ready.
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3.6 Model development

In related work, we discussed how various applications of deeper CNNs and RNNs
had successful applications across various domains in recent years. Although deeper
networks can explain their efficiency, we purposely keep the depth of our networks
small and shallow. While doing so, it presents a better comparison basis for both
architectures. Because deeper models introduce additional complexity, a comparative
study of both architecture would be more difficult as well. It is, however, important
to emphasise that different architectures may be more efficient than others given the
context of their applications. For instance, if shorter sequences are used, vanilla RNN
or simpler models may potentially perform better compared to LSTM.
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Figure 3.16: A general overview over the network architecture. The input layer represents the
input units and the hidden layers are stacked on top of each other with the same architecture
type, like LSTM or CNN units. Lastly, the dense layer represents the optimisation layer with
all interconnected nodes and the output layer represents the predictions. In total, the base
architecture have 5 hidden layers.

Figure 3.16 illustrates the general architecture of both models. In total, there are five
hidden layers, motivated by other comparative studies using shallow networks [5,
93], where most use less than ten hidden layers. The first four hidden layers are of the
same type with convolutional layers or LSTM-units. We do not use pooling layers for
CNN to better understand the effects of the convolution operation. Further on, we
apply dropout after each hidden layer which is considered good practice to improve
generalisation and prevent overfitting. The last hidden layer is a fully connected
(dense) layer. For U1 and U2, the softmax activation function is applied to generate
a class distribution. For U3, the multilabel classification problem/football use case,
we use the sigmoid activation function to determine the class based on probability
thresholds.

Moreover, the number of units in each layer is also kept relatively low to reduce model
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complexity. The default number of units in each hidden layer are 150, 75, 50, 25 and
25, respectively. We first chose these settings through trial and error, but throughout
this thesis, the topic has changed drastically. The current setting that we use is based
on the initial experiences and various ranges used in similar comparative studies of
CNN and LSTM [5, 98].

Further on, the number of nodes in subsequent layers reduces throughout the
networks. They also remain fixed for all experiments, similar to the number of layers.
This design was determined based on two motivations. First, various neural network
architectures like CNN-models in the image classification domain apply pooling to
downsample and reduce spatial dimensions. The first few layers detect high-level
features with more hidden nodes, and the last layers are constrained to detect more
significant low-level features. Second, as shown in Figure 3.5, a fixed number of
hidden units for both LSTM and CNN, makes them more comparable in terms of the
model architecture and the number of trainable weights can explain their complexity.
Although total weights are smaller for our CNN, the general network architecture
itself is the same as the LSTM, with the same number of hidden nodes and layers.

Model architecture Trainable parameters

LSTM 193 052
CNN 102 002

Table 3.5: Overview of total number of trainable parameters for the specified architecture.
LSTM-model has 91 050 more optimisable weights than the CNN-model. Note that this is in
context of the default architecture of five hidden layers. Each of the hidden layers of the same
unit type has 150, 75, 50 and 25 units, respectively, with the last dense layer having 25 units.

3.7 Model training and hyperparameters

Our model training and experiment evaluation is separated into two parts. First,
based on the data analysis and recent research, we explored initial hyperparameters,
to understand how the models learn the data distribution without the application of
early stopping [9]. We tried various configurations, somewhat through trial and error
and based on best practices, particularly for most network-related hyperparameters.
The approach was more systematic for data-related hyperparameters like batch
size, window size and resampling frequency, which relied more on the data
analysis. Second, based on observations during experiments with these initial results,
we further chose a subset of hyperparameters for model optimisation with the
application of early stopping.

3.7.1 Model training

Listing 3.1 shows how we train the model with cross-validation and the initial part
of the experiment flow. We first format the data and generate configuration-related
logs and directories and then save the configurations. We keep track of the current
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...

19 def main ( config , data ) :
20 X , y = u t i l s . format_data ( config , data )
21
22 print ( ’| Creat ing log c o n f i g u r a t i o n s . . . ’ )
23 conf ig . c r e a t e _ l o g _ c o n f i g u r a t i o n s ( )
24
25 print ( ’| Saving log c o n f i g u r a t i o n s . . . ’ )
26 conf ig . comments = f ’ { conf ig . comments } , { s t r (X . shape ) } ’
27 conf ig . save_conf ig ( )
28
29 f o l d s = conf ig . data [ ’ f o l d s ’ ]
30 current_bes t_acc , current_best_mcc = 0 , −2
31 b e s t _ f o l d = None
32
33 print ( f ’| Training model with { f o l d s } f o l d s . . . ’ )
34 f o l d e r = KFold ( n _ s p l i t s = f o l d s )
35 exp_evaluat ion = exper iment_his tory . Evaluat ionHistory ( conf ig=conf ig )
36 exp_tra in ing = exper iment_his tory . TrainingHistory ( l o g _ d i r=conf ig . l o g _ d i r )

...

Listing 3.1: Subset of run.py that shows the experiment initialisation process

best accuracy and MCC to determine the best model but save all the models during
training. Further on, we have implemented two classes that keep track of training-
and validation history. Before cross-validation, we create an instance of both and
update the history during training and evaluation. We then start the cross-validation
process. First, we split the dataset and build and compile a model instance for each
iteration through our implemented model-interface. We then train the compiled
model and evaluate it.

Further on, Listing 3.2 shows the flow of the cross-validation, model training and
evaluation. For the initial experiments, the models run for a given number of epochs.
For the optimised experiments, on the other hand, we apply early stopping, which
is a technique to prevent overfitting [9]. We do this through the EarlyStopping class
in Keras and monitor the validation loss and validation accuracy. The validation loss
acceptance threshold is ten iterations, and the validation accuracy threshold is set to
the max number of epochs.

Upon termination, we save the trained model for the given cross-validation. To keep
track of the best performing model, we check the current best metric and determine
whether or not to replace the existing best. We save all models for all validations
and keep a separate instance for the best performing one. At last, the training- and
evaluation history are saved.
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...

37
38 for k , ( t ra in_ index , t e s t _ i n d e x ) in enumerate ( f o l d e r . s p l i t (X) ) :
39 print ( f ’| X : {X . shape }\n| y : { y . shape } ’ )
40 x_t ra in , x _ t e s t = X[ t r a i n _ i n d e x ] , X[ t e s t _ i n d e x ]
41 y_tra in , y _ t e s t = y [ t r a i n _ i n d e x ] , y [ t e s t _ i n d e x ]
42
43 # B u i l d model
44 model_handler = model . Model ( conf ig=conf ig )
45 md = model_handler . build_model ( x _ t r a i n . shape )
46 s t a r t , used = 0 , 0
47
48 t r y :
49 # Tra in model
50 s t a r t = time . time ( )
51 h i s t o r y = model_handler . train_model ( x_ t ra in , y _ t r a i n )
52 used = time . time ( ) − s t a r t
53 print ( f ’| K = { k + 1} | Used { used : . 2 f } seconds ’ )
54 except KeyboardInterrupt as e :
55 break
56
57 # E v a l u a t e model
58 print ( ’| Evaluat ing model on t e s t s e t . . . ’ )
59 p r e d i c t i o n s = md. p r e d i c t ( x _ t e s t )
60 i s _ f o o t b a l l = conf ig . usecase == conf ig .FOOTBALL
61 eva luat ions = None
62 i f i s _ f o o t b a l l :
63 eva lua t ions = exp_evaluat ion . custom_evaluate ( predic t ions , y_ tes t , k +

1 , data [ ’ columns ’ ] )
64 e lse :
65 eva lua t ions = exp_evaluat ion . evaluate ( predic t ions , y_ tes t , k + 1)
66 exp_tra in ing . update_history ( h i s t o r y . h is tory , used )
67
68 # Save model
69 print ( ’| Saving model . . . ’ )
70 md. save ( f ’ { conf ig . l o g _ d i r }/ models/k { k + 1 } . h5 ’ )

...

Listing 3.2: Subset of run.py that shows the model training process, from cross-validation
splitting and model compilation to model evaluation.

3.7.2 Hyperparameter selection

U1: Depression detection

Table 3.6 gives an overview of all the hyperparameters we tried in the initial and
optimised experiments for this use case. Recall that our analysis showed how
temporal patterns were most distinct when observing a time span of approximately
one week. Hence, one of the most important settings initially was to explore
a combination of sequence window length and resampling frequency which was
approximately equivalent to this period. We tried various configurations that
represented a one- or two-week time span. Furthermore, the batch sizes were
configured through trial and error and were adjusted based on the observations in
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Model CNN LSTM
Exp I1 I2 R1 R2 R3 R4 I1 I2 I3 R1 R2 R3

Activation relu relu relu relu relu relu relu relu relu relu relu relu
Batch 10 20 15 15 15 15 8 10 15 5 5 5
Dilation Rate 1 4 4 4 4 4 - - - - - -
Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Kernel Size 10 6 6 6 6 6 - - - - - -
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005
Momentum 0.1 0.1 0.1 0.3 0.1 0.3 0.7 0.7 0.1 0.7 0.5 0.4
Nesterov False False False False True True False False False False False False
Optimiser sgd sgd sgd sgd sgd sgd sgd sgd sgd sgd sgd sgd
Resample 12H 10H 10H 10H 10H 10H 10H 10H 12H 8H 8H 8H
Window 14 35 30 30 30 30 28 28 28 30 30 30

Table 3.6: Overview of tried hyperparameters for U1, the depression use case, where the initial
experiments are denoted with I.

the experiments.

In terms of network-related hyperparameters, many of the configurations were kept
constant. For instance, the optimiser, activation and learning rate were not explored
extensively. In the initial experiments, the convergence and learning process was
desirable. Hence, we decided to keep SGD with the learning rate of 0.001, with
ReLU as activation. However, throughout the experiments, hyperparameters like
momentum were explored to optimise this convergence. For the CNN in particular,
we tried to tune the kernel size and dilation rate to see the effect on how they captured
the temporal dependencies.

U2: Energy prediction

Model CNN LSTM
Exp I1 R1 R2 I1 I2 R1

Activation relu relu relu relu relu relu
Batch 1 1 1 5 8 15
Dilation Rate 3 3 3 - - -
Dropout 0.3 0.2 0.2 0.3 0.4 0.4
Kernel Size 8 5 5 - - -
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001
Momentum 0.3 0.3 0.3 0.3 0.3 0.1
Nesterov False False False False True False
Optimiser sgd sgd sgd nadam sgd nadam
Resample D D D D D D
Window 30 30 30 30 30 21

Table 3.7: Overview of tried hyperparameters for U2, the energy use case. Initial experiments
are denoted with I.

For the data-related hyperparameters in the energy use case, the series is fixed to a
daily frequency. The dataset is relatively small, and many hourly observations are
already missing. As seen in Table 3.7, we decided to focus on the classification of
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usage with a daily frequency, because this would be more representative for capacity
usage. Based on the data analysis from earlier, it was evident that charging patterns
occurred daily in smaller cycles and for longer periods on a weekly level. To capture
these cycles effectively, we tried using a larger time span with a sequence window
length of 30 days. For the batch size, we tried on-line training for the CNN with a
batch size of 1. Appendix B.4 shows some results with various batch sizes. Many of
these often resulted in either bad convergence or no improvement at all when we tried
only tuning the batch size. For the LSTM, on the other hand, this hyperparameter
did not affect the outcome in a similar manner, where we saw that larger batch sizes
worked more efficient.

For network-level hyperparameters, we tried various configurations, mostly to
prevent overfitting and optimise both performance and convergence. During
the initial experiments, both models were sensitive in the sense that various
configurations gave results with large contrasts. Some are shown in Appendix B.4
and Appendix B.3 showcasing efforts where convergence would be really slow or not
converge at all. To overcome this problem, we tried exploring different optimisers
and Nesterov momentum. For the CNN in particular, the initial results were more
desirable, and various configurations showed that the model would be easier to
explore in terms of hyperparameter optimisation. Hence, the settings from the initial
results were kept, and we tried two experiments with the same configurations.

U3: Football readiness classification

Model CNN LSTM
Exp I1 R1 R2 R1 R2

Activation relu relu relu relu tanh
Batch 15 15 15 15 10
Dilation Rate 3 3 3 - -
Dropout 0.3 0.3 0.3 0.3 0.3
Kernel Size 4 5 5 - -
Learning Rate 0.005 0.005 0.005 0.001 0.001
Momentum 0.4 0.4 0.2 0.4 0.4
Nesterov False False False False False
Optimiser sgd sgd sgd rmsprop rmsprop
Resample D D D D D
Window 30 30 30 30 40

Table 3.8: Overview of tried hyperparameters for U3, the football use case. Initial experiments
are denoted with I.

Table 3.8 shows the hyperparameters that were tried for this use case. Most
importantly, while we tried some initial experiments with LSTM, the results were
very similar to those presented, and thus, were chosen to be excluded. The only data-
related hyperparameters explored were sequence window length and batch sizes,
similar to U2, because of the series having a daily frequency. As suggested by the
data analysis, the temporal correlation had higher variations over time for particular
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variables like fatigue, soreness and readiness scores. To understand these variations,
we let the sequence window be approximately one month, similar to what is applied
by Wiik et al. [94] in their study. Moreover, the initial values of 10 and 15 on batch
size seemed to give the best results and good model convergence, so we chose to use
these particular values.

Moreover, also shown in Appendix B.5, we tried multiple optimisers, activation
functions and different values of momentum rate and learning rate. For the CNN,
the convergence was already good, but momentum was tried to reduce the overall
fluctuations. For the LSTM, many configurations for the initial experiments did not
show much improvement, and as described, the results were very similar. The LSTM
was relatively consistent during the training process, so the chosen hyperparameter
ranges were those who worked optimally in most of the cases.

3.8 Experiment evaluation

We evaluate the experiments with 10-fold cross-validation. The resulting confusion
matrices of the predicted outcomes are used to derive prediction metrics, described
in the following sections. We evaluate each result with weighted average metrics and
determine overall performance by averaging across all folds.

3.8.1 Evaluation methods

K-fold cross-validation

Models are evaluated with K-fold cross-validation [45] as a baseline to assess the
results for independent datasets. K-fold is a desirable method of validating models
because data partitioning is usually binary. One fixed partition is held out as a test set
for evaluation whereas the other fixed partition is used for training, the training set. In
datasets with class imbalances, a fixed partitioning does not give a good indication of
predictive performance, as the proportion of classes may have an uneven distributed
across partitions.

K-fold cross-validation [45] is an evaluation method that partitions the dataset into
K equally sized folds. Each fold is used as a test set during the cross-validation
process, completely held out during training. All other folds are used as training
data, in which a subset of the training data is used for validation during training.
Overall performance is determined by averaging across all folds. This gives a
better evaluation as the variations between binary partitions could fluctuate more,
depending on the partition of the datasets.

We use 10-fold cross-validation, where each fold is a set of formatted sequences with
a specified window length of size W. Training and test set is partitioned to 90/10,
where 10% of the data is used as a test set. Moreover, a subset of the training data is
used as a validation set during training, and the overall partition scheme is 80/10/10
for train/validation/test.
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Figure 3.17: Example on dataset partitioning with 5-fold cross-validation. Each fold is used
as a test set and a subset of the training data (rest of the folds) is used as a validation set, to
validate the model performance during training.
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Figure 3.18: The left figure shows a confusion matrix for binary classification whereas
the right figure shows the same for multiclass classification with n classes. In a binary
classification problem there are two classes, a positive and a negative class in which a correct
classification is considered as a true positive or true negative, respectively. In multiclass
problems, the true positive is understood in relation to the predicted class Cj and true class Ci.

The above section described how K-fold cross-validation is used to evaluate the
models. Before looking at metrics used for evaluations, we discuss how these are
derived and interpreted.

The generated output predictions of a test set evaluation can visualised with a
confusion matrix. A confusion matrix [45] is a matrix comparing predicted classes
against the true classes/labels. More formally, an entry Cij in the confusion matrix
denotes the j-th predicted class for the i-th true class. Ideally, a well-performing
model has a higher ratio of predicted instances where i = j.
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As shown in Figure 3.18, confusion matrices for each test set evaluation can be used
to derive multiple descriptive measures like true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). The measures are used for computing
different evaluation metrics, as we further describe in the next section.

3.8.2 Evaluation metrics

We use accuracy (ACC), specificity (SPEC), precision (PREC), sensitivity/recall
(REC), F1-score (F1) and Matthews correlation coefficient (MCC) to evaluate results.
In the following sections, an overview of the metrics is presented with the case of
binary classification as a motivation.

Accuracy

Accuracy (ACC) is the percentage of correctly classified samples in relation to
all samples and is the most common metric for measuring model performance.
However, it does not give an accurate measure of the performance and can be a
faulty measure. For instance, training on imbalanced datasets where positive samples
outweigh negative samples or vice versa, it affects the accuracy and does not give an
overview of overall performance.

ACC =
TP + TN

TP + TN + FP + FN
(3.1)

Equation 3.1: The accuracy metric.

Consider the example of a dataset with ten positive samples and 90 negative samples
in the context of classifying tumours. If all cases of non-tumours (negative class) were
correctly classified, whereas all cases of tumours (positive class) were misclassified
the accuracy is 90%. However, this defeats the intention of correctly classifying
tumours, and on the contrary, if all tumours were correctly classified and all non-
tumours misclassified, the accuracy would be 10%. Overall, this metric does not tell
us how well the model performs in classification tasks with imbalanced classes.

Precision

Precision is a metric concerned with measuring the relevance of predictions. It
measures the rate of positively predicted classes among all classes predicted as
positive, hence its alternate name, positive predictive value. For instance, although
there may be certain situations were all positive classes are correctly classified. High
misclassifications for positive classes (false positives) may impact the relevance.

PREC =
TP

TP + FP
(3.2)

Equation 3.2: The precision metric.
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Consider the case where 30 out of 60 cases of non-tumours are predicted as tumours
(30 false positives), but all actual cases of tumours were correctly classified as such.
Intuitively, the rate of relevant predictions would be lower as there are many classified
cases of irrelevant non-tumours. We want to find the tumours, and in this case, the
precision rate would be 10

10+30 = 0.25.

Specificity

Specificity is also known as the true negative rate. It is a measure of the negative
class and tells us the rate of correctly predicted negative classes, among all negative
classes. Similar to the accuracy, it should be used in combination with other metrics.
For instance, if the number of negative classes outweighs the positive classes, the
specificity rate is higher.

SPEC =
TN

TN + FP
(3.3)

Equation 3.3: The specificity metric.

Consider the same example we presented earlier with tumour classification. If
the total number of predicted non-tumour cases were 60, there are 30 cases
of misclassifications (the false positives), where non-tumours were classified as
tumours. This would result in a specificity rate of 60

60+30 = 0.66.

Sensitivity

Sensitivity is also referred to as recall. Compared to the specificity rate, this metric
measure the true positive rate, which is the correctly predicted positive classes,
among all positive classes. The sensitivity rate can be seen jointly with the specificity
rate we defined above. If the specificity rate is high (true negative rate), the sensitivity
rate (true positive rate) will be lower and vice versa. This is due to the increase in
misclassifications of either classes.

REC =
TP

TP + FN
(3.4)

Equation 3.4: The sensitivity metric.

In context with the example, we defined for specificity, say 7 of 10 tumour-cases was
classified correctly and the rest were misclassified as non-tumours. The sensitivity
rate is then 7

7+3 = 0.7. Notably, in classification tasks with imbalanced datasets, and
also in general, it is desirable to achieve a higher sensitivity rate and specificity rate
jointly. This implies that the prediction rate for negative classes and positive classes is
good.
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F1-score

Although many of the metrics we presented above depend on the classes and
are sensitive to class imbalance, the F1-score is a joint metric, that considers class
imbalance. It provides a balanced measure by looking at the precision and sensitivity.

F1 = 2 · PREC · REC
PREC + REC

(3.5)

Equation 3.5: The F1 metric.

Matthews correlation coefficient

Matthews correlation coefficient (MCC) is a scalar value between -1 and 1, indicat-
ing the strength of prediction. A positive value implies positive predictions and
agreement with the observations (where 1 is a perfect agreement with the observa-
tions). Similarly, negative values imply negative predictions and disagreement with
the observations. An MCC of 0 implies that the prediction is random, and there is no
agreement or disagreement with the observations. Generally, MCC is considered as a
balanced measure suited well for imbalanced classes, similar to the F1-metric.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.6)

Equation 3.6: The MCC metric.

3.9 Summary of methodology

Conclusively, the aim is to answer the question How do CNNs compare to LSTMs
for time-series classification?. This research question is motivated by how various
applications of CNNs for time-series and sequential data have shown to be promising
in recent years, compared to RNNs. Comparing both architectures requires the
implementation of two different models.

In this thesis, we compare CNN with LSTM, where the Python programming lan-
guage is used for implementation. Further on, Keras is used for model development
with the GPU-release of Tensorflow as the backend. Lastly, for exploratory data anal-
ysis, descriptive statistics and figure generation, the functionalities of Pandas are ap-
plied.

Moreover, the developed CNN and LSTM are tested on three different use cases and
datasets, where two of them are multivariate time-series and the last is a univariate
time-series. The models are used for classification of depressed patients, energy
prediction for Electric Vehicles (EVs) and football player performance classification.
Furthermore, the complexity of the networks is relatively low. They are sparse in
terms of depth. The number of hidden units within each layer is fixed throughout the
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experiments as well. Each model is applied separately for each use case, evaluated
accordingly and optimised afterwards.
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Chapter 4

Experiments

The previous chapter described the methodology where we presented the experiment
framework and overall flow, use cases and data analysis. Further on, we discussed
model development and training and provided a discussion on hyperparameters
before discussion evaluation methods. This chapter discusses the experiments and
results in detail. For each use case, we present an experiment overview followed by
results for each model and a comparison of both. At last, we present a summary
before providing a general-level discussion across all use cases at the end of this
chapter and summarise the findings.

4.1 U1: Depression detection

4.1.1 Experiment overview

Overview of narrative

The analysis from earlier suggests observing approximately daily activity levels to
learn overall temporal patterns. Additionally, it is evident that the intensity in
activity is less consistent among the depressed patients, hence higher variations on
an average level. Based on this analysis, initial hypotheses were formed about the
data distribution on how input sequences are formatted. Although multiple results
are presented, both for LSTM and CNN, a general level overview is disccussed for all
experiments.

With basis in the general scheme for the experiment design illustrated in Figure 1.3
earlier, a brief narrative is shown for this use case in Figure 4.1. There are six
experiments for each model, separated into initial/exploratory experiments and
optimised experiments. Each result is discussed, although an in-detail comparison
of LSTM and CNN is discussed in Section 4.1.4. In total, there are 3 and 2 initial
experiments for LSTM and CNN, thus 3 and 4 optimised results for each, respectively.

Each initial experiment is concerned with trying multiple combinations of hyperpa-
rameters through trial and error to see how each model performs with different con-
figurations. We first start with data-related hyperparameters like the resampling fre-
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Network-level	optimisation:
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Network-level	optimisation:
Improving	outlier	detections

Data-related	optimisation
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Initial	result	1
Experimental	configuration
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Figure 4.1: General level experiment overview for depression detection experiments. There
are 3 initial experiments and 3 optimised experiments for LSTM, whereas 2 initial and 4
optimised experiments are performed for CNN.

quency, sequence window and batch size, which are set based on the analysis earlier.
Further on, the models are optimised by tuning certain network-level hyperparame-
ters. This includes momentum and learning rate, adjusted with basis in default values
set in Keras. As a naming convention throughout the narrative, we use Rn to denote
the n-th given optimised result, because the initial results are mostly concerned with
exploration.

Overview of experiment preparation

In this section we discuss use case specific choices made throughout the experiments.
How data is preprocessed, formatted and how input features are selected for the
models will be discussed.

Firstly, because the series contains activity counts with a minutely frequency, we
justified how resampling of the time-series helps in understanding the temporal
pattern earlier. Additionally, the data files are shuffled prior to reading and
resampling. This introduces a certain stochastic element for the models, although
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it may give a better representation of samples/batches that are used.

Secondly, deviational measures are used as additional input features. The total mean
activity level and standard deviation is used, similar to what is discussed by Garcia-
Ceja et al. [29] in their paper. However, they also include the percentage of events
with no activity and motivate for how discriminative features are applicable for
better classification. Either of these features are included, because many of the initial
experiments were performed using only mean and standard deviation as additional
features.

Lastly, being aware of how deviational measures varies over different timespans we
suggest rolling windows could be applicable, like mean or standard deviation over
a given timespan compared to the entire series. Although rolling windows are not
used, it should be considered as an alternate approach regarding feature selection,
in addition to inclusion of discriminative features. Arguably, this may be more
representative compared to overall activity deviations and further experiments can
be carried out. Conclusively, in terms of feature scaling and normalisation, being a
univariate time-series we choose not to scale the input features as the numerical scale
is the same. However, this is also a possibility regarding preprocessing, as it is a
common practice when training neural network models [20].

4.1.2 Results for LSTM

I1: first initial result

Type Hyperparameter Value

Data

Batch Size 8
Epoch 300
Resampling Average 10H
Sequence Window 28

Network

Dropout 0.3
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.7
Nesterov Momentum False
Optimiser sgd

Table 4.1: Most important hyperparameter configurations for the initial results.

Through all initial and exploratory experiments, the models are trained for longer
periods purposely to understand how the model fit to the data distribution. The
training iteration (epochs) is set to 300, although for this particular use case, early
stopping with a higher acceptance threshold is applied. Notably, in most cases the
training stops relatively early, compared to this threshold and does not continue for
300 epochs. Additionally, data-related hyperparameters like batch size, sequence
window and resampling frequency are configured based on the data analysis in
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Section 3.3.2. Network-related hyperparameters, such as momentum rate is adjusted
with basis in the default value provided in Keras. Nevertheless, the most important
initial configurations are summarised in Table 4.1.

Each data point is resampled to 10-hour average activity levels whereas the length of
the initial input sequences are 28 data points long. This is the equivalent of observing
average activity levels for approximately 12 days; 10× 28 = 280

24 ≈ 12.
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Figure 4.2: Validation history of first initial LSTM-result in the depression use case.

ACC PREC SPEC REC F1 MCC

mean 0.760 0.857 0.578 0.760 0.766 0.238
std 0.169 0.089 0.283 0.169 0.160 0.247
min 0.500 0.737 0.179 0.500 0.514 -0.018
max 1.000 1.000 0.877 1.000 1.000 0.629

Table 4.2: Overview of weighted average metrics across all folds. The overall metric values
varies, and the deviations are higher, as seen in the standard deviation but also amplified by
max and min values, illustrating the larger gaps.

The first initial result is summarised in Table 4.2 and the validation loss- and accuracy
during training is illustrated in Figure 4.2. Overall, convergence is low and there
are high fluctations during training. Apart from these deviations, the validation
accuracy decreases over time whereas an increase in loss is observed, indicating
model overfitting which is observed across all folds.

Although the model overfits, another concern relates why overall deviations
are higher. Hypothetically, some factors may be related to the input vectors,
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such as length of the sequence window or the resampling frequency, in which
temporal dependencies are not captured efficiently. Comparably, fluctuations
can be related to noisy optimisation as well. For instance, batch sizes and
momentum rate may affect the optimisation, similar to what was discussed in
Section 2.3.2 about backpropagation earlier. A smaller batch size contributes to more
fluctuating gradients, because the batch is less representative. Additionally, increased
momentum potentially results in overshooting optima in a loss landscape. To better
understand this, additional experiments are performed in which the batch size is
adjusted first.

I2: second initial result
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Figure 4.3: Validation history of second initial LSTM-result in the depression use case.

ACC PREC SPEC REC F1 MCC

mean 0.783 0.815 0.539 0.783 0.780 0.238
std 0.152 0.144 0.294 0.152 0.159 0.308
min 0.519 0.501 0.074 0.519 0.492 -0.220
max 1.000 1.000 0.784 1.000 1.000 0.604

Table 4.3: Overview of weighted average metrics across all folds for second initial LSTM
result. Although there are some deviations, the training history indicates that this may be due
to the partitioning of the dataset.

The batch size is increased to 10, with otherwise same configurations defined in
Table 4.1. Corresponding weighted average metrics are summarised in Table 4.3 in
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which validation history is illustrated in Figure 4.3.

There is a notable difference in validation history across all folds compared to the
first initial experiment. Initially, MCC is more closer to zero and deviations are
higher for, possibly indicating more random predictions. Additionally, with slightly
higher deviations for specificity, the true negative rate, it may indicate a confusion in
prediction of non-depressed patients. Specificity is also relatively lower compared
to the other metrics, whereas the recall rate is higher. Evidently, classification of
depressed patients seems to be more efficient although this seems not to be the case
for non-depressed patients.

The overall deviations in evaluations and during training may also be explained by
other factors. For instance, the 10-th validation fold seems to be an outlier partition,
where the model overfits. Arguably, this could be a result of dataset partitioning,
because initial shuffling of the dataset introduces a certain randomness. Some
partitions may thus include activity levels that are outliers in general, for instance
where depressed patients are more active than non-depressed patients or vice versa,
where non-depressed patients are less active than the depressed patients.

Although this is more related to the underlying data topology and distribution. the
general implication of increased batch size seems to lower the overall fluctuations in
which the overall convergence seems more stable. However, it is uncertain if this is
entirely true, because as shown, it may also be a side effect due to dataset partitioning.
An additional iteration is to explore the other hypotheses proposed in the first initial
experiment, by adjusting the resampling frequency and momentum rate.

I3: third initial result

ACC PREC SPEC REC F1 MCC

mean 0.791 0.784 0.529 0.791 0.771 0.268
std 0.216 0.223 0.364 0.216 0.240 0.398
min 0.492 0.443 0.016 0.492 0.453 -0.149
max 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.4: Overview of weighted average metrics across all folds for third initial LSTM result.

Here, the resampling frequency, momentum rate and batch size is explored jointly.
The series are downsampled to 12-hour average whereas batch size is increased to 15
and momentum is reduced to 0.1. From Figure 4.4, which illustrates the validation
history, the overall reduced fluctuations and improved convergence during training
is a relatively desirable outcome. There are however, minor spikes and outliers
compared to earlier results which again contributes to higher deviations.

Nevertheless, most metric evaluations are relatively consistent compared to the
previous result, although the precision rate has dropped the most from 0.81 to
0.78. This indicates that the relevancy in predictions is reduced. Jointly seen
with the specificity rate, which is approximately the same as earlier, this can
be explained by increased misclassifications of non-depressed patients, hence less
relevant predictions.
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Figure 4.4: Validation history of third initial LSTM-result in the depression use case.

Conclusively, for this and the previous experiments, the batch size, sequence
window length and resampling frequency have been tuned. There are notable
improvements during training, although predictive performance differs between
runs, where deviations are higher across predictions. A joint configuration of these
hyperparameters seems to be important factors for both model convergence and
performance for the LSTM as we have shown.

However, an observable outcome for all results is a decrease in specificity whereas the
deviations are higher, often in response with the MCC. This outcome is most notable
in the second result, where the indication may be that the network is less efficient
when classifying non-depressed patients. Despite MCC being positive, the overall
fluctuations and evaluation close to 0 indicates potential of improvement.

R1: first optimised result

The initial experiments were concerned with how certain data-related hyperparam-
eters configurations affect model performance. One experiment was carried out to
adjust the momentum rate, in which the aim was to reduce fluctations during train-
ing. In this section, we further explore these parameters in addition to network-level
parameters, where the goal is to optimise the model performance.

Similar to earlier, the data-related hyperparameters are adjusted. The initial
configuration of hyperparameters is shown in Table 4.5, where a smaller batch of 5 is
chosen, where the series is downsampled to 8-hour average. The sequence window
is 30, implying the equivalent of observing average activity levels of approximately
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Type Hyperparameter Value

Data

Batch Size 5
Epoch 300
Resampling Average 8H
Sequence Window 30

Network

Dropout 0.3
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.7
Nesterov Momentum False
Optimiser sgd

Table 4.5: Hyperparameter configurations for our initial optimised result. Note that the
configurations are similar to our initial results as we presented earlier, except with minor
adjustments on sequence window, batch size and resampling frequency.

10 days; 8× 30 = 240
24 = 10. The momentum is slightly higher similar to earlier, where

fluctations during training is expected.
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Figure 4.5: Validation history of first optimised LSTM-result in the depression use case.

The first result is summarised in Table 4.6, whereas the validation history during
training is illustrated in Figure 4.5. The average results across all validation folds are
promising and show improvement compared to earlier. Notably, the deviations in
overall metric evaluations are far lower, but there is a recurring pattern in MCC and
specificity. There are higher deviations, although there is an increase in both metrics.
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ACC PREC SPEC REC F1 MCC

mean 0.820 0.814 0.653 0.820 0.806 0.486
std 0.167 0.172 0.302 0.167 0.175 0.424
min 0.469 0.470 0.148 0.469 0.459 -0.057
max 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.6: Overview of weighted average metrics across all folds for first optimised LSTM
result.

The MCC rate is now 0.49, an improvement of approximately 0.2, while the specificity
is 0.65, an increase of about 0.1 from initial experiments.

From Figure 4.5, the fluctations are more visible initially during the training process,
but the overall convergence is promising. The training process terminates after 36
epochs due to early stopping but the loss is relatively low and has already almost
converged to 0. Overall, the deviation during training validation is more notably
early in the process.

Nevertheless, the hyperparameter configurations are approximately the same as the
initial experiments, but minor adjustments tend to result in many different outcomes.
As discussed earlier in the methodology chapter, hyperparameter configuration is
arguably a field of its own and the modelling problem is also highly dependent on
the underlying data distribution. Thus, the variations across the presented results
may be explained by this, although it may be related to other factors as well.

For instance, earlier it was discussed how these deviations may be related to
particular cases where some depressed patients are more active than non-depressed
patients or vice versa, where non-depressed patients are less active than the depressed
patients. Evidently, this pattern is recurring throughout the experiments, either in the
form of deviations in the specificity rate and MCC or during training where certain
partitions in the cross-validation result in outlier predictions.

One potential solution to this problem however, is to apply discriminative features
to better detect depressed patients, which is also proposed by Garcia-Ceja et al. [29]
in their paper. In terms of configurable hyperparameters however, in which their
combinations may result in infinitely possible solutions, the current configuration is
a good basis for further optimisation.

R2: second optimised result

Further on, the goal is to reduce overall fluctations during training by adjusting the
momentum and learning rate of the network. With basis in the configurations defined
earlier in Table 4.5, the learning rate is increased to 0.005 from 0.001 and momentum
is reduced to 0.5 from 0.7.

Weighted averages for the second result is shown in Table 4.7. Compared to R1, there
are improvements in certain metric evaluations, despite some deviations. Notably,
there is an improvement in the precision rate, specificity rate and MCC. This indicates
better relevant predictions in addition to classification of non-depressed patients
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being improved. Additionally with an increase in MCC to 0.59 from 0.49, there is
a higher agreement with the actual observations. The increase in specificity and
precision suggests that the model shows the ability to better distinguish between
depressed and non-depressed patients. However, there is a minor tradeoff in
accuracy, recall and F1, implying that the overall performance may be reduced.

Anyhow, it looks like this has minor implications on overall performance, because
the relevancy in predictions has increased and the deviations in validation history is
smaller and consistent across all validation folds, except from one outlier partition,
illustrated in Figure 4.6. This indicates a confusion in the underlying data
distribution. As discussed earlier, the pattern is repetitive, also for this particular
result, although the overall performance being relatively promising.
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Figure 4.6: Validation history of second optimised LSTM-result in the depression use case.

ACC PREC SPEC REC F1 MCC

mean 0.788 0.887 0.858 0.788 0.792 0.594
std 0.178 0.089 0.152 0.178 0.185 0.258
min 0.463 0.747 0.558 0.463 0.387 0.227
max 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.7: Overview of weighted average metrics across all folds for second optimised LSTM
result.

Overall, it is evident that applying discriminative features is a reasonable claim. The
model performs the classification task well proven by the performance evaluations,
implying that it has learned the most important aspects of the data distribution.
However, for the outlier partitions the predictive performance is reduced. Arguably,
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as discussed earlier, this is because of the underlying data distribution. Not only may
it be related to how activity levels vary between patients, but activity in general may
depend on other factors. This includes mood, time of day, season and weather.

Because of such conditional variability, it is hypothesised that the data distribution
is more "noisy" in terms of an optimisation perspective. This can be referred to as a
noisy loss landscape. The intuition is that variations in the data distribution results in
a landscape with multiple optimas for the optimisation problem.

R3: third optimised result

Although the model in some occasions fails to capture outliers efficiently due to
specific partitions, the performance gain is notable in most occasions. To further
explore the intuition of a noisy landscape, the momentum rate is reduced to 0.4 from
0.5 in R2. The overall goal is to potentially reduce the overshooting of optima and the
fluctations in predictions.
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Figure 4.7: Validation history of third optimised LSTM-result in the depression use case.

As emphasised earlier, minor adjustments in certain hyperparameters results in many
different outcomes, showing how sensitive hyperparameter configuration can be.
From Table 4.7, the overall deviations are approximately the same as earlier or lower
across all evaluation metrics. There is an improvement in accuracy, recall and F1
from R2. From Figure 4.7 it is also evident that predictions are relatively consistent
across all validation folds. This indicates overall robustness in predictions, although
a tradeoff in precision, specificity and MCC from R2 is observed.
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ACC PREC SPEC REC F1 MCC

mean 0.818 0.858 0.789 0.818 0.823 0.504
std 0.130 0.113 0.167 0.130 0.124 0.294
min 0.613 0.672 0.539 0.613 0.634 0.000
max 1.000 1.000 0.989 1.000 1.000 0.916

Table 4.8: Overview of weighted average metrics across all folds for third optimised LSTM
result.

Summary of results for LSTM

R1 R2 R3 Linear SVM

ACC 0.820 (0.167) 0.788 (0.178) 0.818 (0.130) 0.727
PREC 0.814 (0.172) 0.887 (0.089) 0.858 (0.113) 0.735
SPEC 0.653 (0.302) 0.858 (0.152) 0.789 (0.167) 0.726
REC 0.820 (0.167) 0.788 (0.178) 0.818 (0.130) 0.729
F1 0.806 (0.175) 0.792 (0.185) 0.823 (0.124) 0.724
MCC 0.486 (0.424) 0.594 (0.258) 0.504 (0.294) 0.433

Table 4.9: Summary of weighted average evaluations of all optimised results for LSTM
experiments, with the standard deviation shown in parantheses. The last column is the
weighted average baseline for the Linear SVM classifier [29].

Table 4.9 summarises all optimised experiments. Despite each successive experiment
is not an improvement, it looks like on average, the best results are derived from
R2 followed by R3. For both results, the precision, specificity and recall is higher
compared to R1, indicating more relevant predictions and better classification of
depressed patients.

Also, a recurring pattern is observed throughout the experiments. The LSTM-
network manages to learn the data distribution efficiently, only using about 30 to 35
epochs. In many cases fluctuations are higher during training although the training
convergence indicates better optimisation. However, one observable outcome is
how certain outlier partitions affects model performance. In these cases the LSTM-
network fails to learn the underlying distribution well, possibly because of what was
referred to as a noisy loss landscape. The intuition is how the variability in the data
distribution results in multiple optimas and affects the optimisation problem.

More over, the results are compared against the Linear SVM baseline provided by
Garcia-Ceja et al. [29]. From Table 4.9 we see an improvement across all results
compared to the baseline, which is promising. Although the paper provides class-
level evaluations, we only present the weighted average in which the LSTM shows
improvement on the Linear SVM.
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4.1.3 Results for CNN

I1: first initial result

Type Hyperparameter Value

Data

Batch Size 10
Epoch 300
Resampling Average 12H
Sequence Window 14

Network

Dilation Rate 1
Dropout 0.3
Kernel Size 10
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.1
Nesterov Momentum False
Optimiser sgd
Padding causal

Table 4.10: Most important hyperparameter configurations for the initial results.

Similar to earlier, the maximum training iterations is set to 300 epochs. For this initial
experiment a higher acceptance threshold is applied for early stopping, although it
later is adjusted for the second initial experiment and is not applied at all. The initial
configurations are shown in Table 4.10, with CNN-specific hyperparameter config-
urations mainly constrained to dilation rate (dilated convolutions), kernel/filter size
and padding in which a default stride of 1 is used. The hyperparameter value causal
for the padding option is a Keras-specific term for dilated convolutions. A dilation
rate greater than 1 with the option causal implies dilated convolutions, whereas the
opposite indicate normal convolutions.

The initial batch size is set to 10 with the series downsampled to 12-hour average. A
sequence window of 14 is used, which is the equivalent of 7 days average activity;
12×14

24 = 168
24 = 7. Also, the momentum is set to 0.1 and the kernel/filter size is 10.

From Figure 4.8, the model overfits for all validation folds. However, loss
convergence is optimal with overall minor fluctuations until 60-70 epochs, before
the uncertainity in predictions is notable. Looking at the validation accuracy the
overall deviations are smaller, apart from the last validation being an outlier. This
recurring pattern, which we also discussed earlier in the results for LSTM, is justified
as potential other factors that contribute to depression. Additionally, the randomness
in dataset partitioning may also contribute to the outliers. From the validation history,
it is evident that the CNN fails to capture these as well.

Despite configurations like momentum and kernel size are set randomly, the
CNN-model produce results closely comparable with the LSTM and the current
configurations seems to be optimal. Further on however, we aim to use dilated
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Figure 4.8: Validation history of first initial CNN-result in the depression use case.

ACC PREC SPEC REC F1 MCC

mean 0.746 0.804 0.699 0.746 0.737 0.385
std 0.211 0.164 0.187 0.211 0.225 0.360
min 0.296 0.442 0.254 0.296 0.257 -0.258
max 1.000 1.000 0.876 1.000 1.000 0.807

Table 4.11: Overview of weighted average metrics across all folds for first initial CNN result.

convolutions as an additional experiment, where kernel size and dilation rate is
explored.

I2: second initial result

From the previous initial result, the batch size is increased from 10 to 20, and the
series are downsampled from 12-hour average to 10-hour average. A corresponding
change in the sequence window length is made from 14 to 35 data points. This is
the equivalent of approximately 2 weeks; 10×35

24 = 350
24 ≈ 15. Additionally, a dilation

rate of 4 is used whereas the kernel size is reduced from 10 to 6 from the previous
experiment. The overall size of the sliding window/filter is thus 24.

Compared to earlier, certain validation folds does not show tendencies of overfitting,
although others seem to do so. The overall loss convergence is lower over time
for particular validations, like the fifth and ninth validation fold. Because it is also
difficult to interpret the validation history for this result, a moving average plot is
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Figure 4.9: Validation history of second initial CNN-result in the depression use case.

provided in Appendix B.1. A corresponding confusion matrix of the best performing
model is also presented in Appendix B.2.

ACC PREC SPEC REC F1 MCC

mean 0.844 0.896 0.483 0.844 0.848 0.204
std 0.128 0.131 0.288 0.128 0.154 0.283
min 0.614 0.630 0.014 0.614 0.552 -0.014
max 1.000 1.000 0.898 1.000 1.000 0.838

Table 4.12: Overview of weighted average metrics across all folds for second initial CNN
result.

From Table 4.12 the specificity is lower, but the overall evaluation is promising.
However, because some validation folds show tendencies of overfitting the results are
not directly comparable, but gives a good indication for the current configurations.

Nevertheless, it is difficult to explain whether or not this performance gain is due
to the change in kernel size and dilation rate or if it may be related to the data-
related hyperparameters like batch size and sequence window, which we also tuned
differently for this particular experiment. Further on, to explore this, the batch
size and the length of sequence window is adjusted, while the same configurations
are used for dilated convolutions. The intention is to understand how dilated
convolutions potentially contributes to performance increase. Additionally, other
specific hyperparameters on a network-level are explored for further optimisations.
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R1: first optimised result

Type Hyperparameter Value

Data

Batch Size 15
Epoch 300
Resampling Average 10H
Sequence Window 30

Network

Dilation Rate 4
Dropout 0.3
Kernel Size 6
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.1
Nesterov Momentum False
Optimiser sgd
Padding causal

Table 4.13: Most important hyperparameter configurations for the optimised results.

The base configuration for the optimised results is shown in Table 4.13. From the
second initial result presented above, it was discussed how dilated convolutions
potentially improve overall predictions. To further iterate on this, the batch size
and sequence window is reduced from 20 to 15 and 35 to 30, respectively, from the
previous experiment.

ACC PREC SPEC REC F1 MCC

mean 0.820 0.867 0.635 0.820 0.819 0.345
std 0.117 0.088 0.162 0.117 0.137 0.236
min 0.557 0.713 0.344 0.557 0.510 0.000
max 0.948 1.000 0.820 0.948 0.974 0.589

Table 4.14: Overview of weighted average metrics across all folds for first optimised CNN
result.

As seen in Figure 4.10, overall deviations are lower and the same recurring outlier
partition is observed for the last validation fold. Apart from this, the training
convergence is desirable, where it also stops after approximately 70 epochs in most
cases. Additionally, from Table 4.14, the most notable deviations relates to MCC,
which is 0.345 with a standard deviation of 0.236. Although the implication is an
agreement in the predictions to some extent, the deviations in MCC indicates higher
variations across all validations.

Also, the specificity is relatively lower indicating that the rate of correctly predicted
negative classes, the non-depressed patients, is somewhat lower compared to the
recall. The recall rate is closer to 1, implying that classification of depressed patients
is more accurate than the classification of non-depressed patients. Similar to the
experiments for LSTM, where the same behaviours were observed, it is a stronger
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Figure 4.10: Validation history of first optimised CNN-result in the depression use case.

confirmation of the underlying data topology. It is also possibly related to the fact
that depression may have different causes and there may be non-depressed patients
who are not equally active as the average person.

Nevertheless, recall the motivation for this experiment in which the intention was
concerned with how network-level hyperparameters such as dilation rate and kernel
size yielded promising results. Notably, it is evident that the CNN performs closely
well compared to the LSTM. Arguably, it may relate to how the convolution operation
functions, which is similar to the gating mechanisms in LSTM.

The convolution operation on uni-dimensional data like time-series can be inter-
preted as a moving average. Intuitively, the kernel size is interpreted as a sliding
window, essentially a subset of the whole input sequence. Hypothetically, by con-
volving the kernel/filter across the input sequence, the convolution operation pro-
vides a similar mechanism found in gated units. The temporal structure in subse-
quences is learned similarly, in which more localised patterns are captured, because
the filter only looks at a subset of the sequence. We argue this is one explanation to
CNN performing almost as good as the LSTM-network. Overall, with dilated convo-
lutions and increased filter size, it looks like temporal structure is learned efficiently.
Arguably this is done with less computational effort, because CNNs have localised
connections whereas the LSTM has more complex gating mechanisms with increased
number of parameters.
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Figure 4.11: Validation history of second optimised CNN-result in the depression use case.

R2: second optimised result

For the second result, the momentum rate is explored in which the aim is to optimise
model convergence on dilated convolutions. The momentum is increased from 0.1
to 0.3 from the initial configurations. From the resulting validation history shown in
Figure 4.11, the overall deviations are minor. However, the loss convergence is slow
and overall loss after early stopping is relatively higher compared to R1 earlier. At a
certain point after about 50 epochs in many cases, the accuracy is declining, which in
fact may indicate that the increase in momentum contribute to overshooting of local
optimas in the loss landscape. Lastly, similar to earlier, particular outlier partitions
are observed, although it is only in one case where the model does not improve at all.

ACC PREC SPEC REC F1 MCC

mean 0.780 0.874 0.813 0.780 0.785 0.542
std 0.202 0.116 0.226 0.202 0.219 0.364
min 0.361 0.673 0.354 0.361 0.278 -0.054
max 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.15: Overview of weighted average metrics across all folds for second optimised CNN
result.

Despite this, the overall weighted average indicates some improvement. This is
evident, especially for the specificity rate and MCC. Evaluations have increased from
0.635 to 0.813 and 0.345 to 0.542 for both, respectively, compared to the previous
experiment. As discussed in earlier results, this possibly implies that the model is
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better at detecting non-depressed patients. This is further supported by the increase
in MCC, showing increased agreement with the predictions and actual observations.

Although increase in momentum improves certain aspects regarding the classification
task, the converged loss is higher, although overall fluctuations are lower. Whether
higher loss is due to overshooting of optimas or too slow convergence is uncertain.
For instance, the learning rate could be too small for this experiment, contributing
to slow convergence whereas the increase in momentum could contribute to
overshooting of optimas. Nevertheless, to further observe this, the momentum is
reduced to 0.1 again, however with the applications of Nesterov momentum.

R3: third optimised result

Nesterov momentum is an optimisation technique which usually works as a
corrective measure. Intuitively if the momentum rate results in overshooting an
optimum from some point xi to xi+1, Nesterov momentum1 uses a corrective measure
by adjusting the optimisation step based on xi+1.

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n 
lo

ss

0 20 40 60 80 100
Epoch

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6
Fold 7
Fold 8
Fold 9
Fold 10

Figure 4.12: Validation history of third optimised CNN-result in the depression use case.

From Figure 4.12, the initial hypothesis proposed for the previous experiment, on
how the model either overshoots on optima or converges too slow is evident. The
corrective measure of Nesterov momentum seems to work effectively on the learning
process, derived from the training convergence, which is closer to zero. The training
process is more stable, because validation across all folds is approximately consistent,

1This thesis does not cover Nesterov momentum in detail. Various optimisers exist for training neural
networks, like AdaGrad and Adam which are not covered in detail. Similarly, Nesterov momentum is
an extension of the original idea on momentum rate.
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ACC PREC SPEC REC F1 MCC

mean 0.816 0.844 0.629 0.816 0.811 0.411
std 0.145 0.122 0.334 0.145 0.145 0.312
min 0.567 0.576 0.052 0.567 0.558 -0.105
max 0.969 0.979 0.998 0.969 0.972 0.803

Table 4.16: Overview of weighted average metrics across all folds for third optimised CNN
result.

although there are some spikes and deviations during training. Also the specificity,
jointly with the MCC, is now lower compared to the previous experiment. As
emphasised throughout the experiments however, this may as well be related to the
data partitioning and underlying data distribution, although no particular outliers
are observed during training.

Nevertheless, it seems like metric evaluations for the test partitions varies across
results, but training process for the CNN is arguably an improvement for this
particular experiment. Although this can not directly be explained by the application
of Nesterov momentum one approach can be to increase the momentum again, while
applying Nesterov. By doing this, it will be more evident whether or not Nesterov
momentum actually is an improvement for the CNN.

R4: fourth optimised result
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Figure 4.13: Validation history of fourth optimised CNN-result in the depression use case.
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For the last experiment, the momentum rate is increased to 0.3 again, adjusted
from 0.1 from R3 earlier, in which the validation history is shown in Figure 4.13.
Arguably, there is a reasonable improvement in terms of robustness. The overall
loss converges even closer to zero, whereas this is consistent across all validations
with minor deviations during training. This could be an indication of efficient loss
optimisation with the specified hyperparameters, possibly also a positive effect of
Nesterov momentum.

ACC PREC SPEC REC F1 MCC

mean 0.801 0.813 0.711 0.801 0.791 0.422
std 0.145 0.209 0.288 0.145 0.187 0.366
min 0.536 0.342 0.210 0.536 0.417 -0.211
max 0.990 0.991 0.999 0.990 0.990 0.952

Table 4.17: Overview of weighted average metrics across all folds for fourth optimised CNN
result.

From the weighted average evaluations of all test folds in Table 4.17 the specificity
rate has increased to 0.711 from the R3, although still lower than 0.813 from R2.
Similarly, the MCC is slightly increased to 0.422, although the current best is 0.542
from R2.

In general, it looks like there are particular evaluation metrics that fluctuate more.
A recurring pattern is the specificity rate and MCC which seems to have higher
deviations, compared to the other evaluations. Although the last experiment is
not the most optimised result, the overall performance and training process seems
more robust. The loss across all validations is minimal, and metric evaluations are
approximately the same, despite slightly reduced compared to earlier experiments.

Summary of results for CNN

R1 R2 R3 R4 Linear SVM

ACC 0.820 (0.117) 0.780 (0.202) 0.816 (0.145) 0.801 (0.145) 0.727
PREC 0.867 (0.088) 0.874 (0.116) 0.844 (0.122) 0.813 (0.209) 0.735
SPEC 0.635 (0.162) 0.813 (0.226) 0.629 (0.334) 0.711 (0.288) 0.726
REC 0.820 (0.117) 0.780 (0.202) 0.816 (0.145) 0.801 (0.145) 0.729
F1 0.819 (0.137) 0.785 (0.219) 0.811 (0.145) 0.791 (0.187) 0.724
MCC 0.345 (0.236) 0.542 (0.364) 0.411 (0.312) 0.422 (0.366) 0.433

Table 4.18: Summary of weighted average evaluations for all optimised results. Standard
deviations are shown in parantheses whereas the last column is the weighted average baseline
for the Linear SVM classifier [29].

Table 4.18 summarises all optimised experiments. Similar to the experiments for
LSTM, each successive experiment is not necessarily an improvement. However, on a
average level it looks like the best results can be derived from R2, where the specificity
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rate and MCC is higher. Also, accuracy, recall and F1 are slightly less than R1, which
is a close second in terms of performance.

Notably, throughout the experiments, total used training iterations in learning the
data distribution varies from slightly below 100 epochs to about 140 epochs. More
over, the fluctuations during training are small, derived from the loss convergence
for all optimised results. Additionally, we experience the CNN to be more sensitive
to hyperparameter configurations compared to the LSTM, which required less effort.

Conclusively, compared to the Linear SVM baseline [29], the CNN also shows promis-
ing results similar to the LSTM. There are improvements across all experiments as
well, although the MCC improvement is minor. More over, the temporal models
shows improvement on the provided baseline. We aim to further discuss the differ-
ences between both in the following section, emphasising that the overall goal is to
answer whether CNNs are efficiently applicable for time-series classification.

4.1.4 A comparison on LSTM and CNN

This section compares both models and discuss the experiments in context of
depression detection in more detail. Generally, the performance of both models
are promising for time-series classification and especially in terms of depression
detection. Both our models show improvement across experiments on the Linear
SVM baseline provided Garcia-Ceja et al. [29], which is considered the best
performing baseline model.

The weighted average metrics for the cross-validation was discussed for each model
earlier. Evidently, the results suggest that performance between both models varies.
Number of iterations used to learn the data distribution, convergence in general
and predicive performance is different for both. Across all experiments however,
the deviations in predictions are minor. CNN is arguably comparable to the
LSTM, in which the latter seems to perform most optimal, albeit with marginal
differences. Further on, three factors are discussed where CNN and LSTM is
compared. This includes training time, impact of the underlying data distribution
and model architecture.

On model training time

Figure 4.14 illustrates the total training time in seconds for all experiments.
The experience when training the CNN-model was most notable, as it used
far less seconds than the LSTM. Initially, this motivated for many experimental
configurations. Although time used in seconds varies between both models, it is
important that both models are compared on equal terms, which is not necessarily
the case in our experiments2. Different configurations on hyperparameter settings

2Total used seconds may not be an accurate indicator of model complexity. Another measure would
be comparing total optimisable parameters for the models. Recall this from the methdology chapter,
where total parameters for our LSTM is 193 052 and for CNN it is 102 002. The training varies depending
on runs and configurations. With the same number of hidden layers and units in each layer for all
experiments, total number of parameters are constant for both our models.
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Figure 4.14: Total training time in seconds for each of the models across all results. Notably,
the training time for LSTM is higher compared to CNN.

like the sequence window and resampling frequency may result in larger differences
in absolute training times.

Despite this however, we emphasise that overall experience when training the models
is indeed longer for the LSTM, and the figure illustrates this to an extent. The average
training time for the LSTM range from approximately 1100 seconds to 1200 seconds
for each fold, compared to the CNN which is faster with average times of 20 to 40
seconds, which is approximately 30 to 40 times faster.

Although we discuss total seconds used, another interesting aspect being more
comparable, jointly with total seconds used, is number of training iterations before
early stopping. For most LSTM experiments, the training converges already after 25-
30 epochs and terminates more often around the 30-epoch mark. The CNN however,
uses more epochs in learning the data distribution, closer to 100-150 epochs. Notably,
the LSTM is capturing the underlying distribution 3 to 4 times more effectively, which
is more comparable to absolute training time used.

Conclusively, CNN uses far less time for training in terms of seconds, more closer to
30 to 40 times faster. However, this depends on configurations and is only a relative
measure. Interestingly, we see the opposite when observing the training iterations.
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Despite using more time in terms of seconds, the LSTM-network uses far less training
iterations compared to CNN when learning the data distribution.

On predictive performance
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Figure 4.15: The figure shows a summary overview of the weighted average for all results
presented earlier for all our models. The top figure shows the evaluation metrics where each
bar represents one experiment. The bottom figure shows the standard deviations, and thus, the
variations in the cross-validation. From this figure, the deviations across validations is more
notable for both models, especially for the MCC and specificity.

A visual representation of the weighted averages are shown in Figure 4.15, which
summarises evaluations for both models and all experiments. Overall differences in
predictive performance for both models are minor. However, the LSTM shows more
optimal performance, albeit with marginal differences. Additionally, the deviations
on specificity and MCC is notable for both, illustrated by the black error bars.

In most experiments, model optimisation is often the primary concern. However,
this is dependent on infinitely possible combinations of hyperparameters. Some
results vary in terms of metrics and in many cases, succeeding results with different
configurations are not necessarily an improvement on the previous. Despite this, the
aim is to converge towards optimised models that are robust, wherein the presented
metrics indicate overall performance for the classification task. Hence, the last
experiments are not often those with the highest metrics, but across all results they
illustrate the best performing models.

In many cases, both models show reduced capability in terms of classification,
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especially in the case of non-depressed patients. This is derived by observing the
variations in specificity, the true negative rate, which measures the negative class.
Arguably, this is important because it implies that there is an increased numbed of
false positives, where non-depressed patients are classified as depressed. However,
more important is it to note that this confusion can better be understood by including
class-level evaluations, like Garcia-Ceja et al. [29] provides in their baseline, in
addition to weighted average evaluations.

Nevertheless, across all results the average specificity varies most, compared to
recall which stabilises around 0.8 and in essence is a good indication of efficient
classification of depressed patients. Additionally, in many cases the models were
often subject to outliers in the data partitions as we saw a recurring pattern in many
of our results, which contributed to variations in specificity and MCC.

This problem is true for both models, and as discussed, it may be related to confusion
regarding the underlying data distribution. Also, similar to what has been proposed
earlier, a solution to this problem is the addition of descriptive/discriminative input
features, discussed by Garcia-Ceja et al. [29]. Comparably, as mentioned in the
experiment overview, only activity mean and standard deviation is used as input
features. The paper also discusses the inclusion of percentage of events with no
activity, which is not included. Whether it may have affected the performance of our
models is uncertain but the overall indication is that with more specific handcrafted
features, the underlying distribution of the data can potentially be learned more
effectively.

On data topology and distribution

Throughout the discussion and experiments it is discussed how the data distribution
and particular outliers in the data partitions have resulted in different outcomes.
More often, the validation history shows at worst an overfitting due to these outliers,
but in most cases the training simply falls short without any improvement. We
experience that neither of the models generalised well to capture these outliers
efficiently, and often referred to how this relates to what was described as the loss
landscape and data topology.

With this, the intuition is that the underlying distribution of data on activity levels
may be ambiguous depending on patients. For instance, activity levels may also
be related to lifestyle choices. Certain factors were discussed, like how some non-
depressed patients may still be less active than usual or other depressed patients
being more active than the non-depressed patients.

This ambiguity may also be related to the problem of multimodality in data
distributions, which is concerned with distributions that have multiple "peaks",
known as modes. Hence, in terms of an optimisation perspective, multiple modes
may result in different topologies of the data distribution. We believe this affects the
optimisations because such distributions have multiple optima and contribute to a
different loss landscape, which affects the model learning.

The problem of multimodality was implied earlier in the experiments. Arguably, it
is believed this is present in the activity level distribution for non-depressed patients.
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Figure 4.16: Histogram of activity levels for both depressed and non-depressed patients, with
the dashed black line representing the kernel density estimation (KDE). The X-axis represents
daily average activity levels, averaged across all patients whereas the Y-axis on the left side is
the frequency within each interval of 15 bins. The Y-axis on the right side represents the KDE
density/estimate. We use 15 bins for the histogram and Gaussian kernels are used for KDE,
the latter being default in Pandas which we used to generate the figure.

More specifically, because variations in specificity were often observed, which was
further explained by outliers during training history.

Figure 4.16 emphasises this problem, where distributions of activity levels for both
depressed and non-depressed patients are illustrated through histograms3 and kernel
density estimations (KDE)4[18]. Both methods gives an indication of the underlying
data distribution, where the histograms show a discrete representation and KDEs
show a continuous representation of the same distribution. Nevertheless, the
multimodality in activity levels for non-depressed patients is evident, and confirms
the hypothesis and discussions on data topology and the outliers. Both models fail
to capture these in our case, due to this problem of multimodality. This shows the
importance of input data for the models, which can possibly be solved by including
additional features, extending the sequence window to capture longer temporal
structure or include more data from additional patients to include for the variations
in activity levels.

3A histogram is a bar plot where each bar represents the frequency of observations within an interval.
An interval is a range of values within the set of all possible values and is determined by configuring
how many "bins" the set of all possible values should be separated (intervalled) in.

4Kernel density estimation (KDE) is a way of estimating underlying continuous probability
distributions. It uses estimator functions that looks at a particular value x and number of neighbouring
observations, defined by what is known as the bandwidth. The neighbour count is an estimation of the
probability of observing x, thus higher count equals higher probability.
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On model architecture

Both model architectures are constrained to 4 hidden layers, hence the networks
are sparse in terms of depth. Whether either of our models would perform better
with deeper layers for this classification task is difficult to prove without further
experiments.

However, as argued above and in earlier discussions, both models perform the
classification task equally well with marginal differences. Training time was
discussed, in which the CNN uses shorter time in terms of seconds but also longer
time to learn the data distribution in terms of epochs. Moreover, recall that we want
to answer the primary research question How do CNNs compare to LSTMs for time-series
classification?. An important aspect in answering this question lies within the model
architecture and the structural components.

The more complex gating architecture of the LSTM was designed to overcome a
problem of capturing long-term temporal dependencies. We experience promising
performance compared to the Linear SVM baseline provided by Garcia-Ceja et al.
[29]. Notably, as shown earlier, this complexity can be explained by seconds used for
training LSTM and also the number of trainable parameters in the model, although
it is more efficient than CNN in learning the data distribution. Comparably, similar
gating mechanisms are not present in CNN, although it achieves very similar results.

Throughout the experiments however, it was experienced how the kernel size
and dilated convolutions for CNN affected performance positively, similar to how
the sequence window and resampling frequency influence the LSTM. This was
also mentioned earlier in the first optimised result R1, on how kernels/filters in
CNNs may function as an equivalent to the gating mechanism in LSTM. Because
the convolution operation works as a sliding window, the kernel size arguably
contributes to learning localised patterns in longer sequences by providing this
similar mechanism.

Combining this mechanism with dilated convolutions, it is believed that a more
generalising pattern is provided, because the sliding window increases, hence
widening the spatial field on the input. Arguably, this imitates a behaviour of
observing longer timespans. Whether this assertion holds is difficult to say, but
our results suggest that dilated convolutions are efficiently applicable. This is
further supported by Borovykh, Bohte, and Oosterlee [12], where they use dilated
convolutions. More over, they also show how temporal dependencies are captured
more efficienctly, without a need for long historical series.

Despite this curiosity on kernel size in CNN and sequence window in LSTM, we
see that both models respond differently on resampled series. Our analysis earlier
implied that resampling to average activity levels could help capturing temporal
dependencies well. Although LSTM-units are designed for capturing long-term
dependencies efficiently, we used relatively shorter sequence windows of around 30,
because each data point represents the average activity level over a given timespan.
One interesting aspect of this is whether simple RNN-units would be suitable with the
same approach and shorter resampled sequences. Although extensive experiments
with longer sequences without resampling were not performed, keeping minutely
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frequency would require a window of 60 × 24 = 1440 data points in a sequence
window to capture a 24-hour timespan. How both models respond to sequence
windows of longer length is uncertain, and it is emphasised that further experiments
can be carried out to explore this.

4.1.5 Summary of experiments

Conclusively, the CNN-model seems to be more sensitive to hyperparameter
configurations. However, in most experiments, it shows great potential for time series
classification, compared to the LSTM. Furthermore, the classification metrics are very
similar for both models. Although it is difficult to notice the differences in variations,
it looks like the variations across experiments are very similar as well. Moreover, the
overall experience when training both models varies. The CNN-model is experienced
as faster to train but uses longer time in learning the data distribution. On the other
hand, the LSTM is relatively robust and uses a shorter time to achieve similar results,
although it takes longer time to train.

4.2 U2: Energy prediction

4.2.1 Experiment overview

In this section, we discuss the experiment narrative and choices made as part of the
experiments. Most importantly, due to practical constraints regarding the EV dataset,
the performed experiments are limited, only showcasing the improvement potential.

Overview of narrative

From the analysis of the EV dataset, it is evident that charging and driving
patterns are explained best through relative battery capacity and odometer readings.
Moreover, by observing the temporal patterns over longer timespans and a daily
basis, the cyclic patterns in day-to-day usage can be explained well.

First, the initial experiments showed little or no potential improvement on the
classification task itself. Arguably, with a larger dataset and more representative
number of EVs, there is an improvement potential in the classification task. Many
additional experiments that are not presented here can be found in Appendix B.3
and Appendix B.4. More importantly, we focus on exploring how the dataset affects
the models and how different hyperparameters contributes to the outcome. Hence,
the presented results described in Figure 4.17 reflect a subset of the total experiments
carried out, but also showcase the potential application area for this use case.

Overview of experiment preparation

The EV dataset contains hourly observations, and as described in detail about the
dataset earlier, cars have been added incrementally over time since October 2018.
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Figure 4.17: General level experiment overview for EV energy classification experiments.
There are 2 initial experiments and 1 optimised experiment for LSTM, whereas 1 initial
experiment and 1 optimised experiment is performed for CNN, in which the latter is ran
twice.

Although the collection happens on an hourly basis, there are often periods with
missing data as well. With some missing periods spanning multiple days or weeks,
two approaches were considered to overcome this problem.

First, new data points can be generated, sampled from the existing data distribution.
In one way, this is beneficial and increases the data volume, although working with
synthetic data may not be as representative as the original dataset, because of implied
noise. The chosen approach, however, is to focus on predicting daily usage with
the existing data. Although the number of data points is smaller upon aggregation,
the dataset is more representative and also gives a more general-level indication on
consumption patterns.

Further on, a second concern is related to feature selection. The analysis in the
previous section suggested that percentage battery capacity and driving distances
describe the day-to-day usage well. Although the EV dataset includes features
like temperature and location, the feature selection is constrained to only battery
capacity and driving distances. Chosen input variables include used battery capacity,
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deviational measures in battery capacity, like mean and standard deviation, and lastly
the driven distance, which are all normalised to the same scale.

4.2.2 Results for LSTM

I1: first initial result

Type Hyperparameter Value

Data

Batch Size 10
Epoch 300
Resampling Average D
Sequence Window 30

Network

Dropout 0.4
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.1
Nesterov Momentum False
Optimiser nadam

Table 4.19: Most important hyperparameter configurations for the initial results.

Table 4.19 shows the initial hyperparameters, configured based on the data analysis.
By default, as emphasised in the experiment design, the resampling average is
constant and set to a daily average. Moreover, to capture the temporal dependencies
in daily driving patterns, the sequence window is set to 30 days.

Most importantly, however, the LSTM has shown to be sensitive to multiple
configurations throughout the experiments. Although not presented, the common
experience has been a model subject to overfitting and inefficient convergence. In
many cases, the model converges very slowly, and in some cases, not at all. As
illustrated in Figure 4.18, this is most evident for the first initial experiment, where
the model overfits for three folds and does not converge optimally otherwise.

ACC PREC SPEC REC F1 MCC

mean 0.558 0.430 0.463 0.558 0.474 0.021
std 0.143 0.121 0.179 0.143 0.124 0.051
min 0.312 0.206 0.271 0.312 0.283 -0.049
max 0.729 0.638 0.780 0.729 0.645 0.105

Table 4.20: Overview of weighted average metrics across all folds for first initial LSTM result.

Although there may be various explanations for the problem of convergence, it
could arguably be related to two aspects. First, the optimisation itself could be an
explanation and second, the batch size can be less representative, resulting in lousy
convergence. To further explore this hypothesis, the batch size and optimisation-
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Figure 4.18: Validation history of first initial LSTM-result in the energy use case.

related parameters are tuned. More specifically, the momentum is adjusted, while the
optimiser is changed and Nesterov momentum is applied.

I2: second initial result

For the second initial result, the momentum rate increases from 0.3 from 0.1, while
the SGD-optimiser is used along with Nesterov momentum. Additionally, we reduce
the batch size. Hypothetically, the overall convergence should be faster with the
application of momentum, and the optimisation itself will potentially be noisier in
terms of the batch size. However, as seen from Figure 4.19 this is partially the case.

ACC PREC SPEC REC F1 MCC

mean 0.614 0.397 0.386 0.614 0.478 0.0
std 0.146 0.162 0.146 0.146 0.169 0.0
min 0.312 0.098 0.247 0.312 0.149 0.0
max 0.753 0.566 0.688 0.753 0.646 0.0

Table 4.21: Overview of weighted average metrics across all folds for second initial LSTM
result.

From the validation history, the convergence in loss is desirable, indicating efficiency
in optimisation. However, the convergence overall is constant after about 20 epochs.
When comparing this against the validation accuracy, the same pattern is observed,
and the predictive performance of the model is mostly constant throughout the whole
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Figure 4.19: Validation history of second initial LSTM-result in the energy use case.

training process. Additionally, from Table 4.21, it is evident that the predictions may
be more random as well, indicated by the MCC being 0.

Despite the convergence in the loss being reasonable, the classification rate of the
model does not improve. One explanation to this may be related to uncertainties
in the underlying data distribution which affects the classification performance.
However, it could as well be related to the stochastic nature of hyperparameter
settings.

Nevertheless, because of time, resource and dataset constraints, extensive optimisa-
tion of hyperparameters was not performed, although many experiments were car-
ried out5. In the following section, we discuss one of the optimal outcomes.

R1: optimised result

While many experiments were carried out with different hyperparameters, the most
optimal outcome uses the configurations defined in Table 4.22. The validation
history in Figure 4.20 indicates a good convergence in loss, but similar to earlier, the
classification rate of the model is approximately constant. As discussed, there may
be multiple reasons for this. However, the experience throughout the experiments
indicates that it may be related to the dataset because of the same pattern emerging
for different hyperparameters as well.

Moreover, as shown in Table 4.23, the weighted average MCC is negative, closer
to zero, which indicates almost more randomness in predictions. The standard

5Validation history for additional LSTM experiments not presented here are found in Appendix B.3
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Type Hyperparameter Value

Data

Batch Size 15
Epoch 300
Resampling Average D
Sequence Window 21

Network

Dropout 0.4
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.1
Nesterov Momentum False
Optimiser nadam

Table 4.22: Most important hyperparameter configurations for the optimised result.
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Figure 4.20: Validation history of optimised LSTM-result in the energy use case.

ACC PREC SPEC REC F1 MCC

mean 0.582 0.399 0.410 0.582 0.466 -0.012
std 0.200 0.199 0.190 0.200 0.211 0.026
min 0.269 0.072 0.155 0.269 0.114 -0.078
max 0.845 0.713 0.731 0.845 0.774 0.000

Table 4.23: Overview of weighted average metrics across all folds for optimised LSTM result.

deviations across all metrics are relatively higher, which is also reflected in the
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validation history as well.

Summary of results for LSTM

For the LSTM experiments, two initial experiments and one optimised experiment
were carried out. In the first initial experiment, the concern was mainly trying initial
hyperparameter settings, based on the data analysis. Further on, in the second initial
experiment, we tried improving the model convergence with a different optimiser,
increased momentum rate and Nesterov momentum. While the model loss converged
well, there was no improvement throughout training and accuracy and loss became
saturated. With a weighted average of 0.61 and MCC of 0, the classification task can
still be improved.

Moreover, one last experiment was performed, with optimised configurations and
early stopping applied. Although one result was presented, many of the tried initial
experiments are also found in Appendix B.3 and gave similar results. While the MCC
was negative, the experience overall indicated a certain difficulty when configuring
hyperparameters for the LSTM, because the outcome was approximately the same
across multiple configurations.

4.2.3 Results for CNN

I1 initial result

Type Hyperparameter Value

Data

Batch Size 1
Epoch 300
Resampling Average D
Sequence Window 30

Network

Dilation Rate 3
Dropout 0.3
Kernel Size 8
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.3
Nesterov Momentum False
Optimiser sgd
Padding causal

Table 4.24: Most important hyperparameter configurations for the initial result.

While previous experiments in the depression use case showed that dilated convo-
lutions are effectively applicable, we further aim to understand its effect in this use
case. Additionally, the idea of on-line training is explored, where the training process
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progresses one sample at the time. First, a dilation rate of three and a kernel size of
eight is used, resulting in a convolution dimension of 24.

1.00
1.25
1.50
1.75
2.00
2.25
2.50

Va
lid

at
io

n 
lo

ss

0 50 100 150 200 250 300
Epoch

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n 
ac

cu
ra

cy

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6
Fold 7
Fold 8
Fold 9
Fold 10

Figure 4.21: Validation history of initial CNN-result in the energy use case.

The training history in Figure 4.21 shows that the optimisation is consistent across all
folds. Additionally, similar to the results for the LSTM-model, the convergence of the
accuracy rate is almost constant. Throughout the training, it remains approximately
the same, although with minor deviations in the end. Recall from earlier with the
LSTM-experiments, that a similar pattern occurred, which can be explained by how
the underlying data distribution affects model performance. One explanation is the
difficulty of finding patterns, which contributes to randomness in predictions. Too
little data or increased noise in the data may contribute to this in various ways. From
the metrics shown in Table 4.25 this is further evident, as the MCC is close to zero.

ACC PREC SPEC REC F1 MCC

mean 0.560 0.507 0.545 0.560 0.518 0.110
std 0.167 0.164 0.171 0.167 0.164 0.079
min 0.320 0.217 0.265 0.320 0.257 -0.003
max 0.844 0.799 0.792 0.844 0.811 0.257

Table 4.25: Overview of weighted average metrics across all folds for initial CNN result.

Further on, we emphasise that during the training of the CNN, the overall experience
of trying different hyperparameters became a less tedious task. Many of the initial
experiments showed varied results which further enabled the possibility of trying
multiple configurations6. The classification task itself, however, can be improved with

6Validation history for additional CNN experiments not presented here are found in Appendix B.4
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further optimisation.

R1 and R2: optimised results

We now look at two results with optimal outcomes, R1 and R2, both using the same
hyperparameter configurations. From the previous initial experiment, the kernel size
is reduced to five from eight, reducing the temporal dimension to 15. In the first
experiment, the model trains for a shorter number of epochs and on most occasions,
the training stops around 80 to 90 epochs as seen in Figure 4.22a. In the second
experiment, however, the model runs around 80 epochs or more.

1.6

1.8

2.0

2.2

Va
lid

at
io

n 
lo

ss

0 20 40 60 80 100
Epoch

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Va
lid

at
io

n 
ac

cu
ra

cy

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6
Fold 7
Fold 8
Fold 9
Fold 10

(a) First optimised result R1
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(b) Second optimised result R2

Figure 4.22: Validation history of both optimised CNN-results in the energy use case.

The weighted average of the cross-validation can be seen in Table 4.26. Comparing
both runs show minor differences, but for the second experiment, which used more
time to train, the standard deviation is overall lower, or relatively marginal. On
average, the classification rate is marginally better as well. Nevertheless, apart from
these minor deviations, the takeaway from the optimised results indicates that the
CNN-model adapts better to the data distribution.

Summary of results for CNN

Table 4.26 gives a summary of both optimised experiments. In the first and only
initial result, the application of dilated convolutions in combination with on-line
training was explored. While the model showed tendencies of overfitting, the
progress during the first 150 to 200 training iterations was promising.

Further on, two additional experiments were carried out with equal hyperparameter
settings. The kernel size was reduced and the dilation rate was kept from the initial
result. In both experiments, the loss convergence was optimal, albeit the accuracy
was almost constant throughout the training.
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Result R1 R2
Metric (sd)

ACC 0.600 (0.141) 0.601 (0.133)
PREC 0.428 (0.191) 0.449 (0.135)
SPEC 0.425 (0.149) 0.426 (0.157)
REC 0.600 (0.141) 0.601 (0.133)
F1 0.484 (0.178) 0.489 (0.143)
MCC 0.039 (0.039) 0.038 (0.048)

Table 4.26: Summary of weighted average evaluations for all optimised CNN-results.
Standard deviations are shown in parantheses.

There is a potential for improvement on the classification task itself, considering the
accuracy of 0.6 and MCC closer to zero. More importantly, however, the results
further substantiate how dilated convolutions can be used efficiently in time-series
classification domains.

4.2.4 A comparison on LSTM and CNN

On model training time and predictive performance

Figure 4.23 shows the total training time in seconds for all experiments. Comparably,
the time used for both models is approximately the same, although the importance
of on-line training with a batch size of one, contributes to an increase in total time
used for the CNN-model. As discussed in the previous use case with depression
classification, training time only explains the model training complexity to a minor
extent. However, as seen in Figure 4.24, when comparing this with the predictive
performance of the models, the CNN-model shows slightly better classification
measures. Additionally, despite being closer to zero, the average MCC is higher for
the CNN as well.

With minor deviations in the predictive performance for both models, however, the
overall classification task can still be improved. In most cases, both models have an
accuracy of around 60%, while the balanced measures like MCC and F1 are closer
to zero and 0.5, respectively. One explanation for this can be the hyperparameter
settings.

However, another explanation which is potentially more explainable is the size,
samples and features of the EV dataset. First, the total observations are closer to
28 000 data points, distributed on nine different EVs. When aggregated to daily
measures, the total number of input sequences are approximately 1000, depending
on the window size. In the context of machine learning, this is a small dataset, and
the classification task for both models can be improved drastically. One possibility
includes generating synthetic data.

Another explanation is related to the qualitative features in the dataset. Current
features in the EV dataset are not sufficiently descriptive and can affect the model
performance. For instance, the battery capacity is only the relative percentage level
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Figure 4.23: Total training time in seconds for each of the models across all results.

for each EV. While different EV types and models have different battery capacities,
the percentage is not a qualitative input feature that describes the used capacity
well. Possibilities to overcome this problem include collecting additional qualitative
features such as kWh or range capacity. Although the results look promising for both
models, more qualitative data could potentially give a better basis in the comparison
of the CNN and LSTM.

4.2.5 Summary of experiments

For the EV energy prediction use case, six experiments were performed. Overall,
both models perform the classification task differently, although there is room for
improvement and the differences between both models are minor. In total two initial
experiments resulted in one optimised result for the LSTM. On the other hand, one
initial result was used to perform two optimised experiments for the CNN.

For the LSTM, the initial experiments were mostly concerned with understanding the
effect of the first hyperparameters settings and improving model convergence. The
following optimised result aimed at improving the classification rate itself. Different
hyperparameters were tried to overcome the problem of constant model accuracy not
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Figure 4.24: The figure shows a summary overview of the weighted average for all results
presented earlier, across all models. The top figure shows the metrics whereas the bottom
shows the standard deviations.

improving. Some include different optimiser, momentum rate, Nesterov momentum
and batch size.

The same pattern emerged for the CNN, although the experiments where more
focused on observing the effect of dilated convolutions, which worked seemingly
efficient. Comparing the results against the LSTM, the CNN is almost as good.
However, in order to have a substantial baseline for this use case, the EV dataset
should include more observations or additional qualitative features. In a sense, this
would provide better empirical evidence as well, similar to the depression use case
where dilated convolutions and training time were more efficient for the CNN.

4.3 U3: Football readiness classification

4.3.1 Experiment overview

Problem formulation and experiment preparation

In their paper, Wiik et al. [94] discuss how LSTM is applied for peak detection to
determine readiness-to-train of football players. They use a quantitative approach,
where the output is continuous. Further on, the peak detection is determined based
on thresholded values. Positive peaks are defined based on readiness values over
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eight, whereas negative peaks are defined as readiness values below three.

However, in terms of a classification perspective, the problem formulation is almost
equivalent. Readiness values have to be thresholded to determine their class
representation. One approach is a binary classification formulation, where readiness
values are thresholded to a particular score. In the paper, they determine peaks this
way, e.g. by thresholding the score to eight. However, from a practical perspective
in a classification model, such information would be less informative, because of a
crisp output. If readiness is thresholded to eight, a score of seven is classified as "not
ready", which is useful information when determining readiness. Moreover, the data
analysis earlier suggested that the centre of the distribution of readiness scores reside
in the range of five to eight for most players. Hypothetically, a model will thus in
most cases classify a player as "not ready" because the average scores are closer to the
mid-range.

Nevertheless, to overcome this problem, readiness is in this task defined as the
presence of particular variables that determine readiness. Based on the correlation
analysis earlier, the problem is formulated as a multilabel classification problem, where
the chosen variables are mood, stress, soreness and fatigue7.

ŷ =


ŷ1
ŷ2
ŷ3
ŷ4

 =


Mood
Stress

Soreness
Fatigue

 where ŷi =

{
0 if ŷi < 0.5
1 if ŷi ≥ 0.5

y =


y1
y2
y3
y4

 =


Mood
Stress

Soreness
Fatigue

 where yi =

{
0 if yi < 3
1 if yi ≥ 3

(4.1)

Equation 4.1: A formalisation of multilabel classification for the readiness classification use
case, where the predicted ŷ is a distribution (sigmoid output) of four variables, namely mood,
stress, soreness and fatigue. The sigmoid output represents probabilities, where a correct
classification is determined based on a threshold of 0.5 by default. The true output distribution
y is represented as a one-hot encoded distribution, where the encoding is based on a threshold
score of 3 by default.

Recall from the methodology chapter that for this use case, the sigmoid activation
function is applied in the last layer. The predicted output distribution ŷ is continuous,
implying a set of probabilities. The classification task is formalised by thresholding
the predicted distribution. The outputs are thresholded to 0.5 to determine the
presence of the i-th class ŷi, as shown in Equation 4.1. Furthermore, the chosen
input features are readiness, stress, mood, soreness and fatigue, which is based on the
correlation analysis earlier. The variables are scaled between zero and one because of
different scales on readiness scores compared to the other variables.

7A multilabel classification problem is where an instance or a sample belongs to multiple classes,
compared to a multiclass classification problem where the sample may only belong to one class. For
instance, given a player report, readiness can be determined by the presence of stress, mood, fatigue
(multilabel) or just the readiness score (multiclass).
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Overview of narrative

For this use case, multiple approaches were tried before deciding a multilabel
formulation. Most efforts did not give any reasonable results. First, experiments
with multiclass classification were carried out. Hence, the output was defined as a
readiness score from one to ten and represented as a one-hot encoded vector. As
hypothesised in the above section, most predictions resided in the range five to seven.

Secondly, another formulation was concerned with categorising the readiness scores
into three classes, namely, not ready, uncertain and ready. The classes were determined
based on threshold ranges where each class belonged to the range one to three, four
to seven and eight to ten, respectively. In a way, this is simply a smoothing of the
data distribution. Similar to the first case, most predictions were classified into the
uncertain-class.

Both the abovementioned methods are relatively alike and use a thresholding
approach. This method is similar to the one discussed in the quantitative approach
discussed by Wiik et al. [94]. Equivalently formulating the classification task showed
no improvement on this baseline either.

Optimised	result	1
Exploring	initial	window	size

Results

Discussion:	a	comparison
on	LSTM	and	CNN	for

football	prediction

Optimised	result	2
Window,	batch	and	optimiser

LSTM	experiments

Initial	result
Starting	with	dilated	convolutions

Results

Optimised	result	2
Adjusting	momentum

CNN	experiments

Optimised	result	1
Adjusting	kernel	size

Figure 4.25: Experiment overview for football readiness classification use case. We perform
two experiments with LSTM and three experiments with CNN.

Hence, to understand how readiness can be determined in an alternative way and be
beneficial to coaches from a system perspective, a multilabel classification formula-
tion was chosen. The presented results showcase the potential application area for
football readiness prediction. As mentioned, multiple efforts were tried on different
formulations of the classification problem. Additionally, some configurations high-
lighted in Appendix B.5 were also tried out. However, because of time limitations,
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in particular, the chosen results only reflect a subset of the experiments. Each is con-
cerned with discussing the various configurations used. The overview of these exper-
iments is seen in Figure 4.25.

4.3.2 Results for LSTM

This section presents three different results for LSTM, namely R1, R2 and R3.
Recall that for this use case, as described in the methodology, we present the
optimised results because many of the initial results and configurations resulted in
approximately the same outcome or did not show much improvement.

R1: first result

Type Hyperparameter Value

Data

Batch Size 15
Epoch 300
Resampling Average D
Sequence Window 30

Network

Dropout 0.3
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.4
Nesterov Momentum False
Optimiser rmsprop

Table 4.27: Most important hyperparameter configurations for the first optimised LSTM-
result.

The first experiment is concerned with trying the initial configurations. First, a
relatively larger batch size of 15 is used, compared to Wiik et al. [94] in which they
report a batch size of four for the presented results. Additionally, the input sequence
window size is 30 data points, which is equivalent to a monthly timespan. Moreover,
the initial optimiser is RMSprop, similar to what is reported by Wiik et al. [94]. The
batch size is arbitrarily set, whereas the sequence window starts with 30, as it is
determined a reasonable timespan to capture regularities in readiness.

For the above-mentioned configuration, the cross-validation averages are seen in
Table 4.33. For a multilabel classification problem, we evaluate the model based on
the number of correctly predicted labels in the output distribution. The accuracy is
0.899, implying a good predicting of the overall distribution. Moreover, the MCC
of 0.283 is positive, which indicates a positive correlation in the predictions and
observations. However, with the value being closer to zero with overall higher
deviations, there is room for improvement. Additionally, despite being somewhat
lower, the precision, recall and F1-score are comparable to the presented result by
Wiik et al. [94].
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Figure 4.26: Validation history of first optimised LSTM result in the football use case.

ACC PREC SPEC REC F1 MCC

mean 0.899 0.915 0.152 0.985 0.947 0.283
std 0.028 0.020 0.059 0.017 0.016 0.218
min 0.870 0.890 0.072 0.944 0.924 0.111
max 0.956 0.959 0.260 1.000 0.978 0.701

Table 4.28: Overview of weighted average metrics across all folds for first optimised LSTM
result.

The overall training progression illustrated in Figure 4.26 explains some variations
during training. Although the model convergence in most cases looks promising,
the training stops approximately after 20 to 30 iterations. The validation accuracy
is almost constant throughout training, whereas the loss differs between validation
folds. For instance, for fold five, it looks like the LSTM overfits. On the other hand,
for the sixth fold, the training goes on for longer epochs and converges better. The
confusion matrix for this evaluation is seen in Figure 4.27.

The confusion matrix explains the presence of a variable in the output distribution.
Based on the problem formulation earlier, the threshold score is three, in which Present
indicates whether the outcome variable is present or not. The presence of a variable
implies a rating higher than three. From Figure 4.27, it is seen a confusion in the
prediction of soreness. In most cases, the distribution of scores in mood, stress
and fatigue looks to be uneven. We derive this from the proportion between false
negatives (top right) and true negatives (bottom right) for the mentioned variables.
However, for soreness, there are somewhat larger confusions. Most probably, this
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Figure 4.27: Confusion matrix for the best performing model in the first optimised LSTM
result.

may be related to higher variations in soreness scores, and thus, imbalances in the
dataset leading to such classifications.

Nevertheless, the convergence of the model is desirable for this particular validation.
An MCC of 0.70 indicates a stronger relationship between predictions and observa-
tions. Lastly, an accuracy of 0.91, further implies a stronger classification rate, which
showcases a classification model with good improvement potential as well.

R2: second result

The second result presents an alternative experiment, where the batch size, sequence
window and activation function are tuned. Compared to the previous configuration,
the batch size is reduced from 15 to 10, whereas the sequence window increase
from 30 to 40. Moreover, the activation function changes from ReLU to tanh. Most
importantly, however, we performed multiple experiments with different optimisers,
sequence window lengths and batch sizes. The most promising outcomes were
achieved with configurations close to these. The current best evaluations with the
abovementioned settings are shown in Table 4.34.
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Type Hyperparameter Value

Data

Batch Size 10
Epoch 300
Resampling Average D
Sequence Window 40

Network

Dropout 0.3
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.001
Momentum Rate 0.4
Nesterov Momentum False
Optimiser rmsprop

Table 4.29: Most important hyperparameter configurations for the second optimised LSTM
result.
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Figure 4.28: Validation history of second optimised LSTM-result in the football use case.

Overall, the results are relatively similar to what is achieved in the previous
experiment. Across all evaluations, there are marginal differences. Although the
deviations are somewhat higher for the MCC in the first experiment, the results are
arguably quite similar. One reason for this may be related to the dataset itself.

The loss landscape of the underlying distribution may be less noisy, in the sense
that most players recorded in the dataset have consistent score reports over time.
In other words, the target labels will have an underlying imbalance in the dataset.
Classifying the presence of these variables may thus not sufficiently explain the
various conditions of a player. For instance, the model may be good at predicting low
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ACC PREC SPEC REC F1 MCC

mean 0.900 0.915 0.155 0.986 0.948 0.277
std 0.030 0.022 0.057 0.014 0.017 0.203
min 0.858 0.888 0.075 0.952 0.918 0.052
max 0.957 0.959 0.258 1.000 0.979 0.708

Table 4.30: Overview of weighted average metrics across all folds for second optimised LSTM
result.

stress, good mood, soreness and fatigue. However, when there are fewer instances
of lower scores, like high stress and bad mood, etc., the model may not capture
such cases well. The confusion matrix presented in the first experiment showed a
similar pattern, in which the same is observed for this experiment, as illustrated
in Figure 4.29, which shows the confusion matrix for the best performing model.
Additionally, this problem is also highlighted by the specificity evaluation, which
measures the true negative rate, and is close to zero, compared to the other metrics.
Conclusively, the model classifies positive scores (above 3) efficiently but is inefficient
in predicting negative scores (below 3).

Figure 4.29: Confusion matrix for the best performing model in the second optimised LSTM
result.
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Summary of results for LSTM

Result R1 R2
Metric (sd)

ACC 0.899 (0.028) 0.900 (0.030)
PREC 0.915 (0.020) 0.915 (0.022)
SPEC 0.152 (0.059) 0.155 (0.057)
REC 0.985 (0.017) 0.986 (0.014)
F1 0.947 (0.016) 0.948 (0.017)
MCC 0.283 (0.218) 0.277 (0.203)

Table 4.31: Summary of weighted average evaluations for all optimised LSTM results.
Standard deviations are shown in parantheses.

Table 4.31 gives a comparison overview of both results presented for the LSTM
experiments. While the experiments are not directly comparable to what is reported
by Wiik et al. [94], the presented results showcase the application of multilabel
classification for this use case.

Moreover, the overall experience throughout hyperparameter tuning is varied. In
many cases, the LSTM is very consistent in the classification task, regardless of
configurations. However, some configurations and ranges work better than others,
although the improvement in evaluations is marginal. Nevertheless, the most
important takeaway is the ability of the model to predict negative classes efficiently.
The LSTM classifies positive scores well. However, negative scores (scores below 3)
are wrongly classified in almost all cases. One approach to overcome this is to tune
hyperparameters more extensively. However, the preferable approach is to include
additional variations in the dataset, which include more instances of lower scores.

4.3.3 Results for CNN

This section presents the results for the CNN, where one initial result is discussed,
followed by three results with different hyperparameter settings. They are all
discussed on a general level to further showcase the potential application of CNN.
We emphasise that additional experiments should be carried out with different
hyperparameters than those presented here.

I1: initial result

Similar to the LSTM experiments, the initial experiment uses a batch size of 15 and a
sequence window of 30. Moreover, CNN-specific hyperparameters like dilation rate
and kernel size are three and four, respectively. Moreover, the momentum rate is 0.4,
whereas the learning rate is 0.005, with SGD being the optimiser.

Figure 4.30 shows the overall training history for these configurations. Initially, there
are two notable observations. First, the model converges well the first 25 epochs,
before the validation loss increases and accuracy drops gradually. While this is
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Type Hyperparameter Value

Data

Batch Size 15
Epoch 300
Resampling Average D
Sequence Window 30

Network

Dilation Rate 3
Dropout 0.3
Kernel Size 4
Layers and nodes [150, 75, 50, 25]
Learning Rate 0.005
Momentum Rate 0.4
Nesterov Momentum False
Optimiser sgd
Padding causal

Table 4.32: Most important hyperparameter configurations for the initial CNN result.
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Figure 4.30: Validation history of first initial CNN-result in the football use case.

characteristic for model overfitting, the decrease in accuracy and increase in loss is
marginal. It can be argued that the model overfits in this case, although it may be a
good indication of robustness, as the loss is not increasing at a higher rate.

Second, for the last validation fold, the training history is unusually different,
compared to the average throughout the other folds. There may be multiple reasons
for this. Arguably, one explanation relates to the dataset partitioning, which is a
pattern we observed earlier as well. Recall from the depression use case, where it
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was evident that this problem was because of multimodality in the data distribution.

Overall, while it is difficult to describe which hyperparameters best explain the
training progress here precisely, the outcome proves as a reasonable basis for further
exploration. The convergence in loss after the first 25 epochs is desirable, in which
the accuracy is almost constant during the same training period.

R1: first result

We try a different kernel size and increase the length to five, from four in the initial
experiment. With a dilation rate of three, similar to earlier, the overall size of the
sliding window is 15.
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Figure 4.31: Validation history of first optimised CNN-result in the football use case.

The training history shown in Figure 4.31 shows a slowly converging model. Across
most folds, the decrease in validation loss is almost linear, while the accuracy is
constant. While the data distribution and partitioning may explain the outlier fold,
this is not evident in terms of training convergence. One hypothesis, however, is how
saturated gradients or bad optimiser can contribute to slower convergence. Multiple
factors can determine this, such as initial weights of the model, the optimiser itself,
the learning rate or momentum. To further explore one of them, we look at various
configurations on the momentum rate in the second experiment. Not all options are
tried, as justified earlier, and some outcomes are found in Appendix B.5.

Similar to earlier results and LSTM predictions, there is an evident drop in specificity,
the true negative rate. The CNN, similar to the LSTM, shows the inability to capture
the imbalances in the dataset efficiently. More specifically, this means that the model
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ACC PREC SPEC REC F1 MCC

mean 0.892 0.909 0.139 0.993 0.946 0.222
std 0.033 0.024 0.055 0.008 0.015 0.245
min 0.838 0.875 0.072 0.977 0.924 -0.034
max 0.956 0.959 0.253 1.000 0.978 0.666

Table 4.33: Overview of weighted average metrics across all folds for first optimised CNN
result.

fails to capture the cases where stress, mood, fatigue and soreness scores are lower
than three. As we have discussed, this may be due to score imbalance, although one
way to approach the problem is to include additional features that better describe
these output labels. On the other hand, the recall and F1-score are 0.993 and 0.946,
which shows that the CNN also efficiently classifies instances that have scores higher
than three.

R2: second result
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Figure 4.32: Validation history of second optimised CNN-result in the football use case.

In this experiment, the momentum rate is reduced from 0.4 to 0.2. Recall the
hypothesis proposed in the previous experiment, where model convergence may
be related to multiple factors. Although the loss convergence did decrease, the rate
was slower with some variations throughout the training progress. By adjusting the
momentum rate, the variations can be reduced, although the decrease in loss becomes
potentially slower.
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ACC PREC SPEC REC F1 MCC

mean 0.887 0.907 0.134 0.994 0.945 0.147
std 0.038 0.024 0.055 0.010 0.016 0.249
min 0.811 0.875 0.072 0.974 0.921 -0.026
max 0.956 0.959 0.247 1.000 0.978 0.585

Table 4.34: Overview of weighted average metrics across all folds for second optimised CNN
result.

Figure 4.32 further underpins this hypothesis. The convergence of the validation
loss is almost linear, similar to earlier, although the variations are reduced notably.
However, it looks like there are marginal differences between both results, which
can also be seen in Table 4.34. Despite fewer variations, the overall progression is
almost the same for both experiments. The validation accuracy remains constant,
whereas the only difference in terms of loss convergence is smaller variations across
all validation folds.

Summary of results for CNN

Result R1 R2
Metric (sd)

ACC 0.892 (0.033) 0.887 (0.038)
PREC 0.909 (0.024) 0.907 (0.024)
SPEC 0.139 (0.055) 0.134 (0.055)
REC 0.993 (0.008) 0.994 (0.010)
F1 0.946 (0.015) 0.945 (0.016)
MCC 0.222 (0.245) 0.147 (0.249)

Table 4.35: Summary of weighted average evaluations for all optimised CNN results.
Standard deviations are shown in parantheses.

The summarised results are seen in Table 4.35. Similar to the LSTM experiments,
the evaluations are consistent across experiments, in which the most notable aspect
is related to the drop in specificity. Overall, we experience the CNN to be flexible
and faster to train, although finding optimal hyperparameters became a tedious
task throughout the experiments. Moreover, the differences across experiments
are marginal, similar to what was experienced with the LSTM. Arguably, this
implies a certain consistency in the dataset, although the drop in specificity indicates
otherwise.
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Figure 4.33: Total training time in seconds for each of the models across all results and
validation folds.

4.3.4 A comparison on LSTM and CNN

On model training time and convergence

To illustrate the experiences when training the LSTM and CNN, we analyse the
training time used in seconds, as shown in Figure 4.33. Similar to what we
emphasised in earlier use cases, the time used in seconds varies between system,
testbed and hyperparameters. However, in most cases, the CNN is approximately
16 times faster, when comparing the training time in seconds, and achieves similar
results to the LSTM, if not marginally better.

Comparing the used seconds in context with the number of training iterations,
both models use almost the same amount of epochs to learn the data distribution.
However, a common factor throughout training is a slower convergence, where the
progress was almost constant for both models. There was no observed increase
in validation accuracy, and we discussed certain aspects of how to overcome this
problem and what the reasons may be.

One general problem is potentially a bad optimiser resulting in slower convergence.
To test this hypothesis, we tried adjusting the momentum in our CNN-experiments.
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Additional experiments highlighted in Appendix B.5 also showcase different opti-
misers that were tried, although many of them did not improve on the best results.
Nevertheless, despite lower convergence for both models during training, they both
perform equally well in terms of multilabel classification. The LSTM uses more time
to train compared to the CNN, in which the latter achieves similar results as well.
However, another shortcoming of both models is the ability to capture the class im-
balance efficiently.

On predictive performance and class imbalance

As discussed earlier, the results of the CNN are promising when compared to the
LSTM, which uses far more time to train and achieves almost the same results.
However, the most notable aspect for both models is their inability to predict the
negative class efficiently. This is seen in the high drop in specificity across all
experiments, as shown in Figure 4.34.
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Figure 4.34: A summary overview of the weighted averages across all results which were
presented earlier. Top figure shows the metrics for each result, whereas the bottom shows the
standard deviation.

Recall from the problem formulation earlier, that the output distribution represents
a binary outcome of whether a reported score is less than or larger than a given
threshold, which is three by default. A low specificity implies that the negative class
for each target variable, defined as scores below three, are not captured efficiently. To
further understand which variables the models are most sensitive to, the outcome can
be analysed through the generated confusion matrices.
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(a) First result LSTM R1 (b) Second result LSTM R2
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Figure 4.35: Confusion matrices for best performing models across all experiments. For each
experiment there are four confusion matrices, each representing a binary confusion matrix
for a given variable. The negative class "not present" implies that scores below three are not
present for a given variable, whereas the positive class "present" explains the presence of a
score higher than three, the default threshold.

From Figure 4.35, it is seen that predictions on both the LSTM and CNN classify
mood and stress scores effectively. The class present for each variable indicates the
presence of a score greater than three, whereas the class not present indicate the
presence of scores less than three. While mood and stress scores in most cases are
above three, scores on soreness and fatigue are usually lower than this threshold and
are misclassified often.
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The number of misclassifications for the best performing models is higher for the
CNN than the LSTM. The CNN is more confident on higher scores on soreness and
fatigue in cases where the scores are actually lower (more sore and more tired)8. On
the other hand, the best performing LSTM-model is better at classifying the soreness
variable, although the same pattern is observed for the presence of higher fatigue
scores, where the actual scores are below three. Apart from the best-performing
models, however, the general misclassification patterns are seen for the LSTM-models
as well. The best-performing model may thus not be the most representative, but
showcases how the models are sensitive to the class imbalance in the multilabel
classification context.

4.3.5 Summary of experiments

For the football use case, there are two LSTM-experiments and two CNN-
experiments. Notably, each experiment can be explored further through more hyper-
parameter optimisation. However, without extensive efforts, we show that both mod-
els are applicable for time-series classification in the multilabel classification context.
Furthermore, the results suggest that the differences in both models are marginal, al-
though the CNN uses far less time on the current testbed. The CNN was easier to
train as well, which lowered the threshold for trying more hyperparameter configu-
rations than for the LSTM, despite this becoming a tedious task over time because of
minor improvements.

This became a recurring pattern throughout the experiments. Regardless of the
model, there were marginal improvements, or close to no improvements at all. The
overall convergence in the loss was very slow in which the validation accuracy
remained constant throughout the training. Although multiple options were tried
out, the best results achieved were discussed. Arguably, one reason is whether this
might be related to the optimisation of the network itself. Some configurations
were tried out for the CNN, like optimiser and momentum, all highlighted in
Appendix B.5. However, with no significant improvements, it is difficult to conclude
what may be the reason. There is no substantial comparison baseline, and it is
emphasised that further experiments can be performed to explore this problem.

4.4 Discussion

This section covers a general level discussion based on the findings for each use case.
Although we presented a comparison and discussion on a use case level, this section
highlights the main concerns and aspects. The discussion divides into three concerns,
which focus on the observations made throughout the experiments. The first concern
relates to model training time, whereas the second concern addresses the importance
of data and how the models learn the data distribution. The last concern relates to the
architectural differences of each model.

8The variable meanings are explained in more detail by Wiik et al. [94] in their paper on predicting
peak readiness-to-train.
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4.4.1 Faster training times

One common factor, experienced throughout the experiments relates to the model
training time. Earlier, the model training times were discussed for each use case.
Although used time varies between system testbed and configurations used, it
explains the complexity and efficiency of the models to some extent. From Figure 4.36
we see how the CNN uses far less time than the LSTM across all experiments,
apart from the EV use case being an exception. Moreover, on an average level, the
differences in CNN training times are approximately ten times lower.
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Figure 4.36: The figure shows the average training times across the validation folds for all
experiments in this thesis. The x-axis denotes a given experiment whereas the y-axis denotes
the total time used in seconds. It can be seen that the CNN in most cases is more than ten
times faster to train.

Arguably, the exception of the EV use case can be explained by the dataset size, which
is smaller compared to the two other datasets used in this thesis. Additionally, recall
that for this particular use case, various configurations for on-line training were tried,
with batch sizes of one. Although this is potentially one factor, a motivation for future
experiments is to look at the effect of the dataset size for both architectures.

Further on, these observations with training times are not entirely surprising.
LSTM includes multiple gating mechanisms requiring additional computational
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effort. While one LSTM-unit has three different gates and an increased number of
operations, a CNN layer only involves the convolution operation. The latter functions
as a sliding window and enables faster computations. Although the networks
implemented in this thesis are sparse, this further showcase the potential use case
of CNNs for time series in terms of model efficiency.

4.4.2 The importance of data

During model training, we observed multiple outcomes that affected the model
performance and learning the data distribution. First, one observation was related
to particular outlier partitions in the training process during cross-validation. These
were identified by higher validation loss and lower validation accuracy than usual
in addition to lower evaluations compared to other partitions. Moreover, the training
stopped far earlier than usual on these occasions. The problem was especially evident
for the depression dataset in which it was shown how the models failed to capture
multimodalities in the depression dataset. Another concern, however, is whether the
selected input features are descriptive enough to learn the data distribution efficiently.

While the depression dataset is a univariate time-series with only one variable, the
outliers were observed for the football use case as well, which includes multiple
variables in the dataset. Although the data analysis did not present evidence of
multimodalities in readiness scores, the problem of outlier partitions and input
features is more probable for the football use case. Arguably, with less descriptive
input features, it may pose increased confusion in the classification task. For the
football use case, this was not explored extensively due to time limitations, but in
future studies for similar domains, this should be taken into consideration. Lastly, for
the EV use case, the problem of multimodality or selection of input features is difficult
to determine. Because the dataset is relatively small for machine learning tasks, the
results only showcase the potential improvement for future studies.

Nevertheless, to further understand the adaptability to the underlying data distribu-
tion, we can look at the number of training iterations used. Figure 4.37 shows the
average number of epochs for each experiment across all use cases. Overall, the fig-
ure shows that the LSTM uses less training iterations in learning all distributions.
However, the number of iterations used depends on the dataset and differences are
marginal for the football use case, although the pattern is the same. Notably, compar-
ing this with the training time used in seconds, there is a trade-off between absolute
time used and time used for learning the underlying distribution. Whether this holds
for larger models and datasets is uncertain, but the results suggest that regardless
of use case, training time and training iterations differs notably between CNN and
LSTM. However, this should be tested for larger models and datasets as well, to un-
derstand further if the effect is proportional to dataset size and model size.

4.4.3 The effect of model architecture

On uni-dimensional data, the convolution operation in CNNs can be interpreted
as a moving average, where the kernel size and dilation rate determine the total
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Figure 4.37: The figure illustrate average number of epochs used across cross-validation, for
all experiments in all use cases. While the maximum training iterations are set to 300, both
models terminates training earlier because of early stopping.

window size. In our findings, we observe how CNN performs as well as the LSTM
across all use cases. Arguably, while hyperparameter configurations may explain one
aspect of it, the effect of the sliding window mechanism in CNN can also explain its
performance gains. Hypothetically, convolving the kernel across the input enables the
CNN to capture localised patterns by only looking at a subset of the whole sequence.
Compared to LSTM, which captures temporal dependencies through its gates, our
CNN seems to do the same through the number of filters used, where each filter
helps in detecting various localised patterns.

In general terms, it can be argued that the number of output units for each LSTM-
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cell constrains the LSTM to what information can be exposed, because of its output
gate. For the CNN, the same number of output units will thus expose all information
in the output map, because there is no gated control. As a result of this, we
see the performance is highly comparable to the LSTM and can draw certain
parallels to the GRU-architecture, which provides the same mechanism. However,
the hypothesis that CNN provides a similar feature is difficult to confirm without
further experiments. We did not explore various configurations on the hidden layers,
nodes in hidden layers (filters), kernel sizes and sequence windows extensively to
sufficiently draw such a conclusion.

4.4.4 Application areas and use cases

The overall findings suggest that CNN should be the preferred model because of
faster training and almost equal performance. However, in the context of each use
case, the model selection should not only depend on this trade-off.

Depression detection - It is evident that multimodalities affect both models, but the
LSTM is more robust in learning the data distribution. Overall the MCC is also higher
compared to our CNN, indicating that LSTM is more robust in detecting various
latent features. This suggests that there are underlying patterns in the dataset which
CNN fails to capture equally well, in which we suggest LSTM should be used. In the
case of depression classification, which is a critical task in mental health treatment,
it is more important in having a robust model, rather than a model that can be
trained faster. However, with a more diverse dataset or the addition of discriminative
features, we believe CNN would achieve more robust results as well, and it should
not be disregarded.

Energy prediction - The overall performance of both models are very similar. CNN is
slightly better overall, with a positive MCC, but both models perform equally well
across all use experiments. While the EV dataset is relatively small for machine
learning tasks, it is difficult to determine the preferred approach for this domain.
However, we strongly emphasise that CNN should be the preferred method for
experimental methods, to gain faster knowledge on the effects of neural network
modelling for time-series classification in EV energy optimisation. Overall, similar to
the depression dataset, we believe a larger and more diverse dataset with more EVs
can improve our baselines further. In that case, the effects of LSTM can be explored
to optimise the classification task further, because, as we have seen, it is more robust
in learning underlying data distributions.

Football readiness classification - We see no distinct trade-off in model performance.
The LSTM is marginally better, although it achieves somewhat better MCC-scores. We
evidently see that the trade-off in training time for CNN is beneficial, as it achieves
almost the same results as LSTM. Arguably, CNN should be the preferred approach
for classifying readiness of football players, but another topic of discussion is how
variations in the reported scores could potentially improve the classification task
for both models, particularly the specificity score. Recall the presented confusion
matrices for our best performing models, where we saw how CNN had increased
misclassifications of soreness and fatigue classes. We believe the misclassifications
can be attributed to the absence in higher variations in reported scores for soreness
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and fatigue. More specifically, we know when players feel fresh and great, but
not the other way, when they feel sore and tired, which implies a particular class
imbalance. In a way, these attributes can be captured by including additional
descriptive features that explain soreness and fatigue better. Moreover, it may
potentially also improve the specificity rate, hypothetically, if the model is good at
finding the underlying patterns. Overall, our multilabel classification approach can
help coaches to determine readiness based on multiple descriptive output features,
which can be extended further to many categorical variables. To determine this
effectively, however, we emphasise that additional features should be used, which
are more discriminative towards each variable.

4.5 Summary and overview of all experiments
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Figure 4.38: The figure illustrates a summary of all experiments in this thesis, with average
metric evaluations for each experiment. The notation U1, U2 and U3 denotes the use cases
depression, energy and football, respectively. A tabular overview of this figure is found in
Appendix B.1.

Figure 4.38 summarises all the experiments in this thesis. In this chapter, we first
outlined a general level experiment design, presented and discussed the experiment
evaluation methods. Further on, we discussed all experiments on a use case level.
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For each use case, the background on the domain was discussed before doing data
analysis. Moreover, we looked at the experiment design and discussed different
choices made. Lastly, we presented the results for LSTM and CNN followed by a
discussion of both models for each use case and a summary. Finally, a general level
discussion was provided, based on the observations made across all experiments and
use cases.

The results suggest that uni-dimensional CNNs can be applied to time-series
classification and outperform LSTM, both in terms of predictive performance and
total training time used. However, two concerns were drawn between both models.
First, there is particularly difficult to avoid the curse of multimodality, emphasising
that the importance of data quality is crucial for training. Second, there is a trade-
off between the time used for training and the number of training iterations used in
learning the data distribution. We see that despite CNN using less time to train, our
sparse network uses more time to fit the data distribution efficiently. Hence, the CNN
achieves marginally better results to the LSTM in many cases, but the latter terminates
faster and learns better.

Furthermore, while various hyperparameter configurations were tried, it was
seemingly difficult to optimise the models extensively. In many cases, throughout
all experiments, the CNN was more sensitive to hyperparameters than the LSTM and
achieved similar results across experiments. The LSTM, however, was more robust to
different settings and was experienced as easier to train in this context, although time
used was longer than the CNN.
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Chapter 5

Conclusion

5.1 Summary

The aim of this thesis focused on comparing uni-dimensional CNN against LSTM for
time-series classification, which is one type of sequential problems. The goal was to
answer how CNNs can be applied to temporal domains like time-series classification
because traditional methods are often used [2, 82]. In the domain of time-series
modelling, the application of neural networks is not extensive. However, research
in recent years show that both RNN-based models [28, 44, 83, 84] and CNN-based
models [12, 28, 56, 78, 93] are applicable, but the comparative studies in the field are
very limited.

To further understand the effects of CNN on time-series classification and provide a
systematic comparative overview against LSTM, we performed multiple experiments
across three use cases. First, we tried to classify depressed patients based on
motor activity levels and reported results which improved existing baselines for both
models. Second, we predicted energy demand for EVs and showed that there is
a high potential for improvements. Our results are promising baselines for future
studies. Third, we predicted readiness of football players, by formulating a multilabel
classification problem. The results were promising, indicating the predictive systems
that output a set of qualitative features could be used to understand the readiness
of football players better. The overall process of performing these experiments
was divided into a three-step process. We started with data analysis for each use
case to form hypotheses that motivated for initial hyperparameter configurations.
Further on, we ran initial experiments to observe how our models learned the data
distributions and how they responded to various settings. At last, the most promising
hyperparameter configurations were chosen to be explored further for model fine-
tuning.

To perform these experiments, we implemented an experimental framework that
automatically configures and builds our models, runs experiments and stores results.
We used the Python programming language for implementation and the Keras
framework for neural network model development. We developed it to be specific
to our use case, but general enough to be extensible for future comparative studies.
Additional modules or models can be integrated into our framework with minor
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adjustments. Overall, we separated our system into three parts, namely configuration
and initialisation, experiment pipeline and evaluation pipeline. In essence, the
experiment pipeline enables auto-execution of a given experiment based on a
configuration file in JSON-format. This includes data-formatting, model selection,
cross-validation splitting, model building and compilation and lastly, training.
Further on, the evaluation pipeline keeps track of training history, evaluations such
as confusion matrices and metrics, various statistics, and saves this information to
persistent storage along with the trained models and used configurations.

5.2 Contributions

Conclusively, we have developed an experimental framework as summarised above
and presented a comparative study of LSTM and uni-dimensional CNN on three
use cases, with their potential application areas in their specific domains. Lastly, we
explored the following research question, as highlighted in Section 1.2:

RQ: How do CNNs compare to LSTMs for time-series classification?

Further on, recall that we derived two sub-questions to understand how both
architectures perform in the context of our classification tasks:

1. SQ1: How does LSTM perform for time-series classification?

2. SQ2: How does CNN perform for time-series classification?

First, the application of LSTM to the time-series domain is not entirely unknown
[28, 83]. We show that LSTM can be applied to various tasks in terms of time-
series classification, further extending existing research. We classify depressed
patients based on motor activity levels and achieve an accuracy of 82%±~1.5% across
all experiments, whereas we report an MCC of 0.59 for the optimal experiment,
improving existing baselines of 73% and 0.43, respectively. Further on, we achieve an
averaged F1-score of 0.82, across all cross-evaluations, whereas the current baseline
is 0.72. For the second use case, we classify energy demand for EVs, showcasing
potential improvement areas for this particular task. Overall, our LSTM achieves an
accuracy of 60% and an MCC of -0.01. We report precision of 0.40, a specificity of
0.41, 0.58 in recall and 0.40 in F1-score. The results are promising, considering how
the dataset size is small and less diverse in terms of the number of EVs. For the last
use case, on the other hand, we see a notable performance for multilabel classification
tasks. We achieve accuracy scores of almost 90% and F1-scores of 0.95. The recall
is closer to 0.99 for all experiments, but we see deviations in MCC and specificity,
possibly related to imbalances in the PMSys dataset for reported scores.

Further on, CNN is arguably more efficient than LSTM and performs the classification
tasks equally well in many experiments. For the depression use case, we report
an accuracy of 80%±~2% across all experiments. Overall, CNN also improves the
current baseline accuracy of 73%. The best reported MCC is 0.54, showing an
improvement on the MCC baseline of 0.43. F1-scores are also consistent around
0.80 across all experiments. Further on, for the second use case with energy demand
classification, the results are relatively similar to LSTM. We report accuracy, F1 and
MCC to 60%, 0.49 and 0.04, respectively. Lastly, despite performing marginally lower
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than LSTM for the football use case, we report accuracy scores and F1-scores of 89%
and 0.95, respectively, whereas the best MCC is 0.22 and the worst is 0.15 for our
two optimised experiments. Overall, we achieve the same performance as LSTM and
experience the CNN as much faster to train. CNN is efficiently applicable to the time-
series classification domain and should be the preferred approach for faster training.

Overall, to answer our research question, our findings can be attributed to three
important aspects of this comparative study. First, our results suggest that CNN
performs the classification tasks equally well as LSTM, or better at its best, regardless
of use case. Second, what is more notable, is that CNN is faster to train for two of
three use cases. For classifying depressed patients, it is on average 46 times faster
than LSTM when comparing seconds used for training, whereas for classification of
football readiness, CNN is 35 times faster. Lastly, while this efficiency in training
times is distinct, we see that LSTM is more robust and learns underlying data
distributions faster. CNN uses more training iterations and converges slower. The
variations are minimal, but at its best, the LSTM is three times more efficient on
average in terms of the number of training iterations used. Comparably, the speedup
factor for CNN in terms of training time is notably higher, as opposed to the speedup
factor in training iterations for LSTM.

5.3 Future work

Preferably, we would like to look at five different improvement areas. First, to
improve model performance and optimisation, the model fine-tuning should resort to
automatic hyperparameter optimisation methods. Second, other architectures should
be explored and compared, like ResNet and GRU, which should provide better
comparative baselines. Third, the effect of dataset size and variation was notable in
many experiments, and for future work, we would like to include larger and diverse
datasets and also evaluate against other time-series datasets. Fourth, we would like
to explore the effects of CNN-specific architecture elements through ablation studies
and analyse the effect of the convolution operation, dilated convolutions and different
kernel sizes. At last, an interesting aspect we want to try for future work is to
represent time-series as two-dimensional topologies and look at the effect of CNNs
from another perspective with state-of-the-art CNNs and transfer learning.

Experiment with automatic hyperparameter optimisation

We suggest that future studies should use automatic hyperparameter optimisation
to fine-tune the models. Model optimisation and fine-tuning were manual in our
comparisons and an overall tedious task. With automatic optimisation of data-related
and network-related hyperparameters, the performance of the models can potentially
be improved. We observed that across all use cases, the importance of data affected
model performance. Hence, finding optimal data-related hyperparameters could be
difficult as well, as it depends on the variations and size of the dataset. Overall, these
hyperparameters can be explored through automatic hyperparameter optimisation
methods, like Bayesian Optimisation, Grid Search or Random Search.
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Experiment with deeper networks and other architectures

We limited our study to a comparison of shallow LSTM and CNN and showed
promising empirical evidence for CNN as a preferred architecture over LSTM for
time-series classification. We emphasise that more complex and potentially deeper
models should be tested to evaluate whether our findings hold for larger models.
Additionally, other architectures should be explored as well. One approach is to
explore different architectures for LSTM and CNN through methods such as Neural
Architecture Search (NAS) [96]. Various other models should also be tried, like GRU
or ResNet, to understand their effects.

Train with larger, diverse datasets and other datasets

While we tested on three different datasets, we experienced curiosities that affected
model performance in various ways. We observed multimodality and outliers,
bad model convergence and misclassifications between specific labels in various
experiments. Arguably, researchers should improve these problems by including
increased variations, more qualitative and discriminative features and in general,
larger datasets. Although data itself is one shortcoming, these suggestions will
potentially strengthen future comparative studies and possibly prevent biased
models as well. Furthermore, LSTM and CNN should also be evaluated on various
other time-series datasets as well, to provide stronger baselines and comparisons.

Comparing architecture elements and conducting ablation studies

In our discussions, we analysed training times, training history, model convergence
and effect of various hyperparameters. However, one part left out of our study is
the effect of CNN-specific elements. For instance, we did not perform extensive
studies on convolutions, dilated convolutions or explore the effects of pooling layers.
Although we tried different dilation rates and kernel sizes, it is uncertain whether
these had any significant impact on the model performance. Future work should
look into architecture-specific elements or perform ablation studies [60]. This includes
analysing the effects of convolutions, various kernel sizes and effect of dilated
convolutions in CNNs. Not only is this important in understanding how CNNs
can be preferable over LSTM, or RNNs in general, but their underlying and most
important mechanism, the convolution operation, can be understood in detail in the
context of time-series analysis.

Two-dimensional CNNs and transfer learning

While we explored the effect of uni-dimensional CNN, there are no existing state-
of-the-art models in the field of time-series classification, similar to that in the field
of computer vision. For future work, an interesting aspect is to encode time-series
as images, which enables the possibility of applying state-of-the-art computer vision
algorithms and transfer learning.
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Appendix A

Background

Appendices related to the background chapter.

A.1 Overfitting in machine learning

The appendix gives a simply illustration of the concept of overfitting in machine
learning and statistical learning in general.
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Figure A.1: Illustration of the concept of overfitting. The example shows how a function is fit
to a set of observations, where the fit is either too generalised (underfitting), just right (good
fit) and too specific (overfitting). Although the figure shows this for a simple case with X and
Y, it is conceptually same for multi-dimensional spaces with many variables.
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Appendix B

Experiments

Appendices related to the experiment chapter.

B.1 Depression: second initial CNN result

Appendix B.1.1, the first appendix shows a moving average of one of the initial
results, which showed promising training progression. Further on, Appendix B.1.2
show the confusion matrix for the best performing model.

B.1.1 Moving average of training history

B.1.2 Confusion matrix for best performing model

B.2 LSTM: additional experiments in energy prediction use
case

The appendix shows additional LSTM experiments that were performed in the energy
prediction use case, with various other configurations that were explored but not
presented.

B.3 CNN: additional experiments in energy prediction use
case

The appendix shows additional CNN experiments in the energy prediction use
case, which were not presented in the thesis, but explored with various other
configurations.
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Figure B.1: The figure shows a 10-window moving average of the training history. Although
being one of the initial results, the outcome shows that many of the folds converged well, both
in terms of validation loss and accuracy, with promising results. The best performing model
in this case, which did not overfit, achieved an accuracy of 0.91 and MCC of 0.84.

B.4 CNN: additional experiments in football use case

The appendix gives an overview over three additional CNN experiments conducted
for the football use case, where different optimisers, sequence window lengths and
kernel sizes were tried.

B.5 Table summary of all experiments

The appendix gives a tabular overview of all experiments in the thesis.



Figure B.2: The figure shows the confusion matrix for the best performing model that did
not overfit. As described in the above appendix, the convergence for this particular fold is
desirable, in which the model achieved an accuracy of 0.91 and MCC of 0.84.
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(a) 10 in batch size and sequence window of 30.
Momentum is 0.1
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(b) 1 in batch size and sequence window of 30.
Momentum is 0.1.
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(c) 8 in batch size and sequence window of 14.
Momentum is 0.2.
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(d) 10 in batch size and sequence window of 14.
Momentum is 0.2.

1.6

1.8

2.0

2.2

2.4

Va
lid

at
io

n 
lo

ss

0 5 10 15 20 25
Epoch

0.30

0.35

0.40

0.45

0.50

Va
lid

at
io

n 
ac

cu
ra

cy

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6
Fold 7
Fold 8
Fold 9
Fold 10

(e) 10 in batch size and sequence window of 21.
Momentum is 0.2 with Nesterov momentum.
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(f) 15 in batch size and sequence window of 21.
Momentum is 0.1.

Figure B.3: The figures show the validation history for 6 different LSTM-results in the EV
use case. All experiments used a learning rate of 0.001, Nadam as optimiser, dropout rate of
0.4 and ReLU as activation function.
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(a) Batch size of 5, sequence window of 30,
dilaration rate of 1 and kernel size of 5. SGD is
used with a dropout of 0.2 and ReLU activation.
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(b) Batch size of 5, sequence window of 30,
dilation rate of 3 and kernel size of 8. SGD is

used with a dropout of 0.2 and ReLU activation.
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(c) Batch size of 5, sequence window of 21,
dilation rate of 2 and kernel size of 4. Nadam is
used with a dropout of 0.3 and ReLU activation.
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(d) Batch size of 1, sequence window of 30,
dilation rate of 2 and kernel size of 3. Nadam is
used with a dropout of 0.3 and Tanh activation.
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(e) Batch size of 10, sequence window of 21,
dilation rate of 1 and kernel size of 3. SGD is

used with a dropout of 0.4 and ReLU activation.
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(f) Batch size of 5, sequence window of 30,
dilation rate of 3 and kernel size of 5. SGD is

used with a dropout of 0.2 and ReLU activation.

Figure B.4: The figures show the training history for 6 different initial CNN-results in the
EV use case, where multiple configurations of hyperparameters were combined through trial
and error. In many occasions, the loss convergence was ideal, although the classification task
and accuracy convergence could be improved. All experiments used a momentum of 0.3 and
learning rate of 0.001.
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(a) RMSprop-optimiser and sequence window of
30. Momentum of 0.4, kernel size of 4 and

dilation rate of 3.
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(b) SGD-optimiser and momentum at 0.2.
Sequence window of 35, kernel size of 4 and

dilation rate set to 3.
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(c) Nadam-optimiser, momentum of 0.4, kernel
size of 3, dilation rate of 1 and sequence window

of 14.

Figure B.5: The figures show the validation history for three different CNN-experiments in
the football use case. While the results were not comparable to those presented in the thesis, the
figures show the training progress on various hyperparameter configurations. All experiments
used a learning rate of 0.001 and a batch size set to 15.



Metric (sd) ACC F1 MCC PREC REC SPEC
Experiment

Depression CNN R1 0.820 (0.117) 0.819 (0.137) 0.345 (0.236) 0.867 (0.088) 0.820 (0.117) 0.635 (0.162)
Depression CNN R2 0.780 (0.202) 0.785 (0.219) 0.542 (0.364) 0.874 (0.116) 0.780 (0.202) 0.813 (0.226)
Depression CNN R3 0.816 (0.145) 0.811 (0.145) 0.411 (0.312) 0.844 (0.122) 0.816 (0.145) 0.629 (0.334)
Depression CNN R4 0.801 (0.145) 0.791 (0.187) 0.422 (0.366) 0.813 (0.209) 0.801 (0.145) 0.711 (0.288)
Depression LSTM R1 0.820 (0.167) 0.806 (0.175) 0.486 (0.424) 0.814 (0.172) 0.820 (0.167) 0.653 (0.302)
Depression LSTM R2 0.788 (0.178) 0.792 (0.185) 0.594 (0.258) 0.887 (0.089) 0.788 (0.178) 0.858 (0.152)
Depression LSTM R3 0.818 (0.130) 0.823 (0.124) 0.504 (0.294) 0.858 (0.113) 0.818 (0.130) 0.789 (0.167)
Energy CNN R1 0.600 (0.141) 0.484 (0.178) 0.039 (0.039) 0.428 (0.191) 0.600 (0.141) 0.425 (0.149)
Energy CNN R2 0.601 (0.133) 0.489 (0.143) 0.038 (0.048) 0.449 (0.135) 0.601 (0.133) 0.426 (0.157)
Energy LSTM R1 0.582 (0.200) 0.466 (0.211) -0.012 (0.026) 0.399 (0.199) 0.582 (0.200) 0.410 (0.190)
Football CNN R1 0.892 (0.033) 0.946 (0.015) 0.222 (0.245) 0.909 (0.024) 0.993 (0.008) 0.139 (0.055)
Football CNN R2 0.887 (0.038) 0.945 (0.016) 0.147 (0.249) 0.907 (0.024) 0.994 (0.010) 0.134 (0.055)
Football LSTM R1 0.899 (0.028) 0.947 (0.016) 0.283 (0.218) 0.915 (0.020) 0.985 (0.017) 0.152 (0.059)
Football LSTM R2 0.900 (0.030) 0.948 (0.017) 0.277 (0.203) 0.915 (0.022) 0.986 (0.014) 0.155 (0.057)

Table B.1: The table shows a compact summary of all experiments, with the average metric
evaluations and corresponding standard deviations in parantheses.





Appendix C

Methodology

Appendices related to the methodology chapter.

C.1 Example of model building in Keras

A generic example of how to build a model in Keras by stacking layers.

1 from keras . l a y e r s . core import Dense , Dropout
2 from keras . l a y e r s . r e c u r r e n t import LSTM
3 from keras . models import Sequent ia l
4
5 # Model s p e c i f i c a t i o n s
6 model = Sequent ia l ( )
7 c l a s s e s = 10
8 l a y e r s = [ 1 5 0 , 75 , 50 , 25]
9

10 # S t a c k l a y e r s wi th u n i t s
11 for num_units in l a y e r s :
12 model . add (LSTM( num_units ) )
13 model . add ( Dropout ( 0 . 2 ) )
14
15 # Add d e n s e l a y e r and c o m p i l e model
16 model . add ( Dense ( c l a s s e s , a c t i v a t i o n = ’ softmax ’ ) )
17 model . compile ( l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ , opt imizer= ’ sgd ’ )
18
19 # Model f i t t i n g and p r e d i c t i o n , assuming X and y i s d e f i n e d
20 model . f i t (X , y )
21 model . p r e d i c t ( X_ tes t )

Listing C.1: The listing showcases an example of how to build a simple model in Keras
by stacking 4 hidden LSTM-units with dropout in each layer and lastly a dense layer for
optimisation, similar to our models in this the thesis.
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C.2 Example of Pandas data manipulation operations

A generic example of various data manipulation operations in Pandas.

1 import pandas as pd
2
3 # Read Pandas d a t a f r a m e , example on 1 p a t i e n t from d e p r e s s i o n d a t a s e t
4 df = pd . read_csv ( ’ c o n t r o l _ 1 . csv ’ , index_col= ’ timestamp ’ , parse_dates=True )
5
6 # Resampl ing s e r i e s : h o u r l y a v e r a g e
7 df = df . resample ( ’H’ ) . mean ( )
8
9 # F i l l i n g m i s s i n g v a l u e s : eg . wi th a v e r a g e

10 df = df . f i l l n a ( df . mean ( ) )
11
12 # F i l l i n g m i s s i n g v a l u e s : eg . wi th 24−hour r o l l i n g a v e r a g e
13 r o l l i n g _ a v e r a g e = df . r o l l i n g (window=24) . mean ( )
14 df = df . f i l l n a ( r o l l i n g _ a v e r a g e )
15
16 # V i s u a l i s i n g d a t a f r a m e s
17 df . p l o t ( )
18
19 # Grouping s e r i e s : by h o u r l y a c t i v i t y
20 h o u r l y _ a c t i v i t y = df . groupby ( by=df . index . hour )
21
22 # D e s c r i p t i v e s t a t i s t i c s : on h o u r l y a c t i v i t y
23 h o u r l y _ a c t i v i t y . descr ibe ( )

Listing C.2: The listing shows an example of how Pandas can be used for time-series. Details
regarding different operations like resampling and grouping is intuitively abstracted away in
Pandas. By default, this example assumes there is only one column in the dataset, although in
the case of multiple variables/columns, it is possible to specify which to perform an operation
on.

C.3 Configuration file used in thesis

The appendix shows the content of the configuration file used in the thesis, where we
set model architecture, use case and various other configurations before running the
experiment- and evaluation pipeline.

C.4 Execution script used in thesis

The execution script used to load configurations, build models and run the
experiment- and evaluation pipeline.



1 {
2 " _usecase " : " f o o t b a l l " ,
3 " _experiment_folder " : " e x p _ f o o t b a l l " ,
4 " data " : {
5 " batches " : 5 ,
6 " c l a s s e s " : 4 ,
7 " epoch " : 300 ,
8 " e s _ l o s s " : true ,
9 " es_pat ience " : 10 ,

10 " f o l d s " : 10 ,
11 " future_window " : 1 ,
12 " resample " : "D" ,
13 " score_ threshold " : 3 ,
14 " t e s t _ s i z e " : 0 . 1 ,
15 " v a l _ s i z e " : 0 . 1 ,
16 "window " : 30
17 } ,
18 " network " : {
19 " a c t i v a t i o n " : " r e l u " ,
20 " a c t i v a t i o n _ r e c " : " tanh " ,
21 " a r c h i t e c t u r e " : " cnn " ,
22 " d i l a t i o n _ r a t e " : 3 ,
23 " dropout " : 0 . 3 ,
24 " k e r n e l _ s i z e " : 5 ,
25 " l a y e r s " : [
26 150 ,
27 75 ,
28 50 ,
29 25
30 ] ,
31 " l e a r n i n g _ r a t e " : 0 . 0 0 1 ,
32 "momentum " : 0 . 0 0 1 ,
33 " nesterov " : f a l s e ,
34 " opt imiser " : " sgd " ,
35 " padding " : " causa l " ,
36 " sigmoid_threshold " : 0 . 5 ,
37 " s t r i d e s " : 1
38 }
39 }

Listing C.3: Overview of configuration file used in thesis. It is a JSON-file, storing
configurations in key/value pairs and is separated into data and network, for data-related
and network-related parameters, mostly for convenience.



...

13 import usecases . energy as energy
14 import usecases . depression as depression
15 import usecases . f o o t b a l l as f o o t b a l l

...

104 i f __name__ == ’ __main__ ’ :
105 comments = input ( ’=== Comments ===\n> ’ )
106 p l o t t i n g . s e t _ s t y l e s ( )
107 conf ig = Config ( comments )
108 conf ig . read_conf ig ( )
109 conf ig . v a l i d a t e ( )
110 data = None
111
112 i f conf ig . usecase == conf ig . DEPRESSION :
113 dp = depression . Predic tDepress ion ( data_path= ’ . . / data/depression ’ )
114 data = dp . read_data ( conf ig . data [ ’window ’ ] , conf ig . data [ ’ resample ’ ] )
115 e l i f conf ig . usecase == conf ig .FOOTBALL:
116 fp = f o o t b a l l . F o o t b a l l P r e d i c t i o n ( data_path= ’ . . / data/ f o o t b a l l ’ )
117 data = fp . read_data ( conf ig . data [ ’window ’ ] )
118 e lse :
119 ep = energy . EnergyPredict ion ( data_path= ’ . . / data/energy ’ )
120 data = ep . read_data ( conf ig . data [ ’window ’ ] )
121
122 print ( ’| Running { } . . . ’ . format ( conf ig . network [ ’ a r c h i t e c t u r e ’ ] ) )
123 main ( config , data )
124 print ( ’| ’ , 40 * ’− ’ )

Listing C.4: Subset of run-script used in thesis to illustrate a general level overview on
loading configurations and running experiments.
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