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Abstract

In this thesis, the effectiveness of three types of Recurrent Neural Networks (RNNs)
- Basic RNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) -
are examined for Electrocardiogram (ECG) signal classification. We categorize ECG
signals into five classes: normal, myocardial infarction, ST elevation, conduction
disorder, and hypertrophy, with a thorough process of data preparation ensuring
optimal conditions for model training and evaluation.

This study aimed to compare the performance of three types of recurrent
neural networks (RNNs) - basic RNN, Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU) - in classifying electrocardiogram (ECG) signals into
five categories: normal (NORM), myocardial infarction (MI), ST elevation (STTC),
conduction disorder (CD), and hypertrophy (HYP). The research was confined
to the analysis of the PTB-XL dataset, a large publicly available ECG dataset The
performance of each model is evaluated based on several metrics such as accuracy,
precision, recall, and F1 score, with a separate dataset used to assess their ability
to generalize. The LSTM model emerges as the most effective, demonstrating the
highest accuracy (87.89%), precision, recall, and F1 score. The methodology involved
preprocessing and preparation of the PTB-XL dataset, designing and implementing
the RNN, LSTM, and GRU model architectures, and training, validating, and testing
these models. The performance of the models was evaluated using a separate
validation dataset after each training epoch and tested on a separate test dataset.

Further insights are obtained from an analysis of confusion matrices. The basic
RNN model, though proficient in classifying normal ECG patterns, struggled with
the classification of abnormal classes, representing a significant limitation in a clinical
context. Both the LSTM and GRU models, on the other hand, were more capable in
identifying abnormal cases and differentiating between classes, with the LSTM model
demonstrating a more balanced performance.

In conclusion, LSTM models proved to be the most effective for ECG signal
classification among the three types of RNNs evaluated. However, there is potential
for further improvement and optimization, including hyperparameter tuning,
ensemble methods, and the integration of other types of neural networks like
Convolutional Neural Networks (CNNs). Future work could also investigate
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cost-sensitive learning or other methods to minimize misclassification.Overall,
the adoption of advanced machine learning models, particularly LSTM, could
significantly improve the speed and accuracy of cardiac disorder diagnosis,
ultimately leading to better patient outcomes.

Despite LSTM’s superior performance, the potential for future research to
explore model optimizations and integrations with other neural network types, such
as Convolutional Neural Networks (CNNs), is recognized. The study concludes
by highlighting the importance of considering the high cost of misclassification in
clinical settings, suggesting that future work should focus on cost-sensitive learning.
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Chapter 1

Introduction

ECGs are vital tools in the diagnosis and monitoring of heart-related conditions. By
capturing the electrical activity of the heart over time, these diagnostic tests provide
crucial insights into the heart’s functioning, enabling healthcare professionals to
identify and manage various cardiac issues. As the accuracy of ECG analysis is of
paramount importance, researchers have continually sought to develop and refine
techniques for interpreting these complex signals. In recent years, machine learning
and deep learning algorithms have emerged as promising tools for enhancing the
efficiency and precision of ECG analysis. Among these, Recurrent Neural Networks
(RNNs) have gained particular attention due to their ability to model sequential
data. This study aims to compare the performance of different RNN architectures
in analyzing ECG data, with a focus on their applicability and limitations. In this
introduction, I will discuss the background and significance of ECG analysis in
healthcare, provide an overview of machine learning and deep learning techniques
used in ECG analysis, and introduce the role of RNNs in this context. Finally, I will
outline the objectives and scope of this study and giva a summary of all the chapter.

1.1 Motivation

The motivation for this master’s thesis is to address the limitations of existing ECG
analysis methods and explore the potential of deep learning techniques in improving
cardiac care. The manual interpretation of ECGs by clinicians is time-consuming and
prone to errors, leading to misdiagnosis and delayed treatment. The development of
automated and accurate ECG analysis methods can aid clinicians in the diagnosis
and management of cardiac conditions, ultimately improving patient outcomes.
LSTM RNN models have shown promising results in other time series data analysis
tasks and have the ability to capture long-term dependencies in data, making them
potentially suitable for ECG analysis.
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1.2 Background on Electrocardiogram (ECG) and Its

Significance in Healthcare

The ECG is a crucial, non-invasive medical tool utilized extensively in diagnosing
various cardiac diseases. It measures the electrical activity generated by the heart
muscle as it contracts and relaxes. The ECG has become indispensable in healthcare,
playing a pivotal role in diagnosing and monitoring conditions like arrhythmias,
myocardial infarctions, and heart failure [21]. ECG signals comprise distinct
waveforms—P wave, QRS complex, T wave—that signify the depolarization and
repolarization processes in the heart’s atria and ventricles (see Figure 1.1 for a typical
ECG signal) [43]. Analysis of these waveforms and their patterns can provide critical
insights into the heart’s functioning and potential abnormalities. Nevertheless,
accurate ECG interpretation is a complex task that demands substantial expertise
[10]. Even seasoned professionals may occasionally find it challenging to identify
subtle patterns or anomalies within ECG data [16]. Inaccurate interpretations can
result in delayed or erroneous diagnoses, potentially leading to serious repercussions
for patient health outcomes [13]. Therefore, there is a significant demand for more
sophisticated ECG analysis techniques that can enhance diagnostic accuracy and
efficiency [2].

Figure 1.1: ECG signal and its features
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1.3 Importance of Accurate ECG Analysis

The precise analysis of ECG signals plays an indispensable role in healthcare,
significantly affecting patient outcomes and healthcare resource allocation. One of
the primary benefits of accurate ECG analysis lies in its capacity for early detection
of acute cardiac conditions. For instance, a timely diagnosed myocardial infarction
(heart attack) can enable immediate interventions, significantly reducing the risk of
severe complications or death [15]. Similarly, ECG analysis can facilitate the rapid
identification of arrhythmias, which are often asymptomatic but can lead to serious
conditions such as stroke or cardiac arrest if left untreated [35]. Beyond the acute
setting, ECG analysis is also invaluable in managing chronic cardiac conditions.
Proper interpretation can help track the progression of diseases like heart failure,
guide treatment decisions, and monitor the effectiveness of interventions [31]. Lastly,
precise ECG interpretation can enhance the efficiency of healthcare systems by
reducing unnecessary diagnostic tests or treatments. Misinterpretations can lead
to false-positive results, prompting additional testing, inappropriate therapies, and
increased healthcare costs, not to mention the psychological distress for patients
[36]. However, accurate ECG analysis can be challenging due to the complexity and
variability of ECG signals. Figure 1.2, for example, shows a sample ECG plotted on
a grid sheet. Subtle anomalies in these waveforms, which could indicate potential
pathologies, might be difficult to discern without extensive training and experience.

Figure 1.2: ECG sample
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1.4 Overview of Machine Learning and Deep Learning

Techniques for ECG Analysis

Over the past few decades, numerous machine learning and deep learning techniques
have been developed to enhance the analysis of ECG data. Machine learning
algorithms, such as support vector machines, decision trees, and k-nearest neighbors,
have shown promise in detecting and classifying various cardiac conditions.
However, traditional machine learning techniques often require manual feature
extraction and selection, which can be time-consuming and prone to bias.

Deep learning, a subset of machine learning, has emerged as a more powerful
approach to ECG analysis. Deep learning algorithms, such as convolutional neural
networks (CNNs) and RNN, have demonstrated remarkable performance in various
tasks, including image and speech recognition, natural language processing, and
biomedical signal processing. Unlike traditional machine learning techniques, deep
learning algorithms automatically learn relevant features from raw data, reducing the
need for manual intervention and improving the overall accuracy and efficiency of
the analysis.

1.5 Role of Recurrent Neural Networks in ECG Analysis

RNNs are a class of deep learning algorithms specifically designed for modeling
sequential data. Unlike feedforward neural networks, RNNs possess recurrent
connections, allowing them to maintain a hidden state that can store information
from previous time steps. This inherent ability to capture temporal dependencies
makes RNNs particularly well-suited for ECG analysis, as ECG signals are time-series
data with complex temporal patterns.

Several RNN architectures have been proposed and explored in the context of
ECG analysis, including vanilla RNNs, Long Short-term Memory (LSTM) networks,
and Gated recurrent unit s (GRUs). LSTMs and GRUs, in particular, have shown
significant potential in addressing the "vanishing gradient" problem that can affect
the training of vanilla RNNs, leading to more stable and accurate models.

By leveraging the capabilities of RNNs, researchers have achieved impressive
results in various ECG-related tasks, such as arrhythmia detection, myocardial
infarction identification, and heart failure prediction. These advances highlight the
potential of RNNs as a powerful tool for improving the accuracy and efficiency of
ECG analysis.

4



1.6 Objectives and Scope of the Study

Which (RNN) architecture—LSTM, GRU, or standard RNN—provides the most
effective performance in classifying ECG signals into the five main diagnostic
categories within the PTB-XL dataset. The targeted ECG categories include ’NORM’
(Normal), ’MI’ (Myocardial Infarction), ’STTC’ (ST-T Change), ’CD’ (Conduction
Disorder), and ’HYP’ (Hypertrophy).

To address this research question, the following objectives have been set:

1. Develop and implement LSTM, GRU, and standard RNN models for ECG
signal analysis, maintaining the same model architecture and hyperparameters
across all models to facilitate fair comparisons.

2. Train each of the three models using the same training procedure, encom-
passing data preprocessing, batch size, learning rate, optimizer, and other relev-
ant hyperparameters, to ensure that performance differences can be attributed
to the model architectures rather than the training process.

3. Evaluate the performance of the LSTM, GRU, and RNN models on the test
dataset using standard evaluation metrics, such as accuracy, precision, recall,
and F1 score, to enable an objective comparison of the models’ effectiveness in
ECG analysis.

4. Analyze and discuss the strengths and weaknesses of each RNN model with
respect to their ability to classify ECG signals accurately, highlighting any
notable variations in model structure or behavior.

5. Determine the most suitable RNN model for ECG analysis based on the
comparative evaluation of their performance and provide recommendations
for future research and development in this field.

By achieving these objectives, the study aims to contribute valuable insights into the
effectiveness of LSTM, GRU, and RNN models for ECG analysis, potentially guiding
future research and development in this area.

1.7 Summary of chapters

Chapter 2 Background

The chapter provides an overview of machine learning techniques and their
application in ECG analysis. It starts by introducing machine learning and its
various subfields, such as supervised learning, unsupervised learning, reinforcement
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learning, feature selection, and deep learning. The focus then shifts to RNNs,
specifically LSTM and GRUs, explaining their architecture, advantages, and
challenges. The chapter further discusses performance metrics for evaluating neural
networks, including accuracy, precision, recall, and F1-score. It also highlights the
vanishing gradient problem, a significant challenge faced by traditional RNNs, and
presents solutions like LSTMs and GRUs. Additionally, traditional ECG analysis
methods are discussed, along with their limitations. The chapter concludes by
emphasizing the potential of machine learning and deep learning approaches in ECG
analysis, showcasing studies that have achieved high accuracy in ECG classification
using LSTM, RNN, and GRU models.

Chapter 3: Methodology

this chapter presents the methodology employed in the research study to achieve the
objectives outlined. The chapter begins with an overview of the data preparation
process, including the use of the PTB-XL dataset for training and evaluating (RNN)
models. The specific steps involved in data loading and preprocessing are discussed.
The chapter then focuses on the architecture and workflow for ECG classification
using RNN, LSTM, and GRU models. The data preprocessing steps common to all
models are explained, followed by a detailed description of the RNN, LSTM, and
GRU architectures. The training, evaluation, and prediction workflow for these
models are also explained. Next, the chapter describes the procedures followed
for model training, validation, and testing. The training process involves iterative
updates of model weights using loss and optimization functions. The models’
performance is evaluated on a validation set to monitor progress and prevent
overfitting. Performance metrics such as accuracy, precision, recall, and F1 score are
computed to assess the models’ performance. The chapter concludes by discussing
the evaluation of model performance, with a focus on the use of confusion matrices
in this process. The entire methodology, from data preparation to model evaluation,
is comprehensively described, providing a clear understanding of the research
approach.

Chapter 4: Results

This chapter presents the results and analysis of three distinct RNN models: LSTM,
GRU, and the basic RNN, in the classification of ECG signals from five specific
categories using the PTB-XL dataset. The targeted ECG categories are ’NORM’,
’MI’, ’STTC’, ’CD’, and ’HYP’. The models’ performances are evaluated using
various metrics, including accuracy, F1 score, precision, and recall, on both the
validation and test sets. The basic RNN model achieved an accuracy of 76.08% on
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the validation set, but its F1 score, precision, and recall were relatively low. This
indicates that the basic RNN model struggled to achieve a good balance between
precision and recall, potentially due to its inherent limitations in capturing longer-
term dependencies in the ECG data. The LSTM model demonstrated improved
performance, achieving an accuracy of 87.89% on the validation set. It exhibited
a better balance between precision and recall, indicating its suitability for ECG
classification tasks. The GRU model also showed promising results, with an accuracy
of 86.84% on the validation set. When evaluated on the test set, the LSTM model
maintained its superior performance, achieving an accuracy of 87.49% and an F1
score of 0.6589. The GRU model achieved an accuracy of 86.12% on the test set,
demonstrating its generalization ability. The comparison of confusion matrices
revealed that the basic RNN model struggled to differentiate between normal and
abnormal ECG patterns, leading to misclassifications. The LSTM model showed a
better balance between true positive and true negative rates across all classes, while
the GRU model demonstrated high true positive rates for abnormal classes but had
lower true negative rates for normal patterns. Overall, the results indicate that the
LSTM model outperformed the basic RNN and GRU models in ECG classification,
showing promise for the accurate identification of abnormal heart conditions.
However, further exploration of hyperparameters and model refinement could
lead to additional improvements in the RNN models’ performance. By comparing
and analyzing the performance of the three RNN architectures, this study provides
valuable insights into the most effective model for ECG classification, enhancing the
understanding of ECG analysis and its potential applications in clinical settings.

Chapter 5: Discussion

This chapter highlights the results and analysis of a study comparing the effective-
ness of three RNN models – RNN, LSTM, and GRU – in classifying ECG signals us-
ing the PTB-XL dataset. The LSTM and GRU models outperform the RNN model
in terms of accuracy, F1 score, precision, and recall. The architectural differences
between these models explain the variations in performance, with LSTM and GRU
models designed to address the vanishing gradient problem inherent in traditional
RNNs. And suggest some potential improvements through feature extraction, pre-
processing techniques, domain knowledge integration, hybrid architectures, data
augmentation, transfer learning, ensemble methods, and attention mechanisms. Re-
searchers should consider trade-offs between model performance, complexity, and
computational requirements.
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Chapter 2

Background

Machine learning (ML) is a vibrant subfield of artificial intelligence (AI) that revolves
around the creation of algorithms and methods that empower computers to learn
from and make data-driven predictions or decisions [26] Its versatility has led to
applications in a myriad of domains, such as natural language processing, computer
vision, robotics, and biomedical signal analysis [5].

Among the various types of machine learning, supervised learning is quite
prominent. In this approach, a model is trained using a labeled dataset, where each
data point has a corresponding target output [5]. The primary objective is to learn
a function that maps input features to output labels, enabling the model to make
predictions on new, unseen data. Notable supervised learning algorithms include
linear regression, logistic regression, support vector machines (SVM), and neural
networks[12].

Contrastingly, unsupervised learning tackles data that lacks labeled outputs.
The main goal here is to uncover hidden patterns or structures in the data, such as
through clustering or dimensionality reduction [5]. Some popular unsupervised
learning algorithms are k-means clustering, hierarchical clustering, and principal
component analysis (PCA).

Reinforcement learning is another critical category of machine learning. It is
centered around training agents to make decisions based on rewards and penalties
received from their environment [41]. Reinforcement learning algorithms like
Q-learning and deep Q-networks have been employed to develop agents that
can master complex tasks, ranging from playing games to controlling robots, by
optimizing actions to maximize cumulative rewards.

Feature selection and extraction are vital in machine learning, as they help
identify and represent the most relevant information within the data [14]. Techniques
for feature selection encompass filter methods, wrapper methods, and embedded
methods, while feature extraction techniques include linear transformations, such
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as PCA, and non-linear transformations like kernel PCA or autoencoders [12].
Model evaluation is an indispensable aspect of machine learning. It allows

researchers to assess their models’ performance and select the most suitable one for
a specific task [20]. Common metrics for evaluating classification models include
accuracy, precision, recall, F1-score, and the area under the receiver operating
characteristic (ROC) curve. For regression tasks, metrics such as mean squared error,
mean absolute error, and R-squared are widely used.

Deep learning, a subfield of machine learning, has garnered significant attention
in recent years, owing to its success in addressing complex problems [22]. Deep
learning models, particularly convolutional neural networks (CNNs) and RNNs,
have exhibited remarkable performance in tasks like image classification, speech
recognition, and natural language understanding.

2.1 Recurrent neural networks (RNN)

RNNs are a class of artificial neural networks designed to process sequential data by
maintaining an internal state that captures information from previous time steps. The
concept of time steps is fundamental to RNNs and represents the sequential order
in which data points are processed. Each time step corresponds to one moment of
time where the network receives a new input and produces an output. The sequential
nature of time steps allows the network to maintain a form of "memory" by passing
information from one time step to the next, thus enabling the modeling of temporal
dependencies [24].

A standard RNN is composed of an input layer, one or more hidden layers, and
an output layer, see figure 2.1. At each time step t, the input layer receives the current
data point x(t), and the hidden layer updates its state h(t) based on both the current
input x(t) and the previous hidden state h(t − 1). This process can be described by
the equation:

h(t) = f (h(t − 1), x(t))

where f is a non-linear activation function that defines the relationship between
the current input, the previous hidden state, and the current hidden state [12]. The
output layer then generates the prediction or classification for the current time step,
represented by:

y(t) = g(h(t))

where g is another non-linear function that maps the current hidden state to the
output.

Despite the advantages of RNNs in processing sequential data, they have
some limitations. One major issue faced by traditional RNNs is the vanishing
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Figure 2.1: Arichitecture of basic RNN

gradient problem, which hampers their capacity to learn long-range dependencies
[29]. This issue arises when the gradients of the loss function with respect to the
weights become very small, causing the weights to stop updating during training.
Consequently, the RNN fails to capture the relevant information from earlier time
steps, limiting its effectiveness in tasks that require learning long-term dependencies.

Another challenge with RNNs is their computational complexity, especially
when dealing with large datasets or long sequences. The inherently sequential nature
of RNNs makes it difficult to parallelize their computations, resulting in slower
training times compared to other neural network architectures, such as convolutional
neural networks (CNNs) [34].

To address the vanishing gradient problem, more advanced RNN architectures
have been developed, such as LSTM networks [18] and GRUs [7]. These advanced
RNN models incorporate gating mechanisms that help maintain longer dependencies
and overcome the vanishing gradient issue.

RNNs provide a powerful framework for modeling sequential data and
capturing temporal dependencies. However, they face some limitations, such as
the vanishing gradient problem and computational complexity. Advanced RNN
architectures like LSTMs and GRUs have been developed to address these challenges
and have demonstrated improved performance in various time-series data analysis
tasks [8].

2.1.1 The vanishing gradient problem

The vanishing gradient problem is a significant issue that often arises during the
training of artificial neural networks, particularly RNNs [29]. This problem occurs
due to the nature of backpropagation, which is the algorithm used to update the
network’s weights during training.

Backpropagation works by calculating the gradient of the loss function with
respect to the network’s weights, and then using this gradient to update the weights.
The gradient essentially represents the direction and magnitude of change required in
the weights to reduce the loss. The weights are then updated by subtracting a fraction
(determined by the learning rate) of the gradient from the current weights.

In the context of RNNs, the weight updates are performed by an algorithm
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known as Backpropagation Through Time (BPTT), which unrolls the recurrent
network over time and applies backpropagation [12].

However, during this process, when the activation function of the network’s
neurons is a function like the sigmoid or the hyperbolic tangent, the gradients can
become very small. This is because the derivatives of these functions are in the range
of (0, 1) and (-1, 1) respectively, and when multiplied during backpropagation, can
result in an exponentially decreasing product. This is mathematically represented as
follows:

∆w = η · ∂E
∂w

= η · ∂E
∂y

· ∂y
∂net

· ∂net
∂w

where ∆w is the weight update, η is the learning rate, E is the error, y is the
output, net is the weighted sum of inputs, and w is the weight. The vanishing
gradients problem occurs when ∂E

∂y · ∂y
∂net becomes very small, causing ∆w to become

negligibly small. When this happens, the weights stop updating effectively, and the
learning process stalls.

This problem is particularly severe in RNNs as they need to capture long-
term dependencies in sequential data. When the gradient becomes very small, the
RNN fails to capture the influence of past information effectively, leading to poor
performance in tasks requiring long-term memory [3].

To mitigate the vanishing gradient problem, various methods have been
proposed. One widely adopted approach is the use of different activation functions,
such as the Rectified Linear Unit (ReLU), which does not saturate and thus reduces
the likelihood of vanishing gradients. Moreover, advanced RNN architectures
like LSTM [18] and GRUs [7] have gating mechanisms that allow for selective
memory updates and forgetting, thus enabling the network to maintain and access
information over long sequences without suffering significantly from the vanishing
gradient problem.

2.1.2 Performance Metrics for Neural Networks

Performance metrics play an integral role in evaluating and comparing the
effectiveness of neural networks across various tasks. They provide quantifiable
measures that reflect the model’s capability in making correct predictions and
its robustness in handling different data scenarios. For classification tasks, the
commonly used metrics include accuracy, precision, recall, and F1-score[39].

Accuracy is the simplest and most intuitive performance measure. It is the ratio
of the number of correct predictions to the total number of input samples. It works
well only if there are equal numbers of samples belonging to each class.
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Precision is the ratio of correctly predicted positive observations to the total
predicted positives. High precision relates to a low false-positive rate. It is also
known as Positive Predictive Value (PPV).

Recall (Sensitivity or True Positive Rate) is the ratio of correctly predicted
positive observations to the all observations in actual class. High recall relates to a
low false-negative rate.

F1-score is the weighted average of Precision and Recall. This score tries to find
the balance between precision and recall. It is a good metric to consider if there is
uneven class distribution, as it seeks a balance between precision and recall[6].

2.1.3 Evaluating Classification Models

Classification models often use confusion matrices to evaluate their performance[39].
A confusion matrix 2.1 is a tabular representation of Actual vs Predicted values. This
helps us to find the accuracy, precision, recall, and F1-score of a classification model.
The four quadrants of a confusion matrix are True Positives (TP), where the positive

Table 2.1: Confusion Matrix
Predicted Positive Predicted Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

class is correctly identified, True Negatives (TN), where the negative class is correctly
identified, False Positives (FP), where the negative class is incorrectly identified as
positive, and False Negatives (FN), where the positive class is incorrectly identified as
negative.

These values are used to calculate the metrics described above, and provide
a more granular understanding of how well a model is performing beyond simple
accuracy. For instance, in cases where false negatives are more damaging than false
positives, models with higher recall might be favored over models with higher
precision.

2.2 LSTM

LSTM models, introduced by Hochreiter and Schmidhuber [18], are a specific type
of RNN designed to address the vanishing gradient problem. LSTMs have the
ability to learn and remember long-range dependencies in time-series data, making
them particularly effective for tasks involving sequences with complex temporal
relationships, such as ECG analysis.
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2.2.1 LSTM Architecture

The LSTM architecture consists of memory cells, input gates, forget gates, and output
gates as illustrated in Figure 2.2. The memory cells are responsible for storing and
maintaining information over long time periods. Input, forget, and output gates are
used to control the flow of information into, out of, and within the memory cells.

Memory Cells

Memory cells are the core component of LSTM networks. Each memory cell
has an internal state, which can store information over long time periods. The
LSTM architecture allows for selective updates to the memory cell’s internal state,
preventing the vanishing gradient problem and enabling the model to learn long-
range dependencies. This selective update mechanism is achieved through the use of
gating units, which control the flow of information into and out of the memory cells.

Figure 2.2: LSTM Cell diagram

Input Gates

Input gates manage the introduction of new information into the memory cells.
They utilize a sigmoid activation function, which generates values between 0 and
1, representing the extent to which the incoming information can alter the memory
cell’s internal state. This gate operates in tandem with another gate that applies the
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hyperbolic tangent (tanh) activation function to incoming data, ensuring that input
values fall within a range of -1 to 1. This gating mechanism allows the input gate
to efficiently modulate the flow of information, permitting only relevant data to
influence the memory cell’s state. Mathematically, this can be expressed as:

it = σ(Wi · [ht−1, xt] + bi)

where it is the input gate’s output, σ represents the sigmoid function, Wi is the weight
matrix for the input gate, [ht−1, xt] is the concatenation of the previous hidden state
and the current input, and bi is the bias term.

Forget gates

Forget gates regulate the retention or removal of information from memory cells.
Like the input gates, forget gates use a sigmoid activation function to decide the
fraction of information to retain or discard from the memory cell’s internal state.
This feature allows LSTM models to "forget" irrelevant or outdated data, thereby
maintaining a more accurate internal representation of time-series data. The ability
to selectively remove information is especially valuable for tasks like ECG analysis,
where extraneous or outdated data can impede the model’s ability to identify
essential patterns and make precise predictions. This can be formulated as:

f t = σ(W f · [ht−1, xt] + b f ) (2.2)

Here, f t is the forget gate’s output, W f is the weight matrix for the forget gate,
and b f is the bias term.

Output gates

Output gates control the information flow from memory cells to the rest of the
network. They utilize a sigmoid activation function to decide how much information
from the memory cell’s internal state should be passed to the output of the LSTM
unit. The output gate also cooperates with a tanh function applied to the memory
cell’s internal state, ensuring the output values are within a range of -1 to 1.
This mechanism enables the output gate to decide which information from the
memory cell is most relevant for the current task, ensuring that only the most
pertinent features are passed on to the subsequent layers of the model. This can be
mathematically represented as:

ot = σ(Wo · [ht−1, xt] + bo) (2.3)

where ot is the output gate’s output, Wo is the weight matrix for the output gate, and
bo is the bias term.
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2.2.2 Training LSTMs

LSTMs can be trained using backpropagation through time (BPTT), similar to other
RNNs. However, due to their gating mechanisms, LSTMs can effectively learn long-
range dependencies without suffering from the vanishing gradient problem [18]. This
property allows LSTM models to efficiently capture the temporal dynamics of ECG
signals, making them a popular choice for ECG analysis tasks.

2.2.3 Regularization Techniques

To prevent overfitting and improve generalization in LSTM models, several
regularization techniques can be applied during the training process:

Dropout

Dropout, introduced by Srivastava et al[40], is a technique that randomly sets a
fraction of the input units to zero at each training update, preventing the model from
relying too heavily on any single input feature. This method can be applied to the
input, hidden, and output layers of the LSTM model, helping to reduce overfitting.

Weight Regularization

Weight regularization, such as L1 and L2 regularization, adds a penalty term to
the loss function based on the magnitude of the model’s weights. This penalty
term encourages the model to learn simpler representations and reduces the risk of
overfitting.

Gradient Clipping

Gradient clipping is a technique used to prevent the exploding gradient problem
by limiting the maximum value of the gradients during backpropagation. By
constraining the gradient’s magnitude, gradient clipping ensures that the model’s
parameters are updated in a controlled manner, preventing instability during
training.

2.3 GRU

GRUs, introduced by [7], are another type of RNN that effectively addresses the
vanishing gradient problem. Similar to LSTM networks, GRUs can learn long-range
dependencies in time-series data, which makes them suitable for ECG analysis tasks.
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2.3.1 GRU Architecture

The architecture of GRUs consists of hidden states and two types of gates: update
gates and reset gates as seen in figure 2.3. These gates control the flow of information
within the network and are responsible for determining the retention or removal
of information from the hidden states. The GRU’s simplified gating mechanism,
compared to LSTM, makes it computationally more efficient while still maintaining
the ability to learn long-range dependencies.

Figure 2.3: GRU architecture

Hidden States

Hidden states in GRUs are the primary component that allows the model to store
and retain information over time. The mechanism by which hidden states are
updated involves a balance between the current input and the previous hidden state,
controlled by the update and reset gates. This feature enables GRUs to learn and
remember long-term dependencies in time-series data, similar to LSTMs. The update
rule for hidden states in a GRU can be represented as:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (2.3)

In this equation, ht represents the new hidden state, zt is the output of the
update gate, ⊙ denotes element-wise multiplication, ht−1 is the previous hidden
state, and h̃t represents the candidate hidden state.

Update Gates

Update gates in GRUs are somewhat analogous to the combined role of input and
forget gates in LSTMs. They control the flow of information from the previous hidden
state to the current hidden state. These gates use a sigmoid activation function to
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produce values between 0 and 1, which determine the proportion of information
from the previous hidden state that will be retained in the current hidden state. By
doing so, the update gate effectively balances the importance of past information
(as represented by the previous hidden state) and the current input. This can be
mathematically represented as:

zt = σ(Wz · [ht−1, xt] + bz) (2.4)

In this equation, zt is the output of the update gate, σ denotes the sigmoid
function, Wz is the weight matrix for the update gate, [ht−1, xt] is the concatenation
of the previous hidden state and the current input, and bz is the bias term.

Reset Gates

Reset gates in GRUs control the extent to which the previous hidden state contributes
to the new hidden state. Like the update gate, the reset gate also uses a sigmoid
activation function. The role of the reset gate is to decide how much of the previous
hidden state will be combined with the current input to form the candidate
hidden state h̃t. This mechanism allows the GRU to discard irrelevant or outdated
information from the hidden state while incorporating new information from
the input. This selective information retention is critical for tasks such as ECG
analysis, where the model needs to recognize important patterns and make accurate
predictions. This can be mathematically represented as:

rt = σ(Wr · [ht−1, xt] + br) (2.5)

In this equation, rt is the output of the reset gate, Wr is the weight matrix for the
reset gate, and br is the bias term.

2.3.2 Training GRUs

Similar to LSTMs, GRUs can be trained using backpropagation through time (BPTT).
The gating mechanisms of GRUs help them learn long-range dependencies without
suffering from the vanishing gradient problem, making them effective for tasks
involving complex temporal relationships such as ECG analysis.

2.3.3 Regularization Techniques for GRUs

To prevent overfitting and improve generalization in GRU models, regularization
techniques such as dropout, weight regularization, and gradient clipping can be
applied during the training process. These techniques are similar to those used for
LSTMs and help in reducing overfitting and maintaining stable training.
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2.3.4 Applications of GRUs in ECG Analysis

GRU models have been successfully applied to various tasks in ECG analysis,
including arrhythmia classification, heartbeat segmentation, and anomaly detection.
GRUs have demonstrated competitive performance with LSTMs in these tasks, while
offering computational advantages due to their simplified gating mechanisms [8].

2.4 Comparison Basic RNN, LSTMs and GRUs

RNNs are a type of neural network designed for handling sequential data. They
are called "recurrent" because they perform the same task for every element of a
sequence, with the output being dependent on the previous computations[9]. This
gives RNNs a kind of memory to capture information about what has been calculated
so far.

However, RNNs have a significant problem called the vanishing gradient
problem, which causes them to forget information in long sequences, making it
difficult to learn long-term dependencies [3].

2.4.1 Basic RNNs

RNNs have an internal state that can process sequences of inputs, making them
suitable for time-series data like ECG signals. However, the main limitation of a
standard RNN lies in its inability to remember long-term dependencies due to issues
known as vanishing or exploding gradients during training. This problem can make
it hard for the RNN to learn from information that is many time steps back in the
input sequence.

2.4.2 Long Short-Term Memory

LSTM networks, a type of RNN, were created to combat the vanishing gradient
problem. They were introduced by Hochreiter Schmidhuber in 1997 [18]. LSTMs
contain information outside the normal flow of the recurrent network in a gated cell.
Using this structure, LSTMs are able to keep or delete information in the cell state
over long sequences, which effectively solves the vanishing gradient problem. LSTMs
are widely used and have proven to be very effective in practice, but they have a
relatively complex design and can be computationally expensive.
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2.4.3 Gated Recurrent Units

GRUs, introduced by Cho et al. in 2014 [7], are a simplified version of LSTMs. They
combine the forget and input gates of an LSTM into a single "update gate". They also
merge the cell state and hidden state, resulting in a simpler and more streamlined
model. GRUs have been shown to perform comparably to LSTMs on certain tasks
while being computationally more efficient due to their simpler structure. However,
their performance relative to LSTMs can vary depending on the specific task.

2.4.4 Comparison

In summary, while basic RNNs are theoretically capable of handling sequential
data, in practice, they struggle with long-term dependencies due to the vanishing
gradient problem. LSTMs handle this issue with their more complex design involving
a memory cell and gating mechanisms but at the cost of increased computational
expense. GRUs offer a compromise with a simpler design that still can manage
long-term dependencies more effectively than basic RNNs, but they may not
perform as well as LSTMs for tasks that benefit from LSTMs’ greater complexity
and expressiveness. GRUs and LSTMs are both effective at learning long-range
dependencies in time-series data, making them suitable for ECG analysis tasks.
While LSTMs have a more complex gating mechanism with three gates (input, forget,
and output gates), GRUs have only two gates (update and reset gates), making
them computationally more efficient. In practice, the choice between GRUs and
LSTMs often depends on the specific requirements of the task and the available
computational resources.

2.5 Brief History of ECG Analysis Techniques

Since the invention of the electrocardiogram in the early 20th century, numerous
techniques have been developed to analyze and interpret ECG signals. Early
ECG analysis primarily relied on visual inspection and manual measurements,
with clinicians examining the waveforms and identifying patterns that indicated
abnormalities. As the field progressed, researchers began to develop more advanced
methods for ECG analysis, such as mathematical and statistical approaches to
quantify waveform features and detect abnormalities.

In the 1970s and 1980s, the advent of digital computers enabled the develop-
ment of computerized ECG analysis algorithms. These early algorithms focused on
feature extraction, pattern recognition, and classification, utilizing techniques such
as Fourier analysis, wavelet transforms, and template matching. The introduction of
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Model RNN LSTM GRU
Architecture Simplest, with a

basic loop structure
More complex,

includes input, forget, and
output gates

Simplified version
of LSTM, combines input
and forget gates into an
update gate

Memory Short-term memory
due to vanishing gradient
problem

Long and short-
term memory, mitigates
the vanishing gradient
problem

Long and short-
term memory, mitigates
the vanishing gradient
problem

Computation Less computationally
demanding due to simpler
structure

Computationally
intensive due to complex
structure

Less computationally
intensive than LSTM due
to simplified structure

Performance Can struggle with
long sequences and
complex patterns

Generally performs
well on various tasks,
including long sequences

Performance similar
to LSTM on certain tasks,
but may vary depending
on specifics

Table 2.2: Comparison of RNN, LSTM, and GRU Models

machine learning in the 1990s and 2000s further advanced the field, enabling more
sophisticated and automated approaches to ECG analysis

2.6 Traditional ECG Analysis Methods and Limitations

Traditional ECG analysis methods can be broadly categorized into three groups:
time-domain methods, frequency-domain methods, and time-frequency methods
[23, 27, 28]. Time-domain methods involve the extraction of features directly from
the ECG signal in the time domain, such as amplitude, duration, and morphology
of the waveforms. Techniques in this category include QRS detection, template
matching, and statistical measures [28]. Frequency-domain methods, on the other
hand, focus on the analysis of ECG signals in the frequency domain, utilizing
techniques such as Fourier analysis and power spectral density estimation. Time-
frequency methods, such as wavelet analysis and short-time Fourier transform,
combine aspects of both time and frequency domain approaches, allowing for the
simultaneous analysis of ECG signals in both domains [23]. While these traditional
ECG analysis methods have made significant contributions to the field, they possess
several limitations. Manual interpretation of ECG data is time-consuming and
labor-intensive, especially in healthcare settings with a high volume of patients.
Traditional methods often struggle to capture complex and subtle patterns within
ECG signals, which can lead to misinterpretations and reduced diagnostic accuracy.
Traditional methods may not perform well when confronted with noisy or artifact-
ridden data, as they often rely on strict assumptions about signal characteristics. ECG
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interpretation requires a high level of skill and experience, leading to variability in
interpretation between different healthcare professionals. Human error is another
significant drawback. Misinterpretation of ECG data can lead to missed diagnoses,
inappropriate treatments, and potentially adverse patient outcomes. Moreover,
manual ECG analysis may not be as effective in identifying subtle or complex
abnormalities that a trained algorithm might pick up. Another limitation is that
traditional ECG analysis focuses on specific predefined features and intervals. This
approach may overlook other potentially relevant information in the ECG data. Also,
the conventional analysis methods mainly consider each ECG lead independently
and might miss important information that could be obtained from analyzing the
interactions between the leads.

2.7 Machine Learning and Deep Learning Approaches

in ECG Analysis

The advent of machine learning and deep learning has brought significant advances
in the field of ECG analysis. These methods utilize large amounts of data and
advanced algorithms to learn patterns and make predictions, making them well-
suited for tasks such as ECG signal analysis where traditional methods might
struggle due to the complexity of the signals. In a study conducted by Singh et
al[38], the performance of LSTM, RNN, and GRU models in beat classification was
investigated using the MIT-BIH Arrhythmia Database. The evaluation of these
models employed various metrics such as accuracy, specificity, and sensitivity,
derived from confusion matrices. The findings revealed that the LSTM model
achieved an accuracy of 88.1%, surpassing the performance of the RNN and GRU
models, which achieved accuracies of 85.4% and 82.5%, respectively. The study
concluded that LSTM models demonstrated superior performance in the binary
classification of ECG arrhythmias. Furthermore, the study suggested potential
enhancements through the exploration of multi-class classification, increased epochs
and neurons, as well as the utilization of Convolutional Neural Networks (CNNs).
Hannun et al. (2019) developed a 1D convolutional neural network model for ECG
signal classification. The model was trained on a large dataset of annotated ECG
signals and was able to identify 14 different types of cardiac arrhythmias with a high
degree of accuracy, showing promise for scalable and automated ECG analysis [17].
Recently, attention mechanisms, which allow models to focus on the most relevant
parts of the input for making predictions, have been integrated into deep learning
models for ECG analysis. For example, Yao et al. (2020) proposed an attention-based
time-incremental convolutional neural network for arrhythmia detection. The model
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showed improved performance over traditional CNNs by effectively capturing local
and global temporal dependencies in ECG signals [45]. Transfer learning, a technique
where a pre-trained model is used as a starting point for a related task, has also been
explored in ECG analysis. Kachuee et al. (2018) utilized transfer learning with a pre-
trained CNN model for ECG arrhythmia classification, showing that this approach
could effectively leverage knowledge from related tasks to improve performance [19].
In this paper [33], the authors propose a novel ECG classification algorithm designed
for continuous cardiac monitoring on wearable devices with limited processing
capacity. The algorithm employs a unique architecture that combines wavelet
transform and multiple LSTM recurrent neural networks. The researchers found
that their method outperformed previous ECG classification techniques in terms of
performance. Furthermore, it was demonstrated that the proposed algorithm can
meet the real-time execution requirements for continuous monitoring on wearable
devices RNNs, including LSTM and GRUs, are designed specifically to handle
sequential data and may be more suited to the task of ECG analysis. These models
can capture long-term dependencies in the data, an aspect that is important in ECG
signals where the relevance of a feature can depend on its context in the time series.
There is value in exploring the application of RNNs, LSTMs, and GRUs for the same
task. These models could potentially offer even better performance and uncover new
insights from ECG data due to their ability to process sequential information Overall,
machine learning and deep learning methods have shown significant potential in
ECG analysis, offering advantages in terms of accuracy, scalability, and the ability
to handle complex patterns in ECG signals. However, these methods also come with
their own set of challenges, such as the need for large amounts of annotated data and
the computational resources required for training and inference. Future research
in this field may focus on addressing these challenges and further improving the
performance of these models.

23



24



Chapter 3

Methodology

This chapter outlines the comprehensive methodology employed in this research
to achieve the objectives of this study. We begin by discussing the data preparation
process, which forms the foundation of any machine learning project. Following
this, we introduce the specifics of the RNN, LSTM, GRU model architectures that
were used for ECG classification. The workflow for training, validation, and testing
of these models is explained, which is critical for understanding how these models
learn and predict. Finally, the methodology for evaluating model performance, which
included the use of confusion matrices, is discussed.

In the following sections, each of these steps will be described in detail,
providing a comprehensive understanding of the methodology used in this study
to compare the performance of different RNN architectures for ECG analysis. In
Section 3.1, we discussed the data preparation process, which included an overview
of the PTB-XL dataset used in this study and the specific steps involved in data
loading and preprocessing. Section 3.2 covered the architecture and workflow for
the RNN, LSTM, and GRU models used for ECG classification. We began with an
overview of the data preprocessing steps common to all models, followed by a
detailed description of the basic RNN , LSTM, and GRU model architectures. This
section concluded with an explanation of the training, evaluation, and prediction
workflow for these models In Section 3.3, we provided a detailed description of the
procedures followed for model training, validation, and testing. Finally, Section 3.4
focused on the evaluation of model performance. We specifically discussed the role
and interpretation of confusion matrices in this process. By the end of this chapter,
a clear understanding of the complete methodology used in this research from data
preparation to model evaluation should be achieved.
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3.1 Data Preparation

In this study, we used the PTB-XL dataset[44][11], a large publicly available
electrocardiography dataset, for training and evaluating our RNN models.

3.1.1 PTB-XL Dataset

The PTB-XL dataset is a large publicly available electrocardiography dataset
containing 21799 clinical 12-lead ECG recordings sampled at either 100 Hz or
500 Hz. The dataset includes comprehensive metadata for each ECG recording,
such as patient demographics, ECG waveform data, and diagnostic labels. These
diagnostic labels are derived from a combination of manual annotations and
automated algorithms, offering a rich and diverse set of ground truth labels for
various cardiovascular conditions. See table 3.1 for information on the PTB-XL
dataset

Property PTB-XL Dataset
Number of Samples 21799

ECG Size 12 leads

Sample Rate 500 Hz and 100 Hz

Number of Classes 5

Number of Sub-Classes 71

Provided Ground Truth Yes

Age Range 17 - 95 years

Gender Distribution 52% Male, 48% Female

Table 3.1: Properties of the PTB-XL Dataset

For this study, a subset of the PTB-XL dataset was utilized to perform the
ECG analysis. he ECG signals in the dataset typically have a sample rate of 500 Hz.
However, to reduce computational complexity while preserving crucial information
in the ECG signals, the sample rate was downsampled to 100 Hz for this study. This
process involves reducing the number of samples per second in each ECG signal
without losing significant information, making the data more manageable for the
neural network models. The PTB-XL dataset comprises various diagnostic categories
or classes. The dataset has five main classes and up to 71 subclasses. However, this
study focuses on the main classes, reducing the complexity of the classification task
and focusing on more generalized ECG patterns. These main classes represent broad
categories of cardiac conditions, providing a robust benchmark for evaluating the
performance of the three RNN architectures. In figure 3.1 you can see an ECG sample
from the dataset.
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Figure 3.1: ECG sample from dataset

3.1.2 Data Loading and Preprocessing

The dataset was preprocessed using Python programming language and the
following libraries: pandas, NumPy, wfdb, and ast. The preprocessing steps included
loading the raw data, extracting the relevant information, and dividing the dataset
into training, validation, and test sets. Initially, the PTB-XL dataset was loaded using
the WFDB Python package, which allows for easy access to the ECG waveform data
and metadata. The label file was read using Pandas, a popular data manipulation
library in Python, and the scp_codes column was transformed to make it easier to
work with. Next, the raw ECG signal data was loaded using the load_raw_data
function, which takes the metadata DataFrame, sampling rate, and path as inputs.

Dataset Training Set Validation Set Testing Set
PTB-XL 8 1 1

Table 3.2: Dataset split rates for PTB-XL
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ECG Class % of
Samples in
Training

% of
Samples in
Validation

% of
Samples in
Testing

NORM 43.6% 43.8% 43.7%

MI 25.1% 25.0% 24.7%

STTC 24.0% 23.7% 24.2%

HYP 12.2% 11.9% 12.3%

CD 22.4% 22.6% 22.7%

Table 3.3: Distribution of samples in training, validation, and testing sets for
each ECG class

Diagnostic Class Aggregation

To aggregate the diagnostic labels, we first loaded the scp_statements.csv file,
which contains diagnostic class information for each SCP code. A custom function,
diagnostic_class, was defined to map each SCP code to its corresponding diagnostic
class. The diagnostic class was then applied to the scp_codes column of the
metadata DataFrame, creating a new column, target_class. Additionally, a column
target_class_len was added to represent the number of diagnostic classes for each
ECG recording. After aggregating the diagnostic classes, the data was divided into
training, validation, and test sets using stratified sampling to ensure a balanced
representation of the diagnostic classes in each set. The data was further organized
by creating separate DataFrames for the ECG signal data and metadata for each
partition.

Saving Data as CSV Files

The preprocessed data were saved as CSV files to facilitate further analysis. The
metadata and signal data were saved separately for each partition of the dataset.
The metadata files (e.g., train_meta.csv, valid_meta.csv, and test_meta.csv) contained
information such as age, sex, height, weight, nurse, site, and device, along with
diagnostic class labels. The signal files (e.g., train_signal.csv, valid_signal.csv,
and test_signal.csv) contained the ECG signal data for each ECG recording. The
signal files were saved in a long format, where each row corresponded to a single
time point in the ECG recording, and each column represented one of the 12 ECG
channels. An additional column, ecg_id, was used to associate the signal data with
the corresponding ECG recording in the metadata files. The ecg_id column was set
as an integer to ensure proper matching between the signal and metadata files. By
preprocessing the PTB-XL dataset, we ensured that the data was cleaned, organized,
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and ready for further analysis. This was crucial for the successful training and
evaluation of the RNN models for ECG analysis. The use of stratified sampling for
partitioning the dataset enabled us to maintain a balanced distribution of diagnostic
classes across the training, validation, and test sets, increasing the reliability of the
performance metrics computed during the model evaluation stage. Additionally,
the separate storage of metadata and signal data allowed for efficient data handling
during the model training process, reducing the memory overhead and ensuring
smooth execution of the training and evaluation pipelines.

PTBXLDatasetPreprocesser

The PTBXLDatasetPreprocesser class is a vital component of the code, responsible
for preparing the PTB-XL dataset for training and evaluation of the different RNN
models. It streamlines the preprocessing pipeline by handling missing values, scaling
numeric features, and encoding categorical features, ensuring that the data is in
a suitable format for model training and evaluation. This class contains several
methods to manage various aspects of data processing and transformation. The main
methods include: fit(): It learns the preprocessing parameters from the training data.
It identifies the class columns, handles missing values in the meta numeric columns,
fits the min-max scaler, and fits label encoders to the meta categorical columns.
transform(): This method applies the preprocessing pipeline to the given data. It
reshapes the input ECG signals, applies the min-max scaling to the meta numeric
columns, transforms the meta categorical columns using the fitted label encoders,
and processes the class targets. Additionally, the class provides save() and load()
methods to save and load the preprocessed data, including the learned preprocessing
parameters. In summary, the PTBXLDatasetPreprocesser class efficiently handles the
data preprocessing tasks, enabling the smooth training and evaluation of the RNN
models on the PTB-XL dataset.

ECGDataset

The ECGDataset class is a custom dataset class that inherits from PyTorch’s Dataset
class, enabling seamless integration with PyTorch’s data loading utilities. It is
designed to handle the ECG signals and associated metadata for model training and
evaluation. This class takes the following inputs during initialization:

• signals: A NumPy array or tensor containing the ECG signal data.

• num_metas: A DataFrame containing the numerical metadata.

• cat_metas: A DataFrame containing the categorical metadata.
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• class_labels: A DataFrame containing the class labels for the ECG signals.

3.2 Model Architectures and Workflow for ECG Classi-

fication

Here is the logical flow for each of your three models, RNN, LSTM, and GRU, for
ECG classification using the PTB-XL dataset. Figure 3.2 shows the model architecture
for my model.

3.2.1 Data preprocessing for all models

The ECG data, along with metadata, is preprocessed before being fed into the
models. This may involve normalization, filtering, or other transformations to make
the data suitable for training and testing. The data is then split into training and
testing sets and organized into a format that can be used by the models (i.e., PyTorch
DataLoader).

3.2.2 Basic RNNmodel Architecture

The RNN model is a Recurrent Neural Network that can handle sequential data like
ECG signals. The model has multiple layers, including an RNN layer for the ECG
signal data, a fully connected layer for numerical metadata, and an embedding layer
for categorical metadata. These layers are combined and passed through additional
fully connected layers before the final output layer, which uses a sigmoid activation
function to produce the probability of each class.

3.2.3 LSTM model architecture

The LSTM model is a Long Short-Term Memory network, a variant of the RNN
specifically designed to handle long-term dependencies in sequential data like ECG
signals. The model has multiple layers, including an LSTM layer for the ECG signal
data, a fully connected layer for numerical metadata, and an embedding layer for
categorical metadata. These layers are combined and passed through additional
fully connected layers before the final output layer, which uses a sigmoid activation
function to produce the probability of each class.
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3.2.4 GRU model architecture

The GRU model is a Gated Recurrent Unit network, another RNN variant designed
to handle long-term dependencies in sequential data like ECG signals. The model
has multiple layers, including a GRU layer for the ECG signal data, a fully connected
layer for numerical metadata, and an embedding layer for categorical metadata.
These layers are combined and passed through additional fully connected layers
before the final output layer, which uses a sigmoid activation function to produce the
probability of each class.

3.2.5 Training, evaluation and prediction

Each model is trained separately using the training set, with loss and optimization
functions being used to update the model weights iteratively. During training, the
model’s performance is periodically evaluated on the validation set to monitor
progress and adjust the model if necessary. This process continues until the model
converges or a specified number of epochs is reached. The use of the validation set
helps in preventing overfitting and selecting the best model iteration during the
training process. Each trained model is evaluated on the testing set. Performance
metrics such as accuracy, F1 score, precision, and recall are calculated to assess
the model’s performance. The trained models can be used to make predictions on
new, unseen ECG data by inputting the signal, numerical metadata, and categorical
metadata into the model.

3.3 Training, validation and testing

3.3.1 Training and validation

The LSTM, RNN, and GRU models are trained for 20 epochs on a computing system
comprising of an appropriate configuration of CPUs and GPUs, with adequate RAM
to handle the data and the models. This is enabled by the use of PyTorch, a popular
deep learning framework. The training data comprises ECG signal data, numerical
metadata, categorical metadata, and class labels. These are prepared for input into
the models through a custom function prepare_dataloader, that converts them into
a format suitable for input to deep learning models. The models are implemented in
PyTorch, taking advantage of its easy-to-use and efficient computation capabilities.
Each ECG signal is processed within a reasonable time frame, allowing for speedy
training and validation of the models. The models are optimized using the Adam
optimizer, which implements a variant of gradient descent optimization algorithm
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with momentum. The learning rate for the optimizer 1e-2, see figure 3.4 for all
hyperparameters. Other parameters of the optimizer are kept as default, as provided
by the PyTorch framework. The models are trained for 20 epochs, with each epoch
consisting of a forward pass and a backward pass of all training examples. The
models’ weights are updated in each epoch to minimize the binary cross-entropy
loss. A learning rate scheduler is employed, which adjusts the learning rate after a
predetermined number of epochs, to fine-tune the learning process. The performance
of the models is evaluated on a separate validation dataset after each training epoch.
This provides an unbiased estimate of the model’s performance and its ability to
generalize to unseen data. Several metrics, including accuracy, precision, recall, and
F1 score, are computed for each epoch to monitor the model’s performance. Upon
completion of training, the models’ weights are saved for future use or deployment.
To ensure efficient use of resources, the models and other large objects are deleted,
and the GPU memory is cleared. Throughout the training process, the wandb library
is used to log important metrics and monitor the performance of the models in real-
time. This tool allows for efficient tracking of the models’ training and validation
progress, offering an easy way to visualize the performance metrics.

3.3.2 Testing

Testing the Models: Upon training completion, the models’ performance was
evaluated using a separate test dataset. This test data was preprocessed in the same
manner as the training and validation data, ensuring consistency across all sets.
The test data was loaded using a data loader function, prepare_dataloader, which
handled the batching and shuffling of the data. The trained models, LSTM, GRU,
and RNN, were each loaded into the testing environment with their respective
parameters. In each iteration of the test data loader, the ECG signals and associated
metadata were passed through the model, and the predicted output was collected.
As in the training phase, the signals and metadata were converted to the appropriate
data types and moved to the correct device before being passed into the model. The
model output was then compared to the actual labels to compute the performance
metrics. These metrics included accuracy, precision, F1 score, and recall, all of which
provide a comprehensive understanding of the model’s performance. The predictions
were logged using the Weights Biases tool (WandB) for visualization and tracking
purposes. The function predict returned the predicted probabilities and actual labels,
allowing for further analysis of the model’s performance. The predicted probabilities
were then converted into binary predictions, which were used to calculate the
aforementioned performance metrics. The testing process was designed to evaluate
the performance of the trained models on unseen data. This is critical in assessing the
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models’ generalizability, which is a measure of how well they can predict outcomes
for new, unseen data based on what they have learned during training."

Hyperparameter Value
Learning Rate 1e-2

Step Size (for Learning Rate Scheduler) 2

Batch Size 128

Epochs 20

Hidden Size 128

Embedding Size 30

Dense Layer size 128

Number of GRU, LSTM, RNN Layers(only 1 type) 1

output size 5

Table 3.4: Hyperparameters used in the model training

3.4 Evaluation

To assess the performance of the RNN, LSTM, and GRU models in ECG classification
tasks, I employed confusion matrices as the evaluation metric. This metric enables us
to gain a comprehensive understanding of each model’s performance and to compare
their effectiveness in accurately classifying ECG signals.

3.4.1 confusion matrix

A confusion matrix is a table that represents the counts of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions for each class,
providing a more detailed analysis of the model’s performance across different
classes. In our study, we calculated confusion matrices for each class in the PTB-XL
dataset.

To generate the confusion matrices, we used the Scikit-learn library’s
confusion_matrix function. For each class, we calculated the confusion matrix and
normalized the values to represent the proportions of the total number of instances
for each true class. Using Matplotlib, we generated a visual representation of the
matrices in a 2x3 grid, displaying the normalized values for each cell in the matrices.

By analyzing the confusion matrices, we can identify the strengths and
weaknesses of each model in differentiating between classes. We can also determine
the instances where the models might have confused one class for another, leading to
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misclassifications. This information is valuable for understanding the limitations of
the models and can help inform future improvements.

Moreover, confusion matrices provide insights into the models’ sensitivity
and specificity, which are crucial metrics for evaluating classification performance,
especially in medical applications. Sensitivity, also known as recall, is the proportion
of true positive instances among all actual positive instances. It measures the ability
of the model to correctly identify positive instances. Specificity, on the other hand,
is the proportion of true negative instances among all actual negative instances. It
measures the ability of the model to correctly identify negative instances.

By employing confusion matrices as our evaluation metric, we can comprehens-
ively assess the performance of our RNN, LSTM, and GRU models in ECG classifica-
tion tasks and compare their effectiveness in classifying ECG signals accurately. The
insights gained from the confusion matrices can guide us in refining the models, op-
timizing their hyperparameters, and exploring alternative approaches to improve
their performance in future studies.
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Figure 3.2: architecture
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Chapter 4

Results

The primary objective of this master’s thesis is to investigate the effectiveness of
Recurrent Neural Network (RNN) models in classifying ECG signals from five
specific categories using the PTB-XL dataset. The targeted ECG categories include
’NORM’ (Normal), ’MI’ (Myocardial Infarction), ’STTC’ (ST-T Change), ’CD’
(Conduction Disorder), and ’HYP’ (Hypertrophy). This chapter presents the results
obtained from training and evaluating three distinct RNN architectures: Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and the basic RNN. The
models’ performances are compared and analyzed to determine the most suitable
RNN architecture for ECG classification tasks focusing on these five categories.
The training process was carried out for 20 epochs. To evaluate the model during
training, performance on the validation set was analyzed using various metrics such
as accuracy, F1 score, precision, and recall.

In this chapter, the results for each RNN model are presented separately,
starting with the RNN model, followed by the LSTM model, and finally the GRU
model. Each model’s performance is assessed using various metrics, including
accuracy, F1 score, precision, and recall, on both the training and test sets. The
results are then analyzed to determine the most effective RNN architecture for ECG
classification, taking into consideration the strengths and weaknesses of each model
and their ability to classify the five targeted ECG categories.

Model Accuracy precision recall f1 score

RNN 0.7608 0.01249 0.07079 0.09286

GRU 0.8684 0.8228 0.5514 0.6478

LSTM 0.8789 0.835 0.5833 0.6754

Table 4.1: Summary of the results on the RNN, GRU, and LSTM models under
training on validation set
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Model Accuracy precision recall f1 score

RNN 0.7608 0.01249 0.07079 0.09286

GRU 0.8612 0.8202 0.5198 0.62

LSTM 0.8749 0.8247 0.5663 0.6589

Table 4.2: Summary of the results on the RNN, GRU, and LSTM models on the test set

4.1 Model Performance on validation Set and test set

Figure 4.1: Accuracy of models on validation and test set

4.1.1 Basic RNN

Results on validation set

During the training process, the RNN model achieved an accuracy of 0.7608 on the
validation set. This indicates that the model correctly classified approximately 76.08%
of the samples across the five ECG categories. However, the model’s performance in
terms of F1 score, precision, and recall was less impressive. It obtained an F1 score
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of 0.09286, a precision of 0.01249, and a recall of 0.07079. These results suggest that
the RNN model struggled to maintain a good balance between precision and recall,
making it less suitable for ECG classification tasks compared to the LSTM and GRU
models.

One possible explanation for the RNN model’s lower performance compared
to the LSTM and GRU models is its architecture’s inherent limitations. The basic
RNN architecture is prone to the vanishing gradient problem, which can hinder the
model’s ability to learn longer-term dependencies in the ECG data. This shortcoming
could negatively impact the model’s capacity to classify ECG signals effectively.

Results on test set

When tested on the unseen test set, the RNN model yielded an accuracy of 0.758,
which is consistent with its performance on the validation set during training.
However, the model’s F1 score, precision, and recall remained low, with an F1 score
of 0.08137, a precision of 0.1301, and a recall of 0.05919. These results reinforce
the notion that the RNN model may not be the most appropriate choice for ECG
classification, particularly when compared to the LSTM and GRU models.

The consistent performance of the RNN model on both the validation and test
sets suggests that the model is not overfitting the training data, but it still lacks the
ability to generalize well to new data. This could be due to the limited capacity of the
basic RNN architecture to capture complex patterns and features in the ECG signals.

Analysis and Discussion

The results of the RNN model reveal some limitations in its ability to classify the
five ECG categories in the PTB-XL dataset. While the model’s accuracy appears
acceptable, the low F1 score, precision, and recall values indicate that it struggles to
achieve a balance between identifying true positive cases and avoiding false positive
predictions. This may be due to the inherent shortcomings of the RNN architecture,
which is susceptible to the vanishing gradient problem and may have difficulties
learning longer-term dependencies in the ECG data. In comparison, the LSTM
and GRU models demonstrated better performance in terms of accuracy, F1 score,
precision, and recall, indicating that they are more suitable for ECG classification
tasks. The improved performance of these models can be attributed to their unique
architectures, which are specifically designed to overcome the limitations of
traditional RNNs. The choice of hyperparameters and the training process could also
have influenced the RNN model’s performance. For instance, exploring alternative
learning rates, different optimization algorithms, or varying the number of hidden
layers and units could potentially lead to improvements in the model’s performance.

39



Further experimentation with these hyperparameters might reveal opportunities for
enhancing the RNN model’s effectiveness in ECG classification tasks.

Figure 4.2: RNN accuracy on validation set under training

4.1.2 LSTM

Results on validation set

The LSTM model achieved an accuracy of 0.8789 on the validation set during
training, indicating that it was able to correctly classify approximately 87.89% of
the samples across the five ECG categories. Additionally, the model achieved an F1
score of 0.6754, a precision of 0.835, and a recall of 0.5833. These metrics suggest that
the LSTM model provides a good balance between precision and recall, making it a
strong contender for ECG classification tasks.

Figure 4.3: LSTM accuracy on validation set under training

Results on test set

When evaluating the LSTM model on the test set, it achieved an accuracy of 0.8749,
which is consistent with its validation performance during training. The model
obtained an F1 score of 0.6589, a precision of 0.8247, and a recall of 0.5663. These
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results indicate that the model generalizes well to unseen data, maintaining a good
balance between precision and recall across the five ECG categories.

Analysis and Discussion

The results of the LSTM model indicate its effectiveness in classifying the five ECG
categories in the PTB-XL dataset. When compared to the RNN model, the LSTM
model shows a marked improvement in accuracy and F1 scores. Furthermore,
it slightly outperforms the GRU model in terms of these metrics. The LSTM’s
architecture is specifically designed to address the vanishing gradient problem and
learn longer-term dependencies in sequential data, which may have contributed to its
superior performance in ECG classification.

The higher precision achieved by the LSTM model suggests that it can make
fewer false positive predictions, while its improved recall indicates a better ability
to identify true positive cases. This improved performance is especially important
in the context of ECG classification, as accurate detection of abnormal heartbeats
and conditions is crucial for effective diagnosis and treatment. The confusion matrix
highlights the model’s performance disparities between various classes, which
can be attributed to several factors. One possibility is class imbalance, where the
model may be biased towards the majority class and underperform in recognizing
minority classes. In this case, researchers can explore techniques such as resampling
or using class-weighted loss functions to address the imbalance and improve model
performance. Another factor that might influence the model’s performance is the
quality of features extracted from the ECG data. Researchers can experiment with
different preprocessing techniques or feature extraction methods, which can impact
the model’s ability to learn and generalize from the data. Incorporating advanced
feature selection methods or employing domain-specific knowledge to extract
clinically relevant features might contribute to enhanced model performance. Several
factors could explain the observed performance of the LSTM model. First, the unique
architecture of LSTMs may have played a significant role in the model’s ability to
learn the underlying patterns and features in the ECG data. The LSTM’s ability to
maintain long-term dependencies and avoid the vanishing gradient problem sets it
apart from traditional RNNs and may have contributed to its better performance in
ECG classification.

Second, the choice of hyperparameters and the training process could also
have influenced the LSTM model’s performance. For instance, the selection of
an appropriate learning rate, the size of the hidden layers, and the optimization
algorithm could all impact the model’s ability to learn and generalize from the
data. Further exploration of these factors may reveal opportunities for additional
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improvements in the LSTM model’s performance.
Lastly, it is important to consider the possibility of trade-offs between the

LSTM and GRU models. While the LSTM model demonstrated slightly better
performance in terms of accuracy and F1 scores, it may come at the cost of increased
complexity and computational requirements. Evaluating these trade-offs is crucial
in determining the most appropriate model for ECG classification tasks and can help
inform the selection of the best method for ECG signal analysis.

4.1.3 GRU

Results on validation set

The GRU model achieved an accuracy of 0.8684 on the validation set during training,
indicating that it was able to correctly classify approximately 86.84% of the samples
across the five ECG categories. Additionally, the model achieved an F1 score of
0.6478, a precision of 0.8228, and a recall of 0.5514. These metrics suggest that the
GRU model has a good balance between precision and recall, providing a more
effective ECG classification compared to the RNN model.

Figure 4.4: GRU accuracy on validation set under training

Results on test set

When evaluating the GRU model on the test set, it achieved an accuracy of 0.8612,
which is consistent with its training performance. The model obtained an F1 score of
0.62, a precision of 0.8202, and a recall of 0.5198. These results indicate that the model
generalizes well to unseen data, maintaining a good balance between precision and
recall across the five ECG categories.
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Analysis and Discussion

The results of the GRU model suggest that it is effective in classifying the five ECG
categories in the PTB-XL dataset, achieving higher accuracy and F1 scores compared
to the RNN model. The improved performance can be attributed to the GRU’s
architecture, which is designed to address the vanishing gradient problem commonly
encountered in RNNs. This allows the GRU model to learn longer-term dependencies
in the ECG data, leading to more accurate classification. The higher precision of the
GRU model indicates that it is capable of making fewer false positive predictions,
while the improved recall suggests a better ability to identify true positive cases. This
performance is particularly important in the context of ECG classification, where
accurate identification of abnormal heartbeats and conditions is critical for effective
diagnosis and treatment.

It is essential to understand the reasons behind the observed performance of
the GRU model. The architecture of GRUs may have contributed significantly to
the model’s ability to learn the underlying patterns and features in the ECG data.
Furthermore, the choice of hyperparameters and training process could also have
influenced the performance, and further exploration of these factors may reveal
opportunities for additional improvements.

4.2 Comparison of confusion matrices

The confusion matrices for the RNN, LSTM, and GRU models provide insights into
their performance in classifying ECG signals across different classes (see Figures 4.5,
4.6, and 4.7 for the respective confusion matrices). A detailed comparison of the three
models is discussed below.

4.2.1 Basic RNN model

The RNN model demonstrates a high true positive rate for the NORM class at
88%, indicating that it can accurately identify normal ECG patterns in most cases.
However, it struggles with the classification of abnormal cases, as the true positive
rate for MI, STTC, CD, and HYP is 100%. This means that the model misclassifies all
instances of these classes as normal, which is a significant limitation, see figure4.5.

The false positive rate for the NORM class is 12%, whereas it is 0% for the
remaining classes. The true negative rate for the NORM class is 30%, which is
considerably lower compared to the LSTM model. This implies that the RNN model
has difficulty differentiating normal ECG patterns from abnormal cases, leading to a
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Figure 4.5: confusion matrix RNN

higher rate of false positives.
Furthermore, the false negative rates for the MI, STTC, CD, and HYP classes

are all 100%, suggesting that the RNN model is unable to accurately identify any
abnormal cases within these classes. This highlights a major drawback of the RNN
model, as it fails to recognize critical abnormalities in the ECG data, which could
have significant implications in clinical settings.

In addition, the true negative rates for MI, STTC, CD, and HYP are all 0%,
further emphasizing the model’s inability to distinguish between different abnormal
classes. This is in stark contrast to the LSTM model, which demonstrates a better
balance between true positive and true negative rates across all classes.

4.2.2 LSTM Model

The confusion matrix for the LSTM model reveals valuable insights into the model’s
performance in ECG classification across different classes. The model demonstrates
high true positive rates for all classes, with values ranging from 87% for NORM to
99% for HYP. This indicates that the model is successful in detecting abnormal ECG
patterns and classifying them correctly. Additionally, the false positive rates are
relatively low, ranging from 1% for HYP to 13% for NORM, see figure4.6. However,
the true negative rates vary across classes, with values such as 84% for NORM,
55% for MI, 57% for STTC, 56% for CD, and a notably low 31% for HYP. These
values suggest that the model might struggle to recognize normal ECG patterns or
differentiate between specific abnormal cases, leading to misclassification. Despite
these challenges, the LSTM model shows a more balanced performance compared to
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Figure 4.6: confusion matrix LSTM

the RNN model. This can be attributed to the LSTM’s ability to capture long-term
dependencies in the ECG signals, allowing it to better understand the underlying
patterns and make more accurate predictions.

4.2.3 GRU model

The GRU model exhibits a true positive rate of 85% for the NORM class, indicating
that it can accurately identify normal ECG patterns in a majority of cases, see
figure4.7. While the true positive rates for the abnormal classes (MI, STTC, CD,
and HYP) are higher than those observed for the RNN model, they are still lower
compared to the LSTM model. This implies that the GRU model is better at
identifying abnormal cases compared to the RNN model, but it does not perform as
well as the LSTM model.

The false positive rates for the different classes range from 1% to 15%, with the
highest rate observed for the NORM class. The true negative rates for the abnormal
classes (MI, STTC, CD, and HYP) are higher than those for the RNN model, but they
are still lower than the LSTM model. This suggests that the GRU model struggles to
differentiate normal ECG patterns from abnormal cases to some extent, although it
performs better than the RNN model.

Moreover, the false negative rates for the abnormal classes are lower than those
for the RNN model, indicating that the GRU model can better identify instances of
abnormalities within these classes. However, these rates are still higher than those
observed for the LSTM model, suggesting that the LSTM model is more adept at
detecting abnormalities in ECG signals.
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Figure 4.7: confusion matrix GRU

The true negative rates for the abnormal classes are higher than those for the
RNN model but lower than those for the LSTM model. This demonstrates that the
GRU model is better at distinguishing between different abnormal classes compared
to the RNN model, but it still falls short of the LSTM model’s performance.

In summary, the confusion matrix analysis for the GRU model reveals
its improved performance in ECG classification compared to the RNN model,
particularly in terms of identifying abnormal cases and differentiating between
different classes. However, the LSTM model outperforms the GRU model in terms
of overall classification performance, striking a better balance between true positive
and true negative rates across all classes.

4.2.4 conclusion

The comparison of confusion matrices for the RNN, LSTM, and GRU models
provides valuable insights into their respective performances in ECG classification
tasks. The RNN model, while able to identify normal ECG patterns to some extent,
struggles significantly with the classification of abnormal cases. This limitation
emphasizes the need for more advanced models like LSTMs and GRUs in ECG
classification tasks.

Both the LSTM and GRU models demonstrate improved performance compared
to the RNN model, with the LSTM model exhibiting the best overall performance.
The LSTM model strikes a better balance between true positive and true negative
rates across all classes, demonstrating its robustness in accurately classifying ECG
signals. The GRU model, although outperforming the RNN model, does not reach the
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same level of performance as the LSTM model.
These findings underscore the benefits of using LSTM and GRU models

over traditional RNNs in ECG classification tasks. The LSTM model, in particular,
demonstrates the most robust performance, making it a promising choice for the
accurate detection of abnormalities in ECG signals. Further exploration into potential
improvement techniques and optimizations for these models could lead to even
better performance, enhancing their clinical utility in diagnosing cardiac conditions
from ECG data.
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Chapter 5

Discussion

5.1 The Influence of Architectural Design

The results of this study on ECG classification using the PTB-XL dataset show that
the LSTM and GRU models outperform the RNN model in terms of accuracy, F1
score, precision, and recall. This difference in performance may be attributed to the
unique architectural features of the LSTM and GRU models that are specifically
designed to overcome the limitations of traditional RNNs. The basic RNN
architecture is prone to the vanishing gradient problem, which hinders its ability to
learn longer-term dependencies in the ECG data, whereas LSTM and GRU models
are designed to address this issue [7][18].

5.2 Hyperparameters and their Effect on Performance

All three models used the same hyperparameters during training, which implies that
the observed differences in performance are largely due to the choice of architecture.
However, it is essential to consider that further optimization of hyperparameters
could potentially improve the performance of each model. For instance, researchers
could explore alternative learning rates, varying the number of hidden layers and
units, or trying different optimization algorithms [4]. In-depth experimentation
with these hyperparameters might reveal opportunities for enhancing each model’s
effectiveness in ECG classification tasks.

5.3 Insights from Confusion Matrices

The confusion matrices for the LSTM, RNN, and GRU models highlight the
differences in their performances in ECG classification tasks. The LSTM model
demonstrates the most robust performance, with higher true positive and true
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negative rates for all classes compared to the RNN and GRU models. The GRU model
exhibits improved performance compared to the RNN model, particularly in terms
of identifying abnormal cases and differentiating between different classes. However,
it still falls short of the LSTM model’s performance. The RNN model struggles with
accurately classifying abnormal ECG patterns and distinguishing between various
abnormal classes, which can be attributed to its architectural limitations, such as the
vanishing gradient problem [3]. By analyzing the confusion matrices, it becomes
evident that the LSTM and GRU models’ unique architectural features enable them
to overcome these limitations and achieve superior performance in ECG classification
tasks.

5.4 Strategies for Enhancing Classification Performance

To further improve the classification performance, researchers can consider several
strategies. First, refining the feature extraction and preprocessing techniques may
enhance the models’ ability to capture relevant information from ECG signals [25].
For example, exploring wavelet-based methods or advanced filtering techniques
could yield better results. Second, incorporating domain knowledge into the model
design can improve the models’ interpretability and performance [48]. This can be
achieved by using expert-designed features or integrating prior knowledge about
the ECG signal structure into the models. Third, researchers can explore hybrid
architectures, such as combining deep learning models with traditional machine
learning algorithms like support vector machines (SVM) or random forests [32].
Hybrid architectures have been shown to achieve better performance in some ECG
classification tasks compared to individual models alone.

Additionally, incorporating advanced techniques like data augmentation,
transfer learning, ensemble methods, and attention mechanisms, as discussed
earlier in the chapter, can further improve the models’ performance. Researchers
can also explore the use of other deep learning architectures, such as convolutional
neural networks (CNNs) or transformer models, which have shown promise in ECG
classification tasks [1, 37]. By considering these strategies and understanding the
strengths and limitations of different models, researchers can continue to push the
boundaries of ECG classification and ultimately improve the clinical utility of these
algorithms.
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5.5 Impact of Preprocessing and Feature Extraction

Another factor that might have influenced the performance of the models is the
preprocessing and feature extraction of the ECG data. Different preprocessing
techniques or feature extraction methods can impact the models’ ability to learn and
generalize from the data [25]. Exploring various approaches in this regard could lead
to improved performance in ECG classification tasks. Researchers could also consider
employing data augmentation techniques to increase the diversity and size of the
dataset, which might help improve the models’ performance and generalization
capabilities.

5.6 Benefits of Transfer Learning and Ensemble Meth-

ods

Furthermore, researchers can explore the use of transfer learning to leverage pre-
trained models and reduce the need for extensive training [46]. Transfer learning can
help improve the performance of ECG classification tasks by utilizing knowledge
learned from similar tasks or datasets. For example, a pre-trained model on a
different ECG dataset can be fine-tuned to classify the specific categories of interest
in the PTB-XL dataset. Another approach to enhance the performance of the models
is to employ ensemble methods. Ensemble methods combine the predictions of
multiple models to achieve better performance than any single model alone [30].
Researchers can experiment with various ensemble techniques such as bagging,
boosting, or stacking to improve the classification performance for ECG signals [47].

5.7 Utilizing Attention Mechanisms

In addition, attention mechanisms can be incorporated into the models to allow
them to focus on specific portions of the input data that are more relevant to the
classification task [42]. Attention mechanisms have been shown to improve the
performance of various tasks, including natural language processing and image
classification, and could potentially enhance ECG classification models as well.
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5.8 trade-offs: Performance, Complexity, and Computa-

tional Demands

It is also crucial to consider the trade-offs between model performance, complexity,
and computational requirements. While LSTM and GRU models may demonstrate
superior performance compared to the RNN model, they might also have increased
complexity and computational demands. Assessing these trade-offs is essential in
determining the most appropriate model for ECG classification tasks and can help
inform the selection of the best method for ECG signal analysis.

5.9 conclusion

The choice of architecture, hyperparameters, preprocessing techniques, and
various advanced methods such as data augmentation, transfer learning, ensemble
methods, and attention mechanisms can significantly impact the performance of
ECG classification models. By understanding the reasons behind the RNN model’s
limitations and experimenting with alternative approaches, researchers can continue
to push the boundaries of ECG classification.
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Chapter 6

Conclusions and future work

This research aimed at comparing the effectiveness of three different types of
recurrent neural networks: basic RNN, LSTM, and GRU for the task of ECG
signal classification into five categories: normal (NORM), myocardial infarction
(MI), ST elevation (STTC), conduction disorder (CD), and hypertrophy (HYP).
Data preprocessing and preparation was a crucial step, involving data loading,
aggregation of diagnostic classes, data partitioning, and saving the preprocessed
data for further analysis. This ensured the data was clean, organized, and ready for
further analysis, thereby facilitating the successful training and evaluation of the
RNN models. Each model architecture, RNN, LSTM, and GRU, was designed to
handle the sequential nature of ECG data. The models were trained and validated,
with their performance being evaluated using a separate validation dataset after
each training epoch. Performance metrics such as accuracy, precision, recall, and
F1 score were calculated to monitor the models’ progress. The trained models were
tested on a separate test dataset. The testing process was designed to evaluate the
performance of the trained models on unseen data, providing a measure of their
ability to generalize beyond the training data. The performances of the models were
compared based on several metrics, including accuracy, precision, recall and F1-
score, as well as their confusion matrices. The LSTM model achieved the highest
accuracy of 87.89%, followed by the GRU model at 86.84%, and the basic RNN model
at 76.08%. The LSTM model also outperformed the other two models in terms of
precision, recall and F1-score, suggesting that it was the most effective model for the
task.

A detailed analysis of the confusion matrices revealed more insights into the
models’ performance. The basic RNN model showed a high true positive rate for the
normal class, indicating it was able to correctly identify most normal ECG patterns,
but as seen in figure 4.5 we can’t be sure it was accurate at all when it thought
everything was NORM. It demonstrated a significant limitation in its inability to
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accurately classify any instances of the abnormal classes. This is a critical shortfall
given the potential implications of misdiagnosing abnormal ECG signals in a clinical
setting.

On the other hand, both the LSTM and GRU models demonstrated their ability
to identify abnormal cases and differentiate between different classes. But even
here, the LSTM model outshone the GRU model. It displayed a more balanced
performance, achieving a better equilibrium between true positive and true negative
rates across all classes. This balance is crucial because it indicates the model’s ability
to accurately identify both the presence and absence of a condition, a crucial factor in
medical diagnoses.

In summary, our findings indicate the superiority of the LSTM model over both
the basic RNN and GRU models for the task of ECG signal classification. Its robust
performance across multiple metrics and its balanced classification rates underscore
its potential utility in the detection and diagnosis of cardiac conditions.

we recognize that further work is needed. Future research should explore
potential improvement techniques and optimizations for these models. This could
include hyperparameter tuning, which involves adjusting the parameters used in
the model’s learning process to optimize performance. Ensemble methods, which
combine the predictions of multiple models to improve accuracy, could also be
investigated. Additionally, integrating these models with other types of neural
networks may yield even better results. In addition, incorporating these models
with other types of neural networks might yield even better results. For example,
Convolutional Neural Networks (CNNs) have shown promise in time series analysis
and could potentially be used alongside or in combination with LSTM models
to improve classification accuracy. Moreover, though our models’ performance
was evaluated using several metrics, there may be other important aspects to
consider. For example, in a real-world clinical setting, the cost of misclassification
(especially false negatives) can be extremely high. As such, future work could include
an investigation into cost-sensitive learning or other methods to minimize these
potentially harmful errors.

In conclusion, the field of ECG signal classification presents numerous
opportunities for the application of machine learning, and specifically RNNs.
Through our analysis, we found that LSTM models provide the most promising
results among the three types of RNNs evaluated. However, this should not diminish
the potential of other models, such as GRUs, especially when considering future
optimizations and improvements. As we move forward, the adoption of these
advanced machine learning models holds the potential to significantly enhance the
speed and accuracy of cardiac disorder diagnosis, ultimately leading to better patient
outcomes.
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Appendix A

Github Repository

All code used in thesis: https://github.com/sandersaether/Master
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