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Abstract

Computer systems, specially machine learning, has been changing the way
we do most everyday tasks. A field in which technological advances have
had a significant impact is medical diagnosis. Only decades ago, expert
systems were working alongside professional doctors to help diagnose
diseases or identify patients at risk. These expert systems, however, had
hard-coded rules or functioned based on the opinion of people in the field
of what was a relevant feature and what was not. Recent advances in
machine learning, and the vast amount of data that has been made publicly
available, have led medical diagnosis to move away from expert systems
and start embracing these learning methods. The main difference between
these two approaches is that in the latter, the system is not being told what
is relevant and what is not, but rather it is able to identify those things by
itself through large bodies of data.

In this thesis, we look at a specific component of these learning
methods and how they affect performance in aiding medical systems. This
component, called feature fusion, has two widely adopted variations: early
fusion and late fusion. We seek to compare the performance of early and
late fusion for medical diagnosis problems through image datasets, and
provide some insight to data scientists on how our results can help their
decision when building a practical system.
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Chapter 1

Introduction

1.1 Background and Motivation

Food consumption is an essential process for humans in order to survive
and this is also the main factor why the digestive system is prone to many
kinds of diseases that could threaten one’s life. According to the data
from Centers for Disease Control and Prevention (CDC), there are over 7
million appointments to the emergency room every year with a digestive
system diagnosis and nearly 40 million visits to office-based physicians
for digestive system symptoms[1]. Between 60 and 70 million people
are affected by digestive diseases, a classification which includes a wide
variety of diseases[2]. Timely diagnosis and detection are vital for the
end result, procedures to be undertaken, and the level of treatment for the
survival of patients. Gastrointestinal (GI) diseases can range from mild to
extreme. The most well-known disturbances include symptoms of stomach
pain, heart burn, diarrhea, constipation, nausea, and vomiting[3]. The
common diseases are gastroesophageal reflux disease, peptic ulcer disease,
inflammatory bowel disease, celiac disease and chronic infections[4].

GI diseases are not just rampant in the United States of America,
but also growing in prominence in wealthy Asian countries. According
to Gross, GI diseases are emerging and increasingly found in wealthy
countries like Japan, South Korea, and China[5]. Furthermore, GI diseases
in particular are becoming more common and have been linked to changing
environmental factors brought on by industrialization, changes in diet,
improved sanitation, and the increased use of antibiotics.

Once a GI disease is diagnosed to a certain patient, endoscopy is
important to do next. An endoscopy is a procedure in which a doctor
uses specialized instruments to view and operate on the internal organs
and vessels of your body which allows surgeons to view problems within
without making large incisions. For the traditional process, the surgeon
inserts an endoscope through a small cut, or an opening in the body such
as the mouth. An endoscope is a flexible tube with an attached camera
that allows your doctor to see. Your doctor can use forceps (tongs) and
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scissors on the endoscope to operate or remove tissue for biopsy[6]. There
is an alternative to traditional procedure which is the capsule endoscopy.
According to Mayo Clinic staff, it is a procedure that uses a tiny wireless
camera to take pictures of a digestive tract. A capsule endoscopy camera
sits inside a vitamin-size capsule to be swallowed. As the capsule travels
through your digestive tract, the camera takes thousands of pictures that
are transmitted to a recorder on a belt around the waist [7]. Scheduled
screening is difficult to undertake because such procedure is too expensive,
patients are unwilling to undergo the process due to unpleasant sensations,
medical expert consume large amount of time to finish the procedure, and
scarcity for qualified medical professionals. Timely diagnosis and detection
are vital for the end result, procedures to be undertaken, and the level of
treatment for the survival of patients.

To help and measure endoscopic examinations, EIR[6][7] was devel-
oped at Simula Research Laboratory, named after a goddess with medical
skills in Scandinavian mythology. EIR is an end-to-end efficient and scal-
able information retrieval system for medical data like videos and images,
sensor data and patient records, i.e., EIR combines a content-based simi-
larity search with statistical classifiers from the training data. The system
supports endoscopists in the detection and interpretation of diseases in the
GI tract, but can basically be expanded to any other use-case.

The primary goal of such Computer-aided diagnosis is to increase the
detection of disease and reduce false positive. However, the use of EIR
does not in any way substitute for a physician because the interpretation of
the results has to be made by the radiologist or physician.

To enhance and to maximize the capability of the existing EIR system;
the proponents of this project discuss the integration on several measures of
fusion and LIRE[8], an open source application. Several research findings
from other works and projects for the progress of endoscopy are covered
as well.

1.2 Problem Statement

In this thesis, we are interested in investigating different feature extraction
techniques, studying their strength and weaknesses, and their usefulness
to assists in medical diagnosis through images.

The use of fusion is studied and implemented in our case to increase
the performance of EIR system with the goal to be used in a live system,
providing real-time feedback.

For this project we used an open Source Software called LIRE. This
software is primarily used to extract features from images, and allow us to
make a comparison of the two main feature fusion techniques: early fusion
and late fusion.

For the fusion part we are using Scikit-learn which is an open source
Python library that implements a range of machine learning. We are
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including different images from the medical scenario (GI tract), and using
different features. In LIRE there are around 30 different features which are
already implemented. The main goal with the project is testing early fusion
and late fusion and comparing them by using different features and various
classifiers.

Figure 1.1: Pipeline for the project. Shows us the different steps

1.3 Limitations

It would be unjust to not acknowledge some inherent limitations in our
study, mainly due to our time constraints. First, we explored different
fusion techniques in image datasets. That means that there is some
underlying structure common to all of these datasets (techniques like edge
detection are known to be useful in images, but do not easily translate to
other sources of data). As indicated in the introduction, there is also various
diseases in the GI tract, but due to the datasets accessibility and the focus of
this study we pay particular attention to the polyps. The centre of interest
is the detection of polyps in the GI tract.

Second, did not explore dimensionality reduction (except for PCA) in
depth. These techniques, specially those relying in nonlinear transforma-
tions, could have a significant impact on the results obtained.

Last, a reader who is up-to-date with current state-of-the-art methods
would probably notice that we have not compared the efficiency of
fusion techniques with feature learning algorithms based on deep learning.
Again, this is definitely something worth exploring in the future, but we
have not been able to include these results in our report.

1.4 Research Method

Our methodology focused mostly in looking at the performance of
fusion techniques in terms of accuracy, precision and recall. We aim to
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exhaustively look at the impact early and late fusion has across multiple
learning techniques. We seek to not only see if it is possible to have the best
predictor improve performance through feature fusion, but also to see what
feature fusion affect performance across multiple predictors individually.

To do so, we split our data into training and testing, recorded accuracy,
precision, and recall each leaner obtained by using different sets of features.
This procedure was repeated for early and late fusion.

The statistics obtained are reported in the experiment section.

1.5 Main Contributions

In this work, we conduct an in depth experimental study of different
feature fusion methodologies. Upon thorough experimentation, our results
indicate that late fusion tends to improve accuracy, but there is a trade-off
on computational requirements.

Our study suggests different scenarios where machine learning practi-
tioners might prefer one technique over the other, and demonstrate what
these trade-offs are.

1.6 Outline

The following is an outline of the rest of this thesis:

• Chapter 2 — Background
We introduce the relevance of machine learning and feature fusion
in terms of the medical field. We explain how these techniques are
making their way into medical diagnosis by drawing example from
endoscopy, colonoscopy, and gastroscopy.

• Chapter 3 — Tools and process
We define the tools that will be used through this thesis and
explain their applications. LIRE, Weka, and scikit-learn are used for
doing data processing and learning probabilistic models. Junyper
Notebooks are used for data visualization and creating plots.

• Chapter 4 — Experiments
We define the experiments and datasets we will use to compare
feature fusion methodologies. We introduce and define the metrics
on which we evaluate these methods: accuracy, precision, recall, F1,
and F-beta.

• Chapter 5 — Conclusion
We conclude with a summary of the study we conducted and the
insights we obtained from the results.
We go one step further, and suggest use cases for data scientists
considering using early and late fusion methods, and describe the
benefits and drawback of each according to the results we obtained.
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Chapter 2

Background

2.1 Medical scenario

Since the medical field is diverse, we decided to specifically address the
human gastrointestinal (GI) system (figure 2.1) because it is susceptible to
various diseases which are visually distinguishable. This choice is also
supported by the fact that the most common cancer types are located in
the GI tract[2].

Figure 2.1: A complete overview of the human GI tract1

The complex GI system can be affected by one of the most common
cancers, which is Colorectal cancer (CRC). This is one of the the major
health issues worldwide, and it is the third most common cancer after
lung cancer and breast cancer[9]. If CRC is detected at an early stage, the
prognosis is substantially improved, from a 90% 5-year survival probability
in the early stage 1 to only 5-10% 5-year survival probability in the latest
stage 4[10]. Several studies have shown that large population-based
screening programmes improve the prognosis and even reduce incidences

1Figure is taken from: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022856/?figure=1
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of CRC[11], and the European Union guidelines recommend screening for
CRC for all persons older than 50 years[12].

2.1.1 Endoscopy and Colonoscopy

GI endoscopies are common medical examinations where the lumen and
the mucosa of the entire GI tract are visualized to diagnose diseases [11].
There are two different endoscopic examinations that is used frequently,
colonoscopy(where the colonoscope is inserted into the rectum) and
gastroscopy (inserted via the mouth). The endoscopic system is made of
an endoscope, a flexible tube with a charge couple device (CCD) chip and
two bundles of optical fibers at the tip. The endoscope is connected to a
video processor and a light source, and the video signals are transferred
to a screen for the doctor to analyse. Such endoscopies are demanding
and invasive procedures, and can be of great discomfort for patients. They
are performed by medical experts (endoscopists), have to be performed in
real-time and do not scale well to larger populations due to labor-intensive
expert involvement. Furthermore, colonoscopy is not the ideal screening
test, many polyps are hard to detect and in average, 20% of polyps are
missed or incompletely removed, i.e., meaning that the risk of getting CRC
later on largely depends on the endoscopist’s ability to detect polyps [13].
The proponents therefore aim for a system that detects endoscopic findings
in videos of the GI tract(EIR).

Figure 2.2: Endoscopy illustration2
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Once a polyp is detected, the morphology needs to be assessed to
determine whether or not the polyp has a risk of malignant transformation.
There exist mainly three classification systems for polyp assessment, two
for characterization of the surface and one for the shape. The Kudo and the
Nice-classification are both used to characterize the surface structure of the
polyp. The Kudoclassification[13] is based upon chromoscopy requiring
supplementary staining of the mucosa with a colorant, while the Nice-
classification[14] is based on electronic color filter on the scope. The Paris
classification is used to describe the shape of the polyp[15]. Despite these
classifications, endoscopists assess polyps quite differently, and a standard
computer algorithm for interpretation may therefore reduce the differences
in the assessment[16].

Figure 2.3: Colonoscopy illustration3

2.1.2 Gastroscopy

Gastroscopy is also refereed to as an upper gastrointestinal endoscopy. It
has a light and a camera at one end called endescope. This is a flexible
tube which is inserted via the mouth. The camera transmits images of the
internal oesophagus, stomach and duodemum to a monitor.

Gastroscopy can be used to an array of medical purposes like it in-
vestigates problems like difficulty in swallowing (dysphagia) or persis-

2http://www.mayoclinic.org/tests-procedures/endoscopy/multimedia/endoscopy/img-
20007299

3https://www.niddk.nih.gov/health-information/diagnostic-tests/colonoscopy
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tent abdominal pain; diagnoses various conditions such as stomach ulcers
or gastro-oesophagus reflux disease (GORD); and treats conditions such
as bleeding ulcers, a blockage in the oespohagus, non-cancerous growths
(polyps) or small cancerous tumours.

This procedure takes less than 15 minutes and may take longer if it’s
being used to treat a condition. The throat will be numbed with a local
anaesthetic spray before the procedure. Or, a sedative can be chosen,
depending on the patient’s preference. With these options, a patient will
still be awake, but will be drowsy and have a reduced awareness about
what’s happening. The doctor undertaking the procedure will place the
endoscope in the back of the patient’s mouth. It will then be guided down
your oesophagus and into the stomach. This procedure is not painful,
though it may be unpleasant and uncomfortable at times[3].

2.1.3 Wireless Capsule Endoscospy

The multi-sensor WVC is swallowed in order to visualize the GI tract for
subsequent detection and diagnosis of GI diseases. Thus, people will be
able to buy WVCs at the pharmacy, and connect and deliver the video
stream from the GI tract to the phone over a wireless network. The video
footage can be processed in the phone or delivered to the system, which
finally analyses the video automatically. In the best case, the first screening
results are available within eight hours after swallowing the WVC, which
is the time the camera typically spends traversing the GI tract.

The current WVCs have a low resolution of 256 × 256 with 3-30 frames
per second (adaptive frame rate with a feedback loop from the receiver
to the transmitter). They do not have optimum lighting, making it more
challenging to analyze small details in the images. Nevertheless, ongoing
work tries to improve the state-of-the-art technology which will make it
possible to use the methods and algorithms developed for colonoscopies
also for WVCs [19].

Figure 2.4: Endoscopy capsule(Pillcam)4
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In the case of the colon, accuracy of existing methods is far below the
required precision and recall, and the processing of the algorithms does not
scale in terms of big data. Each type of disease or irregularity requires inter-
action between medical researchers dictating what the system must learn to
detect, image processing researchers investigating detection or summariza-
tion algorithms, hardware developers to develop/produce/research sen-
sors, and distributed processing researchers in order to scale the big data
analytics of the sensor data. For other scenarios, like in the upper part of
the GI tract, there will be similar challenges and corresponding interaction
between research disciplines. There are large challenges with respect to
accuracy (precision and recall), scale of the processing and hardware data
quality because of different manufacturers.

2.1.4 Automated Computer diagnosis

A possible solution to achieve real-time instead of near real-time perfor-
mance is the SAPPHIRE middleware and software development kit for
medical video analysis[17]. The toolkit has been used to build the EM-
Automated-RT software[18]. EM-Automated-RT does real-time video anal-
ysis to determine the quality of a colonoscopy procedure, and it is able to
give visual feedback to the endoscopist performing the procedure.

This is done to achieve optimal accuracy of the inspection of the colon
during the procedure. Nevertheless, it is limited to the assessment of the
endoscopist’s quality, and does not automatize disease detection itself.

A dominant trend to speed up processing of CPU-intensive tasks is
to offload processing tasks to GPUs. Stanek et al.[17][18] indicate that
utilizing a GPU can be the right way to achieve real-time performance. In
other areas this has already been explored to a certain extent. For example,
some do applied it in sport technology[19][20], where GPUs were used
to improve the video processing performance to achieve live, interactive
panning and zooming in panorama video.

In summary, actual computer-aided diagnostic systems for the GI tract
do not provide real-time performance in combination with a sufficient de-
tection or localization accuracy.Therefore, the proponents present a system
focusing on both high accuracy detection and real-time performance.

2.2 Related Work

The proponents of this thesis are researching feasible solutions to maximize
the capability of the EIR system by fusing methods like early and late
fusing. Such integration is to increase EIRs performance. The processes and
sub-tasks that have undertaken to complete this endeavor are acquisition,
processing, and annotating of video sequences. This section deals with
relevant samples of the most interesting and relevant existing research

4http://agimedical.com/wp-content/uploads/2015/04/pillcam.jpg
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and experimentation related to the tasks of this project. The proponents
collected and analyzed information that can be used in creating an effective
GI diseases diagnosis.

Liu et al.[21] describe a very advanced annotation tool called Arthemis.
Arthemis is part of an integrated capturing and analysis system for
colonoscopy, called Endoscopic Multimedia Information System (EMIS).
EMIS provides functionality for collecting and archiving endoscopy videos.
The use of an annotation tool for endoscopy videos is further researched
by Lux and Riegler[8]. This demo paper focuses on common interaction
methods for experts to annotate videos by recording speech and drawing
onto the video. The paper aims at gathering information about the recorded
videos in an easy and simple way, so that the annotation effort is minimally
invasive for the daily routine of the experts. The related work in the field
of annotation shows that it is crucial to integrate the annotation tool in a
minimally invasive way within the environment of the experts. It is very
important to provide them with a solution which is very easy to use and,
at the same time, very easy to deploy in a restrictive medical environment.
The annotation subsystem in EIR builds up on technologies and methods
from[22]and[23] to reach optimal annotation performance.

Automatic analysis systems for the GI tract. Detection of diseases
in the GI tract has mostly focused on polyps. This is most probably
due to the lack of data in the medical field and polyps being a condition
with at least some data available. Automatically analysis of polyps in
colonoscopies has attracted research attention for a long time and several
studies have been published [28]. However, there is a need for complete
scalable real-time detection systems, both for computer aided diagnosis
during colonoscopy examinations and for analysis of huge amounts of
data from VCEs. Furthermore, all of the related works are limited to a
very specific use-case, which in most cases is polyp detection for a specific
type of camera. Several algorithms, methods and partial systems have
been proposed and have achieved at first glance promising results in their
respective testing environments. However, in some cases, it is unclear how
well the approach would perform as a real system used in hospitals. Most
of the research conducted in this field uses rather small amounts of training
and testing data, making it difficult to generalize the methods beyond the
specific dataset and test scenarios. Therefore, overfitting for the specific
datasets can be a problem and can lead to unreliable results. The approach
from Wang et al. [29] is the most recent and best working one in the field
of polyp detection.

Mamonov et al.[24] presented an algorithm for a binary classifier to
detect polyps in the colon. The method is called binary classification with
pre-selection, and it aims at reducing the amount of frames that need to be
manually inspected. The sensitivity of the algorithm with regards to single
input frames is significantly lower and only reaches 47%.

The best working and complete system in the well-researched polyp
detection field is Polyp-Alert[25], which is able to give near real-time
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feedback during colonoscopies. The system can process 10 frames per
second and uses visual features and a rule based classifier to detect the
edges of polyps. Further, they distinguish between clear frames and
polyp frames in their detection. The researchers report a performance of
97.7% correctly detected polyps based on their dataset which consists of 52
videos recorded using different colonoscopes. Unfortunately, the dataset
is not publicly available, and therefore, an exact detection performance
comparison is not possible. Compared to EIR system, this system seems
to reach higher detection accuracy, but it appears that EIR system is faster
in terms of processing time per frame and can therefore detect polyps in
real-time. A comparison using the same hardware and full length videos
is currently to be carried out together with the developers of Polyp-Alert.
Furthermore, EIR system is not designed and restricted to detect only
polyps, and can be expanded to any possible disease if there was a correct
training data.

Deep learning is probably the most promising approach everybody
needs to explore further in EIR, and it is already very relevant for similar
problems detecting for instance breast cancer[26], polyp detection[27]or
lung cancer[28]. Nevertheless, such approaches are challenging to use
in EIR use-case. First, training is very complicated and time-consuming.
EIR system has to be fast and understandable since it deals with patient
data, where the outcome can differentiate between life and death. This
can lead to serious problems in the medical field since it is very difficult
to evaluate them properly[29]. Furthermore, one of the biggest challenges
is that they require most of the time a lot of training data. In the medical
field, this is a very important issue since it is hard to get data due to the
lack of experts time (doctors have a very high workload) and legal and
ethical issues. Some common conditions, like colon polyps, may reach the
required amount of training data for deep learning while other endoscopic
findings, like for example tattoos from previous endoscopic procedures
(black colored parts of the mucosa), are not that well documented, but
still interesting to detect[30]. Nevertheless, for certrain use-cases, such
as presentend in [26] also a small amount of training data can lead to
reasonable results. Tajbakhsh et al. [27] presented a combined algorithm
for a binary classifier to detect polyps in the colon, which was trained
and tested on a 35, 000 frames dataset with only 20 different polyps.
The proposed polyp detection method first selects multiple possible polyp
locations in a frame using machine learning of local polyp features such
as color, texture, shape, and temporal information in multiple scales. A
generated set of locations is then processed by a number of convolution
feature specialized neural networks and followed by results aggregation
and frame binary classification. The detection performance of the method
is 0.002 false positive per input frame at 50% sensitivity.

Late Fusion. Also known as decision fusion has features which are
managed by different classifiers. These classifiers are used in sorting or
labeling results. Such process is a part of the first classification steps and
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the output of each classifier is combined to acquire an accurate concluding
result. Since each feature is administered by a separate classifier, late
fusion is very pricy in terms of learning effort. Furthermore, to combine
the pre-classified features one or more additional classifiers are needed.
Another challenge is the possible loss of information that comes naturally
if different features are combined[31]. The combination of the output of the
pre-classifiers is a very important step and can be performed in different
ways. Which method is the best depends on the dataset, the features that
are used and the metrics that are used to calculate the distances between
the different features[6]. In [31], the authors try to learn tag relevance
for social image retrieval by using multiple features in an unsupervised
learning environment. They state that visual content cannot be discovered
by using only one visual feature. To prove this claim, they tested different
approaches of feature combination methods to find the best one for their
task. The second one is called UniformTagger, which is a combination of
different base learners that are combined in a uniform way. The conclusion
is that learning using a combination of different features can outperform
single-feature-based learning systems. The second observation is that
late fusion approaches lead to a better performance than early fusion
approaches [32][33]. Based on the indication that late fusion is better suited
for multimedia data, we decided to use it for feature combination in our
work. We are going to classified each feature and use them separately, and
combine them afterwards.

2.3 EIR

According to the study of Riegler et al.[6] conducted in 2016, the main
objectives of the EIR system are (i) easy to use, (ii) easy to extend to different
diseases, (iii) realtime handling of multimedia content, (iv) being able to be
used as a live system and (v) high classification performance with minimal
false negative classification results. It can be split into three main parts: the
annotation sub-system, the detection and automatic analysis sub-system,
and the visualization and computer aided diagnosis sub-system. All three
parts are important to achieve a holistic system that can support doctors in
disease detection and diagnosis in the GI tract. [6]

The Annotations Subsystem
The main purpose of this subsystem is to collect training data for the

detection and automatic analysis subsystem. In the medical field, medical
personnel have little or no access to multimedia data, and they don’t have
the time to make use of these approaches. This is mainly due to legal issues
and their daily workload. Most patients are also reluctant to carry out this
procedure. Moreover, these video procedures are very time-consuming,
and the quality of the annotation outcome depends largely on the expertise
and dedication of the medical personnel. [20]. For example, the VCE
procedure has about 216,000 images per examination, which could take an
experienced endoscopist about 1 hour to view and analyze the entire data
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contained in the video [21]. Aside from getting data to enable automatic
screening from the EIR system, the annotation subsystem makes it feasible
to use an annotated video in a medical video archive for documentation of
the procedures or even for teaching purposes.

Detection and Automatic Analysis Subsystem
This subsystem automatically collects, analyze and localize findings in

the part of the body being studied. It is designed in a modular way so it
can be extended to different diseases or their subcategories. The detection
part analyzes videos or images to find out if there is anything abnormal to
be found, then there is the localization part which determines the location
of the detected malady. It uses the results of the detection as its input.

The Visualization and Computer-aided diagnosis Subsystem
The primary purpose of the visualization subsystem is to provide or

display the results of the automatic detection and analysis subsystem to
medical experts who will then use the output for proper diagnosis using
computer-aided diagnosis. This tool uses the output of the localization and
system detection part to create a web-based visual which makes use of a
video sharing platform that enables doctors to watch videos, archive them,
annotate, and share information.

2.4 Summary

There have been so many contributions, studies, and innovations under-
taken for the sake and progress of computer-aided diagnostic tools in the
field of medicine. It is an indication of men’s ever changing survival tech-
nique in the ever evolving world. EIR system is one of the many things
devised for diagnosis of internal organs, specifically in the GI tract. The
first parts of this paper talked about certain progresses in this system and
what the proponents of this thesis see as a potential contributor to the ex-
pansion of EIR’s capabilities. Early and late fusions are to be added to the
EIR. And the best thing to work out is which of the two is best? Both have
different things to offer that will be essential to the evolution of the EIR
system.
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Tools and Implementation
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Chapter 3

Tools and Processes

This chapter presents the tools that’s been used throughout this study.
Different softwares and tools has been utilized to reach our goal. This
contains the various stages of testing the combinations of features,
extracting the features and fusing them.

Table 3.1: Tools and software used
Software Name Version
Visual information retrieval LIRE 1 1.0b4
Data mining Weka2 3.8
Machine learning library Scikit-learn3 0.18.1
Data Manipulation Pandas4 0.20
Tool Name Version
Notebook Jupyter5 4.1.1

3.1 Extracting Features

The major component of content based image retrieval is feature extraction.
Feature extraction is done using colours, textures or shapes. For texture
extraction, structural, statistical and spectral approaches are used. The
features that’s used are already implemented in LIRE. LIRE provides us
with 30 features. For color feature extraction, color histograms like Local
Color Histogram (LCH), Fuzzy Color Histogram (FCH) and Global Color
Histogram (GCH) are used.

The extracting of the features is done in LIRE(Lucene Image REtrieval),
a powerful tool for extracting visual features from bitmap images and
storing them in a Lucene for later retrieval[8]. LIRE is an open-source
java-based Library that’s used for content based image retrieval. This type

5http://www.lire-project.net
5http://www.cs.waikato.ac.nz/ml/weka/
5http://scikit-learn.org
5http://pandas.pydata.org/
5http://jupyter.org
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of software attracts developers and researchers because of its simplicity
and a good overview. Numerous types of features are already provided
by LIRE, one can also develop features and use the search engine that’s
offered by this software. This allows more focus on developing the feature
itself, which saves a lot of time. LIRE provides in this case everything from
parallel indexing, hashing and linear search.

Currently the following image retrieval features are included in LIRE:

1.MPEG-7 descriptors scalable color, edge histogram and color
layout[8].

2. Color histograms in HSV and RGB color space.
3. Tamura texture features coarseness, directionality and contrast[34].
4. Color and edge directivity descriptor, CEDD[35]
5. Auto color correlation feature as defined by Huang et al.[36]
6. Fuzzy color and texture histogram known as FCTH[37]

3.2 Features

In machine learning and pattern recognition, features are individual
measurable properties of a phenomenon being observed[34]. Features are
characteristics, variables or observable phenomenon that can capture a
given visual property of an image locally for objects or regions, or globally
for the entire image, and can then be quantified and recorded. The success
of machine learning depends largely on finding the right features. In some
cases, features might be explicit in the input, while in others, you may
have to come up with a method of feature extraction. For a domain like
CBIR (content-based image retrieval), development of useful features is a
research area unto itself.

3.2.1 Global features

Global features also known as global descriptors are generally used in
image retrieval, classification, and object detection. Global descriptors
detect if an object is present in an image or video. Global features
generalize and describe the entire image with single vector, and they
include contour representations, texture features, and shape descriptors.
Co-HOG and Histogram oriented gradients (HOG) are examples of global
features. Global features are used for low-level application and where
rough segmentation of an object is available.

Joint histogram

According to Stricker et al. (1995)[38], color histograms are commonly used
for content-based image retrieval due to their efficiency and robustness.
However, a color histogram only registers an image’s general color
configuration, so images with very different looks can have similar color
histograms. This problem is especially precarious in huge image databases,
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Table 3.2: The different global features that is provided by LIRE and
supported by EIR. All of them have been extracted and used in this project

Feature Dimensions/bins
Joint Histogram 576
Jpeg Coefficient Histogram 192
Tamura 18
Fuzzy Opponent Histogram 576
Simple Color Histogram 64
Fuzzy Color Histogram 125
Rotation Invariant LIBP 36
FCTH 192
Local Binary Patterns and Opponent 288
PHOG 630
Color layout 33
CEDD 144
Gabor 60
Opponent Histogram 64
Edge histogram 80
Scalable color 64
Rank And Opponent 576
JCD 168

where many images have the same color histogram. Some professionals
suggest a substitute to color histograms called a joint histogram, which
includes additional information without sacrificing the robustness of color
histograms. The proponents created a joint histogram by selecting a set
of local pixel features and creating a multidimensional histogram. Each
entry in a joint histogram comprises the number of pixels in the image that
are described by a certain combination of feature values. Stricker et al.
(1995)[38] define a number of different joint histograms, and assess their
performance for image recovery on a database with over 210,000 images.
Their standards joint histograms beat color histograms by an order of scale.

Jpeg coefficient histogram

With JPEG coefficient, the DC and AC coefficients of JPEG images are
encrypted using a stream cipher and scrambling encryption, respectively.
Then, the encrypted images are transferred to and kept in a server, which
can also offer recovery service. When accepting an encrypted query image,
the server deprived of any knowledge of the plaintext content may obtain
statistically its AC coefficients histogram. By computing the distances
between the histograms of encrypted query image and database image, the
server may produce the coded images closest to the query image to the
authorized user[39].
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Tamura

Texture is a very vital feature particularly used in numerous image han-
dling problems. People are used to some texture based perceptual struc-
tures to decide between textured images or regions. These Perceptual struc-
tures are extremely needed for two reasons; they will be best in terms of
feature selection and will be appropriate to all kinds of textures. Some of
the significant perceptual structures are coarseness, contrast, directional-
ity and busyness. Tamura proposed a new perception-based approach to
content-based image classification and retrieval. The proposal is based on
multiple representations: Original Image Representation and Autocorre-
lation Function Representation. The computational measures for textural
features are calculated both on original and auto-correlated images. In or-
der to authenticate these features measures, applied them for texture classi-
fication and retrieval on brodatz images. For texture classification, features
calculated on Multiple representation correctly categorized the best iden-
tical class among the remaining class in contrast with original representa-
tion based features and autocorrelation representation based features. K-
Nearest Neighborhood classifier is used for this classification task. For tex-
ture retrieval, Multiple representation based features salvaged more num-
ber of appropriate images in comparison with features derived from au-
tocorrelation representation. Gower co-efficient of resemblance is used to
find the feature similarity between images in retrieval task. Thus this work
achieved good classification rate of 93.5% and better retrieval rate by using
these estimated features on our approach[40].

Fuzzy opponent histogram

Image category recognition, such as fuzzy color histogram, is significant
to access graphical information on the level of items and scene types. The
intensity-based descriptors have been widely used to increase brightness
invariance and discriminative power. As numerous descriptors be, a
structured indication of color invariant descriptors in the context of image
category recognition is mandatory. The uniqueness of color descriptors is
measured experimentally using two benchmarks from the image and the
video domains[41].

Simple color histogram

According to Rosebrock (2014)[42], a simple color histograms by definition
disregard both the shape and texture of the object(s) in the image. This
means that it does not have the concept of the shape of an object or the
texture of the object. Also, histograms also ignore any spatial information
like where in the image the pixel value came from. An extension to
the histogram, the color correlogram, can be used to encode a spatial
relationship among pixels.
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Fuzzy color histogram

A conventional color histogram (CCH) is sensitive to noisy interference
such as illumination changes and quantization errors. Also, CCHs’
large aspect or histogram bins require large calculation on histogram
comparison. To address these concerns, Han and his team presented a
new color histogram representation, called fuzzy color histogram (FCH),
by considering the color similarity of each pixel’s color connected to all the
histogram bins through fuzzy-set membership function. A original and
firm approach for calculating the membership values based on fuzzy c-
means algorithm is presented. The proposed FCH is further subjugated in
the submission of image indexing and recovery. Experimental outcomes
obviously show that FCH produces better retrieval results than CCH. Such
computing methodology is justly necessary for image retrieval over large
image databases[43].

Rotation invariant local binary pattern

Rotation invariant local binary pattern is based on distinguishing that
certain local binary patterns called ‘uniform’ are important assets of local
image texture, and their manifestation histogram shows to be a dominant
texture feature. Ojala et al. (2002)[44] derived a comprehensive gray scale
and cycle invariant operator demonstration that allows for identifying the
‘uniform’ patterns for any quantization of the angular space and for any
spatial resolution, and present a process for merging multiple operators
for multiresolution analysis. The proposed method is very robust in terms
of gray scale variations, since the operator is by description invariant
against any monotonic transformation of the gray scale. Another benefit
is computational simplicity, as the operator can be realized with a few
operations in a small neighborhood and a lookup table. Outstanding
experimental outcomes gained in true difficulties of rotation invariance,
where the classifier is qualified at one specific rotation angle and tried with
samples from other rotation angles, validate that good judgment can be
attained with the occurrence statistics of simple rotation invariant local
binary patterns.

Fuzzy color and texture histogram (FCTH)

Chatzichristofis et al. (2008)[37] proposed a paper that bdeals with the
extraction of a new low level feature that combines, in one histogram,
color and texture information which was termed Fuzzy Color and Texture
Histogram. FCTH resulted from the combination of three fuzzy systems.
FCTH size is restricted to 72 bytes per image, rendering this descriptor
suitable for use in large image databases. The proposed feature is
appropriate for accurately retrieving images even in distortion cases such
as deformations, noise and smoothing. It is verified on a large sum of
images selected from proprietary image databases or randomly retrieved
from common search engines. To assess the performance of the proposed
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feature, the averaged normalized altered retrieval rank was used.

Local binary patterns and opponent histogram

Texture is a vital feature for image examination, classification or
segmentation[45]. Since more and more image segmentation problems in-
volve multi-and even hyperspectral data, it turns out to be essential to de-
fine multispectral texture features. It was suggested that a natural exten-
sion of the classical Local Binary Pattern (LBP) operator to the condition
of multispectral images. The Local Multispectral Binary Pattern (LMBP)
operator is based on the report of total collections in the multispectral im-
age space and on an extension of the typical univariate LBP. It permits the
calculation of both a multispectral texture structure coefficient and a multi-
spectral difference parameter circulation. Outcomes are verified in the case
of the segmentation of brain tissues from multispectral MR images, and
compared to other multispectral texture features.

Pyramid histogram of oriented gradients (PHOG)

Bosch et al. (2007)[46] proposed the Pyramid Histogram of Oriented
Gradients (PHOG). It is designed to classify images by the object categories
they hold. It has three areas. First, introduce a descriptor that signifies
local image shape and its spatial design with a spatial pyramid kernel.
These are planned so that the shape corresponds between two images can
be measured by the distance between their descriptors using the kernel.
Second, generalize the spatial pyramid kernel and study its level weighting
parameters (on a validation set). This considerably progresses classification
performance. Third, show that shape and appearance kernels may be
united (again by learning parameters on a validation set).

Color layout

MPEG-7, formally known as Multimedia Content Description Interface
which includes standardized tools facilitating structural, thorough descrip-
tions of audio-visual information at diverse granularity levels and in dif-
ferent parts. It aims to support and facilitate a wide range of applications,
such as media portals, content broadcasting, and ubiquitous multimedia.
Chang et al. (2001)[47] presented a complex overview of the MPEG-7 stan-
dard. It was first deliberate the scope, basic terminology, and potential
applications. Next, discussion of constituent components and compare the
relationship with other standards.

Color and edge directivity descriptor (CEDD)

Chatzichristofis et al. (2008)[35] proposed the color and edge directivity
descriptor (CEDD) that deals with a fresh low-level feature that is extracted
from the images and can be used for indexing and recovery. It incorporates
color and texture information in a histogram. CEDD size is restricted to
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54 bytes per image and changing this descriptor fit for use in large image
databases. One of the vital attributes of the CEDD is the low computational
power desirable for its extraction, in contrast with the requirements of most
MPEG-7 descriptors.

Gabor

Gabor filters have been effectively useful to a wide range of image handling
jobs. Weldon et al. (1996)[48] studies the design of a single filter to segment
a two-texture image. An original efficient algorithm for Gabor-filter design
is presented, along with approaches for estimating filter output statistics.
The algorithm lures upon previous results that showed that the output
of a Gabor-filtered texture is modeled well by a Rician distribution. The
total amount of the output power is used to choose the center frequency
of the filter and is used to guesstimate the Rician statistics of the Gabor-
filtered image. The method is added generalized to include the statistics
of post-filtered outputs that are generated by a Gaussian filtering process
succeeding the Gabor filter. The new method typically needs an order of
magnitude less calculation to design a filter than a previously proposed
method. Experimental outcomes prove the efficacy of the method.

Opponent histogram

The opponent histogram according to Transactions on Data Hiding and
Multimedia Security V is a 3-D histogram based on the channels of the
opponent color space YCbCr. This color space was designed to the color
models of the first two channels are shift-invariant with respect to light
intensity. The third channel possesses intensity information and has no
invariance properties.

Edge histogram

To form the histogram, just simply concatenate the measurements into one
long vector. To do the concatenation is acceptable as long as you keep
track of the way you map the bin/direction combo into a slot in the 1-
D histogram. This long histogram of concatenations is then most often
used for machine learning tasks, like training a classifier to recognize some
aspect of images based upon the way their gradients are oriented.

Scalable color

The Scalable Color Descriptor is derived from a color histogram defined
in the Hue-Saturation-Value (HSV) color space with fixed color space
quantization. It uses a Haar alter coefficient encrypting, permitting scalable
image of description, as well as complexity scalability of feature extraction
and matching actions.
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Joint composite descriptor (JCD)

Compact Composite Descriptors (CCDs) is set of low lever features that
can be used to describe various types of multimedia information. The set
contains descriptors for three different types of images. A group of two
descriptors (CEDD and FCTH) combines color and texture information
in order to describe the visual content of the real-world color images.
At the same time, another descriptor (BTDH) combines brightness and
texture characteristics in order to describe the visual content of grayscale
images (as well as radiology medical images). The recently proposed
SpCD combines color and spatial distribution characteristics to describe
artificially generated images (computer graphics, color sketches etc.)[49].

3.2.2 Local features

Local features are a pattern or distinct feature seen in an image. These are
generally used for object recognition and identification. Local descriptors
recognition of image involves finding the identity (i.e.) recognizing a
person or an object in an image. Local features describe image patches
(critical points of the image), points, edge, and texture. They are associated
with image patches that differ from their surrounding by colour, intensity
or texture. The actual representation of the entire image is insignificant
in local feature extraction. Local features describe images with multiple
points on the image thus making them more robust. SIFT, HOG, SURF,
LBP, BRISK, FREAK and MSER are good examples of local features. Local
features are generally used for high application such as object recognition.

With local features, you can find image correspondence undermining
presence of clusters, changes in view conditions, or occlusions. The
properties of local features also make them suitable for classification.
The combination of local and global features improves the accuracy of
recognition with the side effect being computational overheads. Feature
detectors and descriptors are selected by considering the requirements of
your application, and nature of the data.

3.3 Fusion methods

EIR supports various global features and their combination. When used in
different scenarios, different combinations of the supported features would
lead to more accurate results than those gotten in others. There has been a
non-trivial problem which has posed as a research topic over the years, and
this is the combination of various features which contain features spaces
with different dimensions and sizes.

A sophisticated and unique combination of features can lead to more
accurate classifications and search results in a system. However, feature
combination does not come without its pitfalls. These pitfalls if not taken
into proper consideration can lead to a decline in the performance of the
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Figure 3.1: Pipeline of early fusion

system [50][51][52]. Features can be fused in two different ways: Early
fusion- also called feature, and decision or late fusion.

3.3.1 Early fusion

Early fusion fundamentally fuses values of different features into a single
representation before they are used in a decision-making steps. The early
fusion combines uni-modal features after being extracted, into uni-modal
representation. This is one method. Another method is to combine or join
all features with one long feature vector, but at the same time applying
features selection methods such as principal component analysis. This
approach reduces a large set of variables to a smaller, conceptually more
coherent set of variables which contain the same information as the original
larger representation. Applying this method, however, can lead to a
reduced length of the vector. Another problem is that the combination
of very diverse features can be challenging. An example is, attempting
to combine an audio feature which has several hundred dimensions with
a video feature which has several thousands of dimensions. In this case,
it is advisable to the trio of feature selection, features reduction, and
normalization - on the data before fusion.

3.3.2 Late fusion

In late fusion, each feature is processed by its classifier. In other
words, extracted features are processed separately and only the results are
combined. (The output of each classifier is combined to arrive at a final
result) Because each feature is processed in a different classifier, decision
fusion (another name for late fusion) is very costly regarding learning
efforts. The combination of the output of the pre-classifiers is a critical step,
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Figure 3.2: Pipeline of late fusion

and this can be performed in different ways. The best method depends on
the following:

(i) The dataset
(ii) The features that are used, and
(iii) The metrics used to calculate the distance between the features.

Late fusion approaches have been found[31][53] to have a better
performance than early fusion approaches.

3.3.3 Scikit Learn

For the machine learning algorithms and the metrics used to evaluate
them, we use a popular library called Scikit-learn. Scikit-learn is a
machine learning library used for Python programming. It involves
various regression, clustering, and classification algorithms. In regression,
it is used for predicting the continuous-valued attribute of an object. In
clustering, it automatically groups similar objects into sets and is applied
in the grouping of experimental outcomes, and for customer segmentation.
As for classification, it identifies what category an object belongs to, and
it is implemented in spam detection and image recognition. Scikit Learn
is a straightforward and efficient tool for data mining and analysis which
is reusable in various contexts and it is built to operate with Python and
scientific libraries NumPy and SciPy.
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3.4 Data mining

In the starting phase of this project a software named Weka was utilized.
Weka is a set of machine learning visualization tools and algorithms
used for predictive modeling and data analysis. Weka consists of
tools which support graphical user data mining interphase i.e. it is
an Explorer for exploratory data analysis that support classification,
regression, learning, attribute selection, data pre-processing, association
rules, clustering, feature selection, visualization, and Knowledge Flow for
new process. The algorithms are either applied directly to a dataset or
called from a java code. Weka software was used at the beginning of
this project to gain an understanding of how different machine learning
algorithms work. All Weka techniques are applied on the assumption that
data is present as a flat file or relation.

Advantages of Weka

• It is suitable for developing new machine learning operations.

• Weka is best fit for mining association rules

• It loads data file in formats of CSV, ARFF, C4.5, and binary. Although
it is open source, free, and extensible, it can be integrated into other
Java packages.

3.4.1 Jupyter Notebook

The implementation of the python code is done in Jupyter notebook. A
lot of scientific institutions are using these notebooks in order to clearly
explain how they got the results, and not only can these notebooks show
us how they got the results, but we can reproduce the results within the
notebooks them self’s. Jupyter is a web-based notebook or an open source
web application tool with which you can share and create documents
containing equations, live codes, mathematical equations, visualizations,
and explanatory text. Jupyter is used for numerical simulation, data
cleaning, transformation, statistical modelling, and machine learning
among others. These documents contain a complete self-contained record
of computation that is convertible to various formats.

The Jupyter notebook has an interactive notebook web application
which is used for writing and running codes interactively as well as
authoring notebook documents. It also consists of notebook documents
which are self-contained documents that represent all the contents visible
in the notebook web application- this includes narrative text, images, rich
media representation of objects, equations, and inputs and outputs of the
computations (each notebook document has a separate kernel). Lastly,
Jupyter has Kernels which are separated process Initiated by the notebook
web application. Kernels run user-codes in a given language and return
output to the notebook web application; kernel also handles computations
for interactive widgets, introspection, and tab completion.

29



3.4.2 Pandas

Pandas is a popular data analysis and manipulation python library. We
used pandas to load, store and combine the different feature sets, especially
during early fusion.

3.5 Summary

This chapter described the tools used throughout this study. We elaborate
on the concepts of early and late fusion, and provide a concise description
of the features obtained from LIRE that formed part of our study. We
explain our usage of Weka as a data mining component of our pipeline,
and our usage of Jupyter Notebooks to provide an simple method for
visualizing results.

30



Chapter 4

Experiments

In this work, we are interested in assessing the quality of features extracted
by LIRE. In particular, we would like to contrast the quality of predictions
obtained by pre-processing input data using early fusion and late fusion.
Early fusion refers to the concatenation of vectors obtained by different
feature extraction methods, into a larger single feature vector that describes
the data. Learning of a classifier or a regression model is done using this
larger input, which is assumed to contain more descriptive information
than using a single feature extraction method.

In contrast, late fusion learns a single feature for each vector obtained
from different feature extraction methods. One could think of it as learning
predictive models for each vector and using their outputs to construct
another vector which is used as the input to the final predictive model.

To compare the quality between early and late fusion, we created a
pipeline to automate experimentation with a predetermined set of classi-
fiers. We evaluate early and late fusion on combinations of features ex-
tracted by LIRE on image datasets, and report their respective performance.

It is worth noting that the classifiers used for experimentation contain
hyperparameters that should be optimized to obtain peak performance.
In this project, however, due to time constraints we opt for settings
hyperparameters to a default value, and leave their optimization as future
work.

4.1 Datasets description

For our experiments we used two different image datasets: ASU-Mayo
Clinic Colonoscopy dataset[27] and MMSys dataset[54].

ASU-Mayo contains around 36,483 images of GI tract taken during
colonoscopy exams. The task is a binary classification of trying to identify
images with showing the presence of polyps (positives) and absence of
polyps (negatives).

MMSys is a dataset part of the ACM Multimedia Systems Conference
Dataset Archive, consisting of a total of 4018 images split evenly into 8
classes.
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Table 4.1: ASU dataset in divided in training and test set, and it is again
divided into negative pictures and positive pictures(polyp).

ASU Mayo Clinic polyp
Train Test

Neg Pos Neg Pos

Table 4.2: MMSys dataset is divided into train and validation set, both are
divided into 8 classes

MMSys Train esophagitis
inked-lifted-polyps
inked-resection-margins
normal-cecum
normal-pylorus
normal-z-line
polyps
ulcerative-colitis

8Validation esophagitis
inked-lifted-polyps
inked-resection-margins
normal-cecum
normal-pylorus
normal-z-line
polyps
ulcerative-colitis

We used Lucene Image Retrieval (LIRE)[8] library to extract several
different sets of features for each dataset and trained a classifier for each
independent set of features to obtain baseline metrics for later comparison.

4.2 Method and metrics

To evaluate the relative performance between early fusion and late fusion,
we selected a set of standard performance metric in the machine learning
community. These distinct performance evaluations are meant to indicate
the strength and weaknesses of each approach:

4.2.1 Accuracy

This metric simply refers to the ration of correctly classified images over
the total number of images. Let Nk be the number of elements for class K.
If for a given input xi with true label yi, our model f(X) predicts one of the
K possible classes, then accuracy is determined by:

Accuracy =
ÂN

i=1 I( f (xi) = yi)

ÂK
k Nk
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Table 4.3: Name and description
Name Description

True Positive(TP) Refers to the actual hit. When the output is 1
and prediction is 1 too

True Negative(TN) Refers to actual rejection. When the output is 0
and the prediction is 0 too

False Positive (FP) Equivalent to false alarm. When the output
is 0 but the predicted value is 1

False Negative(FN) Refers to actual miss. When the output is 1 and
the predicted value is 0.

Correct prediction includes the case of 00 and 11 i.e true positive
and True negative. Therefor the accuracy can be in our case defined as
following:

Accuracy =
TR + TN

TP + TN + FP + FN

4.2.2 Precision

This evaluation metric is mostly used for binary classification. It deter-
mines the ratio of true positives (TP) to the sum of TP and false positives
(FP). This metric is determined by the equation.

Precision =
TP

TP + FP

4.2.3 Recall

Much like precision, recall is primary used for binary classification. It
determines the ratio of TP to the sum of TP and false negatives (FN).

Recall =
TP

TP + FN

4.2.4 F1 Score

This measure attempts to capture a representative number of the models
performance with respect to precision and recall. It is given by the
harmonic mean of precision and recall.

F1 = 2x
Precision ⇤ Recall
Precision + Recall
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4.2.5 F-beta

The F1 measure has encountered criticism because it introduces bias
when dealing with unbalanced data classes. The Fbeta measure is a
generalization that allows to weight precision and recall differently.

F1 � beta = (1 + b2)
Precision ⇤ Recall

b2 ⇤ Precision + Recall

This is a metric that can be useful for our project. With the weighted F1
score, we can give more importance to the precision or the recall with the
beta parameter.

The question about if we want to detect most or all instances of
a class(higher recall) at the risk of having a higher percentage of false
positives (lower precision) is extremely important. This F-beta score could
capture this information for us if we adequately define the trade-off.
Basically what we want is not to miss any true positives, but at the same
time keep the false alarms low.

We added the F-beta score(with beta=2) to the metrics.

4.2.6 Specificity

Also called the true negative rate, measure the proportion of true negatives
(TN) that are correctly identified as such. That is the ratio of TN to the sum
of TN and false positives (FP).

Speci f icity =
TN

TN + FP

4.2.7 Metrics for multiclass problems

Accuracy can be used as metric for multiclass classification as it is, but the
other metrics (precision, recall and the f scores) need some modifications
because they are defined for binary classification only. There are two main
ideas: Micro averaging means that is necessary to define true positives, true
negatives, false positives and false negatives in a class by class basis, and
the metrics are calculated by counting the totals. Macro averaging means
that the metric is obtained by successively defining one class as positive
and the rest as negatives, obtaining the metric using that definition, and
finally averaging all the metrics obtained (one by class).

We used macro averaging to obtain precision, recall and the f scores
for the MMSys dataset[54] (which contains 8 classes) and the standard
definition for the ASU-Mayo Clinic Colonoscopy dataset[27].
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4.3 Classification Algorithms

The following is a presentation of the classification algorithms that was
used to obtain the results.

4.3.1 Random forest classifier

It is an ensemble learning for regression and classification purpose[55]. It
is a bagging based algorithm where a random set of features along with
random sample subset of the training set are selected and used to train a
number of (usually) shallow decision trees. The nodes position (or split) in
the decision tree is decided by the gini gain or information gain. After the
training is complete we have a ‘forest’ of the trained decision trees. The test
data is applied on the decision trees and then voting is performed to obtain
the final class from all the decision trees [A]. The important parameters for
implementing Random Forest from sklearn are:

1. n-estimators : The number of decision trees to be trained (default: 10)

2. criterion : i.e. whether we want to use gini gain (default) or
information gain.

3. max-features : It is the number of features to see for the best fit
(default: sqrt(n-features))

4. max-depth : The max depth of a decision tree.

4.3.2 Gaussian Naive Bayes Classifier

It is simple probabilistic supervised classifier[56] based on the famous
Bayes theorem. It assumes that the variables are mutually independent
(that’s why they are “naive”). It is also highly scalable. It assumes gaussian
distribution of data in each class and the probability of an instance v in
class c is given by the normal distribution as:

p(x = u | c) =
1p

2ps2
c

e
� (v�µc)2

2s2
c

Although this model appears very simple it works exceptionally well
for a lot of difficult problems. It is used in fields such as text retrieval
where frequency of a word is used to determine the probability of word
in a document, and Medical Diagnosis (We are using it here for polyp
detection).

It can be used with GaussianNB from sklearn with no important
parameters.
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4.3.3 Logistic Regression based classification

It is a regression model where output is in the form of classes. It is a simple
and popular technique for cases where we have a binary classification[57].
We have two classes for our experiment thus we have a binomial logistic
regression. A 0 represents absence of the class while a 1 represents presence
of the class, depending on the output obtained from the logistic function
used. It uses a logistic function for determining the output class.

y =
1

1 + y�z

Where y is the output variable and z is linear combination of features
including the bias term. The algorithm can also be extended to multi-class
classification using a 1-vs-rest approach. It can be used from sklearn with
following important parameters:

1. penalty : ‘l1’ or ‘l2’ which indicates which norm do we have to use
for penalization.

2. C : It is the inverse of regularization strength.

3. class weight : Default it assumes 1 for all.

4.3.4 KNN based Classification

This algorithm is best suited for supervised classification based tasks[58].
The data is distributed in the vector space and then the distance of the local
neighbours are calculated. This distance can be l1 or l2 norm based, or even
custom distance functions. Thus it is a kind of lazy learning too. In this
technique the nearest k neighbours are checked and then voting is done on
the k neighbours. The class corresponding to the majority of the neighbours
is assigned as the class of the new instance. It can be used from the sklearn
with following parameters :

1. nNeighbours : The number of neighbours to look for while making
the decision (default: 5).

2. weight : Weight of the points in the feature space (default: uniform
weights).

3. metric : Used for determining which distance to use. The default is
equivalent to the Euclidean metric.

4.3.5 Support Vector Machine Classifier

SVM generally depends on finding a hyperplane that optimally divides
the plane into subplanes with each subplane representing a class[59]. This
hyperplane has the maximum distance from the nearest set of datapoints
for the classes present. This distance is called as margin. The larger the
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margin the lower is the error. For more complex data we apply kernel
trick. Here complex data refers to the data that is not linearly separable.
With proper kernel trick, the data is transformed to other dimensions and
then optimal plane is obtained. Then classification is performed. It can be
used from sklearn with following important parameters.

1. C : penalty parameter of the error (default=1.0).

2. kernel : type of kernel required, i.e.: rbf, linear, sigmoid, poly, etc.
(default=’rbf’, radial basis function).

3. gamma : kernel coefficient (default=3).

4.3.6 Multilayer Perceptron Classifier

MLP is a feed forward neural network with input in the first layer and
output i.e class at the last layer[60]. There are multiple layer of nodes
which are fully connected. There is an activation function (sigmoid, tanh
etc) associated to each node in the neural network which determines the
firing of that node. It utilizes back-propagation for learning. The error is
back-propagated to the nodes as per required output. They can learn and
classify data that are non linearly separable. Parameters for MLP classifier
in sklearn :

1. hidden-layer-size : The number of neurons in hidden layers (default:
1 layer with 100 neurons: (100)).

2. activation : Type of activation function required (default: ‘relu’,
rectified linear unit function).

3. solver : Optimization function that will be used like lbfgs, sgd, etc.
(default: ‘adam’, Adaptive Moment Estimation, a modification of
Stochastic Gradient Descent.

4.4 Feature Description

As we have described previously, LIRE[8] can be used to extract features.
To speed up the process of extracting we utilized a small LIRE program to
obtain features from all the images from a directory and save them into a
CSV file. The java script we applied is called prallelExtraction.java. This is
a modification of a program included in the Lire Sample Application. The
script can easily be used to extract all the features mentioned in Table 3.2.

After studying different types of global features, we decided to
start extracting 3 sets of some of the most notable global features,
which are Joint Composite Descriptor (JCD)[49], Tamura[40] and Texture
Histogram (FCTH)[37]. These single global features have been reported
to work outstanding, especially for ASU dataset[1].This therefor makes it
interesting for us to fuse these 3 sets of features.
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4.4.1 Baseline

To obtain a baseline metric, we trained a random forest classifier with 100
trees and looked at the performance of each of the three feature extraction
methods independently. To asses the quality of the prediction we measured
precision, recall, f1-score, and accuracy:

Below are the results obtained for JCD, Tamura, and FCTH:

Table 4.4: Results obtained for FCTH
FCTH: Accuracy: 82.5%
Values Precision Recall F1 Score Support
0 0.85 0.92 0.88 13261
1 0.67 0.48 0.56 4313
Avg/total 0.80 0.82 0.80 17574

Table 4.5: Results obtained for JCD
JCD: Accuracy: 82.6%
Values Precision Recall F1 Score Support
0 0.84 0.95 0.89 13261
1 0.75 0.44 0.55 4313
Avg/total 0.82 0.83 0.81 17574

Table 4.6: Results obtained for Tamura
Tamura: Accuracy: 81.1%
Values Precision Recall F1 Score Support
0 0.84 0.93 0.88 13261
1 0.68 0.43 0.53 4313
Avg/total 0.80 0.81 0.80 17574

4.4.2 Dimensionality reduction

Dimensionality reduction reduces the dimension of data by projecting the
data from the higher to a lower dimension form. This can be of two
types - ie linear dimensionality reduction and non linear dimensionality
reduction. In linear dimensionality reduction the new dimensions are
linear combination of existing dimensions. For eg - PCA (Principal
Component Analysis), SVD (Singular Value Decomposition), LDA (Linear
Discriminant Analysis), Random Projection etc. While in non linear
Dimensionality reduction the relation between the existing and new
dimension is non linear. For eg - Kernel PCA, t-SNE etc. Kernel PCA uses
kernel trick which is non linear transformation of data with the help of a
kernel function.
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4.4.3 Cross-validation

It is used for validation of a model. It is generally used to avoid
overfitting of a model and to generalize how the model will perform on
an independent dataset. It is generally based for models that performs the
prediction task ie how accurately the model can predict the outcome. But
still it works for classification tasks as well. We generally perform multiple
rounds of validation steps for determining the accuracy of a model. for
eg - K fold cross validation. In this validation technique the sample is
divided into K subsets. One of these subsets is reserved for validation while
remaining are used for training. This step is performed k times with each
time having different subset for validation. Thus we have k different results
obtained after validation. The accuracy is determined by averaging all the
k accuracies obtained.

4.5 Early fusion

To define features based on the early fusion methodology, we constructed
a single feature vector for every possible combination of the three
aforementioned feature types. We performed our tests using logistic
regression, Gaussian naïve Bayes, and random forest.

Due to the large number of tests performed, we will not include all
performance metric, but rather discussed the best performing setup.

ASU Dataset

Surprisingly, for this dataset, the accuracy was obtained by models using
only one of the three possible features. Tamura seems to capture most of
the necessary information needed to create accurate models, obtaining an
accuracy of 84% when trained with Naïve Bayes, and 82% with logistic
regression. Logistic regression on JDC was able to achieve 82% accuracy.

It is difficult to say with absolute certainty why combining features
seems to decrease predictive performance, but a possible explanation could
be tied to the increase in feature dimensionality and the amount of data
available. As the number of dimensions representing the data increases,
the patterns that help differentiate between classes are more difficult to
identify, and the learning algorithms require more data to distinguish
between noise and signal.

The best performing setups on the ASU dataset are given in the table
below:

MMSys Dataset

For this dataset, we decided to use all global features available from LIRE
and compare the performance of several different classification methods
using early fusion. The classifiers in questions were: logistic regression,
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Table 4.7: Early fusion of 3 set of features(JDC, Tamura and FCTH
Features Model Accuracy F1 Precision Recall
Tamura Logistic 0.840 0.688 0.661 0.717
Tamura Naïve Bayes 0.829 0.659 0.647 0.672
JDC Logistic 0.829 0.630 0.671 0.594

multi-layer perceptron (MLP), support vector machines (SVM), random
forest, k-nearest neighbors (KNN), Gaussian Naïve Bayes.

Table 4.8: Early fusion of all global features
Model Accuracy F1 Precision Recall F beta
LogRegression 0.87 0.869 0.870 0.87 0.869
MLP 0.863 0.862 0.864 0.863 0.862
SVM 0.777 0.775 0.779 0.777 0.775
RandForest 0.749 0.747 0.751 0.749 0.747
KNN 0.683 0.674 0.699 0.683 0.676
Gaussian NB 0.564 0.544 0.565 0.564 0.551

Logistic regression and multi-layer perceptrons clearly outperform
the rest of the models. A possible explanation for this difference in
performance is that out of all the tested classifiers, logistic regression and
MLP are better suited for distinguishing between classes that are non-
linearly separable. Introducing polynomial features of higher order would
likely improve the performance on the rest of the classifiers, but that line of
work is beyond the scope of this project.

Using PCA

We decided to experiments with PCA to reduce the dimensionality of the
dataset, given that combining all the global features resulted in a dataset
with 3778 variables.

We used the sklearn implementation of the PCA algorithm, were the
most important parameter is the number of components to keep. This
parameter can be defined in two ways: as an integer, predefining the exact
number of components to keep, or as a float between 0 and 1, defining the
percentage of variance that needs to be explained (the algorithm will keep
the minimum number of components needed to explain that amount of
variance).

We defined n-components = 0.99 (99% of variance explained), and the
resulting reduced dataset had 1040 variables, about 72% less than the
original.

The resulting metrics were slightly worse than without using PCA,
with three exceptions: the case of SVM and Gaussian NB which had an
improvement, and Random Forest with was significantly worse:
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Table 4.9: Early Fusion of all global features(using PCA)
model accuracy F1 precision recall Fbeta
MLP 0.865 0.865 0.865 0.866 0.865
LogisticRegression 0.865 0.864 0.865 0.865 0.864
SVM 0.823 0.822 0.823 0.823 0.822
KNN 0.680 0.670 0.695 0.679 0.672
Gaussian NB 0.676 0.672 0.702 0.676 0.670
RandomForest 0.409 0.406 0.418 0.408 0.406

SVM and Naive Bayes are probably benefiting of the reduced number of
variables, especially SVM which is sensitive to the number of dimensions.

4.6 Late fusion

A standard technique used for late fusion is based on ensemble methods.
Several distinct classifiers are fit to the data, and their outputs is combined
and used as a feature to fit another classifier. This has the benefit of
leveraging the strength of each individual model in the final prediction.

In this work, we obtained late fusion features from LIRE and used them
to test several different classification models on each dataset.

Late fusion is performed after classification tasks are performed. In this
we can’t learn about the correlation between the attributes or the features.
It doesn’t have the problem of high dimensions as each set of features
is used by a different classifier. The Late fusion comprises of stacking
of classification models. In the base model (layer 1) we have performed
classification with existing features and the output of base model are added
as features in the training data.

We apply following methods to the result obtained-

4.6.1 Stacking

Basically, in this method we have two layers of classifiers: after we have
performed the classification tasks with the 1st layer of classifiers we use the
resulting predicted probabilities as training data for a 2nd level classifier.
This classifier learns to combine the results of the first layer classifiers to
make predictions on the data, and the output of the 2nd level classifier is
the final prediction.

In order avoid over-fitting (memorization of the training set), it is
important to follow a set of guidelines for doing stacking. The main idea is
to randomly divide the training set into a number of folds, 5 for example.
Then, when training the 1st layer of classifiers, we separate one of the folds,
train the algorithm on the rest, do prediction on the separated fold, and
store the predictions corresponding to those examples. This procedure is

41



Figure 4.1: Pipeline of Late Fusion Stacked

repeated for all of the folds, at the end obtaining predictions for all the
examples in the training set. That way, the predictions that are going to
be used as training data for the 2nd level classifier are obtained without
‘looking’ at the corresponding examples.

4.6.2 Average Late Fusion

The probability output of each classifier in the first layer is averaged. The
averaged output is the final output, after being converted into a class
prediction. Let c1,c2,c3 be the results of the classification obtained on the
second layer. Therefore the new result :

y =
c1 + c2 + c3

3
(where y is the result averaged output), and finally: y = (y > 0.5).

4.6.3 Weighted Late Fusion

When obtaining the results from 1st layer classifier we also obtain cross-
validation metrics (accuracy or f1-score) on the performance of each
classifier. Latter, to combine the results of the first layer, we do weighted
averaging of the probability outputs obtained, where each assigned weight
is the result of the cross-validation metric so each output is weighted with
the performance of each classifier: that way better classifiers will have
higher weights.

y =
(b1c1 + b2c2 + b3c3)

b1 + b2 + b3
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Where y is the resultant output and beta1„beta2 and beta3 are the
weights obtained.

For our purpose we have used both Average and Weighted Late Fusion.
This improves the result a lot than compared to the baseline model.

4.6.4 ASU Dataset

Not surprisingly, using late fusion clearly outperformed the best perform-
ing methods in the ASU dataset. Having an ensemble of methods allow
each classifier to include their own benefits, and handle corner cases that
other classifiers are not able to do. In this experiment, the final classification
was done by logistic regression, random forest, and Gaussian naïve bayes.

Table 4.10: Results of late fusion of all global features(using ASU dataset)
Model Accuracy F1 Precision Recall F beta
LogRegression 0.883 0.732 0.842 0.648 0.679
RandForest 0.869 0.658 0.923 0.511 0.562
Gaussian NB 0.856 0.630 0.851 0.500 0.545

Even though the best performing classifier was still logistic regression,
in this case the accuracy increased from 84% to over 88%. Likewise,
precision and F1 score saw a significant improvement.

4.6.5 MMSys Dataset

We perform the same set of experiments as we did with the ASU dataset. In
this case, however the tested classification models were logistic regression,
multi layer perceptron (MLP), random forest, support vector machines
(SVM), k-nearest neighbors (KNN), and Gaussian naïve bayes.

Table 4.11: Results of late fusion of all global features(using MMSys
dataset)

Model Accuracy F1 Precision Recall F beta
MLP 0.896 0.895 0.898 0.896 0.895
LogRegression 0.88 0.883 0.886 0.884 0.883
RandForest 0.857 0.856 0.857 0.857 0.856
SVM 0.849 0.847 0.851 0.849 0.847
KNN 0.835 0.832 0.840 0.835 0.833
Gaussian NB 0.63 0.581 0.726 0.63 0.595

Once more, we were able to obtain a significant accuracy improvement
in our best performing classification model, going from 87% accuracy to
almost 90%. As it happened on our previous experiment, the classifiers that
are able to create non-linear separating regions were the best performing
ones, namely: multi-layer perceptron and logistic regression.
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Using PCA

As we did with Early Fusion, we added PCA to the experiments with this
dataset. In this case the results were very similar to those obtained without
PCA, probably because the original datasets didn’t have a problem of too
many variables. Again, only SVM and Naive Bayes benefited with PCA.

Table 4.12: Results of late fusion of all global features(using MMSys dataset
and by using PCA)

Model Accuracy F1 Precision Recall F beta
MLP 0.893 0.893 0.895 0.893 0.893
LogRegression 0.88 0.881 0.885 0.882 0.881
RandForest 0.83 0.83 0.83 0.83 0.828
SVM 0.859 0.858 0.862 0.859 0.858
KNN 0.835 0.832 0.840 0.835 0.833
Gaussian NB 0.825 0.823 0.823 0.825 0.923

4.7 Results Comparison

In this section, we do a side by side comparison of the results obtained
using early fusion, averaged late fusion, and stacked late fusion. For the
sake of conciseness, we discuss the three more relevant metrics: accuracy,
precision, and recall.

4.7.1 ASU Dataset

The graphs below show a side by side comparison of using early fusion and
late fusion on the ASU dataset. We looked at three different classification
methods, Gaussian Naïve Bayes, logistic regression, and random forest.

Accuracy

All models were able to achieve at least an 80% accuracy on this first
dataset, which is a fairly reasonable result. However, there is a clear benefit
in using late fusion as opposed to early fusion, in particular, stacked late
fusion. When using early fusion, model selection did not seem to have
a significant impact on accuracy, but late fusion is able to capture the
most relevant information through the use of multiple learners. Logistic
regression was able to outperform the other models, achieve approximately
90% accuracy with late fusion.

Precision

Just as with accuracy, late fusion is able to significantly improve precision.
Early fusion was able to achieve a precision score of .76, while late fusion
was able to obtain a precision of .92. Random forest was able to obtain
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Figure 4.2: Accuracy comparison of different fusing methods and various
classifiers(ASU dataset)

the highest precision score of all learners, a possible reason being that the
nonlinear partitions it creates on the space of the data is well tailored to the
data presented. It generalizations abilities are limited, as evidenced by the
accuracy results, but it is less prone to false positives than other classifiers.

Figure 4.3: Precision comparison of different fusing methods and various
classifiers(ASU dataset)

Recall

Surprisingly, the effect of feature extraction method on recall does not
seem to be clear. The combined selection of early or late fusion, and the
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learner used for classification seem to give highly varied results. Averaged
late fusion with naïve Bayes gave the highest recall score, reaching 0.87.
However, the same learner with stacked late fusion had a recall of 0.5.
On the other hand, logistic regression and random forest seem to have
benefited from stacked late fusion, increasing their performance by over
0.1 from early fusion.

A possible explanation of why naïve Bayes could be able to outperform
the other learners by such a large margin is that while logistic regression
and random forest seek to partition the space into positive and negative
regions, naïve bayes is simply looking at the probability of an example
being positive or negative given the features that describes it. In other
words, it takes a completely different approach to prediction that seems
to performed particularly well when measuring recall.

Figure 4.4: Recall comparison of different fusing methods and various
classifiers(ASU dataset)

4.7.2 MMSys Dataset

The graphs below show a side by side comparison of using early fusion and
late fusion on the ASU dataset. We looked at several different classification
methods: naïve Bayes, logistic regression, neural networks, support vector
machines, k-nearest neighbors, and random forest.

Accuray

Logistic regression and neural networks were able to produce the most
accurate models. Although not very significant, late fusion did improve
prediction accuracy over early fusion; taking logistic regression from 83%
to 88% accuracy, and neural networks from 83% to 89%. Even though the
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other models were not as accurate as these two, they all saw an accuracy
improvement by using late fusion.

Figure 4.5: Accuracy comparison of different fusing methods and 6
different types of classifiers(MMSys dataset)

Precision

Just as it happened with the previous dataset, all models experience
an improvement in precision when using late fusion over early fusion.
Logistic regression and neural networks seems to be the ones able to
achieve the highest score, with a precision of .88 and .89 respectively.

Recall

As opposed to the previous dataset, in this dataset late fusion seems to
improve recall regardless of the learning model. Again, logistic regression
and neural networks are able to achieve the highest recall.

These results further support the idea that in this dataset there is a
nonlinear relationship between the features that the other models are not
able to capture.

Confusion matrices

The confusion matrices are useful tools to check the errors that the
classifiers are making, especially to examine which classes the classifiers
are confounding with which others, something than can be useful in a
diagnostic context. We will examine the matrices for the best (MLP) and
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Figure 4.6: Precision comparison of different fusing methods and 6
different types of classifiers(MMSys dataset)

Figure 4.7: Recall comparison of different fusing methods and 6 different
types of classifiers(MMSys dataset)

worst (GaussianNB) classifiers, according to accuracy, both in early and
late fusion. The numbers in the matrices are normalized to reflect rates and
not total numbers.

In this matrix(Figure 4.8) we can see the types of errors that the MLP
classifier is making. In particular, the classifier is confounding inked-lifted-
polyps with inked-resection-margins about 30% of the time (and viceversa
at a lower rate). Also, MLP is having problems distinguishing normal-z-
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Figure 4.8: Early Fusion: MLP classifier(MMSys dataset)

line and esophagitis about 20% of the time (and viceversa at a lower rate).
All other errors are much less prevalent.

This information could inform the doctors while reading the diagnostic
so they could pay especial attention, and maybe ordering additional tests,
if the classification falls into these areas.

Naive Bayes(Figure 4.9) is making the same mistakes of MLP but at
a much higher rate, and also have other highly prevalent errors, like
confounding normal-pylorus with esophagitis about 36% of the time,
polyps with inked-resection-margins 20% and with ulcerative-colitis 30%
of the time, and normal-pylorus with normal-z-line 23% of the time. Given
the number of prevalent errors, this classifier is much less useful for
diagnostic.

In the case of late fusion(Figure 4.10), we can see that the types of errors
are similar than with early fusion, but in general the classifier is being
confounded less (observe the higher prevalence of 0.0 outside the main
diagonal). This is a sign of a better classifier, in line of what we have found
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Figure 4.9: Early Fusion: GaussianNB classifier(MMSys dataset)

earlier.
As in the case of early fusion, GaussianNB(Figure 4.11) is much

worse than MLP, for example, is almost completely confounding inked-
lifted-polyps with inked-resection-margins, but also is not making the
corresponding error of confounding inked-resection-margins with inked-
lifted-polyps, probably because it’s giving much more weight to the inked-
resection-margins class. Other systemic errors are also present, but overall
is much better than the same classifier with early fusion.

4.8 Summary

In this chapter, we analysed the performance of early fusion and late
fusion as means of feature extraction for classification tasks. We ran
experiments on two challenging datasets, and compared the accuracy of
several different classification methods using early and late fusion. From
these results, the benefits of late fusion over early fusion seem evident.
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Figure 4.10: Late Fusion: MLP classifier Weighted classifier(MMSys
dataset)

Not only was late fusion able to improve the best obtained accuracy across
different models for both datasets, but we observed an improvement of
accuracy for each model individually when comparing to early fusion.
However, these improvements come with a cost. Obtaining features for
late fusion, require fitting several different models to the data, which can
be quite time consuming.

We hypothesize that the reason for these accuracy improvements is
that, by using late fusion, we are incorporating information extracted from
several different models that we would not have been to capture had we
only used a single model. In a way, late fusion takes the best of each
classifier, and produces much more informative features on which one can
learn a model.

The experiments suggest that, whenever possible, late fusion or some
other ensemble method should be considered instead of simply attempting
to learn a model through early fusion.
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Figure 4.11: Late Fusion: GaussianNB classifier Weighted classifier(MMSys
dataset)
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Part III

Conclusion
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Chapter 5

Conclusion

5.1 Main Contributions

In this work, we conduct an in depth experimental study of different
feature fusion methodologies. Early and late fusion approaches have been
used extensively, and are a prevalent way of constructive informative
features for predictive models. Up to this point, we had an intuitive
understanding of the pros and cons of both early and late fusion, but we
have not run them through extensive experimental testing.

Through the use of two large publicly available datasets, we studied the
performance of each feature extraction method, and found evidence that
further supports our initial intuition; that is, early fusion is cheaper to run
for feature construction, whereas late fusion is able to more informative
features which tends to obtain higher accuracy in predictive models. We
have found that the choice of predictive model can have a substantial
impact in overall accuracy, but the use of late fusion tend to improve
accuracy for each model independently. We also considered other standard
measures with which we could asses the performance of these features:
precision, and recall. For virtually every model we tested, we found that
accuracy improvement given by feature fusion seems to be correlated with
an improvement in precision. This is also true for recall, however to a lesser
extent, where we found that naïve Bayes is a bit less predictable in terms of
how different features influences it.

5.2 Future work

Even though we aimed to be as thorough as possible, there are still
questions that should be explored. In our experiments, we focused on
discrimination by considering feature vectors living in the Euclidean space.
However, since we are working with images, there might be a more robust
explanation of the features if we consider a lower dimensional manifold
representation. We discussed the results using PCA for one of our dataset,
but that is only dealing with a linear subspace projection. A place for
further exploration is to consider non-linear embeddings, such as locally
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linear embedding (LLE), isomap, multi-dimensional scaling (MDS), etc.

Another area for further study would be looking at a different style of
datasets. We explored different feature fusion method on image datasets,
which could really bias the results. It is possible that these early and late
fusion are particularly well (or poorly) suited for image data, so further
exploration could be done in the areas of natural language processing
(NLP), transfer learning (TL) or reinforcement learning (RL), for example.
One might also argue that, while these feature extraction methods seem
intuitive and lead to better performance, most state-of-the-art results in
recent years have been achieved through implicit feature learning through
deep learning techniques. A more direct comparison between features
extracted through deep learning, and early and late fusion techniques
would be a reasonable step to further study how these different approaches
compare to each other.

We also would like to extend our current experimental setup to other
related dataset, in particular Kvasir dataset[61] and Nerthus dataset[62].
Kvasir is a dataset containing images from inside the gastrointestinal
(GI) tract. The collection of images are classified into three anatomical
landmarks and three clinically significant finding. It also contains two
categories of images related to endoscopic polyp removal. Nerthus is
a dataset containing videos from inside the gastrointestinal (GI) tract,
showing different degrees of bowel cleansing.

Since these datasets come from a similar set of tasks as the ones used
in our experiments, extending our study to these datasets would provide
further evidence that learning models on these type of images could greatly
benefit from feature fusion, specially from late fusion.

5.3 Final remarks/thoughts

Our findings throughout these experiments further support what we
intuitively thought all along: late fusion tends to improve model accuracy,
at the expense of added computational cost.

At this point, we can safely suggest that machine learning practitioners
deciding between early and late feature extraction methods should follow
the following rule of thumb. If the intent is to create a system that should
be updated or retrained fairly often, it might be worth sacrificing a bit of
accuracy for meeting certain time constraints. In those situations, early
fusion might be a more pragmatic choice. On the other hand, if the system
does not experience regular updates and the model is frozen once it was
trained, then the improved accuracy of using late fusion techniques might
be worth the extra cost.

Given the results we obtained, it seems like logistic regression and
multi-layer perceptrons are able to model relationships which other
learning methods cannot find. This finding is consistent with current
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approaches using deep learning, which can be thought of as taking MLP
nonlinear capacities to a much higher degree.

We suggest that, if thorough experimentation with different models is
not possible and prior knowledge if available for modelling a problem, ma-
chine learning practitioners should opt neural network based approaches
since they have consistently show to be a robust learning model.
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Appendix A
Source Code
The source code is available at the following link:

https://github.com/SalmanMasterThesis/MasterThesis

All of the visualizations and graphs are also added there.
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