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Abstract

Using artificial intelligence (AI)-based diagnostic tools to assist healthcare professionals has
increased significantly in recent years. However, AI is a heavily data-driven approach. Because
of lack of data and especially imbalance nature of data, today’s AI faces the most common
issue of bias and overfitting. On the other hand, it is an undeniable fact that the lack
of data in healthcare is one of the major issues. With the newer privacy rules, collecting
and sharing data has become even more challenging. To mitigate this issue, the use of
synthetic data emerged as an alternative solution. In this study, we aim to develop tools to
generate synthetic data, and we have carried out extensive research on state-of-the-art models.
Using electrocardiograms (ECGs) as a case study, we have then developed conditional deep
generative models using generative adversarial networks (GANs) and denoising diffusion
probabilistic models to generate 10 second long 12-lead ECGs based on a given input condition
like desired heart rate. We trained the proposed models on two different datasets (PTB-XL and
INT99+GENSUS). We evaluated the ECGs signals generated by normal and conditional models
using different methods on both datasets, which demonstrated that the signals generated
by GANS models are more realistic. The data generated by the best conditional GANs
model yields FID distances of 3.36 and 4.73 on PTB-XL and INT99+GNSUS dataset, while
the diffusion model yields FID distances of 16.65 and 10.97 respectively (note:lower FID is
better). Similarly, the error of the machine learning (ML) classifier shows that the model has
higher error in distinguishing real samples and fake samples generated by conditional GAN
(accuracy: 79%, 87%) compared to the conditional diffusion model (accuracy: 92%, 92%) in both
datasets. Power spectrum analysis shows that ECGs signal generated by conditional GANs
model is almost identical to real signal strength, while the diffusion model signal strengths
are lower than real which demonstrates that different waves are not correctly generated by
diffusion model. Most importantly, ECGs parameters extracted using AI-model confirmed
that both GANs and diffusion models are generating signals closer to the given conditional
information. The extracted ECG parameters from the ECG signals, which are generated by
conditional Generative Adversarial Networks (GANs), more accurately match the specified
input conditions given in generative process. We have also verified the synthetic ECGs with
an expert cardiologist. The cardiologist validated that the ECGs generated by our proposed
models closely resemble the predetermined conditions. Among the two methodologies
evaluated, the Generative Adversarial Network (GAN) models proved to be the superior
approach. The data generated by our models is openly accessible to researchers. Furthermore,
we have published all of our models as Python packages, which can be used for generating
synthetic ECGs. In conclusion, our proposed models have demonstrated their capability to
generate realistic ECG signals in accordance with specified conditions. Thus, they can be
employed to create training datasets for the development of AI-based diagnostic tools, without
incurring any privacy-related issues, among other benefits.
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Chapter 1

Introduction

1.1 Motivation

Electrocardiograms (ECGs) are the measurement of cardio activity through an electrical signal.
Measuring the ECG signal is an easy, fast, and non-invasive tool [35]. However, ECGs tools are
potentially powerful tools which contain rich information about the healthiness of the heart.
Indeed, ECGs signals are one of the key components used by doctors to diagnose and treat
different kinds of diseases related to the heart [106]. Several research reports that ECGs signals
can provide information related to arrhythmia1, cardiac hypertrophy2, myocardial ischemia3,
and many more diseases [31, 35].

Although ECGs signals are easy to capture and contain very potential information, ECGs
signals are complex in nature [35]. Identifying the meaningful insides of ECGs signals is not
an easy task. It requires an expert level of knowledge in the related field. On the other hand,
several studies show that the lack of expert resources is the biggest problems worldwide [21,
61, 80]. One alternative solution is to train human resources, but it requires huge cost and time
to train the human resources so that they can make clinical interpretations of ECGs signals.
In addition to this, even though human experts are available, they are prone to interobserver
variability in ECGs signals due to human errors (e.g., lack of concentration, focus, moods, etc.)
[35].

To overcome above mention issues in the field of ECGs analysis, the use of artificial
intelligence (AI) is rapidly emerging as an alternative solution in recent years [86]. Some of
the early adoptions of AI models in the healthcare sector demonstrate the ability of AI in
the medical sector. Indeed, artificial intelligence models outperform human experts in some
medical tasks [7, 29]. For instance, in early 2020, the AI system developed by Google can
identify breast cancer better than human experts [63]. In the domain of ECGs as well, studies
show that AI-based analysis identifies ECG abnormalities with significantly higher accuracy
than conventional algorithms and human experts [47, 50, 87].

However, it is an undeniable fact that today’s artificial intelligence-based deep learning
models are heavily dependent on the large volume of data [114]. Indeed, the lack of training
data has a negative impact on the results of deep learning models. On the other hand, there is
a huge scarcity of data in the medical field. There are two major reasons behind it. First, the
collection of data requires a large amount of cost and time [91]. Second, in some cases; data
might be available, however, it is very complicated to get access to and use those data due to
privacy reasons [71]. Recent strong rules and laws imposed at the national and international

1https://www.webmd.com/heart-disease/atrial-fibrillation/heart-disease-abnormal-heart-rhythm
2https://www.cardiosecur.com/magazine/specialist-articles-on-the-heart/what-is-cardiac-hypertrophy
3https://www.mayoclinic.org/diseases-conditions/myocardial-ischemia/symptoms-causes/syc-20375417
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level (GDRP rules introduced by the European Union4, HIPPA rules imposed in the USA5)
make it very difficult to use healthcare data related to the personal identity of patients.

To overcome the issue of data deficiency and improve the efficiency of deep learning
models, generating synthetic data is one of the effective solutions [92]. However, it is very
important that the generated data must capture the distribution of the original data in terms of
quality and variations. In the domain of ECGs, traditionally mathematical equations were used
to generate synthetic data. However, research shows that traditional methods require expert
domain knowledge and generated data lose the standard in terms of quality and variation [22,
114]. Generative models enter the new era after the release of the deep learning-based model
called the generative adversarial network (GAN) by Goodfellow in 2014 [33]. In fact, GAN
has become one of the most widely used state-of-the-art methods for generating different types
of synthetic data [17]. Similarly, after the release of denoising diffusion model [39] in 2021,
diffusion models are also become state-of-the-art methods for generating images, and reached
to the next level after the release of Stable Diffusion [76] and DALL-E and DALL-E 2 [74] model
for generating images based on given input text.

The use of the generative adversarial network and diffusion models for generating realistic
synthetic ECG data is getting higher attention from researchers in recent years. The current
literature study shows that GAN and Diffusion models are used by researchers for generating
ECG with varying numbers of channels and time intervals [1, 2, 41, 93, 106, 114]. However,
there is a lack of research work in the direction of generating synthetic ECG data based on
different conditions. Indeed, there are some work which take class labels (normal/abnormal) as
input condition. However, in the domain of ECGs, ground truth of ECG, i.e., ECG parameters
(such as Heart rate, PR interval, QRS duration, QT interval, etc.) are more prominent features
than class labels. To the best of our knowledge, there is not a single work in the direction of
using ECG ground truth (also called ECGs parameters) as conditional information. To build
a better generalized model for ECGs analysis, it is important to have a sufficient number of
ECG samples from diverse ground truth. Therefore, generating the ECG signal with multiple
controllable conditions is the utmost for higher flexibility. To full fill this research gap, we
are going to propose a novel deep learning based generative model with the capability of
generating ECGs signals for given conditions.

1.2 Problem Statement

In the motivation section, we explained the different existing problems (most importantly lack
of data with ground truth) and our proposed solution to overcome the mentioned problems
and fulfill the research gaps. In this thesis, we carry out extensive research and investigation to
figure out whether AI-based generative model architecture can take additional input of ground
truth information as condition and enforce the model to generate ECGs signal equivalent to the
given conditional information. Based on the motivation and the main goal, we can define that
the main research question of this thesis work is as follows:

Can deep generative models generate realistic ECGs signals based on the given condition
information?

In the above research question, the term conditional information refers to the properties of
ECGs. In the medical field, it is also called a biomarker. ECGs has different types of properties
(biomarker) such as heart rate, PR-interval, QRS-duration, QT–interval, R-peaks, etc. In layman
terms, the generative model generates ECGs at random, may generate ECGs with heart rate of
60 or 90, etc, but if we pass a heart rate of 80 to the model during generation, then the model

4https://gdpr-info.eu/
5https://www.hhs.gov/hipaa/index.html
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also generates the ECGs signal with the heart rate of 80. To achieve the main goal of the defined
research question, the following objectives are defined:

• Objective-1: Research and develop state-of-the-art deep learning based generative
models (GAN and Diffusion) to generate realistic fake ECGs.

• Objective-2: Research and develop a suitable method to add a conditional parameter on
proposed generative model so that model can generate ECGs of given condition.

• Objective-3: Research and develop different types of analysis methods for evaluating
synthetic data.

1.3 Research Method

Artificial intelligence based generative models are one of the hot research fields in the domain
of computer science which comes under the umbrella of scientific research. We follow the most
widely used research framework proposed by ACM, which is divided into three paradigms:
theory, abstraction, and design [23]. In this thesis work, we mostly follow the abstraction,
which is also called modeling/prototyping paradigm. Abstraction (modeling) paradigm
consist of following four stages: form a hypothesis, construct a model and make a prediction,
design an experiment and collect data, and analyze results. This is a quantitative research. To
overcome the limitation discussed in the previous motivation section, the following research
steps will be followed.

• Define the main research question and define different objectives to support the main
research question.

• Detail literature review will be conducted to figure out state-of-the-art work.

• Research and proposed a deep learning based generative model architecture.

• Design the experiment environment and conduct several experiments.

• Research and investigate different possible ways to evaluate the quality of work.

• Present research findings and result in a scientific way

1.4 Ethical Considerations

We make sure that all ethical considerations of the research work have been fully followed
in this thesis work. We have worked with two different datasets, out of them, one is a
private dataset owned by the University of Copenhagen. In the case of a private dataset, we
have strictly followed the privacy rules of the university. The authors have also signed the
confidentiality agreement for not sharing data and its misuse. By considering the privacy rules,
we have conducted all our research on the university private server through VPN connection.
To avoid the possible leakage of information, none of the public cloud-based services are used
to track the experimental results. Similarly, to avoid the possible chances of adversarial attack,
we are not publishing the trained model weights publicly. In addition to this, to ensure that
none of the real data was exactly replicated in synthetic data, we performed the privacy test
and made the data publicly available for the research community.

By considering the transparency and reproducing the same result, all the code of this
thesis work is publicly available under the GitHub repository (https://github.com/upretiramesh/
SyntheticECG/). In the case of a public dataset, we have also shared trained model weights and
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different analysis that has been performed on metadata and core data. The model trained in
this thesis work donot have any bias and discrimination related to specific group of people. The
anonymity of data is maintained by hiding identities of the participants. We further ensures
that all the credibility of other work is fully maintained by referencing their work. The work
is free of research misconduct and all the results are accurately presented. There are no any
potential harms of this thesis work. The data generated from this thesis work can be used for
further research and developing AI based diagnosis tools.

Last but not least, the project does not involve the use of human participants or animals.
Therefore, ethical considerations related to human or animal subjects do not apply in this thesis
work. We further confirmed that the authors have no financial or proprietary interests in any
of the materials discussed in the thesis work. We declare no competing interests.

1.5 Scopes and Limitations

The study aims to produce high-quality synthetic ECG data that can be used for different
purposes. In addition to quality, flexibility in generation is another major importance of
study. In other words, this study allows researchers and doctors to generate the ECG
signal for the desired conditions. Indeed, users can force the model to generate the
ECG for given conditions. In the case of a private dataset, we have used the following
seven parameters as conditions: ’VentricularRate’, ’P_Duration’, ’P_RInterval’, ’QRSDuration’,
’Q_TInterval’, ’P_wave’, ’PPeakAmp_II’ while in open source dataset following five features are
used as conditions:’QRS_Duration’, ’QT_Interval’, ’PR_Interval’, ’AvgRRInterval’,’P_wave’. The
user can use the valid values for these features to use as conditions for generating ECG signals.
Similarly, the study has proposed models based on two state-of-the-art methods called GAN
and diffusion, which allows users to choose the model based on their requirements. To train the
generative models, only normal (healthy) ECG signals are used. Therefore, the data generated
by this study can be used for the analysis of normal ECG signals.

If the research community wants to use the data generated by this study or reproduce the
same results presented in this study, we would like to mention some of the limitations of this
work to be considered. First and most importantly, the study has considered only normal
ECGs signals, therefore it cannot generate different types of ECGs related to different diseases.
Similarly, it has used the fixed parameter as a condition which is mentioned above. Passing any
other parameter may lead to useless generation. However, researchers can use the proposed
model for training based on their requirement, that is, they can use different types of ECGs,
and they can add or remove condition parameters. Similarly, all the models are trained on a
dedicated server with a GPU of 32 GB, so training the model on normal PCs may not work or
may take months to complete training.

1.6 Thesis Structure/Outline

The rest of the thesis work is organized in the following structure.
Chapter 2 - Background: In Section 2.1 we have described how artificial intelligence has

been used in the healthcare sector. Similarly, Section 2.2 provides an overview of machine
learning and its types. In addition to this, Section 2.3 provides an overview of different types of
generative models and in-depth information about GAN, such as how it works, different types
of loss functions, and different types of architecture. Last but not least, the detailed information
of ECG and literature review is presented in Section 2.4.

Chapter 3 - Methodology: In the first two sections (3.1 and 3.2), we have explained about
the dataset and the types of neural networks used in the proposed solutions. In section 3.3,
we have proposed the architecture of GAN and its variants including discriminator and loss
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function. Similarly, diffusion-based model architecture is proposed in section 3.4. Passing
conditional information to the model is one of the important aspects of this thesis work which
we have explained in separate Section 3.5. Finally, the different types of evaluation methods
are explained in Section 3.6.

Chapter 4 - Experiments and Results: how different experiments are conducted and
evaluated are presented in this chapter. Section 4.1 describes experimental setup whereas
Section 4.2 describes the model abbreviation used in this thesis work. Similarly, results from
different models are evaluated in different methods which are explained in Sections 4.4 to 4.12.

Chapter 5 - Discussion and Future Work: Based on the experimental results presented in
chapter 4, in this chapter, we discuss the different aspects of the result over different sections.
The different kinds of solutions that we tried but not included as the main result are also
discussed in this chapter. In addition to this, how this work can be extended in the future
is also explained as a future work in section 5.2.

Chapter 6 - Conclusion: This chapter concludes the thesis work by highlighting the main
findings of this study. Indeed, the research statement that we defined in the first chapter is
achieved or not based on different objectives is verified in this last chapter.
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Chapter 2

Background

In this chapter, we will explain all the necessary information related to this thesis work so that
it builds the foundation to understand the necessity and importance of our work. We begin
this chapter by providing how artificial intelligence has been used in the healthcare sector. To
make it easier to understand technological sides, we will explain the core concept of machine
learning and its different types. After this, we explain different types of generator models
and their architecture. As our majority of work is in GANs, we will explain in depth about its
concept and how it works. Similarly, the role of different loss functions with their pros and cons
are explained so that readers can understand how the use of loss function can affect output.
We introduce ECG, and different datasets used in the research domain. Finally, the literature
review of related works will be summarized which will provide intuitive understanding of
different approaches and their result.

2.1 Artificial Intelligence in HealthCare

Healthcare is the most important and one of the biggest sectors in the worldwide which has
a direct relationship with the life and death of human beings. However, there are some major
issues in the healthcare sector, for example, the lack of human experts: the shortage of 17.5
million health workers was reported in 2018 [65] and the shortage will increase to 18 million
by 2030 according to WHO [58], human errors: Annual deaths of 44000 to 98000 patients are
reported only in USA [52], and identifying hidden patterns from health care data (big data)
is beyond human capabilities [16]. To resolve these issues and support healthcare persons,
artificial intelligence has emerged as an alternative solution [81, 96, 98].

The use of artificial intelligence (AI) in healthcare started back around 1970 when a
diagnosis tool called MYCIN was developed by a group of researchers from Stanford
University to diagnose blood-borne bacterial infections [20]. The use of AI for clinical decision
system were in used before couple of decades [20]. However, those decision systems have
limited capabilities because they are based on an expert system which is a collection of if-
then rules. With the recent advancement in the field of hardware development, availability of
data, and powerful algorithms proposed by researchers, the field of artificial intelligence has
reached the next level. Now, artificial intelligence can provide the decision in some tasks at the
human experts’ level or sometimes even better than experts without any human innervation.
For example, a study conducted by Stanford University shows that AI beats human doctors in
diagnosing cancers [29].

The proven success of artificial intelligence in image classification1, image captioning2,

1https://www.entrepreneur.com/article/283990
2https://www.dpreview.com/news/9384724203/microsoft-s-latest-computer-vision-technology-beats-

humans-at-captioning-images
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designing computer chips3, game playing4 and many more tasks have attracted the attention of
researchers, doctors and healthcare organization to use AI in different healthcare sectors. In the
healthcare sector, AI is most widely used in analyzing different types of images, e.g., computed
tomography (CT), and magnetic resonance imaging (MRI). etc. Some of the promising results
already prove the success of AI in medical image analysis [27, 29, 107]. However, AI is
not only limited to image-related tasks in healthcare. It is also widely used in other tasks
as well. For example, some medical tasks where AI is actively researching and using are
clinical decision making, robot-assisted surgery, virtual nursing assistant, diagnostic, chat
review and documentation, practice management, medical advice and triage, risk prediction
and intervention, etc. [44, 57]. The use of AI assists healthcare professionals to make better
decisions without wasting time.

The above paragraphs highlight the importance of artificial intelligence in the healthcare
sector. AI has become an essential part of healthcare. Indeed, we cannot imagine the healthcare
sector without the use of AI. If so, then what exactly is AI? The term Artificial Intelligence was
coined by John McCarthy for the first time in 1956 during the Dartmouth college conference
[62]. In addition to John McCarthy, Alan Turing is equally considered as father of artificial
intelligence who wrote the article on COMPUTING MACHINERY AND INTELLIGENCE in
1950 [95]. In simple terms, artificial intelligence is a computer program written by a human
which simulates the human intelligence in the machine so that machine itself becomes capable
of mimicking human thinking and actions. There is no single standard definition of AI. The
Oxford Dictionary defines artificial intelligence as:

"the theory and development of computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech recognition, decision-making, and
translation between languages."[72]

The term artificial intelligence (AI), machine learning (ML), and deep learning (DL) are
normally used interchangeably in the field of technology. However, there are some key
differences and strong relationships between these technologies. Out of these three terms,
artificial intelligence is the umbrella term i.e. machine learning and deep learning are under
the umbrella of artificial intelligence. Figure 2.1 demonstrates the relationship between AI, ML,
and DL.

As shown in Figure 2.1, artificial intelligence has a broader range in addition to machine
learning and deep learning. The nonoverlapping part of AI refers to a computer program
(usually rule based logic, e.g., if-then) that adds human intelligence to the machine. In short,
a set of predefined logic which does not depend on data. On the other hand, machine
learning is a subset of artificial intelligence which learns and improves automatically from
data and experiences without being explicitly programmed. ML is based on statistical learning
algorithms which are suitable for the small to medium size of the dataset and for the small
to medium level of difficult tasks. Therefore, ML algorithms are quick to learn and do not
require dedicated hardware like GPU. On the other hand, deep learning is a subset of machine
learning which brings machine learning to the next level. Deep learning mimics the human
brain learning process using multiple layers of artificial neural networks. Deep learning
is used for complicated tasks like work related to images, video, text, etc. DL can learn
the features automatically and bring the machine’s intelligence to the human level in some
tasks. Compared to ML, DL applications are computationally expensive and require dedicated
powerful computing resources. All deep learning algorithms are classified as machine learning
and artificial intelligence, but not vice versa.

3https://www.nature.com/articles/d41586-021-01558-y
4https://www.bbc.com/news/technology-40042581

8



Figure 2.1: Relationship of AI, ML and DL with definition (source : [4]).

2.2 Types of Machine Learning

Machine learning itself is a huge world that contains different types of models to solve
different types of problems. All machine learning models are generally categorised into three
subcategories. The purpose of this section is to give you an intuitive idea of these three
subcategories of machine learning.

2.2.1 Supervised Learning

Supervised learning, which is also called supervised machine learning, is used in those
problems where we have a labelled dataset. If we know the inputs and their corresponding
correct output, then we can use supervised learning to train the model so that the model
can learn the relationship between its input and output [83]. The training process starts with
random weights and predicts the output. Based on the loss between the predicted output and
the real output, the model updates its weight in a way so that the loss becomes minimal. The
training of models happens iteratively until and unless it reaches to global minimum condition.
Supervised learning is used in two problem domains called classification and regression. If
the output is categorical, e.g True or False, Yes or No, 0 or 1, etc., then the classification
algorithms are used to predict the output, whereas if the output is a continuous value (any
number between -∞ to +∞) e.g the prediction of stock price, prediction of temperature, etc.,
then the regression models are used.

2.2.2 Unsupervised Learning

Unsupervised learning, also called unsupervised machine learning, is used in those problems
where we do not have (or do not know) the output. The algorithms themselves find
the hidden patterns or structures that exist in the training dataset without any human
intervention. As the model is capable of identifying similarities and dissimilarities between
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data and revealing meaningful insights, these types of algorithms are also called knowledge
discovery. In contrast to supervised learning, there is no corresponding output to compare
the correctness of the model’s prediction, therefore the training of unsupervised learning is
more complicated and tricky compared to supervised learning [8]. Based on the nature of the
problem, unsupervised learning is further classified into clustering, association, dimensionality
reduction, and generative models.

2.2.3 Reinforcement Learning

Compared to supervised and unsupervised learning, reinforcement learning is an advanced
concept in which we do not need any training dataset to train the model. In fact, reinforcement
learning mimics the human learning process i.e learning by experience or learning from trial
and errors [67]. In reinforcement learning, the agent takes an action based on the current
environment that will yield the maximum reward. Reinforcement learning is widely used
in training robots, autonomous vehicles, solving puzzles, etc. Reinforcement learning got
tremendous attention from the research community after defeating the human experts of Go
players in 2016 [85].

2.3 Generative Models

The solution that is going to propose in this thesis belongs to the category of unsupervised
learning and subcategories of generative models. Therefore, in this section, you will get
to know a brief introduction to generative models and some of the most popular types of
generative models.

As we mentioned in the introduction section, one of the biggest issues in the field of
machine learning is the deficiency of data. To solve this issue, generative models were
introduced. As the name suggests, generative models are used for generating new dataset
which looks like real data based on a probabilistic model. In mathematical terms, the main
task of the generative model is to make/calculate P(X) as high as P(real) where X, real refer to
newly generated data and real data, respectively. Generative model is defined by David Foster
[28] in his recent book called Generative Deep Learning as follows:

"A generative model describes how a dataset is generated, in terms of a probabilistic model.
By sampling from this model, we are able to generate new data." [28]

There are different types of generative models, however, we would like to explain some of
the popular generative models in the following section.

2.3.1 AutoEncoder

AutoEncoder is a neural network-based model which leans to compress the data into lower-
dimensional and reconstruct the new sample data from lower dimensional which are similar
to input samples [10]. The model architecture of the autoencoder is presented in Figure 2.2.
Autoencoder models are widely used in various applications including data generation such
as denoising data, anomaly detection, clustering, recommendation system, dimensionality
reduction, classification etc. Researchers have used this model for generating different types
of data, for example, images, sound, ECG, EEG, etc. However, researchers reported that
autoencoder models are data-specific [60, 70] i.e. can only produce data that looks like training
data. In other words, it cannot understand the conceptual relationship between features.
Similarly, the data generated by autoencoder model are lossy (encode and decode process lose
output quality) [60]. Therefore, we cannot generate a different variety of high-quality data
using an autoencoder.
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Figure 2.2: AutoEncoder model architecture. Encoder: can be any neural network which
calculates probability of Z for given input, Latent Space (Z): lower dimension representation
of input, Decoder: can be any neural network which reconstruct data from a latent space i.e
calculate P(X′|Z), Loss: reconstruct loss which make sure that input (X) data is ideally identical
to generated data (X′).

2.3.2 Variational AutoEncoder (VAE)

Variational autoencoder is an improvement over the autoencoder model [110]. AutoEncoder
model encodes (maps) the input data into a fixed vector. Because of this nature, autoencoder
models are limited to producing data which looks different than data that exists in training
data. VAE overcomes this issue by encoding the input data into distribution. But,
improving the model through distribution is very expensive, therefore VAE uses the trick of
reparameterization to convert it into a single value. This gives the flexibility to the model
to generate a variety of the same data, for example, a person with different skin tones.
The model architecture is presented in Figure 2.3. Although VAE is an improvement over
autoencoder, it still suffers from generating high-quality data and providing more flexibility
(such as generating data based on condition, transforming one form of data into different forms
adding the style of one data to another etc.) [42, 113]. Kuznetsov et al. [49] used VAE for the
generation of ECG data, but while comparing the generated ECG data with other approaches
(GAN), the quality was not good.

2.3.3 Denoising Diffusion Models

Diffusion models are another generative model which has received a lot of attention in recent
times after the release of the research paper by OpenAI researchers in 2021 [24]. Diffusion
models generate new sample data similar to the training dataset. The generation of the
data happens in two steps called the forward diffusion process, in which the training data
are destroyed by successively adding Gaussian noise until a defined number of time steps,
while the reverse diffusion process is the backward process of generating new sample data
by denoising the data at each step [100]. The researchers of [24] claimed that their proposed
diffusion model can generate higher quality data and the training of the model is simple
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Figure 2.3: Variational autoencoder model architecture. Encoder: can be any neural network
which output two dimensional outputs (mean and standard deviation), Latent Space (Z):
calculated using a reparameterization trick which is required for backpropagation, Decoder:
can be any neural network which reconstruct new data, Loss: in addition to reconstruction
loss, KL (Kullback–Leibler) divergence is added which calculate the differences between two
probability distribution.

compared to GAN. However, this model is quite new and has not been tested in many sectors.

2.3.4 GAN

Compared to the generative models discussed above, the generative adversarial networks
(GAN) models are the most popular and widely used generative models to generate high-
quality images [45], video [69, 99], audio [37, 105], time series data [15, 55], and in many
more applications. The concept of GANs is considered one of the most beautiful ideas in the
field of machine learning. In fact, the head of AI research at Facebook, Jann Lecun, mentioned
that GAN is "the most interesting idea in the last ten years in Machine Learning" [68]. GANs was
proposed by Ian J. Goodfellow and his colleagues for the first time in 2014 [33]. The generative
adversarial network is made of three terms, Generative: which refers to generating a new set of
data based on a probabilistic model, Adversarial: refers to competing for one against another
which concept is used during the training of the model, and Network: which refers to any
neural network-based algorithms. Combining all three terms, a generative adversarial network
refers to a probabilistic model which learns how to map noise to a new set of realistic synthetic
data which consist of two models called generator and discriminator. The generator’s role is to
generate a new set of realistic data from random noise (which is usually based on Gaussian or
Uniform distribution for simplicity) and fool the discriminator while the discriminator’s role
is to distinguish whether the data is fake or real. Here, the generator and the discriminator are
trained against each other in a competitive manner so that both models become better at their
role. The model architecture of GANs is presented in Figure 2.5.

In contrast to autoencoder, VAE and diffusion model, instead of taking real samples
as input, GANs architecture takes noise as input and learns the probability distribution to
generate new synthetic data. The generator model is similar to the decoder block of the
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Figure 2.4: Diffusion model architecture. Forward diffusion process: small amount of Gaussian
noise is added to the input at each step until defined number of time steps (T), Reverse diffusion
process: start from noise space i.e at T time step in a reverse order back to generate the new
data sample by removing noise at each step, Loss: KL divergence is commonly used however
researcher [39] reported that optimal result is gained by predicting the noise added at each
time step. Dots refers to portion of noise exists in input sample and changes in color refers to
changes appeared in data after added/removed noise.

autoencoder and VAE. On the other hand, the discriminator block somehow looks similar
to the encoder block of the autoencoder, however, the encoder block convergence into latent
space while the discriminator model is a binary classifier. As there are two separate models
(Generator and Discriminator) in GANs, we need two different optimizers to tune those
models. More details of the training process are explained in the section 2.3.4.1.

2.3.4.1 How GANs Works

The basic concept of GANs is explained in the previous section 2.3.4. In this section, we explain
to you the working principle of the GAN model, in other words, the training process of GAN.
The training process of GANs is different from the rest of the other models. In fact, training the
GAN model is considered one of the complicated processes [56, 64]. For the sake of clarity, we
explain the training process in detail.

Normally, the training process of GANs is divided into two parts. In the first part,
the discriminator model is trained while the generator remains idle, which means that the
generator only passes through the forward propagation and no backpropagation is done for
the generator. There is a specific reason behind training the discriminator model first in the
GAN training process which is that the generator loss itself depends on the prediction of the
discriminator. Therefore, the discriminator first needs to determine how to distinguish between
real and fake samples. In each epoch, the discriminator is trained both on a real sample and
on fake samples. The loss is calculated from both samples (real and fake), which shows how
correctly the discriminator can identify real samples as real and fake samples as fake. Based on
both losses, the discriminator goes through the back-propagation process to update the model.
The optimal discrimination goal is to correctly classify fake and real samples. In terms of loss
value, the discriminator wants to maximize it as much as possible. The nitty-gritty detail of the
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Figure 2.5: GANs model architecture. Generator: can be any neural network based model
whose task is to generate fake sample data from random noise, Discriminator: can be any
neural network based model which is train both on real sample and fake sample, and predict
whether the inputs are real or fake, Discriminator Loss: try to maximize the loss so that real
and fakes are correctly classified, Generator Loss: try to minimize the loss so that fake sample
are also classified as real, Update: discriminator loss will update discriminator model and
generator loss is used to update generator model.

loss function is explained in the below section 2.3.4.2.
The second part is vice versa of part one, i.e., the generator is trained on the second part

while the discriminator remains idle. The generator generates the fake samples and passes
them to the discriminator to classify them as real or fake. One important thing to understand
at this point is that the intention of the generator is to generate realistic samples, in other
words, to fool the discriminator so that the discriminator classifies the generated samples as
real. Therefore, the loss is calculated in the assumption that the generated samples are real.
The generator model is updated on the basis of this loss.

The convergence of GANs is another tricky or complicated decision in the GAN training
process. After training the generator and discriminator on each epoch for many iterations, the
generator becomes better and better at generating realistic samples, while the performance of
the discriminator gets worse because it becomes harder for the discriminator to distinguish
between real and fake samples. The ideal condition to stop the GAN model training process is
when the discriminator accuracy reaches 50% of accuracy, which is the same as the prediction
of the flipping coin. In reality, the discriminator accuracy may not reach 50% in most cases,
therefore, stopping the GAN training when the accuracy reaches nearly 50% is good enough.
Training the GAN model continuing after reaching the discriminator feedback almost at
random conditions will have a negative impact on the quality of the generated samples [34].

2.3.4.2 BCE Loss Function

Like other optimization problems, the loss function plays an important role in the generative
adversarial network in learning the distribution of real samples so that it can generate a
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similar distribution of data. Therefore, it is very important to understand the loss function of
GANs and how it helps improve data generation. In this section, we explain the loss function
proposed by Goodfellow in his paper [33] where the GAN was introduced.

Ex[log(D(x))] + Ez[log(1 − D(G(z))] (2.1)

The loss function used in the original GANs paper is presented in the above equation 2.1.
For the sake of clarity, let us explain to you the details of each term. The term D(x) refers to
the estimation of probability calculated by the discriminator for real sample data, Ex refers to
the estimation value for all real samples, i.e. the mean probability score of all real samples
classified as real, D(G(z)) refers to the probability estimation of generated fake samples as real
calculated by discriminator and Ez refers to an expected value for all generated fake samples.
This is the same loss function used by the generator and discriminator. The generator tries to
minimize this function while the discriminator tries to maximize it. Therefore, it is also called
the minmax loss function. As there are two models in GANs, the standard BCE loss function
can be divided into two parts called discriminator loss and generator loss.

As we explained before, the discriminator is trained on both real samples and fake samples
so that it can correctly classify real samples as real and fake samples as fake. Therefore, the
discriminator will be penalized if it misclassifies real samples as fake and vice versa. The above
loss function is used as it is in the case of discriminator i.e Discriminator loss = Ex[log(D(x))] +
Ez[log(1 − D(G(z))]. The discriminator tries to maximize Ez[log(1 − D(G(z))] this part so
that the discriminator label the fakes samples as fake. To maximize Ez[log(1 − D(G(z))] this
function, the estimation value of D(G(Z)) needs to be zero or nearly zero. We know that the
value of log(1) is 0. Therefore, maximizing this function will tend to lower the loss value.

On the other hand, the generator model is only trained on fake samples. There is no any
role of real samples. Therefore, we ignore the loss from the real samples in the above standard
loss function. The generator function becomes like this generation loss = Ez[log(1 − D(G(z))].
The generator tries to minimize this function so that it succeeded in the optimal goal of fooling
the discriminator, which means that the discriminator will classify the fake sample as real. To
minimize Ez[log(1 − D(G(z))] part, D(G(z)) needs to output the value as 1 or near 1. If the
generator is able to fool the discriminator, the generator loss gets rewarded, otherwise it will
be penalized.

The implementation of the above standard GANs loss function can be achieved using the
binary cross-entropy (BCE)5 loss, which is rewarded for correct classification and penalized for
misclassification. The formula of BCE loss for a single entry is presented in the below equation
2.2.

z = −y ∗ log(ŷ + (1 − y) ∗ log(1 − ŷ) (2.2)

Let us first derive the discriminator loss from the BCE loss. As we know, a discriminator is
trained on both real and fake samples where real samples are labelled as 1 and fake samples
are labelled as 0. Applying BCE loss to the real sample, i.e., y = 1 gives the following equation
2.3:

lossx = y ∗ log(ŷ) + (1 − y) ∗ log(1 − ŷ)
= 1 ∗ log(ŷ) + (1 − 1) ∗ log(1 − ŷ)
= log(ŷ)
= log(D(x)) (2.3)

5https : //en.wikipedia.org/wiki/Crossentropy
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Similarly, applying BCE loss on generated fake sample i.e y=0 gives following equation 2.4,

lossz = y ∗ log(ŷ) + (1 − y) ∗ log(1 − ŷ)
= 0 ∗ log(ŷ) + (1 − 0) ∗ log(1 − ŷ)
= log(1 − ŷ)
= log(1 − D(G(z))) (2.4)

After combining both losses, we get the same loss function proposed by Goodfellow i.e
loss = lossx + lossz = log(D(x)) + log(1− D(G(z))) . This is a loss for single record, if we have
multiples records, than Ex and Ez needs to be calculate to get a single loss value. Therefore, the
loss becomes Ex[log(D(x))] + Ez[log(1 − D(G(z))] which is same as equation 2.1.

2.3.4.3 Problems With BCE Loss in GANs

Since the GAN model was introduced by Goodfellow, BCE loss is used by many researchers in
different kinds of problems starting with the loss function [71, 114]. However, the researchers
realized some of the major issues with BCE loss and reported about it in their article [6, 11, 94].
In this section, we will explain to you some of the major issues of BCE loss while using GAN
architecture.

The purpose of GANs is to generate a large variety of samples that exist in the training
dataset. For example, the GAN model train on numbers (0-9) should generate 10 different
numbers. However, in reality, in most cases, the GAN model generates only limited numbers
repetitively. This situation is called mode collapse in GANs [26]. Normally, real-life data are
multimodal; in other words, the training data belong to multiple distributions of data. The
generator is supposed to lean all the distribution that exists in the dataset. As we know, the
generator’s intention is to fool the discriminator. If the generator figures out a particular
data generated by it can fool the discriminator, then the generator tries to generate a similar
distribution of data in the next round, which will end the model to generate only one or a few
distributions of data6. The discriminator never managed to learn how to break out of such a
trap7.

Another major issue of BCE loss in GANs is the problem of vanishing gradients. This
problem occurs in GANs when the discriminator model is too good at distinguishing real
and fake samples. When the discriminator distinguishes the real and fake samples with
a very high probability, the loss declines toward zero. In such a case, the generator does
not get constructive/informative feedback from the discriminator to improve the generation.
This situation will lead to a vanishing gradient problem [101]. In the GAN architecture,
the discriminator may become strong because the role of the discriminator is pretty simple
compared to the generator. The discriminator’s job is to output the value between 0 and 1,
while the generator needs to learn to generate new data samples (same as it is easier to view
the images in the museum than to create those masterpiece images by itself). In the starting of
training, it is hard for the discriminator to distinguish between real and fake samples, so the
generator gets more informative feedback from the discriminator. But as training continues,
the discriminator becomes better and better quickly and could become 100% good at its job,
creating the situation of vanishing gradients8.

6https://www.geeksforgeeks.org/modal-collapse-in-gans/
7https://developers.google.com/machine-learning/gan/problems
8https://www.coursera.org/lecture/build-basic-generative-adversarial-networks-gans/problem-with-bce-

loss-DzTcN

16



2.3.4.4 Optimization of GANs

Traditionally, BCE loss is used in training the GAN model which was responsible for two of
the major problems which we explained in the previous section. To generate a variety of data
and faster convergence (avoid vanishing gradient) of the model, it was essential to come up
with a new solution. To overcome these issues, finally, Arjovsky and his team proposed a new
loss function called Wasserstein Loss (also called W-loss in short) in 2017 [6]. The authors of
[6] realized two major weaknesses in BCE loss which were responsible for the above-discussed
problems. First, the output value of the discriminator is bounded to be between 0 and 1 because
it uses the sigmoid activation function at the last layer and second, the discriminator needs to
distinguish between real and fake samples. To avoid those weaknesses, the authors proposed
a simple and efficient loss function. The loss function is presented in the equation 2.5.

Ex[D(x)]− Ez[D(G(z))] (2.5)

Compared to BCE loss, the discriminator in Wasserstein GANs outputs a single real number
value instead of a bounded value between 0 and 1 because it removed the sigmoid activation
function at the layer and uses only a linear function. Similarly, the role of the discriminator
is also changed because it no longer needs to distinguish between real and fake samples.
Therefore, the discriminator of W-loss is also called a critic. In W-loss, the discriminator tries
to maximize the distance between the real sample output and fake sample outputs, which
means the discriminator maximizes the loss function presented in the equation 2.5. Maximizing
the distance between two estimations tries to push the distribution of two samples as far as
possible. On the other hand, the generator wants to minimize the distance of equation 2.5
as much as possible so that the discriminator realizes that the fake data distribution is close
enough to real data distribution. As the output of the discriminator is not bounded, the
discriminator always provides useful feedback for the generator to improve. Therefore, using
w-loss mitigates the vanishing gradient problem which ultimately resolves the mode collapse
problem.

The Wasserstein loss formula is derived from earth mover distance (EMD)9 (also called EM
distance) which calculates the distance between two probability distributions. The Wasserstein
loss is considered valid when it meets the One Lipschitz continuity (1-L continuity)10. The 1-L
continuity in discriminator confirms that the changes in the discriminator should be within
the range of the slope of -1 to 1. This is essential in the case of a discriminator. As we
discussed above, if the discriminator is too perfect, the generator gets very minimal gradient
information to improve. To avoid such situations, 1-L continuity forcefully limits the gradient
of the discriminator so that discriminator becomes worse however it provides much more
information for the generator to improve. We recommend the reader to check the footnote
links to know more about earth mover distance and Lipschitz continuity.

The efficient way of achieving the 1-L continuity is the open research topic. However, two
of the methods are widely used in GANs. The first one is called gradient clipping. This is the
concept used by the authors who proposed the Wasserstein GAN [6]. The authors mention
that gradient clipping is a terrible way to achieve 1-L continuity; however, the authors used
this concept because of its simplicity. It limits the gradient of critic within the range of −c to c
where c is a small constant value, e.g. c = 0.01 so that it makes it harder for the critic to reach
its optimal condition.

The Wasserstein loss with gradient clipping helps to achieve stable training of GANs,
however, sometimes models fail to converge or generate only low-quality samples. The authors
of [36] argued that this is due to gradient clipping. To over this problem, Gulrajani and his team
[36] proposed a new technique called gradient penalty. The gradient penalty maintains the 1-

9https : //en.wikipedia.org/wiki/Earth_mover′s_distance
10https : //en.wikipedia.org/wiki/Lipschitz_continuity# : : text = In%20the%20theory%20o f %20di f f erential, the%20Banach%20 f ixed%2Dpoint%20theorem.
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L continuity of critic by penalizing the norm of a gradient with respect to its input [36]. The
authors claimed that this method outperforms the gradient clipping method and makes the
training of GANs more stable. The wasserstein loss with gradient penalty is a widely used
method in different types of GANs solutions after its release.

In addition to the above methods, researchers have also proposed other methods as well
in recent years to make the GANs training more stable. We briefly mention those methods
and recommend that the reader check the reference paper for in-depth understanding. In
2018, Miyato and his team proposed a new method called spectral normalization to make GANs
training stable. Similarly, researchers, Lin and Qiu proposed a new method called boundedness
and continuity (BC) to satisfy a Lipschitz constraint [59] in 2020. The authors claimed that their
proposed BC method not only performs better but is also computationally efficient as compared
to gradient penalty and spectral normalization [59]. Similarly, adaptive weighted loss also called
aw-loss is one of the recent loss function proposed by Zadorozhnyy and his colleagues in
2021 [108]. The proposed discriminator loss function is a new concept compared to previous
methods which adopt the new weight of the discriminator based on the discriminator’s weights
while training on real samples and discriminator’s weights while training on fake samples. In
short, the new gradients will be the weighted sum of gradients from both real and fake losses.
The author claimed that the proposed loss function can be used in any GAN architecture and
improves the results significantly as compared to other methods [108].

2.3.4.5 Major Types of GAN Architecture

The first GAN model proposed by Goodfellow in 2014 was unable to produce high-quality
synthetic samples. However, the concept of GANs got huge attention from researchers and big
giants IT companies who helped to bring the GAN to the next level by extending the initial
GANs framework. In a short period of time, different kinds of architecture were proposed that
could generate high-quality data. In this section, we briefly describe some of the most popular
types of GANs architectures.

Deep Convolution GAN (DCGAN): The concept of DCGAN is pretty simple. Instead
of using vanilla neural networks (which was used by Goodfellow [33]), the generator and
discriminator both use convolution layers. The generator uses transpose convolution to
upsamples the data, while the discriminator uses strided convolution to down samples the
data at each layer. This concept was proposed by researchers from Facebook and Indico in
2015 [73]. After the release of this paper, most of the papers used the convolution layer in
GAN. To know more about the model, we recommend the reader to check reference [73].

Conditional GANs (CGAN): Although GANs can generate new synthetic data, it has no
control over what to generate. In other words, the training dataset is usually multimodal,
but the generator and discriminator do not have any idea about what the modal is going to
generate and discriminate. To overcome this issue, Mirza and Osindero proposed the idea
of conditional generative adversarial networks [66]. In conditional GANs, we can pass the
condition on to the generator and discriminator so that it knows what it is supposed to generate
and discriminate. Usually, conditions are labels of data. In CGAN, in addition to noise, the
encoded label information is concatenated with noise and given to the generator as input.
Similarly, real/fake sample data and associated encoded label information are concatenated
and given to the discriminator as input.

Progressive GANs: The main purpose of the progressive GAN [46] is to improve the
quality, stability, and variation of the generated samples. As the name suggests, the generator
of progressive GANs starts generating a lower resolution image and adds more details in
subsequent layers so that as the training progresses, the quality of images also progresses.
The training of the model happens in step-by-step manner. For example, if the sample data
is generated in six progressive steps, initially the model has only one layer, it first trains
the model, calculates the loss, and updates the model, then it adds a second layer on top of
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the previous model, and repeats the same process until the final step, which means training,
calculating loss, and model updates happen six times for each batch of data. The authors
claimed that training the model in progressive steps helps to converge the model quickly and,
at the same time, generate high quality data [46].

CycleGAN: CycleGAN [115] is another interesting idea in the family of GANs, which learns
to translate one domain of data into another domain of data. The most common example of
CycleGAN is inputting the image of a horse and getting the image of a zebra as an output
and vice versa. As the model transforms the images from one domain to another, it needs to
have two datasets belonging to two different domains. In the training process, two generators
and two discriminators are required so that one pair of generators and discriminators learns to
translate domain A to domain B while another pair of generators and discriminators perform
the vice versa operation. To know more about CycleGAN architecture, we recommend that the
reader check reference [115].

Super Resolution GAN (SRGAN): As the name suggests, super-resolution GAN is
designed with the purpose of generating high-resolution images. Compared to the standard
GAN model, instead of taking the noise as input, SRGAN downsampled the high-resolution
images into lower resolution and passed them to the generator as input. On the other hand,
the discriminator job is similar to the standard GAN model, it takes both real high-resolution
images and fake generated images and distinguishes whether the images are high resolution or
not. This idea is proposed by a team of researchers from Twitter [53]. The authors claimed that
SRGAN can recover photorealistic textures from very low-resolution images. In addition to the
adversarial loss in the generator, the SRGAN model also used content loss, which is commonly
known as reconstruction loss. The author has used mean square error (MSE) to compute the
context loss at a pixel level. For more information, we recommend the reader to check the
reference [53].

InfoGAN: The full form of InfoGAN is information maximizing generative adversarial
networks. This is a similar but more advanced concept of conditional GANs. In conditional
GANs, we have control over what GANs is supposed to generate however GANs does not have
control over many other features, for example, angle of images, the colour tone of face or hair,
etc. InfoGAN provides this flexibility to generate new synthetics data by providing maximum
information [18]. The authors claimed that InforGAN can produce an impressive result in
generating images with different hairstyles, a person with or without eyeglasses, changing
the emotion of a person, etc. The generator of InforGAN combines three different pieces of
information (noise, categorical features - what to generate, continuous features - how it needs
to look like) and takes it as input. Similarly, the discriminator not only distinguishes between
real and fake, but also learns an interpretable representation of the generated images. For depth
understanding, we recommend checking the reference [18].

BigGAN: GANs shows promising results in generating smaller size images with high
quality. However, generating large-size images (i.e., high resolution) with high fidelity, which is
also called high equality of images, is still a challenging task. Many of the researchers focused
on changing the objective function or making the discriminator worse through the gradient
penalty. In such a situation, BigGAN comes with the idea of changing the model design and
the training process [13]. BigGAN is built on top of the self-Attention GANs [111] and used
the simple concept of increasing batch size and scaling up the model, which ultimately helps to
achieve high image quality. The authors have used different kinds of concepts like hinge loss,
class conditional information, spectral normalization, orthogonal weight initialization, skip-
z connection, truncation trick, updating discriminator more than the generator, and model
weight updates using moving average, etc. We recommend the reader to read the official paper
to know more about BigGAN [13].
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2.4 Electrocardiograms (ECGs)

This thesis work is dedicated to the field of ECGs. Therefore, in this section, we are going to
explain what an ECGs signal is, some common data sets in the ECG domain, and a review of
the work related to ECGs generation.

2.4.1 The ECG Signal

In the domain of the heart, ECGs signals are one of the most important parameters to determine
the correct assessment of how the heart is functioning. Indeed, ECGs signal provides huge
amount of information related to the healthiness of a person’s heart. ECGs signals are recorded
using a non-invasive tool called electrode, which is placed on the chest area of skin and captures
the electrical activity of heart [41]. Electrical activity is recorded in the form of waves which
represent changes in height and depth of voltage based on heart functioning. Many researches
show that there are noticeable differences in between the electrical waves (ECGs signal) of
normal patients and patients having different kinds of heart diseases [9, 40, 75]. Therefore,
ECGs signals are one of the most widely used diagnosis tools by doctors for the diagnosis and
treatment of heart patients [106].

For a layman, ECGs signal looks like a normal wave with some ups and downs. However,
for experts, ups and downs have their own meaning and contain lots of information related to
the health status of patients. Therefore, it is very important to understand the life cycle of the
ECG signal. Figure 2.6 represents one cardiac cycle of ECGs signal. In the Figure 2.6, you can
see English alphabet letters P, Q, R, S, T and U which represent different kinds of waves exist
in one cardiac cycle. As shown in Figure 2.6, P wave is the first wave in an ECG signal which
represents atrial depolarization. Increase of the degree of P wave compared to normal wave or
missing of P wave represent different kind of abnormalities of heart [51].

Similarly, the QRS interval, which is also called QRS complex, consists of Q, R and S waves.
QRS interval indicates ventricular depolarization which is the most prominent feature of the
ECG signal, where Q and S are down waves, and R is upward waves [75]. Cardiac hypertrophy
may be detected through the abnormal patterns of QRS intervals. Ventricular repolarization of
the heart is represented by T waves. The ST segment is another prominent feature of an ECGs,
which indicates the time gap of ventricular depolarization and repolarization. The ST segment
helps in identifying myocardial infarction or myocardial ischemia through a higher or smaller
(or missing) value of ST segment [51]. The last wave is called U wave which is rarely visible
in the ECG signal. Therefore, in many of ECGs cycle images U wave may not be included.
The existence of U wave indicates the repolarization of the Purkinje fibers [51]. Understanding
all these waves of the ECG cycle will helps to cross-verify the correctness of newly generated
ECGs signals.

2.4.2 Commonly Used ECG Dataset

Different types of datasets are available in ECGs domain. To make data access easy, Physionet
publishes most public ECGs datsets at the same location (https://physionet.org/about/database/).
In this section, we have summarized some of the most commonly used datasets by the
research community in the domain of ECGs generation with some details of the datasets. The
information is summarized and presented in Table 2.1.

2.4.3 Generative ECGs Models: Review

Generation of ECGs signals has been in practice for a long time in the past. In this section,
we are going to summarize different types of generative models proposed by researchers to
generate synthetic ECGs data.
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Figure 2.6: One cardiac cycle of ECGs signal [75], where the horizontal line represents time
period and vertical line represents changes in electrical voltage level. Measurement of PR
interval, QRS interval, ST segment, and QT interval length are four important characteristics in
the diagnosis of patent’s heart.

Name References Samples Time Interval leads Availability

MIT-BIH

[41, 106, 114]
[22, 31, 103]
[14, 82, 84]
[30, 32]

47 30-minutes 2 public

LUDB [48] 200 10-seconds 12 public
PTB [71] 549 N/A 15 public
PTB-XL [5] 21,837 10-seconds 12 public
GESUS [93] 8,939 10-seconds 8 private
Inter99 [93] 6667 10-seconds 8 private
RMN [3] 661,509 0.5-seconds 1 private

Table 2.1: Some of the most commonly used ECGs dataset by research community with the
detail of dataset name, reference, number of samples, time interval, number of leads and nature
of availability.
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Reference Year Types Method leads Time

[88] 2001
Mathematical
Equation

partial differential
equations and
ordinary differential
equations

N/A N/A

[78] 2004
Mathematical
Equation

two set
pair of
Liénard equations

N/A N/A

[19] 2006
Mathematical
Equation

set of Gaussian
functions with
different width
and height

12 N/A

[12] 2010
Mathematical
Equation

partial differential
equations

12 1-C

[109] 1996
Mathematical
Equation

ordinary differential
equation

N/A N/A

[49] 2021
Variational
Autoencoder

encoder:
CNN, BN, ReLU
decoder:
upsample, CNN, ReLU

1 1-s

[32] 2020 GAN
inpired by
DCGAN

1 216-p

[114] 2019 GAN
generator:LSTM
discriminator:CNN

1 3120-p

[14] 2020 GAN
generator:LSTM
discriminator:CNN
minibatch discriminator

2 3120-p

[103] 2020 GAN

three different
GAN models
inspired by
wavenet and
DCGAN

1 varying

[93] 2021 GAN
GAN model
inspired by
U-NET

12 10-s

Table 2.2: Summary of generative ECG models with the details of reference, published year,
type of generative models, main methods, number of channels and time interval. N/A
refers to Not Available (mention). In Time column: C-cardiac cycle, s-seconds, p-number of
points(length).
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Using mathematical equations to generate the ECG signal was a common practice in the
past. For example, Boulakia et al. [12] used partial differentiation to generate 12 lead ECGs
signal, Sundnes et al. [88] used partial differential equation along with ordinary differential
equations for modeling ECGs signals, set of Gaussian functions are used by Clifford et al. [19]
to model segmented regions of ECGs signal, Lienard equations is used by Santos et al. [78] for
modeling ECGs signal, Zbilut et al. [109] used three ordinary differential equation to generate
P, QRS and T wave, etc. Although different types of mathematical equations were used for
modeling ECGs signals, researchers reported that those traditional methods are limited in a
number of ways [106]. For example, the generated signal distribution is not close enough to the
original distribution, difficult to generate a high variation of the ECG signal, and not reliable for
generating long -time interval signals [90, 93]. In addition to this, developing and modifying
equations requires a level of mathematical knowledge of expertise and the knowledge of the
expert domain [22]. The manual feature extraction process is another pitfall of the traditional
approach [32].

In recent years, the use of deep learning based models is becoming popular for generating
ECGs signals because you no longer need to have expert knowledge; at the same time, it can
generate realistic fake samples. Kuznetsov et al. [49] proposed deep learning based variational
autoencoder model for generating ECGs with a duration of one cardiac cycle. The authors
have preprocessed the data and split the original data of 12-leads 10 second ECGs signal into
separate 9 seconds signal where each signal has a length of 400. The encoder block consists
of multiple blocks of convolution neural network (CNN)11, batch normalization12 and ReLU13

activation layers while decoder block consists of multiple layers of upsamples, convolutions
and ReLU activation layers. The size of the latent space is 25. The authors claimed that the train
model yields the Maximum Mean Discrepancy (MDD) metric of 3.83 x 10 -3, which indicates
that the generated ECG signals are of good quality. As the model only generates 1-lead ECGs
with 1-second length, the model may not perform a good job of generating a heavy ECGs
signal, that is, 12-leads ECGs with 10 seconds length.

Similarly, Golany et al. [32] presented another interesting work in the field of ECGs
generation. The authors original purpose is to improve the ECG classification, but there was
a lack of data. Therefore, to overcome the shortage of data, the authors proposed a GAN
approach to generate synthetic ECGs data. The authors have taken inspiration from DCGAN
architecture [73] to design the generator and discriminator model. The authors used binary
cross entropy as the loss function. The generator generates 1-channel ECG with 216 points.
The authors do not mention about quality of the generated ECG data in the results section;
however, the authors show that ECGs classifiers yield better accuracy after adding synthetic
ECGs data which indirectly indicates that generated samples are of good quality. The model
is generating varying sample size of data (1x216); therefore, it might fail to generate a real
scenario higher sample data (8x5000).

Zhu et al. [114] come off with the idea of using bidirectional LSTM14 layers in the GAN
architecture when most of the work were based on convolution layers. The authors used two
layers of BiLSTM with generator which take 3120 noises as input and output the same size. The
authors generated only one channel ECGs signals. The discriminator model is created using
convolution layers. The authors argued that the generated output of ECGs signal is realistic.
To conform the strength of the proposed GAN model, authors compared the output of the
model with RNN-AE (recurrent neural network15-autoencoder) and RNN-VE (recurrent neural
network - variational autoencoder) models. The comparison result yields that the proposed
GAN based model yields a better result.

11https://en.wikipedia.org/wiki/Convolutional_neural_network
12https://en.wikipedia.org/wiki/Batch_normalization
13https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
14https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
15https://en.wikipedia.org/wiki/Recurrent_neural_network
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Brophy [14] presented another recent work published in 2020. The authors argued that
existing research work was limited in generating single channel ECGs data. Therefore,
the authors proposed a GAN architecture to generate multivariate ECGs data. Indeed, the
proposed GAN model generates 2-channel ECGs data with 3 cardiac cycles. The author
extends [114] work where the generator has two layers of LSTM hidden layers followed by
fully connected layers and discriminator has four layers of convolution layers with pooling
layers. To avoid the mode collapse, the author used minibatch discriminator concept in
the discriminator model. To confirm the quality of the generated data, the author has used
Maximum Mean Discrepancy (MMD) and also introduced the new concept called multivariate
Dynamic Time Warping (DTW), which measures the similarity across dependent signals. The
author claimed that the generated ECGs signals are of good quality. The DTW score becomes
minimal after 30 epoches, which also confirms the quality of the generated data.

Wulan et al. [103] proposed three GAN based models (called WaveNet-base, SpectroGAN,
and WaveletGAN) to generate ECGs signals. The authors used µ-law companding transforma-
tion, short-term Fourier transform, and stationary wavelet transform as preprocessing steps in
WaveNet, SpectroGAN, and WaveletGAN respectively. ECGs signals are generated using three
different models that look promising. However, authors reported some issues in the models.
For example, ECGs signal generated by WaveNet is not smooth as compared to SpectroGAN
and WaveletGAN. Similarly, inspection of the output generated by SpectroGAN reveals that
there is a lack of diversity in the output. In addition to this, the output generated by WaveNet
is lacking in terms of quality and distribution. The authors have generated 1 lead ECGs signal
with varying time intervals. The authors argued that one of the models can generate an ECGs
signal of 20 seconds long.

Thambawita et al. [93] presented one of the most recent works in the domain of ECGs
generation using GAN architectures. The authors proposed the GAN model inspired by
U-Net [77] architecture, which is capable of generating 12 lead signals with the length of
10 seconds interval. The generator model of the GAN takes 8 x 5000 noise as input and
generates the same size of data as output. The generator used six layers of down sample
blocks. The output of each block is passed through Phase Shuffle layers and concatenated with
the corresponding upsamples layers. The authors have compared the output of the proposed
model with WaveGAN model [25] (used for generating audio) by modifying it. The authors
showed that their proposed Pulse2Pulse GAN model outperforms the WaveNet model. This
is one of promising works in the generation of realistic ECGs signals with higher number of
channels.

2.5 Summary

In this chapter, the relevant background needed to understand this thesis work and the related
work carried out by different researchers is explained. The explanation of the core concept
of artificial intelligence and type of machine learning helps to understand the technological
field. Similarly, use of AI in healthcare demonstrates that the use of AI in healthcare has
been significantly increasing and yielding promising results. We explained different types
of generative models with their architecture. Similarly, we explain how the Wasserstein loss
overcomes the limitation of BCE loss. In addition to this, we explained the ECG and its
components so that later you can understand what we are generating.

The literature review demonstrates that researchers have used different types of generative
models to generate ECGs signals. The literature review shows that most of the previous work
was limited to a smaller number of channels and for a short period of time. Similarly, some
recent work shows that generative models are also used successfully for generating higher
channels with a time interval of 10 seconds. However, we realized that most of the work
does not consider passing conditional information as input. Most importantly, there exist some
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conditional models in recent work, however, they do not consider ground truth as conditional,
instead use gender or class labels as conditional inputs. In the context of ECGs, whether we
pass gender or class labels as conditions, the differences will be noticeable in the ground truth
level. Therefore, passing the ground truth as conditions is a more promising approach. To the
best of our knowledge, this is the first work in the domain of generative models which takes
the ground truth as conditional information.
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Chapter 3

Methodology

In this section, we are going to explain in detail about the research methods we have used in this
thesis work to address the main research question. First of all, we have explained about what
kind of neural network models are used in our methods, then we explain about the model
architecture (how it looks like). For the sake of clarity (To make it easier for the reader to
replicate the work), we have explained the model architecture and its components in detail
including loss function. Finally, different types of evaluation techniques are discussed to verify
the quality of the generated data.

3.1 Dataset

The main research question that we defined in our problem statement section is to generate
the ECG based on the given condition. In the case of ECGs data, the condition could be
information related to sex, age, types (class labels) of ECGs, etc. However, at depth level,
the ground truth of the ECG, for example, heart rate, P-interval, QT-interval, QRS-duration,
etc. are more useful information to pass as a condition. Therefore, it is very important for
us to choose the dataset which contains these kinds of information in addition to ECGs. To
the best of our knowledge, we find PTB-XL1 is the most suitable dataset for our research.
The PTB-XL dataset is suitable in several ways; for example, in addition to the ECG, it has
provided information related to patients (such as age, sex, etc.), similarly, information related
to the ECG (such as the class of each ECG). In addition to this, we also have the ground
truth of this, which is provided by experts. Here, ground truth refers to features related
to ECGs such as the P-interval, QT-interval, RR-interval, etc. which are used by doctors to
determine the healthiness of people. Having access to the ground truth of this dataset is a great
advantage for us so that we can use them as a condition as well as use them to compare with
the generated samples. Furthermore, this is one of the large datasets publicly available (on:
https://www.physionet.org/content/ptb-xl/1.0.2/) that contains 21837 records of 18885 patients.
The PTB-XL dataset contains 10 second length ECGs records captured by 12 leads, which is
another good side because in real life doctors use 12 lead ECGs signals for analysis. Most of
the published dataset has one to 2 leads of ECGs signals.

While closely working on PTB − XL dataset, doctors notice some of the odd patterns in
the ECG signals. In ECGs domain, those types of odd patterns are referred to as horse and
zebra. These types of signals increased complexity and make it very difficult to analyze the
normal and abnormal ECGs. Therefore, doctors suggested that we train the model on a private
dataset owned by the University of Copenhagen. There are two datasets called GENSUS and
INT99 [38]. These datasets contain very fine 7000 normal ECGs. GENSUS and INT99 contain
10 seconds ECGs signal recorded by 8 lead channels.

1https://www.physionet.org/content/ptb-xl/1.0.2/
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3.1.1 Data Preparation

Before training the model with real data, we will perform some pre-processing steps. Although
doctors use 12 lead ECGs signals for analysis, in reality that information is captured by 8 leads
and 4 of the leads are calculated using mathematical equations as presented from eq. 3.1 to
eq. 3.4. Therefore, to train the model we are going to use only 8 lead signals. Based on the
information from doctors, these 8 leads namely [’I’, ’II’, ’V1’, ’V2’, ’V3’, ’V4’, ’V5’, ’V6’] are real
lead used for carpeting data. Therefore, we will select only 8 lead channels for input. After
this, we will normalize the dataset by dividing the ECG signal by the maximum value of the
ECG signal. The open-source (PTB-XL) dataset and private dataset (INT99 and GENSUS) will
be normalized by dividing 35 and 6000 respectively. This will bring the data in the range of -1
to 1.

I I I = I I − I (3.1)

aVR = −0.5 × I + I I (3.2)

aVl = I − 0.5 × I I (3.3)

aVR = I I − 0.5 × I (3.4)

3.2 Neural Network Selection

The problem we are going to solve is related to multidimensional time-series data. Generation
of time series data requires different techniques than tabular dataset because of the depend-
encies of future data points with the past data points. To deal with these types of problems,
normally sequential models (Recurrent Neural Network (RNN)2, Long Short-Term Memory
(LSTM)3, Gated Recurrent Unit (GRU)4) are widely used in practice. However, because of
the sequential process (i.e., parallel computation is not possible), using these types of models
are costly (in terms of time and hardware cost) for heavy-generation models. As an alternat-
ive, researchers use the one-dimensional CNN model with larger kernel size for these types
of problems. We can get the benefit of parallel computation using CNN (i.e., CNN are not
sequential models). Similarly, to capture the dependencies of present point with the past and
future data points, we are going to use attention mechanism5 and temporal convolution net-
work (TCN)6. Therefore, to solve the defined problem, we are going to use mainly 1D CNN,
TCN, and attention techniques as neural network models.

3.3 Proposed GANs Architecture

Our first method is based on generative adversarial neural networks (GANs). Instead of
starting from scratch, we take a inspiration from [93]’s model (Pulse2Pulse) architecture as
a starting point which was authored by co-supervisor (Vajira Thambawita) of this thesis work.
The trained model can generate 8 lead ECGs signals with a length of 10 seconds. The model
did not consider conditional information for generating ECGs. Similarly, after the careful
observation of the fake ECGs generated by the Pulse2Pulse model ([93]), doctors realize that

2https://apps.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
3http://www.bioinf.jku.at/publications/older/2604.pdf
4https://arxiv.org/pdf/1409.1259.pdf
5https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
6https://arxiv.org/pdf/1803.01271.pdf
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model is not sufficiently able to generate P-waves. There might be several reasons behind
this, however, one of the possible reasons could be not using any techniques to learn past and
future dependencies. Therefore, we believe this could be improved by adding a Temporal
Convolution Network (TCN) which provides the ability to learn the dependencies of current
points with long time past and future time points. To enhance the capability of the generator
to generate the required distribution of data, we will also use the normalization technique
(Group Normalization). To enforce the model to generate synthetic ECGs of desired features
which is passed as a condition, we have designed the model in a way which takes ground truth
(conditional) information and converts it into feature space and passes that feature space into
each block. The proposed model architecture of the generator is presented in the following
Figure 3.1

3.3.1 Generator

Input(8, 5000)

Down1(16, 2500)

Down2(32, 1250)

Down3(64, 625)

Down4(192, 125)

Down5(320, 25)

Down6(320, 5) Up1 (320, 25)

Up2(192, 125)

Up3(64, 625)

Up4(32, 1250)

Up5(16, 2500)

Up6(8, 5000)

Final (8, 5000)Conditional Input

Figure 3.1: Proposed generator model.

As you can see in Figure 3.1, the proposed generator has a U-shaped design inspired by U-
NET model architecture [77]. The generator takes uniformly distributed noise between -1 and
1 in the shape of 8 × 5000 and ground truth as inputs. The noise and ground truth are passed
through the six layers of encoder blocks (responsible for reducing features) which converts the
noise into latent space. After that, the model passes through another six blocks which is also
called decoder block (responsible for enlarging features, i.e., the reverse process of encoder
block). Each decoder block receives inputs from the previous block and the corresponding
level of the encoder block except the first decoder block (UP1). In addition, each decoder block
receives ground truth as well. In Figure 3.1, as you can see, the conditional information is
passed into each block of architecture represented by the green arrow. Similarly, in the figure,
we have named the encoder and decoder blocks as down and up blocks respectively. The
details of the layer used in down and up blocks are presented in the following figure.

As demonstrated in Figure 3.2, each down (Encoder) block consists of another three
sub-blocks. The first sub-block is called CNN which consists of a single 1D-CNN, group
normalization and activation layer. This is the only sub-block in each down block where we
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Figure 3.2: Details of layers used each block of proposed GAN model.
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change the channel dimensions, i.e., in the rest of two subblocks (TCN and DOWN), input and
out dimension remain the same. The second sub-block is called TCN, which is one of the core
parts of our proposed model architecture. Temporal convolution network is similar to normal
convolution, but it has an additional parameter called dilation which changes kernel learning
pattern. Figure 3.3 demonstrates the concept of TCN where kernel size is set to 3 with three
dilation rates (1,2,4). The dilation (d=1) is a normal convolution network and convolutional
network with dilation of 2, 4, etc. is the concept of TCN. The dilation rate changes in an order
of 2n. This gives the model ability to generate a single data point by looking at the relation with
long-term past history. This is the general concept of TCN.

d=1

d=2

d=4

+

Figure 3.3: Temporal Convolution Network(TCN) architecture with residual connection which
is indicated by dotted line.

However, after careful observation, we have realized that the models might have problems
in generating starting few data points. This could be because of padding to only the left side in
TCN. It might not be a problem in the classifier but in the generative model it is the bottleneck.
To overcome this issue, we will use the concept of bidirectional TCN (Bi-TCN) as presented in
the bottom figure of Figure 3.2. The core concept of proposed Bi-TCN is that at each dilation
rate (d), data passes through two distinct CNN with defined rate of dilation. To generate the
data of the same size, the model needs to add padding. Therefore, we are adding zero padding
to only the left side (as normal TCN) and another one with padding to only the right side. Then
we aggregate the output of two TCN layers and pass it to forward layers. Then, the output of
final passes through activation layers. To keep track of information that has been learned in
previous layers, we use the residual connection at the end.

The final sub-block of the encoder block is called the down block which is responsible for
reducing the time dimension features. As you can see in the top layer of the middle figure
in Figure 3.2, the down block has only one 1D-CNN layer with varied stride followed by
activation layers. The value of stride decides the output of the layer, for example, stride=2
reduces the feature by half.

Similarly, Up block (Decoder) has similar architecture to down block (Encode). In the down
block, the feature is reduced at the last sub-block but in the up block, first it passes through
the feature enlargement layer and then passes through CNN and TCN layers. CNN and TCN
blocks are the same as in down block. The up-block sub-block has three layers, an upsampling
layer (which is interpolation with the same method), 1D-CNN layers and activation layer.
The value of the upsampling factor will be the same as the value of stride that is used in the
corresponding level of the encoder (down) block. For example, in the last down block, features
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are reduced by a factor of 5 (in feature=25, out feature =5), therefore, the first up block used the
upsampling factor as 5.

The final block in the Figure 3.1 contains the final 1D-CNN layer to reduce the effect of noise
that has been added from the corresponding down block (i.e., down1). The layer takes input in
the shape of (8 x 5000) and output in the same which is the required output shape. The output
of the final layer then passed through the tanh activation.

3.3.2 Generator Variants

The model architecture presented in Figure 3.1 is our proposed base model. We have named
our base model Advance Pulse2Pulse (AdvP2P). We have made some assumptions in our
based model and added different techniques on top of the based model to further enhance
the generation of data. We briefly explain the core concept of each variant of generator in the
section below with their proposed names.

3.3.2.1 AdvP2P-SD

We claimed that the use of bi-directional temporal convolution network (Bi-TCN) can generate
better quality of ECG data. To verify this hypothesis, we have built a single dimension (normal)
TCN model which we have named Advance Pulse2Pulse - Single Dimension (AdvP2P-SD).

3.3.2.2 AdvP2P

We have called our base model Advance Pulse2Pulse (AdvP2P). This is the exact model that we
have presented in Figure 3.1. Our proposed base model uses bi-directional TCN.

3.3.2.3 AdvP2P-PosEmb

Instead of directly passing the random noise in the U-NET base generator, if we change the
random noise based on its position (time-dimension) by using positional embedding [97] (also
called sinusoidal position embedding) which will convert the random noise into smooth form.
We believe this method will help to improve the quality of data. In our proposed base model,
we add this layer just after the input before it passes to convolution layers. We have named
this version of model as Advance Pulse2Pulse - Positional embedding (AdvP2P-PosEmb).

3.3.2.4 AdvP2P-AutoEmb

Positional embedding is the combination of sine and cosine waves. Adding those waves into
random noise helps to improve the generation process but this may not be the optimal solution
as ECG has different styles of waves than sine and cosine. Therefore, instead of using fixed
positional embedding, we let the model learn the required embedding by itself before it passes
to the convolution layer. The generation process may become easier. This is used the same as
positional embedding i.e., just after the input layer. We have named this version of model as
Advance Pulse2Pulse-Auto Embedding (AdvP2P-AutoEmb).

3.3.2.5 AdvP2P-NtF-AutoEmb

Another trick that we have added on top of the previous model (AdvP2P-AutoEmb) is the idea of
converting random noise into features and then passing through the auto (learned) embedding.
We have added another layer called NtF (Noise to Feature converter) before Auto Embedding
layers. The layer architecture of NtF is presented in Figure 3.4.
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Figure 3.4: Noise to feature converter block.

3.3.3 Discriminator

In the domain of GAN, researchers have more focus on designing generator models than the
discriminator. The discriminator is a simple classifier model which classifies whether an input
is fake or real. In the thesis work, we have tested different versions of discriminator specially
PatchGAN [43] based discriminator, but it does not work as expected. We will explain more
about it in the discussion section. Finally, we adopted the discriminator of Pulse2Pulse model
and added the conditional factor in the model. We first convert the target information (also
called ground truth interchangeably) into a feature space of 5000 by simply repeating the same
value. Then, we concatenated target information with real and fake samples before it passed to
convolution layers. The architecture of the discriminator is presented in the following Figure
3.5.

real/fake

ground truth

Conv1D LeakyRelu Phase shuffel Linear

Figure 3.5: Discriminator architecture.

3.3.4 Loss

We have already written the section about the BCE loss function (in section 2.3.4.2), its problem
(in section 2.3.4.3) and the optimized loss function used in state-of-the-art models (in section
2.3.4.4). In this thesis work, we will use the Wasserstein loss which is the commonly used loss
function in recent state-of-the-art models. We recommend reading the background section to
know more about the Wasserstein loss. To make the discriminator more generalized, we will
also use the technique of gradient penalty while training the discriminator.
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3.4 Proposed Denoising Diffusion Model Architecture

While going through the detail literature review, we figure out the many pitfall of training
GANs reported by researchers [79]. For example, time consuming, requires advance hardware
(face memory issues with smaller GPU), strong model parameter dependencies on the
final result, small modification on model leads to something random/unexpected output,
something may not be able to get similar result in second training process etc. Those
hurdles encourage us to research the alternatives of GANs. At the same time, in 2021, the
researchers from UC Berkeley published a research paper based on denoising diffusion model
and authors argued that their model beats the state-of-the-art GANs model in generating
images. Authors claim that diffusion models are state-of-the-art generative models in image
generation. Similarly, authors reported that training diffusion models are much easier than
training GANs models.

To identify whether denoising diffusion model can also generate high quality of realistic
ECGs signal and to mitigate the hurdles of training GANs, we work on our second method
based on diffusion model. Our model architecture is inspired by [39]. The authors have
proposed diffusion model for image generation. We took the reference from this model and
proposed modified version of architecture for generating multidimensional ECGs signals.

3.4.1 Forward Process

The forward process of diffusion model is static and there is no need to calculate any gradients.
We need to define some of the model parameters like time steps (number of times we want to
add noise in the real data), noise range (minimum amount of noise we want to add to maximum
amount of noise). Once we have defined these parameters, in the forward process. we add fixed
amount of noise in each time steps and make data noisy. In the Figure 3.6, the top to bottom
steps refers the forward process where X0 represents the real data and Xt represents how the
data looks like at that time steps. We can see that the last time steps (i.e., t=240, it could be
any number, best practice is to use around 500 to 1000), fine plot of ECGs (at t=0) converge into
complete noise.

3.4.2 Backward Process

The backward process is reverse operation of forward process. The main concept of backward
process is that if it is possible to make data noisy after adding predefined amount of noise at
every time steps, it should be possible to estimate the amount of noise added in each step and
removed that noise from data which will intimately converge into real data. In the figure 3.6,
bottom to top process is backward operation where the model predicts the Xt−1 based on Xt.

In the training of diffusion models, the size of data will remain the same. Therefore, Unet
model architecture is used in the backward process of diffusion model. The Unet architecture
used in our work is presented in the Figure 3.7.

The model takes real ECGs with the shape of 8x5000 as input and goes the initial 1D
convolution layer (with kernel_size=25 and padding=same) which convert the input into
64X5000. Then it passes into the four layers of downsampling steps. Each step has four
different layers. The first two layers are residual blocks, the third layer is residual connected
attention layer and last layer is downsampling steps. How the number of channels and data
size is changed over each block and layers is presented in the figure.

The architecture of the first two residual blocks in each layer is identical which is presented
in Figure 3.8. This block accepts two inputs: data and time steps. As you can see in the
figure, residual architecture has two blocks of CNN where the first block accepts data and time
embedding information. The second block receives the output from the first block. To keep
track of what it has learned before, it used residual connection. This type of technique helps to
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Figure 3.6: Forward and backward process of diffusion model training.
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Figure 3.7: Unet architecture used in diffusion model.

improve the model in better learning. The right side of block represents the CNN block used in
residual block (left). The solid line represents the noise data and dotted line represents the time
embedding information. In the CNN block, input passes through 1D CNN layer, then group
normalization and if the time embedding information is available, it combines the embedding
information with input in an interpolation way. This step is especially important because based
on this time embedding information, the model predicts the next time step data. Therefore, we
can consider it as a major step in diffusion model. Finally, LeakyReLU is used as the activation
function in the last layer.
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Figure 3.8: (Left) Layer architecture of residual block and (Right) layer architecture of CNN
block used in residual block.

After the first two block of residual, the third block is residual attention which is presented
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in Figure 3.9. This block holds the residual connection and attention block. First, input passes
through layer normalization, then it goes to attention layer, and finally the output is added
with starting input as residual connection. Layer normalization helps to normalize the data
better than batch normalization as it can perform better in lower batch size as well.
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Figure 3.9: Residual attention block.

We have used two types of attention. In the down-sampling blocks and up-sampling block,
we have used attention block while in the middle block, we have used linear attention blocks.
The computation difference between two blocks is presented in Figures 3.10 and 3.11 The
concept of linear attention helps to boost the model performance and at the same time it is
computationally efficient [54].
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Figure 3.10: Attention layers architecture.

3.4.3 Algorithms

We have explained the forward and backward process theoretically in the earlier sections. This
section explains pseudo steps of the training and sampling process. To make you easy to
understand the different mathematical symbols used in training 1 and sampling 2 algorithm,
all the mathematical symbols are presented below.

• T = Total number of time steps noise added (500)

• β = list of noise added at each time step, low=0, high=0.99

• α = 1 − β
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Figure 3.11: Linear attention layers architecture.

• ᾱ = ∏T
1 α i.e. cumprod(α)

• x0 = input

• noise(ϵ) ∼ N (0, I)

• σt = log(β ∗ 1−ᾱt−1
1−ᾱt

)

• ϵθ = model

The training steps presented in Algorithm 1 shows that at each iteration, the input x0 is
converted into noise by adding noise t times where t one of the times points randomly selected
from the range of max time steps (1, .., T). The noised input (

√
ᾱtx0 +

√
1 − ᾱtϵ, t) is then go

to the model ϵθ which predict the amount of noise added at that time step t. Then the loss on
predicting noise will be calculated and update the model parameters based on that loss. This
process continues until the model is converged.

Algorithm 1 Training [39]
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uni f orm(1, ..., T)
4: ϵ ∼ N (0, I)
5: Take gradient descent step on ∇θ ||ϵ − ϵθ(

√
ᾱtx0 +

√
1 − ᾱtϵ, t)||2

6: until converged

The sampling (generating new sample) process is bit different than training steps which is
presented in Algorithm 2. It starts with random noise xT and does the iterative process from
reverse order (i.e., from last time point to the first time point). At each time point t, the model
predicts the amount of noise added at that point t, then the model reduces the predicted noise
from current time of xt. The process continues until it reaches the time unit of 1.

3.4.4 Loss

Calculation of loss is one of the important steps in training the model. Loss function guides the
model to better learn the relationship between input and output. In the case of diffusion, the
model will re-generate the real sample back. Therefore, we use l1_loss during training model.
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Algorithm 2 Sampling [39]
1: xT ∼ N (0, I)
2: for t= T, ...,1 do
3: z ∼ N (0, I) if t > 1, else z=0
4: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t) + σtz

5: end for
6: return x0

The L1 loss is calculated by differencing absolute difference between the real and predicted
data. L1 loss function is also called mean absolute error (MAE).

3.5 Condition Encoding

Condition encoding is another major step to address the problem of conditional data
generation. How we pass the condition information to the model has significant impact on
the out of the model. Traditionally, one-hot encoding or embedding layer is used for condition
values and concatenated with input. Several research shows that these types of methods work.
However, it is not able to pass optimal information as the information is only added as layer.
On the other hand, in new state-of-the-art work (e.g.: StyleGAN), interpolation techniques have
been used which are able to get optimal result in transferring styles. Therefore, we have used
similar techniques for conditional encoding.
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Figure 3.12: Encoding conditional Information.

The architecture of conditional encoding is presented in Figure 3.12. First, conditional
information (also called target information) is passed to Embedding layer then it passes
through linear, leakyrelu activation and linear layer correspondingly. After encoding this
information, it is combined with time embedding information. Time embedding is also done in
an analogous way to condition encoding. The only difference is that in the case of Embedding
layer, Positional Embedding is used in Time embedding. The combined information is passed
to the data as shown in Figure 3.13.

3.6 Analysis of Outcomes

Verifying the quality of data generated by our proposed methods is a crucial step in the
generation of synthetic data. Training the model successfully will indicate that our proposed
models will be able to generate similar kinds of data exits in the training set. However, it
is very important to verify that the proposed models are able to capture the different kinds
of features that exist in the dataset. For example, in our case, the generated ECG data must
capture P-wave, QRS complex, T-interval, etc. For this purpose, we are going to follow the
different kinds of steps which are discussed below.
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Figure 3.13: Condition information passing techniques. The mathematical terms × and + refers
to element wise multiplication and additions respectively.

3.6.1 Loss Analysis

Analyzing the loss of different models is a simple and effective and widely used method for
analyzing the performance of models. In our case, loss refers to discriminator loss (more
specially it will be Wasserstein loss) in the case of GAN models. The Wasserstein loss will
tell us the actual difference between real samples and fake samples over the period of training.
Lowering the value of Wasserstein loss refers to better quality of fake samples and vice versa.
On the other hand, in the case of diffusion model, the model will predict the amount of noise
added on selected time steps during the training phase. It is important to understand that at
each iteration, the model predicts the noise of only one randomly selected time point, i.e., it will
not predict the noise of every time steps T to 0. Therefore, it will not give meaningful insides
of generated data.

3.6.2 Visual Inspection

As our first evaluation steps, we will generate graphs of real ECGs and fake ECGs graphs and
verify ourselves whether our proposed model is able to generate good enough data or not. As
we are not experts of ECGs, our main focus will be on checking visual differences in the ECG
graphs. For example, heart rate pattern, lower and higher amplitudes etc. For the visualization
of ECG, we will use the tools (ecg_plot) used by doctors. ecg_plot is a python based open-source
package.

3.6.3 Similarity Score

Similarity score is one of the key methods for checking the quality of generated fake samples.
There are various kinds of similarity function, however, in comparing the result of generative
models, Inception Score (IS) and Frechet Inception Distance (FID) are two mostly used
methods. As the name suggests, these two methods are based on a deep learning model called
inception classifier for classifying images [89]. Instead of checking the similarity of samples
in original size, a pre-trained inception model extracts the class labels or lower dimensional
features from both real and fake samples, and based on these data two different similarity
score will be calculated. The higher the value of IS is considered to be better which will depend
on two thing 1) lower entropy score - if class label belongs to single class 2) evenly distributed
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class labels - data belongs to different classes in equal distribution. Similarly, lower the value
of FID is considered better which compare the distribution of real and fake sample class labels.
FID is more reliable than IS because IS does not take account of real data.

To calculate IS and FID, we need to prepare our ECGs signal into three dimensions (3,
299, 299). To convert our ECGs signal into required form, fist we flatten the ECG signal (8 x
5000) into 40,000 points. Then, we will reshape data into (200 × 200). We will copy the same
data three times and make it 3 dimensional (3, 200, 200). Finally, to convert the data into the
required width and height of 224, we will use interpolation methods. Both the real and fake
samples pass through our created data pipeline (flatten, reshape, expand, interpolation) and
then goes to inception model as input. From the inception model, we will extract 2024 points,
and calculate IS and FID using built in function available in torchmetrics.

3.6.4 ML Classifier Metrics

Similarity scores give us information about how much real and fake samples are close to each
other. However, based on similarity score we cannot say whether fake samples look real or
not. On the other hand, it is impossible for humans to classify an enormous number of samples
into real or fake. Therefore, we will use a machine learning approach to classify the data into
real and fake samples. This is a more convenient process because machine learning models are
good at identifying patterns from dataset. The main expectation of this method is that if both
datasets have similar patterns, then it will be difficult for the model to classify between real
and fake which results in lower accuracy and vice versa.

To calculate below discussed metrics, we will use 10,000 fake samples generated from each
model and 10,000 real samples in case of ptb-xl dataset and 7073 real samples from private
dataset. We will use 50% of the data for training purposes and 50% for testing purposes. To
make sure that both data exist in training and testing in equal proportion, we will use stratify
split. Regarding the model, we will use transfer learning method on pre-trained resnet50 model
to classify real and fake. We will prepare our data in a similar way as we used similarity scores.
The only difference is that resnet50 uses 3 X 224 x 224 size of data instead of 3 × 299 × 299.

More specifically, from the classifier model, we will check three different metrics, namely,
Accuracy (AC), Precision Score (PS) and Recall Score (RS). The abbreviation used to explain
these metrics in below formula are as follows:

• TP = True positive (correctly classified real)

• FP = False positive (misclassified fake as real)

• TN = True Negative (correctly classified fake)

• FN = False Negative (misclassified real as fake)

Ac = (TP + TN)/(TP + FP + TN + FN) (3.5)

PS = TP/(TP + FP) (3.6)

RS = TP/(TP + FN) (3.7)

Accuracy (AC): Accuracy identify how correctly real, and fake are classified. Higher value
refers to correctly distinguishing real and fake samples and vice versa. Accuracy is calculate
using following formula presentd in eq. 3.5.
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Precision Score (PS): Knowing the accuracy gives an overall overview of how many
samples are correctly classified, however, it does not reveal which class of data is mostly
misclassified. In our case, it is very important to know who many fake samples are also
classified as real (i.e., falsely classified as positive) which is exactly captured by precision score.
PS calculates the accuracy of positive prediction using the formula presented in eq. 3.6.

Recall Score (RS): Recall score, on the other hand identified how many real samples are
classified as fake (i.e., false negative). RS identifies the proportion of actual positive classified
correctly using the the formula presented in eq. 3.7. Higher the value of recall indicates that
most of the real are classified as real and vice-versa. In our case, it is considered to be an ideal
condition when the value of RS drops around 0.5.

3.6.5 Power Spectrum Analysis (PSA)

Similarity score gives information about how close real and fake samples are, but it does not
tell us whether that level of close is good enough or not. In fact, we cannot get any idea about
whether different kinds of waves are correctly generated or not. On the other hand, ml classifier
metrics bit more information especially if the accuracy, precision and recall score drop around
50 which is ideal condition. But getting such a result is extremely hard. If the model does an
excellent job at classifying, then we cannot say where the problem is. Maybe some of the waves
are correctly generated or may have problems in all waves. To answer all these questions,
power spectrum analysis is a useful tool. PSA converts the time domain information into
frequency and its corresponding strength. Comparing this two information from real and fake
samples will help to identify whether the frequencies that exist in real data are also present in
fake samples with their corresponding strength. If there are differences in between the strength
of real and fake samples at particular frequency, it will tell us that particular wave is smaller or
larger. We will make this comparison at channel level based on mean value.

3.6.6 Latent Space Visualization

Visualizing the data at higher dimensional and doing analysis and making decision on top of
it is difficult. For example, based on only visual inspection (high dimensional) method, it is
difficult for anyone to say how much they differ from each other. To mitigate this gap, latent
space visualization is another method for comparing the real and fake samples in latent space.
Here the latent space refers to latent features or also called low dimensional features.

To complete this analysis, we will first build and train an autoencoder model. After the
model is trained, we will use a trained model to extract the latent space only. The design
autoencoder model will convert the ECG signal of 8 x 5000 points to latent space of 500 points.
From 500 points, we will use the first 250points as x-axis and last 250 points as y-axis so that
we do not have to compress further. As we are working on two datasets, instead of training
the autoencoder model in two datasets, we will train the model on only one dataset (PTB-XL)
and use it for analysis to both datasets.

3.6.7 Verify by Experts

We know some of the features of ECG, however, we are not experts in the ECG field. It is
very important to know that generated fake ECG are non-differentiable. At the same time, it
should capture the properties of ECG. As we have a group of expert doctors connected with
our project. We will verify our result with expert doctors. For this purpose, we will generate an
ECG graph of 100 samples from each model and provide it to doctors. Doctors will look at the
ECG graphs and try to observe the overall quality of fake samples and which model samples
look more promising. If we consider our fake samples to be used in real application, this step
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is especially important. Doctors feedback can be used as a suggestion to improve the model in
future as well.

3.6.8 MUSE Feature Analysis/ ECG Parameters

All above methods will analyze the ECG at signal level which will give lots of information
for the comparison of real and fake signals. However, in real life applications, doctors extract
the different biomarkers from ECGs signal and use that information for analysis. Here the
biomarker refers to features related to ECG like R peaks, T-peaks, QT-interval, etc. Comparing
the different features of ECG using statistical tools is more convenient than comparing at visual
way. For this purpose, we will use MUSE tool to extract different biomarkers from real and
fake signals. MUSE is one of the widely used tools by doctors at hospitals. This is not an open
source. Therefore, we will request our doctor to generate statistics for us. After we get the
generated statistic, we will analyze the differences between real and fake ECG features.

Initially, we planned to use MUSE tool as explained above, however, the real system is very
busy and our data were on queues. Therefore, as an alternative, we will use AI based tool
for extracting ECG parameters which is trained on the same private dataset [38]. The AI-based
model is compatible with MUSE tool. The real MUSE system can extract large features whereas
AI-based tool can extract 7 different features.

3.7 Summary

In this section, we present our proposed model architecture based on GANs and diffusion. To
make it easy to understand the proposed model architecture, we have presented an overall
architecture and each component of architecture graphically. We made different hypothetical
assumption and based on that proposed different version of GANs model. We used extensive
research to figured out an efficient way to pass the conditional information. Based on our
research, we added the conditional parameters in the proposed generative models. In the
case of diffusion model, we did research on the possibilities of using image based model to
time series based model. Similarly, adding the conditional input in more effective way to the
existing model architecture is another effort we made in proposing models architecture. The
evaluation of generated synthetic data compared to real data is one of the challenging tasks
in the validation of synthetic data. Therefore, we have presented different approaches for
validation so that we can draw better conclusions. All the models proposed in this section
will be used for experiments and generating data in the next section. The data generated by
proposed models (in Section 4) will be evaluated based on define evaluation methods described
in this section.
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Chapter 4

Experiments and Results

In this section, we are going to explain the experimental set and results from different
experiments and models. As presented in the methodology section, we are going to use
different techniques for result evaluation so that we can make more reliable decisions.
Therefore, the results are presented in different sections.

4.1 Experimental Setup

This section gives you the overview of how the experiments have been conducted in this thesis
work. We have two different generative model approaches. The experimental setup of each
approach differs from each other. There are some similarities as well. For example, all the
experiments were conducted on two different servers. For the open-dataset (PTB-XL), we have
used the eX3 server provided by Simula Research Laboratory regardless of model approach.
There are different types of clusters in the server, however, all of our experiments are conducted
on a server which holds Tesla V100 GPU of 32GB. Similarly, for the private dataset provided
by University of Copenhagen (UiC) (INT99 and GENSUS), we have used the servers provided
by UiC via VPN service as we are not allowed to work on data out of server. The server holds
GeForce RTX 3090 Ti of 24 GB. Without use of these resources, all the experiments conducted
in this thesis work is not possible. Therefore, we would like to thank you both organizations
for providing access to the great resources. In the sub-section, we explain our training strategy.
For more technical details, we recommend you check the GitHub page of project by following
this url: https://github.com/upretiramesh/SyntheticECG.

In following experimental result, you might find some term used interchangeably, for
example, open dataset represent PTB-XL dataset, private dataset represent INT99+GENSUS
dataset.

4.1.1 GAN

During the training of GAN models, we have set the learning rate (lr) of 0.0001 with beta1=0.5
and beta2=0.9 in both of the optimizer. All the models are trained of 2500 epoch in PTB-XL
dataset while 4000 in private dataset. Similarly, for analyzing the performance of models over
epochs, we have saved model checkpoints at every 25 epochs. The training strategy is set up
in a way that discriminator is trained on every iteration while the generator is only trained
on each 2nd iteration (on even iteration only). This helps discriminators to become more and
more accurate in distinguishing real and fake samples. In the case of private dataset (INT99 +
GENSUS), because of lack of server availability we have only trained AdvP2P-AutoEmb and
AdvP2P-NtF-AutoEmb models. We have leaved empty cell for other models.
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4.1.2 Diffusion

We have used the same training strategy as used in denoising diffusion models papers. For
your easiness, we would like to mention some of the important parameters. We have used
time steps of 500 with the beat schedule of cosine methods (alternative is linear). We have used
a batch size of 32 and a learning rate of 0.0001. Similarly, L1_loss is used as loss function to
calculate the during predicting of noise. Diffusion models are trained for 200k iteration and
model checkpoints are saved at each 1000 iteration.

4.2 Used Model Abbreviations

We have already explained the different version of our proposed generator in the methodology
section with their name abbreviation. In the rest of the below sections, we have used model
abbreviation in all graphs to make the things easy and consistent. Therefore, summarizing
all the models name with their abbreviation, makes you easy for connecting the used model
abbreviation with their associated models.

Model Abbeviation Types Model Details
ECG-DDM Diffusion Denosing Diffusion Model

AdvP2P-SD GAN
Advance Pulse2Pulse with

Normal TCN (Single Dimention)
AdvP2P GAN Advance Pulse2Pulse

AdvP2P-PosEmb GAN
Advance Pulse2Pulse with

Positional Embedding (sinusoidal)

AdvP2P-AutoEmb GAN
Advance Pulse2Pulse with

self-Learned (Auto) Embedding

AdvP2P-NtF-AutoEmb GAN
Advance Pulse2Pulse -

Noise To Feature Converter-
self-Learned (Auto) Embedding

Table 4.1: Model abbreviation.

4.3 Discriminator Loss

After successfully training different variants of generator model under two settings (normal
and conditional), we have generated the graph of discriminator loss (wasseratian loss) from
the training process. The discriminator loss demonstrated in Figure 4.1 is generated from PTB-
XL dataset.

The above discriminator loss reveals two interesting pieces of information about the
training process. The first information is that all the models trained on normal mode (without
any conditional information), the loss is sharply reduced in first one two epoch and then
gradually decrease and reached to the value of 1 around 100 epochs. The losses in between
500 to 2500 epochs show that there is steady decline in loss. On the other hand, on conditional
models, the loss drops from peak to level of 1 almost in first epoch, from 2 to 500 epochs, there
is gradual decline. And if you compare the losses at 500 epoch and at 2500 epoch, there are
very marginal differences which shows that conditional models are good at generating realistic
fake samples in smaller value of epochs as well.

Similarly, if we compare the loses of different models in two different training setting, we
can clearly see that the claimed that we did during proposing models, i.e., the Bi-TCN based
models can generate better quality of fake samples, this argument seems to be right based
on the loss. In both conditions, Bi-TCN based models have smaller losses than normal TCN
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Figure 4.1: Discriminator loss (wasseratian) of (TOP):Normal models, (BOTTOM): Conditional
models. Bi-TCN based model (AdvP2P) better than normal TCN (AdvP2P-SD). AdvP2P model
is even improved by adding embedding layer (AdvP2P-AutoEmb, etc.).

47



base model (AdvP2P-SD). Interestingly, the gap the between losses in between Bi-TCN based
models and TCN based models are higher in normal training setting, on the other hand, the
difference is smaller in conditional training setting. Based on this information, we can say that
adding conditional information helps generator to generate required distribution of data.

Last but not least, another assumption that was made, i.e., adding embedding layers
(positional/self-learned) to input helps generator to generate better samples seems to be right.
If we closely observe the loss on both training settings, embedding based models have lower
losses as compared to others. Model AdvP2P-PosEmb have lowest loss value on normal training
condition while AdvP2P-AutoEmb in conditional training mode.

4.4 Visual Inspection

In this section, we are presenting ECG graphs from different settings (real, diffusion, gan and
conditional gan) so that we can compare how the real and synthetic samples look in ECG
plot view. All of our generative models generate 8 lead ECG, however, in this section, we
are presenting 12 leads. We have explained how the rest of the four leads were generated in
section ??. This is the standard way used by doctors in analyzing ECG graphs. The intention
of this section is not to analyze the technical details of ECG but to see whether it has captured
most of the properties of ECG or not. We can say this section as layman view on fake samples.
We have another section below where we will provide expert feedback on fake samples from
different models.

4.4.1 Real

The ECG graph presented in Figures 4.2 and 4.3 are generated from real dataset of private and
open-source dataset respectively. As we have described in background section, we can see the
QRS complex (which is the highest peaks exists in both the graphs), w-wave just after the R
peaks and small P-wave before the R peaks. However, P-wave and W-wave do not exist in the
chosen sample. This also gives idea that in some of the cases, P-wave and W-wave may not be
presented in ECG.

Figure 4.2: Real ECG graph from private dataset(Int99, Gensus)

4.4.2 Diffusion

The graphs presented in Figures 4.4 and 4.5 are generated conditional diffusion models from
two different dataset. Both of the graphs have nicely generated QRS complex followed by
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Figure 4.3: Real ECG graph from open source dataset (PTB-XL).

W-wave. In the case of private dataset, small P-wave also exists.

Figure 4.4: Synthetic ECG generated by conditional diffusion model - trained on private
dataset.

4.4.3 GAN

Out of five different generator models, we have presented graphs from best model in Figures
4.6 and 4.7 from private and public dataset, respectively. The ECG plot seems very promising.
If you closely compare the GAN based models ECG plot with diffusion-based models, it seems
GAN based models are good at generating different peaks strongly. However, in diffusion
model, different waves seem to be weaker. There might be problems with diffusion or GAN, or
it is just because of random plot. We will need to verify this with different statistics and expert
review.

4.4.4 Conditional-GAN

As normal GAN models, conditional GAN models are also good at generating realistic fake
samples in both of the datasets. The preliminary analysis of these plots shows that models
have learned the condition information. However, it has not verified how correctly the model
learned the given condition and whether the adding conditional information helps to generate
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Figure 4.5: Synthetic ECG generated by conditional diffusion model - trained on open source
dataset.

Figure 4.6: Synthetic ECG generated by normal GAN model AdvP2P-AutoEmb - trained on
private dataset.

Figure 4.7: Synthetic ECG generated by normal GAN model AdvP2P-PosEmb - trained on open
source dataset.
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better realistic samples or not. We will check different statistics to find the answer to these
questions in the sections below.

Figure 4.8: Synthetic ECG generated by conditional GAN model AdvP2P-NtF-AutoEmb -
trained on private dataset.

Figure 4.9: Synthetic ECG generated by conditional GAN model AdvP2P-AutoEmb - trained on
private dataset.

4.5 Similarity Metrics

We are calculating two different similarity evaluation metrics called Inception Score (IS) and
Fréchet Inception Distance (FID) which are mostly widely used for evaluating the quality of
synthetic data. These two metrics are widely used in the domain of image analysis; however,
researcher has used these techniques for evaluating time series data, audio signals, etc. We
recommend reading the methodology section to know more about how we calculated these
two metrics and what kind of information reveals by these two metrics. Similarity metrics of
different models trained on PTB-XL dataset under two different training setting is presented in
Table 4.2.

For the sake of clarity, the column header "Normal" refers to models trained without any
conditional information. According to Table 4.2, the FID score is highest in diffusion-based
model on both training setting, in fact, FID score of diffusion models is almost five time higher
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than GAN models. This reveals that synthetic ECG generated by GAN based models are closer
(realistic) with real ECG samples. Another interesting fact is that, regardless of model types,
models trained with conditional information yields relatively smaller FID score. In terms of
IS score, there is not much difference between different models, however, the highest (1.13) IS
score is yields by conditional GAN based model AdvP2P-AutoEmb. Last but not least, our
proposed base GAN model (AdvP2P which is based in Bi-TCN) and improved version by
adding embedding layers interestingly yields smaller FID score than normal TCN based model
(AdvP2P-SD). Moreover, if we compare the FID score of models based on two embeddings,
the model with self-learned embedding layer (AdvP2P-AutoEmb) generates the fake ECG with
lower score on both type of training.

Normal Conditional
Model Types IS↑ FID↓ IS↑ FID↓
ECG-DDM Diffusion 1.11 18.41 1.09 16.65
AdvP2P-SD GAN 1.10 8.11 1.11 5.46
AdvP2P GAN 1.12 4.87 1.11 4.46
AdvP2P-PosEmb GAN 1.12 4.07 1.10 4.82
AdvP2P-AutoEmb GAN 1.11 3.98 1.13 3.36
AdvP2P-NtF-AutoEmb GAN 1.11 3.62 1.12 4.52

Table 4.2: IS and FID scores of normal and conditional models trained on PTB-XL dataset.
(normal):the GAN (AdvP2P-Auto) model yield the lowest FID score of 3.98 while diffusion
yields almost 6 times higher FID score (18.41). (conditional):the AdvP2P-Auto yield the highest
IS score (1.13) and lowest FID scores (3.36) out of all models which is alsmot five times smaller
than diffusion model. (general): Bi-TCN based models (AdvP2P) yields better result than
normal TCN (AdvP2P-SD). AdvP2P2 model is further improved by adding embedding layers
(AdvP2P-PosEmb, AdvP2P-AutoEmb).

Similar to the previous Table 4.2, Table 4.3 demonstrates the similarity metrics result of
different models trained on private dataset (INT99 and GENSUS). Interestingly, we can see that
a similar kind of result pattern exists in this dataset as well compared to open-source dataset
result. FID score of diffusion is more than two times higher than GAN models. However,
interestingly diffusion model IS is higher than GAN models on both training settings which
indicates that diffusion-based model is generating wider variety of ECG. As expected, base
GAN model and its variant (which uses bi-TCN) performs better than normal TCN based
model (AdvP2P-SD). Interesting, in both training situations, AdvP2P-AutoEmb yields lowest
FID score 4.38 (normal) and 4.73 (conditional). Another interesting thing we can observe in
the table is that FID scores of conditional GAN models are slightly higher than normal models.
This could be the reason that adding conditional layers increases the complexity in models.
Reaching the conclusion (i.e., conditional models are weaker) by looking only FID score may
not be the best approach, therefore, we will verify this using ML classifier metrics as well in
below sections.

4.6 ML Classifier Metrics

Using machine learning classifier to distinguish real and fake samples are more advance
technique. Indeed, it becomes compulsory in analyzing large size of synthetic data. In this
section, we have used the same data that we used for calculating similarity metrics. We trained
the ML classifier (resnet50) model with fake and real labels. The classification metrics presented
in Table 4.4 is result from open-source dataset.

The down arrow in the table header refers that getting smaller value if the best scenario. As
you can see in Table 4.4, there is not much difference between normal diffusion and conditional

52



Normal Conditional
Model Types IS↑ FID↓ IS↑ FID↓
ECG-DDM Diffusion 1.09 12.36 1.09 10.97
AdvP2P-SD GAN 1.08 5.27
AdvP2P GAN 1.08 4.70
AdvP2P-PosEmb GAN 1.08 5.01
AdvP2P-AutoEmb GAN 1.08 4.38 1.07 4.73
AdvP2P-NtF-AutoEmb GAN 1.08 5.00 1.08 5.04

Table 4.3: IS and FID scores of normal and conditional models trained on private dataset
(INT99+GENSUS) results. The AdvP2P-AutoEmb model yield the lowest FID distance in
normal (4.38) and conditional (4.73) training settings while diffusion models have highest FID
distance. Conditional diffusion model improved after adding conditional input while GANs
models almost similar FID distance.

Normal Conditional
Model Types AC↓ PS↓ RS↓ AC↓ PS↓ RS↓
ECG-DDM Diffusion 0.91 0.95 0.88 0.92 0.95 0.90
AdvP2P-SD GAN 0.95 0.93 0.96 0.97 0.97 0.97
AdvP2P GAN 0.96 0.97 0.96 0.91 0.91 0.91
AdvP2P-PosEmb GAN 0.81 0.85 0.79 0.94 0.94 0.94
AdvP2P-AutoEmb GAN 0.83 0.84 0.83 0.87 0.86 0.87
AdvP2P-NtF-AutoEmb GAN 0.82 0.91 0.76 0.91 0.92 0.91

Table 4.4: Result of classification metrics of open-source dataset. Header details: (AC)-
Accuracy, (PS)-Precision Score, (RS)-Recall Score. (conditional):ML find easy to distinguish
real ECGs and fake ECGs generated by diffusion models (accuracy:0.92) while difficult to
distinguish real and fake samples generated by GANs model (accuracy:0.87). However, it is
even more difficult for ML model to distinguish normal GANs model samples (accuracy:0.81).
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diffusion models. The normal diffusion model achieved 91% of accuracy while conditional got
92%. However, both of the models have the same precision score (PS) of 0.95. On the other
hand, if we compare the result of diffusion model with best performing GAN model, GAN
models (AdvP2P-PosEmb) reduced the accuracy from 91% to 81% which is huge improvement.
This indicates that it becomes harder for machine learning models to distinguish between real
and fake samples generated by AdvP2P-PosEmb model. Another interesting observation is that
single dimension (normal TCN) based model (AdvP2P-SD) performed worst in both normal
and conditional training setting, indeed worse than diffusion models. However, our proposed
based model yields the worst result (96%) in normal training setting and better in conditional
training (91%). On the other hand, interesting, the variant of base model with embedding
layers outperforms both diffusion and base model with the accuracy of AdvP2P-PosEmb-81%,
AdvP2P-AutoEmb-83% and AdvP2P-NtF-AutoEmb-82%.

A similar pattern exists in the conditional side of models (i.e., embedding base model
performs better). The lowest accuracy yields by model is 87% which is given by AdvP2P-
AutoEmb. But the most important thing to notice here is that as compared to normal models
(without any condition), conditional models have higher accuracy values. This indicates that
ML model can distinguish the real and fake samples more correctly. We will check whether
similar patterns exist in private dataset as well or not before making some decision.

Normal Conditional
Model Types AC↓ PS↓ RS AC↓ PS↓ RS↓
ECG-DDM Diffusion 0.94 0.93 0.93 0.92 0.89 0.93
AdvP2P-SD GAN 0.86 0.82 0.84
AdvP2P GAN 0.89 0.87 0.87
AdvP2P-PosEmb GAN 0.77 0.60 0.80
AdvP2P-AutoEmb GAN 0.75 0.66 0.72 0.82 0.71 0.84
AdvP2P-NtF-AutoEmb GAN 0.75 0.57 0.76 0.79 0.69 0.78

Table 4.5: Result of classification metrics of private dataset. Header details: (AC)-Accuracy,
(PS)-Precision Score, (RS)-Recall Score. (conditional):ML model has low error on distinguish
real samples and fake samples generated by diffusion model (accuracy:0.92) while higher errors
in distinguish real samples and fake samples generated by GANs (accuracy:0.79).

The result presented in Table 4.5 demonstrate the ML classifier metric from private dataset.
If we closely observe the result, there are two major differences as compared to result
presented in table 4.4. First, adding conditional information improves the quality of generated
samples as ML accuracy decreases from 94 to 92%. Second, all the GAN models outperform
diffusion models, i.e., samples generated by GAN models look more realistic in private dataset.
Similarly, there are two similarities between the results of two datasets. The first one, as usual,
proposed embedding layer-based models yields lower accuracy value. Indeed, the difference
(94%-75%=19%) is huge in between diffusion and GAN model (AdvP2P-AutoEmb GAN). The
second one is that conditional model outputs are classified with higher accuracy as in open-
source dataset. This indicates that adding conditional information increases the complexity in
GAN models.

The optimal goal is to fool the classifier, i.e., let the classifier classify fake as real and real
as fake. In that scenario, embedding based GAN models do an excellent job. For example,
model AdvP2P-NtF-AutoEmb yields precision score of 0.57 which indicates that almost 43% of
fake sample exits in test dataset are also classified as real. In the case of conditional model, the
score is 0.69 which is awesome as compared with other models.
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4.7 Power Spectrum Analysis (PSA)

Power spectrum analysis is a key tool that we have used for analyzing fake and real samples.
Based on similarity metrics and ML classifier metrics, we can see that diffusion models are
not able to generate realistic ECG signal as compared to GAN. But we cannot say why or
where there is a problem in sample generated by diffusion model. PSA analysis provides more
insights of different frequencies exits in the ECG and their strength so that we can compare
real and fake. As the result shows that both datasets have similar patterns, we are only using
private datasets for PSA analysis. Power spectrum analysis of real and fake samples generated
by conditional diffusion models are presented in Figure 4.10.

Figure 4.10: Power spectrum analysis of real samples and fake samples generated conditional
diffusion model. Mean power spectrum analysis represent that diffusion model capture peaks
and waves but their strength are lower than real ECGs. Top four graphs belongs to I, II, V1,
and V2 leads. The bottom four graphs belongs to V3, V4, V5, and V6 (from left to right).

The mean value of PSA is compared at lead (channel) level in Figure 4.10. The figure shows
that ECG signal has one peak with very high strength whose frequency is around 1/2Hz and
some other waves with smaller strength. The frequency with highest strength refers to R peaks
wave and other small waves such as P and W wave. According to Figure 4.10, the diffusion-
based model is capturing the patterns i.e it generates the different waves in ECG, but they are
very weak signal. In every channel, all the frequency are exits as in real and at a same pattern
i.e if real sample has peak at 1Hz, fake also have peak at that frequency which is good, but the
problem is that fake samples has relatively lower power on each frequency which will have
direct impact on waves. Fake samples also have different waves (p, w, p) but they are small in
nature.

As shown in Figure 4.10, similar compassion is made between real and fake samples
generated by conditional GAN model AdvP2P-NtF-AutoEmb which is presented in Figure 4.11.
The PSA comparison is promising as compared to diffusion model’s samples. As we can see,
over a range of frequencies, the mean value of strength is overlapping which is interesting.
In some of the leads, for example, first two (I, II), firth (v3) and last (v6) leads, the average
strength is almost similar. This represents that all the waves that exist in real samples have
been generated by the model. However, if we observe the middle two graphs (i.e lead V4 and
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Figure 4.11: Power spectrum analysis of real samples and fake samples generated by
conditional GAN (AdvP2P-NtF-AutoEmb) model.Mean power spectrum analysis represent that
the conditional GAN (AdvP2P-NtF-AutoEmb) model not only capture peaks and waves but
their strength are also similar to real ECGs. Top four graphs belongs to I, II, V1, and V2 leads.
The bottom four graphs belongs to V3, V4, V5, and V6 (from left to right). (issue):In some leads
(V1, V2, V4, V5), at highest peaks, the strength of fake samples are higher than normal.

V6) in the bottom layer of figure, the generated fake samples have higher strength than real
ones which means model are generating higher peaks in those channels. We think this is one of
the reasons why ML model classifies the real and fake with an accuracy of 75% and a precision
score of 0.57.

4.8 ECG life cycle

In the previous power spectrum analysis, we saw that diffusion-based models have weaker
(specially R-peaks) signals while GAN based models generate signals similar to real. To further
confirm that weak/good signals are presented in ECG signals, we are analyzing one life cycle
of ECG which starts before p-waves to end after w-wave. For this analysis, we choose the time
window of 1500 to 3000 points, and find out the highest peaks between these two time points,
and finally extract 200 points before and after the peak point. In total, we extract 400 points
from each channel and compare the result at channel level. Figure 4.12 demonstrates one ECG
life cycle of private dataset.

In the figure red, green and blue represent mean value of conditional diffusion, real
and conditional AdvP2P-AutoEmb signal. Similarly, the shadow part represents the standard
deviation differences. The result shows that all models have created the ECG life cycle which is
promising. However, if we closely observe, we can see R-peaks generated by diffusion model
are weaker in every lead. Similarly, we can observe the noticeable difference in w-wave of some
of the channels (leads: V1, V2, V3, V4). On the other hand, signals generated by GAN model
are identical with real signals. One interesting difference that we observe in between real and
GAN signals is that at R-peaks, the standard deviation value of GAN signals is higher which
indicates that GAN models have higher deviation in generating R-peaks.

As compared to private dataset, ECG life cycle of open-source dataset presented in Figure
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Figure 4.12: Comparison of ECG life cycle of real and generated fake samples of private
dataset. Signal are represented by color where Green:real, Blue:conditional AdvP2P-AutoEmb,
Red:conditional ECG-DDM. Top four graphs belongs to I, II, V1, and V2 leads. The bottom
four graphs belongs to V3, V4, V5, and V6 (from left to right). Real and fake ECGs generated
by conditonal GAN are very similar while Diffusion has noticeable issue in R preaks and W-
waves.

Figure 4.13: Comparison of ECG life cycle of real and generated fake samples of open-source
dataset (PTB-XL). Green:real, Blue:conditional AdvP2P-AutoEmb, Red:conditional ECG-DDM.
Top four graphs belongs to I, II, V1, and V2 leads. The bottom four graphs belongs to V3, V4,
V5, and V6 (from left to right). Real and fake ECGs generated by conditonal GAN are very
similar while Diffusion has worst signal in most of leads except first two leads (I, II).
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4.13 reveals completely unexpected hidden truth. In channels V1, V2, V3, and V4, diffusion
models generate very small R-peaks while completely failing to generate W-wave. Similarly,
in the last two channels (v5 and V6), in the real and GAN’s signals have R-peaks at positive
side while diffusion has a negative side. There could be two possible reasons behind this type
of unexpected result. The first one is higher diversity in ECG signals makes model different
to learn Gaussian noise to input, and the second one is Gaussian noise distribution that we
are passing for generating fake ECG signals. More in-depth analysis and comparison of noise
needs to be done in future work.

4.9 Latent Space Visualization

Latent space visualization gives the ability to check how the distribution of real and fake
samples looks like in lower dimension space. We have explained more about the approach in
the result evaluation section of methodology chapter. Latent space visualization of real samples
with samples from diffusion model and GAN model under normal and conditional setting is
presented in Figure 4.14.

Figure 4.14: Latent space visualization - (Left): fake samples by diffusion, (Middle): fake
samples by AdvP2P-NtF-AutoEmb, (Right): fake samples by Conditional AdvP2P-NtF-AutoEmb.

Above Figure 4.14 shows another interesting insight as compared to previous analysis
which is the issue of diversity. The first graph in the figure is the comparison between real and
fake samples generated by diffusion model. In the graph, we can observe that two distributions
overlap with each other, however, fake samples are centered in one location and do not capture
the pattern of real distribution. This could be the reason that diffusion-based models are
generating similar types of ECG most of the time. In the domain of generative models, this
type of issue is called diversity issue. On the other hand, GAN based model AdvP2P-NtF-
AutoEmb under both training setting are quite good at capturing the different patterns exits in
real samples. However, if we compare both closely, middle graph, i.e., GAN trained without
any condition looks better in capturing pattern. If we compare the analysis that we presented
in previous section of ML classifier metrics, i.e., hiving higher value of recall score could be
the issue of diversity (normal-recall score 0.76, conditional-recall score 0.78), this statement is
further justified by latent space visualization presented in Figure 4.14.
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4.10 MUSE Feature Analysis

This is one of the key important analyses of this thesis work. There are two important questions
that we are going to answer from this analysis. They are 1) do the fake samples have similar
ground truth as reals? and 2) Do the models have learned ground truth correctly so that it
generates the fake sample of given ground truth? To answer these two questions, we have
performed two types of analysis. The first one is at population level which will help to answer
whether adding conditional information improves the model to generate required distribution
or not. Similarly, at the second approach, we compare at one-to-one level where we pass the
same defined ground truth to GAN and Diffusion model and compare which one generates
closer ground truth. MUSE analysis is only performed on private dataset (Int99 and GENSUS).
There are two reasons behind this. The real MUSE tool was very busy with another test, we
were kept in queue until the end of thesis. As an alternative we are using AI based ECG
parameters extractor [38] trained on same private dataset. The AI-ECG parameter extractor is
not available for open source PTB-XL dataset.

4.10.1 Population Level Analysis

For the consist result comparison, we have used the same number of samples (7077) from
each group. For this analysis, we first extract the ground truth from training ECG samples
using the AI-based model. Then, we extracted the ground truth from non-conditional (normal)
diffusion model. For conditional diffusion model, we passed the training samples ground truth
as conditional information and extracted the ground truth from generated sample so that we
ca make comparison. The Figure 4.15 demonstrates the heart rate distribution comparison and
heart rate relationship with QT interval.

Figure 4.15: Diffusion models result comparison with real ground truth of private dataset
(INT99, GENSUS). (Left): heart rate distribution comparison, (Right): heart rate versus QT
interval relationship.

The left graph on Figure 4.15 shows the comparison of synthetic heart rate of conditional
and on-conditional diffusion model with the real heart rate. At the glance, we can see that
the normal heart rate (60-100) distribution are overlapping and identical. However, we can
observe that both diffusion models have also generated an extremely low heart rate which
does not fall under normal heart rate range. On the other hand, in general, there is a strong
correlation between heart rate and QT interval. The graph on the right side of Figure 4.15
demonstrates correlation between real and synthetic ECG. The correlation between heart rate
and QT interval of conditional diffusion model is overlapping. If we carefully observe, we can
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see that conditional model is a bit better than normal. Interestingly, QT interval of fake samples
belongs to normal range regardless of low heart rate.

Figure 4.16: GAN models result comparison with real ground truth of private dataset (INT99,
GENSUS). (Left): heart rate distribution comparison, (Right): heart rate versus QT interval
relationship.

As the result presented in Figure 4.15, similar result is presented in Figure 4.16 based on
GAN model. For these experiments, we have selected AdvP2P-AutoEmb as non-conditional
GAN and AdvP2p-NtF-AutoEmb is used from conditional GAN. In the figure letter ’C’ before
model name refers to conditional. The heart rate of conditional and non-conditional GAN falls
under the range of real heart rate. As compared to diffusion models, one interesting noticeable
difference is that the model has generated a high number of ECG with the most common heart
rate (around 70 and around 65). This is the common issue of GANs, i.e., the issue of diversity.
Similarly, the heart rate correlation with QT interval presented on right side of Figure 4.16
demonstrates that both conditional and non-conditional model have similar correlation as real.
If we observe closely, we can see that both of the models have issues in generating the higher
QT interval.

Based on only the result presented in Figures 4.15 and 4.16, we cannot figure out that
adding conditional model improves better ECG generation. Therefore, we have also performed
an analysis based on the measurement of four different parameters. The mean, standard
deviation, 2.5% and 97.5% percentile difference of seven different ECG parameters (ground
truth) of real and fake samples are presented in Table 4.6. In the table, the first four parameters
(Heart Rate, PR interval, QRS duration and QT interval) are also used as conditional while
the last three parameters (STJ, Rpeak and Tpeak) are not part of given condition to model
however these parameters are important to figure out the effect of conditional parameter on
non-conditional parameters.

Real-normal () DDM-normal (10,000) CDDM-normal (10,000)
Mean Std 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

Heart rate BPM 70 8 60 90 69 9 57 87 70 9 58 90
PR interval ms 156 19 120 196 156 18 124 192 157 19 122 195
QRS duration ms 89 9 72 108 85 7 73 102 90 9 75 108
QT interval ms 395 21 352 436 396 20 357 435 395 22 352 438
STJ µV 3 26 -45 59 -3 20 -39 42 -5 21 -44 41
R peak µV 1295 420 585 2208 895 351 338 1727 933 352 380 1768
T peak µV 346 136 132 668 254 111 91 520 270 111 105 533

Table 4.6: Mean, standard deviation (std), 2.5%, and 97.5% percentile comparison of ground
truth from real ECGs and fake ECGs generated by diffusion models.

In overall, the mean, standard deviation, 2.5% and 97.5% percentile of different ECG

60



parameters measured from real, and fake presented in Table 4.6 demonstrates that adding
conditional parameters to the diffusion model generate samples with more realistic ECG
parameters. More specially, we can observe the huge improvement in QRS duration where
the mean value of QRS duration in original is 89 while non-conditional model has 85 but the
conditional model has 90. Another interesting thing to observe is that though R peak and T
peaks were not part of conditional parameters, adding other conditional parameters has also
improved the R peaks and T peaks however they are still not close to normal ECG parameters.
This is (i.e., weak R peaks in diffusion model) one of the analyses that we made based on PSA
analysis and ECG life cycle before which is now further proved from this analysis.

Table 4.7 compare the results generated by GAN models. Adding the ground truth to the
model perfectly generates the mean PR interval of 156 by conditional model while 154 by non-
conditional model. Similarly, non-conditional GAN model generates a very high T peak of 383
while the real T peak is 346. The conditional model generates a much closer mean T peak of
351. On the other hand, there is no improvement in the case of QRS duration and QT interval.

Real-normal (7077) AdvP2P-AutoEmb (10,000) C-AdvP2P-NtF-AutoEmb (10,000)
Mean Std 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

Heart rate BPM 70 8 60 90 70 8 60 91 71 8 61 91
PR interval ms 156 19 120 196 154 14 128 182 156 11 137 178
QRS duration ms 89 9 72 108 93 7 80 109 93 6 81 107
QT interval ms 395 21 352 436 398 20 356 434 390 21 352 429
STJ µV 3 26 -45 59 9 31 -49 75 12 35 -54 84
R peak µV 1295 420 585 2208 1316 398 608 2157 1326 374 675 2059
T peak µV 346 136 132 668 382 134 157 671 351 112 174 597

Table 4.7: Mean, standard deviation (std), 2.5%, and 97.5% percentile comparison of ground
truth from real ECGs and fake ECGs generated by GAN models.

4.10.2 One to One Analysis

From the population level analysis, we can observe that adding conditional information to the
model during the generation has improved some for the parameter of ground truth. However,
the analysis is done at population level so that we cannot confirm that when we pass the
ground truth, ECG signal of similar ground truth is generated or not. This is very important to
know which helps to make decision that whether model has mapped the relation of condition
parameter without or not. Therefore, we have made three different scenarios: 1) low heart rate
(<60), 2) high heart rate (>95), and 3) medium heart rate (66-72). For each case, we select ten
different ground truths and pass the same ground truth to GAN and diffusion model so that
we can also answer which model is better at mapping condition to output. We have passed 7
parameters as input but as we have only four parameter ground truth, we are only comparing
four parameters. They are HR-Heart Rate, PR-PR interval, QRS-QRS duration, and QT-QT
interval.

The Figure 4.17 demonstrates the comparison of ECG parameters generated from GAN
and diffusion models for the same given ground truth. The result shows that GAN based
models are comparatively closer and consistent to real ground truth while diffusion-based
models are quite varied (high-67.67 and low-53.91). In terms of other parameters, GAN is
also comparatively better such as PR interval.

The result of the second scenario (HR>95) is presented in Figure 4.18. As usual, conditional
GAN result is very impressive and closer to the given ground truth as compared to conditional
diffusion model. The diffusion model has also generated unrealistic parameters as well, for
example, index 6668 which has HR of 97.35 but the diffusion model generates 40.39 which is
completely out of normal heart rate. However, interestingly, we observe that diffusion model
is at learning and mapping PR and QRS duration as compared to GAN.
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Figure 4.17: ECG ground truth with lower heart rate (>60). Left: Real ground truth passed in
GAN and Diffusion model, Middle: Features generated by GAN model for given ground truth,
Right: Features generated by diffusion model for given ground truth.

Figure 4.18: ECG ground truth with higher heart rate (>95). Left: ground truth used as
condition, Middle: Features generated by GAN model for given ground truth, Right: Features
generated by diffusion model for the same given ground truth.
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Figure 4.19: ECG ground truth with medium heart rate (66-72).Left: Real ground truth passed
in GAN and Diffusion model, Middle: Features generated by GAN model for given ground
truth, Right: Features generated by diffusion model for given ground truth.

The third scenario, i.e., ground truth with the most common heart rate (66-72) result
is presented in Figure 4.19. Compared to the previous two results, we can observe that
conditional GAN model is more accurate in mapping the ground truth in the generated ECG.
For example, heart rates at the index 762, 841, 2474, etc. are almost the same in generated ECG
as well. On the other hand, conditional diffusion model has relatively higher loss on heart
rate. However, interestingly, this time conditional diffusion model also has excellent results in
mapping QT interval and QRS duration.

In overall, there are some interesting findings that we can take away from this one-to-one
analysis. First, though there is minor difference in the real and generated ground truth, the
model can map the condition into output. The generated ground truth distribution is nearby
but not completely out of distribution. Second, GAN model gives an impressive result for
majority sample groups (66-72) and vice versa for minority sample group (<60 and >95). This
is an expected and common issue of GAN model. Third, the diffusion model is excellent in
mapping QT and QRS duration, but sometimes it generates a completely unrealistic ECG, for
example, heart rate of 40.

4.11 Expert Review

We have asked doctors to look at the samples generated by different models and provide
feedback on the model result. From the eyes of experts, which model result looks good, what
kind of information is captured in general, and what kind of limitation exists in the generated
fake samples are interesting to present. For this experiment, we randomly generate 100 ECG
plots from each model and provide it to doctor/experts to check one by one and provide their
feedback. Here is the feedback provided by the doctors.

Overall impression: Most ECGs look like real ECGs at first glance. In most cases, it is quite
difficult to distinguish whether the ECGs are real or fake. From the observation of the doctors,
they feel that almost 80% of the ECGs look real. However, there are some variations between
the models.

Poor model: According to experts, the poor models are diffusion-based models both
conditional and non-conditional. Similarly, from the GAN side, ECG generated by the model
AdvP2P-SD (i.e., the model without bidirectional TCN (Single Direction)) is comparatively
weak. Diffusion-based models often have problems with timing. Either a sudden pause or a
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new beat too fast without change in morphology. The experts mention that unexpected pauses
often are a major issue in diffusion models. Similarly, lower amplitude is another noticeable
problem in general. Of 100 ECGs, one of the ECGs was black, which indicates that the model
completely fails to generate ECGs. On the other hand, AdvP2P-SD GAN model often generates
ECGs with strange/weird P-waves and T-wave.

Good model: On the other hand, experts found that AdvP2P-PosEmb and C-AdvP2P-NtF-
AutoEmb models from GAN are comparatively and consistently good at generating fake ECG
signals. Out of 100 samples, in 2/3 samples experts observe the issue of weird P-wave and
T-wave, which is the most common issue in most of the other models.

4.12 Summary

In this section, all proposed models in the methodology chapter 3 are trained on two different
datasets. After the completion of model training, data is generated from different checkpoints.
Based on similarity scores and classifier metrics, the best model checkpoint is identified and
used for further analysis. The generated data are evaluated using different methods defined at
section 3.6 of methodology.

The experimental results and analysis presented in this section are summarized in
the following paragraphs. Out of two generative models, under both training settings
(conditional/unconditional), generative adversarial networks (GAN) models are clear winners
in every evaluation method. Similarly, out of different variants of GANs, proposed Bi-
TCN based (AdvP2P) model is better than the normal TCN based model (AdvP2P-SD). The
experimental result shows that the embedding layer that we added on top of the proposed
Bi-TCN model is even better. All these experimental results answered the first objective of
research, i.e., out of two state-of-the-art models, GANs model can generate better quality of
fake ECGs signal in unconditional model.

Similarly, the experimental results of the conditional models demonstrate that diffusion-
based models are improved compared to nonconditional models based on the statistic of
similarity scores and classification metrics. However, the diffusion model is still not better than
GANs model. On the other hand, adding conditional information to the GAN models does
not contribute to improving the FID and classification metrics. This is reasonable. However,
the main objective is to confirm whether the models are generating similar ECGs as inputted
in the conditional information or not. We verified this by one-to-one analysis of input ECG
parameters and fake ECGs parameters. The analysis demonstrated that models are generating
ECGs similar to the given conditional information. Out of two generative models, as usual,
the GANs model is better and more consistent in generating conditional ECGs. However, we
observed that not all features are perfectly mapped in the generated ECGs. This is maybe due
to many parameters passed together. We will discuss more about this in the next chapter of
discussion and future work. From this analysis, we can confirm that the main defined research
question and our second objective is achieved, i.e., the generative model can generate ECGs
signals according to the given conditional information.

Another interesting observation that we observed from the analysis of the generated data
is that there is no single standard open-source methods (similarity metrics, classification
metrics, latent space visualization, and power spectrum analysis) that can tell the quality of
the generated synthetic ECGs. However, the combination of all shows a better picture. On
the other hand, professional tools (MUSE) is the most reliable tools. But we were unable to
use it for this thesis work although we planned to use it. As an alternative, we used MUSE
compatible version of AI based model to extract ECGs parameters. The analysis of ground truth
information (ECGs parameters) extracted using AI based model was promising and useful
to verify how correctly the ECGs are generated by the proposed model based on the given
conditional information. The different evaluation methods that we used in this section were
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part of our third objective defined to achieve the main research question.
In our next chapter, we will discuss the results from a critical thinking perspective, for

example, why the diffusion models’ output is not good, etc. Similarly, we will also explain
how this work could be extended in the future to overcome the weakness/limitation of the
current work.
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Chapter 5

Discussion and Future work

We have already presented our result in chapter 4 from different perspectives. In this section,
we are providing critical analysis of our results. Here the term critical thinking refers to how
good our result is overall, what is most impressive part, what the problems in existing models,
why some models perform bad, what could be done improved etc. Similar, we will also explain
about how we can extend this work in future even in more efficient way.

5.1 Discussion

After reading the result section, different questions may be raised in your mind, for example,
why diffusion models are not efficient? This is just a representative example. We would like
to analyze the different from critical thinking perspective in this section. To make you easy to
follow, we have presented our discussion over different sub-sections.

5.1.1 Choice of Conditional Parameters

We first started our experiments with gender (male/female) information. Then, we use class
labels associated with each ECG. We have used five classes (NORM, MI, STTC, CD, HYP).
When we checked the result, we figured out that the model has generated ECG signal. But
we are not sure about whether the generated signal belong so given class/gender or not. We
could compare the distribution of generated data of different classes and how they differ. But
we could not verify in a reliable way. We discussed the result with doctors, and they gave
us feedback that instead of using those parameters which are difficult to verify, and most
importantly lower use cases, they recommend us to use ground truth related to ECG (eg. PR-
duration, QT-interval, P-peaks etc.). Those ground truths are extracted using a medical tool
called MUSE. The greatest advantage we will get from this is that we can enforce the model
to generate the ECG of desire ground truth. This is more useful from a clinical perspective
to be used in the development of AI model. The use of ECG ground truth (ECG features) as
conditional information is more prominent than use of class labels/genders. Last but not least,
as we said earlier, we can verify this statistically how correctly it has been learned.

5.1.2 Why Are Similarity and Accuracy Metric not Improved in Conditional
Models?

There might be several reasons behind the weaker/mixed result of conditional models. We
would like to mention some of them here. The most possible one is the complexity. Adding the
additional layer of condition to be learned by and combining it with Gaussian noise increases
the complexity of the model. It is possible. For example, if we provide different ground truth
for a similar distribution of random noise, then obviously it increases some level of complexity
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for the model. Another possible reason could be that the training is not good enough to map
the noise with ground truth properly. The working mechanism of GAN model is that it learns
to map the random noise to given inputs, during this process, model learns the patterns and
corrections of random noise and generates different output. If the model is not generalized
enough, it will have a direct impact on output.

However, to come to the conclusion that conditional models produce a lower quality
ECG is unfair. The quality of generated samples is always important in any kind of model.
But the question is what is the single measurement that can tell the quality of samples?
Normally, models yielding smaller FID are considered better, however, this is not fully true.
When we checked our experiment results, we noticed that samples with a smaller FID are
classified by model with higher accuracy. In our experiment results, we can see that in both
datasets, conditional diffusion models yield better FID and accuracy metrics, i.e., based on
FID and accuracy metric, the conditional models are winners. In the case of GAN, accuracy
of conditional models is higher in both datasets; however, FID scores are mixed. In private
dataset, conditional models have smaller FID scores while in the public dataset it is oppositive.
This indicates mixed results.

Similarly, on top of quality, the major intention of using the conditional model is to generate
the sample of desired choice, that is, enforce the model to generate ECG of given ground
truth. To verify whether the model can generate associated ECGs for a given ground truth, we
performed MUSE feature analysis. The analysis shows that both GAN and diffusion models
are able to generate ECG whose ground truth are similar to input ground truth. This provides
the flexibility to users to generate ECGs of their requirements.

5.1.3 Design of Discriminator Architecture

We tried different approaches to pass the conditional information to the discriminator. The
first approach we tried was similar to the generator architecture, that is, passing the ground
truth information in each block. This did not work. Then, we tried to pass the ground truth as
combined with input data as additional channels. To be added as a channel, it needs to have
5000 points. Therefore, we let the model learn. Unexpectedly, both methods did not work on
GAN models. The possible reason could be complexity. This is the perfect example to show
how adding one extra parameter completely collapses the GAN model. However, a similar
approach works for diffusion models. The training loss of discriminator is presented in Figure
5.1 which shows how the models collapse. Then, we use a simple approach, i.e., pass the same
information on the input as one additional channel by repeating ground truth. This method
simply works.

Figure 5.1: Discriminator failer when passing ground truth as learnable parameter. (left):
passing ground truth at every block of discriminator, (right)-passing ground truth without
normalization.

Similarly, we have tried different architecture of discriminators. The first architecture that
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we tried was a fully convolution-based discriminator. This kind of discriminator was used
in different research works (e.h. DCGAN [73], StyleGAN [45]) related to image generation.
Similarly, we have also tried the Patchgan style of discriminator which is used in image
generation by Pix2PixGAN [115]. When we analyze the graphs generated at the validation
step during training, we observe noticeable mistakes in generation, for example, issues in
generating last part of data, r-peaks are generated just after the r-peaks with varied heights.
Therefore, we decided to use similar architecture as used in pulse2pulse.

5.1.4 Why IS Score Is Lower in Private Dataset?

The information score is one of the good measures to check the quality and diversity of
generated and fake samples. In the case of private datasets, compared to open source datasets,
the value of IS is relatively small. This is the interesting information to be discussed. As we
said earlier, it is calculated based on two things, i.e., quality, which is checked by lower entropy
score (if each distribution belongs to one of the class labels) and diversity (the distribution of
class labels, i.e., different variant). The quality somehow is measured by similarity (FID) score,
if the output belongs to one of the classes, i.e., the output looks the same as the input, which
results in small FID score. However, the only thing that is not verified is diversity. In this
scenario, we could guess that the real data that we have used for training do not have many
different patterns. When we discussed this finding with experts, they also verified that the
open dataset (PTB-XL) also has different kinds of unusual patterns. In the ECG domain, those
unusual patterns are called horse and zebra. One of the representing samples of the real ECG
is presented in the figure below.

Figure 5.2: Representative sample of unusual pattern exits in open source dataset.

5.1.5 Precision Score vs Recall Score

If you observe the result of precision and recall score presented in table 4.4 and 4.5, we can
see the different patterns in precision and recall score. More specifically, in the case of open
source dataset (PTB-XL), ML classifier models produced relatively slower recall scores in both
training settings except 12 for an exceptional result in normal training (model:AdvP2P-SD,
PS:0.93, RS:0.96) and conditional training (model:AdvP2P-AutoEmb, PS:086, RS:0.87).

Having a lower recall score indicates that the model mostly misclassified positive samples
(i.e., real ECG) as negative samples (i.e., fake ECG). There could be two possible reasons behind
this result. The first one is that generated fake samples are good quality so that the model gets
confused in classification. But the important thing to note is that if the recall score is lower
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because of fake quality, then the precision score also needs to be lower, that is, fake also needs
to classify as real. But it seems that is not the condition, because the precision score is very high
in some of the models (AdvP2P-PosEmb , AdvP2P-NtF-AutoEmb in the normal training setting).
This leads to the second possible reason that the model cannot identify all real samples properly
so that the ECG signals of unusual patterns (horse and zebra) are classified as fake.

In the case of precision and recall scores, having higher differences between these two scores
is not a good sign. The ideal condition in our case is to get both scores relatively small. If
you observe the conditional model’s results on PTB-XL dataset, the precision and recall score
are quite similar, which indicates that adding conditional information helps to balance the
generation of different patterns of data.

On the other hand, the precision score is relatively smaller in private dataset which is just
an oppositive condition as compared to open-source dataset. This indicates that most of the
fakes are classified as reals, but not the same proportion of reals are classified as fakes. The
possible reason is that the model has generated some data patterns perfectly, but not all of the
different patterns that exist in the real dataset. This is exactly the case of the diversity issue
in the GAN model. This argument is also supported by latent space/feature visualization as
well. However, the interesting thing is that, compared to the open-source dataset, the model
produces a relatively smaller precision and recall scores in the private dataset, indicating that
a high proportion of real and fake are misclassified in the private dataset.

5.1.6 Can We Use Generated Synthetic ECG for Training AI Models?

After training the model, we generated the 10k samples from each model over different
checkpoints. After randomly checking the 100 samples from 10k fake samples from each model,
we figure out that even the best model has some problems (noisily signals) in generating the
realistic ECG signals. This is exactly the reason we are not getting better results in the ML
classifier. Therefore, instead of directly using the generated fake samples for training AI-
models, we can extract the ground truth from fake samples and check if the ground truth falls
in between the range of real ground truth. If the extracted ground truth looks normal, we can
use those samples for training AI-models. This will help to mitigate the possible chances of
misguiding the AI-models.

5.1.7 Diffusion vs GAN: Which One To Choose?

Although we got a relatively lower overall quality of the ECG in both training settings, we
are very optimistic with the diffusion models. There are several reasons behind this, training
the diffusion models are very easy as compared to GAN model. This can be in terms of time
and complexity. We had an experience where GAN models take more than 10 days (about
1 and a half weeks) to complete the training, however, diffusion-based models were trained
in 2/3 days. Similarly, the biggest issue we faced is the complexity or uncertainty issue in
GAN. A very small change in model results in model collapse. For example, while training the
conditional discriminator, the model collapsed. We tried different runs to be sure that it was
not because of randomness, however, later we normalized the conditional information and it
started to work. Similarly, when passing the conditional information to the discriminator, we
first passed as a learning layer, i.e., take conditional information as input (5/7 parameters) and
converted into 5000 parameters, and finally concatenate as one channel. This seems to be a
more advance way than repeating the same information and making it 5000 points. These are
just representative examples. Based on the result from both models, GAN models are clear
winners, and we should use the data generated from GAN models for further use. However,
there is an equal opportunity to further improve the GAN and research in the direction of the
diffusion model for time series. By considering the simplicity of training, diversity in output,
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and not heavily dependent on large samples, researching in the direction of diffusion might be
a good idea.

But you may point out that the results from diffusion models are of lower quality than
GAN, in such a case why focus on diffusion-based models. We think this is very important
to clarify. We have analyzed the possible reasons behind the result of diffusion results in the
below section.

5.1.8 Why Diffusion Based Models Are Weak?

After running several experiments and checking different metrics, we got the impression
that the results of GAN models are more promising than diffusion-based models. Based on
this information, if we conclude that the diffusion model is not good, this will be unfair.
Therefore, we would like to discuss why diffusion-based models are not as good as we were
expecting. The first and most important one is the architecture; we have adopted the exact
same architecture as used in the original paper, which was proposed for the image dataset.
Maybe changes to the model architecture are necessary. Another important thing is that we
have used default model parameters like scheduler (cosine), time steps of 500, and uniform
noise of -1 to 1. These parameters could have a higher impact on the result. Let us share more
details, for example, in the original paper Gaussian noise is used as input during generation.
In the case of ECG, it did not work, so we changed to a uniform distribution between -1 and 1.
It is essential to verify what the distribution of the ECG signal will be after adding noise so that
we can peak the similar distribution of noise as well when generating new samples. We were
unable to manage all these during the thesis work, but it could be interesting to check this in
the future. We also tested time steps 500, 1000, and 2000. From the analysis, we found out that
500 is good. But we did not check less than 500, maybe 250/300 is enough in the case of ECG.
The effect of these parameters should be checked in future work.

Another interesting and most important observation is that in the case of image generation,
generating images of varied size at varied locations is quite OK as far as image is clear.
However, these properties may not work in the case of ECG because ECG has a fixed pattern.
Generating from random noise may not lead to generating ECGs of perfect pattern. Similarly,
diffusion models do not consider conditional information while optimizing the loss, which
leads to the situation that conditional information may not be learned by the diffusion model
perfectly as in GAN.

5.1.9 What Could Be The Issue With Proposed Architecture?

There could be two main drawbacks to the proposed GAN architecture. The first is longer
training time. Our proposed generator has a U-NET based architecture, which consists of an
encoder part and a decoder part. Because of this, the model becomes heavy in terms of the
number of learnable model parameters and results in longer training time. Another possible
issue could be the difficulty in inference. In the current proposed architecture, the model takes 8
× 5000 random noise as input and generates an output of the same size. In such an architecture,
it is very difficult to correlate the relation of input with output. For example, if you want to see
the effect of some parameters, you can only change those parameters and re-generate fake
samples. In such a case, we might get similar ECG with some changes (smaller/bigger p-
waves, smaller/bigger QS-interval, etc.). However, it is difficult with the current architecture,
as the model has huge parameters as input.

The solution to both issues discussed above can be solved using only decoder architecture.
Here the decoder-based architecture means the generator model takes latent space (i.e., a small
number of noise - 100/256 points) as input and enlarges to the required output shape. This is
the most commonly used style in GAN. As the generation starts with a small number of noises,
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it is possible to figure out the relationship of noise with different features of the ECG so that by
changing only those points we can generate the ECG of our choice.

5.1.10 Overall Impression

In the previous chapter, we evaluated the synthetic ECGs signals generated by proposed
models in different ways. Similarly, we provide more discussion on the results in this
chapter. The results and analysis show that overall the data generated by proposed models
are promising and, most importantly, the models are generating ECGs according to the given
conditional information. Experts’ feedback of data generated by different models further
justifies that the proposed models are good at generating data for the given condition.

However, the data generated by all models are not perfect. After the careful observation of
generated fake ECGs, and feedback from experts, we are discussing some of the odd data as
well so that you get a better picture of the weakness of model as well. Figure 5.3 is one of the
example of noisy ECG with strange T-waves. Similarly, the R peak of V1 channel is completely
odd.

Figure 5.3: Example ECG of noisy signal, bad R peaks at V1 channel, strange T-waves.

Figure 5.4 is a perfect example of long pause and fast heart beats. In some places, the
heartbeats are very frequent, while in some places there is a long pause. Although the waves
are generated perfectly, heart beats pause and fast beat within small time interval is not possible
in real scenarios.

5.1.11 Challenges, Pitfalls, and Lessons Learned

There are many challenges, pitfalls, and lessons learned experience while working on this
thesis work. This is the first time I have worked in the field of generative models. I had no
experience of working with GANs. Interestingly, I had not even heard of diffusion models
before starting this master thesis. Therefore, in the start it was very challenging to make the
model work. I realize working on the generative more is much more difficult than working
with regression and classification problems. I tried out many different techniques in building
model architecture, for example, using inception-style model architecture especially when
expanding channels. It did work out. Adding one layer led to the model collapse condition. It
is often difficult to figure out what is wrong with the model. Similarly, GPU memory issue
is another common problem we face. Similarly, training time is another huge issue. The
GAN model takes around 10 days to complete training. It is often difficult to say whether
the model works or not by looking at the starting few epochs. Another important challenge is
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Figure 5.4: Example ECG of having long pause and unexpected fast heart beats.

to understand the ECG by heart. This is the first time I am working with ECG data. Therefore, I
mostly face problems in validating time. If the generated ECG is random then I can understand
that the model is not working but it is very difficult for me to validate specific waves, for
example, P-waves, QRS duration, T-wave, QT-interval, etc.

This thesis work has helped me to build a strong foundation for working on generative
models. I have learned many lessons that will be fruitful in my future career. I realized
the great role of normalization in the generative model. The better normalization technique
for input data and normalization in-between the model architecture play an important role.
Similarly, it is often difficult to figure out where are problems. Therefore, it is very important
to start with small model architecture and add layer one by one. Similarly, to mitigate the long
training times, I should think about distributed training concept (training one multiple GPU)
or designing the efficient model architecture.

5.1.12 Contribution to Research Community

This research work is one of the great efforts to mitigate the research gap in the direction of
generating realistic synthetic ECGs signals guided by the given ground truth information. This
research provides flexibility to healthcare professionals and researchers in generating fake ECG
based on their defined ECGs parameters. The data generated by the proposed model can
be used for different purposes. For example, it can be used to build an efficient method for
validating synthetic data, training AI models, testing software, sharing the data for research
purposes, and many more. However, the greatest benefit is the ability to generate data with
ground truth. The is very beneficial for building AI-based diagnosis tool. If there is lack of
particular kinds of data, we can use proposed model for generating that specific group of
data so that it will the model to become more generalized and mitigate the issue of bias and
overfitting.

5.2 Future Work

In this thesis work, we have worked with two different generative models under two
different training settings, i.e., generative models with conditional information and without
any conditional information. To compare and see the consistency of model performance on
different datasets, we have trained our models on two different datasets. Similarly, on the
evaluation sides as well, we are not limited to checking only the similarity distance. We used
different approaches to evaluate the generated samples. We have done a lot of work on this
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thesis. However, we believe that we could extend this work in the future for improvements.
We would like to present some interesting ideas to further improve the model.

5.2.1 Loss Function Modification

The first interesting and simplest idea that could help to improve the generator is modifying
the loss function. In our current training setting, we have used the Wasserstein loss as shown
in the following equations ?? and 5.2 to update the discriminator and generator.

LWGAN
D = E[D(x)]− E[D(G(z)] + λE[(| ▽ D(αx − (1 − αG(z)))| − 1)2] (5.1)

LWGAN
G = E[D(G(z)] (5.2)

We believe the generator loss could be improved by adding other loss functions in addition
to WGAN generator loss. For example, the addition of mean square error (MSE) between the
real and generated fake samples could help to improve the ECG signal at each point level
so that the loss between different waves is correctly measured and improved. This kind of
technique is used in image generation as well [102]. This is even more relevant in the case of
ECG because ECG has a standard pattern. The addition of MSE may help to correctly generate
the peaks of different waves. So, we can modify the previous generator loss as presented in eq.
5.3.

LWGAN
G = E[D(G(z)] +

D

∑
i=1

(x − G(z))2 (5.3)

5.2.2 Make Conditional Information Part of Loss Function

Similarly, if we want, the model learns the given ground truth perfectly so that it generates the
signal of the same ground truth. We may need to consider the ground truth as a part of loss
function. It is not possible that the MUSE tool is used during the training phase to calculate
the ground truth. Therefore, we can come off with a new idea using ML model for predicting
ground truth and compare it with original ground truth. This might help to generate the ECG
of required ground truth. In addition to passing the ground truth information with given input,
calculating loss on the given ground truth and ground truth of generated fake signal helps to
better generate the fake sample of the required ground truth. This idea will help address the
most common issue of strange P-wave, T-wave, unexpected pause, etc. The above generator
loss function can be modified as presented in eq. 5.4. In the equation the term gt refers to
ground truth.

LWGAN
G = E[D(G(z)] +

D

∑
i=1

(gt(x)− gt(G(z)))2 (5.4)

5.2.3 Transformers Based Architecture

In addition to the changes in the loss function, we could add a transformer block [97] to
further improve the generation of ECG signals. Transformer based architectures are widely
used in the generation of images [111], text [97, 112], time series data [40] etc. The concept of
transformer is a more advanced concept than TCN. TCN captures the relationship of each point
with different points in the past but not with every other point, while the transformer captures
the relationship of each point with every other point in the given data.
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5.2.4 Data Augmentation

During the analysis, we observed that the model is quite good at replicating the ground truth
that belongs to the majority of samples. For example, in the analysis presented at one-to-one
section of MUSE feature analysis, we saw that the models generate very close ground truth
from the input ground truth with heart rate of 66-72. In the dataset, most of the ground truth
belongs to this group. On the other hand, the minority ground truth is not properly learned. To
overcome this issue, we could try different solutions. The very easy way is to add more samples
belonging to minority cases if more data are available. Another worthy solution to be tried out
is the use of augmentation techniques only to minority samples. What kind of augmentation
works best is the topic of research; however, trying to add random noise, shifting window, etc.
are some of the common techniques in the time series domain.

5.3 Summary

In this chapter, we discuss the results from different perspectives. More especially, we analyze
the result from a critical point of view. This discussion gives a broader understating of the
model and its possible weakness. Similarly, we also share the challenges and the lesson learning
story of this thesis and how this thesis works contributes to the field of scientific computing.
On the other hand, to overcome the weakness of current work, we have also presented some
future steps in the future work section. The main finding of this thesis work is concluded in
objective wise in the next conclusion section.
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Chapter 6

Conclusion

6.1 Summary

Electrocardiograms signals are used for identifying the healthiness of a person. Decoding the
ECGs signals and predicting the healthiness of a person is challenging and demands expert
human resources. Several reports have shown that the lack of expert human resources in
the healthcare sector is one of the major issues worldwide. To assist healthcare professionals
and speed up the diagnosis process, the use of artificial intelligence has been increasing
significantly. However, artificial intelligence-based models are highly dependent on data. The
lack of data has become one of the major bottlenecks for building artificial intelligence-based
tools. The use of synthetic data is emerging as an alternative solution. In the domain of ECGs,
researchers have proposed different methods for synthesizing ECGs data. However, to the
best of our knowledge, none of these methods consider generating ECGs based on conditional
information such as desired heart rate, QRS duration, etc. Some researchers consider class
labels as conditional information [2, 104]. However, controlling ECG generation based on ECG
parameters is more advanced and more useful than class labels because after all class labels
differences will be visible in ECG parameters such as heart rate. Therefore, generating synthetic
ECGs signals based on a desired ECG parameter is even more beneficial.

We carry out extensive research and propose generative models based on generative
adversarial networks and denoising diffusion models. We tested our proposed models with
and without conditional settings on two different datasets. The experimental results show that
the proposed models can generate very realistic ECGs signal which is even difficult for human
experts to distinguish between real and fake. Similarly, a machine learning model trained on
real and fake data shows that the model has a 21% error in distinguishing between real and
fake, where the precision score of 0.69 and the recall score of 0.78 further prove that both
real and fake are misclassified. Similarly, the analysis of a given input ECGs parameters as
conditional input and ECGs parameters extracted from the associated synthetic ECGs proved
that models are generating ECGs according to the given conditions. We have also validated
the quality of data using FID distance, power spectrum analysis, expert review, and laten space
visualization. All these evaluation methods confirmed that the quality of synthetic ECGs is
similar to that of real ECGs. Interesting, out of the two generative models, GANs based models
are more accurate in generating conditional information. Our proposed model can be used
for generating data according to desired conditions and those data can be used for training AI
models. Last but not least, these augmented data can be shared with other researchers without
any concern of privacy.

The results of the proposed models are promising; however, the results can be improved
further. We have presented different ways to improve this work in the further work section 5.2.
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6.2 Revisiting the Problem Statement

The main research question what we have defined in this master thesis is "Can deep generative
models generate realistic ECG signals based on the given condition information? ". To achieve
the goal of research question, we defined three main objectives. The objective and the results
associated with that objective are explained in the following paragraphs.

Our first objective is “Research and develop state-of-the-art deep learning based generative
models (GAN and Diffusion) to generate realistic fake ECGs”. To achieve this objective, we
carried out extensive research on two state-of-the-art models called generative adversarial
networks (GAN) and denosing diffusion. We proposed a UNET based GAN model
architecture. We described out contribution related to each proposed model in the contribution
section 6.3. The experimental result shows that FID scores of ECGs signal generated by
proposed model are smaller in both datasets. Indeed, in PTB-XL dataset, the FID score of
AdvP2p mode is 4.87 which is almost half than the normal TCN model (8.11). This demonstrates
that we improved the model by adding a bidirectional concept. Similarly, we further improved
the model by using the concept of embedding and feature learning (called Noise to Feature
(NtF) converter) layer before passing it to the model architecture. In the private dataset, the ML
model yields an accuracy of 89% for the data generated by the AdvP2P model, while the data
generated by AdvP2P-AutoEmb and AdvP2P-NtF-AutoEmb models are classified with 0.75%.
This similar kind of result exists in an open dataset. This indicates that adding embedding and
NtF layers further improved the GANs model.

On the other hand, we adopted the denoising diffusion model used for image generation
and proposed the modified version of DDM for time series. The experimental result shows
that the diffusion model can generate an ECGs signal. However, the FID distance and different
classification metrics show that ECGs signal generated by diffusion has the highest FID and
accuracy scores compared to the GANs model. The power spectrum analysis shows that
diffusion model has mostly problems in generating correct R peaks, P-waves, and W-waves.
Based on the results of different evaluation methods, GANs based model architecture are better
in generating ECGs signals in a normal training setting (i.e., without any condition) compared
to the diffusion model.

Similarly, our second objective is "Research and develop a suitable method to add a
conditional parameter on proposed generative model so that model can generate ECGs of
given condition". To achieve this objective, we modified the proposed nonconditional model
and added the conditional input parameters in the model. The experimental results based
on FID and accuracy scores show that the diffusion model generates better ECG after adding
the conditional information compared to non-conditional diffusion model. However, this is
just oppositive in the case of GANs, i.e., adding conditional parameters adds complexity to
the model. Based on similarity and accuracy scores, the conditional GANs models are not
improved. On the other hand, although FID and accuracy are not improved in conditional
GAN models, the main intention is to see whether the model can generate ECGs similar to
the given condition or not. To verify this, we performed the MUSE feature analysis (ECG
parameters analysis) in section, which demonstrates that the conditional models generate fake
ECGs similar to the given conditional information. Indeed, GAN based models are better at
generating fake ECGs of given conditions. Interestingly, experts also verified that the ECGs
signal generated by conditional GAN model (AdvP2P-NtF-AutoEmb) is the best output.

Our third objective is “Research and develop different types of analysis methods for
evaluating synthetic data”. Validating synthetic data is the most challenging task. To achieve
this objective, we have used different types of evaluation methods. The similarity distance
calculated by FID and IS shown that proposed embedding based GANs model (AdvP2P-
AutoEmb, AdvP2P-NtF-AutoEmb) yields smaller scores in both conditional and non-conditional
models. We used the ml model to distinguish real and fake samples. The accuracy, precision,
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and recall scores shown that as usual embedding based GANs model yields better scores in
both conditional and non-conditional setting. These evaluation methods show us overall how
good are generated fake samples. But it cannot tell us which signals are corrected generated
and where are problems. Therefore, we used power spectrum analysis, and ECG life cycle
analysis, which shows that the proposed GANs model signals are very close to real signals in
terms of generating different waves, but ECGs generated by the diffusion model have low
R peaks and mostly problems in p and w waves. It is difficult to visually verify whether
the conditional ECGs are similar to a given condition for the layman and even for experts.
Therefore, we used an AI based model to extract ECG parameters and compared them with
the given input condition. The result shows that GANs based models are better at generating
the ECGs for a given condition. We tested the conditional results with three different scenarios.
The given ECG parameters and the ECG parameters extracted from fake samples are very close
in each case. However, the result is not perfect for every parameter, which can be improved in
future work.

All the experimental result discussed based on three different objectives confirmed that we
have achieved all objectives. Hence, different experiments results of our proposed solution
demonstrates that the main research question of this work addressed, i.e., our proposed novel
tool can be used to generate synthetic ECGs based on a given input condition.

6.3 Main Contributions

The main significant contribution of this thesis work is to research and propose state-of-the-art
conditional deep generative models for generating ECGs signals based on a given ground truth
information. To the best of our knowledge, this is a novel work which considers the ground
truth as a conditional input. This work provides the flexibility to users to generate ECGs signals
based on their desired ECGs parameters, such as heart rate. This is a more powerful technique
than using class labels, gender, age groups, etc. as conditional information. Our proposed
single work is good enough to generate ECGs belonging to other different groups, i.e., no need
to build models based on different conditions. Most importantly, using such an approach is
more reliable, and the output can be verified easily. Generating data is heavily dependent on
model types as well. To figure out what kind of model is more suitable for generating ECGs
signals, we extensively work with two state-of-the-art methods (diffusion and GANs). When
we started working on this work, there was not a single work on the conditional denosing
diffusion model in the ECG domain. We converted the diffusion base model into conditional
diffusion. However, recently [2] has used a conditional diffusion model in ECGs, but their
diffusion methods are different from the denosining approach.

Similarly, in proposed GANs models, we used the concept of bidirectional TCN which can
learn to generate the next point by considering long-term decencies with other points from
both directions. Similarly, we used the concept of two types of embedding called sinusoidal
position embedding and self-embedding learned by the model which transforms the input
noise to waves before passing it to the model architecture. The result of the experiment shows
that proposed model yields better results than the normal TCN model without any embedding.

Another significant contribution of this work is the use of different evaluation methods.
It is essential to correctly verify the data generated by the model so that it can be used
further. We show that different methods help to better understand the fake ECGs from different
perspectives. In addition to this, our contribution to the research community has already been
discussed in section 5.1.12.

The main takeaway message from this thesis work can be summarized as:

• We can use the conditional generative models to generate ECGs signals based on a desired
ECGs parameters.
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• Generative adversarial networks (GANs)-based models are better in generating ECGs
signals.

• Bidirectional TCN approach is better than normal TCN in generating ECGs signals.

• The use of embedding layers helped model in better ECG generation.

• Further research is necessary to improve this work.

80



Bibliography

[1] Edmond Adib et al. ‘Synthetic ECG Signal Generation using Probabilistic Diffusion
Models’. In: arXiv preprint arXiv:2303.02475 (2023).

[2] Juan Miguel Lopez Alcaraz and Nils Strodthoff. ‘Diffusion-based Conditional ECG
Generation with Structured State Space Models’. In: arXiv preprint arXiv:2301.08227
(2023).

[3] Santhosh Alladi. ‘Augmenting Electrocardiogram Datasets using Generative Ad-
versarial Networks’. PhD thesis. University of Minnesota, 2020.

[4] analyticsvidhya. ‘Machine Learning vs Deep Learning vs Artificial Intelligence| Know
in-depth Difference’. In: analyticsvidhya.com (2021). URL: https ://www.analyticsvidhya .
com/blog/2021/06/machine-learning-vs-artificial-intelligence-vs-deep-learning/.

[5] Karol Antczak. ‘A generative adversarial approach to ecg synthesis and denoising’. In:
arXiv preprint arXiv:2009.02700 (2020).

[6] Martin Arjovsky, Soumith Chintala and Léon Bottou. ‘Wasserstein generative ad-
versarial networks’. In: International conference on machine learning. PMLR. 2017, pp. 214–
223.

[7] Anmol Arora. ‘Conceptualising artificial intelligence as a digital healthcare innovation:
an introductory review’. In: Medical Devices (Auckland, NZ) 13 (2020), p. 223.

[8] Pragati Baheti. Supervised and Unsupervised Learning [Differences & Examples]. 2022. URL:
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning.

[9] Swati Banerjee and Madhuchhanda Mitra. ‘Application of cross wavelet transform for
ECG pattern analysis and classification’. In: IEEE transactions on instrumentation and
measurement 63.2 (2013), pp. 326–333.

[10] Dor Bank, Noam Koenigstein and Raja Giryes. ‘Autoencoders’. In: arXiv preprint
arXiv:2003.05991 (2020).

[11] David Bau et al. ‘Seeing what a gan cannot generate’. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 4502–4511.

[12] Muriel Boulakia et al. ‘Mathematical modeling of electrocardiograms: a numerical
study’. In: Annals of biomedical engineering 38.3 (2010), pp. 1071–1097.

[13] Andrew Brock, Jeff Donahue and Karen Simonyan. ‘Large scale GAN training for high
fidelity natural image synthesis’. In: arXiv preprint arXiv:1809.11096 (2018).

[14] Eoin Brophy. ‘Synthesis of dependent multichannel ECG using generative adversarial
networks’. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 2020, pp. 3229–3232.

[15] Eoin Brophy et al. ‘Generative adversarial networks in time series: A survey and
taxonomy’. In: arXiv preprint arXiv:2107.11098 (2021).

[16] Giorgia Carra et al. ‘Data-driven ICU management: Using Big Data and algorithms to
improve outcomes’. In: Journal of Critical Care 60 (2020), pp. 300–304.

81

https://www.analyticsvidhya.com/blog/2021/06/machine-learning-vs-artificial-intelligence-vs-deep-learning/
https://www.analyticsvidhya.com/blog/2021/06/machine-learning-vs-artificial-intelligence-vs-deep-learning/
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning


[17] Dingfan Chen et al. ‘Gan-leaks: A taxonomy of membership inference attacks against
generative models’. In: Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 2020, pp. 343–362.

[18] Xi Chen et al. ‘Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets’. In: Advances in neural information processing systems 29
(2016).

[19] GD Clifford and MC Villarroel. ‘Model-based determination of QT intervals’. In: 2006
Computers in Cardiology. IEEE. 2006, pp. 357–360.

[20] Thomas Davenport and Ravi Kalakota. ‘The potential for artificial intelligence in
healthcare’. In: Future healthcare journal 6.2 (2019), p. 94.

[21] J De Bie et al. ‘Performance of seven ECG interpretation programs in identifying
arrhythmia and acute cardiovascular syndrome’. In: Journal of Electrocardiology 58 (2020),
pp. 143–149.

[22] Anne Marie Delaney, Eoin Brophy and Tomas E Ward. ‘Synthesis of realistic ecg using
generative adversarial networks’. In: arXiv preprint arXiv:1909.09150 (2019).

[23] Peter J. Denning et al. ‘Computing as a discipline’. In: Computer 22.2 (1989), pp. 63–70.

[24] Prafulla Dhariwal and Alexander Nichol. ‘Diffusion models beat gans on image
synthesis’. In: Advances in Neural Information Processing Systems 34 (2021).

[25] Chris Donahue, Julian McAuley and Miller Puckette. ‘Adversarial audio synthesis’. In:
arXiv preprint arXiv:1802.04208 (2018).

[26] Ricard Durall et al. ‘Combating mode collapse in gan training: An empirical analysis
using hessian eigenvalues’. In: arXiv preprint arXiv:2012.09673 (2020).

[27] Andre Esteva et al. ‘Dermatologist-level classification of skin cancer with deep neural
networks’. In: nature 542.7639 (2017), pp. 115–118.

[28] David Foster. Generative deep learning: teaching machines to paint, write, compose, and play.
O’Reilly Media, 2019.

[29] Shuqing Gao et al. ‘Public perception of artificial intelligence in medical care: content
analysis of social media’. In: Journal of Medical Internet Research 22.7 (2020), e16649.

[30] Tomer Golany, Daniel Freedman and Kira Radinsky. ‘ECG ODE-GAN: Learning Ordin-
ary Differential Equations of ECG Dynamics via Generative Adversarial Learning’. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 1. 2021, pp. 134–141.

[31] Tomer Golany and Kira Radinsky. ‘Pgans: Personalized generative adversarial networks
for ecg synthesis to improve patient-specific deep ecg classification’. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 557–564.

[32] Tomer Golany et al. ‘Improving ECG classification using generative adversarial
networks’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 08. 2020,
pp. 13280–13285.

[33] Ian Goodfellow et al. ‘Generative adversarial nets’. In: Advances in neural information
processing systems 27 (2014).

[34] Google. ‘GAN Training’. In: https://developers.google.com/ (2022). URL: https://developers.
google.com/machine-learning/gan/training.

[35] Shinichi Goto and Shinya Goto. ‘Application of Neural Networks to 12-Lead Electro-
cardiography—Current Status and Future Directions—’. In: Circulation Reports (2019),
CR–19.

[36] Ishaan Gulrajani et al. ‘Improved training of wasserstein gans’. In: Advances in neural
information processing systems 30 (2017).

82

https://developers.google.com/machine-learning/gan/training
https://developers.google.com/machine-learning/gan/training


[37] Kazi Nazmul Haque et al. ‘Guided generative adversarial neural network for represent-
ation learning and high fidelity audio generation using fewer labelled audio data’. In:
arXiv preprint arXiv:2003.02836 (2020).

[38] Steven A Hicks et al. ‘Explaining deep neural networks for knowledge discovery in
electrocardiogram analysis’. In: Scientific reports 11.1 (2021), p. 10949.

[39] Jonathan Ho, Ajay Jain and Pieter Abbeel. ‘Denoising diffusion probabilistic models’.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 6840–6851.

[40] Shenda Hong et al. ‘MINA: multilevel knowledge-guided attention for modeling
electrocardiography signals’. In: arXiv preprint arXiv:1905.11333 (2019).

[41] Khondker Fariha Hossain et al. ‘ECG-Adv-GAN: Detecting ECG Adversarial Examples
with Conditional Generative Adversarial Networks’. In: 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE. 2021, pp. 50–56.

[42] Huaibo Huang et al. ‘Introvae: Introspective variational autoencoders for photographic
image synthesis’. In: Advances in neural information processing systems 31 (2018).

[43] Phillip Isola et al. ‘Image-to-image translation with conditional adversarial networks’.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 1125–1134.

[44] Brian Kalis, Matt Collier and Richard Fu. ‘10 Promising AI Applications in Health Care’.
In: hbr.org (2018). URL: https://hbr.org/2018/05/10-promising-ai-applications- in-health-
care.

[45] Tero Karras et al. ‘Analyzing and Improving the Image Quality of StyleGAN’. In: Proc.
CVPR. 2020.

[46] Tero Karras et al. ‘Progressive growing of gans for improved quality, stability, and
variation’. In: arXiv preprint arXiv:1710.10196 (2017).

[47] Wei-Yin Ko et al. ‘Detection of hypertrophic cardiomyopathy using a convolutional
neural network-enabled electrocardiogram’. In: Journal of the American College of
Cardiology 75.7 (2020), pp. 722–733.

[48] VV Kuznetsov, VA Moskalenko and N Yu Zolotykh. ‘Electrocardiogram generation and
feature extraction using a variational autoencoder’. In: arXiv preprint arXiv:2002.00254
(2020).

[49] VV Kuznetsov et al. ‘Interpretable Feature Generation in ECG Using a Variational
Autoencoder’. In: Frontiers in genetics 12 (2021).

[50] Joon-Myoung Kwon et al. ‘Comparing the performance of artificial intelligence
and conventional diagnosis criteria for detecting left ventricular hypertrophy using
electrocardiography’. In: EP Europace 22.3 (2020), pp. 412–419.

[51] Lumen Learning. Physiology of the Heart. 2022. URL: https://courses.lumenlearning.com/
boundless-ap/chapter/physiology-of-the-heart/.

[52] N Lebanon and N Hanover. ‘How many deaths are due to medical error? Getting the
number right’. In: Eff Clin Pract 6 (2000), pp. 277–283.

[53] Christian Ledig et al. ‘Photo-realistic single image super-resolution using a generative
adversarial network’. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 4681–4690.

[54] Rui Li et al. ‘Linear attention mechanism: An efficient attention for semantic segmenta-
tion’. In: arXiv preprint arXiv:2007.14902 (2020).

[55] Xiaomin Li et al. ‘TTS-GAN: A Transformer-based Time-Series Generative Adversarial
Network’. In: arXiv preprint arXiv:2202.02691 (2022).

83

https://hbr.org/2018/05/10-promising-ai-applications-in-health-care
https://hbr.org/2018/05/10-promising-ai-applications-in-health-care
https://courses.lumenlearning.com/boundless-ap/chapter/physiology-of-the-heart/
https://courses.lumenlearning.com/boundless-ap/chapter/physiology-of-the-heart/


[56] Kevin J Liang et al. ‘Generative adversarial network training is a continual learning
problem’. In: arXiv preprint arXiv:1811.11083 (2018).

[57] Steven Y Lin, Megan R Mahoney and Christine A Sinsky. ‘Ten ways artificial intelligence
will transform primary care’. In: Journal of general internal medicine 34.8 (2019), pp. 1626–
1630.

[58] Jenny X Liu et al. ‘Global health workforce labor market projections for 2030’. In: Human
resources for health 15.1 (2017), pp. 1–12.

[59] Kanglin Liu and Guoping Qiu. ‘Lipschitz constrained GANs via boundedness and
continuity’. In: Neural Computing and Applications 32.24 (2020), pp. 18271–18283.

[60] Anega Maheshwari, Priyanka Mitra and Bhavna Sharma. ‘Autoencoder: Issues, Chal-
lenges and Future Prospect’. In: Recent Innovations in Mechanical Engineering. Springer,
2022, pp. 257–266.

[61] Manitoba. ‘Shortage of cardiac testing staff puts patients at risk, Manitoba union says’.
In: CBC News (2022). URL: https://www.cbc.ca/news/canada/manitoba/shortage-cardiac-
testing-staff-1.6457979.

[62] John McCarthy et al. ‘Artificial intelligence (AI) coined at dartmouth’. In: Retrieved
October 28 (1956), p. 2021.

[63] Scott Mayer McKinney et al. ‘International evaluation of an AI system for breast cancer
screening’. In: Nature 577.7788 (2020), pp. 89–94.

[64] Lars Mescheder, Andreas Geiger and Sebastian Nowozin. ‘Which training methods for
GANs do actually converge?’ In: International conference on machine learning. PMLR. 2018,
pp. 3481–3490.

[65] Bertalan Meskó, Gergely Hetényi and Zsuzsanna Győrffy. ‘Will artificial intelligence
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