
UNIVERSITY OF OSLO

Department of Informatics

Migration of Objects

in a Middleware for

Distributed

Real-time

Interactive

Applications

Master Thesis

Paul B. Beskow

Contents

Preface vi

Acknowledgments vii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contribution . 5

1.3 Outline . 6

2 Background 8

2.1 Partitioning Schemes . 8

2.2 Middleware . 10

2.2.1 Background . 10

2.2.2 Components . 12

2.2.3 Name Service . 14

2.2.4 Remote Method Invocation . 17

2.2.5 Interface Definition Language . 19

2.2.6 Migration . 20

2.2.7 Serialization and Deserialization 20

2.3 Common Object Request Broker Architecture 21

2.4 Java Remote Method Invocation . 23

2.5 Summary . 25

3 Design 26

3.1 Characteristics and Requirements . 26

i

3.2 Migration . 28

3.3 Name Service . 30

3.3.1 Architecture . 31

3.3.2 Interoperation with Migration . 33

3.3.3 Reference Maintenance . 34

3.4 Remote Method Invocation . 36

3.5 Partitioning and Grouping . 39

3.6 Serialization . 40

3.7 Code Generation . 41

3.8 Summary . 41

4 Implementation 43

4.1 Programming Language . 44

4.2 Primary Interaction . 44

4.3 Serialization . 46

4.4 Object model . 47

4.4.1 Migration . 48

4.4.2 Remote Method Invocation . 51

4.5 Distributed Pointer . 53

4.6 Example Application . 54

4.7 Code generation . 61

4.8 Summary . 63

5 Discussion 65

5.1 Migration . 65

5.1.1 Latency Reduction . 66

5.1.2 Redeployment . 68

5.1.3 Communication . 68

5.2 Partial Failures . 69

5.3 Implications . 71

5.4 Summary . 72

ii

6 Conclusion 73

6.1 Summary and Contribution . 73

6.2 Future Work . 74

A Result from Code Generation Example 76

A.1 example.h . 76

A.2 example.cpp . 77

A.3 rpc_example.h . 78

A.4 rpc_example.cpp . 79

A.5 xdr_example.h . 81

A.6 xdr_example.cpp . 81

A.7 example-install.txt . 81

B Source Code and Documentation 83

B.1 Content . 83

B.2 The Generator . 84

B.2.1 Installation . 84

B.2.2 Usage . 84

B.3 The Middleware . 84

B.3.1 Installation . 84

B.3.2 Usage . 85

References 86

iii

List of Figures

2.1 Middleware . 11

2.2 Centralized Name Service . 14

2.3 Distributed Name Service . 15

2.4 Hybrid Name Service . 17

2.5 Remote Method Invocation . 18

2.6 The Main Components of CORBA . 22

3.1 Middleware Concept . 27

3.2 Mobile IP . 33

3.3 Format of the Home Address and Care-of Address 34

3.4 Design of the Middleware . 36

3.5 Indirection Mechanism . 37

4.1 Middleware Event Loop . 45

4.2 Object Model Inheritance Diagram . 48

4.3 Object Model Migration . 49

4.4 Implementation of Remote Method Invocation 52

4.5 Distributed Pointer . 54

4.6 Example Application: Output from primary server, secondary server

connecting . 56

4.7 Example Application: Output from secondary server, connecting to primary

server . 56

4.8 Example Application: Output from primary client, connecting to primary

server . 58

4.9 Example Application: Output from primary client, sending commands . 59

iv

4.10 Example Application: Output from primary server, received commands 59

4.11 Example Application: Output from primary client, channel actions . . . 59

4.12 Example Application: Output from secondary client, channel actions . . 60

4.13 Example Application: Output from primary server, channel actions . . . 60

4.14 Example Application: Output from primary server, migrating channel . 61

4.15 Example Application: Output from secondary server, migrating channel 61

4.16 Example Application: Output from primary client, migrating channel . . 62

4.17 Example Application: Output from secondary client, migrating channel 62

4.18 Code Generation Header Files . 63

4.19 Code Generation Output . 64

v

Preface

Object oriented middleware provides an application with the possibility of distributing

objects to multiple nodes in a distributed system. In this thesis, we have developed a

middleware that, in addition to distributing objects, makes it possible to migrate them.

As such, it becomes possible to dynamically relocate objects based on the requirements

of the application. We use a distributed name service to maintain references to objects,

which means that any given object is managed by the node it is currently located at.

This middleware was derived from the requirements and characteristics displayed by

interactive real-time applications, i.e, applications that are time dependent and event

based. To demonstrate the usability of the middleware we have implemented a test

application, in form of a chat system derived from a massively multi-player online

game (MMOG).

vi

Acknowledgments

I would like to express my gratitude to my supervisors Pål Halvorsen and Carsten Gri-

wodz. Without their expertise, understanding and patience, the process of completing

this thesis would not have been as educational and productive.

To the guys at the lab and my friends, thank you for great conversation, good advice

and plenty of laughs.

Finally, I would like to thank my family for the support they have provided me with

through my entire life.

vii

Chapter 1

Introduction

Middleware is an intermediate layer of software which provides convenient facilities

for the development of distributed applications. It has commonly been attempted, by

the middleware, to provide a unified view of distributed computing. It has, however,

proved necessary to provide specialized middleware depending on the area of use.

This is particularly true for interactive applications, which are applications that allow

users to interact in real-time. It has been shown that the user experience in interactive

applications is highly dependent on the responsiveness of the system [1,2]. This means

that a high delay in receiving transmissions can have a profusely negative effect on the

performance of the program. As a result, there is an ongoing effort to negate the effects

that communication delays induce. Thus, the middleware for interactive applications

must focus on providing a high level of responsiveness.

1.1 Background and Motivation

In this thesis, we will isolate a subset of functionality common to interactive real-time

applications. This we will accomplish by analyzing the requirements and character-

istics exhibited by these applications. We will solidify our efforts by using massively

multi-player online games (MMOGs) as an example, and accordingly investigate how

we can design and implement a middleware suitable for use with these applications.

1

Massively multi-player online games (MMOGs) are of particular interest, because

they are a genre of interactive applications that have seen considerable growth during

the last decade. These applications have become increasingly popular among con-

sumers, and according to the Entertainment Software Association [3], the number of

gamers who play online games has increased from 31 percent in 2002 to 44 percent in

2006. Correspondingly, the number of subscribers to MMOGs has steadily increased

since 1997, exceeding 13 million in 2006 [4]. Though MMOGs were first popularized

by the entertainment industry, they are now finding use in other areas, such as edu-

cation, training and business [5, 6]. MMOGs are virtual environments, which support

thousands of concurrent users. The users interact with the virtual environment and

other users through an avatar, and communicate through text, audio or video. The

popularity of MMOGs can largely be contributed to their persistent, continuous and

interactive nature. Incidentally, the success due to interactivity also raises the most

challenging system requirement, i.e, low latency for all users.

MMOGs are designed to support thousands of concurrent users, and the real-time

interaction requires the users to have a consistent view of the world. This means that

the events of the game need to be processed and distributed as fast as possible. With

a large number of users in the virtual environment, the number of events generated

can easily reach immense numbers. This will cause the response time of the server to

increase rapidly. The result is a loss or complete deterioration in the quality of service.

To support these virtual environments, with such considerable numbers of interacting

entities, there is a need for an efficient architecture, which is able to handle the load

generated. As a result, MMOGs commonly deploy an exclusive instance of the virtual

environment on a single, centralized, distributed system, such as a cluster or grid. In

order to ensure an even distribution of the load, it is common to divide the game world

into logical regions. These logical regions can in turn be distributed to various nodes in

the system. This partitioning of the virtual environment is possible, because MMOGs

by nature are decomposable systems. As in the real world, a user only needs updates

for events occurring in the vicinity of him or her. The load is minimized as a result of

reducing the number of entities that updates need to be processed for and delivered to,

2

and makes it possible to distribute the users among the nodes composing the system.

For the purpose of this thesis, and the applications we target, we will focus on ob-

ject oriented middleware. As such, an object should be understood as an instance of a

class. An instance has a corresponding state; and a set of methods that can be used to

alter or query this state. In order to implement support for distributed objects, there

exists a number of middleware solutions that can aid in the development process. The

benefit of using one such implementation depends on the type of application it was

initially intended to be used with. It would seem that most existing models are in-

tended for use with data driven applications, which have different requirements than

MMOGs and their class of applications. For a data driven application, consider a scen-

ario where a user submits a form in a web application, such as posting a message in a

forum. The change in state, which occurs when receiving the new post, does not affect

other users in such a way that they actively need to be made aware of the change in

state. It is sufficient for the application to record the change, and let this be reflected in

subsequent queries.

With MMOGs, the interactive nature means that users are now directly affected by

a change of state. Consider a scenario where a user is walking across a bridge in the

virtual environment, if this bridge is destroyed by a second user, this information must

be propagated to the first user. If not, they will have an inconsistent view of the virtual

environment. It is necessary for the users to be made aware of any changes to the

environment, so they can react to these events accordingly. In the case of the bridge,

the first user should fall into the river, which runs under the bridge, instead of safely

crossing over to the other side.

It is possible to support the type of communication required by interactive applica-

tions using existing middleware, but there is a clear tendency towards lack of support

for functionality that is practical and desirable for MMOGs, and this class of applica-

tions in general. Primarily, there is a lack of support for facilities that help provide low

latency. The main reason for this could be that the demand for low latency exists as a

3

result of human perception. Most applications are not so dependent on fast delivery

of messages, but more concerned with the correct and timely delivery of messages. It

is important to keep in mind the strong dependency on low latency, which is present

in interactive applications, but not as integral for data driven applications. To give an

example, if a web page loads slowly it is annoying, but has less of an impact on the

user interaction. It is more important, in the data driven application, that the user is

sent a web page that has been correctly generated.

A type of functionality that is of particular interest, is migration of objects. As we

have mentioned, it is common to partition the virtual environment into regions and

have users distributed to nodes in the system according to the region they are located

in. Thus, to support the movement of users between regions, it must be possible to

transfer the state of a user from one node to another. In situations like this, it would be

particularly favorable to be able to migrate the object representing the user. Migration

in this context implies that the object’s state is packed into a representation that can be

transmitted across the network, to be rebuilt at the receiving end. Migration makes it

easier to accommodate for continuous execution, in the face of server maintenance. It

also makes it easier to perform dynamic load-balancing. Both are easily accomplished

by moving groups of objects between nodes in the system.

This functionality there is commonly little or no support for in existing middleware,

because most applications are data driven in nature, as we discussed earlier. In those

applications, the typical behavior of performing remote method invocation provides

most of the functionality required. Remote method invocation, as the name implies,

involves calling the method of an object at a remote location. There has been little need

to actively move data between nodes. Consider the web application, where the pos-

ted message is stored and retrieved from a database back-end, which any node in the

system can query to retrieve the latest information. For the web application, a distrib-

uted system means that there are multiple nodes that are able to render web pages for

users, and as such it is possible to process more requests, faster. For the MMOG, the

distribution must exist for the application to run at all, otherwise the number of events

4

to process and synchronize would easily become to great. As a result, migration forms

one of the central pillars of our design.

1.2 Contribution

We have seen that interactive real-time applications are highly dependent on low latency

in order to provide the user with an optimal experience. The goal of this thesis has been

to design and implement a middleware that is optimized to this end. Following this

goal, we have identified a number of characteristics exhibited by these applications,

which have greatly influenced our design choices.

We have identified the name service as a particularly interesting area. To minimize

the traffic on the network, we have decided to use a distributed name service, where

each node in the system is responsible for objects managed by it. This removes the

overhead of having to register each objects location with a central register, and also

performs faster than distributed hash table (DHT) based systems, which are dependent

on recursive look ups that take additional time to complete. A distributed name service

functions well in light of our grouping, where interacting objects are placed relative to

each other. This because it is unlikely that the majority of objects will be accessed from

outside the node.

Migration is also of interest, since it provides the application developer with the

ability to migrate the state of objects between nodes in the system. This allows for dy-

namic load balancing, and optimization of resources. We have identified geographical

placement of regions, or entire nodes, as a particularly interesting idea. We could, for

instance, move the application based on the time of day, to accommodate for the vary-

ing activity in any given timezone. This migration should lower the latency for the

users active during those hours, since a remote method invocation to a node closer in

physical locality removes the overhead introduced by physical distance.

We have implemented a proof of concept, which uses a distributed name service,

and has support for migration and remote method invocations. To prove the usability

5

of our middleware we have developed a small chat application.

In order to aid in the development of applications we also provide the developer

with a code generator. For our implementation we have decided to focus on a single

language, and as such, our code generator does not form an integral part of the mid-

dleware. There are, however, middleware implementations where the code generator

forms a larger part of the application, an example is the common object relational

broker architecture (CORBA), as we will see in section 2.3.

We also realize that distributed systems introduce a number of aspects which must

be taken into consideration, such as synchronization of events, partial failures, cache

handling and more. We address these topics, and offer viable solutions to solving

them, though we consider the implementation of these devices beyond the scope of

this thesis.

1.3 Outline

The focus of this thesis is on the development of a middleware that is tailored for

use with interactive applications, in particular we are targeting the requirements and

characteristics of MMOGs. In chapter 2, we will present work which is related to, or

supports, the efforts of this thesis. We will introduce middleware as a concept together

with some well known implementations, which is not an attempt at being an exhaust-

ive list, but focuses on introducing some core concepts, many of which are applicable

to our middleware also, such as the name service, interface definition language and

remote method invocation. We also shortly present the latest research into partitioning

of the virtual environment.

In chapter 3, we will thoroughly discuss what has influenced our design. In particu-

lar, we will discuss the rationale behind choosing a distributed name service and how

it integrates with migration. We also discuss the merits of automatically generating

structures that integrate with the middleware.

6

In chapter 4, we present the implemented middleware, and how the abstract idea

from the design chapter (chapter 3) has been turned into a concrete implementation.

To solidify the details of the implementation we present a test application we created,

which proves the usability of the middleware. We also discuss the implementation of

the code generator.

In chapter 5, we discuss the results of our efforts. We will review the perceived

benefits of our middleware implementation, and present some example of its use. Ad-

ditionally, we will address some issues that are raised by distributed systems in general

and that should be taken into consideration, such as the repercussions of failing nodes.

We will discuss the effects of these implications, and as far as possible, offer viable

solutions to solving them; however, the implementation of these facilities are beyond

the scope of this thesis.

Finally, in chapter 6, we summarize the results and contributions of this thesis and

present some topics for future work.

7

Chapter 2

Background

Distributed systems are composed of multiple nodes that are connected by a network.

The benefit of running an application in such an environment comes from the ability

to distribute the load. Depending on the type of application, there are a number of

ways to accomplish this load sharing. In data driven applications, such as web serv-

ers, it is possible to duplicate the data on each node, and distribute users to nodes in

the system depending on the load of each node. A focus of this thesis is interactive

real-time applications, and for this genre of applications, particularly massively multi-

player online games (MMOGs), partitioning of the virtual environment into regions is

a common way of distributing the load. To make the development process of these

distributed applications easier there exists code that provides an abstraction from the

low level details of the operating system. This software layer is commonly referred to

as middleware, and we will discuss it further in section 2.2, followed by a study of a

couple of middleware implementations related to this thesis. First, however, we will

take a closer look at partitioning schemes for MMOGs.

2.1 Partitioning Schemes

To handle the large number of concurrently interacting entities in a virtual environ-

ment, it is common practice to use a static, region based partitioning scheme. The

virtual world is thus divided into smaller, more manageable parts, where each region

is hosted on a single node in the system. Some implementations allow several regions

8

to be hosted on a node, such as Anarchy Online [7], while others are more conservat-

ive and allow only for one region per node, such as Second Life [8]. A widely accepted

problem with the static partitioning scheme is that it does not take into account the

dynamic nature of MMOGs. Even if the static partitioning is based on population

density trends, and arranged to accommodate this, it is still susceptible to imbalances

due to unforeseen events. Thus, a lot of research has been done on how to improve the

flexibility of these partitioning schemes, and consequently, algorithms for efficiently

distributing entities and regions. There is a clear trend in the research towards systems

that can support dynamic load-balancing.

Turck et al [9] have investigated the effects of dividing a game world into dynamic

micro-cells. A study with a similar background has been performed by Duong et

al [10]. Such micro-cells can be reassigned to servers in a cluster if the load on the

server they are currently residing on becomes too large. Three different load-balancing

algorithms were used, none of which factored in locality of users, and the number of

micro-cells supported per server varied. The test was done on a centralized cluster.

The conclusion was that a dynamic approach is preferable, because it will decrease the

chance for bottlenecks and lower the overall latency.

Another approach to solving the problems with static partitioning is through main-

taining consistency by limiting updates based on an area of interest. IBM has de-

veloped a middleware for distributed games called Matrix [11] that uses this approach.

It is based on the observation that MMOGs are nearly decomposable systems, and as

such, it is usually sufficient to update players with only those events that occur in

their zone of visibility. Matrix thus provides pockets of locally-consistent state. Results

show that Matrix outperforms static partitioning schemes when the workload exhibits

unpredictable and dynamic skews. Matrix makes use of region based partitioning as

an underlying foundation, but this is for the purpose of easily distributing the virtual

world across multiple servers. Matrix is also intended for a centralized cluster of serv-

ers. Another middleware, which implements this area of interest type partitioning is

the Colyseus system [12], but this system is designed for first person shooter games

9

and does not utilize the concept of regions.

In summary, the mentioned work on dynamic partitioning considers server load in

a centralized cluster. Most of the research tries to optimize the partitioning of the vir-

tual environment into regions that can dynamically accommodate hot-spots. These

regions can be user centric, in the area of interest approach, or area centric, in the

micro-cell approach. The goal is nonetheless always to minimize the amount of events

being distributed, be this through dynamically moving areas when a server becomes

overloaded, or by limiting the scope of a user. Regardless, most of these partition-

ing schemes make the assumption that the system consists of a centralized cluster of

servers, grid or similar. The studies indicate that a dynamic approach to the distribu-

tion of users and reallocation of regions will provide improved efficiency, and is to be

preferred over a static implementation.

2.2 Middleware

A distributed application runs on a system that consists of multiple nodes connected by

a network. In order to synchronize the activity between the components of the applic-

ation, they must be able to communicate. Adding such functionality to an application

adds a lot of complexity. As a result, generic code bases, known as middleware, are

developed to assist in the development process.

2.2.1 Background

In distributed computing, middleware is an intermediate layer of software between

the application and operating system (see figure 2.1). There exists middleware sup-

porting a wide range of programming paradigms, but for the purposes of this thesis

we will focus on object oriented middleware. This is because objects are highly suited

for supporting migration. We briefly mentioned migration in the introduction, and will

discuss it in detail later. Additionally, object oriented programming is widely in use,

according to TIOBE Programming Community Index [13], approximately 55 percent

10

Low Level API

High Level API

System Node System Node

Application Application

Middleware Middleware

Operating System Operating System

Network

Figure 2.1: Middleware

of programs are written in object oriented programming languages, and the number is

rising.

Though the focus of this thesis is on object oriented middleware, there exists a num-

ber of middleware implementations predating object orientation, such as Sun RPC [14]

and DCE [15]. Any in depth discussion of these is beyond the scope of this thesis,

though it is worth mentioning that a lot of the concepts remain the same, and much

of what we discuss here has naturally evolved from these. It is also worth mentioning

collaborative middleware. This is middleware that is meant to be used in highly het-

erogeneous environments, such as the Internet. The most prominent example of this is

Web services and the SOAP protocol [16]. A primary problem with SOAP is that it is

very slow. Parsing XML, which is the format used to exchange messages, puts a heavy

load on the CPU, which in turn increases latency, and of course lowers throughput;

due to the size of the format. As such, it is highly available and interoperable, but is

less efficient as a side effect of that.

There also exists a number of object oriented based middleware, which we will not

go into much detail of either, such as the Internet Communication Engine (ICE) [17].

ICE parallels the Common Object Request Broker Architecture (CORBA) [18] in its use

of concepts, and accordingly, we consider ICE as sufficiently covered by our descrip-

11

tion of CORBA in a later section of this chapter. It is also worth mentioning the Dis-

tributed Object Component Model (DCOM) [19], which was developed by Microsoft

to support the distribution of objects for the Windows platform. The initial restriction

to Windows meant DCOM never became very popular. This even when an implement-

ation of DCOM called COMsource [20], which was developed for use with UNIX, was

completed at a later point in time by the Open Group [21].

2.2.2 Components

Middleware provides the application developer with three integral services; it neutral-

izes heterogeneity, provides mechanisms for masking the distribution of objects, and

makes available a high level application programmer interface (API). In addition to

these components, it is common to implement services that may be of use in the de-

velopment process. One example would be to provide distributed synchronization of

time, for ordering events.

Inherent to distributed systems is heterogeneity. With multiple nodes in a system,

one should naturally assume that there are parts which are incompatible. At the hard-

ware level, there is a high probability that some of the nodes have different CPU archi-

tectures or memory layouts. At the software layer, there is a probability that the nodes

are running different versions of an operating system, or different operating systems

all together. As such, one must consider how these systems represent data internally,

how this data will look after the network interface has sent it onto the link, and how

the receiving computer will interpret it. To hide this heterogeneity, the middleware

provides mechanisms for serializing and deserializing the data. This typically consists

of converting the data to an agreed upon representation, which can be understood in-

dependently of the previously mentioned issues. We will discuss this process in more

detail in section 2.2.7, which deals with serialization.

Perhaps the most important function of the middleware is to provide transparent

distribution of objects, that is to say, the application should be able to interact with

remote objects as though they were local, without being intrusive. In reality, this is an

12

ideal that is hard to accomplish, since the functionality to realize this is tightly coupled

to the implementation of the object itself. Programming languages that support re-

flection and additionally have full control over the compiler or execution environment

have an advantage in this area. Reflection gives a class the ability to inspect and modify

itself during run-time, most dynamically typed languages support this, together with

some interpreted languages such as Java [22]. We will see the benefits of this when we

discuss Java remote method invocation (Java RMI) [23] in section 2.4. Still, there is a

number of programming languages that do not support reflection, since this is a relat-

ively new programming concept. Even if a language is capable of reflection, it is worth

considering if the distribution of objects should be natively supported or implemented

by third party libraries. At any rate, in most cases the middleware will compensate for

this lack by providing the developer with an interface definition language (IDL). The

IDL provides the developer with a simple way of defining an interface to an object. In

the interface, the developer can define the methods that support remote method invoc-

ation (RMI) and their corresponding arguments and return values. The IDL provides

the developer with a simple way of deciding how the application will interact with

the middleware. The IDL definitions are parsed and structures that integrate with the

middleware are compiled for RMI, migration and so forth.

In order to support RMI and migration, the middleware must implement function-

ality to intercept and redirect calls to remote objects. To redirect calls correctly we must

be able to locate objects; this functionality, for locating and calling a remote object, is

commonly referred to as a name service, and we will present and detail three models

of this in a subsequent section. The indirection functionality is highly dependent on

the programming language, and as such, we will not go into great detail about it in

this chapter, but rather in our chapter on the implementation of our middleware.

The high level API is the access point for the developer to the before mentioned

functionality, and depending on the implementation, this can be of varying complexity.

In the case of Java RMI, it is ridiculously simple, but it also provides less functionality.

With CORBA it is ridiculously advanced, but CORBA also provides a broad range of

13

functionality.

There are a lot of problems which must be addressed in the face of distributed sys-

tems. In particular, it is important to consider what happens to the objects located on

a node when that node fails. There must exist facilities that a node can fall back to

if the node managing an object is not responding. We will discuss this and more in

chapter 5. In the remainder of this chapter, we will introduce concepts that are integral

to middleware, starting with the name service.

2.2.3 Name Service

A name service exists to provide a uniform entry point for locating objects in a dis-

tributed system. In order to accomplish this, a name is mapped to an object. This link

between an object and its name is entered into the name service. Following this ana-

logy, references to objects are no longer to addresses in local memory, but to names.

This name can be used to query the name service, which will resolve the location of

the given object. Multiple schemes for implementing a service such as this exist; as a

single centralized service, distributed to each node or as a hybrid, as detailed by Znati

and Molka [24]. They are shortly summarized in the following sections.

Centralized

Name Service Node
Request

Register

Node
Request

Register

Distributed System

Access

Figure 2.2: Centralized Name Service

In figure 2.2 we can see a diagram of the interaction between the nodes and the

14

name service in a distributed system utilizing a centralized name service. As we can

see, in the centralized approach the name service is located on a single, well-known

node, all mappings from names to objects occur at this central repository, and in re-

verse, all location resolutions. The access to objects is performed by the requesting

client directly to the node that is managing the object. Examples of centralized name

services are the Andrew file system (AFS) [25] and Napster [26].

Advantages of having this service centralized is that there is no replication of the

name service functions, making it easier to perform updates, and control consistency.

Also, the objects can be governed by one naming scheme.

The shortcoming of the system is that it requires an extra level of indirection before

the named object can be accessed. Also, as the average amount of mapping inform-

ation increases, the average amount of time for processing a request increases, which

may cause the name service to become a bottleneck in the system. Additionally, the

reliability of the system depends largely on the reliability of the central node.

Distributed

Node Node

Request

Request

Distributed System

Name
Service

Name
Service

Register Register

Access

Figure 2.3: Distributed Name Service

In figure 2.3 we have illustrated the interaction in a distributed system utilizing a

15

distributed name service. As we can see, the objects are mapped to their names locally

at each individual node. The translation from name to object is thus performed at

the location where the object resides, the action of registering is thus performed by

the requesting node. Examples of distributed name services are distributed hash table

based systems, such as, Chord [27] and Tapestry [28].

A distributed name service offers improved efficiency, since no additional name ser-

vices need to be contacted to access the object. One gets enhanced reliability, because

a named object is always accessible if its manager is accessible. Thus, the failure of

a node only disables access to the namespace it managed. The effort of maintaining

data consistency is also simplified, because a remote name service does not need to be

contacted to update the attributes of a named object.

A disadvantage is that it becomes unclear how a node is initially located based only

on a given high level name. This is because accessing the named object requires the

identification of the object manager, which in turn can only be achieved by identifying

the named object.

Hybrid

In figure 2.4 we see how one possible way of combining centralized and distributed

techniques can be accomplished. As we can see, each node has a name service, such

as with the distributed approach. It also belongs to a region. Each region manages a

domain of objects, and each node in a region registers its presence with a global name

service manager. When requests for names that a node does not control are made, a

request is sent to the global name service for a resolution, this request is multi-cast

to the intended name handling group, upon which only the intended receiver in that

group sends a reply. This is how the V system [29] implements its name service. We

will discuss these aspects further in view of our design criteria in chapter 3. Another

example of a hybrid name service is the domain name system (DNS) [30].

16

Region Region

NodeNode

Distributed System

Name
Service

Name
Service

Access

Register / Request Register / Request

Global Name Service

Name Service RegistrationName Service Registration

RequestRequest

Request

Figure 2.4: Hybrid Name Service

Summary

It is difficult to place the implementation of the name services for existing middle-

ware cleanly into the distributed or centralized approaches. The reason for this is two

fold, first, the centralized approach is incapable of scaling well, due to the potentially

high number of requests and registrations that will occur. Secondly, the distributed ap-

proach requires particular handling during start-up to ensure that objects are located

correctly, which can prove cumbersome. As a result, variations between these two are

commonly utilized, as is the case with CORBA and Java RMI.

2.2.4 Remote Method Invocation

Since objects can be located on any node in a distributed system there must be a way

for these objects to interact even across the network boundaries. This functionality is

provided through remote method invocation (RMI) in object oriented middleware. It

makes it possible for a method of an object to be called independently of the location

of the caller. This type of functionality provides the application with a range of pos-

sibilities; it can be used to distribute operations that require a lot of processing (load

17

sharing), screen access to sensitive data (security), offload systems under strain (load

balancing) and more.

Redirection

Implementation

Interception
&

Indirection

Program

Object Proxy

Serialize
Parameters

Deserialize
Return value

Servant

Skeleton

Deserialize
Parameters

Serialize
Return value

Network

Name service Name service

Local Remote

Figure 2.5: Remote Method Invocation

In order to perform RMI, the middleware must intercept and redirect calls to remote

objects. Figure 2.5 illustrates how this is accomplished. The program is calling, what it

assumes to be, the local implementation of an object. We see that a proxy intercepts the

call to the object, and thus, functions as a mediator between the name service and skel-

eton at the receiving node. In this manner, the proxy behaves like a local object as far as

the program is concerned, and thus makes the RMI transparent. Instead of executing

a local invocation, it forwards the invocation in a message that can be interpreted by

the receiving node. It hides the details of the remote object reference, the serialization

of arguments, deserialization of return values and sending and receiving of messages.

The proxy consults the name service, in order to ensure that the correct object, on the

correct node, receives the invocation. The invocation is sent onto the network, and re-

ceived by the remote node. The name service resolves the request and dispatches the

18

invocation to the corresponding skeleton. The skeleton deserializes the arguments and

invokes the corresponding method in the servant. The servant is an instance of a class

that provides the body of a remote object, its behavior is symmetrical to that of the

proxy. The skeleton waits for the invocation to complete and then serializes the result,

together with any exceptions. This information is then propagated back through the

system to the caller.

It is also common to embed a version number with a remote method invocation,

this is to ensure that both the sender and receiver agree on the semantics of the called

method. Without this version number there is no reasonable way to assure this other-

wise.

2.2.5 Interface Definition Language

An interface definition language (IDL) provides the developer with a syntax for defin-

ing the interface of an object. The interface will typically be composed by determining

which methods of the object should support RMI, which version of the interface it is,

perhaps even who or what objects should have access to it. The range of options de-

pend on the complexity of the middleware, and which services are made available.

The resulting interface definition file is parsed to generate structures which will easily

integrate with the middleware.

The motivation to provide the developer with an IDL are many, where the obvious

ones are ease of integration and abstraction of low level details, which will allow the

developers to focus their efforts on the development of the application. In addition,

it makes it possible to define generic objects that the middleware can use to generate

structures for multiple programming languages with, which in turn makes it possible

to provide implementations of the distributed objects in different programming lan-

guages, depending on the requirements of the applications components.

19

2.2.6 Migration

In essence, migration involves moving objects from one node in the system to another,

and updating the name service accordingly. The advantage of this behavior is that it

allows for flexibility. It is not predetermined where objects are located, since they are

free to move around. Most classic distributed systems do not require this type of func-

tionality, it is more common to replicate objects at each node. As such, the availability

of services is more important. It is, however, perceivable that this type of functional-

ity could be of use to a number of applications, by considering the benefits of being

able to dynamically relocate objects. It will, for instance, be possible to dynamically

accommodate for high load on one node by moving the busy objects to a node that is

experiencing less traffic.

It is important to differentiate migration in view of replication. Replication is by far

the more common type of functionality to provide. The reason for this is primarily be-

cause existing distributed applications are highly data driven. In light of event based

applications, such as interactive real-time applications, it is more interesting to look at

functionality such as migration. This is primarily because the performance of the ap-

plication does not depend on the availability of data, but on the efficiency in processing

events.

For migration to function, the name service must provide mechanisms for maintain-

ing references to migrated objects. While migration is perceivably useful for a number

of applications, it is not certain that the added complexity provides enough of an ad-

vantage to warrant the use.

2.2.7 Serialization and Deserialization

Serialization consists of two sets of operations which reflect each other, serialization

and deserialization. Serialization is the process of saving the state of an object, and

deserialization is the process of reconstructing the object. When serializing, there is

no knowledge of where the objects state will be stored, where it will be restored, what

20

will restore it, or how it will be moved to its point of restoration. As we mentioned

earlier, distributed systems are intrinsically heterogeneous. As such, we must assume

the worst, in that the object will be restored on a node, which in some way is incom-

patible with the sending node. To negate the effects of heterogeneity, a common rep-

resentation for the serialized data is agreed upon. Determining which representation

to use can depend on a number of factors, such as readability, size on disk and pro-

cessing speed. It is possible to use a textual representation, such as XML. This is, as

we mentioned, used by SOAP [16]. While XML is a highly interchangeable format, it

is also slow to process and requires a lot of space, bandwidth and memory. The al-

ternative is to use a binary format, which will require less space on disk, and take less

time to process, but will most likely be less interchangeable and less readable. The ICE

middleware [17], for instance, uses binary serialization.

2.3 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) [18] is an open distrib-

uted object computing infrastructure which is standardized by the Object Management

Group (OMG) [31]. CORBA supports multiple programming languages through an in-

terface definition language (IDL). The developer defines the methods that should sup-

port remote invocation and their corresponding arguments and return values. The in-

terfaces defined by the developer are compiled, which results in proxies and skeletons

that integrate with the CORBA middleware. These structures provide the necessary

indirection mechanisms, for intercepting calls to remote objects and handling requests

from remote callers. In CORBA, proxies are developed in the client programming lan-

guage and skeletons in the server language, and as such, any CORBA object can be

implemented in a number of different programming languages. CORBA does not sup-

port the notion of classes, and accordingly, does not allow for instances of classes to be

passed as arguments or returned as results while invoking remote methods. It does,

however, support data structures of various types and arbitrary complexity. It is pos-

sible to pass CORBA objects as arguments and results, which are the remote imple-

mentations of the interfaces, in this case a remote reference is returned, and RMI can

21

be used to query the object.

The middleware component that supports RMI is called the Object Request Broker

(ORB). Many different ORBs have been implemented from the OMG specification [32],

supporting a wide variety of programming languages. The ORB’s role is to help a

client invoke a method on an object. This role involves locating the object, activating

the object if necessary and then communicating the client’s request to the object.

Client Program

Proxy

ORB Core

Servant

Skeleton

ORB Core

Object Adapter

Network

Implementation
Repository

Interface
Repository

Request

Reply

Local

Remote

Figure 2.6: The Main Components of CORBA

From figure 2.6 we can see that there are a lot of similarities between the CORBA

architecture and the RMI architecture seen in section 2.2.4.

The ORB core provides end to end communication, and additionally provides oper-

ations to convert between the internal representation of an object reference and a string

representation. It also provides operations to provide argument lists for requests using

dynamic invocation. Dynamic invocation is the process of dynamically building an

22

invocation to a remote object, based on querying the interface repository for methods

that have certain characteristics.

The object adapter bridges the gap between CORBA objects with IDL interfaces and

the programming language interfaces of the corresponding servant classes. The object

adapter creates remote object references for CORBA objects. It dispatches each RMI

via a skeleton to the appropriate servant. As with RMI, the skeleton deserializes the

arguments and serializes the return value. The proxy also has the same role as with

RMI, i.e, deserializing the result and serializing the parameters.

The implementation repository is responsible for activating registered servers on

demand and for locating servers that are currently running. The object adapter name

is used to refer to servers when registering and activating them.

The role of the interface repository is to provide information about registered IDL

interfaces to clients and servers that require it. For an interface of a given type it can

supply the names of the methods and for each method, the names and types of the

arguments and exceptions. A Dynamic invocation interface allows clients to make dy-

namic invocations on CORBA objects. The client can obtain from the interface reposit-

ory the necessary information about the methods available for a given CORBA object.

CORBA also introduces the concept of dynamic skeletons that make it possible to dy-

namically add new CORBA objects during run-time. It is worth noting that in CORBA,

once an object has retained a reference it will be associated with that reference for the

remainder of its lifetime.

2.4 Java Remote Method Invocation

Java RMI [23] extends the Java object model to provide support for distributed ob-

jects in the Java programming language. It makes it possible to invoke methods for

objects running on other Java virtual machines (JVMs). The distributed object model

is integrated with the Java programming language and could be implemented com-

pletely transparently. The language developers have however decided that, for a class

23

to support RMI it must implement the remote interface. This is most likely to minimize

overhead when generating code and to make the support for RMI in a class explicit.

It becomes apparent that working with distributed objects in Java is relatively simple,

much of this can be attributed to the single programming language model and pointer

hiding. It is possible to interact with other programming languages using Java, but in

this case, it falls back to a CORBA implementation, and one must then define an IDL

interface and so forth, which greatly complicates the process.

The semantics of invocations follow that of figure 2.5. With Java RMI any class that

implements the serializable interface can be passed as an argument or returned from

a remote invocation. When an argument or return type is an instance of a class which

implements the remote interface, a remote reference is passed as an argument, other-

wise it is passed by value. In the case of the remote reference, RMI can be invoked to

gather information about the object, but this might add a lot of extra calls.

Java is designed to allow classes to be downloaded from one virtual machine to

another. This is particularly relevant to distributed objects that communicate by means

of remote invocation. If the recipient does not already possess the class of an object

passed by value, its code is downloaded automatically.

The RMIregistry is the name service for Java RMI. An instance of RMIregistry must

run on every server computer that hosts remote objects. It maintains a table that maps

textual, URL-style names of references to remote objects hosted on that computer.

These remote references look like: //computer:port/object.

Note that there is no inherent support for migration of data. With Java, once an object

has received a reference at a name service, it will retain that name for the remainder of

its lifetime.

24

2.5 Summary

Existing implementations of middleware do not accommodate for the dynamic nature

of interactive real-time applications. We have seen that a trend in the research regard-

ing massively multi-player online games is focused on dynamically adjusting to the

load in the system by migrating regions. It is apparent that there is little or no sup-

port for migrating data in CORBA or Java RMI. Their primary concern is to provide

facilities for RMI, and discovery of interfaces for performing RMI. This can be seen in

the way references are maintained. After an object has received a reference it is hard,

if not impossible, to move this object to another location in the system. Migration be-

comes an extremely complex operation to execute. As a result of our findings we will

in chapter 3 outline the design of a middleware that we believe accommodates for the

requirements and characteristics displayed by interactive real-time applications.

25

Chapter 3

Design

The unified approach to developing middleware is no longer as applicable as it used

to be. This comes as a result of the increased number of applications with differing

requirements and characteristics. The solution has been to develop specialized mid-

dleware that is generic for a subset of applications.

3.1 Characteristics and Requirements

Interactive real-time applications have a requirement that is essential for satisfactory

performance: low latency. To guide in our development of a middleware that can

provide interactive real-time applications with this, we have isolated four components

of the middleware that we consider to be of particular importance:

1. Migration

An object in the system can be moved from node to node.

2. Remote method invocation

An object’s method can be invoked regardless of the callers location relative to

the object.

3. Distributed name service

An object in the system is managed by the node it resides on.

26

4. Partitioning and grouping

The applications namespace is partitioned so interacting objects are grouped ac-

cordingly.

N
E
T
W
O
R
K

N
E
T
W
O
R
K

NETWORK

System Node
(Location: Asia)

Delta
(Group / Partition)

Object
Object
Alpha

System Node
(Location: Europe)

Delta
(Group / Partition)

Object
Object
Alpha

 Migration

 of Delta

 Distributed System

Client
(Location: Europe)

Remote Method Invocation Remote Method Invocation

Figure 3.1: Middleware Concept

We have illustrated the relationship between these factors in figure 3.1. In short,

we can see how the global namespace has been partitioned so that interacting objects

are placed in groups corresponding to this. At some point in time, the group Delta has

been migrated from one node in the system to another and accordingly the client now

performs remote method invocations on the object at its new location. Remote method

invocations are the primary means of communication in object oriented middleware

and extend the local invocation model to function even when objects are located on

different nodes in the system. The objects, after migration, are managed by the name

service at their new location. References to the new location of the objects are main-

tained by the original node, which means these objects are still accessible even after

they have been moved. Groups of objects are distributed to multiple nodes in the

system to distribute the load evenly and accordingly migration makes it possible to

dynamically balance the load at a later point in time, if the use of resources becomes

skewed.

27

The four factors we introduced this chapter with, are derived from the following

characteristics and requirements. During our research we have noted that these are

typical traits for applications that are time dependent, event based and interactive:

1. The system must be able to handle large numbers of concurrent users.

2. A large number of objects will be created, with greatly varying life spans. In

an MMOG, for example, consider the life-time of a bullet in comparison to the

player firing the weapon.

3. There is intermittent connectivity and varying amounts of transmissions. As

such, the density of users per node, and accordingly events, may vary greatly

depending on the interaction patterns of the users.

4. To handle the load generated by so many concurrent users, it is necessary to

partition the namespace into groups.

5. Clients and servers use the same libraries. This means that code is shared and

that only data needs to be migrated. It also means that we can call any function

of a remote object directly, without having to discover which function interface

to use.

The factors we have outlined, together with the characteristics and requirements

described here, each have their impact on the design of the system. In the remainder

of this chapter we will discuss in detail the motivation for selecting the design we did,

starting with migration.

3.2 Migration

Migration is the process of moving objects from one node in the distributed system to

another. This functionality makes it possible to dynamically balance the load in the

system, and perform other activities that require moving parts of an active application,

without disrupting the flow of execution, between nodes. There are several issues that

need to be taken into consideration when migrating objects, for instance, there must

28

exist a way to save the state of the object, transmit it to another node and have that state

reconstructed. This functionality, for storing and reconstructing objects, is commonly

referred to as serialization, which we will discuss further in section 3.6. Additionally,

we need to maintain references to objects after they have migrated. We have made

provisions for this in our name service by keeping two identifiers for each object. We

will discuss the design of our name service further in section 3.3.

Migration introduces several aspects that need to be taken into consideration. After

an object has been migrated, it is likely that there are users still interacting with the

object. There are two ways of maintaining this interaction. The first is to have the mi-

grating node pass on requests for the object to the receiving node. This defies the point

of migrating objects, since all we have accomplished is to increase the traffic on the net-

work, and occupy two nodes in the system when issuing requests. Nonetheless, there

could be scenarios where this is useful. One such scenario comes to mind with regard

to MMOGs that support seamless regions. Consider the situation, where a player is

interacting in the space where two regions overlap. In this case it could be useful for

one region to manage the player and pass on messages to the overlapping region.

The second option is to have users reconnect to the receiving node, and continue

their interaction with the object directly. This second solution introduces the problem

of how connections to the node are maintained. There are are two main possibilities, to

maintain one global connection, and reconnect to nodes depending on what object we

wish to interact with, or to maintain one connection per node we are using. To aid in

our decision, we need to consider the factors that influenced our design from the begin-

ning. Primarily, we need to consider partitioning, grouping and how the requirement

for low latency comes into play. If the objects that communicate are grouped together,

and the users interact with the system on a group basis, it is most reasonable to recon-

nect based on the location of an object. If this is not the case, it is more reasonable to

maintain multiple connections.

29

In our design, we have decided to reconnect, and maintain one global connection.

The rationale for this decision is based on the fact that we assume most applications

will attempt to group objects that communicate, primarily because the middleware is

designed for this purpose.

Another consideration that must be made is in regard to what the object will do once

it has been migrated. There are two possibilities, the first is to have the object register

itself with a local service, in order for it to be included in the run-time operations of

the new node. The second option is to let the object dangle, and only be available for

remote method invocation from objects, which are aware of its existence already. This,

by all effects, is more of an application design question, then a middleware one, but

the middleware must be able to support either case.

It is also important to remember that with our middleware we assume all nodes in

the system share the same libraries, and as such, migration only involves moving the

data of an object. This means that all nodes in the system must have knowledge of a

class of objects. If the receiving node is not able to interpret the type of an object it will

dismiss the migration. This also means that it is not possible to dynamically add or

query for new classes during run-time, such as is possible in CORBA and Java RMI.

This also raises the question of compatibility. There is a possibility that a node or

user in the system ends up running an older version of the libraries. In this case, the

middleware should embed each migrating object with the version number of the class.

This can become an issue because the serialized object is a flat representation of the

objects data, and as such, there is no inherent way of determining, based only on the

objects data, if the object carries the same semantic meaning any longer.

3.3 Name Service

When objects are distributed across multiple nodes in a system accessing objects that

are not in local memory require special handling. Primarily, it is necessary to locate the

30

node on which a particular object is currently residing so that the call can be redirected

correctly. This functionality is provided by the name service that will map an identifier

to an object together with information about its location. References to objects in the

system are to these identifiers instead of addresses in local memory. The approaches

to implementing a name service are centralized, distributed or hybrid.

3.3.1 Architecture

Znati and Molka [24] analyzed three approaches to implementing a name service; in

form of centralized, distributed and hybrid versions. Prior to contacting the target ob-

ject itself, the centralized version contacts a name server to obtain the objects location

in the network. As such, the centralized naming scheme adds an extra level of indir-

ection to the name resolution process. The distributed paradigm removes this level

of indirection by placing the name of the object with the object itself. The hybrid ap-

proach is based on the design principle of keeping names together with the objects

they are bound to on the local level, but resorts to multi-casting when resolving names

at a regional level. This study indicates that the choice of model for a name service

will influence the performance of the service and the throughput of the network. The

results showed that the centralized model could achieve acceptable performance only

as long as the ratio of remote to local requests was kept reasonable. The performance

of the hybrid model highly depended on the efficiency of the cache design. With all

other network conditions set equal, they found that, relative to the response times of

the centralized simulation, the response time of the simulation of a distributed name

service were smaller.

For interactive real-time applications, we described, earlier in this chapter, a set of

five characteristics that had a considerable impact on the design of our system. With

these requirements in mind, a fundamental problem with the centralized name service

is that all object resolution and registration is performed at a single point in the system.

This means it easily can become a bottleneck in the system, particularly for systems

that have a high object creation frequency or high request frequency. The result is that

a centralized name service is not scalable. As the number of users increases, so will

31

the added traffic and eventually the system will come to a stand still. A centralized

name service also introduces a single point of failure. If the name service ever crashes,

the entire system will halt, since no object resolution or registration can be performed.

Naturally, this can be solved by replicating the name service, or something to its effect.

A centralized name service still leaves questions unanswered, such as where to place

the name service relative to the participating nodes in the system.

A hybrid name service solves a few of these issues, but introduces a few of its own.

The name service is now distributed at a local and regional level, which deals with

the placement of the name service. Though, instead of a single point of failure, we

now are faced with partial failures. A partial failure means only the objects managed

by a crashing node will become unavailable when a node crashes. There is, however,

a possible weakness in the way objects are located. The look up method relies on

multi-casting, or its equivalent, and there is a high probability that the response time

for such a request will be too high for applications which are time dependent. Since

objects are bound locally, rapid object creation and destruction no longer create the

same problems as with the centralized name service. We no longer have to worry

about the name service becoming a bottleneck in the system.

Last, there is the distributed approach, which raises an interesting issue; in that there

is no clear way to show were an object is located without first contacting its name

service and how that name service is located given only a high-level name. For our

middleware, this is not an issue since at start-up the system takes on a centralized ap-

proach, where a single node in the system initiates all communication. Thus, there is

always a known path to an object. A suitable analogy is to ripples in a pond that ex-

pand from a single point. The distributed version leaves the issue with partial failures

unresolved, but apart from this it serves the purpose of our middleware well. It also

shows the most potential, in that the tests of Znati and Molka [24] revealed this to have

the highest performance benefits, without the need to optimize caching etc, which can

become an issue, considering migration.

32

3.3.2 Interoperation with Migration

In addition to choosing where the mapping and resolution of objects occurs, we also

need to consider how these mechanisms will interoperate with migration. In this sec-

tion, we outline the design of our distributed name service, using terms from mobile

IP [33,34] to solidify how the migration is combined with the distributed name service.

Mobile IP addresses the desire to have continuous network connectivity to the Internet

irrespective of the physical location of a node. This coincides with our goals in that the

objective is to make mobility transparent to the application. The analogy is suitable,

because where mobile IP is used to find a route to a mobile computer, moving from

network to network, we need to find a route to a mobile object, moving from node to

node. A prerequisite to accomplish this is to be able to uniquely name a computer or

object in the context that it is used in. We find that the taxonomy used to describe these

processes overlap. In the following discussion, we will primarily focus on the defini-

tions of mobile node, home agent, foreign agent, care-of address and home address.

Location BLocation A

Home Agent

Home Address Care-of Address

Foreign Agent

Home Address

Home Address Care-of Address

Mobile Node (1)

Mobile Node (3)

Care-of Address

Care-of Address

Mobile Node (1)

Mobile Node (3)Mobile Node (2)

N
E
T
W
O
R
K

Figure 3.2: Mobile IP

Following figure 3.2 we can see the interaction between the elements that compose

mobile IP. When a mobile node (object) has migrated to another node in the system,

it registers its presence with the foreign agent (name service) at its new location. The

foreign agent issues a message to the mobile node’s home agent (name service), in the

form of a care-of address (local object identifier), which the home agent can use to for-

ward requests to the mobile node. Each node in the system has an active name service.

This name service acts as a foreign agent when receiving migrated objects and a home

agent otherwise. Our implementation diverges from the approach of mobile IP at one

33

point. In mobile IP, a mobile node has one home agent throughout its lifetime, and thus

one single entry point. This is not the case in our implementation, where a mobile node

can have multiple entry points, depending on how many nodes it has been moved to,

and thus been registered with. As a result, our version will leave a trail of references

that can be unraveled to reach the mobile node at its current location. Following the

mobile IP example again, we can consider how a request for the mobile node marked

as (1) in figure 3.2 at location A will be handled. The request will be processed by the

home agent that discovers that the mobile node has a care-of address associated with

it. As an effect of this, the request is forwarded to location B that is currently managing

that mobile node. The foreign agent at location B will in turn forward the request to the

mobile node that in turn will process the request and send a reply directly in return to

the requesting party.

3.3.3 Reference Maintenance

Since we have a distributed name service, a single node initializes the system. Ob-

jects that compose the system are propagated to other nodes based on necessity, and

references to the propagated objects are maintained in the name service of the corres-

ponding nodes. If this were not the case, it would be impossible to maintain references

between objects, because we would have no way of knowing they existed. To identify

objects in the system, we use an identifier that looks like that depicted in figure 3.3.

HOSTNAME PORT

LOCAL IDENTIFIER

OBJECT ID TIMESTAMP PSEUDORANDOM NUMBER

192.168.1.10 1337 10 1177592426 1357468790

Figure 3.3: Format of the Home Address and Care-of Address

The care-of address and home address, which are used to identify objects in the sys-

tem, have a format as seen in figure 3.3. The address uniquely identifies an object in

34

the system throughout the lifetime of the application, since we assume that the applic-

ation is designed to run indefinitely. We see that there are three main sections which

compose the address. The hostname identifies the node where the object is located.

The port provides an access point to the name service, which manages the nodes ob-

jects. The local identifier is specific to an object in the name service. The object-id is

an index to more information about the object, such as the pseudo-random number

and timestamp. The timestamp is required to identify the object temporally, but since

this does not guarantee it to be unique over time, because of uncertainties related to

computers and time keeping, we have a pseudo-random number in addition.

As a result, we end up with a name service that looks like that depicted in figure

3.4. We can see how the system will function by looking at the interaction between

the objects ChannelMngr and Channel. We can see that ChannelMngr has a reference

to Channel, this reference is not to an address in local memory, as we normally would

expect, instead the reference points to the home address of Channel. We have seen in

figure 3.3 what the home and care-of addresses for objects will look like. As we can

see from the figure, Channel has at some point in time been migrated to another node

in the system. As a result of the migration Channel has been registered with the name

service at its new location and has as a new home address. This home address has

been returned to the node that previously managed Channel, and has been placed in

the care-of address. Due to indirection mechanisms in the middleware, any calls made

by ChannelMngr to Channel will be intercepted and redirected in a correct manner. It is

worth noting how the name service at Node 1 has the same view of Channel as the name

service at Node 0 has of ChannelMngr. As far as Channel and Node 1 are concerned, it

was first created at this location. It is only the name service at Node 0 that is aware of

the fact that at some point in time it was managing the Channel object.

The result is a name service that is capable of maintaining references to objects inde-

pendent of their location in the system, even after they have been migrated. We will

discuss migration in detail in section 3.2. The name service also provides scalability, as

long as the name space can be reasonably partitioned.

35

Distributed System

Name service

home address care-of address

ChannelMngrID-0

ChannelMngr

reference
to

Channel

Channel

ChannelID-1

Name service

home address care-of address

ChannelID-1

Channel

ChannelID-0

Node: 0 Node: 1

Objects in
Local Memory

Objects in
Local Memory

N
E
T
W
O
R
K

Figure 3.4: Design of the Middleware

3.4 Remote Method Invocation

As we have seen, it is necessary to intercept calls to objects that are located at a remote

node. The name service is one of the components that we require to accomplish this.

In addition, it is necessary to provide an indirection mechanism that queries the name

service to determine if an object is local or remote prior to a method is invoked. Once

it has been determined if an object exists in local memory or not, there are two scen-

arios that can unfold. If the object is local, the handling is quite easy, it follows the

steps for a local invocation, where, upon successful completion the method returns a

result. In figure 3.5, by following the black arrows, we can see how a local invocation

is performed.

In the case where the object is remote, the process becomes more complicated, there

are suddenly a number of additional scenarios that must be taken into consideration.

In figure 3.5, by following the red and blue arrows, we can follow the successful in-

vocation of a remote object. The red arrows show the path to the method invocation at

the remote node, and the blue arrows show the path of the return value. We will use

figure 3.5 to explain the process involved and outline at which points failures can arise.

We see that the indirection mechanism intercepts the method invocation, it queries the

36

Remote

LocalRemote

Proxy

Invoke local object

Name Service

Name Service

Indirection Mechanism

SkeletonLocal

Object

Method Invocation

NETWORK

Object

Calling Object

Figure 3.5: Indirection Mechanism

name service to determine if the reference is to an object at a remote node, which it is

in this case. As we can see the call is redirected to the objects proxy. The architecture is

conceptually identical to the remote method invocation architecture outlined in section

2.2.4. The proxy is responsible for serializing the arguments of the method invocation,

locating the connection to the node managing the object and transmitting the request

to the receiving node. At this point in time, it is not certain whether we have a con-

nection to the node. If this is not the case we need to establish a connection prior to

transmitting the invocation. At the receiving node, the invocation is received and the

name service determines if the object is local to the node or not. There is a possibility

that the object has been migrated again, in which case, the name service must transmit

a message back to the sending node with the new location information. We assume, in

37

this scenario, that the object is located on this node. We can see how the call is redir-

ected to a skeleton by the name service. This skeleton deserializes the arguments and

invokes the method for the object it manages. By following the blue arrows, we can

see how the result from the method invocation is propagated back to the caller. First,

we see that the result goes back to the skeleton that serializes the return value and that

the skeleton sends a message back to the calling proxy. The calling proxy deserializes

the result and returns the corresponding result to the caller.

From these discussions, we can see that there are two return values for each remote

method invocation, one from the invoked object and one for the middleware itself. The

return value from the middleware can be any one of a number of exceptional states.

First, it can be a message that the object has migrated again, in which case the new

location of the object needs to be transmitted to the calling node. We also need to

ensure that the caller and callee both are running the same versions of the libraries,

and as such we have added the version number of the remote method that we are

expecting to call. When the receiving application receives the message containing the

remote invocation it will make sure that the expected version of the method matches

the one the application is using before invoking it. If it is not a match, the middleware

will abort the invocation and an error message stating that the wrong version number

was sent will be transmitted to the calling node. There is also the possibility that the

caller is attempting to invoke a method that does not exist. In this case, a message to

such effect is returned. If the call passes all these tests, the method is invoked. If the

method is called successfully, the corresponding return value is handled and returned

to the calling node.

In addition to these exceptional states, there are additional considerations to make.

We need to consider the scenario where the node managing the object has crashed. It

is also desirable to implement caching, to improve the speed of lookups. We do not

address these topics as a part of the design, as they are beyond the scope of this thesis.

We do, however, realize the importance of these facilities, and as such, we will discuss

these topics further in chapter 5.

38

3.5 Partitioning and Grouping

In order to make the most of the functionality that we have discussed in the preced-

ing sections, we consider the partitioning of the applications namespace into groups,

based on communication patterns, to be of utmost importance for the efficiency of the

developed system. There are a number of applications where the interaction between

entities is dependent on a subset of the name space. This is particularly the case for

MMOGs, where the user interaction is highly dependent on an area of interest. A suit-

able analogy is to how we, as humans, perceive only a small part of the physical world.

Since there are a number of situations where this is the case, we can also reasonably

assume that once these groups of interacting objects have been formed, the groups can

be placed on different nodes in the distributed system. Initially the groups can be dis-

tributed to share the load evenly across the nodes. Grouping coupled with migration

also makes it possible to perform load-balancing of various types. Grouping objects

that interact also means that you are lowering the potential traffic over the network.

Invoking a method on a remote object will typically induce a considerable factor of ad-

ded time in the processing of that invocation. By grouping objects that communicate

with each other, we are able to lower the number of (long distance) remote method in-

vocations considerably and thus the latency. Another benefit of grouping is related to

concurrency, it is much easier to synchronize the interaction between objects on a local

node than it is to synchronize the events between objects located at different nodes.

There are additional benefits to partitioning and grouping, though these are unrelated

to the design of the middleware. As such, we will discuss the possibilities introduced

by grouping further in chapter 5.

To end this chapter on our design we will first discuss our choice of serialization

mechanism followed by a discussion about our code generator.

39

3.6 Serialization

There are three primary concerns that must be taken into account when selecting a

mechanism for serializing our data. First, it should be a format that is easy to imple-

ment or already is highly available, since there is a high probability that nodes in the

system will be heterogeneous. Second, it should be a compact and quick format, be-

cause we want to minimize the amount of resources used. Finally, the format should be

portable, by this we mean that there should be no problem in transmitting data across

networks using the format. We have decided to use the external data representation

(XDR) as it meets these requirements. This is based on the discussion from section

2.2.7. The XDR format, as described in RFC 1832 [35] and RFC 1014 [36], is a standard

for the description and encoding of data. It is useful for transferring data between dif-

ferent computer architectures. We have decided to use this format, because it is highly

available, and comes as default on most Linux distributions. XDR is based upon impli-

cit typing, where the sender and receiver must agree on the order and type of all data.

XDR thus makes use of symmetric data conversion, since both the client and server

convert from/to a common representation. XDR routines are direction independent,

the same routines are called to serialize and deserialize data.

XDR libraries are based on a stream paradigm. This implies an ordered stream of

bytes without message boundaries. XDR streams can be attached to a file, pipe, socket

or memory. Values are passed through filters before being pushed onto the stream.

A stream can either decode or encode data. Encode means changing from the local

format to the XDR format, decode means changing from the XDR format to the local

format. A strength of XDR is how it is easy to describe complex data types by combin-

ing a set of lower level data types. This allows for flexibility, since it does not attempt

to be everything at once. The XDR standard makes the following assumption: that

bytes (or octets) are portable, where a byte is defined to be 8 bits of data. A given

hardware device should encode the bytes onto the various media in such a way that

other hardware devices may decode the bytes without loss of meaning. For example,

the Ethernet standard suggests that bytes be encoded in "little-endian" style, or least

40

significant bit first.

3.7 Code Generation

Code generation is commonly provided to the application developer for easily gener-

ating structures that integrate with the middleware. The goal of these structures is to

hide the complexity introduced by the middleware. While most of the time it is im-

possible to make the distribution transparent, even though there are examples of this,

such as we saw with Java RMI, most of the time it is only partially transparent.

In this version of the middleware, we only support a single language, as such our

code generation tool does not form an integral part of the middleware, such as is the

case with CORBA. We will be generating structures which fit into the middleware we

have designed. This is primarily to aid the developer in the development process.

We provide the developer with an interface definition language, which in essence

is C++ declarations expanded with additional syntax that we provide the developer

with. The developer can decide if a class is capable of being migrated, and define

which methods are supposed to be capable of being invoked remotely.

The code generation tool is basic at this point in time, but it is quite possible to

expand on the semantics. One thought is to allow the developer to provide hints to

support automatic grouping of objects.

3.8 Summary

In this chapter we have outlined the components of the middleware. We have seen

how migration and grouping of objects have had an impact on the design of our name

service and how we perform communication between objects using remote method in-

vocation. There are several implications of choosing a design such as the one we have,

many of which introduce issues that should be handled. While we have attempted to

41

address as many of these as possible we have not been able to provision for each and

every one. In chapter 5, we will discuss the implications of our design, and provide

viable solutions for minimizing any negative effects the middleware might introduce.

First, however, we will see how this abstract idea has been translated into a func-

tioning system. Thus, we next present our prototype implementation.

42

Chapter 4

Implementation

While the concepts introduced in the preceding chapter might be relatively simple to

understand, it is not an easy task to bridge the gap between an abstract idea and con-

crete implementation. As a result, we have aimed at implementing a basic, functioning

version of the middleware as a proof of concept. The functionality of the middleware

consists of the fundamental components outlined in chapter 3. As such, it has a dis-

tributed name service and supports remote method invocation and migration. In the

remainder of this chapter, we will describe in detail the implementation of the various

components. First, we will shortly summarize the interaction between the primary

components of the middleware, followed by a discussion on how we have implemen-

ted remote method invocation (RMI) and migration. To demonstrate the usability of

the middleware we have developed a test application and explain a scenario where

the application is used; we will cross-reference between the implementation discus-

sion and explanation of the test application in order to solidify our understanding. Fi-

nally, at the end of this chapter we outline how we provide facilities for automatically

generating code.

During these discussions we will refer to class names from the implementation. In

this context, we would like to refer to the documentation of the source code that ac-

companies this document1. There are two versions of it, one as a pdf document and

1The source code is available for download at: http://paul.beskow.no/master/paulbb.middleware-

source.tar and the documentation is available for download at:

43

one as a browsable web page. Additionally, it is possible to look directly at the source

code, since the documentation was generated from the comments written in the source

files using doxygen [37].

4.1 Programming Language

For developing the middleware, we choose to use the object-oriented programming

language C++ [38], since it provides fine grained interaction with low level interfaces,

such as sockets (for network programming). Thus, it allows the developers to have

relatively good control of the environment they are programming in. Since C++ is a

compiled language, with few built-in abstractions, such as dynamic memory manage-

ment, its programs are generally quite fast. Naturally, this places more responsibility

on the programmer, for coding correctly, but the trade-off can be well worth the effort.

Finally, C++ is the most actively used programming language for developing computer

games. This is relevant since massively multi-player online games have formed a focus

for this thesis.

The use of C++ has had its impact on the implementation of the system, and through-

out the discussions of this chapter we will be using terms from C++, such as templates

and run-time type identification (RTTI), and terms from object-oriented programming,

such as polymorphism and inheritance. We will introduce these concepts as they ap-

pear in the context of the implementation.

4.2 Primary Interaction

The middleware consists of many components that interact to provide the application

with the necessary functionality to migrate objects and perform RMI. At the lowest

level, we have the communication facilities that provide mechanisms for serializing

and transmitting data across the network. In our middleware, we combine a wrapper

class to C sockets [39], which are implemented using the transmission control protocol

http://paul.beskow.no/master/paulbb.middleware-documentation.tar

44

Event Loop

Network Transmission
Event

Application Event

Migration
Service

Remote Method
Invocation Service

Figure 4.1: Middleware Event Loop

(TCP) [40] with a wrapper class to an external data representation (XDR) stream. We

discuss the details of the XDR component further in section 4.3. TCP is a connection-

oriented, reliable transmission protocol and is, for example, used actively in MMOGs.

The connection-oriented nature implies that after a connection has been established,

a link exists between the sender and receiver that can be used to transmit messages.

This link will function even if the sender is sitting behind a network address translator

(NAT) [41] or firewall [42]. In short, the combined wrapper classes make it simple to

create and send messages between nodes. These messages consist of a header and

body, where the header provides hints about the intended action of the messages,

which, once received by the middleware, are handled as displayed in figure 4.1. The

middleware is waiting for events from the network or application. If data arrives on

the network, the message is read from the stream, and the first part of the header is

consumed. The result of reading the header ends with redirecting the message to the

migration or remote method invocation services. We will discuss these services further

in section 4.4.

In addition to these components, the sending node requires an indirection mechan-

ism that can determine if a call to an object is local or not and redirect accordingly. We

discuss this functionality in section 4.5. For an object to support migration and RMI, it

must be associated with a reference that can be understood by the name service. This

is accomplished by associating an object identifier with the object. In our middleware,

the class Object contains a pointer to an instance of the class Objectid. When an instance

of an object that inherits Object is created, the default action is to have the ObjectRe-

45

gister generate an identifier for it. All objects that support migration and RMI need to

inherit the class Object. We will not go into discussions about the registration process

here, since it has little impact on the middleware itself, and is well documented in the

source code. We will ,however, go through the actions performed in the middleware

more closely when discussing our example application in section 4.6. First, we will de-

scribe our serialization mechanism. It is important to remember that the functionality

described here is identical for every node in the system, including potential clients.

4.3 Serialization

While most modern programming languages support serialization natively, C++ does

not. Thus, it needs to be implemented independently. Since there is no easy way to de-

couple the serialization mechanisms from the class implementation, they will become

quite integrated. Following the discussion in section 3.6, we have decided to use the

external data representation (XDR) format for serializing data. There are other options

available for C++, with varying degrees of complexity. One example is the Boost C++

serialization libraries [43]. A problem with this library is that it is quite complex, since

it is possible to serialize a broad range of C++ structures, many of which we do not

need to support at this point in time. As such, XDR provides the level of detail we

desire at this point in time. It is compatible with C++, in that it was originally writ-

ten to be used with C, which is a subset of C++. XDR provides the level of control

we need and minimizes overhead. Additionally, it is a highly portable format as it is

only dependent on ANSI C. A downside with XDR is its readability when compared

to formats such as XML-RPC [44], which are text based, the byte based XDR format is

hard to interpret directly. With a loss of readability comes the benefit of a format that

is more compact and easier to process.

To conceal the C nature of the XDR libraries, we have implemented the serializa-

tion mechanisms by creating a wrapper class called XDRHandler. This class creates

a buffer of 4096 bytes and creates an XDR memory stream that points to its location.

With XDR one can serialize data to an area in memory, such as we do, or directly to

46

a file descriptor; this file descriptor can refer to a file, standard in or out, a socket and

more. The direction of the stream can be changed depending on the context, the pos-

sible actions are to read, write and free data from the stream. We have implemented

methods to modify the behavior of the XDR stream, this includes methods for resetting

the stream and clearing the buffer. Since messages in our system will be sent to remote

nodes in the system we associate an XDR stream with a file descriptor that references a

socket. This socket is used to move data to or from the network into or out of the buffer.

An instance of XDRHandler is passed around in the system and used to serialize and

deserialize data to and from. For an exhaustive overview of the functionality available

from the XDR libraries, see Sun’s developer’s guide [45].

4.4 Object model

An object model defines the structural relationships and interaction between a group of

related objects. In figure 4.2, we see an illustration of the object model that integrates

with the middleware and provides a class of objects with the ability to be migrated

and accept remote method invocations. While it is relatively difficult to decouple the

functionality for migration and remote method invocation from the class itself, we have

tried to minimize the integration as much as possible. From the figure, we can see that

Class inherits the functionality from three parent classes, as such Class is said to be

derived from these classes. In addition, Class has a child class ClassRPC, that inherits

the methods and data from its parent (together with the functionality inherited by that

classes parents). Class is among other derived from Object. This means, as we have

mentioned earlier, that any instance of Class has an object identifier associated with

it. This identifier can be used to reference an object independently of its location in

the system. For a class to support migration or remote method invocation, it needs to

inherit Object, since it in effect means that objects of that class are managed by the name

service on that node. This makes it possible for the middleware to move these objects

from node to node and redirect remote method invocations to the correct instance of

an object. Object does not implement this functionality all on its own, but there are also

additional semantics that need to be in place. To further solidify our understanding

47

of the implemented migration and RMI components, we will in section 4.6 refer to the

discussions that follow in this section, in view of a test application that we created to

demonstrate the usability of the middleware. First, we will describe how migration is

implemented in our middleware, after which we will discuss the implementation of

RMI.

Derived class

Inherited classes

RemoteProcedureCall< Class > RPCUtilObject

Class

ClassRPC

Figure 4.2: Object Model Inheritance Diagram

4.4.1 Migration

In order for an object to be migrated, it needs to be managed by the name service, so

that references to the object can be maintained even after the object has been moved. In

addition, the object must be serializable so that its data can be added to a message that

will be interpretable by the receiving node. Both these tasks are supported by inher-

iting the abstract class called Object. An abstract class in C++ means that instances of

Object cannot be created directly, but that any class must inherit the interface and func-

tionality defined by it. As we have already mentioned, any class that inherits Object

will, at creation time, have an object identifier generated for it. For a class to be abstract

in C++, it must define a pure virtual function. This is a function that any derived class

must provide an implementation for. Additionally, when defining a method as virtual

48

Object

static serialize(XDRHandler, Objectid) static deserialize(XDRHandler)

Class implementationObject.deflate() create(XDRHandler)

virtual deflate() virtual create(XDRHandler)

Operation "MIG"

Type "ClassName.Filename"

Data [...]

Constructed message

static MigrationService::processMigration()

Migration service

static MigrationService::migrate(Objectid)

EventHandler -> process network activityEventHandler -> process application activity

1

2

3

1

2

3

1

2

3

1

2

3

Figure 4.3: Object Model Migration

in C++, it is implied that classes derived from that class are polymorphic. Polymorph-

ism is used to dynamically redirect the call to a method based on the class that the

pointer is an instance of.

We can follow this discussion by looking at figure 4.3. The class Object defines two

static methods, serialize(...) and deserialize(...), and two pure virtual functions, deflate(...)

and create(...) that are used to support migration. Static member class methods in C++

can be called without requiring an instance of the class to be available, while pure

virtual functions mean that the derived class must provide an implementation. As we

can see from the figure, deserialize(...) and serialize(...) are used by the migration service

to perform and process migrations. When a migration is being performed, we can see

that the migration service adds a header that identifies the message to contain data

about a migration. This is followed by a call to the method serialize(...), as we can see

this method adds the type name of the class to the message.

49

It is necessary to add the type name so that when deserialize(...) is called at the re-

ceiving end, we are creating an instance of the correct type of object. To accommodate

for the type name, we have a type register that consists of a mapping between a string

representation of the type name and an instance of the corresponding class for all seri-

alizable classes. The type name of a class is determined by the code generator and is

a combination of the filename and class name. It is done this way because RTTI type

names are not portable. RTTI makes it possible to identify the type of object a generic

pointer is referencing during run-time. After adding the type name, serialize(...) calls

the pure virtual function deflate(...), that all derived classes from Object need to provide

an implementation for. As such, the serialize(...) method can assume that the imple-

mentation of deflate(...) is provided by the object being serialized and that it is capable

of adding its data to the message. At this point, the message is ready to be transmitted

to the receiving node. The composition of the resulting message can be seen in figure

4.3.

This message is then transmitted to the receiving node, and read into an XDRHand-

ler instance. First, the middleware determines the type of action associated with the

message, and it reads it to be a migration and passes the message on to the migra-

tion service. The migration service calls the deserialize(...) function that reads the type

name of the class from the message. The type register is queried for an instance of the

class corresponding to the type name. In turn, the create(...) function for that class of

objects is called and an object is constructed and initialized with the data read from

the message. Once the object is created, an object identifier is generated for it by the

object register, because, as we have mentioned, all classes that inherit Object automat-

ically have object identifiers generated for them during their construction. This object

identifier is returned to the calling node, and is registered with the object register as a

care-of address for the migrated object. At this point in time, the object at the sending

side can be deleted, since it now is safely placed at its new location. The process for

returning the objectid is identical to that explained here, just that the header and type

name are not added. Only the data for the object identifier is serialized and returned

to the sender. This is possible because the sender is waiting to receive this identifier in

50

return. This concludes the process for migrating objects, and we will now look at how

remote method invocation is implemented in our system.

4.4.2 Remote Method Invocation

Remote method invocation (RMI) is quite a bit more complicated to implement then

migration. The classes with a blue border from figure 4.2 provide part of the necessary

interaction for RMI to function correctly. When a call to a remote object is made, it will

be intercepted and redirected to a proxy that is implemented by the class ClassRPC.

This class will ensure that a message is constructed and sent to the receiving node.

At the receiving side, the message is interpreted and dissected by the skeleton, which

acts as an intermediate for remote invocations. The skeleton is implemented partially

by RemoteProcedureCall<Class> and partially by virtual functions defined in Object that

Class needs to implement. Finally, there is the supporting class RPCUtil that provides

functionality to build a header for the message and that creates and handles return

values generated by the middleware. We can follow the remainder of this discussion

by looking at figure 4.4.

We will start this discussion by looking at how the proxy for a class of objects in

our system is implemented; this is accomplished by ClassRPC deriving from Class.

The reason ClassRPC inherits Class is so that the interception mechanism can call the

method of either the local or proxy implementation, depending on the current location

of the object. We will discuss this interception mechanism further in section 4.5. Any

method that supports RMI is virtual in the base class Class. In this way, the derived

RMI implementation of the class can provide an implementation of the method that is

capable of constructing a message that will invoke the method at the receiving node.

The reason for implementing the RMI handling at the calling side in this way is that

C++ is a strongly typed language. This means that if you have a pointer to an object,

it is not possible to change the type of that pointer at a later point in time, since it is

determined at compile time what the type of a variable is. There is, however, a slight

variation to this truth when polymorphism is involved. In this case, it is possible to

have a single pointer of a base class type, and by using RTTI, one can have this pointer

51

Skeleton

Local Implementation

virtual Alpha(...)

Method Register

"Alpha" <alpha>

String name Pointer

Proxy

Create
Header

Serialize
Parameters

Constructed Message

Operation "RMI"

Method name "Alpha"

Version 1

Objectid [...]

Parameters [...]

Class

ClassRPC Alpha(...)

Distributed Pointer

Remote Implementation

RemoteProcedureCall< Class >

Class

EventHandler

static RPCService::processRPC(...)

rpc_Alpha(...)

1

2

3

4

5

1

2

3

4

5

Figure 4.4: Implementation of Remote Method Invocation

refer to any object that is an instance of a class derived from the base class.

At this point in time, the call to the method has been redirected to the proxy imple-

mentation of the derived class ClassRPC. The proxy first adds a header, that describes

the type of event the message contains; this together with the name and version of

the method that we are calling. Finally, the parameters of the method are added to

the constructed message. The constructed message looks like that depicted in 4.2. At

the receiving end the message is processed by the event handler that determines what

type of event it is, in this case a remote method invocation. The message is forwarded

to the RMI service that reads the object identifier from the message. The RMI service

queries the object register to obtain a local reference to the object in question. Once

this is accomplished it calls a method that can locate and invoke methods based on

the string representation of the name. The name and version of the method are here

checked to ensure a match. The version number, as we discussed earlier, together with

52

the method name, is necessary to guarantee type safety across network boundaries. If

an older version of the method is being called, the semantics of the method might have

changed, and result in unexpected behavior. This mapping of method name to imple-

mentation is performed during construction of the object, and is implemented by the

template class RemoteProcedureCall< Class >. This class could be embedded with each

class of objects that perform RMI, but we wish to provide as little coupling between

the implementation of RMI and the object itself. RemoteProcedureCall< Class > is im-

plemented as a template because C++ function pointers must know what type of class

they reference at compile time, even though the instances share the same base class.

As such, we can use templates, because they allow code to be written without consid-

eration of the data type with which it will eventually be used. Once the corresponding

method has been located, it is invoked, and the remainder of the message is passed to

it as a parameter. The method that is invoked does not contain the implementation,

but acts as the skeleton. It handles the deserialization of the parameters and invokes

the corresponding implementation of the method, which we have referred to as the

servant earlier. The return value from the invoked servant is serialized by the skeleton

and passed directly to the proxy, and is in turn returned to the caller. The proxy and

skeleton also add and process return values generated by the middleware itself. This

concludes the discussion for our implementation of remote method invocation. We

will now look at the distributed pointer.

4.5 Distributed Pointer

The purpose of the distributed pointer is to determine whether an object exists in local

memory or not and then redirect a call either to the local instance of the object or to a

proxy for the object when a remote method invocation is being performed. To accom-

plish this in C++, the distributed pointer is implemented as a template and additionally

makes use of polymorphism. The class being called needs to have a derived class that

can function as a proxy, as we have discussed earlier. We use these two concepts be-

cause C++ allows for pointers to be dynamically substituted between classes that are

polymorphic (classes that are derived from, or are instances of, the same base class). In

53

addition, we want this distributed pointer to function with any type of class, which is

why we use templates that allow us to program independently of type. As a result, we

end up with the flow as depicted in figure 4.5.

distptr< Class >
Name

Service

Yes

No

Care-of
Address?

Class

ClassRPC

Alpha(...)

Alpha(...)

R
E
M
O
T
E

L
O
C
A
L

Figure 4.5: Distributed Pointer

The distributed pointer is associated with a class type and the objectid of the in-

stance. It is important to remember that even though access to the object can be per-

formed directly, this should be avoided. Since there is no way of determining whether

the object referenced by an ordinary pointer has been migrated or not, we have over-

loaded the pointer operator for our distributed pointer, and as such, the implementa-

tion will query the ObjectRegister and ask if the object has a care-of address associated

with it. If it has a care-of address, a static method is called that returns a pointer to the

instance of the proxy for that class of object. This results in the method implemented

by the proxy to be called. If the object is local, the implementation of the method is

called directly.

4.6 Example Application

To demonstrate the usability of the middleware, we have implemented a test applic-

ation. The application is modeled as a chat system in a MMOG, where the clients are

able to create and join channels of their choice. The application has three main com-

ponents, the primary server, secondary server and clients. The primary server func-

tions as the initializing node, which is necessary for the activity between the servers

to be synchronized. Initially, all connections by clients and secondary servers need to

54

be established with the primary server. To make the process of explaining how the

application functions easier, we will follow an example of its usage. We can start by

looking at the output from the primary server (figure 4.6) and the secondary server

(figure 4.7). We can see that the secondary server establishes a connection with the

primary server. At this point in time, the secondary server receives a migration from

the primary server, in the form of an instance of the class Authentication.

Looking at figure 4.3, which was explained in detail in section 4.4.1, we can follow

the process involved in migration an object. First, we see that the EventHandler receives

a request to migrate the object, which it forwards to the MigrationService. The migration

service queries the name service for a local reference, to determine whether the object

is currently located on this node or not. Once it determines that the object is local,

it begins construction of the message. First it adds the operation identifier, in this

case MIG. This is followed by the type name of the object. Each object has a method

getTypeName(...) that returns the identifier for the object. In this case, as we can see from

figure 4.7 that the identifier is authentication_H_Authentication. Finally, the deflate(...)

method is called for the object which results in the data associated with the object being

added to the message. At this point in time, the constructed message is transmitted

to the receiving node. The message is identified as a migration and is forwarded to

the migration service. The migration service reads the type name from the message

and queries the type register for an instance of such an object. The create(...) method

constructs a new object of its type and initializes it with the data stored in the message

and finally returns a pointer to the newly created object. The migration service uses

the pointer to request the objectid of the newly created object, which it returns to the

sending node.

The Authentication class is used by the connecting party to identify as a client or

server and provide a username and password for authentication. This is accomplished

by a remote method invocation to the method authenticate(...). It is worth noting that

in this case, the primary server, after migrating the instance of Authentication to the

secondary server, does not register the care-of address it receives in return from the

55

secondary server as we normally would expect it to do. This makes sense because all

we want is for the connecting party to establish a means of communication with the

primary server, which means that we need to have a remote object that we can commu-

nicate with. As such, Authentication is implemented as a singleton, which means each

node will never have more than one instance of it running, and as such all method

invocations will be handled as remote. We can now see that the secondary server auto-

matically performs a remote method invocation that identifies it as a server, and passes

its designated username and password. We can see that two return values are received,

one that indicates a successful completion of the invocation, this is a middleware re-

turn value. The second return value indicates that the authentication was successfully,

this is a return value from the method invocation.

Figure 4.6: Example Application: Output from primary server, secondary server con-

necting

Figure 4.7: Example Application: Output from secondary server, connecting to

primary server

56

To further solidify our understanding of how remote method invocations are imple-

mented in our middleware we can consider figure 4.4, which was explained in detail

in section 4.4.2. Following this figure, we see that in our example application we have

a distributed pointer to the Authentication instance. In this case, this pointer has de-

termined, after querying the name service, that our call to authenticate(...) needs to be

redirected to the proxy implementation of the method. This proxy is implemented by

a class AuthenticationRPC that inherits from Authentication. Since the method authen-

ticate(...) is implemented as a virtual function in Authentication and AuthenticationRPC

provides its own implementation the call will be made to the derived version. This

derived implementation starts the construction of a message, since the invocation is

remote. First it adds the type of operation, which is ‘RMI’. This is followed by the ob-

jectid of the object we are requesting and the method name (“authenticate”) and version

(1). Finally, we add the parameters that accompany the method, if any. In this case,

there are two, namely the username and password. At this point in time, the message

is transmitted to the receiving node. There it is identified by the event handler as a

remote method invocation and is forwarded to the RPCService. This service first reads

the objectid and determines whether the object is local or not, then reads the method

name and version and determines if the object will allow the invocation. If the invoca-

tion is legal the call will be forwarded to a skeleton that can handle the request, in this

case the request is forwarded to the method rpc_authenticate(...) in the class Authentica-

tion. This method, which functions as a skeleton, deserializes the parameters, calls the

local version of authenticate(...) and serializes the return value from the invocation. The

return value is in turn returned to the requesting node.

The client, which we refer to as the primary client, now connects to the primary

server and the output from this action can be seen in figure 4.8. We can see that the

client also receives the instance of Authentication; we have issued the help command

at this point in time, to display the actions available to the client. We can see that the

authenticate method is among these, and as we can see the client performs an authen-

tication. Once again, we can see that the authentication is successful, and unlike with

the secondary server, an additional action occurs where a ChannelManager instance is

57

migrated to the client. This class is also implemented as a singleton and functions the

same way as Authentication. After we have received the ChannelManager we are able

to create, move and list channels. An unauthorized client is not able to invoke remote

methods other than authenticate. In figure 4.9, we can see the primary client create

a channel cool and display a list of servers and channels. The activity on the server

can be seen in figure 4.10. From this figure we can also see that a secondary client has

connected.

Figure 4.8: Example Application: Output from primary client, connecting to primary

server

We can in figure 4.11, 4.12 and 4.13 see how the clients join a channel and send

messages to each other. The channels form the communication groups in the system,

and the clients are grouped based on their participation in channels. In this case both

the clients have joined the channel cool. This means that both clients have a distrib-

uted pointer that is associated with the objectid of that channel. We can also see that

the primary server is accepting remote method invocations for the method sendMes-

sage(...). This is a method associated with the Channel object, and when invoked, it will

58

Figure 4.9: Example Application: Output from primary client, sending commands

Figure 4.10: Example Application: Output from primary server, received commands

send a message to all clients associated with it. As we can see, this is accomplished by

calling the method displayMessage(...) that is a method associated with the ChannelAc-

tion object. Each client has an instance of such an object and passes it as an argument

to the ChannelManager when requesting to join a channel.

Figure 4.11: Example Application: Output from primary client, channel actions

Finally, we will see how migrating the channel is performed, and how it affects the

servers. We can follow the remainder of this discussion by looking at the figures for

the primary server (4.16), secondary server (4.17), primary client (4.16) and secondary

59

Figure 4.12: Example Application: Output from secondary client, channel actions

Figure 4.13: Example Application: Output from primary server, channel actions

client (4.17). We can see that the primary server receives the move command and mi-

grates the channel cool to the secondary server. This is then followed by migrating the

data for the connected clients. Finally, we migrate reconnect objects to the clients, that

contain the hostname and port of the server they should reconnect to. When this object

is received by the client and deserialized, it registers itself with an event queue. Once

the reconnect event is handled the client will connect to the new server. At this point,

the client authenticates with the new server. Earlier, when the client connected to the

server it received a hash value generated by the server. Now, when reconnecting, it can

authenticate using this hash value, instead of supplying a username and password. At

the secondary server, we can see that the user, after reconnecting, is associated with

the channel cool on new. This is accomplished because the client data includes channel

associations. Finally, we can see that the distribution of messages now is performed at

the secondary server, and the primary server is offloaded. This concludes the test ap-

plication, which has shown that migration is feasible, and the distribute name service

60

functions as it should.

Figure 4.14: Example Application: Output from primary server, migrating channel

Figure 4.15: Example Application: Output from secondary server, migrating channel

4.7 Code generation

We provide the developer with a code generation tool to help create the structures

described in section 4.4. The code generator is implemented as a python script and

makes extensive use of the pygccxml [46] module. This is a python language binding

module for the GCC-XML [47] parser, which is a tool that extends the open source

GCC compiler [48], using its internal representation of a C++ source file to produce

XML output. The generator expects a C++ class declaration as its input, as illustrated

61

Figure 4.16: Example Application: Output from primary client, migrating channel

Figure 4.17: Example Application: Output from secondary client, migrating channel

in figure 4.18. In addition to normal C++ class syntax, GCC-XML allows for defining

additional attributes, and this was not supported natively by the pygccxml module.

We have therefore extended it with functionality to handle this. We make use of this

ability to extend the C++ syntax with our own keywords. We can see how this is

accomplished by looking at figure 4.18. As we can see, the class Example is marked as a

class that should support migration and remote method invocation. The variable value

has been marked with the attribute serialize, which implies that during the generation

process structures for serializing, value should be generated. Variables that are not

marked with this keyword will not have structures for serialization generated for them,

and as such, will not be transmitted to the receiving node. This makes sense, because

not all the data associated with an object is necessarily of interest after migration has

been performed. In addition, we have the method setValue(...) that assigns value with

62

a new value. This method is implemented as a remote method invocation because it is

public. We have made the assumption that all public methods should support remote

invocation, since there is a probability that they might be called at a point in time. The

auth(AUTH_ALL) is implemented because it is useful for the application and is not so

much a part of the middleware. It provides a simple way of determining whether a

server or client has access to a given method. The version number requires no further

explanation.

Figure 4.18: Code Generation Header Files

In figure 4.19, we can see how the generator is run. We can see that the result is

a directory containing a number of files, together with a text file that describes the

installation procedure. In appendix A, you can see the files that resulted from the

generation process.

4.8 Summary

We have seen how the ideas presented in the design chapter (chapter 3) have been

realized in the form of a functioning middleware. To solidify the validity of the imple-

63

Figure 4.19: Code Generation Output

mentation, we have created an application that mimics the communication patterns of

MMOGs. While we have attempted to provide for most eventualities, we realize that

the limited time available for completing this thesis has its restrictions. As such, we

will discuss some aspects that we consider important, but which have been out of the

scope of this thesis. Additionally, we will look at the possibilities offered by the design.

64

Chapter 5

Discussion

We have presented the design (chapter 3) and implementation (chapter 4) of our mid-

dleware, which in addition to supporting distributed objects, makes it possible to dy-

namically relocate objects. Since we already have discussed the rationale for our design

and implementation in detail in the preceding chapters we will not reiterate these in

this chapter. Instead, we will look at the possibilities that our middleware presents

us with. This in effect means that we will take a closer look at the migration facil-

ity, which provides the developer with several interesting opportunities. As such, we

will discuss a couple of scenarios where we consider it to be of particular use. While

we have aimed at implementing a proof of concept in this thesis, we do realize that

there are a number of issues, raised by distributed systems in general, that need to be

considered. We will examine these implications and provide viable solutions for their

resolution. Finally, we will consider the possibilities for expanding the functionality of

the middleware. First, however, we will start by examining the migration facility.

5.1 Migration

Migration is the process of moving objects from one node in the distributed system to

another. While a distributed system makes it possible to distribute the load, migra-

tion makes it possible to dynamically relocate objects to balance the load as it shifts.

Throughout this thesis, we have presented this functionality as an integral part of

our middleware. It certainly has had a great impact on the design we have selected,

65

considering how we had to specifically accommodate for this type of behavior in the

name service. The benefit of migration comes from the possibility to dynamically alter

the state of the distributed application. With migration we are able to move objects

between nodes and reconnect users based on their interaction with the migrated ob-

jects. We will now present a couple of examples that demonstrate the possibilities that

migration offers the developer. This will be followed by the discussion about an addi-

tional communication model that migration introduces to object-oriented middleware.

5.1.1 Latency Reduction

We have seen that interactive real-time applications are particularly dependent on low

latency in order to provide the user with an optimal experience. As such, we con-

sider one scenario, where migration is involved, to be of particular interest. To solidify

this example, we will consider the behavior of massively multi-player online games

(MMOGs), but the low latency requirement also applies for a range of other interactive

applications.

As we have mentioned, it is common for MMOGs to partition the virtual environ-

ment into regions. These regions partition the virtual environment into groups of ob-

jects that interact. Accordingly, it is reasonable to assume that the users interacting in

MMOGs can be from widely different areas of the world. In many distributed systems,

the effect of this is not necessarily prevalent, mainly because the architecture of the ap-

plication can adapt to this by distributing users to servers accordingly. With MMOGs,

users cannot necessarily be separated to accommodate for this, because of the interac-

tion that occurs with other users in the virtual environment. As a result, users cannot

be placed in the virtual world according to their physical location. It becomes appar-

ent that the static region based architecture on a centralized cluster, while efficient and

relatively easy to maintain, does not cater to the varying geographical locations of the

users. It can be argued that games, such as World of Warcraft (WoW) [49] take this into

account, to a certain degree. They have shards, which are single, unique instances of

the game world, located at multiple locations across the world, where users generally

connect to one close in proximity. The distribution of users, however, occurs as a res-

66

ult of the availability of servers, not because of how the middleware is implemented.

Ideal examples of this are EVE online [50] and Anarchy online [7], with their single

shard structure, where all users are connected to the same centralized cluster. Users

from all over the world interact in the same logical regions, with one region hosted by

a single server. The result is an architecture that cannot adjust itself to the difference in

latency among its users.

Thus, it would be better to have a virtual world where the regions could be managed

by nodes geographically located closer to the majority of the users. In this context, a

recent study [51] of the MMOG Anarchy Online [7], analyzing the round-trip times

(RTTs) in traces from one of several hundred regions composing the virtual environ-

ment, three distinct groupings of users were revealed. Based on the US location of the

server, these user groups were in USA, Asia and Europe. It is safe to assume that one of

these groups will be dominant, depending on the time of day. Thus, the assumption is

that by analyzing the latency of users in a region from the virtual environment, one can

determine where they are approximately located geographically. One is not limited to

analyzing RTTs to obtain this information. Similarly, one could use the IP addresses of

the users, if available, to obtain this information. Though with a lot of research being

done on integrating peer to peer based systems into MMOGs [52], there is no guaran-

tee that such information is readily available. As far as we can determine, there has

been little research into the possibilities connected to load-balancing the regions of an

MMOG based on the geographical location of users currently located within it. Most

of the research is focused on effective load-balancing within a centralized cluster, by

dynamically re-locating regions based on overall load. Since this has not been invest-

igated, we propose to integrate migration with facilities that are aware of the physical

locality of its users. The intent is to lower the response time of remote method invoca-

tions for the majority of users connected to a given region, which in turn should lower

the overall latency. As we have proposed, this can be accomplished by migrating the

region to a server closer in physical locality.

67

This is one possible application of migration, where the intent is to lower the overall

latency in a distributed application. As we will now see, we do not consider the use of

migration to be limited to this type of operation.

5.1.2 Redeployment

While the design of our middleware has been influenced by MMOGs, there is no re-

quirement that an application exhibit characteristics similar to MMOGs for this mid-

dleware to be of use. If an application can be partitioned into groups that require

real-time interaction, this middleware is suitable. The test application developed for

this thesis is for instance a chat application, where the groups are formed based on

channel membership. To give an example that does not involve human interaction,

consider a sensor network that is setup to monitor the temperature of a building. The

sensors can be added to groups based on the floor they are located on and setup as a

warning system. If the sensors register a rise in temperature above a certain level, they

dispatch a message to the floor (group) and each sensor on that floor sounds an alarm.

If at some point in time the server managing the sensors requires maintenance and it

is essential to maintain the interaction between the sensors, we can use the migration

facilities to redeploy the sensors while maintenance is performed and migrate them

back when the maintenance is completed.

5.1.3 Communication

In addition to providing the developer with a simple way of moving objects in a sys-

tem, migration can also be used as a way to communicate. This as an addition to

remote method invocation, which is the classical way for nodes in object oriented mid-

dleware to interact. Consider when an object is migrated, its state is serialized and

transmitted to a new node in the system. At the receiving node, the object is recreated

and initialized with the state it had at the sending node. As such, the construction of

an object that has been migrated differs from that of an object being constructed as a

normal instance of a class. This makes it possible to add additional behavior to an ob-

ject that is constructed from migration. It is, for example, possible to have this object

68

register itself with an event handler, which upon processing the object will react with

an action corresponding to the information communicated by the object. The follow-

ing example is taken from the test application we developed. When a user issues a

command to move a channel from one node in the system to another it is required that

the users be made aware of this change. As such, they must be told to reconnect to

the new node. Instead of using RMI to accomplish this task, we migrate an instance

of a class called Reconnect. This object contains the hostname and port of the node we

want the user to reconnect to. When the object is recreated at the user, the reconnect

object registers an event with the event handler for the system. Thus, when the event

loop of the system processes the event, it reconnects to the new location, and continues

execution from there. This type of messaging differs quite a bit from RMI. With RMI

we expect an explicit reply, we want a confirmation from an action. With the migration

form of communication, we expect the event to be processed, but the communication

is implicit, there is no need for a reply. The functionality described here can be re-

lated to mobile agents [53], which are programs that include both code and data that

travel from computer to computer in a network carrying out a task on someone’s be-

half. There are several implications raised because of such agents, especially in systems

where security is a vital issue, in that these agents are widely considered to be a secur-

ity risk [54]. This comes as a result of being able to run arbitrary code on the computers

that accept the mobile agents. Our migration differs from mobile agents with regard

to this, because in our middleware it is only the state of an object that is transmitted

between nodes. Each node already has the code related to the object. There is also a

side effect to this form of communication, when we compare the figures for migration

(4.3) and RMI (4.4). We can see that there are more actions involved when performing

RMI. As such, it is conceivable, but not tested and analyzed, that there is less overhead

for this type of communication.

5.2 Partial Failures

A distributed system consists of multiple nodes connected by a network. When a node

in such a system becomes unavailable, due to a system crash or network failure, it

69

is referred to as a partial failure. The extent of such a failure depends on the imple-

mentation of the system. If the system is data driven and each node in the system

has a replica of the available objects, such failures are not particularly serious, because

further requests can be forwarded to the nodes still operating. In a system using a

distributed name service, the scenario is different. In this case, a node failure means

that the objects managed by that node will become unavailable. While the current ar-

chitecture does not accommodate for partial failures, there are ways to minimize the

repercussions of these incidents.

One possibility is to utilize a central registry, where all object migration is recorded.

In the case of a miss, when attempting to access a remote object, the central register can

be queried instead, as a backup solution. Once the node has recovered, normal object

access can resume. A flaw with this approach, is that the central register becomes a

single point of failure in the case of a crash. In addition, it must be capable of handling

the traffic generated by all migrations, including any misses. This can be a weak point,

since in a lot of situations migration is activated as a result of heavy load on a node.

A different approach has its roots in peer-to-peer based file systems, where copies

of an object will be distributed to several nodes in the system. PAST [55] and Ocean-

Store [56] have, for example, implemented such systems with success. PAST copies

objects to the k numerically closest nodes, based on a comparison of the nodeid and

fileid. OceanStore uses a more deterministic approach, and places the objects close to

nodes that access the objects. Look up of objects in the system can then be implemen-

ted in a fashion similar to that of Chord [27] or Tapestry [28]. These implementations

are based on the principle of incrementally forwarding messages from point to point,

until they reach their destination. Each node in the system keeps a small routing map,

which is used to determine which nodes to forward the message to. A problem with

this type of look up is that the response time might be too high for time-dependent

applications. Both the centralized and distributed failsafe techniques offer their own

set of advantages and disadvantages.

70

5.3 Implications

The implications of distributed systems are not limited to the handling of node failures.

With objects distributed to multiple nodes the name service will be queried frequently,

as such, caching mechanisms can increase the efficiency of the look up process. Addi-

tionally, the use of distributed objects raises the question of how to efficiently reclaim

the resources used by an object after its lifetime.

When objects are distributed to multiple nodes in the system, there are several con-

siderations that need to be made. First, we need to consider the possibilities for in-

creasing the efficiency of the name service, by expanding it with the ability to cache

resources that are frequently in use. While the implementation of caching mechanisms

are beyond the scope of this thesis we consider such mechanisms to be integral for the

middleware. The reason for this is that it can greatly increase the speed of the pro-

cessing, particularly if there is a subset of objects that are frequently being accessed. In

the case of MMOGs, this is not an unlikely scenario. Consider the long lifetime of the

objects representing the interacting players. There is a high likelihood that much of the

traffic generated involves these objects, and as such, it could be useful to have them

cached. This is particularly the case when we consider migration in view of moving

players between regions of the game. This also introduces a consideration about hav-

ing tiered caching, where the application developer can assign objects to caching tiers

dependent on their perceived importance, or number of expected look ups. The tiering

system is comparable to how a central processing unit commonly has a L1, L2 and L3

cache.

While caching of frequently used resources can improve the speed of the applica-

tion, it is just as important to reclaim obsolete objects. If this is not done, the system

resources can become depleted. Garbage collection, as it is commonly referred to, is a

form of automatic memory management. The garbage collector reclaims memory used

by objects that will never again be accessed by the application. As such, the purpose of

the garbage collector is to manage the life time of an object and free the resources used

by it. In the face of a distributed system, this can become particularly difficult, and a

71

number of solutions to the implementation of a reliable and effective system has been

proposed [57–59].

5.4 Summary

We believe that the middleware we have implemented offers some exciting possibil-

ities to the developers of distributed applications. It provides facilities that are, as far

as we have been able to determine, non-existent in existing object-oriented middle-

ware. We are referring to the ability to migrate objects between nodes. To implement

this functionality, we have had to expand the design of the name service to include

mechanisms for maintaining references to the objects, even after multiple migrations.

The name service itself is implemented as a distributed name service, which is not as

uncommon in object oriented middleware. We do realize that this middleware is not

suitable for all types of applications. There are a number of object oriented middle-

ware implementations available that are more suitable depending on the application.

In particular, we consider this middleware, in its current state, to be unsuitable for

applications that are data driven and require reliable transactions. Consider the re-

quirements of a web application, where being available and reliable is more important

then being able to deliver a result as fast as possible. Furthermore, we have seen ex-

amples of middleware, such as CORBA (see section 2.3), that attempt to solve all mid-

dleware problems, and as a result end up becoming unwieldy and complex. We have

demonstrated a few areas of use for our middleware and believe there are a number of

additional uses for it. In the next chapter, we will summarize the work accomplished

and knowledge gained through the time working on this thesis.

72

Chapter 6

Conclusion

In the course of this thesis, we have designed and implemented a middleware that

meets the needs of real-time interactive applications. Here we will shortly summarize

the results of our efforts and the most significant contributions of our work. Finally,

we will present issues that we consider worthwhile pursuing.

6.1 Summary and Contribution

Middleware is an important tool in the development of distributed applications, and

equally important is selecting an appropriate middleware. The selection process should

be guided by the characteristics and requirements of the application in question. Dur-

ing our research, we noted that interactive real-time applications, which are time-

dependent and event based applications, were inadequately supported by existing

middleware. As such, we isolated a number of factors pertaining to this genre of ap-

plications that we considered fundamental to the development of a middleware that

could accommodate for the behavior of these applications. As a result of analyzing

these factors, we designed and implemented a middleware that supports the migra-

tion of objects using a distributed name service to maintain references. We did this, be-

cause we noticed that these applications, due to their interactive nature, could achieve

performance benefits if they were able to dynamically accommodate for changes in

the environment. The middleware we developed supports this dynamic nature, as

we demonstrated by implementing an application that mimics the chat system of a

73

MMOG. The migration facilities provide the developer with several interesting op-

portunities, as we saw in section 5.1. The scenario involving latency reduction in

MMOGs, by migrating objects based on geographical composition of user groups, we

considered to be particularly interesting. As such, we have written an article [60] about

it, which will appear in the proceedings of the ITA’ 07 conference, held in Wrexham,

North Wales. We have also reviewed the implications of our design, in light of distrib-

uted systems. Accordingly, we have considered possibilities for avoiding the effects

of partial failures. We have also considered additional facilities that distributed sys-

tems should have in place, such as garbage collection and caching. The development

of this middleware has provided us with valuable insight, and we realize that there

are a number of additional services that could be useful for the developer. We have

provided one service, in the form of a code generator, which easily can be expanded to

include support for new services.

6.2 Future Work

In addition to the functionality mentioned in the preceding section, there are a number

of useful expansions to the middleware that could be implemented. In this section we

will review some of the more obvious ones.

Interactive real-time applications, such as MMOGs, are designed to run indefinitely,

as such, it would be beneficial to be able to dynamically load new classes during run-

time. This would make it possible to update the implementation of a class if it became

necessary.

Another aspect is related to partitioning. At this point in time, there are no mechan-

isms that make it possible to dynamically form groups. Though we consider automatic

grouping of objects, based on examining the interaction patterns, to be an interesting

area that is worth investigating in the future.

Finally, it would be useful to provide the developer with language bindings to a

high level programming language, such as Python, Ruby, Perl or similar. This could

74

make the development process a lot faster, while still retaining the low level interfaces

provided for by C++.

75

Appendix A

Result from Code Generation Example

A.1 example.h

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # ifndef EXAMPLE_H_

4 # define EXAMPLE_H_

5

6 # include <str ing >

7 # include " o b j e c t . h"

8 # include " xdrhandler . h"

9 # include " r p c r e s u l t . h"

10 # include " r p c u t i l . h "

11 # include " r emotepr ocedureca l l . h"

12

13 c l a s s ExampleRPC ;

14

15 c l a s s Example : public Object , public RemoteProcedureCall <Example > , public RPCUtil

16 {

17 pro t ect ed :

18

19 friend b ool_ t xdr_Example (XDR* xdrs , Example * objp) ;

20

21 i n t value ;

22

23 friend b ool_ t xdr_rpc_setValueReturnHandler (XDR * xdrs , Example * objp) ;

24 i n t r e t v a l _ s e t V a l u e ;

25

26

27 public :

28

29 s t a t i c ExampleRPC* createRPCHandler (Ob j ec t id *) ;

30

31 Example (XDRHandler& xdrh , bool c r e a t e O b j e c t i d= t rue) ;

32 char * getTypeName () ;

33

34 i n t executeFunction (std : : s t r ing , XDRHandler&) ;

35 i n t getFunctionAuthLevel (std : : s t r i n g) ;

36

37 Ob j ec t& c r e a t e (XDRHandler&) ;

38 void d e f l a t e (XDRHandler& xdrh) ;

76

39

40 Example (bool c r e a t e O b j e c t i d= t rue) ;

41 v i r t u a l ~Example () ;

42

43 v i r t u a l i n t setValue (i n t _value) ;

44 void r pc_se tValue (XDRHandler&) ;

45 void rpc_setValueReturnHandler (XDRHandler& xdrh , i n t returnValue) ;

46

47 } ;

48

49 # endif / *EXAMPLE_H_ * /

A.2 example.cpp

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # include " example . h "

4 # include " rpc_example . h"

5 # include " r p c r e s u l t . h"

6

7 Example : : Example (bool c r e a t e O b j e c t i d / * = t r u e * /) : Ob j ec t (* t hi s , c r e a t e O b j e c t i d)

8 {

9 r e g i s t e r F u n c t i o n (std : : s t r i n g (" setValue ") , &Example : : rpc_setValue , 0 , 1) ;

10 }

11

12 void Example : : d e f l a t e (XDRHandler& xdrh)

13 {

14 xdrh . setStreamToWrite () ;

15 xdr_Example (xdrh . getStream () , t h i s) ;

16 }

17

18 Ob j ec t& Example : : c r e a t e (XDRHandler& xdrh)

19 {

20 xdrh . setStreamToRead () ;

21 return new Example (xdrh , 0) ;

22 }

23

24 Example : : Example (XDRHandler& xdrh , bool c r e a t e O b j e c t i d / * = t r u e * /) : Ob j ec t (* t hi s , c r e a t e O b j e c t i d)

25 {

26 xdr_Example (xdrh . getStream () , t h i s) ;

27 }

28

29 i n t Example : : executeFunction (std : : s t r i n g functionName , XDRHandler& xdrh)

30 {

31

32 i f (f indF unct ion (functionName)) {

33 c a l l F u n c t i o n (functionName , xdrh) ;

34 }

35 el se {

36 RPCResult r es (" NoSuchFunction ") ;

37 xdrh . resetHandler () ;

38 r es . s e r i a l i z e (xdrh) ;

39 xdrh . writeToSocket () ;

40 return 1 ;

41 }

42 return 0 ;

43 }

44

45 i n t Example : : getFunctionAuthLevel (std : : s t r i n g functionName)

46 {

47 return g etF unct ionA uthor iza t ionLeve l (functionName) ;

77

48 }

49

50 Example : : ~ Example ()

51 {

52 }

53

54 ExampleRPC* Example : : createRPCHandler (Ob j ec t id * oid)

55 {

56 ExampleRPC* erpc = ExampleRPC : : g e t Ins tance () ;

57 erpc−>s e t O b j e c t i d (oid) ;

58 return erpc ;

59 }

60

61 char * Example : : getTypeName ()

62 {

63 return "example_h_EXAMPLE " ;

64 }

65

66

67

68

69

70

71

72 / /−−−−−−−−−−−−−−−−−[b e g i n : s e t V a l u e

73

74 i n t Example : : setValue (in t_va lue)

75 {

76 / * your c o d e h e r e * /

77 }

78

79 void Example : : r pc_se tValue (XDRHandler& xdrh)

80 {

81 ExampleRPC* erpc = ExampleRPC : : g e t Ins tance () ;

82 erpc−>setValueParameters (xdrh) ;

83 setReturnValue (" Processed " , &xdrh) ;

84 rpc_setValueReturnHandler (

85 xdrh ,

86 setValue (erpc−>getParam_value ())

87) ;

88 xdrh . writeToSocket () ;

89 }

90

91 void Example : : rpc_setValueReturnHandler (XDRHandler& xdrh , i n t returnValue)

92 {

93 xdrh . setStreamToWrite () ;

94 r e t v a l _ s e t V a l u e = returnValue ;

95 xdr_rpc_setValueReturnHandler (xdrh . getStream () , t h i s) ;

96 }

97

98 / /−−−−−−−−−−−−−−−−−[end : s e t V a l u e

A.3 rpc_example.h

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # ifndef EXAMPLERPC_H_

4 # define EXAMPLERPC_H_

5

6 # include " example . h "

7 # include " r p c u t i l . h "

78

8

9 c l a s s Ob j ec t id ;

10

11 c l a s s ExampleRPC : public Example

12 {

13

14 i n t _value ;

15

16 friend b ool_ t xdr_rpc_setValue (XDR * xdrs , ExampleRPC * objp) ;

17 friend b ool_ t xdr_rpc_setValueReturnHandler (XDR * xdrs , ExampleRPC * objp) ;

18

19

20 s t a t i c ExampleRPC* _er pcIns tance ;

21

22 ExampleRPC(bool c r e a t e O b j e c t i d= f a l s e) ;

23 ExampleRPC(const ExampleRPC&) ;

24 void operator =(const ExampleRPC&) ;

25 ~ExampleRPC () ;

26

27

28 public :

29

30 s t a t i c ExampleRPC* g et Ins tance () ;

31 void s e t O b j e c t i d (Ob j ec t id *) ;

32

33

34

35 i n t setValue (i n t __value) ;

36 void setValueParameters (XDRHandler& xdrh) ;

37 i n t getParam_value () ;

38

39 } ;

40

41 # endif / * EXAMPLERPC_H_* /

A.4 rpc_example.cpp

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # include " rpc_example . h"

4 # include " r p c r e s u l t . h"

5

6 ExampleRPC* ExampleRPC : : _er pcIns tance = 0 ;

7

8 ExampleRPC* ExampleRPC : : g e t Ins tance ()

9 {

10 i f (_er pcIns tance == 0)

11 {

12 _er pcIns tance = new ExampleRPC () ;

13 }

14 return _er pcIns tance ;

15 }

16

17 ExampleRPC : : ExampleRPC(bool c r e a t e O b j e c t i d / * = f a l s e * /) : Example (c r e a t e O b j e c t i d)

18 {

19 }

20

21 void ExampleRPC : : s e t O b j e c t i d (Ob j ec t id * _oid)

22 {

23 oid = _oid ;

24 }

79

25

26 ExampleRPC : : ~ ExampleRPC ()

27 {

28 }

29

30

31

32

33

34

35

36 / /−−−−−−−−−−−−−−−−−[b e g i n : s e t V a l u e

37

38 / * s e r i a l i z e * /

39 i n t ExampleRPC : : setValue (i n t __value)

40 {

41 _value = __value ;

42

43 bool r e t r y = t rue ;

44 do {

45 XDRHandler * xdrh = createHeader (" setValue " , getFunctionVersion (" setValue ") , g e tOb j ec t id ()) ;

46 xdr_rpc_setValue (xdrh−>getStream () , t h i s) ;

47 xdrh−>writeToSocket () ;

48 XDRHandler * x dr h_r e t = new XDRHandler (xdrh−>g etSock et ()) ;

49 i n t r e s u l t = handleReturnValue (x dr h_r e t) ;

50

51 i f (r e s u l t == 1)

52 {

53 Ob j ec t id * oid = Ob j ec t id : : d e s e r i a l i z e (* xdrh) ;

54 O b j e c t R e g i s t e r : : setCareofAddress (g e tOb j ec t id () , * oid) ;

55 }

56 el se i f (r e s u l t == −1)

57 {

58 std : : cout << " setValue , r e s u l t : −1" << std : : endl ;

59 std : : cout << " K i l l i n g a p p l i c a t i o n . " << std : : endl ;

60 e x i t (1) ;

61 }

62 el se

63 {

64 xdr_rpc_setValueReturnHandler (xdrh_ret−>getStream () , t h i s) ;

65 return r e t v a l _ s e t V a l u e ;

66 }

67 del e t e xdrh ;

68 del e t e x dr h_r e t ;

69 } while (r e t r y) ;

70 return 0 ; / * s h o u l d n ever r e a c h t h i s p o i n t * /

71 }

72

73 / * d e s e r i a l i z e * /

74 void ExampleRPC : : setValueParameters (XDRHandler& xdrh)

75 {

76 xdrh . setStreamToRead () ;

77 xdr_rpc_setValue (xdrh . getStream () , t h i s) ;

78 }

79

80 i n t ExampleRPC : : getParam_value ()

81 {

82 return _value ;

83 }

84

85 / /−−−−−−−−−−−−−−−−−[end : s e t V a l u e

80

A.5 xdr_example.h

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # ifndef XDR_EXAMPLE_H_

4 # define XDR_EXAMPLE_H_

5

6 # include <rpc/xdr . h>

7 # include " example . h "

8 # include " rpc_example . h"

9

10 b ool_ t xdr_rpc_setValue (XDR* xdrs , ExampleRPC* objp) ;

11

12 b ool_ t xdr_Example (XDR* xdrs , Example * objp) ;

13

14 # endif / *XDR_EXAMPLE_H_ * /

A.6 xdr_example.cpp

1 / * Output a u t o m a t i c a l l y g e n e r a t e d . * /

2

3 # include " xdr_example . h"

4

5 b ool_ t xdr_rpc_setValue (XDR* xdrs , ExampleRPC* objp)

6 {

7 i f (! x dr _ int (xdrs , &objp−>_value))

8 {

9 return f a l s e ;

10 }

11 return t rue ;

12 }

13

14 b ool_ t xdr_rpc_setValueReturnHandler (XDR* xdrs , ExampleRPC* objp)

15 {

16 i f (! x dr _ int (xdrs , &objp−>r e t v a l _ s e t V a l u e))

17 {

18 return f a l s e ;

19 }

20 return t rue ;

21 }

22

23 b ool_ t xdr_Example (XDR* xdrs , Example * objp)

24 {

25 i f (! x dr _ int (xdrs , &objp−>value))

26 {

27 return f a l s e ;

28 }

29 return t rue ;

30 }

A.7 example-install.txt

1 Usage i n s t r u c t i o n .

2 −−−−−−−−−−−−−−−−−−

3 Edit the f o l low ing f i l e s :

4

5 In f i l e : " d i s t p t r . h " add the f o l low ing l i n e s :

81

6

7 # include " example . h "

8 # include " rpc_example . h"

9

10 In f i l e : " main . cpp " in f unct ion : " s t a t i c void r eg is te r ClassT y pes () " add the f o l low ing l i n e (s) :

11

12 Example * type = new Example () ;

13 TypeRegister : : addType (type−>getTypeName () , dynamic_cast<Ob j ec t * >(type)) ;

14

15 In f i l e : " main . cpp " add the f o l low ing l i n e s :

16

17 # include " example . h "

82

Appendix B

Source Code and Documentation

The source code and documentation for the implementation can be found on the com-

pact disc accompanying the printed version of this thesis, and is otherwise available for

download as a tar archive at http://paul.beskow.no/master/paulbb.middleware-cd.

content.tar.

B.1 Content

The compact disc, or archive, consists of four directories.

1. documentation

This directory contains the documentation generated from the comments in the

source code, and contains two sub directories, one for the latex version of the

documentation and one for the html version.

2. generator

This directory contains the code generator.

3. pygccxml-0.8.5

This directory contains the modified version of the pygccxml module.

4. source

This directory contains the source code for the middleware.

83

B.2 The Generator

B.2.1 Installation

Before the generator script can be run it is necessary to install the pygccxml-0.8.5 mod-

ule. This is accomplished by running the following command from the root of the

pygccxml-0.8.5 directory:

python setup.py install

This module relies on the GCC-XML program, which can be obtained from: http:

//www.gccxml.org/HTML/Download.html.

Note: It is important that the development version from the CVS repository is used.

This is because the available latest release does not support the functionality we require.

B.2.2 Usage

Once the module has been installed the script parser.py from the generator directory can

be run as follows:

python parser.py example.h

Where the file example.h is substituted with the name of the header file you wish to

parse. See section 4.7 for more discussion on the use of the parser.

B.3 The Middleware

B.3.1 Installation

The code is written in C++ and the makefile is written for use with GCC. We have not

tested the build process with other compilers. In order for the code to compile, the

cryptography library beecrypt needs to be installed, this can be obtained from http://

sourceforge.net/projects/beecrypt. Once this is in place the following command

can be run in the directory source/Debug:

make

84

B.3.2 Usage

There are three possible ways of running the program, as the primary server:

./middleware server <port> 0

as the secondary server:

./middleware server <port> 1

or as a client:

./middleware client <host> <port>

For a detailed example of its use, see section 4.6.

85

Bibliography

[1] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,

and Mark Claypool. The effects of loss and latency on user performance in unreal

tournament 2003. In NetGames ’04: Proceedings of 3rd ACM SIGCOMM workshop

on Network and system support for games, pages 144–151, New York, NY, USA, 2004.

ACM Press.

[2] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-time multiplayer

games. In NOSSDAV ’02: Proceedings of the 12th international workshop on Network

and operating systems support for digital audio and video, pages 23–29, New York, NY,

USA, 2002. ACM Press.

[3] The Entertainment Software Association. ESAs 2006 essential facts about the com-

puter and video game industry. http://www.theesa.com/, jan 2007.

[4] B. S. Woodcock. An analysis of mmog subscription growth. http://www.

mmogchart.com, jan 2007.

[5] C.J. Bonk, V.P. Dennen, and INDIANA UNIV AT BLOOMINGTON. Massive Mul-

tiplayer Online Gaming: A Research Framework for Military Training and Education.

Defense Technical Information Center, 2005.

[6] J. Preston, L. Booth, and J. Chastine. Improving Learning and Creating Com-

munity in Online Courses via MMOG Technology. Proceedings of the 35 thSIGCSE

Technical Symposium (Norfolk, VA, March 2004), ACM Press, pending acceptance.

[7] Funcom. Anarchy Online. http://www.anarchy-online.com/, January, 2007.

[8] Linden Lab. Second Life. http://secondlife.com/, January, 2007.

86

[9] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, F. De Turck, B. Dhoedt, and

P. Demeester. Dynamic microcell assignment for massively multiplayer online

gaming. Proceedings of NetGames’ 05, Hawthorne, NY, USA, pages 1–7, October

2005.

[10] T.N.B. Duong and S. Zhou. A dynamic load sharing algorithm for massively mul-

tiplayer online games. ICON’ 03, Sydney, Australia, pages 131–136, October 2003.

[11] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra. Matrix: Ad-

aptive middleware for distributed multiplayer games. In Gustavo Alonso, ed-

itor, Middleware, volume 3790 of Lecture Notes in Computer Science, pages 390–400.

Springer, 2005.

[12] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A Distributed Architecture for

Online Multiplayer Games. Proceedings of NSDI’ 06, San Jose, USA, pages 155–168,

May 2006.

[13] TIOBE Software. Programming Community Index. http://www.tiobe.com/

tpci.htm, April, 2007.

[14] Sun Microsystems Inc. Remote procedure call protocol specification. In Network-

ing on the Sun Workstation. February 1986. Published as rfc1057.

[15] W. Rosenberry, D. Kenney, and G. Fisher. OSF Distributed Computing Environment:

Understanding DCE. O’Reilly, Sebastopol, 1993.

[16] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-

raveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing, 6(2):86–93, 2002.

[17] Michi Henning. A new approach to object-oriented middleware. IEEE Internet

Computing, 8(1):66–75, 2004.

[18] S. Vinoski. CORBA: Integrating diverse applications within distributed hetero-

geneous environments. IEEE Communications Magazine, 35(2):46–55, 1997.

87

[19] N. Brown and C. Kindel. Distributed Component Object Model Protocol–

DCOM/1.0. Online, November, 1998.

[20] The Open Group. COMsource. http://www.opengroup.org/comsource/, April,

2007.

[21] The Open Group. http://www.opengroup.org/, April, 2007.

[22] K. Arnold, J. Gosling, and D. Holmes. Java (TM) Programming Language, The.

Addison-Wesley Professional, 2005.

[23] A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object Model for the Java

System. Computing Systems, 9(4):265–290, 1996.

[24] T. B. Znati and J. Molka. A simulation based analysis of naming schemes for

distributed systems. In Proceedings of the 25th Annual Simulation Symposium, pages

42–53, Los Alamitos, CA, USA, April 1992.

[25] J.H. Howard, Carnegie-Mellon University, and Information Technology Center.

An Overview of the Andrew File System. Carnegie Mellon University, Information

Technology Center, 1988.

[26] S. Saroiu, K.P. Gummadi, and S.D. Gribble. Measuring and analyzing the charac-

teristics of Napster and Gnutella hosts. Multimedia Systems, 9(2):170–184, 2003.

[27] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. Proceedings of SIG-

COMM’ 01, San Diego, CA, USA, pages 149–160, aug 2001.

[28] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,

Computer Science Division, U. C. Berkeley, apr 2001.

[29] B. Goodheart and J. Cox. The magic garden explained: the internals of UNIX System V

Release 4: an open systems design. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,

1994.

88

[30] J. Postel. Domain Name System Structure and Delegation, 1994.

[31] Object Management Group. http://www.omg.org/, April, 2007.

[32] Object Management Group. Catalog of OMG Specifications. http://www.omg.

org/technology/documents/spec_catalog.htm, April, 2007.

[33] C. E. Perkins. Mobile IP. Communications Magazine, IEEE, 35(5):84–99, 1997.

[34] C. Perkins. RFC 2002: IP mobility support, October 1996.

[35] Raj Srinivasan. XDR: External data representation standard. RFC 1832, August

1995.

[36] Sun Microsystems, Inc. XDR: External data representation standard. RFC 1014,

June 1987.

[37] D. van Heesch. Doxygen Manual, 2003.

[38] Bjarne Stroustrup. The C++ Programming Language: Third Edition. Addison-Wesley

Publishing Co., Reading, Mass., 1997.

[39] Michael Donahoo. TCP/IP Sockets in C: Practical Guide for Programmers. Morgan

Kaufmann Publishers, pub-MORGAN-KAUFMANN:adr, 2003.

[40] J. Postel. RFC–793 Transmission Datagram Protocol. Information Sciences Institute,

USC, CA, Sept, 1981.

[41] K. Egevang and P. Francis. RFC1631: The IP Network Address Translator (NAT).

Internet RFCs, 1994.

[42] Christoph Ludwig Schuba. On the modeling, design, and implementation of fire-

wall technology, January 01 1997.

[43] Boost.org. Boost C++ Libraries - Serialization. http://www.boost.org/libs/

serialization/doc/index.html, April, 2007.

[44] D. Winer et al. XML-RPC Specification. Jun, 15:7, 1999.

89

[45] Sun Microsystems. ONC+ Developer’s Guide. http://docs.sun.com/app/

docs/doc/816-1435, April, 2007.

[46] Roman Yakovenko. pygccxml. http://www.language-binding.net/

pygccxml/pygccxml.html, April, 2007.

[47] B. King. GCC-XML the xml output extension to gcc. Undated. Online: http:

//www.gccxml.org/HTML/Index. html.

[48] GCC, The Gnu Compiler Collection. http://gcc.gnu.org/, January, 2007.

[49] Blizzard. World of Warcraft. http://www.worldofwarcraft.com/, January,

2007.

[50] CCP. EVE Online. http://www.eve-online.com/, January, 2007.

[51] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an MMORPG.

Proceedings of NOSSDAV’ 06, Newport, RI, USA, pages 1–7, may 2006.

[52] Abdennour El Rhalibi and Madjid Merabti. Agents-based modeling for a peer-to-

peer mmog architecture. Comput. Entertain., 3(2):3–3, 2005.

[53] J.E. White. Mobile agents. Software agents table of contents, pages 437–472, 1997.

[54] W.M. Farmer, J.D. Guttman, and V. Swarup. Security for Mobile Agents: Issues

and Requirements. Proceedings of the 19th National Information Systems Security

Conference, 2:591–597, 1996.

[55] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. Proceedings of SOSP’01, Lake Louise,

Alberta, Canada, pages 188–201, oct 2001.

[56] Dennis Geels. Data Replication in OceanStore. Technical Report UCB//CSD-02-

1217, Computer Science Division, U. C. Berkeley, nov 2002.

[57] David Plainfossé and Marc Shapiro. A survey of distributed garbage collection

techniques. In Henry G. Baker, editor, Proc. Int. Workshop on Memory Management

(IWMM), volume 986, pages 211–249, Kinross, Scotland (UK), September 1995.

90

[58] N. C. Juul and E. Jul. Comprehensive and robust garbage collection in a distrib-

uted system. In Proc. Int. Workshop on Memory Management, number 637, pages

103–115, Saint-Malo (France), 1992. Springer-Verlag.

[59] Jose M. Piquer. Indirect distributed garbage collection: handling object migration.

ACM Trans. Program. Lang. Syst., 18(5):615–647, 1996.

[60] P. Beskow, P. Halvorsen, and C. Griwodz. Latency Reduction in Massively Multi-

player Online Games by Partial Migration of Game State. To appear in the Proceed-

ings of the 2nd International Conference on Internet Technology and Applications (ITA’

07), Wrexham, North Wales, UK, September 2007.

91

