
Automatic event detection in
soccer videos

Olav Rongved

Thesis submitted for the degree of
Master in computer science

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

Automatic event detection in
soccer videos

Olav Rongved

c© 2020 Olav Rongved

Automatic event detection in soccer videos

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Today, events in soccer are manually annotated by humans. Annotation is a
tedious, time-consuming, and expensive task. Event annotations are useful for
multiple different purposes, such as entertainment, analysis, and more. Auto-
mating the process can save much time, and provide access to event annotations
in leagues where it may be financially infeasible to annotate manually. Further-
more, with a general approach, it would be possible to annotate events that were
previously ignored. Our objectives are to research and find general solutions for
automatic event detection that can be easily adapted to new events, implement
and find a good approach through experimental prototyping, analysis of our
approach, and comparison to the state-of-the-art. Action recognition and detec-
tion are active areas of research. There are many approaches to these problems,
but in recent years, approaches have mostly been dominated by deep-learning-
based methods. Based on current research in action recognition and detection,
we experiment with four different architectures based on neural networks. For
comparison, we use a large annotated dataset for soccer called SoccerNet [19],
where the goal is to predict temporal anchors for the events ’Goal ’, ’Substitu-
tion’ and ’Card ’ events within some distance of the ground truth. Additionally,
we download videos from Swedish Allsvenskan and Norwegian Eliteserien to test
cross-dataset performance. To select our model, we experiment by using loc-
ally extracted video-frames in a classification task. We extensively test different
configurations, such as the temporal extent of input, resolution, gray-scale in-
put, and the use of pretrained models. We find that a pretrained ResNet 3D-18
model performs best with 128 frame inputs, resulting in 88.4% accuracy on the
validation set for the classification task.

For the task of spotting in soccer videos, we use a sliding-window approach
with a stride of 1 second. We report 51% Average-mean-Average-precision
(Average-mAp) compared to the baseline 49.7% in Giancola et al. [19], we
also find that at a relatively low tolerance of 5, our approach reports a mean-
Average-precision of 0.38 compared to the baseline of less than 0.2. We further
test the robustness of our approach on our dataset from Swedish Allsvenskan
and Norwegian Eliteserien and find that the model generalizes well. To better
understand our model, we analyze model behavior in a variety of settings such
as densely sampled local predictions around events and through the use of Class
Activation Maps [59]. We find that based on our results, our model performs
well for the task of action recognition. Ultimately, the model suffers from false
positives when used for event detection with a sliding-window approach. The
analysis of our model grants us useful insight for further work, such as what the
model reacts to, and what it may need in the future.

i

Acknowledgements

First and foremost I want to thank my supervisors P̊al, Michael and H̊akon for
all the help. I also want to thank my family for the support, and all the others
who helped, Hanna, Steven, Vajira, Philippe and Johan. Special thanks to all
the guys from L3 as well.

The research presented in this thesis has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3), which is financially
supported by the Research Council of Norway under contract 270053.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Scope and Limitations . 2
1.4 Research Method . 3
1.5 Main Contributions . 3
1.6 Outline . 4

2 Background 6
2.1 Introduction . 6
2.2 Event definition . 6
2.3 Action Recognition . 6
2.4 Action Detection . 7
2.5 Machine learning . 7

2.5.1 Supervised learning . 7
2.5.2 Classification . 7
2.5.3 Regression . 7
2.5.4 Dataset . 7
2.5.5 Neural Networks . 9
2.5.6 2D Convolutional Neural Networks 11
2.5.7 Transfer learning . 12

2.6 Related works . 12
2.7 Summary . 16

3 Methodology 18
3.1 Introduction . 18
3.2 Dataset description . 18
3.3 Event detection . 22
3.4 Data preprocessing . 22
3.5 Overview of models . 24

3.5.1 Model architectures . 24
3.5.2 Models . 26
3.5.3 Implementation . 27

3.6 Evaluation of Models: Definition of metrics 28
3.7 Model selection . 30

3.7.1 Hyperparameters . 30
3.7.2 Kinetics-400 pretrained models 31
3.7.3 Effect of different temporal inputs 33

iii

3.7.4 Reduced input . 37
3.7.5 SlowFast results . 38
3.7.6 Input resolution . 40

3.8 Summary . 42

4 Results 43
4.1 Introduction . 43
4.2 Datasets . 43
4.3 Behaviour of model R3D . 44

4.3.1 Sliding window . 44
4.3.2 How many frames are needed? 45
4.3.3 Class activation tubes . 50

4.4 Full video detection . 68
4.4.1 Processing output prediction 68
4.4.2 Spotting results . 69
4.4.3 Comparison to baseline 73

4.5 Generalization to other datasets 73
4.5.1 Goals . 74
4.5.2 Goal attempts . 76

4.6 Discussion . 78
4.6.1 Corrupt samples . 79
4.6.2 Known bugs . 79
4.6.3 Just published work . 79
4.6.4 Scope of the work . 79
4.6.5 Further improvements . 79

4.7 Summary . 80

5 Conclusion 82
5.1 Summary and contributions . 82
5.2 Future work . 83

A Appendix 89

iv

List of Figures

2.1 Illustration of three different functions (red line) used to fit the
training set. The left image illustrates overfitting, the middle
shows the underlying function, and the right image illustrates
underfitting. 8

2.2 An example of gradient descent used to find the local minimum.
On the left, we see an example of a linear regression line fit during
each iteration; on the right, we see the loss for corresponding
iterations of gradient descent. 9

2.3 Illustration of Neural Network . 10
2.4 Illustration of convolution operation in CNN 11
2.5 Illustration of RGB channels in CNN 12
2.6 Number of clips available in recent action recognition datasets

and their year of release. 16

3.1 A timeline of a sample soccer game half with annotated events . 20
3.2 Distribution of the distances between samples within the same

class in seconds. Events distances shows distance distribution
for distances between any events. Number of bins = 200. They
are calculated from the training set. 21

3.3 Illustrates region in which a correct prediction would be con-
sidered as a true positive for δ = 15s 22

3.4 Sample frames visualized for a sample of 128 frames. The middle
frame is at the annotated time. 23

3.5 llustrates 3D convolution where W = width, H = height, T =
frame . 24

3.6 Illustrates a residual 3D block 25
3.7 Figure illustrates the basic architectures of the models used [16,

47]. Here,
⊕

represents elementwise sum, and
⊗

represents
concatenation. 26

3.8 Learning rate schedule used . 31
3.9 Accuracy and loss for each model. 32
3.10 Accuracy and loss during training on training set 34
3.11 Accuracy and loss during training on validation set 34
3.12 Accuracy and loss for gray input frames for training and valida-

tion set. Models are trained on 16 frames 37
3.13 Figure shows accuracy and loss for SlowFast 2+1D 39
3.14 Learning rate schedule with warm restarts 39
3.15 Accuracy and loss for training and validation set when using

warm restarts . 39

v

3.16 Accuracy and cross entropy loss during training 41

4.1 Illustration of sliding-window approach 44
4.2 Softmax output for the event Card with a stride of 1 frame over

260 frames. Samples are correctly predicted validation samples.
Red dotted line shows the output prediction where 45

4.3 Softmax output for the event Substitution with a stride of 1
frame over 260 frames. Samples are correctly predicted valid-
ation samples. Red dotted line shows the output prediction where 46

4.4 Softmax output for the event Goal with a stride of 1 frame over
260 frames. Samples are correctly predicted validation samples.
Red dotted line shows the output prediction for the 128 frames
of the event. 46

4.5 Softmax output for the event Background with a stride of 1
frame over 260 frames. Samples are correctly predicted valid-
ation samples. Red dotted line shows the output prediction for
the 128 frames of the event. 47

4.6 Densely sampled output prediction over 138.4 seconds around
event ’Card ’. Red dotted line represents the temporal anchor of
the event. 48

4.7 Densely sampled output prediction over 138.4 seconds around
event ’Substitution’. Red dotted line represents the temporal
anchor of the event. 49

4.8 Densely sampled output prediction over 138.4 seconds around
event ’Goal ’. Red dotted line represents the temporal anchor of
the event. 49

4.9 Densely sampled output prediction over 138.4 seconds around
event ’Background ’. Red dotted line represents the temporal an-
chor of the event. 50

4.10 Illustration of feature volumes Vi 52
4.11 Illustration of calculation of class activation tubes 52
4.12 Confusion matrix for validation results using R3D with 128 frames 53
4.13 a) Frames during 128 frame input with a stride of 8, starting

at the fourth frame. b) Corresponding class activation maps,
Tcard(t, x, y) visualized for t ∈ {1, 2, 3, ..., 16} 54

4.14 Results from CAT’s spatio-temporally and temporally for the
event ’Card ’. a) Center input frame between interval [s*n,28+s*n]
of 512 frame sample of event for the n’th sample. b) Correspond-
ing center CAM Tcard(8, x, y) c) Class activation signal. X-axis
indicates the full 512 frame interval in feature space d) Temporal
class activation signal for zero-padded 512 frame inputs at 64
frame stride. 55

4.15 a) Frames during 128 frame input with a stride of 8, starting
at the fourth frame. b) Corresponding class activation maps,
Tsubstitution(t, x, y) visualized for t ∈ {1, 2, 3, ..., 16} 56

vi

4.16 Results from CAT’s spatio-temporally and temporally for event
’Substitution’. a) Center input frame between interval [s*n,128+s*n]
of 512 frame sample for the n’th sample. b) Corresponding cen-
ter CAM Tsubstitution(8, x, y) c) Class activation signal. X-axis
indicates the full 512 frame interval in feature space d) Temporal
class activation signal for zero-padded 512 frame inputs at 64
frame stride.. 58

4.17 a) Frames during 128 frame input with a stride of 8, starting
at the fourth frame. b) Corresponding class activation maps,
Tgoal(t, x, y) visualized for t ∈ {1, 2, 3, ..., 16} 59

4.18 Results from CAT’s spatio-temporally and temporally for the
event ’Goal ’. a) Center input frame between interval [s*n,128+s*n]
of 512 frame sample for the n’th sample. b) Corresponding center
CAM Tgoal(8, x, y). c) Class activation signal. X-axis indicates
the full 512 frame interval in feature space d) Temporal class
activation signal signal calculated with 512 frame inputs at 64
frame stride. 60

4.19 a) Frames during 128 frame input with a stride of 8, starting
at the fourth frame. b) Corresponding class activation maps,
Tbackground(t, x, y) visualized for t ∈ {1, 2, 3, ..., 16} 61

4.20 Results from CAT’s spatio-temporally and temporally for the
event ’Background. a) Center input frame between interval [s*n,128+s*n]
of 512 frame sample of event ’Background ’ for the n’th sample.
b) Corresponding center class activation maps Tbackground(8, x, y)
c) Class activation signal. X-axis indicates the full 512 frame in-
terval in feature space d) Temporal class activation signal signal
calculated with 512 frame inputs at 64 frame stride. 62

4.21 Model mistakes event ’Card ’ as event ’Background ’, figure shows
samples from input clip alongside CAMs for event ’Card ’. 63

4.22 Model mistakes event ’Substitution’ as event ’Background ’, fig-
ure shows samples from input clip alongside features for event
’Substitution’. 65

4.23 Model mistakes event ’Goal ’ as event ’Background ’, figure shows
samples from input clip alongside features for event ’Goal ’. . . . 65

4.24 Model mistakes event ’Background ’ as event ’Card ’, figure shows
samples from input clip alongside features for event ’Card ’. . . . 66

4.25 Model mistakes event ’Background ’ as event ’Substitution’, fig-
ure shows samples from input clip alongside features for event
’Substitution’. 67

4.26 Model mistakes event ’Background ’ as event ’Goal ’, figure shows
samples from input clip alongside features for event ’Goal ’. . . . 67

4.27 Illustration of moving average filter 68
4.28 Softmax confidence for each class over 45-minutes with ground

truth. 70
4.29 Prediction for each second after mean filtering, after thresholding.

Red dotted line shows ground truth for each class. 70
4.30 Recall, precision and F1-score of validation set over different

thresholds using a tolerance δ = 2.5s 71
4.31 Recall, precision and F1-score of test set over different thresholds

using a tolerance δ = 2.5s . 71

vii

4.32 mAp over different tolerances . 73
4.33 Goal prediction for randomly sampled clips from Allsvenskan . . 74
4.34 Goal prediction for randomly sampled clips from Eliteserien . . . 74
4.35 Avg. Prediction from Norwegian Eliteserien clips and Swedish

Allsvenskan . 75
4.36 Results from Allsvenskan dataset containing goals for both full

clip and limited interval . 75
4.37 Results from Eliteserien dataset containing goals for both full clip

and limited interval . 76
4.38 Randomly sampled from Allsvenskan ’goal attempts’ clips 77
4.39 Avg. prediction from ’goal attempts’ clips 77
4.40 Results from Allsvenskan dataset containing goal attempts for

both full clip and limited interval 78

viii

List of Tables

3.1 The number of full soccer games with respect to season and
league. Reprinted from Giancola et al [19]. 19

3.2 General information about a compressed version offered by the
authors. Adapted from Giancola et al [19]. 19

3.3 The number of samples for classes for each split. 20
3.4 Minimum, maximum, and mean distance in seconds between

events for each class from the training set. ’All’ contain distances
regardless of class. Calculated from training set. 21

3.5 Percentage of samples for each class, which has a distance of
less than a threshold T seconds between samples in its own class
training set. ’All’ denote distances between any events regardless
of class. 22

3.6 N number of samples for classes. 23
3.7 Parameters for the different models 26
3.8 Per-class precision, recall and F1-score. Higher is better, best

result per class in bold. Both models are trained using 16 frame
inputs. 32

3.9 Weighted and unweighted precision, recall and F1-score. Higher
is better, best result per metric in bold. Both models are trained
using 16 frame inputs. 33

3.10 Accuracy, precision, recall and F1-score per class for R (2+1)D
pretrained on Kinetics-400 with different number of consecutive
frames as input . 35

3.11 Accuracy, precision, recall and F1-score per class for R3D pre-
trained on Kinetics-400 with different number of consecutive frames
as input . 35

3.12 Accuracy, precision, recall and F1-score per class for MC3 pre-
trained on Kinetics-400 with different number of consecutive frames
as input . 36

3.13 Validation accuracy as well as weighted and unweighted average
precision, recall and F1-score. Higher is better, best result per
class in bold. 36

3.14 Results for models trained on 64 and 128 frames when tested with
128 and 64 frames respectively. 37

3.15 Results per class for models trained on gray-scale inputs 38
3.16 Results average over all for models trained on gray-scale inputs . 38
3.17 Per class metrics for SlowFast 2+1D trained using two different

learning rate schedules . 40

ix

3.18 Average scores weighted and unweighted for SlowFast 2+1D trained
with two different learning rate schedules. 40

3.19 Comparison of results for 112 vs 224 resolution 41
3.20 Average results weighted and unweighted for 112 vs 224 resolution 42

4.1 Dataset statistics for Allsvenskan and Eliteserien clips 44
4.4 Table with results on test set for mAp, AP, Precision, Recall,

F1-score and number of predictions made at each threshold . . . 72
4.2 Average-precision and mAp for classes on validation set 72
4.3 Average-precision and mAp for classes on test set 72
4.5 Results for Allsvenskan and Eliteserien at different thresholds . . 78

x

Chapter 1

Introduction

1.1 Motivation

Video as a medium has been popular ever since the TV was introduced. With
more today’s access to laptops, smartphones, and high-bandwidth internet at
all times, it is easier than ever to watch a video. This is further empathized
with online providers of video content such as Netflix and Youtube. Every day,
more than one billion hours of video are viewed on Youtube. Furthermore, more
than 70% of this is viewed on a mobile device [27]. In this context, sports have
been shown on TV since the 1936 Olympics, and in 2018, more than 3.5 billion
people were estimated to have watched some part of the FIFA 2018 World [17].
Today, there are companies whose business model is sports analytics, and there
are several sites and providers of game content across leagues.

Automatic event detection can increase the availability of events for user
consumption. Furthermore, statistics from events can be used in broadcasts for
entertainment value, betting companies, fans, or the teams themselves. Annota-
tions for exciting events is useful for those reading text summaries of sporting
events and can be used to create statistics, or as reference for later extraction of
highlights. Data that contain information on video files has thus become valu-
able. As the world’s video content keeps increasing, it is not feasible to manually
analyze all videos. Therefore, an automatic method to extract annotations from
the video can be valuable, especially to lower leagues or sports where funds are
limited.

Previously, SoccerNet [19], for example, has tried using I3D [8],C3D [48],
and ResNet [24] pretrained on ImageNet [11] as fixed feature extractors, fol-
lowed by dimensionality reduction with PCA. These features are sampled every
0.5s throughout the soccer videos. Afterward, based on these features, the
authors use convolutional layers to capture temporal information, followed by
pooling layers and a fully connected layer. This process is done locally around
an annotated event where the final trained model predicts events on full videos
by a sliding-window approach and post-processing of the predictions. The au-
thors test this approach by using temporal windows ranging from 5-60 seconds,
where 5-second windows performed best given strict requirements for distance
between predicted event and event, while 20-second windows performed best
overall.

1

However, there are several other machine-learning-based approached sug-
gested both earlier and after that potentially provide better results. Therefore,
an open question is: ’How well do state-of-the-art deep-learning based models
perform for automatic detection of events in soccer videos?’

1.2 Problem Statement

Today, sports events are manually annotated. This thesis aims to answer the
following question:

’How can we automatically detect events in untrimmed soccer videos?’.

With recent advances in deep-learning-based action recognition and detection
methods, it may be possible to create a general data-driven model that general-
izes to multiple sports and events therein. We explore how well state-of-the-art
deep-learning models perform in soccer event detection. Our goal is to auto-
matically annotate soccer events in the video as close to the actual event in
a scalable manner. To achieve this in a way where the solution can be scaled
up if needed, we search for a solution that makes predictions based on directly
meaningful information. One approach to evaluate automatic event detection is
through the task of spotting. With spotting, evaluation is measured with strict
rules for distances between actual events and predicted events. We use multiple
datasets for evaluation and provide a baseline comparison from SoccerNet [19].
Our objectives are as follows:

Objective 1 Research and find a general approach to automatic event detec-
tion in soccer videos that can be easily adapted to new events.

Objective 2 Implement and find a good configuration for the given approaches
through experimental prototyping.

Objective 3 Analyze weaknesses and strengths of the selected approach.

Objective 4 Compare experimental results to state-of-the-art.

1.3 Scope and Limitations

Modern event detection has multiple challenges, such as action recognition where
short video clips are classified, action detection on untrimmed videos where the
goal is to find a temporal location and event in time, and spatio-temporal action
detection that aims to find location and event both spatially and temporally.
There are limited publicly available datasets for soccer, our thesis focus on the
SoccerNet dataset [19] where temporal anchors for three different events are
annotated over 784 hours of video. Additionally, we use soccer videos from the
Norwegian Eliteserien and Swedish Allsvenskan leagues. Given our datasets, we
are limited to action recognition and detection. The datasets available contain
the events ’Goal ’, which is defined as the moment the ball crosses the goal
line, ’Goal attempt ’, defined as the moment a player attempts a goal, ’Card ’,
which is the moment the referee shows a yellow or red card to a player, and

2

’Substitution’, the moment a new player enters the field. Thus, we are limited to
these events. There are multiple different sources of information that can be used
for event detection. Audio, video, and commentaries are some examples. Audio
and commentaries may differ significantly from league to league and country
to country. A short video clip of an event should be enough information for a
human annotator to correctly describe the event regardless of language or league.
Therefore, we limit our scope to use video and not audio or commentaries.
There are different approaches to event detection through the use of traditional
computer vision methods. However, we limit the scope to deep-learning-based
methods.

1.4 Research Method

The overall goal for this thesis is to build and test a system for automatic event
detection in soccer videos. To do this, we have based our research method
upon the Association for Computing Machinery (ACM)’s methodology. In 1989
ACM’s Education Board released the report ’Computing as a Discipline’ [12].
In the report, three paradigms described.

The theory paradigm consist of four different steps as follows. Character-
ize objects of study (definition), hypothesize possible relationships among them
(theorem), determine whether relationships are true (proof), interpret results.
Rooted in the experimental scientific model is the paradigm of abstraction.
Form a hypothesis, construct a model and make a prediction, design an experi-
ment, analyze results. Related to engineering is the paradigm of design. Design
consist of the following steps. State requirements, state specifications, design
and implement the system, test the system. For all three paradigms there is
an expectation of an iterative process. In theory there is an iterative process
due to errors that arise, in abstraction, the prediction might not agree with the
results. In the design paradigm, the system test might reveal lacking results
with regards to requirements.

This thesis mostly applies the design paradigm for the general problem of
event detection. We have a specific task that requires a certain level of accuracy
and computational efficiency to be feasible. We further design, implement and
test with experimental prototyping, and test the final system to determine the
practical use for event detection in soccer videos.

1.5 Main Contributions

In this thesis, we address the question of event detection, as described in Sec-
tion 1.2. For objective 1, we analyze state-of-the-art approaches to action recog-
nition and detection and find deep-learning-based methods promising. Based
on state-of-the-art results in action recognition we select the three architec-
tures ResNet 3D-18, ResNet (2+1)D-18, Mixed Convolution-18 [47]. Addition-
ally, we implement a model based on the SlowFast architecture [16], which has
previously shown state-of-the-art performance in both action recognition and
spatio-temporal action detection. In the context of objective 2, we test differ-
ent configurations for the selected model in the task of action recognition of
video-clips. We use the SoccerNet [19] dataset during training, which contains

3

about 784 hours of untrimmed soccer games at 25 frames per second, which is
about 70560000 individual frames. The dataset contains 6637 annotated events:
’Card ’, ’Substitution’ and ’Goal ’. Additionally, we download 617 clips from Nor-
wegian Eliteserien and Swedish Allsvenskan with a length of 60-90 seconds each,
where 533 of the clips contain goals, and 84 contain goal attempts. As an action
recognition task on SoccerNet, we show that the use of pretrained models can
significantly boost generalization, with the best performing pretrained model
reporting 83% compared to its from-scratch counterpart 72.8% with the same
configuration. We further test the effect of using reduced input in the form of
gray-scale videos and show that color may not be an essential aspect of action
recognition with a 0.6% drop in validation accuracy for the best performing
model. We experimentally show that the use of a greater time-window as input
can provide a boost in generalization for classification of soccer events in video
with a 5-7% increase in validation accuracy. There is a high cost to system
memory and computation with regards to video resolution. We, therefore, ex-
periment with different frame sizes and show that resolution may not be critical
to our approach. In the context of objective 3, we try to understand our model
behavior in a practical case. We use a sliding-window approach locally around
annotated events with zero-padded frames. This provides useful insight into
how much of the actual event our model needs, thereby granting us a basis
for the choice of stride for full videos. We repeated the experiment for larger
temporal windows of 138.6 seconds to determine noise in model predictions,
as well as reactions to replays. These replays are not annotated and therefore
resulted in false positives. To understand what our model reacts in terms of
spatio-temporal features, we calculated and analyzed class activation maps and
class activation signals, which contains information on which parts of the input
video-clip the model reacts to. This approach was applied for both correctly
classified and misclassified samples. For objective 4, we test our sliding window
approach on 200 full games, providing a comparison to the baseline of 49.7%
Average-mAp in SoccerNet [19] with 51% Average-mAp in our approach on the
test set. Additionally, we report a 0.38 mAp at a tolerance of 5, compared to
a baseline that, based on visual inspection, had less than 0.2 mAp. With a
threshold of 0.5, we still keep a recall of 0.88, while having reduced the number
of predictions from 550000 to 5711 in the case of the event ’Goal ’. Based on the
results, we believe that the model works well in the case of classification, and
it mostly reacts to events as intended. However, there is a challenge with false
positives, believed to be a result of similar scenes and replays.

1.6 Outline

Chapter 2 Background In Chapter 2, we describe essential machine learning
concepts and terminology. We discuss current research into action recognition
and detection and how deep-learning has impacted the field in the last decade.

Chapter 3 Methodology In Chapter 3, we describe the dataset and the
associated task. We further discuss data preprocessing steps before training. A
description of different candidate models and hyperparameters are given before
we continue with experimental prototyping to decide the best model configura-
tion for our case.

4

Chapter 4 Results In Chapter 4, we first describe the datasets used for
the final evaluation. We describe the behavior of our model with multiple ap-
proaches that grant us insight into why and when our model may fail or succeed.
The overall objective event detection is evaluated on multiple datasets, and the
results are analyzed and discussed.

Chapter 5 Conclusion In chapter 5, we provide a summary of this thesis
and its contributions. We discuss future work in relation to both our approach
and in general.

5

Chapter 2

Background

2.1 Introduction

We want to find a system that can automatically detect events in soccer. Our
focus is on the task of spotting, where the goal is to predict a class and a
single point in time. This chapter is structured as followed. First, important
terminology and methods for used in the thesis are defined. These include terms
such as deep learning,Convolutional Neural Network (CNN), Action Recognition
and Temporal Action Detection.

Next, related works explores the state of the field with respect to cur-
rent and past challenges, improvements in models, and datasets over the years.
Lastly, specific challenges towards soccer-specific action detection and the most
relevant datasets and models are discussed for the task at hand.

2.2 Event definition

What exactly is an event1? The oxford dictionary defines an event as:’a thing
that happens, especially something important ’. For humans, casually describing
when and where a given event occurs comes naturally. Quantifying the exact
start, ending, or length of an event, however, can be difficult. Sigurdsson et
al. [42] explore the ambiguity in the temporal extent of human activities. In
an experiment where humans were tasked with annotation of the start and end
of events, they found that most of the time, the center was agreed upon, while
the starting point and ending varied. For this thesis, we define events to be
instantaneous. This is consistent with the spotting.

2.3 Action Recognition

Action recognition is a classification task in which the goal is to determine what
action is present given some clip. This is also sometimes referred to as Activity
Recognition. The input is commonly in the form of images or video. Typically,

1Events and actions are closely related in literature, and in the context of our problem,
most events can be seen as a product of human actions. Therefore, we interchangeably use
the terms events and actions throughout this thesis.

6

the video input will be temporally trimmed video, meaning that a small subset
(often 3-10 seconds) of the original video. The task is, therefore, to classify a
video, with usually only the target action in mind. Some datasets, however,
feature multiple classes in the same temporally trimmed video. Classifying
actions come with many challenges, e.g., camera motion, different view-points,
occlusions, different quality of video in general. Another challenge comes with
high computational and storage costs.

2.4 Action Detection

Action detection or event detection is the more general task of finding both
when and where an event occurs. This means that any approach needs to find
a temporal interval in addition to the classification task in action recognition.

2.5 Machine learning

Machine Learning (ML) is a broad term for data-driven learning algorithms [21].
ML is often seperated into the subcategories Supervised Learning and Un-
supervised Learning.

2.5.1 Supervised learning

Supervised learning is a class of methods that is identified by the compon-
ents used in the learning process. The components are an input dataset X =
{x1, x2, ..., xn}, a corresponding set of outputs Y = {y1, y2, ..., yn}. The goal of
a typical supervised learning algorithm is to associate the input X and Y such
that, given an input x, it correctly produces the corresponding value y.

2.5.2 Classification

Classification is the process of assigning a class to a given input. This is often
done in a supervised setting. An example of this can be, given an image, is
there a cat present - yes or no. This is a binary classifier, since only two classes
are present, where the most appropriate output would be either 0 or 1. Where
0 would refer to ’Not cat’ and 1 for ’Cat’. For more classes, the output would
typically be a vector y = [c1, c2, ..., cn] where the c is 1 if the class is detected,
and 0 otherwise.

2.5.3 Regression

Regression is a similar problem, also associated with supervised learning. The
difference here mostly lies in the output, and instead of predicting a class, the
output is typically a real number. An example of this would be to predict the
current salary of a worker based on the number of years of experience.

2.5.4 Dataset

In the context of supervised learning, a given task consist of a set of inputs
X, and corresponding outputs Y . In a classification setting, Y is obtained

7

through an annotation process. In many deep-learning problems, this process
is done manually by a human annotator, which for example, looks at an image,
and labels the image as some class c (e.g., a cat or dog). These datasets are
ultimately split into separate pieces, which serve different purposes, as discussed
below. Datasets are ultimately split up into three independent sets, namely the
training set, validation set and test set.

Overfitting Overfitting is a critical problem to be aware of in ML. This refers
to a model that performs well on the Training set but ends up generalizing
poorly to new data. Indeed, the goal is to create a model that works well on
new data - and not one that performs well on already labeled data. This is
illustrated in Figure 2.1, where we see three different solutions to the same
data.

Figure 2.1: Illustration of three different functions (red line) used to fit the train-
ing set. The left image illustrates overfitting, the middle shows the underlying
function, and the right image illustrates underfitting.

Training set is a subset of X and the corresponding Y . This is most often
the majority of the total dataset, and serves the purpose of training the model.

Validation set is another independent subset that is used in training. This is
usually used to tune hyperparameters of a model or to evaluate generalization
and overfitting during training.

Test set is the most crucial set when evaluating the model. The test set should
not be used in any way during training and serves the purpose of evaluating the
model on unseen data.

8

Gradient descent Gradient descent is a popular algorithm used to optimize
a model by finding the correct weights through an iterative process. Suppose
we have model F (X;w), where w are the learnable weights of the function. To
improve our model, we need to find the correct weights w. To do this, we use a
cost function J(w;X).

Formally, gradient descent can be described as follows:

wt+1 = wt − µ∇wJ(wt) (2.1)

where µ is our learning rate, gradient descent finds a local minimum of a given
function by the iterative process of ’moving’ in the direction of a minimum based
on the gradient. The learning rate is a critical hyperparameter to choose. If
the learning rate is too low, it will update slowly, too large, and we will not
converge to the minimum. Figure 2.2 shows a simple example of how we can fit
a line by using gradient descent.

Figure 2.2: An example of gradient descent used to find the local minimum. On
the left, we see an example of a linear regression line fit during each iteration;
on the right, we see the loss for corresponding iterations of gradient descent.

2.5.5 Neural Networks

Neural Networks (NN) can be described a mapping from input space, that can
be in the form of images, audio, text or other data, and maps it to output space,
that can be in the form of continuous or discrete values depending on the task.
We can consider NN as a function F (X) = Y , where X is our input, Y is our
output.

9

Figure 2.3: Illustration of Neural Network

Figure 2.3 illustrates the structure of a neural network. The lines illustrate
the learnable weights, which produces a weighted sum. A function is added for
the purpose of non-linearity at each node. We call this an activation function.
The nodes illustrate the activation value at that point. Formally, this can be
described as follows.

zlk =

nl−1∑
j=1

wljka
l−1
j + blk (2.2)

Where zlk is the weighted sum at the k’th node in the l’th layer, prior to activa-
tion. w are the weights connected to the given node, here b is the bias, another
learnable weight.

The activation value at a given point can be formally defined as:

alk = g(zlk) (2.3)

Where g is some non-linear function. A common activation function, which is
later used in this thesis is called ReLu.

ReLu(x) = max(0, x) (2.4)

ReLu serves the purpose of adding non-linearity. The removal of the activation
function will reduce the output to a linear function. While there are many ways
to adjust and change neural networks, architecturally, the number of layers,
and the number of activation nodes per layer is one of the most important
parameters to choose from. During the training of a neural network, we need
1) a loss function 2) optimization method. The loss function used in neural
networks varies depending on the task. We can consider a loss function L(ŷ, y)
where ŷ is our output prediction and y is our target. We perform a forward-
pass, meaning that we use training data to produce our output prediction ŷ, and

10

calculate our loss based on that. For optimization, a common method is gradient
descent, as described earlier. The chain rule of calculus is used to calculate the
gradient of the loss function with respect to the weights, after which the weights
are updated accordingly. This process is called back-propagation.

2.5.6 2D Convolutional Neural Networks

Convolutional Neural Network (CNN) is one of the most popular models in
machine learning today. One of the earliest uses of CNNs were by Lecun et
al. [35], and was later popularized by AlexNet [33]. CNNs use parameter sharing.

Figure 2.4: Illustration of convolution operation in CNN

Figure 2.4 illustrates how a 3x3 filter is used during convolution over a zero-
padded image. Each point in the feature map is a weighted sum of a local
region in the input image. This means that the input share weights, effectively
finding important information such as edges within the image. Zero-padding is
often used as a way to have better control over the feature map dimensions. In
practice, this process is repeated in each layer with multiple filters, producing
several feature maps.

11

Figure 2.5: Illustration of RGB channels in CNN

Figure 2.5 illustrates how CNNs compute feature maps from RGB color
images. For RGB images, we have three channels. After a convolutional layer
with N filters, we say that there are N feature maps, meaning that for the next
layer, we need appropriate filters.

2.5.7 Transfer learning

In the context of neural networks is the process of re-using weights for a different
purpose. It has been shown that using a pretrained CNN on a different dataset,
can be re-purposed by using it as a feature extractor, followed by some model to
classify [1]. One approach to do this is to train a CNN on one dataset, then freeze
(meaning that the parameters in these layers are not updated during training) n
consecutive layers and retrain the last layers with the new appropriate output.
Thereby, effectively using part of the original model as a feature extractor as
input to new layers to be trained. Another way is to finetune a new model,
which uses the same process but without freezing layers during training, thus
optimizing all parameters according to the new dataset. One study showed
that finetuning a model that had been pretrained on a similar dataset boosted
generalization performence [58]. Pre-training has been successful also in action
recognition [8, 43, 47, 4]

2.6 Related works

Action recognition as a general task has gotten more attention in the last dec-
ade. Datasets such as UCF101 and HMDB-51 [34, 45] have been an important

12

addition to the field. Handcrafted features such as Histogram of Gradients
(HOG), Histogram of Flow (HOF), Motion Boundary Histogram (MBH) [10],
dense trajectories [51, 50] showed promising results.

In 2014, Karpathy et al. [30] explored the use of CNNs. In order to cope
with the computational cost, the authors implemented two ’streams’. The fovea
stream takes cropped part in the center as input, while the context stream used
a downsampled version of the original input. The authors further showed that
the features were general and benefitted from transfer learning.

Simonyan et al. [43] introduced a new architecture Two-Stream CNNs. The
authors mention that this architecture is related to the Two-Stream hypothesis [20],
which is an idea of humans possessing two distinct visual systems. The ventral
stream, which is responsible for spatial details, object recognition — the dorsal
stream, responsible for temporal details, motion. The authors propose the use
of two separate CNNs, the spatial CNN [33], pretrained on ImageNet, which
takes RGB input by sampling frames from video. Additionally, the temporal
stream, which uses optical flow fields as input. The Two-Stream structure is
further built upon in Carreira et al. [8], which adds 3D convolution, Feichten-
hofer et al. [15] explores the fusion process with 3D convolution and 3D pooling,
the authors also note that datasets are too small at the time (2016) [3], which
adds a neural network called MotionNet, which estimates the optical flow in-
put for a more efficient pipeline. The Two-Stream architecture is also extended
with ST-ResNet [14], which adds residual connections [24] in both streams and
from the motion stream to the spatial stream. Research into a combination
of hand-crafted features and deep-learned features has also shown promising
results [52].

Wang et al. [41, 53] proposed Temporal Segment Networks (TSN) in 2016.
Arguing that existing models mostly focused on short-term motion, rather than
long-range temporal structures. The authors noted that consecutive frames may
be redundant and that it might be unnecessary to sample frames densely. TSN
takes a video input, separates it into multiple snippets, and for each snippet,
make a prediction using Two-stream networks. The final prediction is then
consensus-based on the entire video. C3D [48] explored 3D convolution. By
using 3D convolution, spatio-temporal features are learned. When comparing
existing 2D convolution solutions, it indeed seems that 3D convolution help in
that it adds temporal information such as motion.

When the popular kinetics-400 [31] was released, an exciting baseline model
was also introduced. This model is the Two-Stream Inflated 3D ConvNet
(I3D) [8], using 3D convolution, along with the popular inception architec-
ture [46]. I3D works much like the two-stream networks, using two networks,
one for RGB stream input, and one for optical flow. The reason the model was
called inflated had to do with a distinctive pre-training trick that they used.
For the spatial net, they use the inception architecture, and first pre-trains a
2D CNN on ImageNet, next the inflate the filters such that they can now be
used for 3D convolution. They show that this approach achieves better results
on the Kinetics-400 dataset when compared to training only on Kinetics-400.
In other words, it is a smart way of using transfer learning to initialize the 3D
filters smartly.

While many modern action recognition techniques rely on either RGB or
optical flow as input, PoTion, introduces an interesting idea. First, they use a
pose detection algorithm [7], which is a separate challenge in the field. A pose

13

detection algorithm will find spatial locations frame by frame for joints and key
parts of the human body, e.g., head, elbow, hand, etc. Essentially, finding a
skeleton representation of any humans in the image. Next, they use this as
features, along with RGB input. The authors note that they could use a much
smaller CNN this way. In the paper, they also report that often, failure of the
model arises when poses are not considered valuable information, e.g., a Point
of view video of someone cooking. This is an excellent idea intuitively since it
extracts semantically meaningful information. A downside of this, however, is
the reliance on good results from the pose detection model.

In Tran et al. [47] Res (2+1)D was introduced, achieving state-of-the-art res-
ults on UCF101 and Kinetics-400. The model is based on (2+1)D convolutions,
which are used to separate 3D convolution into two steps, first a 3D convolution
with a 1 x S x S kernel where S is the spatial size of the kernel, followed by a T
x 1 x 1 kernel, where T denotes the temporal extent. The idea is that is may
be easier for the network to learn spatial and temporal features separately.

Feichtenhofer et al. [16] introduced the SlowFast architecture that showed
state-of-the-art performance in both action recognition and spatio-temporal ac-
tion detection. The model is based on the use of two different framerates as
input, where the idea is to have a high-capacity ’slow ’ pathway that subsamples
the input heavily, and a ’fast ’ pathway that has less capacity but significantly
higher framerate.

The THUMOS[28] challenge saw multiple approaches, with a focus on a
sliding-window approach with iDT features and SVM classifiers. In Shou et
al. [41], the authors used a object-detection inspired approach from R-CNN [40].
The authors devised a multi-stage approach based on CNNs where first, a pro-
posal network generated candidate spots through a sliding window approach,
next a classification network classified the event, finally a localization network
was used to find the location within the given frames. Xiong et al. [55] used tem-
poral segment networks for proposals and classification. Xu et al. [56] created
an end-to-end proposal classification architecture R-C3D, which significantly
improved detection speed. Another approach is through the use of Recurrent
Neural Networks (RNN). Here, the approach is typically to generate features
through a CNN per frame, and feeding the features into the RNN [57, 37].

In the context of soccer, Ekin et al. [13], multiple algorithms are used. First,
dominant field color, which is used for field segmentation, next is shot boundary
detection, which is done by comparing two frames and looking at the dominant
field color statistics. After which, shot classification, that attempts to classify
views as long, medium, and short distance views. Using the information from the
steps above, a rule-based system with rules such as a recent view of the referee
and an out-of-field shot, red/yellow card events are classified. Goal detection
had 27 correct classifications, 32 false, and three miss. 16/19 red/yellow card
events were identified as 3/3 penalties and 5/8 freekicks.

In Assfalg et al. [6], a Finite State Machine (FSM) was used on a small
dataset with highlight clips of 15-90 seconds duration with multiple events,
including a penalty, corner, and freekick. The authors used a rule-based loop
with a series of ’if conditions’. By having multiple different states, the FSM
continuously tests to see if the current events qualify to move on to the next
state, ultimately resulting in a positive prediction. The results showed 17/17
penalties found, 18/19 corners, and 17/18 free kicks.

In Tsagkatakis et al. [49], they gathered 400 2-3 long clips from Youtube

14

with the classes ’Goal’ and ’No goal’. The authors subsampled the clips to 20
frames, then used a pretrained VGG-16 [44] as a fixed feature extractor, with
the optical flow in a two-stream [43] architecture, after which they trained an
SVM classifier. The authors reported a 98% accuracy.

Giancola et al. [19] used C3D, I3D, and ResNet as fixed feature extractors in
SoccerNet with a sliding-window approach at 0.5s stride. The authors reduced
the dimensionality with PCA and trained neural networks with a variety of
pooling layers for a 60-second multi-label classification task. They apply the
best performing model in a sliding-window fashion for the task of spotting, in
which a predicted event at time t, is deemed a correct prediction given that it
is within some tolerance δ of the ground truth event.

Datasets

Deep learning-based models scale very well with large datasets. Ever since
AlexNet [33], CNNs have shown increasingly good results when coupled with
large datasets for training. In the domain of action recognition and detection,
the great advancement in dataset quality and size is significant. Both for train-
ing and for testing. Some early datasets for action recognition [45, 34] made
big contributions to the field. Results on UCF101 are now at 98% for mod-
ern models. These datasets were annotated manually, which is an expensive
task. Later, Youtube Sports1-M, Youtube 8-M and moments in time [5, 30,
39] further increased the datasets by millions. In 2017, the popular dataset
Kinetics-400 [31] was released, with 400 classes and about 350k samples. Since
then, Kinetics-600 and Kinetics-700 have been released as an extension, con-
taining more classes and data, now at about 650k samples. These datasets are
general and contain a wide range of actions. It should be noted that there are
strengths and weaknesses related to each dataset. Annotating at this scale is
not cheap. Therefore the authors used different ways of annotation. Youtube
8-M uses metadata from a youtube video to automatically annotate, while both
kinetics and sports 1-m use human annotator systems. It is a common strategy
to sample videos from Youtube. This means that if a video is taken down, a
sample is lost, which may lead to concerns about the repeatability of test results
as such. Kinetics attempts to remove duplicate videos, since Youtube videos in
the same categories may be frequently reuploaded by other users, training data
may be present in the test data set as well. There is, however, an inherent
strength in sampling youtube videos. As noted, early datasets were controlled,
but in youtube videos, video quality can be drastically different, which means
a model must be robust to poor quality, e.g., shaky camera, poor resolution,
different light, and more. In Figure 2.6, we can see that the increase in data has
been substantial.

In recent years, action detection has seen meaningful additions to the field.
With popular datasets such as THUMOS14 and ActivityNet [29, 26]. Another
recent and important dataset is AVA [23]. This notably has spatio-temporal loc-
alization as a challenge, which means that the challenge is to detect actions both
temporally and spatially in the video. Both Thumos [29] and Multithumos [2]

15

Figure 2.6: Number of clips available in recent action recognition datasets and
their year of release.

feature a multilabel problem. Meaning that a given time interval may have
multiple actions.

In soccer, a new dataset SoccerNet was released in 2018 [19]. This dataset
comes with sparse events across 764 hours, manually annotated down to a res-
olution of 1 second. There are several challenges present in this dataset. The
events are sparse, at 1 per 6.9 minutes on average. Since a soccer match is 90
minutes, any feasible model must be able to analyze a match within a reason-
able amount of time. Another challenge is the similarity of events, and it may
difficult to separate between an attempted goal and a goal.

2.7 Summary

The annotation of videos is expensive. It is boring and tedious work, and not
available unless it is financially feasible. In this chapter, we describe essen-
tial machine learning concepts and terminology, such as supervised learning,
classification, and regression. Next, we describe how datasets are commonly
split into training, validation, and test set and why failing in this section can
result in overfitting. We describe gradient descent and discuss the NN and
CNN architecture. The problem of automatically annotating video is an active
field of research. With increasing amounts of video data, there is a need for
an effective and accurate way to annotate. In sports, manually annotating is
time-consuming, and not feasible for all leagues. In order to solve this prob-
lem, we look into existing methods in deep learning with the goal of finding a
method that may have the capability of understanding events based on relevant
information where a human would be able to do the same. Therefore, we discuss
action recognition and how deep-learning and better datasets have contributed
to the field. Dense Improved Trajectories [51] worked as important features in
action recognition by capturing spatio-temporal information. Two-stream net-
works [43] showed promise when combining the spatial capacity of CNNs with

16

the motion information of optical flow, strongly indicating that both features
are important for action recognition. As datasets have gotten better, so have
the results, with action recognition showing great promise [16, 47, 8]. In action
detection, we found that the popular proposal-classify strategy from object de-
tection is often used. Furthermore, RNNs have shown success when combined
with CNNs as feature extractors. In soccer, there are both traditional and new
deep-learning-based approaches. However, there has been a lack of datasets,
leading to manually generated datasets that make it hard to compare against.
In 2018, SoccerNet [19] was introduced, which provides the field with a way
to properly compare results for soccer event detection. Soccer provides a case
where the appearance is similar for many events, such as goal attempts and
goals. Furthermore, events are sparse, with a variety of camera angles used.
The baseline was based upon fixed feature extractors. We want to see how
state-of-the-art action recognition models can perform when trained directly.
Furthermore, we want to find a suitable configuration for a given model. In the
next chapter, we propose a selection of action recognition models to configure
to best perform in the case of soccer.

17

Chapter 3

Methodology

3.1 Introduction

Annotating videos is expensive. It is tedious and time-consuming work. With
increasingly large amounts of video available, it is not always possible to use
people for this task. This leads to either lackluster event annotation in cases
where it is not financially lucrative to have accurate annotations or limitations
in which events are described. The problem of automatic event detection in
soccer has many different approaches. During the last decade, there has been a
rise of deep learning-based models which increasingly perform better with the
availability of data. In the last chapter, we found that new, larger, and more
challenging datasets such as Kinetics-400 [31] greatly help in the development
and testing of action recognition and detection. For event detection in sports,
there is a challenge in that many events are sparse and difficult to separate. We
want to approach the problem of detection in soccer with a data-driven solution
that captures can easily be adapted to other events given data. In this chapter,
we introduce state-of-the-art models that we want to test for the task of event
detection. First, we formally define the task of spotting, which is used for the
final evaluation for event detection. We provide a detailed description of the
dataset, which we use for training and testing in a separate classification task.
Next, we show how transfer-learning-based methods can be useful. We further
investigate the effect of different size temporal inputs for 3D CNNs as well as
different spatial resolutions. Several different models are tested and evaluated,
with different configurations. Finally, based upon our results, we choose a single
model for spotting.

3.2 Dataset description

SoccerNet [19] contains 500 games from different professional soccer leagues an-
notated. It contains untrimmed broadcast videos from each half of the game,
meaning that the full dataset has 1000 videos with a length of about 45 minutes
each. The dataset contains a video with audio, and 506,137 commentaries at
1-second resolution from online sources. Both audio and commentaries could be
used for future work, but this thesis focus on the video frames. The dataset was
collected by Giancola et al. [19] by first collecting videos from online sources.

18

Next, the authors synchronized the videos by detecting the game clock with op-
tical character recognition (OCR). Finally, they get free online annotations with
a 1-minute resolution, which they manually annotate down to a 1-second resol-
ution. Each event in this dataset is annotated with a single temporal anchor.
This is in contrast to the more traditional approach where a temporal interval
is annotated, indicating that the event in question lies within this interval.

Three classes are present in this dataset: ’Card ’,’Substitution’ and ’Goal ’.
Giancola et al. [19] define the three events as follows.

• ’Card ’ is defined as the moment where the referee shows the yellow/red
card to the player.

• ’Substitution’ is defined as the moment the new player enters the field.

• ’Goal ’ is defined similarly to the official IFAB rules, which is the moment
that the ball crosses the goal line.

Season
League 14/15 15/16 16/17 Total
EN - EPL 6 49 40 95
ES - LaLiga 18 36 63 117
FR - Ligue 1 1 3 34 38
DE - BundesLiga 8 18 27 53
IT - Serie A 11 9 76 96
EU - Champions 37 45 19 101
Total 81 160 259 500

Table 3.1: The number of full soccer games with respect to season and league.
Reprinted from Giancola et al [19].

In Table 3.1, we can see that all samples come from high-end leagues in re-
cent years. Therefore, we can expect professional broadcast video that contains
multiple different views, replays, and a variety of standard video production
techniques such as game timer with score, slow-motion, and animations. Fur-
thermore, since all leagues are popular, there are likely high-quality fields and
an audience present. For lower leagues, video statistics may be different, and
player behavior may change as well. For example, when celebrating a goal. An-
other practical case is personal videos, which may contain poor quality video
with rotation and shaking. It is essential to be aware of such bias, since any
analysis may not be representative for other cases.

Dataset (224p version)
Frames per second 25
Resolution (HxW) 224x398
Duration (Hours) 784
N games 500
N training games 300
N validation games 100
N test games 100

Table 3.2: General information about a compressed version offered by the
authors. Adapted from Giancola et al [19].

Table 3.2 shows some general metadata. It should be noted that the data-
set is both available in high-quality and a compressed version. In some re-
cent activity recognition papers [8, 43, 47], the resolution during training varies

19

between 112x112 and 224x224. Typically, a clip is resized first and then cropped.
With ∼784 hours in total at 25 frames per second (fps), we have approxim-
ately 784*60*60*25 = 70.560.000 frames to analyze. If we increase our spatial
resolution SxS, we quickly get limited. Modern deep-learning models such as
CNNs 2.5.6 rely on GPU’s during training and inference. The GPU has limited
memory to work with. In practice, this means that if we increase our input
size, we use more GPU memory and also require more time to process a sample.
Due to both current research and limitations in both space and computational
capacity, we use the compressed version. The 500 games are randomly split
into a training set, validation set, and test set with 300, 100, and 100 games,
respectively.

Class Train Validation Test Total
Card 1296 396 453 2145
Substitution 1708 562 579 2849
Goal 961 356 326 1643
Total 3965 1314 1358 6637

Table 3.3: The number of samples for classes for each split.

The dataset contains 6637 annotations for the three classes. Table 3.3 shows
the dataset split between training, validation and test for each class. We can
see that there is some imbalance between the different classes. ’Card ’ represents
32.3% while ’Substitution’ and ’Goal ’ represent 42.9% and 24.8%, respectively.
It is essential to be aware of such imbalances since metrics used during the
evaluation of results may be misleading when based on the assumption that the
classes are equally distributed.

0 500 1000 1500 2000 2500
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ou

nd
 tr

ut
h

Card
Substitution
Goal

Figure 3.1: A timeline of a sample soccer game half with annotated events

Figure 3.1 shows an example of a 45-minute soccer game half with annotated
events. We can note the sparsity, with 8 events spread out over 2700 seconds.
If we assume that a given event lasts 5 seconds, then we have annotations for
5*6637 seconds of the total 784*60*60 seconds. This adds up to 1.17%, with
the other 98.83% seconds containing something else.

20

0 500 1000 1500 2000
Distance(s)

0

20

40

60

80

100

120

140

N

Card distance

0 500 1000 1500 2000
Distance(s)

Substitution distances

0 500 1000 1500 2000 2500
Distance(s)

Goal distances

0 500 1000 1500 2000 2500
Distance(s)

Events distances

Figure 3.2: Distribution of the distances between samples within the same class
in seconds. Events distances shows distance distribution for distances between
any events. Number of bins = 200. They are calculated from the training set.

Distance min max mean
Card 0.0s 2373.0s 577.0s
Substitution 0.0s 2086.0s 391.6s
Goal 40.0s 2642.0s 734.6s
All 0.0s 2410.0s 290.2s

Table 3.4: Minimum, maximum, and mean distance in seconds between events
for each class from the training set. ’All’ contain distances regardless of class.
Calculated from training set.

For each game half in the training set, we get ordered temporal anchors
for each class independently. Let a, b be temporal anchors in seconds for a
class, where at < bt. We calculate the distance in seconds as d(a, b) = b − a.In
Table 3.4, we see the minimum, maximum, and mean distance measured between
events of the same class and for all classes combined based on the training set.
We can see that both ’Card ’ and ’Substitution’ have events that happen at
the same instant. This would occur if multiple players are substituted at the
same time, or a referee showing the card to multiple players. Looking at ’Goal ’
minimum distance, we find a minimum distance of 40 seconds. When a team
scores in a soccer match, the timer will continue, but the players must be re-
positioned to their own side of the field, after which the referee will restart
the game from the middle of the field. Figure 3.2 shows us a histogram of the
distances for each class separately, as well as for distances between any events.

21

Threshold (s) T=20s T=40s T=60s T=80s T=100s
Card (%) 5.51 6.51 9.26 11.64 14.52
Substitution (%) 10.11 14.20 15.84 17.47 19.85
Goal (%) 0.00 0.00 0.20 2.05 3.69
All (%) 6.59 11.88 17.34 22.51 27.42

Table 3.5: Percentage of samples for each class, which has a distance of less
than a threshold T seconds between samples in its own class training set. ’All’
denote distances between any events regardless of class.

We investigate distances further in Table 3.5 by calculating the percentage
of events for each class that has a distance less than a threshold T. For ’Card ’
and ’Substitution’, it can be hard to impose strict assumptions since a relatively
high percentage of the events lie close together. The class ’Goal ’, however, may
benefit from a rule stating that if a goal is scored at time t, then there is likely
no goal in the interval [t-40,t+40].

3.3 Event detection

In many action recognition or detection datasets [29, 26, 31], an event is defined
within a certain time interval. For classification tasks, this is often present in
the form of trimmed clips of, for example, 3-10 seconds. For detection tasks, it
is often required to predict a class along with a start and stop interval in time.
A prediction is then considered correct if the class is correct, and the temporal
Intersection over Union (tIoU) is higher than some threshold T. The events
are annotated with a temporal anchor, which means that there is no directly
annotated interval in time. Instead, spotting use the temporal anchors, and add
a tolerance δ, where if a model correctly predicts an event within ± δ of the
ground truth, it is considered a true positive.

0 500 1000 1500 2000 2500
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ou

nd
 tr

ut
h

Card
Substitution
Goal

Figure 3.3: Illustrates region in which a correct prediction would be considered
as a true positive for δ = 15s

Figure 3.3 shows an example of ground truth with δ = 15s. This means that
any predictions within this interval, with the correct class, is considered correct.

3.4 Data preprocessing

This section describes how the data is organized and pre-processed during and
after training. In order to train a model, we must first define some task which
we can train under. We sample N frames locally with the temporal anchor

22

as the center. This, however, leaves us with a biased model considering all
the background data. To better represent full videos, we generate background
samples. We annotate a background set using the following rule: If the distance
in seconds between 2 consecutive events a,b in a soccer game half is greater than
180s, then we annotate a new event labeled ’Background ’ at at+bt

2 .

Class Train Validation Test
Card 1296 396 453
Substitution 1708 562 579
Goal 961 356 326
Background 1855 636 653
Total 5820 1950 2011

Table 3.6: N number of samples for classes.

Table 3.6 shows our new dataset that contains ’Background ’. The dataset is
slightly unbalanced, as noted previously in Section 3.2, about 98% of a soccer
match is indeed background. Therefore this is not a perfect representation.
There are some weaknesses as well since we automatically generate new samples.
’Background ’ may be annotated during replays of any of the three events, while
statistically, it is likely rare, we expect some ’bad’ samples to be present.

Card

Substitution

Goal

Background

Figure 3.4: Sample frames visualized for a sample of 128 frames. The middle
frame is at the annotated time.

During training, we pre-process the clips on the fly. First, we resize clips
to a resolution of 112 x 199, followed by normalization of the data. Then, we

23

randomly crop a 112 x 112 clip. Finally, we randomly flip each frame with a
probability of 0.5. Considering that soccer fields are symmetric around that
center, therefore this may make the model more robust to events on either side.
In Figure 3.4 we see some typical samples of the 4 classes.

3.5 Overview of models

To successfully detect events, we want models that can capture both spatial
and temporal information. ResNet 3D 18 (R3D), ResNet Mixed Convolution
18 (MC3) and ResNet (2+1)D 18 (R (2+1)D) [47] are some strong models that
rely only on RGB input. These models are available pretrained on Kinetics-400
using 16x112x112 inputs from PyTorch. Many models use optical flow [8, 43]
in order to capture temporal information. There are some disadvantages to
this approach, such as the need to pre-process optical flow. Instead of using an
optical flow-based approach, we test the SlowFast architecture [16]. SlowFast
has similar ideas but a different approach.

3.5.1 Model architectures

The models R3D, MC3, and R (2+1)D have similar structures. They all have
a total of 17 convolutional layers with batch-normalization followed by global
average pooling and a fully connected layer. For R3D, MC3, and R (2+1)D, we
use 2 convolutional layers per block.

Figure 3.5: llustrates 3D convolution where W = width, H = height, T = frame

3D Convolution block We want to learn feature representations that are
able to capture spatial information such as edges, colors, and more. However,
we also want to capture temporal information, such as motion. 3D convolution
can learn spatio-temporal features that help us achieve this goal. In Figure
3.5, we see an illustration of 3D convolution. We can consider a video clip as
a stack of frames in the shape of C x T x H x W where C denotes the RGB
channels, T the number of frames in the video and H, W the height and width

24

in pixels respectively. The input in this example shows a kernel containing
learnable parameters with dimensions 3 x 3 x 3 producing the weighted sum for
the output. The dimensions of the kernel is of the form depth x height x width.

Figure 3.6: Illustrates a residual 3D block

3D convolution blocks contain 2x convolutional layers with batch normaliz-
ation and ReLu, followed by a residual connection. Figure 3.6 illustrates this
structure.

2D Convolution Block 2D Convolution blocks are built the same way as
3D Convolution blocks. 3D convolution is applied with kernels of dimensions
1 x S x S, where S denotes the dimension used spatially. This is equivalent to
performing 2D convolution on each frame individually with the same kernel.

(2+1)D Convolution Block (2+1)D convolutional can be interpreted as
3D convolution broken into two separate steps. First, we use 3D convolution
with a kernel of dimensions 1 x S x S like in 2D convolution blocks. This is
followed by batch normalization and ReLu. Finally, a second 3D convolution
is performed using a kernel with dimensions T x 1 x 1, where T denotes the
temporal dimension. In other words, how many frames at each point. This
effectively doubles the number of ReLu activations.

Stem The stem is the first layer, R3D and MC3 use the same basic stem,
which is a 3D convolution followed by batch normalization and ReLu. This
outputs 64 channels using a kernel of size 3 x 7 x 7 and stride of 1 x 2 x 2. R
(2+1)D and SlowFast, the stem is different. For R (2+1)D, it is similar to the
basic stem, but use 2+1D convolution.

25

Average pool Global average pooling is used after the last convolutional
block. This reduces a tensor of dimensions C x T x H x W to C x 1 x 1 x 1. For
R3D, MC3, and R (2+1)D, this results in 512 features that are fed into a linear
output layer. We can note that the dimensions of the feature tensor into the
global average pooling layer will change depending on the resolution or number
of frames, but this does not interfere with our output layer since we average the
values over time and space. This means that we can use arbitrary resolution or
number of input frames.

3.5.2 Models

Figure 3.7: Figure illustrates the basic architectures of the models used [16, 47].
Here,

⊕
represents elementwise sum, and

⊗
represents concatenation.

In Figure 3.7, we see four different models that meet our criteria. R3D and
MC3 all use 2x blocks for each layer, for a total of 4 convolutional layers per
layer. R (2+1)D Technically have 4 convolutional layers per block. The stem
contains for each R3D, and MC3 contains 1 single convolution-batch norm-ReLu
layer, while R (2+1)D and SlowFast use a (2+1)D convolution.

Overview of models
Model Parameters
R3D 33,168,324
MC3 11,492,292
Res (2+1)D 31,302,177
SlowFast 12,684,816

Table 3.7: Parameters for the different models

Table 3.7 shows the number of trainable parameter for each model. We see
that MC3 and SlowFast have about a third of the parameters in R (2+1)D and
R3D.

R3D R3D uses a stem with a single-layered 3D convolutional block with a
3 x 7 x 7 kernel and stride 1 x 2 x 2 followed by multiple two-layered blocks

26

with 3 x 3 x 3 kernels throughout the network before avg.pooling and the linear
output layer. This is a straightforward approach and enables the model to learn
spatio-temporal features.

R (2+1)D R (2+1)D use (2+1)D convolutional stem followed by multiple
two-layered 2+1D blocks, resulting in higher cost during training mainly due to
double the number of convolutions, batch norm, and ReLu when compared to
R3D. Tran et al. [47] argue that it may be easier to learn spatial features and
temporal features separately.

MC3 MixedConvolution 3D uses both 3D and 2D convolution blocks. It
should be noted that 2D convolution blocks are actually 3D convolutions, with
1 x S x S kernels. This model uses the basic stem as in R3D, followed by a layer
of two 3D convolutional blocks. After which three layers of 2x 2D convolutional
blocks are used before avg.pool and a linear output layer. The authors in Tran
et al. [47] note that the idea here is that it may be best to get temporal features
in the early layers, focusing on spatial features deeper in the network.

SlowFast We implement a model that is inspired by the state-of-the-art archi-
tecture for action recognition called SlowFast [16]. This builds upon the popular
idea of having multiple pathways, such as in Two-Stream networks [43]. The
main idea is to use one high-capacity ’slow’ pathway, which is focused on tem-
porally low-resolution spatial features, and a ’fast’ low capacity pathway which
focus on temporally high-resolution features. The number of channels between
each pathway is related by a factor β. Here we use 1/8 as in the original version.
Temporally, the pathways are related via a factor α, where the temporal stride
of the stem for the slow pathway is defined as αT x H x W, with T x H x W
being the stride for the slow pathway. We use alpha = 8, resulting in 8 times
more frames in the fast pathway. We illustrate the architecture in Figure 3.7.
First, we take inputs of size C x 64 x 224 x 224, which we input into each sep-
arate 3D stem. The slow pathway uses a kernel with dimensions 1 x 7 x 7 and
a stride of 16 x 2 x 2 for dimensions T x H x W denoting frames, height, and
width, respectively. This effectively downsamples from 64 frames to 4 frames
in the slow pathway stem. The fast pathway uses a kernel of 5 x 7 x 7 for the
stem with a stride of 2 x 2 x 2. We now have two separate streams with a
temporal dimension of 4 and 32. Next, we use layers with one 2+1D block for
each pathway. After each block, we fuse information from the fast pathway to
the slow pathway. We do this by summation. Since the dimensions are incorrect
throughout the network, we 3D average pool outputs from the fast pathway to
fit the temporal dimension of the slow pathway. Next, we average across feature
channels, after which we inflate the result to fit the slow pathway. Finally, we
avg. Pool both pathways and concatenate the results which we feed into our
linear output layer.

3.5.3 Implementation

We implement using Cuda 10.1 python 3.6.9 with PyTorch 1.3.1 and torchvision
0.4.2. For evaluation metrics, sklearn was used, while NumPy and Pandas were
used when appropriate. The development was mainly done locally on a PC

27

with 16gb RAM and a GTX 2080Ti. The code is available on GitHub when
requested.

Pytorch

PyTorch is an open-source machine learning framework that has tools for a vari-
ety of situations in data analysis. Both higher-level problems that are common
such as creating dataset loaders or simple pre-processing steps are available,
and lower-level computations using PyTorch Tensors, which is their version of
n-dimensional arrays. The main reason to use PyTorch is that it is optimized
towards single or multi-GPU systems. Torchvision is a PyTorch package that
contains datasets, models, transformations, and more with a focus on vision
tasks such as image or video classification or detection.

Nvidia Automatic-Mixed-Precision

Nvidia Apex 0.1 is a PyTorch extension that supports Automatic-Mixed
-Precision (AMP). During a forward and backward pass of a batch, the GPU
has to hold large amounts of data, which means that with video, we can quickly
get limited by GPU-memory. By default, weights, activation values, gradients
are typically stored as Floating Point 32 (FP32). While it is possible to use
FP16, which will effectively half the GPU-memory requirements and result in
fewer computations, it can cause problems with numerical stability and end up
hurting accuracy. AMP [38] will use both FP32 and FP16 where appropriate,
with some added tricks to help numerical stability. The result is a cheaper way
to train models, which enables us to use larger batch sizes or inputs in general
during training.

DGX-2

DGX-2 is a deep learning system that was used for training and testing in this
thesis. It holds 16 Nvidia Tesla V100 GPU’s with 512GB GPU memory total. It
also has 1.5TB system memory, which can be helpful when first loading batches.
With a single video clip holding 128 frames, 3 x 128 x 112 x 112, R (2+1)D
required about 5GB GPU memory during training. With AMP, this is reduced
to about 3.3 GB. Results can suffer if the batch size is too small during training,
hence the need for GPU memory. Noteworthy, we need about triple the amount
when we increase our resolution to 224 x 224. Since R (2+1)D holds double
the number of activations, it has higher memory requirements than R3D and
MC3. For 224 x 224 resolution at 128 frames with AMP, R3D, and MC3 require
about 4GB and 4.8 GB, respectively. During training, multiple GPUs are used
to work in parallel, where batches are equally distributed across GPUs.

3.6 Evaluation of Models: Definition of metrics

When we create a model, it is essential to ask the simple, yet sometimes tricky
question, how good is our model? The correct way to evaluate a model is case
dependant. Often, there are different costs for different errors. For example,
a self-driving car incorrectly predicting a human as the road can have dire
consequences and may lead to a tragic accident, while Netflix’s recommendation

28

model incorrectly predicting the viewer’s taste in movies will hopefully only lead
to mild annoyance.

To properly evaluate a model, we need metrics that we can interpret relative
to the specific case at hand.

A multi-class classification problem can be interpreted as a one-vs-all binary
classification for each class in which true positive (TP) is when a model predicts
the correct class, a false positive (FP) is when a classes are incorrectly predicted,
a true negative (TN) when a class is correctly rejected, and a false negative (FN),
where a class was incorrectly rejected.

Accuracy =
NCorrect
NTotal

(3.1)

Where NTotal is the total number of samples, and NCorrect is the number of cor-
rectly predicted samples. Accuracy is a simple yet effective metric to use. High
accuracy will often indicate a good result. However, it can often be misleading.

Precision =
TP

TP + FP
(3.2)

A precision score holds a value between 0 and 1, where 1 would be considered
the best results. If we have at least 1 correct prediction, precision will go to 1
as FP goes to 0. Therefore, if we are interested in how valuable our predictions
are for a particular class, precision may be a useful metric.

Recall =
TP

TP + FN
(3.3)

Recall is another metric, where we focus on true positives and false negatives.
Similar to precision, the score will land between 0 and 1, where higher is better.
As the number of false negatives goes to 0, we see that recall goes to 1 under
the assumption of at least 1 true positive. Therefore, it does not directly matter
if we have multiple false positives. If we always predict a class as positive, we
will get a recall of 1 for that class, which means that we will never incorrectly
predict a negative for that specific class. We should note, however, that this
will likely result in many false positives and a poor precision score.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.4)

F1-score is the harmonic mean of precision and recall. It is a measure that
will typically land between the precision and recall scores, thereby punishing
significant differences.

Avg(S) =

∑C
i=1 Si
C

(3.5)

Si is the calculated precision,recall or F1-score where i denotes the i’th class
for i ∈ {1, 2, ..., C} for C classes.

Weighted Avg(S) =

∑C
i=1 Si ∗Ni
NTotal

(3.6)

Where Ni is the number of samples for the i’th class. To get an overall picture of
the different metrics, we average the scores across classes. One crucial factor is

29

an imbalance in the dataset. Therefore, we calculate both average and weighted
average.

A common way to evaluate results in skewed data is through the precision-
recall (PR) curve, which is precision and recall calculated at different confidence
thresholds.

Average Precision(AP) =
∑
n

(Rn −Rn−1)Pn (3.7)

Where Rn and Pn is the recall and precision at the n’th threshold. AP is related
to the precision-recall and can be calculated as the area under the curve. This
is useful as it reduces the PR-curve to a single comparable numeric value.

mean-Average-Precision =

∑C
i=1APi
C

(3.8)

Where APi is AP calculated for the i’th class for C classes, mean-average-
precision (mAp) is the mean AP calculated over all classes.

3.7 Model selection

This section describes the selection of both the model and parameters. We want
to find a model that works well for event detection. In section 3.7 we describe
several candidate models. Furthermore, we want to find the best parameters for
these models. Therefore, before attempting to detect events in the roughly 150
hours present in the validation and test set, we perform several experiments to
find the best model and configuration. First, we describe the different hyper-
parameters which are the same for most models and the effect these may have.
Next, we define different metrics that are used to evaluate the models. We show
the effectiveness of transfer learning by comparing the results of R3D, MC3, and
R (2+1)D with and without pretraining. The pretrained models are available
from PyTorch and have been trained using the Kinetics-400 dataset [31], while
the others were initialized with Kaiming He initialization [25]. Based on the
results, we continue with pretrained models and further investigate the effect
of both spatial resolution and temporally extended inputs. Reducing the input
dimensionality may be useful in practical applications, we test model perform-
ance with grayscale input which also may provide insight into whether or not
RGB colors are necessary for the model to classify correctly.

3.7.1 Hyperparameters

Hyperparameters are parameters that we set before training. The specific para-
meters change depending on methods use, but generally, one might argue that
for neural network optimization, the minimum needed is a learning rate. Ini-
tial tests during development showed similar results across models for different
learning rates, batch sizes, and the number of epochs. For our experiments in
this chapter, we use a learning schedule similar to Tran et al. [47] for finetuning
with the same initial learning. We use SGD with 0.9 momentum and with an
initial learning rate of 0.001, reducing it by a multiplicative factor of 0.1 every
10 epochs, as illustrated in Figure 3.8. , with a batch size of 64. We keep hy-
perparameters the same during experiments for comparability unless otherwise

30

stated. A mini-batch size of 64 is used for all experiments in this section. For
comparison Tran et al. [47] use a minibatch-size of 32 while Feichtenhofer et
al. [16] use a minibatch size of 1024 when training on Kinetics-400 [31]. The use
of large minibatch can come with challenges both in terms of GPU memory and
performance [22, 32]. We, therefore, believe that 32 or 64 are both reasonable
choices for this case and move forward with 64. During our experiments, we save
both model weights, which results in the highest validation accuracy and the
result. We use the model parameters based on the highest validation accuracy
during all evaluations. This can be thought of as a simplified version of early
stopping.

0 10 20 30 40 50
Epoch

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

 ra
te

Learning rate schedule

Figure 3.8: Learning rate schedule used

3.7.2 Kinetics-400 pretrained models

Transfer learning has shown excellent results for generalization, as discussed
previously in Section 2.5.7. Parameters for R3D, R (2+1)D, and MC3 are
available pretrained on Kinetics-400 through PyTorch. The models were trained
with 16 frame inputs at 112x112. The models are trained on the Kinetics-
400 [31], a sizeable popular action recognition dataset with 400 classes. Kinetics-
400 holds a variety of classes, such as, with varying degrees of similarity to
soccer. For example, ’Crying ’,’Eating carrots’ and ’Assembling computer ’ are
included. There are 25 classes that contain ball sports, with ’Shooting goal
(soccer)’ and ’Kicking soccer ball ’ having 444,544 samples, respectively. For
the three models, we replace the last fully connected layer to the output to fit
our 4 classes and finetune with hyperparameters mentioned in Section 3.7.1. In
these experiments, we use 16 frames as inputs with a spatially resized input to
112 x 199 and cropped at 112 x 112. For finetuning, the cropping is randomly
selected, while the center crop is used during the evaluation of the validation
set. What we observe is that pretrained models consistently outperform training
from scratch.

31

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R(2+1)D

Validation@NP
Val @ Kinetics-400
Train @NP
Train @ Kinetics-400

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R3D

Validation@NP
Validation@P
Train@NP
Train@P

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

MC3

Validation@NP
Validation@P
Training@NP
Training@P

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@NP
Validation@P
Training@NP
Training@P

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@NP
Validation@P
Training@NP
Training@P

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@NP
Validation@P
Training@NP
Training@P

Pretrained on Kinetics-400 compared against no pretraining

Figure 3.9: Accuracy and loss for each model.

In Figure 3.9 we see similar results across models. One difference we see
is that for R3D non-pretrained, the accuracy and loss between validation and
training evaluation seem to diverge. At the same time, for R (2+1)D and
MC3, this effect is not as prominent. For all pretrained models, we observe
that accuracy and the loss for keeps increasing by about 10 % while validation
accuracy and loss reaches a plateau. This can indicate overfitting and is stopped
by the learning schedule.

Pretrained vs from scratch validation
Model Class Precision Recall F1-score

R (2+1)D NP

Card 0.583 0.523 0.551
Substitution 0.783 0.512 0.619
Goal 0.884 0.514 0.650
Background 0.522 0.836 0.643

R3D NP

Card 0.775 0.566 0.654
Substitution 0.691 0.870 0.770
Goal 0.856 0.770 0.811
Background 0.681 0.678 0.679

MC3 NP

Card 0.715 0.601 0.653
Substitution 0.712 0.836 0.769
Goal 0.801 0.860 0.829
Background 0.706 0.638 0.671

R (2+1)D

Card 0.744 0.770 0.757
Substitution 0.851 0.804 0.827
Goal 0.881 0.913 0.897
Background 0.766 0.770 0.768

R3D

Card 0.811 0.793 0.802
Substitution 0.837 0.870 0.853
Goal 0.858 0.952 0.903
Background 0.812 0.745 0.777

MC3

Card 0.825 0.808 0.816
Substitution 0.867 0.890 0.878
Goal 0.869 0.916 0.892
Background 0.802 0.769 0.785

Table 3.8: Per-class precision, recall and F1-score. Higher is better, best result
per class in bold. Both models are trained using 16 frame inputs.

32

Kinetics-400 pretrained vs from scratch on validation set
Model Avg. method Precision Recall F1-score Accuracy (%)

R (2+1)D NP
Unweighted 0.693 0.596 0.616 62.051
Weighted 0.675 0.621 0.619 —

R3D NP
Unweighted 0.751 0.721 0.729 72.718
Weighted 0.735 0.727 0.724 —

MC3 NP
Unweighted 0.733 0.734 0.730 72.821
Weighted 0.727 0.728 0.724 —

R (2+1)D
Unweighted 0.810 0.814 0.812 80.615
Weighted 0.807 0.806 0.806 —

R3D
Unweighted 0.830 0.840 0.834 82.872
Weighted 0.827 0.829 0.827 —

MC3
Unweighted 0.841 0.846 0.843 83.846
Weighted 0.837 0.838 0.838 —

Table 3.9: Weighted and unweighted precision, recall and F1-score. Higher is
better, best result per metric in bold. Both models are trained using 16 frame
inputs.

First, we are interested in any significant disparities between classes for each
metric. Next, we look at the relationship between precision and recall, and
finally, how does pretraining compare to training from scratch. We make the
following observations in table Table 3.8. R (2+1)D NP has the highest ’Goal ’
precision, but also the lowest score for ’textitCard’ and ’Background ’ classes.
Noteworthy, the event ’Goal ’ has 0.884 precision and 0.514 recall, which tells
us that the model has many false negatives, effectively missing out on many
goals while having some success on samples predicted positive. For background,
the opposite happens, high recall and low precision, which means that there are
many false positives for ’Background ’. The other models trained from scratch
seem to achieve more balanced scores. In Table 3.9, we see that the pretrained
models achieve better results, with the best results from MC3 landing at 83.8%
accuracy compared to its from-scratch counterpart at 72.8% accuracy. Based on
these results, we conclude that pretrained models generalize better to this task.
Therefore we move forward to our other experiments using pretrained models
unless otherwise stated.

3.7.3 Effect of different temporal inputs

How long should the temporal interval be for the input of action recognition
models? There are no widely accepted answers to this question at the time
of writing. In Tran et al. [47], they find that accuracy peaks at 32 frames.
Our videos are all at 25fps, which means that 32 frames are 1.28s of video. In
order to find the best suited temporal input-size for soccer, we train and test
our models with 8,16,32,64 and 128 frames. We stop at 128 frames due to the
increasingly high requirements for GPU-memory. We use pretrained models due
to the results in Section 3.7.2.

33

0 10 20 30 40 50

50

60

70

80

90

100
Ac

cu
ra

cy
(%

)
R(2+1)D

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R3D

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

MC3

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Train@8f
Train@16f
Train@32f
Train@64f
Train@128f

Figure 3.10: Accuracy and loss during training on training set

In Figure 3.10, we can see that during training, accuracy and loss are similar
for all models. It seems that when we increase our frames, we also converge to
lower accuracy and higher loss. This may indicate that it performs worse, but
it could also indicate that the model is less prone to overfitting.

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R(2+1)D

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R3D

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

MC3

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation@8f
Validation@16f
Validation@32f
Validation@64f
Validation@128f

Figure 3.11: Accuracy and loss during training on validation set

In Figure 3.11, we see that validation accuracy for all models improves with
more frames. It seems that the model reaches a plateau in training after about
10-15 epochs. We should note the difference seems to peak at around 128 frames.

34

Results based on number of frames as input
Model Class Precision Recall F1-score

R (2+1)D 8f

Card 0.700 0.795 0.745
Substitution 0.854 0.769 0.809
Goal 0.887 0.840 0.863
Background 0.741 0.766 0.753

R (2+1)D 16f

Card 0.744 0.770 0.757
Substitution 0.851 0.804 0.827
Goal 0.881 0.913 0.897
Background 0.766 0.770 0.768

R (2+1)D 32f

Card 0.742 0.874 0.803
Substitution 0.888 0.849 0.868
Goal 0.896 0.947 0.921
Background 0.853 0.766 0.807

R (2+1)D 64f

Card 0.815 0.859 0.836
Substitution 0.914 0.815 0.862
Goal 0.940 0.885 0.912
Background 0.785 0.860 0.821

R (2+1)D 128f

Card 0.768 0.909 0.832
Substitution 0.938 0.810 0.869
Goal 0.928 0.907 0.918
Background 0.826 0.841 0.833

Table 3.10: Accuracy, precision, recall and F1-score per class for R (2+1)D
pretrained on Kinetics-400 with different number of consecutive frames as input

Results based on number of frames as input
Model Class Precision Recall F1-score

R3D 8f

Card 0.789 0.758 0.773
Substitution 0.827 0.852 0.840
Goal 0.856 0.916 0.885
Background 0.772 0.741 0.756

R3D 16f

Card 0.811 0.793 0.802
Substitution 0.837 0.870 0.853
Goal 0.858 0.952 0.903
Background 0.812 0.745 0.777

R3D 32f

Card 0.836 0.823 0.830
Substitution 0.861 0.915 0.887
Goal 0.894 0.947 0.920
Background 0.838 0.772 0.804

R3D 64f

Card 0.903 0.846 0.874
Substitution 0.873 0.920 0.896
Goal 0.893 0.963 0.927
Background 0.856 0.811 0.833

R3D 128f

Card 0.917 0.838 0.876
Substitution 0.880 0.916 0.898
Goal 0.912 0.955 0.933
Background 0.852 0.844 0.848

Table 3.11: Accuracy, precision, recall and F1-score per class for R3D pretrained
on Kinetics-400 with different number of consecutive frames as input

35

Results based on number of frames as input
Model Class Precision Recall F1-score

MC3 8f

Card 0.817 0.755 0.785
Substitution 0.828 0.865 0.846
Goal 0.859 0.927 0.892
Background 0.777 0.748 0.762

MC3 16f

Card 0.825 0.808 0.816
Substitution 0.867 0.890 0.878
Goal 0.869 0.916 0.892
Background 0.802 0.769 0.785

MC3 32f

Card 0.881 0.806 0.842
Substitution 0.856 0.911 0.883
Goal 0.865 0.919 0.891
Background 0.819 0.788 0.803

MC3 64f

Card 0.860 0.871 0.866
Substitution 0.880 0.909 0.894
Goal 0.878 0.949 0.912
Background 0.847 0.777 0.811

MC3 128f

Card 0.869 0.871 0.870
Substitution 0.909 0.884 0.896
Goal 0.860 0.952 0.904
Background 0.840 0.808 0.824

Table 3.12: Accuracy, precision, recall and F1-score per class for MC3 pre-
trained on Kinetics-400 with different number of consecutive frames as input

Results based on number of frames as input
Model Avg. method Precision Recall F1-score Accuracy (%)

R (2+1)D 8f
Unweighted 0.796 0.792 0.792 78.615
Weighted 0.792 0.786 0.788 —

R (2+1)D 16f
Unweighted 0.810 0.814 0.812 80.615
Weighted 0.807 0.806 0.806 —

R (2+1)D 32f
Unweighted 0.845 0.859 0.850 84.462
Weighted 0.849 0.845 0.844 —

R (2+1)D 64f
Unweighted 0.864 0.855 0.858 85.128
Weighted 0.857 0.851 0.852 —

R (2+1)D 128f
Unweighted 0.865 0.867 0.863 85.795
Weighted 0.865 0.858 0.859 —

R3D 8f
Unweighted 0.811 0.817 0.813 80.821
Weighted 0.807 0.808 0.807 —

R3D 16f
Unweighted 0.830 0.840 0.834 82.872
Weighted 0.827 0.829 0.827 —

R3D 32f
Unweighted 0.857 0.864 0.860 85.538
Weighted 0.854 0.855 0.854 —

R3D 64f
Unweighted 0.881 0.885 0.882 87.744
Weighted 0.877 0.877 0.877 —

R3D 128f
Unweighted 0.890 0.889 0.889 88.410
Weighted 0.884 0.884 0.884 —

MC3 8f
Unweighted 0.820 0.824 0.821 81.59
Weighted 0.815 0.816 0.815 —

MC3 16f
Unweighted 0.841 0.846 0.843 83.846
Weighted 0.837 0.838 0.838 —

MC3 32f
Unweighted 0.855 0.856 0.855 85.077
Weighted 0.851 0.851 0.850 —

MC3 64f
Unweighted 0.866 0.877 0.871 86.564
Weighted 0.865 0.866 0.864 —

MC3 128f
Unweighted 0.869 0.879 0.874 86.923
Weighted 0.869 0.869 0.869 —

Table 3.13: Validation accuracy as well as weighted and unweighted average
precision, recall and F1-score. Higher is better, best result per class in bold.

In Tables 3.10-3.13, we see that the models generally seem to improve with
more frames. All models seem to greatly benefit from 8 frames to 16 frames
with about 2% improvement in accuracy. The same jump is seen from 16 frames
to 32 frames, with about 3% improvement for R (2+1)D and R3D. 64 frames

36

perform better, but interestingly, it seems that R (2+1)D does not improve
as much with more frames when compared to R3D and MC3. With almost
8% higher validation accuracy from 8 frames to 128 frames, it seems that R3D
scales best with a longer temporal window. At 128 frames with 25fps, we have
a 5.12-second input. As we increase our window, we will likely have too much
irrelevant information. Intuitively, around 5 seconds seems reasonable for a
human annotator to understand what event was present, at 20-30-40 seconds
however, there may be many other events present, which makes it less discern-
ible. During validation, we use the same number of frames as the model was
trained on. It may be that a larger window during validation is simply an easier
task for the model. Therefore, we briefly test R3D trained on 64 frames on a
128 frame validation set, and R3D trained on 128 frames on 64 frames.

Models evaluated with different input size than during training
Model Avg. method Precision Recall F1-score Accuracy (%)

R3D 64f
Unweighted 0.880 0.877 0.878 87.3
Weighted 0.874 0.873 0.873 —

R3D 128f
Unweighted 0.874 0.863 0.868 86.3
Weighted 0.865 0.863 0.864 —

Table 3.14: Results for models trained on 64 and 128 frames when tested with
128 and 64 frames respectively.

In Table 3.14, we can observe that both models have a drop in performance.
However, the 64 frame version is less negatively impacted. R3D 128f drops
more than 2% in validation accuracy. It may be that a higher number of frames
makes training more stable. Intuitively, we can say that it makes sense for the
model to perform worse with smaller inputs. We conclude that the 128f version
performs the best overall, and is, therefore, the best choice for our final tests.

3.7.4 Reduced input

There are many benefits with data reduction, such as storage and possibly
computation depending on the application. Here, we test our model capabilities
with regard to reduced inputs. When reducing RGB to gray-scale, we remove
two-thirds of the information. We use the same models, but alter the stem layer
such that it takes single-channel video, the models are not pretrained. We use
16 frame inputs for all models at 112 x 112 resolution.

0 10 20 30 40 50
Epoch

40

50

60

70

Ac
cu

ra
cy

(%
)

Accuracy

Validation accuracy: R(2+1)D Gray
Validation accuracy: R3D Gray
Validation accuracy: MC3 Gray
Train accuracy: R(2+1)D Gray
Train accuracy: R3D Gray
Train accuracy: MC3 Gray

0 10 20 30 40 50
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Loss
Validation loss: R(2+1)D Gray
Validation loss: R3D Gray
Validation loss: MC3 Gray
Train loss: R(2+1)D Gray
Train loss: R3D Gray
Train loss: MC3 Gray

Gray

Figure 3.12: Accuracy and loss for gray input frames for training and validation
set. Models are trained on 16 frames

37

We can see that training seems a bit unstable during training. For the
first 20 epochs, there are several moments where validation accuracy and loss
suddenly jumps. It may be that the learning rate is too high during the initial
epochs for this case. Interestingly, R (2+1)D seems to be much more stable
when compared to R3D and MC3. It is not clear why this is the case, and we
can only speculate. If we look back at Figure 3.9 in Section 3.7.2, we see some
similarities with more stable results through training comparatively.

Results of gray-scale input
Model Class Precision Recall F1-score

R (2+1)D + Gray

Card 0.681 0.538 0.601
Substitution 0.676 0.779 0.724
Goal 0.721 0.843 0.777
Background 0.670 0.604 0.635

R3D + Gray

Card 0.677 0.614 0.644
Substitution 0.705 0.794 0.746
Goal 0.812 0.888 0.848
Background 0.705 0.631 0.666

MC3 + Gray

Card 0.675 0.624 0.648
Substitution 0.704 0.767 0.734
Goal 0.765 0.888 0.822
Background 0.692 0.608 0.648

Table 3.15: Results per class for models trained on gray-scale inputs

Results of gray-scale input
Model Avg. method Precision Recall F1-score Accuracy (%)

R (2+1)D + Gray
Unweighted 0.687 0.691 0.684 68.462
Weighted 0.683 0.685 0.680 —

R3D + Gray
Unweighted 0.725 0.731 0.726 72.103
Weighted 0.719 0.721 0.718 —

MC3 + Gray
Unweighted 0.709 0.722 0.713 70.821
Weighted 0.706 0.708 0.705 —

Table 3.16: Results average over all for models trained on gray-scale inputs

If we compare results in Table 3.15 and Table 3.16 to the results on non-
pretrained models in Section 3.7.2 we can note that the difference is small. R
(2+1)D performed worse on RGB inputs when trained from scratch, with only
about 62% validation accuracy. Overall we still get slightly worse results with
a drop of about 0.6% in validation accuracy for R3D and a drop of about 2.8%
validation accuracy for MC3. However, these results indicate that color is not
a necessity for this kind of classification task.

3.7.5 SlowFast results

SlowFast is a state-of-the-art model, noticeably winning the AVA challenge
2019 [23], which is a benchmark for spatio-temporal action detection. The
architecture is described in Section 3.5. Here, we test the model at 224 x 224
with 64 frame inputs using two different learning rate schedules. First, we test
the model using the same parameters as described in Section 3.7.1. An initial
learning rate of 0.001, divided by 10 every 10 epochs. Next, we use the learning
rate schedule used by the authors of SlowFast [16]. We use warm restarts as
described in [36].

38

0 10 20 30 40 50
Epoch

45

50

55

60

65

70

Ac
cu

ra
cy

(%
)

Accuracy

Validation accuracy: SlowFast
Train accuracy: SlowFast

0 10 20 30 40 50
Epoch

0.8

0.9

1.0

1.1

1.2

Lo
ss

Loss
Validation loss: SlowFast
Train loss: SlowFast

SlowFast training

Figure 3.13: Figure shows accuracy and loss for SlowFast 2+1D

In Figure 3.13, we see that the model struggles to improve both on the
training set and validation set after 10 epochs. It may be that the model requires
a higher learning rate in order to converge appropriately. We, therefore, train
the model with warm restarts for 100 epochs.

0 20 40 60 80 100
Epoch

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

ni
ng

 ra
te

Learning rate schedule

Figure 3.14: Learning rate schedule with warm restarts

In Figure 3.14, we see the learning rate schedule used for training during 100
epochs. We set the initial learning rate to 0.01, with a minimum learning rate
of 0.00001.

0 20 40 60 80 100
Epoch

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Accuracy

Validation accuracy: SlowFast w/ warm restarts
Train accuracy: SlowFast w/ warm restarts

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss
Validation loss: SlowFast w/ warm restarts
Train loss: SlowFast w/ warm restarts

SlowFast training with warm restarts

Figure 3.15: Accuracy and loss for training and validation set when using warm
restarts

During training, we can observe that the model starts overfitting and reaches

39

a limit at about 77%. It seems that the model is unable to improve past this
point. This may be due to limited data, or the model not responding well to
the implementation.

Results based on number of frames as input
Model Class Precision Recall F1-score

SlowFast warm

Card 0.739 0.687 0.712
Substitution 0.777 0.829 0.802
Goal 0.842 0.916 0.878
Background 0.750 0.701 0.725

SlowFast warm

Card 0.638 0.609 0.623
Substitution 0.693 0.744 0.718
Goal 0.756 0.809 0.782
Background 0.670 0.619 0.644

Table 3.17: Per class metrics for SlowFast 2+1D trained using two different
learning rate schedules

Results for SlowFast 2+1D
Model Avg. method Precision Recall F1-score Accuracy (%)

SlowFast warm
Unweighted 0.777 0.783 0.779 77.436
Weighted 0.772 0.774 0.772 —

SlowFast
Unweighted 0.689 0.695 0.691 68.769
Weighted 0.686 0.688 0.686 —

Table 3.18: Average scores weighted and unweighted for SlowFast 2+1D trained
with two different learning rate schedules.

In Table 3.17, we see that the results seem balanced for both cases. The
use of warm restarts achieved better performance across all evaluation metrics.
Table 3.18 shows us more clearly that we achieve an added 9% when we use
warm restarts and save the model with the highest validation accuracy. In
Section 3.7.2, we saw the best performance by non-pretrained models from MC3
with a validation accuracy of 72.821%, compared to 77.436% here. However,
these results are not comparable due to different inputs in time and space. In
Section 3.7.3 we show how much this can impact the results. We conclude that
the learning rate schedule can significantly impact results, but that in the end,
we should move forward using pretrained models.

3.7.6 Input resolution

This section investigates the effect of different input resolutions. We use 32
frame inputs due to the high GPU-memory requirement when increasing res-
olution. Increasing the resolution will intuitively improve finer-grained details
such as the soccer ball, or body movement and human annotators may perform
better. For action recognition, it is not clear to what extent the input resolution
will affect results. We test each model at 224 x 224 resolution against its 112 x
112 resolution counterpart.

40

0 10 20 30 40 50

50

60

70

80

90

100
Ac

cu
ra

cy
(%

)
R(2+1)D

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

R3D

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

0 10 20 30 40 50

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

MC3

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Validation @ 32f @ 112x112
Validation @ 32f @ 224x224
Train @ 32f @ 112x112
Train @ 32f @ 224x224

Figure 3.16: Accuracy and cross entropy loss during training

In Figure 3.16 there are similar results across all models. The models trained
on higher resolution does not seem to be as prone to overfitting as models trained
on a lower resolution. There is no noticeable difference in validation accuracy or
loss during training, and it may be the case that with different hyperparameters
during training, the higher resolution model performs better.

Results based on number of frames as input
Model Class Precision Recall F1-score

R (2+1)D 112x112

Card 0.742 0.874 0.803
Substitution 0.888 0.849 0.868
Goal 0.896 0.947 0.921
Background 0.853 0.766 0.807

R (2+1)D 224x224

Card 0.781 0.838 0.809
Substitution 0.886 0.872 0.879
Goal 0.872 0.972 0.919
Background 0.849 0.767 0.806

R3D 112x112

Card 0.836 0.823 0.830
Substitution 0.861 0.915 0.887
Goal 0.894 0.947 0.920
Background 0.838 0.772 0.804

R3D 224x224

Card 0.860 0.808 0.833
Substitution 0.846 0.907 0.876
Goal 0.869 0.947 0.923
Background 0.834 0.788 0.810

MC3 112x112

Card 0.881 0.806 0.842
Substitution 0.856 0.911 0.883
Goal 0.865 0.919 0.891
Background 0.819 0.788 0.803

MC3 224x224

Card 0.873 0.795 0.832
Substitution 0.863 0.875 0.869
Goal 0.858 0.966 0.909
Background 0.817 0.794 0.805

Table 3.19: Comparison of results for 112 vs 224 resolution

41

Results based on number of frames as input
Model Avg. method Precision Recall F1-score Accuracy (%)

R (2+1)D 112x112
Unweighted 0.845 0.859 0.850 84.462
Weighted 0.849 0.845 0.844 —

R (2+1)D 224x224
Unweighted 0.847 0.862 0.853 84.923
Weighted 0.850 0.849 0.848 —

R3D 112x112
Unweighted 0.857 0.864 0.860 85.538
Weighted 0.854 0.855 0.854 —

R3D 224x224
Unweighted 0.860 0.862 0.861 85.538
Weighted 0.855 0.855 0.854 —

MC3 112x112
Unweighted 0.855 0.856 0.855 85.077
Weighted 0.851 0.851 0.850 —

MC3 224x224
Unweighted 0.853 0.858 0.854 84.923
Weighted 0.849 0.849 0.848 —

Table 3.20: Average results weighted and unweighted for 112 vs 224 resolution

In Tables 3.19 and 3.20, we can see just how close the results are. The
cost of using higher resolution both in computation time and GPU-memory
requirements is great. For R (2+1)D, we need about 3 times the amount of
GPU-memory. This may be less prone to overfitting and worth pursuing more.
However, there is a trade-off between the number of frames and resolution. We,
therefore, conclude that the number of frames up to a certain point is the better
choice.

3.8 Summary

In this chapter, we first describe the dataset we use and how we use it. Next, we
define the different metrics that are used in order to choose the best perform-
ing models. We describe the architecture used by R3D, R (2+1)D, MC3, and
SlowFast and hyperparameters that we use during training. We investigate the
effect of transfer learning by testing pretrained models with and without weights
based on Kinetics-400 training. We show that using gray-scale inputs has a re-
latively small effect on performance when compared to non-pretrained models.
As one of the steps towards finding the most suitable model, we test SlowFast
2+1D using two different learning rate schedules and find that while training
seems unstable and prone to overfitting, an improvement of 9% is observed when
using warm restarts. To decide spatially and temporal inputs best suited for
our task of event detection in soccer, we evaluate models at inputs ranging from
8 frames to 128 frames, concluding that 128 frames perform best and that R3D
seemingly scales better with more frames. Another critical parameter to choose
is the input resolution. We test R3D, MC3, and R (2+1)D with both 112x112
and 224x224 and a negligible difference in results. We do, however, observe that
higher resolution does not seem to perform as well on training data when com-
pared to a lower resolution, possibly indicating less chance of overfitting. We
conclude, however, that due to the high cost of using a higher resolution, our
best choice is the move forward with R3D using 128 frames as input at 112 x
112 spatial resolution. In the next chapter, we move forward with R3D trained
on 128 frames at 112 x 112 resolution. We further test the model on the full
dataset for event spotting using a sliding window approach.

42

Chapter 4

Results

4.1 Introduction

In Chapter 3, we experimentally found that using pretrained models performed
better than training from scratch. Further, we showed that the resolution did
not significantly change the results. However, the temporal extent of the input
provided a significant boost to validation results, ultimately leading us to choose
the model R3D with 128 frame inputs for further tests.

In this chapter, we analyze the model R3D using 128 frame inputs using mul-
tiple different approaches. We investigate the behavior of R3D for each different
event by looking at the model response with a sliding window approach locally
around events. To better understand what the model responds to, we investig-
ate the features which the model used for classification. Next, we look at the
results for the test set and validation set in untrimmed SoccerNet clips. Finally,
we test cross-dataset generalization by using 617 clips from Norwegian Eliteser-
ien and Swedish Allsvenskan, where 533 contained goals and 84 contained goal
attempts.

4.2 Datasets

Here, we use SoccerNet [19] as in Section 3.7 to investigate our model behavior.
We also evaluate how well the model performs on the full untrimmed videos in
the validation set and test set. Additionally, we downloaded 617 clips from the
Norwegian Eliteserien and the Swedish Allsvenskan. 317 clips from Swedish All-
svenskan, where 233 contain goals and 84 that contains goal attempts. We also
have 300 clips from Norwegian Eliteserien, which contains goals. In Table 4.1,
we see the distribution of goals and goal attempts for the different datasets. All
clips are in the same format where the events ’Goal ’, and ’Attempted Goal ’ hap-
pen at roughly 25 seconds. Here, we think of a Goal as happening the moment
the ball crosses the goal-line. After manually inspecting parts of the data, we
see that the goal generally happens close to 25 seconds as expected, while some
samples have the goal prior at 21 seconds, and some as late as at 30 seconds.
Based on that, we assume that the goal lies within 20 and 30 seconds into the
clip. Furthermore, we observe that the samples contain multiple replays in 25-50
seconds after the events.

43

Dataset N
Goal Allsvenskan 233
Goal Eliteserien 300
Goal attempt Allsvenskan 84
Total 617

Table 4.1: Dataset statistics for Allsvenskan and Eliteserien clips

4.3 Behaviour of model R3D

This section investigates the behavior of R3D. First, we look at sliding-window
and how we can use this to predict full videos. Next, we experiment to both
understand how R3D reacts to temporal shifts in input as well as to help decide
hyperparameters for our sliding window approach. Next, we look at how our
models behave in a longer time-window. We manually check the samples for
goals to look for replays after the goal. Finally, we look at the class-activation
tubes (CAT), which is a weighted sum of the features before prediction. This
may give us indications of which part of the input is reacted to both spatially
and temporally.

4.3.1 Sliding window

To annotate events in full videos, we decide to use a sliding-window approach.
The sliding-window approach means that we ’slide’ our model over our inputs,
hence producing local predictions. This means that our model, which takes
inputs in the form of 3 x 128 x 112 x 112, predict for a given video, the frames
[0,128], followed by [0+s*n,128+s*n] where s is our stride and n is the n’th step.
It is not obvious what our stride should be. If we have the minimum stride
at 1 frame, our predictions significantly overlap and will be computationally
expensive. If our stride is too large, we will potentially ’slide’ past events and
fail to detect them. Furthermore, how accurate we can be with our annotations
is also be limited by our choice. Therefore, we experiment to understand better
how the model behaves with temporal shifts.

Figure 4.1: Illustration of sliding-window approach

44

In Figure 4.1, we see an illustration of how the model would sample frames
throughout the video and pair timestamps with softmax predictions. Since we
have a temporal window of 5.12 seconds for each prediction sample, we define
the given timestamp as the temporal center of the sample.

4.3.2 How many frames are needed?

We are interested in finding out how our model behaves locally around events.
Furthermore, we want to find the correct stride. Therefore we perform the
following experiment. First, we randomly sample 8 correctly predicted event
samples from the validation set. Next, we pad the input with 130 zero frames
before, and after, hence, we now have a 3 x 386 x 112 x 112 tensor. Finally, we do
a sliding-window approach, where we use a stride of 1 frame, densely sampling
predictions. It may be that some classes have longer temporal windows of which
a correct prediction is made. We, therefore, use AUC for comparison between
classes.

Local behavior

We want to know:

1. How often must we sample our predictions to avoid missing events?

2. How much of an event must be seen by a model for a positive prediction?

3. Are there any differences depending on the event class?

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Ca
rd

 p
re

di
ct

io
n

AUC = 141.97

1

0 50 100 150 200 250

AUC = 84.61

2

0 50 100 150 200 250

AUC = 73.65

3

0 50 100 150 200 250

AUC = 66.63

4

0 50 100 150 200 250
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rd

 p
re

di
ct

io
n

AUC = 137.25

5

0 50 100 150 200 250
Frame

AUC = 86.52

6

0 50 100 150 200 250
Frame

AUC = 130.61

7

0 50 100 150 200 250
Frame

AUC = 173.43

8

Card signal

Card prediction Event 30 Frame interval

Figure 4.2: Softmax output for the event Card with a stride of 1 frame over 260
frames. Samples are correctly predicted validation samples. Red dotted line
shows the output prediction where

45

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

tit
ut

io
n

pr
ed

ict
io

n

AUC = 183.99

1

0 50 100 150 200 250

AUC = 171.54

2

0 50 100 150 200 250

AUC = 198.41

3

0 50 100 150 200 250

AUC = 153.31

4

0 50 100 150 200 250
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

tit
ut

io
n

pr
ed

ict
io

n

AUC = 181.22

5

0 50 100 150 200 250
Frame

AUC = 192.48

6

0 50 100 150 200 250
Frame

AUC = 191.79

7

0 50 100 150 200 250
Frame

AUC = 202.05

8

Substitution signal

Substitution prediction Event 30 Frame interval

Figure 4.3: Softmax output for the event Substitution with a stride of 1 frame
over 260 frames. Samples are correctly predicted validation samples. Red dotted
line shows the output prediction where

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

AUC = 99.52

1

0 50 100 150 200 250

AUC = 93.37

2

0 50 100 150 200 250

AUC = 75.39

3

0 50 100 150 200 250

AUC = 94.52

4

0 50 100 150 200 250
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

AUC = 51.79

5

0 50 100 150 200 250
Frame

AUC = 52.59

6

0 50 100 150 200 250
Frame

AUC = 110.13

7

0 50 100 150 200 250
Frame

AUC = 117.2

8

Goal signal

Goal prediction Event 30 Frame interval

Figure 4.4: Softmax output for the event Goal with a stride of 1 frame over 260
frames. Samples are correctly predicted validation samples. Red dotted line
shows the output prediction for the 128 frames of the event.

46

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 p

re
di

ct
io

n

AUC = 220.22

1

0 50 100 150 200 250

AUC = 235.61

2

0 50 100 150 200 250

AUC = 244.9

3

0 50 100 150 200 250

AUC = 200.63

4

0 50 100 150 200 250
Frame

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 p

re
di

ct
io

n

AUC = 240.29

5

0 50 100 150 200 250
Frame

AUC = 191.98

6

0 50 100 150 200 250
Frame

AUC = 243.21

7

0 50 100 150 200 250
Frame

AUC = 144.03

8

Background signal

Background prediction Event 30 Frame interval

Figure 4.5: Softmax output for the event Background with a stride of 1 frame
over 260 frames. Samples are correctly predicted validation samples. Red dotted
line shows the output prediction for the 128 frames of the event.

In Figures 4.2-4.5, we visualize the softmax output from our models for each
class. We have 386 frames in total, where 260 are zero-padded frames, meaning
that our initial 3 predictions are between [0,128], [1,129], [2,130] where all frames
are zero-padded frames. At 130, we have overlapped perfectly with our sample
in the interval of [130,258]. This is indicated with a red dotted line. Since
a natural stride to use for our final experiments is one second or 25 frames,
we visualize a 30 frame interval around the point at which we entirely overlap
with our sample. We can note that many classes can have more than 50% of its
input as zero-padded frames while still prediction correctly, albeit with a smaller
degree of confidence. We can see that as our model receive less zero frames and
more relevant frames, the prediction gets higher. ’Goal ’ generally seems to have
smaller AUC than both ’Substitution’ and ’Card ’ indicative that, for this class,
it is more important to have the full input. For our ’Background ’ class, we can
see that prediction performance is reduced with more data. We can see that
the model sees zero frames as ’Background ’, which is essential to know since
it will affect all other results. Since we use zero-padded frames that are not
representative of any real case, these results are not a perfect representation of
how the model reacts locally to an event. With that said, we have a controlled
environment where we get some insight into how robust our model is to change
in inputs. It is of particular interest that there are cases such as in Figure 4.3
where more than 50% of the input can be zero-padded frames while still resulting
in high confidence. This is indicative that the inputs generate high activation
values relative to the zero-frames. In conclusion, we show differences between
classes, which may indicate that ’Goal ’ is more reliant on particular information.
It may be that the model needs to see the actual goal, which does not overlap
at the beginning or end of this experiment. While we should be aware that this
experiment has bias due to zero-padded frames, we argue that it still indicates

47

that a stride of 1 second is reasonable.

Model behaviour in larger temporal windows

To further investigate both local behavior and behavior in a more considerable
temporal extent, we conduct another experiment. We repeat the process of
finding samples that are correctly predicted in the validation set. We sample
25*128 frames where our event is in the center and zero-pad as in Section 4.3.2.
This adds up to 3200 frames + 260 zero frames. With 25fps, this means a total
of 128 + 10.4 seconds of zero frames. The temporal extent of our model is 128
frames or 5.12 seconds. With about 64 seconds before and after an event, we
are interested in the following:

1. How is the event ’Goal ’ affected by replays?

2. Is there noise in our signal?

3. Is there a difference between event classes?

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Ca
rd

 p
re

di
ct

io
n

1

0 20 40 60 80 100 120 140

2

0 20 40 60 80 100 120 140

3

0 20 40 60 80 100 120 140

4

0 20 40 60 80 100 120 140
Time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rd

 p
re

di
ct

io
n

5

0 20 40 60 80 100 120 140
Time(seconds)

6

0 20 40 60 80 100 120 140
Time(seconds)

7

0 20 40 60 80 100 120 140
Time(seconds)

8

Card signal

Card prediction Event

Figure 4.6: Densely sampled output prediction over 138.4 seconds around event
’Card ’. Red dotted line represents the temporal anchor of the event.

48

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

tit
ut

io
n

pr
ed

ict
io

n

1

0 20 40 60 80 100 120 140

2

0 20 40 60 80 100 120 140

3

0 20 40 60 80 100 120 140

4

0 20 40 60 80 100 120 140
Time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0
5

0 20 40 60 80 100 120 140
Time(seconds)

6

0 20 40 60 80 100 120 140
Time(seconds)

7

0 20 40 60 80 100 120 140
Time(seconds)

8

Substitution signal

Substitution prediction Event

Figure 4.7: Densely sampled output prediction over 138.4 seconds around event
’Substitution’. Red dotted line represents the temporal anchor of the event.

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

1

0 20 40 60 80 100 120 140

2

0 20 40 60 80 100 120 140

3

0 20 40 60 80 100 120 140

4

0 20 40 60 80 100 120 140
Time(seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

5

0 20 40 60 80 100 120 140
Time(seconds)

6

0 20 40 60 80 100 120 140
Time(seconds)

7

0 20 40 60 80 100 120 140
Time(seconds)

8

Goal signal

Goal prediction Event

Figure 4.8: Densely sampled output prediction over 138.4 seconds around event
’Goal ’. Red dotted line represents the temporal anchor of the event.

49

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 p

re
di

ct
io

n

1

0 20 40 60 80 100 120 140

2

0 20 40 60 80 100 120 140

3

0 20 40 60 80 100 120 140

4

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 p

re
di

ct
io

n

5

0 20 40 60 80 100 120 140

6

0 20 40 60 80 100 120 140

7

0 20 40 60 80 100 120 140
Time(seconds)

8

Background signal

Background prediction Event

Figure 4.9: Densely sampled output prediction over 138.4 seconds around event
’Background ’. Red dotted line represents the temporal anchor of the event.

Here, we note that locally around each event, the data represents a more
realistic case rather than zero-padded frames. We can see that the results are
consistent with our previous experiment in that we mostly see similar peaks
locally around each annotated event. Figure 4.6 shows the results for the event
’Card ’, and it is clear that there is noise present. Some preprocessing steps are
necessary for final predictions. We can apply a moving average filter, which
would average local samples and smooth the signal. Furthermore, using a high
threshold such as 0.9 or 0.95 can be used to remove the vast majority of false
positives. In Figure 4.7, we can see that even a high threshold would result in
many false positives. This may result in high recall and low precision for our full
dataset results. The samples in Figure 4.8 contain multiple replays of the goal
30-60 seconds after the annotated events. Most of these first occurs 40 seconds
after, with multiple angles shown. This seems to be reflected in some of the
results, in sample number 1, there is a clear replay at 40 seconds that is clearly
reflected in our results. For the background signals in Figure 4.9, the result is
noisy, while mostly keeping a high response. After when looking through the
sampled videos, we find that it dips consistently with changes in view and with
goal attempts. For example, in sample 8, there is a continuous close-up view on
coaches and benched players during 20-40 seconds. In sample 7, there is a goal
attempt at about 40 seconds. This leads us to believe that what the model has
learned to recognize as ’Background ’ are particular common views and that the
model is not necessarily robust to certain parts of the field. The consequence of
this would likely be many false positives.

4.3.3 Class activation tubes

What exactly did our model learn during training? To gain insight into what
our model reacts to temporally and spatially, we inspect the class activation

50

maps (CAM) for correct and wrong predictions. We follow the methodology
in Zhou et al. [59] in order to generate CAMs. The model R3D uses global
average pooling before an FC layer after 17 convolutional layers, as explained
in Section 3.5.

A tensor with shape C x T x H x W goes into the global average pool layer,
resulting in C in a C x 1 x 1 x 1 output. For R3D with 128 frames specifically,
we have a 512 x 16 x 7 x 7 tensor that is reduced to 512 x 1 x 1 x 1. These are
the 512 features that are used to compute the final scores, followed by softmax.
Let Fi denote the i’th feature channel for i ∈ {1, 2, 3, ..., N}. Then Sc is the
pre-softmax class score, computed as a weighted sum the following way:

Sc = Bc +

N∑
i=1

wciFi (4.1)

Where Bc is the bias term, and c denotes our four different classes ’Card ’,
’Substitution’,’Goal ’ and ’Background ’.

Fi is calculated as follows:

Fi =
1

K

∑
t,x,y

Vi(t, x, y) (4.2)

Vi holds our N feature volumes with K elements each, which in our case is
16 * 7 * 7 = 784, where t denotes our temporal dimension, and x,y our spatial
dimensions. Thereby:

Sc = Bc +

N∑
i=1

wci
1

K

∑
t,x,y

Vi(t, x, y)

= Bc +
1

K

∑
t,x,y

N∑
i=1

wciVi(t, x, y)

(4.3)

In Equation 4.3, we see the relationship between the pre-average pool feature
volumes and the weights and bias used to compute the class scores Sc. As in
Zhou et al. [59], we ignore the bias term moving forward as it has little impact
on the final results. We define a class feature tube (CAT) as a 3 dimensional
equivalent of class activation maps as follows:

Tc(t, x, y) =

N∑
i=1

wciVi(t, x, y) (4.4)

Going from Equation 4.4 to our class score Sc, we need to calculate the average
over all elements and add the bias term. Since this is the case, we may find
useful information both temporally and spatially that helps us gain insight into
what our model reacts to.

51

Figure 4.10: Illustration of feature volumes Vi

Figure 4.11: Illustration of calculation of class activation tubes

Figure 4.10 illustrates where we get our feature volumes, and Figure 4.11
shows how we weight our feature volumes to generate our CAT’s. We use CAT’s
to understand spatio-temporal features by considering the spatial information
at time t. In order to get a comparison to our input, we interpolate our 7 x 7
maps in {Tc(t = 0, x, y), Tc(t = 1, x, y)...Tc(t = T, x, y)} using bicubic interpol-
ation. We also use the CAT’s to compute temporal signals to indicate where in
time, our model reacts. This is achieved by average pooling Tc across spatial
dimensions, resulting in a 1-dimensional signal. Due to the spatial relationship
of for the spatio-temporal class activation features at time t, we refer to them
as class activation maps. Furthermore, we refer to the 1-d the temporal signal
as ’class activation signal ’.

We investigate each class with the following method.

Sample collection

To analyze the results, we decide to use samples from the validation set used
during training. We evaluate both correctly predicted samples and wrongly
predicted samples. We are interested in results from a single 128 frame input as
well as the results as we get close to the annotated point in time. Therefore we
first randomly sample 4*128 frames from the validation set where the event lies
in the center at frame 256. Next, we get a subset containing correctly predicted

52

samples by classifying locally in the frame interval [192,320] for each class. The
interval [192,320] contain the 128 frames that we used during evaluation in
Chapter 3.

Wrongly predicted samples While analysis of what the model reacts to
with correctly predicted samples, we might learn more by looking at wrongly
predicted samples. What went wrong? Are there obvious reasons as to why
a sample was misclassified? What can we learn from this? These are some
questions that we have when analyzing samples that misclassified.

Background Card Goal Substitution
Predicted label

Background

Card

Goal

Substitution

Tr
ue

 la
be

l

537 20 30 49

43 332 0 21

15 1 340 0

35 9 3 515

Confusion Matrix

0

100

200

300

400

500

Figure 4.12: Confusion matrix for validation results using R3D with 128 frames

Figure 4.12 shows the confusion matrix for the validation results from Chapter 3
on model R3D with 128 frames. We can see in the confusion matrix that for the
events ’Card ’,’Goal ’ and ’Substitution’, most bad cases end with a wrong predic-
tion for the event ’Background ’. We also look at the cases where ’Background ’
is wrongly predicted as one of the other three classes. The event ’Background ’
was generated automatically through a method described in Section 3.2, and
may contain replays of goals or other events which we may see here.

Dense CAMs

We use both positive and negative samples and visualize the spatial information
within Tc. For each input, we sample frames with a stride of 8, starting at the
fourth frame. This makes for a total of 16 frames, corresponding to the number
of CAMs present in Tc when using 128 frame inputs. We compare these visually,
side by side. This may grant insight into the decision process of our model.

Local temporal signal

Since we use a sliding window approach with a temporal window size of 5.12
seconds, it is of particular interest to see how our class activation signals are
before and just after an event has occurred. Our experiment looks at how our
signal changes by a sliding window approach with a stride of 16. We plot the
results in order, with information on exactly where the event occurs, and what
the center frame of the current signal is.

53

Temporal signal for large inputs

What happens when we increase our inputs to our model? Moreover, how is the
class activation signal locally during an event? By zero-padding our 512frames
both sides with 512, making for a total size of 512 + 512 * 2 = 1536 frames,
we experiment with 512 sized inputs to our model and use a sliding window
approach with a stride of 64. We plot our results in order where the annotated
event is perfectly centered in the interval of [512,1024] at frame 768.

Sparse CAMs

To supplement local temporal signal and temporal signal for large inputs, we
try to get insight into the spatial aspects as well. We slide our model across
each sample with inputs of 128 frames, using a stride of 16 frames. For each
location, we save the middle input image and the corresponding middle CAM
at Tc(8, x, y).

Results for event ’Card ’

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.13: a) Frames during 128 frame input with a stride of 8, starting at the
fourth frame. b) Corresponding class activation maps, Tcard(t, x, y) visualized
for t ∈ {1, 2, 3, ..., 16}

In Figure 4.13, we see different view angles with the latter half containing a
referee showing the card and arguing with players. At corresponding CAMs in
b) 10 and 11, we see strong activations when the card is shown. In b) 15, we
also see a reaction, looking at the corresponding estimated input frame, it can
seem like the referee is in the process of pointing somewhere. This may indicate
that handwaving, in general, is something the model reacts to, perhaps with
the combined information of the referee’s unique clothing. While we cannot
make hard conclusions based on this, the model seemingly reacts to reasonable
information in this particular case.

54

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(a) Center frames

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(b) Center CAM

0

10 64 80 96 112 128

0

10 144 160 176 192 208

0

10 224 240 256 272 288

0

10 304 320 336 352 368

0 10 20 30 40 50 60

0

10 384

0 10 20 30 40 50 60

400

0 10 20 30 40 50 60

416

0 10 20 30 40 50 60

432

0 10 20 30 40 50 60

448

(c) Class activation signal

5

0

5

10 frames: [0, 512] frames: [64, 576] frames: [128, 640] frames: [192, 704]

5

0

5

10 frames: [256, 768] frames: [320, 832] frames: [384, 896] frames: [448, 960]

5

0

5

10 frames: [512, 1024]

frames: [576, 1088]

frames: [640, 1152] frames: [704, 1216]

0 10 20 30 40 50
5

0

5

10 frames: [768, 1280]

0 10 20 30 40 50

frames: [832, 1344]

0 10 20 30 40 50

frames: [896, 1408]

0 10 20 30 40 50

frames: [960, 1472]

(d) Class activation signal with 512 frame input

Figure 4.14: Results from CAT’s spatio-temporally and temporally for the event
’Card ’. a) Center input frame between interval [s*n,28+s*n] of 512 frame sample
of event for the n’th sample. b) Corresponding center CAM Tcard(8, x, y) c)
Class activation signal. X-axis indicates the full 512 frame interval in feature
space d) Temporal class activation signal for zero-padded 512 frame inputs at
64 frame stride.

55

In Figure 4.14a and Figure 4.14b, we see sparse CAMs calculated from 512-
frame inputs, where we use a stride of 16, and the first frame is the 64th frame.
Images and CAMs are in order, read row by row, from left to right. The sparse
CAMs are upsampled to 112x112 using bicubic interpolation. We can note
roughly how strong the activations are before and after the annotated event
itself in the sparse CAMs. We see some activations early, but it does not react
strongly until we see the referee. In Figure 4.14c, we see the class activation
signal as it approaches the event. Here, the x-axis represents the corresponding
time in feature space as the input over the full 512 frames, while the placement
of the signal shows where in time it has been calculated. Particularly interesting
is the position of the maximum value of the signal as it slides across the event
as we see that the reactions roughly match the time of the event. This property
could perhaps be used directly for temporally accurate predictions by mapping
the position back to input space, granting an estimated point within our 5.12-
second window.

In Figure 4.18d we see the class activation signal for 512-frame inputs. The
original 512 frames have been zero-padded with additional 512 frames on each
side, hence the larger temporal extent of the signal. Here, we use a stride of 64.
We observe that the class activation signal has low responses as expected during
the zero-padded frames. The signal seems equivariant in that the class activation
signal shifts corresponding to our shift in input, locally remaining similar in the
activated areas. This property could be used for temporal region proposal for
a given class by taking maximum value positions after using temporally large
inputs.

Results for event ’Substitution’

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.15: a) Frames during 128 frame input with a stride of 8, starting at
the fourth frame. b) Corresponding class activation maps, Tsubstitution(t, x, y)
visualized for t ∈ {1, 2, 3, ..., 16}

In Figure 4.15, there seems to be a continuous reaction to the players. It

56

is not very easy to precisely say what the response comes from. Possibly, the
reaction is based on close up shots of players. The audience here seems to cause
a locally low response to the class. While this is speculative, the results may
indicate that we should expect false positives for close up shots of players.

57

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(a) Center frames

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(b) Center class activation map

0

10 64 80 96 112 128

0

10 144 160 176 192 208

0

10 224 240 256 272 288

0

10 304 320 336 352 368

0 10 20 30 40 50 60

0

10 384

0 10 20 30 40 50 60

400

0 10 20 30 40 50 60

416

0 10 20 30 40 50 60

432

0 10 20 30 40 50 60

448

(c) Class activation signal

5

0

5

10 frames: [0, 512] frames: [64, 576] frames: [128, 640] frames: [192, 704]

5

0

5

10 frames: [256, 768] frames: [320, 832] frames: [384, 896] frames: [448, 960]

5

0

5

10 frames: [512, 1024] frames: [576, 1088] frames: [640, 1152] frames: [704, 1216]

0 10 20 30 40 50
5

0

5

10 frames: [768, 1280]

0 10 20 30 40 50

frames: [832, 1344]

0 10 20 30 40 50

frames: [896, 1408]

0 10 20 30 40 50

frames: [960, 1472]

(d) Class activation signal with 512 frame input

Figure 4.16: Results from CAT’s spatio-temporally and temporally for event
’Substitution’. a) Center input frame between interval [s*n,128+s*n] of
512 frame sample for the n’th sample. b) Corresponding center CAM
Tsubstitution(8, x, y) c) Class activation signal. X-axis indicates the full 512 frame
interval in feature space d) Temporal class activation signal for zero-padded 512
frame inputs at 64 frame stride..

58

In Figures 4.16a-4.16b, we can observe much of the same. An interesting
point is the last row in a) where we see responses dropping slowly as the player
turns around. Looking at the local temporal signal in Figure 4.16c, we mostly
see a relatively flat response. If we were to use this information to try to annotate
the event more accurately, it could prove difficult, indicating that this approach
might not work well with this class. The temporal signal for large inputs in
Figure 4.14d leads us to the same conclusion. The model seems to have been
unsuccessful in capturing the exact moment.

Results for event ’Goal ’

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.17: a) Frames during 128 frame input with a stride of 8, starting at the
fourth frame. b) Corresponding class activation maps, Tgoal(t, x, y) visualized
for t ∈ {1, 2, 3, ..., 16}

Figures 4.17a-4.17b show our dense CAMs for the event ’Goal ’. The goal
occurs close to frame 60. We see strong reactions around that point, with a
focus on the left side. We hope that the model reacts when the goal crosses
the goal line. We should note, however, that while the ’Background ’ class may
contain some goal attempts, the model is not explicitly trained to separate goal
attempts and actual goals.

59

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(a) Center frame

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(b) Center class activation map

0

10 64 80 96 112 128

0

10 144 160 176 192 208

0

10 224 240 256 272 288

0

10 304 320 336 352 368

0 10 20 30 40 50 60

0

10 384

0 10 20 30 40 50 60

400

0 10 20 30 40 50 60

416

0 10 20 30 40 50 60

432

0 10 20 30 40 50 60

448

(c) Class activation signal

5

0

5

10 frames: [0, 512] frames: [64, 576] frames: [128, 640] frames: [192, 704]

5

0

5

10 frames: [256, 768] frames: [320, 832] frames: [384, 896] frames: [448, 960]

5

0

5

10 frames: [512, 1024] frames: [576, 1088] frames: [640, 1152] frames: [704, 1216]

0 10 20 30 40 50
5

0

5

10 frames: [768, 1280]

0 10 20 30 40 50

frames: [832, 1344]

0 10 20 30 40 50

frames: [896, 1408]

0 10 20 30 40 50

frames: [960, 1472]

(d) Class activation signal with 512 frame input

Figure 4.18: Results from CAT’s spatio-temporally and temporally for the event
’Goal ’. a) Center input frame between interval [s*n,128+s*n] of 512 frame
sample for the n’th sample. b) Corresponding center CAM Tgoal(8, x, y). c)
Class activation signal. X-axis indicates the full 512 frame interval in feature
space d) Temporal class activation signal signal calculated with 512 frame inputs
at 64 frame stride.

60

In Figures 4.18a-4.18b, we see our sparse CAMs, showing some response
long before the actual goal. As the view angle is switched to celebration by
the players, we see that there is a weak response. The class activation signal
in Figure 4.18c are interesting. It seems that the maximum value correctly
follows the actual goal. In this particular case, using this information to set the
temporal anchor accordingly would result in a more accurate estimate prediction
in time. Looking at the temporal signal for large inputs in Figure 4.18d further
shows that we get sharp peaks at the right moment.

Results for event ’Background ’

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.19: a) Frames during 128 frame input with a stride of 8, starting at
the fourth frame. b) Corresponding class activation maps, Tbackground(t, x, y)
visualized for t ∈ {1, 2, 3, ..., 16}

The background class is special. Due to the imbalanced relationship in soccer
videos between specific events and background video, we use this class as a
means to stop false positives. Since it has been automatically annotated with
somewhat unpredictable content, it can be difficult to infer what the model
learns and reacts to. Figure 4.19 shows a relatively consistent response except
for the last few CAMs. The frames we see in Figure 4.19a is a common view
in soccer, and it would not be surprising if the majority of the background
samples hold similar views. Intuitively, it also makes sense that this is classified
as background since nothing special in particular seems to happen in this case.

61

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(a) Center frame

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(b) Center class activation map

0

10 64 80 96 112 128

0

10 144 160 176 192 208

0

10 224 240 256 272 288

0

10 304 320 336 352 368

0 10 20 30 40 50 60

0

10 384

0 10 20 30 40 50 60

400

0 10 20 30 40 50 60

416

0 10 20 30 40 50 60

432

0 10 20 30 40 50 60

448

(c) Class activation signal

5

0

5

10 frames: [0, 512] frames: [64, 576] frames: [128, 640] frames: [192, 704]

5

0

5

10 frames: [256, 768] frames: [320, 832] frames: [384, 896] frames: [448, 960]

5

0

5

10 frames: [512, 1024] frames: [576, 1088] frames: [640, 1152] frames: [704, 1216]

0 10 20 30 40 50
5

0

5

10 frames: [768, 1280]

0 10 20 30 40 50

frames: [832, 1344]

0 10 20 30 40 50

frames: [896, 1408]

0 10 20 30 40 50

frames: [960, 1472]

(d) Class activation signal with 512 frame input

Figure 4.20: Results from CAT’s spatio-temporally and temporally for the event
’Background. a) Center input frame between interval [s*n,128+s*n] of 512 frame
sample of event ’Background ’ for the n’th sample. b) Corresponding center class
activation maps Tbackground(8, x, y) c) Class activation signal. X-axis indicates
the full 512 frame interval in feature space d) Temporal class activation signal
signal calculated with 512 frame inputs at 64 frame stride.

62

When we look at the results in Figures 4.20a-4.20b we can observe that the
model response is relatively even from a certain angle. However, the response is
much lower when the view is switched to appears to be a player-coach discussion.
Semantically, this part is similar to a substitution, which may be the reason for
the lowered response. From the class activation signals and temporal signals for
large inputs in Figures 4.20c-4.20d we see that with the exception of the player-
coach discussion, the signal response is relatively flat. Indeed, our intention
is not to annotate ’Background’ a specific point in time, large spikes or high
variance here would prove detrimental to our final results. We speculate that
the model may have learned certain view angles as the background class and
that it may be fooled if the broadcast changes to different views such as closeup
views of players.

In order to further understand the model, we look at dense CAMs for
samples where the model incorrectly predicted the wrong event. For events
’Card ’,’Substitution’, and ’Goal ’, we look at the input frames and the corres-
ponding CAMs for the correct class, which means that we can look for what the
model does not react to but should. For the special class ’Background ’, we look
at the input frames, along with the CAMs corresponding to the class that it in-
correctly predicted. Thus, meaning that we can attempt to see what the model
incorrectly reacted to. This may provide valuable insight that could help us in
multiple ways. We could find contextual similarities in the data or uncommon
views. The results may, for example, be used to target the annotation of new
data specifically.

Events misclassified as background

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.21: Model mistakes event ’Card ’ as event ’Background ’, figure shows
samples from input clip alongside CAMs for event ’Card ’.

In Figure 4.21a, we do not see the referee hold the card up. What we
observe is that there seem to be some soft responses to the spatial location of
the referee. This may be an annotation that is slightly off, or that the card was
given during the change of view. Another cause may be the cropping that is

63

used during data preprocessing. Looking at frames 76 and 84, we do not have
a good view of the right arm of the referee. While we cannot make conclusions
here, it may give cause to reevaluate the choice of center cropping from 112 x
199 resolution, perhaps a more generous width or a different choice for resizing
should be considered.

64

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.22: Model mistakes event ’Substitution’ as event ’Background ’, figure
shows samples from input clip alongside features for event ’Substitution’.

In Figure 4.22, there seems to be a long-distance view of a substitution,
the scene looks similar to what expect most background samples to look like.
Intuitively it makes sense for this sample to be misclassified considering the
sample frames. This shows some limitations, as well. The model does not work
correctly in some instances where we do not have the expected information
within the inputs.

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.23: Model mistakes event ’Goal ’ as event ’Background ’, figure shows
samples from input clip alongside features for event ’Goal ’.

Looking at the results in Figure 4.23, we see that the model hardly reacts.
The model incorrectly classified the sample as ’Background ’. We take note that
the goal seems to be a penalty, where the camera angle is somewhat unusual.
Based on this, we speculate that there are not enough different camera views

65

for goals within the dataset, which would make it difficult for the model to be
invariant to a wide range of camera angles. Another factor might also be that
much of the scene is filled with audience members, which might be associated
with background samples.

Background misclassified

Considering the nature of our background samples as automatically annotated,
we expect a variety of different scenes within the dataset. We briefly investigate
background samples that were wrongly classified as another event. We pair the
CAMs with the input frames to see if we can better understand what the model
reacted to in this case.

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.24: Model mistakes event ’Background ’ as event ’Card ’, figure shows
samples from input clip alongside features for event ’Card ’.

We can see that, for the most part, there is little response in Figure 4.24.
However, through frames 92-124, there are some reactions to the left side. Look-
ing closely at the input frames, we can see a player standing still with a barely
visible referee pointing. It may be that this is the reason, or it may be the
player’s stance.

66

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Frames

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.25: Model mistakes event ’Background ’ as event ’Substitution’, figure
shows samples from input clip alongside features for event ’Substitution’.

0

20

40

60

80

100

4 12 20 28

0

20

40

60

80

100

36 44 52 60

0

20

40

60

80

100

68 76 84 92

0 20 40 60 80 100

0

20

40

60

80

100

100

0 20 40 60 80 100

108

0 20 40 60 80 100

116

0 20 40 60 80 100

124

(a) Franes

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

5 6 7 8

0

20

40

60

80

100

9 10 11 12

0 20 40 60 80 100

0

20

40

60

80

100

13

0 20 40 60 80 100

14

0 20 40 60 80 100

15

0 20 40 60 80 100

16

(b) Class activation maps

Figure 4.26: Model mistakes event ’Background ’ as event ’Goal ’, figure shows
samples from input clip alongside features for event ’Goal ’.

In Figure 4.25, we see what appears to be a hurt player leaving the field.
Interestingly, this is semantically similar to a substitution. Figure 4.26 seems to
be a goal attempt triggering a false positive. This is interesting and increases
our expectation of false positives around goal attempts.

Summary

In Section 4.3, we investigated model behavior to understand strengths and
weaknesses better. Section 4.3.2 showed us that model response is different
depending on the class, and that we could have as much as 50% zero-padded

67

frames as input while still get correct predictions. Furthermore, these results in-
dicated that a stride of 1 second is reasonable. We further investigated behavior
for larger temporal windows in Section 4.3.2, where we found that our model
produces noisy signals and seemingly reacts in multiple cases to contextually
similar scenes such as replays. To gain some insight into the spatio-temporal
features used for model prediction, we looked at both class activation maps and
class activation signals in Section 4.3.3. We find that while it remains unclear
whether the model learns the correct features, the results indicated that contex-
tually meaningful information results in a strong response. The class activation
signals showed varying results depending on the class. For classes ’Goal ’ and
’Card ’, the result showed potentially useful information for increasing accuracy
within the 5.12-second temporal window of the model. Further, we found that
misclassified samples seemed to be caused by different factors such as rare cam-
era angles, which could be resolved with more data. Another factor might be
bad cropping, which could be fixed by changing preprocessing steps.

4.4 Full video detection

To evaluate the model in a practical scenario, we use both test and validation
set from SoccerNet [19], which is discussed in detail in Section 3.2. With 200
untrimmed clips, each holding about 45 minutes each, the events are sparse. We
first slide our model R3D with 128 frame inputs at a stride of 1 s with a sliding
window approach, which results in about 550 thousand raw predictions for the
validation and test set each. Evaluating the 200 games took about 30 hours
to complete, roughly 9 minutes per game. Next, we pre-process each signal
separately and evaluate the results with respect to spotting tolerance δ.

4.4.1 Processing output prediction

Moving average filter

One tactic in action recognition during testing is to sample multiple clips and
average the predictions during testing [8, 47] for full video prediction. In our
case with 128 frame input, 5.12 seconds, the model process the same frames
multiple times due to our 1-second stride. We, therefore, apply a small moving
average filter of size 3, with a kernel containing [1/3, 1/3, 1/3]. The goal is too
smooth out the signal slightly to remove noise.

Figure 4.27: Illustration of moving average filter

Figure 4.27 illustrates how we apply the moving average filter. Here, we use
symmetric padding at the beginning and end of the input.

68

Thresholding prediction

We are predicting at every second for 400 videos making for roughly 1080000
seconds. As seen in Section 4.3, we get noisy signals. In our validation set and
test set, we have 1314 and 1358 samples, respectively, which together represent
about 0.25% of our predictions made. To remove most of the noise, we threshold
the signals with a high threshold T.

Removing duplicates

To remove temporally close and high predictions, we use a window of size 10,
where we look for the time of the highest local prediction for a given class.
This effectively means that there will be no predictions within 5 seconds of each
other.

4.4.2 Spotting results

For spotting, we look at each class separative as a one-vs-all binary problem
and consider a positive prediction as a true positive if it is within a tolerance δ
of the ground truth event with higher confidence than our threshold. Formally,
we use the following condition:

|gtspot − pspot| < δ (4.5)

Where gtspot is a ground truth spot, and pspot a predicted spot in seconds.
For predictions where this is false, we consider it a false positive. If, for a given
gtspot, there are no predictions made where this condition holds, we consider it
a false negative.

We look at recall, precision, and F1 scores over different thresholds for low
tolerance of 2.5 seconds, consistent with our 5.12-second temporal window of
our model R3D. First, we visually inspect some results.

69

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Card

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Substitution

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Goal

Prediction Ground truth

0 500 1000 1500 2000 2500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Background

Figure 4.28: Softmax confidence for each class over 45-minutes with ground
truth.

In Figure 4.29, we see the softmax confidence for each class separately for a
soccer half-game of 45 minutes. The background signal dominates most of the
time. However, the signals are noisy and include multiple high responses at the
wrong time.

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n

Card

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Substitution

0 500 1000 1500 2000 2500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n

Goal

Prediction Ground truth

Figure 4.29: Prediction for each second after mean filtering, after thresholding.
Red dotted line shows ground truth for each class.

Figure 4.29 shows our final predictions. After applying a threshold of 0.9, we
see that we have removed most of the noise. For the event ’Card ’, we get a false
positive long after the event itself. Looking at both ’Substitution’ and ’Goal’,
we see that we get reasonable predictions close to the ground truth. However,
we also end up with multiple false positives that are entirely unrelated.

70

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.5

0.6

0.7

0.8

0.9

1.0
Re

ca
ll-

Sc
or

e
Validation Recall @ Threshold

Recall: Card
Recall: Substitution
Recall: Goal

(a) Recall

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

-S
co

re

Validation Precision @ Threshold
Precision: Card
Precision: Substitution
Precision: Goal

(b) Precision

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F1
-S

co
re

Validation F1-score @ Threshold
F1-score: Card
F1-score: Substitution
F1-score: Goal

(c) F1-score

Figure 4.30: Recall, precision and F1-score of validation set over different
thresholds using a tolerance δ = 2.5s

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll-
Sc

or
e

Test Recall @ Threshold

Recall: Card
Recall: Substitution
Recall: Goal

(a) Recall

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ec

isi
on

-S
co

re

Test Precision @ Threshold
Precision: Card
Precision: Substitution
Precision: Goal

(b) Precision

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0.10

0.15

0.20

0.25

0.30

0.35

F1
-S

co
re

Test F1-score @ Threshold
F1-score: Card
F1-score: Substitution
F1-score: Goal

(c) F1-score

Figure 4.31: Recall, precision and F1-score of test set over different thresholds
using a tolerance δ = 2.5s 71

Results for tolerance 2.5 on test set
Threshold 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
mAp 0.21 0.22 0.22 0.22 0.23 0.24 0.26 0.3
Card AP 0.32 0.33 0.33 0.33 0.33 0.35 0.41 0.48
Substitution AP 0.23 0.24 0.24 0.25 0.25 0.26 0.26 0.28
Goal AP 0.09 0.10 0.10 0.10 0.10 0.11 0.12 0.15
Card Precision 0.07 0.08 0.10 0.12 0.15 0.19 0.28 0.35
Substitution Precision 0.06 0.07 0.08 0.09 0.11 0.13 0.17 0.20
Goal Precision 0.04 0.04 0.04 0.05 0.05 0.06 0.08 0.10
Card Recall 0.94 0.91 0.86 0.81 0.75 0.67 0.54 0.42
Substitution Recall 0.98 0.97 0.96 0.94 0.92 0.89 0.81 0.69
Goal Recall 0.94 0.91 0.88 0.82 0.77 0.69 0.58 0.46
Card F1 0.12 0.15 0.17 0.21 0.25 0.30 0.37 0.38
Substitution F1 0.11 0.13 0.15 0.17 0.20 0.23 0.28 0.31
Goal F1 0.07 0.08 0.09 0.09 0.10 0.11 0.14 0.16
N pcard 11892 8060 5615 4016 2800 1896 1159 835
N pSubstitution 27208 21265 16945 13374 10360 7515 4598 2900
N pGoal 9706 8019 6735 5711 4737 3755 2555 1686

Table 4.4: Table with results on test set for mAp, AP, Precision, Recall, F1-score
and number of predictions made at each threshold

Figure 4.31 shows recall, precision and F1-Score over multiple thresholds.
To get what we believe are meaningful predictions, we use a low tolerance of
2.5 seconds. The event ’Goal ’ seems to perform the worst. We believe that this
is mainly due to two reasons. 1) Goal attempts can fool the model. 2) Replays
can fool the model. This means that while we may find a large percentage
of the events at a low threshold, as seen in Figure 4.31a, we end up with a
large number of false positives in the process. Results on the validation set in
Figure 4.30 shows similar results.

Tolerance Card AP Substitution AP Goal AP mAp
1 0.26 0.14 0.08 0.16
2 0.34 0.23 0.08 0.22
3 0.47 0.33 0.13 0.31
4 0.55 0.42 0.17 0.38
5 0.57 0.49 0.17 0.41

Table 4.2: Average-precision and mAp for classes on validation set

Tolerance Card AP Substitution AP Goal AP mAp
1 0.24 0.13 0.06 0.14
2 0.30 0.21 0.07 0.19
3 0.42 0.29 0.12 0.28
4 0.48 0.37 0.17 0.34
5 0.51 0.44 0.18 0.38

Table 4.3: Average-precision and mAp for classes on test set

In Table 4.2-4.3, we see the average-precision and mean-average-precision
for the validation and test set for tolerances 1 through 5.

In Table 4.4 we see the results for a tolerance δ of 2.5. We can see that we
reduce the number of samples drastically from the predicted 550 000, but that
our precision suffers.

72

4.4.3 Comparison to baseline

We compare our results to the baseline in SoccerNet [19]. Starting at 5 seconds,
we calculate average precision after thresholding at 0.9, where any missed pre-
dictions use the original prediction at that point.

(a) Validation set

10 20 30 40 50 60
Tolerance

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

m
Ap

AUC=51.0%

(b) Test set

Figure 4.32: mAp over different tolerances

The metric used is Average-mean-average-precision (Average-mAp), which
is calculated by the AUC as a percentage using the mAp for tolerances ranging
from 5-60. Giancola et al. [19] report an Average-mAp of 49.7% using 20-second
windows for their approach. We report 51.0% Average-mAp on the test set and
53.32% on the validation set for comparison. It should be noted, however, that
this metric is less suitable to our approach, as we believe that any improvement
after a tolerance of about 5 seconds is due to noise and likely not meaningful
predictions because of the temporal extent of our model. Figure 4.32 shows
results for both test and validation set. For a more appropriate comparison for
our model, we look at the result for the lowest reported tolerance. While not
directly reported, it is clear from the spotting results in Giancola et al. [19], that
mAp at the initial tolerance of 5 is less than 0.2. Our approach, reports 0.38
mAp on the test set, and 0.41 mAp on the validation set as seen in Tables 4.2-4.3.

4.5 Generalization to other datasets

Training a model on one particular dataset does not automatically mean that
the same model generalizes well to other datasets containing the same classes.
The dataset that we used for training was described in Section 3.2, and we noted
that we might indeed have some bias such as video filming techniques, audience,
video editing, and more. In this section, we try to evaluate how well our model
generalizes to soccer from different leagues. We use two different datasets from
Swedish and Norwegian leagues with clips ranging from 60-90 seconds long.
These clips contain a goal at 25 seconds, with an estimated annotation error
of ±5 seconds. We also know that roughly 40 seconds after the goal, we have
replays. First, we investigate the prediction signal for goals by using a sliding
window approach with a stride of 1 second. Next, we investigate whether or
not we can fool our model by performing the same tests on goal attempts in
the same format, with no actual goal. To measure performance, we evaluate
accuracy at different thresholds since we may get false positives when outside

73

of 20-30 seconds, we evaluate the results when limited to the interval between
20-30 seconds, compared to results over the full clips.

4.5.1 Goals

We first look at our model response for the 233 samples in Allsvenskan and
300 samples in Eliteserien containing goals. First, we look at the prediction
signals over time for eight random samples containing goals. Since all samples
are similar in that the event occurs at the same temporal spot, we look at
the average prediction signal over all samples. Finally, we look at accuracy at
different thresholds.

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

0 20 40 60 80 100
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected goal
Max prediction

0 20 40 60 80
Seconds

Goal prediction
Expected goal
Max prediction

0 20 40 60 80 100
Seconds

Goal prediction
Expected goal
Max prediction

0 20 40 60 80 100
Seconds

Goal prediction
Expected goal
Max prediction

Goal predictions on Allsvenskan dataset

Figure 4.33: Goal prediction for randomly sampled clips from Allsvenskan

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

Goal prediction
Expected goal
Max prediction

0 10 20 30 40 50 60 70 80
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected goal
Max prediction

0 10 20 30 40 50 60 70 80
Seconds

Goal prediction
Expected goal
Max prediction

0 10 20 30 40 50 60 70 80
Seconds

Goal prediction
Expected goal
Max prediction

0 10 20 30 40 50 60 70 80
Seconds

Goal prediction
Expected goal
Max prediction

Goal predictions on Elite dataset

Figure 4.34: Goal prediction for randomly sampled clips from Eliteserien

74

Figures 4.33-4.34 show the softmax predicted score for the class ’Goal ’. We
mark the expected goal at 25 seconds, and the maximum prediction produced
by the model. We generally see a peak of around 25 seconds as expected.
Furthermore, the model seems to produce false positives 30-60 seconds after the
goal. This is consistent with replays, which highlights a limitation for our model
in that it can not inherently separate the actual goal from a replay. The results
of this imply that we can expect the model to produce false positives for most
goals, depending on factors such as replay speed and camera angle. It may be
appropriate to use this information by assuming that there are no overlapping
goals within a temporal window of length L centered at the max prediction.

0 10 20 30 40 50 60 70
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
oa

l p
re

di
ct

io
n

Average goal prediction
max: 23.56

(a) Swedish Allsvenskan

0 10 20 30 40 50 60
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
oa

l p
re

di
ct

io
n

Average goal prediction
max: 25.56

(b) Norwegian Eliteserien

Figure 4.35: Avg. Prediction from Norwegian Eliteserien clips and Swedish
Allsvenskan

In Figure 4.35 we see the average softmax prediction for ’Goal ’. We see that
there is a high response around 25 seconds in both datasets. Interestingly, we
get a higher response from Eliteserien clips. Some possible explanations for this
can be differences in production techniques. It may be that different camera
angles are used, or statistical differences in the position of goal shots or type of
goal. We can see what appears to be false positives from replays after the fact
at around 55 seconds. Further strengthening our belief that many replays are
caught.

0.5 0.6 0.7 0.8 0.9
Threshold

50

60

70

80

90

100

Ac
cu

ra
cy

(%
) @

 T
hr

es
ho

ld

Accuracy(%) at different thresholds [0.5,0.95]

(a) Results in interval [20,30] s

0.5 0.6 0.7 0.8 0.9
Threshold

50

60

70

80

90

100

Ac
cu

ra
cy

(%
) @

 T
hr

es
ho

ld

Accuracy(%) at different thresholds full [0.5,0.95]

(b) Results full clip

Figure 4.36: Results from Allsvenskan dataset containing goals for both full clip
and limited interval

75

0.5 0.6 0.7 0.8 0.9
Threshold

50

60

70

80

90

100
Ac

cu
ra

cy
(%

) @
 T

hr
es

ho
ld

Accuracy(%) at different thresholds [0.5,0.95]

(a) Results in interval [20,30] s

0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

100

Ac
cu

ra
cy

(%
) @

 T
hr

es
ho

ld

Accuracy(%) at different thresholds [0.5,0.95]

(b) Results full clip

Figure 4.37: Results from Eliteserien dataset containing goals for both full clip
and limited interval

In Figures 4.36a-4.36b, we see the accuracy calculated by using different
thresholds for the temporal interval of [20,30] and the full clip respectively.
We see that the accuracy gradually gets worse as we increase our threshold.
Comparing the results between the short interval and full clip, we see about 10%
higher accuracy. This means that we are catching false positives, likely replays.
The results from the Eliteserien dataset shows similar results in Figures 4.37a-
4.37b. In the Eliteserien dataset, we see that as we increase our threshold, we
also increase the difference in accuracy when comparing the short interval and
full clip. Worth noting is the difference in accuracy between Allsvenskan and
Eliteserien, which further fuels our suspicions of differences between the datasets
as noted earlier.

4.5.2 Goal attempts

Is the model reacting to goals or scenes contextually similar, and can we fool
our model? To test this, we use 84 from Allsvenskan containing goal attempts.
These clips come in the same format, with the event ’Goal attempt ’ occurring at
25 seconds. We perform the same tests by looking at several random samples,
average prediction, and accuracy for goal predictions locally and globally. Some
clips may contain replays of the goal attempt, and we observe that it may
contain subsequent goals, or replays of earlier goals as well.

76

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 p
re

di
ct

io
n

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

0 10 20 30 40 50 60
Seconds

Goal prediction
Expected shot
Max prediction

Goal predictions on 'goal shots' dataset

Figure 4.38: Randomly sampled from Allsvenskan ’goal attempts’ clips

We see in Figure 4.38 that there is a trend of high responses around 25
seconds. However, we note that based on these samples, the prediction score
is lower compared to actual goals. This indicates that we should expect many
false positives at lower thresholds and that it is crucial to have a high enough
threshold.

10 20 30 40 50
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
oa

l p
re

di
ct

io
n

Average goal prediction
max: 23.56

Figure 4.39: Avg. prediction from ’goal attempts’ clips

Figure 4.39 further shows a smaller average peak and less response after
the goal attempt. We believe that this is because it is less common to have
replays after a goal attempt when compared to actual goals. Another common
occurrence is multiple goal attempts close to each other, such as the keeper
deflecting a shot, resulting in another attempt. This may explain the small
increase in our average prediction at about 35 seconds.

77

0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

100
Er

ro
r(%

) @
 T

hr
es

ho
ld

Error(%) at different thresholds [0.5,0.95]

(a) Results in interval [20,30] s

0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

100

Er
ro

r(%
) @

 T
hr

es
ho

ld

Error(%) at different thresholds full [0.5,0.95]

(b) Results full clip

Figure 4.40: Results from Allsvenskan dataset containing goal attempts for both
full clip and limited interval

We consider the results in Figures 4.40a-4.40b and see that we do indeed
get a high error. Effectively fooling the model. However, we see that both local
and global predictions drop significantly at higher thresholds. We note that
the difference is small when comparing locally against the full clip. To further
elaborate, we compare the results in Table 4.5 and find that while the model
is fooled. It is not always the case, and that while actual goals have a drop of
about 30% from threshold 0.5 to 0.95, goal attempts have a drop of about 47%
in error.

Cross-dataset results in accuracy within interval 20 and 30 seconds
Threshold Allsvenskan Goals Eliteserien Goals Goal attempts (Error)

0.50 87.12 95.33 67.86
0.55 85.41 93.67 66.67
0.60 84.55 92.67 64.29
0.65 84.55 90.67 58.33
0.70 82.83 89.00 55.95
0.75 81.97 87.00 54.76
0.80 78.54 83.67 51.19
0.85 75.97 78.67 42.86
0.90 68.24 75.00 33.33
0.95 57.51 64.67 20.24

Table 4.5: Results for Allsvenskan and Eliteserien at different thresholds

Summary

We have investigated how our model generalizes to other datasets and found that
it often find goals. Furthermore, we see that replays may hurt the performance
by producing false positives. To evaluate the robustness of our model, we tried
to fool our model with goal attempts, and the results indicate that our model is
not robust to contextually similar events. The results indicate that on a large
scale, the model will likely have high recall at lower thresholds while producing
multiple false positives for the event ’Goal ’.

4.6 Discussion

In this section, we first discuss corrupt samples and how we dealt with this
during training. Afterward, we look into known bugs that were discovered

78

after experiments were done. We further discuss recently published work that
is relevant and how it affects this thesis. Finally, we discuss potential further
improvements that can be made.

4.6.1 Corrupt samples

During model training and testing, occasional stutters were present. In some
videos in SoccerNet [19], 59 samples in the training set, 14 in the validation set,
and 103 in the test set. This resulted in 3-22% missing frames in these samples.
Our solution was to pad these samples by duplication of the last observed frame.

4.6.2 Known bugs

We discovered a negligible bug that occurs during pre-processing steps for the
action recognition task of locally sampled frames around events in SoccerNet [19]
in the training process. Initially, the method was meant to provide data aug-
mentation by temporally shifting the input by an amount based on a gaussian
distribution. However, due to the bug, the model will either not shift at all, or
shift 0.016 seconds left or right, this is less than a single frame. Therefore we
determine that this has a negligible effect on the results.

4.6.3 Just published work

In late 2019, a new paper on spotting by Cioppa et al. [9] reported 62.5%
Average-mAp for the spotting task in SoccerNet. The authors used a novel loss
function for temporal action segmentation and achieved state-of-the-art results
on THUMOS14 and ActivityNet [18, 29]. It should be noted that the authors
here specifiy that they use the tolerance δ as a window such that for a sample
to be positive it must no more than δ

2 seconds away from the ground truth.
This differs from our approach, as we calculated based on a tolerance δ in both
directions.

4.6.4 Scope of the work

There are many different events, and ways to approach this problem. While
there are datasets for action detection such as THUMOS14 and activitynet [29,
26], HMDB51, Kinetics [34, 31] for action recognition, or for AVA [23] for spatio-
temporal action detection.

In this thesis we mainly focus to on the three events events ’Card ’, ’Sub-
stitution’ and ’Goal ’. There are multiple other events both in soccer, and in
sports in general, however due to the time consumption of manual annotation,
we limited the scope to these three.

There are multiple approaches to action recognition and detection, such as
through iDT features and more classical approaches. RNNs such as LSTM are
also popular for event detection. We however, limited the scope to the 3D CNN
based models selected.

4.6.5 Further improvements

During our visualization of CAMs, we found potential errors in our resize and
cropping strategy. To avoid this issue, we recommend a different strategy, such

79

as resize with no cropping or resize without keeping the aspect ratio constant.
This to prevent cases where vital parts of the video are cropped away.

In our results, we see a recurring problem with false positives. On our test
set with a tolerance of 2.5 and threshold of 0.3, we reduce our predictions from
about 550000 to 9706 for the event ’Goal’ with a recall of 0.93, for ’Substitution’
we show 0.97 recall and for ’Card’ 0.93 as seen in Table 4.4. This compared
to the 356, 562 and 396 samples respectively. We see that while our recall is
decent, our precision is low, with only 0.07 for the event ’Card ’. For the Event
’Goal’, this is especially evident, only reaching a precision of 0.1 at threshold
0.95 and corresponding 0.46 recall. This means that for every correct prediction
we make, we get nine false positives. We believe, however, that this can be
improved by, for example, the detection and removal of replays.

To further improve the current model, we recommend 1) A robust proposal
method 2) A different resize and crop strategy 3) Adjustments to training pro-
cess with regards to background data, for example, add goal attempts to train-
ing. This would likely help with the problem of false positives.

There are multiple approaches to event detection, such as the use of improved
Dense Trajectories features, Motion boundary histograms, RNNs, and CNNs,
both 2D and 3D. In this thesis, we focused on deep-learning based models
to predict all events as a multi-classifier. However, it may be that a more
appropriate approach is to use multiple different models to specifically targeted
each event. For example, a goal may be more appropriately detected through
a ball detection model coupled with other features. Another valuable addition
would be replay detection, which would also remove many false positives from
the ’Goal ’ detections. In a practical setting, it is hard to say how useful this is.
For now, it is more appropriate to use a human annotator when possible due
to the number of false positives. However, there are some use cases where the
model could be used as-is. Due to the relatively high recall, it may be viable
to use as a proposal method, potentially reducing thousands of ours down to
small clips that can be verified by human annotators and generate more massive
datasets efficiently. Suppose a small clip of 20 seconds with a known event is
available, then a use case would be to get a more accurate prediction locally.

4.7 Summary

In this chapter, we investigate the behavior of the ResNet 3D model using 128
as input with a 5.12-second temporal window. Section 4.3 investigates model
behavior both locally around an event to find a reasonable stride and gain
insight into how much information the model requires. Further, we find that
during a larger temporal window of 138.4 seconds that the results are noisy
and cause false positives during some replays. We further looked into what the
model reacts to both spatially and temporally by using class activation maps
and signals. The results indicated differences between classes, where the event
’Substitution’ seemed to have temporally more extended reactions. Indicative
of the model not learning the defined event as the point a player enters the
field, but rather contextual similarities such as closeup video of a player that is
walking. For events ’Card ’ and ’Substitution’, we found that information from
class activation signals could increase accuracy within the time interval of 5.12
seconds. When looking at misclassified examples, we found possible weaknesses

80

with our pre-process center crop strategy. We also found that the model has
difficulties with particular camera views that are rare. We test our model on
SoccerNet [19] using a sliding-window approach in Section 4.4 and find that .
In Section 4.5, we test our model on video clips from Swedish Allsvenskan and
Norwegian Eliteserien with 533 clips containing goals, and 84 clips containing
goal attempts. The results showed that the model R3D generally finds the
events and reacts to replays with a varying degree. However, the results also
show that the model is often fooled by clips containing goal attempts.

81

Chapter 5

Conclusion

5.1 Summary and contributions

Today, event annotation is performed manually. This is a tedious, expensive,
and time-consuming task. Annotations are important for entertainment, ana-
lysis, and user-consumption in general. With an increased availability with
internet access, smartphones, and sites such as Youtube, annotations become
all the more important.

In this thesis, we tackled the problem of automatic event detection in soccer.
Specifically, we targeted the three events Card, Substitution and Goal. Our
objectives were 1) To research and find a general approach to automatic event
detection in soccer video that can be easily adapted to new events. 2) Implement
and find a good configuration for our selected approaches through experimental
prototyping. 3) Analyze weaknesses and strengths of the selected approaches.
4) Compare experimental results to state-of-the-art.

For objective 1 we researched state-of-the-art methods in action recognition
and detection and selected the four different architectures: ResNet 3D, ResNet
(2+1)D, Mixed Convolution and SlowFast [47, 16].

In the context of objective 2, we used SoccerNet [19], which contains 6637
annotated events over 784 hours. We tested different configurations for our
selected model in a classification task by sampling video-frames locally around
events. We compared models pretrained on Kinetics-400 [31] and found that
our best performing model, Mixed Convolution, achieved 83% accuracy on the
validation set compared to its from-scratch counterpart with 72.8%. We further
experimented with reduced input data by using gray-scale input rather than
RGB and found that the results were similar to the use of RGB. To find our
input resolution, we tested 112 x 112 against 224 x 224 and found similar results,
leading us to choose 112 x 112 as input. We showed that as a classification task,
performance increased when using a higher number of frames during training
and testing, resulting in our best performing model ResNet 3D with 128 frame
inputs at 88.4% validation accuracy.

For objective 3, we attempted to gain insight into the decision process and
behavior of the now trained ResNet 3D model. We performed a sliding-window
test locally over a zero-padded 128 frame input, which showed us that as much
as 50% of the input data can be zero-padded frames, while still correctly pre-

82

dicting samples in some cases. Furthermore, we found that the results indic-
ated that a stride of 1 second is appropriate. To better understand our model
predictions, we performed another sliding-window test over 138.6 seconds that
showed us that the model may produce noisy predictions and that replays often
could result in false positives. We analyzed both correctly classified samples
and wrongly classified samples by calculating the class activation maps, which
we looked at both from a spatio-temporal angle, and a temporal angle. For
objective 4, we tested our sliding-window approach on the test and validation
set of SoccerNet [19], and we report 51% Average-mAp compared to the 49.7%
on the test set. Furthermore, we tested cross-dataset generalization by down-
loading 617 clips from Norwegian Eliteserien and Swedish Allsvenskan that had
goal attempts in 84 of the clips, with the remaining 533 clips containing goals.
The results showed that we could generally classify events with 87% accuracy on
Allsvenskan samples containing goals, and 95% on Eliteserien clips containing
goals with a confidence threshold of 0.5. However, we observed that our model
could be fooled by goal attempts, with 67% of goal attempts producing false
positives at the same threshold.

5.2 Future work

For future work, we want to see the use of action proposals during spotting,
for example, through the use of class activation signals. By using large input
window and local subsampling procedures of the class activation signals, it may
be possible to create an accurate detection model that does not rely on an
overlapping sliding-window approach.

Robust training schemes to adequately capture background data is encour-
aged. We also encourage the use of both locally extracted features, com-
bined with non-local information, such as through the use of long-term feature
banks [54]. Intuitively, this could capture easier with the additional information
temporal context. We believe this may help separate events such as ’Goal’ and
’Attempted Goal’.

Another related task would be unsupervised learning for event detection.
Can we locate events, for example, with clustering, given prior information of
the number of occurrences of a given event in game-halves? It may be possible
to extract features and perform clustering independent of the spotting task, or
it may be used in combination with action detection methods. This would be
interesting as, in many practical cases, this information is often easily accessible,
e.g., if the event is a goal, one could apply OCR in the ending.

83

Bibliography

[1] [1403.6382] CNN Features off-the-shelf: an Astounding Baseline for Recog-
nition. url: https://arxiv.org/abs/1403.6382 (visited on 28/11/2019).

[2] [1507.05738] Every Moment Counts: Dense Detailed Labeling of Actions
in Complex Videos. url: https://arxiv.org/abs/1507.05738 (visited
on 22/11/2019).

[3] [1704.00389] Hidden Two-Stream Convolutional Networks for Action Re-
cognition. url: https : / / arxiv . org / abs / 1704 . 00389 (visited on
22/11/2019).

[4] [1711.10305] Learning Spatio-Temporal Representation with Pseudo-3D
Residual Networks. url: https://arxiv.org/abs/1711.10305 (visited
on 24/06/2019).

[5] Sami Abu-El-Haija et al. “YouTube-8M: A Large-Scale Video Classifica-
tion Benchmark”. In: arXiv:1609.08675 [cs] (Sept. 2016). arXiv: 1609.08675.
url: http://arxiv.org/abs/1609.08675 (visited on 14/11/2019).

[6] Jürgen Assfalg et al. “Semantic annotation of soccer videos: automatic
highlights identification”. In: Computer Vision and Image Understanding
92.2 (2003), pp. 285–305. issn: 1077-3142. doi: https://doi.org/10.
1016/j.cviu.2003.06.004. url: http://www.sciencedirect.com/
science/article/pii/S1077314203001231.

[7] Zhe Cao et al. “Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields”. In: arXiv:1611.08050 [cs] (Nov. 2016). arXiv: 1611.08050.
url: http://arxiv.org/abs/1611.08050 (visited on 27/08/2018).

[8] Joao Carreira and Andrew Zisserman. “Quo Vadis, Action Recognition?
A New Model and the Kinetics Dataset”. In: arXiv:1705.07750 [cs] (Feb.
2018). arXiv: 1705.07750. url: http://arxiv.org/abs/1705.07750

(visited on 20/11/2019).

[9] Anthony Cioppa et al. A Context-Aware Loss Function for Action Spotting
in Soccer Videos. 2019. arXiv: 1912.01326 [cs.CV].

[10] Navneet Dalal, Bill Triggs and Cordelia Schmid. “Human Detection Us-
ing Oriented Histograms of Flow and Appearance”. en. In: Computer Vis-
ion – ECCV 2006. Ed. by Aleš Leonardis, Horst Bischof and Axel Pinz.
Vol. 3952. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 428–
441. isbn: 978-3-540-33834-5 978-3-540-33835-2. doi: 10.1007/11744047_
33. url: http://link.springer.com/10.1007/11744047_33 (visited on
18/11/2019).

84

https://arxiv.org/abs/1403.6382
https://arxiv.org/abs/1507.05738
https://arxiv.org/abs/1704.00389
https://arxiv.org/abs/1711.10305
http://arxiv.org/abs/1609.08675
https://doi.org/https://doi.org/10.1016/j.cviu.2003.06.004
https://doi.org/https://doi.org/10.1016/j.cviu.2003.06.004
http://www.sciencedirect.com/science/article/pii/S1077314203001231
http://www.sciencedirect.com/science/article/pii/S1077314203001231
http://arxiv.org/abs/1611.08050
http://arxiv.org/abs/1705.07750
https://arxiv.org/abs/1912.01326
https://doi.org/10.1007/11744047_33
https://doi.org/10.1007/11744047_33
http://link.springer.com/10.1007/11744047_33

[11] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”.
en. In: (), p. 8.

[12] P. J. Denning et al. “Computing as a discipline”. In: Computer 22.2 (Feb.
1989), pp. 63–70. issn: 1558-0814. doi: 10.1109/2.19833.

[13] A. Ekin, A. M. Tekalp and R. Mehrotra. “Automatic soccer video analysis
and summarization”. In: IEEE Transactions on Image Processing 12.7
(July 2003), pp. 796–807. issn: 1057-7149. doi: 10.1109/TIP.2003.

812758.

[14] Christoph Feichtenhofer, Axel Pinz and Richard P. Wildes. “Spatiotem-
poral Residual Networks for Video Action Recognition”. In: arXiv:1611.02155
[cs] (Nov. 2016). arXiv: 1611.02155. url: http://arxiv.org/abs/1611.
02155 (visited on 20/06/2019).

[15] Christoph Feichtenhofer, Axel Pinz and Andrew Zisserman. “Convolu-
tional Two-Stream Network Fusion for Video Action Recognition”. en.
In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 1933–1941.
isbn: 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.213. url: http:

//ieeexplore.ieee.org/document/7780582/ (visited on 18/11/2019).

[16] Christoph Feichtenhofer et al. “SlowFast Networks for Video Recogni-
tion”. In: arXiv:1812.03982 [cs] (Oct. 2019). arXiv: 1812.03982 version:
3. url: http://arxiv.org/abs/1812.03982 (visited on 15/11/2019).

[17] FIFA.com. 2018 FIFA World CupTM - News - More than half the world
watched record-breaking 2018 World Cup - FIFA.com. en-GB. url: https:
/ / www . fifa . com / worldcup / news / more - than - half - the - world -

watched-record-breaking-2018-world-cup (visited on 19/11/2019).

[18] Bernard Ghanem et al. “The ActivityNet Large-Scale Activity Recogni-
tion Challenge 2018 Summary and Workshop Papers”. en. In: (), p. 112.

[19] Silvio Giancola et al. “SoccerNet: A Scalable Dataset for Action Spot-
ting in Soccer Videos”. In: arXiv:1804.04527 [cs] (Apr. 2018). arXiv:
1804.04527. url: http : / / arxiv . org / abs / 1804 . 04527 (visited on
14/01/2019).

[20] Melvyn A. Goodale and A. David Milner. “Separate visual pathways for
perception and action”. In: Trends in Neurosciences 15.1 (1992), pp. 20–
25. issn: 0166-2236. doi: https://doi.org/10.1016/0166-2236(92)
90344-8. url: http://www.sciencedirect.com/science/article/
pii/0166223692903448.

[21] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT
Press, 2016.

[22] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour”. In: arXiv:1706.02677 [cs] (June 2017). arXiv: 1706.02677. url:
http://arxiv.org/abs/1706.02677 (visited on 26/06/2019).

[23] Chunhui Gu et al. “AVA: A Video Dataset of Spatio-temporally Loc-
alized Atomic Visual Actions”. In: arXiv:1705.08421 [cs] (May 2017).
arXiv: 1705.08421. url: http://arxiv.org/abs/1705.08421 (visited on
05/06/2019).

85

https://doi.org/10.1109/2.19833
https://doi.org/10.1109/TIP.2003.812758
https://doi.org/10.1109/TIP.2003.812758
http://arxiv.org/abs/1611.02155
http://arxiv.org/abs/1611.02155
https://doi.org/10.1109/CVPR.2016.213
http://ieeexplore.ieee.org/document/7780582/
http://ieeexplore.ieee.org/document/7780582/
http://arxiv.org/abs/1812.03982
https://www.fifa.com/worldcup/news/more-than-half-the-world-watched-record-breaking-2018-world-cup
https://www.fifa.com/worldcup/news/more-than-half-the-world-watched-record-breaking-2018-world-cup
https://www.fifa.com/worldcup/news/more-than-half-the-world-watched-record-breaking-2018-world-cup
http://arxiv.org/abs/1804.04527
https://doi.org/https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/https://doi.org/10.1016/0166-2236(92)90344-8
http://www.sciencedirect.com/science/article/pii/0166223692903448
http://www.sciencedirect.com/science/article/pii/0166223692903448
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1705.08421

[24] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385. url: http : / /

arxiv.org/abs/1512.03385 (visited on 22/11/2019).

[25] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: arXiv:1502.01852 [cs] (Feb.
2015). arXiv: 1502.01852. url: http://arxiv.org/abs/1502.01852

(visited on 05/02/2020).

[26] Fabian Caba Heilbron et al. “ActivityNet: A large-scale video benchmark
for human activity understanding”. en. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA:
IEEE, June 2015, pp. 961–970. isbn: 978-1-4673-6964-0. doi: 10.1109/
CVPR.2015.7298698. url: http://ieeexplore.ieee.org/document/
7298698/ (visited on 20/11/2019).

[27] https://www.youtube.com/about/press/. Nov. 2019. (Visited on 19/11/2019).

[28] Haroon Idrees et al. “The THUMOS challenge on action recognition for
videos “in the wild””. In: Computer Vision and Image Understanding 155
(2017), pp. 1–23. issn: 1077-3142. doi: https://doi.org/10.1016/j.
cviu.2016.10.018. url: http://www.sciencedirect.com/science/
article/pii/S1077314216301710.

[29] Y.-G. Jiang et al. THUMOS Challenge: Action Recognition with a Large
Number of Classes. 2014. url: http://crcv.ucf.edu/THUMOS14/.

[30] Andrej Karpathy et al. “Large-Scale Video Classification with Convolu-
tional Neural Networks”. en. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, USA: IEEE, June 2014,
pp. 1725–1732. isbn: 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.223.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6909619 (visited on 21/11/2019).

[31] Will Kay et al. “The Kinetics Human Action Video Dataset”. In: arXiv:1705.06950
[cs] (May 2017). arXiv: 1705.06950. url: http://arxiv.org/abs/1705.
06950 (visited on 11/04/2019).

[32] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learn-
ing: Generalization Gap and Sharp Minima. 2016. arXiv: 1609.04836

[cs.LG].

[33] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in
Neural Information Processing Systems 25. Ed. by F. Pereira et al. Cur-
ran Associates, Inc., 2012, pp. 1097–1105. url: http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-

neural-networks.pdf (visited on 18/11/2019).

[34] H Kuehne et al. “HMDB: A Large Video Database for Human Motion
Recognition”. en. In: (), p. 8.

[35] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Re-
cognition”. In: Neural Comput. 1.4 (Dec. 1989), pp. 541–551. issn: 0899-
7667. doi: 10.1162/neco.1989.1.4.541. url: http://dx.doi.org/10.
1162/neco.1989.1.4.541.

86

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
https://doi.org/10.1109/CVPR.2015.7298698
https://doi.org/10.1109/CVPR.2015.7298698
http://ieeexplore.ieee.org/document/7298698/
http://ieeexplore.ieee.org/document/7298698/
https://doi.org/https://doi.org/10.1016/j.cviu.2016.10.018
https://doi.org/https://doi.org/10.1016/j.cviu.2016.10.018
http://www.sciencedirect.com/science/article/pii/S1077314216301710
http://www.sciencedirect.com/science/article/pii/S1077314216301710
http://crcv.ucf.edu/THUMOS14/
https://doi.org/10.1109/CVPR.2014.223
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909619
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909619
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1705.06950
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541

[36] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent
with Restarts”. In: CoRR abs/1608.03983 (2016). arXiv: 1608.03983.
url: http://arxiv.org/abs/1608.03983.

[37] Shugao Ma, Leonid Sigal and Stan Sclaroff. “Learning Activity Progres-
sion in LSTMs for Activity Detection and Early Detection”. In: June 2016,
pp. 1942–1950. doi: 10.1109/CVPR.2016.214.

[38] Paulius Micikevicius et al. “Mixed Precision Training”. In: arXiv:1710.03740
[cs, stat] (Feb. 2018). arXiv: 1710.03740. url: http://arxiv.org/abs/
1710.03740 (visited on 05/02/2020).

[39] Mathew Monfort et al. “Moments in Time Dataset: one million videos for
event understanding”. en. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019), pp. 1–1. issn: 0162-8828, 2160-9292, 1939-
3539. doi: 10.1109/TPAMI.2019.2901464. url: https://ieeexplore.
ieee.org/document/8651343/ (visited on 20/11/2019).

[40] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: arXiv:1506.01497 [cs] (June 2015).
arXiv: 1506.01497. url: http://arxiv.org/abs/1506.01497 (visited on
12/06/2018).

[41] Zheng Shou, Dongang Wang and Shih-Fu Chang. “Temporal Action Loc-
alization in Untrimmed Videos via Multi-stage CNNs”. en. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Las
Vegas, NV, USA: IEEE, June 2016, pp. 1049–1058. isbn: 978-1-4673-8851-
1. doi: 10.1109/CVPR.2016.119. url: http://ieeexplore.ieee.org/
document/7780488/ (visited on 23/06/2019).

[42] Gunnar A. Sigurdsson, Olga Russakovsky and Abhinav Gupta. “What
Actions are Needed for Understanding Human Actions in Videos?” In:
CoRR abs/1708.02696 (2017). arXiv: 1708.02696. url: http://arxiv.
org/abs/1708.02696.

[43] Karen Simonyan and Andrew Zisserman. “Two-Stream Convolutional Net-
works for Action Recognition in Videos”. In: arXiv:1406.2199 [cs] (Nov.
2014). arXiv: 1406.2199. url: http://arxiv.org/abs/1406.2199 (vis-
ited on 18/11/2019).

[44] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[45] Khurram Soomro, Amir Roshan Zamir and Mubarak Shah. “UCF101: A
Dataset of 101 Human Actions Classes From Videos in The Wild”. en.
In: (Dec. 2012). url: https://arxiv.org/abs/1212.0402v1 (visited on
23/04/2019).

[46] Christian Szegedy et al. “Going Deeper with Convolutions”. In: arXiv:1409.4842
[cs] (Sept. 2014). arXiv: 1409.4842. url: http://arxiv.org/abs/1409.
4842 (visited on 21/11/2019).

[47] Du Tran et al. “A Closer Look at Spatiotemporal Convolutions for Action
Recognition”. en. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018, pp. 6450–
6459. isbn: 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00675. url:
https://ieeexplore.ieee.org/document/8578773/ (visited on 11/04/2019).

87

https://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://doi.org/10.1109/CVPR.2016.214
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
https://doi.org/10.1109/TPAMI.2019.2901464
https://ieeexplore.ieee.org/document/8651343/
https://ieeexplore.ieee.org/document/8651343/
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2016.119
http://ieeexplore.ieee.org/document/7780488/
http://ieeexplore.ieee.org/document/7780488/
https://arxiv.org/abs/1708.02696
http://arxiv.org/abs/1708.02696
http://arxiv.org/abs/1708.02696
http://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1212.0402v1
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CVPR.2018.00675
https://ieeexplore.ieee.org/document/8578773/

[48] Du Tran et al. “Learning Spatiotemporal Features with 3D Convolutional
Networks”. In: arXiv:1412.0767 [cs] (Oct. 2015). arXiv: 1412.0767. url:
http://arxiv.org/abs/1412.0767 (visited on 21/11/2019).

[49] Grigorios Tsagkatakis, Mustafa Jaber and Panagiotis Tsakalides. “Goal!!
Event detection in sports video”. In: Electronic Imaging 2017 (Jan. 2017),
pp. 15–20. doi: 10.2352/ISSN.2470-1173.2017.16.CVAS-344.

[50] Heng Wang and Cordelia Schmid. “Action Recognition with Improved
Trajectories”. en. In: (Dec. 2013). url: https://hal.inria.fr/hal-
00873267 (visited on 24/06/2019).

[51] Heng Wang et al. “Dense Trajectories and Motion Boundary Descriptors
for Action Recognition”. en. In: International Journal of Computer Vision
103.1 (May 2013), pp. 60–79. issn: 0920-5691, 1573-1405. doi: 10.1007/
s11263- 012- 0594- 8. url: http://link.springer.com/10.1007/

s11263-012-0594-8 (visited on 18/11/2019).

[52] Limin Wang, Yu Qiao and Xiaoou Tang. “Action Recognition with Trajectory-
Pooled Deep-Convolutional Descriptors”. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2015). arXiv:
1505.04868, pp. 4305–4314. doi: 10.1109/CVPR.2015.7299059. url:
http://arxiv.org/abs/1505.04868 (visited on 24/06/2019).

[53] Limin Wang et al. “Temporal Segment Networks: Towards Good Prac-
tices for Deep Action Recognition”. In: arXiv:1608.00859 [cs] (Aug. 2016).
arXiv: 1608.00859. url: http://arxiv.org/abs/1608.00859 (visited on
03/01/2019).

[54] Chao-Yuan Wu et al. “Long-Term Feature Banks for Detailed Video Un-
derstanding”. In: arXiv:1812.05038 [cs] (Dec. 2018). arXiv: 1812.05038.
url: http://arxiv.org/abs/1812.05038 (visited on 20/06/2019).

[55] Yuanjun Xiong et al. A Pursuit of Temporal Accuracy in General Activity
Detection. 2017. arXiv: 1703.02716 [cs.CV].

[56] Huijuan Xu, Abir Das and Kate Saenko. R-C3D: Region Convolutional
3D Network for Temporal Activity Detection. 2017. arXiv: 1703.07814
[cs.CV].

[57] Serena Yeung et al. End-to-end Learning of Action Detection from Frame
Glimpses in Videos. 2015. arXiv: 1511.06984 [cs.CV].

[58] Jason Yosinski et al. “How transferable are features in deep neural net-
works?” In: arXiv:1411.1792 [cs] (Nov. 2014). arXiv: 1411.1792. url:
http://arxiv.org/abs/1411.1792 (visited on 18/11/2019).

[59] Bolei Zhou et al. “Learning Deep Features for Discriminative Localiza-
tion”. In: CoRR abs/1512.04150 (2015). arXiv: 1512.04150. url: http:
//arxiv.org/abs/1512.04150.

88

http://arxiv.org/abs/1412.0767
https://doi.org/10.2352/ISSN.2470-1173.2017.16.CVAS-344
https://hal.inria.fr/hal-00873267
https://hal.inria.fr/hal-00873267
https://doi.org/10.1007/s11263-012-0594-8
https://doi.org/10.1007/s11263-012-0594-8
http://link.springer.com/10.1007/s11263-012-0594-8
http://link.springer.com/10.1007/s11263-012-0594-8
https://doi.org/10.1109/CVPR.2015.7299059
http://arxiv.org/abs/1505.04868
http://arxiv.org/abs/1608.00859
http://arxiv.org/abs/1812.05038
https://arxiv.org/abs/1703.02716
https://arxiv.org/abs/1703.07814
https://arxiv.org/abs/1703.07814
https://arxiv.org/abs/1511.06984
http://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1512.04150

Appendix A

Appendix

89

	Introduction
	Motivation
	Problem Statement
	Scope and Limitations
	Research Method
	Main Contributions
	Outline

	Background
	Introduction
	Event definition
	Action Recognition
	Action Detection
	Machine learning
	Supervised learning
	Classification
	Regression
	Dataset
	Neural Networks
	2D Convolutional Neural Networks
	Transfer learning

	Related works
	Summary

	Methodology
	Introduction
	Dataset description
	Event detection
	Data preprocessing
	Overview of models
	Model architectures
	Models
	Implementation

	Evaluation of Models: Definition of metrics
	Model selection
	Hyperparameters
	Kinetics-400 pretrained models
	Effect of different temporal inputs
	Reduced input
	SlowFast results
	Input resolution

	Summary

	Results
	Introduction
	Datasets
	Behaviour of model R3D
	Sliding window
	How many frames are needed?
	Class activation tubes

	Full video detection
	Processing output prediction
	Spotting results
	Comparison to baseline

	Generalization to other datasets
	Goals
	Goal attempts

	Discussion
	Corrupt samples
	Known bugs
	Just published work
	Scope of the work
	Further improvements

	Summary

	Conclusion
	Summary and contributions
	Future work

	Appendix

