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Abstract

Colorectal cancercolorectal cancer (CRC) is a widespread disease which is a
threat to public health. Abnormalities in the colon, like polyps, can become
cancerous. It is important to detect polyps early, in order to prevent a potential
spread of cancer. Polyps can be overlooked during screening, and typically
doctors have a polyp miss rate ranging from 14 to 30%. Several promising
computer systems have been developed to help doctors lower their polyp miss
rate. Obtaining a large, high quality dataset is important when building such
a system, and the lack of data is perhaps the biggest challenge in the
field today.

Data is arguably the most valuable resource in machine learning. Complex
neural networks are dependent on great amounts of data in order to perform
well. The colon is full of complicated structures, and a dataset should contain
examples of as many examples of both healthy and unhealthy structures as
possible. However, medical data is hard to get hold of due to legal restrictions
and the cost of performing examinations. Currently a highly qualified, medical
expert is needed to annotate data as well, further complicating matters.

We have developed a system which can take an existing dataset and use it
to generate new, artificial data which can be added to the dataset. This will
make it easier to create a large enough dataset for polyp detection systems. In
other words, we can generate real-looking videos of polyps.

A total of 41 generated videos was provided to two medical experts, and they
were asked to comment on the quality of the videos. Their comments revealed
that shapes and colors in the videos look real. They additionally stated that
they found these videos relevant for detecting other abnormalities in the colon.
We also trained two polyp classifiers on the same dataset, but for one of the
classifiers we also added our artificial videos. We found that the results were
inconclusive, though we believe that it should be possible for the artificial videos
to improve performance.
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Chapter 1

Introduction

1.1 Motivation

Cancer is the second leading cause of death in the United States and a significant
threat to public health [72]. CRC is the third leading cause of cancer-related
deaths for both men and women in the United States [82]. Improvements in
the treatment of CRC has given large declines in the overall cancer mortality.
The CRC death rate has dropped with 53% for men since 1989 and 57% among
females since 1969 [82]. However, in the last decade The American Cancer
Society is reporting that progress has been slowing for cancer types that are
dependent on early detection through screening [82].

Studies show that a good prognosis is associated with early diagnosis of
CRC [36]. Colonoscopy is the gold standard of colorectal cancer screening meth-
ods. A colonoscopy is performed by inserting a camera into the rectum. A
doctor who specializes in the digestive system, a gastroenterologist, will look
for abnormalities in the colon. A colon polyp is an abnormality which a doctor
will look for. Polyps can vary in size and can become cancerous. Polyps tend to
be overlooked during colonoscopy examinations. van Rijn et al. report a polyp
miss rate between 14 to 30% [100] during the examinations.

Researchers have developed several promising methods and systems for auto-
matic detection [105, 74] to improve polyp detection. Such methods are referred
to as computer aided diagnosis (CAD). Some of these systems as based on deep
learning algorithms. These algorithms are complex and require large amounts
of data to perform well. However, getting access to large amounts of endoscopy
data is not a trivial task.

There are not many large scale endoscopy datasets available [7, 23, 69]. The
available datasets often lack enough data or consist of a limited number of ab-
normal cases. It is challenging to collect clinical data due to privacy regulations.
Furthermore, data annotation is a time consuming task, and it is additionally
hard to get hold of the medical experts to evaluate the data. These challenges
lead us to the aim of our thesis.

1
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1.2 Problem statement

The ratio between normal and abnormal cases in colon data is often large. The
abnormal cases are often present in few and short clips of long videos. While
the normal cases are present in the remaining clips. Closing the gap between
abnormal and normal cases remains a challenge. We attempt to close the gap
by generating artificial videos of abnormal cases.

We aim to develop a system that can generate artificial videos. The goal is
to increase the number of abnormal cases in a training dataset. The dataset
that we have at our disposal, contains videos of normal cases and abnormal
cases where colon polyps represent the abnormal cases. Although our work is
limited to colon polyps, we aim for our system to be used in multiple use-cases,
for example for generating videos of rarer cases like lymphoma. We want to
introduce artificial videos that look realistic. Realistic in terms of the image
quality and the camera and tissue movements should look real. Both these two
parameters are equally important. The goal is to add a larger number of, and
more variety to a set of annotated polyp videos. We want our generated polyp
videos to contribute to a higher polyp detection rate. Based on our goals, the
thesis aims the answer the following research question:

Can generative models be used to generate realistic-looking colon
polyps?

To answer this question, we define three objectives that focus on the practicali-
ties of coming to a solution. Each objective builds on the objective that comes
before it, and each objective is given a full chapter to be thoroughly discussed
in this thesis.

Objective 1 Prepare the training data in a way that optimizes network lean-
ing and avoids overfitting to specific video frames. This objective stems from the
common need for quality training data when developing deep neural networks.

Objective 2 Generate artificial videos of colon polyps using conditional gen-
erative adversarial networks (CGANs). This objective is the main contribution
of this thesis and comes from the requirement of needing more labeled data in
the medical sector.

Objective 3 Perform a thorough evaluation of the generated videos using a
quantitative and qualitative approach, in addition to evaluating the fake videos
on a real-world use-case. This objective will give us the answer to our research
question of whether or not the generated videos are of sufficient quality.

1.3 Scope and Limitations

We have decided to limit the scope of this thesis to focus purely on generating
video sequences containing polyps. Although the GI tract contains many other
lesions, polyps are among the most common and most dangerous as they may
become cancerous if they are not removed in due time. Although the focus is
on polyps, we expect that the methods presented here will generalize to other
lesions as well. Furthermore, as we are limited by time and resources, the deep
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learning models we have trained have been restricted in terms of training time
and model size.

1.4 Research Methods

We have based our research method on the Association for Computing Ma-
chinery (ACM) method “Computing as a Discipline” [15]. The paper pro-
poses a framework for the discipline of computing which consists of three major
paradigms: Theory, Abstraction and Design. The thesis is based on a combina-
tion of the three paradigms.

1.4.1 Theory

The theory paradigm consists of four steps that are rooted in the field of math-
ematics. The fours steps include:

1. Characterize objects of study (definition).
2. Hypothesize possible relationships among them.
3. Determine whether the relationships are true (proof).
4. Interpret the results.

In the thesis, we use the theory paradigm to identify studies and challenges
within the field of colorectal cancer. Moreover, we search for solutions and
relationships between theories through different areas within machine learning,
among others convolutional neural networks and generative modeling.

1.4.2 Abstraction

The abstraction paradigm is rooted in the field of the experimental scientific
method and consists of four steps: i) Form a hypothesis. ii) Construct a model
and make a prediction. iii) Design an experiment and collect data. iv) Analyze
results. The design of our experiments falls under the abstraction paradigm.
We designed and conducted our experiments in an iterative process which can
be described as experimental prototyping.

1.4.3 Design

The third paradigm is design, and is rooted in engineering. The paradigm
consists of four steps: i) State requirements. ii) State specifications. iii) Design
and implement the system. iv) Test the system. Our complete system is based
on the design paradigm. The complete system includes the data preparation,
artificial video generation, and the final polyp classification, which includes the
testing of the system.

1.5 Contributions

Our work is divided into three phases: data preprocessing, sequence generation
and evaluating the quality of the generated sequences. Our main contributions
is the work contained in first two phases.
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Our research question in Section 1.2 was split into three objectives, and here
we address the two main objectives:

Objective 1 Prepare the training data in a way that optimizes network learn-
ing and avoids overfitting to specific video frames.

We developed a data preprocessing framework that optimizes training videos
by removing duplicate frames and large jumps in the videos. The method we
used to achieve this was optical flow. We found the preprocessing to greatly
improve the quality of our genrated video sequences.

Objective 2 Generate artificial videos of colon polyps using conditional gen-
erative adversarial networks (CGANs).

For sequence generation, we developed a sequence generator model: Vid2Pix.
The model extracts spatiotemporal features by using 3D convolutions and de-
convolutions in a conditional generative adversarial network (CGAN). We found
that the model was able to successfully generate artificial polyp videos that could
reduce the need for collecting data.

Kvasir-Capsule, a video capsule endoscopy dataset [86] In addition
to the technical work presented in this thesis, we published the paper Kvasir-
Capsule, a video capsule endoscopy dataset [86]. The paper presents a new
dataset consisting of annotated capsule endoscopy videos.

1.6 Thesis Outline

The thesis is organized with a background chapter followed by three chapters
that represent the three technical phases of our work. All three phases are
described with separate sections consisting of methods, results and discussion.
The closing chapter discusses the conclusion and future work. We structure the
chapters in the following way:

Chapter 2: Background We give an overview of medical concepts and cur-
rent machine learning advances within the field of colorectal cancer detection.
We further discuss the basic concepts within machine learning and neural net-
works that build the foundation of our work. Next, we focus on generative
modeling and sequence learning. Finally, we introduce related work in the field
of image- and video generation which motivates our contributions.

Chapter 3: Preprocessing data for Sequence Generation In this chap-
ter, we introduce the data preprocessing phase. In this phase we aim optimize
data for sequence generation. We experiment and discuss different ways of opti-
mizing a dataset before training a sequence generator. We further present and
discuss the results from the preprocessing.

Chapter 4: Sequence Generation We introduce the model architectures
that are the building blocks of our contribution. We further give a detailed
description of our model contribution. Next, we describe and discuss the ex-
perimental process that led us to our final results. Finally, we introduce our
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system for creating artifical video sequences. The aim is to increase the size and
introduce new information to an existing training dataset.

Chapter 5: Sequence Evaluation In this chapter, we will conduct a thor-
ough evaluation of the generated sequences. We will use both a qualitative
approach, based on metrics, and a subjective approach relying on the expertise
of two medical doctors. Next, we conduct a case study to evaluate our generated
videos on a real-world use-case scenario. With this, the aim is to increase the
performance of a polyp classifier by adding additional fake polyp videos to our
training dataset.

Chapter 6: Conclusion and Future Work Finally, we provide a summary
where we will discuss our main contributions and answer our research question
and its objectives. We will further suggest ideas for future work.





Chapter 2

Background

In this chapter, we present the medical and technical background needed to
understand our work and recognize its importance. First, we present some
background on the GI tract and discuss some of the most common lesions that
appear in this anatomical system. Then, we give an introduction to the machine
learning techniques that are used and will be further mentioned throughout the
thesis. We further discuss some of the related work around automatic disease
detection and finally we address the benefits and shortcomings of related work
within the field of future video prediction.

2.1 Medical Background

This section will give an introduction to the medical concepts and anatomical
systems required to understand the remainder of this thesis. This includes a
description of the gastrointestinal tract and some lesions commonly found in
this organ system. We also cover the current standards for inspecting the GI
tract and some related works where deep learning has been used for automatic
detection of disease and other lesions.

2.1.1 Gastrointestinal tract

The gastrointestinal (GI) tract is together with the liver, pancreas, and gall-
bladder a part of the digestive system. The GI tract is divided into two main
parts: The upper GI tract and the lower GI tract. The upper GI tract consists
of the mouth, esophagus, and stomach. While the lower GI tract consists of
the small intestine and the large intestine which includes the colon and rectum.
A complete overview of the digestive system is shown in Figure 2.1. In the
upcoming sections, we will be focusing on the lower GI tract.

Polyps in the Gastrointestinal tract

Polyps are present in different parts of the human body. A colon polyp is a
clump of cells that can form on the inner lining of the colon. The majority of
colon polyps are harmless, but some can become cancerous over time. If the
colon polyps are not detected and removed early, the consequences can become
fatal [11].

7
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Figure 2.1: An overview of important organs in the gastrointestinal tract. Il-
lustration: For the National Cancer Institute © (2020) Terese Winslow LLC,
U.S. Govt. has certain rights

Colon polyps can be divided into two main categories: neoplastic and non-
neoplastic. Neoplastic polyps include adenomas and serrated polyps. Adenomas
are the most common type of polyps. The non-neoplastic polyps include hamar-
tomatous polyps, inflammatory polyps, and hyperplastic polyps. These three
types of non-neoplastic polyps typically do not become cancerous [11]. In this
work, we do not distinguish between different types of colon polyps. We instead
focus on creating a system that identifies all types of colon polyps to reduce the
time for the medical experts and to prevent overlooking polyps. We leave it to
the medical experts to decide whether a polyp should be removed or not.

Colorectal Cancer

The GI-tract can be affected by a variety of diseases, among these are CRC. CRC
usually starts from a slowly growing polyp in the inner lining of the colon [89].
Cancer which grows from the inner lining of the colorectum is called adenocar-
cinoma, which accounts for about 96% of all CRC cases in the United States.

Staging of CRC is important for prediction the disease outcome and for
determining treatment. A common staging system called: Surveillance, Epi-
demiology, and End Results (SEER) summary staging system, divides CRC
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Figure 2.2: The figure shows two images of polyps. The images are a part of
the OUS-Study-2019 dataset introduced in Section 3.1.

into four stages: In situ, Local, Regional, and Distant. On the In situ stage,
cancer has not begun to invade the wall of the colon or rectum. The lesions are
called preinvasive on this stage and is not accounted for in the cancer statistics.
On the Local stage, cancer has begun to grow into the wall of the colon or rec-
tum, but has not yet invaded nearby tissue. On the Regional stage, cancer has
spread to nearby lymph nodes or invaded nearby tissues. On the Distant stage,
cancer has spread to other parts of the body, such as the lungs or the liver.

Due to the slow growth from preinvasive polyps to invasive cancer, a unique
opportunity arises to prevent and detect colorectal cancer at an early stage.
To detect and prevent CRC, we need reliable screening methods, which will be
introduced in the next section.

2.1.2 Screening Methods

Studies have shown that an early diagnosis is associated with a good prog-
nosis [36]. There exists different screening methods used to detect CRC, and
several countries have public health programs to screen for CRC [36]. There
are different screening methods used to detect CRC. In Section 2.1.2, we will
introduce the gold standard for colorectal cancer screening: gastrointestinal en-
doscopy. Furthermore, we will look into a more recent method called capsule
endoscopy in Section 2.1.2.

Gastrointestinal Endoscopy

During a GI endoscopy examination, the endoscope is inserted directly into the
organ, either the mouth (gastroscopy) or rectum (colonoscopy). The gold stan-
dard for the detection and removal of polyps is colonoscopy examinations. The
endoscope or colonoscope is a long, flexible tube with a small camera at the tip
of the tube which enables the doctor to look inside the colon while examining the
patient. During an examination, the colonoscope is moving towards the small
intestine, through the large intestine as shown in Figure 2.3. Abnormalities can
be removed or biopsies can be taken during an examination, if necessary [12].

Colonoscopy examinations are known to be uncomfortable for the patient.
According to a study on polyp miss rate [100], researchers found that polyps
are often overlooked during colonoscopy examinations. The study revealed that
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Figure 2.3: Example of a colonoscopy procedure. Illustration: For the Na-
tional Cancer Institute © (2020) Terese Winslow LLC, U.S. Govt. has certain
rights [13].

polyp miss rates were between 14 to 30 % where the type and size of the polyp
had a triggering cause [100]. Thus a computer aided system could help to
decrease the polyp miss rates.

Capsule Endoscopy

Capsule endoscopy (CE) is a gastrointestinal screening method performed with
a wireless pill-sized camera that is swallowed and travels through the digestive
system. An example of a capsule camera used in capsule endoscopy is shown
in Figure 2.4. The camera is mainly used to examine the small intestine, but
cameras have also been developed to examine the large intestine. According
to Ding et al., capsule endoscopy has lately revolutionized how we perform
examinations in the small intestine. In addition to making examinations less
intrusive and easier, CE has also shown good results in detecting different types
of cancer in the small intestine [16].

Colonoscopy examinations are time consuming and the qualified medical
doctors are hard to get a hold of. In contrast, CE does not require any medical
staff to be present while the pill camera travels through the digestive system.
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Figure 2.4: The image shows an Olympus EC-S10 endocapsule. Photo: Sigrun
Losada Eskeland, Bærum Hospital.

Furthermore, several computer programs have been developed to automatically
skip hours of video recordings containing unwanted material to examine in the
GI tract.

CE has problems related to low image resolution, low frame rate, and a
narrow and uncontrollably field of view. These shortcomings can lead to ab-
normalities not being detected, especially those that initially are difficult to
spot.

2.1.3 Computer Aided Diagnosis

Computer aided diagnosis systems are working as an aid for medical experts
to reduce examination time and decrease miss rates for polyps and other ab-
normalities in the gastrointestinal tract. Automatic detection of polyps is a
well researched area. There are currently numerous papers on CAD-systems
that are developed to classify polyps or other abnormalities in the GI-tract[104,
41, 105, 74]. Wang et al. developed a real-time software system called ”Polyp-
Alert” [105]. The system assists endoscopists to detect polyps by giving vi-
sual feedback during colonoscopy examinations. The system managed to detect
97.7% of the polyps in 53 videos. Riegler et al. developed multimedia system
named ”Efficient computer aided diagnosis” (EIR) [74], the system managed
to outperform existing systems in terms of real-time performance and resource
consumption.
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2.1.4 Deep Learning for Colorectal Disease Detection

Deep learning has shown promising results in classifying video endoscopy data
in recent years [10, 99, 92, 65, 112, 101]. Research within the area has been
conducted to develop both systems for post examination detection and real-time
detection which is closely related to CAD-systems.

Owais et al. developed a deep learning system for video classification. The
system is connected in three stages. First, they used an established deep convo-
lutional neural network(CNN) model named ResNet18 for spatial feature extrac-
tion, followed by a Long-Short-Term Memory (LSTM) [28] model for temporal
feature extraction and at last, a fully connected layer followed by softmax on
the output of the LSTM. The data consists of 37 different classes from Gas-
trolab

1
and the Kvasir dataset

2
[69]. The system was able to achieve AUC

value of 97.057%. Compared to existing baseline models, the overall sensitivity
performance of the proposed method was higher based on average accuracy, f1
score, mAP, and mARendoscopic videos [65]. The proposed method addition-
ally outperformed other handcrafted feature-based methods they compared it
to.

Ding et al. attempts to establish another deep learning based system that
can differentiate between two classes: abnormal images and normal images using
small intestine capsule endoscopy data. To classify the images, the researches
used a state-of-the-art deep CNN called ResNet152. 77 medical centers pro-
vided data from 6970 patients. The system was tested and compared to evalua-
tions done by experienced gastroenterologists. With ResNet152, the researchers
achieved a 99.88% sensitivity for identifying abnormalities in the per-patient
analysis, and a 99.90% sensitivity for identifying abnormalities in the per-lesion
analysis. In comparison, gastroenterologists achieved a sensitivity detecting ab-
normalities in the per-patient analysis with 74.57% and a sensitivity of 76.89%
in the per-lesion analysis [16]. Reading time for the CNN was additionally
drastically reduced compared to the gastroenterologists.

Ding et al. and Owais et al. work show promising results in classifying im-
age and video endoscopy data. According to Kaminski et al., increasing polyp
detection has been proven to decrease the risk of colorectal cancer [48]. Such
systems could contribute to improve early detection, and further decrease the
risk of colorectal cancer. Still, the papers express challenges about access to
large datasets and the lack of data containing abnormal cases. In the next
section, we will address the issue of medical data.

2.1.5 The Data Problem

There are few public large scale datasets available from the gastrointestinal
tract [7, 23, 69]. In Table 2.1, Borgli et al. provide an overview of the existing
GI datasets as of 2019. As we can see from Table 2.1, the available data is
greatly sparse. Most of the datasets consists of few and low resolution images,
and fewer of them consist of videos. The lack of data is mainly due to large
annotation costs and legal restrictions for accessibility.

The lack of a common, high quality dataset makes it challenging to compare
different approaches and to prove their promising results. The abnormal cases

1
http://www.gastrolab.net/

2
https://datasets.simula.no/kvasir/

http://www.gastrolab.net/
https://datasets.simula.no/kvasir/
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Dataset Focus # Images # Videos Availability

CVC-356 [5] Polyps 356 0 Not available
CVC-612/CVC-ClinicDB [6] Polyps 612 0 Open academic

CVC-12k [5] Polyps 11 954 0 Not available
ASU-Mayo polyp database [91] Polyps 18 781 0 Not available

ETIS-Larib Polyp DB [83] Polyps 196 0 Open academic
Kvasir-SEG [45] Polyps 1 000 0 Open academic

GIANA’17 [4] Angiectasia 600 0 By request
KID [52] Multiple 2 500+ 47 Not available

GASTROLAB [24] Multiple 100+ 360+ Open academic
WEO Endoatlas [108] Multiple 152 0 By request

Colonoscopy Dataset [22] Multiple 76 0 By request
Endoatlas [94] Multiple 1 295 0 Not available

GastroAtlas [23] Multiple 0 5 071 Open academic
Kvasir [69] Multiple 8 000 0 Open academic

Nerthus [70] Stool 0 21 Open academic

Table 2.1: Overview of existing GI datasets [7].

are especially crucial generalize a classifier to a variety of cases. We aim to solve
these challenges by generating artificial polyp videos from annotated real polyp
videos. This can potentially contribute to increase and generalize a training
dataset. In the next section, we give a brief overview of the most typical groups
within machine learning and describe some typical use-cases for the different
groups.

2.2 Machine Learning

Machine learning is the study of statistical modeling and algorithms that en-
ables machines to learn to do tasks based on patterns and inference instead of
explicit instructions. There are many types of machine learning, but it is typi-
cally divided into three groups: Supervised learning, unsupervised learning and
reinforcement learning.

2.2.1 Supervised Learning

Supervised learning involves learning a function to map inputs to its corre-
sponding outputs by training the function on input-output pairs. Each training
example consists of a pair, typically an input vector with a corresponding out-
put value or supervisory signal which tells you what kind of feature your input
is.

Classification and regression are two categories which fall under supervised
learning. With regression, we try to learn a function to map from input variables
to numerical or continuous output variables. While with classification we try to
learn a function to map from input variables to discrete or categorical output
variables.

Labeled data is necessary to perform supervised learning. Typical applica-
tions are: Image classification with the classic example of classifying cat images
from dog images. In sentiment analysis, an application example is to teach a
machine to determine the attitude or emotions in a text message.



14 CHAPTER 2. BACKGROUND

2.2.2 Unsupervised Learning

Unsupervised learning is a self-organizing learning method that traditionally is
used to find underlying structures or patterns in the input data. The model
does not need any corresponding output variables to learn the patterns.

Traditionally, the most commonly used unsupervised learning task has been
cluster analysis. Cluster analysis involves learning objects that are similar to
each other and group or cluster them by similarity. This means that within
a clusters, the cluster members need to have a smaller distance between each
other. In cases where we have lots of unlabeled data, we can create clusters
from the data which indicates which datapoint belongs to the same classes.
Principal Component Analysisprincipal component analysis (PCA) is another
popular unsupervised learning method that aim to reduce the dimensionality of
the data by keeping important features of the data[110].

In recent years, generative modeling has become very popular, especially
for generating images. Two methods that has shown great success within the
field are Variational Autoencoders[51] and Generative Adversarial Nets[29] these
methods will be further discussed in Section 2.4.3.

2.2.3 Reinforcement Learning

Reinforcement learning algorithms involve agents that are given a goal in a given
environment and they are trying the maximize a reward. A reward is given if
the agents manage to reach their goal or some sub-goals. If the agents do not
manage to reach their goal or sub-goals, they will get penalized. Agents are in
other words learning from the consequences of their actions.

Today’s most common reinforcement learning algorithms are State-Action-
Reward-State-Action (SARSA) [79], Q-learning [107] and a Deep Q Network
(DQN) [31], which is based on Q-learning but also introduces a neural network.

Common applications within reinforcement learning are robot motion con-
trol, swarm intelligence [49] or solving games like chess with AlphaZero [84] and
Atari that manged to outperform humans [62].

2.3 Feed Forward Neural Networks

A feed forward neural network is a type of artificial neural network. The infor-
mation in this type of network is only moving forward. This network consists of
a layer of input nodes, one or more layers of hidden nodes, and a layer of output
nodes. To understand how deep neural networks work, we first need to look
into how a simple neural network is built up. First, we will look into how the
simplest kind of neural network called the perceptron is built in Section 2.3.1.
Then we move further to the Multilayer perpectron in Section 2.3.2.

2.3.1 The Perceptron

The perceptron algorithm was first invented by Rosenblatt and funded by The
United States Office of Naval Research in 1958 [76]. The perceptron is an
algorithm for learning binary classifiers. A binary classifier is a type of linear
classifier. This classifier is a function that takes a set of elements and decides
which out of two groups each element belongs to. It is the simplest kind of
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neural networks and it consists of only a single layer of output nodes and does
not contain any hidden layers. The inputs are fed directly to the output nodes
through their corresponding weights as shown in Figure 2.6. The function shown
in Equation 2.1 is an example of a binary function that we use in the perceptron
algorithm. The function maps its input x to a binary output which is either 0
or 1.

f(x) = {1, if w ⋅ x + b > 0

0, otherwise
(2.1)

Figure 2.5: A function that maps its input x to a binary output value 0 or 1

Figure 2.6: Example of single layer perceptron

2.3.2 Multilayer Perceptron

While a single layer perceptron can only learn linear functions, a multilayer
perceptron (MLP) can also learn functions that are not linearly separable. If
an MLP is using a linear activation function, according to linear algebra, all the
layers can be reduced to a single layer model containing only one layer of output
nodes. The Multilayer perceptron was first described by McCulloch and Pitts
in 1943 [59]. In contrast to the single layer perceptron algorithm, the MLP
algorithm consists of a minimum of three layers of nodes which is the input
layer, one or more hidden layers, and the output layer. We train an MLP by
using backpropagation [78].

2.3.3 Training a Neural Network

In the previous section, we presented how a simple neural network is built, first
through the perceptron. Further, we looked into how an MLP is introducing
non-linearity to a neural network. In this section we will cover the important
parts that are missing to understand how a neural network learns through up-
dating weights between connections.
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Figure 2.7: The figure shows an example of a multilayer perceptron consisting
of an input layer with four neurons, a hidden layer with six neurons, and an
output layer with two neurons.

Activation Functions

The objective of an activation function is to determine whether a neuron should
fire or not. An activation function introduces non-linearity to our network and
with that, prevents our network from doing linear mapping from input to output.
Several activation functions are commonly used within the MLP domain and
there are pros and cons of usage, often depending on the problem to be solved.

The sigmoid activation function is a differential function shown in Equa-
tion 2.2. It maps its input to a value between 0 and 1. The function can be
useful if we want to predict the probability as an output.

g(x) = 1

1 + e−x
(2.2)

The rectified linear unit(ReLU) activation function is a differential function
shown in Equation 2.3 and Equation 2.4. ReLU maps its input to 0 if the input
is negative. If the input is above or equal to zero, the output will be the same as
the input. A weakness with the functions is that all negative values become zero.
This may affect the training of a neural network. As an attempt to solve the
problem, Leaky Rectified Linear Unit Activation(Leaky ReLU) was developed.

g(x) = max(0, x) (2.3)

or

g(x) = {x, if x > 0

0, otherwise
(2.4)

Leaky Rectified Linear Unit (Leaky ReLU) was first introduced by Maas,
Hannun, and Ng in 2013 [58]. Leaky ReLU is similar to ReLU when it comes
to the objective of suppressing large negative values. While ReLU is using a
hard zero when x is negative, Leaky ReLU uses a value close to zero: 0.01 that
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is multiplied by the input x which is shown in equation (2.5) and (2.6). With
this function, we get small negative values when x is negative, instead of a hard
zero when x is negative.

g(x) = max(0.01x, x) (2.5)

or

g(x) = {x, if x > 0

0.01x, otherwise
(2.6)

To help our neural network to learn, we need a way to measure how it
performs. A loss function is measuring the deviation between the true output
and the predicted output for one sample of the data.

Cross Entropy

Cross entropy is a commonly used algorithm that calculates the difference be-
tween the ground truth and the predicted output. From Equation 2.7 on the
left shows how we can calculate the cross-entropy for a multi-class classification
problem. Since N = 2, the calculation becomes a binary cross-entropy problem,
hence we can derive it into the equation shown to the right.

CE = −
N=2

∑
i=1

ỹi log(ŷi) = −(ỹ1 log(ŷ1) + (1 − ỹ1) log(1 − ŷ1)) (2.7)

Where:

N number of classes

log natural log

ỹi true output of class i

ŷi predicted output of class i

Optimizers

Our goal is to minimize the loss function by optimizing the weights in our
network. With this, we use backpropagation. Backpropagation is a recursive
computation technique that calculates the gradient of each node in a network
by using the chain rule [78]. First, we initialize the weights, often by random
initialization. Furthermore, the weights are updated based on how different or
close the predicted output is to the ground truth. The method consists of a
forward pass and a backward pass. There are several ways to optimize weights
through the calculation of gradients. We will briefly present the two of the
algorithms we used in our experiments.

Learning rate is an important tuning parameter that is used in optimization
algorithms. The learning rate controls how much the weights should be adjusted
with respect to the optimization algorithm. The value range between 0.0 and
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1.0, where 1 indicates that the network should learn very fast, and 0.0 indicates
that the network will not learn anything.

Stochastic gradient descent is another efficient optimization algorithm. The
algorithm replaces the actual gradient with an estimate of the gradient for the
entire dataset. When updating the gradient for each iteration, we get a com-
putationally fast algorithm[53]. With SGD, we find the gradient of the cost
function with a single sample of the data. One random sample from the data is
chosen for each iteration. The SGD equation is shown below.

θ = θ − η ⋅∆θJ (θ;x(i)
; y

(i))

Where:

θ model parameter

η learning rate

x
(i)

training sample

y
(i)

label for each training sample

∆θJ gradient of cost function

Adaptive moment estimation(Adam) [50] is an efficient stochastic optimiza-
tion algorithm. It is an adaptive learning rate algorithm that by its name,
adapts its learning rate for each weight in the network. More information on
the optimizer can be found in the paper “Adam” [50].

Now that we have introduced the main components that are needed to train
a neural network, we can describe the training process. The aim of training a
neural network is to build a model of some data, in order to predict the output
on new data. We first input a vector to the layer of input nodes. The input is
fed forward through the network. The last layer in the network consists of an
activation function, for instance a sigmoid function that decides whether nodes
in the layer should fire or not. The output from the activation function is further
used as input to a loss function, for instance the cross entropy algorithm. The
loss function computes the error between the output from the network and the
ground truth. Finally, through backpropagation, the loss is propagated back
through the network in order to optimize the weights.

2.4 Deep learning

Deep learning is a field within machine learning that is based on neural network
techniques. A deep learning algorithm represents data points by abstraction.
Deep learning algorithms can be used within several machine learning fields, like
supervised, unsupervised, and reinforcement learning. Deep learning networks
are called ”deep” due to the multiple layers that are included in the networks.

In this section, we will cover methods like generative modeling, sequence
learning, and convolutional neural networks that we used actively in our exper-
iments.
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Figure 2.8: This diagram shows an example of a convolutional operation on a
4 × 4 × 1 image using a kernel size of 3 × 3 × 1 and a stride of 1.

Figure 2.9: The figure shows an example of a 2D convolution with strides=2
and padding=2 [18].

2.4.1 Convolutional Neural Networks

Convolutional neural network is a subcategory within deep neural networks.
CNNs are often applied to solve image classification tasks. The difference be-
tween a multilayer perceptron and a CNN is that neurons in a multilayer per-
ceptron are fully connected. This means that each neuron or node in one layer
is fully connected to all activations from the previous layer. While convolutional
layers are only connected to a local region of the input. In addition, many neu-
rons in the convolutional layers share parameters. We use convolutional layers
on images to avoid the large number of parameters FCs are causing which can
lead to overfitting.

Convolutional Layers

The convolutional layer is the main component of a convolutional neural net-
work. An example of the operation conducted on one image is shown in Fig-
ure 2.8. During a forward pass we convolve the filters across the width and
height of the whole input volume. In a convolution operation, we calculate the
sum of element-wise multiplications between the image and the filter kernel.
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Strides

We use strides to decide how we should slide or convolve our filter through our
images. If stride is set to 1, we move the filter with one pixel at a time. If we
set stride to 2, we skip two pixels at a time when we move our filter. This will
produce a reduced spatial size of the output. For deconvolutional layers, we use
strides in the opposite way by increasing the spatial size of the input if strides is
set to be larger than 1. Strides can additionally be used in 3D convolutions or
deconvolutions to reduce or increase the temporal size of the output respectively.
An example of how an image is computed when stride is set to 2 is shown in
Figure 2.9.

Deconvolutional Layers

A deconvolutional layer or a transposed convolution is used when we want our
network to learn an optimized way to upsample our data [113]. An example
of a deconvolutional operation is shown in Figure 2.10. Deconvolutions are for
example used to reconstruct images.

Figure 2.10: The figure shows an example of a 2D deconvolution using a 3 × 3
filter kernel on a 5 × 5 input with strides=2 and zero padding=1 [18].

Transfer Learning Transfer learning is a common method used in machine
learning[66, 73], and it is often related to having an insufficient size of data.
Transfer learning is a method of re-training a trained network. For example,
we can train a model to learn to classify animals and transfer this knowledge
to classify cats. Instead of training a CNN from scratch by randomly initial-
izing weights, we can train a CNN on a large and generic image dataset like
ImageNet(Section 5.2.1) and use the pre-trained weights as initialization or as
a feature extractor for our new task. CNN as a feature extractor [66] holds a
variety of ways to be performed. One way is to take a CNN pre-trained on for
instance ImageNet(Section 5.2.1). Then we freeze n number of layers, which
means that they will not be updated during training and will be treated as
a feature extractor. Moreover, we remove the last fully connected layer and
replace it with a few layers that are appropriate for the new task.

By fine-tuning CNN [66], we use the pre-trained weights as initialization to
our new task. In the new task, we do not freeze any layers, but we continue
to update weights through backpropagation. With this, we are optimizing all
parameters for the new dataset. According to Yosinski et al., fine-tuning has
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(a) Many-to-one architecture (b) Many-to-many architecture

Figure 2.11: Example of the common architecture of an RNN. The left figure (a)
shows a many-to-one structure and the right figure (b) shows a many-to-many
structure [14].

shown great improvement in data generalization, even on transferring features
from distant tasks[111].

2.4.2 Sequence Learning

Recurrent Neural Networks

A classical problem within machine learning and statistics is the modeling of
data sequences. There are various methods in machine learning that models data
sequences. An example of a deep learning method for time series classification
is recurrent neural network (RNN).

An RNN is a type of neural network that is often used when we have data
sequences where the length of the sequence is varying or the order of the sequence
is important. RNNs have a temporal dynamic behavior which is important when
we want to learn sequences. For instance, an RNN can learn to predict the next
word in a sentence, or the next image in a video. The main objective of an RNN
is to learn what comes next in a sequence.

Vanilla RNN A vanilla RNN is the simplest kind of RNNs. What sets the
vanilla RNN apart from more complex RNNs is that it does not have a cell
state. In a video classification problem, we want to use previous knowledge ht−1
together with the current knowledge ht that takes the current frame in a video
xt as input to determine for instance whether a person is moving or not.

The formula shows how the current hidden state in a simple RNN is calcu-
lated:

ht = fW (ht−1, xt)
Where:

ht current hidden state

fW function with parameters W

ht−1 previous hidden state

xt input vector with time step t



22 CHAPTER 2. BACKGROUND

RNNs are effective for learning shorter sequences, but they suffer from short-
term memory which leads to a major drawback of learning longer sequences. Re-
searchers have managed to solve this problem by introducing Long Short-Term
Memory networkslong short-term memory (LSTM)[28] and Gated Recurrent
Unit networksgated recurrent unit (GRU) [30]. Although LSTMs and GRUs
have proven great performance in learning sequences, they are not as efficient
and easy to combine with generative models. Generative models often use layers
for downsamling and upsamling of data, which can be computationally heavy
to combine with a LSTM or a GRU. In Figure 2.4.2, we can see two examples
how we can structure an RNN.

3D Convolutional Neural Networks

3D convolutional neural networks(3DNNs) are closely related to 2D convolu-
tional neural networks. The main difference is that 3DCNNs are built up of 3D
convolutional layers instead of 2D convolutional layers. The 3D layers introduce
an additional temporal dimension to the network.

With 2D convolutional neural networks (CNNs), convolutions are computed
on 2D feature maps from the spatial dimensions only. 2D CNNs are often used
to solve single image classification tasks [90, 9, 85, 38, 115, 81]. To solve a video
classification task, we are additionally interested in the motion information from
multiple contiguous frames.

With 3D CNNs we can extract both spatial and temporal feature maps from
multiple frames. This means that in addition to learn the spatial shape of an
object, we can learn the temporal shape and movement of an object based on
temporal information with 3D CNNs. Ji et al. explain 3D convolutions in this
way: “The 3D convolution is achieved by convolving a 3D kernel to the cube
formed by stacking multiple contiguous frames together” [46]. A 3D convolution
is computed by a kernel formed cube. As shown in Figure 2.12, the cube extracts
features in the spatial and temporal dimensions by stacking multiple contiguous
frames together.

Figure 2.12: Example of a 3D convolution operation [98]
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3D CNNs has proven to outperform 2D CNNs in various of video analysis
tasks [95]. Applications like action recognition [46, 95] and medical 3D im-
age segmentation [97, 19] have been developed using 3D CNNs. In the paper
“Learning Spatiotemporal Features with 3D Convolutional Networks”, Tran et
al. suggest using 3×3×3 filter kernels to achieve the best performance on action
recognition.

2.4.3 Generative Modeling

A generative model describes how a dataset is generated,
in terms of a probabilistic model. By sampling from this
model, we are able to generate new data

David Foster [20, p. 1]

Generative modeling is an unsupervised learning method that is gaining pop-
ularity. Generative models are trained by learning the true data distribution
of the training dataset so that it can generate new data with a similar distri-
bution, also known as artificial or fake data. To be categorized as generative,
the model must be probabilistic rather than deterministic, which means that it
must include a stochastic element that can influence the individual samples to
make them different from each other.

Generative adversarial networks (GANs) and variational autoencoders (VAEs)
have recently given good results [51, 29]. Generative models are used in sev-
eral different applications like music generation, text-to-image translation, and
generating images of human faces.

Suppose we have a set of images of paintings. These paintings are all painted
by the Norwegian artist, Edvard Munch. We want our generative model to
learn the general rule that governs Edvard Munch’s artistic style. The goal is
to generate new images that look like real paintings by Edvard Munch. This is
an example of a goal that we can work towards by using generative modeling.

Autoencoders

Autoencoders were first introduced in the 1980s by Hinton [35]. An autoencoder
is a neural network that is trained to recreate a copy of its input. The purpose
of an autoencoder is to discover low dimensional representations of the input
data to capture some underlying structure in the high dimensional data.

A generic autoencoder consists of three main parts: an encoder network, a
latent space representation, and a decoder network. The task of the encoder
network is to compress high dimensional input data into a lower-dimensional,
latent space representation. The decoder network is responsible for decompres-
sion of the low dimensional data back to its original shape. The goal is to learn
a good encoding-decoding scheme through an iterative optimization process.

There are several variants of autoencoders, with different use cases. Some
popular variants are the sparse autoencoder and the denoising autoencoder. The
main idea behind the sparse autoencoder is to introduce a sparsity constraint in
the hidden layer to prevent the output layer from copying the input data, this
is done by allowing only a subset of hidden nodes to fire at the same time. The
denoising autoencoder adds noise to the input data with the purpose to prevent
the model from copying the input data, but instead learn the features of it.
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Autoencoders show major flaws when it comes to introducing completely
new data. Another, more promising variant of autoencoders when it comes to
introducing new data, is the variational autoencoder which will be described in
further detail in the section below.

Variational Autoencoders

The variational autoencoder was first introduced by Kingma and Welling in
2014 in the publication “Auto-Encoding Variational Bayes” [51]. Unlike the
autoencoder that maps its input to a single point, the variational autoencoder
maps the input to a multivariate Gaussian distribution in the latent space [20].
The steps are: the input is encoded to a multivariate Gaussian distribution
containing the mean value µ and the variance σ

2
in the latent space. From

the distribution, a point is sampled as a latent representation and is thereafter
decoded to a reconstruction of the input. Finally, a reconstruction error is
computed and backpropagated through the network

Variational autoencoders are using a statistical approach called variational
inference to approximate complex distributions. This involves setting a pa-
rameterized Gaussian distribution, where the parameters are the mean and the
covariance, and then search for the best approximation of the ground truth
distribution among the Gaussian distribution.

VAEs are often used to encode data from the latent space. They have limita-
tion on commonly producing blurry images and they are additionally not great
on introducing new data samples. [71].

Generative Adverserial Networks

The GAN was first introduced by Ian Goodfellow et al. in 2014 [29]. The
general idea of a GAN comes from game theory, the GAN is a type of minimax
game between two adversaries, the discriminator D and the generator G. The
discriminator can be seen as a police officer who tries to disclose which dollar
bills are real or fake. In contrast, the generator can be seen as a counterfeiter.
The generator’s goal is to generate fake dollar bills to fool the police officer into
mistaking fake dollar bills to be real.

The GAN architecture consists of three main parts: real training data, a
generator model, and a discriminator model. The generator’s goal is to create
real looking data that can fool the discriminator, while the discriminator’s goal is
to distinguish between real and generated data. The generator and discriminator
are trained simultaneously while trying to reach their conflicting goals.

Generator . The generator G is a neural network with a generator distribu-
tion pg(x) over the input data x. To learn the generator distribution pg(x), we
introduce an input noise distribution pz(z), from this distribution we sample a
random noise vector z. We use z to generate an image x = G(z).

In mathematical terms: We have a mapping function that is a differentiable
function G(z; θg) that takes a random noise vector z and a set of weights θg and
maps z from the latent space to data space x. The output of the generator is
of the same size as the samples from the real data distribution pdata. The goal
of the generator is to fool the discriminator into predicting what is fake to be
real. The objective of training the generator is to minimize log(1 −D(G(z))).
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Discriminator The discriminator D is a neural network whose purpose is to
correctly classify samples from the generator distribution pg(x) to be fake, and
samples from the real data distribution pdata(x) to be real. Throughout the
training process, the discriminator learns to identify features that contribute to
the real images. The discriminator is a function D that maps x to D(x; θd)
where θd are the adaptive parameters.

The objective of training the discriminator is to maximize the log-likelihood
of the probability P (Y = y∣x), where y = 1 if x comes from pdata(x) and y = 0
if x comes from pg(x) [29].

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.8)

Mode Collapse When we generate data from a GAN, we usually expect it
to produce a wide variety of outputs. If a generator model shows a tendency to
produce one, or a small set of similar outputs repeatedly, we can assume that the
model is suffering from mode collapse. Regardless of what input noise we feed
into the generator, there is a fixed optimal point that the generator repeatedly
generates. This happens when the discriminator gets stuck in a local minimum.
This causes the generator to over-optimize for a specific discriminator, and the
discriminator never manages to get out of the local minimum [60].

Oscillating Loss When we train a GAN, we expect small oscillations in loss
between batches. Moreover, we expect that the loss gradually stabilizes, de-
creases or increases during training. A common challenge with GANs is that
the loss of the generator or the discriminator starts to oscillate wildly.

A successful approach that attempts to prevent the generator from optimiz-
ing for a particular discriminator, is to implement Wasserstein loss [2]. Wasser-
stein loss replaces the binary cross-entropy loss that is used in a GAN. Other
approaches, like reducing the complexity of the discriminator or adding noise
to the input of the discriminator has turned out to greatly stabilize a GAN [1,
77].

Conditional Generative Adversarial Nets

While GANs can learn to map from a noise distribution pz(z) to an output
image x, CGANs can learn to map from a noise distribution pz(z) and an input
image y to an output image x.

The CGAN works as follows: the condition y is fed as an additional input
layer into both the generator and the discriminator. In the generator, the condi-
tion y and the input noise distribution pz(z) are combined together as a hidden
representation. In the discriminator x and y are both represented as inputs [61].

The method was first proposed by Mirza and Osindero, and has become pop-
ular for doing image-to-image translation. For example by mapping segmented
images to photos. As with a GAN, the generator in a CGAN also tries to fool
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Figure 2.13: The figure shows an example of the structure of a simple conditional
generative net [61].

the discriminator. The objective function of the two-player minimax game for
a CGAN is shown in Equation 2.9.

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x∣y)] + Ez∼pz(z)[log(1 −D(G(z∣y)))]
(2.9)

[25] [44]

2.4.4 Data Handling

Dataset

In the context of this thesis, a dataset is referred to as a collection of videos X
that corresponds to a set of classes Y that are either polyp or normal mucosa.
The dataset is divided into three independent datasets that all have different
use cases.

Training set. In supervised learning, the training set consists of a set of X
and corresponding Y pairs that has the purpose of training a model to learn
to predict new Ys without any help. In unsupervised learning, a training set
consists of a set of X that is used to train a model to learn a pattern.

Validation set. A validation set is usually used during the training of a neural
network. It is independent of the training and test set and has the purpose of
evaluating generalization and overfitting during training. It is additionally used
for hyperparameter tuning.
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Test set The test set is independent of the training and the validation set. It
should not be used during training and has the purpose of evaluation the model
on completely new or unseen data.

Regularization

A common challenge for image classification tasks is the lack of large and gener-
alized datasets. When a model performs well on training data but is generalizing
poorly to new data, we refer to it as overfitting[32]. Hawkins describes that over-
fitting often occurs when our model is more complex than what is needed for
the dataset we have. Overfitting can occur if we lack training data or if the
training data is not generalized enough. We will now present some methods for
avoiding overfitting

Data Augmentation Data augmentation can be beneficial to increase the
amount of data by making copies that are changed slightly from their original.
One image can be turned into multiple images by for example cropping, rotating,
or flipping the image.

Batch Normalization A common challenge when training a deep neural net-
work is to keep the weight values within a reasonable range. If the weights grow
too large, it can lead to an exploding gradient problem [43]. To prevent this,
batch normalization is often used[43]. With batch normalization we calculate
the mean and standard deviation of the input across the batch. We then nor-
malize the output of the layer by subtracting the mean from the input and
dividing by standard deviation. Finally, we scale and shift the normalized input
by the learned parameters gamma and beta respectively [20, p. 51-52].

Dropout A common way to regularize and prevent a model from overfitting
in a deep neural network is by using dropout [87]. The term dropout refers
to dropping out nodes in a neural network. On the left in Figure 2.14, we see
a standard neural network where all nodes are fully connected. On the right,
we see a thinned neural network where the crossed nodes have been dropped.
With dropout, a random set of units are temporarily deactivated and with that,
all incoming and outgoing connections are stopped. The remaining units pass
unchanged.

2.5 Related Works

There are different approaches and goals for video generation. Some are trying
to develop self-driving cars and others are trying to create systems for activity
recognition in smart homes. Research within the field is developing fast.

2.5.1 Image-to-image Translation

Recent research in the field of image-to-image translation [39, 44, 56] has shown
great success. The method is used to translate an input image in one domain
to a corresponding output image in another domain. The input image and
the translated output image are often related. With this method, we can for
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Figure 2.14: The figure shows a standard neural net with two hidden layers on
the left On the right we see an example of a thinned neural net by applying
dropout. Crossed nodes are dropped [87].

example translate an image of a young person to an image of the same person
that looks old. Our approach is based on this method, but is in contrast opposed
to generating videos. The results of an image-to-image translation task by
Pix2Pix [44] are shown in Figure 2.15.

2.5.2 Unconditional Video Synthesis

is a method based on regular GANs, but is different in the way that it is generat-
ing videos. The method takes latent vectors as input to the generator network
and tries to generate videos. There are no conditional images used as input
here.

Tulyakov et al. developed a Motion and Content decomposed Generative
Adversarial Network (MoCoGAN) which is mapping a sequence of random vec-
tors to a sequence of video frames. The researchers developed both a motion
and an image discriminator to learn content and motion. The model achieves
competitive results compared state-of-the-art approaches [96]. Due to being
unconditional, images tend to result in low-resolution videos and lower image
quality [96, 17] compared to conditional generative neural nets.

These methods for image generation have successfully been used to generate
single images [21]. By generating data based on a single input image, the gen-
erated image will not depend on a previous sequence, it will only be dependent
on the previous image. Hence, the generated image will not necessarily achieve
the same natural direction of motion, or a natural variation of the structure as
with a sequence generator.

2.5.3 Video-to-video Synthesis

uses a sequence of images in one domain as a conditional input and generates
a sequence of images in another domain as output. For example, with vid2vid
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Figure 2.15: The figure shows two examples of image-to-image translation by
Pix2Pix [44]

Wang et al. are using a sequence of segmentation masks as input and outputs a
sequence of photorealistic images [102].

Coherent online video style transfer (COVST) [8] is closely related to the
video-to-video synthesis method and has proven competitive results by generat-
ing temporally coherent stylized video sequences in near real-time. A compari-
son of three state-of-the-art methods is shown in Figure 2.16

The objective of video-to-video synthesis is to translate a video in one domain
to a video in another domain. While our objective is to translate a video in one
domain to future video frames in the same domain, this leads us to the method
of future video prediction.

2.5.4 Future Video Prediction

Future video prediction uses a sequence of images to predict future frames in
the same sequence. Several promising methods have been developed to predict
future frames [63, 68, 47, 26, 55, 57, 54].

PredNet is one state-of-the-art algorithm for predicting future frames in a
video sequence [57]. The method uses convolutional LSTM to robustly learn
to predict object movements from both synthetic and natural image sequences.
The method additionally proves to scale to other applications like capturing
movements of objects from a car-mounted camera.

An algorithm developed by Lee et al. combines latent variational variable
models that explicitly model underlying stochasticity together with adversarially-
trained models that aim to produce naturalistic images. The two combined
methods are used to generate videos of a moving robotic arm and different hu-
man activities. The method manages to produce realistic looking predictions
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Figure 2.16: The figure shows comparison of three state-of-the-art video-to-video
synthesis methods[8]

to human raters and by similarity measurements. The algorithm manages to
outperform prior work in the field of future video prediction.

2.6 Summary

In this chapter, we have addressed medical concepts and screening methods
for detecting colorectal cancer and other abnormalities in the colon. We have
further described the importance of early detection of polyps to lower the risk of
cancer mortality. We discovered the benefits of CAD-systems for aiding doctors
in decreasing polyp miss rate during colonoscopy examinations. By adding more
data, we found a large potential of existing advances in CAD-systems. Moreover,
we discovered that medical data is sparse and that there is a great need for more
medical data. The lack of data further motivates to build a system that can
generate more data. In the last part of the chapter, we address machine learning
algorithms that are used to build our systems. Finally, we look into work that is
closely related to ours. We have seen that the most critical issue for improving
these systems is the lack of data.

In the upcoming chapters, we will address three separate phases that to-
gether make up our overall solution. The phases are divided into three chapters.
In the next chapter, we will introduce the OUS-Study-2019 dataset 3.1 that we
use throughout our experiments. Then, we will describe challenges with our
dataset, and we will introduce the optical flow 3.3.3 method which is used to
improve our data. Moreover, we will look at experiments where we optimize the
training data in order to generate realistic looking sequences.



Chapter 3

Preprocessing Data for
Sequence Generation

In the previous chapters, we discussed the challenges concerning the need for
more data and the large gap between data containing healthy tissue and data
containing abnormalities in the colon. We have further seen the importance
of discovering abnormalities at an early stage in order to prevent cancer from
spreading. Furthermore, we have looked into previous studies on the detection of
polyps and other abnormalities that have proven promising results. A common
weakness for these studies is the accessibility to datasets and the amount of
data with an emphasis on the lack of data containing abnormalities.

To solve these challenges, we have developed a system that can create more
data from data we already have. Specifically, we aim to generate entirely new
videos of colon polyps from our existing videos of colon polyps. Our system can
be broken down into four distinct steps:

1. Remove duplicate frames from a dataset before sequence generation.

2. Train a model to generate video sequences of polyps.

3. Create fake video sequences from the generator model.

4. Train and test a polyp classifier based on real and fake data.

In this chapter, we will first give a full overview of the datatset that have been
broken into two separate datasets. We will further give a detailed description
of the first part of the dataset that we are using in this chapter. Moreover,
we will look into the methods we use on data preprocessing, followed by the
experimental process and results from this phase. The aim is to optimize data
for sequence generation, by removing duplicates in colonoscopy videos.

3.1 OUS-Study-2019

In this section, we will introduce the in-house dataset that we have used through-
out our thesis. The dataset is divided into two separate parts. We name the
first part: GEN-DAT dataset that is used to train a polyp sequence generator.
We name the second part: CLSF-DAT that is used to train a polyp classifier.

31
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Each part of the dataset are treated as two separate datasets. In this section we
will describe the dataset as a whole before we go into details on the GEN-DAT
dataset that we are using in this chapter.

High resolution colonoscopy video data is hard to get hold of. Public avail-
able and high resolution datasets like HyperKvasir [7] and Kvasir [69] mainly
consists of images and not videos. GastroAtlas is a dataset consisting of mul-
tiple videos, but with lower resolution [23]. The lack of video data and high
resolution images, led us to search for an in-house video colonoscopy dataset.
OUS-Study-2019 is a confidential dataset provided by the Norwegian health
technology company: Augere Medical

1
. The dataset contains colored videos

taken from the GI tract, which were collected between August 2019 and Febru-
ary 2020 from two hospitals in Oslo; The National Hospital (Rikshospitalet) and
Ullev̊al University Hospital. All videos are recorded with endoscopic equipment
and annotated by 31 experienced medical doctors.

The full OUS-Study-2019 dataset consists of a 83088 polyp images and 83088
normal mucosa images. The video resolution is 1380× 1080 pixels with 3 color-
channels. Due to the limited time and resources to run all experiments, we
downsize and crop the images to 128 × 128 pixels with 3 channels. The videos
in the dataset have varying lengths. The video lengths vary from a minimum
of 6 minutes, and up to 2 hours. The average length of a recording is about 20
minutes and the frame rate is of 50 frames per second.

Figure 3.1: The figure shows six images from the polyp class. The images are
obtained from the OUS-Study-2019 dataset.

The content of the dataset is equally split into two classes: polyp and nor-
mal mucosa. All videos in the normal mucosa class can be characterized as
pseudo normal since the videos have not been manually annotated. To be in-
cluded in the pseudo normal mucosa class, the videos must meet the following
requirements:

• The patient is below age 45.

• The examination has reached the Cecum.

1
Augere Medical https://augere.md/

https://augere.md/
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• There must be no findings during examination.

• No polyps were found during the examination.

A few samples obtained from the normal mucosa class of the OUS-Study-2019
dataset is shown in Figure 3.2.The polyp class includes videos that exclusively
contain colon polyps which are manually annotated by experienced medical
doctors. A few samples obtained from the polyp class of the dataset are shown
in Figure 3.1.

Figure 3.2: The figure shows six images of the normal mucosa class. The images
are obtained from the OUS-Study-2019 dataset.

For the preprocessing experiments we use the GEN-DAT dataset. Our model
requires a fixed input size. Based on the model requirements, we have split
the videos in the dataset into 8 frames long video sequences. If some video
sequences are shorter than 8 frames, they are removed from the dataset. From
the 8 frames, we use 4 frames as input to the model and 4 frames as ground
truth. This means that all videos that are shorter or do not add up with the
fixed length are removed.

3.2 Problem and Goal

One challenge is that the motion contained in 8 frames of video, can be very
different from video to video. If the camera is standing still, then all 8 frames
will be nearly identical. The faster the camera moves, the less overlap there
will be from frame to frame. This is further complicated by the fact that the
operator can stop the camera in order to inspect an area of interest.

A high frame rate of 50 frames per second, combined with inconsistent move-
ments causes some neighbor frames to look identical and others to appear more
different. This leads to some video clips containing a lot of duplicate frames,
while others contain few. These outcomes are based on two scenarios:

1. When the recorder is not moving, we get continuous frames that are very
similar.
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2. When the recorder is moving, continuous frames are more different and
we get fewer duplicates.

We developed a prototype CGAN to test if duplicate frames would cause
errors on the output. We discovered that irregular motions in the videos posed
challenges for predicting the next frame. We tested this by inputting duplicate
continuous frames as conditional input to our network. This resulted in dupli-
cate output frames. We discovered a tendency that by using the unrefined data
as input to our generator, the network generated videos that were too similar
to the input. With this, it did not introduce any new data samples. Instead, we
attempt to introduce new data from previous frames by making the difference
between each frame in a video somewhat larger.

To create a more diverse dataset, we performed a series of preprocessing
experiments to optimize the dataset for more consistent motions by removing
duplicates and large jumps in videos. Our goal is to preprocess a dataset that
contribute to introduce new and consistent data samples. The data samples
will be used in our future sequence generator experiments that are introduced
in Section 4.4. To solve this, we decide to use a popular method for estimating
motion in videos, called optical flow.

3.3 Preprocessing Experiments and Results

To solve our challenges concerning duplicate frames, we experimented with dif-
ferent approaches. This resulted in a data processing framework that is a com-
bination of some of the approaches.

In this section, we discuss the results from the three methods we tested for
preprocessing of the dataset. Furthermore, we discuss their advantages and
limitations and how we proceed to our final solution of using dense optical flow.
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Input t = 1 Input t = 2 Input t = 3

Input t = 4 Ground truth t = 5 Predicted t = 5

Figure 3.3: The figure shows a sample of four original input frames, from the
OUS-Study-2019 dataset. The Figure further shows the the ground truth and
the predicted output. The output is predicted using Vid2Pix introduced in
Section 4.3.

In this phase, all videos in each preprocessed dataset are different due to
the preprocessing. Based in this, we are not able to compare each experiment
through similar videos. Instead we compare them by random sampled videos.
We additionally set as equal terms as possible. We do this by reducing the num-
ber of video samples from the original dataset to the number of video samples we
get from optical flow. In order to approach a more representative distribution of
each dataset, we further shuffle the videos in the original and the preprocessed
datasets. All experiments start out with a dataset consisting of a total of 28932
colonoscopy images from the GEN-DAT dataset described in Section 3.1.

Method Number of Videos Number of Frames Videos for Experiment

Original 3553 28932 348
Skip 8 248 1984 248

Abs sum of diff 260 2080 260
Optical flow 348 2784 348

Table 3.1: The table shows an overview of the resulting number of videos and
frames for each method after preprocessing of the GEN-DAT dataset. The right
column shows an overview of the number of videos we used in the experiment
from each preprocessed dataset.
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Input t = 1 Input t = 2 Input t = 3

Input t = 4 Ground truth t = 5 Predicted t = 5

Figure 3.4: The figure shows a sample of the four preprocessed input frames,
using the ”Skip Frames Based on Quantity” method on the OUS-Study-2019
dataset. The Figure further shows the the ground truth and the predicted
output. The output is predicted using Vid2Pix introduced in Section 4.3.

3.3.1 Skip Frames Based on Quantity

Before moving on to more advanced methods, we decided to select frames based
on a set interval. The method involves skipping N frames in between each kept
frame I in a sequence. The goal is to remove duplicates from all videos in a
dataset. The experiment involves skipping the following number of frames in
between each kept frame: N = 5, N = 8, N = 10 and N = 20. We choose to
present the top result from this experiment, which is when N = 8.

In addition to skipping a fixed number of frames, we create the videos with
a fixed length of 8 frames. Which is the required input for the generative
model experiments. During preprocessing we choose to create a new video if
the difference in frame number is larger than 10 frames. A difference of 10
frames was found to often cause large jumps in the video.

We test the effect of using the ”skip frames based on quantity” method on
the dataset. We do this by training our generator model that is introduced in
Section 4.3 on the preprocessed dataset. Then we compare the effect by training
the same model on the dataset that has not been preprocessed.

3.3.2 Skip Frames Based on Absolute Sum of Difference

The second approach involves calculating the sum of pixel values in two con-
secutive frames. Then we calculate the difference between the sum of the two
frames, lastly we take the absolute value on the difference between the sums.
When the calculated value is above a certain threshold, we keep the next frame.
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Input t = 1 Input t = 2 Input t = 3

Input t = 4 Ground truth t = 5 Predicted t = 5

Figure 3.5: The figure shows a sample of the four preprocessed input frames,
using the ”Skip Frames Based on Absolute Sum of Difference” method on the
OUS-Study-2019 dataset. The Figure further shows the ground truth and the
predicted output. The output is predicted using Vid2Pix introduced in Sec-
tion 4.3.

When the difference is lower or equal to the threshold, we skip the next frame.
The computation explained above is done for each finding in a video.

In addition to computing the absolute sum of difference between frames, we
create videos with a fixed length of 8 frames. Furthermore, we create a new
video if the difference in frame number is larger than 10 frames.

To test the effect of preprocessing the dataset using the absolute sum of of
difference, we train our generator model that is introduced in Section 4.3 on the
preprocessed dataset. Then we compare the effect by training the same model
on the dataset that has not been preprocessed.

3.3.3 Skip Frames Based on Dense Optical Flow

The last method we used for skipping frames is based on optical flow. Optical
flow is a method for estimating the motion of an object, surface, or edge in
a scene. There are two main types of optical flow estimation: sparse optical
flow [3] and dense optical flow. Sparse optical flow selects a sparse set of pixels
to process, such as corners or edges of an object. The benefit of using sparse
optical flow is that it is computationally faster, since it processes fewer pixels
in the image. The drawback is that it is less accurate on a pixel-level. We
have chosen to use dense optical flow due to its high accuracy. An example
of a visualized result of dense optical flow computation is shown in Figure 3.6.
Dense optical flow processes all pixels in an image, and outputs flow vectors.
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The flow vectors give an estimation of the direction and the intensity of motions
in a scene. Flow is computed between two contiguous frames [64].

Figure 3.6: The top image shows the scene that is computed. The bottom
image of the figure shows the results of computing dense optical flow between
two images [64].

We use optical flow to capture movements from an object or its surroundings.
In our experiment, we only consider the magnitude of motion to decide whether
to keep or to skip a frame based on a set magnitude threshold. We tested
a few threshold values, like the average magnitude between each continuous
frame through the whole dataset. We decided to use a threshold of 20% above
the average magnitude between each continuous frame in a video of the total
dataset. We do this because we are only interested in how big the movements are
in the video, the direction of the movement is not critical to solve our problem.
As with the other two preprocessing methods, we create each video with a fixed
length of 8 frames. Moreover, we create a new video if the difference in frame
number is larger than 10 frames to avoid large jumps in the videos.
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To measure the effect of preprocessing the dataset using optical flow, we
train our generator model that is introduced in Section 4.3 on the preprocessed
dataset. Then we compare the effect by training the same model on the dataset
that has not been preprocessed.

Input t = 1 Input t = 2 Input t = 3

Input t = 4 Ground truth t = 5 Predicted t = 5

Figure 3.7: The figure shows a sample of the four preprocessed input frames,
using the dense optical flow method on the OUS-Study-2019 dataset. The Fig-
ure further shows the ground truth and the predicted output. The output is
predicted using Vid2Pix introduced in Section 4.3

3.4 Discussion

The ”skip frames based on quantity” method in Section 3.3.1, was meant to be a
preliminary approach to have a reference point for future experiments. From the
results, we see that the camera movement in the colonoscopy videos are rather
inconsistent concerning that it is unpredictably standing still or moving fast.
The method, on the other hand, is consistent concerning that it is skipping a
constant N number of frames throughout the entire video. From Figure 3.4, we
observe that the sequence contain large jumps between some images, while some
images show great similarity. Combining a consistent method on an inconsistent
dataset, did not work well with the purpose of optimizing the original dataset.
The method resulted in a random set of desired predicted videos and another
random set of undesired predicted videos in terms of getting blurry, or changing
color or brightness. Compared to not skipping frames, the method improves
prediction.

A major drawback for the method based on the absolute sum of difference
in Section 3.3.2, is that it does not differentiate between changes in bright-
ness, noise or motions. This means that it can return a large absolute sum
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of difference between two frames, regardless of whether the changes are due to
brightness, noise or a motion. We aim to skip duplicate frames that are caused
by the absence of motions. Like the method in Section 3.3.1, this method re-
sults in a random set of well predicted videos, while another random set of
predicted videos are undesired. By undesired videos, we mean that we get large
and sudden jumps between two frames, or large changes in color or brightness
from one frame to another.Figure 3.5 shows an example of input frames after
preprocessing and predicted output using this method. The figure shows one of
the greater examples where input is consistent.

The absolute sum of difference did not solve our challenge of capturing mo-
tions, exclusively. Instead, we attempt to use a method that can capture mo-
tions. We refer to the experiment and result presented in Section 3.3.3 from
using the dense optical flow method. By using this method, we were able to
reach our goal. Figure3.7 shows an example of our preprocessed input by optical
flow, and predicted output. The goal was to capture motions, and skip frames
with absence of motions. Based on visual inspection, the generated videos did
not show any signs of large and sudden jumps between frames nor any large
changes in color or brightness. Overall, the motions in the videos show signs of
being consistent.

3.5 Summary

In this chapter, we introduced the OUS-Study-2019 dataset and described how
we divided it into separate parts. We further introduced how we examined GEN-
DAT dataset and discovered some issues when using raw video sequences. We
discovered that multiple sequences in the dataset consisted of large jumps be-
tween frames. Moreover, we discovered long sequences with absence of motions.
This led us to a new challenge in training a CGAN for generating sequences.
When the input sequences had large jumps, the generated output would turn
bad in terms of change in color, brightness or getting blurry. To solve this,
we first experimented with a quick approach which was to skip frames based
on quantity. Another approach was to compute the absolute sum of difference
between each frame in a video. Both approaches did not work well to capture
inconsistent motions in a video, which resulted in using the dense optical flow
method. With this method we managed to optimize the dataset by remov-
ing duplicate frames and large jumps between frames. This resulted in a data
preprocessing framework that we use to preprocess data that will be used to
generate video sequences with a CGAN. In the next chapter, we will introduce
the methods that our sequence generator is built upon. Moreover, we describe
how we generate future sequences based on past sequences with our method.
Finally, we will present and discuss the results of our experiments.



Chapter 4

Future Sequence
Generation

In the previous chapters, we have described the challenges concerning access to
and the lack of large scale endoscopy data. Furthermore, we have described the
need for medical expertise in order to annotate a dataset. We have also shown
the importance of having a rich and balanced dataset, where the data covers
many different scenarios.

Tackling these challenges is the motivation behind this thesis. Our main
goal is to generate artificial polyp videos which look like the real thing. We
have developed a generative model, Vid2Pix, which is able to generate videos
that can go into a colonoscopy dataset.

In this chapter we aim to describe the details of the U-Net model in Sec-
tion 4.2.1, and their use of skip connections. We then introduce the Pix2Pix
model in Section 4.2.2, which together with U-Net are the building blocks of
our generative model. Finally, we explain how our generative model is built.

4.1 Dataset Description

In chapter 3, we introduced the OUS-Study-2019 dataset in Section 3.1. We dis-
covered that the dataset contained many duplicates, which caused our prototype
generator network to perform poorly. Since there could be very little movement
from frame to frame, our generator simply learned that the best approach was
to generate a copy of the input. We applied dense optical flow in Section 3.3.3
on the whole training dataset in order to filter out duplicate frames.

In this section we describe how we use the GEN-DAT dataset, that consists
of 28932 annotated polyp images. This is reduced to 2784 images with 348 videos
after the filtering. We then split the dataset randomly into training, validation
and test sets. We distribute the data in a way that gives us as much training
data as possible. These subsets were used during the development phase and to
train the generator model.

The train, validation and test set were distributed as follows:

• 261 polyp training videos with 8 frames in each video.

• 58 polyp validation videos with 8 frames in each video.

41
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• 29 polyp test videos with 8 frames in each video.

Every video consists of 8 frames, where 4 frames are used as input to a
generator and 4 frames are used as ground truth. In one of the experiments, our
ground truth is an image instead of a sequence of images. In this matters, we use
the first out of the four frames as ground truth. In this particular experiment,
we choose to keep the video size in order to compare all experiments.

4.2 Methods

Our main goal is to generate real looking artificial polyp videos. With this in
mind, we developed a generative model: Vid2Pix, which is able to generate
videos that increase the size of the polyp class of a colonoscopy dataset. In this
section we aim to describe the details of the U-Net model and their use of skip
connections. Further we introduce the Pix2Pix model that together with U-Net
build the foundation of our final generative model. Finally, we introduce our
own contribution where we explain how U-Net and Pix2Pix contributes to it.

4.2.1 U-Net

The U-Net model architecture was developed by Ronneberger, Fischer, and Brox
in 2015 to process biomedical images [75]. The architecture has a U-shape and
is symmetric which can be seen in Figure 4.1. A standard U-Net architecture
consists of two parts: an encoder, referred to as the contracting path located
on the left side, and a decoder which is referred to as the expansive path on the
right side. The contracting path includes a stack of convolutional, ReLU and
max pooling layers which are used for feature extraction and also downsample
the input data. The expansive path includes a stack of deconvolutional layers
which is used to upsample the data and increase the resolution of the output.
A full overview of the original U-Net architecture is shown in Figure 4.1.

Skip connections

A skip connection is a connection between two layers, where intermediate layers
are skipped. In U-Net, the contracting path and expansive path are connected
in two ways. First, in the transition between a series of downsampling layers
and upsampling layers. Second, as skip connections directly in between each
upsampling and downsampling layer. This means that the architecture share
features with skip connections between each layer i and n − i where n is the
total number of layers [44]. For each skip connection, all channels at layer i
are concatenated with layer n − i [44, p. 3]. A simple example of a general
encoder-decoder versus the U-Net architecture with skip connections is shown
in Figure 4.2. The main objective of skip connections is to learn to assemble
a more precise output based on combining high resolution features from the
contracting path with the expansive path [75].

4.2.2 Pix2Pix

The Pix2pix model architecture is inspired by U-net. Pix2Pix is a genera-
tive model architecture developed to perform image-to-image translation tasks.
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Figure 4.1: The U-Net architecture developed by Ronneberger, Fischer, and
Brox [75].

In the paper “Image-to-Image Translation with Conditional Adversarial Net-
works”, Isola et al. define image-to-image translation as ”the task of translating
one possible representation of a scene into another, given sufficient training
data” [44]. Isola et al. introduces a variety of tasks for image-to-image transla-
tion. For instance, Pix2Pix can map edges to a photo or a semantic label to a
photo. In our case, we want to predict a future image in a sequence based on
past a sequence.

Pix2pix uses a conditional GAN framework. The Pix2Pix conditional GAN
learns to map an image y and a random noise vector z, to x. An example of
how edges to photo translation is done using a Pix2Pix is shown in Figure 4.3.
In Pix2Pix, the discriminator and the generator both contain modules of lay-
ers in the following order: convolutional, batch normalization and ReLU or
LeakyReLU.

Generator Similar to U-Net, Pix2pix utilizes skip connections. The skip con-
nections are only present in the generator. The skip connections are connected
between each corresponding upsamling and downsampling layer. The upsam-
pling and downsampling layers are also connected in the transition between their
respective series of layers as shown in Figure 4.2 on the right.

Discriminator The discriminator computes a feature map from two concate-
nated images. The computation is done twice. First from a concatenation of
the input image and the generated image, and second from a concatenation of
the input image and the ground truth. The discriminator attempts to guess
which of the two feature mappings are generated or real. Isola et al. refers to
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Figure 4.2: Two generator architectures. To the left: a general encoder-decoder
architecture. To the right: U-Net architecture with skip connections [44]

Figure 4.3: The figure shows an example of the training process of the Pix2Pix
model. On the left: the generator tries to map the conditional input x, to a real
image of a shoe. On the right: The ground truth and the conditional input x is
is input to the discriminator. G tries to map edges to a photo, and G learns to
fool the discriminator, D [44, p. 2].

the discriminator architecture as a PatchGAN, which is a convolution network
that maps the two input images to a N × N output matrix rather than a one
dimensional output vector. Each element in the N × N matrix is mapped to
local patches in the input images. By putting attention to local image patches,
PatchGAN is able to capture local texture details in the input images.

4.3 Future Sequence Generation with Vid2Pix

Pix2Pix was developed to translate an image in one domain to an image in
another domain. We are trying to learn past image sequence (videos) in one
domain in order to generate new sequences in the same domain. While the
Pix2Pix architecture does not directly fit our problem, we wanted to extend
Pix2Pix so that it could work with sequences.

Vid2Pix is a generative model that predicts a future frame conditioned on
the past frames in a sequence. In contrast to Pix2Pix, the purpose of developing
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Vid2Pix is to produce artificial videos, rather than images. Similar to Pix2Pix,
Vid2Pix is a conditional GAN and consists of a generator with a U-Net archi-
tecture and a discriminator with a PatchGAN architecture. The table below
shows the main modifications to the existing Pix2Pix.

• Add an additional dimension for input sequence support.

• Replace 2D with 3D convolutions for all downsampling layers.

• Replace 2D with 3D deconvolutions for all upsampling layers.

• Many-to-one input-output

4.3.1 Generator

The generator architecture is structured with a series of convolutional downsam-
pling layers, a series of deconvolutional upsampling layers and skip connections.
Instead of using 2D convolutions as in Pix2Pix for downsampling, we use 3D
convolutions. We use 3D deconvolutional layers instead of 2D deconvolutional
layers for upsampling. An overview of the full generator model is shown in
Figure 4.4. We add an additional dimension so that we end up with three
dimensions, two spatial and one temporal dimension. We do this to extract
features from the temporal dimension. The temporal dimension provides infor-
mation on the temporal shape and movement of an object or its surroundings
as explained in Section 2.4.2. A full overview of the model architecture is shown
in FigureB.1
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Figure 4.4: The Vid2Pix generator model architecture.
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4.3.2 Discriminator

The discriminator outputs a downsampled feature map from either a concate-
nation of the input sequence and a generated image shown in Figure 4.5, or
from a concatenation of the input sequence and the ground truth. The similar
model shown in Figure 4.5 is used for the ground truth, besides switching the
generated input with ground truth. The discriminator consists of a PatchGAN,
which is explained in Paragraph 4.2.2. We use a patchGAN so that we can
capture local texture details in the images. Further, we use 3D convolutions in-
stead of 2D convolutions in a series of downsampling layers to ensure temporal
feature extraction. A full overview of the model is shown in Figure B.2.
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Figure 4.5: The figure shows Vid2Pix discriminator model with a real input
sequence and the generated output. The output is compared to the output
from Figure 4.5

4.4 Model Experiments and Results

In this section, we present the experiments performed to arrive at our final
generative model. All decisions made during this phase was based on the goal
of generating realistic looking motions and high image quality in each video.

In our first experiment, we use the original Pix2Pix model with four stacked
images as input. Further, we modify the Pix2Pix model to learn spatiotemporal
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features by replacing 2D convolutional and deconvolutional layers with 3D con-
volutional and deconvolutional layers. In further experiments, we add or remove
parameters step by step until we finally end up with our model architecture:
Vid2Pix.

Each generated result is presented in a figure together with the last frame
of the four conditional input frames, and the ground truth. We choose three
identical input sequences to generate one image for all experiments. Identical
input sequences are chosen in order to compare the results of the experiments.
The figures are used to compare the similarities and the differences between the
images.

In this section, we will describe each experiment step by step, which will lead
us to our final contribution. Each of the seven experiments represents a single
change in the model architecture. It is not guaranteed that each step alone
improves the performance of the model, but if we implement all the changes
at once, we achieve the best performance. Thus, keeping changes done to the
model architecture is not necessarily dependent on the previous step, but by the
final result.

4.4.1 Experiment Setup

We have used the high-level programming language Python [27] to implement
our model. Python is known for being easy to use and for having a large
number of machine learning libraries and tools. Python has become popular for
doing machine learning tasks [88]. The code written for this thesis is exclusively
written in Python, and most of the experiments have been developed in the
interactive development environment Jupyter.

Tensorflow was originally developed by researchers on the Google Brain
Team. It is a popular end-to-end platform for building, deploying, and ex-
perimenting with machine learning models [109]. In 2019, Tensorflow released
a 2.0 version of the library, which integrated the Keras API directly into the
library itself. Keras is accessible through the tensorflow.keras module, where
one has access to all features available through the standalone API. For this
thesis, we use Tensorflow 2.0 and tensorflow.keras to experiment and build our
machine learning models.

To train and test our experiments, we got access to the ”Experimental In-
frastructure for Exploration of Exascale Computing” server (Ex3) provided by
Simula and funded by the Research Council of Norway. The server holds 16
NVIDIA V100 GPUs with a total of 512GB GPU memory.

4.4.2 Original Pix2Pix with Stacked Input

Design

In this experiment, we use the original Pix2Pix model architecture described
in Section 4.2.2 without any modifications. Originally, Pix2Pix translates one
input image to another output image. In this experiment we input a stacked
sequence of images to predict and generate the next image in the sequence.

The original architecture does not allow to add another dimension to the
input of the model without being modified. In Pix2Pix, 3 channels are used
as the input. This means that the input is a color image where the 3 channels
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Input 1 Input 2 Input 3 Input 4 Actual Predicted

Figure 4.6: The figure shows the four frames that represent the stacked input to the model, the
ground truth and the predicted output for the Original Pix2Pix experiment 2.0. To be able to
fit the images in one line and based on the low image resolution, we choose a rather small figure
size.

represent the colors red, green, and blue. The original architecture accepts one
frame as input, but you can adjust the number of input channels. Therefore,
we choose to stack our images in the channel dimension.

Instead of using a single frame as input to the model, we input four stacked
frames. When we stack four images we get 4x3 channels, which means that we
have stacked four color images and end up with an input size of 128× 128× 12.
When our stacked input consists of four images from time t = 1 to t = 4, we try
to predict the image at t = 5. In order to predict an image at t = 5, our ground
truth has to be the next image in the sequence at t = 5.

Results

The upper row of Figure 4.6, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. From the figure, we observe that the element sizes and the large
structures in the predicted output resemble the ground truth. The placement of
elements are also similar to the ground truth. Moreover, we see a rough pattern
in some bounded areas of the predicted image.

The middle row of Figure 4.6, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. In the upper row, the larger structures appear similar to the ground
truth. On a detailed level, we observe that the thinnest blood vessels are blurred
and hardly visible.

The lower row in Figure 4.6, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. The larger features in the predicted image look similar to the features
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in the ground truth image. Important areas that consist of an outgrowth with
hemorrhages is less visible due to blurriness. Overall, the image appear close
to ground truth on large structures, while the smaller elements of the image
appear blurred.

An overall observation for all input videos and their predicted output in
Figure 4.6 is that larger structures in the generated images appear similar to
their respective ground truth, while the smaller features in the images appear
blurred.Training loss is shown in Figure A.1.

4.4.3 Replace with 3D Layers

Design

3D convolutions have been proven sucessful for temporal feature extraction
which we introduced in Section 2.4.2. According to Ji et al., 3D CNNs out-
perform 2D CNNs on several spatiotemporal feature extraction tasks [46]. In
this experiment we aim to improve the performance of the model by replacing
the 2D layers with 3D layers in the Pix2Pix.

We add one extra dimension to the input and output of the model, in order
to be able to use 3D layers. We choose to use an input size of 4×128×128×3 and
an output size of 4×128×128×3 where 4 represents the number of frames, and
128× 128 represents the image resolution. 3 represents the number of channels.

The following changes were done to the layers in both the discriminator
model and the generator model:

• Replace 2D convolutional layers with 3D convolutional layers.

• Replace 2D deconvolutional layers with 3D deconvolutional layers.

• Replace 2D zero padding layers with 3D zero padding layers in the dis-
criminator.

This experiment is using the original Pix2Pix architecture except for replacing
2D convolutions and deconvolutional layers with 3D layers.

Results

The upper row of Figure 4.7, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. We see that the large structures like the polyp and the intestinal folds
are located in the same areas as in the ground truth. The smaller structures
are difficult to see clearly. There is a grainy texture on a detailed level.

The middle row of Figure 4.7, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. We observe that the larger and folded structure starting from the
middle of the image partially blends in with the rest of the tissue. The thin
blood vessels are missing, and the thicker blood vessels are difficult to see. The
texture is grainy.

The lower row of Figure 4.7, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. Like in the predicted images from video 1 and 2, the larger features are
similar to the ground truth. For the local areas, we observe that the outgrowth
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Input 1 Input 2 Input 3 Input 4 Actual Predicted

Figure 4.7: The figure shows the four frames that represent the stacked input to the model, the
ground truth and the predicted output for the Original Pix2Pix experiment 2.1.

with hemorrhages differs from the ground truth in blending in with other tissue.
The smaller features appear rather grainy here as well.

Overall, some of the generated images consist of larger structures that par-
tially differ from their respective ground truth. The smaller structures consists
of greater errors like missing blood vessels. Additionally, all of the generated
images appear grainy. Training loss is shown in Figure A.2.

4.4.4 Change Filter Size

Design

This experiment is built upon the “Replace With 3D layers” experiment from
Section 4.4.3. We keep the earlier modification, and further develop the model
by changing the filter size. The filter size is changed from 4 to filter size 3 and 5
in both the generator and discriminator layers. We apply two filter sizes instead
of one in order to test if the filters can better learn higher level features from
filter size 3 and lower level features from filter size 5. Tran et al. suggests the
filter size of 3 to be the best working filter size for 3D convolutions[95].

In the generator, we use a filter size of 3 in the first four downsampling
layers and we use a filter size of 5 for the remaining four downsampling layers.
Each upsampling layer uses the filter size that corresponds to the downsampling
layer it is skip connected with. A full overview of the changes that have been
made together with the corresponding skip connections is shown in Table 4.1.
In the discriminator, we use filter size 3 for the first two downsampling layers.
Next, we use filter size 5 on a new downsampling layers, and then filter size 3
on the last layer. A full overview of the filter size changes we have made to the
discriminator is shown in Table 4.2.
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Layer Filter Size Pix2Pix Filter Size Experiment 2.1 Skip Connection

Conv3D 1 4 3 DeConv3D 8
Conv3D 2 4 3 DeConv3D 7
Conv3D 3 4 3 DeConv3D 6
Conv3D 4 4 3 DeConv3D 5
Conv3D 5 4 5 DeConv3D 4
Conv3D 6 4 5 DeConv3D 3
Conv3D 7 4 5 DeConv3D 2
Conv3D 8 4 5 no skip

DeConv3D 1 4 5 no skip
DeConv3D 2 4 5 Conv3D 7
DeConv3D 3 4 5 Conv3D 6
DeConv3D 4 4 5 Conv3D 5
DeConv3D 5 4 3 Conv3D 4
DeConv3D 6 4 3 Conv3D 3
DeConv3D 7 4 3 Conv3D 2
DeConv3D 8 4 3 Conv3D 2

Table 4.1: Overview of changes in filter size for all convolutional layers and
deconvolutional layers in the generator

Layer Filter Size Pix2Pix Filter Size Experiment 2.2

Conv3D 1 4 3
Conv3D 2 4 3
Conv3D 3 4 5
Conv3D 4 4 3
Conv3D 5 4 3

Table 4.2: Overview of changes in filter size for all convolutional layers in the
discriminator

Results

The upper row of Figure 4.8, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. W see that larger features like the polyp and the intestinal folds are
located in the same areas as they are located in the ground truth. The smaller
features are difficult to see clearly. Both the large and the small structures in
the image appear pixelated with horizontal lines across the whole image. We
see that the colors turn brighter in the predicted image compared to the ground
truth.

The middle row of Figure 4.8, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. We observe that the small polyp located in the upper left area of the
image is hardly visible. In addition, the blood vessel are difficult to see clearly.
Like in predicted image from video 1, the whole image appear pixelated with
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Figure 4.8: The figure shows the four frames that represent the stacked input to the model, the
ground truth and the predicted output for the Original Pix2Pix experiment 2.2.

horizontal lines across it. Colors additionally turn brighter in the generated
image compared to the ground truth.

The lower row of Figure 4.8, shows four input frames from t = 1 to t = 4, fol-
lowed by ground truth at t = 5 and the predicted output at t = 5 for input video
3. From the figure, we observe that hemorrhages on the outgrowth is hardly
visible. As in the previous predicted images, the large and the small features
appear pixelated and colors are brighter in the generated image compared to
the ground truth. The horizontal lines are present across the whole image.

Overall, we observe that the generated images in this experiment tend to
have brighter colors compared to their respective ground truth. Moreover, we
observe that the generated images tend to be pixelated.Training loss is shown
in Figure A.3.

4.4.5 Offset Downsampling

Design

This experiment is built upon the ”Change filter size” experiment in Section 4.4.4.
To generate a more precise output, we aim to learn higher level features from a
higher a input image resolution.

In the previous model, we downsample our input image resolution in the
first convolutional layer, before the skip connection which is explained in Sec-
tion 4.2.1. By doing this, the last layer of the generator will get concatenated
with high level features from a 64 × 64 image resolution.

Instead, we offset the downsampling of the image resolution. This means
that we downsample from 128 × 128 to 64 × 64 after the first skip connection.
By doing this the last layer of the generator will get concatenated with high
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Figure 4.9: The figure shows the four frames that represent the stacked input to the model, the
ground truth and the predicted output for the Original Pix2Pix experiment 2.3.

level features from a 128× 128 image resolution. Our goal is to generate a more
precise output through learning of higher level features.

Results

In the upper row of Figure 4.9, we see four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. From the figure, we observe that the the overall structure of the image
is similar to ground truth. Moreover, we observe that the colors in the generated
image and the ground truth appear uniform. We find some local areas of the
predicted image to be rough, especially in areas where we find reflections in the
ground truth image.

The middle row of Figure 4.9, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. We observe that the lighter and darker areas in the ground truth and
the predicted image to be similar. The folded structure located in the middle
of the image and the small polyp on in the upper left corner are both easily
visible. The thin blood vessels are not visible due to blur, while the thick blood
vessels are somewhat visible.

The lower row of Figure 4.9, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. From the figure, we see that large features in the ground truth image
and the generated image to be similar. Moreover, colors seems to be uniform
between the predicted and ground truth. The outgrowth with hemorrhages
is somewhat visible, but not in detail. While the texture of the image is is
somewhat rough.

Overall, we observe that the predicted images tend to have a rough pattern,
especially in the same areas as we find light reflections in the ground truth
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Figure 4.10: The figure shows the four frames that represent the stacked input to the model,
the ground truth and the predicted output for experiment 2.4.

images. We observe that colors are uniform and that some areas in the generated
images look more similar to ground truth. Training loss is shown in Figure A.4.

4.4.6 Reduce Discriminator Complexity

Design

We base this experiment on the ”Offset downsampling” experiment from Sec-
tion 4.4.5. In order to improve the performance of the generator from the
previous experiment, we remove one layer from the discriminator. We attempt
to make the discriminator less powerful by reducing its complexity, hence we
make the generator more powerful by gaining greater complexity than the dis-
criminator.

Results

The upper row of Figure 4.10, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. The figure shows clear similarities between the predicted output and
the ground truth on an overall level. The placement of structures are close to
the ground truth. Moreover, we observe some small grainy areas on a detailed
level.

The middle row of Figure 4.10, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. We observe that the predicted output and the ground truth are similar
on an overall level. Moreover, be observe small grainy areas on the generated
image in the same areas that we observe light reflections in the ground truth.
Thick blood vessels are easily visible, while thin blood vessels are not visible.
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Figure 4.11: The figure shows the four frames that represent the stacked input to the model,
the ground truth and the predicted output for experiment 2.5.

The folded structure in the middle of the image and the small polyp in upper
left corner are both easily visible.

The lower row of Figure 4.10, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. We observe similarities between ground truth and the generated image
on an overall level. The outgrowth with hemorrhages is visible, but with some
blur. We observe some rough and grainy details in the same areas where we
find light reflections in the ground truth. Moreover, we can see more clear edges
further into the colon.

Overall, we observe some areas in the images as very clear and similar to
their respective ground truth. We observe small grainy details in in bounded
and detailed areas of the three images. Moreover, the larger features like the
folded structures, thick blood vessels and polyps are easily visible. Training loss
is shown in Figure A.5.

4.4.7 Keep more features

Design.

Based on the previous experiment ”Reduce descriminator complexity” in Sec-
tion 4.4.6, we attempt to further develop the model in experiment by stopping
the downsampling when the image resolution is downsampled twice. This means
that we stop downsampling the image when the image resolution reaches 32×32.
When we downsample the image resolution, we set strides to 2 for the dimension
that is intended to be downsampled through a 3D convolutional layer. When
we stop the downsampling, we set strides to 1 for the dimensions that are not
intended to be downsampled through a 3D convolutional layer.
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Results. The upper row of Figure 4.11, shows four input frames from t = 1
to t = 4, followed by ground truth at t = 5 and the predicted output at t = 5
for input video 1. We observe great similarities between ground truth and the
generated image on an overall level. The polyp hardly shows any artifacts and
there are few bounded areas consisting of small artifacts. The large structures
are highly similar to the ground truth.

The middle row of Figure 4.11, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2.The ground truth and the generated image are clearly similar. Both the
thick and the thing blood vessels are clearly visible, but a few of the thinnest
vessels can be unclear. The large features are similar to the ground truth.

The lower row of Figure 4.11, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. The ground truth and the generated image shows an overall similarity.
The outgrowth with hemorrhages is visible, but with somewhat blurriness. The
large structures are clearly similar to the ground truth and with few artifacts.

Overall, we observe that the generated images in this experiment show great
similarity to their respective ground truth. We observe few artifacts in local
areas of the images. Moreover, we observe a few local areas with blur. Training
loss is shown in Figure 4.15.

4.4.8 Add Noise

Design

In order to prevent the generator model from producing deterministic outputs,
we add Gaussian noise together with the conditional input. This is a method
proposed in the paper “Generative Image Modeling Using Style and Structure
Adversarial Networks” [103]. We further base the experiment on the previous
experiment: ”Keep more features” from Section 4.4.7. Here we aim to improve
the performance of the previous model by adding Gaussian noise to the input.
We do this in order to make the model more robust to small changes in the
input and to prevent the model from predicting a copy of the input.

Results

The upper row of Figure 4.12, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. Overall, we observe large similarities between ground truth and the
generated image. The colors are brighter in the predicted image, in addition it
has lower color contrast. The polyp hardly shows any artifacts. We observe a
few small artifacts on the left intestinal fold. Moreover, the large structures are
greatly similar to the ground truth.

The middle row of Figure 4.12, shows four input frames from t = 1 to
t = 4, followed by ground truth at t = 5 and the predicted output at t = 5 for
input video 2. We observe great similarity between the generated image and
the ground truth. We clearly observe the polyp in the upper left corner and
tissue shows similar light reflections as the ground truth. The predicted image
is overall brighter than the ground truth, and with lower color contrast. Large
and small artifacts are not observed. Large and small blood vessels are visible,
besides the very thinnest.
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Figure 4.12: The figure shows the four frames that represent the stacked input to the model,
the ground truth and the predicted output for experiment 2.6.

The lower row of Figure 4.12, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. The generated image and the ground truth shows a great similarity.
The predicted image tend to be brighter compared to ground truth and with
lower color contrast. The outgrowth with hemorrhages is visible but with some
artifacts. We observe a few local areas with small artifacts, while large structures
are greatly similar to the ground truth.

Overall, the three images that are generated in this experiment shows great
similarity to their respective ground truth. Some local areas consists of small
artifacts in two of the images, while in one of the images, we observes no large
or small artifacts. Training loss is shown in Figure A.7.

4.4.9 2D Output

Design

This experiment is built upon the ”Add noise” experiment from Section 4.4.8.
Here we aim to improve the performance of the generator by outputting one
image instead of four. We do this by adding an extra convolutional layer as the
second last layer of our generator. In the previous model, we got 4×128×128×64
as input to the last deconvolutional layer of the generator model. Now, we get
the same size as input to a convolutional layer, that will output 1×128×128×64
and pass it further as an input to the last deconvolutional layer.

Results

The upper row in Figure 4.13, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 1. We observe great similarities between ground truth and the generated
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Figure 4.13: The figure shows the four frames that represent the stacked input to the model, the
ground truth and the predicted output for the ”2D output” experiment using early stopping.

image on an overall level. We do not observe any artifacts on the polyp or any
other tissue. We observe both the large and the small features as greatly similar
to the ground truth.

The middle row in Figure 4.13, shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 2. Overall, we observe the ground truth and generated image as greatly
similar. We further observe thin and thick blood vessels clearly visible as well
as the very thin vessels. We do not observe any artifacts on the polyp or other
tissue. We observe both the large and the small features to be very sharp.

The lower row in Figure 4.13,shows four input frames from t = 1 to t = 4,
followed by ground truth at t = 5 and the predicted output at t = 5 for input
video 3. We observe the overall structures of the generated image to be greatly
similar to the ground truth. We further observe the outgrowth with hemorrhages
to be clearly visible with no artifacts but slightly blur. We do not observe any
artifacts on tissue. We further find both the large features and the smaller
features of the generated image as sharp.

Overall, we observe the three generated images in this experiment as greatly
sharp. The images further show clear similarities with their corresponding
ground truth. We observe no large or small artifacts. Furthermore, we observe
a few local areas in one of the images as slightly blur.
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Figure 4.14: The figure shows the four frames that represent the stacked input to the model,
the ground truth and the predicted output for ”2D output” experiment with 1000 epochs.

(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure 4.15: The figure shows loss graphs for the ”2D output” experiment.

4.4.10 Discussion

Throughout our experiments, we observe a progressive improvement on the
majority of our generated output. The improvements are shown through image
quality and realistic looking motions in the sequences. We observe that light
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Figure 4.16: The figure shows the predicted output for all experiments form input video 1.

reflections on the input sequence cause noise or blur in the generated image.
This issue gradually improves, and in our last experiment the artifacts have
disappeared completely.

We observe a similar tendency on the blood vessels, where the thinner vessels
are hardly visible in our first experiments due to blur. In the final experiment, we
hardly see any difference between the blood vessels in the generated image and
the ground truth. The image consisting of an outgrowth with hemorrhages was
the most difficult one to improve. In early experiments, the generated images
consisted of large and clearly visible artifacts. While in the last experiment,
we were not able to observe any artifacts. Overall, these findings show a great
improvement of our generator model.

In our second experiment: ”change filter size” in Section 4.4.3, we observe
a setback from changing the filter size. We assumed that the combination of
parameters was not optimal at that particular stage, but would be beneficial
on the final stage. We choose to conduct an additional experiment to confirm
whether the filter change is beneficial to our final solution or not. The exper-
iment confirmed that the filter change was beneficial at the final stage. We
furter conducted an additonal experiment to test if our model would improve
by training on more epoch. Therefor we trained our model on 1000 epochs,
instead of using early stopping as we did on all the other experiments. The
results from training on 1000 epochs are Shown in Figure 4.14. We found by
visual inspections from generated videos that the model did not improve from
this.

When we reduced the discriminator complexity, we achieved a great improve-
ment on our sequences in terms of image quality and realistic looking motions.
This was further corroborated by the generated images and the loss graph. In
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Figure 4.17: The figure shows the predicted output for all experiments form input video 2.

the next section we will describe how we aim to create a future video sequence
based on our past input sequence.

4.5 Creating Videos from Vid2Pix

Setup We create a video from the model as an iterative process shown in
figure 4.19. The iterative process is performed after we have trained the model.
We input a sequence of four real images to the model, and then the model
predicts the next image in the sequence. Then, we store the predicted image
to a video and we create a new input sequence. The new input sequence is a
shifted version of the previous sequence. We shift by removing the first image
in the sequence, and adding the predicted image at the end of the sequence.
Then, we continue until we get the desired video length.
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Figure 4.18: The figure shows the predicted output for all experiments form input video 3.

Figure 4.19: The figure shows how we create a 4 frame long video through 4
iterations

4.5.1 Create Videos from Generated 3D Output

The first six out of seven future sequence experiments take four frames as input
and predict four new frames as output. We tested two different approaches for
the six experiments. The first approach is using all the predicted frames to
create a video.

1. Add 4 input frames to model

2. Predict 4 output frames

3. Add 4 predicted output frames to the video
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4. Shift input sequence by removing frame number 1 and adding first pre-
dicted frame as frame number 4

5. Repeat until desired video length is reached

For the second approach, we used only the first out of 4 predicted frames for
each iteration. The steps we follow to create a video is shown in the list below.

1. Add four input frames to the model.

2. Predict four output frames.

3. Add add the first out of the four predicted output frames to the video.

4. Shift the input sequence by removing frame number 1 and adding the first
predicted frame as frame number 4.

5. Repeat until the desired video length is reached.

4.5.2 Create Videos from Generated 2D Output

The method we use to create videos from a 2D output is similar to the second
approach we described in Section 4.5.1. The only difference is that we are only
predicting one image and not four. The steps are described in the list below
and are visualized in Figure 4.19.

1. Add four input frames to the model.

2. Predict one output frame.

3. Add the predicted output frame to the video.

4. Shift the input sequence by removing frame number 1 and adding the
predicted frame as frame number 4.

5. Repeat until the desired video length is reached.

Results Video motions are difficult to see through a figure consisting of con-
secutive images. Therefor we choose to create and publish short video samples
from all our experiments. The samples have been made available from the fol-
lowing GitHub repository: generated-videos

1
. To generate the videos from

experiment 1 to 6, we used the second approach from Section 4.5.1. To create
the videos from experiment 7, we used the approach from Section 4.5.2.

4.5.3 Discussion

Based on visual inspections of the videos we created with the two approaches in
Section 4.5.1, we decided to use the second approach. We found that the second
approach performed better on both image quality and created more realistic
looking motion.

1
https://github.com/odaned/generated-videos

https://github.com/odaned/generated-videos
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4.6 Summary

In this chapter, we have looked into how we can predict future frames from a
video. We further discussed how limited access to medical datasets led us to try
to generate realistic-looking video sequences from an existing dataset. Next, we
described the details of the dataset we used to conduct our sequence generation
experiments. We have introduced the two deep learning model architectures,
U-Net and Pix2Pix, which inspired of our work. This led us to an overview and
a description of our main contribution to the thesis: Vid2Pix. We then went
through our experimental process and the results that led us to the final model
Vid2Pix. In the last part of the chapter, we describe how we conducted our
video creation experiments and the associated results.

The next chapter, we do a thorough evaluation of the approach using stan-
dard quality metrics, an assessment done by trained medical doctors, and a case
study on how this system may extend the size of existing datasets.



Chapter 5

Sequence Evaluation

In this chapter, we first look into the datasets that we use to conduct our ex-
periments. We will further describe the different metrics we use to evaluate our
results. Then, we introduce three different methods for evaluating the quality
of our generated sequences. In the first method, we look at how the generated
sequences have been inspected and assigned a score by two experienced medical
doctors. The second method is a similarity measure, it measures how similar
the generated frame and the ground truth is to one another. Finally we look at
the results of a polyp classifier which has been trained both with and without
artificial data.

5.1 Quality Assessment of Generated Videos

5.1.1 Dataset Description

In Section 3.1 we described how we divide the OUS-Study-2019 dataset into two
separate datasets. In this chapter, we will be using the CLSF-DAT dataset. In
this section, we will address how we aim to increase the size of the dataset
by generating sequences. We will also introduce the ImageNet dataset in Sec-
tion 5.2.1 that we use in our transfer learning experiments which are introduced
in Section 2.4.1.

Even when the generated sequences contributes to an enlarged dataset, we
still remain with an insufficient size of training data. With this concern, we
choose to use pre-trained weights from the ImageNet dataset as input to our
polyp classifier that will be introduced in Section 5.2. In the sections below, we
will further describe the details of each dataset.

Combining OUS-Study-2019 with generated data

In Chapter 3, we discovered that the OUS-Study-2019 dataset contained du-
plicate frames with little movement. We applied dense optical flow explained
in Section 3.3.3 on the dataset in order to filter away duplicate frames. We
decided to use the same algorithm to optimize the CLSF-DAT training and
validation dataset we use for polyp classification as well.

We start out with 23529 annotated polyp training images and 23529 pseudo-
normal mucosa images. Moreover, we have 15520 annotated polyp validation

67
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images and 15520 pseudo normal mucosa images. After filtering the data, we
end up with a training dataset consisting of 626 polyp videos with a total of 5008
images and 642 normal mucosa videos with 5136. By applying dense optical flow
on the validation dataset, we get a validation dataset consisting of 328 polyp
videos with a total of 2624 images and 356 normal mucosa videos with a total
of 2848 images. We do not apply dense optical flow on the test datatset. The
test data consists of 15107 polyp images and 15107 normal mucosa videos.

Dataset Train Train Filtered Val Val Filtered Test

Original 47 058 10 144 31 040 5 248 30 208
Original + Generated 47 058 10 144 + 10 144 31 040 5 248 30 208

Table 5.1: The table shows an overview of the resulting number of images that
is used for training, validation and testing the polyp classifier. Train Filtered
and Val Filtered stands for trainig data and validation data after optical flow.

We split the training dataset into three sets consisting of train, validation
and test. For train, validation and test set were distributed as follows:

• 626 polyp training videos with 8 frames in each video

• 642 pseudo normal mucosa training videos with 8 frames in each video

• 328 polyp validation videos with 8 frames in each video

• 356 pseudo normal mucosa validation videos with 8 frames in each video

5.1.2 Evaluation Metrics

Evaluating whether a generated video looks realistic or not is a challenging task.
Our goal is to generate videos which look realistic enough to be used as training
data for a neural network. If we can achieve this, we can improve one of the
biggest problems which exists in the field today, which is the lack of annotated
training data. To evaluate this, we use both objective and subjective assessment
methods.

We want an objective evaluation of how good a generated video is, ideally
a number which quantifies how realistic a video looks. Note that a number
which measures the similarity between the ground truth and all the frames of a
generated video, might not represent what we are trying to measure. After all,
we are interested in generating new frames which look different from the ground
truth.

In order to evaluate the first generated frame from our model, we chose to use
three popular similarity measurement methods [114]: mean square error (MSE),
peak signal to noise ratio (PSNR), and structural similarity (SSIM) index.

Mean Square Error

When we generate an image from our generator model, we first downsample
our images to a lower resolution to extract lower dimension features. Then we
upsample or reconstruct our image back to its original resolution. In this process
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information will be lost, and to quantify the loss we use the MSE metric. With
MSE, we can quantify the image reconstruction quality. The MSE computes the
average square difference between the estimated value and the actual value. In
our case, we estimate the average square between the first (out of four) generated
frame and the ground truth.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2

A low MSE means that the two images as very similar. Thus we want the
MSE to get as close to zero as possible.

Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) is an approximation to human perception
of reconstruction quality. Similar to MSE, PSNR measures the image recon-
struction quality and is a logarithmic representation of MSE. PSNR measures
the peak error between the images. Due to the range of validity of the met-
ric, researchers do not recommend using the metric to compare results across
domains [40]. In this thesis we use the metric to compare results from exper-
iments in the same domain. The PSNR value is dependent on the properties
of the data and it can theoretically go up to infinity. A higher PSNR value
indicates a better result.

PSNR = 10 log10 (
R

2

MSE
)

Figure 5.1: Two images with different perceived image quality but with identical
PSNR value.
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Structural Similarity Index

Compares local patterns of pixel intensities [106]. It proves to provide a bet-
ter approximation to perceived image deformation compared to PSNR and
MSE [37]. A higher SSMI value indicates a higher similarity between the images.

Confusion Matrix

A popular way to visualize how well a model performs is through a confusion
a matrix. A confusion matrix visualizes how many samples that actually are
from class A, are classified as class A. It further visualizes how many classes
that are wrongly classified. This applies for all classes that the model is trained
to predict.

5.1.3 Subjective Assessment of Generated Videos

Generated videos are tricky to evaluate from metrics alone. Evaluating if a scene
look realistic or not is especially tricky. We have chosen to also conduct a sub-
jective, human assessment to evaluate the generated videos. We recruited two
medical doctors with experience in working with endoscopy data to participate
in the assessment. All quotes that are listed under the ”comments” paragraphs
are directly translated from Norwegian to English.

Participants

Reviewer 1 is a medical doctor with 2 years of experience on evaluating
endoscopy data.

Reviewer 2 is a medical doctor and gastroenterologist. The reviewer is spe-
cialized in quality improvement and artificial intelligence in endoscopy. The
reviewer has extensive experience in endoscopy examinations and data evalua-
tion.

Assessment Setup and Results

The assessment is divided into two sessions. The first session involves classifying
videos into two classes, either “real” or “fake”. In the second session, it is
revealed that all videos are fake. The subjects are then asked to rank the fake
videos, by how realistic they look.

Assessment Session 1

Setup Each reviewer was given access to a folder containing 20 videos, out
of which 10 were artificial and 10 were real. The reviewers are not given any
information about how many videos are real or fake. They are informed that the
folder consists of both real and fake colonoscopy videos. Then they are asked
to view the videos, and classify each video as either real or fake. The following
instructions were given to the reviewers in session 1:

• You will get access to a folder in the cloud consisting of 20 real and fake
colonoscopy videos.
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(a) (b)

Figure 5.2: The figure shows the resulting confusion matrices from the polyp classification
assessment. (a) shows classification done by reviewer 1 part 1. (b) shows classification done by
reviewer 2 part 1.

• Write down the video name together with your evaluation: fake or real.

• Return your evaluation together with comments, if any.

Figure 5.3: The figure shows a confusion matrix with the total classification
results from both reviewers part 1

Results
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Comments After the session, we were given feedback from the reviewers.
All quotes are directly translated from Norwegian to English. Here are the
comments from session 1:

I did not feel one hundred percent sure of my own evaluation

There was only one video that I was sure was real

Some of the videos had strange artifacts and lines that look unreal-
istic

Some of the videos consists of a few strange motions

Videos are difficult to evaluate because they are short and the reso-
lution is low

From the comments, we find that there is uncertainty related to own assess-
ment. This may indicate that the generated videos look realistic, which makes
it hard to distinguish them from those that are real. It may also indicate that
both the real and the fake videos are of bad quality and therefor hard to distin-
guish. Another comment addresses that some of the videos consists of strange
artifacts and motions, this indicates that there is still room for improvement on
both the image quality and motion.

On the last comment, the reviewer addresses the difficulties related to short
video lengths and low resolution. Since our goal was to generate more data to
train a classifier, we did not seek to generate long sequences. Based on this, we
could not provide long sequences for the reviewers. However, a higher image
resolution would be preferable.

Assessment Session 2

Setup Each reviewer had access to a folder consisting of 31 fake videos. The
reviewers are informed that all videos are fake. They are then asked to grade
how the videos from 1 to 5, based on how real they think the videos look, where
1 is least real and 5 is most real. A full description of the scale is shown in the
list below.

The table below shows the instructions that were given to the reviewers in
session 2 of the experiment:

• You will get access to a folder consisting of only fake colonoscopy videos.

• Write down the video name together with your rating on a scale of 1 to 5
where:

1. Obviously fake

2. Likely fake

3. Unsure

4. Seems real, but with some artifacts

5. Very real

• Return your evaluation together with comments, if any.
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(a) (b)

Figure 5.4: The figure shows grading distributions from assessment 2. 31 generated videos were
graded on a scale from 1 to 5. (a) shows the grading distribution done by reviewer 1. (b) shows
the grading distribution done by reviewer 2.

Here we present the results from session 2 of the assessment. We choose to
present the results as a histogram. The histogram shows the grading distribution
after grading 31 generated videos. The grading is done by two reviewers. The
grading scale goes from 1 to 5, where 1 is ”Highly visible generated” and 5 is
”Very real”.

Results We can see from Figure 5.4a that reviewer 1 did not grade any of the
the generated videos as 1: ”Highly visible generated”. Moreover, a majority of
12 videos were graded as 2: ”Visible generated”. A minority of 2 videos were
graded as 3: ”Unsure”. Furthermore, 10 videos were graded as 4: ”Seems real,
but with some artifacts”, and finally 7 videos were graded as 5: ”Very real”.

In Figure 5.4b. Reviewer 2 graded 8 of the generated videos as 1: ”Highly
visible generated”. Furthermore, 7 videos were graded as 2: ”Visible generated”.
A majority of 10 videos were graded as 3: ”Unsure”. Moreover, 4 videos were
graded as 4: ”Seems real, but with some artifacts”, and finally a minority of 2
videos were graded as 5: ”Very real”.

In Figure 5.1.3, we compare the distributions. The histogram provides vari-
able results from the two reviewers. We see that reviewer 2, grade the majority
of the videos with grades below or equal to 3. While reviewer 1 grade the
majority of the videos as above or equal 3.

Comments After the session, we were given verbal feedback from the review-
ers. All quotes are directly translated from Norwegian to English. Here are the
comments from session 2:

I graded videos that were characterized by strange movements with
the grade 2
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Figure 5.5: This figure shows a comparison of the grading distributions from
both reviewers. 31 generated videos were graded on a scale from 1 to 5.

If the videos were presented as images instead of videos, I would
grade all of them as very real

There were no obvious artifacts that revealed that the videos were
fake

All the colors and shapes looked real, including the videos that were
graded as visible generated

It did not add much extra to present the material as short videos.
You would have achieved the same by presenting them as a sequence
of images

With my experience in evaluating videos, the videos should be at least
10 seconds long

I consider this method to be relevant for detecting other abnormalities
like lymphoma or angiectasis

One reviewer reveals that if the videos were presented as images, they would
all be graded as real. This indicates that the videos provide some extra infor-
mation to the reviewer that would be gone by presenting them as images. This
is supported by another comment, where the reviewer observes strange move-
ments. These movements would perhaps not be possible to observe through still
images. Another comment reveals that the reviewer find shapes and colors in
the videos to look real. This proves our method to work well in generating re-
alistic looking videos. This was supported by another reviewer that stated that
there were no obvious artifacts that revealed the videos to be fake. A rather
helpful comment for future work, was that that the reviewer found the method
relevant for detecting other abnormalities.
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Discussion

From session one of the subjective assessment, we learned that 6 real videos
were mistaken for being fake. Moreover, 6 videos were mistaken for being real
when they were fake. This may indicate that low resolution images makes it
difficult to decide whether the video is real or fake. It may also indicate that
the videos look real, which makes it hard to distinguish real videos from fake
videos. From a comment, we learned that evaluation of the sequences could
have worked better by evaluating them side by side. Contrary to this, we found
from another comment that the reviewer easily could find strange motions and
tissue through looking at the videos. This comment gives an indication that
looking at videos instead of image sequence can be helpful to detect artifacts.

From session two of the subjective assessment, we learned that there were
great differences in grading from the two reviewers. The mean grades from
reviewer 1 was 3.4, while the mean was 2.8 for reviewer 2. This indicates that
the reviewers have different perceptions on video quality and calibration of the
grading scale. It also shows a problem with subjective measures, they vary from
person to person.

5.1.4 Evaluation by Similarity Measure

When we create a fake video which is visualized in Figure 4.19, we start with
four real input frames to the generator. For each frame we generate, we replace
one real frame by one fake frame to the input of the generator. For every new
generated frame, the image quality is gradually weakened. Yet, we want an
indication on how well the generator perform on generating realistic structures
and motion based on a sequence of exclusively real input frames and a real
ground truth.

First, we want to find out if the generated frame looks real i terms of structure
and motion. Second, we want to find out if the first generated frame in a video is
similar to its ground truth. Based on these considerations, we perform similarity
measurements on the first generated frame and the corresponding ground truth
on all generated videos for all experiments by using the CSLF test dataset.
Here, we introduce our evaluation done by comparing the first generated frame
to its corresponding ground truth. We do this for all generated experiments.
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Results

Experiment PSNR MSE SSIM

Original Pix2Pix 72.1301 0.0050 0.8011
Replace with 3D layers 71.5228 0.0057 0.7856

Change filter size 70.9309 0.0065 0.7713
Offset downsampling 70.9941 0.0063 0.7760

Reduce discriminator complexity 71.8187 0.0054 0.7944
Keep more features 72.6833 0.0047 0.8292

Add noise 72.4309 0.0050 0.8230
2D output 73.3718 0.0042 0.8409

Table 5.2: This table shows the average PSNR, MSE and SSIM measurements
between one generated image and one the ground truth per video. The mea-
surements are done on a total of 626 videos from the CLSF-DAT dataset.

Discussion

SSIM has been shown to give a better approximation to perceived image defor-
mation [37]. We still prefer to use the PSNR and MSE matrics to substantiate
the the SSIM metric. Table 5.2 shows the PSNR, MSE and SSIM similarity
measurements. From the table we observe that when we modify the original
Pix2Pix model by using 3D convolutional and deconvolutional layers, the SSIM
and PSNR value first decreases, and MSE increases. SSIM then gradually in-
creases until we meet a larger jump after reducing the discriminator complexity.
Then, on the last experiment we meet another larger jump, where we change
our model to predict an image instead of a sequence. This may indicate that
reducing the discriminator complexity and changing the output dimension has
a positive effect on the quality of generated output.

5.2 Case study on real world use case scenarios

In order to test if our additional generated polyp videos can help to improve the
performance of a polyp classifier, we setup an image classification experiment.
We use a state-of-the-art image classification model provided by the Keras API.

5.2.1 ImageNet

ImageNet is a large scale, publicly accessible image database provided by Prince-
ton and Stanford University [42]. As of April 2010, the database contains more
than 14 million images, where each image belongs to one of 27 high-level cat-
egories and tens of thousands of subcategories. The ImageNet categories vary
widely, ranging from musical instruments to animal species [42]. A few ex-
ample images from the ImageNet database is shown in Figure 5.6. ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) was a competition held
yearly between 2010-2017. The objective of the challenge is to evaluate and
compare the progress of algorithms for computer vision by using a large scale
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image database. Another important goal of the challenge is to benchmark the
state-of-the-art within computer vision.

The deep learning API Keras
1
, provides a selection of deep learning models

with optional pre-trained weights from the ImageNet database. For our image
classification experiment, we will be using the ResNet50 deep learning model
which has been pre-trained on ImageNet.

Figure 5.6: The figure shows a few examples of species of birds that are present
in the ImageNet database [80]

5.2.2 Metrics

We want to train a model to be able to classify our images into one of two
classes: polyp or normal. In order to evaluate the performance of our model,
we can use multiple metrics.

Accuracy

The Accuracy metric used for evaluating how good a model is to predict the
correct class. The metric is used for both evaluating multi-class classifiers and
binary classifiers. Accuracy has the following definition:

Accuracy =
Ncorrect
Ntotal

Accuracy is the percentage of the correctly classified images. Where Ncorrect
is the number of correctly classified images, and Ntotal is the total number of
classified images. For binary classification problems, like ours, we can addition-
ally define the accuracy in terms of positives and negatives:

Accuracy =
TP + TN

TP + TN + FP + FN

Where:

• True Positive (TP): images classified as True are actually True

• True Negative (TN): images classified as False are actually False

• False Positive (FP): images classified as True are actually False

• False Negative (FN): images classified as False are actually True

1
Keras https://keras.io/

https://keras.io/
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Recall

Recall can also be referred to as sensitivity or true positive rate (TPR). Recall
is the measure of completeness. It is not sensitive to data distributions [33] and
it shows the models ability to correctly classify polyps out of all the images that
consists of polyps.

TPR =
TP

TP + FN

Precision

Precision is also referred to as positive predictive value (PPV). Precision is a
measure of exactness. It is sensitive to data distributions [33] and gives the
percentage of the correctly classified polyps out of the total correctly classified
samples.

PPV =
TP

TP + FP

Specificity

Specificity is also reffered to as the true negative rate (TNR). Specificity gives
the models ability to correctly classify normal mucosa out of the images that
consists of normal mucosa.

TNR =
TN

TN + FP

F1 Score

The F1 score measures the effectiveness of classification. It is the weighted
average of recall and precision. As Precision, F1 Score is additionally sensitive
to data distributions [33]. If we have an uneven class distribution, F1 score can
give a better measure of the performance of the model than Accuracy.

F1 = 2 ×
PPV × TPR
PPV + TPR

Matthews correlation coefficient (MCC)

Matthews correlation coefficient (MCC) takes all TP, TN, FP and FN into
account. It produces a high score only if all of the mentioned values give a good
score. This means that TP and TN should give as high score as possible and
FP and FN should give as low score as possible. The metric outputs a score
between -1 and 1, where 1 means that all samples are perfectly classified, while
-1 means that the model did a bad classification.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

5.2.3 ResNet50

ResNet is a deep convolutional neural network. The ResNet model architecture
was the winner of the ImageNet challenge in 2015 [34]. Its main contributions
comes from allowing to train very deep neural networks without encountering
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the vanishing gradient problem [67]. ResNet uses skip connections to pass infor-
mation from earlier layers to later layers in the model. The skip connections are
used to reduce the vanishing gradient problem. ResNet50 is one out of many
proposed versions of ResNet that vary by depth [34]. ResNet 50 has a depth of
50 layers. We choose to use ResNet50 as our binary classifier due to its great
proven performance [34] and fewer trainable parameters than other models that
are available in the Keras API [93].

5.2.4 Transfer Learning with ImageNet

Before we start training the ResNet50 model with our CLSF-DAT dataset, we
use transfer learning to re-train a trained network. The network has been trained
using the ImageNet dataset 5.2.1. We extract pre-trained weights by using the
transfer learning method called fine-tuning 2.4.1. By fine-tuning, we mean that
we initialize our network with weights that are trained on a different dataset.
Then we continue training the weights on a new dataset, without freezing any
layers. We chose to use the ImageNet data because it was easily accessible by
being available as a part of the ResNet50 classification model in the Keras API
presented in Section 5.2.3.

5.2.5 Polyp Classifier Experiment

In order to evaluate the usefulness of the generated polyp videos, we will train a
polyp classifier both with and without using the artificial data. If the classifier
which has seen artificial data outperforms the other classifier, we can conclude
that introducing artificial data can be useful.

The first classifier is trained on the CLSF-DAT dataset only, while the sec-
ond is trained on the CLSF-DAT dataset combined with the artifical dataset
that is generated from the CLSF-DAT dataset.

The goal of our classification experiment is to evaluate the effect our artificial
data has when training a polyp classifier. We train two models, one with real
data only, and one with real and fake data. We then compare the accuracy of
both models, using a separate test dataset which only contains real data.

Experiment Setup

The steps of our classifications experiments go as follows:

1. Create a ResNet50 binary classifier with transfer learning from the imagenet
database

2. Train the classifier on the original dataset containing the two classes: polyp
and normal mucosa

3. Add the generated polyp videos to the original dataset and train the classifier
again. This training dataset will be unbalanced.

4. Test the performance of the two trained models using the same test dataset.
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Hyperparameters ResNet50 Values

Epochs 200
Batch Size 32
Optimizer SGD

Learning Rate 0.001

Table 5.3: This table shows the hyperparameters used for training the ResNet50
model

5.2.6 Results

Here we present the loss graphs for training and validation of the identical
models. Where one model where trained on the CLSF-DAT dataset, while
the second model were trained on the CLSF-DAT and the generated dataset
combined.

Training with original and generated data combined

Train Accuracy Train Loss

Validation Accuracy Validation Loss

Figure 5.8: The figure shows train and validation accuracy and loss during training of ResNet50
pre-trained on ImageNet using the CLSF-DAT dataset combined with generated generated
polyp videos. The dataset is unbalanced.
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Training with original data

Train Accuracy Train Loss

Validation Accuracy Validation Loss

Figure 5.9: The figure shows train and validation accuracy and loss during training of ResNet50
pre-trained on ImageNet using the CLSF-DAT dataset.

Here we present the resulting metrics after testing the two identical models that
were trained on different datasets. We have used the CLSF-DAT test dataset
to test the models.

Dataset ACC REC PREC SPEC F1 MCC

Original 0.678 0.620 0.702 0.737 0.658 0.359
Original and Generated combined 0.635 0.687 0.623 0.584 0.653 0.272

Table 5.4: This table shows metrics from prediction on two models: One trained
on the CLSF-DAT dataset and one trained on CLSF-DAT dataset combined
with generated polyp videos. Both models are tested on the CLSF-DAT test
dataset

5.2.7 Discussion

Based on the MCC value, the polyp classification results did not give an overall
good improvement from adding the fake polyp data to the original dataset.
However, from Figure 5.10b and Figure 5.10a we can observe that the number
of correctly classified polyps has increased from 9362 to 10375 when add the
fake dataset to train the model. We further observe that the number of wrongly
classified polyps have additionally decreased from 5739 to 4726 when we add
the fake dataset to train the model. On the other hand, the number of correctly
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classified normal mucosa has decreased and the number of miss-classified normal
mucosa has increased. F1 Score, which is close to similar from both models, gives
an indication that model performance is unchanged and that the unbalanced
data distribution may have an effect on the overall performance of the model
that has been trained with fake data.

By inspecting the data, we discovered errors that involved in multiple blurry
frames which is shown in Figure 5.11. The blurry frames were present in both
the polyp class and the normal mucosa class. Many of the blurry frames are
covering crucial parts of the image where the polyp should be located. In the
Section 4.4.10 we discussed how our generator were generating bad frames con-
sisting of many artifacts if input was blurry. We believe that by removing blurry
frames from the dataset, we can improve generated data from the sequence gen-
erator. Additionally, we believe that removal of blurry frames from the training
data can have an effect on how the model perform both with and without the
fake training data.

5.3 Summary

In this section, we introduced the second part of our dataset: CLSF-DAT. We
explained how we generated artificial polyp videos by using this dataset as an
input.

We further introduced metrics to compare and evaluate the quality of the
generated sequences. From the measures, we found that our experiments pro-
gressively improved and that our final model achieved a better similarity mea-
sures than Pix2Pix.

Then we explained how we conducted the a subjective assessment for our
generated videos. The assessment showed that quality and motions where great
in some videos, and others had clearly visible artifacts. We also learned that the
two reviewers did grade the videos very different and which makes subjective
measures difficult to interpret, because they vary from person to person.

Finally, we evaluated the usefulness by training two identical polyp classi-
fiers on CLSF-DAT, with and without adding the generated videos. F1 Score
indicated that the performance of the model trained on the unbalanced dataset
was unchanged. We further discovered blurry frames in the data, which may
have had en effect on the results.
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Figure 5.7: The figure shows the model architecture of ResNet34 which has a
depth of 34 layers. ResNet50 is similar to ResNet34 besides the depth. ResNet50
consists of 50 layers. [34]
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(a) (b)

Figure 5.10: The figure shows the resulting confusion matrices after classifying an unseen test
dataset consisting of 30 208 images where 1 represents polyps and 0 represents normal mucosa.
(a) shows the results from the model trained on the CLSF-DAT dataset alone and (b) shows
the results from the model trained on CLSF-DAT dataset combined with the fake polyp videos.

Input 1 Input 2 Input 3 Input 4 Actual Predicted

Figure 5.11: Blurry input



Chapter 6

Conclusion and Future work

6.1 Summary and Contributions

Colorectal cancer is a great health issue for men and women in the United
States. We have learned that early detection of polyps is important for a positive
outcome. A major challenge today is that medical doctors do not find every
polyp during an examination. Computer aided disease detection systems have
been developed to help physicians improve their detection rate. Such systems
often consist of deep learning models with high complexity. Perhaps the most
important piece of building a good system is the quality of the dataset.
Unfortunately, there are no publicly available large scale endoscopy datasets.
In order to address the problem of not having a large, high quality dataset,
we proposed in section 1.2 a system that aims to answer the following research
question:

Can generative models be used to generate realistic-looking videos of
colon polyps?

To answer this question, we have defined three objectives:

Objective 1 Prepare the training data in a way that optimizes network leaning
and avoids overfitting to specific video frames.
This objective stems from the common need for quality training data when
developing deep neural networks. We developed a preprocessing framework,
based on optical flow, which was able to filter away stationary frames of a
video. We compared computational cost of optical flow to the benefits of an
higher quality dataset. We find that the preprocessing greatly improves the
quality of the generated videos.

Objective 2 Generate artificial videos of colon polyps using generative adver-
sarial networks (GANs).

This objective is the main contribution of this thesis and comes from the
requirement of needing more labeled data in the medical sector. We developed
a CGAN to generate future frames given an existing video. The key parts of
the model were the 3D convolutional and deconvolutional layers. These layers
made it possible to create realistic looking spatiotemporal features. We found

85
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that the model was able to successfully generate videos of colon abnormalities.
This achievement could reduce the need for collecting labeled datasets.

Objective 3 Perform a thorough evaluation of the generated videos using a
quantitative and qualitative approach, in addition to evaluating the fake videos
on a real-world use-case.

This objective aims to answer if the generated videos are of sufficient quality
to be useful. We conducted a thorough evaluation of the generated videos, using
both objective and subjective measures. Using a similarity measure as a metric,
we could see gradual improvements throughout our experiments. The final
model achieved an SSIM score of 0.84. In comparison, the original Pix2Pix
model got a score of 0.80. Further we achieved a PSNR score of 73.37 and
MSE score of 0.0042 compared to 72.13 and 0.0050 respectively with Pix2Pix
from 5.2. These results show that our Vid2Pix model outperforms the Pix2Pix
model for artifical video generation.

Two physician also evaluated the quality of the generated videos. The re-
viewers classified 3 out of 31 videos each to be real that were actually fake.
Based on these results, we are not able to make an objective conclusion on
the quality of the videos. The assessment mainly taught us new perspectives on
real-world use-cases and how we can improve a subjective assessment for human
spatiotemporal perception.

We also trained an image classifier on a dataset with and without adding
the artificial videos. We found that using artificial videos increased the number
of correctly classified polyps, but simultaneously the number of miss-classified
normal images increased. Thus the our overall model classification results did
not improve. We believe that multiple blurry frames caused some of these
problems. Our findings showed that blurry frames caused output consisting of
artifacts from our generator. In addition, we discovered that the blur caused
some polyps to be less visible. More work would be needed in order to find why
it did not improve.

Regarding the overall research question, our experimental results show that
our proposed generative models can generate realistic polyp frames. This is
supported by the fact that trained and experienced gastroenterologists struggle
to differentiate between real and fake videos.

6.2 Future Work

The OUS datasets contains 80000 images, where some are of low quality. We
believe that spending more time on cleaning this dataset would improve both
the video generator and the polyp classifier. For example, we believe that by
removing blurry frames would be beneficial. One physician commented that
the low resolution of the images, 128× 128, made it difficult to assess the image
quality. We believe that increasing the size, for example to 256× 256 or larger,
would result in higher quality videos. Note that this would greatly increase the
time it takes to train a model.

We would additionally test how many generated future frames we can add
to a training dataset in order to improve a polyp classifier. This could be done
progressively, starting with one predicted frame per video.
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We would further try to train a model on a greater variety of colonoscopy
recordings. We could do this by training an image classifier from the Kvasir
dataset [69] and further retrain the model on the OUS-2019 dataset. We could
additionally test the same approach by using a sequence classifier that is pre-
trained on videos from Hyperkvasir [7]. We believe that this approach could
help generalize the model better to data in the same domain.

As suggested by one medical doctor from the subjective assessment, training
a generator on other abnormalities like lymphomas could be helpful in detecting
other abnormalities.

Capsule endoscopy is a promising advance in screening. Our final sugges-
tion would be to test our system by using data from our recent publication
on a video capsule endoscopy dataset, where we contributed in annotating the
dataset: Kvasir-Capsule, a video capsule endoscopy dataset [86].
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Appendix A

Loss Graphs

The graphs visualizes loss during training of the generative model experiments
in our thesis.

(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.1: The figure shows loss graphs for the Original Pix2Pix experiment
using early stopping
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(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.2: The figure shows loss graphs for the ”Replace with 3D layers”
experiment using early stopping

(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.3: The figure shows loss graphs for the ”change filter size” experiment
using early stopping
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(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.4: The figure shows loss graphs for ”offset downsampling” experiment
using early stopping

(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.5: The figure shows loss graphs for the ”reduce discriminator com-
plexity” experiment using early stopping
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(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.6: The figure shows loss graphs for the ”keep more features” experi-
ment using early stopping

(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.7: The figure shows loss graphs for the ”add noise” experiment using
early stopping
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(a) Discriminator Loss (b) Generator Loss

(c) L1 Loss (d) Total Generator Loss

Figure A.8: The figure shows loss graphs for the ”2D output” experiment using
early stopping





Appendix B

Model Architecture

Generator model and discriminator model architectures for our final solution.
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Figure B.1: Generator Model Architecture
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Figure B.2: Discriminator Model Architecture
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