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Abstract

In this day and age, the fascination surrounding deep learning and AI is at its absolute

peak. Both in terms of hype and controversy the current interest level is unprecedented,

with exciting developments happening at a lightning pace. Yet, as is often the case when

capitalist motives are the driving force behind progress, use-cases that could potentially

save lives are left behind. Specifically, deep learning has particularly exciting potential

in the field of ECG analysis. In our research, we investigated the most prominent

model type for this purpose, namely the Convolutional Neural Network (CNN).

To that end, a deep learning pipeline was developed based on the renowned PTB-XL

dataset. The CNN was tasked with classifying ECG signals according to the 5 diag-

nostic classes; Normal, Myocardial Infarction (MI), ST/T Change, Conduction Distur-

bance (CD) and Hypertrophy. Several experiments testing factors such as Pooling and

Batch Normalization were conducted. Simultaneously, different levels of parameters

such as dropout and hidden dimensions were also examined. Our findings indicated

that Average Pooling was the most influential factor and that its combination with

Batch Normalization produced the most effective results.

The thesis also discusses ethical considerations regarding the use of such models in clin-

ical practice, and approaches aimed at alleviating privacy concerns, such as synthetic

datasets. Lastly, we emphasize the importance of developing explainable methods to

better facilitate the use of deep learning models in the medical domain. In this context,

the inclusion of doctors and radiologists can be considered of utmost importance.

Keywords: ECG analysis; CNN; Explainable AI





List of Figures

2.1 Figure showing the ECG complex. Segments are named P, Q, R, S, and
T. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Figure showing the placement of the 10 electrodes for a standard 12 lead
ECG configuration. [55] . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Figure showing the setup of a standard CNN designed to make predic-
tions in accordance with 5 classes. [40] . . . . . . . . . . . . . . . . . . 11

2.4 Figure showing 2D convolution. This type of convolution is often applied
on images.[27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Figure showing 1D convolution. This type of convolution is often applied
on time series data or audio signals. [30] . . . . . . . . . . . . . . . . . 12

2.6 Figure showing 3D convolution. This type of convolution is often applied
on data from imaging techniques such as MRI, or CT scans. [52] . . . . 13

2.7 Figure showing the effect of the two main Pooling methods, on a given
feature map. [40] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Figure showing the effect of dropout on fully connected layers. [48] . . 15
2.9 Figure showing a traditional DL pipeline. [59] . . . . . . . . . . . . . . 17
2.10 Figure showing the strategy of the selection. [18] . . . . . . . . . . . . . 22
2.11 Figure showing the comparison of real ECG data and synthetic ECG

data generated by a DL model. [46] . . . . . . . . . . . . . . . . . . . . 27
2.12 Figure showing the distribution of the PTB data set. The diagnostic

super-classes; NORM = Normal, MI = Myocardial Infarction, CD =
Conduction Disturbance, STTC = ST/T-Change and HYP = Hyper-
trophy all contain various diaganostic sub-classes. [54] . . . . . . . . . . 28

2.13 Figure showing the distribution of the different diagnostic super-classes
in terms of male and female patients. [54] . . . . . . . . . . . . . . . . 29

2.14 Figure showing performance of models pre-trained on the PTB-XL data
set on the ICBEB2018 data set. The results showed statistical signifi-
cance when decreasing the size of the ICBEB2018 training set.[44] . . . 30

2.15 Figure comparing the pipeline of traditional DL models to DL models
that apply explainable methods. [34] . . . . . . . . . . . . . . . . . . . 31

2.16 Figure showing an example-question from the conducted user study. [34] 32
2.17 Figure showing application of GradCAM. The segments of the image

that the model used to make the prediction are highlighted. From a DL
model used to classify images of cats and dogs. [39] . . . . . . . . . . . 33

2.18 Figure showing the related attention map for sex prediction. The re-
searchers noted that the QRS complex was of high importance for the
model. [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



LIST OF FIGURES

2.19 Figure showing how the GradCAM technique used in Jahmunah et al.
[20] consists of certain variations compared to the ECGradCam method,
and omits the use of blue and red colours in favour of dots. [20] . . . . 36

2.20 Figure showing application of SHAP. The contribution of different fea-
tures to the prediction of the model are visualized. From a DL model
used to predict prices on a data set of houses in California. [47] . . . . 37

2.21 Figure showing the local explanation of 2 samples. One sample with MI
and one sample without MI. [19] . . . . . . . . . . . . . . . . . . . . . . 38

2.22 Figure showing (a) Local explanation summary and (b) Global feature
importance. [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.23 Figure showing the visualization of the SHAP approach. [2] . . . . . . 39
2.24 Figure showing the calculated GradCam scores for individual features

in the ECG complex. [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.25 Figure showing the plot of the median QRS complex of LQTS patients

compared to the median QRS complex of healthy patients. [4] . . . . . 42
2.26 Figure showing the structure of the proposed pipeline. [51] . . . . . . . 44
2.27 Figure showing the benefits of an explainable pipeline compared to tra-

ditional explainable methods. [51] . . . . . . . . . . . . . . . . . . . . . 45

3.1 Figure showing samples of raw ECG data from the PTB-XL data set. . 48
3.2 Figure showing the distribution of ECG statements, sex and age across

10 folds. [54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Structure of Base CNN model. To begin with SoftMax was used as an

activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Performance metrics from initial testing. The graphs show that; Ac-

curacy stabilized at 42 percent. Loss varied from 0.7 to 0.8. Recall
stabilized at 0.35. F1-score at 0.2. Precision at 0.15. . . . . . . . . . . . 51

3.5 Base CNN model with Sigmoid activation function. . . . . . . . . . . . 52
3.6 CNN Model with Max Pooling. . . . . . . . . . . . . . . . . . . . . . . 54
3.7 CNN Model with Average Pooling. . . . . . . . . . . . . . . . . . . . . 55
3.8 CNN Model with Batch Normalization and no Pooling. . . . . . . . . . 56
3.9 CNN Model with Average Pooling and Batch Normalization. . . . . . . 57
3.10 Figure showing the results of the Baseline Model on the test set. . . . . 58

4.1 Max Pooling vs Average Pooling. After 10 epochs the model utilizing
Average pooling performed better in terms of accuracy. . . . . . . . . . 62

4.2 Validation accuracy at different dropout rates. The validation accuracy
of the CNN is higher at lower dropout rates. . . . . . . . . . . . . . . . 63

4.3 Validation precision at different dropout rates. Compared to the accu-
racy, precision is more similar at different dropout rates. . . . . . . . . 63

4.4 Training accuracy at different dropout rates. At lower dropout rates,
the CNN is able to achieve higher accuracy and converge faster. . . . . 63

4.5 Validation accuracy with varying number of hidden dimensions. The
CNN performed best with hidden dimensions set to 256. . . . . . . . . 65

4.6 Training accuracy with varying number of hidden dimensions. The train-
ing curve converged most quickly with the hidden dimensions set to 64. 65

2



LIST OF FIGURES

5.1 Diagram showcasing how a potential WebApp could be structured. . . . 75

3



List of Tables

2.1 Models based on recurrent neural network, including CNN-LSTM hybrid
networks. Recreated from article [24] . . . . . . . . . . . . . . . . . . . 24

2.2 Table showing a selection of state-of-the-art studies using DL on ECG
data. Recreated from article. [31] . . . . . . . . . . . . . . . . . . . . . 25

3.1 The 5 diagnostic super classes of the PTB-XL data set and the number
of records found within each class. [54] . . . . . . . . . . . . . . . . . . 47

3.2 The number of records found within each class in the training set. . . . 48
3.3 The number of records found within each class in the validation set. [54] 49
3.4 The number of records found within each class in the test set. . . . . . 49

4.1 Table showing the results of different model components compared to
the baseline reference models. . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Table showing the results of different dropout rates for a model fitted
with average pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Table showing the results of different dropout rates for a model fitted
with batch normalization and no pooling. . . . . . . . . . . . . . . . . . 64

4.4 Table showing the results of different dropout rates for a model fitted
with average pooling and batch normalization. . . . . . . . . . . . . . . 65

4.5 Table showing the results of different hidden dimensions for a model
fitted with average pooling. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Table showing the results of different hidden dimensions for a model
fitted with batch normalization and no pooling. . . . . . . . . . . . . . 66

4.7 Table showing the results of different hidden dimensions for a model
fitted with average pooling and batch normalization. . . . . . . . . . . 67

4



Chapter 1

Introduction

"The field of electrocardiography (ECG) analysis has traditionally relied on manual

interpretation by experts. However, with the advent of deep learning techniques, there

is an opportunity to improve the accuracy and efficiency of ECG analysis. This thesis

explores the use of deep learning methods for ECG analysis, including the development

and evaluation of models for various ECG-related tasks such as arrhythmia detection

and heart disease diagnosis. The goal of this research is to demonstrate the potential

of deep learning for ECG analysis and to identify areas for future work in this field."

To appreciate the potential of deep learning as a tool, consider that the previous para-

graph was written in its entirety by the deep learning-based chatbot; ChatGPT using

the simple prompt "write an introduction for a master thesis where the topic is ’deep

learning for ECG analysis" [36]. While the use of deep learning in such language mod-

els has seen significant development, the application of this technology in biomedical

engineering is still in its infancy. Specifically, for tasks such as ECG analysis, the ma-

jority of the work is done manually, and as mentioned, there is a clear potential for

improvement in efficiency and accuracy.

For those unfamiliar with the field, deep learning can appear to be a singular, all-

encompassing term. However, it is essential to understand that there are many different

model types, and choosing the right one is often critical for a successful outcome.
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Chapter 1. Introduction

In the context of ECG analysis, the model type that stands out among the competitors

is a so-called Convolutional Neural Network (CNN). Both in the case of well-funded

research studies and personal hobby projects found online, the application of these

models has led to particularly promising results [18, 22]. Specifically, it is the ability of

the CNN to account for spatial features that make it a particularly good fit for ECG

analysis. Needless to say, further investigation of the most effective model type is key,

if we are to uncover the full capabilities of deep learning for ECG analysis.

Moreover, a typical CNN consists of many different structural factors, and the con-

figuration of these are essential to reach optimal performance. Thus, expanding our

knowledge of the influence of various factors of the CNN for the task of ECG analysis

is vital. Such factors may include the core components/building blocks of the net-

work, techniques used to regulate the learning of the network, and other parameters

associated with Deep Learning (DL) models.

At the same time, one of the key challenges in the application of CNN´s as well as other

DL algorithms is the interpretability of the model’s decisions. Unlike natural language

processing models, such as ChatGPT, which can rely on a "black box" approach, it is

crucial for the medical community, including doctors and radiologists, to have a clear

understanding of the features and decision-making process of ECG analysis models.

Without this transparency, there is a risk that medical professionals may be hesitant

to use these models in practice.

Additionally, there is a pressing concern related to the privacy of ECG data that needs

to be addressed. Since health data is considered especially sensitive, there are a number

of regulations that prohibit the free use of such data in the development of DL models.

Specifically, in the EU, the General Data Protection Regulation (GDPR) restricts the

flow of information related to health to ensure patient anonymity [53]. Even in cases

where said data has been anonymized, there are limitations in terms of the exchange

of data between different countries since the combination of certain variables may lead

to individual identification [14].

Considering the factors mentioned, it is apparent that the field of healthcare is in great

6



1.1. Motivation and research question

need of DL models that are both explainable and protective of privacy-related concerns.

In this regard, it is therefore evident that further deepening the understanding of DL-

models and in particular CNN´s, may provide several benefits in the area of healthcare

and medical services. Thus, an assessment of the different structural factors related to

the CNN, such as layers, parameters and regularization techniques can be considered

to be vital.

1.1 Motivation and research question

The primary motivation behind this thesis is to contribute to the existing body of

knowledge on the application of CNN´s in ECG analysis. In doing so, the aim is to

further the understanding of this prominent model type and demonstrate the potential

for progress in its effective implementation.

With DL and Artificial Intelligence (AI) being a rapidly growing area of research,

this thesis may also generate increased public interest and attention to a particularly

important use case.

Research question

To what extent can Convolutional Neural Networks be used for ECG analysis, and

what structural factors influence their effectiveness?

The selected objectives allowed for an open exploration of factors related to CNN´s

in ECG analysis, while not limiting the scope of our project. Furthermore, discussing

various explainable methods for DL can be regarded as highly important, as the lack of

explainability poses a significant obstacle to the adoption of CNN´s in ECG analysis.

1.2 Objectives

• The main objective of this research is to implement a CNN for ECG analysis from

scratch. This will provide the opportunity to compare the model with existing

work and experiment with various aspects of the structure to investigate potential

improvements and gain insights into the performance of CNN´s.
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Chapter 1. Introduction

• Secondly, assessing the feasibility and effectiveness of explainable methods is also

a point of interest in this thesis.

1.3 Structure of the thesis

The structure of this thesis is divided into four main sections: background, method,

results, and discussion. In the background section, the background information and

theoretical framework for the thesis are presented. This includes a review of relevant

literature and current state-of-the-art solutions. The method section describes the

research design and methodology used for the development and evaluation of the CNN.

The findings are thereafter presented in the results section. In the discussion section,

the findings are interpreted in light of privacy and explainability issues. Finally, the

conclusion summarizes the main findings and contributions of the thesis.

8



Chapter 2

Background

The following chapter presents an overview of the background and theoretical founda-

tions of DL for ECG analysis. This includes the introduction of key concepts, relevant

regulations, as well as a literature review on current state-of-the-art approaches.

2.1 Concepts

The following terms will be used in this thesis with the corresponding explanations;

2.1.1 Electrocardiogram:

The Electrocardiogram (ECG) is a measure of the electrical activity of the heart.

Specifically, the electrical activity is displayed as time-series data and contains different

features/segments as seen in Figure 2.1. The timing and the amplitude of these features

carry clinical information about the state of the heart. Useful for diagnostic purposes,

ECGs can be deployed to detect different cardiac disorders such as arrythmia and heart

attacks [35]. ECGs are considered cost effective, non-invasive and practical in a variety

of medical settings [32]. Figure 2.2 shows the most common setup for procuring ECG

data, namely through 10 electrodes placed on the body of the subject.
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Chapter 2. Background

Figure 2.1: Figure showing the ECG complex. Segments are named P, Q, R, S, and T.
[5]

2.1.2 Convolutional Neural Network:

A Convolutional Neural Network (CNN) is a type of artificial neural network often used

for image and audio recognition. It consists of multiple layers of filters that process

input data such as an image. The filters are designed to learn meaningful features

from the input data, allowing the network to recognize patterns and make decisions

[40]. These features are then passed through fully connected layers to make a prediction

as visualized in Figure 2.3. CNN´s have been successful in a variety of tasks such as

image classification, object detection, and image generation [13][57].

Convolution

As the name suggests, the most essential part of the CNN is the convolutional layer.

Convolution refers to the process in which the input data is traversed and features are

extracted. This operation occurs when a filter with a given kernel size passes through

10



2.1. Concepts

Figure 2.2: Figure showing the placement of the 10 electrodes for a standard 12 lead
ECG configuration. [55]

Figure 2.3: Figure showing the setup of a standard CNN designed to make predictions
in accordance with 5 classes. [40]

the input with a certain stride length. When the filter is first applied in a region of the

input, it calculates the dot product of the pixels within that region. The calculated

value is then fed to an output array. The filter thereafter shifts, and repeats the process

until the entire input has been covered. The resulting output array is known as the

feature map [13]. The operation can best be understood through its most common
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Chapter 2. Background

application which is a 2D convolution of an image, as demonstrated in Figure 2.4.

Figure 2.4: Figure showing 2D convolution. This type of convolution is often applied
on images.[27]

Lastly, the ReLU (Rectified Linear Unit) transformation is typically applied to each

feature map after every convolution to introduce nonlinearity to the DL model.

1D, 2D and 3D convolution

Apart from the popular 2D convolution, there are other types of convolutions such as

1D convolution and 3D convolution that serve their specific purposes [52].

As mentioned, CNN´s have traditionally been found to be effective at audio recognition.

Since ECG signals bear resemblance to audio, it is natural that 1D convolution, which

has been successful in audio analysis, has also shown promising results in ECG analysis.

In contrast to 2D convolution, where the input signal is a two-dimensional matrix, such

as an image, 1D convolution processes a one-dimensional input signal. The resulting

feature map is also one-dimensional. Figure 2.5 illustrates this concept.

Figure 2.5: Figure showing 1D convolution. This type of convolution is often applied
on time series data or audio signals. [30]
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2.1. Concepts

Lastly, 3D convolution is commonly employed in analyzing 3D image data. This convo-

lution type is highly relevant in healthcare related purposes. Particularly for Magnetic

Resonance Imaging (MRI) data, which is widely used in examining the brain and inter-

nal organs, or Computerized Tomography (CT) Scans, which combines X-ray images

taken from various angles to create a 3D representation of the body. Similar to 1D

and 2D convolution, 3D convolution can be utilized to classify this medical data or

extract features from it. Additionally, given that video is a sequence of image frames,

it possesses spatial features that can also be analyzed by applying 3D convolution [52].

Figure 2.6: Figure showing 3D convolution. This type of convolution is often applied
on data from imaging techniques such as MRI, or CT scans. [52]

Pooling

Pooling is a technique commonly used in CNN´s to reduce the dimensionality of the

input data by summarizing a large set of values into a smaller set of representative

values. The operation is quite similar to convolution, in that it uses a kernel of a given

size to traverse the input data. The goal of pooling is to make the representations of

the input more compact and manageable, thus saving computational resources while

preserving the important information in the data [40].

The most common type of pooling is Max pooling, where the maximum value within

each region is selected as the output value. Average pooling on the other hand extracts

the average value within each region as the output value [13]. The difference in the
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Chapter 2. Background

two methods of pooling is visualized in Figure 2.7.

It is worth mentioning that Max Pooling often is preferred due to its ability to act as

a Noise Suppressant, meaning that it reduces unwanted noise in the data [40].

Figure 2.7: Figure showing the effect of the two main Pooling methods, on a given
feature map. [40]

A convolutional layer is often followed by a pooling layer. Together, the convolutional

and pooling layers make up a so-called ’convolutional block’ [13].

Dropout

Dropout is a regularization technique often used in CNN´s to prevent overfitting of

the network during training. Overfitting is the phenomenon in which the model learns

features that are part of the statistical noise present in the data set. The result is that

the model may perform very well on the training data but poorly on new data [56].

The idea behind dropout is to drop out or "turn off" some of the neurons in a layer of

the neural network during each training iteration. During each iteration, the dropout

technique sets the outputs of some neurons in the network to zero. This means that

these neurons are effectively "turned off" and their outputs are not used for that it-

eration of training. Figure 2.8 demonstrates this in effect. The dropout rate is a

hyperparameter in the range of 0 to 1 that determines the probability of a neuron
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2.1. Concepts

being turned off [56].

Figure 2.8: Figure showing the effect of dropout on fully connected layers. [48]

By randomly dropping out neurons, dropout prevents the neural network from relying

too heavily on any one neuron, forcing the network to learn more robust and generalized

features. Dropout is a simple and effective technique for regularization, and it has been

shown to improve the performance of neural networks on a wide range of tasks [56].

Batch Normalization

Similar to dropout, batch normalization is a technique often used in CNN´s to improve

the training and stabilize the network. It is a normalization technique that normalizes

the input data to each layer of the neural network during training by adjusting and

scaling the activations [15].

The idea behind batch normalization is to improve the stability of the neural network

by normalizing the inputs to each layer, thereby reducing the internal covariance shift.

Internal covariance shift is a phenomenon in which the distribution of activations in

a layer changes as the parameters of the previous layers are updated during train-

ing. This can make training slow and difficult, as the network has to keep adapting

to the changing distribution of inputs. Batch normalization solves this problem by

normalizing the inputs to each layer [15].

Batch normalization has been shown to have several benefits for neural networks, in-

cluding faster training, better accuracy, and improved generalization. It also reduces

the sensitivity of the model to the initial values of the parameters, which can help avoid

overfitting and improve the robustness of the model [15].
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Hidden dimensions

As seen in Figure 2.3, in the fully connected layers each neuron is connected to every

neuron in the previous layer. Each connection has an associated weight and bias, which

are learned during training. The weights and biases determine the transformation that

is applied to the data at each layer.

The number of features that are used in a neural network layer is referred to as "hidden

dimensions". The features in question are often abstract and not directly observable,

hence the term "hidden".

It is the number of hidden dimensions in a layer that determines how complex the

transformation can be. In other words, a layer with more hidden dimensions has the

capability of learning more complex features, while at the same time requiring more

training data and computational resources. Too few hidden dimensions can result in

underfitting, where the model is not able to capture all of the patterns in the data,

while too many hidden dimensions can result in overfitting, where the model learns the

noise in the data instead of the underlying patterns.

Pipeline

A DL pipeline is a framework that enables developers to create, test, and optimize

DL models for various applications. It is a sequence of interconnected components

that are designed to perform specific tasks related to DL, such as data collection,

preprocessing, feature extraction, model training, and evaluation. The pipeline may

also include components for post-processing and deployment of the trained models [50].

The primary objective of this pipeline is to simplify the development process of DL

models and reduce the time and effort required for each step. The pipeline achieves this

through providing an end-to-end solution that allows developers to focus on specific

tasks rather than managing the entire process. Moreover, a DL pipeline can also help

automate repetitive tasks, reduce human error, and improve the overall efficiency of

the development process [43].

Typically, a pipeline consists of five stages that are arranged in a logical sequence. The
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first stage is data collection, where the pipeline collects the necessary data required for

the specific DL task. The data may be obtained from sources such as published data

sets. The second stage is data preprocessing, which involves cleaning, normalizing, and

transforming the collected data to prepare it for training the DL models. This stage is

critical because the quality and accuracy of the trained models depend heavily on the

quality of the input data.

The third stage is feature extraction, which involves extracting relevant features from

the preprocessed data. The fourth stage is model training, where the models are trained

using the extracted features and optimized using various techniques. This stage is often

the most time-consuming and resource-intensive, as it requires significant computing

power to train complex DL models [59].

The fifth stage is model evaluation, where the trained models are evaluated using a

test data set to determine their accuracy and performance. This stage is crucial for

identifying any issues with the trained models and fine-tuning them for better accuracy.

The final stage is model deployment, where the trained models are deployed into pro-

duction environments and integrated into the end application. This stage requires the

deployment of the developed models onto cloud or edge devices, depending on the ap-

plication’s requirements. Figure 2.9 demonstrates the structure and flow of a typical

DL pipeline.

Figure 2.9: Figure showing a traditional DL pipeline. [59]

In summary, a DL pipeline is a comprehensive framework that provides developers with
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the tools and resources to build, train, evaluate, and deploy DL models. It is a crucial

component in the development of modern DL applications and enables developers to

create highly accurate and efficient DL models for a wide range of use cases.

2.1.3 Alternative model-types

Recurrent Neural Network:

A Recurrent Neural Network (RNN) is a type of artificial neural network that has the

ability to process sequential data. The network uses feedback connections that allow

the previous outputs to be used as inputs in subsequent time steps. This helps the

network to preserve information over long sequences and make predictions based on

historical data [33]. RNNs are widely used in natural language processing and speech

recognition. They can also be applied in areas like stock prediction, speech recognition,

and machine translation [7] [29].

CNN-LSTM:

A CNN-LSTM is a type of DL network that combines CNN´s and Long Short-Term

Memory (LSTM) networks. The CNN component is responsible for extracting features

from input data, while the LSTM component processes the sequential information.

The combination of the two allows the model to make predictions based on both the

spatial and temporal aspects of the data. CNN-LSTM networks are commonly used in

a wide range of applications, such as natural language processing, activity recognition,

and video description [8].

Stacked Auto Encoders:

Stacked Autoencoders (SAE), is a type of neural network architecture that is commonly

used for unsupervised learning tasks, such as dimensionality reduction and feature

learning. It consists of multiple interconnected autoencoders, which are neural networks

that aim to reconstruct their input, that are stacked on top of each other. The goal

of an SAE is to learn a hierarchical representation of the input data, where each

layer focuses on learning increasingly complex features. SAEs can be trained in an
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unsupervised manner, which means that they do not need labeled data to learn useful

representations. Once the SAE is trained, it can be used as a feature extractor for

other supervised learning tasks [6].

Deep Belief Network:

A Deep Belief Network (DBN) is a type of DL algorithm that is based on unsupervised

learning. It is composed of multiple layers of interconnected nodes, with the first

layer being a Restricted Boltzmann Machine (RBM), which acts as a feature extractor.

The subsequent layers are fully connected neural networks, and they are trained to

construct a generative model of the input data. The goal of a DBN is to learn a compact

representation of the input data, which can be used for tasks such as classification or

data reconstruction. DBNs have been successfully used in a variety of applications,

including image and speech -recognition [23].

2.1.4 Explainable Artificial Intelligence:

Explainable Artificial Intelligence (XAI) refers to an approach in which providing an

explanation of how an AI model arrived at its prediction is key. In other words, XAI

aims to assist the user in understanding the inner workings of a given DL model.

Considering the use of DL models for medical image classification, XAI can explain

what connections the model is making and highlight which parts of the image are most

influential in prediction [25].

2.2 Regulations

2.2.1 Right to explanation

European Union’s General Data Protection Regulation (GDPR)

According to Article 13 and 14 (on the right to information) and Article 15 (on the

right to access), the controller is required to provide information on "the existence

of automated decision-making, including profiling, referred to in Article 22(1)" and
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"meaningful information about the logic involved, as well as the significance and the

envisaged consequences of such processing for the data subject" [42].

Moreover, the European Data Protection Board recommends that controllers should

provide the data subject with the "rationale behind or the criteria relied on in reach-

ing the decision." The provided information should be detailed enough to allow data

subjects to comprehend the reasons for the decision [42].

In light of these articles and recommendations, it is evident that a legal precedent exists

that requires the right to explanation [16] [4] [explanationwebsite].

U.S. Food and Drugs Administration (FDA) Action Plan

In the "Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical

Device Action Plan" published by the FDA in 2021, they highlight the significance of

interpretability within a collection of terms for AI implementation. [fda] [26].

2.2.2 Protection of sensitive health data

European Union’s General Data Protection Regulation (GDPR)

In GDPR, the regulation of health data is covered under Article 9, which is titled

"Processing of special categories of personal data". This article sets out the conditions

under which processing of sensitive data, including health data, is allowed. Specifically,

it states that processing of health data is only allowed under certain circumstances,

such as with explicit consent from the data subject or if processing is necessary for

specific purposes such as public health or medical research. The article also requires

appropriate safeguards to be in place to protect the confidentiality and security of the

health data being processed.

U.S. Health Insurance Portability and Accountability Act (HIPAA)

The U.S. HIPAA elaborates rules requiring, among other things, the formulation of

policies and the setup of training systems for those who have access to sensitive data

20



2.3. Literature review

[37]. Additionally, the transfer of health data in the United States is regulated through

HIPAA [46].

2.3 Literature review

To gain a comprehensive understanding of the field of DL in healthcare, it is necessary

to have an overview of the literature regarding current state-of-the-art solutions. This

includes the preferred architecture of the DL models as well as the methods used to

explain the outputs of the models.

2.3.1 Application and choice of models

Deep learning for ECG data

Hong et al. [18] offers a comprehensive overview of the use of ECG in various healthcare

related purposes. The article, published in the journal "Computers in Biology and

Medicine" in 2020, was co-written by researchers from the US and China [18].

To gather information, they extracted and analyzed 191 articles published between

2010 and 2020, that applied DL models to ECG data. A more detailed overview of

their strategy is shown in Figure 2.10. Their findings demonstrated that DL architec-

tures have been employed for various ECG analytics tasks, such as disease detection,

localization, and biometric identification.

The results indicated that the most commonly applied choice of model was a CNN.

Moreover, the authors noted that a hybrid architecture of a CNN and Recurrent Neural

Network (LSTM-CNN) using expert features was found to yield the best results. Ad-

ditionally, they highlighted the superior performance and fast computation of a CNN

as a key advantage [18].

In the end they concluded that the use of DL in ECG data has grown significantly

in recent years, with accuracy comparable to traditional approaches and even better

results possible through ensemble methods.

However, the authors also recognized challenges in interpretability, scalability, and
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Figure 2.10: Figure showing the strategy of the selection. [18]

efficiency that need to be addressed. In regards to interpretability the researchers noted

that "This challenge is much more severe in the medical domain because diagnoses

without any explanation are not acceptable for medical experts." [18].

Overall, the article reflected a positive outlook on the use of DL analysis on ECG

data, and the authors found DL techniques to be a promising solution for predictive

healthcare tasks.

Deep learning in ECG diagnosis

Next, Liu et al. [24] provides a more detailed examination of the use of DL in ECG

analysis for the specific "use-case" of diagnosis. Written by researchers from the Uni-

versity of Electronic Science and Technology of China and published in the journal
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"Knowledge-Based Systems," the study builds upon the positive sentiment expressed

in the previous review study [24].

The authors remarked that; "Deep learning shows outstanding performance on ECG

classification studies in the recent few years ... Latest studies can achieve higher accu-

racy and efficiency than manual classification by experts" [24].

In the review the researchers categorized studies according to 4 classic DL architectures:

SAE´s utilized in 8 studies, DBN´s which was used in 6 instances, CNN´s which were

used in 19 studies, and RNN´s that were used in 14 cases. Moreover, they commented

on the most prevalent model stating "CNN is widely applied in ECG diagnosis tasks

in recent few years and outstanding performance has been achieved." [24]

In this context it is worth noting that the authors included CNN-LSTM models under

the classification of RNNs as seen in Table 2.1. Further highlighting the feasibility and

popularity of this particular hybrid model.

As in the previous review the authors expressed that in spite of the rapid development,

limitation and open issues for DL methods were still present. Specifically, one of the

aspects outlined was visualization. In this regard they state that "Poor interpretability

is a key issue of architecture ... This [interpretability] can be realized by mathematic

justification and visualization." Based on the reoccurring sentiment in both articles

visualization and interpretability is identified to be among the biggest challenges for

wider adoption of DL models for ECG analysis.

Deep learning in disease detection

Lastly, Murat et al. [31] delves deeper into the detection of specific diseases; in this

case arrhythmia. Arrhythmias are a significant type of heart condition, that may

occur alone or combined with other heart diseases. Symptoms of arrhythmias include

a slow, fast, or unpredictable heartbeat, which may lead to high mortality rates in

heart patients. Therefore, timely and accurate identification of arrhythmias is crucial

for patient care [31].

In the article the authors reviewed and discussed peer-reviewed journal articles that uti-
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Table 2.1: Models based on recurrent neural network, including CNN-LSTM hybrid
networks. Recreated from article [24]

Application DL algorithm Database Result

Arrhythmia classification LSTM MIT-BIH Arrhythmia Database Accuracy 99.39%

Coronary artery classification LSTM, CNN
Fantasia; St.-Petersburg INCART

12-lead arrhythmia
Accuracy 99.85%

Interpatient

arrhythmia

classification

GRU, CNN MIT-BIH Arrhythmia Database
F1 score 61.25 for SVEB, 89.75

for VEB

Atrial fibrillation

detection
LSTM

MIT-BIH Atrial Fibrillation

Database

Accuracy 99.77% with blindfold

validation

Atrial fibrillation

detection
LSTM

MIT-BIH Atrial Fibrillation

Database

Accuracy 99.77% with blindfold

validation

Arrhythmia

classification
LSTM, CNN MIT-BIH Arrhythmia Database

Accuracy 98.10%

Sensitivity 97.50%

Specificity 98.70%

Heartbeat

classification
LSTM

MIT-BIH Arrhythmia

Database;St.-Petersburg INCART

12-lead arrhythmia; MIT-BIH

SVDB Database

Accuracy 99.9%

Sensitivity 99.8%%

Specificity 99.9%

Atrial fibrillation

detection and

monitoring

LSTM, CNN

MIT-BIH Arrhythmia Database;

MIT-BIH AF Database; MIT-BIH

NSR Database

Accuracy 97.80%

Sensitivity 98.98%

Specificity 96.95%

Arrhythmia

classification

LSTM, CNN

Attention module

1st China Physiological Signal

Challenge

PPV 82.6%, Recall 80.1%,

accuracy 81.2%

Inter- and

intra-patient

heartbeat

classification

LSTM-based

auto-encoder; CNN
MIT-BIH Arrhythmia Database

Accuracy:99.53% for

inter-patient, 99.92% for

intra-patient

Arrhythmia

classification
RNN MIT-BIH Arrhythmia Database

Accuracy 99.3% for VEB;

Accuracy 98.6% for SVEB

Arrhythmia

classification
DELM-LRF-BLSTM MIT-BIH Arrhythmia Database

Accuracy 99.32%

Sensitivity 97.15%

Atrial fibrillation prediction LSTM
Long-term AF Database; AF

terminal challenge Database

Accuracy 92%

92% F-score

Atrial fibrillation LSTM, CNN Cardiology Challenge 2017 Dataset
sped up by 38%

F1 score 89.55%

CAD, Myocardial

infarction,

congestive heart

failure

LSTM, CNN

St.-Petersburg INCART 12-lead

arrhythmia, PTB Database, BIDMC

CHF Databases, Fantasia Databases

Accuracy 98.51%

Sensitivity 97.89%

Specificity 99.3%

Positive predict 97.3%

lized DL for arrhythmia detection. Relevant information from the studies was inserted

into a table as seen in Table 2.2. Thereafter an experimental study was conducted to
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Table 2.2: Table showing a selection of state-of-the-art studies using DL on ECG data.
Recreated from article. [31]

Database Number of Classes Total Data DL Technique Results

MIT-BIH Arrhythmia
Database

5 83,648 beats 1-D CNN VEB: Acc ¼ 99%,
Sen ¼ 93.9%,
Spec ¼ 98.9%
SVEB: Acc ¼ 97.6%,
Sen ¼ 60.3%,
Spec ¼ 99.2%

Zio Patch 14 rhythm 64,121 records 34-layer CNN PPV ¼ 0.809,
Recall ¼ 0.827,
F1 ¼ 0.809

MIT-BIH Arrhytmia
Database + Synthetic
data

5 109,449 beats 9-layer CNN Set A: Acc ¼ 93.47%,
Sen ¼ 96.01%,
Spec ¼ 91.64%
Set B: Acc ¼ 94.03%,
Sen ¼ 96.71%,
Spec ¼ 91.54%

PhysioNet Challenge
2017

4 8528 records LSTM 10-folds CV:
F1 ¼ 83.10%
Entry: F1 ¼ 84%

MIT-BIH Atrial
Fibrillation Database

2 100 beat window 99 LSTM CV: Acc ¼ 98.51%,
Sen ¼ 98.32%,
Spec ¼ 98.67%
Blind fold validation:
Acc ¼ 99.77%,
Sen ¼ 99.87%

MIT-BIH Arrhytmia
Database

5 2520 segments (10 s) 2-D Deep CNN Acc ¼ 99.0%

MIT-BIH Arrhytmia
Database

5 16,499 beats with
variable length

CNN-LSTM Acc = 98.1%,
Sen = 97.5%
Spec = 98.7%

MIT-BIH Arrhytmia
Database

13 15 17 833 fragments (10s)
976 fragments (10s)
1000 segment (10s)

1D-CNN Acc = 95.20%
Acc = 92.51%
Acc = 91.33%

provide more insight into techniques that make DL effective for arrhythmia detection.

Based on their examination of the selected articles the researchers found it evident that

CNN models were the preferred alternative compared to other models [31].

In the discussion section the researchers add weight to the statements of the previous

authors by noting that "hybrid models such as CNN-LSTM tend to produce successful

results." [31]. Interestingly the authors also addressed some of the potential downsides

of LSTM models such as the high resource utilization, and the need for a large data

set. The authors recommended several techniques to combat this issue namely transfer

learning, residual connections and data augmentation.
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Similar to the previous review articles, the importance of interpretability was under-

lined. The authors stated in the conclusion; "Finally, what features are taken into

account during the diagnostic process, due to the black-box nature of deep learning

methods, is an important question mark." [31].

2.3.2 Data sets

Synthetic data set

Thambawita et al. [46] attempts to tackle the issue of privacy issues in data sets in an

innovative way. The research was published in the journal Scientific Reports in 2021

and is centered around utilizing DL models for the generation of synthetic ECG data.

Specifically, 2 General Adversarial Networks (GAN) were implemented in order to gen-

erate 10-s 12 lead ECGs. Inspired by the ability of a specific model named WaveGAN

to produce audio signals the researchers initially implemented a similar structure for

their model. Thereafter, the researchers also implemented a novel generative model

called Pulse2Pulse for the production of ECG signals.

The quality of the generated data was determined to be satisfactory given that 150

000 ECG samples were successfully uploaded to the commercial MUSE 12SL system

(ECG system widely used in hospitals), with no samples being rejected as invalid by

the system. The two DL models were subsequently reviewed and compared to each

other. Their comparison indicated that both in terms of training time, and quality of

the generated ECG data the Pulse2Pulse model performed better then the WaveGAN

implementation.

The researchers discussed several notable advantages of the use of synthetic data for

ECG analysis. Most recognized was the principle that the data was not tied to any

one individual or group of people. Thus, the use of the data was not affected by ethical

considerations related to privacy.
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Figure 2.11: Figure showing the comparison of real ECG data and synthetic ECG data
generated by a DL model. [46]

PTB-XL

In 2020 researchers from the national Metrology Institute of Germany (Physikalisch-

Technische Bundesanstalt) presented a publicly available ECG data set suitable for the

training of DL models. The data set named PTB-XL is to-date the largest accessible

10-s 12 lead ECG data set. It is compromised of a total of 21837 records from 18885

patients, and covers a range of diagnostic super- and sub classes. Furthermore, the

data set includes an equal representation of both sexes, with males accounting for 52%

and females for 48%, and covers all ages from 0 to 95 years [54].

The raw signal data was recorded by commercial ECG systems from the company

Schiller AG between October 1989 and June 1996. The set of annotations were divided

into 71 different statements, with multiple statements possible for an individual ECG.

Two cardiologists were engaged with the task of selecting and verifying the annotation

for each record.

In the PTB-XL data set the 5 diagnostic super-classes are represented by the following

categories;

• NORM: Refers to a Normal ECG signal.

• MI: Myocardial infarction (MI) occurs when blood flow to the myocardium (heart

muscle) decreases or stops completely. Commonly known as a heart attack MI
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may cause permanent heart damage and death [11].

• ST/T Change: ST/T changes refers to the alteration of ST and T waves, and may

indicate a cardiac disorder or a normal variation. Therefore, the correct inter-

pretation of these changes relies on the context of the patient’s clinical condition

and whether similar findings have appeared in previous ECGs [38].

• CD: Conduction Disturbance (CD) refers to a disruption in the way the electrical

signals move through the heart. When certain conduction disorders occur, they

may lead to arrhythmias, or irregular heart beats [3].

• HYP: Hypertrophy is a condition characterized by the abnormal thickening of

the heart muscle, and is also known as hypertrophic cardiomyopathy (HCM). A

thickened (hypertrohied) heart muscle may not be able to effectively pump blood

[12].

Figure 2.12: Figure showing the distribution of the PTB data set. The diagnostic super-
classes; NORM = Normal, MI = Myocardial Infarction, CD = Conduction Disturbance,
STTC = ST/T-Change and HYP = Hypertrophy all contain various diaganostic sub-
classes. [54]
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Figure 2.13: Figure showing the distribution of the different diagnostic super-classes
in terms of male and female patients. [54]

The researchers commented on several of the advantages of the data set, stating; "the

data set is distinguished by its diversity, both in terms of signal quality, but also in

terms of a rich coverage of pathologies ... and a large proportion of healthy control

samples that is rarely found in clinical data sets." [54].

Strodthoff et al. [44] presents the first bench-marking results for the PTB-XL data set.

The article is written by several of the same authors behind the publication of the

original data set.

In their approach they utilized the ICBEB2018 data set for comparison. Similar to the

PTB-XL data set the ICBEB2018 data set is a data set of considerable size, containing

6877 12-lead ECGs lasting between 6 and 60 seconds. The data set was released for

the 1st China Physiological Signal Challenge 2018 held during the 7th International

Conference on Biomedical Engineering and Biotechnology (ICBEB 2018). Specifically,

in the study models trained on the PTB-XL data set were compared to models trained

on the ICBEB2018 data set [44].

A variety of tasks suitable for bench-marking were conducted such as inferring ECG

statements related to the rhythm of the ECG signal (multilabel classification), inferring

ECG statements related to the form of the signal (multilabel classification), inferring

a subject’s sex (binary classification) and inferring a subject’s age (regression) [44].
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Overall, the results showed that the performance of the models trained on the respective

data sets was consistent. The authors brought forth some insights. Firstly, after

analyzing various DL-based timeseries classification algorithms, they noted that CNN´s

demonstrated the highest level of performance on all tasks. Moreover, their study

indicated that PTB-XL had superior performance when used to pre-train models aimed

at analyzing smaller data sets as seen in Figure 2.14. Thereby, making it a powerful

resource for pre-training a model that may later be finetuned on a smaller data set

[44].

Figure 2.14: Figure showing performance of models pre-trained on the PTB-XL data set
on the ICBEB2018 data set. The results showed statistical significance when decreasing
the size of the ICBEB2018 training set.[44]

Lastly they observed, that the use of ensemble models only lead to slight performance

increases, and that with the exception of of super-diagnostic classification this perfor-

mance increase was not statistically significant.

2.3.3 Explainable methods

Loh et al. [25] provides an in-depth look at the explainable AI methods used in health-

care between 2011 and 2022. In terms of ECG analysis, the article found that methods

such as SHapley Additive exPlanations (SHAP), Gradient-weighted Class Activation

Mapping (GradCAM) and Local Interpretable Model-agnostic Explanations (LIME)
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were commonly used. SHAP and GradCAM were the most popular, whereas only one

article utilizing LIME was found [25]. The research article using LIME studied the use

of a wearable bio-signal detector, and although ECG data was used as input it did not

aim to provide insights into ECG-specific problems [49].

Figure 2.15: Figure comparing the pipeline of traditional DL models to DL models
that apply explainable methods. [34]

Looking at the aforementioned review article, in the case of ECG analysis, one study

was found to utilize SHAP, while 3 were found to use GradCAM.

LIME

Neves et al. [34] presented research on the technical feasibility and practical usefulness

of 3 types of visual explanations. Specifically, they applied and compared SHAP, LIME,

and a novel method called Permutation Sample Importance (PSI).

The authors commented on their observations; "Both PSI and LIME are adequate

methods to explain a time series classifier by measuring the relevance of each sample for

the classification. These findings have a broad impact with regards to the applicability

of such methods in real-world practice." [34].

Furthermore, an informative user study was also conducted to evaluate the potential

of the visual explanations on ECGs as shown in Figure 2.16. The researchers found

that "the explanations provided by PSI and LIME were more sensitive to the temporal
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ordering when the derivative is also considered." They also noted that SHAP’s perfor-

mance across all methods was lower than PSI and LIME. Additionally, the study found

that the inclusion of the derivative improved the explanations for CNN predictions in

terms of temporal dependency. [34].

Figure 2.16: Figure showing an example-question from the conducted user study. [34]

In the end they proposed using the time series derivative to develop XAI methods for

the measurement of feature importance in the temporal domain.

GradCAM

The GradCam method is originally a technique for visualizing the parts of an image

that a CNN uses to make a classification decision. GradCam stands for Gradient-

32



2.3. Literature review

weighted Class Activation Mapping. In this method, the CNN’s output is used to

calculate the gradients of the last convolutional layer of the network. These gradients

are then used to weight the feature maps in that layer, which results in a heat map

that shows which parts of the image are most important for the classification decision

as seen in Figure 2.17.

Figure 2.17: Figure showing application of GradCAM. The segments of the image that
the model used to make the prediction are highlighted. From a DL model used to
classify images of cats and dogs. [39]

Studies implementing GradCAM

Considering implementations of the GradCAM method, one notable article, was writ-

ten through collaboration of Norwegian and Danish researchers in 2021. The article

titled; "Explaining deep neural networks for knowledge discovery in electrocardiogram

analysis" was published in the journal "Scientific Reports", and included a novel ap-

proach built on the GradCAM method.

The authors explained how an implementation of attention maps could provide mean-

ingful and detailed visualizations. Thus, the paper attempted to tackle a key point

discussed in previous articles, namely the importance of visualization. Specifically,

they highlighted prevention of fatal mistakes, identification of novel features, and im-

proved ability to place legal responsibility in the event of mistakes as key advantages

[17].

The researchers went into further detail on their approach clarifying how a modification

of the traditional GradCAM method helped provide an accurate representation of
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what regions of the ECG were most decisive for their CNN model. In this modified

version called ECGradCAM visualizations were generated for each lead of the ECG, and

thereafter the average values across all leads were used to produce the final attention

maps [17].

Specifically, a heat map was produced in which the most important areas were marked

as hot (red color), and the less important regions were marked as cold (blue color). In

this context importance can be understood as the weight a specific area contributed to

the overall prediction. Figure 2.18 shows the output of their implementation on ECG

data.

Figure 2.18: Figure showing the related attention map for sex prediction. The re-
searchers noted that the QRS complex was of high importance for the model. [17]

In order to evaluate the work 2 cardiologists were then incorporated in the study, and

tasked with manually annotating a set of 20 randomly selected ECGs. Compared to the

outputs from the model the cardiologists scored significantly lower in terms of precision

and consistency. Furthermore, using findings from the attention maps the researchers

were able to discover novel medical knowledge related to sex prediction. Thus, the

feasibility and potential of the explainable method was further substantiated [17].

In line with the previous article, Jahmunah et al. [20] also employed the GradCAM

method to provide insight to the decisions of their DL models. However, as seen in

Figure 2.19 when compared to the ECGradCAM technique their version contained
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certain differences.

In the paper a DL method was developed for detection of Myocardial Infarction (MI).

MI accounts for the most deaths globally in terms of cardiovascular diseases, and thus

accurate and timely diagnosis is considered to be crucial in order to ensure successful

intervention.

To that end the researchers cited their motivation to be a result of the lack of literature

regarding explainable models for MI detection. Consistent with the majority of the

previously cited articles they gave thought to the shortcomings of non explainable

methods, commenting; "The lack of explanation of the mechanisms of these models

also poses a challenge as clinicians lose confidence in using deep models in clinical

settings to aid in diagnostic decisions." [20].

During the course of the study, DenseNet and CNN models were utilized for the clas-

sification of both healthy subjects and patients with 10 classes of MI based on the

location of myocardial involvement. After pre-processing, the R peaks of individual

lead signals of 12-lead ECGs were detected to extract the beats (each beat was com-

posed of sampled data from all 12 leads), and subsequently used as input to the DL

models [20].

The Grad-CAM technique was thereafter applied to the outputs of both models to

clarify the decisions made by the respective models. In this respect the authors com-

ment; "The specific ECG leads and portions of the ECG waves most influential for the

detection of each MI and healthy class, were marked. Overall, Lead V4 was the most

activated lead with the most influence on the classification in both DenseNet and CNN

models." [20].

Based on the results the authors concluded that "developed models combined with

Grad-CAM are more likely to garner clinical acceptance and can be used to triage MI

in hospitals and remote out-of-hospital settings." [20].
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Figure 2.19: Figure showing how the GradCAM technique used in Jahmunah et al. [20]
consists of certain variations compared to the ECGradCam method, and omits the use
of blue and red colours in favour of dots. [20]

SHAP

The SHAP (SHapley Additive exPlanations) method is a technique for explaining the

predictions of machine learning models. It provides a way to assign importance values

to the input features of a model, indicating how much each feature contributes to the

final prediction. The SHAP method is based on the concept of Shapley values from

cooperative game theory. More precisely, considering a coooperative game with the

same number of players as the number of features. SHAP will disclose the individual

contribution of each player (or feature) on the output of the model, for each observation

[47]. In other words, it works by calculating the contribution of each feature to the

prediction for every possible subset of features. These contributions are then combined
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to obtain the final importance values as seen in Figure 2.20.

Figure 2.20: Figure showing application of SHAP. The contribution of different features
to the prediction of the model are visualized. From a DL model used to predict prices
on a data set of houses in California. [47]

Studies implementing SHAP

Another article also centered around the detection of MI named "Explainable Predic-

tion of Acute Myocardial Infarction Using Machine Learning and Shapley Values" was

published in 2020 in the journal IEEE. In this study the researchers opted to use SHAP

as an explainable method for their model as opposed to GradCAM.

To conduct the study, 713,447 ECG measurements and related information regarding

diagnoses, drug prescriptions, and selected laboratory test results were extracted from

the Electrocardiogram Vigilance with Electronic data Warehouse (ECG-ViEW II) data

set [19].

Thereafter 3 models were implemented; 2 DL models (CNN & RNN), and a decision-

tree based model named XGBoost. All three models achieved a high prediction accu-

racy with the models scoring 89.9, 84.6 and 97.5 respectively. The researchers utilized

Shapley values to identify the features that contributed the most to classification de-

cision of the XGBoost model [19].

In line with the ECGradCAM method they utilized blue and red color schemes for

visualization. Figure 2.21 demonstrates how features that contributed positively to

the prediction (positive values) were marked with blue, while features that contributed
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negatively to the prediction (negative values) were emphasized with red. However,

in contrast to the GradCAM approach their application of SHAP did not involve the

marking of an ECG complex.

Figure 2.21: Figure showing the local explanation of 2 samples. One sample with MI
and one sample without MI. [19]

Figure 2.22: Figure showing (a) Local explanation summary and (b) Global feature
importance. [19]

Based on Figure 2.22 Age (Birthyeargroup), ACCI, and QRS duration were observed to

be the most important features for the prediction on the average in the whole testing

data set. In light of the Shapley value analysis the researchers concluded that age,

ACCI, and QRS duration were the most crucial variables in the prediction of the onset

of acute MI. At the same time sex was found to be of less importance.

In light of their study they expressed that they found "Shapley analysis to be a promis-

ing technique to uncover the intricacies and mechanisms of the prediction model, lead-

ing to higher degree of interpretation and transparency." [19].

On the other hand, a different application of SHAP was employed in Anand et al. [2].

The research article titled "Explainable AI decision model for ECG data of cardiac

disorders" was published in 2022, and in contrast to the previous study they focused

on a general diagnosis of cardiac disorders.
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Here the researchers implemented 8 different deep neural networks on the PTB-XL data

set. After evaluating the different models the preferred structure was determined to be

the ST-CNN-GAP-5 model. When comparing their results with the existing state-of-

the-art results on the PTB-XL data set this model was found to be more effective [2].

The model was thereafter applied on a different data set consisting of patients with

arrythmia in order to assess the generalizability. Here the results indicated the model

was competitive in performance to the state-of-the-art models.

Finally the researchers applied SHAP to visualize the decisions of the model. In their

approach they approximated a SHAP value for each input feature, and identified the

top 500 SHAP values as the significant features that contribute to diagnosing a specific

ECG record. They found that by using SHAP to interpret the DL model across various

heart conditions, the same segments of ECG waves that would be analyzed by a trained

cardiologist were highlighted [2].

Based on the top 500 SHAP values, the corresponding ECG wave/segments were high-

lighted in red color, while the features with lesser importance were highlighted in blue

color as seen in Figure 2.23. Their approach bares resemblance to the various GradCam

techniques applied on ECG DL models.

Figure 2.23: Figure showing the visualization of the SHAP approach. [2]

In conclusion the researchers were positive to the method commenting; "Results in-

dicate that the model is able to highlight relevant alterations of the ECG waves as

required by clinicians, making it explainable for diagnostic purposes." [2].
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Alternative approaches

Aufiero et al. [4] also implemented GradCAM. Notably, in their research they first

calculated the GradCam scores, and thereafter visualized the explanation in a unique

way to the traditional GradCam methods used on ECG data.

The aim of their research was to successfully diagnose a rare heart disease called Con-

genital long QT syndrome (LQTS) using a DL model. This was determined to be

especially important since most cardiologists are not experienced with patients carry-

ing congenital LQTS and may not always recognize the accompanying ECG features.

In addition, a proportion of disease carriers do not display obvious abnormalities on

their ECG. Combined, this may cause under-diagnosing of a potentially life-threatening

disease [4].

Using ECG data as input they implemented and trained a 1D CNN to classify genotype

positive LQTS patients. The data was collected from a large 10-s 12-lead ECGs data

set provided by Amsterdam UMC. In their approach a GradCAM score was retrieved

for each wave type as seen in Figure 2.24. Here the analysis indicated that the most

crucial wavetype for the decicion of the DL model was was the QRS complex. On the

contrary, the GradCam score for the T and P wave showed a considerable amount of

variation. Upon further analysis the researchers were able to assess that the first half

of the QRS complex was more relevant than the second half for classification of LQTS

patients [4].

To further visualize the relevance of the different sections the researchers calculated the

median QRS complex for every LQTS patient. Then the median QRS complex from

100 healthy control patients was retrieved and plotted on top of each other as seen in

Figure 2.25. The researchers were thus able to showcase that QRS complexes from the

LQTS patients had a lower amplitude compared to the control group [4].

In the end the researchers concluded that the DL models performed better than conven-

tional methods of detecting LQTS patients. When compared to the expert cardiologist

the DL models performed better in terms of specificity, while performing the same in

terms of sensitivity, The researchers further accredited the explainable method, com-
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Figure 2.24: Figure showing the calculated GradCam scores for individual features in
the ECG complex. [4]

menting; "The explainable AI technique identified the onset of the QRS complex as the

most informative region to classify LQTS from non-LQTS patients, a feature previously

not associated with this disease." [4].

Lastly they concluded that explainable DL models could be used to identify new fea-

tures for LQTS from ECG data, and thereby broaden the understanding of the syn-

drome.

Simultaneously, van de Leur et al. [51] specifically addresses the heat-map based ap-

proaches that are most commonly applied as explainable methods in DL for ECG
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Figure 2.25: Figure showing the plot of the median QRS complex of LQTS patients
compared to the median QRS complex of healthy patients. [4]

analysis. In the paper the researchers regard such approaches to be inaccurate.

The main reason behind their assessment is due to such methods only being able to the

identify the temporal location of the important ECG feature. From this perspective

heat-map based methods such as GradCAM and SHAP do not provide clear insight

into exactly what feature is used for the models decision. They argue that even though

the GradCAM method may highlight the QRS complex as being of high importance

for the model’s decision, it does not indicate whether it is the height of the R wave,

or the shape of the QRS complex or something else entirely that is used for diagnosis

[51].

Furthermore, they criticize heat-map-based methods for only providing explain-ability

on the level of an individual ECG, and not for the model itself. The researchers

comment that "this combination makes them susceptible to confirmation bias, as we

assume that the feature we think is important is also the one that was used in the few
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examples that were observed." [51].

To counteract this issue the researchers propose that there should be an increased focus

on the development of pipelines that are explainable by design. To achieve this they

suggest the use of Variational Auto Encoders (VAE). In this context VAE´s may utilize

DNNs to compress an ECG into a limited number of explainable independent factors.

Moreover, VAE´s also inherit the ability to reconstruct the original ECG from these

factors [51].

In the proposed pipeline visualized in Figure 2.26 an individual ECG was firstly com-

pressed into 32 factors (referred to as the FactorECG) using an encoder. Then the

factors were reconstructed into the original ECG using the decoder. Both the encoder,

and the decoder were in this framework CNN´s.

After training, the explainable pipeline was compared to current state-of-the-art ‘black

box’ DNNs in the conduction of three tasks: conventional ECG interpretation, detec-

tion of reduced EF, and prediction of 1-year mortality. The results indicated that the

novel pipeline was able to perform similar to state-of-the-art methods. The researchers

further validated the pipeline through applying it on a different data set, in order to

test the generalizability.

In the final part of the research the authors emphasized that in contrast to "black box"

approaches, their pipeline provided meaningful insight into the morphological ECG

changes important for prediction. Moreover, they recommended that future endeavors

in the field of DL for ECG analysis should take this into account stating; "Future

studies on DNNs for ECGs should employ pipelines that are explainable to facilitate

clinical implementation by gaining confidence in artificial intelligence and making it

possible to identify biased models." [51].

In summary, there is a notable amount of research related to DL and CNN´s for

ECG analysis to consider. The various review studies all establish that CNN´s are

particularly efficient and valuable for the purpose of ECG analysis. The articles fur-

ther express the need for explain-ability and visualization, indicating a clear lack of

research dedicated to this aspect of DL for ECG analysis. In terms of using, and col-
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Figure 2.26: Figure showing the structure of the proposed pipeline. [51]

lecting ECG-data, the main-routes can be divided into real or synthetic data sets, with

either approach having favorable and unfavorable aspects. Lastly, several XAI methods

have been implemented on the purpose of ECG analysis, with the most notable being

GradCam and SHAP. In the next chapter we will detail the development of our CNN,

justification behind data set usage and factors investigated.
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Figure 2.27: Figure showing the benefits of an explainable pipeline compared to tradi-
tional explainable methods. [51]
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Methodology

In this section the methodology of the thesis is explained. This includes the approach,

and choices of data, models and evaluation metrics.

3.1 Data and data preparation

The following section details the reasoning behind the choice of data set used for

development, and provides information regarding the data preparation techniques.

3.1.1 Choice of data set

The choice of data set for our study was the PTB-XL data set. As mentioned in the

Background section, this data set is distinguished by the large size, and the diversity

of the data [54]. Thus, it was determined to be suitable for the training and evaluation

of the CNN model.

The synthetic ECG data set provided by Thambawita et al. [46] was also considered as

an option. Similar to the PTB-XL data set their synthetic ECG data set can be said

to be a sufficient representative of the general population with regard to both healthy

and diagnosed patients [46]. Moreover, there is an added benefit of protecting privacy

and health data since the data is generated rather than belonging to any individual.

Given the lack of research utilizing deepfaked ECGS for training purposes, it would
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Table 3.1: The 5 diagnostic super classes of the PTB-XL data set and the number of
records found within each class. [54]

#Records Superclass Description

9528 NORM Normal ECG

5486 MI Myocardial Infarction

5250 STTC ST/T Change

4907 CD Conduction Disurbance

2655 HYP Hypertrophy

also serve as a decent opportunity to explore and validate the feasibility of using a

synthetic ECG data set.

Ultimately the PTB-XL data set was favoured due to the fact that it has been widely

used as a benchmark in previous studies, allowing for comparison with existing research

and promoting reproducibility.

3.1.2 Data Preparation

As mentioned in the Background section the PTB-XL data set contains ECG data

classified within 5 categories known as diagnostic super-classes. Table 3.1 shows the

class names as well as the number of records within each category. Moreover, these

super-classes contain various sub-classes that may apply to each individual ECG. For

our project the purpose of the model was set to classify the correct diagnostic super-

class for each ECG sample.

During data preparation the diagnostic super-class information for each ECG signal

was extracted from the csv-file containing diagnostic information. This column was

then applied to the dataframe containing the raw data. Lastly, raw ECG signals were

loaded and mapped to their corresponding diagnostic classes. This approach to data

preparation was influenced by author recommendations [54].

The resulting data frame contained the raw ECG signals as well as the corresponding

diagnostic classes. Finally, the prepared data were split into training, validation and
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Figure 3.1: Figure showing samples of raw ECG data from the PTB-XL data set.

Table 3.2: The number of records found within each class in the training set.

#Records Superclass Description

7660 NORM Normal ECG

4367 MI Myocardial Infarction

4149 STTC ST/T Change

3883 CD Conduction Disurbance

2123 HYP Hypertrophy

testing sets to facilitate model development. The training and validation sets were

used to train the models, while the testing set was used to evaluate the performance

of these models on unseen data. The chosen folds/splits were influenced by the recom-

mendation of the authors behind the publication of the data set [54]. Specifically, 8

folds were used for training, with the last 2 folds used for validation and testing respec-

tively. This was a natural choice given that the last two folds were of higher quality

[54]. The distribution of diagnostic-superclasses within the training, validation and

test sets is shown in Table 3.2, 3.2 and 3.2 respectively. Before training the data was

normalized/standardized using the built in function Standard Scaler from the sklearn

Library [41]. The code files for data preparation and the general pipeline can be found

in Appendix A.
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Table 3.3: The number of records found within each class in the validation set. [54]

#Records Superclass Description

923 NORM Normal ECG

540 MI Myocardial Infarction

560 STTC ST/T Change

505 CD Conduction Disurbance

296 HYP Hypertrophy

Table 3.4: The number of records found within each class in the test set.

#Records Superclass Description

931 NORM Normal ECG

562 MI Myocardial Infarction

526 STTC ST/T Change

510 CD Conduction Disurbance

230 HYP Hypertrophy

Figure 3.2: Figure showing the distribution of ECG statements, sex and age across 10
folds. [54]
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3.2 CNN models

3.2.1 Justification for use of CNNs

The potential of utilizing a CNN for ECG analysis was affirmed by several of the review

articles in the theory section [18] [24]. In the majority of these articles a CNN was

namely the preferred alternative used by researchers, thereby showcasing the capability

of this architecture. Key advantages were given in the superior performance and fast

computation of this particular model. For our purpose the convolution type selected

was 1D-convolution, given that this convolution type has been particularly effective on

1-dimensional time-series data such as ECG signals [1].

A CNN-LSTM model architecture was also strongly considered given that it was high-

lighted in several of the articles covering DL for ECG analysis [18] [24] [31]. In view of

the ability of this model-type to account for both the temporal and spatial element of

an ECG sample, the architecture was deemed especially appropriate. However, in the

end, we opted for a CNN model, given the stronger support for its use in the literature

and its efficient processing of ECG signals. Additionally, the high resource utilization

of CNN-LSTM models served as a hindrance [31].

Other model types mentioned in the Background section such as RNNs, SAEs and

DBNs were not chosen due to the comparatively low amount of literature centered

around their use.

3.2.2 Base CNN

Figure 3.3 shows the first implementation of a simple CNN. A pipeline was developed

to load the ECG data with the corresponding labels into the model. The loss and the

accuracy of the model was then plotted in weights and biases, and provided a clear

overview of the learning curve of the model.

Initially, the performance was sub-optimal based on all metrics as seen in figure 3.4.

In the experiment 5 runs were initiated for 10 epochs each.
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Figure 3.3: Structure of Base CNN model. To begin with SoftMax was used as an
activation function.

Figure 3.4: Performance metrics from initial testing. The graphs show that; Accuracy
stabilized at 42 percent. Loss varied from 0.7 to 0.8. Recall stabilized at 0.35. F1-score
at 0.2. Precision at 0.15.

Based on the initial training the activation function applied on the output layer was

observed to be non-effective for the given task. The Softmax function was determined

to be non-suitable for our multilabel classification problem and a Sigmoid function was
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Figure 3.5: Base CNN model with Sigmoid activation function.

used instead as seen in Figure 3.5.

For the application of the CNN, the optimizer "Adam" was selected due to superior

results. The two optimizers; "AdaDelta", "SGD", were also briefly tested, but were

found to not function properly. The default tuning rate 0.001 is often used with

"Adam", and was thus selected as suitable.

For the investigation the subsequent parameters, and components of the Base CNN

model were altered and evaluated.

• Dropout rate (0 - 0.8)

• Number of hidden dimensions (32 - 512)

• Batch normalization

• Pooling method

The use of batch normalization was inspired by Hicks et al. [17] given that batch

normalization was found to be effective in their CNN. Other parameters such as dropout
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rate and number of hidden dimensions are considered central hyperparameters and are

natural factors to investigate.

Our inclusion of the main pooling methods is also important to cover, as these are

the two main approaches, and to our knowledge little research is published regarding

their performance at different levels of dropout rate and varying number of hidden

dimensions.

The figures below show the structure of the different CNN models that were tested;

3.2.3 Model with Max Pooling

Figure 3.6 shows the structure of the CNN model fitted with Max Pooling. The base

model was altered by adding a Max Pooling layer after the two convolutional blocks.

3.2.4 Model with Average Pooling

Figure 3.7 shows the structure of the CNN model fitted with Average Pooling. The

base model was altered by adding an Average Pooling layer after the first and second

convolutional blocks respectively.
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Figure 3.6: CNN Model with Max Pooling.

3.2.5 Model with Batch Normalization and no Pooling

Figure 3.8 shows the structure of the CNN model fitted with Batch Normalization.

The base model was altered by adding Batch Normalization after Convolution in both

convolutional blocks.

3.2.6 Model with Average Pooling and Batch Normalization

Figure 3.7 shows the structure of the CNN model fitted with Average Pooling and

Batch Normalization. The base model was altered by adding Batch Normalization
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Figure 3.7: CNN Model with Average Pooling.

after Convolution in both convolutional blocks. In addition, Average Pooling layers

were inserted after the first and second convolutional blocks respectively.
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Figure 3.8: CNN Model with Batch Normalization and no Pooling.

3.3 Model evaluation

3.3.1 Metrics

The following metrics were chosen for evaluation, and analysis of the model during the

training stage;

Accuracy: A measure of how well a model predicts the correct class labels among all the

labels in the data set. It is calculated as the ratio of the number of correct predictions

to the total number of predictions made by the model [28].
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Figure 3.9: CNN Model with Average Pooling and Batch Normalization.

Loss: A measure of the difference between the predicted output of a model and the

actual output. The loss function is used to guide the model to adjust its parameters

during training to minimize the difference between the predicted and actual outputs.

Precision: A measure of how many of the predicted positive instances are actually true

positives. It is calculated as the ratio of true positives to the sum of true positives and
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false positives [28].

Recall: A measure of how many of the true positive instances were correctly identified

by the model. It is calculated as the ratio of true positives to the sum of true positives

and false negatives [28].

F1-score: A metric that combines both precision and recall to provide a single score

that summarizes the overall performance of a model. It is calculated as the harmonic

mean of precision and recall. A higher F1-score indicates better model performance

[28].

These metrics are commonly applied across the field of machine learning, and act as

reliable indicators to assess different aspects of a given model’s performance.

3.3.2 Baseline Reference Models

A crucial benchmark for the assessment of our model was determined to be 72%. Out

of the 21837 samples in the complete data-set, a majority 9528 are samples classified

as Normal. Given that a program predicting the majority class (Normal) for every

sample would result in an accuracy of 72%, a model providing an accuracy of less than

this is essentially useless/redundant.

For this purpose, a baseline model was implemented returning the aforementioned re-

sults, in order to facilitate comparison with the CNN´s.

Figure 3.10: Figure showing the results of the Baseline Model on the test set.
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3.4 Tools

Various software and tools were utilized in the process. This section contains an

overview of the most prominent tools and a brief summary of their application.

Google Colaboratory

Google Colaboratory, or "Colab" for short, is a cloud-based platform for running and

sharing code in a Jupyter Notebook environment. It allows for the combination of

executable Python code and text along with charts, images, HTML, LaTeX, etc. into

a single document stored in Google Drive.

Colab was used throughout the process to write and execute Python code. Various

features such as version control, real-time collaboration, and access to data sets were

also utilized. Colab was also utilized due to faster and more efficient training through

GPUs. Specifically, V100- or A100 Nvidia GPUs were applied depending on availability.

Weights&Biases

Weights and Biases, or W&B for short, is a machine learning experimentation and

tracking platform. It allows users to log and visualize experiments, track model per-

formance, and collaborate with others on machine learning projects. Its tools and

visualizations help users to gain insights into the performance of their models and to

make better decisions during the machine learning development process.

W&B was used to manage the machine learning process. Specifically, the accuracy and

loss of different runs were logged to the platform. Moreover, the visualizations were

important to gain insights to the further development of the models.

In summary, the considerable amount of research supporting the use of CNN´s for

ECG analysis, makes this model-type a preferable choice for further investigation.

Likewise, the literature also supports the use of the well-renowned PTB-XL data set

for training and testing purposes. Factors that were determined to be of importance

for investigation were Pooling, Batch Normalization, Dropout and Hidden dimensions,

and these factors were investigated through the use of different model structures. In
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the next chapter, the results from the various model structures are presented.
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Results

In this section the collected results from the 5 model-structures tested are presented.

These structures include the Base Model (Figure 3.5), Model with Max pooling (Fig-

ure 3.6), Model with Average Pooling (Figure 3.7), Model with Batch Normalization

(Figure 3.8), and Model with Average pooling and Batch Normalization (Figure 3.9).

Selected graphs showing the training progress of the various models are also included.

The results show the performance of these models according to the metrics presented in

the Methodology section, when used for prediction on test set. Each model was fitted

for 25 epochs, with the best checkpoint from training stored. The best checkpoint was

thereafter used for testing.

4.1 Performance comparison of pooling method

Figure 4.1 shows initial training progress from model with Max Pooling compared to

model fitted with Average Pooling. The max pooling parameter was set to 4 in all

tests. After 10 epochs the model utilizing global average pooling performed better in

terms of accuracy.
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Table 4.1: Table showing the results of different model components compared to the
baseline reference models.

Model Accuracy Precision Recall F1-score

Baseline Reference Model - Minority 0.2795 0.1469 0.6214 0.2325

Baseline Reference Model - Majority 0.7204 0.1866 0.3785 0.2476

Base CNN 0.7909 0.6617 0.4055 0.5028

Max Pooling 0.7978 0.7079 0.4586 0.5566

Global Average Pooling 0.8341 0.7721 0.4221 0.5458

Batch Normalization 0.8094 0.7358 0.3926 0.5120

Figure 4.1: Max Pooling vs Average Pooling. After 10 epochs the model utilizing
Average pooling performed better in terms of accuracy.

Table 4.1 shows the results of the Base CNN, Model with Max Pooling and Model with

Average Pooling compared to benchmark results. In addition to the Reference Model

predicting the majority class, a Reference Model predicting the minority class was also

included.

4.2 Performance comparison with various dropout rates

Figures 4.2, 4.3 and 4.4 show 5 experiments with dropout rates incrementally increasing

from 0 to 0.8. On both training and validation accuracy, the model with lower dropout

rates performed better. From Model fitted with Batch Normalization (Figure 3.8)
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Figure 4.2: Validation accuracy at different dropout rates. The validation accuracy of
the CNN is higher at lower dropout rates.

Figure 4.3: Validation precision at different dropout rates. Compared to the accuracy,
precision is more similar at different dropout rates.

Figure 4.4: Training accuracy at different dropout rates. At lower dropout rates, the
CNN is able to achieve higher accuracy and converge faster.

4.3 Performance comparison with various hidden di-

mensions

The number of hidden dimensions incrementally increases from 32 to 512. Hidden

dimensions set to 64 performed best in training. In validation, hidden dimensions set
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Table 4.2: Table showing the results of different dropout rates for a model fitted with
average pooling.

Model Accuracy Precision Recall F1-score

Model with Average Pooling

Dropout rate

0 0.8341 0.7721 0.4221 0.5458

0.2 0.7631 0.4554 0.1225 0.1930

0.4 0.7537 0.3785 0.0539 0.0943

0.6 0.7468 0.1622 0.0225 0.0395

0.8 0.7454 0 0 0

Table 4.3: Table showing the results of different dropout rates for a model fitted with
batch normalization and no pooling.

Model Accuracy Precision Recall F1-score

Model with Batch Normalization

Dropout rate

0 0.8094 0.7358 0.3926 0.5120

0.2 0.7311 0.4222 0.0712 0.1218

0.4 0.7217 0.3321 0.0361 0.0651

0.6 0.7302 0.1122 0.0129 0.0231

0.8 0.7261 0 0 0
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Table 4.4: Table showing the results of different dropout rates for a model fitted with
average pooling and batch normalization.

Model Accuracy Precision Recall F1-score

Model with Average Pooling + Batch Normalization

Dropout rate

0 0.8373 0.7729 0.4253 0.5486

0.2 0.7629 0.4524 0.1235 0.1940

0.4 0.7536 0.3780 0.0432 0.0775

0.6 0.7467 0.1615 0.0209 0.0370

0.8 0.7454 0 0 0

to 256 performed best. From Model fitted with Batch Normalization (Figure 3.8)

Figure 4.5: Validation accuracy with varying number of hidden dimensions. The CNN
performed best with hidden dimensions set to 256.

Figure 4.6: Training accuracy with varying number of hidden dimensions. The training
curve converged most quickly with the hidden dimensions set to 64.
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Table 4.5: Table showing the results of different hidden dimensions for a model fitted
with average pooling.

Model Accuracy Precision Recall F1-score

Model with Average Pooling

Hidden dimensions

32 0.8341 0.7721 0.4221 0.5458

64 0.8051 0.7174 0.4188 0.5288

128 0.8014 0.6882 0.4023 0.5077

256 0.8392 0.7881 0.4236 0.5510

512 0.8027 0.6882 0.3461 0.4605

Table 4.6: Table showing the results of different hidden dimensions for a model fitted
with batch normalization and no pooling.

Model Accuracy Precision Recall F1-score

Model with Batch Normalization

Hidden dimensions

32 0.8094 0.7358 0.3926 0.5120

64 0.7941 0.6932 0.3821 0.4926

128 0.7902 0.6755 0.3703 0.4783

256 0.8091 0.7358 0.3920 0.5114

512 0.7985 0.6625 0.3120 0.4242
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Table 4.7: Table showing the results of different hidden dimensions for a model fitted
with average pooling and batch normalization.

Model Accuracy Precision Recall F1-score

Model with Average Pooling + Batch Normalization

Hidden dimensions

32 0.8373 0.7729 0.4253 0.5486

64 0.8121 0.7304 0.4270 0.5389

128 0.8107 0.7012 0.4116 0.5187

256 0.8441 0.7941 0.4301 0.5579

512 0.8030 0.7002 0.4024 0.5110
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Discussion

The following chapter highlights and discusses the results gathered from the developed

CNN. Among other aspects the relevant findings will be discussed in terms of impact

and generalizability, Ethical considerations regarding the development and deployment

of our model will also be emphasized. Lastly, the discussion section highlights the

application of explainable algorithms in light of our own development process and the

conducted literature review.

5.1 Performance of model

5.1.1 Initial results

The results from Table 4.1 demonstrate that the base CNN, as well as the CNN´s

fitted with max pooling, average pooling, and batch normalization all yielded superior

performance when compared to the Baseline Reference Models. Among the models

in Table 4.1, the model utilizing average pooling returned the highest accuracy as

well as highest F1-score. Compared to the most inaccurate reference model, namely

the model predicting the minority class for every sample, the accuracy increased from

27% to 83%, which constitutes an increase of 56%. Similarly, upon comparison of

the reference model which was set to predict the majority class for every sample, a

significant leap in performance is observable. Here the accuracy increased from 72%
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to 83%, representing an increase of 11%.

In addition to the increased accuracy achieved trough utilizing DL models, the signifi-

cant increase in precision throughout Table 4.1 is also a promising indication that such

models may be particularly effective in correctly identifying true positive cases. This

result is particularly relevant in medical diagnosis, where false positive diagnoses may

cause serious implications for patient care, as well as lead to unnecessary anxiety for

relatives. Overall, it is evident based on the data from Table 4.1 that there is a clear

potential of utilizing CNN’s for the purpose of diagnosis classification, especially when

compared to naive/dumb models.

5.1.2 Average Pooling

A closer inspection of the model fitted with Average Pooling is presented in Table 4.2,

which provides an overview of the impact of dropout rates on this particular pooling

method. Here the results indicate that the performance of the model deteriorates as

the dropout rate increases. For instance, a dropout rate of 0.2 resulted in a decrease in

accuracy to 76.31% and an F1-score of 0.1930. Further increases in the dropout rate

led to a decrease in performance across all metrics, with the model with a dropout rate

of 0.8 achieving an accuracy of 74.54% and an F1-score of 0. These results suggest that

over-regularization through the use of dropout layers can hurt the performance of the

CNN.

In terms of the effect of hidden dimensions on the performance, Table 4.5 shows how

the model with 256 hidden dimensions had the highest accuracy of 83.92% and cor-

responding F1-score of 0.5510. The models with 64 and 128 hidden dimensions had

lower accuracy and F1-scores compared to the base model. Increasing the number of

hidden dimension beyond 256 to 512 resulted in an accuracy of 80.27% and an F1-score

of 0.4605. This may imply that increasing the number of hidden dimensions beyond

a certain point does not necessarily lead to improved performance and may even lead

to overfitting. Overall, the findings in Table 4.2 and 4.5 highlight the importance of

selecting appropriate values for hyper-parameters such as dropout rate and hidden

dimensions to optimize the performance of the CNN.
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5.1.3 Batch Normalization

Table 4.3 shows the results of different dropout rates for the model fitted with batch

normalization. When evaluating the impact of different dropout rates, the results

indicate similar to the findings from Table 4.2, that increasing the dropout rate causes

a decrease in all performance metrics; accuracy, precision, recall, and F1-score. This

trend is observed consistently across all dropout rates tested, from 0.2 to 0.8.

Similarly, when evaluating the impact of different hidden dimensions, the results from

Table 4.6 indicate that the performance of the model decreases as the number of hid-

den dimensions increases. This trend is also observed consistently across the hidden

dimension values; 64, 128 and 512. The value of 256 may be regarded as an exception,

given that the performance increases when compared to the previous level of 128.

It is interesting to note that the model with batch normalization performed relatively

poorly compared to the model with average pooling in Table 4.5. The best-performing

model in Table 4.3 had an accuracy of 80% and a F1-score of 0.51 which is lower than

several of the models in Table 4.5. This suggests that the use of batch normalization

may not be as effective as using average pooling in this particular classification task.

Overall, the findings in Table 4.3 suggest that, for the model with batch normalization,

it may be better to use a lower dropout rate and fewer hidden dimensions to achieve

better performance. However, the overall performance of the model with batch nor-

malization is still relatively low compared to the other model-architectures evaluated

in this study.

5.1.4 Average Pooling used in combination with Batch Normal-

ization

Lastly, Table 4.4 and 4.7 shows the results of the model with average pooling and batch

normalization with different dropout rates and hidden dimensions. We can observe that

the model achieves the highest accuracy, precision, recall, and F1-score when using a

dropout rate of 0 and hidden dimension of 256. This combination results in an accuracy
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of 84%, precision of 79%, recall of 43%, and F1-score of 0.5579.

As in the previous experiments, as the dropout rate increases, a decrease in all the

evaluation metrics is observable, suggesting that high dropout rates may cause the

model to lose crucial information during training. Consistent with the pattern found in

Table 4.5 and 4.6, increasing the number of hidden dimension also produces a decrease

in accuracy and precision, while recall and F1-score remain relatively stable.

Overall, we can conclude that the combination of average pooling and batch normaliza-

tion improves the CNN’s performance compared to using only one of these techniques.

The best performance is achieved with a dropout rate of 0 and a hidden dimension of

256.

5.2 Interpretation

Within the frame of the investigation the maximum performance of the CNN was

achieved through utilizing average pooling in combination with batch normalization.

In the mentioned configuration the dropout layer was set to 0, and the number of hid-

den dimensions was 256 as seen in Table 4.7. Using this structure the model achieved

approximately 84% accuracy and 79% precision. The recall and F1-score for the im-

plementation returned 43% and 0.55 respectively.

A closer inspection of the gathered results indicate that average pooling was the most

effective factor in increasing performance across all metrics. In particular, the accu-

racy of the baseline model utilizing Average Pooling (83%) outperformed the baseline

model with Max Pooling (79%). This observation is inconsistent with a different ex-

periment using the same data set and model type, in which Max Pooling was favored

as the superior pooling method [22]. However, the effectiveness of Average Pooling is

supported by Hicks et al. [17] as they were able to effectively use this method in their

research. Moreover, batch normalization was also found to have a positive effect on

the performance of the CNN. However, compared to the model utilizing Max Pooling

the results indicate a relatively small increase of performance, and when varying the

number of hidden dimensions no significant difference was found.
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It is also worth considering that for the majority of the different runs, the F1-score

remained relatively stable, close to a medium level of 0.5. Given that the F1-score

represents the harmonic mean between precision and recall, it is evident through the

results that in many cases the relatively high precision is offset by a low recall value.

This trade-off between precision and recall can have significant implications in the

context of ECG analysis. A low recall value suggests that the model is missing a large

number of actual positive cases, resulting in false negatives. In the case of medical

diagnosis, relying on a model with low recall value can lead to missed diagnoses and

dangerous consequences for the patient.

One notable observation was that varying the dropout rates did not have the desired

outcome on the performance of the CNN. For our experiment increasing the dropout

rate led to lower accuracy in all cases across all runs. As previously mentioned dropout

is generally useful to prevent over-fitting, but in this case it may have caused the model

unable to learn key information and patterns during training. This suggests that our

model is not particularly robust, which is not ideal.

The effect of introducing dropout is inconsistent with the outcome of the approach

used in Hicks et al. [17] in which dropout rates were shown to have a positive effect on

the predicted output of their model. It may be possible to point to the difference in the

data set as one of the factors behind this discrepancy. In their research they utilized

the Danish General Suburban Population Study(GESUS) [21]. Although, this data set

has a near equal representation of male and female subjects similar to the PTB-XL

data set, the PTB-XL data set is a significantly larger data set and includes a larger

variance of different cardiovascular diseases.

In terms of the alteration of the number of hidden dimensions, 256 resulted in the

best performance. This was evident both in the experiments utilizing Average Pool-

ing found in Table 4.2, and in the experiments where the CNN was fitted with both

Average Pooling and Batch Normalization found in Table ??. Interestingly, by the ex-

ception of 256 dimensions the performance decreased in all other dimensions that were

tested. The occurrence of this pattern could be due to over-fitting, as a higher hidden

dimension results in a more complex model that is prone to over-fitting. In the case
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of testing the CNN fitted with batch normalization and no pooling, the results were

somewhat different. Here setting the number of hidden dimensions to 256 resulted in

similar performance to the performance with 32 hidden dimensions. Still, these results

suggest that 256 is the preferred number of dimensions since the performance decreases

significantly in the other cases.

However, limitations of the study should also be considered while interpreting the

results. As the research was conducted on a single data set, the generalizability of the

findings to other data sets or populations may be limited. Additionally, as the model

was trained on a static data set, it may not be able to detect emerging cardiovascular

diseases or variations in health data over time.

Overall, the results show that there is a significant advantage to using deep learn-

ing for ECG analysis, while at the same affirming the feasibility of using CNN´s for

this purpose as demonstrated in other studies. Moreover, the developed pipeline was

found to be a productive and purposeful method of gathering results. Specifically, the

streamlined and systematic structure facilitated the change of filters, layers, param-

eters and hyper-parameters in a time-efficient manner. Lastly, the experiments with

dropout rates and hidden dimensions show that finding the optimal configuration of

these hyper-parameters can be critical to achieve better model performance.

5.3 Impact and generalizability

The impact of the results can be established from certain perspectives. The devel-

opment of a pipeline that can be further utilized for investigating and exploring the

matter is one such perspective. Additionally, our research confirms the findings of pre-

vious well-conducted studies, which have established the feasibility and effectiveness of

CNNs for the purpose under consideration.

More precisely, the research findings suggest that the developed CNN model is effec-

tive in the automated detection of cardiovascular diseases using ECG data. The model

achieved high accuracy and precision in detecting the cardiovascular conditions; My-

ocardial Infarction, ST/T Change, Conduction Disturbance and Hypertrophy. The
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results also indicate that pre-processing and normalization of the ECG data, as well

as the inclusion of certain model components, such as batch normalization and pool-

ing, are critical for achieving high performance in the developed CNN model. These

findings could be useful for further development and improvement of DL models for

healthcare applications.

Still, it may be difficult to gauge to what extent the findings of this study can be

generalized, as it is a specific investigation of one Convolutional Neural Network. There

are several limitations in this regard, which may not be applicable to other cases.

Specifically, as this is a health data issue, there may be significant variations in the

health data of the population, which may not align with our findings. Other studies may

also implement unique pre-processing and normalization procedures. Nevertheless, our

use of the PTB-XL data set, which is deemed one of the largest and most representative

data sets available provides some grounds for generalization.

It is important to reiterate that the investigation was restricted to chosen factors, and

thus is not a conclusive analysis. A number of other factors such as regularization,

changing of parameters and tuning of learning rate may increase the performance of

the model further.

5.4 Utility value

The utility value of our research lies in the development and testing of a CNN model

for the automated detection of cardiovascular diseases using ECG data. Our research

thus contributes to the growing body of literature on the use of machine learning tech-

niques in healthcare, particularly in the early detection and diagnosis of cardiovascular

diseases, which is crucial for preventing and treating such conditions.

While the developed CNN model achieved acceptable performance, it performed rela-

tively modest compared to other studies found in literature [18]. Indicating that certain

existing models are more proficient and could be better suited for clinical settings where

high accuracy is critical for patient outcomes.

Given the importance of accuracy in healthcare-related work, it may not be advisable
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to use the developed CNN model in isolation. However, the model could still be used in

a compelling and innovative way. Given that there is a need for increased transparency

around the use of DL models in ECG analysis our model could be used in conjunction

with other CNN models in an interactive online web app. The proposed use-case of such

an application could be to visualize different models performance through explainable

algorithms. In this context, including a model that does not perform at the highest

level could be useful to highlight how it arrives at its predictions and to compare its

performance with other models.

Figure 5.1: Diagram showcasing how a potential WebApp could be structured.

In other words, while our research presents a novel CNN model for automated detec-

tion of cardiovascular diseases using ECG data, its limitations in terms of accuracy

suggest that other models may be more suitable for clinical applications. However,

the developed model could still have utility in an interactive web app alongside other

models, to highlight the differences in performances while providing insights into how

the models arrive at their respective predictions. Additionally, the pipeline developed
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in our research can be used as a starting point for further exploration of the use of DL

techniques in ECG data, particularly in the analysis of the PTB-XL data set.

5.5 Comparison to state-of-the-art models

As mentioned the best edition of the developed CNN model achieved approximately

84.41% accuracy and 79.41% precision. The recall and F1-score for this implementation

returned 43.01% and 0.55 respectively. Looking at several different research papers we

can firstly establish an idea of how well our model performed compared to recent CNN

models.

Among the 19 studies utilizing CNN´s presented in Liu et al. [24], the highest perform-

ing model achieved an accuracy of 99.78%. Similar to our developed CNN this model

utilized 1d convolution. The data set used for training of the model was the PTB data

set, which stems from the same institution behind the PTB-XL data set. Compared to

our developed CNN the difference in accuracy was 15.37 percent. While this difference

is substantial, it is important to note that the size and complexity of the data sets used

in each study may have had a significant impact on the accuracy of the models.

On the other hand, the lowest performing CNN presented, achieved an accuracy of

80.9%, which is 3.51% lower than our developed CNN. This particular study was fo-

cused around the use of a 2D CNN, and utilized a self-constructed data set of 30,000

unique patients. The mean accuracy of the 19 studies utilizing CNNs in this review

article was 95.44%. Therefore, our developed CNN scores are approximately 11% lower

than the mean accuracy of CNNs found in the review article.

Murat et al. [31] also presents a selection of studies centered around the us of CNN´s for

ECG analysis. Based on Table 2.2 it is observable that several of the models achieved

an accuracy as high as 99%. The mean accuracy of the selected studies in Table 2.2

is calculated to be 97.21% which indicates a 12.8% difference when compared to the

developed CNN. In light of the substantial difference in accuracy between the developed

CNN and the mean accuracy from studies presented both review articles, it is clear

that further investigation into the parameters of the network may be beneficial.

76



5.6. Ethical dilemmas and explain-ability

It may also be purposeful to compare the results from our developed CNN to certain

state-of-the-art CNN-LSTM models. As presented in the literature review several

studies found CNN-LSTM models to perform very well when used for ECG analysis

classification [18]. In this regard, the capability of the CNN-LSTM model to capture

both the temporal and the spatial field is often emphasized [24] [31].

For this purpose Table 2.1 from the Background section is relevant. Based on the data

from the table it is evident that the majority of the models utilizing CNN-LSTM struc-

tures performed at relatively high levels. Compared to the developed CNN model many

studies returned significantly better results with several reaching accuracy’s above 95%.

One study did achieve an accuracy of 81.2% which is lower than our model. The

research study in question utilized the 1st China Physiological Signal Challenge data

set. As mentioned in the Background section this data set holds many similarities to

the PTB-XL data set in terms of size and distribution. Given that the rest of the

models were fitted on smaller data sets, there may be a basis to argue that particularly

large data sets such as the PTB-XL data set and the 1st China Physiological Signal

Challenge data set have a negative effect on the overall performance of the model.

Though a specific investigation into the performance of large data sets compared to

smaller is needed to make any meaningful conclusion.

Since the mentioned CNN and CNN-LSTM models are employed in varying contexts

and employ different data sets it is not feasible to draw a direct comparison with

our model. Other factors such as variations in model architecture, hyperparameters,

and training strategies additionally impact the outcome and the performance of the

model. Nevertheless, these comparisons provide some indication that there is room for

increasing the performance of the developed CNN.

5.6 Ethical dilemmas and explain-ability

Given the relatively high accuracy observable in our results, the implementation of

the PTB-XL data set can be deemed successful for our intended purpose. However,

due to the lack of studies employing synthetic data sets, it is difficult to gauge how
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traditional data sets containing real ECG signals compare to synthetic data sets. There

are nonetheless several reasons to argue that synthetic data sets can act as the future of

data in healthcare, and thereby be suitable replacements for established ECG data sets

such as the PTB-XL data set. In particular considering the privacy issues that revolve

around the use of sensitive health data. At the same time it must be stated that issues

of explainability may increase. Given that a model may have only trained on synthetic

data it can be intricate to explain the process to doctors and radiologists. Thus it may

become more troublesome to convince medical professionals that the technology can

be trusted.

A potential solution to this issue could be to train partially on synthetic data sets, and

partially on data sets containing real ECG signals. To that end, an approach in which

DL models pre-train on a larger real data set, before finetuning on a smaller synthetic

data set may be suitable as demonstrated in Strodthoff et al. [44]. In this way natural

ECG data can still be used which may add a layer of security in knowing that the ECG

data is representative of the general population. At the same time it can be helpful in

accounting for new cardiovascular diseases that have not yet been discovered. On the

other hand making use of a synthetic ECG data alleviates some of the concerns related

to privacy.

Throughout our research, implementation and investigation, the importance of explain-

able AI was apparent. This need arises not only to ensure that the model is functioning

correctly before deployment, but also for researchers to gain a better understanding

of its workings during development. For our study when the model was not behaving

correctly during the training process, debugging often became time-consuming and con-

fusing. Although this problematic aspect of dealing with complex models is not new,

it is exceptionally crucial in healthcare related tasks that explain-ability is present at

every stage of the process.

In some cases, researchers may mistakenly believe that a model is functioning properly

and ready for deployment in a clinical setting when, in reality, it is not. An infamous

example of this occurred when a DL model was deployed to classify X-ray images of

healthy and sick patients and achieved high accuracy. However, it was later discovered
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that the model had simply trained to read the label of the corresponding medical

department included in the X-ray image [58]. While we attempted to prevent such

instances through techniques such as pooling and normalization, it is not possible to

conclusively guarantee that unwanted learning behavior doesn’t occur.

Our training process and experiences with understanding the properties of the CNN

confirms that understanding these models before deployment is a necessity. The exis-

tence of multiple legal guidelines that recommend or endorse the use of explainable DL

models further validates this claim [16, 37, 42]. Deploying such models without a clear

understanding of their effects can not be considered ethically sound, as it can become

a matter of life-and-death.

It is in this context that using DL models in combination with explainable algorithms

is pivotal. Methods such as SHAP, Lime and GradCAM have been tried in several

studies and is present in a large quantity of literature [34] [25]. Simultaneously, there

is a growing number of studies applying and investigating these methods, and thus far

the sentiment from the majority of the authors is overwhelmingly positive.

Still, some researchers have expressed criticism regarding certain flaws with the current

trend of explainable algorithms, and put forth the adoption of explainable pipelines

as a viable solution. As mentioned in van de Leur et al. [51] an explainable pipeline

may be a preferred solution to enable visualization and understanding, as opposed to

heat-map based explainable algorithms. Specifically, heat-map based methods such as

SHAP, LIME and GradCAM only account for the temporal location of an important

ECG feature. An exception can come in the form of PSI, which takes use of the

time series derivative in order to emphasize important features [34]. An alternative

application of GradCAM presented in Aufiero et al. [4] may also be effective to handle

this aspect of the ECG signal.

The fact that heat-map based approaches only provide explanations after the prediction

has been made and do not provide insight to the model itself is another drawback that

affirms the need for explainable pipelines [51]. In our case, although not explainable, a

robust pipeline effectivized the process and made it easier to debug and test the model
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to ensure that is was working as intended.

Regardless, there is a clear need for studies enabling medical professionals with the

opportunity to assess and provide feedback on different explainable techniques. The

visual interface of various methods such as SHAP, Lime and GradCAM can in many

cases appear very similar [20] [2]. Therefore, it is important to remember that the

ability of an individual to understand a visual interface is subjective and may influenced

by various factors such as individual learning styles, prior knowledge, and experience.

In other words, what one person perceives as easy and straightforward, another may

find complex and confusing. Ultimately, the intention is for medical professionals to

use these models, and thus their input is the most valuable. By that extension the lack

of studies centered around this in the current literature is concerning. Naturally, it is

also essential to establish guidelines and conventions before general adoption can take

place.

Nonetheless, more research needs to be conducted on this matter if DL for ECG anal-

ysis is to be widely accepted. Recent statistics show that there is a lack of trust that

hinders the overall adoption of such systems [34]. In 2017, a survey carried out across

85 hospitals, namely showed that only around 5% of the hospitals expressed interest in

implementing Artificial Intelligence (AI) solutions. Many of these hospitals were un-

certain about when to start deploying these solutions, and cited the primary obstacles

to be the lack of buy-in from executive and physician technology, as well as a lack of

trust [9] [45].

5.7 Future points of interest

In summary, the research has several notable strengths. Firstly, it thoroughly examines

the relevant literature, demonstrating a comprehensive understanding of the current

state of research in ECG analysis. Secondly, through the development of a working

pipeline and CNN model for ECG analysis, which can serve as valuable contributions to

the field. Another strength is the choice of the PTB-XL data set, which is a large and

rich data set that contains a wide range of ECG signals, enabling the model to learn
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from a diverse set of data. In this regard, the data set contributors are anonymized,

ensuring that the study adheres to ethical considerations and poses no risk to privacy.

At the same time, the research also exhibits certain limitations. The study was con-

ducted on a single data set, which may limit the generalizability of the findings to

other data sets or populations. Additionally, the model was constructed to predict the

diagnostic super-classes, and thereby fails to account for various diagnostic sub-classes

that may be of interest. In this context the limited time-frame of the study can be

highlighted as a hindrance, and it is evident that an extended time-frame may allow

for a more thorough investigation of relevant parameters. Moreover, while our research

provides evidence for the potential utility of CNN´s in healthcare, further research is

needed to validate the use of such models in clinical settings and to assess its impact

on patient outcomes.

Opportunities for future research in this area are vast, and a focus on a more inclusive

and thorough investigation should be prioritized. Implementing other models for easy

comparison, such as RNN´s and CNN-LSTM models can also be considered a purpose-

ful endeavor, that might yield insightful findings. Finally, incorporating explainable

algorithms in future research is vital and can be achieved by one of two ways. Either

through leveraging existing methods such as SHAP and GradCAM or by modifying

the existing pipeline to create an interpretable framework.
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6.1 Findings

In conclusion our findings indicate that there is a clear potential of utilizing CNN´s for

ECG analysis. Specifically, our developed CNN was effective at classifying ECG signals

according to the diagnostic classes; MI, STTC, CD and Hypertrophy. In this context

the structural factor that was found to be most influential was Average Pooling, and

the combination of Average Pooling and Batch Normalization was determined to be

the most effective implementation.

Moreover, through our work we conclude that the use of XAI methods is especially

important to investigate and validate. This is due to the fact that both during the

development process and after deployment, the models may contain errors that are

not properly understood. Needless to say, the outcome of a CNN or any other deep

learning model not functioning as intended in a medical setting can be fatal. In this

context, adoption of explainable pipelines as presented in [51] may be the best way

forward.

At the same time, if the explainable methods are to be widely adopted, then this also

necessitates the need for a discussion around conventions. Given that the experience

of every medical professional is different, their views about what constitutes an under-

standable visualization also varies. Different explainable methods may cause confusion
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between professions working within the same medical facility, and is especially likely

to occur in cases where there is cooperation between doctors from different hospitals

or countries.

6.2 Limitations

The presented research is limited by certain factors. Firstly, the developed CNN was

constructed to make predictions on diagnostic classes representing general cardiovas-

cular conditions, and did not account for various underlying conditions. Secondly, the

lack of testing different model structures to substantiate and further corroborate the

findings is a deficiency. Particularly, given the vast amount of literature supporting

CNN-LSTM models, implementing this specific model-type would be of use. Lastly,

directly applying an XAI method on the developed CNN could bring forth interest-

ing insights to the inner mechanics of the model, and shed light on the feasibility of

utilizing the model in a clinical setting.

6.3 Future works

For future work, the developed pipeline can be utilized as a suitable starting point

for further testing of various factors such as layers, filters, parameters and hyper-

parameters. The pipeline may also be altered to facilitate an explainable process.

Additionally, future works should be centered around the inclusion of medical profes-

sionals in the design process of explainable methods. Although, several studies focused

on deep learning for ECG analysis have included medical professionals, these studies

focus on affirming the feasibility of using the proposed model, and do not examine how

the professionals experience the various XAI methods. Inspiration can be drawn from

a recent study investigating the conditions in which AI can augment human diagnostic

skills [10].
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Appendix A

Code

GitHub repository containing the code for the pipeline, models and data preparation

can be found at: https://github.com/AwaisHameed/cnnPTBXL

89


	List of Figures
	List of Tables
	Introduction
	Motivation and research question
	Objectives
	Structure of the thesis

	Background
	Concepts
	Electrocardiogram:
	Convolutional Neural Network:
	Alternative model-types
	Explainable Artificial Intelligence:

	Regulations
	Right to explanation
	Protection of sensitive health data

	Literature review
	Application and choice of models
	Data sets
	Explainable methods


	Methodology
	Data and data preparation
	Choice of data set
	Data Preparation

	CNN models
	Justification for use of CNNs
	Base CNN
	Model with Max Pooling
	Model with Average Pooling
	Model with Batch Normalization and no Pooling
	Model with Average Pooling and Batch Normalization

	Model evaluation
	Metrics
	Baseline Reference Models

	Tools

	Results
	Performance comparison of pooling method
	Performance comparison with various dropout rates
	Performance comparison with various hidden dimensions

	Discussion
	Performance of model
	Initial results
	Average Pooling
	Batch Normalization
	Average Pooling used in combination with Batch Normalization

	Interpretation
	Impact and generalizability
	Utility value
	Comparison to state-of-the-art models
	Ethical dilemmas and explain-ability
	Future points of interest

	Conclusion
	Findings
	Limitations
	Future works

	Code

