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Abstract

Health care systems all over the world have a long history of adopting technology for being
able to improve care, quality of life and patient survival. Visual information is frequently used
to support medical experts in their daily tasks, such as disease detection and analysis. In this
context, computer vision and medical imaging are important tools to provide essential support.
Furthermore, multimedia data produced by health care systems is growing, and it is a general
misconception that disease detection and assessment are provided exclusively by computer vi-
sion and medical imaging. Core competences of the multimedia community such as integration
and analysis of data from several sources, real-time processing and the assessment of useful-
ness for end-users can play an important role for the successful improvement of health care
systems. The societal impact that multimedia research can have by addressing challenges and
open problems in the field of medicine should therefore not be underestimated.

As a first attempt to address this challenge, our work explores different fields in multimedia
research, starting from annotation of multimedia content over automatic analysis of the content
and efficient processing of the workloads to visualization. Therefore, we have researched and
developed a medical multimedia system addressing a use case with an important societal impact.
This use case is disease detection in the gastrointestinal (GI) tract of the human body to be
able to support medical experts in their work. The early detection of abnormalities in the GI
tract greatly increases the chance of successful treatment if the initial observation of disease
indicators occurs before the patient notices any symptoms and is a non trivial task.

Investigating the field of GI diseases from a multimedia research point of view required
several steps of research and development. First, we looked into a search-based classification
algorithm, which serves as the basis of the system. The developed algorithm is based on in-
formation retrieval methods and has the advantage of being both fast and accurate at the same
time. We also tested the algorithm on different use cases to demonstrate flexibility and accuracy
before we applied it to our medical scenario. Next, we created a complete medical multimedia
system called EIR, after the Norwegian goddess of medicine and healing. We researched and
developed different subsystems for the EIR system. These subsystems are (i) the annotation
subsystem, which makes it possible to collect data and transfer knowledge from the medical ex-
perts into our system; (ii) the detection and automatic analysis subsystem, which is responsible
to detect and analyze the medical multimedia content automatically; and (iii) the visualization
subsystem that provides the information to the medical personnel.

Furthermore, the focus of the EIR system lies on accurate and time efficient processing of
multimedia data within the system. We investigated therefore parallel processing, GPU-based
acceleration and different classification approaches that are evaluated and compared with state-
of-the-art methods such as deep learning.

We demonstrated that the EIR system can outperform state-of-the-art approaches in both
processing speed and detection accuracy reaching detection accuracy above 90% and processing
speed above 300 frames per second. With our good results we could attract several hospitals
for collaboration, and the EIR system is momentarily prepared for being tested and used under
clinical conditions within our collaborating hospitals in Norway, Italy, Japan, Sweden and USA.





Acknowledgements

First of all, I would like to thank my two official and two unofficial supervisors; Pål Halvorsen,
Carsten Griwodz, Martha Larson and Mathias Lux. Without their support and motivation this
work would not have been possible. Martha once told me that it is very important who is your
"Doktorvater". I did not really understand the true meaning at the time but I do now and I
would like to extend her advice: "The people that believe and support you from the begin of
your scientific journey (masters) to the PhD are extremely important throughout the journey to
reach this milestone". I can say without any doubt that I am what I am today because of the
people I met on this journey.

In particular, I would like to thank; Pål for the possibility to do my PhD at Simula even if I
was not the perfect fit for the position, his endless endurance getting used to my strange research
topics and basically giving me total freedom in the work although still guiding me through it.
Martha for her never ending and encouraging enthusiasm, challenging problems and always
lending an ear helping out with problems appearing along the way. Carsten for his challenging
and motivating discussions and feedback - often disastrous to the work at the beginning, though
ending up a lot better. Mathias for his crazy ideas, motivation and teaching me about design
and how to spice up research.

I would also like to give many thanks to all my current and former colleagues in the Media
Performance Group, taking me in as one of their own even if I was a bit of an alien from a
research interest point of view. I will not write individual text to any of you because you are
all equal important, thank you Vamsi, Jonas, Konstantin, Iffat, Andreas, Håkon, David, Minoo,
Olga, Ragnhild, Kjetil, Preben, Lilian and Robin. Next I would like to thank the Multimedia
Computing Group at the Technical University of Delft, especially; Raynor Vliegendhart, Yue
Shi, Alessio Bazzica, Xinchao Li, Christoph Kofler, Wen Li, Babak Loni, Cynthia Liem, Alan
Hanjalic, Carsten Eickhoff and last but not least Victoria from who I learned several important
lessons.

A huge thank you also goes to Tien for being both a very good friend and fellow researcher,
always having an open ear for me and with whom I hopefully will collaborate with through
many more years! I would also like to thank all my co-authors and collaborators. For me, one
of the most interesting and motivating parts of being a researcher is the possibility to work with
different people, creating cool things. I was lucky to met a lot of cool people and together we
performed a lot of interesting research. Special thanks here to Thomas de Lange and Sigrun
Losada Eskeland for showing interest in our work even if it was totally out of their medical
domain. A big thank you also to Herwig and Gerda who are my link to Austria, for always
supporting me and sending survival packs for hard times!

Finally, I would like to thank my family Sunniva, her family and my beloved son Ask.

iii



Especially Sunniva for her love, motivation and support and Ask for being the coolest baby, for
not being born before my submission deadline and being partially the motivation for finishing
fast.

In the case I forgot to mention someone (I hope I did not) a big thank you to everyone I
forgot to mention. As an excuse, I was very tired when I wrote this. I really wonder where the
saying "I slept like a baby" comes from, they truly do not sleep that heavy or much... Anyway,
thanks a lot and:

iv

michael
Stamp



Contents

I Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Medical Multimedia Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Gastrointestinal Tract Case Study . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Colon Polyps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Colorectal Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Colonoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Wireless Video Capsular Endoscopy . . . . . . . . . . . . . . . . . . 21
2.1.5 Medical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.6 Filling the Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Medical Image Analysis and Abnormality Detection . . . . . . . . . . . . . 23
2.2.1 A Short Overview of Machine Learning . . . . . . . . . . . . . . . . 23

2.2.1.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . 24
2.2.1.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.3 Instance-based . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Machine Learning for Automatic Detection of Diseases in the GI Tract 25
2.2.3 A New Trend - Deep Learning . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Current Limitations in Medical Multimedia System . . . . . . . . . . 28

2.3 The Basis of Our System: A Search-based Classification Approach . . . . . 29
2.3.1 Global Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 Feature Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.5.1 Early fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5.2 Late fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.6 Search-based Classification . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.7 Use Cases and Implementations . . . . . . . . . . . . . . . . . . . . . 40

v



2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 The EIR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Annotation Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 Semi-supervised Annotation Tool . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Cluster-based Annotation Tool . . . . . . . . . . . . . . . . . . . . . 45

3.2 Detection and Automatic Analysis Subsystem . . . . . . . . . . . . . . . . . 47
3.2.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Visualization Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Detection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Localization Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 MICCAI Challenge Results . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4 System Processing Performance . . . . . . . . . . . . . . . . . . . . . 62

3.4.4.1 CPU Processing . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Real-time Distribution of Multimedia Workloads in EIR . . . . . . . . . . . 65
3.5.1 Distribution and Offloading of Multimedia Workloads . . . . . . . . . 66
3.5.2 GPU-acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 72
3.5.3 Device Lending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 76
3.6 Proof-of-concept for Multi-disease Classification . . . . . . . . . . . . . . . 78

3.6.1 Multiclass-EIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2 Deep-EIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Papers and Author’s Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 Paper I: LIRE - Open Source Visual Information Retrieval . . . . . . . . . . 91
5.2 Paper II: How ‘How Reflects What’s What: Content-based Exploitation of

How Users Frame Social Images . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Paper III: Exploitation of Producer Intent in Relation to Bandwidth and QoE

for Online Video Streaming Services . . . . . . . . . . . . . . . . . . . . . 92
5.4 Paper IV: Media Synchronization and Sub-Event Detection in Multi-User

Image Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Paper V: Multimodal Synchronization of Image Galleries . . . . . . . . . . 94
5.6 Paper VI: Introduction to a Task on Context of Experience: Recommending

Videos Suiting a Watching Situation . . . . . . . . . . . . . . . . . . . . . . 94
5.7 Paper VII: Right inflight? A Dataset for Exploring the Automatic Prediction

of Movies Suitable for a Watching Situation . . . . . . . . . . . . . . . . . . 95

vi



5.8 Paper VIII: Expert Driven Semi-Supervised Elucidation Tool for Medical
Endoscopic Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Paper IX: Event Understanding in Endoscopic Surgery Videos . . . . . . . . 96
5.10 Paper X: Explorative Hyperbolic-Tree-Based Clustering Tool for Unsuper-

vised Knowledge Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.11 Paper XI: EIR - Efficient Computer Aided Diagnosis Framework for Gas-

trointestinal Endoscopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.12 Paper XII: From Annotation to Computer Aided Diagnosis: Detailed Evalu-

ation of a Medical Multimedia System . . . . . . . . . . . . . . . . . . . . 98
5.13 Paper XIII: Computer Aided Disease Detection System for Gastrointestinal

Examinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.14 Paper XIV: Multimedia and Medicine: Teammates for Better Disease Detec-

tion and Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.15 Paper XV: GPU-accelerated Real-time Gastrointestinal Diseases Detection . 101
5.16 Paper XVI: Device Lending in PCI Express Networks . . . . . . . . . . . . 101
5.17 Paper XVII: Efficient Processing of Videos in a Multi Auditory Environment

Using Device Lending of GPUs . . . . . . . . . . . . . . . . . . . . . . . . 102
II Research Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
I LIRE - Open Source Visual Information Retrieval . . . . . . . . . . . . . . . . . 121
II How ‘How Reflects What’s What: Content-based Exploitation of How Users Frame

Social Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
III Exploitation of Producer Intent in Relation to Bandwidth and QoE for Online

Video Streaming Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
IV Media Synchronization and Sub-Event Detection in Multi-User Image Collections 147
V Multimodal Synchronization of Image Galleries . . . . . . . . . . . . . . . . . . 155
VI Introduction to a Task on Context of Experience: Recommending Videos Suiting

a Watching Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
VII Right inflight? A Dataset for Exploring the Automatic Prediction of Movies Suit-

able for a Watching Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
VIII Expert Driven Semi-Supervised Elucidation Tool for Medical Endoscopic Videos . 173
IX Event Understanding in Endoscopic Surgery Videos . . . . . . . . . . . . . . . . 179
X Explorative Hyperbolic-Tree-Based Clustering Tool for Unsupervised Knowledge

Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
XI EIR - Efficient Computer Aided Diagnosis Framework for Gastrointestinal Endo-

scopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
XII From Annotation to Computer Aided Diagnosis: Detailed Evaluation of a Medical

Multimedia System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
XIII Computer Aided Disease Detection System for Gastrointestinal Examinations . . . 227
XIV Multimedia and Medicine: Teammates for Better Disease Detection and Survival . 233
XV GPU-accelerated Real-time Gastrointestinal Diseases Detection . . . . . . . . . . 245
XVI Device Lending in PCI Express Networks . . . . . . . . . . . . . . . . . . . . . . 253
XVII Efficient Processing of Videos in a Multi Auditory Environment Using Device

Lending of GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

vii





List of Figures

1.1 A complete overview of the human GI tract (shutterstock.com). . . . . . . . . . 4
1.2 An inconclusive list of diseases that can be diagnosed using colonoscopy [139]. 5
1.3 A colonoscopy endoscope ready for the examination of a patient. . . . . . . . . 6
1.4 A wireless capsular video endoscope ready to be swallowed by a patient. . . . . 7
1.5 A Norwegian newspaper article about the danger of colon cancer in Norway. It

describes that colon cancer is an often overlooked problem and that every year
more than 4, 000 Norwegians get infected by it [102]. . . . . . . . . . . . . . . 8

1.6 A colonoscopy room with a colonoscope ready for patient examination [139]. . 8
1.7 A patient swallowing a wireless video capsular endoscope (VCE) [139]. . . . . 9
1.8 An overview of the planed live system. The video frames are captured directly

from the colonoscopy device, analyzed and presented on screen to the doctor in
real-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 This diagram depicts the contributions for each of the in part II attached papers
to the, for this thesis defined, objectives. . . . . . . . . . . . . . . . . . . . . . 14

2.1 An image of an adenomatous polyp taken during a colonoscopy. . . . . . . . . 19
2.2 An example of a large serrated and flat collection of polyps in the colon. . . . . 19
2.3 A picture taken during a colonoscopy that shows a large inflammatory polyp. . 20
2.4 An endoscopic processor connected with the colonoscopy endoscope. . . . . . 21
2.5 An overview of the for this thesis relevant machine learning algorithms includ-

ing their most important features. . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Examples of a polyp image represented as different global feature representa-

tions. It is important to point out that this is not how the features actually look
because they are histograms and not meant to be shown as images, but it can
help people to get an idea about how they work. . . . . . . . . . . . . . . . . . 30

2.7 Pipeline for early fusion of features. The features are first combined into one
large vector and then a decision is made based on this fused feature vector. . . . 37

2.8 Pipeline for late fusion of features. The features are first processed by separate
decision making methods (e.g., a classifier) and then combined. . . . . . . . . . 38

3.1 A complete overview of the EIR system. The system consists of annotation,
detection and automatic analysis and visualization subsystems. . . . . . . . . . 44

3.2 The interface of the semi-supervised annotation tool. The user has only to mark
the area with the disease and enter the name and a short description of it. The
tool then automatically tracks the marked area and stores the examples in a
training dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



3.3 The interface of the clustering-based annotation application that makes the an-
notation process for medical personnel easier and more efficient [142]. . . . . . 46

3.4 This diagram shows the detailed steps performed by the detection part of EIR.
The training data is first indexed by the indexer. The indexer indexes different
types of features from the input data, which are extracted in the feature extrac-
tion part. The indexes are used by the classifier as a model to classify input data.
The classifier performs a search-based classification on the data to get the final
results, which then can be used for the localization determination or presented
to the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Result output of the detection part using the features JCD and Tamura. One can
see that the detection part could almost always find the polyp containing frames.
The first image on the second row is an example for a false negative result [142]. 50

3.6 System output for the detection and localization part after the analysis. It in-
cludes general results per frame and all evaluation metrics that are provided by
the system [142]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 This diagram gives an overview of the most important steps performed by the
localization part of EIR. The localization receives input frames or images con-
taining polyps from the detection part. The input frames are preprocessed and
filtered. In the filtered images curve shaped object detection is performed. This
is followed by ellipse approximation and binary image creation. The output of
this is then used to perform local maximum detection and building of energy
maps. The energy maps are then used to select four locations that are most
probably showing a polyp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Output of the localization part marking the four possible locations of polyps
determined by the algorithm. True positives are marked with green crosses,
false positives are marked with red crosses. The exact area of the polyp is
highlighted with transparent blue. The algorithm gives four possible locations
for a polyp in the frame. For future work, this will be reduced to one cross per
frame (the one with the highest probability to mark a polyp) [142]. . . . . . . . 53

3.9 Visualization of the output of the automatic analysis subsystem of EIR using an
extended version of the semi-supervised annotation tool. The time line below
the videos indicates with red color where significant findings are located in the
video. The tool also provides additional image processing functionalities such
as filtering of specular light and edge detection. . . . . . . . . . . . . . . . . . 54

3.10 A web-based visualization tool for the output of the automatic analysis subsys-
tem of EIR. The application is built in a way that it is easy to use and expandable
with sharing features in the future. The red color in the time line shows where
significant endoscopic findings are located with a tag on top of it naming the
finding. The location is marked with a circle around the disease. . . . . . . . . 55

3.11 Detection performance in terms of FPS depending on the number of CPU cores
and the resolution of the videos. The videos are wp_4 with a resolution of
1, 920×1, 080, wp_52 with a resolution of 856×480 and np_9 with a resolution
of 712× 480. For all videos, we observe that the required frame rate is reached
with 16 CPU cores used in parallel. . . . . . . . . . . . . . . . . . . . . . . . . 63

x



3.12 Localization performance in terms of FPS depending on the number of CPU
cores and the resolution of the videos. The videos are the same as for the
detection part. As the results show, the performance depends heavily on the
resolution of the videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 This chart shows the overall memory consumption for all three videos in the
detection part. A maximum is reached at around 14 used CPU cores. Further
investigation is needed to see if the detection part is scalable. . . . . . . . . . . 65

3.14 This chart shows the overall memory consumption for all three videos in the
localization part. This shows us that the localization part scales well in terms of
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 The analysis of the memory consumption of the detection part showed us that
the Java garbage collector always uses the complete memory that it can get. It
is automatically set to around 6GB on our system. . . . . . . . . . . . . . . . . 67

3.16 This experiment showed that the available memory for the detection part does
not influence the FPS performance. The Java memory scheduler takes always
the whole memory that it can get but it also works perfectly with only 1GB.
This is a proof that the detection part is not dependent on memory and therefore
memory is not a bottleneck for scaling the system. . . . . . . . . . . . . . . . . 68

3.17 This chart shows how the amount of training data influences the performance
of the detection subsystem in terms of detection accuracy and FPS output. The
training data has been reduced to 1/2 of the original size (ca. 8, 800 frames) and
1/3 (ca. 5, 800 frames). The chart shows that there is no significant difference
for the detection performance and the FPS. The smaller indexes can achieve
even a better F1 score for the video with a resolution of 856× 480 [142]. . . . 69

3.18 The main processing application consists of the indexing and classification parts
and uses the GPU-accelerated image processing subsystem to increase the pro-
cessing performance. The image processing subsystem provides feature extrac-
tion and image filtering algorithms for the pipeline. Compute-intensive pro-
cedures are executed by a stand-alone Cuda-enabled processing server. The
interaction between the different architectures is performed via a GPU CLib
shared library which is responsible for maintaining connections and handling
data streams with the Cuda-server [127]. . . . . . . . . . . . . . . . . . . . . . 72

3.19 The figure shows an example of our FCTH feature implementation using the
GPU extension of the EIR system. The input image is split into a number of
non-overlapping blocks that can be distributed. Each of the blocks is processed
by two GPU-threads. The main processing steps include color space conversion,
size reduction, shapes detection and fuzzy logic computations [127]. . . . . . . 73

3.20 This image show the performance of the improved EIR system for full HD
frames. It reaches real-time performance (RT line) with 30 FPS for full HD
(1920× 1080) videos on conventional desktop PC using only 4 CPU cores and
5 Gb of memory. The maximum frame rate is around 36 FPS using 8 CPU
cores. The Java and C implementations cannot reach real-time performance on
the used hardware [127]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



3.21 This figure shows the performance of the EIR system for non HD frames. The
videos WVGA1 (856 × 480), WVGA2 (712 × 480) and CIF (384 × 288) can
be processed in real-time by the improved EIR system using only 1 CPU core.
The maximum frame processing rate reaches more than 200 FPS [127]. . . . . 75

3.22 The processing time decreases marginally with an increasing number of used
CPU cores for a single full HD frame. This is due to the CPU-parallel imple-
mentation of feature comparison and search algorithms which are not as com-
pute intensive as the feature extraction processes. Java and C implementations
reach the required frame processing time with 4 CPU cores (hyper-threading
cannot handle CPU intensive calculations efficiently for all 8 possible which
are 4 real and 4 virtual cores on the used system) [127]. . . . . . . . . . . . . . 75

3.23 Using EIR with GPU support for processing smaller frame sizes results in a
processing time far below the real-time margin. The minimum is reached with
5 milliseconds. This is a prove for the high system performance and ability to be
extended by additional features or to process several video streams at the same
time [127]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.24 Frame processing time for several full HD streams in parallel using the different
experimental setups for GPU acceleration (table 3.9) [126]. . . . . . . . . . . . 77

3.25 The overall system performance of multiple video streams in parallel for all
experimental setups using GPU acceleration [126]. . . . . . . . . . . . . . . . 77

3.26 Detailed steps for the multi-class detection part of the EIR system. Several
search-based classifiers are used for different classes, which are combined using
an additional classification method. . . . . . . . . . . . . . . . . . . . . . . . . 79

3.27 Detailed steps for the neural network (deep learning) implementation of the
detection called Deep-EIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.28 Example for anatomic findings (classes) in the multi-class dataset. The classes
are blurry fame, cecum, normal colon mucosa, polyp, tumor and Z-line. . . . . 81

xii



List of Tables

2.1 Performance comparison of polyp detection approaches of state-of-the-art sys-
tems. Not all performance measurements are available for all methods. Never-
theless, including every available information gives an idea about each method’s
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Table of all global features tested and supported by EIR. Feature is the name of
the feature. Dimension/bins shows the size of the feature vector and Captures
indicates which type of characteristic of the image/frame is captured and incor-
porated in the feature: c: standard color information; cd: how color pixels are
distributed to each other; fc: a fuzzy color scheme; t: texture attributes such as
edges, gradients or other texture characteristics; jh: combine different attributes
likes for example texture and color of pixels. . . . . . . . . . . . . . . . . . . . 31

3.1 Overview of all videos used for the experiments. For each video name, resolu-
tion and polyp occurrence is reported. . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Leave-one-out cross-validation for all, by the EIR system supported, features [142]. 58
3.3 Top 20 results of the performed experiments for late fusion. Each combination

contains two image features for the video wp_61, sorted by F1 score [142]. . . 59
3.4 Performance evaluation by leave-one-out cross-validation for all available videos,

using JCD and Tamura features combined via late fusion [142]. . . . . . . . . . 60
3.5 Performance evaluation of the localization algorithm [142]. To be able to deter-

mine the true recall in terms of finding the exact location of the polyp, the false
positives have also to be counted as false negatives (because the localization al-
gorithm in the current state cannot not determine if their is a polyp in the frame
or not). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Results of the MICCAI polyp localization challenge [142]. . . . . . . . . . . . 61
3.7 Results of the MICCAI polyp detection challenge. The table shows the detec-

tion latency in milliseconds and F1 score [142]. . . . . . . . . . . . . . . . . . 61
3.8 Performance evaluation of the indexing part. Four different datasets with dif-

ferent sizes have been tested to show the scaling capability of the indexing
part [142]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 This table shows the used hardware and the configurations for the different con-
ducted experiments. GPU1 to GPU3 are local GPUs and GPU4 is lent via device
lending [126]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 Confusion matrix and standard metrics for the six-class classification perfor-
mance for Multiclass-EIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



3.11 Confusion matrix and standard metrics for the six-classes detection performance
evaluation for Deep-EIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv



Part I

Overview

1





Chapter 1

Introduction

A huge part of today’s life is related to multimedia content and also the health care system
produces more and more multimedia content. The estimated size of data in the health care
system for the whole world is around 162 exabyte with an estimated increase of 2.5 exabyte per
year [11]. One can see that the amount of data that is created by the medical field will in the
future reach gigantic scales [142], which comes with several challenges, like how to analyze,
store or transmit it.

Before processing health related multimedia data to, for example, support medical doctors,
a very important but also challenging aspect is the understanding, analysis and deployment of
the content. When it comes to consumption by the medical users, like in video streaming based
patient examination, communication or other medical tasks, the time dimension regarding speed
and near real-time representation is important. Another problem that comes naturally with a
large amount of data is how to find data efficiently and how to make such an immense amount
of data retrievable. Because of the large amount of multimedia data in the health care system,
parallel processing and elastic heterogeneous resources are important to achieve timing support
for multimedia workloads by being able to process a large amount of data in parallel at the
same time. In this work, we investigate how multimedia workloads in the medical field can be
efficiently and automatically analyzed to support medical experts in their tasks.

Since the medical field by itself is huge, we decided to specifically address one area in
this field. We decided for the human gastrointestinal (GI) system (figure 1.1) because it can
potentially be affected by many types of diseases that are visually distinguishable. This choice
is also supported by the fact that the most common cancer types are located in the GI tract [192].

An accurate automatic medical analysis system will have high impacts in the medical sector
influencing patient survival rates, clinical work flows and costs. In the GI field, medical imaging
has created visual representations of the interior of a body. However, to automatically detect and
locate diseases, image representations are not sufficient. There is a need for image and video
processing, analysis, information search and retrieval, combination with other sensor data and
medical experts in the loop, and it all needs integration and efficient processing [142].

This work contributes to this by investigating efficient analysis and processing of multimedia
workloads in the field of GI endoscopy with the goal to research new methods and in the best
case to create a complete prototype of a medical multimedia system.
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Figure 1.1: A complete overview of the human GI tract (shutterstock.com).

1.1 Background and Motivation

The human digestive system can potentially be affected by many types of diseases. For ex-
ample, three of the six most common cancer types are located in the GI tract, with about 2.8
million new luminal1 GI cancers (esophagus, stomach, colorectal) yearly and a mortality of
about 65% [192]. Early detection is critical for the outcome, level of treatment and survival
of the patients. Common diseases in the GI tract, beside colorectal cancer (CRC), include
gastroesophageal reflux disease, peptic ulcer disease, inflammatory bowel disease, celiac dis-
ease (genetic autoimmune disorder that leads to problems with the digestion of gluten food)
and chronic infections. Some visual examples of the most common diseases can be found in
figure 1.2. The examples in the images range from a normal polyp to advanced polyps.

As Verdens Gang (a Norwegian Newspaper) describes (figure 1.5), Norway has one of the
highest incidences of CRC worldwide and the numbers are increasing. All possible GI diseases
have a significant impact on the patients’ health-related quality of life [18]. Consequently,
gastroenterology is one of the biggest medical branches.

Here, the manual endoscopy, where the doctor inserts an endoscope in the patient, either via
the mouth or the anus, is the recommended standard for detection and examination. An example
of an endoscope used for such an examination can be found in figure 1.3. An alternative to the
manual colonoscopy is to perform the examination using a camera pill, which is a wireless
capsular video endoscope (VCE) that can be swallowed by the patient and is able to record a
video from the whole GI system. An example for a VCE device is shown in figure 1.4.

However, scheduled testing (screening) of a population for a complete country is challeng-
ing due to high costs, limited willingness by the patients to undertake the unpleasant procedure,
high time consumption for the medical experts and shortage of qualified medical personnel.

1A structure inside the space of a tube-like structure. For the human body, this can for example be the nasal
tract or intestines.
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(a) Normal polyp (b) Colorectal cancer (c) Ulcerative colitis (d) Ileum

(e) Diverticula (f) Blood/Bleeding (g) Erosion (h) Tattoo

(i) Normal Vessel (j) Melanosis (k) Erythema (l) Advanced Polyps

Figure 1.2: An inconclusive list of diseases that can be diagnosed using colonoscopy [139].

Early detection is critical for the outcome, level of treatment and survival. Screening for CRC
on a regular basis is therefore recommended. Statistics show, for instance, that the life-time risk
of getting CRC, the second most common cancer for both genders, is 6% [38].

However, colonoscopy (the endoscopic examination of the colon) is unpleasant for the pa-
tients, each requires about two man-hours of medical personnel and often lesions are missed
because of tiredness of the medical doctor or a specific part in the colon was not reachable due
to narrow passages in the colon.

In the USA, colonoscopy is the most expensive screening process with an annual cost of $10
billion dollars, i.e., an average of $1, 100 per examination (up to $6, 000 in New York) [172,
173]. In the UK, the costs are around $2, 700 per person [153]. In Norway, screening costs
around $1, 600 per patient [114]. Obviously, scaling this to a population-sized cohort2 is very
resource demanding and incurs large costs.

Hospitals record, store and process large amounts of data. However, the collected data is not
used efficiently and holds a lot of potential, for example, by using it for efficient and accurate
automatic analysis or by researching and developing live computer assisted diagnosis based on
it. This is emphasized by the following comment from a medical doctor from one of our partner
hospitals:

"I have a lot of data lying around. Like for example images, videos, sensor logs, patient
records and so on. Unfortunately, I am not able to use all the different types of data like I would

2A cohort is a subset of people with a shared characteristic. For CRC screening in Norway this would be
everyone above 50 years.
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Figure 1.3: A colonoscopy endoscope ready for the examination of a patient.

like to do. They are just stored on a computer somewhere. I even don’t know where, and I don’t
think the IT support really know either... Sadly, we are collecting a lot of data, but we do not
benefit from it at all. Do you have any idea what we can do with such data? I would be for
example really nice if I could search for similar cases in our image database."
– A doctor in the Vestre Viken Hospital in Norway, September 2015 [139].

After collecting this and many similar statements about not enough time for manual analysis,
we teamed up with specialists in the area of GI diseases to investigate how multimedia research
can improve medical systems. We soon detected that the multimedia data in the medical field
has huge but not used potential. In this work, we discuss why multimedia researchers are needed
in the medical field, why medical image processing alone is not the key to solve their challenges
and we also present such a medical multimedia system built for the GI endoscopy use case.

An international cooperation of computer science researchers, medical experts and manu-
facturers of medical equipment has been established and will also continue the work after this
PhD. The main goal is an automated detection and interpretation of lesions and diseases in the
GI tract and subsequently remedy the shortage of qualified medical personnel by computerizing
and automating some of the most complex and labor-intensive task with the help of multimedia
methods and technology.

1.2 Problem Statement

To aid and scale GI tract examinations, we have started inter-disciplinary research of a multi-
media system, called EIR after the Norwegian goddess of healing, which supports endoscopists
in the detection and interpretation of diseases in the entire GI tract. The overall goal is to
develop both, (i) a live system assisting the visual detection of diseases during colonoscopies
that is verified with different use cases, and (ii) a future fully automated screening for the GI
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Figure 1.4: A wireless capsular video endoscope ready to be swallowed by a patient.

tract using VCE, i.e., a small capsule type device with an image sensor. These aims come with
strict requirements on the accuracy of the detection in order to avoid false negative findings
(overlooking a disease) as well as low resource consumption. The live-assisted system also
introduces a real-time processing requirement (defined as being able to process at least 25-30
frames or images per second (FPS)) [139].

The research question for this thesis is: How can multimedia data in our GI tract use
case efficiently be exploited to support the medical experts in disease detection and live pa-
tient examinations? The goal of this thesis is to be a first cornerstone for building a complete
multimedia system that can help to answer parts of our research question to achieve the overall
goal and have societal impact by helping people to survive lethal diseases. From our question,
we define the problems targeted by this thesis as following:

Main Objective: Research and develop a medical multimedia system that integrates and com-
bines state-of-the-art tools with new and enhanced algorithms for detection and local-
ization of pathological endoscopic findings and anatomical landmarks in the GI tract.
The system should include the whole pipeline from content creation and annotation, over
learning and analysis to finally visualization of the output. The mechanisms should be
combined in an extensible distributed architecture with real-time processing and efficient
resource consumption for massive scale, and high accuracy.

Sub-objective 1: Research and develop a subsystem that can be used by the medical doctors to
annotate videos or images efficiently. Such an annotation tool has to be easy to use and
understand by the medical experts. Furthermore, it should be designed in a way that it
can help them to minimize the amount of time that they have to invest for the annotation
task.

Sub-objective 2: Research and develop a subsystem for computer-based detection and deci-
sion supported for live endoscopies and VCEs. During the live colonoscopy performed
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Figure 1.5: A Norwegian newspaper article about the danger of colon cancer in Norway. It
describes that colon cancer is an often overlooked problem and that every year more than 4, 000
Norwegians get infected by it [102].

Figure 1.6: A colonoscopy room with a colonoscope ready for patient examination [139].

with the equipment shown in figure 1.6, the video should also be analyzed by our system
(as shown in figure 1.8) for computer-assisted detection and localization, giving the clin-
icians a signal if an endoscopic finding is detected. Furthermore, the system should fully
automatically analyze videos recorded by VCEs (figure 1.7). Moreover, enable future
large scale first level automatic screening, an easier (home-based) access and increased
participation due to decreased discomfort for the patients.
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Figure 1.7: A patient swallowing a wireless video capsular endoscope (VCE) [139].

Figure 1.8: An overview of the planed live system. The video frames are captured directly from
the colonoscopy device, analyzed and presented on screen to the doctor in real-time.

Sub-objective 3: Visualization of the automatic findings from examinations in an own sub-
system, i.e., decrease time spent by medical personnel in reporting. Furthermore, the
subsystem should provide the automatic results and the collected data for institutions in
an easy to use way that can be used to support training of gastroenterologists.
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1.3 Scope and Limitations

Based on the research question and its objectives described in section 1.2, the scope of this
thesis is on researching a complete medical multimedia system from annotation to visualization
for the use case of disease detection in the GI tract, using mainly video data but prepare the
system for the usage of different data types.

We decided to limit the focus of this initial phase of our larger project to polyp detection
in the GI tract using mainly videos because of two main challenges. The first one is the large
number of possible diseases and their different visual appearances in the GI tract. The second
one is the lack of publicly available data for different diseases, which makes it hard to evaluate
and compare methods. At least for the polyp use case their are some datasets available that can
be used for the evaluation of the methods researched and developed for this work.

Other limiting factors are the contrasting types of equipment used in different hospitals and
how the data is collected by the medical doctors. For example, doctors in our partner hospitals in
ASU Mayo, Vestre Viken Hospital Trust, Rikshospitalet and the Karolinska University Hospital
use different endoscopes for collecting their videos. This leads to videos and images with
different attributes like different resolutions or light conditions. Furthermore, they have different
standards for their examinations, for example, when to take a picture or a video or how long
the recorded videos should be. In Karolinska, for example, doctors do not record videos at all
and rely on extensive documentation using images. In Vestre Viken, medical experts store short
video clips of the most important findings in combination with images. To make the system
useful for the different hospitals and configurations, it should be modifiable based on each of
them, which in our case means that it should be trainable with the individual data from each
hospital if necessary.

It is important to point out that even with our focus to the polyp use case, the system is built
in a way that it can easily be extended with different diseases if training data is available. As
additional scopes, we define that the system should be verified with different use cases to show
that it is generalizable, and that it supports efficient processing in terms of time and amount of
data.

1.4 Research Methods

The ACM Education Board created in 1989 by a task force on the core of computer science,
determines and characterizes the structure of how research in computing, should be approached.
This report [30] defines computer science in its essence as an intersection between several cen-
tral processes. The central processes are applied mathematics, science and engineering. These
central processes are basically reflected in the paradigms of (i) theory, (ii) abstraction and (iii)
design.

For this thesis, we worked a lot on practical system aspects relating most to the design
process. This has been done by creating prototypes for a disease detection system that can be
used in hospitals. By working close with medical personal like the Vestre Viken Hospital Trust
and the Karolinska University Hospital, we gained insights about domain specific requirements
and knowledge. Nevertheless, the thesis touches on the elements of all three processes. The
following gives and overview how the thesis fits within each process.
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• Theory: The theory process is responsible for defining and characterizing the objects
under study by formulating and hypothesize possible relationships. Furthermore, it is
characterized by determining relationships among objects, verifying their correctness and
interpreting the results.

For the theoretical part, we touched upon elements of image processing in 2D geometries,
human interpretation of multimedia content and linear algebra, etc. In the design of the
algorithmic basic for the system, we developed a search-based classification algorithm
and as one of the use cases the theory of intentional framing of images.

• Abstraction: The abstraction process is used for modeling and emerges from experi-
mental scientific methods. While a researcher is investigating a problem, a hypothesis is
formed, a model created, experiments designed and finally data collected and analyzed.

We use experiments and different datasets to verify our hypothesizes. We also apply
it to different use cases to show that is has potential to be generalized and applied to
other problems than the medical use case. We explore image retrieval techniques for
classification. We perform several image and multimedia data processing operations in
the different use cases. Furthermore, we study the performance of our system in terms of
accuracy and speed. For some of the use cases, we also study the users response to our
solution. To achieve this, we often used crowdsourcing and designed several user studies.

• Design: The last process is design, which is closely related to engineering. This involves
researchers to state requirements and solutions, followed by designing and implementing
a system. This process is concluded with and evaluation of the system.

All the theories and abstractions presented in the thesis are actually implemented in a real
world system and tested with real world data such as user feedback. The system uses
multiple architectures and devices. Parts of the system are tested and used by medical
personnel to verify if they are useful or not.

1.5 Contributions

The summarized main contributions of this thesis are:

• (i) Technical development of a medical multimedia system called EIR including anno-
tation, detection and visualization tools that demonstrates the potential of multimedia
research in the health care system.

• (ii) Develop an efficient, generalizable content-based method to process multimedia data.

• (iii) Research how distributed processing can help to achieve real-time performance for
medical multimedia workload processing.

• (iv) Show why the multimedia community should apply their research in medicine, and
illustrate how multimedia technology and methods can be used in the medical field to
improve work flows, patient care and most important possible save lives.
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• (v) Implementation and presentation of prototypes and demos of the system and making
parts of it open source.

• (vi) Writing and publishing several research papers about our findings and experiences
and share it with the community.

All main contributions of the thesis are supported by publications in top tier conferences or
journals. The diagram in figure 1.9 gives an overview about which of the attached papers con-
tribute to which objectives. In more detail, the main contributions in coherence to the objectives
defined in section 1.2 of the thesis are:

• Contributions to the main objective: We developed the EIR system for automatic
detection of lesions in the GI tract. The system consists of an annotation, a detection
and localization and a visualization subsystem. This system has been researched and
developed with the help of medical experts in our partner hospitals in Norway, Sweden,
USA and Austria. The medical experts helped by giving feedback, explaining their field,
testing the system and providing data [142, 143, 127, 145, 126].

Using the ASU Mayo dataset [168], we showed that EIR reaches high performance in
terms of accuracy and processing. For the classification part, we can report a sensitivity
of almost 98% and a precision of almost 94%. This means that EIR is able to find polyps
in almost all cases with a high precision. This can help the medical experts to save time
and lives [142, 143, 127, 145, 126]. We could also show that the EIR system is able to
perform multi-class classification and that the search-based Multiclass-EIR approach is
able to outperform Deep-EIR, which is based on state-of-the-art deep learning techniques.
Nevertheless, it is important to point out that the used dataset is limited in size and that
evaluations on larger amount of data are recommended as soon as the data is available.

Moreover, we compared EIR with other existing systems and participated in a classifi-
cation challenge where we could show that we outperform or reach at least same per-
formance in accuracy as state-of-the-art methods and that we are leading in terms of
processing performance [142, 126, 145].

For each part of the EIR system, we developed working prototypes and demo applications.
These prototypes and demo applications have been presented at conferences [4, 142, 126,
145].

For the real-time processing challenge, we showed that EIR can process at least 300 FPS
for polyp detection, which is a good indicator that we created a scalable medical multime-
dia system able to process data in real-time [142]. We researched and implemented differ-
ent ways of distributed and parallel processing by using different architectures to improve
the performance of the EIR system. One of the methods that we researched is the distribu-
tion of the detection and localization part on graphics processing units (GPUs) [127, 145].
Another method that we researched was to distribute the EIR workloads via device lend-
ing [74, 126]. Both methods improved the processing performance significantly [74, 126].

We showed the potential of multimedia research in the medical field and showed possible
further directions and research topics using the EIR system as an example use case [139].
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We contributed to two open source projects: Lire, in the field of content-based image
retrieval [97], and OpenVQ, on video quality [157]. We also released the base algorithm
of EIR as an open source project (called Opensea [104]).

Finally and most important for us, we contributed with a medical multimedia system for
GI examinations that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of EIR, we researched
several prototypes and techniques to make it easier and more efficient for the medical
experts to transfer their knowledge to our system. For this, we explored and developed
semi-supervised and cluster-based annotation tools [4, 144]. Based on the findings of one
of our annotation tools, we developed a model that can be used to understand events in
endoscopic surgery videos better than before and annotate this videos more efficient [49].

• Contributions to sub-objective 2: As the basis for the EIR system, we developed a
search-based classification algorithm that uses global image features, reaches good clas-
sification performance and is very fast at the same time [136]. We developed the theory
of intentional framing, which can help to explain why people take pictures and what they
want to achieve with them [136]. We researched a method that can be used to accept or
discard crowdsourcing workers for content annotation tasks by combining search-based
classifiers with crowdsourcing information [141]. We created and researched a prototype
of an intent-based video streaming system that uses the intentional framing method to
save bandwidth and preserve quality of experience for video streaming [131]. We re-
searched how the search-based classifier can be used to detect and synchronize events in
image collections [196, 195]. We researched how the context (a certain watching situa-
tion) influences the quality of experience for users when they are watching videos. As
a use case, we started with watching videos during a flight. We hosted a MediaEval
benchmark task [138] about this topic and published a dataset [137].

Based on the use cases addressed in the thesis and the EIR system itself, we showed that
the search-based classification algorithm is well suited to be applied to several different
use cases that involve image classification problems [136, 141, 131, 196, 195, 138, 137,
142, 143, 127, 145, 126].

• Contributions to sub-objective 3: We researched different types of visualization for the
output of the EIR system. The visualization includes a specific, for research and medical
experts developed application [4] and an easier-to-use, web-based version [4, 145]. The
visualization approaches can visualize all possible outputs of the EIR system [142].

• Additional contributions: Here we list contributions that have been achieved during
the PhD that are not related to the main topic of the thesis but were conducted because of
it. These contributions are:

We researched how multimedia and art can be combined to make people understand dis-
abled people in a better way by developing a game that allows the player to experience a
house from a blind person’s point-of-view [140].

We developed a serious game that can simulate the functionality of an eye-tracking de-
vice. Based on a crowdsourcing study, we could show that the data obtained by the game
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Figure 1.9: This diagram depicts the contributions for each of the in part II attached papers to
the, for this thesis defined, objectives.

can be used to find areas of interest in images [134]. We also published the data obtained
in this study as a publicly available dataset [133].

We researched how serious games can be used to make scientific content better accessible
for the broader population. Therefore, we developed two game prototypes and tested them
with real users [98, 108].

We explored how multimedia methods can be used to find manipulations in online content
like images and videos, and how to verify that the content has not been manipulated [13].
We also published a dataset that we collected during this study [26].

We researched how the design of complex crowdsourcing tasks can influence their out-
come on the use case of 3D reconstruction of soccer players. We published a best practice
paper about design and test of such tasks [191] and published a dataset obtained in the
study [132].

We looked into the problem of how crowdsourcing can be used in subjective studies such
as quality of experience in videos. For this, we looked at different tiling strategies in a
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football video streaming system [42]. Based on this research, we also investigated how
too much control can have a negative influence on a crowdsourcing study and reported
our findings, showing that crowdsourcing can lead to a self-fulfilling prophecy [135].

In addition to the above contributions, the author also supervised several master students, or-
ganized workshops and was part of program committees for conferences. We also collaborated
with the Cancer registry of Norway in a project that tries to increase awareness for human pa-
pillomavirus infection (HPV) and cervical cancer. The cancer registry of Norway started a big
user study based on the application, which we helped to develop in December 2015 [108, 98].

1.6 Outline

We decided to focus first on workloads in terms of annotation, analysis and visualization. After
we developed methods that can be used for our use case and achieve promising results, we
wanted to investigate the performance and how it could be improved using parallel processing.

The rest of this thesis is organized as follows, giving an introduction to the main ideas that
are in more depth described in the attached papers in section II:

Chapter 2: Medical Multimedia Systems: We give more background information about the
GI tract use case that we chose as a first target for the EIR system. We also present related
work focused on other medical multimedia systems and methods. This is followed by a
presentation of the basis algorithm of EIR and how we developed it including an overview
of the related work and used techniques. Finally, we conclude with a discussion about the
papers explaining the search-based algorithm and the use cases that we used to evaluate
it in detail.

Chapter 3: The EIR System: We describe the complete EIR system. The description is split
up in the three main parts. Firstly, we give a general overview, followed by a description
of the annotation, detection and localization and visualization subsystems including some
experimental results and discussion of real world scenarios for the system. We also de-
scribe our improvements in terms of processing performance after the EIR system worked
as intended and could be used for testing. Further, we discuss the challenges of real-time
distribution, which we faced for this thesis. This is followed by a description of the GPU-
and device-lending-based improvements of the performance.

Chapter 4: Conclusion: We summarize and conclude this thesis and present ideas and con-
cepts for further studies in the intersection between GI endoscopy and medical multimedia
systems.

Chapter 5: Papers and Author’s Contributions: Finally, we present all core research pa-
pers that are included and discussed in this thesis. For each paper, we include a descrip-
tion of the author’s contributions to it and indicate to which objectives it contributed.
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Chapter 2

Medical Multimedia Systems

In general, a medical multimedia system is an interactive system, that provides support for di-
agnostics, examination, surgery, reporting and teaching in a medical setting by combining all
available information sources and putting them in the hands of medical professionals or pa-
tients [139]. An important point to add to this definition is that some medical information sys-
tems may be fully automatic, but we still consider them interactive, since a medical professional
and/or a patient must be in the loop to provide input, interpret and act on the results.

When we started looking into the field of medical multimedia systems, we quickly found
out that no complete medical multimedia system for analyzing multimedia data containing in-
formation about any parts of the GI tract in real-time exists. A complete system has to fulfill
several requirements. These requirements include:

• (i) Efficient real-time processing capabilities, which means that the system should be able
to process data so fast that it can be used by medical experts during live examinations.
This includes being able to process data produced by standard colonoscopy, which has
higher resolutions and needs to be processed in real-time, and being able to process data
produced by pill cams (VCEs), which differs in resolution and amount of data to process
from the standard colonoscopy but does not have to be processed in real-time.

• (ii) A pipeline for the complete system, which means transferring the medical knowl-
edge into the system using annotation tools, an automatic analysis part and a part for the
presentation of the systems’ output.

• (iii) Possibility to extend the system with different diseases like bleeding or tumors.

Detection of diseases in the GI tract is mostly focused on polyps. The main reasons are the
lack of data related to other GI tract disease indicators and that polyps are predecessors for
CRC, which makes them more interesting from a medical point of view since an early re-
moval of a polyp significantly decreases the chance for CRC. Automatic analysis of polyps in
colonoscopies has been in focus by research for a long time and several studies have been pub-
lished [184, 187, 183]. However, not many complete systems exist, and none of them is able
to perform detection or support doctors by computer aided diagnosis during colonoscopies in
real-time. Furthermore, all of them are limited to a very specific use case, which in the most
cases is polyp detection for a specific type of camera.
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2.1 Gastrointestinal Tract Case Study

The GI tract is a complex system and can be affected by various diseases where CRC is one of
the most important and a major health issue world wide. Some examples of these diseases have
already been depicted in figure 1.2. For this work, we focus on polyp detection since this is
the use case with the most available data, but we also give a proof-of-concept for multi-disease
detection with a smaller dataset from one of our partner hospitals. CRC is, as mentioned before,
one of the most severe disease in the GI tract and often caused by not detected polyps.

2.1.1 Colon Polyps

Polyps, as shown in figure 2.1, can be found in different parts of the body like the GI tract, nose,
urine bladder or stomach. A colon polyp is a cluster of cells that can occur on the wall of the
colon and often sticks out of the wall as a small hill like structure [160].

Colon polyps are often harmless, but over time they can develop into cancer, which is fatal
if not detected early enough. Polyps can be developed at any age, but the chance is higher if
a person is older than 50 years [160]. Moreover, a overweight or smoking person has higher
chances to get polyps. These polyps do normally not cause any symptoms, and therefore, it is
important to participate in regular screening. Early detected polyps can normally be removed
completely without any long term problems. Polyps can be separated into three main categories,
i.e., adenomatous, serrated and inflammatory [166]:

• A polyp is called adenomatous if it is in an early stage of cell change. An example for
an adenomatous polyp can be seen in figure 2.1. Around two thirds of all polyps are ade-
nomatous, but only a small percentage of them develops to cancer (becomes malignant)
[91].

• A polyp that has a jagged edge, as shown in figure 2.2, is called serrated. Depending on
the size and the location of the polyp, it might become cancerous. Smaller serrated polyps
in the lower part of the colon, also called hyperplastic, are not very often malignant (in
a dangerous state). Bigger serrated polyps, that are normally located in the upper colon
and are often also very flat, have a high chance to be precancerous [91].

• An example for the last type of polyps, the inflammatory polyps, can be found in figure
2.3. These polyps are often caused by other diseases like Crohn’s disease or ulcerative
colitis. Inflammatory polyps are not as dangerous as for example large serrated polyps,
but the disease that are the reason for them can largely increase the overall risk to get
CRC [176].

In this thesis, we do not distinguish between the different types of polyps, simply because
medical experts will remove every polyp over a certain size that they detect because of the
risk of getting cancer at a later stage without knowing in beforehand. Nevertheless, future im-
provements of EIR could include different classes for different types of polyps to, for example,
improve the reporting of findings.
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Figure 2.1: An image of an adenomatous polyp taken during a colonoscopy.

Figure 2.2: An example of a large serrated and flat collection of polyps in the colon.

2.1.2 Colorectal Cancer

The development of CRC can be divided into five stages [128]. CRC is in stage 0, if it has not
grown beyond the inner layer of the colon, which makes it hard to find in this stage. In stage 1,
CRC has grown beyond the mucosa (the membrane on the wall of the colon) but it did not
spread to lymph nodes or other places in the colon. In stage 2, the cancer has grown trough the
wall of the colon and began to spread to nearby organs and lymph nodes. In stage 3, the CRC
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Figure 2.3: A picture taken during a colonoscopy that shows a large inflammatory polyp.

has grown trough all layers of the mucosa and spread close to several lymph nodes and organs
but did not start growing on them. In the final stage 4, CRC has continued to spread and started
growing on several lymph nodes and more than one distant organ (such as the lung or liver).

As mentioned before, if CRC is detected at the early stages 0 or 1, the prognosis for patient
survival is substantial improved. The 5-year survival rate (the chance of surviving the first five
years after the prognosis) for the early stages is 90% compared to 5-10% for stage 4 [128].
Several studies have shown that large population-based screening improves the prognosis and
even reduce the incidence of CRC by detecting polyps, which are often precursors of CRC,
and CRC in early stages before they can develop into more severe stages [64]. Therefore, the
current European Union guidelines recommend screening for CRC for all population older than
50 years [181]. GI endoscopies are common medical examinations visualizing the lumen (the
passage of the colon) and the mucosa of the entire GI tract to diagnose diseases [99].

2.1.3 Colonoscopy

GI endoscopies are common medical examinations where the lumen and the mucosa of the
entire GI tract are examined to diagnose diseases [99]. The endoscopic system is made of an
endoscope, a flexible tube with a Charge Couple Device (CCD) chip and two bundles of optical
fibers at the tip. The endoscope is connected to a video processor and a light source with a light
bulb (normally around 300W) as shown in figure 2.4. The video signals are transferred to a High
Definition (HD) liquid-crystal display (LCD) screen. The most common, gold standard1 GI
endoscopic examinations are gastroscopy (entering via the mouth) and colonoscopy (entering
via the anus).

It is important to point out that such endoscopies are demanding invasive procedures, and

1The best available standard for an examination of a certain area in the body under reasonable conditions.
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Figure 2.4: An endoscopic processor connected with the colonoscopy endoscope.

can be of great discomfort for patients. They are performed by medical experts, are time-
demanding and therefore do not scale well to a larger population. Furthermore, colonoscopy is
not the ideal screening test, and in average, 20% of polyps are missed or incompletely removed
meaning that the risk of getting CRC largely depend on the endoscopists’ (a medical doctor
trained for examinations with endoscopes) ability to detect and remove polyps [70]. We there-
fore aim for a system that detects endoscopic findings in videos of the GI tract where the idea
in this context is to assist endoscopists during live examinations.

2.1.4 Wireless Video Capsular Endoscopy

As discussed and shown in the sections 1.1, 2.1.1 and 2.1.2, using only standard endoscopy to
regularly screen a population is impossible due to high costs, time consumption and lack of
high quality medical personnel.

Furthermore, medical screenings used to identify undiagnosed diseases in large populations
are debated with known problems like too many false positives, extensive over-diagnosis of
diseases that would otherwise clinically not emerge, invasive screening procedures, and high
costs [70]. Nevertheless, benefits of screening might outweigh disadvantages, and we will
investigate certain screening problems where we conjecture that big data algorithmic solutions
might have practical applicability.

A solution that can make it possible to conduct more efficient and large scale screening is
using VCEs. A VCE, also often called camera pill, is a small capsule type device (typically
11mm×25mm), which can have an image sensor, bleeding sensor, pH-sensor, antenna, battery,
light source and wireless transceiver. The pill is swallowed (figure 1.7) in order to visualize the
GI tract for subsequent diagnosis and detection of GI diseases.

Thus, a person might soon be able to buy a camera pill at the pharmacy (industry estimates
a price of $10 for the hardware if mass produced), connect and deliver the in-body video stream
from the GI tract to the phone over wireless. The video footage can be pre-processed on the
phone to, for example, enhance the quality or do some initial analysis before it is delivered to a
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large processing back-end, which does the resource demanding processing steps of the analysis.
Therefore, the goal is that the first-order screening analysis is available about eight to twelve
hours later (the time the camera typically spends traversing trough the GI tract) possibly without
any involvement form medical experts, i.e., a fully automated screening.

2.1.5 Medical Data

Nowadays, multimedia data often comes in large amounts (a lot of different data types, easy to
produce, etc.). This is also not different for multimedia data produced in the medical field with
the additional challenge that most of this data does not contain any information about what it
is representing. This leads to the problem of small and very limited annotated datasets in the
medical field. Nevertheless, a system that should be able to process medical multimedia data
should be created taking large scale data challenges (for example, large workloads, processing
time and efficiency, etc.) into account [142].

Large scale data or big data are terms that are commonly used to describe huge datasets that
contain so much data that it is difficult for standard database software and operating systems
to handle them. The applications are often not able to manage, store and analyze these large
datasets in an efficient way or at all. Finding an exact and general definition about when a dataset
is big data is hard to find. It often depends on the used technology and the use case. Moreover,
because of the fast technological development it normally ranges from a few terabytes to dozens
of petabytes [101].

Classification and search in large scale datasets is a timely and resource costly task, but more
data leads usually to better classification performance, especially for neural-network-based ap-
proaches, which are lately an often researched topic in different fields, for example, in medical
imaging, content-based retrieval and social computing. A commonly used definition for large
scale datasets is that they are large scale if they cannot fit into the memory of a standard desk-
top computer [90, 101]. A standard desktop PC nowadays can have easily around 128GB of
memory. Using images as an example and the largest available image size on Flickr as a refer-
ence, which is 2048*-pixel for the longest side of the image, results in a file size of between 3 -
33MB. This leads to a large scale dataset scenario that would start with around 4, 000 - 110, 000
images, which seems to be a reasonable size [39]. It is important to point out that this definition
has to be seen critical because these numbers are, compared to datasets obtained by Google
or Facebook, still tiny. Nevertheless, for the medical use case we chose, and for many other
scenarios this definition is a reasonable starting point.

It is easy to recognize that annotation, classification and search in such environments are
challenging. In large scale datasets, tasks like feature extraction, preprocessing, learning a
model or creating annotations can take a lot of time and cost a lot of resources [88, 175, 86]. In
the medical field of the GI tract, no large scale datasets are public available, especially, datasets
with annotations for our targeted diseases. The reason is that it is very hard to find medical
experts who are willing and able to annotate millions of data objects like images. Furthermore,
patient related data often comes with data protection challenges. This challenges make the
evaluation and comparison of results very difficult.

The only public available dataset containing a large amount of annotated data for our GI
tract use case is the ASU Mayo Clinic polyp dataset [168]. We used this dataset as training and
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test data for all experiments in this work related to the GI tract use case to make our system as
much comparable as possible. This dataset is the biggest publicly available dataset consisting
of 20 videos, converted into a total number of 18, 781 frames with up to 1, 920 × 1, 080 pixels
resolution.

2.1.6 Filling the Gap

Using the GI tract as a first case study2, we aim at developing accurate algorithmic diagnostic
and intervention technologies that might contribute to increased survival rates and reduce the
occurrences of more advanced cases of diseases through standard colonoscopy and capsule en-
doscopy (camera pill). Our ambitious goal is to develop an end-to-end solution (from learning
from the medical experts, over automatic analysis using the search-based classification algo-
rithm, to support them via computer aided diagnosis) where standard colonoscopes and a next
generation of camera pills (to be developed by various vendors such as Olympus and Given)
transmit high-quality videos of the GI tract that are classified and annotated in real-time.

2.2 Medical Image Analysis and Abnormality Detection

As shown in [142], several algorithms, methods and partial systems have been proposed and
have achieved at the first glance promising results in their respective testing environment. How-
ever, in some cases, it is unclear how well the approach would perform as a real system used
in hospitals. Most of the research conducted in this field uses rather small amount of training
and testing data, making it difficult to generalize the methods beyond the specific dataset and
test scenarios. Therefore, overfitting (adjustment to random features in the data) for the specific
datasets can be a problem and can lead to unreliable results.

2.2.1 A Short Overview of Machine Learning

In this thesis, we touched four of the most popular machine learning approaches used for clas-
sification of multimedia data. Figure 2.5 gives an overview of them. Support vector machines,
instance-based algorithms and clustering are well researched and can be counted in the category
of traditional machine learning. Deep learning is a rather new approach that has become very
popular lately.

In machine learning, algorithms can be separated into supervised and unsupervised algo-
rithms and two-class and multi-class algorithms. Supervised means that the algorithm needs
training data to be able to learn future predictions for data points. Unsupervised algorithms do
not need training data, but it is often hard to explain the outcome of the algorithms because the
final label or class is not known. Therefore, unsupervised algorithms are often used to explore
and understand data without labels [58].

Two-class algorithms can predict if a data point belongs to one of two classes. For example,
if an image contains a cat or not. Multi-class classifiers are not limited to two classes and can
for example decide if an image shows a cat, dog or bird [109, 40].

2As seen by the great disparities of the images in figure 1.2, there will not be one screening filter that can detect
all irregularities, meaning that a full system will eventually consist of a large set of pipelined/parallel filters.
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Figure 2.5: An overview of the for this thesis relevant machine learning algorithms including
their most important features.

2.2.1.1 Support Vector Machines

Giving a set of training data with two labeled classes, support vector machines (SVMs) try to
create a model that can classify future data points with similar features into the corresponding
classes. The classification is done by mapping data points as points in a space in a way that
the two classes are clearly separated. By design, SVM is not trivial to use for multi-class
classification since it is basically made for two-class classification. It can be used for multi-
class classification by training one model for each class and combining the results after the
classification. SVMs work best with less than 100,000 data points, which makes them useful
for small-sized datasets. A downside is that they need a rather high number of dimension for
each data point to make accurate predictions [163, 40].

2.2.1.2 Deep Learning

Deep learning algorithms are based on neural network techniques that use recently developed
training techniques to train their models. They are basically an abstracted representation of data
points. The representation is made on a high-level and multiple layers for processing the net-
works are used, which makes them "deep". The different layers can learn different abstraction
levels of the data using input of previous layers until they reach a final layer, which makes the
final decision for the class. The new training techniques for deep learning were mainly made
possible because of the emergence of GPU computing, which enables training of the networks
in a reasonable amount of time [79]. Deep learning can work very well for multi-class classifi-
cation. Disadvantages are very long training time, classification boundaries are hard to explain
(why one data point is put in this class) and they are very data driven [79, 109, 40]. A more
detailed discussion about deep learning in context with the medical area and our use case can
be found in section 2.2.3.
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2.2.1.3 Instance-based

Instance-based algorithms learn from previous known and labeled training data. This is ba-
sically done by comparing new data points with data points from the training data to make
a prediction. An often used instance-based algorithm is for example the K-Nearest Neigh-
bor algorithm (K-NN). K-NN tries to find the K nearest data points from the training data for
a new data point using a similarity function, e.g., Manhattan distance, to make a prediction.
The advantages of instance-based algorithms are that they are fast, simple to implement and
that they can achieve good results with even a small amount of training data (depends on the
used algorithm). The disadvantages are that they need good training data and that they have
a high memory complexity (because they have to remember the attributes of the training data)
[109, 40, 2].

2.2.1.4 Clustering

Clustering is a well know machine learning method that is used for unsupervised learning.
Clustering algorithms are not designed to predict future data. They are rather used to separate
data into different clusters based on attributes and similarity functions. A clustering algorithm
could for example separate images into different clusters based on their color features. The
number of clusters, used similarity functions and used features depends on the algorithm, data
and use case. In general, they are fast, simple to implement and a good tool for exploring data
without labels [109, 40].

2.2.2 Machine Learning for Automatic Detection of Diseases in the GI
Tract

For classifying video endoscopy imaging data, most approaches rely on using an SVM or
instance-based two-class classifier in some way. The used image features vary a lot depend-
ing on the approach. Some methods use physical dimensions, grayscale intensity values, gra-
dient orientation, RGB color information or texture as input for the classifier. Each of these
approaches has advantages and disadvantages. In general, it can be distinguished between two
different approaches for the automatic detection of disease in the colon. These approaches are
geometrical analysis and machine learning. They could both be used for imaging data that was
recorded with a conventional colonoscope or with a VCE. Moreover, it is also possible to use
these methods with data from a virtual colonoscopy. Virtual colonoscopy uses x-rays to get 2D
and 3D images from the rectum to the lower end of the small intestines. However, these data is
significantly different from camera recorded data and therefore out of scope of this work.

Table 2.1 presents a summary of the most relevant approaches in colonoscopies and polyp
detection. The last row of the table shows, our system’s performance (on the ASU Mayo dataset)
to give a comparison. The first approach from Wang et al. [186] is the most recent and best
working one in the field of polyp detection, and we co-authored together with them [139]. As
one can see in table 2.1, different methods provide different metrics for measuring the perfor-
mance and use different datasets for training and testing. Moreover, almost all of them focus on
polyps.
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Publ./System Detection Type Recall / Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [186] � polyp / edge, texture 97.70% N/A N/A 95.70% 10 1.8m frames

Wang et al. [185] polyp / shape, color, texture 81.4% N/A N/A N/A 0.14 1, 513 images

Mamonov et al. [100] polyp / shape 47% N/A 90% N/A N/A 18, 738 frames

Hwang et al. [68] polyp / shape 96% 83% N/A N/A 15 8, 621 frames

Li and Meng [84] tumor / textural pattern 88.6% N/A 96.2% 92.4% N/A N/A

Zhou et al. [198] polyp / intensity 75% N/A 95.92% 90.77% N/A N/A

Alexandre et al. [5] polyp / color pattern 93.69% N/A 76.89% N/A N/A 35 images

Kang et al. [71] polyp / shape, color N/A N/A N/A N/A 1 N/A

Cheng et al. [23] polyp / texture, color 86.2% N/A N/A N/A 0.076 74 images

Ameling et al. [7] polyp / texture AUC=95% N/A N/A N/A N/A 1, 736 images

EIR † abnormalities/30 features 98.50% 93.88% 72.49% 87.70% 300 18, 781 frames

†To test the prototype, we participated in the MICCAI 2015 polyp detection challenge. The challenge had two sub challenges: 1) to detect the exact position of the polyp in a
frame; and 2) the latency of the system regarding the first occurrence of the polyp until the moment where the system was able to detect it. For both challenges, we positioned our
selves among the top three [142].
�This approach counts a polyp as fully detected if the polyp has been found once in the whole video or images sequences.

Table 2.1: Performance comparison of polyp detection approaches of state-of-the-art systems.
Not all performance measurements are available for all methods. Nevertheless, including every
available information gives an idea about each method’s performance.

Mamonov et al. [100] presented an algorithm for a two-class classifier to detect polyps in
the colon. The method is called binary classification with pre-selection, and it aims at reducing
the number of frames that need to be manually inspected. The algorithm processes separate
input frames and classifies each frame to either contain a polyp or not. The assumption is that
polyps can be generalized as "something that bumps out". This finding was evaluated on a
dataset created from frames of videos obtained from five different patients. Based on these
experiments, the algorithm reached a sensitivity of 81.25% per polyp at a specificity level of
90%. The sensitivity of the algorithm with regards to single input frames is significantly lower
and only reaches 47%. The length of an input sequence varied between 2 and 32 frames, and
a total of 16 sequences were tested. The false positive rate on all 18, 738 frames that did not
contain a polyp was 9.8%. Assuming that it is normal to have multiple frames available for a
single polyp, these numbers seem quite promising [142].

A similar approach is presented by Hwang et al. [68]. This approach also focuses on shape,
in particular on ellipses, which is a common shape for a polyp. Using this method, a frame
is first segmented into regions by a watershed-based image segmentation algorithm. This algo-
rithm is based on the observation that polyps are spherical or hemispherical geometric elevations
on the surrounding mucosa. Ellipses are then fitted into the segments by constructing a binary
edge map for each segmented region and using a least square fitting method. A threshold-
function is used for the creation of the edge map. Regions with too little edge information in
their respective edge maps are discarded. These ellipses are then further evaluated for matching
of curve direction, curvature, edge distance and intensity [142]. The direction of the parabola
from any part of the ellipse must be matching the direction of the corresponding part of edges
for the ellipse to be considered a polyp. This assures that the detected edges build an ellipse-
like shape instead of, for example, a parallel one. Furthermore, the curvature of the ellipse
is split into six parts. At least two adjacent parts must have a strong edge pattern, otherwise,
the ellipse is discarded [142]. The interesting part of this approach is that after the first frame
a potential polyp was detected, subsequent frames are also searched for the same characteris-
tics using a mutual and information-based image registration technique. This allows to apply
a threshold in number of frames for the detection to reduce the number of false positives. To
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evaluate the method, a video sequence with a frame rate of 15 fps has been processed. Out of
27 available polyp shots (frames containing a polyp), 26 were detected correctly with a total of
5 false-positives. Similar to [100], the authors assume that multiple frames are available for one
polyp and that a certain number of false negatives is acceptable in order to balance the number
of false positives. It is important to mention that this assumption depends largely on the frame
rate of the camera that is used for recording the video [142].

The most recent and complete system in the well researched polyp detection field is Polyp-
Alert [186], which is able to give near real-time feedback during colonoscopies. This approach
is also listed as number one in table 2.1. The system can process 10 frames per second and
uses visual features and a rule-based classifier to detect the edges of polyps. Further, they dis-
tinguish between clear frames and polyp frames in their detection. The researchers report a
performance of 97.7% correctly detected polyps, based on their dataset, which consists of 52
videos taken from different colonoscopes. A polyp is counted as detected correct if it has been
found once in a frame in the whole sequence of the video, which makes it easier to achieve a
high sensitivity compared to frame wise evaluation (each frame containing a polyp is used for
the evaluation). Unfortunately, the dataset is not publicly available, and therefore, a detection
performance comparison is not possible. Compared to our system, this system seems to reach
higher detection accuracy, but our system is faster and can detect polyps in real-time (see ta-
ble 2.1 for details). Furthermore, our system is not designed and restricted to detect only polyps,
and can be expanded to any possible disease if we have the correct training data. It is also de-
signed to support the goals of the project in terms of scalability, flexibility, due to the support of
VCE and standard colonoscopy, and as a massive scale screening option as a preventive service.

Other papers that discuss how to improve performance of endoscopic surgeries in general
(not colonoscopy) are for example [112, 110, 111]. In these papers, the authors report their
method for detecting the circular content area that is typical in endoscopic videos. Furthermore,
they present their method for relevance segmentation in endoscopic videos. The methods seem
to be very useful in terms of archiving and saving storage space, making them interesting for
our system for future improvements.

2.2.3 A New Trend - Deep Learning

Since deep-learning-based approaches are commonly used nowadays, they are also discussed in
relation to the GI tract analysis. Deep learning in the field of medical imaging is a very popular
topic that emerged recently, and many researchers believe that it holds a lot of opportunities
to improve medical imaging [47]. The basic ideas of deep learning methods are conceptually
easy to understand (but hard to master), and lately, a large amount of academic research has
been performed in this direction. Results recently reported on, for example, the ImageNet
dataset look quite promising. It seems that deep-learning-based approaches outperform other
machine learning methods. This is true for some of the image annotation and object detection
problems [29].

Nevertheless, deep learning comes with some challenges that make it not straight forward
to use for the GI tract use case [24]. Firstly, training is very complicated, needs a lot of training
data and can take a long time. Our system has to be fast and understandable since we deal with
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patient data and the outcome can decide between life and death [142]. Therefore, a blackbox3

approach, which deep learning approaches can be, seems to be the second best way to solve a
problem that has to be understood very well by all involved users. Not being able to explain
how a certain decision has been made can lead to serious problems in the medical field since
it is not possible to evaluate the output and the decision made by deep-learning-based systems
properly yet and there will always be a chance that a deep learning approach will completely
fail without being aware of it [113]. The best way is still to understand the problem and then
solve it [142].

Further, they require a lot of training data. In the medical field, this is a very important issue
since it is hard to get ground truth data due to the lack of experts time (doctors have a very high
workload) and legal and ethical issues. Some common conditions like colon polyps may reach
the required amount of training data for deep learning while other endoscopic findings, like tat-
toos from previous endoscopic procedures (black colored parts of the mucosa), are not that well
documented but still interesting to detect [148]. Finally, deep-learning-based approaches are
not easy to design for probabilistic results. In a multi-class decision-based system, that is built
to support medical doctors in decision making, the probability (class boundary) is an important
information [142]. Approaches with a better understanding of the problem give a much more
accurate probabilistic score that can be directly translated to the real world scenario [162].

2.2.4 Current Limitations in Medical Multimedia System

In summary, all the related work shows promising results with a lot of different approaches for
our use case of disease classification in the GI tract. Most of the approaches use machine learn-
ing and are very focused on the image processing part for medical imaging. Moreover, deep
learning approaches seem to be the new area of interest and in the near future most probably
a lot of research in this direction will be conducted. Nevertheless, both directions come with
challenges. They are either; (i) too narrow for a flexible, multi-disease detection system; (ii)
have been tested on a too limited dataset not showing if the methods would work in a real sce-
nario; (iii) need a large amount of training data that does not exist or is hard to get like the deep
learning approaches; and finally (iv) provide a too low performance for a real-time system or
they have ignored the processing performance aspect in their evaluations at all. In the following
section, we will present a promising approach that addresses all the shortcomings of the actual
existing methods by using a simple but accurate, fast and easy to understand search-based clas-
sification approach embedded in a complete medical multimedia system. Furthermore, as we
demonstrated with our evaluation, the search-based approach does not require a large amount
of training data as for example deep learning approaches and can, because of its architecture,
easily be extended with different types of data to analyze (sensor data, patient records) and
diseases to detect.

3Using a system or a method without really knowing or understanding what exactly happens between the input
of data and the output of the results.
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2.3 The Basis of Our System: A Search-based Classification
Approach

As discussed previously, to visually detect polyps and other diseases in the colon is a very de-
manding and exhausting task for the doctors. Often, they have to perform several colonoscopies
during a shift, and at the end of the day, they are tired and can naturally not concentrate in the
same way as in the morning. With EIR, we developed a system based on content-based infor-
mation retrieval methods that is able to support the medical doctors as a third eye and improve
their performance, and with that increase patient care and surviving rate.

Such a system has to be very fast because it has to be able to assist the medical experts
during live colonoscopy examinations. Furthermore, it should be easy to operate by the medical
experts, be able to batch process a large amount of data for the VCE data and its output has to
be as accurate as possible.

To fulfill these requirements we developed a novel and search-based classification approach,
which serves as the basis of the EIR system. Among all other possible alternatives, search-based
classification is promising because it is easy to understand, efficient in terms of processing time,
easy expandable with new diseases and at the same time reaches very food classification accu-
racy. Apart from that it can easily be extended by other data types such as sensor data, patient
records, etc. that can be classified using the same retrieval methods. The search-based classifier
utilizes global image features (a mathematical, intermediate representation of the image content
based on different attributes, for example, color distribution or texture attributes, examples can
be seen in figure 2.6). We decided to use global image features, because they are very light
weighted, easy to compute and quite easy to understand by humans.

2.3.1 Global Image Features

As mentioned before, global image features are features that can capture the overall content of
an image in one single feature to describe it, e.g., the color distribution or texture features [95].
In figure 2.6 an original image of a polyp (figure 2.6(a)) is shown with four different represen-
tations of how the same image could look using a certain, by a global feature captured, attribute
to represent it.

Figure 2.6(b) shows the polyp image how it would look using a global feature that captures
the edges of an image. Figure 2.6(c) shows the same picture as a possible color feature repre-
sentation. In this case, the most prominent colors in a certain area are merged, which leads to a
kind of superpixel representation (a superpixel is a more abstract representation of a set of pix-
els of an image). How a feature that captures the color and the edge information could represent
an image can be seen in figure 2.6(d). The last figure 2.6(b) depicts a feature representation of
a global feature that captured the texture information of an image.

Global features in classification tasks are in some way underestimated because they are very
simple, but as shown in for example [136], this can also be an advantage.

Table 2.2 gives an overview of all in EIR supported and tested features. The majority of
papers about classification or search for content-based retrieval use mostly local features or
features created by neural networks.

Examples are the well known SIFT (Scale-invariant feature transform) [93], SURF (speeded
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(a) Original image of a polyp. (b) Image of a polyp as an edge-based feature could show it.

(c) Image of a polyp as a color feature could show it (most
prominent colors in a region are merged).

(d) Image of a polyp how color and edge feature could rep-
resent it.

(e) Image of a polyp how an texture feature would represent
it.

Figure 2.6: Examples of a polyp image represented as different global feature representations.
It is important to point out that this is not how the features actually look because they are
histograms and not meant to be shown as images, but it can help people to get an idea about
how they work.

up robust features) [9], FREAK (fast retina keypoint) [3] and BRISK (binary robust invariant
scalable keypoints) [83]. Local features are normally used with the bag of visual words ap-
proach which uses a text retrieval approach to match objects in videos and images [156].
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Feature Dimensions/bins Captures
JointHistogram 576 c, cd, t, jh
JpegCoefficientHistogram 192 c
Tamura 18 t
FuzzyOpponentHistogram 576 fc
SimpleColorHistogram 64 c
FuzzyColorHistogram 125 fc
RotationInvariantLlBP 36 t
FCTH 192 fc, t, jh
LocalBinaryPatternsAndOpponent 288 c, t, jh
PHOG 630 t
RankAndOpponent 576 t
ColorLayout 33 c
CEDD 144 fc, t, jh
Gabor 60 t
OpponentHistogram 64 c
EdgeHistogram 80 t
ScalableColor 64 c
JCD 168 fc, t, jh

Table 2.2: Table of all global features tested and supported by EIR. Feature is the name of
the feature. Dimension/bins shows the size of the feature vector and Captures indicates which
type of characteristic of the image/frame is captured and incorporated in the feature: c: standard
color information; cd: how color pixels are distributed to each other; fc: a fuzzy color scheme; t:
texture attributes such as edges, gradients or other texture characteristics; jh: combine different
attributes likes for example texture and color of pixels.

Local features are very successful in detecting objects in an image or videos, and promising
results have been reported [147]. What local features cannot really do, is to capture global
characteristics of an image or video frame [6, 14]. Thus, for large scale classification and
retrieval tasks it is challenging to use local features, because they are very complex, have higher
computation time and need more space on the hard disk and the memory [48].

The amount of actual research based on the use of global features for classification is limited.
The most relevant related work is done by Oliva and Torralba [117, 118], who describe the role
of global features to build the overall meaning of an image. They present a formal approach
where global features are utilized to detect the global meaning of an image. They used an
encoded, coarse representation of the organization of high and low spatial frequencies computed
from the images. These computed features are then used to find meaning of an image by using
a spatial envelope model. Based on the work from Oliva and Torralba, two other related works
were developed by Hays and Efros. Firstly, they used the original method of Oliva and Torralba
to solve the task to estimate the geographic location of a single image [61]. To achieve this,
they combined seven different global features, including color, geometry and textons (texture
features) to achieve high precision for their system. The overall assumption was that the features
they used were usable for geographical location estimation based on the global view on the
image gained by them. Secondly, they used their combined global features to find the missing
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parts of incomplete images of geographical locations in [60]. To tackle this problem, they
performed a search for the missing parts based on the global features, and filled them with parts
of the best matching image from the obtained results. From these basic works, a lot of other
features have been suggested to identify different characteristics of an image or video frame. In
our work, we have considered the following global features (table 2.2):

Joint histogram: The joint histogram is an improved version of the standard color histogram [165].
The joint histogram is created by constructing a multi-dimensional histogram based on a
selection of local pixels in the image. The advantage of the joint-histogram-based features
is that they are small and easy to compute which makes them ideal for a time sensitive
task [123].

Jpeg coefficient histogram: The Jpeg coefficient histogram feature is implemented following
the Jpeg standard of the world wide web consortium (W3C). It uses the frequency distri-
bution of the 64 discrete cosine transform coefficients in a Jpeg file to describe the content
of an image. This is performed by counting for all 64 coefficients in an 8 × 8 block the
frequency of each value and store these values in a histogram [182].

Tamura: The Tamura feature [169] is based on the assumption that textural features corre-
spond to the perception of the human eyes. Tamura compared coarseness, contrast, di-
rectionality, line-likeness, regularity and roughness, which are six different texture fea-
tures, with psychological measures taken from human experiment participants. The three
features that achieved the best results in his evaluation are coarseness, contrast and ori-
entation. Coarseness measures the size texture primitives (also called texture elements or
texels) [57]. Larger textures have larger primitives and fine textures have smaller ones.
The contrast measures how distinctive the differences between the textures in the im-
ages are. The contrast can be considered as clear if all areas can easily be distinguished
from each other. The orientation describes the dominant orientation of the textures in
the image. A single image can have only one dominant orientation or several of them.
Moreover, an image can also have no orientation at all, which then is called isotropic. For
the Tamura global image feature, coarseness, contrast and orientation are extracted from
an image and stored in a histogram representation [65, 95].

Fuzzy opponent histogram: The fuzzy opponent histogram is a simple and fuzzy 64 bin oppo-
nent histogram, based on the fuzzy opponent color space. The feature is rather large for a
global feature but can achieve good results with noisy images [178].

Simple color histogram: The simple color histogram feature provides a simple to compute
and based on the standard color space histogram. The number of dimensions (number of
values, also sometimes called bins, in the vector describing the feature) is configurable
(scalable) and the histogram is normalized to eight bits per bin [95].

Fuzzy color histogram: The fuzzy color histogram is an improved version of standard color
histograms. The histogram is computed by a fuzzy-set member ship function that com-
pares color similarity of all pixels with each histogram bin. The advantage is that it has
less dimensions than the standard color histogram and it is less sensitive to noise interfer-
ences such as illumination [56].
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Rotation invariant local binary pattern: The rotation invariant local binary pattern feature is
a simple texture-based feature. It applies a threshold on neighboring pixels with a bi-
nary number as outcome. These binary descriptors of the texture are the dimension in
the feature. The rotation invariant version of the feature is robust against rotations of
the images. Because the feature is very easy to compute, it is well suited for real-time
applications [116].

Fuzzy color and texture histogram (FCTH): FCTH is a low level feature, which combines the
color and textural information of an image in one histogram. Due to its limited size of 72
bytes per image, it is usable for large scale image databases [22].

Local binary patterns and opponent histogram: The local binary patterns and opponent his-
togram feature is a simple combination of the rotation invariant local binary pattern and
opponent color features. The combination results in a joint histogram [95].

Pyramid histogram of oriented gradients (PHOG): PHOG computes a fuzzy histogram of gra-
dient directions, which is performed in three steps. Firstly, an edge detector is used to
detect all edges of an image. Secondly, the algorithm follows these edges and computes
the gradient directions for the histogram. This is performed top down following a pyra-
mid pattern. The image is split up into a quad-tree where each part of the tree has four
children nodes. For each node of the tree, a histogram is calculated. Finally, all these
sub-histograms are concatenated into one large histogram [15].

Ranked and opponent: The rank and opponent histogram is an implementation of a joint op-
ponent histogram combining a 64-bin RGB color space histogram and a pixel rank [95].

Color layout: Color layout is based on the MPEG-7 color layout, which is a low level feature.
It represents the spatial distribution of colors in an image. The main functionality of the
feature is to capture the spatial information of the most representative colors of an image
and superimpose this information on a grid that is laying on top of the image [19].

Color and edge directivity descriptor (CEDD): CEDD is a low level feature, which combines
the color and the edge information of an image into one histogram. The size of the feature
is limited to 54 bytes, which makes it very useful and fast for large scale use cases [21].

Gabor: The Gabor feature is based on the Gabor filter [189], which is a linear filter used for
edge detection. The filter represents the image in a to the human-visual-system similar
way. This is achieved by the presentation of the frequency’s and the orientations con-
tained in an image. The dimensions of the feature are a set of different frequencies and
orientations combined in one single histogram [37].

Opponent histogram: The opponent histogram is a 64-bin opponent color histogram described
in Sande et al. [178]. It is a combination of three 1-dimensional histograms, where each of
the histograms represent one channel of the opponent color space, which is an alternative
representation of colors. It consists of three different parts, the luminance component,
the red-green channel and the blue-yellow channel. For the features, all three parts are
computed for an image and stored in a histogram [95].
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Edge histogram: The edge histogram feature is based on the description in the MPEG-7 visual
standard for content description [19, 154]. It provides a description for textures in an im-
age, which are not homogeneous. The feature is constructed in the same way as the color
layout feature, but instead of the spatial distribution of the colors, the spatial distribution
of the edges in an image is captured. The feature is very compact, scale invariant and can
be used for rotation-sensitive and rotation-invariant matching [154].

Scalable color: The scalable color feature provides a description of the color distribution in an
image. The feature is based on the MPEG-7 standard and is a color histogram that uses
the HSV (hue, saturation, and value) color space. The HSV color space represents color,
as the name indicates, by hue, saturation and value, where value stands for the brightness.
The representation is quantized to 255 bins and saved in a histogram [154].

Joint composite descriptor (JCD): JCD is a joint descriptor, which combines two compact
composite descriptors (CCD) in one. A CCD is a very compact global image descrip-
tor with the purpose to combine many different features in one descriptor. The for JCD
used CCDs are the fuzzy color and texture histogram and the color and edge directivity
descriptor. The combination of the two descriptors is possible because their color infor-
mation originates from the same fuzzy color system. The result of the combination is a
descriptor, which contains fuzzy color information, texture information and edge infor-
mation [20].

To make use of the global features extracted from the images, they have to be used in
a certain classifier or retrieval system. In this work, we combine both. Before we can use
the global features for our search-based classification, we have to index them and make them
searchable.

2.3.2 Indexing

From the intermediate format for each global feature (or any other data data type), indexes can
be generated (one index per feature or several features in one index). The index structure is
field- and row-based. Each row is defined by its fields, e.g., the image path, the binary values
for the feature or the hash representation of the feature, etc. The number of fields and their size
are variable depending on the number or type of used features. All feature values are stored as
byte representation of the respective feature vector as well as a text field containing hash values
from a random projection hashing approach [142].

The hashing approach is based on locality sensitive hashing (LSH). The main idea is to use
multiple random hash functions to hash the values of the features. Similar images will then get
the same hash values and therefore be hashed into the same bucket. This is done by a linear
projection in random directions of the hash functions in the feature space of the image. The
created hash codes are ineffective and a large number of hash tables is needed to achieve a
reasonable search quality but compared to the increased speed of the algorithm these are minor
disadvantages that can be ignored [159].

The in this work used hash function h(v) ∈ {0, 1} for a histogram v is defined as h(v) =
sgn(v · r), whereas sgn is the sign or signum function (extracts the sign of a real number) and
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r is a random vector with evenly distributed elements ri with −w ≤ ri ≤ w. n hash functions
are combined as a bit string in one single hash value H(v) < 2n. For indexing m hash values
Hj(v), 0 ≤ j < m are generated [142].

The parameters for the hashing-based approximate indexing are chosen based on evaluations
on a image dataset consisting of 100, 000 images. To achieve a good performance for precision
and search time, the parameters have been set as following: w = 2, n = 12, and m = 150. This
leads to a significant speed-up (the search time could be reduced to around 30ms for searching
one image in an index consisting of 1.5 million images) and at the same time, to a good trade-off
between search time, and precision.

2.3.3 Search

The standard search for an image that we use in our search-based algorithm is performed on the
fly on former created indexes and returns a ranked list as result. This means, for each image
a term-based query from the hashed feature values of the query image is created at run-time.
Based on these values a comparison with all images in the index is performed. The end result
is a ranked list of similar images.

The ranked list is created by a distance or dissimilarity function associated with the low level
features. This is done by the computation of the distance from the query image to all images
in the index. The used distance function for the ranking is the Tanimoto distance [170] which
is computed by taking the ratio of the number of elements that intersect and the union of the
elements:

f(A,B) : [0, 1]nx[0, 1]n → N =
A ·B

|A|2 + |B|2 − A ·B
A smaller distance between an image in the index and the query image means a better rank

position [170]. The final ranked list is used for showing the results of the search or for further
tasks. In our case this is the classification step. To be able to make a decision in the classification
step, two important aspects have to be considered first. These aspects are, which features to use
and how to combine them.

2.3.4 Feature Selection

Different features have different properties, and they are therefore useful in different scenarios.
To make the search-based classifier fast and accurate, we have to decide before the classification
step, which features we want to use for a specific use case. This is important, because global
features and combinations of them that are chosen in a random way can lead to negative results
for the classification or search task. Badly chosen feature combinations can introduce noise (if
to many features are combined and some of them do not add any information to the classification
problem) or make the search slow (if the index is very big because of too many used global
features).

It is important to explore, which features are for the respective task more useful than others.
A lot of work has been performed in the field of feature selection, and different machine learn-
ing techniques were utilized for it [106]. For example, principal component analysis (PCA)
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which is a reduction of a large set of variables to a smaller, conceptually more coherent set of
variables that contain the same information as the larger representation [32]. Another example
is information gain attribute evaluation (IG), which computes the information gain of a given
feature with respect to the classification problem to determine which feature gives the most in-
formation [28]. A final example is the SVM attribute evaluation, which ranks the variables of
the features using a weight assigned from a support vector machine [52].

Guldogan and Gabbouj [50] tried to reduce the complexity of a system by reducing the
number of features. They utilized standard feature selection algorithms, like PCA and IG, to
get measures, which show them how good or bad a feature performs for a given task. Based
on these measurements they applied majority voting. The output is a ranked list of features that
they use to select the final features. Their evaluation results demonstrate that this method can
improve the classification performance and at the same time reduce the computation time. In
this thesis, we perform a simple feature selection by testing different combinations of features
on smaller reference datasets to find the best combinations im terms of processing speed and
classification accuracy.

2.3.5 Feature Combination

As one can see in table 2.2, EIR supports a lot of different global features and the combination
of them. In different use cases, different combinations of the supported features would certainly
lead to more accurate results than others. The combination of different features, containing
feature spaces with different sizes of dimensions, is a non-trivial problem that has been topic to
research for several years.

A sophisticated combination of features can help a system to obtain more accurate classifi-
cation and search results. Nevertheless, feature combination comes also with some pitfalls that
must be taken into account when applied. If feature combination is not performed correctly, it
can lead to a decrease of performance [27, 51, 193]. Features can be combined in two different
ways. The first one is called feature or early fusion and it basically fuses values of different
features into a single representation before they are used in a decision making step. The sec-
ond one is called decision or late fusion. For late fusion features are combined after a decision
making step.

2.3.5.1 Early fusion

A detailed overview of the pipeline for early fusion can be found in figure 2.7. The underlying
concept of early fusion is to combine uni-modal features, after they are extracted, into a multi-
modal representation, which basically means that the feature values will be combined into one
large vector for representation. These large feature vectors can be used for search or classifi-
cation tasks such as supervised learning (labeled train and test data set for learning), two-class
classification (a binary decision between two classes) or unsupervised learning (not having any
training examples) [106]. The problem with this method is, that this vector can contain a lot of
noise that is introduced by not meaningful features [27].

Another early fusion method is to concatenate all features into one long feature vector, but
applying feature selection or feature transformation methods, like the in section 2.3.4 described
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Figure 2.7: Pipeline for early fusion of features. The features are first combined into one large
vector and then a decision is made based on this fused feature vector.

PCA [32], independent component analysis (ICA) [80], linear discriminant analysis (LDA) [53]
or nonlinear component analysis (NLCA) [149] on this vector. Applying one of these methods
can lead to a reduced length of the vectors. Machine learning applied on these smaller vectors
can be performed in a more efficient and precise way, which can lead to faster processing times
and more accurate results. Nevertheless, also with these methods problems can emerge. In
particular, the vector can contain noise or some features can be missed that by itself have a bad
performance but combined with other features would perform very well or vice versa [193].

Which features should be combined is open to the user and the task that should be solved.
For example, one can combine visual, audio, text features and their different variations. A
challenge, that has to be taken into consideration, is that a fusion of many features before clas-
sification can introduce noise in the data. This happens due to the fact that the more information
is combined in a huge vector the more of this information can be meaningless for the classi-
fication problem to solve. Another problem is that the combination of very diverse features,
like audio with visual features, can be challenging. This challenge often occurs if one tries
to combine features that have different dimensions and range of values in these dimensions.
For example, combining an audio feature with many hundred dimensions with a visual feature
with many thousand dimensions. To tackle these challenges and to reduce the loss information
within the fusion process, it is recommended to perform feature selection, feature reduction and
normalization methods on the data before the fusion [158, 51].

2.3.5.2 Late fusion

In late fusion or also called decision fusion, each feature is processed by an own classifier. After
these first classification steps, the output of each classifier is combined to obtain a final result.
An overview of the basic steps performed for late fusion are depicted in figure 2.8.

Because each feature is processed in a separate classifier, late fusion is very costly in terms
of learning effort. Moreover, to combine the pre-classified features one or more additional
classifiers are needed. Another challenge is the possible loss of information that comes naturally
if different features are combined [158]. The combination of the output of the pre-classifiers is a
very important step and can be performed in different ways. Which method is the best depends
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Figure 2.8: Pipeline for late fusion of features. The features are first processed by separate
decision making methods (e.g., a classifier) and then combined.

on the dataset, the features that are used and the metrics that are used to calculate the distances
between the different features. A sophisticated and well chosen combination strategy can lead
to an improvement of the classification results [43]. Trotman [177], Hsu and Taksa [66] and
McDonald and Smeaton [103] came to the same conclusion: Some datasets are better suited for
late fusion based on rank score, for other datasets fusion based on rank or weighted rank is the
better choice. Their experiments revealed that a combination using a score metric leads to better
results for features that have the same metrics for their distance scores. For instance, if all the
features that should be combined use cosine similarity, then it is recommended to combine them
by score. On the other side, if they use different distance metrics for the scores, a combination
by rank can lead to more precise results.

In [87], the authors try to learn tag relevance for social image retrieval by using multiple
features in an unsupervised learning environment. They state that visual content cannot be dis-
covered by using only one visual feature. To prove this claim, they tested different approaches
of feature combination methods to find the best one for their task. The first one is based on
Borda count, which reduces the scores for each rank by one so that the last item in the rank
will get zero points [179]. The second one is called UniformTagger, which is a combination
of different base learners that are combined in an uniform way. The conclusion is that learning
using a combination of different features can outperform single-feature-based learning systems.
The second observation is that late fusion approaches lead to a better performance than early
fusion approaches [87, 158]. Escalante et al. [34], who came to the same conclusion, showed in
their paper that late fusion performs well for multimedia retrieval tasks. They fused multiple,
heterogeneous and for annotated collections developed image retrieval techniques. To perform
late fusion they used ranked lists created by search queries in their system to combine features.

Based on the indication that late fusion is better suited for multimedia data, we decided to
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use it for feature combination in our work. Therefore, we classify each feature that we use
separately, and combine them afterwards using a majority decision weighted by the ranked
score (an image class in a higher position in the ranked list gets a higher weight).

2.3.6 Search-based Classification

Classification is an important topic in the field of machine learning and it is normally im-
plemented trough well known classifiers like Naive Bayes classifiers, SVMs, neural network
approaches or binary classifiers [17, 105, 106]. Machine learning has not been used very fre-
quently in combination with retrieval systems, and almost not existent is machine learning based
on retrieval methods.

An example for machine learning used to improve content-based retrieval can be found in
the paper of Goesselin and Cord [46]. They use Bayes classifiers, K-NN and SVM in combi-
nation with an active learning system. The learning system is based on users evaluation of the
search results. The users feedback is used in a method called RETIN AL System Framework.
The framework improves the retrieval results on the fly with the help of the users feedback.
Which means that while the users interact with the retrieval system they can steer the system
towards more relevant search results.

Related work, which utilizes retrieval methods for classification to improve the performance
and accuracy of a classifier is rare. Nevertheless, there exists one related paper from Larson et
al. [77]. In this paper, the authors give an overview over three tasks performed at the MediaEval
2012 Benchmark. These tasks are all related to automatic tagging and geographical tagging.
All three tasks focus on tagging of videos using as much information as possible. The types
of information used in the tasks are videos, user-generated meta data, speech recognition, tran-
scripts of audio and images. The tasks are separated into two parts. The first part focuses on
the extraction of different features from the data. The second part focuses on assigning labels
to data object. This is performed by an information retrieval approach where the label of class
is considered as the query for the search performed by the system. The search in this adopted
system results in a collection of documents. These documents are then annotated with the same
tag as the search query tag. One advantage, which they found in their paper, is that it can be
used for supervised (training data is available) or unsupervised (no training data is available)
machine learning.

Li et al. [86] tried a similar approach to automatically annotate images. They used a search-
based technique without having a training dataset for their system learn from. To obtain anno-
tations for the images textual meta data of pictures, which is stored in a cluster formed by the
search results of the query image, is used. Based on these clusters the tag for the query image
is assigned. On problem with this method is that the performance of the system seems to be
not good and it is not described very well. Moreover, it is not developed for a classification but
rather for annotation tasks.

The search-based algorithm developed in this work has been implemented using the Lire [96]
open source library for content-based image retrieval, which allowed us to experiment with a
large set of global features. Since Lire is based on the Lucene indexes, it also allowed us to
create an algorithm that is able to include any type of multimedia data if needed [171]. Lucene
inverted indexes are created using k-way merge. The index segments are sorted in memory
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and then merged. Each newly added data element is treated as a new segment and added to
existing segments. These indexes have the advantage that they are fast to update and reasonable
fast to search [171, 150, 73]. The indexes are field-based and the number of fields is variable
depending on the number of used features and the fields are stored using LSH as described in
section 2.3.2.

The basic algorithm is described in detail in [136] and [142]. In its basis, it is a simple K-NN
algorithm and defined as following: Classified as class c is the class with the highest weighted
ClassScore of all classes c ∈ C.

c = argmax
c∈C

{ClassScore(c)}

ClassScore is calculated by summing up the occurrences of each class c and multiplying it
with the summed WeightedRankScore. RankScore per class is calculated by dividing 1 by
the rank for each search query.

ClassScore(c) = |c|
∑

Ii∈{Ii|Class(Ii)=c}
RankScore(Ii)

−1

The WeightedRankScore is the sum of all RankScore in the rank list [142]. The here pre-
sented algorithm can be used for supervised and unsupervised learning, two or multi-class clas-
sification and different types of input data ranging from features extracted from images or videos
to meta data. The main advantages are that it is very simple and easy to understand, achieves
state-of-the-art classification results and that it is very fast in terms of processing time, which
is demonstrated by applying it to different use cases described in more detail in the following
section.

2.3.7 Use Cases and Implementations

The first use cases that we addressed was the area of user intent and the human perception of
multimedia content. This area has been chosen because of two main reasons. Firstly, it requires
processing of a huge amount of data and these data is easily available due to Flickr, Youtube
and Twitter. Secondly, it was the first evaluation scenario for our search-based classification
method.

At the beginning, we developed the theory of intentional framing [136], and a first im-
plementation of the search-based classification method tested on huge datasets (1.5 million
images). We also applied our method on other scenarios such as social event detection and re-
finement of crowdsourcing votes [195, 141, 92, 196]. We also developed a multimedia system
which uses the intent information of online videos to save bandwidth by reducing the qual-
ity [131].

Another experiment that we did in this direction was the developing of a tool that is able to
replace expensive equipment for eye-tracking studies [133, 134]. Furthermore, we organized
a workshop at the MedivaEval 2015 and 2016 Benchmark Initiative 4 called "Context of Mul-
timedia Experience", where we tried determine which movies are good for special watching
situations like on a flight, based on content analysis [138]. The data that we used for these

4http://multimediaeval.org
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experiments has been made publicly available [137]. During these studies, we also performed
some quality of experience research to find out how good automatic quality metrics can mirror
real users perception of quality [191, 42, 135, 157]. Furthermore, we collected a lot of data that
can be useful for other researchers and released it as a publicly available dataset [132].

We also did experiments in the area of perception of deception5, which focuses on the de-
tection of manipulations of multimedia data like movies and images and on what intent these
manipulations have been applied. Therefore, we collected a novel dataset [26]. We also helped
to organize a workshop about this topic at the MediaEval 2015 and 2016 Benchmark Initiative
called "Verification of Multimedia Use" [13]. The analysis of this data is ongoing work.

The main use case and the focus of the research is the field of medical multimedia. To be
able to perform research in the medical field, two important requirements have to be fulfilled.
Firstly, you have to be in contact with medical experts that are willing to share their domain
knowledge with you, and secondly, you need to get data and annotations for this data. This is
represented in more detail in the following sections.

2.4 Summary

It seems that medical multimedia systems are not in focus of research, and most of the research
is focused on algorithms for the detection of diseases and not a complete system. The few
examples that focus on more than one component seem to ignore the processing, or not reach
the performance requirements. Most of the approaches in the GI tract use case are closer to
medical image processing than multimedia research. The evaluation of the approaches is often
based on a small amount of data, or the data is not publicly available to be comparable. Deep
learning approaches seem to be a hot topic in the field of medical image processing, but because
of their need for large amount of training data and that it is hard to understand how they make
their decision, it can be problematic to use them in the medical scenario.

The search-based classification approach, which has been developed during this work and
serves as the basis for the system, seems to be promising for our use case of disease classification
in the GI tract. The main advantages of the search-based classification are that it is easy to
understand, fast, accurate and easily expandable with other data types or use cases. To the best
of our knowledge, the medical multimedia system researched in this thesis is the first that aims
at total flexibility in terms of diseases that can be detected and at the same time focusing on the
performance and a proper and comparable evaluation of it.

In the next chapters, we will present our medical multimedia system and all sub-components.
Furthermore, we will show a complete evaluation of the system performance for accuracy and
processing speed including the discussion of our GPU-based improvements of EIR.

5Perception of deception describes how manipulated content like images or videos is perceived from the
users [25].
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Chapter 3

The EIR System

An overview of the complete EIR system can be found in figure 3.1. Basically, EIR consists
of three subsystems. The annotation subsystem collects and transfers knowledge and data from
the medical experts into the system. The detection and automatic analysis subsystem consists
of two parts. The detection part is responsible for detecting potential diseases in the current
frame. The localization part uses the output of the detection part and tries to locate the disease
in the image or frame. The visualization subsystem presents the output of the detection and
analysis part to the medical expert for further analysis. The main purpose of EIR is to analyze
multimedia data containing information about any parts of the GI tract in real-time. The goals
for our system are:

• High disease detection accuracy.

• A complete pipeline for the whole system.

• Real-time processing for live support during colonoscopies.

• VCE and standard colonoscopy support by one system.

• Being expendable with different data types and diseases.

Achieving these goals came with a lot of challenges and required research in different di-
rections like annotation, detection and visualization [142]. In the following, we will present a
detailed description and overview of the complete EIR system and all the subsystems. This is
followed by an experiment section that presents some of the experimental results that have not
been published. Finally, we will present and discuss our efforts on the processing performance
of EIR.

3.1 Annotation Subsystem

The main purpose of the annotation subsystem is to collect training data for the detection and
automatic analysis subsystem. This type of data can only be collected with the help of medical
experts. To make the collection process easy for the doctors and as efficient as possible, we
combine manual annotations with automatic methods [145, 142].
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Figure 3.1: A complete overview of the EIR system. The system consists of annotation, detec-
tion and automatic analysis and visualization subsystems.

It is well known that training data is an important key factor to create a good classification
system. Nevertheless, in the medical field, the time of experts and multimedia data are two
resources that are quite limited. This is primarily the case because of high every-day workloads
for doctors, but also due to legal issues. In many countries, patient consent has to be collected
before research can be performed on patient related data, making data collection a very difficult
task. Moreover, the annotation of videos itself is very time-consuming, and the quality of
annotations depends on the experience and concentration of the doctors [44]. For example, in
a VCE procedure, a video containing around 216, 000 - 1, 000, 000 frames per examination is
produced. An experienced endoscopist frequently needs one and even up to two hours to view
and analyze all the video data [85]. Therefore, aside from getting data for the EIR system to
enable automatic screening, the annotation subsystem makes it possible to use the annotated
videos in a medical video archive for procedure documentation or teaching purposes. The
current version of the annotation part consists of the semi-supervised annotation tool presented
in [145, 4] and a cluster-based annotation tool [144].

3.1.1 Semi-supervised Annotation Tool

To reduce the amount of time doctors need to spend in the whole process, they only have to pro-
vide annotations in a single frame of the video or image. The specialist’s knowledge is ideally
only required for the first very basic identification of abnormalities and to tag them accordingly.
The automatic step uses this information to track the regions of interest on previous and subse-
quent frames automatically. An example of the interface of the semi-supervised annotation tool
can be found in figure 3.2.
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Figure 3.2: The interface of the semi-supervised annotation tool. The user has only to mark the
area with the disease and enter the name and a short description of it. The tool then automati-
cally tracks the marked area and stores the examples in a training dataset.

The manual annotation part is performed by selecting regions of interest in a video sequence.
The output from the manual annotation contains a single annotation for every region of interest
in the video sequence or images. Using this information, object tracking algorithms are used in
combination with manual corrections to generate a complete dataset. Most of the work in this
step is done by the software. Depending on the quality of the video and the speed of camera
movement, user intervention is needed to assure a high quality of tracking. A more detailed
description of this part of the annotation subsystem can be found in [4].

There is of course still a fair amount of manual work involved to achieve good annotations.
However, using a suitable tracking algorithm substantially reduce the time needed to create a
complete dataset. Moreover, a lot of annotation work can be performed without the specialist
being present all the time [142]. The output generated by the tool is a list of frames for a certain
disease including rectangles for every previously marked region within the frame. This data is
especially helpful for training and development of localization and tracking algorithms. Every
rectangle in such a list is described by the index of the video frame it belongs to, its position in
pixel coordinates and its dimensions. The annotated frames are pooled together regarding their
tags, which can be directly used in the detection and automatic analysis subsystem [145, 142].

3.1.2 Cluster-based Annotation Tool

To extended the annotation subsystem, we implemented a tool that allows the doctors to utilize
global-features-based clustering to tag a large amount of data in a short period of time. The
clusters are created based on visual global image features (described in detail in section 2.3.1)
that are also used in our classification subsystem and the search-based algorithm. It is impor-
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Figure 3.3: The interface of the clustering-based annotation application that makes the annota-
tion process for medical personnel easier and more efficient [142].

tant to point out that the cluster-based annotation tool can be extended to support any type of
multimedia data. After the clusters are created, the doctors can manually drag and drop images
between different clusters and also annotate complete clusters at once. The clustering-based
application has two main advantages. Firstly, it allows medical doctors to investigate and ana-
lyze vast collections data, for example, from endoscopic procedures by providing a configurable
focus and context-view-based on frame similarity. Secondly, it makes it possible to utilize the
focus and context-view for annotation of the dataset, making it more accessible for complimen-
tary information systems such as our detection and automatic analysis subsystem [145, 142].

Figure 3.3 shows the annotation tool interface. On the upper left side, users can choose the
folder containing the image collection. The clustering annotation tool supports at the moment
unsupervised clustering (x-means clustering [124], the number of clusters does not have to be
known in advance) and supervised clustering (k-means [69], the number of cluster has to be
determined at the beginning), but can be easily extended with other clustering methods. The
clustering algorithm can be selected in the settings in the lower left corner. For the clustering
algorithm, the same features as supported by the detection subsystem can be chosen. If more
than one feature is selected, they are combined using early fusion. In future versions of the
tool, we will also support late fusion. The options at the bottom allow the user to specify the
clustering parameters. These setting are set to default values recommended by literature [124,
69]. The clusters are represented using the clustered images. The closer an image is to the
medoid of the cluster the closer it is to the center of the circle.

The user can interact with the visual presentation by zooming and turning it into different
angles. Furthermore, the user can double click on clusters, which will open the folder contain-
ing all images in the selected cluster. The users can see information like the cluster center and
the purity (which measures the ability of the clustering algorithm to recover known labels [72])
of the clusters by right clicking on the cluster. All images can be dragged and dropped between
different cluster circles to improve the annotations. Finally, the medical experts can tag the
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clusters, which adds the term used for the annotation to the name of the images in the clus-
ter [145, 142]. The output of the clustering annotation tool is mainly used to identify and tag
frames or images that contain abnormalities for the detection subsystem. Its output can also be
used in the previous presented annotation tool to mark the exact position of abnormalities in the
images which makes it also useful for the localization part.

3.2 Detection and Automatic Analysis Subsystem

The main purpose of the detection and automatic analysis subsystem is to automatically de-
tect, analyze and localize endoscopic findings in the GI tract for standard colonoscopies and
VCEs [145, 142].

The subsystem for detection and automatic analysis is designed in a modular way, so that
it can be extended to different diseases or subcategories of diseases, as well as other tasks like
size determination. At the moment, this subsystem consists of two parts, i.e., the detection part
that detects irregularities in video frames and images, and the localization part that find the
exact location of the disease in the image for frame. The detection part does not determine the
location of an irregularity, but the localization part uses the output of the detection as input to
perform localization on true positive frames only [142].

3.2.1 Detection

The detection part analyzes videos and images to find out if there is anything abnormal to be
found. In our use case this means detecting diseases in the GI tract [145, 142]. All the frames
that are processed in this part can be separated into two disjoint sets which can also be seen as the
model for the classification algorithm. These two sets contain example images for abnormalities
and images without any abnormalities. The detection is built in a modular way and can easily
be extended with new models or submodels of different diseases. Such flexibility would, for
example, allow to first detect a polyp and then distinguish between a polyp with low or high risk
of developing into CRC by, for example, using the NICE classification1. Furthermore, it could
be used to distinguish between different types of polyps to, for example, separate inflammatory,
serrated and adenomatous polyps. To compare and determine the abnormalities in a given
video frame (or image), global image features are used as described before. The main reason
is because they are easy and fast to calculate, and because we are not interested in the exact
position at this point of the system. A detailed overview of the steps within the detection that
are described in the following text, can be found in figure 3.4.

For the implementation of the search-based classification of the detection part we used the
Lire [96] open source library for content-based image retrieval as a starting point. This library
provides a comprehensive set of already implemented and tested algorithms to extract different
types of global image features. This allows us to experiment with a whole set of global image
features for detecting or clustering video frames from colonoscopy or VCE videos.

Lire uses Lucene2 indexes for storing and searching image feature data [171]. Lucene in-
dexes are structured in documents, fields and terms. An index contains a sequence of docu-

1http://www.wipo.int/classifications/nice/en/
2https://lucene.apache.org/
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Figure 3.4: This diagram shows the detailed steps performed by the detection part of EIR. The
training data is first indexed by the indexer. The indexer indexes different types of features from
the input data, which are extracted in the feature extraction part. The indexes are used by the
classifier as a model to classify input data. The classifier performs a search-based classification
on the data to get the final results, which then can be used for the localization determination or
presented to the user.

ments, where a document is a sequence of fields, a field is a sequence of terms and a term is a
string [171]. Indexes that are used as the model of the search-based classification are created
using as many example frames as possible, but it is important to point out that the number of
needed examples is rather low compared to other methods like deep learning. The index also
contains information about the presence and type of any disease in the frame or image. A classi-
fier can then search the index for the frames that are most similar to a given input frame. Based
on the results, the detection subsystem then decides which abnormality (if any) the input frame
belongs to [142].

The complete classifier is realized using two separate tools, an indexer and a classifier. The
indexer and the classifier can be found in our open source project OpenSea [104]. The main
task of the global image feature indexer is to extract visual features from input videos or images
and store these in the index. These indexes are then used as input data for the search-based
classifier. The indexer is created as a separate tool, and in a way that it is easy to distribute
it on heterogeneous architectures. The computational nature of the indexing part is similar to
what we know as batch processing. Therefore, creating the models for the classifier could be
done off-line and it is not influencing the real-time capability of the system because it is only
done once at the first time when the training data is inserted into the system. It creates indexes
for all directories passed on from the system. The visual features to calculate and store in
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the indexes can be chosen based on the abnormality, because different types of disease require
different set of features or combinations. For example, bleeding is easier to detect using color
features, whereas polyps also require shape and texture information. The indexer processes
all the frames in a given directory. It stores the generated indexes in a subdirectory inside the
indexed directory. If multiple directories are passed for indexing, it creates a separate index for
each directory [145, 142].

The classifier can be used to classify video frames from an input video into as many classes
as the detection part model consists of. In contrast to other classifiers that are commonly used,
this classifier is not trained in a separate learning step. Instead, the classifier searches previously
generated indexes, which can be seen as the model, for similar visual features. The output is
weighted based on the ranked list of the search results. Based on this, a decision is made.
We refer to these previously generated indexes, which are searched for similar image features,
as classifier indexes or indexes containing training data. The classifier expects at least one
classifier index and an input source. The input source can either be a video, an image or another
previously generated index [142].

The classifier also creates an HTML page with a visual representation (see figure 3.5) of the
results. Once the processing is finished, a benchmarking function outputs evaluation informa-
tion (bottom part of figure 3.6(a)).

To be able to use the benchmark function, the input data indexes must contain either negative
or positive samples only, or must have the sample type encoded in the file names of the indexed
images. The classifier is parallelized, and it can be chosen how many cores should be used to
process the data. A GPU implementation has also been developed, and experiments show that
performance improved further (presented in detail in section 3.5) [145, 142].

3.2.2 Localization

As mentioned before, the detection part does not determine the location of the detected irreg-
ularities. The location determination is performed by the localization part of the detection and
automatic analysis subsystem, which uses the output of the detection as input. An overview of
the detailed steps performed by the localization can be found in figure 3.7.

Currently, the localization supports finding the location of polyps, but the localization is
also built in a way that it can be extended to any other automatic detectable diseases in our
system. The exact positions could be used for live examinations, archiving, and future size
determination. The processing of the images is implemented as a sequence of intra-frame pre-
and main-filters (see figure 3.6(b) for a console output example). Pre-filtering is needed because
we use local image features to find the exact position of objects in the frames, which is easier
on pre-filtered images.

Disease objects or areas itself can have different shapes, textures, colors and orientations.
They can be located anywhere in the frame and can also be partially hidden or covered by bio-
logical substances like seeds or stool. Furthermore, endoscopic findings can be lighted by direct
or reflected light. Moreover, the image itself can be interleaved, noisy, blurry and over-/under-
exposed, and it can contain borders and sub-images (from the colon location function that some
colonoscopy processors provide to show where in the colon the endoscope is). Additionally,
it can have various resolutions depending on the type of endoscopy equipment or VCE used.
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Figure 3.5: Result output of the detection part using the features JCD and Tamura. One can see
that the detection part could almost always find the polyp containing frames. The first image on
the second row is an example for a false negative result [142].

Endoscopic images usually have a lot of flares and flashes caused by the high power light source
on the endoscope. All these nuances can negatively affect the local features detection methods
and have to be treated specially to reduce the impact on the localization precision.

In our case, we used several sequentially applied filters to prepare raw input images for the
following analysis. These filters are RGB to YCbCr color space conversion, removal of borders
and sub-images, flares masking and low-pass filtering. After the pre-filtering, a local-feature-
based analysis follows that uses the pre-processed images as input [145, 142].

As described above, we have implemented the localization of colon polyps using a local
features approach. The main idea of this localization algorithm is to use the polyps physical
shape to find the exact position in the frame. In most cases, the polyps have the shape of a hill
located on relatively flat underlying surface or the shape of a more or less round rock connected
to underlying surface with legs varying in their thickness. The locations of these polyps can be
approximated using elliptical shape regions that consists of local features that differ from the
surrounding tissue with a high probability. In the localization algorithm, we use the following
sequence of filters: binary noise reduction filter, 2D-gradient filter, threshold borders detection
filter and binary noise removing filter. After this filtering, the next step creates a filtered binary
image, approximated by a set of ellipses from which we built energy maps based on the ellipsis
size and border points precision approximation and matching.

The final coordinates of one or more polyps in the frame are chosen by searching for the
maximums in the energy map. At the moment the algorithm gives as an output four locations.
These four possible locations are the ones with the highest probability to be on a polyp. To
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(a) Console output of the detection part using the features JCD and Tamura.

(b) The final output of the localization part for polyps. The localizer can easily be extended to localize different
disease detect by the detection part.

Figure 3.6: System output for the detection and localization part after the analysis. It includes
general results per frame and all evaluation metrics that are provided by the system [142].

further improve the results, a method that will make it possible to determine which one of the
four positions has the highest probability to be on a polyp will be needed. An example for the
output of the localizer is shown in figure 3.8. Correct locations are marked with green crosses
and incorrect locations with red crosses. The area of the polyp in the image is marked with
transparent blue. The second image in the first row shows an optimal result, the last image in
the second row shows a not optimal output with only one cross on the polyp [145, 142].

3.3 Visualization Subsystem

The purpose of the visualization subsystem is to provide the results of the automatic detection
and analysis subsystem to the medical experts who are supposed to use the output of it for
computer aided diagnosis. It is important to point out that the visualization part was not a main
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Figure 3.7: This diagram gives an overview of the most important steps performed by the
localization part of EIR. The localization receives input frames or images containing polyps
from the detection part. The input frames are preprocessed and filtered. In the filtered images
curve shaped object detection is performed. This is followed by ellipse approximation and
binary image creation. The output of this is then used to perform local maximum detection and
building of energy maps. The energy maps are then used to select four locations that are most
probably showing a polyp.

focus of this thesis and mainly implemented to allow medical experts to use the output of the
EIR system. One of the critical parts of each examination is the process of analyzing, reporting,
facilitating and using multimedia to prepare the final result, i.e., the diagnosis and the report
on the procedure. Medical experts use a significant part of their time on this task, and they
are therefore in need of multimedia systems that can support them by minimizing errors and
increase the efficiency in this process.

For EIR, we developed two different tools that can be used to visualize the output of the
automatic analysis to the medical experts. The first one is based on the semi-supervised anno-
tation tool [4], which was described in section 3.1.1. We extended the tool with the possibility
to load and visualize the output of the detection and automatic analysis subsystem. An example
for how the visualization looks with this tool can be seen in figure 3.9. This version is very
convenient for research purposes because of the additional image processing functions (e.g.,
specular highlight filter or border detection), but it can be too complicated to use for medical
personnel in the hospital.

The second tool for the visualization that we developed is a web-based application. The goal
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Figure 3.8: Output of the localization part marking the four possible locations of polyps de-
termined by the algorithm. True positives are marked with green crosses, false positives are
marked with red crosses. The exact area of the polyp is highlighted with transparent blue. The
algorithm gives four possible locations for a polyp in the frame. For future work, this will be
reduced to one cross per frame (the one with the highest probability to mark a polyp) [142].

of the web-based visualization tool is to support medical experts with an application that is easy
to use and makes it easy to share data amongst participating medical experts in the future. The
interface and an example visualization are shown in figure 3.10. Our prototype facilitates the
output of the detection and localization part and creates a web-based visualization which will
be combined in the future with a video sharing platform [55] where doctors are able to watch,
archive, annotate and share information.

We chose to use a centralized system based on web technologies to; (i) minimize the nec-
essary installs on client computers (with the web-based approach, a modern web browser is
the only requirement); (ii) to allow for comfortable sharing of results and content with other
experts; and (iii) to not duplicate data but use a centralized storage for multimedia data and an-
notations. This of course opens up questions about serving sensitive patient data over networks
and leads to interesting research and organizational questions how to solve the data security
problem, which is also an emerging field for the multimedia community [144, 145, 139, 142].

The prototypes for the visualization subsystem can considered very basic, and there are
tools resulting from multimedia research in existence that can be utilized for being a computer
aided diagnosis system, but our approach already led to a benefit for the medical experts, al-
lowing them to use the output of our system and share data with other experts. Finally, not just
the visualization applications are important but also an understanding of how humans perceive
multimedia content and how different aspects of the content influence them differently [139],
which is out of scope of this work and an important task for future work.
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Figure 3.9: Visualization of the output of the automatic analysis subsystem of EIR using an
extended version of the semi-supervised annotation tool. The time line below the videos indi-
cates with red color where significant findings are located in the video. The tool also provides
additional image processing functionalities such as filtering of specular light and edge detection.

3.4 System Evaluation

In this section, we will present the initial experiments that we conducted on the EIR system
for our polyp detection use case. We tested the whole system in terms of detection accuracy
and system processing performance. The requirements of the system that we are evaluating
are, (i) reaching real-time performance (being able to process 25-30 frames per second) and
(ii) achieving high detection accuracy (at least equal to the best related approaches in table 2.1,
above 90% for precision, recall/sensitivity and F1 score). We also participated in the Endovis
Automatic Polyp Detection in Colonoscopy Grand Challenge at the 2015 International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MICCAI) with our
system. Furthermore, we present results of the EIR system for CPU-based and GPU-based dis-
tribution of the workloads (CPU-based in section 3.4.4 and GPU-based in section 3.5). This
is followed by a proof-of-concept for the multiple disease detection functionalities of EIR in
section 3.6.

For any of the subsequent measurements, we used the same computer which was an old 32

AMD CPU cores Linux server with 128 GB ram. This evaluation is similar to the one conducted
for our publication [139] and [142]. Nevertheless, this version differs in the used hardware and
the presentation.

As mentioned previously, we used the ASU Mayo Clinic polyp dataset [168] as training
and test data. This dataset is the biggest publicly available dataset consisting of 20 videos,
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Figure 3.10: A web-based visualization tool for the output of the automatic analysis subsystem
of EIR. The application is built in a way that it is easy to use and expandable with sharing
features in the future. The red color in the time line shows where significant endoscopic findings
are located with a tag on top of it naming the finding. The location is marked with a circle around
the disease.

converted from WMV to MPEG-4 for the experiments, with a total number of 18, 781 frames
and resolutions between 720×480 to 1, 920×1, 080 pixels. The videos are named using wp_ or
np_ plus the number of the video. A complete overview of all videos and their length, resolution
and if they contain a polyp (if a video contains a polyp, it only contains a single one) or not can
be found in table 3.1.

3.4.1 Detection Accuracy

For all detection and localization accuracy experiments, we used the common standard metrics
precision, recall/sensitivity and F1 score. Precision is computed by true positives (tp, correct as
positive classified) divided by tp plus false positives (fp, false classified as positive class). The
higher the precision is, the more precise is the detection algorithm.

Precision =
tp

tp+ fp

Recall (also called sensitivity) is computed by tp divided by tp plus false negatives (fn,
false classified as negative class). A high recall shows that the algorithm is able to detect all
occurrences of polyps.

Recall =
tp

tp+ fn

In an optimal case both, precision and recall, are high. Usually, precision and recall are in
such a relation that a higher precision leads to a lower recall and vice versa [129]. A way to cal-

55



Video Length in minutes Resolution Contains polyps
np_5 00:22 720× 480 no
np_6 00:27 720× 480 no
np_7 00:25 720× 480 no
np_8 00:23 720× 480 no
np_9 01:01 720× 480 no
np_10 01:04 720× 480 no
np_11 00:51 720× 480 no
np_12 00:58 720× 480 no
np_13 01:00 720× 480 no
np_14 00:54 720× 480 no
wp_2 00:10 1920× 1080 yes
wp_4 00:30 1920× 1080 yes
wp_24 00:17 720× 480 yes
wp_49 00:16 856× 480 yes
wp_52 00:36 856× 480 yes
wp_61 00:11 1920× 1080 yes
wp_66 00:13 856× 480 yes
wp_68 00:08 1920× 1080 yes
wp_69 00:20 1920× 1080 yes
wp_70 00:13 856× 480 yes

Table 3.1: Overview of all videos used for the experiments. For each video name, resolution
and polyp occurrence is reported.

culate the quality of a classification system that considers both measures is the F1 score, which
is the harmonic mean between precision and recall and gives an idea of the overall performance
of the system.

F1 = 2 · Precision ·Recall

Precision+Recall

Moreover, we decided to use leave-one-out cross-validation to evaluate this part of the sys-
tem. Leave-one-out cross-validation (cross testing of different splits of the data, reported is the
average performance over all splits) is well suited to show generalization potential and robust-
ness of a predictive model [130]. Therefore, training and testing datasets are rotated, leaving out
a single different non-overlapping video for testing, and using the remaining videos for training
the model. This process is repeated until every item or portion has been used for testing exactly
once [33]. The EIR system allows us to use several different global image features for the clas-
sification. All features can also be combined using late fusion. The more image features we use
at the same time, the more computationally expensive the classification becomes. Furthermore,
not all image features are equally important or provide equally good information for our use
case. As a first step, we therefore need to determine which image features are suited best for
the detection.

To be able to understand which image features provide the most information gain, we gen-
erated indexes containing all possible image features for all frames of all video sequences for
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our dataset. We then used these indexes for several different measurements and also for leave-
one-out cross-validation (leaving one video out from the training data at the time and using it
as test data, repeating the procedure until each video had been left out once).

The built-in evaluation functionality of EIR provided information on the performance of
different image features for benchmarking. The output of the evaluation function provides
separate information for every single image feature, as well as the performance for late fusion
of all the selected global image features. As mentioned in section 2.3.5, we did not use PCA for
this step because we use late fusion.

The obtained values for true positives, true negatives, false positives and false negatives for
all the runs are used to calculate the metrics for the leave-one-out-cross validation.

The results of this first test are presented in table 3.2 [142]. The global image feature that
generally achieves the best results is CEDD [96]. All features used here have been described
in detail in section 2.3.1. The table also reveals that the image features JCD, EdgeHistogram,
Rotation Invariant Local Binary Patterns, Tamura and Joint Histogram achieve similar positive
results. Late fusion of all used image features achieves the best results.

Nevertheless, it is not feasible yet to use late fusion of all image features for the classifi-
cation because the calculation, indexing and searching of all image features is computationally
expensive. After some more testing and also based on our findings in [136], we decided that
a late fusion of two image features will provide optimal results in terms of detection accuracy
and at the same time minimizing the computational requirements for our use case. Furthermore,
some of the two feature combinations reached accuracy at least equal or better compared to the
state-of-art presented in this work. Combinations of more than two features is therefore not nec-
essary for our use case because it will not increase the performance, but it can be an interesting
task for future versions of EIR.

To determine which features work best for this fusion, we ran another experiment where
we tested all, by the EIR system supported, possible combinations of features. For these tests,
we performed on only one video to avoid overfitting on the dataset (the classifier adjusts to
very specific random features in the dataset, which happens especially if training data is rare, or
learning is performed too extensive on the data [59]).

One can see that many combinations perform well and can be used, and the detection ac-
curacy shows only minor differences. Nevertheless, based on the results for this evaluation
presented in table 3.3 and the general characteristics of the used global features, we decided to
use the features JCD and Tamura for our use case. The reason for this decision is that they have
a good trade-off between detection accuracy and processing performance and at the same time,
both features combined, result in a 186 dimensions feature vector, which makes them easy and
fast to compute [142].

After we found the best combination of two features, we evaluated the classification perfor-
mance using these two image features. Using the two features, we conducted again a leave-one-
out cross-validation with all available video sequences, and the results are presented in table 3.4.
Using JCD and Tamura for late fusion, we achieved an average precision of 0.889, an average
recall of 0.964 and an average F1 score value of 0.916. Since the used dataset is not balanced
in terms of how many negative and positive examples we have and also how many frames each
video contains, we calculated also weighted metrics. If we weight the values contributed by
every single video with the number of frames in the video, we achieve an average precision of
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True True False False F1
Feature Positive Negative Positive Negative Precision Recall Score
JointHistogram 3,369 13,826 1,085 511 0.7563 0.8682 0.8084
JpegCoeffHist. 3,224 13,772 1,139 656 0.7389 0.8309 0.7822
Tamura 3,392 13,861 1,050 488 0.7636 0.8742 0.8151
FuzzyOppHist. 3,341 13,552 1,359 539 0.7108 0.8610 0.7787
SimpleColorHist. 2,736 13,563 1,348 1,144 0.6699 0.7051 0.6870
JCD 3,556 13,777 1,134 324 0.7582 0.9164 0.8298
FuzzyColorHist. 2,708 13,243 1,668 1,172 0.6188 0.6979 0.6560
RotInvtLlBP 3,479 13,829 1,082 401 0.7627 0.8966 0.8243
FCTH 2,846 13,671 1,240 1,034 0.6965 0.7335 0.7145
LocBinPattAOpp 2,412 13,349 1,562 1,468 0.6069 0.6216 0.6142
PHOG 2,879 13,806 1,105 1,001 0.7226 0.7420 0.7321
RankAndOpp 2,527 13,553 1,358 1,353 0.6504 0.6512 0.6508
ColorLayout 2,702 14,018 893 1,178 0.7515 0.6963 0.7229
CEDD 3,705 13796 1,115 175 0.7686 0.9548 0.8517
Gabor 1,849 10,643 4,268 2,031 0.3022 0.4765 0.3699
OpponentHist. 2,246 14,157 754 1,634 0.7486 0.5788 0.6529
EdgeHistogram 3,548 13,737 1,174 332 0.7513 0.9144 0.8249
ScalableColor 3,231 13,684 1,227 649 0.7247 0.8327 0.7750
Late Fusion 3,710 13,894 1,017 170 0.7848 0.9561 0.8620

Table 3.2: Leave-one-out cross-validation for all, by the EIR system supported, features [142].

0.9388, an average recall of 0.9850, and an average F1 score value of 0.9613. These results
proof that it is possible to detect polyps with a precision of around 94% and almost 99% of all
polyp containing frames are detected by the EIR system, which can be seen as very good [142].

3.4.2 Localization Accuracy

For the experiment to test the localization accuracy, we used the ground truth provided in the
ASU Mayo clinic polyp dataset. Furthermore, we also used the CVC-ClinicDB dataset [10]
containing 612 still images from 29 different videos from colonoscopy examinations that were
used during the MICCAI challenge. Both datasets’ ground truth contains the exact positions
of the polyps in the frame as binary images where the polyp location is presented by zeros.
The CVC-ClinicDB dataset contains only images with polyps and none without. Table 3.5
shows the performance of the localization part of EIR. The first row shows the results for the
CVC-ClinicDB dataset, all following rows show the performance for videos of the ASU Mayo
dataset.

The performance is presented for every video and also as average. We did not include videos
that did not contain a polyp at all because they are filtered out by the detection part beforehand,
and we counted the output of the localization as positive if the algorithm marked a location
within the area of a polyp on the binary image. The localization part has a precision of 0.3207,
a recall of 0.3183 and a F1 score of 0.3195. To determine the recall in terms of finding the exact
location of the polyp, the false positives have also to be counted as false negatives (because the
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Feature True True False False F1
Combination Positive Negative Positive Negative Precision Recall Score

Rot.Inv.LBP & Tam 162 22 153 0 0.5142 1 0.6792
PHOG & Tam 161 23 152 1 0.5143 0.9938 0.6778
JpegCoeff.Hist. & Tam 162 21 154 0 0.5126 1 0.6778
Gabor & Tam 162 20 155 0 0.5110 1 0.6764
FuzColHist. & Tam 162 18 157 0 0.5078 1 0.6735
FuzOppHist. & FuzColHist. 160 17 158 2 0.5031 0.9876 0.6666
JCD & OppHist. 135 67 108 27 0.5555 0.8333 0.6666
JoiHist. & JpegCoHist. 162 12 163 0 0.4984 1 0.6652
ColLay & FuzColHist. 162 11 164 0 0.4969 1 0.6639
FuzColHist. & JoiHist. 162 11 164 0 0.4969 1 0.6639
FuzOppHist. & JoiHist. 162 11 164 0 0.4969 1 0.6639
FuzOppHist. & SimColHist. 162 11 164 0 0.4969 1 0.6639
JoiHist. & RotInLBP 162 11 164 0 0.4969 1 0.6639
JoiHist. & SimColHist. 162 11 164 0 0.4969 1 0.6639
FuzOppHist. & Gabor 161 13 162 1 0.4984 0.9938 0.6639
JCD & JpegCoHist. 161 13 162 1 0.4984 0.9938 0.6639
CEDD & FuzColHist. 159 17 158 3 0.5015 0.9814 0.6638
JpegCoHist. & RotInLBP 152 31 144 10 0.5135 0.9382 0.6637
JCD & Tam 162 10 165 0 0.4954 1 0.6625
CEDD & Tam 162 10 165 0 0.4954 1 0.6625

Table 3.3: Top 20 results of the performed experiments for late fusion. Each combination
contains two image features for the video wp_61, sorted by F1 score [142].

localization algorithm in the current state cannot not determine if their is a polyp in the frame or
not). These results indicate that the localization works as intended but has large potentials for
improvement. One problem that can be interesting to solve for future improvements is that the
localization actually outputs four possible disease positions per frame, which should optimally
be reduced to one location with the highest change to be on the polyp. In almost all cases, one of
the four possible locations points at a polyp, but for the evaluation all four points where included
in the calculations, which influences the performance metrics negatively (which is depicted in
the large number of false positives).

3.4.3 MICCAI Challenge Results

To see how our method compares to other state-of-the-art methods, we participated in the MIC-
CAI challenge (Endovis Automatic Polyp Detection in Colonoscopy Grand Challenge at the
2015 International Conference on Medical Image Computing and Computer Assisted Interven-
tion). The challenge consisted of two parts. The first part (i), was the polyp localization, where
the task was to find out if the proposed method could cope with important polyp appearance
variability and, therefore, accurately determine the location of the polyp in a frame. The second
part (ii), asked the questions if the proposed method could detect a polyp in the frame or not,
and how long the delay was from the first appearance of the polyp to when it could be detected.
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True True False False F1
Video Positive Negative Positive Negative Precision Recall score
np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631
Average: 0.8890 0.9640 0.9160
Weighted average: 0.9388 0.9850 0.9613

Table 3.4: Performance evaluation by leave-one-out cross-validation for all available videos,
using JCD and Tamura features combined via late fusion [142].

We did not expect very good results for the challenge since EIR is not built only for polyp de-
tection. The other participants used a wide range of different methods to detect polyps and were
more specialized in the topic. These methods ranged from hand crafted features like contour-
or shape-based detection used in combination with traditional machine learning approaches to
neural networks. We identified several interesting challenges that come with polyp detection
during the challenge such as blurry images due to camera motion, size differences, lighting and
objects that look like polyps but are not, such as contaminants [142].

Table 3.6 shows the result for the polyp localization part based on the CVC-ClinicDB
dataset. EIR was on the fourth place out of six. Details about the implementation of the other
participants’ methods are not available, but the RUS approach used a deep learning method.
Based on the fact that our system is not built for only polyp detection, the results are very
promising. It is also important to point out that the first three participants were organizers of the
challenge and involved in the dataset collection. Table 3.7 gives and overview of the results for
the detection latency part. For the latency, EIR performed second best out of all participants.
This is a very good result, and a positive confirmation about the real-time performance com-
patibility of EIR. It should also be mentioned that the approach of UNS-UCLAN is not able to
distinguish between a frame with or without polyp.
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True False False F1
Data set Positive Positive Negative Precision Recall score
CVC-ClinicDB 397 215 249 0.6487 0.6146 0.6312
ASUMayo 2 1 244 244 0.0041 0.0041 0.0041
ASUMayo 4 443 467 467 0.4868 0.4868 0.4868
ASUMayo 24 74 300 300 0.1979 0.1979 0.1979
ASUMayo 49 36 355 355 0.0921 0.0921 0.0921
ASUMayo 52 194 490 490 0.2836 0.2836 0.2836
ASUMayo 61 129 80 80 0.6172 0.6172 0.6172
ASUMayo 66 92 142 142 0.3932 0.3932 0.3932
ASUMayo 68 63 126 126 0.3333 0.3333 0.3333
ASUMayo 69 0 235 235 0.0000 0.0000 0.0000
ASUMayo 70 4 381 381 0.0104 0.0104 0.0104
Average: 0.3207 0.3183 0.3195

Table 3.5: Performance evaluation of the localization algorithm [142]. To be able to determine
the true recall in terms of finding the exact location of the polyp, the false positives have also to
be counted as false negatives (because the localization algorithm in the current state cannot not
determine if their is a polyp in the frame or not).

True False False F1
Participant Positive Positive Negative Precision Recall score
UNS-UCLAN 48 481 148 9.07 24.49 18.28
CuMedVis 31 167 165 15.75 15.81 15.77
CVC 33 163 163 16.84 16.84 16.84
Our EIR System 46 723 150 5.98 23.47 14.81
RUS 65 1558 131 4.00 33.16 13.50
SNU 8 188 188 4.08 4.08 4.08

Table 3.6: Results of the MICCAI polyp localization challenge [142].

Participant Latency in ms F1
CuMedVis 6.66 26.40
Our EIR System 21 13.27
SNU 43.33 6.13
CVC 44.60 22.78
Rustad 235 11.47
ASU 417.5 20.84
UNS-UCLAN 0 0

Table 3.7: Results of the MICCAI polyp detection challenge. The table shows the detection
latency in milliseconds and F1 score [142].

Overall, the results of the challenge are positive for a system that is designed to be expand-
able with different diseases and use cases. We proved that we can compete and outperform
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Index Frames Total time in seconds Time per frame in ms
D1 3, 871 89.78 23.1
D2 14, 909 178.55 11.9
D3 29, 818 231.75 7.7
D4 100, 000 782.351 7.8

Table 3.8: Performance evaluation of the indexing part. Four different datasets with different
sizes have been tested to show the scaling capability of the indexing part [142].

other state-of-the-art approaches, which are designed for the specific problems of the challenge,
without applying any adaptations or modifications to EIR or tuning our detection for the given
dataset [142]. It is also important to point out that we participated in the MICCAI challenge
with an early version of EIR and that the results might be even better with the current version.

3.4.4 System Processing Performance

As discussed before, an important requirement for medical multimedia system is scalability and
processing performance. Since the use case is to use the system to do mass screening for lesions
in the GI tract, using video sequences recorded live with colonoscopy or VCEs, we need both
scalability and fast processing. For the processing performance evaluation, we decided to use
the same configuration of the EIR system as in the accuracy performance evaluation, which is
the late fusion of JCD and Tamura. It is important to reach real-time performance in terms of
processing a video and reach a frame rate of not less than 25-30 FPS. For all tests, we used three
videos from three different endoscopic devices and different resolutions. The three videos are
wp_4 with a resolution of 1, 920 × 1, 080 and 910 frames, wp_52 with 856 × 480 and 1, 106

frames and np_9 with 712 × 480 and 1, 843 frames (see table 3.1). We chose these videos to
show the performance under different requirements that the system will have to face when it is
used in a real hospital [142].

3.4.4.1 CPU Processing

To test how the different parts of our system scale in terms of used CPU cores, we performed
several tests on our test machine. For all tests, we measured time per frame for the number of
used cores. We also conducted some experiments to understand the influence of the size of the
training data on the performance.

Processing Performance for Indexing: For the detection approach, we first measured the
indexing part that creates the model that is later on used by the classifier. This process does not
have to be in real-time and can be seen as batch processing, but it should at least be scalable for
larger datasets. We did all experiments on the AMD Linux machine described earlier using 16

CPU cores. Extracting two features and indexing them for the whole ASU Mayo dataset takes
in average 8 milliseconds per frame. There is no big difference between the indexing time for
different resolutions. We tested the scaling potential by indexing different datasets. The first
dataset (D1) contains 3, 871 frames, the second (D2) contains 14, 909 frames, the third (D3)
contains 29, 818 frames and the last (D4) contains 100, 000 frames. Table 3.8 gives an overview
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Figure 3.11: Detection performance in terms of FPS depending on the number of CPU cores
and the resolution of the videos. The videos are wp_4 with a resolution of 1, 920 × 1, 080,
wp_52 with a resolution of 856× 480 and np_9 with a resolution of 712× 480. For all videos,
we observe that the required frame rate is reached with 16 CPU cores used in parallel.

of the overall results. Our most interesting finding is that a larger dataset leads to a faster
indexing time per frame. We assume that this happens because of the Java runtime optimizer.
Furthermore, we could not measure an increase of the processing time after more than 30, 000

frames in the dataset. We think that the limiting factor is the I/O part since increasing the
number of CPU cores did not increase performance. The experiments on the indexer part reveal
that the indexer is able to deal with larger datasets, and it should be able to meet all requirements
of the system for future tasks.

FPS Performance: Next, we tested the performance of the detection and localization parts
in terms of processing speed. This is an important factor, since the system should provide a
result as fast as possible and not slower than 25 FPS making it usable for live applications. For
all tests, we used the three different videos described before.

FPS Performance for Detection: Figure 3.11 shows the detection part performance for the
three tested resolutions in FPS. The required FPS for all three videos are reached with 16 CPU
cores used in parallel.

FPS Performance Localization: Figure 3.12 shows the performance of the localization part
for FPS. For the highest resolution, namely 1, 920× 1, 080, the best result is 7.9 FPS. A signif-
icant code optimization and using of GPU for accelerated calculations will be needed to reach
required FPS. For resolution 856×480, the required FPS are almost reached with 32 CPU cores
used in parallel. The best result is 22.5 fps for this resolution. A code optimization will be
needed to reach the required FPS. For the final video with the resolution 712×480, the required
FPS are reached with 19 CPU cores in parallel. The outcome of these experiments for the lo-
calization part clearly shows that our system can reach real-time requirements but needs some
optimization.
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Figure 3.12: Localization performance in terms of FPS depending on the number of CPU cores
and the resolution of the videos. The videos are the same as for the detection part. As the results
show, the performance depends heavily on the resolution of the videos.

3.4.4.2 Memory

We also tried to find out how the different parts of the system scale in terms of memory, and we
investigated the influence of the index sizes on the performance. The memory usage for both
parts is shown in figure 3.13 for detection and figure 3.14 for localization.

Memory Performance for Localization: For the localization, the memory usage behaves as
expected (linear growth) and shows that the localization is scalable in terms of memory (as
depicted in figure 3.14).

Memory Performance for Detection: For the detection, the memory usage behaves rather
unusual after a certain number of used CPU cores (shown in figure 3.13). Therefore, a closer
look into it was necessary. The results of this can be found in the figures 3.15 and 3.16. We
tested different memory sizes used for the detection starting from 1GB up to 32GB. These tests
showed that the available memory for the detection part does not influence the FPS performance
(see figure 3.15). The Java memory scheduler uses as much memory as it can get, but it also
performs well with only 1GB (shown in figure 3.16). This proves that the detection part is not
dependent on memory, and therefore, memory is not a bottleneck for scaling the system, i.e., at
least in the scope of the amount of data that we have available for our experiments [142].

Finally, we wanted to know if the size of a classification index influences the detection
accuracy or processing performance. Index Size Performance: Figure 3.17 depicts the detection
and processing performance as detection accuracy (F1 score) and FPS for three different index
sizes. We expected that smaller indexes would lead to higher FPS throughput but with a loss of
classification performance. Surprisingly, the experiment revealed that the tested index size does
not have a significant influence on the FPS performance of the detection system. Of course, it is
possible that an index with several hundred thousands frames will most probably lead to a lower
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Figure 3.13: This chart shows the overall memory consumption for all three videos in the
detection part. A maximum is reached at around 14 used CPU cores. Further investigation is
needed to see if the detection part is scalable.

FPS output, but in the medical fields lack of training data is common and therefore this will not
be a problem. Another positive aspect that we found in this experiment is that the classification
performance does not decrease with smaller indexes tested (obviously a too small will). Even
the opposite happened, for example, for the video with a resolution of 856 × 480 the F1 score
increased slightly compared to the full training data. This is an indication that the detection part
performs very well even with a smaller amount of training data. This finding is a very positive
point for our use case, because of the constant lack of training data in the medical fields [142].

In this section, we presented our first evaluation of the EIR system and our findings based
on this evaluation. We can report very good results for both the detection and localization
accuracy and the processing performance. More detailed evaluations, based on the latest version
of EIR, which includes GPU-offloading and is able to reach around 300 FPS, can be found in
the papers [127, 143, 126, 142] and the following section.

3.5 Real-time Distribution of Multimedia Workloads in EIR

In order to process the videos from the GI tract using multiple filters in real-time, we need to
parallelize the video analysis. In addition, to be able to scale to a massive scale cancer screening
of large parts of the population every year, the system must be distributed [126, 127].

Major limitations of the current state-of-the-art is the lack of support for (i) efficient exe-
cution of large workloads like the VCE on elastic heterogeneous resources in general and (ii)
delivery of results in real-time. To achieve efficient processing and real-time capabilities, data
must be efficiently managed and processed, i.e., the current trend where everything is pushed to
the cloud does not necessarily work alone due to huge data sets, varying resource availability,
privacy issues and real-time constraints.
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Figure 3.14: This chart shows the overall memory consumption for all three videos in the
localization part. This shows us that the localization part scales well in terms of memory.

In this respect, distributed and parallel processing has been important and popular research
area for a long time, and in a never-ending quest for solving increasingly complex tasks, soft-
ware developers have consistently pushed the boundaries for computational demand. As the
physical limitations of pushing the clock frequency on a single-core CPU became apparent,
new hardware solutions evolved. The focus moved to increasing the number of cores. This
effectively forced the programmers to parallelize their applications to increase performance.

After we proved that the EIR system achieves good results in terms of detection and local-
ization accuracy, we started to improve the processing performance so that it can be used in real-
time examinations. For this, we utilized heterogeneous resources such as multiple CPUs and
GPUs [142, 126, 127]. We also performed some distributed processing experiments on Ama-
zon mechanical cloud [142] that showed us that the performance gain is not as high as expected
and distribution on multiple GPUs and CPUs is efficient enough. Moreover, we implemented a
version of EIR that utilizes device lending (virtual lending of resources like GPUs from other
machines via PCI Express) to improve the performance even more [74, 126]. The EIR system
has been implemented completely and showcased in several demo session [145, 126] to show
its real-time capabilities. This section gives a summarized overview of the research conducted
in area of processing performance, a description of our GPU acceleration and how we utilized
device sharing using device lending.

3.5.1 Distribution and Offloading of Multimedia Workloads

With parallelization, modern distributed computing systems often provide the required process-
ing power for large scale data processing. However, their increasing complexity is a challenge.
Existing and future topologies exhibit a range of capabilities where computing nodes consist
of multiple heterogeneous processing engines including multi-core CPUs, digital signal pro-
cessors (DSPs), field-programmable gate array (FPGAs) and GPUs. To further complicate the
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Figure 3.15: The analysis of the memory consumption of the detection part showed us that the
Java garbage collector always uses the complete memory that it can get. It is automatically set
to around 6GB on our system.

picture, these devices often vary their behavior between generations [120]. Furthermore, these
nodes are connected by a variety of networks, from wireless networks to high-speed intercon-
nects. Communicating via a network adds latency and can introduce delays detrimental to the
progress of the application. Moreover, parallel applications on shared-memory architectures
need to synchronize threads of execution when accessing shared data. It becomes necessary to
distribute data and synchronize state between nodes in the topology. Fault-tolerance is required
to handle situations where nodes in the network become unavailable, and these are just a few
of the obstacles that must be overcome. Thus, the increased complexity results in a lack of
portability of the existing scheduling designs, and moving from a sequential mode of operation
to parallel execution is significantly more demanding for developers [107, 119].

A first wave of building blocks for big-data systems like, for instance, Apache’s Hadoop,
Hive, Spark, and Storm, Google’s MapReduce, GFS, Chubby, and BigTable, Microsoft’s Dryad,
Azure and Naiad, and Facebook’s Zookeeper, and Cassandra have already been developed.
These are isolated building blocks related to handling high data volumes, and not complete big
data systems [35].

Other novel solutions are expected in the years to come since a substantial subset of in-
ternational computer science has redefined their research agenda under the big data umbrella.
Prominent examples include MIT’s bigdata@CSAIL, Berkeley’s AMPLab, and Ireland’s IN-
SIGHT Center, which also work in the intersection with medicine [36, 107].

All previous mentioned frameworks are limited to certain application domains, i.e., batch
processing, and some later approaches stream processing. Processing and analyzing thousands
of videos from, for example, VCEs in real-time, potentially using a long pipeline of filters to
search for multiple disease scenarios, gives other requirements, and existing frameworks cannot
be used out-of-the-box. We need greater flexibility to extend the processing pipeline, support
for iterations, deadlines for immediate feedback and the ability to express arbitrary processing
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Figure 3.16: This experiment showed that the available memory for the detection part does not
influence the FPS performance. The Java memory scheduler takes always the whole memory
that it can get but it also works perfectly with only 1GB. This is a proof that the detection part
is not dependent on memory and therefore memory is not a bottleneck for scaling the system.

graphs [36]. Thus, traditional batch processing frameworks do not commonly integrate knowl-
edge of deadlines into the run-time itself. While support for iterations exists, it is not consid-
ered in the parallelization stage, and it is rather solved by iterative execution of the workload,
which might introduce artificial barriers between iterations, potentially slowing down faster
workers [107]. In the beginning of this work, we started to investigate different distributed
frameworks regarding their possibilities and to determine the state-of-the-art. Therefore, we in-
vestigated Hadoop [190], Apache Spark [161], Cuda [115] and Apache Storm [164]. Reviewing
of the literature and testing existing frameworks showed us that the Apache Storm framework
is the best solution for our requirements and that it might could be used as a high level dis-
tribution framework for P2G kernels (P2G is a distributed framework specifically designed for
multimedia workloads [35]) that we wanted to use within this work.

To be able to schedule multimedia workloads efficiently, more dimensions than just the time
(e.g., workloads and computational attributes) have to be taken into account. This introduces
new concepts for scheduling as a combination of taking a computational tasks nature, in term
of if it is time-, CPU-, I/O-, memory- and cache-bound, into consideration.

CPU bound means the rate at which process progresses is limited by the speed of the CPU.
A task that performs calculations on a small set of numbers, for example multiplying small
matrices, is likely to be CPU bound [197]. In P2G, because we have fetch statements, we know
how much data is being requested for the computation done by every kernel. Because of this, it
is possible to look at the ration between instructions being generated vs. the data fetched from
fields. It might not be accurate every time, but it can give an indication on whether the kernel is
CPU bound or not.

I/O bound means the rate at which a process progresses is limited by the speed of the I/O
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Figure 3.17: This chart shows how the amount of training data influences the performance
of the detection subsystem in terms of detection accuracy and FPS output. The training data
has been reduced to 1/2 of the original size (ca. 8, 800 frames) and 1/3 (ca. 5, 800 frames).
The chart shows that there is no significant difference for the detection performance and the
FPS. The smaller indexes can achieve even a better F1 score for the video with a resolution of
856× 480 [142].

subsystem. A task that processes data from disk, for example, counting the number of lines in
a file is likely to be I/O bound [8]. P2G does not support this functionality yet, but source/sink
kernels [125] that handle I/O are planed for the future. This is important because of distribution
where kernels can be migrated to computers that do not have the correct files. Furthermore,
having ”special I/O fields”, e.g., a kernel fetching from an I/O field would implicitly become a
source kernel and a kernel storing would implicitly become a sink kernel might be a promising
idea.

Memory bound means the rate at which a process progresses is limited by the amount mem-
ory available and the speed of that memory access. A task that processes large amounts of in
memory data, for example multiplying large matrices, is likely to be memory bound [174]. In
general, this is related to CPU bound. In P2G, this can be statically assessed, e.g., generate Low
Level Virtual Machine (LLVM) Intermediate Representation (IR) [78] with clang reads in gen-
erated code and use the code to look up fetches which provides the data type. These data type
sizes can then be aggregated for every fetch and compared to the number of compute operations
found in the LLVM IR.

Cache bound means the rate at which a process progress is limited by the amount and speed
of the cache available. A task that simply processes more data than fits in the cache will be cache
bound. I/O bound would be slower than memory bound would be slower than cache bound
would be slower than CPU bound [41]. The solution to being I/O bound is not necessarily to
get more memory. In some situations, the access algorithm could be designed around the I/O,
memory or cache limitations like cache oblivious algorithms [151]. As an optimal solution, it
might be possible to implement cache oblivious processing with P2G kernels, but at first one
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should look into basic loop/block tiling [194, 122]. This can be achieved by looping over a
(sub-)graph and not process the complete dataset at once, but instead smaller chunks of it.

As an alternative to this, one can basically compute anything on the GPU [121]. The most
important classification here is whether a problem is task parallel or data parallel [76]. The first
one refers, roughly speaking, to problems where several threads are working on their own tasks,
more or less independently [82]. The second one refers to problems where many threads are
all doing the same - but on different parts of the data [63]. The latter is the kind of problem
that GPUs are good at: They have many cores, and all the cores perform the same task, but
operate on different parts of the input data. An example problem for that would be ”simple
math but with huge amount of data”. Although this may sound like a perfectly data parallel
problem, and thus like it was well-suited for a GPU, there is another aspect to consider: GPUs
are ridiculously fast in terms of theoretical computational power (Floating Point Operations
Per Second, FLOPS), but they are often throttled down by the memory bandwidth [155]. This
leads to another classification of problems. Namely, whether problems are memory bound or
compute bound, which we already mentioned at the begin from a more general point of view.

The first one refers to problems where the number of instructions that are performed for each
data element is low. For example, a parallel vector addition: First, we have to read two data
elements, then perform a single addition, and then write the summary into the result vector. This
will not be faster if performed on the GPU, because the single addition does not compensate
for the efforts of reading/writing the memory [120]. The P2G kernels are created to distinguish
task and data parallel operations. Index expressions are data parallel and independent kernels
are always task parallel. Like using a GPU, P2G could identify ”a long string” of data parallel
kernels. Agglomerating these kernels into one larger, or longer running, kernel can hide the
penalty associated with transferring data over the PCI express bus. It is also possible to analyze
the generated LLVM IR and identify loops and excessive branching in kernel’s native code.
Branching control structures are not ideal for GPUs [62].

The second term, compute bound, refers to problems where the number of instructions is
high compared to the number of memory reads/writes. For example, a matrix multiplication:
The number of instructions will be O(n3) where n denotes the size of the matrix. In this case,
one can expect that the GPU will outperform a CPU at a certain matrix size. Another exam-
ple could be when many complex trigonometric computations (like sine/cosine) are performed
on few data elements [120]. P2G and the new LLVM IR that is used should be able to easily
identify sine operations (at least that is the impression, because LLVM has what it calls internal
intrinsics, i.e., common functions such as memcpy, malloc, free, and also cos and sin), which are
efficiently executed on the GPU [75]. As a rule of thumb it can be assumed that reading/writing
one data element from the main GPU memory has a latency of around 500 instructions. There-
fore, another key point for the performance of GPUs is data locality. If it is needed to read
or write data, and in most cases this is true, then should be made sure that the data is kept as
close as possible to the GPU cores. GPUs thus have certain memory areas (referred to as local
memory or shared memory) that usually is only a few KB in size, but particularly efficient for
data that is about to be involved in a computation [146].

To emphasize this, GPU programming is an art that is only remotely related to parallel
programming on the CPU. Functionalities like threads in Java, with all the concurrency infras-
tructure like ThreadPoolExecutors, ForkJoinPools, etc., give the impression that tasks just have
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to be split up and distributed among several processors [45]. Unfortunately, it is not that easy.
On the GPU, one can encounter challenges on a much lower level, namely, occupancy, register
and shared memory pressure and memory coalescing. However, if a data-parallel, compute-
bound problem has to be solved, the GPU is most probably the best solution [81]. In P2G, we
are most likely able to identify these exact properties by examining kernels. In addition, we
can also estimate close values for calculating the GPU occupancy. This is done manually by
programmers today using an excel sheets.

Unfortunately, due to its huge scope and complexity, the development of the P2G framework
got delayed due to a change of the code basis to LLVM, and we discovered that timing within
scheduling of multimedia workloads was an already well researched field [188, 94, 67, 152].
P2Gs current state is rather undeveloped and it can not really be used to conduct tests on mul-
timedia workloads. Essential parts like file reading and writing and memory management are
missing. To make P2G working as intended and that it can be tested in a real scenario will need
some more years of engineering.

Taking all these aspects into the scheduler makes it a very complex and hard to solve task.
Some literature research showed us that hyphergraphs are a promising tool to solve these com-
plex problems, which introduces a lot of new challenges and research questions that are inter-
esting to address. Nevertheless, because of the current state of P2G all of them require a lot of
engineering and programming time to be able to be tested and are therefore out of scope for this
thesis. Instead, we decided to start with exploring the possibilities of using GPUs to increase
the processing performance of parts of the of the EIR system. This will give a first idea about
the problems and challenges of our workloads and lay the basis for future work.

3.5.2 GPU-acceleration

To improve the processing performance of the EIR system, we implemented some of the compute-
intensive parts using GPUs and Cuda [115]. Cuda is the standard framework that is used to pro-
gram Nvidia graphic cards. We decided to pipeline parts of the system architecture as heteroge-
neous processing subsystem. An overview of the implementation can be found in figure 3.18.

The main processing applications (indexer and classifier) interact with a modular image
processing subsystem. Both parts are implemented in Java via direct calls of the API. At the
moment, the GPU-accelerated processing supports a number of features (JCD, which includes
FCTH and CEDD, and Tamura). We decided for these as starting points because they are the
best performing ones for our use case. Specifically, we implemented the feature extraction,
color space conversion, image resizing and pre-filtering [142, 127]. To be able to handle mul-
tiple image processing and feature extraction requests at the same time, the image processing
subsystem uses a multi-threading architecture. The GPU implementation of EIR is transparently
accessible from native Java code through a GPU CLib wrapper.

The Java Native Access (JNA) API [89] is needed to directly access the GPU CLib API from
the image processing subsystem. The GPU CLib is a system shared library and implemented
in C++. The main task of the GPU CLib is to maintain the connection and handle data streams
with the stand-alone Cuda-enabled processing server. To achieve maximum data transfer per-
formance and reduce excess data copy actions, shared memory is used. To send requests and
receive status responses from the Cuda server, local Unix sockets are used, which are easy to
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Figure 3.18: The main processing application consists of the indexing and classification parts
and uses the GPU-accelerated image processing subsystem to increase the processing perfor-
mance. The image processing subsystem provides feature extraction and image filtering algo-
rithms for the pipeline. Compute-intensive procedures are executed by a stand-alone Cuda-
enabled processing server. The interaction between the different architectures is performed via
a GPU CLib shared library which is responsible for maintaining connections and handling data
streams with the Cuda-server [127].

utilize for communication between processes executing on same host operating systems. The
Cuda server is implemented using C++ and uses Cuda SDK to perform the processing tasks
on the GPU. The server and all supporting components are built with distributed processing
in mind, and can easily be extended with multiple Cuda servers running locally or on several
distributed nodes [127]. The processing server can easily be extended with new extractors for
different features and advanced image processing algorithms if needed, which can benefit form
the provided utilization of multi-core CPU and GPU resources. As an example of a feature
extraction, the extractor for the FCTH feature is depicted in figure 3.19. One can see that for
the image features, all pixel-related calculations are executed on the GPU. This also includes
the processing of multi-threaded shape detector and fuzzy logic algorithms which are image
processing steps that are needed for FCTH. The heterogeneous processing subsystem also pro-
vides input and intermediate data transparent caching services. These services help to reduce
the CPU-GPU bandwidth usage and avoids excessive data copying during the processing steps
within the image processing part [142, 127].

3.5.2.1 Performance Evaluation

Utilizing the processing power of GPUs in the EIR system increased the performance greatly
compared to the CPU only version. To evaluate and compare the performance gain, we per-
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Figure 3.19: The figure shows an example of our FCTH feature implementation using the GPU
extension of the EIR system. The input image is split into a number of non-overlapping blocks
that can be distributed. Each of the blocks is processed by two GPU-threads. The main pro-
cessing steps include color space conversion, size reduction, shapes detection and fuzzy logic
computations [127].

formed experiments on the ASU Mayo dataset. We used three videos with different resolution
to measure the exact increase of the performance. The discussed experiments are presented
in more detail in the paper [127]. The used resolutions are full HD (1920 × 1080), WVGA1
(856 × 480), WVGA2 (712 × 480) and CIF (384 × 288) [142]. The results are presented in
figures 3.20, 3.21, 3.22 and 3.23. For these experiments, we decided to use 30 FPS or 33.3
milliseconds per frame as target processing time for live, real-time examinations [127]. The
hardware used for the experiments was a standard desktop computer, Intel Core i7 3.20GHz
CPU, 8GB RAM and a GeForce GTX 460 GPU. The basic and improved EIR systems are com-
pared using the same Java source code. In the figures, the basic system’s results are labeled as
Java, the improved system’s results with disabled GPU-acceleration are labelled as C and the
improved system’s run in the heterogeneous mode with enabled GPU-acceleration is labeled as
GPU [142, 127].

We can observe in figure 3.20 that the basic architecture can process full HD frames using
all 8 available CPU cores and up to 4GB of memory only at 6.5 FPS for Java and 13.8 FPS
for the C implementations. For the smaller frame sizes, real-time requirements are reached
using a maximum of 4 CPU cores and a maximum of 4GB of memory. The maximum FPS that
were achieved are 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and CIF as figure 3.21
and figure 3.23 show. The new GPU-enabled architecture easily process full HD frames using
only 4 CPU cores and 5GB of memory with 32.6ms frame processing time (see figure 3.20
and 3.22). The maximum frame rate for full HD video frames was 36 FPS using all 8 CPU
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Figure 3.20: This image show the performance of the improved EIR system for full HD frames.
It reaches real-time performance (RT line) with 30 FPS for full HD (1920 × 1080) videos on
conventional desktop PC using only 4 CPU cores and 5 Gb of memory. The maximum frame
rate is around 36 FPS using 8 CPU cores. The Java and C implementations cannot reach real-
time performance on the used hardware [127].

cores. The smaller frame sizes reached real-time with only 1 CPU core and 4.5GB of memory.
The maximum frame rate achieved by the EIR system where around 200 FPS (see figure 3.21
and figure 3.23). The tested hardware with the basic EIR system is not able to achieve real-time
performance for full HD videos even using all available CPU cores (but it works for the low
resolution videos). The improved EIR system reaches real-time performance for full HD videos
using 4 CPU cores and one rather outdated GPU. The smaller frames can be processed using
very little resources (one CPU core plus the GPU). The memory size is never a limiting factor
(which could be a problem with GPU implementations), and the improved EIR system can be
deployed even using a single desktop PCs with a standard GPU as an accelerator. We underlined
this finding with further experiments which are described in more detail in the papers [142, 126,
127] where we achieved FPS rates up to 300 FPS for HD resolutions.

3.5.3 Device Lending

To explore further possibilities for improving the performance of the EIR system, we tested
it using device lending [74]. Device lending is a transparent cross-machine device sharing
system without any need to implement application-specific distribution mechanisms that allows
to share resources like GPUs between different machines. For applications run on hardware that
use device lending, the remote I/O resource appears local and does not have to be addressed in a
specific way. This makes it very easy to use and interesting for systems that for example benefit
from GPU acceleration like our improved EIR version. Device lending is implemented on top
of native PCI Express which enables low-latency and high-throughput and with PCI Express
as the most widely used I/O bus today, it is also already present in all modern computers [74].
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Figure 3.21: This figure shows the performance of the EIR system for non HD frames. The
videos WVGA1 (856 × 480), WVGA2 (712 × 480) and CIF (384 × 288) can be processed in
real-time by the improved EIR system using only 1 CPU core. The maximum frame processing
rate reaches more than 200 FPS [127].

Figure 3.22: The processing time decreases marginally with an increasing number of used CPU
cores for a single full HD frame. This is due to the CPU-parallel implementation of feature
comparison and search algorithms which are not as compute intensive as the feature extraction
processes. Java and C implementations reach the required frame processing time with 4 CPU
cores (hyper-threading cannot handle CPU intensive calculations efficiently for all 8 possible
which are 4 real and 4 virtual cores on the used system) [127].

For our use case, this is interesting because it can be beneficial to have one main frame that can
lend the devices to different computers based on the requirements in a hospital scenario where
resources and space in the examination rooms are often spare [74].
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Figure 3.23: Using EIR with GPU support for processing smaller frame sizes results in a pro-
cessing time far below the real-time margin. The minimum is reached with 5 milliseconds. This
is a prove for the high system performance and ability to be extended by additional features or
to process several video streams at the same time [127].

Device Type E1 E2 E3 E4
CPU Intel Core i7-4820K 3.70GHz * * * *
GPU1 Nvidia Tesla K40c * * * *
GPU2 Nvidia Quadro K2200 * * *
GPU3 Nvidia GeForce GTX 750 * *
GPU4 Nvidia Tesla K40c *
RAM 16GB Quad Channel DDR3 * * * *

Table 3.9: This table shows the used hardware and the configurations for the different conducted
experiments. GPU1 to GPU3 are local GPUs and GPU4 is lent via device lending [126].

3.5.3.1 Performance Evaluation

To evaluate the performance increase when using device lending for our system, we performed
four different experiments [126]. An overview of the performed experiments can be found in
table 3.9. We used the same CPU (Intel Core i7) and memory (16GB) for all experiments, and
we used two computers. One of them is used to perform the tests and one is only used for
lending the GPU [74].

The experiments are labeled from E1 to E4. E1 uses one local GPU, E2 uses two local GPUs
and E3 used three local GPUs and E4, borrows one GPU from the second computer in addition
to three local GPUs [74, 126]. In the experiments, we performed the polyp detection task with
our EIR system and real-time feedback as an overlay on the video for up to 16 parallel video
streams. All video streams are full HD (1920 × 1080). We measured the performance for the
complete pipeline from capturing the video until showing the output on the screen. The results
of the experiment are presented in the figures 3.24 and 3.25 [74, 126].

Figure 3.24 shows the performance for all streams streamed at the same time. For a max-
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Figure 3.24: Frame processing time for several full HD streams in parallel using the different
experimental setups for GPU acceleration (table 3.9) [126].

Figure 3.25: The overall system performance of multiple video streams in parallel for all exper-
imental setups using GPU acceleration [126].

imum of seven parallel full HD streams, the three local GPUs are fast enough. If more than
seven parallel streams are used, GPU lending is required. One can see that the more parallel
streams are processed the better is the performance gain from the device lending technology.
This is because the overhead for transferring data that hinders device lending using its full po-
tential. Figure 3.25 shows the maximum system performance which reveals that device lending
can indeed improve the systems performance. The maximum FPS reachable using four GPUs
at the same time is 30 FPS for nine full HD streams streamed in parallel. This would be around
270 FPS for a single video stream. Another insight is that the device lent GPU does not increase
the performance for a small number of videos but for more than five videos the increase gets
noticeable. This is an indicator that device lending is not helpful for a small amount of data but
that it can increase the performance largely for larger amount of data [126].
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3.6 Proof-of-concept for Multi-disease Classification

In section 2.2.4, we claimed that one major difference between EIR and related approaches is
that EIR easily can be extended to detect other endoscopic findings (abnormalities, diseases,
anatomic landmark or other relevant events during the examination of a patient).

To proof that EIR is able to perform multi-class classification for diseases aside from polyps,
we developed an improved prototype for the detection part, and additionally, a deep-learning-
based approach to be able to compare it with a state-of-the-art method. Both approaches are
tested on a dataset collected from the Bærum Hospital in Norway, which is one of our collabo-
rators. The annotated data that we had to evaluate multi-class classification was rather limited
and therefore it is important to point out that these results are preliminary. A more detailed
evaluation is recommended when more annotated data is available (getting annotated data is an
ongoing process and can take more than one year because of the workload for the doctors).

3.6.1 Multiclass-EIR

The EIR system is designed in a way so that multi-class classification can easily be added with
minor adjustments. Figure 3.26 gives a detailed overview about how the multi-class version of
EIR, called Multiclass-EIR, works. The basic search-based classification part of EIR is used
to create a classifier for each disease that we want to classify. The difference to the two-class
version is that the ranked lists of each search-based classifier are used in an additional added
classification step to determine the final class. For the final classification, we use the random
forest classifier [16]. It is important to point out that for this step also other classification
algorithms can be used. We decided for the random forest approach because it is fast and
achieves at the same time good results [180].

The random forest classifier creates automatically a random forest of classification trees.
The created classifier consists of different randomly generated decision trees. A decision tree
can be seen as a classifier, which basically performs decision-based classification on the given
data. To determine the final class, the classifier combines all decisions trees into a final decision
(which is similar to late fusion described in section 2.3.5.2). The advantage of the random forest
algorithm is that the training of the classifier is very fast because the classification steps can be
parallelized, which is possible due to the fact that each tree is processed separately. Further,
the random forest classifier is very efficient for large datasets because of the ability to find
distinctive classes in the dataset and also to detect the correlation between these classes. The
disadvantage is that the training time has a linear increase with the number of trees, which can
lead to a longer training time if many trees are used at the same time. However, this is not a
problem for our use case since training time is not critical. Our implementation of the random
forest classifier is using the version provided by the Weka machine learning library [54].

3.6.2 Deep-EIR

The Deep-EIR version of the detection part of EIR is based on deep learning. In particular,
we trained a model based on the Inception v3 architecture [167], which is a deep learning
architecture designed for image classification, using the ImageNet dataset [29]. The ImageNet
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Figure 3.26: Detailed steps for the multi-class detection part of the EIR system. Several search-
based classifiers are used for different classes, which are combined using an additional classifi-
cation method.

dataset is a large dataset of annotated images containing 14, 197, 122 images and 1, 000 object
categories. From the Inception v3 model, we removed the last layer and retrained it with our
medical image classes. Figure 3.27 gives a detailed overview of the complete pipeline for the
neural-network-based implementation of the detection.

The Inception v3 achieves good results regarding single frame classification and efficient
resource and parameter needs. The top one result error is around 21%, and the top five error is
around 6% with less than 25 million parameters. The training of the Inception v3 network is
performed from scratch using Goolge Tensorflow [1] and takes around three weeks on a single
computer with GPU support. Tensorflow is an open source framework that allows all kind of
numerical computing using graphs. Nodes within the flow graphs represent mathematical oper-
ations and the edges represent data arrays (called tensors in Tensorflow). It is especially built to
support scalable machine learning which includes neural-network-based architectures [1].

The trained Inception v3 model is then used in a retraining step. For this step, we follow the
approach presented in [31]. Basically, we remove the final layer from the model and retrain the
final layer from scratch. All the other layers do not change. This comes with the advantages
that not so much training data is needed to train the network, which is a benefit for our medical
scenario where lack of good data is a common problem, and that it is faster. Its takes around
one day with our settings to retrain the model. The re-trainer is based on an open source im-
plementation from Tensorflow3. At first, we calculate for each image the values for the second
last layer (also called bottleneck) which can be seen as kind of features representing the images.

3https://github.com/eldor4do/Tensorflow-Examples/blob/master/
retraining-example.py
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Figure 3.27: Detailed steps for the neural network (deep learning) implementation of the detec-
tion called Deep-EIR.

These features are then used to retrain the final layer of the network based on the new classes
using a softmax function [12]. For the retraining, we run 10, 000 training steps. Each step takes
20 random images in their pre-extracted feature representation to retrain the layer. Because of
the small amount of training data we also perform distortion operations on the images. In more
detail, we perform random cropping, random rescaling and random change of brightness. The
grade of distortion is set to 25% per image. In the case of polyp detection, distortions will not
destroy the meaning of the image (like it would do if someone, for example, wants to detect
letters). After the model has been retrained, it is used as a multi-class classifier that provides
the top five classes based on probability for each class.

3.6.3 Experimental Results

To evaluate the multi-class classifiers, we collected a new dataset from one of our partner hospi-
tals. The dataset contains six different endoscopic findings that can occur during a colonoscopy
with 50 images each, which leads to a total number of 300 images4. The classes in the dataset
are blurry frames, cecum (pouch that is the beginning of the large intestine), normal colon mu-
cosa (healthy colon wall), polyp, tumor, and Z-line (an anatomic landmark in the colon than
can help doctors to orientate). Figure 3.28 shows one example for each class in the dataset.
Because of the small number of images in the dataset, we performed cross validation. For the
cross validation, we randomly separated the images into 10 different sets of training and test

4The dataset that we could collect in the given time frame with the help of our medical partners is rather small,
but it is large enough for a proof-of-concept in combination with cross validation.
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(a) Blurry frame (b) Cecum

(c) Normal colon mucosa (d) Polyp

(e) Tumor (f) Z-line

Figure 3.28: Example for anatomic findings (classes) in the multi-class dataset. The classes are
blurry fame, cecum, normal colon mucosa, polyp, tumor and Z-line.

data. Each training and test subset contains 25 images per class. Multi-class classification is
then performed on all 10 splits and then combined and averaged. Following this strategy even
with a smaller number of images, a quite accurate estimation about the performance can be
made. Table 3.10 shows the confusion matrix (a standard tool for evaluating multi-class clas-
sifiers showing the actual class compared to the detected class) for Multiclass-EIR. The results
are a clear indication that the Multiclass-EIR approach performs well. An interesting insight
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Detected class Metrics
Blurry
frame

Cecum
Normal colon

mucosa
Polyps Tumor Z-line Precision

Recall
Sensitivity

F1-score

A
ct

ua
lc

la
ss

Blurry frame 250 0 0 0 0 0 1.0 1.0 1.0
Cecum 0 226 21 3 0 0 0.704 0.904 0.791

Normal colon mucosa 0 85 165 0 0 0 0.85 0.66 0.743
Polyp 0 10 8 226 6 0 0.953 0.904 0.928
Tumor 0 0 0 8 242 0 0.975 0.968 0.971
Z-line 0 0 0 0 0 250 1.0 1.0 1.0

Average 0.914 0.906 0.91

Table 3.10: Confusion matrix and standard metrics for the six-class classification performance
for Multiclass-EIR.

Detected class Metrics
Blurry
frame

Cecum
Normal colon

mucosa
Polyps Tumor Z-line Precision

Recall
Sensitivity

F1-score

A
ct

ua
lc

la
ss

Blurry frame 250 0 0 0 0 0 0.996 1.0 0.998
Cecum 0 183 64 3 0 0 0.782 0.732 0.756

Normal colon mucosa 0 34 197 19 0 0 0.641 0.788 0.707
Polyp 1 17 45 183 4 0 0.875 0.732 0.797
Tumor 0 0 1 4 245 0 0.983 0.98 0.981
Z-line 0 0 0 0 0 250 1.0 1.0 1.0

Average 0.879 0.872 0.876

Table 3.11: Confusion matrix and standard metrics for the six-classes detection performance
evaluation for Deep-EIR.

is that normal colon mucosa is often miss-classified as cecum (cecum is also sometimes miss-
classified as normal colon mucosa). Looking at the example images for cecum (figure 3.28(b))
and normal colon mucosa (figure 3.28(c)) reveals that this is not very surprising since it is even
hard for a human observer to find clear indications for what is what. Furthermore, from a medi-
cal point of view, normal colon mucosa is part of the cecum and under real world circumstances,
this would not be a relevant mistake.

The performance of Deep-EIR, which is presented in table 3.11 can also be considered as
good. Deep-EIR confuses the classes polyp and cecum more than Multiclass-EIR, but it is better
in detecting normal colon mucosa. For detecting blurry frames and Z-lines it performs at the
same level as Multiclass-EIR. Based on the confusion matrix for both approaches, we can see
that for some classes Multiclass-EIR is better and for other classes Deep-EIR. In the future, a
combination of both approaches might be interesting to research.

Comparing Multiclass-EIR and Deep-EIR using the standard metrics precision, recall/sensitivity
and F1-score reveals that Multiclass-EIR outperforms Deep-EIR significantly with a precision
of 0, 914, a recall of 0, 906 and a F1-score of 0.91 for Multiclass-EIR compared to a precision
of 0, 879, a recall of 0, 872 and a F1-score of 0.876 for Deep-EIR. Both approaches are able to
perform their multi-class classification within the defined border of 30 FPS.
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3.7 Summary

In this section, we presented our approach for a medical multimedia system called EIR targeted
to detect diseases in the GI tract. The EIR system consists of the complete pipeline from anno-
tation, over detection and automatic analysis to visualization. We demonstrated that all parts of
the system are important by itself, and as a complete system.

The annotation subsystem as a starting point is important, because without good training
data, we are not able to understand and solve the complex and often unexplored multimedia
challenges of the medical field. Medical experts are always very busy and we often received
the feedback that tools to provide and annotate data are very time consuming and complicated.
Therefore, to make it possible for us to get data from medical institutions that we can use to test
and develop applications and systems in the medical field, we had to develop several prototypes
of annotation tools for medical experts. Furthermore, we performed research on these tools to
find out, which ones are better usable and acceptable for the doctors [144, 145, 4, 49]. During
this process, we also got access to the ASU Mayo dataset [168], which is the largest publicly
available dataset of videos from GI examinations. With this dataset, we started to develop and
implement an improved version of the search-based classifier.

Based on the ASU Mayo dataset, we could show that our method can achieve very good
results for GI polyp detection. Since we also wanted to support medical doctors while they are
performing colonoscopies, we started to develop a parallelized, real-time classification system
for GI examinations [142, 143, 145]. We showed that the detection and automatic analysis
subsystem can reach state-of-the-art performance for detection of polyps as use case. Moreover,
we showed that the localization part is promising, but needs some improvements for the future.
At the moment, EIR is only tested with visual information, but it is built in a way that it can
easily be extended to other multimedia data such as sensor or patient data.

With EIR, we also successfully participated in the MICCAI challenge for polyp classifi-
cation5. In the challenge, we positioned us in the middle field for the classification and de-
tection parts, and we were the second best participant in the latency part [142]. In terms of
system processing performance, we showed that using only CPUs to distribute the workloads
is not enough. Therefore, we implemented, presented and evaluated an improved version of the
EIR system, which uses heterogeneous architectures (GPU-acceleration) and device lending of
GPUs. The quantitative results demonstrate that using distributed processing is the key to real-
time performance and parallel analysis of multimedia data with different approaches [143, 145].

Furthermore, the improved EIR system reaches significant over-performance in terms of
real-time video processing (300 FPS), which makes it possible to implement more extensions,
for example, different feature extractors, classifiers and complex image processing algorithms
to increase the number of detectable diseases by our system while keeping the real-time capa-
bility [142, 143, 145]. Moreover, we showed that the EIR system is able to perform multi-class
classification (six different anatomic findings), and that the search-based Multiclass-EIR ap-
proach is able to outperform Deep-EIR, which is based on state-of-the-art deep learning (neural
network) techniques. Nevertheless, it is important to point out that the used dataset is limited
in size and that evaluations on larger amount of data are recommended as soon as the data is
available. We also made the search-based classification part of our system open source [104],

5http://endovis.grand-challenge.org/
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and contributed to the improvement of the open source library Lire that has been used for the
implementation of our basic algorithm [97].

For the visualization subsystem, we presented two possible solutions that can be used by
medical experts. Nevertheless, even if fulfilling the basic requirements, this part holds a lot of
potential for future improvements [142]. Thus, in summary, EIR fulfills the requirements set in
section 1.2. It is therefore a promising first step towards a medical multimedia system that can
really help the medical sector in detection of some of the most lethal diseases, both for women
and men.
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Chapter 4

Conclusion

Researching and developing a complete medical multimedia system like EIR requires investi-
gations in many different areas. The described work in this thesis touches therefore a set of
diverse areas in order to learn and improve components in the entire chain of process. Initially,
these areas did not seem related, but all the work is connected due to its high performance
needs in terms of computational power and complexity, and also because of the search-based
classification method that we researched and developed resulting in an accurate, high-precision,
real-time disease detection pipeline for the GI tract (which is also depicted in figure 1.9).

4.1 Summary and Contributions

In this thesis, we presented our experiences with researching and developing a complete med-
ical multimedia system for automatic analysis of the GI tract. During the journey to a com-
plete system, we had to go beyond medical imaging for showing the potential of multimedia
research beside well known scenarios like analysis of content on YouTube or Flickr [139].
Furthermore, we demonstrated that it is not appropriate to test one method or theory just
with one use case, but with many different and diverse ones, to show its functionality and
robustness. As a milestone and a final output of the thesis, we described our experience re-
garding how multimedia researchers can apply their knowledge in the medical field and pub-
lished it in the ACM multimedia brave new idea track [139]. In addition to the EIR sys-
tem [4, 49, 127, 126, 142, 143, 144, 145], this can be seen as an important contribution of
the thesis.

The EIR system was planed and envisioned to be a complete medical multimedia system.
To stay in scope of the thesis, we focused on the use case of GI disease detection using videos
and images. We aimed to built a system that is generalizable, adaptable, efficient and accurate.
As result, the most important outcome of this work is the EIR system, which reaches high
accuracy for the polyp detection use case, is expandable with new use-cases and data types,
runs in real-time and is at the moment being tested by medical experts for a patient study.

This thesis contributes in several areas of multimedia research. In a more compressed and
summarized form, we contributed by researching and developing a medical multimedia system
called EIR including annotation, detection and visualization tools that demonstrates the poten-
tial of multimedia research for the health care system. Further, we researched and developed an
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efficient, generalizable content-based method to process multimedia data. We also contributed
by researching how distributed processing can help to achieve real-time performance for med-
ical multimedia workload processing. Moreover, we showed why the multimedia community
should apply their research in medicine, and illustrated how multimedia technology and meth-
ods can be used in the medical field to improve work flows, patient care and most important
potentially save lives. We also implemented and presented several prototypes and demos of the
system and made parts of it open source. Finally, we contributed by writing and publishing sev-
eral research papers about our findings and experiences, which we shared with the multimedia
community.

All main contributions of the thesis are supported by publications in top tier conferences or
journals. In more detail, the contributions in coherence to the objectives defined in section 1.2
of the thesis are:

• Contributions to the main objective: We developed the EIR system [142, 143, 127,
145, 126] for automatic detection of lesions in the GI tract. The system consists of an
annotation, a detection and localization and a visualization subsystem. This system has
been researched and developed with the help of medical experts in our partner hospitals
in Norway, Sweden, USA and Austria. The medical experts helped by giving feedback,
explaining their field, testing the system and providing data.

Using the ASU Mayo dataset [168], we showed that EIR reaches high performance in
terms of both accuracy and processing. For the classification part, we can report a sen-
sitivity of almost 98% and a precision of almost 94%. This means that EIR is able to
find polyps in almost all cases with a high precision. This can help the medical experts
to save time and lives [142, 143, 127, 145, 126]. We could also show that the EIR system
is able to perform multi-class classification and that the search-based Multiclass-EIR ap-
proach is able to outperform Deep-EIR, which is based on state-of-the-art deep learning
techniques. Nevertheless, it is important to point out that the used dataset is limited in
size and that evaluations on larger amount of data are recommended as soon as the data
is available.

Moreover, we compared EIR with other existing systems and participated in a classifi-
cation challenge where we could show that we outperform or reach at least same per-
formance in accuracy as state-of-the-art methods and that we are leading in terms of
processing performance [142, 126, 145].

For each part of the EIR system, we developed working prototypes and demo applications.
These prototypes and demo applications have been presented at conferences [4, 142, 126,
145].

For the real-time processing challenge, we showed that EIR can process at least 300 FPS
for polyp detection, which is a good indicator that we created a scalable medical multi-
media system able to process data in real-time [142]. We researched and implemented
different ways of distributed and parallel processing by using different architectures to im-
prove the performance of the EIR system. One of the methods that we researched is the
distribution of the detection and localization part on GPUs [127, 145]. Another method
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that we researched was to distribute the EIR workloads via device lending [74, 126]. Both
methods improved the processing performance significantly [74, 126].

We showed the potential of multimedia research in the medical field and showed possible
further directions and research topics using the EIR system as an example use case [139].

We contributed to two open source projects: Lire, in the field of content-based image
retrieval [97], and OpenVQ, on video quality [157]. We also released the base algorithm
of EIR as an open source project called Opensea [104].

Finally and most important for us, we contributed with a medical multimedia system for
GI examinations that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of EIR, we researched
several prototypes and techniques to make it easier and more efficient for the medical
experts to transfer their knowledge to our system. For this, we explored and developed
semi-supervised and cluster-based annotation tools [4, 144]. Based on the findings of one
of our annotation tools, we developed a model that can be used to understand events in
endoscopic surgery videos better than before and annotate this videos more efficient [49].

• Contributions to sub-objective 2: As the basis for the EIR system, we developed a
search-based classification algorithm that uses global image features, reaches good clas-
sification performance and is very fast at the same time [136]. We developed the theory
of intentional framing, which can help to explain why people take pictures and what they
want to achieve with them [136]. We researched a method that can be used to accept or
discard crowdsourcing workers for content annotation tasks by combining search-based
classifiers with crowdsourcing information [141]. We created and researched a prototype
of an intent-based video streaming system that uses the intentional framing method to
save bandwidth and preserve quality of experience for video streaming [131]. We re-
searched how the search-based classifier can be used to detect and synchronize events in
image collections [196, 195]. We researched how the context (a certain watching situa-
tion) influences the quality of experience for users when they are watching videos. As a
use case, we started with watching videos during a flight. We hosted a MediaEval bench-
mark task [138] about this topic and published a dataset [137]. Based on the use cases
addressed in the thesis and the EIR system itself, we showed that the search-based classifi-
cation algorithm is well suited to be applied to several different use cases that involve im-
age classification problems [136, 141, 131, 196, 195, 138, 137, 142, 143, 127, 145, 126].

• Contributions to sub-objective 3: We researched different types of visualization for the
output of the EIR system. The visualization includes a specific, for research and medical
experts developed application [4] and an easier-to-use, web-based version [4, 145]. The
visualization approaches can visualize all possible outputs of the EIR system [142].

Apart from the main contributions, we also contributed to other multimedia research relevant
topics: We researched how multimedia and art can be combined to make people understand
disabled people in a better way by developing a game that allows the player to experience a
house from a blind person’s point-of-view [140]. We developed a serious game that can simulate
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the functionality of an eye-tracking device. Based on a crowdsourcing study, we could show
that the data obtained by the game can be used to find areas of interest in images [134]. We also
published the data obtained in this study as a publicly available dataset [133]. We researched
how serious games can be used to make scientific content better accessible for the broader
population. Therefore, we developed two game prototypes and tested them with real users [98,
108]. We explored how multimedia methods can be used to find manipulations in online content
like images and videos, and how to verify that the content has not been manipulated [13].
We also published a dataset that we collected during this study [26]. We researched how the
design of complex crowdsourcing tasks can influence their outcome on the use case of 3D
reconstruction of soccer players. We published a best practice paper about design and test of
such tasks [191] and published a dataset obtained in the study [132]. We looked into the problem
of how crowdsourcing can be used in subjective studies such as quality of experience in videos.
For this, we looked at different tiling strategies in a football video streaming system [42]. Based
on this research, we also investigated how too much control can have a negative influence on
a crowdsourcing study and reported our findings, showing that crowdsourcing can lead to a
self-fulfilling prophecy [135].

In addition to the above contributions, the author also supervised several master students, or-
ganized workshops and was part of program committees for conferences. We also collaborated
with the Cancer registry of Norway in a project that tries to increase awareness for HPV and
cervical cancer. The cancer registry of Norway started a big user study based on the application,
which we helped to develop in December 2015 [108, 98].

In summary, we were able to follow a promising and for the society important path by
researching and developing a complete medical multimedia system. During this process, we
touched and contributed to several areas of multimedia research (annotation, automatic analy-
sis, processing and visualization). We were also able to establish collaborations with several
hospitals, which gave us a lot of insight into the medical field and their problems and needs,
but also domain knowledge that is needed for creating a useful system. Thus, this work builds
a solid basis for future collaboration and work in the field of medical multimedia systems.

4.2 Future Work

For future work, researchers can improve the EIR system in several ways and extend it with new
technologies and methods like more sophisticated deep learning approaches, pre-processing of
images and videos and including more sources of data such as patient records. Other improve-
ments can be a more detailed comparision of standard machine learning methods and deep
learning and when it would be reasonable to switch between them or if even a combination of
both is possible. Furthermore, we did not look into the time dimension in the videos, which is
another source of information that could help to improve the accuracy of the automatic analysis.

Another important point is to collect more training data in the medical field. A large, but
not yet annotated, dataset that has been collected during this work, holds a lot of challenges
and possibilities for future research and experiments. Nevertheless, the annotation process of
this data is depending on the medical experts and takes a lot of time and effort, and therefore,
it is not completed yet. This will also enable researchers to further investigate and evaluate the

88



multi-class classification part in more detail. Another interesting direction for future work is
the localization part of the system. The researched and developed method is able to localize
polyps, but it would also be interesting to extend it to other diseases. Apart from the extension
to more diseases, it would also be interesting to investigate the potential of deep learning for the
localization of endoscopic findings.

Further improvements of the automatic analysis and localisation could most probably be
achieved with performing 3D reconstruction of the GI tract. A 3D representation of the GI tract
could make it easier to detect diseases, and it would also enable size estimation of, for example,
polyps, which is an important information for doctors.

The output of an automatic system like EIR also opens many possibilities for visualization,
automatic reporting and computer aided diagnosis application scenarios. For example, one
could use the automatic output of EIR to add information to patient records such as images of
the found diseases or video clips. Moreover, the automatic analysis can also be used to create
automatic reports after the examination that could help medical doctors to reduce the amount of
time spend on reporting. The saved time could then be used to perform additional examinations.

Finally, a clinical trial in collaboration with medical doctors would also be an interesting
and challenging topic. We showed with our work about cervical cancer [98, 108] and the brave
new idea paper [139] that the possibilities for multimedia research in the field of medicine are
endless and other medical fields like psychology or pregnancy ultrasound, etc., can also be
interesting directions for researchers.

4.3 Final Remarks

To make it possible to continue the research in medical multimedia systems, we have applied
for several projects at the Norwegian research council. Two of them got funded and gave us a lot
of working hours from medical experts to create better datasets. The future plan is to make this
medical multimedia data and medical expertise publicly available. Furthermore, we applied
together with the Drammen hospital and the Cancer Registry of Norway, for an innovation
project at Helse Sør-Øst to build a live system for colonoscopies. This system will be based on
our current EIR system and has many system research challenges to tackle, i.e., it has to work in
real-time, preserve privacy and be fault tolerant. We fulfilled all research goals that we specified
for this thesis and created a complete system that can be used as basis for future research and
most important has the potential to actually save lives.
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Chapter 5

Papers and Author’s Contributions

General overview and discussion of the authors contributions and how the papers contributed
to the objectives defined in section 1.2 for each main paper of the thesis. A diagram that also
depicts each papers contributions can be found in figure 1.9.

5.1 Paper I: LIRE - Open Source Visual Information Re-
trieval

Authors: Mathias Lux, Michael Riegler, Pål Halvorsen, Konstantin Pogorelov, Nektarios Anag-
nostopoulos

Abstract: With an annual growth rate of 16.2% of taken photos a year, researchers predict an
almost unbelievable number of 4.9 trillion stored images in 2017. Nearly 80% of these
photos in 2017 will be taken with mobile phones1. To be able to cope with this immense
amount of visual data in a fast and accurate way, a visual information retrieval systems are
needed for various domains and applications. Lire, short for Luce- ne Image Retrieval,
is a light weight and easy to use Java library for visual information retrieval. It allows
developers and researchers to integrate common content based image retrieval approaches
in their applications and research projects. Lire supports global and local image features
and can cope with millions of images using approximate search and distributing indexes
on the cloud. In this demo we present a novel tool called F-search that emphasize the core
strengths of Lire: lightness, speed and accuracy.

Author’s contributions: Riegler contributed to the text in all sections and performed some
performance measurements for the speed of the system. He measured and reported the
performance of Lire regarding the search based algorithm. Furthermore, he contributed
in the development of the demo application and described a medical use case for it in the
field of gastrointestinal analysis.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2
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5.2 Paper II: How ‘How Reflects What’s What: Content-
based Exploitation of How Users Frame Social Images

Authors: Michael Riegler, Martha Larson, Mathias Lux, Christoph Kofler

Abstract: In this paper, we introduce the concept of intentional framing, defined as the sum
of the choices that a photographer makes on how to portray the subject matter of an
image. We carry out analysis experiments that demonstrate the existence of a correspon-
dence between image similarity that is calculated automatically on the basis of global
feature representations, and image similarity that is perceived by humans at the level of
intentional frames. Intentional framing has profound implications: The existence of a
fundamental image-interpretation principle that explains the importance of global repre-
sentations in capturing human perceived image semantics reaches beyond currently dom-
inant assumptions in multimedia research. The ability of fast global-feature approaches
to compete with more ‘sophisticated’ approaches, which are computationally more com-
plex, is demonstrated using a simple search method (Sim- Sea) to classify a large (2M)
collection of social images by tag class. In short, intentional framing provides a prin-
cipled connection between human interpretations of images and lightweight, fast image
processing methods. Moving forward, it is critical that the community explicitly exploits
such approaches, as the social image collections that we tackle, continue to grow larger.

Author’s contributions: Riegler had the overall responsibility and the idea for the paper. Riegler
wrote most of the text and performed all experiments. He developed the idea of inten-
tional framing together with Martha Larson an Mathias Lux. He implemented the search
based classification algorithm using the open source software Lire as platform. He tested
it on three different use cases, conducted experiments and analyzed and reported the re-
sults. He also performed extensive literature research to support the theory. He performed
tests that compare the performance of global features with local features.

Published in: ACM Multimedia Conference (MM), 2014.

Contributed to: Main Objective, Sub-objective 2

5.3 Paper III: Exploitation of Producer Intent in Relation
to Bandwidth and QoE for Online Video Streaming Ser-
vices

Authors: Michael Riegler, Lilian Calvet, Amandine Calvet, Pål Halvorsen, Carsten Griwodz

Abstract: This paper is the product of recent advances in research on users’ intent during mul-
timedia content retrieval. Our goal is to save bandwidth while streaming video clips from
a browsable on-demand service, while maintaining or even improving the users’ quality
of experience (QoE). Understanding user intent allows us to predict whether streaming a
particular video in a low quality constitutes a reduced QoE for a user. However, many
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VoD streaming services today are used by users for a wide variety of reasons, meaning
that user intent cannot be inferred from their use of the service alone. However, our inves-
tigation demonstrates that user intent does in most cases coincide with producer intent.
We can also demonstrate that the latter can be inferred from the content itself as well as
associated metadata. By transitivity, we can choose a default video quality that satisfies
the users QoE in the majority of cases.

Author’s contributions: Riegler brought the original idea and concept for the paper. Riegler
had the overall responsibility for the writing process. He designed and implemented the
proposed system. The system is based on the intentional framing idea and uses different
types of information to classify videos into different intent classes. He also conducted
the user study. For the user study he developed a web based questionnaire. He collected
the user feedback and analyzed the results. He also presented a analysis that shows how
much bandwidth can be saved using the proposed system.

Published in: ACM SIGMM Workshop on Network and Operating Systems Support for Dig-
ital Audio and Video (NOSSDAV), 2015.

Contributed to: Main Objective, Sub-objective 2

5.4 Paper IV: Media Synchronization and Sub-Event Detec-
tion in Multi-User Image Collections

Authors: Maia Zaharieva, Michael Riegler

Abstract: Personal media capturing devices, such as smartphones or personal image and video
cameras, are rarely synchronized. As a result, common tasks, like event detection and
summarization across different multi-user media galleries, are considerably impeded and
error-prone. In this paper, we investigate different approaches for the synchronization of
image collections using visual information only. We perform a thorough evaluation of
the performance of several global features on three datasets. Additionally, we explore
the feasibility of common clustering algorithms for the detection of sub-events in the
presence of synchronization misalignment.

Author’s contributions: Riegler contributed to the text and with the results and analysis of
the search based classification algorithm applied to the event synchronization problem.
He also contributed to the idea and concept of the paper. He modified the search based
algorithm so that it can be used for event detection by adding a functionality that can be
used to cluster different events in same clusters. He performed the experiments for the x-
means and x-means & time approaches. He helped analyzing the results of the experiment
and draw conclusions. He contributed with text in all sections.

Published in: ACM Human Event Workshop at ACM Multimedia Conference (HuEvent), 2015.

Contributed to: Main Objective, Sub-objective 2
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5.5 Paper V: Multimodal Synchronization of Image Galleries

Authors: Maia Zaharieva, Michael Riegler, Manfred Del Fabro

Abstract: This paper describes our contribution to the MediaEval 2014 task on the Synchro-
nization of multi-user EventMedia (SEM). We propose two multimodal approaches that
employ both visual and time information for the synchronization of different images gal-
leries and for the detections of sub-events. The methods prove robustness in the determi-
nation of time offsets with accuracy of up to 87%.

Author’s contributions: Riegler contributed by running experiments using global image fea-
tures and a search based method based clustering. He run experiments for run 3 and run
4 presented in the paper. He described his methods and contributed to the analysis and
conclusion. He contributed to the writing and developing the idea.

Published in: MediaEval Workshop, 2014.

Contributed to: Main Objective, Sub-objective 2

5.6 Paper VI: Introduction to a Task on Context of Experi-
ence: Recommending Videos Suiting a Watching Situa-
tion

Authors: Michael Riegler, Martha Larson, Concetto Spampinato, Jonas Markussen, Pål Halvorsen,
Carsten Griwodz

Abstract: We propose a Context of Experience task, whose aim it is to explore the suitability
of video content for watching in certain situations. Specifically, we look at the situation
of watching movies on an airplane. As a viewing context, airplanes are characterized by
small screens and distracting viewing conditions. We assume that movies have properties
that make them more or less suitable to this context. We are interested in developing
systems that are able to reproduce a general judgment of viewers about whether a given
movie is a good movie to watch during a flight. We provide a data set including a list
of movies and human judgments concerning their suitability for airplanes. The goal of
the task is to use movie metadata and audio-visual features extracted from movie trail-
ers in order to automatically reproduce these judgments. A basic classification system
demonstrates the feasibility and viability of the task.

Author’s contributions: Riegler brought the original idea and concept for the paper. Together
with Larson he refined the idea and decided for a use case (movies on flights). He col-
lected the data by crawling airline homepages to get a subset of movies. Together with
Spampinato he decided with additional data should be collected for each movie. He
performed initial experiments using the Weka library and different subsets of data. He
presented and discussed the results in the paper. He wrote most parts of the text.

Published in: MediaEval Workshop, 2015.
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Contributed to: Main Objective, Sub-objective 2

5.7 Paper VII: Right inflight? A Dataset for Exploring the
Automatic Prediction of Movies Suitable for a Watching
Situation

Authors: Michael Riegler, Martha Larson, Concetto Spampinato, Pål Halvorsen, Mathias Lux,
Jonas Markussen, Konstantin Pogorelov, Carsten Griwodz, Håkon Stensland

Abstract: In this paper, we present the dataset Right Inflight developed to support the ex-
ploration of the match between video content and the situation in which that content is
watched. Specifically, we look at videos that are suitable to be watched on an airplane,
where the main assumption is that that viewers watch movies with the intent of relaxing
themselves and letting time pass quickly, despite the inconvenience and discomfort of
flight. The aim of the dataset is to support the development of recommender systems,
as well as computer vision and multimedia retrieval algorithms capable of automatically
predicting which videos are suitable for inflight consumption. Our ultimate goal is to
promote a deeper understanding of how people experience video content, and of how
technology can support people in finding or selecting video content that supports them in
regulating their internal states in certain situations. Right Inflight consists of 318 human-
annotated movies, for which we provide links to trailers, a set of pre-computed low-level
visual, audio and text features as well as user ratings. The annotation was performed
by crowdsourcing workers, who were asked to judge the appropriateness of movies for
inflight consumption.

Author’s contributions: Riegler brought the original idea and concept for the paper. He col-
lected more data by conducting a crowdsourcing study asking people for their opinion
about movies. He performed experiments using the Weka library and different subsets
of data, specifically focused on global image features compared to metadata approaches.
He presented and discussed the results in the paper. He wrote most parts of the text. He
cleaned the data and made it public available for the dataset paper.

Published in: ACM Multimedia System Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2

5.8 Paper VIII: Expert Driven Semi-Supervised Elucidation
Tool for Medical Endoscopic Videos

Authors: Zeno Albisser, Michael Riegler, Pål Halvorsen, Jiang Zhou, Carsten Griwodz, Ilangko
Balasingham, Cathal Gurrin

Abstract: In this paper, we present a novel application for elucidating all kind of videos that
require expert knowledge, e.g., sport videos, medical videos etc., focusing on endoscopic
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surgery and video capsule endoscopy. In the medical domain, the knowledge of experts
for tagging and interpretation of videos is of high value. As a result of the stressful
working environment of medical doctors, they often simply do not have time for extensive
annotations. We therefore present a semisupervised method to gather the annotations in a
very easy and time saving way for the experts and we show how this information can be
used later on.

Author’s contributions: Riegler brought the original idea and the main concept for the paper.
which was based on another tool that has been developed from Riegler before. Riegler
provided the source code for the HTML5 version of the tool based on the previous ap-
plication developed by him. He contributed also in the writing of the paper and with
discussions and advices. He also contributed with his knowledge in the medical field of
endoscopic surgeries.

Published in: ACM Multimedia Systems Conference (MMSys), 2015.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

5.9 Paper IX: Event Understanding in Endoscopic Surgery
Videos

Authors: Mario Guggenberger, Michael Riegler, Mathias Lux, Pål Halvorsen

Abstract: Event detection and understanding is an important area in computer science and
especially multimedia. The term event is very broad, and we want to propose a novel
event based view on endoscopic surgeries. Thus, with the novel view on surgery in this
paper, we want to provide a better understanding and possible way of segmentation of
the whole event surgery but also the included sub-events. To achieve this sophisticated
goal, we present an annotation tool in combination with a thinking aloud test with an
experienced surgeon.

Author’s contributions: Riegler contributed in the design of the user study and did also the
main parts of the writing. He did the conceptual analysis of the interview results by
reviewing the video material and the questionnaire. Based on this he developed the model
of describing events in endoscopic surgeries. Together with Guggenberger he combined
the technical and medical findings to draw a final conclusion.

Published in: ACM Human Event Workshop at ACM Multimedia Conference (HuEvent), 2015.

Contributed to: Main Objective, Sub-objective 1
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5.10 Paper X: Explorative Hyperbolic-Tree-Based Cluster-
ing Tool for Unsupervised Knowledge Discovery

Authors: Michael Riegler, Konstantin Pogorelov, Mathias Lux, Pål Halvorsen, Carsten Gri-
wodz

Abstract: Exploring and annotating collections of images without meta-data is a laborious
task. Visual analytics and information visualization can help users by providing inter-
faces for exploration and annotation. In this paper, we show a prototype application that
allows users from the medical domain to use feature-based clustering to perform explo-
rative browsing and annotation in an unsupervised manner. For this, we utilize global im-
age feature extraction, different unsupervised clustering algorithms and hyperbolic tree
representation. First, the prototype application extracts features from images or video
frames, and then, one or multiple features at the same time can be used to perform clus-
tering. The clusters are presented to the users as a hyperbolic tree for visual analysis and
annotation.

Author’s contributions: Riegler had the main idea for the paper and was responsible for the
writing and the coordination. He performed the experiments to evaluate the performance
of the clustering application. Therefore, he programmed a clustering application and
conducted tests on the intent dataset and the ASU Mayo dataset for polyp classification.
He also discussed the results of these experiments in the paper and concluded them. The
application is based on the x-means clustering. The basic code of this application has
been used by Pogorelov to develop the tree based representation of the clustering output
and the annotation part of it.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

5.11 Paper XI: EIR - Efficient Computer Aided Diagnosis
Framework for Gastrointestinal Endoscopies

Authors: Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas de Lange, Carsten
Griwodz, Peter Thelin Schmidt, Sigrun Losada Eskeland, Dag Johansen

Abstract: Analysis of medical videos for detection of abnormalities like lesions and diseases
requires both high precision and recall but also real-time processing for live feedback dur-
ing standard colonoscopies and scalability for massive population based screening, which
can be done using a capsular video endoscope. Existing related work in this field does
not provide the necessary combination of detection accuracy and performance. In this
paper, a multimedia system is presented where the aim is to tackle automatic analysis of
videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline
from data collection, processing and analysis, to visualization. The system combines fil-
ters using machine learning, image recognition and extraction of global and local image
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features, and it is built in a modular way, so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide real-time feedback to the
doctor. Initial experiments show that our system has detection and localisation accuracy
at least as good as existing systems, but it stands out in terms of real-time performance
and low resource consumption for scalability.

Author’s contributions: This is the first paper describing the EIR system. The main concept of
the EIR system has been developed by Riegler during his PhD. He was mainly responsible
for coordinating the writing process and the experiments. The also worked closely with
the medical experts that contributed to the paper to create a solid medical basic for the use
case. He designed and developed the main architecture of the system. He developed and
conducted the experiments for the detection part of the system. He performed extensive
research of the related work. He described the basic idea and the real world scenarios. He
also performed tests in terms of speed of the system.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

5.12 Paper XII: From Annotation to Computer Aided Di-
agnosis: Detailed Evaluation of a Medical Multimedia
System

Authors: Michael Riegler, Konstantin Pogorelov, Sigrun L. Eskeland, Peter T. Schmidt, Zeno
Albisser, Dag Johansen, Carsten Griwodz, Pål Halvorsen, Thomas de Lange

Abstract: In many hospitals, the potential value of multimedia data collected through routine
examinations is not recognized. Also, the availability of the data is limited, as the health
care personnel have no direct access to the databases where data is stored. However, med-
ical specialists interact with the multimedia content daily through their everyday work and
have an increasing interest in finding ways to use it to facilitate their work-processes. In
this paper, we present a multimedia system aiming to tackle automatic analysis of video
from gastrointestinal (GI) endoscopy. The proposed system includes the whole pipeline
from data collection, processing and analysis, to visualization, and it combines filters
using machine learning, image recognition and extraction of global and local image fea-
tures. We built it in a modular way so we can easily extend it to analyze various abnor-
malities.We also developed it to be efficient enough to run in real-time. The conducted
experimental evaluation proves that the detection and localization accuracy reaches at
least as good as existing systems’ performance, but it is leading in terms of real-time
performance and efficient resource consumption.

Author’s contributions: This paper is an extension of the basic EIR paper. Riegler was re-
sponsible for planning it and the writing process. He also addressed most of the remarks
of the reviewers after the first revision. He extended all sections in the paper either with
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new information and text or additional experiments. He extended the basic idea descrip-
tion of the system for overall description, the annotation, visualization and the detection
part. He extended the experimental part with detailed accuracy experiments for the de-
tection part. He also extended the experiments with a detailed performance evaluation in
terms of speed and memory consumption for the detection part. Riegler also presented
together with Pogorelov the results for the MICCAI challenge on polyp detection where
a combination of the localization and the detection part has been used to participate. He
extended the related work section with more details and added an additional section about
neural networks. Finally, he contributed by extending the real world use case section and
discussion of the experimental results.

Submitted to: ACM Journal Transactions on Multimedia (ToMM), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

5.13 Paper XIII: Computer Aided Disease Detection System
for Gastrointestinal Examinations

Authors: Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux, Håkon Kvale
Stensland, Thomas de Lange, Carsten Griwodz, Pål Halvorsen, Dag Johansen, Peter T.
Schmidt, Sigrun L. Eskeland

Abstract: In this paper, we present the computer-aided diagnosis part of the EIR system, which
can support medical experts in the task of detecting diseases and anatomical landmarks in
the gastrointestinal (GI) system. This includes automatic detection of important findings
in colonoscopy videos and marking them for the doctors. EIR is designed in a modular
way so that it can easily be extended for other diseases. For this demonstration, we
will focus on polyp detection, as our system is trained with the ASU Mayo Clinic polyp
database.

Author’s contributions: Riegler was the main responsible person for the paper. He coordi-
nated the writing process and designed the concept of the paper. He mainly contributed
to the introduction, related work and basic description of the detection subsystem. He
contributed also with an experiment based on the ASU Mayo data that showed the classi-
fication performance of the system.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2
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5.14 Paper XIV: Multimedia and Medicine: Teammates for
Better Disease Detection and Survival

Authors: Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas
de Lange, Sigrun L. Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Peter T.
Schmidt, Cathal Gurrin, Dag Johansen, Håvard Johansen, Pål Halvorsen

Abstract: Health care has a long history of adopting technology to save lives and improve
the quality of living. Visual information is frequently applied for disease detection and
assessment, and the established fields of computer vision and medical imaging provide
essential tools. It is, however, a misconception that disease detection and assessment are
provided exclusively by these fields and that they provide the solution for all challenges.
Integration and analysis of data from several sources, real-time processing, and the as-
sessment of usefulness for end-users are core competences of the multimedia community
and are required for the successful improvement of health care systems. For the benefit of
society, the multimedia community should recognize the challenges of the medical world
that they are uniquely qualified to address. We have conducted initial investigations into
two use cases surrounding diseases of the gastrointestinal (GI) tract, where the detection
of abnormalities provides the largest chance of successful treatment if the initial obser-
vation of disease indicators occurs before the patient notices any symptoms. Although
such detection is typically provided visually by applying an endoscope, we are facing
a multitude of new multimedia challenges that differ between use cases. In real-time
assistance for colonoscopy, we combine sensor information about camera position and
direction to aid in detecting, investigate means for providing support to doctors in unob-
trusive ways, and assist in reporting. In the area of large-scale capsular endoscopy, we
investigate questions of scalability, performance and energy efficiency for the recording
phase, and combine video summarization and retrieval questions for analysis.

Author’s contributions: Riegler was the coordinator of the paper and also mainly responsible
for the writing. The paper got first a conditional accept and had to be rewritten to fulfil
the brave new idea requirements of the conference. Riegler contributed by conducting an
extensive literature research for the related work. He also performed preliminary exper-
iments and presented them in the results. Furthermore, the contributed by pointing out
multimedia challenges in the health care field by using the EIR system as an example.
He also discussed related work in context to new trends. He also contributed most of the
outlook and challenges discussion. Finally, he contributed to the open challenges discus-
sion. We also have to mention that we had a shepherd during the writing process (Martha
Larson) that helped to improve the quality of the paper and the focus so that it fits the
brave new idea track.

Published in: ACM Multimedia Conference (MM), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3
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5.15 Paper XV: GPU-accelerated Real-time Gastrointestinal
Diseases Detection

Authors: Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Thomas de Lange, Peter The-
lin Smidt, Sigrun Losada Eskeland, Carsten Griwodz, Dag Johansen

Abstract: The process of finding diseases and abnormalities during live medical examinations
has for a long time depended mostly on the medical personnel with some sort of not opti-
mal computer support. However, computer-based medical systems are currently emerging
in domains like endoscopies of the gastrointestinal (GI) tract. In this context, we aim for
a system that enable automatic analysis of endoscopy videos, where one use case is live
computer assisted endoscopies enabling higher disease and abnormality detection rates.
In this paper, a system that tackles live automatic analysis of endoscopy videos is pre-
sented with a particular focus on the system’s capability to perform realtime feedback.
The presented system utilizes different parts of a heterogeneous architectures and can be
used for automatically analysis of high definition colonoscopy videos (and a fully auto-
mated analysis of video from capsular endoscopy devices like pillsized cameras). We
describe our implementation and system performance of a GPU-based processing frame-
work. In summary, the experimental results show real-time stream processing and low
resource consumption, at a detection precision and recall level at least as good as existing
related work.

Author’s contributions: Riegler had the conceptual idea and the lead of the paper. He was
responsible for the writing process. He contributed mainly by writing text and analysis of
the experiments conducted by Pogorelov. He also provided a Java implementation of the
detection subsystem that has been improved by Pogorelov with adding GPU support.

Published in: IEEE Computer Based Multimedia System Symposium (CBMS), 2016.

Contributed to: Main Objective, Sub-objective 2

5.16 Paper XVI: Device Lending in PCI Express Networks

Authors: Lars Bjorlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael Riegler,
Hugo Kohmann, Friedrich Seifert, Roy Nordstrøm, Carsten Griwodz, Pål Halvorsen

Abstract: The challenge of scaling IO performance of multimedia systems to demands of their
users has attracted much research. A lot of effort has gone into development of dis-
tributed systems that add little latency and computing overhead. For machines in PCI
Express (PCIe) clusters, we propose Device Lending as a novel solution which works
at a system level. Device Lending achieves low latency and extremely low computing
overhead without requiring any application-specific distribution mechanisms. For appli-
cations, the remote IO resource appears local. In fact, even the drivers of the operating
system remain unaware that hardware resources are located in remote machines. By en-
abling machines in a PCIe cluster to lend a wide variety of hardware, cluster machines can
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get temporary access to a pool of IO resources. Network cards, FPGAs, SSDs, and even
GPUs can easily be shared among computers. Our pro- posed solution, Device Lending,
works transparently with- out requiring any modifications to drivers, operating systems
or software applications.

Author’s contributions: Riegler contributed mainly with some input in the related work and
by reviewing especially the abstract and the introduction. He also reviewed the paper and
gave feedback. Riegler also had several discussions with Markussen about the paper. The
main contribution was to lead a paper for a demo that shows how device lending can be
used for multimedia workloads. The paper is referenced as example in this paper.

Published in: ACM SIGMM Workshop on Network and Operating Systems Support for Dig-
ital Audio and Video (NOSSDAV), 2016.

Contributed to: Main Objective, Sub-objective 2

5.17 Paper XVII: Efficient Processing of Videos in a Multi
Auditory Environment Using Device Lending of GPUs

Authors: Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Håkon Kvale Stensland,
Pål Halvorsen, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange

Abstract: In this paper, we present a demo that utilizes Device Lending via PCI Express
(PCIe) in the context of a multi-auditory environment. Device Lending is a transpar-
ent, low-latency cross-machine PCIe device sharing mechanism without any the need
for implementing application-specific distribution mechanisms. As workload, we use a
computer-aided diagnosis system that is used to automatically find polyps and mark them
for medical doctors during a colonoscopy. We choose this scenario because one of the
main requirements is to perform the analysis in real-time. The demonstration consists of
a setup of two computers that demonstrates how Device Lending can be used to improve
performance, as well as its effect of providing the performance needed for real-time feed-
back. We also present a performance evaluation that shows its real-time capabilities of
it.

Author’s contributions: Riegler developed the idea for the paper together with Markussen
and Pogorelov. He had the lead for the writing process and the collaboration between
the authors. He contributed the introduction, the use case scenario, the abstract and the
conclusion. He contributed by going to the hospital and taking pictures and talking to
doctors to be able to describe the use case better. He also helped to plan and analyse the
experiment conducted by Pogorelov and Markussen. He was reviewing the paper several
times and made improvements in the text.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2
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ABSTRACT
With an annual growth rate of 16.2% of taken photos a ye-
ar, researchers predict an almost unbelievable number of 4.9
trillion stored images in 2017. Nearly 80% of these photos in
2017 will be taken with mobile phones1. To be able to cope
with this immense amount of visual data in a fast and accu-
rate way, a visual information retrieval systems are needed
for various domains and applications. LIRE, short for Luce-
ne Image Retrieval, is a light weight and easy to use Java
library for visual information retrieval. It allows developers
and researchers to integrate common content based image
retrieval approaches in their applications and research pro-
jects. LIRE supports global and local image features and can
cope with millions of images using approximate search and
distributing indexes on the cloud. In this demo we present a
novel tool called F-search that emphasize the core strengths
of LIRE: lightness, speed and accuracy.

CCS Concepts
•Information systems→Multimedia information sys-
tems; Image search;

Keywords
Visual Information Retrieval; Search Engine

1. INTRODUCTION
Visual information retrieval and content based image re-

trieval have been around for years. In academia, it has be-
en extensively reviewed (cp. [9]) and a lot of different ap-
proaches have been developed. However, early commercial
software did not result in a broad application of visual in-
formation retrieval. Newer visual search engines took other
approaches, like TinEye2 with providing visual information

1http://goo.gl/nJz8gJ
2http://tineye.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys’16 May 10-13, 2016, Klagenfurt, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4297-1/16/05.

DOI: http://dx.doi.org/10.1145/2910017.2910630

Figure 1: Sample application built on LIRE. The
image in the center is the query, the first six results
of four queries based on four different features, three
global, one local one, are shown around the query.

retrieval technology as a service, or LegalZoom3, which does
a search for similar visual trademarks for the clients. Others
focused on specific domains, like copyright infringement, me-
dical retrieval, or near duplicate detection.

However, nowadays, visual information retrieval builds on
the academic achievements of successful research and a lot
of different approaches, techniques and methods are availa-
ble. Applied research then adapts the methods to new data
and new domains. For this, it is crucial to have a common
foundation that agrees upon algorithms and software imple-
mentations. Such a foundation can prevent developers and
researchers alike from re-developing well-known approaches.
A common, free and easy to access knowledge base is the
main goal of LIRE.

LIRE provides the most common and well working ap-
proaches to content based image retrieval. Implemented as
a Java library, it allows easy integration in existing softwa-
re environments. LIRE builds on Lucene4, which is a well-
known and well maintained text search engine. Furthermore,

3https://www.legalzoom.com
4https://lucene.apache.org/



Figure 2: A screenshot of the UN WIPO Global
Brand DB. The image filtering option is implemen-
ted using LIRE.

LIRE is the result of ongoing work of numerous contributors
since February 2006. Since then, it is available as open source
software under the GNU Public License. It has been hosted
on sourceforge.net, Google Code and is currently maintai-
ned on Github5. Pre-compiled versions have been downloa-
ded more than 51,000 times in 2015 alone. Major milestones
were the release of the LIRE Solr Plugin in 2013 [16] and
the version 1.0 beta release in 2015.

LIRE has been employed in academic research, teaching
and real world scenarios alike. One major installation is at
the UN headquarters in Geneve, Switzerland, running the vi-
sual trademark search at the World Intellectual Property Or-
ganization6. Fig. 2 shows a screen shot of the WIPO’s Global
Brand DB. There, a textual search for the term “clouds” is
combined with a visual re-ranking based on a query image
using PHOG [3]. Besides visual trademark search, LIRE has
been employed for instance in asset management, copyright
violation detection, and media monitoring. In the academic
world, LIRE is used for feature extraction for classificati-
on, as base line for retrieval evaluation, for video search
and summarization and as library providing image search
for user interface and knowledge discovery projects.

2. LIRE
LIRE aims to be easy to use as well as easy to built new

services on. If for instance new features are to be tested, de-
velopers and researchers only need to implement the feature
interface including the serialization and extraction. Every-
thing else then is done by LIRE, including parallel indexing,
local feature aggregation, hashing, as well as approximate
and linear search. This allows researchers and developers to
focus on their features instead of having to implement the
whole search engine.

LIRE supports multiple global and local features out of
the box, to allow for easy comparison of new features to
existing and well-known ones. Most notable global ones are
CEDD [6] as well as the related features JCD [7] and FCTH
[5], PHOG [3], the Auto Color Correlogram [11], Local Bina-
ry Patterns [18], CENTRIST [23], and the MPEG-7 features
[4] Edge Histogram, Color Layout and Scalable Color.

5https://github.com/dermotte/lire
6http://www.wipo.int/branddb/en/

Local features are based on the OpenCV implementations
of SIFT [15] and SURF [2]. For retrieval the bag of visual
words approach [21] as well as VLAD aggregation of local
features [14] are supported. In addition to that, LIRE ful-
ly implements the SIMPLE [12] approach to using global
features on local image patches with configurable key point
detectors.

For indexing, LIRE supports linear search as well as loca-
lity sensitive hashing [8] with a specific implementation of
bit sampling. In addition to that, LIRE supports a permu-
tation based approach called metric index [1], which adapts
to image domains better than the hashing based approaches
and employs inverted files for indexing [10].

3. PERFORMANCE
There are two main performance indicators for a image re-

trieval runtime: (i) performance on a single machine and (ii)
scalability. For indexing, there are two main entry points.
One is at the level of feature extraction, where indexing has
to be handled by the users of LIRE. The more convenient ap-
proach is to use the parallel indexing routine provided by LI-
RE. It is configurable by supporting custom pre-processors,
making use of multiple cores, and producing a Lucene index,
which can easily be merged with indexes built with the same
parameters. Thus, indexing is fully scalable.

For linear search, three optimizations are supported. The-
se are, (i) memory cached search, where all image feature
data is stored in memory, (ii) multi-core-search, where the
search is run in parallel over index partitions, and (iii) DocVa-
lues based search using a mechanism of Lucene, where RAM
and disk serialization are heavily optimized. With a GPU
based approach, which is currently under development for
indexing and searching video streams, indexes with up to
one million images can be queried in 3ms for a resoluti-
on of 856x480, and 18ms for images with a resolution of
1920x1080. For more than a million images, LIRE provi-
des approximate search techniques based on hashing [8] and
permutation indexes [10]. Moreover, the index can be parti-
tioned and search results can be merged to get more accurate
results and at the same time increase speed [19].

Retrieval performance is shown in Table 3. The employed
data sets are SIMPLIcity data set [22], the UKBench Reco-
gnition Benchmark Images data set [17], the Uncompressed
Colour Image Database (UCID) [20], and the INRIA Holi-
days dataset [13]. While not being able to publish all possi-
ble feature and aggregation combinations, we aimed to give
an overview on the performance. Retrieval features marked
with a (G) in the Table 3 are global ones, i.e., Auto Color
Correlogram, CEDD, Color Layout, Edge Histogram, JCD,
Local Binary Patterns and Scalable Color. Global features
marked with an (SB) are used on local image patches by
employing the SIMPLE approach [12] with a bag of visu-
al words aggregation. The number complementing the SB
gives the number of visual words for this particular test.
CVSIFT and CVSURF are the SIFT and SURF implemen-
tations from OpenCV, respectively. The (B) with the num-
ber indicates the use of the bag of visual words aggregation
with the given number of visual words. (V) and (SV) de-
notes the use of the VLAD aggregation techniques for local
and global features. In the latter case, the SIMPLE approach
has been used to create local features first. The number of
visual words is a lot smaller due to the VLAD aggregation.



SIMPLICity [22] UKBench [17] UCID [20] Holidays [13]
MAP P@10 MAP P@10 MAP P@10 MAP P@10

Auto Color Correlogram (SB, 128) 0.5380 0.7687 0.9082 0.3680 0.7752 0.2584 0.7914 0.2328
Auto Color Correlogram (G) 0.5099 0.7765 0.9253 0.3736 0.7488 0.2427 0.7986 0.2360
Auto Color Correlogram (SV, 16) 0.3920 0.7242 0.9009 0.3660 0.7513 0.2511 0.7602 0.2266
CEDD (SB, 2048) 0.5222 0.8030 0.8917 0.3596 0.7869 0.2611 0.7779 0.2284
CEDD (G) 0.5040 0.7410 0.8055 0.3324 0.6740 0.2229 0.7263 0.2114
CEDD (SV, 16) 0.4488 0.7333 0.8557 0.3504 0.7704 0.2542 0.7377 0.2154
CL (SB, 2048) 0.5211 0.7644 0.8399 0.3436 0.7079 0.2328 0.7385 0.2150
CL (G) 0.4506 0.6574 0.7035 0.2900 0.5675 0.1824 0.6480 0.1852
CL (SV, 64) 0.3747 0.6961 0.7844 0.3268 0.7068 0.2305 0.7060 0.2080
CVSIFT (B, 512) 0.3756 0.5620 0.6847 0.2808 0.6085 0.1954 0.6914 0.2016
CVSIFT (V, 64) 0.4489 0.6247 0.8047 0.3324 0.6933 0.2302 0.7581 0.2202
CVSURF (B, 2048) 0.3801 0.5555 0.6253 0.2644 0.5852 0.1885 0.6777 0.1954
CVSURF (V, 64) 0.4370 0.6111 0.6681 0.2900 0.6441 0.2145 0.7169 0.2092
Edge Histogram (G) 0.3454 0.5538 0.4832 0.2056 0.5019 0.1588 0.5551 0.1594
JCD (G) 0.5140 0.7498 0.8480 0.3464 0.6945 0.2279 0.7351 0.2162
Local Binary Patterns (G) 0.3699 0.6356 0.5302 0.2228 0.5325 0.1641 0.5575 0.1578
Scalable Color (G) 0.5222 0.7692 0.8990 0.3672 0.7116 0.2309 0.7454 0.2186

Table 1: Feature performance on four data sets. The X in (X) denotes: G for global, B for bag of visual words
and V for VLAD aggregation. S for Simple, SB and SV denote bag of visual words or VLAD aggregation.

Figure 3: Sample application built on LIRE showing
results for a different query image than Fig. 1.

4. DEMO
To show some of the aspects of LIRE, we present here

a novel image retrieval and result browsing application. It
utilizes the core strengths of LIRE: small footprint and mi-
nimal API, speed and accuracy. The difference to common
image retrieval search engines is that it is a combination
of browsing and searching, where users implicitly select the
image features that match their sense of similarity best. At
the start, the user provides a query image. Then, the search
engine retrieves results using different pre-selected features.
If users are for instance interested in similar colors and sha-
pes, they can pre-select four different features that represent

these attributes. After the users picked the features and used
the query image to get the first results, they can explore the
available results in four partitions, each representing the re-
sults for one feature. Fig. 1 and Fig. 3 show the desktop
application. The query image is shown in the center, lines
in the background of the results show the partitions. Users
can navigate in the images and selecting an image results
in a new search using the selected image as query. There-
fore, users can browse the data set based on four different
features. Artists and photographers for instance could find
and browse images that share a either similar composition
or color distribution at the same time. For example in Fig. 1
CEDD and SIMPLE CEDD give color based results with the
latter providing different results as it is a localized version
of CEDD, whereas PHOG and Edge Histogram (EH) ba-
sed searches are returning images with similar composition.
Fig. 3 shows the same composition of features for a different
query image.

Moreover, we are testing the demo in a medical setting
where it can help gastroenterologist (medical doctors spe-
cialized on the gastrointestinal tract of the human body)
finding similar cases in their image databases. This is im-
portant since doctors are not likely to recall when and whe-
re a similar case happened, but they usually know if there
was something similar in the past and how it approximately
looked. The demo application is available for the desktop
application written in Processing 3 as well as for Android
mobile phones and tablets.
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ABSTRACT
In this paper, we introduce the concept of intentional fram-
ing, defined as the sum of the choices that a photogra-
pher makes on how to portray the subject matter of an im-
age. We carry out analysis experiments that demonstrate
the existence of a correspondence between image similarity
that is calculated automatically on the basis of global fea-
ture representations, and image similarity that is perceived
by humans at the level of intentional frames. Intentional
framing has profound implications: The existence of a fun-
damental image-interpretation principle that explains the
importance of global representations in capturing human-
perceived image semantics reaches beyond currently dom-
inant assumptions in multimedia research. The ability of
fast global-feature approaches to compete with more ‘sophis-
ticated’ approaches, which are computationally more com-
plex, is demonstrated using a simple search method (Sim-
Sea) to classify a large (2M) collection of social images by
tag class. In short, intentional framing provides a princi-
pled connection between human interpretations of images
and lightweight, fast image processing methods. Moving
forward, it is critical that the community explicitly exploits
such approaches, as the social image collections that we
tackle, continue to grow larger.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Intentional framing; human interpretation of images; user
intention; image classification

1. INTRODUCTION
Conventionally, multimedia researchers assume that what

an image is about is primarily related to its literal subject
matter, i.e., the visually depicted entities, events or scenes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM’14, November 3–7, 2014, Orlando, Florida, USA.
Copyright 2014 ACM 978-1-4503-3063-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2647868.2654894.

Figure 1: Four intentional frames reflect four dif-
ferent photographer intents (i.e., how users took
the images). They are all indicative of the overall
topic ‘fashion’ (i.e., what the images depict). Global-
feature similarity suffices to capture intentional
frames. Computationally intensive approaches are
not necessarily required.

In this paper, we go beyond this conventional viewpoint and
demonstrate that what an image is about is also reflected in
how that image was taken. This new perspective benefits
content-based approaches to large-scale social image collec-
tions, since it can be exploited in a simple, computationally
lightweight fashion.

The core of the new perspective is the principle that we
refer to as the intentional framing. We define intentional
framing as, ‘the sum of the choices made by photographers
on exactly how to portray the subject matter that they have
decided to photograph.’ Note that intentional framing is a
photographic act carried out by a photographer. Automat-
ically captured images, such as security camera images, are
not expected to exhibit framing effects. Fig. 1 provides an
illustration of four ways in which ‘fashion’ is depicted in user
photos on Flickr, a large online social photo-sharing commu-
nity. These four different cases of how the subject matter of
a photo is portrayed, correspond to four visually distinctive

397



intentional frames. In Sections 2 and 4, we will return to
discuss this figure in more detail, including the relationship
between these intentional frames and image similarly calcu-
lated automatically on the basis of global image features.
Here, we first focus on introducing intentional framing, and
describing its importance for multimedia research.

Our definition of intentional framing arises from the fol-
lowing considerations. When taking a photograph, the pho-
tographer does not click the shutter randomly, but first de-
cides on a message and a subject. The decision process in-
volves applying, either consciously or unconsciously, a set of
conventions. These conventions can be thought as a recipe
for a certain kind of image. This recipe is the intentional
frame. The fact that the photographer applies a specific
intentional frame leads to the generation of an image with
distinguishable characteristics. These characteristics are vis-
ible in the image, and are used, again, either consciously or
unconsciously, by humans in order to interpret the image.

When human viewers interpret an image at the level of its
intentional frame, they are making a very high-level seman-
tic judgement. The important role that intentional frame
judgements play in human interpretations of images can
be illustrated using a short thought experiment. Imagine
a home with portraits of family members hanging on the
wall. The subject matter (i.e., the what) of a portrait image
is a person. In taking the image (i.e., the how), the photog-
rapher had the intent of creating a portrait. What would
happen if the portraits of the family members were replaced
with mugshots of the family members? This would be a
strange situation. A visitor to this home would not easily
be able to interpret the wall. A mugshot, like a portrait,
portrays a person (i.e., the subject matter has remained the
same). However, it is a very different image. The photog-
rapher who captures a mugshot has the intention of taking
a picture that will be used by the police for identification
purposes. This thought experiment demonstrates that two
photos with the same literal subject matter (n.B. both a por-
trait and a mugshot are a photo of a person) are interpreted
by the human mind in radically different ways.

The distinction between ‘portrait’ and ‘mugshot’ is a sim-
ple example used for the purposes of illustration. In this
paper, we will investigate neither portraits nor mugshots
specifically, but rather use a data-driven approach to ex-
plore intentional framing effects in large social image collec-
tions. However, by conducting this thought experiment, it is
already possible to appreciate the profound implications of
the concept of intentional framing for the multimedia field.

First, in order to arrive at image analysis algorithms that
are truly capable of mimicking human image interpretation,
image analysis algorithms should be ‘aware’ of the photog-
rapher’s intention. In other words, they should be able to
capture the visual differences that characterize images that
were taken with different intents. For example, if humans
find the difference between the intentional frames ‘mugshot’
and ‘portrait’ to be important, multimedia analysis algo-
rithms need to make this distinction, too.

Second, sensitivity to very high-level semantic judgements,
such as those related to intentional frames, will become crit-
ical as social image collections continue to grow larger. As
pointed out by [13], an image retrieval system that indexes
images by detecting basic concepts such as ‘dog’ cannot ef-
fectively support users to search huge social image collec-
tions. Even if the relative number of images depicting a ‘dog’

in the collection is small, if the collection is large enough,
a ‘dog’ detector will detect thousands of dog images, i.e.,
many more than a user can use in a results’ list. Instead,
image analysis algorithms are needed which focus on spe-
cific aspects of images that are important to users and go
beyond the basic concepts they depict. We do not claim that
intentional framing is the only way in which human inter-
pretations transcend the literal subject matter of an image.
However, it is clear that it is an important contributing fac-
tor, and should for this reason be taken into account.

Finally, because of the fact that intentional framing im-
pacts the overall ‘look and feel’ of images, differences in in-
tentional framing can be captured by simple, lightweight
approaches that exploit global representations. Such ap-
proaches are critical for allowing image analysis algorithms
to scale and handle more and more images, as techniques
for image indexing and retrieval are needed for larger and
larger collections.

In short, intentional framing is important to the multi-
media research community because it provides a principled
motivation for applying lightweight approaches, exploiting
global-feature representations to large-scale social image col-
lections. The purpose of this paper is to establish the ex-
istence of intentional framing as a fundamental principle of
human image interpretation, and to demonstrate its impor-
tance for content-based approaches to large-scale collections
of social images. This paper makes three major contribu-
tions: (i) introduce intentional framing as a fundamental
principle important for human interpretation of images at
a high level of semantic abstraction, (ii) demonstrate that
human-perceived similarity with respect to intentional frame
corresponds to automatic similarity computed using global-
feature representations of images and (iii) show that adopt-
ing the intentional framing perspective leads to a back-to-
the-basics approach that relies exclusively on global-features
to capture image semantics. Our approach delivers image
classification rates that compete with the state of the art,
while saving significantly in computational complexity.

We finish this section with an overview of the line of ar-
gumentation followed in the remainder of the paper. In Sec-
tion 2, we discuss the related work, and demonstrate that
although intentional framing is related to other phenomena
studied in the literature, it cannot be reduced to any of
them. In Section 3, we explain the concept of intentional
framing in greater detail and provide illustrative examples.

Next, Section 4 presents two analysis experiments on hu-
man interpretations of images with respect to intentional
framing. The experiments involve a user study and explore
the judgments that humans make about images at the level
of intentional frames. They establish the existence of a cor-
respondence between automatic image similarity calculated
on the basis of global features and human perceptions of
images with respect to intentional frame.

This correspondence motivates us, in Section 5, to pro-
pose a back-to-the-basics simple search approach (SimSea)
that leverages global feature representations to classify social
images. We report results on standard image-classification
task, 2013 Yahoo! Large-scale Flickr-tag Image Classifica-
tion ACM Multimedia Grand Challenge. The results are
surprising: a simple global-feature approach such as Sim-
Sea is able to compete with more ‘sophisticated’ content-
based algorithms. Intentional framing, however, constitutes
a principled reason why we should actually expect such re-
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sults. Our conclusion, presented Section 6, opens up a future
perspective.

2. RELATED WORK
Our coverage of related work first positions intentional

framing with respect to other phenomena related to im-
age semantics. We point to previous work that, plausibly,
has taken advantage of the principle of intentional framing,
without being aware of its existence. Finally, we cover the
lightweight, search-based image classification approaches.

2.1 Intentional Frames and Image Semantics
Intentional framing is distinct from other aspects of image

semantics because it focuses on ‘how’ the photographer has
realized an image rather than ‘what’ is depicted in the image.
There are three major research areas that seek to analyze
images in terms of ‘what’ they portray: concepts, scenes,
and events, which all focus on the literally depicted subject
material of an image. Here, we cover each in turn.

Concepts: In context of image retrieval and analysis, con-
cepts are objects and other entities that are literally depicted
in images. The larger notion of a ‘concept’ derives from psy-
chology and cognitive science, which has put forth various
theories on human concept representations, e.g., concepts
as definitions vs. concepts as mental images [33]. Indepen-
dently of the exact mechanism involved, it is clear that con-
cepts play a role in how humans store, organize and manip-
ulate information about the world around them. For this
reason, image analysis research has invested a great deal of
effort into developing algorithms capable of detecting visual
concepts [10].

An example of the variety covered by concepts is provided
by the ImageCLEF concept detection task. Here, both cat-
egories of high-level semantic abstraction, such as ‘fauna’,
‘age’ or ‘weather’, are used alongside categories of lower ab-
straction levels, such as ‘cat’ and ‘plant’ [1]. Essentially,
anything that is nameable by human observer can be consid-
ered a concept. Under this perspective, a scene or an event
is considered a concept—scenes emphasize the positioning
of elements and events include temporal sequence [23]. We
turn to discuss both scenes and events in more detail.

Scenes: Scene interpretation has its roots in perception
psychology. Scene perception describes the visual perception
of an environment as seen by an observer at a given time.
Rensink [27] describes perception of a scene as high, mid
and low level processing steps. Long-term human learning
results in a scene schema that interlinks the types of objects
that occur together.

In the area of machine learning and content-based image
retrieval, the notion of gist has been used to address the
analysis of scenes. Gist originated in language analysis, and
was introduced into image analysis by Friedman [7]. In the
context of images, the gist is a description of a scene’s overall
meaning, such as ‘farmyard’, ‘shopping center’, or ‘city’ [27].
Olivia et al. [24] used global features to detect the gist of a
scene. Global features capture global attributes of an image
related to edges, colors or texture. Hays et al. [8, 9] used
the idea of gist to address tasks related to geo-coordinates,
such as geo-location detection and geo-scene completion.

The gist of a scene and the intentional framing of an im-
age are related in the way that they both aim to capture
global image characteristics. For this reason, global feature
representations are suitable for both. However, intentional

framing is a much broader notion that gist, since gist is re-
stricted to ‘what’ is depicted in scenes, and intentional fram-
ing encompasses ‘how’ the subject material is presented in
a general social image. The difference between scenes and
intentional frames can be appreciated by considering Fig. 1.
The notion of scenes is not adequate to account for the dif-
ference between the four frames. Instead we introduce inten-
tional framing to go beyond the gist of scenes and to capture
these differences.

Events: An event is a specific incident taking place at
or over a given time span, involving one or more actors or
objects and a specific place. Events often provide subject
material for social images: weddings, parties, concerts, and
sports events are favorite subjects of photos that users take
and share online. Specific to the area of image analysis, an
image may depict an event, but it is usually just a snapshot
of the event and cannot cover every single aspect of it [12].

Work that has been done on Multimedia Event Detection,
exemplified by the work in [22], is devoted to the detection of
specific types of human activities, corresponding to types of
events. This work focuses on detecting instances of partic-
ular event types, e.g., identify multimedia content that de-
picts a ‘kiss’ as a human activity. In contrast, a newer breed
of work done on Social Event Detection is devoted to de-
tect multimedia content that depicts a specific social event.
This work focuses on identifying, for example, whether a
photo was captured at a particular wedding. Examples of
work on social events include [28], which uses candidate-
retrieval methods and machine learning functions to auto-
matically detect events in a stream and [26], which tackles
social event detection by using multi-modal clustering and
the integration of supervisory signals. Image analysis aiming
to identify events, does not cover the same range of phenom-
ena addressed by intentional framing. Note that although
human activities and events are depicted in the images in
Fig. 1, they do not provide a complete characterization of
the differences between the four intentional frames.

To sum up, intentional framing, which focuses on ‘how’
images are taken, plays a significant role in human image
interpretation. This role goes beyond aspects of image se-
mantics that focus on ‘what’ is depicted in images, including
concepts, scenes, and events. We close by mentioning a addi-
tional difference between ‘the how’ and ‘the what’ of images.
Users/viewers recognize that two pictures are similar with
respect to an intentional frame—referring again to Fig. 1,
note the similarities among the images in each column. This
recognition does not imply that it is easy, or even possible, to
give an intentional frame a specific name. In contrast, con-
cepts, scenes and events are often readily nameable (e.g.,
‘cat’, ‘farmyard’ and ‘kiss’ above). We find that the fact
that intentional frames are so difficult to be named, helps
to explain why this important principle has been overlooked
by the multimedia community thus far. This paper aims to
compensate for past inattention.

2.2 Covert Exploitation of Framing
Although our basic position is that intentional framing

has been overlooked by the multimedia community, we do
not claim that it has never before been exploited. In this pa-
per, we make the case that intentional framing is an integral
part of the act of creating a photo and that, for this reason,
we should expect the visual reflexes of intentional framing
to act as a social signal that gives rise to exploitable pat-
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terns in large collections of social images. If we consider
intentional framing to be a fundamental principle underly-
ing human image interpretation, then it is odd to assume
that the multimedia community has entirely missed its ex-
istence up until this moment. Instead, we consider it to be
highly likely that past work in the area of image analysis
and retrieval has made use intentional framing effects with-
out being aware of it. Specifically, we make the point that
any approach that exploits content based comparison, e.g.,
pairwise similarity, of images may also be capturing regu-
larities in ‘how’ the images were photographed alongside of
regularities in ‘what’ the images depict.

Here we mention a two specific social image analysis ap-
proaches that we suspect might already exploiting ‘how’
alongside of ‘what’. In Li et al. [15], social tag relevance
is learned with a visual neighbor voting algorithm. The ap-
proach searches for similar images based on a query image.
It cannot be excluded that such similarity is indirectly pick-
ing up on ‘how’ images are taken, in addition to ‘what’ they
literally depict. Another example is Liu et al.’s [16] work
on tag propagation. This work makes use of a tag-specific
visual sub-vocabulary. Such a sub-vocabulary could easily
be exploiting ‘how’ images are photographed alongside of
‘what’ they depict. We believe that there are a large num-
ber of examples of research that may be unwittingly exploit-
ing intentional framing. An key contribution of this paper
is to point out the existence of intentional framing, with
the goal of stimulating research on its explicit exploitation.
If an algorithm already benefits implicitly from intentional
framing, we believe it can only be improved by understand-
ing the extent of this benefit, and by actively seeking to
enhance it. In this paper, we do not directly quantify the
benefits of intentional framing, but rather focus on laying a
solid groundwork for future work in that direction.

2.3 Search-based Image Classification
Finally, we turn to discussing work related to our search-

based image classification approach, SimSea. We would like
to explicitly point out that SimSea itself does not consti-
tute a major contribution of this paper. Rather, we intro-
duce SimSea as a back-to-the-basics algorithm that exploits
global-feature representations. Its effectiveness is rather mys-
terious, until we take the perspective that global features are
capable of capturing the semantics of large-scale social im-
age collections because they are sensitive to the semantics
associated with intentional frames.

SimSea is a search-based approach representing a variant
of the well-known k-NN algorithm. The multimedia item to
be classified is used as a query, and a similarity metric is
applied to retrieve a ranked list of the most similar items in
a collection of multimedia items that has been labeled with
category labels. The category labels of the top-ranked items
are then propagated to the query image. The work most
closely related to ours is the geo-visual ranking approach to
content-based prediction of image location [14]. Here, the
location of a photo is predicted by using the photo as a query
to retrieve a list of geo-visual neighbors from a social image
collection, and propagating the most visual likely location
to the photo.

Additionally, Wang et al. [34] and Yang and Hanjalic [35]
use similar approaches in their work. However, these use
both image features and text features, and focus on re-
ranking search results. In contrast, our approach relies ex-

clusively on the visual channel, is not deployed for concept
detection, and is tested at a much larger scale.

3. INTENTIONAL FRAMING
In this section, we present the concept of framing in more

detail. Specifically, we discuss photographers’ choices that
lead to intentional framing, and we provide examples of in-
tentional framing in social image collections, illustrating its
link to human interpretations and its generality.

In the most general sense, frames are organizational struc-
tures in which information is communicated or understood.
They have been extensively studied in the field of commu-
nication, which investigates a wide and disparate range of
framing phenomena [6, 29]. Across phenomena, however, it
is agreed that frames regulate how information is commu-
nicated, rather than directly determining what is communi-
cated. In describing how frames work, Entman [6] states,
‘Frames highlight some bits of information about an item
that is the subject of a communication, thereby elevating
them in salience’ (p. 53). Similarly, the decisions that a
photographer makes when taking a photograph determine
which information in the photographs gets noticed or inter-
preted as important by the viewer.

3.1 Photographers’ Choices
Recall that we have defined intentional framing as, ‘the

sum of the choices made by photographers on exactly how
to portray the subject matter that they have decided to
photograph.’ We use the term ‘intentional framing’, rather
than simply ‘framing’ to emphasize that the ‘frame’ is the
visible reflexes of the intent of the photographer to create a
certain type of image. The term ‘intentional framing’ also
disambiguates our use of the word ‘framing’ from another
use common in photography. Specifically, photographers use
‘framing’ to refer to positioning the subject of a photo within
a door or other opening that acts like a window frame in a
photograph. This sense of ‘framing’ is not the one that we
are addressing here.

Choices a photographer makes to achieve certain types of
framing include color distribution, lighting, positions of ob-
jects and people, camera angle, depth of field, and focus.
They also include the choice of the precise moment during
ongoing action at which the image is shot. In this way, the
photographer also influences exactly what is depicted in the
image, for example, facial expressions of the people appear-
ing in the image. In general, the influence of the photogra-
pher reflects not so much personal choices, but rather shared
expectations between photographers and viewers about how
photos portray the world. These expectations constitute a
set of conventions that allow viewers to interpret photos.
Radically creative photography may make breaks with con-
ventions, but photos that stray too far from familiar recipes
are difficult to interpret.

The importance of intentional framing for photographers
is witnessed by the way how it is described on websites that
teach photography. For example, Fodors provides a web
tutorial for travel photography [31]. Several different meth-
ods for framing photos are described, each related to differ-
ent subject matter: ‘classic vacation shots’, ‘the man-made
world’, ‘the natural world’, ‘the elements’ and ‘people’. Each
is broken down into finer-grained topic related categories.

Clearly, the decisions that photographers make that de-
termine intentional framing are closely related to composi-
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Figure 2: Example Flickr images that depict the
same visual contents (a woman and a man), but
correspond to two different intentional frames (left:
holiday memories and right: fashion)

Table 1: The metadata for the images in Fig. 2
reflecting the different underlying intents of the
user/photographer

Left image Right image
Title Thingvellir DCU Fashion Show 2009
Tags trip, iceland, fashion, Cirque Du Couture

reykjavik, . . . dcu, Couture, . . .
Description Iceland 2009. DCU Style Society

presents DCU FASHION
SHOW 2009 . . .

tion. The composition of a photograph includes the arrange-
ment of objects, the angle, the focus or the distribution of
colors in a photograph. Although composition choices con-
tribute to intentional framing, intentional framing cannot
be reduced to composition. We explicitly point out that
intentional framing also includes choices beyond composi-
tion, such as whether human subjects are visibly expressing
emotion, and the choice of the exact setting. The fact that
photographers consider intentional framing as a way to ex-
tend beyond composition is illustrated by the organization of
the tutorial [31]. Here, methods for framing photos are not
treated under the heading ‘Photography composition rules’.
There are rather separate sections dedicated to composition
and to framing. We are interested in the broader concept
of framing rather than the narrower concept of composition
as it is more tightly related to the topic of the image, which
makes it a better indicator of image semantics.

3.2 Intentional Frames in Practice
In Fig. 2, we present two social images from Flickr that

both depict the same basic content, a woman and a man, but
differ in respect to their intentional framing. We can gain
insight into the intent of the users that took these images
by inspecting their titles, tags and descriptions, shown in
Tab. 1. This metadata leads to the conclusion that the intent
behind the image on the left is to capture a memory of a trip
and the intent behind the image on the right is to depict
fashion.

This difference in intent can also be seen in how the users
who took the photos have chose to frame them. Although
both images show a man and a woman, in the image on
the left, the user has chose to make a ‘selfie’ in an outdoor
setting that focuses on faces and smiles, and in the image
on the right, the setting is an illuminated stage and the

focus is on the clothing. An inspection of Fig. 2 reveals that
these choices have visual reflexes in the photos. The visual
manifestations of intentional framing signal to the viewer
that one photo should be interpreted as representing holiday
memories and the other as depicting fashion.

With this example we would also like to stress the point
that textual metadata could possibly help in the differen-
tiation of photos on the basis of their intentional frame.
Our focus here, however, is on visually observable inten-
tional framing effects and on content-based approaches. For
this reason, we do not consider textual features any further.

3.3 Viewers’ Interpretations
The study of framing has its roots in the field of social

psychology, where a frame describes a general, mainly sub-
liminal, basic idea at play during perception or interpreta-
tion. The notion of ‘frame’ is thus tightly related to Gestalt,
the perception of the essence or shape of an entity’s com-
plete form [11]. Specific to image perception is the notion of
‘gist’ [7], i.e., what is perceived from an image at a glance.
We have already noted that gist-based methods have been
applied by multimedia researchers to the problem of analyz-
ing images that depict scenes.

Viewer interpretations of images are tightly synchronized
with the intentional framing that is chosen by a photogra-
pher. In fact, the intentional framing of the image consti-
tutes a signal from the photographer to the viewer about
how the image should be interpreted. For some subject ma-
terial, photographers often use highly conventionalized in-
tentional frames. For example, nearly everyone can bring
a standard picture in mind of how a traditional bridal pair
appears in a wedding photo, or a how a public figure is
represented in a certain role, e.g., a politician delivering an
inspiring speech.

For other subject material, the intentional framing is less
tightly linked to the subject matter, but rather more closely
related to the underlying goal or purpose. For example, [18]
establishes a typology of photographer intentions. This work
demonstrates the reasons for which people take social images
range from sharing emotions to recalling a feeling or collect-
ing and storing information.

Our work does not depend on explicitly identifying or cat-
aloguing intentional frames corresponding to all possible im-
age topics, or photographer goals and purposes. We are
rather interested in the fact that photographers use inten-
tional frames to create photos, and that users/viewers dif-
ferentiate photos on the basis of intentional frames. In other
words, our work is focused on establishing that, alongside of
what photos depict, how photos are taken is important for
human interpretation of image semantics.

We point out that intentional framing is closely linked to
the notion of connotation. In the area of images, conno-
tation refers to those aspects of image interpretation that
go beyond the literally depicted subject material of the im-
age. In his seminal essay in [2], The Photographic Message,
Roland Barthes characterizes connotation as ‘the imposi-
tion of second meaning on the photographic proper’ (p. 20).
Intentional framing can also be considered a ‘second mean-
ing’. However, understanding connotation involves inter-
preting ‘what’ is depicted in an image. For example, red
roses are commonly considered to have connotations of love.
In contrast, intentional framing keeps the focus specifically
on ‘how’ image content is depicted, and the way that photog-
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Figure 3: Pairs of photos that contrast with respect
to intentional frame. The pairs differ with respect to
the interpretations of human viewers, impressionis-
tically described as: (a) feeling vs. fashion, (b) per-
formance vs. history (c) personality vs. art

rapher choices related to ‘how’ are reflected in visual charac-
teristics of an image. We remark that ultimately intentional
framing may lead the multimedia research community to
more effective exploitation of overall image connotations.

3.4 Generality of Intentional Framing
Intentional framing is a general phenomenon underlying

social images. The visual reflexes of photographers’ intent
constitute a social signal that influences the global patterns
that exist in a large collection of social images. Some pho-
tographers might take images unthinkingly, but most con-
ceptualize their images to at least a minimum extent. Pho-
tographer choices, in turn, impact exactly how the subject
material is depicted in the image. We do not claim that in-
tentional framing constitutes a strong signal within a social
image collection. Rather, our position is that this signal ex-
ists, and that it is strong enough to be effectively exploited.
Here, we present additional examples to demonstrate that
intentional framing takes different forms, and that a large
range of images can be differentiated on the basis of inten-
tional framing.

The Flickr images in Fig. 3 are arranged in pairs that differ
with respect to intentional framing. The contrast between
the two photos in each pair demonstrates that if two photos
depicting the same concept or entity use different intentional
frames, the result is two images with different interpreta-
tions. Consider the two photos in column (a). The top
photo is about what the woman in the blue dress is feeling,
and the bottom photo is about the blue dress. The contrast
is due to the framing choices made by the photographers
who took these photos. These choices include not only the
ratio of the frame filled by the dress vs. the ratio filled by
the background water, but also with the depth of field, the
overall color palette, and the emotion projected by the hu-
man subject, and the subject’s posture. In other words, it
is intentional framing and not the depicted visual concepts
that serve to distinguish these images from the point of view
of a human interpreter.

Similar observations can be made about the photo pairs in
(b) and (c). In (b), one set of photographer choices leads to
an image depicting an ongoing performance (top), and the
other to an image that documents history (bottom). Note
that these two photos are very similar with respect to their
basic composition, but different in their interpretation. This

pair illustrates how intentional framing includes, but goes
beyond, photographers’ composition choices. In (c), one set
of photographer choices leads to an image that conveys the
happy personality of the subject (top) and another set of
choices lead to a photo with a somber mood (bottom) that
could be considered a work of art, more than a testimony to
the personality of the person displayed.

It is important to note that the descriptions we use to refer
to viewer interpretations of framing are impressionistic. We
do not claim that these are the only possible descriptions, or
that algorithms should predict these interpretations directly.
Our point is that intentional framing is important for human
image interpretations, and content-based algorithms should
not be ‘blind’ to its existence. The larger message is that
multimedia researchers should not indiscriminately assume
that content-based image methods must ‘compensate’ for
the visual variability of depicted objects, scenes, and images.
Such approaches will lead to image analysis and retrieval
systems that cannot possibly be sensitive to the difference
in human interpretation between the pair of images in (a).
Instead we advocate systems that admit the possibility that
differences important for human semantic interpretation of
images are related to intentional frames.

4. HUMAN VIEWS ON FRAMING
In this section, we empirically investigate the phenomenon

of intentional framing. On the basis of the discussion in Sec-
tion 3, we expect intentional framing to manifest itself in a
collection of social images in the form of clusters of images
that are homogenous in terms of their overall ‘look and feel’.
For this reason, we study clusters of images that are created
automatically using global feature representations. We are
interested in two aspects of these clusters, which we investi-
gate in two analysis experiments involving human judgments
collected via user studies.

The first experiment explores the correspondence of global-
feature clusters with human judgements of photographer in-
tent. The second experiment explores the correspondence
of global-feature clusters with image semantics in the form
of a higher level topic, in this case, ‘fashion’. Each experi-
ment consists of two steps, first, the clustering step, in which
we create clusters in a social image collection, and, second,
the correlation step in which we analyze the relationship
between the clusters and human judgements related to in-
tentional framing.

4.1 Global Features and Photographer Intent
According to the principle of intentional framing, the in-

tent of the photographer guides the decisions made by the
photographer while conceptualizing an image, resulting in an
image with a particular intentional frame. However, since
intentional framing results from a general recipe for a pho-
tograph, rather than specific rules, and, since photographers
apply this recipe only to varying degrees, we, yet, know noth-
ing about the visual variability that characterizes intentional
frames. For this reason, the goal of our first experiment, is
to demonstrate that it is indeed conceivable that global fea-
tures can capture the regularities of frames.

For this experiment, we use the Photo Intentions data set
that has been created by Lux et al. [20], and consists of 1,310
Flickr photos annotated with photographer intent categories.
The categories correspond to general photographer goals in
taking a picture: (i) preserve a good feeling, (ii) preserve a
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bad feeling, (iii) show it to family and friends, (iv) publish it
on-line, (v) support a task of mine and (vi) recall a specific
situation, and were chosen on the basis of a previous user
study carried out by [18]. The images in the data set were
annotated by the users who took them, who were contacted
by Lux et al. [20] via Flickr. The category labels provided
by the photographers were verified using a crowdsourcing
experiment carried out on Mechanical Turk. As explained
in detail in [20], five crowdworkers judged each image, and
rated it with respect to each of the six intent categories.
These ratings, used in our experiment, reflected the associ-
ation of the image with each of the six categories using a
5-point Likert scale.

It is important to note that in this experiment, we do
not assume that the photographer’s intent category corre-
sponds just to one single intentional frame. Instead, we
take these categories to involve multiple closely related in-
tentional frames that photographers use to accomplish a
particular goal or purpose. We assume that if visual clus-
ters correspond to intentional frames, then they will also
be correlated with intent categories that encompass multi-
ple frames. To our knowledge, our data set is the largest
publicly available collection of social images that includes
information about the intent of the photographer.

The clustering step in our experiment was carried out as
follows. A selection of common global features was made,
and the features were extracted from the images using LIRE
(latest version1) [19]. For each type of global feature, clus-
tering is performed using Weka (version 32). We chose X-
means clustering [25], since it determines the number of
the clusters automatically, which is important for the ex-
periment.

The correlation step was carried out for each different
global-featuring clustering of the images. The purpose of the
correlation step was to compare the visual closeness of the
images in a cluster, with the human perception of whether
the images were ‘close’ with respect to the intent of the pho-
tographer. We analyze each global feature clustering with
respect to each intent category separately. Specifically, we
calculate the Pearson correlation between the mean square
distance of the images in a cluster from their cluster cen-
troid and the mean of the Likert-scale ratings reflecting the
degree to which the images in the cluster are associated with
the intent category.

Tab. 2 summarizes the results, and demonstrates that the
experiment uncovered the existence of a number of cases in
which the tightness of visual clusters correlates (> 0.3) with
human agreement on the photographer’s intent.

These cases (n.B. they are negative correlations) are indi-
cated with black. It can be seen that certain features seem
to be particularly well suited for certain categories. For ex-
ample, FCTH is the best feature for detecting photos for
which the photographer’s intent was publish on-line (i.e., in
a blog). It is important to note that the results of this ex-
periment must be seen as a suggestion that global features
can capture photographer intent. There are also cases of
positive correlation, which are marked in white, where it is
clear that other effects are at play. However, if there was no
relationship between global features and photographer in-
tent, we would have expected a table that was entirely grey,

1https://code.google.com/p/lire/source/checkout
2http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Table 2: Correlation of global-feature-based clusters
(MSE) and human agreement on photographer in-
tent on the Photo Intentions data set.

which is not the case. Encouraged by this initial experiment,
we turned to a second, larger-scale experiment, that inves-
tigates the connection between image clusters and topical
semantics.

4.2 Intentional Framing and Topic
Our second analysis experiment is closely related to the

title of this paper. It investigates the connection between
‘how’ an image is taken and ‘what’ that image depicts. Re-
call that the intentional frame that a photographer chooses
is related to the particular subject material that is portrayed
in the image (i.e., the topic). The importance of the rela-
tionship between intentional framing and topic is the follow-
ing: if visual patterns of intentional framing in social data
sets are indicative of topic, then they can be exploited for
content-based tasks such as analysis of image semantics, and
image retrieval.

For this experiment we use the Fashion 10000 data set
for Flickr images, which was created by Loni et al. [17] for
the purpose of developing classifiers to detect fashion images
in social image collections. The data set consists of 30,000
images and was collected to contain a significant portion of
images (>10,000 of them) that are related to fashion and
clothing. Further details on how the +fashion/-fashion la-
bels were generated can be found in [17].

On the basis of the results of the previous experiment,
we expect that clustering using global feature representa-
tions are indeed capable of picking up visual regularities in
the data related to intentional framing. This experiment
had the goal of uncovering a relationship between the vi-
sual tightness of clusters and human judgements that these
clusters were related to the overall topic of fashion.

Because the Fashion 10000 data set is an order of mag-
nitude larger than the intention data set, we first carried
out clustering, and then submitted the clusters to a group
of human judges. The clustering step in this experiment
was carried out by first determining an optimal global fea-
ture representation for the data using average information
gain. Under this assumption, the following features were
identified as useful for the data set: CEDD, FCTH, JCD,
PHOG, ColorLayout, JPEG coefficient histogram and Scal-
ableColor [19]. As before, X-means clustering was applied,
resulting in 62 clusters.

In the correlation step, a set of human subjects were pre-
sented with 62 screens of images, each screen containing im-
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ages sampled from one of the 62 clusters (n.B. the clusters
were too large to judge in their entirety). In total, there
were 10 participants who judged the images. The partici-
pants were selected by convenience sampling from the im-
mediate environment of the authors, and briefed to ensure
that they had an adequate understanding of social fashion.
The participants then judged the consistency of the clusters
with respect to fashion.

As in the previous experiment, we calculate the Pearson
correlation between the mean square distance of the im-
ages in a cluster from the cluster’s centroid (reflecting visual
tightness of the cluster) and the average human agreement
about the fact that the cluster reflects fashion. The result
was a negative correlation, −0.56 (i.e., small, tight clusters
are associated with clear human judgements of topic focus).
This result provides evidence that global features are indeed
able to build clusters that partition fashion from non-fashion
images in the data set. This experiment supports the con-
clusion that ‘how’ images are taken, as reflected in global-
feature-based clustering, is indicative of the topical subject
matter that they contain.

We conclude this section by mentioning that qualitatively
the outcomes of the second experiment were striking. Specif-
ically, the four groups of intentional frames in Fig. 1 in Sec-
tion 1 were not hand selected from the data. Rather, these
four intentional frames represent clusters that were formed
using global-feature-based clustering in the second analysis
experiment. These clusters serve as a compelling illustra-
tion of the link between global features and semantic image
content. Our position is that this link exists, because of the
photographer’s tendency to take pictures of specific content
which follows a set of intentional frames. This effect is stable
enough to be a useful visual signal within large-scale social
image collections.

5. CONTENT-BASED CLASSIFICATION
The evidence in Section 4 suggest that there is a link be-

tween global feature representations and image topic that
is mediated by intentional framing. Motivated by this evi-
dence, we carry out an experiment designed to exploit that
link. The experiment involves large-scale classification of
social images into tag-classes. Intentional framing gives us
reason to believe that images belonging to a certain tag-
class, and therefore containing certain topical subject mate-
rial, will be characterized by patterns of intentional framing.
These patterns reflect typical sets of choices made by users
on ‘how’ to make a photograph that are related to the sub-
ject material that they are photographing. We do not ex-
pect the effects to be strong. Instead, our goal is to present
plausible proof that the effects of intentional framing are
exploitable for a task related to image semantics.

5.1 Data Set and Experimental Setup
We carry out our content-based classification experiment

on the Yahoo! Flickr Creative Common Images tagged with
ten concepts, version 1.0 data set3 that was used for the 2013
Yahoo! Large-scale Flickr-tag Image Classification ACM Mul-
timedia Grand Challenge. The data set consists of 1.5 mil-
lion training images associated with ten equally-sized tag-
classes and 500,000 test images. The tag-classes are: 2012,
beach, food, london, music, nature, people, sky, travel, and

3see http://webscope.sandbox.yahoo.com

wedding. This data set is considered challenging not only
due to its scale, but also because each topical tag-class is
characterized by a very high degree of visual variability. Our
choice of a standard data set allows us to compare our ap-
proach to the performance achieved by current state-of-the-
art methods.

In order to make clear how the theory of intentional fram-
ing is expected to contribute to the performance of a classi-
fier on such a classification task, we consider the class ‘Lon-
don’ in more detail. Images taken all over London will be
tagged ‘London’, giving rise to a high level of visual diver-
sity. However, because we are looking specifically at social
images, we expect that people are taking pictures of London
mainly with the intention of documenting the city, for exam-
ple, as tourists, as residents or as journalists. For this reason,
we expect photos to be generally associated with key inten-
tional frames, examples might be, cityscape photos, photos
that emphasize a sense of place, and photos taken to pre-
serve memories. These intentional frames are indicative of
the topic ‘London’ the way that the four frames in Fig. 1
are indicative of the topic ‘fashion’.

The intentional frames are not expected to be mutually
exclusive among tag-classes. However, they are expected
to support discrimination well enough to act as indicators
of tag-classes. For example, it is reasonable to expect that
more cityscape photos would be anticipated in the tag-class
‘London’ than in the tag-class ‘Food’. In this way, inten-
tional framing can be anticipated to deliver performance on
this task—sensitivity to the specific literally depicted con-
tent of the images (i.e., detecting specific food items or spe-
cific city landmarks) is not necessary.

Our simple search classification approach, SimSea, is a
variant of the k-NN algorithm. We choose a back-to-the-
basics approach because of its computational simplicity and
the speed that it delivers on large scale image classification
problems. As previously mentioned, SimSea is not itself
novel. Our novel contribution is that intentional framing
provides a principled explanation as to why an algorithm
such as SimSea should work well on a large collection of
social images.

SimSea is implemented by extending the LIRE frame-
work [19] with an implementation of a search based clas-
sifier. The following global features were used: JCD [5],
CL [4], OH [32] and PHOG [3]. These features were selected
using information gain calculated on the development set (a
subset of the training set).

For retrieval we employ the inverted index strategy to
index the hash values, like terms describing the actual image.
To query the system, we create a term-based query from the
hashes of the query image.

Classification proceeds as follows. Each search result of a
given tag-class is counted as one vote in favor of assigning
the query image to that tag-class. The class with the most
votes wins, and is returned as the classified class for the
query image. In case of a draw, the occurrences of the class
is weighted by the rank of each image with the same class.
The weight function is defined as:

c = arg max
c∈C

{ClassScore(c)}

ClassScore(c) = |c|.
∑

Ii∈{Ii|Class(Ii)=c}
rank(Ii)

−1

The class with the highest ClassScore of all classes c ∈ C is
chosen as class c of the image. The ClassScore is calculated
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Table 3: iAP per class on the development set.
JCD CL OH PHOG

2012 0.198 0.128 0.13 0.104
beach 0.448 0.487 0.342 0.534
food 0.531 0.492 0.389 0.352

london 0.244 0.201 0.146 0.347
music 0.526 0.457 0.495 0.164
nature 0.502 0.41 0.435 0.503
people 0.264 0.227 0.244 0.105

sky 0.628 0.601 0.544 0.473
travel 0.139 0.101 0.128 0.112

wedding 0.463 0.272 0.262 0.235

by counting the occurrences of each class c and multiply it
with the summed WeightedRankScore. rank(Ii) : {Ii} →
N gives the rank of an image. The WeightedRankScore
is the sum of rank(Ii)

−1 scores for each class. The search
time of this approach is well below 300 ms for the 1,500,000
indexed images. Due to the nature of the global feature
search, the search time will scale sub-linearly with the num-
ber of images in the index.

5.2 Experimental Results
For evaluation metric, we adopt mean interpolated aver-

aged precision (MiAP ), which was also used to evaluate the
results of the Grand Challenge.

Our first step is to use the development set to determine
optimal settings. Our development set is based on a sub-set
of the training data that includes 1,000 randomly selected
images per class. A setting of k = 50, was determined to be
optimal. Tab. 3 reports results for k = 50 using a variety of
global features. It can be seen that average precision is very
similar for all choices of features. However, JCD achieves the
highest overall mean interpolated average precision (0.417),
and is therefore chosen for the experiment on the test set.

Our second step is to carry out classification on whole test
data set (500k images; 50k images per tag-class). Applying
the optimal settings determined on the development set, i.e.,
k = 50 and JCD features, we performed our second exper-
iment with the test data set featuring 50k images per class
which leads to a MiAP over all classes of 0.391.

Tab. 4 shows the MiAP over all classes for the 500k test
set and all 1.5 million training images to train the model,
compared with the best results of the ACMMM Grand Chal-
lenge 2013 from Mantziou et al. [21]. The best performing
reported result from the second approach from Su et al. [30]
is not compared because the reported MiAP excludes the
tag-class 2012. However, they also use a concept detection
approach, Hessian affine (Concept 1 (HA)), which is more
comparable. The comparison shows that our SimSea ap-
proach which uses only one global feature, nearly can reach
the performance of the other approaches and in one case,
Concept 1 (HA) [30], can reach better performance.

As baseline we use the results of SMaL [21] (Local 1
(SMaL)) and SVM [21] (Local 2 (SVM)), which both rely
on local features and complex learning algorithms, because
they report the MiAP for each class which makes it better
comparable with our results. Based on the MiAP We cal-
culated the statistical significance (Wilcoxon Signed-Rank
Test) with a significance level of 0.01. This leads to p-
value of 0.5754 for SimSea versus Local 1 (SMaL) and a
p-value of 0.3320 for SimSea versus Local 2 (SVM). This test
shows that the difference is not statistically significant and

Table 4: SimSea vs. best results from the ACMMM
Grand Challenge 2013. The difference with Local 1
and Local 2 is not statistically significant

SimSea
Local 1
(SMaL) [21]

Local 2
(SVM) [21]

Concept 1
(HA) [30]

MiAP 0.391 0.422 0.413 0.37

therefore our methods performance cannot be interpreted
as worse (or better) than the Local 1 and Local 2 approach.
For the sake of completeness we mention that all approaches
outperform the dominant class baseline, which is 0.1.

It is important to point out that the run-time performance
of our approach is very good. Classification of a single image
takes roughly 300 ms on a current Windows 7, Intel Core i7,
16GB PC. This is faster than 10 minutes for Local 1 (SMaL)
and 2.5 seconds for Local 2 (SVM) on a 24-core Intel Xeon
Q6600 2.0Ghz with 128GB RAM reported in [21].

6. CONCLUSION AND OUTLOOK
This paper has presented a proof for the importance of vi-

sual patterns in large collections of social images that exist
due to underlying consistencies in how photographers choose
to make images. Conceptually, we have turned from consid-
ering an image as something that is viewed by a user (‘what’
is shown in the image) to considering an image to be some-
thing that was created by a photographer (‘how’ the image
was captured by the photographer). This shift of perspec-
tive allows us open up a new set of commonalities between
images. These commonalities are useful for image analysis
and retrieval because they both connect images at the level
of pixels, and also correspond to connections perceived by
humans interpreting images.

Specifically, this paper has introduced intentional fram-
ing, a principle that accounts for the connection between the
decisions made by photographers that are related to the sub-
ject material they photograph, and visual characteristics of
social images. We show that global feature representations
of images are connected to human perceptions of photog-
rapher intent, and also that intentional frames chosen by
photographers are connected to the semantics of images at
the level of topic

We report the results of a large-scale image classification
experiment that makes use of a back-to-the-basics simple
search approach exploiting global feature representations of
images. If we consider that the perspective image topic is
exclusively related to ‘what’ images predict, the good per-
formance of this simple approach is mysterious. Global fea-
tures are known to be related to the overall ‘look and feel’
of images and not necessarily to specific semantic content.
However, once we understand that intentional framing has
the ability to act as a bridge between global characteristics
of an image, and interpretations of image semantics, these
results are expected.

The principled account that intentional framing provides
for the results of our content-based classification experiment
opens a new vista for multimedia research. We consider
the results of this experiment to reflect the force of inten-
tional framing at work in a large-scale social image collec-
tion. However, it measures that force, at best, only indi-
rectly. Additional work is required to understand the exact
nature of that force, the factors that influence it, and how it
can best be harnessed in the service of image analysis and
retrieval. For example, we would not expect an intentional-

405



framing-sensitive approach to work well on a collection of im-
ages not taken by human photographers, e.g., Google street
view images. Such a collection would have only a single
robotically created frame, and image semantics would not
be differentiated at this level. Further experimentation is
necessary to test this hypothesis and to discover how to ex-
ploit the intentional framing principle to its full potential.

Taken as a whole, the evidence presented in this paper
serves to demonstrate the high promise of the ‘how’ perspec-
tive for social images. We conclude that intentional framing
opens the possibility of the exploitation of lightweight ap-
proaches that contribute to the development of a new breed
of fast image analysis and content-based retrieval algorithms
for large-scale social image collections.
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ABSTRACT
This paper is the product of recent advances in research
on users’ intent during multimedia content retrieval. Our
goal is to save bandwidth while streaming video clips from
a browsable on-demand service, while maintaining or even
improving the users’ quality of experience (QoE). Under-
standing user intent allows us to predict whether streaming
a particular video in a low quality constitutes a reduced QoE
for a user. However, many VoD streaming services today are
used by users for a wide variety of reasons, meaning that
user intent cannot be inferred from their use of the service
alone. However, our investigation demonstrates that user
intent does in most cases coincide with producer intent. We
can also demonstrate that the latter can be inferred from
the content itself as well as associated metadata. By tran-
sitivity, we can choose a default video quality that satisfies
the users QoE in the majority of cases.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems:]: [Video]

General Terms
Experimentation; measurement; performance

Keywords
QoE; intent; video streaming

1. INTRODUCTION
Video on-demand (VoD) services like Youtube, Vimeo,

Netflix, etc. generate most Internet traffic today. It has
been predicted that their share will rise to 90% within the
next three years1. These on-demand videos are used for
a wide range of purposes, ranging from entertainment to
1http://goo.gl/afWfOH
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
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Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

NOSSDAV’15, Mar 18-20, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3352-8/15/03$15.00
http://dx.doi.org/10.1145/2736084.2736095 .

Figure 1: Examples of intent categories. (a) ’Af-
fection’: get entertained (e.g. by watching movie);
(b)’Experience’: learn something (e.g. a recipe);
(c)’Information’: get informed (e.g. by watching
news); (d)’Object’: listen to music. Src: Youtube.

education but also communication resembling video mail.
Currently, VoD streams are delivered at a default quality
chosen by the VoD service provider, independent of their
purpose. This implies that a user whose intent it is to enjoy
exclusively the music of a music video receives the same
video quality as a user who wants to enjoy the sights in a
nature documentary. There is a discrepancy since delivering
a reduced video quality to users with the first intent would
not reduce that user’s quality of experience (QoE), for the
user with the second intent it would reduce QoE. To make
this statement, we do not use the term QoE in the spirit
of objective video quality metrics, but rather in terms of
the International Telecommunication Union’s (ITU) formal
definition, which defines QoE as “the overall acceptability
of an application or service, as perceived subjectively by the
end-user” while “the overall acceptability may be influenced
by user expectations and context” [1].
We propose a means by which a VoD service can stream

videos with a quality2 that depends on a user’s context and
the user expectations to maximize their QoE. For the study
conducted in this paper, we restrict the term context to typ-
ical knowledge of a VoD service provider, such as the user’s
age, sex and location. We postulate that these simple crite-
ria are sufficient to identify homogeneous user groups whose
intent with respect to use of a particular video are likely
to be similar. The classification of users by such criteria is
2In this paper, the video quality is expressed in terms of
video resolution.
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beyond the scope of this paper but they are apparently al-
ready exploited by VoD services such as Youtube. Beyond
this, context includes the situation in which users consume a
video stream. Watching news in low quality on a PCmonitor
in a coffee break may be a satisfactory experience, whereas
only a high quality stream satisfies them when watching on
a big TV screen at home. The latter challenge has already
been explored by analysing user interactions [25].
However, such methods present some limitations: they

are mainly designed to determine if the user is interested in
both visual and audio content, or the audio content only. If
the user is interested in the visual content, the quality that
leads to satisfactory QoE may depend on the content itself
(e.g. medium for news and high for a movie trailer). User
activity may not be sufficient to distinguish these cases.
In this paper, we deal with the specific problem of retriev-

ing the expected quality based on the video content itself.
In accordance with our assumptions, we want to establish
whether we can deduce QoE from content given the follow-
ing constraints: (i) users belong to a single characteristics
group; (ii) they use the service in the same situation (in their
spare time); (iii) they use similar devices (computer with
monitor). We hypothesize that within these constraints, we
can select the lowest satisfactory QoE because we can infer
the users’ intent, i.e. why they watch the video, from the
content itself. The proposed solution relies on the three fol-
lowing assumptions: (i) Characteristics of a video such as
recording, cutting, encoding, etc., have the potential to re-
veal the producer intent so that it is possible to identify
producer intent categories based on the video content; (ii)
The producer intent reflects the user intent: the main intent
of the person who created and uploaded the video and the
one of the person who streams it are similar; (iii)Playback
quality that provides satisfactory QoE to the user is directly
related the the user’s intent.
These assumptions modify the interpretation that has been

provided by Hanjalic et al. [10]. While we follow the intent
categories that they established, namely ’affection’, ’expe-
rience’, ’information’ and ’object’, which are explained in
Figure 1, we do not postulate that user intent is directly
connected to video characteristics. Instead, we postulate
that characteristics are expressions of producer intent, and
that this provides a good prediction of user intent wherever
content is consumed as expected by the producer.
The main contribution of this paper is thus to demon-

strate the last two assumptions mentioned above. Firstly,
we validate the convergence between producers’ intent and
users’ intent. Secondly, we show that, beyond their ability
to classify video content, intent categories reveal the default
quality that can satisfies the quality expectations of the user.
A proof of concept of the proposed system has been devel-
oped to validate our assumptions in a user study.
Last but not least, we demonstrate experimentally that

the method has potential to reduce the bandwidth consid-
erably for the delivery of some intent categories, while pre-
serving the user QoE. Although the intent computation is
quite error-prone (as our experiments also show), it can be
used pragmatically if users are allowed to increase quality
manually. In such a scenario, temporary dissatisfaction for
some users is tolerated, but considerable bandwidth savings
can be achieved compared to the alternative always-best-
quality approach, while overall satisfaction is higher than in
a hypothetical always-worst-default approach.

In Section 2, we outline works related to QoE consider-
ations in distributed multimedia environments, user intent
and resource optimization. In Section 3, a conceptual de-
scription of the proposed system (illustrated in Figure 2) is
provided. Finally, a validation of the above-mentioned as-
sumptions through a proof of concept implementation of the
proposed system is described in Section 4.

2. RELATED WORK
Standard internet users are generally not really interested

in the technology involved in creating their multimedia con-
tent. For most of them, the QoE is the most important
concern [12, 11] while watching a video. A lot of research
has been done in this direction. For example, Fiedler et
al. [9] describe in their work how QoE ties together user
perception, experience and expectation to applications and
network services. Furthermore, they show how QoE is re-
lated to quality of service (QoS).
QoE considerations. In the last years, an increase in

the number of distributed multimedia environments, devot-
ing particular attention to QoE requirements, has been ob-
served. At the early stage the issue was that, even if they
included user involved interaction, the evaluation of these
systems was more system centric. Additionally, the pro-
posed approaches were bothersome for the user, due to the
fact that users had to provide additional input. Newer con-
cepts tried to change this direction to a more user centric
evaluation based on QoE in combination with QoS [24, 20,
20, 21]. This research ranges from providing a general frame-
work to predicting user QoE. Most of the existing research is
based on the network layer and the video encoding/decoding
process. Krishnan et al. [16] showed that the quality of the
video stream can impact the viewers behaviours. In more
detail, they showed that rebuffering and startup time of the
video can increase the abandonment rate for a given video.
This is an important insight for our work in combination

with the fact that people’s major concern is video quality
(e.g. in terms of video resolution). So, if we can provide
users with the content in a quality that satisfies their needs
in terms of QoE, it may give the video provider the oppor-
tunity to save bandwidth. We try to tackle this problem by
connecting the intent of the video producer with the user
intent, i.e. why users want to watch the video. We hope
that it can both, help providing the user with a better QoE
and help allocating bandwidth in a more adapted way.
User Intent. User intent has been well investigated in

research. In particular research has been done in this direc-
tion in textual Web search. [23]. Researchers tried to de-
termine what underlying goal the users have when they use
a web search engine [3, 6]. Intent has acquired more and
more importance in multimedia research in the last years
and multiple studies have tried to make the text retrieval
approach usable for multimedia [17, 13, 15]. For exam-
ple, Lux et al. [19] attempted to find possible intent cat-
egories for image retrieval similar to the approach presented
in [8]. However, these intent-based papers exploit intent in
the context of images. With regards to videos, this issue
was treated by Kofler et al. [14], who presented an intent
ground truth labelled data set. This is important because
they show that, as they exist in the context of image re-
trieval, user intent categories can be identified in context of
video retrieval. Hanjalic et al. [10] write about the intent of
videos in the context of video retrieval. They present a cate-
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gorization of videos based on the user intent. Further, they
provide a method to classify videos based on their intent,
and an evaluation of the classification performance.
A newer approach, called intentional framing [22], looks

at the framing of images in order to determine the intent of
the photographer by analysing the global visual features of
the images. The proposed method is strongly related to this
approach as we highlight that how a video is produced (e.g.
shooted, mounted, etc.) may reflect the producer intent.
Resource Optimization. In the context of bandwidth

awareness, several methods have been proposed such as means
to optimize the ratio between energy consumption and band-
width. [2, 5]. In Microsoft Azure smooth streaming [25],
user behaviour and interaction are utilised to adjust the
bandwidth usage, e.g. reducing the quality of the video
when the video is in the background or displayed simulta-
neously with another window. Other researchers looked at
the potential of analysing video content in order to adapt
the bandwidth usage and the video quality. For example, if
there are very complex scenes or a lot of movement in the
next frames the capacity needed will be higher [18, 4].
Our work differs from current work in the way that we

look at the producers intent in correlation with the quality
of the video and the quality of the user experience. To the
best of our knowledge, the current state of the art does not
provide a solution combining intent and video quality in this
way.

3. CONCEPTUAL SYSTEM DESCRIPTION
In this section, we describe the general idea and archi-

tecture of the system. In order to prove the concept of a
multimedia system, able to deliver a content whose quality
is related to the producer intent, we implemented parts of
the system in a prototype. These parts are described in the
experimental section in more detail. The overall system is
composed of a client and a server side, shown in Figure 2.
The goal of the proposed system is to understand the user

expectations based on the context (if available), the analysis
of the video content/metadata and the user behaviour (e.g.
via her/his interactions) without requesting any additional
information from the user. A typical scenario can be sum-
marized as follows: On the client side, the user is searching
for a video while the system is gathering information sent
by the user (e.g. text query, url, etc.) on the server side.
The playback request then triggers the intent classification.
The resulting intent is then considered for deriving a default
video quality selection from it. Finally, the video is deliv-
ered to the user with respect to the computed quality. If the
user is not satisfied with the delivered quality, he/she can
change it actively, and any changes in quality settings made
by the user is used to feed a semi-supervised machine learn-
ing algorithm in order to optimize the expected preferences
associated to each intent categories.
Client Side. The first characteristic of the client side

is that we apply no or little changes to the standard video
player functions provided by video platforms. This way, the
client side provides the users with a standard interface sim-
ilar to those commonly used in video services like Youtube
and Vimeo. In this interface, the user is in particular able
to change the quality of the video (in the same way as it is
provided by Youtube). These quality changes, when they oc-
cur, are sent to the system and exploited as expected quality
“feedbacks”, of which the user is unaware. This information

can then be used to adjust the quality setting in relation
to the intent category. For example, it is possible that, for
a certain intent category, the system does not determine
the optimal quality setting but, in this case, this determina-
tion could be systematically adjusted based on the overall
changes performed by the users. The second information
that is collected without awareness of the user is the be-
haviour of the user regarding the focus of the windows. An
example is the video presented in a window in the back-
ground and not actively shown, which is strongly connected
to the approach from Azure Smooth streaming [25]. This
information is particularly useful in detecting certain types
of intent categories, e.g., listen to music or a podcast. In-
formation that is not unconsciously provided but a natural
input of the user in a video search engine is the search query.
Finally, other user-related information can be collected from
the user side such as available bandwidth, used display de-
vice, etc.
Server Side. On the server side, we implemented so far

the intent classification and the intent-to-quality mapping.
All other parts are described on a conceptual level. The
main system consists of four parts. The first part is the pro-
ducer intent classification which is responsible for placing
each of the videos into one of the intent categories. This is
done based on the method presented in [10]. This approach
is described in terms of user intent, we adopt it here in or-
der to detect the producer intent. To classify the intent,
different sources of information have to be analysed, i.e. the
visual and audio content, the metadata and the user input
and feedback. The results of this classification will then
be combined by late fusion. The second part is the video
search engine. This is important because the search query
itself can be a valuable source of information about the in-
tent. The third part is the quality association part. This
part uses the intent information from the intent classifier to
determine the quality of the video delivered to the users. It
manages the used codecs but also the final resolution. It
creates an intent-quality model that tries to determine the
quality of the videos based on the constraint that the band-
width allocation must be optimized. Furthermore, it also
learns from the users feedback (based on whether or not the
quality is changed). The last part is the bandwidth thresh-
olding part. This part is responsible for the optimization of
the bandwidth usage and is based on the intent and avail-
able bandwidth information. It is important to point out
that our system will not try to give the user the best quality
based on the bandwidth available. It is more a new way to
look at the distribution and usage of bandwidth by trying to
satisfy the user needs based on the intent without wasting
bandwidth.

4. EXPERIMENT
The idea of this initial experiment is to show the con-

vergence between producer intent and user intent, and that
different intent categories are correlated to different video
quality expectations and therefore bandwidth allocation.
The experiment is split into two parts. The first part is the

automatic clustering based on several features of the videos.
Since our system is not complete, these initial experiments
will show whether building such a system is sensible. The
clustering and feature extraction are based on well known
methods and frameworks. Moreover, we want to point out
that, in future work, we will develop and implement more
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Figure 2: Overview of the proposed system com-
posed of a client side (left) and a server side (right).

sophisticated methods. The second part of the experiment
is the user test where we show that the producer intent is
correlated to the user intent and that intent is somehow
related to the video quality that satisfies the user QoE.
The intent classification part is based on [10]. The classes

for the classification are ’Information’, ’Experience’, ’Affec-
tion’ and ’Object’,i.e. in our context, listen to music. The
automatic clustering is performed based on audio and visual
features and metadata, which consist of title, description
and tags. For the audio information, we used ASR (Auto-
matic Speech Recognition) and for the visual features we
used Shot Patterns algorithm. For clustering, we used the
Weka machine learning framework 3 and the K-means clus-
tering algorithm. We first calculate the possible cluster for
each feature and then combine them in a late fusion step.
For the second part we developed an HTML video player

which allowed us to control the quality setting of the video
and in the same time collect feedback from the users. We
then used a set of 10 trusted users (who we knew would
perform the task accurately). Because of the low amount
of participants we decided for a placebo-controlled study to
make it more to robust. Therefore, we split these 10 users
into two equal groups. One group, referred to as by real
group in the rest of the paper, got videos with quality set-
tings based on the producers intent. The other 5 users,
referred to as by placebo group, got the same videos with
the default level of quality (that we defined as medium with
360p). We chose this way to implement our experiment, in
order to, compare the two groups and asses if our method
successfully improved the QoE and bandwidth usage combi-
nation compared to the standard settings, thus making the
experiment more robust.
We downloaded a set of 400 random videos from Youtube

that we clustered into the 4 different intent categories. We
modified the description of the intents in a way that they
are easier to understand for the user. In our case, we chose
"listen to music" for the ’Object’ intent category. One will
maybe assume that music is related to entertainment; this
is partially true but music can not be reduced to just enter-

3http://www.cs.waikato.ac.nz/ml/weka/

Table 1: This table shows the users opinion about
the producer intent of the videos in the experiment.

Table 2: This table depicts the users satisfaction and
used bandwidth in MB. Each column presents one
intent category (affection, experience, information,
object).

tainment as many people use music for other purposes such
as get relaxed or support them at work. After the classifi-
cation of the videos we randomly chose 5 videos per intent
class. This leaded to a dataset of 20 videos in total for the
user test. They range from cinema trailers to videos about
how to learn Japanese. Most of them have a clear intent cat-
egory. Some can be in more than one category in which case
we asked the users for the most fitting one. The video dura-
tion varied from some minutes to almost one hour. For the
quality representation, we used the Youtube standard set-
tings which are small (240p), medium (360p), large (480p)
and hd720 (720p). We did not use higher resolution than
720p because not all of the videos supported it.
We then randomly assigned the videos to either the placebo

or the real group and each user had to watch all 20 videos
and indicate which intent they would choose for each video
as well as whether or not they were satisfied with the video
quality they were provided with. In introduction to the ex-
periment, a clear and user friendly description of the four
intent categories was outlined. In order to insure the correct
execution of the assignment, the clarity of the formulation
was assessed by performing preliminary tests with five dif-
ferent users. Since we wanted the users to consider the video
quality in detail, we formulated the question in a way that
arrogates this behaviour. The question for the quality was:
Are you satisfied with the visual quality of the video?. The
possible answers were (i) I would like to watch the video in a
higher quality, (ii) I would watch the video in lower quality
and (iii) Neither 1 nor 2.

4.1 Results
The collected information support our assumption that

producer intent is related to user intent. In consequence,
this result suggests that it may be possible to exploit the
relation between the producer intent for a video and the
quality expected by the user. An overview of the results
can be found in Table 1 and 2. The first table contains the
opinion of the users from both groups about the producer
intent of a video. It can be seen that the users’ opinion
agrees in majority with the producers intent for the video.
The second table shows the user opinions about the quality
for each test group and summarizes bandwidth usage in MB
per intent class and quality levels for all videos.

10



Affection. For the affection intent class and in both
groups (real and placebo), the participants agreed clearly
on the producer intent question. In the group that got the
quality settings based on our system the users were satisfied
with the quality. They only voted with yes we are satis-
fied or higher quality, which we count as satisfied because
we set the maximum available quality for the video. In the
placebo group, only one user was satisfied with the quality.
All other users wanted to watch the video in higher qual-
ity, which shows that, the medium quality setting does not
satisfy the users quality of experience needs for this intent.
In this case, the system uses more bandwidth (compare the
last four columns of 2) but the users satisfaction is higher
compared to the placebo group.
Experience. For the experience class, we got completely

different results as expected. We set the quality for this
videos too high (because we assumed that when one expe-
riences something they may want to do it in good quality).
For both groups, the opinion about the intent of the videos
was clear. The majority of the users in the real test group
voted for lower quality. In the placebo group, they were al-
ways satisfied with the medium quality (which is one step
lower than in the real test group). This gave us two inter-
esting insights. First, the intent of experience is not related
with the large quality setting requirements. Secondly, tak-
ing the users feedback into account will help improving our
system in the future.
Another interesting point was that, one of the videos was

an outlier in both groups (affection instead of experience).
In the real group, the users were satisfied with the large
quality or they expressed the wish for a higher quality. In
the placebo group, a higher quality than medium would
have been preferred for this particular video. The video
was about someone who was playing a computer game and
recorded it. This type of videos, called lets play, are becom-
ing more and more popular in recent years 4 and are made by
the producers for entertainment and not learning purposes.
There also exist video platforms which specialize in this type
of video 5. It could definitely also be a video that teaches
how to play the game, but such video would have different
features regarding content and user-related information.
Information. For the information intent category, we

had in both groups a high satisfaction rate. This is justified
by the fact that, the medium quality setting was chosen for
this intent, which also corresponds to the default setting of
the placebo group. Moreover, we had a high precision for
the producer vs. user intent classification. An outlier, which
was a video about learning Japanese, has been misclassified
by our system. This video should be in the intent category
of experience/learn something. Another important observa-
tion was that, it seems that, user would be satisfied with
even a lower resolution than medium for the information in-
tent category. The bandwidth saving potential of this intent
category could be even higher.
Object: Listen to Music. The experiment showed us

that for this intent category, the lowest playback quality
provides satisfying QoE. This can consequently be a very
efficient way to save bandwidth without reducing the QoE
for the users. An outlier was observed. It was a scene from
the Lord of the Rings movies, where a Hobbit is singing a

4http://goo.gl/YrvnWf
5http://www.twitch.tv/

song to the lord of a city. Almost all participants voted for
this video affection as their intent, and they also wanted to
see it in a higher resolution, even if most of the part of the
clip is a song sung by the Hobbit. We consider this as an in-
dicator that at first, producers intent is very hard to detect.
And second, that we definitely need information about the
context to be more accurate in the classification part of the
system. Finally, the last column in Table 2 reveals, for this
intent category, a high potential for saving bandwidth while
preserving a playback quality that satisfies the users QoE.

5. DISCUSSION
The experimental results emphasize the convergence be-

tween producer intent and user intent. Furthermore, they
also agree with the hypothesis that intent information can
be exploited in order to adapt the bandwidth distribution.
The user votes on the quality satisfaction gave indeed an
indication that intent categories are related to quality ex-
pectations. It also showed that these categories can help to
satisfy the users QoE, either by simply improving it, e.g.
with higher video quality, or by preserving it while decreas-
ing the default playback quality. Furthermore, we showed
that exploiting these intent information can be a promising
idea for interesting bandwidth allocation and saving as it
can be seen in Table 2. This can be done based on the fact
that videos can be assigned to different intent categories. An
allocation based on these intents could help to share band-
width in a way that the QoE is maximized over all users,
or at least, group of users. This would prevent to waste
bandwidth by always trying to provide the highest possible
quality. This could lead to another important side effect
namely saving energy.
The problem of saving energy in the context of online

videos has been recently addressed in [7]. The authors looked
at the energy consumption caused by different video codecs
and video resolutions. A potential problem regarding the
applicability of the proposed method is that they have to in-
crease end user awareness and somehow interact with her/him.
This can be a challenge as users are generally unwilling
when it comes to providing additional information which are
not directly associated with their initial goal (streaming a
video). Since our system can work independently to the user
willingness to cooperate, it could be interesting to further
exploit our approach, now for its energy saving potential.
Furthermore, in terms of implementation, it could be very

interesting to use DASH 6. In this scenario, the angle would
be changed from just how-much-bandwidth-do-we-have based
methods to something more user centred. For example, lets
assume the system knows that it has 60 users which want to
get entertained, but also 200 users who just want to listen
to music. A higher bandwidth (for the better quality) would
then only be needed for 60 users who have a need for it, and
the rest could be satisfied with the lower bandwidth. This
information could be used at the point when the system allo-
cates the bandwidth for the users. It would be an especially
interesting alternative when we take the global aspect and
the billion of possible users into account and thus its great
bandwidth and energy saving potential. This paper is of
course just a small step in this direction but the most im-
portant insight is the relation between the quality expected

6http://dashif.org/mpeg-dash/
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by the user and the producer intent, which reflects the user
intent in most cases, as a valuable source of information.
A possible limitation of the proposed method is the fact

that, it only makes sense in services where the user can
search for videos freely like Youtube or Vimeo. Using it
in services like Netflix or HBO which have a clear intent
before the users start using the service, i.e. in that case
get entertained, does not seem useful. However, it can not
be seen as completely useless because the insights of such
a system may be used by these very specialized portals to
improve the QoE of their users. For example, it may be
interesting to systematically provide low level quality videos
on a news video service because the majority of the users will
be satisfied with the lower quality level.
Finally, we want to point out that our approach is not only

based on the user behaviour or the content. As observed in
the experiment section, the user tests showed that users ac-
cept lower quality for videos with the intent of information
or experience. For these videos, the being in the background,
just partially visible or just looking at the content approach
would not work well or at all, because it misses the real un-
derstanding of the user need. In that case, it makes sense
to look at the producer intent. The two approaches are
of course complementary and the idea is to adapt the sys-
tem based on the users feedback but mainly in the sense of
learning the intent and the lowest video quality acceptable
without impiding a good QoE. Therefore, in a way, we se-
cretly entice the user to using a lower quality without letting
them be aware of it. Of course, there will be users that will
be unsatisfied and increase the quality but if the main part
of the users accept it, bandwidth will still be saved.

6. CONCLUSION
We presented a novel system able to detect a social signal,

namely the producers intent and showed that it is related
to the users intent for watching a video. We discussed it
in context of potential bandwidth and energy saving. The
detection of the intent is based on the content, metadata
and user related information. Based on the partially imple-
mented system classification, we provided different quality
levels to the user. We performed a user study that revealed,
that users agree about the producers intent and that they
were more satisfied by our system preset qualities than the
standard quality setting. This is a strong indicator that such
a system can be a new way to look at means to provide con-
tent to the users. The next steps include collecting a large
scale dataset and conduct experiments over a longer period
of time. In future experiments we will also collect informa-
tion about bandwidth and energy usage levels. This will give
us more accurate insight of the possible saving potential.
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ABSTRACT
Personal media capturing devices, such as smartphones or
personal image and video cameras, are rarely synchronized.
As a result, common tasks, like event detection and sum-
marization across different multi-user media galleries, are
considerably impeded and error-prone. In this paper, we
investigate different approaches for the synchronization of
image collections using visual information only. We perform
a thorough evaluation of the performance of several global
features on three datasets. Additionally, we explore the fea-
sibility of common clustering algorithms for the detection of
sub-events in the presence of synchronization misalignment.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Search and Re-
trieval; H.3 [Information Systems]: Content Analysis and
Indexing; I.4 [Image Processing and Computer Vi-
sion]: Applications

General Terms
Experimentation

Keywords
Media synchronization, sub-event detection, multi-user im-
age collection, MediaEval

1. INTRODUCTION
Nowadays, a large amount of people own a device that

can take pictures or videos. Such devices range from profes-
sional cameras to smartphones. In a lot of events, such as
sport events and music festivals, people produce and share
media capturing these events. Moreover, the images and
videos taken from the same event but from different users
do not just capture the same event but also different angles
and details. Such data hold a lot of potential. Imagine,
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Figure 1: Application scenario.

for example, a birthday party where several people take pic-
tures and videos. At the end of the day the person who had
her birthday could get a perfect summarization of the event
based on this data. This scenario is not just limited to so-
cial events. The same approach could be used for concerts,
sport events, and any other type of event. Beside all the
advantages this data provides, it also bears some challenges
ranging from mining large media collection to diversification
and summarization of heterogeneous data. A crucial issue
in this context is the synchronization of multi-user data in
terms of time. Different devices have different clocks and
time zone settings or even potential malfunctions. In gen-
eral, it is not feasible, that users participating in the same
event synchronize their devices in advance. This leads to
collections of multimedia data for the same event that can
differ considerably from minutes or hours to even days. As a
result, if the timestamps of all this data is not sychronized,
further tasks like event detection, summarization, and clus-
tering, get error-prone.

In this paper, we propose two simple but efficient ap-
proaches based on contextual information and global vi-
sual features that facilitate the sychronization problem in
the context of multi-user image collections. Additionally,
we present approaches to cluster a big event, in our case
Olympic games, in several sub-events. We perform extended
experiments to assess the potentials and boundaries of the
employed approaches in a combination with a broad range
of well-established visual features. Figure 1 presents a gen-
eral visualization of the application scenario. We assume,
a group of people attending and capturing the same event,
whereas not all users need to take part in the same sub-
events. We explore two different approaches for the syn-
chronization of images across the different, user-based col-
lections. In the following, we investigate the feasibility of
visual-based clustering algorithms. Figure 2 shows, as an ex-
ample, different sub-events detected by one of the employed
sub-event detection methods.
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(c) Judo (d) Weightlifting

Figure 2: Example results for detected sub-events detected.

This paper is organized as follows. Section 2 provides
a brief overview of related work in the context of multi-
user media synchronization and event detection. Section 3
describes the proposed approaches in detail. Section 4
presents the performed experiments and the obtained re-
sults. We conclude the paper in Section 5.

2. RELATED WORK

2.1 Synchronsiation of Multimedia Events
Synchronization of multimedia content has been discussed

in literature for a long time [3]. However, recent research
shows, that the problem itself is far away from being solved
due to new types of media and technologies challenging the
existing approaches. For example, Broile et al. employed
the image content to estimate mutual delays between differ-
ent cameras [5]. The authors used region- and color-based
matching in a combination with a local feature descriptor
(Speeded Up Robust Features, SURF[2]) for salient point
matching and delay estimation. They report experimental
results based on a user-generated dataset. The proposed al-
gorithm synchronized about 80% of the considered galleries
within a delay of two minutes. However, the use of local
image features can be very time consuming when it comes
to large collections. Recently, Veenhuizen and Brandenburg
explored frame accurate media synchronization [19]. The
authors employ a collection of pipelines, each of which pro-
vides a common clock to its elements. In a combination
with the presentation timestamp for each frame,the pipelines
are used for precise synchronization. To evaluate their ap-
proach, the authors took a video and cut it in a left and
right part. This makes it easy to manually check for syn-
chronization errors. The authors recommend the use of time
information; however, this information is not available in
the context of image collections. Yang et al. used a kernel
space graph, visual features (color histogram, Scale Invariant
Feature Transform (SIFT)[7], GIST[11], locality-constrained
linear coding (LLC)[20]), and location information where
available to sychronize image galleries of different users for
the same event [21]. The results are evaluated on a self-
collected dataset with 36 image galleries. The evaluation
part does not provide many results; however, the authors
state that they can reach the expectation of consumers with-
out providing any further details. Recently, Sansone et al.
presented an approach for the sychronization problem using
a probabilistic graphical model [18]. Based on a set of near-
est neighbour pictures, a temporal displacement is identified.

This information is used to calculate the offset by means of
a graphical model using global color structure descriptors
(CSD)[1] and local binary patterns (LBP)[10].

2.2 Event Detection in Multimedia
Event detection in multimedia content, such as image gal-

leries, streams, and video collections, is a subject to very ac-
tive research recently. For example, Petkos et al. use multi-
modal spectral clustering and early fusion to combine several
heterogeneous features [15]. By using an explicit supervisory
signal, good clustering accuracy is reported. Reuter and
Cimiano classify social media streams into corresponding
events [16]. The authors specifically focus on the detection
of new events and on the assignment of detected events to an
already known event. Furthermore, the authors address the
scaling of the data and report high quality and scalability
of the proposed approach. Recently, Papagiannopoulou and
Mezaris aim at the summarization of image collections into
single events [13]. The authors employ a clustering approach
based on concept detection. The combination of clustering
and concept detection leads to a clustering of events that is
quite similar to human expectations. Recently, Sansone et
al. used their algorithm for clustering on the same datasets
employed in this paper [18]. The authors report F1-scores
of 0.14 and 0.11 for the Vancouver and London2 datasets
respectively, which demonstrates the challenges of the em-
ployed data. Additionally, the authors employ k-means clus-
tering, which requires for prior knowledge or an estimation
of the number of events.

3. APPROACH

3.1 Synchronization of Image Galleries
We investigate two approaches for the synchronization of

image galleries with respect to the number of reference im-
ages to estimate a time offset. While the first approach
builds upon pairwise distances (PTS, pairwise transitive syn-
chronization), the second approach considers groups of im-
ages (CBS, cluster-based synchronization).

3.1.1 PTS: Pairwise Transitive Synchronization
Our first approach for the synchronization of image gal-

leries considers pairs of visually highly similar images to
construct a transitive list of entry points to all galleries (in-
cluding the reference gallery). For this purpose, we first
construct the pairwise similarities between all images of all
galleries. We sort the pairs of images in ascending order ac-
cording to their dissimilarity level. We process this list and
consider the images of a pair identical if 1) they originate
from different galleries and 2) their similarity level is within
a predefined threshold. Images, representing different gal-
leries are declared as entry points for the synchronization
of the corresponding galleries. We proceed with the sorted
pair list until we are able to build a transitive list of entry
points to all galleries represented in the full dataset or we
reach the end of the list. Eventually, all galleries are timely
aligned according to the provided reference collection using
the corresponding entry points.

3.1.2 CBS: Cluster-Based Synchronization
The second approach considers groups of visually sim-

ilar images to estimate the time offset between galleries.
First, we cluster all images using an unsupervised cluster-
ing method which does not require prior knowledge of the



number of underlying clusters (e.g., X-Means [14]). For each
cluster, we consider the average deviation of the timestamps
of the reference images to all other images of a collection
represented in the same cluster as the offset of this image
collection. In the case, that there are less than two reference
images in a cluster, we use the available corrected timestamp
of non-reference images which already have an offset from
another cluster. For inconsistent time information from dif-
ferent clusters, we use the cluster with highest number of
time information (similar to a simple majority vote).

3.2 Sub-Event Detection in Image Galleries
In our application scenario, user-generated image galleries

for primarily personal use, the available information is com-
monly limited to the information generated by the camera,
i.e. capture time and potentially GPS data, and the vi-
sual content itself. Therefore, we first perform sub-event
detection in the image galleries using clustering based on
the visual information only. Additionally, we explore the
combination of visual information and time or GPS infor-
mation, i.e. two visual clusters are merged if 1) they share
a common gallery and 2) the minimum time/GPS distance
between them is below a predefined threshold. This step is
repeated until no further cluster merging is possible. This
process assures that clusters can grow successively and that
detected sub-events are not limited to a predefined time du-
ration or spatial location.

4. EXPERIMENTS
In this section we present the results of the performed

evaluation on the synchronization of multi-user image gal-
leries and on the detection of potential sub-events within
the provided galleries. Results on the synchronization of
the image collections are reported in terms of average de-
viation in seconds between the real and the estimated time
offset of a gallery with respect to the reference gallery. Re-
sults on sub-event detection are reported in terms of recall
(R), precision (P ), and F1-score (F1) representing the har-
monic mean between recall and precision, and normalized
mutual information (NMI) measuring the goodness of the
performed clustering with respect to the ground truth.

4.1 Dataset
For our experiments, we employ a dataset that was suc-

cessfully used as part of the MediaEval Benchmark 2014 task
on the synchronization of multi-user event media (SEM) [6].
The data is arranged in three sets: two sets consisting of
Flickr images from the London Olympic Games 2012 and
one set with images from the Winter Olympic Games in
Vancouver, 2010. For each data set, one gallery is declared
as the reference gallery and all other galleries have to be syn-
chronized with respect to it. Each gallery within the dataset
is consistent in terms of timestamp since it is captured by
the same user. However, the time offset across different gal-
leries is partly considerable.

Table 1 summarizes the data characteristics within the
different sets. Additionally to the strongly varying time off-
set, the employed datasets differ significantly in the number
of included galleries and in the number and distribution of
images. Eventually, approximately 50% of all images in the
two London datasets and more than 67% of the Vancouver
set provide location information. The underlying sub-events
in the datasets in terms of number of events and image
distribution show notable variations. While the London1

Table 1: Dataset overview (G: number of galleries, E: num-
ber of events, µ: mean, σ: standard deviation).

Dataset G Images Offset in sec. GPS E Images/Event
total µ σ µ σ (%) µ σ

London1 10 304 30.40 5.19 -3,000 12,914 52.63 58 5.24 5.30
London2 37 2,124 57.41 77.06 3,003 17,600 51.04 238 8.92 14.56
Vancouver 35 1,351 38.60 13.03 1,242 15,570 67.23 86 15.53 15.91

Table 2: Overview of employed features (in alphabetical or-
der) and the corresponding dimensionality (D).

Feature D
ACC Auto Color Correlogram 1,024
CEDD Color and Edge Directivity Descriptor 144
CL Color Layout 192
FCTH Fuzzy Color and Texture Histogram 192
JCD Joint Composite Descriptor 168
JCH Jpeg Coefficient Histogram 192
M7CL MPEG-7 Color Layout 27
M7CS MPEG-7 Color Structure 256
M7EH MPEG-7 Edge Histogram 80
M7HT MPEG-7 Homogeneous Texture 62
M7RS MPEG-7 Region-based Shape 35

dataset is the smallest one with 304 images distributed over
10 galleries, it covers a relatively large number of sub-events
(58) with partly few number of images. On the opposite,
the Vancouver dataset covers 86 sub-events with a higher
number of images. Please note, that in the context of this
work we employ the term sub-events, because an event is
a broader term that would commonly refer to the Olympic
Games as a whole. Sub-events in the investigated datasets
describe different parts of the major event, such as opening
section, national anthem, parade of the nations, etc. While
the Olympic Games last for several days, the identified sub-
events are highly granular and of comparatively very short
duration, e.g. a few minutes.

4.2 Visual Features
In this evaluation, we focus on global visual features that

have been widely used for image similarity estimation. The
employed features represent different visual aspects, such as
color, structure, and shape information. We selected these
features, because they are lightweight in terms of compu-
tational cost and size (dimensionality) which makes them
very suitable for tasks with a lot of data. Additionally, re-
cent research showed that they can perform at least as good
as local visual features like for example SIFT or SURF [17].
Table 2 provides an overview of the features we consider for
comparison in our experiments. For background information
on the features, please refer to [4][8][9].

4.3 Synchronization of Image Galleries
In our first experiment, we compare the performance of

the two proposed approaches for media synchronization, PTS
and CBS, using different visual features as presented in the
previous section. For the CBS approach, we employ the
X-Means clustering algorithm [14]; however, any other clus-
tering method can be employed as well. Table 3 summa-
rizes the results for the three employed datasets in terms
of average deviation in seconds between the real (ground
truth), or, and the estimated, oe, time offset. In order to
reflect different aspects of the results, we report both rel-
ative and absolute deviations. While the average relative
deviation is more precise, µr = 1/k

∑k
i=1(or − oe), where



k is the number of galleries in the corresponding dataset,
the absolute deviation provides an overall estimation of the
performance independently of the sign of the underlying de-
viation, µr = 1/k

∑k
i=1 |or − oe|. As a baseline, we consider

the provided offsets in the datasets, i.e. what would be the
result if no synchronization at all is performed.

The results show that there is no single best solution for
all three datasets. While the PTS approach achieves a sig-
nificant correction of the time offset on London1 and Van-
couver (e.g. 21 seconds vs. 3, 000 seconds on London1), the
performance on London2 remains far behind the baseline.
On the opposite, CBS seems to handle London2 data bet-
ter than the PTS approach. The core reason for the partly
substantial difference in the performance on London2 is the
nature of the underlying data. This dataset contains visu-
ally highly similar sub-events taking part on different days
(e.g. marathon vs. 10, 000 meters running). As a result,
a single incorrect assignment may easily propagate. In or-
der to account for such cases, the temporal consistency of
the assignments needs to be additionally considered. The
results show that there is no distinct tendency towards a
given feature. Nevertheless, the ACC and M7CS features
are among the top performing features for all datasets, while
FCTH, M7EH, M7HT, and M7RS show, in general, lower
performance. Overall, the PTS approach outperforms CBS
in terms of both relative and absolute deviation. The dif-
ference becomes more obvious when the distribution of the
time deviations is investigated in more detail (see Figure 3).
The synchronization of the most galleries using the CBS ap-
proach results in a deviation from the ground truth from
more than an hour. On the opposite, PTS demonstrates
more precise and reliable synchronization using the top fea-
tures with the majority of the galleries synchronized within
ten minutes or less from the ground truth.

4.4 Sub-Event Detection in Image Galleries
In our second experiment, we explore time and location

information as well as the visual content of the images in
order to identify sub-events in the investigated datasets.

We first investigate the performance of purely visual-based
clustering. We consider two unsupervised clustering ap-
proaches, Agglomerative Hierarchical Clustering (AHC) and
X-Means, which automatically estimate the number of clus-
ters. The results show, that the AHC settings (single link-
age, cutoff parameter of 1) are very restrictive resulting in a
strong over-segmentation as the most clusters consist of only
two images (c.p. the number of clusters in Table 4). How-
ever, the high precision indicates that detected clusters tend
to be pure. On the opposite, X-Means detects much lower
number of clusters and often leads to under-segmentation.
This is due to the partly high visual similarity among dif-
ferent sub-events (e.g., same discipline but different teams
or different classes). As a result, both the precision and the
overall F1-score remain mostly considerably low. This indi-
cates that a more strict visual-based clustering will poten-
tially provide a more reliable foundation for further analysis.
Additionally, the results show that there is no single best
performing visual feature: the top three features in terms of
averaged ranking for the three datasets are ACC, JCD, and
M7CS for the AHC clustering method and CL, JCD, and
M7CS for the X-Means clustering. Due to space limitations,
for the combination of visual and time-based clustering, we
focus only on the common set of top performing features:
ACC, CL, JCD, and M7CS.

In a next step, we explore the combination of time- and
visual-based information after considering the correction of
the time offset from the event synchronization step. The
simplest feature combination is the early fusion of the two
feature types. The results show, that independently of the
clustering approach, the performance is comparable to those
of the purely visual-based event detection. Since the AHC
clustering results in high over-segmentation, we addition-
ally employed the time-based refinement step as presented
in Section 3.2. The approach merges visual-based clusters if
they share images of the same user (same gallery) and if the
corresponding time distance is below a predefined threshold.
In such a way, detected events can be of varying temporal
duration and no assumption about the potential event dura-
tion in the employed dataset has to be made. We explored
different settings for the time threshold ranging from 1 to 120
minute. Due to space limitations, we only present the top
results achieved for a time threshold of 3 minutes. Overall,
both the number of detected clusters is considerably reduced
and the performance in terms of F1-score is improved for all
employed features. However, the precision is partly notably
reduced as a result of falsely merged event clusters. This in-
dicates that the underlying sub-events are not well-separated
but timely consecutive or even potentially overlapping.

Eventually, we explore the location information, where
available, as an alternative refinement step for the visual-
based clustering. Again, we employed different thresholds
for the location-based distance ranging from 10 to 500 me-
ters. Overall, best performance was achieved for a threshold
of 30 meters. Again, the performance improves considerably
in comparison to the purely visual-based clustering both in
terms of F1-score and number of detected event clusters.
However, the slightly reduced precision indicates, that sub-
events are also spatially not well-separated. This is mainly
due to the high granularity of definition of sub-events, e.g.
different parts of the opening ceremony.

5. CONCLUSION
In this paper we addressed two fundamental tasks in the

context of mining multi-user image collections using avail-
able contextual and visual information: media synchroniza-
tion and sub-event detection. The proposed approach in
context of media synchronization achieves an outstanding
performance for two out of the three investigated datasets.
However, the thorough investigation of sub-event detection
indicates the boundaries of visual- and contextual-based clus-
tering in this context. Further consideration of potentially
available textual descriptions or external sources of informa-
tion is required in order to further improve the results. Ad-
ditionally, we will investigate the impact of different cluster-
ing algorithms since recent studies suggest, that graph-based
clustering leads to higher-quality clusters in comparison to
conventional clustering methods [12].
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Figure 3: Distribution of the time deviation (in minutes) between estimated and real time offsets for the three datasets. First
row: PTS-based synchronization. Second row: CBS-based synchronization.

Table 4: Clustering results on sub-event detection. C is the number of detected clusters. Bold values indicate best performance
in terms of F1-score for each dataset and each clustering algorithm.

Clustering Feature London1 London2 Vancouver
C R P F1 NMI C R P F1 NMI C R P F1 NMI

Visual (AHC)

ACC 148 0.41 0.85 0.55 0.82 1083 0.30 0.88 0.45 0.81 682 0.21 0.88 0.34 0.76
CEDD 129 0.43 0.70 0.54 0.78 1103 0.26 0.83 0.39 0.80 721 0.17 0.78 0.27 0.71

CL 97 0.56 0.55 0.56 0.77 1373 0.18 0.83 0.39 0.80 888 0.11 0.85 0.19 0.72
FCTH 138 0.40 0.76 0.52 0.80 1146 0.24 0.85 0.37 0.80 701 0.17 0.82 0.29 0.73
JCD 113 0.50 0.66 0.57 0.79 1131 0.25 0.85 0.39 0.80 761 0.15 0.88 0.25 0.74
JCH 130 0.42 0.71 0.53 0.79 1185 0.21 0.84 0.33 0.79 761 0.15 0.88 0.25 0.74

M7CL 132 0.41 0.74 0.52 0.80 1167 0.20 0.80 0.32 0.78 844 0.11 0.82 0.19 0.71
M7CS 134 0.42 0.81 0.56 0.83 966 0.28 0.84 0.42 0.81 648 0.17 0.88 0.28 0.76
M7EH 139 0.39 0.64 0.48 0.71 1361 0.17 0.80 0.27 0.76 868 0.12 0.83 0.20 0.71
M7HT 118 0.31 0.58 0.40 0.72 1117 0.16 0.72 0.26 0.75 659 0.13 0.72 0.21 0.70
M7RS 194 0.26 0.79 0.40 0.77 1117 0.16 0.72 0.26 0.75 954 0.08 0.81 0.15 0.70

Visual (X-Means)

ACC 21 0.57 0.25 0.34 0.59 90 0.16 0.07 0.10 0.39 89 0.19 0.21 0.20 0.46
CEDD 78 0.25 0.33 0.28 0.62 101 0.63 0.10 0.17 0.29 89 0.83 0.07 0.13 0.14

CL 73 0.30 0.41 0.34 0.66 101 0.50 0.38 0.43 0.73 97 0.31 0.42 0.36 0.67
FCTH 69 0.26 0.35 0.30 0.63 73 0.23 0.17 0.20 0.54 70 0.13 0.11 0.12 0.35
JCD 69 0.46 0.58 0.51 0.78 89 0.46 0.29 0.36 0.68 89 0.31 0.34 0.32 0.61
JCH 85 0.25 0.37 0.30 0.64 92 0.23 0.09 0.13 0.42 89 0.22 0.14 0.17 0.42

M7CL 85 0.24 0.35 0.29 0.61 89 0.34 0.22 0.27 0.61 89 0.12 0.11 0.11 0.37
M7CS 74 0.65 0.30 0.41 0.66 89 0.50 0.36 0.42 0.73 86 0.30 0.37 0.33 0.64
M7EH 73 0.24 0.31 0.27 0.60 90 0.28 0.14 0.19 0.49 87 0.16 0.19 0.17 0.46
M7HT 42 0.68 0.17 0.27 0.27 89 0.12 0.05 0.07 0.36 87 0.08 0.08 0.08 0.29
M7RS 73 0.21 0.27 0.23 0.56 89 0.15 0.06 0.09 0.40 89 0.10 0.10 0.10 0.37

Visual (AHC) & Time
[early fusion]

ACC 136 0.46 0.74 0.57 0.79 1081 0.26 0.86 0.40 0.81 748 0.17 0.85 0.28 0.74
CL 111 0.32 0.53 0.40 0.71 1021 0.19 0.68 0.30 0.75 709 0.09 0.63 0.16 0.65

JCD 117 0.35 0.64 0.45 0.75 957 0.22 0.72 0.33 0.77 712 0.10 0.69 0.18 0.68
M7CS 118 0.41 0.73 0.53 0.80 660 0.29 0.80 0.53 0.84 542 0.18 0.77 0.29 0.74

Visual (X-Means) & Time
[early fusion]

ACC 84 0.24 0.34 0.28 0.61 95 0.28 0.16 0.21 0.52 94 0.16 0.20 0.18 0.48
CL 85 0.26 0.38 0.31 0.65 100 0.48 0.38 0.42 0.73 98 0.30 0.40 0.34 0.66

JCD 73 0.50 0.69 0.58 0.82 97 0.60 0.42 0.49 0.79 80 0.26 0.30 0.28 0.62
M7CS 84 0.26 0.37 0.30 0.65 99 0.49 0.38 0.43 0.74 97 0.30 0.41 0.35 0.67

Visual (AHC) & Time [22]

ACC 48 0.52 0.24 0.33 0.45 555 0.40 0.37 0.39 0.60 380 0.35 0.34 0.35 0.45
CL 29 0.79 0.15 0.26 0.23 442 0.60 0.30 0.40 0.48 317 0.46 0.33 0.38 0.43

JCD 41 0.73 0.19 0.30 0.31 617 0.31 0.41 0.36 0.62 271 0.52 0.27 0.36 0.39
M7CS 73 0.72 0.66 0.68 0.82 383 0.62 0.67 0.65 0.85 298 0.53 0.63 0.58 0.78

Visual (AHC) & Location [22]

ACC 116 0.50 0.74 0.59 0.82 773 0.46 0.80 0.59 0.85 422 0.45 0.68 0.54 0.75
CL 78 0.61 0.47 0.53 0.72 974 0.32 0.73 0.44 0.79 552 0.29 0.61 0.40 0.66

JCD 104 0.57 0.62 0.57 0.78 869 0.41 0.73 0.52 0.81 427 0.44 0.50 0.47 0.58
M7CS 106 0.53 0.72 0.61 0.83 635 0.53 0.71 0.61 0.84 349 0.43 0.57 0.55 0.72
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ABSTRACT
This paper describes our contribution to the MediaEval 2014
task on the Synchronization of multi-user Event Media (SEM).
We propose two multimodal approaches that employ both
visual and time information for the synchronization of dif-
ferent images galleries and for the detections of sub-events.
The methods prove robustness in the determination of time
offsets with accuracy of up to 87%.

1. INTRODUCTION
A multifaceted view of a social event can emerge when

different people capture different perspectives of the same
event and a compilation of all images is created. While it is
typically easy to get an overview of a single image gallery,
it is much more difficult to synchronize the content of two
or more collections. In general, there is no guarantee that
timestamps, location information or textual descriptions as-
sociated with images are correct.

In our contributions to the SEM task [1] we first focus on
global visual features to identify highly similar images across
different galleries of the dataset. Following, we apply visual-
and time-based methods for the synchronization of galleries
and for the detection of sub-events. Our first approach relies
on the pairwise comparison of images in order to link differ-
ent galleries. Agglomerative Hierarchical Clustering (AHC)
is applied in order to group image pairs to sub-events. The
synchronization offsets are calculated by iterating through
the image pairs in a transitive way. In our second approach
all images are clustered using the XMeans algorithm in or-
der to identify sub-events. The synchronization offsets are
estimated by calculating average time differences within the
clusters.

2. APPROACHES

2.1 AHC-based Approach
We employ AHC for both time offset calculation and sub-

event detection. We first cluster all images of the dataset
using the MPEG7 Color Structure Descriptor (MPEG7-CS).
At the very lowest hierarchy level clusters of visually highly
similar images are generated. We sort these pairs of images
in ascending order according to their dissimilarity level. We
consider such pairs of images identical if: 1) the images origi-
nate from different galleries and 2) the dissimilarity distance
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does not exceed a predefined threshold. Images, represent-
ing different galleries, are considered as entry points for the
synchronization of the corresponding gallery. We process
the sorted pair list until we are able to build a transitive list
of entry points for all galleries presented in the full dataset
or we reach the end of the list. Eventually, all galleries are
time aligned according to the provided reference collection
using the corresponding entry points.

A higher hierarchy level of AHC already provides a reli-
able base for visual-based detection of sub-events. In order
to avoid the building of broad clusters, we employ a strict
cutoff threshold in combination with the Ward method [4]
to automatically define the number of clusters. We reduce
the resulting over-segmentation of underlying events by em-
ploying an adaptive, time-based approach for cluster merg-
ing. Two clusters are merged if they share a common gallery
and the minimum time distance between the corresponding
images is lower than a predefined threshold.

2.2 XMeans-based Approach
For this approach we employ a modified version of the al-

gorithm presented in [3]. We select the best global feature
for the given dataset by considering the information gain.
The calculation is done for 13 different features (Color and
Edge Directivity Desciptor (CEDD), Fuzzy Color and Tex-
ture Histogram (FCTH), Joint Composite Descriptor (JCD),
Pyramid Histogram of Ortented Gradients (PHOG), Edge
Histogram (EH), Color Layout (CL), Gabor, Tamura, Lumi-
nance Layout (LL), Opponent Histogram (OH), JPEG Co-
efficent Histrogram (JPEGCoeff), Scaleable Color (SC) and
Auto Color Correlogram (ACC) [2]). JCD had the highest
information gain for the SEM dataset and, therefore, it was
employed for this approach.

In order to synchronize the dataset, we first cluster all
images using the XMeans algorithm. Following, we consider
the average deviation of the reference image timestamps to
all other images of a collection that share a common cluster
as offset for this image collection. If there are less than two
reference images in a cluster, we use the available corrected
timestamp of non-reference images which already have an
offset from another cluster. For sub-event detection, we em-
ploy XMeans clustering using JCD or the corrected capture
times as features.

3. EXPERIMENTS AND RESULTS
The SEM development dataset contains 304 Flickr images

from the London Olympic Games 2012. The images are ar-
ranged in 10 galleries and represent 59 sub-events in total.



Table 1: Sub-event detection results on the develop-
ment dataset in terms of number of detected clusters
(C), F1-score (F1), and Normalized Mutual Infor-
mation (NMI).

C F1 NMI
Time-based clustering 98 0.6363 0.8696
AHC + MPEG7-CS 91 0.5543 0.8179
AHC + MPEG7-CS + Time 45 0.6303 0.7927
Xmeans + JCD 89 0.5123 0.7812
Xmeans + Time 100 0.5731 0.8231

Table 2: Official runs configurations.
Time Offset Sub-events

detection
run 1 AHC + MPEG7-SC AHC + MPEG-7 SC
run 2 AHC + MPEG7-SC Time-based
run 3 XMeans + JCD XMeans + JCD
run 4 XMeans + JCD XMeans + Time
run 5 AHC + MPEG7-SC XMeans + Time

Experiments on the development dataset show significant
differences in the precision of detected time offsets between
the two approaches. While, the AHC-based approach in
combination with MPEG7-CS achieves 18.5 seconds devia-
tion in average over the 10 galleries, the XMeans-based and
the JCD feature obtain only 2216.4 seconds in average.

Additionally, we compare the performances of purely time-
based clustering (after considering the time offsets), visual-
based clustering, and the combination thereof using the AHC
approach. We measure the performance by means of har-
monic mean (F1-score) of recall and precision and Normal-
ized Mutual Information (NMI) measuring the goodness of
clustering of retrieved events. The results achieved show
that both the time-based and the visual-based clustering re-
sult in over-segmentation of the underlying events (90+ de-
tected sub-events vs. 59 ground truth events) and high NMI
scores. The combination of visual and time information out-
performs the visual-based approach and significantly reduces
the number of detected sub-event clusters (see Table 1).
Noteworthy is the observation that with both approaches,
the time-based detection of sub-events outperforms the cor-
responding visual-based approach in terms of F1 (at higher
over-segmentation costs).

We submitted five runs for the final evaluation (see Table 2
for the configurations). Tables 3 and 4 summarize the cor-
responding results for the synchronization and for the sub-
event detection task. Results on the synchronization task
are reported in terms of precision (percentage of synchro-
nized galleries with a misalignment lower than 30 minutes),
and accuracy (closeness of detected offset to real offset, nor-
malized with respect to the maximum accepted time lapse of
30 minutes). The results achieved confirm our experiments
on the development dataset: the AHC-based approach in
combination with the MPEG-7-CS clearly outperform our
XMeans-based approach. Although both datasets contain
approximately the same number of galleries (35 Vancou-
ver, 37 London) they perform differently. The Vancouver
dataset was highly successfully aligned within the maximum
accepted time lapse of 30 minutes with a precision of 94%.
By contrast, the London dataset achieves a good overall per-
formance by means of an accuracy of 87% at a significantly
lower precision level of 47%. The results on the sub-event

Table 3: MediaEval 2014 Benchmark results for the
synchronization task in terms of precision (P) and
accuracy (A).

Vancouver dataset London dataset
P A P A

AHC + MPEG7-SC 0.9412 0.7919 0.4722 0.8746
XMeans + JCD 0.5882 0.5701 0.3611 0.4676

Table 4: MediaEval 2014 Benchmark results for the
sub-event detection task in terms of number of de-
tected clusters (C), Random Index (RI), and F1-
score (F1).

Vancouver dataset London dataset
C RI F1 C RI F1

run 1 379 0.9787 0.1012 368 0.9842 0.2614
run 2 709 0.9782 0.0505 709 0.9873 0.1687
run 3 91 0.9610 0.1087 91 0.9760 0.1331
run 4 81 0.9687 0.0890 81 0.9797 0.1653
run 5 98 0.9727 0.1079 98 0.9797 0.1653

detection task are ambiguous. Overall, the AHC-based ap-
proach tends to detect a significantly larger number of sub-
events than the XMeans-based approach. Nevertheless, both
approaches result in high Random Index (RI) scores which
reflects the purity of the detected clusters. While in gen-
eral high RI scores may also be the result of strong over-
segmentation, the number of detected clusters with our runs
differ significantly.

4. CONCLUSION
In this paper we presented two multimodal approaches

for the synchronization of multi-user galleries and for the
detection of sub-events. The results obtained on the SEM
datasets indicate the potential of the combination of visual
and time information for the tasks. An open issue is the
detection of sub-events that are visually highly similar and
that take place in a short time period.
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ABSTRACT
We propose a Context of Experience task, whose aim it is
to explore the suitability of video content for watching in
certain situations. Specifically, we look at the situation of
watching movies on an airplane. As a viewing context, air-
planes are characterized by small screens and distracting
viewing conditions. We assume that movies have properties
that make them more or less suitable to this context. We are
interested in developing systems that are able to reproduce
a general judgment of viewers about whether a given movie
is a good movie to watch during a flight. We provide a data
set including a list of movies and human judgments con-
cerning their suitability for airplanes. The goal of the task
is to use movie metadata and audio-visual features extracted
from movie trailers in order to automatically reproduce these
judgments. A basic classification system demonstrates the
feasibility and viability of the task.

1. INTRODUCTION
The challenge of the Context of Experience task is to

automatically predict viewers’ judgments on whether video
content is suitable for a particular watching situation. Ulti-
mately, the aim is to build a recommender system that would
provide viewers with recommendations of content for a given
context. Currently, the majority of work on video content
recommendation focuses on personal preferences, and over-
looks cases in which context might have a strong impact on
preference relatively independently of the personal tastes of
specific viewers. Particularly strong influence of context can
be expected in psychologically stressful or physically uncom-
fortable situations.

For our task, we choose one such situation, with which
a large number of people have quite frequent experience:
watching movies on an airplane. In this situation, a large
majority of viewers share a common goal, which we con-
sider to be a viewing intent. The goal is to pass time as
pleasantly and meaningfully as possible, while confined in
the small space of an airplane cabin, which is characterized
by a number of distractors. We take the large number of
websites discussing movies to watch on airplanes (e.g., [9])
as evidence that this viewing intent is dominant among air
travellers. Although the scope of this task is limited to the
airplane scenario, we emphasize that the challenge of Con-
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Figure 1: A set of conditions, including small screen
and confined, crowded space, characterize the con-
text of watching a movie on an airplane.

text of Experience is a much broader area of interest. Other
examples of stressful contexts where videos are becoming
increasingly important include hospital waiting rooms, and
dentists offices, where videos are shown during treatment.

2. TASK DESCRIPTION
For the task we provide the participants a list of movies,

including links to descriptions and video trailers. The as-
signment of the task is to classify each movie into +goodon-
airplane / -goodonairplane classes. Therefore, the ground
truth of the task is derived from two sources: A list of movies
actually used by a major airline1, as well as user judgments
on movies that are collected via a crowdsourcing tool2. Task
participants should form their own hypothesis about what
is important for users viewing movies on an airplane, and
design an approach using appropriate features and a clas-
sifier, or decision function. Figure 1 gives an impression of
a screen commonly used on an airplane and the very spe-
cific attributes regarding size and quality of the video. The
value of the task lies in understanding the ability of content-
based and metadata-based features to discriminate the kind
of movies that people would like to watch on small screens
under stressful or somehow not normal situations. Since the
multimedia content that users watch on flights can influence
their well being and overall experience this task is related
to the quality of multimedia experience work like for exam-

1http://www.klm.com/travel/no_en/prepare_for_
travel/on_board/entertainment/onboard_movies.htm
2https://crowdflower.com/



ple [6, 5, 3, 4, 1]. Apart from that, the task also includes the
area of user intent since the intent of the users, why they
want to watch movies on the airplane, is a strong influenc-
ing force on what they watch [7, 8]. Task participants are
provided with a collection of videos, i.e., trailers as a repre-
sentative for the movie because of copyright issues, and the
context, e.g., video URL, metadata, user votes etc. Apart
from that we also provide different pre-extracted features,
including visual and audio features. The participants are
asked to develop methods that will predict to which intent
class the video belongs, respectively, good or bad to watch
on an airplane.

To tackle the task it can be addressed by leveraging tech-
niques from multiple multimedia-related disciplines, includ-
ing such as social computing (intent), machine learning (clas-
sification), multimedia content analysis, multimodal fusion,
and crowdsourcing. Further we hope that it will be use-
ful for content provider, since the exploitation of intent in
combination with users’ satisfaction could lead to more so-
phisticated ways to develop methods of providing a better
service to the users.

3. DATA SET
The data set we provide is released, including titles and

links, that allow participants to gather online metadata and
trailers for movies. We do not, as already mentioned, pro-
vide the video files because of copyright restrictions. Movies
are collected based on movie lists from a major international
airline, in our case, KLM Royal Dutch Airlines. The final
list of movies is a merged set of movies collected between
February and April 2015. The video data set contains both
positive and negative samples, whereas the negative exam-
ples are carefully sampled from IMDB in order to create a
fair and representative negative class. The data set is split
into a training set and a test set. In order to collect user
judgments, we use an existing system that has been built
for the purpose of collecting user feedback of this sort. We
evaluate systems both with respect to the airline’s choice
of movies, and the crowd’s choice of airline-suitable movies.
Votes about the labels collected by crowdsourcing are con-
sidered as the authoritative labels. For this reason, crowd-
workers are asked to rank a small set of movies with respect
to how strongly they would like to watch this video on an
airplane. This ranking is then combined to create the class
for each movie in the training and test data.

Technical details. Overall, the data set contains 318
movies. Links to trailers are collected from IMDB and YouTube.
Participants are also allowed to collect their own data such
as full length movies, more metadata and user comments,
etc. The goal of systems that are developed to address this
task should be to automatically identify appropriate con-
tent, i.e., whether a movie should be recommended for be-
ing watched on an airplane or not. To achieve this goal,
the methods should not require manual or crowdsourced in-
put. The data set contains extracted visual, audio and text
features. Furthermore, we provide metadata collected from
IMDB including user comments. The visual features that
are provided are: Histogram of Oriented Gradients (HOG),
Color Moments, Local Binary Patterns (LBP) and Gray
Level Run Length Matrix. The audio descriptors are Mel-
Frequency Cepstral Coefficients (MFCC). The development
set contains 95 labelled movies. The test data contains 223
movies without labels.

Features used Precision Recall F1-score
Metadata + user ratings 0.581 0.6 0.583
Only user ratings 0.371 0.609 0.461
Only visual information 0.447 0.476 0.458
Only metadata 0.524 0.516 0.519

Table 1: Classification in terms of weighted average
of precision, recall and F1-score.

Evaluation. For the evaluation we use the standard met-
rics Precision, Recall and weighted F1 score. Negative and
positive classes in both data sets are balanced. Participants
are asked to submit a predicted class for each movie in the
test data set. The metrics then are calculated and provided
to the participants. For a transparent and fair procedure,
the labels used for the evaluation will be released together
with the results.

Initial results. To confirm the viability of the task, and
show the possibilities opened by this data set, we carried
out some basic classification experiments. For the classifi-
cation we used the Weka library. As classifier we choose
the rule based PART classifier. This classifier uses separate
and conquer to generate a decision list. From this, it builds
a decision tree where the best leaves are used as rules for
the classifier [2]. Table 1 show the results of our four initial
runs. For the evaluation we used the weighted average of
precision, recall and F1-score. The first run uses metadata
(language, year published, genre, country, runtime and age
rating) in combination with user ratings as input for the
classifier. This run is our best performer. It clearly outper-
forms the naive baseline, which is 0.5 (precision, recall and
F1-score). The second run uses user ratings alone. This run
performs well with recall, but poorly with precision. This
implies that receiving certain user ratings is a necessary, but
not a sufficient condition for being a movie that is good to
watch on an airplane. Taken together, the first two runs con-
firm that the task is non-trivial, and that it is also viable.
The third run uses visual features. This run scores below
the naive baseline. However, the approach to visual classi-
fication here was relatively simple. Additional exploratory
experiments, not reported here, revealed that visual features
do have the ability to approve results when used in combina-
tion with other features. Such combinations are interesting
for future work.

Finally, the last run confirms that metadata without user
ratings is able to yield performance above the naive baseline.
An information gain based analysis of all features ranked
genre, publication year, country, language and runtime as
the top five features.

4. SUMMARY
The task is challenging due to the complex relationship

between the multimedia content, and viewers’ perceptions
and reception. We hope that the novel use case will inspire
researchers to investigation of user intent and context of ex-
perience. Understanding user intent and what users need in
order to have the best experience is an important emerging
topic in the area of multimedia research.
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ABSTRACT
In this paper, we present the dataset Right Inflight devel-
oped to support the exploration of the match between video
content and the situation in which that content is watched.
Specifically, we look at videos that are suitable to be watched
on an airplane, where the main assumption is that that view-
ers watch movies with the intent of relaxing themselves and
letting time pass quickly, despite the inconvenience and dis-
comfort of flight. The aim of the dataset is to support the
development of recommender systems, as well as computer
vision and multimedia retrieval algorithms capable of au-
tomatically predicting which videos are suitable for inflight
consumption. Our ultimate goal is to promote a deeper un-
derstanding of how people experience video content, and of
how technology can support people in finding or selecting
video content that supports them in regulating their inter-
nal states in certain situations. Right Inflight consists of 318
human-annotated movies, for which we provide links to trail-
ers, a set of pre-computed low-level visual, audio and text
features as well as user ratings. The annotation was per-
formed by crowdsourcing workers, who were asked to judge
the appropriateness of movies for inflight consumption.

CCS Concepts
•Information systems→ Information retrieval; Mul-
timedia and multimodal retrieval;

Keywords
Multimedia; Intent; Context; Data Set

1. INTRODUCTION
Increasingly, researchers are interested in developing mul-

timedia analysis techniques that can predict the affective
impact of video on viewers, and in releasing datasets that
will support this work [26, 2]. Such work focuses on the
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Figure 1: A set of conditions, including small screen
and confined, crowded space, characterize the con-
text of watching a movie on an airplane.

way that viewers experience video. It fails, however, to take
into account that a viewer does not view a video in a vac-
uum. Rather, viewing a video involves simultaneously ex-
periencing the video and also the context in which the video
is viewed. These two experiences interact, giving rise to a
new challenge for multimedia research, which we call Con-
text of Experience. Two major considerations underlie the
importance of Context of Experience. First, we anticipate
that techniques that are able to determine the suitability
of videos for particular contexts of experience would be ap-
plicable for a wide range of users. For cases in which con-
text has a strong impact on how a viewer experiences video,
we expect that context could be an important predictor of
viewer preference for videos, overshadowing personal taste
or mood. Second, Context of Experience is closely related to
user viewing intent, i.e., the reason why a person is watching
a particular video. If we are able to predict the suitability
of a video for a context, we are able to give viewers more
useful tools for finding and selecting content that will help
them in a given situation, for example, self-regulating in a
situation of psychological tension.
In this paper, we focus on the case of viewers watching

movies on an airplane. Here, independently of personal pref-
erences, viewers share the common goal, which we consider
to be a viewing intent, of passing time and keeping them-
selves occupied by being entertained while being confined
in an uncomfortable small space of an airplane cabin. The
dataset is designed to help answer the question of whether it



is possible to predict which movies allow viewers to achieve
the goal of passing time, relax or distracting themselves,
given the context. Furthermore, the context of airline travel
includes also limitations of the employed technology (e.g.,
screen size) and the environment itself (e.g., background
noise, interruptions, presence of strangers). We have cho-
sen the airplane scenario as the role of stress and viewers’
intent to distract themselves is widely acknowledged [29].
Figure 1 gives an impression of a screen commonly used on
an airplane and the very specific attributes regarding size
and quality of the video.
Although the scope of the proposed dataset is limited to

the airplane scenario, the challenge of Context of Experi-
ence is a much broader area of interest. Other examples
of stressful contexts where videos are becoming increasingly
important include hospital waiting rooms, and dentists of-
fices where videos are shown during treatment. The dataset
was initially developed, but not public released, as part of
the MediaEval Multimedia Benchmark [12, 7] and a prelim-
inary description can be found in [18].
The dataset comprises a list of 318 movies, including links

(movies or trailers are not provided because of copyright
issues) to descriptions and video trailers, as well as a set of
pre-extracted visual, audio and text features from movies,
along with annotations created by human judges, in this
case, crowdsourcing workers. Additional information about
the context such as metadata and user votes/rates is also
given.
The dataset is designed to support binary classification of

movies as either +goodonairplane or the -goodonairplane
class. For this reason, the ground truth of the task is derived
from two sources: A list of movies actually used by a major
airline [6], as well as user judgments on movies that are
collected via a crowdsourcing platform [4].
In order to address the Context of Experience challenge

instantiated by this dataset, researchers can form their own
hypothesis to find out what is important for users. This
can be done for example by using most appropriate low-
level features extracted from airplane’s movies, and, accord-
ingly, design approaches using appropriate features, classi-
fiers, recommender system or decision function. The value
of the dataset lies in understanding the ability of content-
based and metadata-based features to discriminate the kind
of movies that people would like to watch on small screens
under stressful or somehow not normal situations. The Right
Inflight dataset can be addressed with a variety of multimedia-
related methods, like for example, recommender systems,
social computing (intent), machine learning (classification),
multimedia content analysis, multimodal fusion and crowd-
sourcing.
Further, we hope that the insights that can be gained

with this dataset will be useful for content providers. If it is
possible to understand how user intent contributes to user
satisfaction, it would be possible to provide users with more
sophisticated content recommendation and delivery services.

2. RELATED WORK
The challenge of Context of Experience stands at the in-

tersection of research efforts currently ongoing in two dif-
ferent disciplines. First, in the field of multimedia, it is
related to work on the impact of video content on view-
ers. Several datasets and benchmarks have contributed to
supporting research that develops algorithms capable of au-

tomatically predicting the emotional impact (affective im-
pact) of video content on the viewer. Within the MediaEval
benchmark [12], these have been an early task on predict-
ing viewer experienced boredom [26] and a current task on
the affective impact of movies [25]. Moreover, in the field of
multimedia, extensive work has been carried out on Quality
of Experience, including [16, 15, 8, 14, 3]. Finally, Context
of Experience is related to multimedia research in the area
of viewer intent [17], since the intent of users (i.e., the reason
why they want to watch movies on the airplane) is a strong
influencing force on what they watch [17].
Second, in the field of recommender systems, Context of

Experience is related to work on context-aware recommen-
dation [1, 24]. Researchers have devoted significant effort
into organizing challenges in the area of context-aware movie
recommendation [22, 23]. There is, however, a critical dif-
ference between the challenge of Context of Experience and
the challenge of context-aware movie recommendation. Con-
text of Experience assumes that the experience of viewing a
movie interacts with the context in which a movie is viewed.
As a result, the movie is actually able to change the con-
text. By conceptualizing context as Context of Experience
we focus on the possibility that viewers might choose to
view a movie driven by a particular intent, i.e., a goal. In
the context of airline travel, which we assume has a strong
interaction with the movie viewing experience, we assume
the goal of the viewers is to be more comfortable and past
time. Addressing Context of Experience means that we are
not ‘just’ matching movies with personal tastes, but actually
helping users accomplish goals. Although, personal prefer-
ence without doubt plays a key role in determining which
movies that people most enjoy during air travel, it is impor-
tant that recommender systems are also able to exploit the
general, context-related, tendency for people to find certain
movies more suitable than others for watching on an air-
plane.
Datasets for research in computer science are an impor-

tant tool to allow researchers to exchange and compare meth-
ods, techniques and algorithms. In information retrieval,
large collections of document are used to evaluate for in-
stance new ranking mechanisms or relevance functions. Due
to the ever-changing nature of available data, new datasets
are necessary. Recently there has been a move to develop
datasets that consist of Creative Commons material. This
movement helps the community to overcome the challenge
of dealing with licensing restrictions, which effectively limit
both the collection and the redistribution of data. Some
datasets are released with the idea that they will be used
for multiple purposes, for example, YFCC100M, a large-
scale Flickr image dataset [28]. Whereas other datasets are
released with annotations.
A key example is the LIRIS-ACCEDE (Annotated Cre-

ative Commons Emotional DatabasE) dataset for affective
video content analysis [2], already mentioned in the Intro-
duction.
Across the areas of multimedia and recommender sys-

tems, it is notable that few datasets focused on the actual
intent of the users and the context. To the best of our
knowledge, there is only one dataset including multimedia
data (images in this case) as well as the photographers’ in-
tent, namely [11]. To create this dataset, photographers on
Flicker were asked for permission to include their photo in
the dataset as well as to take part in a survey, which aimed



at uncovering the actual reason why the people took the
photo. Possible answers ranged from to publish it online, to
capture a moment, to preserve a feeling. The data then was
double checked in an evaluation run on Amazon Mechani-
cal Turk. Both the photo survey as well as the results from
Mechanical Turk are part of the dataset.

3. DATA COLLECTION
The dataset was collected in a series of steps. First, we

collected the names of all the movies that were shown on
flights by KLM between February 2015 and April 2015 from
the KLM website [6]. We ended up with 201 movies for
February, 196 for March and 200 for April. The movies
were also ordered into 7 categories by KLM. The categories
were Latest, Recent, The collection, Family, World, Dutch
movies and European movies. Some of the movies appeared
several times in different months. In the final list of movies,
each movie only appeared once. The selection of movies that
we included in the dataset contained 318 movies containing
videos collected from KLM as positive examples and care-
fully selected negative examples from movie databases. For
negative examples, we chose movies of the same categories
and released around the same time of positive samples, but
not used in the KLM system.
For the movies in this list, we crawled (i) metadata from

popular movie ranking websites like IMDb and Rotten Toma-
toes, etc. and (ii) links to movie trailers and posters. Af-
terwards, we conducted a crowdsourcing study using the
Crowdflower [4] platform in two steps. First, we asked the
study participants about their flying experience and their
experience with movies in order to identify crowdworkers
(people who do tasks on crowdsourcing platforms) who had
watched movies during a flight. When we collected a large
enough subset of flight experienced workers, we performed
a second study.
In the second part, we asked the workers to rank the

movies of our first collected list in terms of how likely they
would watch the movies during a flight. This study is de-
scribed in more detail in the next section.

4. CROWDSOURCING OF MOVIE PREF-
ERENCES

Since crowdsourcing of subjective information is quite chal-
lenging, we followed the principles discussed in [30] and [19].
In our crowdsourcing study, we collected opinions concern-
ing whether people would like to watch a movie on an air-
plane or not. Each worker was given 3 trailers to watch plus
a short video intended to help them recall the situation of
being on an airplane 1. Figure 3 shows the task description
presented to the crowdsourcing workers. After they looked
at the trailers, we asked some questions. First, we asked
them to provide us the title of each movie in order to check
whether the crowdworkers actually watched the movies or
just rushed trough the questions. After that, we asked them
to rank the videos from 1 to 3 according to the likelihood (1
the most likely, 3 the least likely) they would watch those
videos during a flight. Crowdworkers were also asked to
provide a short explanation/motivation of their ranking as
well as their favorite movie genre. For each movie, we col-
lected at least five rankings from different users. From these
1https://youtu.be/TxC3OV9dBeo

Figure 2: Task presentation to the workers. Each
worker was given 3 movies to rank and some addi-
tional questions to answer.



Run Features used Precision Recall F1-score
i Metadata + user ratings 0.581 0.6 0.583
ii Only user ratings 0.371 0.609 0.461
iii Metadata + Visual 0.584 0.6 0.586
iv Only visual information 0.447 0.476 0.458
v Only metadata 0.524 0.516 0.519

Table 1: Classification in terms of weighted average of precision, recall and F1-score for different types of
input data used.

rankings, we calculated the average rank that was used to
determine the label +goodonairplane or -goodonairplane.
For movies, for which we could not make a clear decision,
we collected more crowdsourcing data to break the tie.
All in all, we had 548 different workers participating in the

task who provided 1644 judgments. From these 1644 judg-
ments, we used 1590 after discarding workers who provided
answers that clearly reflected that they did not take the task
seriously. To detect such non-serious workers, we checked
over the provided movie titles and questionnaire completion
times. A very fast finishing time was defined as faster as
the average of three people in our laboratory could read and
finish the task if they tried to do it very fast. Which was
circa 3 minutes plus the time of the trailers. We discarded
around 20% of all submitted tasks using this method. The
participants came from a lot of different countries (varying
from USA to India). Around 53% where from Europe with
Spain having the highest share with almost 5%. Circa 19%
of the workers where from Asia, 14% from India and 14%
from USA. Figure 2 shows the final design of the task as
presented to the workers.

5. DATASET DESCRIPTION
The dataset release includes 318 movie titles and links to

gather online metadata and trailers for movies. We do not
provide the video files because of copyright restrictions. The
trailers were downloaded from IMDb [27] and YouTube [31].
Furthermore, we provide metadata collected from IMDb,
Rotten Tomatoes [21] and Metacritic [13] including user
comments.
The dataset includes also low-level visual, audio and text

features extracted from trailers, posters, metadata and user
comments. The provided visual features are Histogram of
Oriented Gradients (HOG) gray, Color Moments, local bi-
nary patterns (LBP) and Gray Level Run Length Matrix [10].
The audio descriptors are Mel-Frequency Cepstral Coeffi-
cients (MFCC) [9]. For text information, we provide a term
frequency–inverse document frequency (td − idf) matrix,
which gives indications about the importance of different
words [20].
The dataset enables evaluation of systems both with re-

spect to the airline’s choice of movies and the crowd’s choice
of flight-suitable movies. Votes about the labels collected by
crowdsourcing are considered as the authoritative labels.
The development set contains 95 labeled movies. The test
data contains 223 movies (the split is chosen based on what
we think would provide a robust evaluation of algorithms
tests with the dataset). Negative and positive classes in both
splits of the dataset are balanced. The majority class base-
line is 0.5 for precision. For the evaluation, we recommend
standard metrics such as weighted average of precision, re-

call and weighted F1 score.

6. APPLICATION OF THE DATASET
To show the usefulness of the dataset, we conducted some

initial experiments. The findings of these experiments are
presented here. To confirm the viability of the dataset for
supporting identification of movies suitable to be watched
on an airplane, and show the possibilities that it opens we
carried out some basic classification experiments. For these
experiments, we used the WEKA machine learning library2.
As a classifier, we choose the rule-based PART classifier.
This classifier uses separate and conquer to generate a

decision list. From this, it builds a decision tree from which
the best leaves are used as rules for the classifier [5]. Table 1
shows the results of our four initial experiments.
The first experiment (i) uses metadata (language, year

published, genre, country, runtime and age rating) in com-
bination with user ratings as input for the classifier. This
run is our best performer. It clearly outperforms the naive
baseline, which is 0.5 (precision, recall and F1-score).
The second run (ii), uses user ratings only (collected from

IMDb, Rotten Tomatoes and Metacritic). This run performs
well with recall, but poorly with precision. This implies
that receiving certain user ratings is a necessary, but not a
sufficient condition for being a movie that is good to watch
on an airplane. Which is a very important message because
it means, that using user ratings from standard platforms
only does not lead to the best recommendations. This is a
strong indicator that the watching situation is an important
impact factor. Taken together, the first two runs confirm
that the task is non-trivial, and that it is also viable.
The only user ratings experiment (ii) achieves virtually

the same performance as Metadata + Visual run (iii). The
results are not, however, exactly identical. We take this
as motivation to perform further experiments in the future
(different features, audio features, etc.).
The only visual information run (iv) uses global visual

features for the classification. This run scores below the
naive baseline. However, the approach to visual classifica-
tion here was relatively simple. We only used one global
image feature, namely Joint Composite Descriptor (JCD).
JCD is a combination of Fuzzy Color and Texture Histogram
(FCTH) and Color and Edge Directivity Descriptor (CEDD)
[32]. It combines color, textural and edge information in
one descriptor. This makes it a good choice for initial tests
since the most promising parts are included. Additional
exploratory experiments, not reported here, revealed that
visual features do have the ability to approve results when
used in combination with other features. Such combinations
are interesting for future work.
2http://www.cs.waikato.ac.nz/ml/weka/



Figure 3: Crowdsourcing task description. It also includes a link to a video that should help the workers to
get in the feeling of a flight situation.

Finally, the last experiment (v), using only metadata, con-
firms that metadata without user ratings is able to yield
performance above the naive baseline. An information gain
based analysis of all features ranked genre, publication year,
country, language and runtime as the top five features.

7. LIMITATIONS OF THE DATASET
The collected data and the idea behind it is very novel and

opens some promising directions in the field of multimedia.
Nevertheless, it also comes with some limitations.
The crowd-sourcing study is carefully prepared with enough

means to check for the subjects’ reliability. However, the
data for each movie are collected from five subjects only
which can be seen as on the lower end considering the sub-
jectivity and difficulty of the task. Moreover, this makes it
hard for a statistical analysis which should be performed on
any data collected from subjects.
Furthermore, the methodology of splitting the dataset

into suitable and not suitable based on the ranks is ques-
tionable. To tackle this problem, all crowdworkers votes
and rankings are included in the dataset. That should al-
low possible users a more detailed insight. Even though the
task is well described for the observer, and the initial video
to place the subject into the situation is well prepared, it is
very hard to be sure that subjects fully understood the task
and can picture themselves in the situation.
The data is also collected based on the trailers only, while

the ranks from the databases are for the whole movies which
can lead to some biases. A further limitation is that the data
is only collected from one airline (KLM) so far. Although,
investigating different airlines revealed that the used movies
over the used time were almost identical.
This lead us to the conclusion that airlines most probably

follow recommendations based on the popular rating sites.
Taking all these limitation into consideration, we still be-
lieve that the obtained ground-truth data can give a first
signal and open a new direction but any conclusions should
therefore be drawn with taking them into account.

8. CONCLUSION AND OUTLOOK
We have presented Right Inflight, a dataset that allows re-

searchers to explore the next challenge of predicting whether
video content is suitable for a particular watching context.
We choose to focus on airline travel, since the relative famil-
iarity of the situation, and the relatively extremeness of the
distractors, allow us to more easily tap into general opin-
ions of people about the content suited for the context. The
resulting dataset poses a challenge for multimodal classifica-
tion that is extremely difficult. However, contrary to what
one might expect, given the subjective nature of individuals’
preferences for movies, inferring which movies are considered
suitable for watching on an airplane is not impossible.
Our ambition is that the novel use case addressed by the

dataset may inspire multimedia researchers to delve deeper
into research questions that involve user viewing intent and
the context of multimedia experience. As mentioned in the
introduction, we believe that Context of Experience is im-
portant in helping people to decide which kinds of content
is suitable for stressful situations including waiting rooms,
airports, and during medical treatments, such as dental pro-
cedures. We hope that our dataset can help to raise aware-
ness about the topic, but also provide an interesting and
meaningful use case to researchers already working in re-
lated fields.
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ABSTRACT
In this paper, we present a novel application for elucidating
all kind of videos that require expert knowledge, e.g., sport
videos, medical videos etc., focusing on endoscopic surgery
and video capsule endoscopy. In the medical domain, the
knowledge of experts for tagging and interpretation of videos
is of high value. As a result of the stressful working envi-
ronment of medical doctors, they often simply do not have
time for extensive annotations. We therefore present a semi-
supervised method to gather the annotations in a very easy
and time saving way for the experts and we show how this
information can be used later on.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation, Human Factors

Keywords
video annotation, medical multimedia information systems,
semi-supervised, object tracking

1. INTRODUCTION
Detecting irregularities in intestines is a difficult and very

time-consuming task, and there are several different kinds of
irregularities a doctor can detect visually using colonoscopy
or camera pills. For the untrained eye, such irregularities
are, however, not always easy recognizable. Depending on
the length of the video acquired by, e.g., a camera pill, this
can be a very time-consuming and therefore expensive task.
It seems natural to try to automate this task using comput-
ers. To be able to train an algorithm to detect such irregular-
ities, a comprehensive data set, containing video sequences
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Figure 1: Web based video annotation software for
medical purpose.

with and without irregularities, is necessary. Collecting this
data requires recording of video sequences and tagging ev-
ery occurrence of an irregularity in every video frame, e.g.,
marking a polyp in the colon as shown in Fig. 1. This work
requires a specialist to make sure that no false positives or
false negatives examples occur. Tagging all the occurrences
is an especially tedious piece of work, as it requires stepping
through single video frames and adding, moving and resiz-
ing tags. The experts usually do not have a lot of time for
this kind of work. Thus, makes it necessary to create tools
that reduce the amount of time needed to process a video.
Such tools must meet the following requirements: (i) Save as
much of the specialist’s time as possible, (ii) allow efficient
collection of big amounts of data, (iii) easy to use with very
little introduction time and (iv) deployment of the system
in restricted hospital environment.

To tackle this problem we have been prototyping and ex-
perimenting with different technologies to cater these spe-
cific requirements. We present our semi-supervised annota-
tion system, see Fig. 1, which is divided in two parts. The
first part (i) is a web based tagging tool that should be
used by a specialist to create a coarse selection of regions
of interest. The second part (ii) is a tool that can be used
subsequently by a regular user to generate a complete data
set using object tracking algorithms and manual correction
if necessary. The system is already in use for generating
informative and large data sets for medical multimedia con-
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tent analysis. The remainder of the paper gives an overview
on related work and presents the architecture and the im-
plementation of the application. Furthermore, we show how
the obtained data can be used afterwards, and we give an
outlook of ongoing and future work. A demo video of the
tool can be found at http://goo.gl/Fhd0J6.

2. RELATED WORK
Previous research related to annotating videos can be split

into manual video annotation tools and semi-supervised ap-
proaches. In this section, we will discuss their relation to
our tool and point out the differences. A way of annotating
videos is the use of different elements on top of the video
frames like speech bubbles, hand drawn annotation and a
lot of other different overlays. Furthermore, annotation by
speech is also a widely used method. That these annota-
tions have in common is that they are manually added to
the video to describe the content. Examples for state of the
art applications are, for instance, YouTube, VideoWiki and
Popcorn Maker. A tool that combines complex annotations
together is Videojot. For the medical use case, the MedAn-
notation Tool is the latest related work in this area [14, 11,
4, 2, 13, 12]. The usage of these tools ranges from very
complicated to very easy to use for, trained or untrained
users. All these tools require a significant amount of time
for creating annotations. In some areas, this is not a big
problem, but in others like, the medical sector where the
doctors are constantly under a lot of pressure and lack of
time, the currently existing tools are not really usable, i.e.,
especially when the goal is to collect a huge amount of data
for computer vision or retrieval algorithms [7].

Our tool tackles this problem by providing a very easy
and quick way to annotate important parts. It then uses
these tiny annotations to automatically generate the data
that we need for further computation. There already exists
some work about these kind of semi-supervised annotation
tools, but they do not annotate specific parts of the video
for the usage in a later training set. They are more general
semantic annotation [5, 16, 15] tools, which cannot be used
for example to detect cancer in regions of the video, etc. The
biggest difference to existing tools is that the tool presented
here is easy and time expeditious to handle, and it is able to
automatically create a huge data set of medical conditions
from a subset of expert annotations. Therefore, it supports
the doctors to provide as much information as possible with
very humble effort. To the best of our knowledge, there exist
no such tool that provides the same functionality.

3. ARCHITECTURE
The architecture of our solution is divided into two steps

Manual Annotation and Object Tracking. Fig. 2 gives an
overview of the whole system. This is mainly to reduce the
amount of time specialists are needed in the whole process
due to the fact that they only have to provide elucidation
in a single frame. We do require the specialist’s knowledge
during the first step to do a very basic identification of ir-
regularities and to tag them accordingly. The Manual An-
notation step is to precisely select any regions of interest
in a video sequence. We also refer to this step as Object
Tagging. The Object Tracking step is to track the regions
of interest on previous and subsequent frames, based on the
previously manually created tags. This step is more about

Figure 2: The processes for dataset creation are a
prerequisite for building and a detection tool.

tracking an object and adjusting the size and position of the
tracked region than about identifying or recognizing irregu-
larities. Specialist’s knowledge is therefore not required for
the second step. Another reason to divide the process into
these two steps is the technologies available for implement-
ing the required software. A specialist is usually located in a
hospital with special restrictions to security due to sensitive
patient information. Deployment of software is therefore a
problem because of privacy issues. Nevertheless, internet ac-
cess and a browser are usually available. This makes stan-
dard web technologies a convenient way of circumventing
deployment related issues for the manual annotation soft-
ware. It also implies storing all information on the server
side and moves the responsibility of maintaining the system
and data integrity from the user to the server administrator.

Manual Annotation. The manual annotation is the
first step in the whole data gathering process. In this step, a
specialist uses rubber band selection (mark a bounded area)
to create a coarse selection of regions of interest and anno-
tates every selection with a name for classification. Every
region needs to be marked once only. To keep the specialist’s
time spent on this task minimal, we do not require the region
to be marked in the very first video frame it appears. Infor-
mation on first appearance and change of shape or position
within the picture will be added later using object tracking
and manual correction. This approach allows a rather rapid
way of working for the specialists. They might even watch
the video at a higher playback speed and only stop or slow
down the playback when really necessary. The information
collected in this step includes the position and dimensions
of irregularities in pixel coordinates, a classification and a
timestamp relative to the beginning of the video for each
selected region. We have decided to implement the manual
annotation component using JavaScript and HTML5 video
which is available in most recent web browsers. We use a
standard username and password authentication mechanism
and transfer all the date using HTTPS to ensure secure data
access and transmission during the whole process.

Object Tracking. The output from Manual Annotation
only contains a single tag for every region of interest in the
video sequence. Using this information, we can now apply
object tracking algorithms and manual correction to gen-
erate a complete data set. Most of the work in this step
is done by the software. The user just needs to step to
the previously marked irregularities and playback the video
from that point for the software to track the marked re-
gion on subsequent frames. Depending on the quality of the
video and the speed of camera movement, user intervention
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is needed to assure a high quality of tracking. As the ir-
regularity most likely has not been marked on the very first
frame it appears in, the video must also be played in re-
verse direction from the first position a region was marked.
This is needed to track the region towards the beginning of
the video. There is of course still a fair amount of manual
work involved in this task. However, using a suitable track-
ing algorithm, the time needed to create a complete dataset
can be reduced significantly. Moreover, specialist skills are
usually no longer required here as the whole task is simply
about tracking regions and adjusting rectangular dimensions
rather than actually detecting or recognizing irregularities.
The output generated in this step is a list of rectangles for
every previously marked region. Every rectangle in such a
list is described by the index of the video frame it belongs
to, its position in pixel coordinates and its dimensions.

4. IMPLEMENTATION
Experimenting with several different technologies we came

to the conclusion that a solution divided in two steps has
several advantages. It allows us to minimize the time a
specialist is needed, and it also significantly simplifies the
deployment and maintenance of the software. The only re-
quirements for the first step are an HTML5 compliant web
browser and an internet connection.

Manual Annotation. The web application we imple-
mented is mostly written in HTML5 and JavaScript. Specif-
ically, it makes use of the HTML5 video element. List-
ing and uploading videos and storing tagging information
is implemented in Java and running in an Apache Tomcat
servlet container1. All video sequences will be uploaded to
the server through the web interface. On the server, we are
using a Java servlet, which spins off a job to transcode the
video to H.264. For transcoding we are using libav and av-
conv2. Transcoding is necessary in case the original video file
is not encoded in a codec that is supported by the browser.
H.264 seems to be a good choice as it is currently supported
by all major web browsers. The transcoding job is running
asynchronously, so a connection to the server is not needed
to keep the job alive.

The web interface of our tagging application provides the
usual start, stop and pause controls of a regular video player.
Additionally, we added a seek bar that highlights the play-
back position and any regions of interest in colors. We also
added a ”seek-forward” and a ”seek-backward” button that
allows stepping to the next/previous region of interest. As
the video playback in HTML5 is running outside of the
JavaScript execution thread, we do not have a strict con-
trol over the video frames being displayed. The playback
position is only provided as a floating point value property
currentTime in seconds. The property can be read and it
can also be written in order to seek to a specific position.
When executing JavaScript code this property can be read
at an arbitrary point in time. And since a single video frame
is usually being displayed for about 40ms 3 this means that
when playing a previously tagged video sequence, we will
most likely not read the same value from the currentTime
property again as we were reading while tagging. Therefore
visibility of a previously created tag cannot be guaranteed

1http://tomcat.apache.org
2https://libav.org/avconv.html
3assuming a usual frame rate of 25 frames per second

Figure 3: Native software for modifying tags and
tracking of regions of interest.

during playback and we must use the seek buttons to seek to
the next or previous region of interest. Whenever a region of
interest has been selected, an editor shows up and allows the
specialist to enter a classification and a comment. This in-
formation will be stored together with the tagged rectangle
in JSON4 format on the server.

Object Tracking. For the second step in the process, we
implemented the object tracking tool in C++ using Qt5 for
the user interface and OpenCV6 for reading and process-
ing the video data. We further integrated with Struck [8]
for tracking the tagged regions. The user interface for this
tracking software is similar to the web interface described
previously and can be seen in Fig. 3. It features a video
widget, play, seek-forward and backward buttons as well as
a seek bar with identical behavior. Moreover, a slider to in-
crease or decrease the playback speed and an editor for clas-
sification and description is present. Further, a button for
playing the video in reverse direction and context menus for
modifying regions of interest is provided. After starting the
application, a JSON file created using the tagging web ap-
plication can be opened and the respective video file must be
selected. We use the original video file instead of the H.264
encoded one. This is because we need to be able to play the
video forwards and backwards frame by frame. Recreating
frames in reversed direction is very expensive with H.264,
because frames can be encoded referencing previously en-
coded ones. The original files uploaded to our server are
usually simple MJPEG video files and are very well suited
for playing both directions. The users use the seek buttons
to seek to the next or previous regions of interest. Then
they use the context menu to select one or multiple regions
for tracking. Playing the video in either direction will then
track the region in the video frames being displayed. Al-
ternatively, the arrow keys can be used to step forward or
backward frame by frame. The playback can be paused at
any time to adjust size or position of the tracked region.

Using double buffering allows reading and processing the
next frame while the previous frame is still being displayed.
The processing (reading of frames and tracking of regions) is
therefore running in a separate thread. The communication
between the user interface and the worker thread is imple-

4http://goo.gl/Oi5kIF
5http://www.qt.io
6http://www.opencv.org
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mented using Qt’s events delivery mechanism. Whenever
the tracking algorithm fails to track a region, the playback
stops automatically. It is then up to the user to decide if the
tracked region should be removed or if the tracking should
be re-initialized with an updated region. The user can seek
forwards and backwards freely to review the tagging and
tracking results and adjust, move or restart tracking of a
region at any point during the process. Once the dataset is
complete, it can be saved to a JSON file.

5. APPLICATIONS OF THE DATASET
The primary application of the annotated images is train-

ing algorithms for automatic medical screening. As stated at
the begin, reviewing images or videos and making diagnos-
tic decisions in screening are very time-consuming and the
accuracy is subject to the experience and concentration of
the physicians [6]. For example, in a camera pill endoscopy
exam, there are about 60, 000 images per examination for
one patient, and it costs an experienced medical clinician
about 2 hours on average to view and analyse all the video
data [10]. Therefore, it becomes necessary to reduce the
heavy burden on physicians and speed up the screening pro-
cess with computer aided diagnosis. In terms of colonoscopy
videos, the objective would be training a classifier and auto-
matically detecting the colon cancer, or its precursor lesions,
colorectal polyps in videos. To build the classifier, the an-
notated irregularity regions are pooled together as positive
samples and random selected regions without any irregular-
ity are used as negative samples. Colour, texture and shape
features [1, 3] are extracted from the training samples. A
Support Vector Machine (SVM) is used to train the clas-
sifier with the combinatorial features, and the Radial Basis
Function is applied as the kernel [9]. To tune the parameters
in SVM and prevent model over-fitting, k-fold cross valida-
tion is performed. A separated set of positive and negative
samples, which have never been seen during the training,
is prepared as a testing set. The classification performance
is then measured by the Receiving Operating Characteris-
tic (ROC) curve. With a shifting-window method, the built
classifier can not only tell the presence of irregularities but
also give their locations within an image. Beside the auto-
matic screening, with our semi-supervised annotation tool,
segments within a medical video are marked and labeled
with specialists’ knowledge input. Such annotated videos
can be directly used in medical video archive for surgical
documentation.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an application for annotation

of any kind of videos that need expert knowledge for the elu-
cidation. We focused on the medical use case of endoscopic
videos. The time that doctors have to spend with this tool
to annotate the videos is extremely low. Furthermore, we
showed that the tool is able to automatically create more an-
notations based on the initial annotation by the experts and
how these annotations can be used. It provides a possibility
for easy annotation for further analysis, documentation or
lecturing. In the future, we will focus on gathering a large
dataset and the usage of it in machine learning or computer
vision algorithms. We further would like to expand the use
case to other domains like sport.
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ABSTRACT
Event detection and understanding is an important area in
computer science and especially multimedia. The term event
is very broad, and we want to propose a novel event based
view on endoscopic surgeries. Thus, with the novel view
on surgery in this paper, we want to provide a better un-
derstanding and possible way of segmentation of the whole
event surgery but also the included sub-events. To achieve
this sophisticated goal, we present an annotation tool in
combination with a thinking aloud test with an experienced
surgeon.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation (e.g.,
HCI]: [Miscellaneous]

Keywords
annotations; events; video; endoscopy; event understanding

1. INTRODUCTION
Understanding events can leverage the development of au-

tomatic algorithms for learning, detection, or classification
to a high degree. When hearing the word event, people usu-
ally think of high-level events like concerts and parties, but
even a surgery procedure on the heart can be seen as an
event. This obviously leads to the conclusion that events
are hidden everywhere. In this paper, we take an event-
based look at endoscopic surgeries, or more specifically, the
annotation of videos of laparoscopic surgeries. Our findings
should, however, be applicable to different types of endo-
scopic interventions.
Endoscopic surgeries can be seen as a special type of hu-

man centred event since they involve the participation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HuEvent’14, November 7, 2014, Orlando, FL, USA.
Copyright 2014 ACM 978-1-4503-3120-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660505.2660509.

Figure 1: Experimental setup of the thinking aloud
test.

multiple people. They are very complex, and a lot of exper-
tise is necessary to annotate recordings of the operations,
which is the reason why surgeons usually do it themselves.
The rationale to annotate events varies, but it is usually for
documentation or training purposes. The problem is that
the currently provided tools are very often too complex for
surgeons and make it hard to capture the important infor-
mation in a fast way, or there are no tools provided at all.
Since surgeons are often under a lot of time pressure, they
want to annotate their surgeries in an intuitive way and as
fast as possible. Therefore, it is important to assess their
requirements as soon as possible and include their expertise
in the design phase to decide which functions and results are
important and would support them later in production use.
Fancy features, like instrument detection, do not help much
if they do not provide useful information to the surgeons
and doctors that will finally work with the results.
To tackle these problems, we designed an annotation tool

that is able to support the doctors to annotate surgeries
naturally. We then performed a thinking aloud test with a
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world renowned surgeon working in the field of laparoscopy
to obtain first-hand information about what such an anno-
tation tool needs to provide in order to be suitable for and
usable by surgeons and lead to a better understanding. The
thinking aloud test is a proven method to test user interac-
tion with a system. It requires a special setup including the
recording of the interaction with the program and the reac-
tion of the person itself. Figure 1 shows this experimental
setup. One camera was used to record the doctors reactions
(small image in the upper right corner) and one to record
his interaction with the annotation tool (main image). Our
work shows that different kinds of events in surgeries ask for
different kinds of annotations, distinguished by their level of
detail. We also present an event-based segmentation model
of endoscopic surgeries, based on the analysis of our expert’s
information. We believe that our work will help researchers
to collaborate and get information from surgeries more effi-
ciently. The main contributions of our work therefore are:

• Providing a general event-based model that is valid for
different types of endoscopic surgeries.

• Providing detailed information about which functions
an annotation tool for surgeries should include.

• Presenting an advanced prototype of the annotation
tool.

• Providing a better understanding of endoscopic surg-
eries with the help of an expert.

Note at this point that the annotation and understanding
of the surgeries is just a first step. The collected informa-
tion will be used for machine learning and computer vision
techniques, and in the best case lead to automatic detection
or classification of events or sub-events.
In the reminder of the paper we will at first give an overview

and discuss related work in the area of events and endoscopic
surgeries. Then we present the methodology split into an an-
notation tool and a thinking aloud test. In the evaluation
section we present the analysis and findings of the experi-
ment in a conceptual and technical point of view. Finally we
draw a conclusion and discuss about ongoing and possible
future work based on our insights of this paper.

2. RELATED WORK
Philosophy defines an event as a special incident over a

specific time span involving one or more objects and hap-
pening at a specific place, which can be described by an
encasing term - the name of the event. For example, there
are general events like endoscopic surgeries, birthdays or fu-
nerals, and sports events like football, basketball or soccer
games. An event can also consist of many sub-events. For
instance, a soccer game has goals and fouls as sub-events
and an endoscopic surgery consists of sub-events like injec-
tions or cuts. Moreover, an image may depict an event, but
it is usually just a snapshot and therefore only covers one
time instant of the event’s time span [8].
In the context of event processing, detection is an impor-

tant field of research. It is widely employed in computer vi-
sion and classification, because to classify an event, it needs
to be detected before. Reuter et al. [13] are using the con-
cept of events to classify multimedia streams automatically
into corresponding events. To achieve this, they use a two-
step approach. At first, they retrieve event candidates, and

secondly, they use machine learning to assign new event can-
didates to existing ones or to new ones. Petkos et al. [12] try
to tackle social event detection by presenting an algorithm
that uses multimodal clustering and multimodal fusion to
combine different features that can be helpful for event de-
tection in a clever way. A similar approach is presented in
[15] by Zeppelzauer et al. They use an unsupervised clus-
tering method to cluster events based on time, user and
geo-location information. All these approaches are well per-
forming state-of-the-art methods, and they show that event-
based segmentation or classification are promising directions
for multimedia content exploring.
Another important direction in the research field of events

is event synchronization. Event synchronization combines
data of different sources to form an overall picture of a spe-
cific event, which usually includes pictures and videos. This
can help to get a better understanding of events. Actual
work form this area is presented in [4] and [7]. In the first
paper the authors try to analyze the content of the images
in different photo collections to synchronize them into ho-
mogeneous events. The second paper describes an approach
to synchronize streams of photos based on to which events
they are belong. This is done by a scalable message-passing
based optimization framework. Additionally, there are ini-
tiatives like the MediaEval Benchmark1 with tasks like social
event detection and multi-user event media synchronization,
which shows that the consideration of events is a promising
and interesting field of research.
To the best of our knowledge, there is no work that ap-

proaches endoscopic videos as a flow of events like we pro-
pose in this paper. In [11], Münzer et al. take a low-level
bottom-up approach by detecting three classes of irrelevant
segments in endoscopic videos (dark, out-of-patient, blurry).
Transitions between those classes and the relevant class can
be seen as low-level sub-events, e.g., the start of the actual
surgery when the first out-of-patient segment transitions to
an in-patient segment. In this work, we facilitate the de-
tection of high-level sub-events in surgeries through anno-
tations by the actual surgeon. As stated before, regard-
ing a surgery as an event with hierarchical sub-events can
help to understand the surgery better, and it can provide an
easy view on a complicated topic that is understandable by
both surgeons and computer scientists. We anticipate that
this increased understanding can lead to the development
of better annotation tools, which in turn can provide bet-
ter information for computer vision, machine learning and
classification approaches.
Overall, there have not been many attempts to use mul-

timedia content like images or video for a better under-
standing of events in the medical sector. Battles et al. [1]
presented an event reporting system for blood transfusions.
Their system was designed to detect, select, describe, clas-
sify, compute, interpret and locally evaluate the event of
blood transfusion. It was shown that such a system can
improve the health-care results positively, but a good sys-
tem strongly needs input from both end-users and external
experts. The reason is that doctors often have their own
techniques of handling multimedia material in their hospi-
tals, which is hardly ever the most sophisticated or effec-
tive way. Due to a lack of knowledge in computer science,
they often underestimate or do not know the capabilities of

1http://www.multimediaeval.org/mediaeval2014/
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techniques like machine learning and computer vision. An
interdisciplinary working expert with extensive knowledge
in the area is therefore desired as a source of information,
ideas and ready-to-use techniques.
Since endoscopy covers a large number of different surg-

eries like gastroscopy, mediastinoscopy, rhinoscopy, colonos-
copy, laparoscopy, and arthroscopy, it is still a rather un-
explored field in multimedia. The most explored sub-type
are colonoscopic surgeries. The latest state of the art for
colonoscopy images and videos is 3D reconstruction of the
colon like discussed in [5, 6]. Current related work regarding
videos of endoscopic surgeries in general can be found in [2]
where the authors automatically segment a surgery into dis-
tinct phases. Furthermore, Münzer et al. [10] are concerned
with the detection of the typical circle that is framing the
view of an endoscope. We expand this knowledge with a de-
scription of the general procedure of an endoscopic surgery
event and its encompassing sub-events.

3. METHODOLOGY
The methodology that we were employing was a think-

ing aloud test setup as described in [3]. It consisted of two
stages, stage one being a hands-on experience by a surgeon
who used our annotation tool as he would wish to use it in
his daily work. Stage two was an open interview reflecting
his experience with the tool, and an interview following a
prepared exit questionnaire where we asked specific ques-
tions that came up during the creation of the concept and
the implementation of the tool.
We did this test with only one expert because it is a highly

specialized domain where experts are scarce resources and
hospital doctors in general have very limited time. Our ex-
pert from a regional hospital is a lead technology user in this
area who has been recording, documenting, and even live-
broadcasting his surgeries overseas since many years. Due
to storage demands, he does not always record the full cov-
erage of a surgery (the 1080p format with constant bit rate
as recorded by the employed equipment has a high storage
demand), but sometimes limits the recordings to cover only
the most important phases of a surgery. To mark impor-
tant moments, he additionally saves single frames as pic-
tures. Both pictures and videos are not only used for the
hospital’s internal documentation, but also to explain surg-
eries to patients, to present and discuss interesting cases
with colleagues and at conferences, and to school student
trainees. Currently, he does not have any means to anno-
tate his recordings and to store them. Persisted annotations
would not only save him time to repeat an explanation, but
make it more tangible to presentees, enable iterative im-
provements of annotations, and automatically build up a
library of annotated videos. Such a library will then help
computer scientists to analyze and classify events, detect
similar events in unannotated videos, segment videos any
hopefully even semantically synchronize them.

3.1 Annotation Tool
The annotation tool as seen in Figure 2 is an improved

version of the annotation tool described in [9]. The most
important requirement of the tool was to make its usage as
simple as possible, and at the same time, extract as much
information as possible from the video. The tool is a tablet
computer with a video player that loads a recording of a
surgery, and offers four main functions: (i) drawing visual

Figure 2: The interface of the annotation tool in-
cluding annotations of the doctor. The buttons on
the right side are for controlling the video, like seek-
ing forward or backward, or switching between ex-
isting annotations. The buttons on the left side are
used to make annotations or delete them. By press-
ing and holding the annotation button (pencil), the
doctor can start the annotation. While the button
is pressed, the annotator can draw annotations in
the video and the voice is recorded. The annotation
can be stopped by releasing the button. This can
be done while the video is playing (moving annota-
tions) and while the video is paused (still annota-
tions). The timeline at the bottom can be used for
seeking and also shows already existing annotations
and their duration.

annotations by hand or by using a touchscreen pen, (ii)
recording spoken audio notes from the microphone, (iii) set-
ting bookmarks for easier navigation in the video, and (iv)
providing a video timeline that visualizes existing annota-
tions and also enables navigation inside the video.
Hand drawn and spoken annotations are supported for

video playback (moving annotations) and for still frames
when the video is paused (still annotations). Annotations
on still frames extend the total runtime of the video when
played back because the annotations are animated in the
same way as the surgeon did draw them and the spoken
annotation is replayed correspondingly. Technically, both
hand drawn and spoken annotations are recorded in parallel,
i.e., it is not possible to explicitly select one or the other, but
the annotator can still freely decide his means to annotate.
For each stroke of the hand drawn annotations, the color
can be selected from a predefined color palette. Bookmarks
can be set by shaking the tablet quickly to mark important
frames in the video. When playing back the video with its
annotations, the hand drawn strokes are animated like they
were drawn, and the audio is overlaid. We also have an
HTML5 player capable of playing back the annotated video
on the web, which has been extended for a different use
case [14].

3.2 Hands-On
For the hands-on experience, we handed a Nexus 7 tablet

running our annotation tool to the surgeon. We asked him
to use it and annotate the videos as he envisions, and to
speak out his thoughts while doing this. Since we had ac-
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cess to the recordings of his surgeries, we randomly selected
three videos recorded during the past 12 months, out of a
collection of hundreds of recordings. Two of them are clips
of 8 and 12 minutes runtime and the third is a full surgery
recording with a runtime of about 2 hours. We are sure that
the thinking aloud protocol, where the user assesses the tool
while using it, is much more effective than a usual expert in-
terview because it exposed problems that nobody of us had
thought of yet, and it enabled a qualitative investigation of
the tool and its annotations. The session was recorded with
two video cameras, one over his shoulder capturing his me-
chanical interaction with the tool, the other from the front,
capturing the whole scene including his face and voice.

3.3 Interview
The interview was also recorded by the same cameras and

started with a discussion of the hands-on experience. It
gave us a lot of insight on the expert’s expectations of such
a tool and the chance to discuss possible solutions to arisen
problems. We then concluded it with a prepared exit ques-
tionnaire, where we tried to assess his satisfaction with the
tool, possible usability features, use-cases, video processing
methods, navigation patterns, and its market or everyday
use potential.

4. EVALUATION
The video recordings of our thinking aloud session have

been investigated by a group of three people to learn the
most of the session. While an evaluation with a single expert
cannot be fully valid for all people in this medical domain, it
was still very productive and definitely showed us a precise
direction we need to take. We define a model that is a
valuable base for a study of larger scale. We divide our
insights into conceptual findings that apply to the whole
area of surgical event annotation, and technical findings that
apply to the implementation of our tool, but which can still
be valuable to developers of similar tools.

4.1 Conceptual Findings
A totally unexpected, but perhaps the most interesting in-

sight that we got from our evaluation is the idea of a general
event model of endoscopic surgeries, where the granularity
of the events is directly connected to the type of annotation.
We observed that our test candidate followed a pattern on
all videos, where he always annotated the same kind of event
with the same kind of annotation. The model is shown in
Figure 3. A surgery can be split into different hierarchical
sub-events. The first two sub-events can help to segment
an operation in-patient and out-of-patient. If the camera is
outside the patient, the segment is not interesting and does
not carry any medical information. The surgeon did never
perform an annotation when the camera was outside the pa-
tient. Therefore, it makes sense to segment a video based
on that first.
When the camera is inside the body of the patient, there

are three possible sub-events. A surgery is usually started
with an overview of the concerning area, to document the
actual status of the body and objects of interest, followed
by the actual surgery. It is concluded by another overview
after the surgery is finished, which leads to a documented
before-and-after comparison.
During the surgery, we can first distinguish between gen-

eral actions. These are moving around, which leads to blurry

surgery

out-of-patient in-patient

pre-overview intra-surgery post-overview

general action

moving viewing specific procedure

cutting injecting removing other...

Figure 3: Model of the endoscopic surgery event.
The higher the event in the hierarchy, the lower is
the level of detail and granularity required for the
annotations. The blue box marks low detail events
(interval-marking annotations), the red box marks
medium detail events (speech annotations to run-
ning video), and the green box marks high detail
events (speech and hand drawn annotations to still
frames).

and useless material, and viewing around. Moving around is
for example when the doctor moves the camera in the body
or through the colon to a specific area. Viewing around is
when the surgeon looks around in a specific part of the pa-
tient like in the stomach or in an area of the colon where
for example a disease is located. For these two events, the
surgeon used only the annotation by speech. It could make
sense to differentiate between these two types, in order that
moving-around or looking-around parts in the videos can for
example automatically be skipped, stored in a lower resolu-
tion or bit rate, or replayed with higher speed. The highest-
granularity event that we identified during a surgery is a spe-
cific medical procedure. This can be an action like cutting
a cyst, injecting liquid, removing a polyp, but also detect-
ing exceptionally normal or abnormal looking organs (e.g.,
a liver without any disease and one with cancer). When
one of these events occurred, the surgeon always paused the
video and described it with both hand-drawn annotations
and speech.
These findings clearly show that a division of the surgery

into sub-events makes sense. For hierarchically high events,
annotations do not have to be very detailed, but even im-
precise descriptions can provide important information for
classification or segmentation algorithms that have the po-
tential of helping surgeons. In contrast, specific sub-events
like cutting and injecting require very detailed annotations.
This provides three very important advantages, namely the
surgeon’s usage for teaching purposes, the potential of auto-
matically generated summaries, and the researchers’ usage
for training specific algorithms like cancer detection or in-
strument detection.
Our tested tool offered just one kind of annotation which

could be universally applied in every situation: recorded
speech combined with hand drawings, which are both recor-
ded but optional, that ultimately covers a segment of the
video. Since it seemed cognitively demanding of our test
candidate to decide which annotation to take, we propose
to shift to an event-based paradigm offering three kinds of
annotations that cover three levels of detail: (i) marking in-
tervals as the lowest detail level, (ii) recording speech to the
running video as medium detail, and (iii) recording speech
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with hand-drawn schemes on still frames for the highest de-
tail level.
As seen in [11], low-level annotations can already be gen-

erated automatically, and we suggest it as a preprocessing
step, of which the resulting intervals should automatically
be integrated as annotations into the tool’s timeline. Addi-
tionally, it is planned that interesting events will already be
marked during the surgery, which makes them much easier
to be found and annotated afterwards. Also interesting is
the fact that the surgeon is not interested in classical image-
processing methods like measuring the sharpness of the pic-
ture, the intensity of movement, dominant colors or surgical
instrument detection. The only feature he would be inter-
ested in is the out-of-patient detection. He explained that
recording this kind of surgeries works analogue to a movie
script: the best and most interesting shots are usually delib-
erately orchestrated, meaning a stable camera, good lighting
and no instruments blocking sight.
Finally we want to point out that, for the doctor, annota-

tions on a playing video were useless in the current version
(i.e., the surgeon always paused the video before starting a
new annotation). They would be a very important feature
if the annotation system would support the surgeon dur-
ing the annotation process with object tracking that auto-
matically repositions the drawings according to the camera
movements. Otherwise he would have to do a nearly frame-
by-frame-wise correction of the annotations, which would be
too tedious.

4.2 Technical Findings
On the technical side, a big issue was the tablet size of

7 inches, which is great for portability reasons but a trade-
off between user interface widgets and the video, i.e., the
annotation drawing area size. Our tester indicated that a
tablet with at least a 10 inch screen would be preferable.
An additional improvement can be achieved by elaborating
a usability concept where the video is drawn over the entire
screen and control elements overlaid when needed, like it is
typical for video players in full screen mode.
The next major issue is the drawing of annotations by

fingers. The first thing our test candidate asked for when
beginning the test was a touchscreen pen. This might be
a question of individual taste, but this candidate definitely
had problems drawing with his fingers. On the small tablet,
a pen has the advantage that it does not occlude as much
of the screen as fingers do. We discussed the usage of pro-
prietary technology like the Samsung S-Pen2, which would
enable advanced drawing techniques like thickness adjust-
ments of drawn lines by pressure. However, at the same
time, it takes away the tablet screen’s multi-touch ability
that our tool is currently designed for.
The biggest software issue we encountered during our test

was the video player provided by the Android 4.3 API, which
does not support seeking to exact frames, but rather to the
nearest sync frame. During our internal tests, we did not no-
tice this issue as our video’s group of pictures size was small,
and errors of a few frames did not stand out. The surgeon,
however, noticed even misplacements of single frames which,
according to him, were a great distraction making his precise
annotations worthless.
Regarding general usability, care must be taken that sur-

geons are usually not that computer savvy and do not have
2http://developer.samsung.com/s-pen-sdk

a lot of experience with different apps and platforms, which
means that they are not used to common user interface
paradigms. As an example, indicators of the recording sta-
tus in the Android action bar, or Android toast messages
as action feedback, often went unnoticed by our test can-
didate. This needs to be addressed with new concepts of
greater visual and maybe even tactile impact. The video
timeline as shown before is also not intuitively useable with
long running videos, as annotation markers tend to shrink
too small and get packed together. The solution might be a
separate zoomed section of the timeline around the current
position, to preserve a good level of overview detail.
To draw annotations, our tool offered different colors for

one single type of stroke. It turned out that our tester used
the colors very sparingly and only changed them randomly
for no conscious reason, as he told us. We observed though,
that the types of usage of the stroke can be classified into
three different actions: (1) marking borders with a solid
stroke, (2) marking areas with dots or hatched lines, option-
ally surrounded by a solid stroke, and (3) indicating direc-
tions of actions by drawing arrows from solid strokes. These
actions always directly relate to the spoken annotation. We
figured that it would be more helpful to provide different
drawing tools with a single color each, instead of one tool
with multiple colors. These could be a thin pen, a thicker
felt pen, and a very thick semitransparent marker to high-
light areas.
We also discussed the possibility to completely separate

voice from drawn annotations, since they are now inter-
twined and, e.g., deleting an annotation deletes both the au-
dio and the strokes, which is not always desired. This would
however lead to two different annotation timelines that both
want to be mapped to the video timeline and bring up many
open questions. What if the annotator records his voice to
the running video, then in parallel pauses the video for a
drawn still-frame annotation, and later deletes this drawn
annotation? Should the tool display a paused frame for no
obvious reason, should this interval be cut out from the voice
track to retain synchrony with the remainder of the voice-
annotated video, or can we afford to lose synchronization
between the voice annotation and the running video when
purging the paused interval? There are several other cases
leading to such situations.
There are also several potential additional features that

our candidate indicated as helpful. Zooming into the video
is anticipated since the interesting action often happens in
a limited area in the video, and the assistant filming the
surgery does not always correctly zoom in. This feature
would go without a lot of image quality loss on the rela-
tively small tablet screen as the videos are usually recorded
in 1080p format. It would help focusing on the important
area, drawing annotations more precise and also generate
interesting metadata for analysis. He also mentioned the
possibility to export and share annotated still frames from
the videos, to fast-forward unimportant segments, and play
back important ones in slow motion. He also wished for a
function to render the annotations into a standalone video
file. Lastly, he envisioned a multimedia integration of ex-
ternal image material from x-ray, ultrasonic and magnetic
resonance therapy, to use the tool for multimedia presenta-
tions. He also thinks about usages for measurements in stan-
dardized recording settings, e.g., measuring size and area or
analyzing structure and color of liquids and tissue.
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5. CONCLUSION
We presented an evaluation of a tool to visually and vo-

cally annotate videos from endoscopic surgeries, evaluated
with the help of a high-class surgeon in the field and on his
own recordings. We deduced a general event model of such a
surgery and identified a direct relationship between the gran-
ularity of an event and the type of its annotation. We also
provided many insights, ideas, and a better understanding of
endoscopic surgeries. They can help to develop appropriate
annotation tools, which then in turn yield several interest-
ing data and metadata for the analysis, classification, and
post-production of endoscopic videos.
Regarding future work, we want to iteratively develop our

tool to a state where it will be productively used by at least
our collaborating surgeon but hopefully by his colleagues as
well. Through this, we hope to collect a huge pool of surgical
event annotations that we want to analyze and hope to use
for the automatic detection of similar events, and ultimately
for the retrieval and the semantic synchronization of similar
video recordings.
Furthermore, we want to test more sophisticated approaches

in combination with the annotation tool. For example, we
are testing annotations supported by object tracking in real
time and a frame-by-frame based annotation where the video
can be slowed down. We develop these two approaches based
on web technologies. They are currently in an experimental
stage, and we are discussing the applicability with several
surgeons at a large hospital. Once they are ready for testing
we also would like to perform a parallel thinking aloud test
with a larger number of doctors.
Our findings will help to improve both the quality of our

annotation tool and the data generated from it, and we are
sure they will help other researchers working in this area.
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Abstract—Exploring and annotating collections of images with-
out meta-data is a laborious task. Visual analytics and infor-
mation visualization can help users by providing interfaces for
exploration and annotation. In this paper, we show a prototype
application that allows users from the medical domain to use
feature-based clustering to perform explorative browsing and
annotation in an unsupervised manner. For this, we utilize global
image feature extraction, different unsupervised clustering algo-
rithms and hyperbolic tree representation. First, the prototype
application extracts features from images or video frames, and
then, one or multiple features at the same time can be used to
perform clustering. The clusters are presented to the users as a
hyperbolic tree for visual analysis and annotation.

I. INTRODUCTION

Content-based image retrieval has been an important area
of research for quite some time now [1]. A lot of different
techniques and methods have been created, and the approaches
have become more and more sophisticated. However, there is
no one-fits-all approach, and the tools often must be adapted
to a particular use-case.

One of the domains we are focusing on is medical images
from the human gastrointestinal tract, taken with an endoscope
camera inside the body to detect diseases. Even though these
images are coming from a particular patient and have been
annotated by a particular endoscopist, the domain is not as
meta-data rich as intuitively anticipated. Highly trained and
specialized medical personnel are scarce human resources,
and their priority is on performing medical examinations,
not annotating or giving sense to images and videos [2],
[3]. Moreover, if videos and frames are shared, the patients
personalized information has to be purged from this data or
anonymized to ensure privacy of the patients, and especially, in
case of shared videos and frames from endoscopic procedures,
meta-data is a rare commodity. Therefore, a lot of videos and
video frames remain only loosely annotated, and retrieving the
images later based on available information is hard.

In this context, we present a prototype mainly designed
for visual analysis and annotation of endoscopic images. The
prototype application has two main benefits. First, it allows
clinical personnel to investigate and analyze vast collections
of frames from endoscopic procedures by providing a con-
figurable focus and context view based on frame similarity.

Second, it allows for utilizing the focus and context view
for annotation and tagging of the dataset, making it more
accessible for complementary information systems. While we
developed this prototype application for a medical scenario,
we strongly believe, and will also show in the evaluation,
that it is usable for other scenarios involving interactive
browsing, visual analysis or annotation of image or video data.
We first investigate the relation between focus and context
views and content-based image similarity, as well as discuss
the underlying frameworks of the application. We then pick
two diverse datasets, one from the medical domain and one
from social image collections, to investigate if the proposed
abstraction and clustering of the images is applicable through
an evaluation. Then, we describe our prototype and show how
it can be used to support professional users in the domain
of analysis of endoscopic video frames in their daily work
routine. Finally, we discuss the contribution of the application
and further work on the topic.

II. RELATED WORK

Chi [4] defines information visualization in four stages
(Table I). First, raw data is transformed into an analytical
abstraction, which is transformed into a visualization abstrac-
tion, which itself then is presented in a view. As indicated in
Table I, the data we operate on is images, and for the view
stage, we chose a hyperbolic tree visualization.

TABLE I
PROTOTYPE STAGES OF VISUALIZATION AND CORRESPONDENCE.

Stage In our prototype
1 Raw data Images/ Video frames
2 Analytical abstraction Image feature descriptors
3 Visualization abstraction Clusters, centroids and distance values
4 View Hyperbolic tree

One of the first and most prominent of these approaches
was the hyperbolic browser by Lamping, Rao and Pirolli [5].
The underlying idea is, that the visualization abstraction is
based on a hierarchy, i.e., a directed tree. In a typical view,
the objects would be arranged in a certainly, with those in
focus being larger and closer to the center, while those not in
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focus, i.e., the ones being the context, are pushed to the rim
of the circle. A hyperbolic view on a hierarchical structure is
best described with a fish eye view on a particular tree branch
or leaf, with the rest being visible, but out of focus.

The hyperbolic tree visualization is a graph based informa-
tion visualization strategy [6], which has been applied mostly
to data that already closely resembles a tree structure or a
directed graph from which a tree can be abstracted including
hypertext collections like the WWW, social networks, ontolo-
gies and other data where transformation between raw data and
abstraction remains on a low complexity level. One of the few
examples, where image collections are interpreted as graph
structure based on their content, is presented in [7], where the
authors employ a force directed placement algorithm to display
images on a large video wall. Without the focus and context
view, however, the authors are limited by the size of the video
wall. Other work of the same authors focuses on displaying
images based on content based similarity in a Treemap [8].
The PhotoTOC project [9], on the other hand, used clustering
to create an overview+detail view by clustering images based
on color histograms and then presenting the clusters by their
medoids. In [10], images are displayed based on their distance
with respect to two shape and texture features. Clustering does
not take place, but the focus of the visualization lies on the
query image and the k nearest neighbors. The rest of the result
list is pushed to the outer rim of the visualization providing a
context.

III. ANALYTICAL AND VISUAL ABSTRACTION

The features for clustering, i.e., the analytical abstraction
as defined in Table I, are extracted with LIRE (latest modified
version1). LIRE supports multiple global and local features
out of the box, to allow for easy integration of features
in arbitrary applications. Most notable global ones are the
Color and Edge Directivity Descriptor (CEDD) [11] as well as
the related features including the Joint Composite Descriptor
(JCD) [12], the Fuzzy Color and Texture Histogram (FCTH)
[13], the Pyramid Histogram of Oriented Gradients (PHOG)
[14], the Auto Color Correlogram [15], Local Binary Patterns
[16], CENTRIST [17]. Additionally, it includes the MPEG-
7 features [18] Edge Histogram, Color Layout and Scalable
Color. A detailed description of the extraction process and the
features can be found in [19].

For the visualization abstraction stage (see table I), we use
WEKA [20]. WEKA is a collection of tools for machine
learning and data mining providing also a Java library, which
can be directly combined with the LIRE code for our pro-
totype. In the fusion between these two frameworks, LIRE
is responsible for the feature extraction and also for the main
program logic calling the required functions from WEKA. The
coupling allows for optional change of the employed clustering
routine. For the experiment described in this paper, the X-
means clustering algorithm [21] is used, because X-means
determines the number of the clusters automatically, which is

1https://github.com/dermotte/lire, last visited 2016-03-08

an important part of the experiment. Our demo also supports
K-means and hierarchical clustering [22].

One of the main aspects of our demo is interactivity with the
view, i.e., users interact with the created clusters. Clustering,
being a well-known technique in machine learning, is used
to group entities based on a similarity metric. For instance,
images can be group-based on image features (e.g., grouping
those with similar colors), or textual user comments can be
clustered based on the nouns they contain. For our demo,
we use two datasets. One to group pictures showing disease
symptoms in a medical scenario, the other to group pictures
of the same tagging categories in a social image collection.
With visual analysis, these clusters can be investigated by users
with domain knowledge about the images content to confirm
or reject the grouping within an annotation process.

While being developed for a medical scenario, our prototype
is not restricted to a specific domain. Taking advantage of
this, we first investigate the appropriateness of the analytical
abstraction stage, i.e., the selection of features, as well as the
visualization abstraction stage, i.e., the clustering, using two
very different publicly available datasets. The first one is the
intent dataset of Lux et al. [23]. This dataset contains 1, 310
images crawled from Flickr as well as results from a survey
regarding the intentions of the photographers and responses
from the photographers as well as crowd-workers judging the
images and annotations. The intent categories, from which
the users had to choose, are (i) preserve a good feeling, (ii)
preserve a bad feeling, (iii) show it to family and friends, (iv)
publish it on-line, (v) support a task of mine and (vi) recall
a specific situation. For this dataset, the experiment is done
for single global features as well as for feature fusions. The
second dataset is the ASU-Mayo Clinic polyp dataset which
is the biggest publicly available dataset for polyp detection in
medical images consisting of 20 videos, with a total number
of 18, 781 image frames [24].

On both datasets, we conducted two-step experiments which
are slightly different in their final evaluation metric. The first
step is clustering the images with our tool based on their global
features. The number of clusters is not predetermined, but
suggested by X-means. This step is identical for both datasets.
For the intent dataset, the mean squared error is then calculated
per cluster. In our evaluation, the correlation between the
users’ feedback and the mean square error of the clusters is
computed for the intent dataset. If the correlation coefficient
ρ is low, i.e., close to −1, we assume that the method works
well, as inter-user-agreement is high while mean square error
is low, or the other way around. ρ around 0 or a positive ρ near
1 would indicate that mean square error and user agreement are
either not correlated or correlated in the wrong way, implying
that the clustering does not work. The intent dataset contains
votes of three different users for each category. The users
indicates on a 5-point Likert scale how representative an image
is for a given category (1, strongly disagree, to 5, strongly
agree). For all user votes, the majority vote is calculated and
all of them are averaged and normalized.

For the ASU dataset, we can not calculate the mean squared



Fig. 1. Demo system: The left part contains the settings for the users, and the right part shows the output of the clustering as a hyperbolic tree.

error because it contains only binary classification for each
frame: a polyp is visible in the image or not. Instead, we
calculated the purity of the clusters based on the ground truth
provided with the dataset. Furthermore, while we used single
global features for the intent dataset, which have been report
to work well, we used a combination of the JCD and Tamura
features for the ASU dataset. These have been found to work
best for this dataset based on an information gain analysis.

Table II shows the results of the experiment based on the
intent dataset. As expected, a negative correlation is observed,
which means that the clustering results correlate with manual
annotations to a degree indicated by the absolute value of ρ.
At first, it shows that some global features are more suitable
to create clusters that are similar with user judgments than
others. For example, FCTH is the best feature for detecting
a publish on-line intent for an image. A closer look at the
clusters generated by FCTH shows that this feature can very
well detect if persons are shown in an image, and it seems that
most images used for on-line publishing contain one or more

TABLE II
CORRELATION ρ BETWEEN MEAN SQUARED ERROR AND USER VOTES FOR

DIFFERENT GLOBAL FEATURES OF THE INTENT DATASET [23].

Feature recall preserve publish show support preserve
good bad

CEDD 0,165 0,194 0,205 0,285 0,213 -0,05
FCTH 0,085 -0,11 -0,70 -0,32 0,298 -0,27
Gabor -0,50 -0,40 -0,03 -0,15 -0,08 0,254
Tamura -0,77 -0,24 0,050 -0,55 0,241 0,517
Luminance Layout 0,060 -0,32 -0,15 -0,30 0,002 0,248
Scaleable Color 0,126 0,295 -0,02 0,060 -0,05 0,094
Opponent Histogram 0,107 -0,07 -0,10 -0,03 0,085 -0,003
AutoColor Correlogram 0,691 0,609 0,739 0,779 -0,47 -0,67
JPEG Coefficent -0,10 0,006 -0,26 -0,04 -0,48 0,107
Edge Histogram -0,17 0,643 -0,26 -0,06 -0,51 -0,04
PHOG -0,52 0,225 0,024 -0,42 0,187 -0,06
JCD 0,168 0,288 0,227 0,193 0,275 -0,26
JointHistogram 0,408 0,262 0,447 0,238 0,396 -0,40
12 Features Combined -0,14 0,469 -0,11 -0,17 0,215 0,735

persons. Another interesting insight is that semantically similar
clusters are also correlated similar to the same feature, e.g.,
Gabor features for recall situation and preserve good feeling.
This is also an indication that a combination of features is more
suitable to provide clusters that are consistent with with user
judgments. The last important insight, which is given by this
first experiment, is that a simple combination of all features
does not automatically lead to better correlation. This indicates
that the right choice of feature combinations is important for
clustering and that a metric like information gain can give
an idea about what features to combine, which we also used
in our next experiment. The second experiment with the ASU
dataset revealed something similar to the previous experiment.
First, we performed information gain analysis to identify the
two best features for this dataset. This led us to the features
JCD and Tamura, which we combined using early fusion.
Based on these features, we performed 4 different tests with
different numbers of clusters. We used X-means to determine
four clusterings of the dataset. We let X-means determine the
number of clusters c for one experiment, then we clustered
with c ∈ {2, 4, 100}. Based on the created clusters, we
calculated the average purity (precision based on the majority
class for each cluster). For c equals 2, 4 and 100, we got a
purity of 77%, 97% and 95%, respectively. For c = 234, the
c proposed by the X-means algorithm, the purity is 97%. This
indicates that the clustering leads to meaningful results also
for the ASU dataset and therefore supports our approach for
analytical and visualization abstraction.

IV. PROTOTYPE AND DEMO

Our prototype application combines content-based simi-
larity, unsupervised classification and focus/context views to
provide a way to easily explore, analyze and annotate a vast
number of video frames or images. Figure 1 shows a screen



shot of the demo application. On the upper left side, users can
choose the folder containing the image collection. Below that,
the clustering algorithm can be selected. At the moment, we
support 3 different algorithms (K-means, X-means and hier-
archical clustering). After selecting the clustering algorithm,
the application allows to choose one or several different image
features. For the screen shot, we limited the list, but the final
demo will contain all of the image features provided by LIRE.
If more than one feature is picked, they will be combined
using early fusion. The final options allow the user to specify
the clustering parameters. As a default, we use the values
recommended by WEKA. After the users choose the images
and all the options, a click on Apply creates the clusters and
presents them as a hyperbolic tree on the right site. The cluster
leaves are represented using the image that is closest to the
cluster center, i.e., the cluster medoid. It is possible to interact
with the tree by zooming and turning it into different angles.
Furthermore, the user can double click on images, which will
open the folder containing all images in the selected cluster.
A right click on the cluster images allows the user to see
information like the cluster center and the purity of the cluster
based on the distances. Finally, the users can name/tag the
clusters, which adds the tag to the name of the images in the
cluster (in this format _"your tag".filetype). For the demo, we
will present how our tool works on the two different datasets
that we tested here, but we will also have a new large dataset
of different endoscopic findings that we will use during the
demo presentation.

V. CONCLUSION

In this paper, we presented a demo application that enables
domain experts to use unsupervised clustering algorithms to
explore image and video data collections that do not contain
meta-data. In the information visualization model of the four
stages, the analytical abstraction stage and the visualization
abstraction stage correspond to the selection and extraction
of image features and the clustering of the feature vectors.
We have shown – based on two different datasets – that the
clustering leads to good results which correspond to user
judgments or ground truth of the datasets, and therefore,
provide good candidate methods for the abstraction stages.

For future work, we plan to test the application with
domain experts. In our case, endoscopists from two different
Norwegian Hospitals. For this test, we already collected a
large dataset (200.000 images and 600 videos) from medical
procedures. Focus of this user study will be the usefulness of
the focus+context view as well as the perceived complexity
of the user interface, i.e., the selection of image features and
clustering algorithms.
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Abstract—Analysis of medical videos for detection of abnor-
malities like lesions and diseases requires both high precision
and recall but also real-time processing for live feedback during
standard colonoscopies and scalability for massive population
based screening, which can be done using a capsular video
endoscope. Existing related work in this field does not provide the
necessary combination of detection accuracy and performance.
In this paper, a multimedia system is presented where the
aim is to tackle automatic analysis of videos from the human
gastrointestinal (GI) tract. The system includes the whole pipeline
from data collection, processing and analysis, to visualization. The
system combines filters using machine learning, image recognition
and extraction of global and local image features, and it is built
in a modular way, so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide
real-time feedback to the doctor. Initial experiments show that
our system has detection and localisation accuracy at least as
good as existing systems, but it stands out in terms of real-time
performance and low resource consumption for scalability.

I. INTRODUCTION

During the last decades, we have witnessed a paradigm shift
where computers and sensors move spatially closer and closer
to the user, and we are in the process of moving devices inside
the body. In this respect, our scenario is at the intersection
of computer science and pathological medicine, where we
target a scalable, real-time disease detection system for the
gastrointestinal (GI) tract as it is depicted in figure 1. First,
we study possible cancer precursors, e.g., polyps, and early
cancer detection. Here, we develop both a computer-aided, live
analysis system of endoscopy videos and a scalable detection
system for screening systems using a wireless video capsule
endoscope (VCE), i.e., a small capsule with an image sensor.

In the context of object or pattern detection and tracking
in general images and videos, a lot of research has been
performed, and current systems are good at detecting human
faces, cars, logos, etc. However, detecting diseases in the
GI tract is very different from detecting objects like cars.
The GI tract can potentially be affected by a wide range of
diseases with lesions visible in endoscopy, but findings may
also include benign/normal or man-made lesions. The most
common diseases are gastric and colorectal cancer (CRC),
which are lethal when detected in a late stage (the 5-year
survival rate ranges from 93% in stage I to 8% in stage IV [1]).

Fig. 1. The gastroin-
testinal (GI) tract (Image:
kaulitzki/shutterstock.com).

Consequently, early detection is cru-
cial. There are several ways of de-
tecting pathology in the GI tract, but
systematic population-wide screen-
ing is the most important tool for
early detection. However, current
methods have limitations regarding
sensitivity, specificity, access to qual-
ified medical staff and overall cost.

In this scenario, both high preci-
sion and recall are of crucial im-
portance, but so is the frequently
ignored system performance that can
provide feedback in real time. The
most recent and most complete re-
lated work is the polyp detection
system Polyp-Alert [2], which can
provide near real-time feedback dur-
ing colonoscopies. However, it is limited to polyp detection,
and it is not fast enough for live examinations. To further aid
and scale such examinations, we present EIR1, an efficient and
scalable automatic analysis and feedback system for medical
data like videos and images. The system supports endoscopists
in the detection and interpretation of diseases in the GI tract.
EIR has initially been tested in scenarios supporting endo-
scopists in detection and interpretation of potential diseases
in lower portions of the GI tract (large bowel). However,
the main objective is to automatically detect abnormalities in
the whole GI tract. Therefore, the aim is to develop both (i)
a live system assisting the visual detection of, for example,
polyps during colonoscopies and (ii) a future fully automated
screening of the GI tract using VCEs. Both aims impose strict
requirements on the accuracy of the detection to avoid false
negative examinations (overlooking a disease) as well as low
resource consumption. The live-assisted system also introduces
a real-time processing requirement (defined as being able to
process at least 30 frames or images per second). In this paper,
the initial framework of our complete system is presented.
To detect mucosal lesions in the colon, we built a system

1In Scandinavian mythology, EIR is a goddess with medical skill.
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combining filters using machine learning, image recognition
and extraction and comparison of global and local image
features. Furthermore, it is easy to add new filters or other
types of data, such as patient records or sensor data, to increase
accuracy or enable detection of other pathologies. Moreover,
we evaluate our prototype by training classifiers that are based
on different image recognition approaches. It is important to
point out that these classifiers can also process other input
like sensor data. We also test the generated classifiers with
different data and thereby evaluate the different approaches
for feasibility of colonic polyp recognition and localisation.
The initial results from our experimental evaluation show
that, (i) the detection and localisation accuracy can reach the
same performance or outperform other current state-of-the-art
methods and (ii) the system performance can reach real-time
in terms of video processing up to high definition resolutions.
Additionally, it is extensible with more data and diseases
thorough parallel detection at run time. The rest of the paper is
organized as follows: Firstly, in section II, we briefly introduce
our medical case study. Next, we present related work in the
field and compare it to the presented system in section III. This
is followed by presenting the complete system in section IV.
After that we, present an evaluation of the system in section V,
and in section VI we discuss two cases where our system will
be used in two medical examinations by our collaborators.
Finally, we conclude with section VII.

II. GASTROINTESTINAL ENDOSCOPY

Fig. 2. Colorectal cancer
that can be found using
colonoscopy.

The GI tract illustrated in figure 1
can potentially be affected by vari-
ous abnormalities and diseases, e.g.,
CRC, a major health issue world
wide. Early detection of CRC or
polyps as predecessors of CRC is
crucial for survival, and several stud-
ies demonstrate that a population-
wide screening program improves
the prognosis and can even reduce
the incidences of CRC [3]. As a consequence, in current
European Union guidelines, screening for colorectal cancer is
recommended for the age group over 50 [4]. Colonoscopy,
a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon,
may be used either as a primary screening tool or in a second
step after positive screening tests [5]. However, endoscopies
are invasive procedures and may lead to great discomfort
for patients. Extensive training of physicians or nurses is
required to perform the examination. They are performed in
real-time and therefore challenging to scale to a large popula-
tion. Additionally, the procedure is expensive. In the US, for
example, colonoscopy is the most expensive cancer screening
process, with annual costs of 10 billion dollars (1, 100$-
6, 000$/person) [6], and with a time consumption of about one
medical-doctor-hour and two nurse-hours per examination. As
a first step, we target the detection of colorectal polyps, which
are known precursors of CRC (see for example figure 2).

The reason for starting with this scenario is that most colon
cancers arise from benign, adenomatous polyps (around 20%)
containing dysplastic cells, which may progress to cancer.
Detection and removal of polyps prevents the development of
cancer and the risk of getting CRC in the following 60 months
after a colonoscopy depend largely on the endoscopist’s ability
to detect polyps [7]. Nevertheless, our system will be extended
to support detection of multiple abnormalities and diseases of
the GI tract by training the classifiers using different datasets.

III. RELATED WORK

Detection of diseases in the GI tract has mostly focused on
polyps. This is most probably due to the lack of data in the
medical field and polyps being a condition with at least some
data available. However, none of the related work is able to
do real-time detection or support doctors by computer-aided
diagnosis during colonoscopies in real-time. Furthermore, all
of them are limited to a very specific use case, which in the
most cases is polyp detection for a specific type of camera.
Table I gives an overview of the best working methods.

As one can see in Table I, several algorithms, methods
and partial systems have been proposed and have, at first
glance, achieved promising results in their respective testing
environment. However, in some cases, it is unclear how well
the approach would perform as a real system used in hospitals.
Most of the research conducted in this field uses rather small
amounts of training and testing data, making it difficult to
generalize the methods beyond the specific dataset and test
scenarios. Therefore, overfitting for the specific datasets can
be a problem and can lead to unreliable results.

The first approach from Wang et al. [2] is the most recent
and best-working one in the field of polyp detection. A list of
more related work can be found in their paper. Polyp-Alert [2]
is able to give near real-time feedback during colonoscopies.
The system can process 10 frames per second and uses
visual features and a rule-based classifier to detect the edges
of polyps. Further, Polyp-Alert distinguishes between clear
frames and polyp frames in its detection. The researchers
report a performance of 97.7% correctly detected polyps,
based on their dataset, which consists of 52 videos taken
from different colonoscopes. Unfortunately, the dataset is not
publicly available, and therefore, a detection performance
comparison is not possible. Since neural networks (NN) are
commonly used nowadays, they are also discussed in relation
to the GI tract analysis. We identified two main points that
make NNs less useful for our use case [17]. Firstly, (i) their
training requires a lot of good training data, which is a big a
problem in the medical field [18], and (ii) NNs are not easy to
design for probabilistic results, which is important to support
medical doctors during decision making [19].

In summary, a lot of good related work with interesting
approaches for polyp detection exists. However, existing sys-
tems are either (i) too narrow for a flexible, multi-disease
detection system; (ii) have been tested on limited datasets
too small to show whether the method would work in a real



TABLE I
A PERFORMANCE COMPARISON OF POLYP DETECTION APPROACHES. NOT ALL PERFORMANCE MEASUREMENTS ARE AVAILABLE FOR

ALL METHODS, BUT INCLUDING ALL AVAILABLE INFORMATION GIVES AN IDEA ABOUT EACH METHOD’S PERFORMANCE.

Publ./System Detection Type Recall / Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [2] polyp / edge, texture 97.70% – – 95.70% 10 1.8m frames
Wang et al. [8] polyp / shape, color, texture 81.4% – – – 0.14 1, 513 images
Mamonov et al. [9] polyp / shape 47% – 90% – – 18, 738 frames
Hwang et al. [10] polyp / shape 96% 83% – – 15 8, 621 frames
Li and Meng [11] tumor / textural pattern 88.6% – 96.2% 92.4% – –
Zhou et al. [12] polyp / intensity 75% – 95.92% 90.77% – –
Alexandre et al. [13] polyp / color pattern 93.69% – 76.89% – – 35 images
Kang et al. [14] polyp / shape, color – – – – 1 –
Cheng et al. [15] polyp / texture, color 86.2% – – – 0.076 74 images
Ameling et al. [16] polyp / texture AUC=95% – – – – 1, 736 images

EIR-system abnormalities/30 features 98.50% 93.88% 72.49% 87.70% 30-65 18, 781 frames

scenario and; (iii) provide a performance too low for a real-
time system or ignore the system performance entirely. Last,
but not least, we are targeting a holistic end-to-end system
where a VCE that traverses the entire tract with its video
signals is algorithmically analyzed.

IV. EIR BASIC IDEA

Our objective is to develop a system that supports doctors
in disease detection in the GI tract. The system must (i) be
easy to use and less invasive for the patient that existing
methods, (ii) be easy to extend to different diseases, (iii) handle
of multimedia content in real time, (iv) be usable for real-
time computer-aided diagnosis, (v) achieve high classification
performance with minimal false-negative classification results
and (vi) have a low resource consumption. These properties
potentially provide a scalable system with regard to cost, med-
ical specialists required for a larger population, and number
of users potentially willing to be screened. Therefore, EIR
consists of three parts: The annotation subsystem, the detection
and automatic analysis subsystem and the visualization and
computer-aided diagnosis subsystem.

A. Annotation Subsystem

The purpose of the annotation subsystem is the efficient
collection of training data for the detection and automatic
analysis subsystem. It is well known that training data is very
important for a good classification system. Nevertheless, in the
medical field, the time of the experts and access to multimedia
data are two resources that are quite limited. This is primarily
because of high everyday workload for physicians, but also due
to legal issues. For each image or video, patient consent has
to be collected before research can be done, making it a very
cumbersome task. Moreover, the annotation of videos itself is
very time-consuming, and the quality of annotations depends
on the experience and concentration of the physicians [20].
For example, in a VCE procedure, there are about 216, 000
images per examination, and a very experienced endoscopist
needs at least 60 minutes to view and analyse all the video
data [21]. Due to this limitation, it is important to develop
automatic methods that can reduce the burden on physicians
and speed up the screening process. We therefore developed
an efficient semi-automatic annotation subsystem [22]. This
annotation system is the entry point into our whole system.

Since the medical doctor is usually located in a hospital with
restrictions to data security, the implementation of the software
is done with standard web technologies, which do not require
any installation on the hospital’s systems. This includes the
storing of all information on the system-side and moves the
responsibility of maintaining the system and the data integrity
from the user to the system. Besides getting data for the
EIR system to enable automatic screening, the annotation
subsystem makes it possible to use the annotated videos in a
medical video archive for documentation or teaching purposes.

B. Detection and Automatic Analysis Subsystem

These subsystems for algorithmic analysis are designed in a
modular way, so that they can be extended to different diseases
or subcategories of disease, as well as other tasks like size
determination, etc. At the moment, this subsystem consists of
two parts, the detection subsystem that detects irregularities
in video frames and images and the localisation subsystem
that localizes the exact position of the disease. The detection
can not determine the location of the found irregularity. The
location determination is done by the localisation subsystem.
The localisation subsystem uses the output of the detection
system as input.

1) Detection Subsystem: This part of the system is not
designed to detect the precise position of an abnormality like
a polyp or bleeding, but rather to detect whether there is
something in the current frame of the video or not. All the
frames that we process can be separated into two disjoint
sets which can also be seen as the model for the detector.
These two sets contain example images for abnormalities and
images without any abnormality. Each of these sets can be
seen as the model for a specific disease. The detection system
is built in a modular way and can easily be extended with new
models. This would for example allow to first detect a polyp
and then to distinguish between a polyp with low or high risk
to developing into CRC by using the NICE classification2.
To compare and determine the abnormalities in a given video
frame, we use global image features, i.e., because they are easy
and fast to calculate, and because the exact position is at this
point of the system not needed. In previous work, we showed
that global features can indeed outperform or at least reach
the same results as local features [23]. The basic idea is based

2http://www.wipo.int/classifications/nice/en/



on an improved version of a search based method for image
classification presented in [23]. We create the indexes from
visual features extracted from video frames or images. How-
ever, the number of needed examples is rather low compared
to other methods. The index also contains information about
the presence and type of any disease in the frame or image.
A classifier can then search the index for the frames that are
most similar to a given input frame. Based on the classification
of the results, the detection subsystem then decides which
abnormality the input frame belongs to. The whole detector is
realised with two separate tools, an indexer and a classifier. We
have released the indexer and the classifier as a separate project
called OpenSea3. The computational nature of the indexing
part is similar to what we know as batch processing. Therefore,
creating the models for the classifier could be done off-line,
and it is not influencing the real-time capability of the system,
because it is only done once at the very first time when the
training data is inserted into the system. Visual features to
calculate and store in the indexes can be chosen based on the
abnormality because, for different types of disease different set
of features or combinations are better. For example, bleeding
is easier to detect using color features, whereas polyps require
shape and texture information.

The classifier can be used to classify video frames from an
input video into as many classes as the detection subsystems
model consists of. The classifier uses indexes generated by the
indexer described before. In contrast to other classifiers that
are commonly used, this classifier is not trained in a separate
learning step. Instead, the classifier searches previously gen-
erated indexes, which can be seen as the model, for similar
visual features. The output is weighted based on the ranked
list of the search results. Based on this, a decision is made.
The classifier is parallelized and allows to choose how many
CPU cores are used. Ongoing work includes to port parts of
the system to GPUs to further increase the performance.

2) Localisation Subsystem: The localisation subsystem is
intended for exact positioning of a lesion, which is used to
show markers on the frame or image containing the disease.
This information is then used in the visualization subsystem.
All images that we process during the localisation step come
from the positive frames list generated by the detection subsys-
tem. Processing of the images is implemented as a sequence
of intraframe pre- and main-filters. Pre-filtering is needed
because we use local image features to find the exact position
of objects in the frames. Lesion objects or areas itself can
have different shapes, textures, colors and orientations. They
can be located anywhere in the frame and also partially be
hidden and covered by biological substances, like seeds or
stool, and lighted by direct and ambient light. Moreover, the
image itself can be interleaved, noisy, blurry and over or under
exposed, and it can contain borders and subimages. Apart from
that, it can have various resolutions depending on the type of
endoscopy equipment used. Endoscopic images usually have
a lot of flares and flashes caused by high power light source

3https://bitbucket.org/mpg_projects/opensea

located close to the camera. All these nuances affect the local
features detection methods negatively and have to be specially
treated to reduce localisation precision impact. In our case,
several, sequentially applied filters are used to prepare raw
input images for the following analysis. These analyses are
RGB to YCbCr color space conversion, borders and subimages
removing, flares masking and low-pass filtering. After the pre-
filtering, the images are used for further analysis.

At the moment, we have implemented the detection of colon
polyps using our local features approach. The main idea of this
localisation algorithm is to use the polyps’ physical shape to
find the exact position in the frame. In most cases, the polyps
have the shape of a hill located on relatively flat underlying
surface or the shape of a more or less round rock connected to
an underlying surface with stalks of varying thickness. These
polyps can be approximated with an elliptically shaped region
consisting of local features that differ from the surrounding
tissue with high probability. To detect those types of objects,
we use the following sequence of filters: binary noise reduction
filter, 2D-gradient filter, threshold borders detection filter and
binary noise removing filter. The next step creates a filtered
binary image approximated by a set of ellipses from which we
build energy maps based on the ellipse’s size and border points
precision approximation and matching. The final coordinates
of one or more polyps in the frame are chosen by looking for
the maximum in the energy map.

C. Visualization and Computer Aided Diagnosis Subsystem

This subsystem has two main purposes. First, it should help
in evaluating the performance of the system and get insights
into why things work well or not. Second, it can be used
as a computer-aided diagnostic system for medical experts.
Therefore, we have the TagAndTrack subsystem [22] that can
be used for visualization and computer-aided diagnosis. We
developed a web technology-based visualization that can be
used to support medical experts while being very easy to
use and distribute. This tool simply takes the output of the
systems detection and localisation part and creates a web-
based visualization, which can then be combined with a video
sharing platform where doctors are able to watch, archive,
annotate and share information.

V. EVALUATION

For all of the subsequent measurements, we used the same
computer (32 AMD CPU cores Linux server, 128GB ram). It
is important to point out that the used hardware is quite old
(ca. 4 years). Newer hardware would most probably lead to
better performance for all the tests, but the evaluation shows
that even on old hardware the system performs as intended.
For all experiments, we used the ASU-Mayo Clinic polyp
database4. This is currently the biggest publicly available
dataset consisting of 20 videos from standard colonoscopies
(converted from WMV to MPEG-4 for the experiments) with
a total of 18, 781 frames and different resolution up to full

4http://polyp.grand-challenge.org/



HD [24]. For the detection and localisation accuracy, we used
the common standard metrics precision, recall/sensitivity and
F1 score. We conducted a leave-one-out cross-validation to
evaluate this part of the system, which is a method that
assesses the generalization of a predictive model. In our case,
it describes the process where the training and testing datasets
are rotated, leaving out a single different non-overlapping
item or portion for testing, and using the remaining items for
training. This process is repeated until every item or portion
has been used for testing exactly once [25].

EIR allows us to use several different global image features
for the classification. The more image features we use, the
more computationally expensive the classification becomes.
Further, not all image features are equally important or provide
equally good results for our purpose. As a first step, we
therefore need to find out which image features we want to use
for classification. In order to understand which image features
provide the best results, we generated indexes containing all
possible image features for all frames of all video sequences
from the ASU-Mayo Clinic database. These indexes can be
used for several different measurements and also for leave-one-
out cross-validation. Using our detection system, the built-in
metrics functionality can provide information on the perfor-
mance of different image features for benchmarking. Further,
it provides us with separate information for every single image
feature, as well as the late fusion of all the selected image
features. All used features are described in detail in [26].

Accuracy. Based on the evaluation of different combi-
nations of image features using 30 different features and
information gain analysis, the image features JCD and Tamura
were identified to be the best ones for polyp detection. The
last row of table I shows our approaches’ performance to give
a comparison. We achieve an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. In other words, the results mean that we can detect
polyps with a precision of almost 94%, and we detect almost
99% of all polyp containing frames. If we compare this to the
best performing system in table I, it seems that Polyp-Alert
reaches slightly higher detection accuracy. But, our system is
faster and can detect polyps in real-time. Furthermore, our
system is not designed and restricted to detect only polyps,
and can be expanded to any possible disease if we have
the correct training data.To evaluate the performance of the
localisation subsystem we used the exact positions of the
polyps as provided in the ASU-Mayo clinic polyp database
as ground truth. Overall, we reached for the localisation an
average precision of 0.3207, a recall of 0.3183 and a F1 score
of 0.3195.

Speed. We also performed some initial system performance
tests. For all these tests, we used 3 videos from 3 different
endoscopic devices and different resolutions. The three videos
have the resolutions 1, 920x1, 080, 856x480 and 712x480. We
chose these videos to show the performance under different
requirements that the system will have to face when it is used.
As figure 3 shows, EIR reaches the required 30 frames per
second with 16-26 CPUs. This is true for all three videos that

Fig. 3. Processing performance in frames per second.

we used. For the future an implementation using GPUs will
be important to cope with the high number of needed cores.

VI. REAL WORLD USE CASES

In this section, we will describe two real world use cases
where the presented system can be used. The first one is a live
system that will support medical doctors during endoscopies.
Currently, we are working on setting it up in one of our partner
hospitals. The second one is a system that will automatically
analyse videos captured by VCEs. Several hospitals all over
Europe and US are involved in this part, and currently, we are
collecting data. The first use case requires fast and reliable
processing, and the second requires a system that is able to
process a large amount of data in a reliable and scalable way.

Live System. Endoscopy is a common gastrointestinal
examination and is essential for the diagnosis of most mucosal
diseases in the gastrointestinal tract, particularly diagnosis of
CRC and its precursors. Previous studies have demonstrated
that a major challenge is the detection rate of lesions [27].
The aim of the live system is to provide live feedback to the
doctors, i.e., a computer aided diagnosis in real-time. While
the endoscopist performs the colonoscopy, the system analyses
the video frames that are recorded by the colonoscope. At
the beginning, we plan to optically show the physician (for
example with a red or green frame around the video) when
the system detects something abnormal in the actual frame or
not. This can also be extended to the determination of what
disease the system most probably detected and provide this
information to the doctor. Apart from supporting the medical
expert during the colonoscopy, the system can also be used to
document the procedure. After the colonoscopy, an overview
can be given to the doctors where they can make changes or
corrections, and add additional information. This can then be
stored for later purposes or used as a written endoscopy report.
A demo of the live system is presented and described in [28]

Wireless Video Capsule Endoscope. The present VCEs
have a resolution of around 256x256 with 3-35 frames per
second (adaptive frame rate with a feedback loop from the re-
ceiver to the transmitter). They do not have optimum lighting,
making it difficult use the images. Nevertheless ongoing work
tries to improve the state-of-the-art technology which will
make it possible to use the methods and algorithms developed
for colonoscopies also for VCEs [29]. The multi-sensor VCE



is swallowed in order to visualize the GI tract for subsequent
diagnosis and detection of GI diseases. Thus, people may be
able to buy VCEs at the pharmacy, and connect and deliver the
video stream from the GI tract to the phone over a wireless
network. The video footage can be processed in the phone
or delivered to our system, which finally analyses the video
automatically. In the best case, the first screening results are
available within eight hours after swallowing the VCE, which
is the time the camera typically spends traversing the GI tract.

VII. CONCLUSION

In this paper, a multimedia system for disease detection and
classification in the GI tract has been presented. We briefly
described the whole pipeline of the system from annotation
(data collection for system learning) to visualization (doctor
feedback). A detailed evaluation in terms of detection and
localisation accuracy and system performance has been per-
formed. These experiments showed that the proposed system
can achieve equal results to state-of-the-art methods in terms
of detection accuracy for state-of-the-art endoscopic data.
Further, we showed that the system outperforms state-of-the-
art systems in terms of system performance, that it scales in
terms of data throughput and that it can be used in a real-time
scenario. We also presented automatic analysis of VCE videos
and live support of colonoscopies as two real-world use cases
that will benefit from the proposed system and will actually
be tested and used in our partner hospitals. For future work,
we plan to improve the detection and localisation accuracy of
the system and include more different abnormalities to detect.
Presently, we are working with medical experts to collect
more training data. Additionally, we currently work on the
set-up of the real-world use cases in the hospitals. Finally, to
further improve the performance of the system, we work on
an extension that allows the system to use GPUs to further
utilize the parallelization potential of the workload [30].
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In many hospitals, the potential value of multimedia data collected through routine examinations is not recognized. Also,
the availability of the data is limited, as the health care personnel have no direct access to the databases where data is
stored. However, medical specialists interact with the multimedia content daily through their everyday work and have an
increasing interest in finding ways to use it to facilitate their work-processes. In this paper, we present a multimedia system
aiming to tackle automatic analysis of video from gastrointestinal (GI) endoscopy. The proposed system includes the whole
pipeline from data collection, processing and analysis, to visualization, and it combines filters using machine learning,
image recognition and extraction of global and local image features. We built it in a modular way so we can easily extend it
to analyze various abnormalities. We also developed it to be efficient enough to run in real-time. The conducted experimental
evaluation proves that the detection and localization accuracy reaches at least as good as existing systems’ performance, but
it is leading in terms of real-time performance and efficient resource consumption.
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1. INTRODUCTION
The gap between human users and computer devices such as sensors or cameras has become smaller
in the last years. Literally, some of the devices, like cameras, have been moved inside the human
body. Thus, there has for some time been a move towards an interdisciplinary research area that
combines the medical and multimedia research fields. In particular, for reasons like disease severity,
cost, personnel time-consumption and examination scalability, there is a need to develop a real-
time and scalable abnormality detection system for videos from gastrointestinal (GI) endoscopy
examinations. In this respect, one must target an analysis system for endoscopies that can be used
both as a live computer aided diagnostic system and as a scalable detection system for a novel in
line screening system using wireless video capsule endoscopes (WVCs).
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Fig. 1. The GI tract (Image:
Kaulitzki/shutterstock.com).

The GI tract (shown in figure 1) can potentially be affected by a
wide range of diseases. For example, 3 of the 6 most common cancer
types are located in the GI tract, with about 2.8 million new lumi-
nal GI cancers (esophagus, stomach, colorectal) yearly and a mortal-
ity of about 65% [World Health Organization - International Agency
for Research on Cancer 2012]. These diseases, as well as findings as-
sociated with normal (benign) or man-made (iatrogenic) lesions are
frequently visualized with endoscopes. The most common dangerous
(malignant) lesions are gastric- and colorectal cancer, which are lethal
diseases when detected in late stages. Consequently, early detection is
crucial. There are several ways of detecting pathology in the GI tract,
and regular systematic screening of the recommend population cohort
(everyone above 50 years) is the most important tool for early detec-
tion. However, current methods have limitations regarding sensitivity,
specificity, access to qualified medical staff and overall cost.

To aid and scale endoscopic examinations, we have developed EIR,
named after a Goddess with medical skill in Scandinavian mythology. Eir is an efficient and scal-
able information retrieval system for medical data like videos and images. The system supports
endoscopists in the detection and interpretation of diseases in the GI tract. The main objective is
to automatically detect abnormalities in the whole GI tract. Therefore, the aim is to develop both
(i) a live-system assisting the visual detection of for example polyps during colonoscopies and (ii)
a future fully automated first line screening for GI diseases using WVCs. Both aims pose strict
requirements for the accuracy of the detection in order to avoid false negative findings (missing a
disease) as well as low resource consumption. The live assisted system also introduces a real-time
processing requirement. This paper is an extended version of the paper [Riegler et al. 2016] submit-
ted to the IEEE CBMS conference where we gave a first overview of the system. We extended the
paper with a more detailed description of the annotation and visualization subsystem, evaluation and
a performance comparison with other system at a grand challenge for endoscopic video analysis.

Although our system is not limited to one single disease, detecting abnormalities and diseases
in the GI tract is very different from detecting objects like for example cars, people or buildings,
which have been focus for most existing research. Our experiments are therefore limited to one
limited scenario. We chose colorectal polyps, a potential precursor for colorectal cancer (CRC),
because as statistics show, the life time risk of getting CRC, the second most common cancer for
both genders, is 6% [Ferlay et al. 2013]. Obviously, both high precision and recall are of crucial
importance, but so is the often ignored system performance in order to provide live feedback. The
most recent and most complete related work is the polyp detection system Polyp-Alert [Wang et al.
2015] which can provide near real-time feedback during colonoscopies. However, it is limited to
polyp detection, and it is not fast enough in the case of live examinations. To detect mucosal lesions
in the colon, we built a system combining filters using machine learning, image recognition and
extraction and comparison of global and local image features. Furthermore, it is easy to add new
filters or other types of data, like for example patient records or sensor data, to increase accuracy or
enable detection of other pathologies. Moreover, we evaluate our prototype by training classifiers
that are based on the different image recognition approaches. It is important to point out that these
classifiers can also process other input like for example sensor data. We also test the generated
classifiers with different data and thereby evaluate the different approaches for feasibility of colonic
polyp recognition and localization. The initial results from our experimental evaluation show, that (i)
the detection and localization accuracy can reach the same performance or outperform other current
state of the art methods, (ii) the system performance reaches real-time in terms of video processing
up to high definition resolutions and finally, (iii) that our system is using decent amount of resources
regarding memory consumption and CPU usage which makes it perfectly scalable with more data
and different disease to detect in parallel at run time.
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(a) Colon Polyp (b) Colorectal Cancer (c) Ulcerative Colitis (d) Crohn’s Disease (e) Diverticulosis

Fig. 2. An inconclusive list of abnormalities that can be found using colonoscopy (images from Wikimedia Commons).

The rest of the paper is organized as follows: In section 2, we briefly introduce our medical case
study. This is followed by a presentation of the complete system in section 3. Subsequently, we
present a detailed evaluation of the whole system in section 4, and in section 5, we discuss two
cases where our system will be used in two medical examinations. We present related work in the
field and compare it to the presented system in section 6. Finally, we draw conclusions in section 7.

2. GASTROINTESTINAL ENDOSCOPY
Figure 1 gives an overview of the complete GI tract. This complex system can be affected by various
diseases where CRC is one of the most important and a major health issues world wide. Some
examples of these diseases and their complexity can be seen in figure 2. If CRC is detected at
an early stage, the prognosis is substantial improved, from a 90 percent survival probability for
the next 5 years in the early stage 1 to only 5-10 percent 5 year survival probability in the latest
stage 4 [Brenner et al. 2016]. Several studies have shown that large population-based screening
improves the prognosis and even reduce incidences of CRC [Holme et al. 2013]. Therefore, the
current European Union guidelines recommend screening for CRC for all persons older than 50
years [von Karsa et al. 2012].

GI endoscopies are common medical examinations where the lumen and the mucosa of the en-
tire GI tract are visualized to diagnose diseases [Mallery and Dam 2000]. The endoscopic system
is made of an endoscope, a flexible tube with a Charge Couple Device (CCD) chip and two bun-
dles of optical fibers at the tip. The endoscope is connected to a video processor and a light source
with a 300 W Xenon light bulb. The video signals are transferred to a High Definition LCD screen.
The most common, gold standard GI endoscopic examinations are gastroscopy and colonoscopy.
However, such endoscopies are demanding invasive procedures, and can be of great discomfort for
patients. They are performed by medical experts (endoscopists), have to be performed in real-time
and do not scale well to a larger population. Additionally, the procedure is expensive. In the US,
for example, the colonoscopy is the most expensive cancer screening process with annual costs
of 10 billion US dollars (USD1, 100/person) [The New York Times 2013], and with a time con-
sumption of about one medical-doctor-hour and two nurse-hours, per examination. Furthermore,
colonoscopy is not the ideal screening test, and in average, 20% of polyps are missed or incom-
pletely removed meaning that the risk of getting CRC largely depend on the endoscopists ability to
detect polyps [Kaminski et al. 2010]. We therefore aim for a system that detects mucosal pathologies
in videos of the GI tract where the idea is to assist endoscopists during live examinations.

Moreover, alternatives to traditional endoscopic examinations have recently emerged with the
development of non-invasive endoscopy capsules (WVCs). The idea is a pill-sized camera (available
from vendors such as Given and Olympus), that is swallowed and then records a video of the entire
GI tract. The challenge in this context, at least if the examinations should be scaled to everyone
above 50, is that endoscopists still need to view the video in a non-scalable way. Our system should
provide a scalable system that can be used as a first-order population screening system where the
WVC-recorded video is used to determine whether a traditional endoscopic examination is needed
or not, i.e., enabling larger-scale screenings, and limiting and reducing the traditional endoscopy
examinations to patients with positive findings from the WVC examination.

Thus, with EIR, we research and develop a video analysis system that can be used both as a live
computer aided diagnostic system and as an automatic detection system for screening systems using
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WVCs. As a first step, we target detection of colorectal polyps (see for example figure 2(a)). The
reason for starting with this scenario is that most CRCs arise from benign, adenomatous polyps
containing dysplastic cells, and detection and removal of such polyps prevent the development of
cancer. Nevertheless, our system will be extended to support detection of multiple abnormalities
and diseases of the GI tract by training the classifiers using different datasets.

3. EIR SYSTEM BASIC IDEA
Based on the two target use cases, the main objectives of the EIR system are (i) easy to use, (ii)
easy to extend to different diseases, (iii) real time handling of multimedia content, (iv) being able to
be used as a live system and (v) high classification performance with minimal false negative clas-
sification results. Figure 3 gives an overview of the whole system. It can be split into three main
parts: the annotation subsystem, the detection and automatic analysis subsystem and the visualiza-
tion and computer aided diagnosis subsystem. All three parts are important to achieve a system that
can support doctors in disease detection and diagnosis in the GI tract.

Fig. 3. This is an overview of the whole system. It shows the three main subsystems, namely annotation, detection and
automatic analysis and visualization and how they work together. The annotation subsystem extracts and provides the medical
knowledge for the detection and analysis subsystem which provides the output to the visualization subsystem.

3.1. Annotation Subsystem
The annotation subsystem is used to collect training data for the detection and automatic analysis
subsystem. The collection is done with the help of medical experts. It is well known that training
data are very important parts of a good classification system. Nevertheless, in the medical field, the
time of the experts and multimedia data are two resources that are quite limited. This is primarily
because of high every-day workload for physicians, but also due to legal issues. In many countries,
patient consent has to be collected before research can be done on each images or videos, making it
a very cumbersome task. Moreover, the annotation of videos itself is very time-consuming and the
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quality of annotations depends on the experience and concentration of the physicians [Giritharan
et al. 2008]. To aid the system learning process, our new annotation subsystem is an improved
version of our semi-automatic annotation tool [Albisser et al. 2015]. The annotation subsystem is
the entry point into our whole system, and without this part, the rest of the system is not efficient.
The annotation subsystem will makes it easy for doctors to annotate and provide data to the system.
The manual annotations are combined with automatic methods that create the final training data.

For example, in a WVC procedure, there are about 216, 000 images per examination, and an
endoscopist frequently needs 60 minutes and even up to two hours to view and analyze all the video
data [Li and Meng 2009]. Due to this limitation, it is important to develop automatic methods able
to reduce the burden on physicians’ and speed up the screening process.

To reduce the amount of time physicians need to spend in the whole process they only have to
provide annotations in a single frame of the video or image series. The specialist’s knowledge is
only required for the first very basic identification of abnormalities and to tag them accordingly.
This manual step is done by selecting any regions of interest in a video or image sequence. The
automatic step uses this information to track the regions of interest on previous and subsequent
frames automatically. Because the medical doctor is usually located in a hospital with internal sys-
tem limitations in terms of what can be installed on the computers by whom and a general usage of
old hardware, the implementation of the software is done with standard web technologies which do
not require any installation at the hospitals systems.This also includes storage of all information on
the systems side and moving the responsibility of maintaining the system and data integrity from
the user to the system. Besides getting data for the EIR system to enable automatic screening, the
annotation subsystem also makes it possible to use the annotated videos in a medical video archive
for procedure documentation or teaching purposes.

The annotation subsystem is divided into manual annotation and object tracking. This is mainly
to reduce the time specialists spend on the process because they only have to provide annotations
in a single frame. We do require the specialist’s knowledge during the first step to do a very basic
identification of irregularities and to tag them accordingly. The manual annotation part is to precisely
select any regions of interest in a video sequence. The object tracking part is to track the regions
of interest on previous and subsequent frames, based on the previously manually created tags. This
step is more about tracking an object and adjusting the size and position of the tracked region than
about identifying or recognizing irregularities. A specialist’s knowledge is therefore not required
for the second step. Another reason to divide the process into these two steps is the technologies
available for implementing the required software. A specialist is usually located in a hospital with
access restrictions due to sensitive patient information. As mentioned before deployment of software
is usually difficult in such environments. Nevertheless, internet access and a browser are usually
available. This makes standard web technologies a convenient way of circumventing deployment
related issues for the manual annotation software. It also implies storing all information on the
server side and moves the responsibility of maintaining the system and data integrity from the user
to the server administrator.

The manual annotation is the first step in the data gathering process. In this step, a specialist uses
rubber band selection (marks a bounded area) to create a coarse selection of regions of interest and
annotates every selection with a name for classification. Every region needs to be marked once only.
To keep the specialist’s time spent on this task minimal, we do not require the region to be marked in
the very first video frame it appears. Information on first appearance and change of shape or position
within the picture will be added later using object tracking and manual correction. This approach
allows a rather rapid way of working for the specialists. They might even watch the video at a
higher playback speed and only stop or slow down the playback when necessary. The information
collected in this step includes the position and dimensions of irregularities in pixel coordinates, a
classification and a timestamp relative to the beginning of the video for each selected region. The
annotation component is implemented using JavaScript and HTML5 video, which is available in
most recent web browsers.
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The output from the manual annotation contains a single tag for every region of interest in the
video sequence or images. Using this information, we can now apply object tracking algorithms
and manual correction to generate a complete data set. Most of the work in this step is done by the
software. The user just needs to step to the previously marked irregularities and playback the video
from that point for the software to track the marked region on subsequent frames. Depending on
the quality of the video and the speed of camera movement, user intervention is needed to assure a
high quality of tracking. The video must also be rewinded to track the region towards the beginning
of the video, as the irregularity most likely has not been marked on the very first frame where it
appears. There is of course still a fair amount of manual work involved in this task. However, using
a suitable tracking algorithm substantially reduce the time needed to create a complete dataset.
Moreover, specialist skills are usually no longer required here as the whole task is simply about
tracking regions and adjusting rectangular dimensions rather than actually detecting or recognizing
irregularities. The output generated in this step is a list of frames for a certain disease including
rectangles for every previously marked region within the frame. Every rectangle in such a list is
described by the index of the video frame it belongs to, its position in pixel coordinates and its
dimensions. The annotated frames are pooled together as positive and negative samples, which can
be used directly in the detection and automatic analysis subsystem.

3.2. Detection and Automatic Analysis Subsystem
Detection Subsystem. The detection subsystem analyzes videos and images to see if there is any-
thing abnormal to be found in the colon. All the frames that we process in this subsystem can be
separated into two disjoint sets which can also be seen as the model for the detector. These two sets
contain example images for abnormalities and images without any abnormality. Each of these sets
can be seen as the model for a specific disease. The detection system is built in a modular way and
can easily be extended with new models or submodels. To compare and determine the abnormalities
in a given video frame (or image), we use global image features, because they are easy and fast
to calculate, and because we are not interested in the exact position at this point of the system. In
previous work, we showed that global features indeed can outperform or at least reach the same
results as local features [Riegler et al. 2014].

The whole system is built using the Lire [Lux 2013] open source library for content-based image
retrieval, written in Java. This library provides a comprehensive set of already implemented and
tested algorithms to extract different types of global image features. This allows us to experiment
with a whole set of global image features for detecting or clustering video frames from colonoscopy
or WVC videos. Lire uses Lucene1 indices for storing and searching image feature data [Foundation
2013]. Lucene indices are structured in documents, fields and terms. An index contains a sequence
of documents, where a document is a sequence of fields, a field is a sequence of terms and a term is
a string [Foundation 2013].

The basic idea of our detection subsystem is based on an improved version of a search based
method for image classification presented in [Riegler et al. 2014]. We create the indexes of as many
example frames as we can get but, it is important to point out, as the experiments showed, that the
detection indeed needs good training data. However, the number of needed examples is rather low
compared to other methods like for example deep learning. The index also contains information
about the presence and type of any disease in the frame or image. A classifier can then search
the index for the frames that are most similar to a given input frame. Based on the classification
of the results, the detection subsystem then decides which abnormality the input frame belongs
to. The whole detector is realized with two separate tools, an indexer and a classifier. We have
released the indexer and the classifier as a separate project called OpenSea2, under the terms of the
GPL version 33.

1https://lucene.apache.org/
2https://bitbucket.org/mpg_projects/opensea
3http://www.gnu.org/licenses/gpl-3.0.en.html
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The purpose of the global image feature indexer is to extract visual features from input videos or
images and store these in the index. These indices are then used as input data for the search based
classifier. The indexer is created as a separate tool and in a way that it is easy to distribute over
different nodes via for example Apache Storm. The computational nature of the indexing part is
similar to what we know as batch processing. Therefore, creating the models for the classifier could
be done off-line and it is not influencing the real-time capability of the system because it is only
done once at the very first time when the training data is inserted into the system. It creates indices
for all directories passed on from the system. The visual features to calculate and store in the indices
can be chosen based on the abnormality, because different types of disease require different set of
features or combinations. For example, bleeding is easier to detect using color features, whereas
polyps also require shape and texture information. The indexer processes all the frames in a given
directory. It stores the generated indexes in a subdirectory inside the indexed directory. If multiple
directories are passed for indexing, it creates a separate index for each directory.

The classifier can be used to classify video frames from an input video into as many classes as the
detection subsystems model consists of. In contrast to other classifiers that are commonly used, this
classifier is not trained in a separate learning step. Instead, the classifier searches previously gen-
erated indexes, which can be seen as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Based on this, a decision is made. We refer to these
previously generated indices, which are searched for similar image features, as classifier indices
or indices containing training data. The classifier expects at least one classifier index and an input
source. The input source can either be a video, an image or another previously generated index.
The classifier also includes an HTML page with a visual representation (see figure 4) of the results,
once the processing is finished and a benchmarking function that will output evaluation information
(bottom part of figure 5(a)). For the classifier to provide correct benchmarking data, the input data
indices must contain either negative or positive samples only, or must have the sample type encoded
in the file names of the indexed images. The classifier is parallelized, and one may choose how many
CPU cores to use to process the data. A GPU implementation is also currently being developed, and
initial experiments show that performance may be imporved further.

Fig. 4. Results output of the detection subsystem using the features JCD and Tamura. One can see that the detection system
could almost always find the polyp containing frames. The first image on the second row is an example for a false negative
result.

Localisation Subsystem. The detection subsystem cannot determine the location of the detected
irregularity. This is done with help of the localization subsystem where the output of the detection
system is used as input to determine the exact position of the disease or abnormality. At the moment,
it supports the localization of polyps, but it is built in a way that it can be extended to any other
automatic detectable disease in our system. The exact positions will be used for the live system,
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(a) Console output of the detection subsystem using the features JCD and Tamura.

(b) The final output of the localisation subsystem for polyps. The localiser can easily be
extended to localise different disease detect by the detection subsystem.

Fig. 5. System output for the detection and localisation subsystem after the analysis. It includes general results per frame
and all evaluation metrics that are provided by the system.

archiving, and size determination. The processing of the images is implemented as a sequence of
intra-frame pre- and main-filters, and can easily be extended to localize different diseases (see figure
5(b)) for a console output example). Pre-filtering is needed because we use local image features to
find the exact position of objects in the frames. Lesion objects or areas itself can have different
shapes, textures, colors and orientations. They can be located anywhere in the frame and can also be
partially hidden and covered by biological substances, like for example seeds or stool, and lighted by
direct or ambient light. Moreover, the image itself can be interleaved, noisy, blurry and over-/under-
exposed, and it can contain borders and sub-images. Additionally, it can have various resolutions
depending on the type of endoscopy equipment or WVC used. Endoscopic images usually have a
lot of flares and flashes caused by high power light source located close to the camera. All these
nuances negatively affect the local features detection methods and have to be treated specially to
reduce localization precision impact. In our case, we have used several sequentially applied filters
to prepare raw input images for the following analysis. These analyses are RGB to YCbCr color
space conversion, removal of borders and sub-images, flares masking and low-pass filtering. After
the pre-filtering, the images are used for the following local features analysis.

As described above, we have implemented the detection of colon polyps using our local features
approach. The main idea of this localization algorithm is to use the polyps physical shape to find the
exact position in the frame. In most cases, the polyps have the shape of a hill located on relatively
flat underlying surface or the shape of a more or less round rock connected to underlying surface
with legs varying in their thickness. These polyps can be approximated with an elliptical shape
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region that consists of local features that differ from the surrounding tissue with high probability.
To detect those types of objects, we use the following sequence of filters: binary noise reduction
filter, 2D-gradient filter, threshold borders detection filter and binary noise removing filter. The next
step creates filtered binary image approximated by a set of ellipses from which we build energy
maps based on the ellipsis size and border points precision approximation and matching. The final
coordinates of one or more polyps in the frame are chosen by looking for maximums in the energy
map. An example for the output is shown in figure 6.

Fig. 6. Output of the localisation subsystem marking the possible locations of polyps. The first 4 frames show an exact
match the last two show false positives.

3.3. Visualization and Computer Aided Diagnosis Subsystem
After the automatic detection and analysis of the content, the output has to be presented in a mean-
ingful way to the medical expert. The visualization has to be reliable, robust and easy to understand
also under stressful situations that can occur during a live examination. Furthermore, it has to sup-
port easy searches and browsing through a large amount of data. This is especially important for the
examinations via WVCs.

In general, this subsystem has two main purposes. First, it should help in evaluating the perfor-
mance of the system and get better insights into why things work well or not. Second, it can be used
as a computer aided diagnosis system for medical experts. In this context, we have the TagAndTrack
subsystem [Albisser et al. 2015] that can be used as a visualization and computer aided diagnos-
tic system. Furthermore, we developed a web technology-based visualization that is easy to use and
distribute, and can be used to support medical experts during endoscopies. This tool simply takes the
output of the systems detection and localization part and creates a web based visualization which is
then combined with a video sharing platform based on our finding in [Stensland et al. 2014], where
doctors are able to watch, archive, annotate and share information. The information collected can
later also be used for reinforcement learning for the detection and automatic analysis subsystem.

4. SYSTEM EVALUATION
We tested the whole system in terms of detection accuracy and system performance. We also partic-
ipated at a polyp detection challenge with our system. For any of the subsequent measurements, we
used the same computer which was an old 32 AMD CPU cores Linux server with 128GB ram. As
we will show in section 4.4.3, newer hardware leads to better performance, but the evaluation shows
that even with old hardware the system performs as intended. We used the ASU-Mayo Clinic polyp
database as training and test data4. This dataset is the biggest publicly available dataset consisting
of 20 videos, converted from WMV to MPEG-4 for the experiments, with a total number of 18, 781
frames with 1, 920 × 1, 080 pixels resolution [Tajbakhsh et al. 2015].

4http://www.polyp2015.com/wp/
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4.1. Detection Accuracy
For all detection and localization accuracy experiments, we used the common standard metrics
precision, recall and F1 score. Furthermore, we decided to use leave-one-out cross-validation to
evaluate this part of the system. Leave-one-out cross-validation is well suited to show generalization
potential and robustness of a predictive model. Therefore, training and testing datasets are rotated,
leaving out a single different non-overlapping video for testing, and using the remaining videos for
training the model [Efron and Tibshirani 1997].

The developed system allows us to use several different global image features for the classi-
fication. The more image features we use, the more computationally expensive the classification
becomes. Further, not all image features are equally important or provide equally good results for
our purpose. As a first step, we therefore need to find out which image features we want to use for
classification. In order to understand which image features provide the best results, we generated
indexes containing all possible image features for all frames of all video sequences from the ASU-
Mayo Clinic database. We can use these indexes for several different measurements and also for
leave-one-out cross-validation. Using our detection system, the built-in metrics functionality can
provide information on the performance of different image features for benchmarking. Further, it
provides us with separate information for every single image feature, as well as the late fusion of all
the selected image features. For our first test, we ran the detection with all possible image features
selected, leaving out one video at the time, repeating the procedure until each video had been left
out once. This is essentially the procedure for leave-one-out cross-validation. We then combined
the reported values for true-positives, true-negatives, false positives and false negatives for all the
runs, and calculated the metrics for the combined values. The results of this first test are presented
in table I. The single image feature that generally achieves the best score is CEDD [Lux 2013].
All features used here are described in detail in [Lux and Marques 2013]. Further, the image fea-
tures JCD, EdgeHistogram, Rotation Invariant Local Binary Patterns, Tamura and Joint Histogram
achieve promising results. The late fusion of all the image features even achieves slightly better
results. However, it is impractical to do a late fusion of all these image features as the calculation,
indexing and searching of all image features is computationally expensive. Therefore, we want to
find a small subset of two image features, which provides optimal results despite minimizing the
computational effort. Based on the evaluation of different combinations of image features as pre-
sented in table II, we have decided the image features JCD and Tamura seem to be the best ones for
our performance measurements because they have a good precision and recall but at the same time
the computation time is low.

To assess the actual performance of the classifier using these two image features, we conducted
a leave-one-out cross-validation with all available video sequences, and the results are presented in
table III. With these settings, we achieve an average precision of 0.889, an average recall of 0.964
and an average F1 score value of 0.916. The problem with this average calculation is that different
video sequences contribute values based on different numbers of video frames. If we weight the
values contributed by every single video sequence with the number of frames in the sequence, we
achieve an average precision of 0.9388, an average recall of 0.9850, and an average F1 score value
of 0.9613. In other words, the results show that it is possible to detect polyps with a precision of
almost 94% and we detect almost 99% of all polyp containing frames. average weighted f-score
value of 0.929.

4.2. Localization Accuracy
For this experiment, we used the ground truth provided in the ASU-Mayo clinic polyp dataset. This
ground truth contains the exact positions of the polyps in the frame. Table IV present the perfor-
mance of the localization subsystem evaluation. The subsystem has a precision of 0.3207, a recall of
0.3183 and a F1 score of 0.3195. These results indicate that the localization part works as intended.
One problem we are currently working on is that the localization outputs four possible disease po-
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Table I. Leave-one-out cross-evaluation combined for all supported features.

True True False False F1

Feature Positive Negative Positive Negative Precision Recall score

JointHistogram 3,369 13,826 1,085 511 0.7563 0.8682 0.8084

JpegCoefficientHistogram 3,224 13,772 1,139 656 0.7389 0.8309 0.7822

Tamura 3,392 13,861 1,050 488 0.7636 0.8742 0.8151

FuzzyOpponentHistogram 3,341 13,552 1,359 539 0.7108 0.8610 0.7787

SimpleColorHistogram 2,736 13,563 1,348 1,144 0.6699 0.7051 0.6870

JCD 3,556 13,777 1,134 324 0.7582 0.9164 0.8298

FuzzyColorHistogram 2,708 13,243 1,668 1,172 0.6188 0.6979 0.6560

RotationInvariantLlBP 3,479 13,829 1,082 401 0.7627 0.8966 0.8243

FCTH 2,846 13,671 1,240 1,034 0.6965 0.7335 0.7145

LocalBinaryPatternsAndOpponent 2,412 13,349 1,562 1,468 0.6069 0.6216 0.6142

PHOG 2,879 13,806 1,105 1,001 0.7226 0.7420 0.7321

RankAndOpponent 2,527 13,553 1,358 1,353 0.6504 0.6512 0.6508

ColorLayout 2,702 14,018 893 1,178 0.7515 0.6963 0.7229

CEDD 3,705 13796 1,115 175 0.7686 0.9548 0.8517

Gabor 1,849 10,643 4,268 2,031 0.3022 0.4765 0.3699

OpponentHistogram 2,246 14,157 754 1,634 0.7486 0.5788 0.6529

EdgeHistogram 3,548 13,737 1,174 332 0.7513 0.9144 0.8249

ScalableColor 3,231 13,684 1,227 649 0.7247 0.8327 0.7750

Late Fusion 3,710 13,894 1,017 170 0.7848 0.9561 0.8620

Table II. Top 20 results of feature combinations. Each combination contains 2 image
features for the video wp_61, sorted by F1 score.

True True False False F1

Feature Positive Negative Positive Negative Precision Recall score

Rot.Inv.LBP & Tamura 162 22 153 0 0.5142 1 0.6792

PHOG & Tamura 161 23 152 1 0.5143 0.9938 0.6778

JpegCoeff.Hist. & Tamura 162 21 154 0 0.5126 1 0.6778

Gabor & Tamura 162 20 155 0 0.5110 1 0.6764

FuzzyColorHist. & Tamura 162 18 157 0 0.5078 1 0.6735

FuzzyOpp.Hist. & FuzzyColorHist. 160 17 158 2 0.5031 0.9876 0.6666

JCD & Opp.Hist. 135 67 108 27 0.5555 0.8333 0.6666

JointHist. & JpegCoeff.Hist. 162 12 163 0 0.4984 1 0.6652

ColorLayout & FuzzyColorHist. 162 11 164 0 0.4969 1 0.6639

FuzzyColorHist. & JointHist. 162 11 164 0 0.4969 1 0.6639

FuzzyOpp.Hist. & JointHist. 162 11 164 0 0.4969 1 0.6639

FuzzyOpp.Hist. & SimpleColorHist. 162 11 164 0 0.4969 1 0.6639

JointHist. & Rotat.Inv.LBP 162 11 164 0 0.4969 1 0.6639

JointHist. & SimpleColorHist. 162 11 164 0 0.4969 1 0.6639

FuzzyOpp.Hist. & Gabor 161 13 162 1 0.4984 0.9938 0.6639

JCD & JpegCoeff.Hist. 161 13 162 1 0.4984 0.9938 0.6639

CEDD & FuzzyColorHist. 159 17 158 3 0.5015 0.9814 0.6638

JpegCoeff.Hist. & Rot.Inv.LBP 152 31 144 10 0.5135 0.9382 0.6637

JCD & Tamura 162 10 165 0 0.4954 1 0.6625

CEDD & Tamura 162 10 165 0 0.4954 1 0.6625

sitions per frame. At least one of them points at the polyp in all cases, but for the evaluation all four
points where included in the calculations, which influences the performance metrics negatively.

4.3. MICCAI Challenge
To see how our method compares to other state of the art methods, we participated in the Endovis
Automatic Polyp Detection in Colonoscopy Grand Challenge 5 at the 2015 International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI). The challenge was

5http://polyp.grand-challenge.org/
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Table III. Performance evaluation by leave-one-out cross-validation for all
available videos, using JCD and Tamura features.

True True False False F1

Video Positive Negative Positive Negative Precision Recall score

np_5 1 680 0 0 1 1 1

np_6 1 836 0 0 1 1 1

np_7 1 767 0 0 1 1 1

np_8 1 710 0 0 1 1 1

np_9 1 1,841 0 0 1 1 1

np_10 1 1,923 0 0 1 1 1

np_11 1 1,548 0 0 1 1 1

np_12 1 1,738 0 0 1 1 1

np_13 1 1,800 0 0 1 1 1

np_14 1 1,637 0 0 1 1 1

wp_2 140 9 20 70 0.875 0.6666 0.7567

1, 920 × 1, 080 908 1 0 0 1 1 1

wp_24 310 68 127 12 0.7093 0.9627 0.8168

1, 920 × 1, 0809 421 12 62 4 0.8716 0.9905 0.9273

wp_52 688 101 284 31 0.7078 0.9568 0.8137

wp_61 162 10 165 0 0.4954 1 0.6625

wp_66 223 12 165 16 0.5747 0.9330 0.7113

wp_68 172 51 20 14 0.8958 0.9247 0.9100

wp_69 265 185 138 26 0.6575 0.9106 0.7636

wp_70 379 1 0 29 1 0.9289 0.9631

Average: 0.8890 0.9640 0.9160

Weighted average: 0.9388 0.9850 0.9613

Table IV. Performance evaluation of the localization algorithm.

True False False F1

Data set Positive Positive Negative Precision Recall score

CVC-ClinicDB 397 215 249 0.6487 0.6146 0.6312

ASUMayo 2 1 244 244 0.0041 0.0041 0.0041

ASUMayo 4 443 467 467 0.4868 0.4868 0.4868

ASUMayo 24 74 300 300 0.1979 0.1979 0.1979

ASUMayo 49 36 355 355 0.0921 0.0921 0.0921

ASUMayo 52 194 490 490 0.2836 0.2836 0.2836

ASUMayo 61 129 80 80 0.6172 0.6172 0.6172

ASUMayo 66 92 142 142 0.3932 0.3932 0.3932

ASUMayo 68 63 126 126 0.3333 0.3333 0.3333

ASUMayo 69 0 235 235 0.0000 0.0000 0.0000

ASUMayo 70 4 381 381 0.0104 0.0104 0.0104

Average: 0.3207 0.3183 0.3195

divided into two parts. The first part was the polyp localization, where the question was whether the
method could cope with important polyp appearance variability and, therefore, accurately determine
the location of the polyp in a frame. The second part was whether the method could detect a polyp
in the frame or not, and how long the delay was from the first appearance of the polyp to when
our system could detect it. In general, we did not expect very good results for the challenge since
our system is not built for polyp detection only. Other participants used a wide range of different
methods to detect polyps. These methods ranged from hand crafted features like for example contour
or shape based detection over machine learning approaches to neural networks. We identified several
problem areas during the challenge such as blurry images due to camera motion, size differences,
lighting and objects that look like polyps but are not, like for example contaminants.

Table V shows the result for the polyp localization part based on the CVC-ClinicDB dataset
containing 612 still images from 29 different sequences. Our system is on the fourth place out of six.
Details about the implementation of the first three methods are not available but the RUS approach
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Table V. Results of the MICCAI polyp localisation challenge.

True False False F1

Participant Positive Positive Negative Precision Recall score

UNS-UCLAN 48 481 148 9.07 24.49 18.28

CuMedVis 31 167 165 15.75 15.81 15.77

CVC 33 163 163 16.84 16.84 16.84

Our EIR System 46 723 150 5.98 23.47 14.81

RUS 65 1558 131 4.00 33.16 13.50

SNU 8 188 188 4.08 4.08 4.08

Table VI. Results of the MICCAI
polyp detection challenge. The
table shows the detection latency
in milliseconds and F1 score.

Participant Latency in ms F1

CuMedVis 6.66 26.40

Our EIR System 21 13.27

SNU 43.33 6.13

CVC 44.60 22.78

Rustad 235 11.47

ASU 417.5 20.84

UNS-UCLAN 0 0

used a deep learning method. Based on the fact that our system is not built for only polyp detection,
the results are very satisfactory. It is also important to point out that the first three participants were
organizers of the challenge and involved in the dataset collection, etc. Table VI shows the results of
the detection latency part. For the latency, our system could perform second best of all participants.
This is a very good result, and a positive confirmation about the real-time performance compatibility
of our system. The approach of UNS-UCLAN is not able to distinguish between a frame with or
without polyp. All in all, the results of the challenge are good for a system that is designed to be
extendible and refine able for different disease. We showed that we can compete and outperform
other state-of-the-art approaches, which are designed for the specific problem of the challenge,
without applying any adaptations to our system.

4.4. System Performance
One further requirement for the system is scalability and performance. The idea is to use the sys-
tem to do mass screening for lesions in the GI tract, using video sequences recorded live with
colonoscopy or WVCs. For the evaluation, we decided to use the configuration of the system that
performed best in the accuracy experiment. For the detection system, this is a combination of two
features (JCD and Tamura). This is the scenario that that will be used in the live system tests later.
Therefore, it is important to reach real-time performance in terms of processing a video and reach a
frame rate of not less than 25 frames per second. For all the tests, we used three videos from three
different endoscopic devices and different resolutions. The three videos are wp_4 with a resolution
of 1, 920×1, 080 and 910 frames, wp_52 with 856×480 and 1, 106 frames and np_9 with 712×480
and 1, 843 frames. We chose these videos to show the performance under the different requirements
that the system will have to face when it is used.

4.4.1. CPU Processing. To test how the different parts of our system scale in terms of used CPU
cores, we performed several tests on our test machine. For all tests, we measured time per frame for
the number of used cores. We also conducted some experiments to understand the influence of the
size of the training data on the performance.

Table VII. Performance evaluation of the index-
ing part. 4 different datasets with different sizes
have been tested to show the scaling capability
of the indexing part.

Index frames total time in seconds time per frame in ms

D1 3, 871 89.78 23.1

D2 14, 909 178.55 11.9

D3 29, 818 231.75 7.7

D4 100, 000 782.351 7.8

For the detection approach, we first measured the
indexing part that creates the model that is later on
used by the classifier. This process does not have to
be in real-time and can be seen as batch processing
but it should at least be scalable for larger datasets.
We did all experiments on a Linux machine using
16 CPU cores. Extracting two features and indexing
them for the whole ASU Mayo dataset takes in av-
erage 8 milliseconds per frame. There is no big dif-
ference between the indexing time of different reso-
lutions. We tested the scaling potential by indexing different datasets. The first dataset D1 contains
3, 871 frames, the second one D2 contains 14, 909 frames, the third one D3 contains 29, 818 frames
and the last one D4 with 100, 000 frames. Table VII shows the overall results. We found that a larger
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(a) The detection subsystem performs efficiently and the required
frame rate is reached with 16 CPU cores used in parallel.

(b) The localisation subsystem performance depends heavily on the
resolution of the videos.

Fig. 7. Detection and localisation subsystem performance in terms of frames per second depending on the number of CPU
cores and the resolution of the videos. The resolutions are 1, 920× 1, 080, 856× 480 and 712× 480.

(a) This chart shows the overall memory consumption for all three
videos in the detection part. A maximum is reached at around 14
used CPU cores. Further investigation is needed to see if the detec-
tion part is scalable.

(b) This chart shows the overall memory consumption for all three
videos in the localisation part. This shows us that the localisation
part scales well in terms of memory.

Fig. 8. Overall memory consumption of the detection and localization subsystem for the three test videos.

dataset leads to a faster indexing time per frame. We think this is due to the Java runtime optimizer.
Furthermore, we did not find an increase after more than 30, 000 frames in the dataset. We think
that the limiting factor is the I/O since increasing the number of cores did not increase performance.
All in all, our experiments show that the indexer is scalable in terms of larger datasets, and it should
be able to meet all requirements of the system for future tasks. The performance of the detection is
more important, since the system should provide a result as fast as possible and not slower than 25
frames per second making it usable for live applications. For all tests, we used the 3 different videos
described before.

Figure 7(a) shows the detection subsystem performance for the three tested resolutions in fps.
The required frames per second for all three videos are reached with 16 CPU cores used in parallel.

Figure 7(b) shows the performance of the localization subsystem for FPS. For the highest resolu-
tion, namely 1, 920 × 1, 080, the best result is 7.9 fps. A significant code optimization and using of
GPU for accelerated calculations will be needed to reach required fps. For resolution 856 × 480 the
required frames per second are almost reached with 32 CPU cores used in parallel. The best result
is 22.5 fps for this resolution. A slight code optimization will be needed to reach the required fps.
For the final video with the resolution 712 × 480, the required frames per second are reached with
19 CPU cores used in parallel. The outcome of these experiments for the localization subsystem
clearly shows that our system can reach real-time requirements but needs some optimization. For
the detection subsystem the required frames per second are reached in all resolutions.

4.4.2. Memory. In the memory experiments, we tried to find out how the different parts of the system
scale in terms of memory. Moreover, we had a look into the influence of the index sizes on the
performance. The memory usage for both subsystems is shown in figure 8(a) and figure 8(b). In the
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(a) To understand the memory consumption of the detection part we
had a closer look into the Java garbage collector. It showed us that it
always used all the memory that it can get. Automatically it is set to
around 6GB on our system.

(b) This experiment showed that the available memory for the de-
tection part does not influence the frames per second performance.
The Java memory scheduler takes always the whole memory that it
can get but it also works perfectly with only 1GB. This is a proof
that the detection part is not dependent on memory and therefore
memory is not a bottleneck for scaling the system.

Fig. 9. Memory usage experiment for the detection subsystem. Firstly, we tested how the maximum heap size influences
the memory usage. Secondly, we investigated which influence the heap size has on the frames per second performance of the
detection part.

Fig. 10. This chart shows how the amount of training data influences the performance of the detection subsystem in terms
of detection accuracy and frames per second output. The training data has been reduced to 1/2 of the original size (ca. 8, 800
frames) and 1/3 (ca. 5, 800 frames). The chart shows that there is no significant difference for the detection performance and
the frames per second. The smaller indexes can achieve even a better F1 score for 856× 480.

localization, the memory usage behaves as expected (linear growth) and shows that the localization
is scalable in terms of memory. For the detection subsystem the memory usage behaves rather
unusual after a certain number of used CPU cores. Therefore, a closer look into it was necessary.
The results of this closer look can be found in figure 9(a) and 9(b). We tested different memory
sizes used for the detection starting from 1GB up to 32GB. These tests showed, that the available
memory for the detection part does not influence the frames per second performance. The Java
memory scheduler uses as much memory as it can get, but it also performs well with only 1GB.
This proves that the detection part is not dependent on memory, and therefore, memory is not a
bottleneck for scaling the system.

A final question that we wanted to answer is if the size of the used classification indexes influences
the detection accuracy or system performance. Figure 10 shows the system performance in terms
of detection accuracy (F1 score) and frames per second for 3 different training data sizes. The
expectation was that smaller indexes would lead to a higher frames per second throughput but with
a loss of classification performance. The experiment showed that the index size did not have a
significant influence on the frames per second output of the detection system. It is possible that
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an index with several hundred thousands frames will most probably lead to a lower frames per
second output. But, in the medical field, for that the presented system is intended, a lack of training
data is normal. Therefore, this will not influence our system. Another positive aspect is that the
classification performance does not decrease with smaller indexes. It is even the opposite because
for 856 × 480 the F1 score increased slightly compared to the full training data. This shows that the
detection subsystem also performs very well with a smaller amount of training data, which is a very
positive point for the medical field because of the constant lack of training data.

4.4.3. Cloud Experiments. All the evaluations presented before have been performed on rather old
hardware (4 years). To get an idea of how the performance would be on an actual hardware setup
for the detection subsystem, we conducted tests on several Amazon AWS EC2 instances. For all the
tests, we used one c4.8xlarge instance and one c4.4xlarge instance.

On the c4.8xlarge instance (Intel Xeon E5-2666 with 36 virtual CPU cores), we were able to
classify a video (MPEG-4) with 1, 924 frames and a resolution of 1, 920 × 1, 080 with the features
JCD and Tamura, in 29.377 seconds with 65.5 fps. When classifying data from a raw video file
the processing time increased to 39.599 seconds with 48.6 fps. When reading the data from a Win-
dows media video (wmv) file, the processing time increased to 40.452 seconds with 47.6 fps. The
c4.8xlarge instance is the most powerful instance offered by Amazon. We therefore conducted the
same tests also on a less powerful c4.4xlarge instance (Intel Xeon E5-2666 with 16 virtual CPU
cores). Using this instance, we were able to process the MPEG-4 video data in 60.19 seconds with
31.97 fps, the wmv file in 81.17 seconds with 23.7 fps and the raw video file in 79.718 seconds with
24.14 fps. This shows that on newer hardware an even better performance can be achieved.

5. REAL WORLD USE CASES
As we aim for a system to be used both as a live computer aided diagnostic system and as a scalable
detection system WVC videos, we are currently working on two different real world use cases with
our partner hospitals. The first one is a live system that should support and assist endoscopists while
they do live examination. The second one has as goal to automatically analyze videos captured by
WVCs. The live system requires fast and reliable processing, and the WVC video analysis needs a
system that is able to process a large amount of data fast, reliable and in a scalable manner.

5.1. Live System
The live system is intended for the use case where the endoscopist performs a routine examina-
tion. One screen shows the output of the colonoscope without the systems output. A second screen
presents in real-time the results of the analysis to the doctor. In the future, if the system is well
tested under clinical conditions, it can be combined in one screen. Endoscopy is a common GI ex-
amination and is essential for the diagnosis of most mucosal diseases in the GI tract, particularly
diagnosis of CRC and its precursors. Previous studies have demonstrated that a major challenge is
the detection rate of lesions [Tanaka et al. 2013; de Lange et al. 2005]. The aim of the live system is
to put it between the screen of the doctor and the endoscopy processor. While the endoscopist per-
forms the colonoscopy, the system analyses the video frames that are recorded by the colonoscope.
At the beginning, we plan to optically show the physician optically (for example with a red or green
frame around the video) when the system detects a lesion in the actual frame or not. This can also
be extended to the determination of what disease the system most probably detected and provide
this information to the endoscopist. Apart from supporting the endoscopist during the colonoscopy,
the system can also be used to document the procedure. After the colonoscopy, an overview can be
given to the doctors where they can make changes or corrections, and add information. This can
then be stored for later purposes or used as a written endoscopy report. Uninteresting parts of the
video could be stored in a higher compressed way than important segments with the benefit of less
storage space needed. Further, it would be practical to store high quality images of the most impor-
tant parts. As paper [de Lange et al. 2005] shows, single images can be an efficient way to store
important findings from an examination.
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5.2. Wireless Video Capsule Endoscope
The multi-sensor WVC is swallowed in order to visualize the GI tract for subsequent detection and
diagnosis of GI diseases. Thus, people will be able to buy WVCs at the pharmacy, and connect and
deliver the video stream from the GI tract to the phone over a wireless network. The video footage
can be processed in the phone or delivered to our system, which finally analyses the video automat-
ically. In the best case, the first screening results are available within eight hours after swallowing
the WVC, which is the time the camera typically spends traversing the GI tract.

The current WVCs have a low resolution of 256 × 256 with 3-30 frames per second (adaptive
frame rate with a feedback loop from the receiver to the transmitter). They do not have optimum
lighting, making it more challenging to analyze small details in the images. Nevertheless, ongoing
work tries to improve the state-of-the-art technology which will make it possible to use the meth-
ods and algorithms developed for colonoscopies also for WVCs [Khaleghi and Balasingham 2015;
Chandra and Balasingham 2015].

In the case of the colon, accuracy of existing methods is far below the required precision and
recall, and the processing of the algorithms does not scale in terms of big data. Each type of disease
or irregularity requires interaction between medical researchers dictating what the system must
learn to detect, image processing researchers investigating detection or summarization algorithms,
hardware developers to develop/produce/research sensors, and distributed processing researchers in
order to scale the big data analytics of the sensor data. For other scenarios, like in the upper part
of the GI tract, there will be similar challenges and corresponding interaction between research
disciplines. There are large challenges with respect to accuracy (precision and recall), scale of the
processing and hardware data quality because of different manufacturers (Olympus and Given are
the market leaders). The aim is to be a leading contributor in the area of medical imaging and sensor
processing in the GI tract as well as storing, processing and analyzing this type of data.

6. RELATED WORK
A system aiming to analyze the whole GI tract needs to fulfill several requirements and to the best
of our knowledge such a system does not exist at the moment. In our case it has to be able to process
large amount of data efficiently and in real-time, it has to be a complete system that can be used
in a real scenario, it should support doctors live during colonoscopies, it should be able to process
data from WVC and manual colonoscopy and finally it should be expendable with different disease
and input data. All this requirements touch different areas of related work. In the following, we will
discuss the most relevant works for our proposed EIR system.

6.1. Annotation
To build a ground truth dataset, it is necessary to collect video sequences with frames that show an
object to be detected (positive frames), as well as frames where no such object is present (negative
frames). It is then necessary to select the region on the positive frames where such an object is
visible. Such selection builds a dataset containing both positive and negative samples. To create
such a dataset, appropriate tools are required.

Liu et al. [Liu et al. 2007] describe a very advanced annotation tool called Arthemis. Arthemis is
part of an integrated capturing and analysis system for colonoscopy, called Endoscopic Multimedia
Information System (EMIS). EMIS provides functionality for collecting and archiving endoscopy
videos, uploading videos to a storage server, removing redundant video frames, separating or merg-
ing video sequences, segmentation based on audio features (speech recognition), post-processing
and analysis of colonoscopic procedures. Arthemis was designed to facilitate the process of review-
ing videos, locating and annotating important content, and exporting annotated content for research,
teaching and training purposes. Arthemis supports annotation by ellipse selection and free-hand-
drawing. It is written in Java and C, and uses a third-party MPEG encoding/decoding-library for
an extra fast playback mode, as Microsoft’s native multimedia toolkit DirectShow was considered
not to provide the needed performance. A special feature of Arthemis is that it provides the ability
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to view automatically detected segments of colonoscopy videos. Annotated figures are stored in a
proprietary format based on xml. The software has been designed to be easy to use by physicians,
allow fast playback, and be efficient, robust and extensible. According to the article, the software
starts to become a useful tool for endoscopic research and education. It is proposed to be used by
Medical students, residents and fellows, for learning to recognize the common endoscopic abnor-
malities and the therapeutic modalities, used by experienced endoscopists. The user-interface of
Arthemis is considered to be intuitive and easy to use. The component-based design of the software
is listed as a strength, since it allows multiple developers to develop new components at the same
time, without worrying about losing the control of the code. We consider this article very signifi-
cant, as it describes an existing, complete implementation of an integrated solution for collecting,
archiving, processing, annotating and visualizing colonoscopy videos. A potential weakness of the
implementation is the use of proprietary components. The deployment requires both a server sys-
tem and installation on the client side, making the entire solution hard to obtain and distribute. Also,
the number of supported features seems rather large. Generally, a large number of features can be
considered a strength, it usually also makes a tool less intuitive to use.

Riegler et al. [Riegler et al. 2014] present a web based annotation tool called VideoJot, supporting
several different kinds of annotations. The tool is not specifically designed for medical usage. The
article researches the benefits of different video annotation features in communicating general con-
cepts of a video game based on captured game sessions. Game play recordings were selected as a
domain, because it specifically requires the software to cope with fast camera movements. The tool
provides simple and easy to use controls for annotating with temporal and spatial information and
functionality to enrich the content of the video with added information. Annotations can be done
by free hand drawing on top of the video, either during playback or alternatively, when the video is
paused. The annotations will be replayed during video playback; if an annotation was added when
the video was paused, the playback pauses for replaying the annotation. An additional feature is the
possibility to zoom into the video, i.e., annotations created in zoomed-in mode will automatically
be replayed in zoomed-in mode.

For simple temporal annotations, VideoJot further provides LikeLines [Vliegendhart et al. 2012]
- a bar below the video, displaying a one-dimensional heatmap. The heatmap displays which parts
of the video received explicit ”likes”. The tool is written entirely in HTML5 and JavaScript, using
the HTML5 video element for playback and HTML canvas for drawing. VideoJot is interesting for
the medical field because it provides a straight forward approach for collecting video sequences and
creating annotations, which we reuse for collecting colonoscopy videos from hospitals by providing
similar functionality to receive basic annotations from endoscopists. As mentioned in the conclu-
sion for the VideoJot article, users, who tested the software, still considered it too complicated and
considered training necessary for creating good annotations. It is also stated that the ability to slow
down the playback when creating an annotation is important and that users want text based annota-
tion in addition to the hand drawn one. The zooming function was not considered important, unless
the video sequence to be annotated is of high resolution and high level of detail.

The use of an annotation tool for endoscopy videos is further researched by Lux and Riegler [Lux
2013]. This demo paper focuses on common interaction methods for experts to annotate videos by
recording speech and drawing onto the video. The paper aims at gathering information about the
recorded videos in an easy and simple way, so that the annotation effort is minimally invasive for
the daily routine of the experts. A tool for an Android tablet computer is presented, which uses
the touch screen, motion sensor and speech recognition for user interaction. This tool is required
to be easily integrable into existing business processes in medical information systems. Hence,
complicated installation and hardware requirements were not acceptable. A low cost off-the-shelf
tablet computer, however, is considered a good choice. The following features are integrated into the
software: The video can be manually segmented into non-overlapping pieces, selected segments can
be annotated using speech, text annotations can be added by using the integrated Google speech-
to-text web service, sketch-like drawings can be added on top of the video, and shaking the device
is used for annotating important events in the video sequence. All the annotation information is
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kept and stored separately from the video file. Audio recording is stored in a compressed form,
and the drawings are stored as path information. As a technical challenge, the paper mentions the
drawings which have to be drawn on top of the video overlay. The replay is not accurate in terms
of frames, but is considered good enough in terms of accuracy and excellent in terms of robustness
and performance.

It is crucial to integrate the annotation tool in a minimally invasive way within the environment
of the experts. It is very important to provide them with a solution which is very easy to use and, at
the same time, very easy to deploy in a restrictive medical environment. The annotation subsystem
in EIR builds up on technologies and methods from [Riegler et al. 2014] and [Lux 2013] to reach
optimal annotation performance.

6.2. Automatic Analysis Systems for GI Tract
Detection of diseases in the GI tract has mostly focused on polyps. This is most probably due to
the lack of data in the medical field and polyps being a condition with at least some data available.
Automatically analysis of polyps in colonoscopies has been in focus by research for a long time
and several studies have been published [Wang et al. 2013; Wang et al. 2010; Wang et al. 2011].
However, not many complete systems are able to do real-time detection or support doctors by com-
puter aided diagnosis during colonoscopies in real-time. Furthermore, all of them are limited to a
very specific use case, which in most cases is polyp detection for a specific type of camera. Several
algorithms, methods and partial systems have been proposed and have achieved at the first glance
promising results in their respective testing environment. However, in some cases, it is unclear how
well the approach would perform as a real system used in hospitals. Most of the research conducted
in this field uses rather small amount of training and testing data, making it difficult to generalize
the methods beyond the specific dataset and test scenarios. Therefore, overfitting for the specific
datasets can be a problem and can lead to unreliable results. Table VIII presents a summary of the
most relevant approaches in colonoscopies and polyp detection. The last row of the table shows
our approaches’ performance to give a comparison. The first approach from Wang et al. [Wang
et al. 2015] is the most recent and best working one in the field of polyp detection. A list of more
related work can be found in their paper. As one can see in table VIII, different methods provide
different metrics for measuring the performance and use different datasets for training and testing.
Moreover, almost all of them focus on polyp detection. For classifying video endoscopy imaging
data, most approaches relay on using a support vector machine (SVM) or binary classifier in some
way, or they could be used as a pre-processing step for them. The features, used for the SVM or
the binary classifier vary a lot depending on the approach. Some methods use physical dimensions,
grayscale intensity values, gradient orientation, RGB color information or texture as input for the
classifier. Each of these approaches has advantages and disadvantages. In general, it can be distin-
guished between two different approaches for the automatic detection of disease in the colon. These
approaches are geometrical analysis and machine learning. They could both be used for imaging
data that was recorded with a conventional colonoscope or with a camera capsule. Moreover, it is
also possible to use these methods with data from a virtual colonoscopy. However, such data are
significantly different from camera recorded data and are not discussed in detail here.

Mamonov et al. [Mamonov et al. 2014] presented an algorithm for a binary classifier to detect
polyps in the colon. The method is called binary classification with pre-selection, and it aims at
reducing the amount of frames that need to be manually inspected. The algorithm process separate
input frames and classifies each frame as either containing a polyp or not. The assumption is that
polyps can be generalized as protrusions (something that bumps out) that are mostly round in shape.
This assumption was tested on a dataset created from frames of video sequences of five different
patients. Based on these tests, the algorithm reached a sensitivity of 81.25% per polyp at a specificity
level of 90%. The sensitivity of the algorithm with regards to single input frames is significantly
lower and only reaches 47%. The length of an input sequence varied between 2 and 32 frames
and a total of 16 sequences were tested. The false positive rate on the total of 18, 738 frames not
containing a polyp was 9.8%. Assuming that it is usual to have multiple frames available for a single
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Table VIII. Performance comparison of polyp detection approaches discussed in this chapter. Not all perfor-
mance measurements are available for all methods, and different datasets are used. Nevertheless, including
every available information gives an idea about each method’s performance.

Publ./System Detection Type Recall / Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [Wang et al. 2015] polyp / edge, texture 97.70% – – 95.70% 10 1.8m frames

Wang et al. [Wang et al. 2014] polyp / shape, color, texture 81.4% – – – 0.14 1, 513 images

Mamonov et al. [Mamonov et al. 2014] polyp / shape 47% – 90% – – 18, 738 frames

Hwang et al. [Hwang et al. 2007] polyp / shape 96% 83% – – 15 8, 621 frames

Li and Meng [Li and Meng 2012] tumor / textural pattern 88.6% – 96.2% 92.4% – –

Zhou et al. [Zhou et al. 2014] polyp / intensity 75% – 95.92% 90.77% – –

Alexandre et al. [Alexandre et al. 2007] polyp / color pattern 93.69% – 76.89% – – 35 images

Kang et al. [Kang and Doraiswami 2003] polyp / shape, color – – – – 1 –

Cheng et al. [Cheng et al. 2008] polyp / texture, color 86.2% – – – 0.076 74 images

Ameling et al. [Ameling et al. 2009] polyp / texture AUC=95% – – – – 1, 736 images

EIR-system abnormalities/30 features 98.50% 93.88% 72.49% 87.70% 30-65 18, 781 frames

polyp, these numbers seem quite promising. With this method, the time a specialist has to spend on
evaluating video data could be reduced by about 90%.

A similar approach is presented by Hwang et al. [Hwang et al. 2007]. This approach also focuses
on shape, in particular on ellipses, which is a common shape for a polyp. Using this method, a frame
is first segmented into regions by a watershed-based image segmentation algorithm. This algorithm
is based on the observation that polyps are spherical or hemispherical geometric elevations on the
surrounding mucosa. Ellipses are then fitted into the segments by constructing a binary edge map
for each segmented region and using a least square fitting method. A threshold-function is used for
the creation of the edge map. Regions with too little edge information in their respective edge map
are discarded. These ellipses are then further evaluated for matching of curve direction, curvature,
edge distance and intensity. The curvature of the ellipse is split into six parts. At least two adjacent
parts must have a strong edge pattern, otherwise, the ellipse is discarded. Lumen areas are filtered
out by applying a threshold on the intensity of the ellipse. The interesting part of this approach is
that after the first frame a potential polyp was detected, subsequent frames are also searched for
the same characteristics using a mutual and information based image registration technique. This
allows to apply a threshold in number of frames for the detection to reduce the number of false
positives. To evaluate the method, a video sequence with a frame rate of 15 fps has been processed.
Out of 27 available polyp shots (frames containing a polyp) 26 were detected correctly with a total
of 5 false-positives. Similar to [Mamonov et al. 2014], the authors assume that multiple frames are
available for one polyp and that a certain number of false-negatives is acceptable in order to balance
the number of false negatives. The correctness of this assumption depends strongly on the frame
rate of the camera that is used for recording the video.

The most recent and complete system in the well researched polyp detection field is Polyp-
Alert [Wang et al. 2015] which is able to give near real-time feedback during colonoscopies. This
approach is also listed as number one in table VIII. The system can process 10 frames per second and
uses visual features and a rule based classifier to detect the edges of polyps. Further, they distinguish
between clear frames and polyp frames in their detection. The researchers report a performance of
97.7% correctly detected polyps, based on their dataset which consists of 52 videos taken from
different colonoscopes. Unfortunately, the dataset is not publicly available, and therefore, an exact
detection performance comparison is not possible. Compared to our system, this system seems to
reach higher detection accuracy, but our system is faster and can detect polyps in real-time. Fur-
thermore, our system is not designed and restricted to detect only polyps, and can be expanded to
any possible disease if we have the correct training data. Another recent approach related to our
approach and not limited to polyps is presented by Nawarathna et al. [Nawarathna et al. 2014]. In
the paper, the authors describe a method to detect abnormalities like bleeding, but also polyps in
colonoscopy videos. The authors use a texton histogram of an image block.
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Other papers that discuss how to improve performance of endoscopic surgeries in general (not
colonoscopy) are for example [Munzer et al. 2013c; Munzer et al. 2013a; Munzer et al. 2013b]. In
these papers, the authors report their method for detecting the circular content area that is typical
in endoscopic videos. Furthermore, they present their method for relevance segmentation in endo-
scopic videos. The methods seem to be very useful in terms of archiving and saving storage space,
making them interesting for our system. Since neural networks are commonly used nowadays they
are also discussed in relation the GI tract analysis.

6.3. Deep Learning
Neural networks are conceptually easy to understand and lately large amount of academic research
has been done on them. Results recently reported on for example the ImageNet dataset look quite
promising [Deng et al. 2009]. Nevertheless, they have some negative aspects that make them less
useful for this use case [Chin and Brown 2000]. First, training is very complicated and takes a long
time. Our system has to be fast and understandable since we deal with patient data, and the outcome
can differentiate between life and death. Therefore, a blackbox approach, which neural networks
are known for, seem to be the second best way to solve a problem that has to be understood very
well by all users. This can lead to serious problems in the medical field since it is not possible to
evaluate them properly, and there will always be a chance that they completely fail without being
aware of it [Nguyen et al. 2014]. The best way is still to understand the problem and then solve it.
Further, they require a lot of training data. In the medical field, this is a very important issue since
it is hard to get data due to the lack of experts time (doctors have a very high workload) and legal
and ethical issues. Some common conditions, like colon polyps, may reach the required amount of
training data for a neural network while other endoscopic findings, like for example tattoos from
previous endoscopic procedures (black colored parts of the mucosa), are not that well documented,
but still interesting to detect [Schmidhuber 2015]. Finally, neural networks are not easy to design
for probabilistic results. In a multi class decision based system, that is built to support medical
doctors in decision making, the probability is an important information. Approaches with a better
understanding of the problem give a much more accurate probabilistic score that can be directly
translated to the real world scenario [Specht 1990].

6.4. Summary
In summary, a lot of good related work with many interesting approaches for polyp detection exists.
However, they are either (i) too narrow for a flexible, multi disease detection system, or (ii) have
been tested on a too limited datasets not showing if the methods would work in a real scenario
and finally they (iii) provide a too low performance for a real-time system or they have ignored the
system performance aspect in their evaluations at all. To the best of our knowledge and as table VIII
hints, our system is the first that aims at total flexibility in terms of diseases that can be detected and
at the same time focusing on the performance and the evaluation of it.

7. CONCLUSION
In this paper, a complete multimedia system for annotation, automatic disease detection and visual-
ization in context of the GI tract has been presented. We described the whole system in detail from
the annotation, automatic analysis and detection to visualization. Further, we presented a detailed
evaluation of the performance of the system in the area of detection accuracy, processing time and
scalability.

The evaluation showed that the system achieves equal or better results than state of the art in
terms of accuracy, i.e., reaching a detection accuracy for polyps of more than 90% using the largest
available dataset today (ASU-Mayo clinic polyp dataset). On the other hand, our system outperforms
other proposed systems when it comes to system performance. We showed that it is capable of
scaling to fulfill big data requirements and that it can be used in real-time scenarios, in our case
live colonoscopies, for systems recording videos faster than 30 fps. Moreover, we participated in a
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grand challenge to compare the system to other methods and could achieve good results for a very
specific use case with a system that is able to be used for many different use cases at the same time.

Additionally, we gave a glance on a real world implementation and use case of our system that
is currently being built. This includes analysis of WVC videos and live support of colonoscopies.
For future work, we plan to include different abnormalities to detect and to even further improve the
detection and localization accuracy. We are also collecting more training data and knowledge for the
system with the help of medical experts from different hospitals all over Europe. It is important to
get data from different hospitals to be able to build a general system that is not shaped on a specific
camera type or setup, etc. Finally, we are working on an extension that allows the system to utilize
GPUs to make it even faster.
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ABSTRACT
In this paper, we present the computer-aided diagnosis part
of the EIR system [9], which can support medical experts in
the task of detecting diseases and anatomical landmarks in
the gastrointestinal (GI) system. This includes automatic
detection of important findings in colonoscopy videos and
marking them for the doctors. EIR is designed in a modular
way so that it can easily be extended for other diseases.
For this demonstration, we will focus on polyp detection,
as our system is trained with the ASU-Mayo Clinic polyp
database [5].

CCS Concepts
•Information systems→Multimedia and multimodal
retrieval;

Keywords
Medical Multimedia; Information Systems; Classification

1. INTRODUCTION
Colonoscopy is an invasive medical procedure, where med-

ical experts (endoscopists) investigate and operate on the
colon, i.e., by using a flexible endoscopes as shown in fig-
ure 1(a). From the tip of the endoscope, a video is trans-
mitted, and the endoscopists rely on the video stream to
diagnose disease and apply treatments. As the camera is
the virtual eye of the endoscopist and the video stream is
all the endoscopist perceives, research in medical imaging
focuses on diagnosis and detection of diseases and anatom-
ical landmarks based on video. A video capsule endoscope
(VCE) (camera pill see figure 1(b)) is an alternative non-
invasive technique to record videos from the colon. The
capsule with a camera is swallowed, it records a video of the
gastrointestinal (GI) tract, and an endoscopist analyses the
videos afterwards for endoscopic findings.
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(a) An endoscope as it is used for
standard colonoscopies. It consists of
a control device, the tube and the cam-
era at the tip.

(b) Examples for two video
capsular endoscopes. The
upper one has two cameras
and the lower has one.

Figure 1: Two devices that produce endoscopic
videos.
In this paper, we present a demo that shows how the vi-

sualization and computer-aided diagnosis part of our system
works and how it can be used by medical experts to support
them at the time of the colonoscopy procedure, as well as
after the procedure has finished. There are several poten-
tial benefits of such a system for patients and the health-
care sector. It could be a useful tool for training of new
endoscopists in recognizing and classifying endoscopic find-
ings, and probably also improve endoscopists’ live detec-
tion of polyps. Early detection prevents the polyps from
developing into colorectal cancers (CRC), the second most
common cancer for both genders with a 6% lifetime risk
of contracting the disease. The automatic detection could
also be applied to VCE videos, thus eliminating or reducing
the time to review the video footage and freeing time for
the endoscopist to perform other important medical tasks.
The automatic computer interpretation makes it also possi-
ble to generate automatic text reports from the procedures,
and the patients can receive the results from the examina-
tion faster. The detection subsystem is used in combination
with our previously developed TagAndTrack tool [1] to be
able to provide computer-aided diagnosis to endoscopists.
The detection subsystem is released as open source soft-
ware 1. The automatic detection of irregularities and the
segmentation of videos can help doctors to save time, and
can further increase the accuracy of diagnosis and be used
to verify the completeness of an examination. Moreover,
our system is very easy to train, to modify and to expand
so that it can be used and improved by everyone, even by
non experts. We also want to point out that our system
is not limited to the medical use case. It could be ex-
panded to many different use cases that can be solved by
1https://bitbucket.org/mpg_projects/opensea



visual content-based classification, like for example content-
based segmentation of sport events like soccer games. The
remainder of the paper presents the architecture and the
implementation of the application. Furthermore, we show
how the system can be used. A demo video of the tool
can be found at https://youtu.be/gb2BqMuZ2h0. In this
demo video, one can easily see the challenges that come
with colonoscopy videos, i.e., blurry frames, low resolution,
reflections and fluids, etc.

2. RELATED WORK
Automatic detection of polyps in colonoscopy has been

in focus of research for a long time [12, 14, 11]. However,
few complete systems exist that are able to do real-time de-
tection, or that can support endoscopists by computer-aided
diagnosis for colonoscopies in real-time and at the same time
maintain a high detection accuracy. The most recent and
best working approach is Polyp-Alert [13], which is able to
give near real-time feedback during colonoscopies. The sys-
tem can process 10 frames per second, and visual features
and a rule-based classifier are used to detect the edges of
polyps. The researchers report a performance of 97.7% cor-
rectly detected polyps in their data set. Compared to our
EIR system [9], this system seems to reach higher detection
accuracy, but our system is faster and can at the moment
detect polyps in real-time. Furthermore, our system is not
restricted to detecting polyps and will be extensible to detect
several different diseases at the same time. To achieve real-
time for a multi-class detection, we plan to utilize heteroge-
neous architectures such as GPUs. Another recent approach
that is related to our system is presented by Nawarathna et
al. [6]. The authors describe a method to detect abnor-
malities like bleeding, but also polyps in colonoscopy videos
using a texton histogram of an image block. In a nutshell,
our system uses global image features for the classification
of frames and a search-based approach that leads to low
classification times per frame. It is well known that global
image features are very easy to extract and analyze in terms
of time and easy to store in terms of space. This makes our
EIR well suited for applications on huge amounts of data
[4].

3. ARCHITECTURE & IMPLEMENTATION
Our detection subsystem consists of two modules, (i) an

indexer and (ii) a classifier as shown in figure 2. The indexer
analyzes input data and extracts global features from the
training videos. The classifier is in principle a binary K-
Nearest-Neighbor (K-NN) classifier, which utilizes the index
to search the training set for visually similar cases. The
results of multiple global features are fused and weighted
by the classifier module and result in a proposed class. The
classifier works on single frames, but also accepts a complete
video as input. In this case, it will classify every single video
frame, and it will output a result file. We modified the
previously developed TagAndTrack tool [1], which can open
and interpret the results of the classifier for visualizing the
classification results.
We have implemented the indexer as well as the classifier

in Java. We are using LIRE [4] for extracting global im-
age features, and LIRE internally uses Lucene2 for creating
2https://lucene.apache.org/

Figure 2: The overall architecture of our demo. The
detection subsystem provides the output that we use
in a visualization tool that presents it to the medical
experts.

and searching indexes. Further, we are using OpenCV 3 for
reading and decoding video files. The indexer as well as the
classifier both use multiple threads.

3.1 Detection Subsystem
The classification of each frame is based on the analysis of

search results for a given query image. As mentioned before,
the classification algorithm is a modified K-NN algorithm.
K-NN is a non-parametric algorithm, which means that the
algorithm uses the rank of the values rather then the pa-
rameters of each frame. The frame classification is a simple
majority decision based on the outcome of the K-NN algo-
rithm. The classification algorithm used in the system dif-
fers in some points from the original K-NN algorithm. The
first difference is that the algorithm is based on a ranked list
of a search results, which can be generated in real-time or
pre-indexed for each query frame of the video. The second
is that weighted values are used for generating a decision
antithetical to the non-parametric behaviour of K-NN. The
weights are based on the search result’s ranked list. This
part is designed in a way that it can easily be replaced with
other different methods (for example visual page rank, etc.).
As mentioned before, the classification tool is implemented

as a search for similar images in indices that are gener-
ated off-line or on-the-fly, based on single or multiple im-
age features. For each image in the input index or video, it
searches the provided classifier indices and finds the images
with the most similar image features, whereas similarity is
determined based on low-level features and their associated
distance (in this case Tanimoto distance). Based on the class
of the similar images retrieved from the index, the input im-
age is classified. The result for every single image feature,
as well as the result of late fusion for all the selected image
features is displayed on-screen. Late fusion means that each
feature has an own classification step that is combined with
other classifiers’ output for the final result. When classifying
previously indexed images, an HTML page is created with
a visual representation of all the classified images. When
classifying a video sequence, the results are stored to a file
in JSON format instead. The classification tool also deter-
mines the performance of the classification and calculates
several evaluation scores such as recall, precision, weighted
F1-score, etc.. For this to work, the input data must be
labelled correctly before it is classified. This can either be
done by prefixing the file names of the files in the index with
’p’ or ’n’ for positive and negative samples respectively, or by
supplying separate indices with the command line options
’-P’ and ’-N’ for the input data.

3http://opencv.org/



3.2 Detection Subsystem Usage Examples
In the following, some examples are presented of how to

use the detection subsystem to classify input videos.

java -jar classifier .jar \
-p /pos/ index -n /neg/ index \
-i /my/ index -f JCD -f FCTH
This example shows how to classify images from the index

/my/index using the image features JCD and FCTH, by
finding the most similar images among the positive samples
from /pos/index and the negative samples from /neg/index.
For the calculation of the evaluation metrics, it is required
that the images indexed in /my/index have names starting
with ’p’ or ’n’ for positive or negative samples, respectively.
This generates visual classification output in HTML format.

java -jar classifier .jar \
-p /pos/ index -n /neg/ index \
-v / my_video .avi -f JCD
In our last example, a video file is supplied as input to

the classifier. All video frames of this input video are clas-
sified by searching the most similar images among the posi-
tive samples from /pos/index and the negative samples from
/neg/index using the global image feature JCD. In addition
to the on-screen output, a JSON file is generated, which
contains a list of all the positive frames and a list of all the
negative ones.
To process videos in real-time, we have also parallelized

the classifier. Again, the number of threads created depends
on the number of processors reported by the JVM. Each
thread holds a separate instance of the classifier indices, but
all threads share the same queue for the input data to be
classified. Therefore, every image or video frame is only
loaded once, is then processed by a single thread and the
result is written to a shared data structure. This allows for
all threads to operate independently, with only two criti-
cal sections, one for dequeuing the next input image and
one for writing to the shared result data structure. When
processing a video as input data, an additional thread is cre-
ated for reading the video from a file and filling the input
frame queue. The classifier tool further provides different
options for weighting the count or distance score of similar-
ity results. The different weighting methods can be chosen
by adding the flag −m followed by the rank method that
should be applied to the command. As default mode, no
weight is set, and the classifier uses only the count per class.
We support 3 additional weighting methods: (i) weighted
by rank position, i.e., the weight is computing from the po-
sition in the returned ranked list; (ii) weighted by distance,
which uses the Tanimoto distance from the search as weight;
and (iii) weighted by average distance, which uses the av-
erage distance of all returned documents in the ranked list
instead of the number of documents to calculate the weight.
Moreover, various different combinations of global image fea-
tures can be evaluated separately or combined in late fusion.
This makes the tool ideal for experimenting with different
approaches and finding an optimal set of features to use for
a specific use case.

4. DATA AND DEMO
To show how the system performs, we used the ASU-

Mayo Clinic polyp database [5]. It is at the moment the
largest publicly available dataset of colonoscopy videos. The
dataset comes with a ground truth that indicates if a frame

Evaluation method Precision Recall F1 score
EIR - standard 0.903 0.919 0.910
MCB - standard 0.683 0.683 0.683
EIR - LOOC 0.895 0.903 0.899
MCB - LOOC 0.636 0.636 0.636

Table 1: Evaluation results of the detection subsys-
tem. The table shows the EIR system and majority
class baseline (MCB) performance for the standard
train test set split evaluation and LOOC evaluation.

of a video contains a polyp in the colon or not. The polyps
in the dataset are diverse and vary in terms of shape, color
and texture. The dataset consist of 20 videos. 10 videos do
not contain polyps at all, and 10 of them contain polyps in
the whole video or parts of it. Table 1 gives an overview of
all results.
First, we split the dataset into test and training sets. The

test set contains two separate videos that are not used in
the training dataset. To measure the performance, we used
precision, recall and F1 score. All the tests were conducted
without a weighting method (default mode). In this first
test, we achieved a precision of 0.903, a recall of 0.919, and
an F1 score of 0.910. Remember that the best existing sys-
tem, Polyp-Alert [13], achieved around 0.97 for the recall,
but it was tested on another dataset. For these results, we
used a fusion of the features JCD and OpponentHistogram,
which we found to perform best in some additional exper-
iments. The number of visual neighbours (size of the rank
list returned by the search part of the classifier) was 71.
The majority class baseline (MCB, all negative) is 0, 683 for
precision, 0, 683 for recall and F1 score of 0, 683.
To evaluate the robustness of the classifier, and to check

if the good results were not just overfitting, we decided to
perform a leave-one-out-cross-validation (LOOC) with all 20
videos of the dataset. In LOOC, all videos of the dataset are
used to train the model except for one that is used as the test
example. This is repeated, so that all the sample videos are
excluded once. To be able to recreate the experiments and
test the software, we added indexes to the official repository.
We used the same features and number of visual neighbours
as in the test before. For LOOC, the average precision is
0, 895, the average recall is 0.903 and the average F1 score
is 0, 899. In comparison, the LOOC for the majority class
baseline (all negative) has a precision of 0.636, a recall of
0.636 and a F1 score of 0.636. It is important to point out
that we chose the class with the highest number for the ma-
jority vote baseline against the common practice to decide
for the positive one. This makes it harder to outperform
the baseline, but it also shows the real performance of the
classifier. The results shows that our system performs well
in cross validation and that it is robust and not overfitted
for the dataset. We also want to point out that the clas-
sification time is very low. For a single frame, the time is
around 30 milliseconds (it ranges from 10 to 30 milliseconds
depending of features used and resolution of the video). To
be able to do it in real time for videos with 30 frames per
second, 33, 3 milliseconds is the deadline. In the best case,
if we use a single feature, we can even get a classification
time of around 10 milliseconds. The parallization is not yet
optimized and we are working on an even faster system, but
this is out of scope for this paper.
Our system can also achieve higher a recall, at the cost



Figure 3: Visualisation of the output. A positive
finding is marked red on the timeline of the video.

of the precision (or vice versa). For example, we can easily
increase the recall by using more visual neighbours. This
makes it very interesting for the medical use case, because
we can get a recall of 1, so that doctors can be sure that we
do not miss a true positive example, while still saving them
working time because the high precision allows to remove a
considerable number of frames.
One may criticize us for using only polyp detection at

the moment, but the Mayo data set is currently the only
medical data set for our use case that is big enough and
publicly available to show our performance. The system
can easily be extend to different diseases by simply using
a separate classifier for each category, which will make it
better parallelizable and more accurate (since it is late fusion
and late fusion has been proven as being more accurate [3]).
Possible ways to use the output of the classification tool

are presented in the following figures. Here, we use it in a
system that allows computer-aided diagnosis. It helps med-
ical experts to find polyps in colonoscopies and also to save
medical personnel’s working time because they do not have
to analyse the whole video. Figure 3 shows the classification
performance and how it is presented in a computer-aided di-
agnosis (CAD) tool for a standard colonoscopy video. One
can see that the tool is able to classify videos in a way that
can help experts to find irregularities but also help them
reduce the time spent on video analysis.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented an application for computer-

aided diagnosis that can support medical doctors in analysing
colonoscopy videos. We showed that we can reach high per-
formance in terms of processing time, which would make it
possible to use the system during live colonoscopies. At the
same time, we reach high detection performance.
While extending the application to support multiple dis-

ease detection is trivial by adding more classifiers, the in-
creased workload will also increase the total runtime of the
detection algorithm. We strongly believe that if our tool is
to be widely deployed and used by medical staff, it must
be able to do classification and detection preferably during

ongoing medical examinations, not only in post-examination
analysis. A candidate for future improvement is therefore to
run multiple classifiers of different diseases, like explored by
Riegler et al. [10], in parallel by offloading the processing to
multiple machines connected in a PCI Express network [8,
2]. This optimized version of the application will be able to
dynamically allocate and release compute resources on de-
mand from a pool of available GPUs. The use of multiple
GPUs will also enable the system to run in real-time [7].
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ABSTRACT
Health care has a long history of adopting technology to save lives
and improve the quality of living. Visual information is frequently
applied for disease detection and assessment, and the established
fields of computer vision and medical imaging provide essential
tools. It is, however, a misconception that disease detection and
assessment are provided exclusively by these fields and that they
provide the solution for all challenges. Integration and analysis of
data from several sources, real-time processing, and the assessment
of usefulness for end-users are core competences of the multime-
dia community and are required for the successful improvement
of health care systems. For the benefit of society, the multimedia
community should recognize the challenges of the medical world
that they are uniquely qualified to address. We have conducted
initial investigations into two use cases surrounding diseases of
the gastrointestinal (GI) tract, where the detection of abnormali-
ties provides the largest chance of successful treatment if the initial
observation of disease indicators occurs before the patient notices
any symptoms. Although such detection is typically provided vi-
sually by applying an endoscope, we are facing a multitude of new
multimedia challenges that differ between use cases. In real-time
assistance for colonoscopy, we combine sensor information about
camera position and direction to aid in detecting, investigate means
for providing support to doctors in unobtrusive ways, and assist in
reporting. In the area of large-scale capsular endoscopy, we inves-
tigate questions of scalability, performance and energy efficiency
for the recording phase, and combine video summarization and re-
trieval questions for analysis.

CCS Concepts
•Information systems→Multimedia information systems; •Applied
computing→ Health care information systems;
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1. INTRODUCTION

Figure 1: GI tract
(shutterstock.com)

It is a typical assumption that visual
analysis as it is already provided by
the computer vision and medical image
processing communities today is suffi-
cient to solve health care multimedia
challenges. Although we concede that
computer vision and medical imaging
methods are indeed essential contribu-
tors to promising approaches, we have
come to the understanding that analyz-
ing images and videos alone do not
solve the challenges in medical fields such as endoscopy or ultra-
sound. Existing computer vision approaches do not make serious
use of the multitude of additional information sources including
sensors, temporal and users information.

Multimedia approaches are able to go beyond visual signals and
also make use of heterogeneous sources including, e.g., the posi-
tion sensors or fiber length measurement. Instead of considering
the potential weakness of such signals as a nuisance, multimedia
researchers are able to find ways to exploit them in combination
to achieve the best possible results given the information available.
Last but not least, multimedia cares first and foremost about the hu-
man user and assesses the feasibility of the resulting system. Cor-
rect and accurate diagnosis, efficient examinations and scalability
are all critical for a health care system.

On the basis of these considerations, it is clear that we need to
work on the challenge of realizing medical multimedia systems,
which we define as follows: a medical multimedia system is an
interactive system, which provides support for diagnostics, exam-
ination, surgery, reporting and teaching in a medical setting by
combining all available information sources and putting them in
the hands of medical professionals or patients. We note that some
medical information systems may be fully automatic, but we still
consider them to be at some level interactive, since a medical pro-
fessional and/or a patient must be in the loop to interpret and act on
the results.

In some areas of the human body, such as the gastrointestinal
(GI) tract – our focus in this paper – the detection of abnormalities
and diseases directly improves the chance of successful treatment,
if the initial observation of disease indicators can be made visually,
and also before the patient notices any symptoms. The GI tract is
important since it is the site of many common diseases with high
mortality rates. For example, three of the six most common cancer
types are located in the GI tract (Figure 1), with a large number of



cancers detected yearly and with a high mortality rate [41]. Sec-
tion 2 provides more details about diseases of the GI tract and their
relevance, but clearly, early detection is important for patient sur-
vival. Currently, the recommended procedure for disease detection
is gastrointestinal flexible endoscopy, i.e., the use of a flexible tube
containing a lens system (cf. Figure 2(a).) Early detection and re-
moval of cancer precursors to reduce cancer incidence makes regu-
lar screening of defined cohorts of the population necessary. Its im-
plementation is obstructed by low willingness to undertake the un-
pleasant procedure, but also by inhibitive resource consumptions,
and particular in terms of time required from the limited number of
qualified medical staff. Alleviating these two limitations is essen-
tial and demands research into less intrusive detection procedures
and an increased automatization of both detection and analysis of
abnormalities.

There is a multitude of different use cases for automated di-
agnosis support, even within the limited field of GI tract inspec-
tion, which provide different opportunities beyond image analy-
sis, and which require different kinds of assistance for medical ex-
perts. In our case, the use cases range from training support through
archival, retrieval, and summarization for offline analysis to real-
time annotation during endoscopy. The following quote from one
of our discussions with medical specialists in endoscopy is bound
to trigger the imagination of multimedia researchers with its hints
for potential use cases:

"I am performing thousands of endoscopies, but I still miss ab-
normalities and have difficulties to analyze what I see. I would
have liked more assisted examinations, and there is no possibili-
ties to share these data with my colleagues or retrieve them when
needed. It is just stored on a computer somewhere. I don’t know
where, and I don’t think the IT support knows either... Sadly, we
are collecting a lot of data, but we do not benefit from it at all. Do
you have any idea what we can do with such data? I would be for
example really nice if I could search for similar cases in our image
database or use it to create automatic report. Reporting steals a lot
of our time every day." – A Norwegian doctor, September 2015.

This quote directly reveals the need for real-time video analy-
sis, storage, indexing, sharing and retrieval, audio transcripts, auto-
matic annotation, action recognition, and probably more. After lis-
tening to this and many similar statements about insufficient time
for manual analysis and unused multimedia data, we teamed up
with specialists in the area of GI diseases to investigate how multi-
media research can improve medical systems and patient treatment.

To aid and expand GI tract examinations, we have started the
development of a multimedia system, which is called EIR after the
Norse goddess of medical skills. It supports endoscopists in the
detection and interpretation of diseases in the entire GI tract. Our
aim is to develop both, (i) a live system assisting the detection and
analysis of irregularities during colonoscopies and (ii) a future fully
automated screening for the GI tract using a wireless video capsule
endoscope (VCE).

In the first use case, we consider the provision of live assistance
during classical colonoscopy. To support live colonoscopy while
the procedure is running, the live-assisted system must process the
input video stream from the endoscope (shown in Figure 2(a)) in
real-time, and indicate automatically detected polyp candidates on
a live video feed from the endoscope.

This approach is not meant to reduce the attention that medi-
cal doctors (endoscopists) performing a colonoscopy have to pay
to the endoscopic video. It is rather meant to reduce the number
of overlooked abnormalities and assist in the assessment of ab-
normalities, for example by providing size estimates and surface
structure analysis to ease the distinction of polyps and regions that

(a) Colonoscopy equipment (b) VCE capsule (camera pill)

Figure 2: Endoscopy vs. wireless capsule endoscopy (VCE).

should raise concern from those that are better ignored. Obviously,
live assistance has in the past been inhibited by excessive hardware
costs, which prevented the creation and deployment of system that
could perform in real-time. Our experimental prototype described
in Section 4 makes use of modern parallel hardware, and shows
very promising results, although we have only scratched the sur-
face of the problem.

Our second use case is relevant in scaling GI tract examination
to population-wide screening. This use case imposes strict require-
ments on the accuracy of the detection to avoid false negative find-
ings (overlooking a disease). It is also challenging in terms of re-
source consumption, but the most precious resource in this case is
the time required of endoscopists.

We believe that screening can become feasible through the use
of VCEs (shown in Figure 2(b)), which can reduce several of the
inconveniences and burdens of flexible endoscopy, although its cur-
rent technical restrictions limit its usefulness. Nevertheless, while
VCEs that could provide sufficient information were out of reach
just a few years ago, it is now up to us to investigate the appropri-
ate trade-off decisions on the recording side, which must consider
frame rate, frame rate variability, scene lighting, storage space,
resolution, quantization, energy consumption, detection rate and
more. When we solve this challenge, VCEs become useful for the
physician if the six to eight hours long video of the VCE’s travel
through the human GI tract can be summarized automatically in
less than an hour. Such summarization is dominated by the chal-
lenges of unsupervised recording and the subsequent need to avoid
false negatives.

We hope that our paper encourages the multimedia community to
help improving the health care system by applying their knowledge
and methods to reach the next level of computer and multimedia
assisted diagnosis, detection and interpretation of abnormalities. In
this area, computer vision and medical imaging have created visual
representations of the interior of a body. To automatically detect
and locate abnormalities, visual representations are not sufficient.
There is a need for image and video processing, analysis, infor-
mation search and retrieval, combination with other sensor data,
assistance by medical experts, etc. – clearly multimedia – and it all
needs integration and efficient processing. Therefore, in this paper,
we look beyond computer vision and medical imaging and show the
potential of multimedia research and that it goes far beyond well-
known scenarios like analysis of content on YouTube and Flickr.

The paper is structured as follows. First we give an overview
of health care multimedia challenges focusing on the field of GI
endoscopy as an example of a medical field. That is followed by
an overview of related work and current technologies. After that
we present a showcase for a multimedia system for GI endoscopies
to discuss the complexity and possibilities of medicine teamed up
with multimedia. This part is underlined by a preliminary results
section that should give an idea how such a multimedia application
can be evaluated and what is important. Finally and most important
we give an outlook and a summary including detailed description
of how multimedia can be applied and what is needed.



(a) Colon polyp (b) Colorectal cancer (c) Crohn’s disease (d) Diverticulosis (e) Bleeding (f) Anastomosis

Figure 3: A non-exhaustive set of examples of abnormalities that can be diagnosed using colonoscopy.

2. HEALTH MULTIMEDIA CHALLENGES
There are large societal challenges in the health care systems

worldwide. If we look at our GI tract case study, about 2.8 millions
of new luminal GI cancers (esophagus, stomach, colorectal) are de-
tected yearly in the world, and the mortality is about 65% [41]. In
addition to these cancers, numerous other chronic diseases (see Fig-
ure 3) affect the human GI tract. The most common ones include
gastroesophageal reflux disease, peptic ulcer disease, inflammatory
bowel disease, celiac disease and chronic infections. All have a
significant impact on the patients’ health-related quality of life [7]
and gastroenterology is one of the largest medical branches.

Nevertheless, there are unmet needs and potentials for improve-
ments, which can be remedied by introducing better and more effi-
cient digital medical systems. For colorectal cancer (CRC), which
has one of the highest incidences and mortality of the diseases in
the GI tract, early detection is essential for a good prognosis and
treatment. Minimally invasive endoscopic and surgical treatment
is most often curative in early stages (I-II) with a 5-year survival
probability of more than 90%, but in advanced stages (III-IV), ra-
diation and/or chemotherapy is often required, and it has a 5-year
survival of only 10-30% [6].

The current European Union guidelines therefore recommend
screening for CRC [36]. Several screening methods exist, e.g., fe-
cal immunochemical tests (FITs), sigmoidoscopy screening, com-
puted tomography (CT) scans and colonoscopy. However, in ran-
domized trials, only endoscopic methods have shown a reduced
CRC incidence. However, it is not the ideal screening test, for a
number of reasons. Each examination demands a significant amount
of time from a medical professional and the procedure is unpleas-
ant and can cause great discomfort for the patient [35] (Figure 2(a)).
Moreover, on average, 20% of polyps, precursors of CRC, are missed
or incompletely removed, i.e., the risk of getting CRC depends
largely on the endoscopist’s ability to detect polyps [15].

Furthermore, there are high costs related to these procedures. In
the US, colonoscopy is the most expensive cancer screening pro-
cess with an annual cost of $10 billion dollars, i.e., an average of
$1,100 per examination (up to $6,000 in New York) [32, 33]. In the
United Kingdom, the costs are around $2,700 per examination [29].
To meet the need for cost-effectiveness, improved diagnostics and
enhanced efficiency in health care systems, the proposed techni-
cal solution targets ground-breaking research and innovation for
global major health issues like colorectal, gastric and stomach can-
cer worldwide. By developing and studying an automatic system
for a VCE (Figure 2(b)), the aim is to make these examinations
more easily accessible for patients and participants in screening
programs, i.e., making the public health care system more scalable
and cost-effective. It is also important that multimedia researchers
address some of the challenges identified in the EU health policy,
implemented through the Health Strategy, specially in the topics
of prevention, health care access equalization, maintaining health
into old age, and dynamic health systems incorporating new tech-
nologies. The optimal goal is to contribute in the area of medical
multimedia for analysis as well as storage and processing of this
type of data. Such next-generation big data applications, especially

in the area of medicine, are frontiers for innovation, competition
and productivity [20], where there are large initiatives both in the
EU [1] and the US [21, 2].

3. RELATED WORK AND NEW TRENDS
To the best of our knowledge, currently, no start-to-end interac-

tive medical multimedia system for annotating and analyzing data
and computer aided diagnosis for the medical field exists. If one
takes a closer look into the work of computer vision or medical
image processing, it becomes clear that the complete loop is not
their main research interest. A complete medical multimedia sys-
tem including different multimedia applications that can fulfill the
visions and objectives of the medical field must (i) have high detec-
tion accuracy (sensitivity, recall, precision), (ii) have an extensible
and adaptable processing pipeline, (iv) support real-time process-
ing to provide live feedback during for example endoscopy exam-
inations, (v) support large-scale batch processing of, for example,
VCE videos, (vi) be privacy-preserving, and (vii) visualize detec-
tion feedback to medical personnel. Several generally relevant sys-
tems fulfilling parts of the requirement list exist, but very few target
medical scenarios, and no existing multimedia system matches all
these requirements.

3.1 GI Tract Endoscopy Technology
There are several providers of endoscopy systems and VCE de-

vices. Last generation equipment for manual procedures like colono-
scopy and gastroscopy provides video with high resolution and
high frame rates. There is, however, no computer-aided diagnos-
tic feedback. In this respect, Polyp-Alert [40] is the most promis-
ing with polyp detection capabilities, but with the main purpose
of evaluating how well the procedures are performed. For live
analysis of endoscopy videos, our target system aims to go far be-
yond the currently existing systems. The other approach to record
videos of the GI tract is VCEs using a small capsule type device
(a 11mm×25mm pill), which has at least one image sensor, an-
tenna, battery, light source and wireless transceiver. The capsule
is swallowed to record the GI tract. There are several vendors
providing such capsules, like IntroMedic, CapsoVision, Medtronic
(Given) and Olympus. The current VCEs often have a variable
framerate (increasing the framerate to about 30-35 FPS when en-
tering the small intestine), but a rather low resolution ranging from
256 × 256 to 400 × 600. One of the main challenges for use of
VCEs is man-hours of medical staff required for analysis. There
are about 216,000 images per examination, and a very experienced
endoscopist needs at least 30 to 60 minutes to process the video
and possible sensor data. Therefore, it is important to develop au-
tomatic methods that can reduce the burden on medical staff and
speed up the analysis of the videos. Currently, the software can
segment the videos and can allow endoscopists to fast forward and
look at multiple videos at the same time (probably affecting the
detection accuracy). Moreover, some software includes small de-
tection components that provides only vague “hints", for example
about the detection of the color red, which may indicate bleeding.
Other main limitations with VCEs are that the lack of means for



cleaning particles (food/stool) in the bowels, and their uncontrolled
forward movement through the bowel that cannot be guided to take
a close-up picture or a tissue sample from detected lesions.

Compared to traditional endoscopy examinations, with VCE, pa-
tient discomfort is decreased, and the size of the examined co-
hort may be increased. However, the analysis still requires a huge
amount of manual labor and the image quality is substantially lower.
Our research targets a system providing a far more advanced computer-
assisted disease detection in general, detecting endoscopic findings
with high accuracy, with reduced compute-resource consumption,
to increase the number of screened people without spending huge
amounts of time on manual analysis.

Current systems use mainly video and images for analysis. How-
ever, there is a large potential for adding more information. For
example, knowing the position of the camera (either VCE or endo-
scope may narrow down the search for endoscopic findings). Fur-
thermore, the VCEs and endoscopes will in the future be equipped
with new sensors for biomarkers (bacteria, DNA, RNA. . . ) and pH-
meters (acid) [12], and research introduces the idea of VCEs with
“legs” for controlled movement and “arms” for taking samples and
injecting medication locally [34].

3.2 Abnormality Detection
As described above, we target detection of abnormalities in the

entire GI tract. Currently, most existing systems mainly aim for de-
tection of polyps in the colon. The main reason is the high clinical
relevance and prevalence of CRC. Several studies have been pub-
lished, e.g., [10, 11, 14, 19, 22, 23, 24, 25, 37, 38]. These related
papers address polyp detection in several different ways. For exam-
ple by using neural networks or handcrafted features like detection
of round or ellipse shapes [14, 19], and by detecting the circular
content areas [22, 23]. In Table 1, we compare the most promising
and relevant systems according to reported performance (though
not tested on the same dataset, and not all report the same met-
rics). The most recent and complete system for polyp detection is
Polyp-Alert [40], which is able to give near real-time feedback dur-
ing colonoscopies (10 FPS) with a very high accuracy. However,
not many complete multimedia systems exist, and none of them is
able to do real-time detection for use as a live support system dur-
ing procedures. This means that endoscopists have to re-visit the
videos after procedures, adding to the typically already crowded
schedule of medical experts. Furthermore, all of them are limited
to a very specific use case, and they all fail in one or more of the
requirements of a future automatic system. Thus, there are a lot
of open challenges that can be addressed by the multimedia com-
munity. With EIR, as a first step, we already perform at the level
of state-of-the-art systems (last row of Table 1). Our ambitions are
(i) to extend and improve our prototype far beyond both the cur-
rent version of EIR and state-of-the-art, but more importantly, (ii)
to inspire other multimedia researchers to explore the medical field.

4. SHOWCASE FOR HOW-TO
MULTIMEDIA IN MEDICINE

To show how complex the medical field is and why multimedia
research is needed, we developed the EIR multimedia system for
automatic disease detection in the GI tract. We target the entire
GI tract because not just the colon (the focus of most of the com-
puter vision and medical image processing community) can contain
diseases that should be detected. Figure 4 gives an overview of this
system. The main requirements of such a system are (i) ease of use,
(ii) ease of extending to different diseases, (iii) efficient real-time
handling of multimedia content for both scale (VCEs) and support

Publication/ What/ Recall/ Dataset
System Detection Types Sensitivity Precision Specificity Accuracy FPS Size

Wang et al. [40] polyp/edge, texture 97.7%∗ – 95.7% – 10 1.8m frames

Wang et al. [39] polyp/shape,color,texture 81.4% – – – 0.14 1, 513 images

Mamonov et al. [19] polyp/shape 47% – 90% – – 18, 738 frames

Hwang et al. [14] polyp/shape 96% 83% – – 15 8, 621 frames

Li and Meng [17] tumor/textural pattern 88.6% – 96.3% 92.4% – –

Zhou et al. [42] polyp/intensity 75% – 95.92% 90.8% – –

Alexandre et al. [4] polyp/color pattern 93.7% – 76.9% – – 35 images

Kang et al. [16] polyp/shape,color – – – – 1 –

Cheng et al. [9] polyp/texture,color 86.2% – – – 0.08 74 images

Ameling et al. [5] polyp/texture AUC=95% – – – – 1, 736 images

EIR extendible/multiple 98.5% 93.88% 72.5% 87.7% ∼300 18, 781 frames
∗ The sensitivity is based on the number of detected polyps, other papers use per frame detection.

Table 1: Performance comparison of polyp detection ap-
proaches of state-of-the-art systems. Not all performance mea-
surements are available ("–").

Figure 4: EIR system: annotation and knowledge transfer, de-
tection and automatic analysis and computer aided diagnosis.

for live examinations, and (iv) high classification performance with
minimal false negative classification results. To satisfy these re-
quirements, the system has three main parts: The annotation and
knowledge transfer sub-system, the detection and automatic analy-
sis sub-system, and the visualization and computer aided diagnosis
sub-system.

4.1 Annotation and Knowledge Transfer
The purpose of the annotation and knowledge transfer sub-system

is to efficiently collect training data for the detection and automatic
analysis sub-system. It is well known that training data is very im-
portant to make a good classification system. Additionally, in the
medical field, the time of experts and annotated data are two very
scarce resources. This is primarily because of high every-day work-
load for physicians, but also due to medical-legal issues. In terms
of colonoscopy videos, the objective would be training a classifier
for automatically detecting CRC, or its precursor lesions, colorectal
polyps in multimedia data such as videos, sensor data and images.
In our example system, we therefore developed an efficient semi-
automatic annotation and knowledge transfer sub-system [3]. With
a focus on ease of use and the minimal time requirements for anno-
tation, our prototype was designed with a minimal level of required
interaction.

The specialist’s knowledge is only needed for the first identifica-
tion of abnormalities and to tag them accordingly. This step is done
manually by selecting any regions of interest in a video or image
sequence and by annotation, i.e., providing information about im-
portance and indicators for sensor data and patient records. After
the manual annotation our prototype application uses object track-
ing to suggest annotations in further video frames by adjusting po-



sition and size of regions of interest as well as by automatically
extending the annotation throughout a videos timeline. This data
is then used in the analysis and detection sub-system. What we
also have to learn from the medical doctors is how to interpret the
various different data input sources, e.g., how to interpret the sen-
sor data in the future, the significance of different pH (acidity) or
biomarkers. It is important that multimedia researchers work hand
in hand with the medical experts to gain this knowledge. With-
out efficient data collection tools, this will be an impossible task
because of the time restrictions of medical personnel.

4.2 Detection and Automatic Analysis
The sub-system for detection and automatic analysis is designed

in a modular way, making it possible to easily extend it to sup-
port different disease detectors, as well as other tasks like size de-
termination and recognition of anatomical landmarks. Currently,
it consists of two parts: (i) the detection sub-system that detects
irregularities in video frames and images, and (ii) the localization
sub-system that localizes the exact position of an abnormality in the
frame. This part of the system is designed to detect whether there
is something abnormal in a frame of the video (or image) or not.
All the data that we process can be separated into two disjoint sets.
These two sets contain example images, sensor data (temperature,
blood, etc.) and other information that is useful for endoscopic
findings, and images without any abnormality. It is important to
point out, that the content based information images must be ex-
tended with other data like sensor output or information extracted
from patient records to reach optimal results which makes it not a
pure computer vision task. Each of these sets can be seen as the
model for a specific disease. The modularity makes it possible to
create a pipeline to for example first detect a polyp and then distin-
guish between a polyp with low or high risk of becoming a CRC
by using for example the NICE classification1. To compare and de-
termine the endoscopic findings in a given video frame, we use as
a first approach global image features, i.e., because they are easy
and fast to calculate, and at this stage, we do not need the exact
position.

The basic idea is based on an improved version of a search-based
method for image classification [27]. We chose this method be-
cause it is easy to implement and understand, and it gives us a
first insight of the problem. Our experiments show that the detec-
tion needs good training data. However, the number of examples
needed is rather low compared to other methods like deep learning.
This is an important advantage at this point since there is not much
data available. The classifier2 tries to identify the frames that most
probably contain a certain abnormality. Based on the classification
of the results, the detection sub-system decides which endoscopic
finding the input frame belongs to. This is done using late fusion of
different classifiers. At the moment, we have one classifier for each
global image feature. It is important to point out that the system
will be expanded with other classifiers for sensor and audio data.

In contrast to other classifiers that are commonly used, this clas-
sifier is not trained in a separate learning step. Instead, the classifier
searches previously generated Lucene indexes, which can be seen
as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Lucene indexes can
contain all the information for one data point in one record (global
features, sensor data, patient data, etc.). The system also includes
a benchmarking function that will output evaluation information,
and an HTML page with a visual representation of the results. For

1http://www.wipo.int/classifications/nice/en/
2To invite others to the area, we have released the basic algorithm as open source:
OpenSea: https://bitbucket.org/mpg_projects/opensea.

all video frames, we also can perform a localization. This is a pure
computer vision problem and therefore we will not go in detail. It
uses the information from the detection sub-system as a starting
point, which means that it only processes frames that are already
classified to contain an endoscopic finding. The processing of the
images is implemented as a sequence of intra-frame pre- and main-
filters. The output of this system can then further be used in for
example a computer aided diagnosis program to help the doctor
determining the size of a polyp or for reporting purposes.

4.3 Visualization and Diagnosis
One of the critical parts of each examination is the process of

analyzing, reporting, facilitating and using multimedia to prepare
the final result, i.e., the diagnosis and the report on the procedure.
Medical doctors invest a significant part of their time on this task,
and they are therefore in need of multimedia systems that help min-
imizing errors and increase the efficiency in this process.

For our experiments, we developed a web based visualization
and annotation application to support medical experts with the goal
of creating software that is easy to use and where it is easy to share
data amongst participating medical experts. Our prototype facili-
tates the output of systems detection and localization part and cre-
ates a web based visualization which will be combined with a video
sharing platform [13] where doctors are able to watch, archive, an-
notate and share information. We chose to use a centralized system
based on web technologies to (i) minimize the necessary installs on
client computers (with the current approach, a modern web browser
is the only requirement), (ii) to allow for comfortable sharing of re-
sults and content with other experts, and (iii) to not duplicate data
but use a centralized storage for multimedia data and annotations.
This of course opens up questions about serving sensitive patient
data over IP networks and leads to interesting research and orga-
nizational questions how to solve the data security problem, which
is also an emerging field for the multimedia community, but data
security is for now beyond the scope of the first EIR prototype.

While our first prototype is working as intended, the interplay
between manually created content and automatically created con-
tent can still be improved. For example, applying object tracking
algorithms is very difficult and often requires manual corrections.
Most of the work in this step is done by the software end-users
still need to navigate to the previously marked irregularities and
playback the video from that point for the software to track the
marked region on subsequent frames. Depending on the quality
of the video and the speed of camera movement, user interven-
tion is needed to assure a high quality of tracking. One can see,
that there is still a fair amount of manual work involved, which
makes it not really useful for medical experts. However, using a
specialized – yet to be improved – tracking algorithm substantially
reduces the time needed to, for example, create training videos or
even datasets. Moreover, medical expert skills are maybe no longer
necessarily required as the task of annotation correction is about
tracking regions and adjusting rectangular dimensions rather than
actually detecting or recognizing irregularities. This task could for
example be outsourced using crowdsourcing. Our prototype visu-
alization and annotation tool might be considered very basic, and
there are tools resulting from multimedia research in existence that
can be utilized for being a computer aided diagnosis system, but our
approach already led to a benefit for the medical experts, allowing
them to annotate and share data with other experts. Another area
of multimedia, namely text-to-speech and text processing, could
lead to great improvements in the reporting. When the endoscopic
examination is completed the doctors have to transcribe what they
visually observed into a written report following a standard proto-



col and using an internationally defined minimal standard termi-
nology. This is a time consuming task and important information
is sometimes forgotten or omitted. Consequently, computer based
automatic transcription of audio information and combination of it
with visual information in to a written patient record will probably
increase the quality of the report and would substantially reduce
the doctors workload. This will also make it possible to translate
difficult medical terms into a report for the patient. Finally, not just
the applications are important but also an understanding of how hu-
mans perceive multimedia content and how different aspects of the
content influence them differently.

5. PRELIMINARY RESULTS
If multimedia researchers decide to work in the field of medicine

we also have to make sure that our systems and applications are
useful and accurate enough and achieve the required performance.
Therefore, we tested our preliminary prototype in terms of accu-
racy and system performance. We used a computer with a dual
2.40GHz Intel Xeon CPUs (E5-2630), 16 physical CPU cores (32
with hyper-threading), 32GB of RAM, dual NVIDIA Corporation
GM200 GeForce GTX TITAN X GPUs, a 256GB SSD and Ubuntu
Linux. Moreover, we used the ASU-Mayo Clinic polyp database3

which currently is the largest publicly available dataset consisting
of 20 videos with a total of 18, 781 frames and different resolutions
up to full HD [31]. In these experiments, we implemented the sys-
tem in Java, C++ and CUDA (for GPUs). We did not include any
other data apart from the visual information, such as sensor data,
etc., but this will be an important step for the future. For example,
using results from a fecal blood test or temperature data will most
probably increase the classification performance.
1) Detection Accuracy. To evaluate detection accuracy, we used
the common standard metrics precision, recall and F1 score. We
conducted a leave-one-out cross-validation to evaluate the system
which is a method that assesses the generalization of a predictive
model.

The system that we have developed allows us to use several dif-
ferent global image features for the classification. The more image
features we use, the more computationally expensive the classifi-
cation becomes. Also, not all image features are equally impor-
tant or provide equally good results for our purpose. As a first
step, we therefore need to find out which image features we want
to use for classification. In order to understand which image fea-
tures provide the best results, we generated indexes containing all
possible features provided by LIRE [18]. These indexes were used
for several different measurements and also for the leave-one-out
cross-validation. Using our detection system, the built-in metrics
functionality can provide information on the performance of differ-
ent image features for benchmarking. Further, it provides us with
separate information for every single image feature, as well as the
late fusion of all the selected image features.

For our first test, we ran the detection with all possible image
features selected. We then combined the reported values for true-
positives, true-negatives, false-positives and false-negatives for all
the runs, and calculated the metrics for the combined values. The
single image feature that generally achieves the best score is CEDD,
which is discussed in detail in [8]. Further, also the image features
JCD, Edge Histogram, Rotation Invariant Local Binary Patterns,
Tamura and Joint Histogram achieve very good values. The late fu-
sion of all the image features even achieves slightly better results.
However, it is impractical to do a late fusion of all these image
features as the calculation, indexing and searching of all image fea-

3http://polyp.grand-challenge.org/site/Polyp/AsuMayo/

tures is computationally expensive. Therefore, we want to find a
small subset of two image features, which provides optimal results
despite minimizing the computational effort.

Based on the evaluation of different combinations of image fea-
tures the image features JCD and Tamura seemed to be the best
ones for our performance measurements. To assess the actual per-
formance of the classifier combining these two image features, we
ran the leave-one-out cross-validation over all available video se-
quences. With these settings, we achieve an average precision of
0.889, an average recall of 0.964 and an average F1 score value of
0.916. The problem with this average calculation is that different
video sequences contribute values based on different numbers of
video frames. If we weight the values contributed by every sin-
gle video sequence with the number of frames in the sequence,
we achieved an average precision of 0.9388, an average recall of
0.9850, and an average F1 score value of 0.9613. In other words,
these results mean that we can detect polyps with a precision of
almost 94%, and we detect almost 99% of all frames containing
polyps. The detailed results compared to state-of-the-art systems
are presented in Table 1. Furthermore, for the localization of the
polyps in the frames, we reached an average precision of 0.3207, a
recall of 0.3183 and a F1 score of 0.3195. These values are low in
absolute terms and show how complex and difficult it is to make a
multimedia system that is really useful for the medical doctors.

Obviously, more research is needed such as neural networks,
more data, different classifiers, include humans in the loop, and
methods have to be developed that can help to measure if perfor-
mance is sufficient compared to the user needs. However, the mul-
timedia community has to be aware that we cannot just apply our
methods that we are used to use in this new field. Stated plainly,
detecting cars or cats is not the same as detecting polyps or bleed-
ings. For example, neural networks are conceptually easy to un-
derstand and lately large amount of academic research has been
done on them. Results recently reported on for example the Ima-
geNet dataset look quite promising [11]. Nevertheless, they have
some negative aspects that make them less useful for the medical
field [10]. First, training is very complicated and takes a long time.
Our system has to be fast and understandable since we deal with
patient data, and the outcome can differentiate between life and
death. Therefore, a black box approach, that has difficulties to ex-
plain certain decision made, seems to be the second best way to
solve a problem that has to be understood very well by all users.
This can lead to serious problems in the medical field since it is
not possible to evaluate them properly, and there will always be a
chance that they completely fail without being aware of it [26]. The
best way is still to understand the problem and then solve it. This of
course comes with a challenge for the multimedia community. We
have to test our current methods and most probably develop new,
handcrafted algorithms and tools from scratch for this new field.
A further problem of neural networks is that they require a lot of
training data. In the medical field, this is a very important issue
since it is hard to get data due to the lack of experts time (doctors
have a very high workload) and legal and ethical issues for being
able to share data among countries or even hospitals in the same
country. Some common conditions, like colon polyps, may reach
the required amount of training data for a neural network while
other endoscopic findings, like for example tattoos from previous
endoscopic procedures (black colored parts of the mucosa), are not
that well documented, but still important to detect [28]. Finally,
neural networks are not easy to design for probabilistic results. In
a multi class decision based system, that is built to support medical
doctors in decision making, the probability is an important informa-
tion. Approaches with a better understanding of the problem will



give a much more accurate probabilistic score that can be directly
translated to the real world scenario [30].
2) Real-Time System Performance. One further requirement for
the system and the medical field in general is scalability and execu-
tion performance. This requirement comes with some challenges
like for example lack of actual hardware (it is in general hard to
replace hardware or operating systems in hospitals due to security
and system restrictions), not being able to use distributed systems
and lack of funding for new hardware (e.g., Norwegian hospitals
in 2016 still use Windows XP and Internet Explorer 6 even though
funding is good). These restrictions makes it very challenging for
researchers to develop efficient algorithms that are also scale able
on the large amount of data that they will have to process. There-
fore sophisticated methods are needed that run efficient in terms of
speed and hardware need but at the same time achieve good per-
formance. Based on our example system we present a experiment
that shows how this challenges can be solved using multimedia sys-
tems knowledge and methods. For the experiments, we decided to
use the configuration of the system that performed best in the ac-
curacy experiment. In our use case of supporting doctors during
live colonoscopies, it is important to reach real-time performance
in terms of processing a video and several other input signal at the
same time and reach a frame rate of not less than 30 FPS (output
rate of current endoscopes). The performance of the detection is
important, since the system should provide a result as fast as pos-
sible and not slower than 30 FPS making it usable for live appli-
cations. Figure 5(a) shows the detection sub-system performance
in terms of FPS for the highest video resolution of 1920 × 1080.
It depicts performance for all different detection algorithm imple-
mentations (Java, C++ and GPU) and different combinations of uti-
lized hardware resources (from 1 to 32 CPU cores and none, 1 or 2
GPUs). For the full HD videos, the required frame rate of 30 FPS is
reached using 8, 5 and 1 CPU cores in parallel for the Java, the C++
and the GPU implementations, respectively. Increasing the number
of used CPU cores also increases the performance for all imple-
mentations, and the system reaches the maximum performance of
330 FPS with 2 GPUs and 25 CPU cores. A slight decrease of
the performance can be observed for a high number of used CPU
cores. This is caused by an increased overhead for context switch-
ing and competition for resource. Figures 5(b) and 5(c) show the
detection sub-system performance in terms of FPS for the videos
with smaller resolution. The maximum performance of 430 (for
856 × 480 resolution) and 453 (for 712 × 480 resolution) FPS is
reached using 2 GPUs and 18 and 16 CPU cores. For localization
which is more computationally expensive (plots not shown), the
maximum performances observed are 129, 246 and 283 FPS for
1920× 1080, 856× 480 and 712× 480 resolutions, respectively.

The outcome of these experiments clearly shows that our system
can reach real-time requirements for the video processing and still
has processing power left which can be used to process other input
data at the same time, for example, sensor or patient records data,
etc. A number of complex features can be added into the detection
and the localization sub-systems. This will increase the system’s
detection and localization accuracy, and at the same time, keep its
ability to perform in real-time. Moreover, it can also be used to
process several data streams simultaneously in real-time and sig-
nificantly reduce the examination time of the VCE videos for the
medical experts. The time reduction lies around 5-10 times de-
pending on type of input data like for example video resolution,
frame rate and sensors used. Our evaluation also shows, that this is
a very complex topic and requires methods and technologies from
several different multimedia research directions, e.g., signal pro-
cessing, multimedia systems, information retrieval, etc.

6. OUTLOOK AND CHALLENGES
With 2.8 million cancer cases diagnosed in the GI system per

year with a mortality rate of about 65%, we have the best motiva-
tion to perform research in the proposed area. The GI example that
we used in this paper is only the tip of the iceberg of unsolved prob-
lems in the health care sector. By exposing more unexplored mul-
timedia research questions, researchers can reveal a huge potential
to save lives by combining the medical and multimedia research
areas. Our aim is to raise awareness that (i) multimedia research
can do a lot for and learn a lot from the field of minimally invasive
medicine, (ii) interdisciplinary research in this field leads to imme-
diate benefits, and (iii) we have only scratched the surface with our
efforts.

In our experience, medical experts are open to new multimedia
applications in their fields. We experienced that doctors are willing
to spend a lot of time and effort into supporting such research, as
it ultimately has the potential to make their daily routine more effi-
cient, and they will have more time to focus on the patients them-
selves. Especially, since we live in a time where handling multi-
media is part of everyone’s lives, medical experts wonder why the
same functionality that they can use in YouTube, Flickr and Twitter
cannot be applied to their own medical field. The main reasons that
we identified are that first of all the computer vision and medical
imaging community that work mainly on this problems is not in-
terested in the whole multimedia life cycle from start to end, i.e.,
from the content creation, analysis to content usage by the actual
users. Second and most important, it is a problem within our own
community. It is much more convenient to download pictures from
Flickr or videos from YouTube and categorize and use them in re-
search, especially as many can identify themselves as social media
users. However, working with medical data involves organizational
challenges like seeking and maintaining contact with medical ex-
perts, understanding their problems, as well as getting used to often
unpleasant or even content that causes a disgust response until a re-
searcher is habituated in working in the area. Nevertheless, if we
– the multimedia community as a whole – would be more brave to
tackle these problems, we could actually help to save lives, make
patient examinations less uncomfortable and help to save money
and time spent in the health care system for daily routines instead
of research. These are possibilities for societal impact that surely
are appealing for both, researchers as well as global citizens. Last
but not least, being able to look back seeing that our multimedia re-
search helped to save lives is bearing more weight than being able
to say we can classify cats, cars or beautiful holiday pictures.

6.1 Open Challenges
Our EIR system has preliminarily shown how multimedia tools

can impact greatly health care systems. Nevertheless, there are still
many open challenges that need to be faced through a multidisci-
plinary approach where multimedia methods will have to play a key
role. Challenges include but are not limited to:
1) Exploiting domain expert knowledge to improve automated
methods performance. Most of the methods (including the ones
described in this paper) devised for supporting medical investiga-
tions in analysing visual data content are still predominantly based
on learning distributions of low-level and middle-level (recently
using deep learning approaches) visual features. While this has
proved to achieve good performance in many computer vision ap-
plications, there are cases, especially in the medical domain, where
relying on visual appearance might fail since processing visual data
content requires specific expertise. This is the case of endoscopy
videos where the reliability of the outcome mainly depends on
the examiner’s expertise. Our hypothesis is that, for a real break-



(a) Videos with a resolution of 1920 × 1080. (b) Videos with a resolution of 856 × 480. (c) Videos with a resolution of 712 × 480.

Figure 5: The performance of the detection sub-system in terms of FPS varying the number of CPU cores, the resolution of the
videos and the detection algorithm. The maximum performances observed are 330, 430 and 453 FPS for 1920×1080, 856×480 and
712× 480 resolutions.

through in medical image analysis, automated methods need to ex-
ploit jointly perceptive elements (visual features) and semantic fac-
tors (domain knowledge). This explains why in the medical domain
relying only on image processing and computer vision methods will
lead to a dead end. Instead, a multidisciplinary approach operat-
ing on multimodal data is necessary. Nevertheless, exploiting high
level knowledge in computer vision methods poses several chal-
lenges from how to extract and model effectively domain expert
knowledge to how to include such semantics into machine learning
methods.
2) Automated report systems. A significant part of a medical pro-
fessional’s time is spent for preparing reports after procedures and
examinations. Multimedia research can significantly support this
phase by collecting all patient and examination data and by pro-
viding automatically summaries able to convey key information of
the performed procedures including media fragments, e.g., video
frames with detected objects, audio speeches describing colon vi-
sual features, etc. Such distilled media needs also to be interlinked
with detailed information on treatments, medication for a holis-
tic view of patients. These report will also be extremely useful
for training medical experts: through multimedia enriched reports,
medical doctors in training can learn based on real data according
to case-based teaching and problem-based learning strategies. The
multimedia field has tackled over the years, the problem of multi-
media summarization for automated report generation, but such re-
search is still at its infancy since methods developed so far are able
to process only one type of media at a time (hence do not take full
advantages from the richness of multimodal data). However, the
most important limitation of multimedia research in this direction
is the lack of generalization capabilities; in fact, most approaches
cannot be applied to domains different from the ones they were
devised for. To overcome these limitations, one solution we be-
lieve is worthwhile to investigate is to build automated multimedia
summarization methods with a semantic nature exploiting domain
ontologies, which can play an important role in the medical multi-
media analysis where the data complexity and heterogeneity make
the task very challenging.
3) Integration and fusion of unstructured and heterogeneous
data. Beside visual data, other (equally important) information
(e.g., blood pressure, temperature, breathing, oxygen levels) are
recorded during examinations, which, if suitably fused to visual
data content may significantly enhance procedures’ outcome. An
additional, and semantically rich, data source that can be exploited
is recordings of medical experts spoken comments during exami-
nations. Indeed, surgeons often describe verbally the procedure by
giving details on what they see to other doctors and to issue com-
mands and requests to the medical team. Although audio gener-
ated during procedures is a valuable source of information to train
both automated methods and young doctors, it is rather unstruc-

tured and noisy and, as such, it demands for specific text mining
methods approaches to distill the key information and to map it to
a structured data form. Under this scenario, the semantic web may
be a powerful tool for integration of such heterogeneous multime-
dia data. Once, heterogeneous data are all modeled using a shared
formalism, visualization approaches are envisaged to present fused
information in order to support medical staff, by enhancing the ex-
amination experience, for diagnosis.
4) Patient context information. Typically, health issues affect
patients beyond their immediate treatment, and there are very of-
ten preceding correlated events before treatment is necessary or a
health related issue is diagnosed. Therefore, health issues do not
appear suddenly or as isolated events, but come in a rich context,
which is largely exploited by medical doctors for diagnosis and
treatment. Such context includes patients’ mobility, eating habits
and changes, etc. To this end, multimedia research can play an
important part in developing smart wearable body sensors (and al-
gorithms to analyze their data) that can collect routinely all such
information and share with medical staff.
5) Building a knowledge base. A large collection of multime-
dia including videos, audio streams, sensor readings and patient
records will represent a priceless knowledge base for approaches
like case based reasoning and/or large empirical studies on treat-
ments. Nevertheless, sharing such knowledge base opens up issues
in privacy and data security, that, if successfully addressed, will
enable the increase of such knowledge base (since many medical
people will share their data), thus leading to large scale benefits in
health care. To effectively address protection and reliability issues,
multimedia researchers should investigate secure communications
and processing through a deep interaction between signal process-
ing, networking, and cryptography.
6) Interlinking information from different modalities. Besides
endoscopic and minimally invasive surgery, there are other diag-
nosis systems like X-Ray, ultrasonic or MRT data from patients.
Surgeons would greatly benefit from synchronized spatial informa-
tion on multiple modalities to be able to investigate abnormalities
from different angles. Now, all interlinking of diagnostic data from
multiple modalities has to be done manually. This shows that there
exists a huge need for algorithms and applications that can combine
these different types of media automatically and efficient. For ex-
ample, the information collected from a standard colonoscopy with
a video from a capsular colonoscopy and CT colonography (vir-
tual colonoscopy that uses special X-ray equipment) could lead to
a higher detection rates and better patient survival probabilities.
7) Simplifying handling of multimedia. With today’s tools, ev-
eryone is used to access multimedia everywhere and manipulate
and share multimedia data with the tip of a finger. In the medical
domain, software systems have a comparably long life span, and
it has to be thoroughly tested before they can be applied in a hos-



pital setting. Therefore, we need sustainable interactive tools and
ways of interactivity that do not wear off as fast as they did in the
last decade. Multimedia researchers have the knowledge and are
needed to help creating such systems that fulfill the user needs but
also to develop the algorithms that are the basis of such systems
such as content retrieval, etc. This is especially important since
most of the standard algorithms for object or concept detection will
most probably not work in the medical field, which we experienced
in the begin of our research when we tested a lot of state-of-the-
art methods like for example histogram of oriented gradients or
structured output tracking with kernels, etc. We believe that this
is mainly caused by differences in the multimedia data provided
(videos and images show completely different content, quality of
the data, needs of the users, etc.).
8) Test data sets and challenges. There are already workshops,
challenges and whole conferences dedicated to the topics of med-
ical information and multimedia systems. However, just like in
the multimedia community, we have to move forward to build and
maintain an over-critical mass of test data including ground truth
and annotations, and usage scenarios that are recent enough, i.e.,
recorded with up-to-date sensors and annotated thoroughly based
on current medical standards and state-of-the-art. This is not only
a research, but also a legal and societal, challenge as medical data
is always personal and especially if it includes a patient context
or long term records it is hard to anonymize. This requires not
only sophisticated annotation systems, but also algorithms for un-
supervised and semi-supervised learning. Furthermore, algorithms
that can help to anonymize or watermark content to protect data
are needed. Apart from the algorithms to analyze the data this part
also needs motivated and dedicated people that contact hospital key
personnel and doctors, and play a pioneering role in establishing a
good data basis by collecting, annotate and make data public avail-
able.
9) Acting in concert. The greatest challenge of all, however, is
to act in concert, as an interdisciplinary community. Medical ex-
perts bring in the data as well as the domain knowledge. Legal
experts find ways how to deal with privacy and data security as-
pects from a legal and societal point of view. Companies supplying
medical equipment must open up for collaboration and research be-
yond their own research departments. Last but not least, the multi-
media community must bring in its knowledge as a core discipline,
but also as a research field which historically involved other disci-
plines like computer vision, machine learning, interactive systems,
networking, data warehousing, speech recognition, information re-
trieval, data mining and software engineering. The biggest task that
the multimedia community faces is most probably to break the ice.
Medical experts often do not know what is even possible with the
data they have. Therefore, the responsibility lies in the hands of the
multimedia researchers to build bridges. For example, we went to
hospitals and asked for meetings with doctors to show them what
we can do. Once they saw the possibilities, they were willing and
very motivated to contribute with knowledge, data and new ideas.
To address all these challenges, an interdisciplinary team is neces-
sary as the problems goes far beyond visual analysis, information
retrieval and annotation. It is also a multimedia area where it is
essential to involve researchers from different areas like interactive
system, multimedia systems and speech recognition in a special-
ized domain, ontologies, data mining and machine learning, sensor
fusion, and synchronization of data from different modalities.

6.1.1 Possible Research Projects
We encourage the multimedia community to be open minded and

help to tackle the challenges in this new field. It is important to be

aware that we cannot just keep on annotating social videos, and
then expect that medical technology companies can transfer these
technologies to the medical use case. Therefore we need specific
approaches for the field of medical multimedia.

In the sense of getting more into detail, we want to point out the
more immediate and concrete challenges in this field by proposing
three different research project topics and relevant research ques-
tions making for multiple challenging and interesting PhDs.
1) How can we identify and track abnormalities in a live en-
doscopic video? While our prototype did experiments on doing
exactly that, there are fields beyond polyps as well as an opportu-
nity to reduce manual input. Going beyond polyps would mean to
identify cancerous tissue, inner injuries, bleeding, scars, fractures,
and so on. This goes well with finding the current position and
rotation of the camera within a patients body, i.e., by sensor fu-
sion and asks for new and multimodal tracking algorithms taking
camera movement into account. Medicine needs very high recall,
but false alarms can be very costly not to mention extremely upset-
ting for the patients. Multimedia that detects concepts or events in
YouTube videos is just not held to these kinds of standards.
2) How can we pre-prepare the final report on the surgery? As
reporting takes a lot of a surgeons time, any step in this direction
would be immediately beneficial for medical experts and patients
alike. This actually involves several multimedia disciplines. Many
surgeons direct and inform their team during a surgery by short,
spoken announcements like “Here, we’ve got the first polyp.”, “Elec-
tro scalpel!” or “This one looks particularly odd.”. With speech
recognition and synchronization with a video stream, the video can
be segmented, relevant parts can be found and media for a final re-
port can be suggested in addition with recommending relevant text
passages from earlier reports of similar cases. The systems need to
be able to optimize not for correct predictions, but for what humans
need to know in order to make decisions. One approach is to fuse
many slightly different algorithms so that the typical mistakes of
one algorithm do not accidentally dominate.
3) How can we share, annotate and educate? While of course
many would like to see a YouTube or Flickr like social media net-
work for medical experts, it is simple not possible as the number of
experts is limited and not everyone can be expected to be an active
contributor to such a network. However, especially senior surgeons
are skilled in creating videos, books or training materials and com-
municating them to trainees or colleagues to exchange knowledge.
Still they lack tools for that. Critical for such a venture would be
interdisciplinary work in (i) interactive multimedia like annotation,
share, and interlinking of content, (ii) security and encryption for
making sure the data stays safe, (iii) knowledge based systems as
ontologies and structured knowledge plays a huge part in that, and
(iv) multimedia systems, as all the data has to be handled, trans-
ferred, streamed, encoded etc.

6.1.2 First Steps
While we stressed the fact that working with medical data and

medical experts is crucial for moving forward with research in the
medical domain, we also acknowledge that interdisciplinary work
is hard to start. What we found most important in our project is
to build a working relationship with medical doctors who are per-
sonally interested in making things better. The VIPs for such inter-
disciplinary projects are senior surgeons, who are actively training
new surgeons, as they (i) have experience in sharing knowledge,
(ii) have access to a lot of data, (iii) are extremely good in speci-
fying problems and very competent in working out solutions, and
(iv) have influence in terms of the hospital organization.

In our experience, it takes some time for PhD students to build



awareness of the field to a level, where we could work efficiently
on the problem. At the begin, we organized that the PhD students
attended live surgeries, watched and discussed surgery videos and
reports with senior surgeons as well as trainees, and participated
in regular meetings for questions and answers that were raised in
this learning period. Within this starting period, in parallel with
building up the knowledge, it is in general a good idea to expand
the data available throughout the research project. Besides building
on public data sets like the ASU-Mayo Clinic polyp database [31],
we suggest to work out a scheme to obtain recent multimedia data
from the before mentioned necessary contacts. This typically in-
volves legal and organizational issues including but not limited to
(i) a mutually agreed upon anonymization routine for the data, (ii)
a non disclosure agreement of the participating organizations and
involved people, as well as (iii) a specialized setup to make sure the
data stays safe and protected during transport and in storage at the
research institution.
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Abstract—The process of finding diseases and abnormalities
during live medical examinations has for a long time depended
mostly on the medical personnel, with a limited amount of
computer support. However, computer-based medical systems are
currently emerging in domains like endoscopies of the gastroin-
testinal (GI) tract. In this context, we aim for a system that en-
ables automatic analysis of endoscopy videos, where one use case
is live computer-assisted endoscopy that increases disease- and
abnormality-detection rates. In this paper, a system that tackles
live automatic analysis of endoscopy videos is presented with a
particular focus on the system’s ability to perform in real time.
The presented system utilizes different parts of a heterogeneous
architecture and can be used for automatic analysis of high-
definition colonoscopy videos (and a fully automated analysis
of video from capsular endoscopy devices). We describe our
implementation and report the system performance of our GPU-
based processing framework. The experimental results show real-
time stream processing and low resource consumption, and a
detection precision and recall level at least as good as existing
related work.

Index Terms—medical; multimedia; information; systems;
classification

I. INTRODUCTION

With the rapid developments in technology that allow minia-
turization of cameras and sensors for moving them through the
human body, there is an increasing need for real-time medical
systems. These improvements lead to a lot of advantages for
both patients and doctors, but also challenges for the computer
science community. A system supports humans in a critical
field like medicine has to fulfill several requirements, including
fault tolerance, data security and privacy. Additionally, to
support real-time detection of diseases in medical images and
videos, the system must exhibit high performance and low
resource usage.

In this paper, we describe an new version of system called
EIR [1] that provides real-time support for medical image
and video data analysis, and we enhance the system with
GPU acceleration support. Our goal is to provide an effi-
cient, flexible and scalable analysis and support system for
endoscopy of GI tract (see figure 1). It should be applicable
both for supporting traditional live endoscopies by giving real-
time support and for offline processing of videos generated
by wireless capsule endoscopes that are used in large-scale

screening. At this time, our system detects abnormalities like
those shown in figure 2, in videos of the colon. It does this
through a combination of filters using machine learning, image
recognition and extraction of global and local image features.
However, our system is not limited to this use case, but can
be extended to cover analysis of the entire GI tract. Therefore,
we developed a live system that can be utilized as a computer-
aided diagnostic system and a scalable detection system.

Fig. 1. Our system targets the whole GI
tract (Image: kaulitzki/shutterstock.com).

In the scenario of medical
image processing
and computer-aided
diagnosis, high precision
and recall are important
and the object of many
studies. Our system must
therefore both provide
an accurate detection
and analysis of the
data, and address the
often ignored processing
performance at the same
time. This is important
for live feedback during
examinations.

A closer look at the
most recent and com-
plete related work, Polyp-
Alert [2], reveals that
real-time speeds are not achieved by the current existing sys-
tems. To tackle this problem, we have extended and improved
the EIR system [3], [4], focusing on the speed of detection.
Speedup is gained by applying heterogeneous technologies,
in particular graphical processing units (GPUs), where we
distribute the workload on a large number of processing cores.
The initial results from our experimental evaluation show real-
time stream processing and low resource consumption, with a
precision and recall of detection at least as good as existing
related systems. Compared to existing systems, it is more
efficient, scales better with more data at higher resolutions
and, it is designed to support different diseases in parallel at
run time.
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(a) Colon Polyp (b) Colorectal Cancer (c) Ulcerative Colitis (d) Crohn’s Disease (e) Diverticulosis

Fig. 2. Some examples of abnormalities that can be found using colonoscopy (images are from Wikimedia Commons).

The rest of the paper is organized as follows. First, we
present related work in section II. Then, in section III-A, we
briefly describe the base system architecture. This is followed
by a presentation of the improved system in section III-B.
Next, we present the performance of the system in section IV
with polyp detection as a use case. Finally, we draw conclu-
sions in section V.

II. RELATED WORK

Research on automatic detection of abnormalities in the GI
tract is usually focused and limited to a very specific disease
or abnormality. Most existing work targets detection of polyps
in the colon with a specific type of camera, both due to lack
of available test data, but also since it is easier to narrow the
focus and create more specialized solutions. Systems aimed
at polyp detection [5], [6], [7] are promising, but there is a
lack of systems that are able to perform their analysis in real-
time, which is required to support doctors with computer-aided
diagnosis during colonoscopies.

In terms of detection performance, several systems and
algorithms have been presented in literature with promising
performance. The most recent and also best-performing one is
the polyp-detection system of Wang et al. [2]. The presented
Polyp-Alert system is able to provide near real-time feedback
during colonoscopies. Near real-time in this context is defined
as being able to process 10 frames per second. This is
done by using visual features and a rule-based classifier to
detect the edges of polyps. The system reaches an impressive
performance of 97.7% correctly detected polyps. The dataset
that has been used for this tests contains 52 videos taken
from different colonoscopies. The dataset is not available and
a direct comparison is therefore not possible. Polyp-Alert is
at the moment limited to polyp detection and does not give
real-time feedback for current 25 fps colonoscopy systems.

Nawarathna et al. [8] presented an approach that is not
limited to polyp detection in colonoscopy videos. It is also
able to detect abnormalities like bleeding. To achieve this, a
texton histogram of an image block is used. Nevertheless, this
system does not reach real-time performance.

A possible solution to achieve real-time instead of near real-
time performance is the SAPPHIRE middleware and software
development kit for medical video analysis [9]. The toolkit
has been used to built the EM-Automated-RT software [10].
EM-Automated-RT does real-time video analysis to determine
the quality of a colonoscopy procedure, and it is able to give

visual feedback to the endoscopist performing the procedure.
This is done to achieve optimal accuracy of the inspection
of the colon during the procedure. Nevertheless, it is limited
to the assessment of the endoscopist’s quality, and does not
automatize disease detection itself.

A dominant trend to speed up processing of CPU-intensive
tasks is to offload processing tasks to GPUs. Stanek et al. [9],
[10] indicate that utilizing a GPU and program it using
either CUDA1 or OpenCL2 can be the right way to achieve
real-time performance. In other areas this has already been
explored to a certain extent. For example, we applied it in
sport technology [11], [12], where GPUs were used to improve
the video processing performance to achieve live, interactive
panning and zooming in panorama video.

In summary, actual computer-aided diagnostic systems for
the GI tract do not provide real-time performance in com-
bination with a sufficient detection or localisation accuracy.
Therefore, we present a system focusing on both high accuracy
detection and real-time performance. Additionally, the aim is
to provide flexibility for other diseases that can be detected.

III. SYSTEM

In our research, we target a general system for automatic
analysis of GI tract videos with high detection accuracy, abnor-
mality localisation in the video frames, real-time performance
and an architecture that allows easy extensions of the system.
In this paper, we focus on achieving real-time performance
without sacrificing high detection accuracy.

A. Basic Architecture

Our system consists of three main parts. The first is feature
extraction. It is responsible for handling input data such as
videos, images and sensor data, and extracting and providing
features from it. The most time-consuming aspect here is the
extraction of information from the video frames and images.

The second part is the analysis system. Currently, a search-
based classifier that is similar to a K-nearest-neighbour ap-
proach [13] is implemented. The search-based classifier use
more than 20 different global image features and combinations
of them for the classification. In our use case of polyp
detection, we used an information gain analysis [14] to identify
a combination of the features Joint Composite Descriptor
(JCD) (which is a combination of Fuzzy Color and Texture

1http://www.nvidia.com/object/cuda_home_new.html
2http://developer.amd.com/tools-and-sdks/opencl-zone/
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Histogram (FCTH) and Color and Edge Directivity Descriptor
(CEDD)) and Tamura as the best working ones. The features
mainly focus on texture and color, and a detailed description
can be found in [15]. Additionally, a localisation algorithm
for polyp localisation is supported. The implementation of
this part is modular and can be extended with additional
diseases, classifiers or algorithms as needed. Of course, adding
additional modules will require more computing power to keep
the systems real-time ability. We address this by designing a
heterogeneous architecture.

The last part is the presentation system. It presents the
output of the real-time analysis to the endoscopist. The most
challenging aspect here is that the presentation should not
introduce any delays, which would make the system unsuitable
for live examinations. The presentation of the results is imple-
mented in a light-weight way using web technologies. The
advantage is that it does not require additional installations,
which sometimes can be problematic in a hospital environment
and due to its simplicity it does not consume relevant amounts
of resources.

The first version of our system worked on at most two image
features at a time, it was restricted to a single computer, and
the localisation part did not achieve real-time speed for full
high-definition videos. Its performance is given for comparison
in section IV-B.

To acheive real-time speed, the architecture had to be
improved. We chose to do this by applying heterogeneous
processing elements. As discussed in the related work, the
most promising approach is the utilization of GPUs.

B. Heterogeneous Architecture Improvement

To improve the performance of our initial basic system
architecture, we re-implemented most compute-intensive parts
in CUDA. CUDA is a commonly used GPU processing frame-
work for Nvidia graphic cards. We designed an architecture
with a heterogeneous processing subsystem as depicted in
figure 3.

At the moment, GPU-accelerated processing is implemented
for a number of features (JCD, which includes FCTH and
CEDD, and Tamura) for the feature descriptor extraction, color
space conversion, image resizing and prefiltering.

In our architecture, a main processing application interacts
with a modular image-processing subsystem both implemented
in Java. The image-processing subsystem uses a multi-threaded
architecture to handle multiple image processing and feature
extraction requests at the same time. All compute-intensive
functions are implementated in Java to be able to compare
performance with the heterogeneous implementation, which is
transparently accessible from Java code through a GPU CLib
wrapper. The JNA API is used to access the GPU CLib API
directly from the image processing subsystem. The GPU CLib
is implemented in C++ as a Linux shared library that connects
to a stand-alone processing server and pipes data streams for
handling by CUDA implementations. Shared memory is used
to avoid the performance penalty of data copying. Local UNIX
sockets are used to send requests and receive status responses

Fig. 3. The main processing application consisting of the indexing and
classification parts uses the GPU-accelerated image processing subsystem.
This subsystem provides feature extraction and image filtering algorithms.
The most compute-intensive procedures are executed on a stand-alone CUDA-
enabled processing server. The interaction between application and server is
done via a GPU CLib shared library, which is responsible for maintaining
connections and streaming data to and from the CUDA-server.

from the CUDA server because they can be integrated more
easily with asynchronous on the JNI side then shared-memory
semaphores. The CUDA server is implemented in C++ and
uses CUDA SDK to perform computations on GPU. The
CUDA server and all heterogeneous-support subsystems are
built with distributed processing in mind, and can easily be
extended with multiple CUDA servers running locally or on
several remote servers.

The processing server can be extended with new feature
extractors and advanced image processing algorithms. It en-
ables the utilization of multi-core CPU and GPU resources.
As an example, the structure of the FCTH feature extractor
implementation is depicted in figure 4. It shows that for the
image features, all pixel-related calculations are executed on
the GPU. In the case of the FCTH feature, this includes also
the processing of a multi-threaded shape detector and fuzzy
logic algorithms.

To achieve better performance, a heterogeneous processing
subsystem provides the transparent caching of input and inter-
mediate data, which reduces the CPU-GPU bandwidth usage
and eliminates redundant data copy operations during image
processing.

IV. EVALUATION

To evaluate our system, we use colorectal polyp detection
as a case study. As test data, the ASU-Mayo Clinic polyp
database3 has been used. This dataset is the largest publicly
available dataset consisting of 20 videos. We converted the
videos from WMV to MPEG-4 for the experiments. The 20
videos have a total number of 18.781 frames with a maximum
resolution of 1920 × 1080 pixels (full high definition) [16].
Further, we concentrate the experiment on the detection part.

3http://polyp.grand-challenge.org/site/Polyp/AsuMayo/
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Fig. 4. GPU-acceleration is used to extract various features from input
frames. The figure shows an example of our FCTH feature implementation.
The input frame is split into a number of non-overlapping blocks. Each of
them is processed separately by two GPU-threads. The main processing steps
include color space conversion, size reduction, shape detection and fuzzy logic
computations.

Localisation of the polyp in the frame is also implemented
and optimized, but due to space restrictions, it is not included
here.

A. Polyp Detection

In terms of detection performance, we reach acceptable
results, as illustrated in table I. The actual performance of
the system has been assessed using a combination of JCD and
Tamura features. For a robust and representative evaluation, we
conducted a leave-one-out cross-validation with all available
video sequences. The training of the system using 19 videos
takes around 2 minutes. Due to the problem that different
video sequences contribute values based on different numbers
of video frames, we weighted the values contributed by every
single video sequence with the overall number of frames in
the sequence. This led to an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. That means that the system can find polyps with a
precision of almost 94% and detect almost 99% of all frames
that contain a polyp.

These results demonstrate that the system is able to reach
high detection accuracy and also, that it can compete with
other state-of-the-art systems. For example, Wang et al. [2]
reach with their system a recall of 97.70% while our system
reaches 98.50%. Hwang et al. [17] report a precision of
83.00% while we achieve 93.88%. In terms of sensitivity, we
reach 96.37% compared to Wang et al. [18] with 81.40%,
Alexandre et al. [19] with 96.69% and Cheng et al. [20]
with 86.20%. Thus, our system performs at the high level
of precision compared to the best related systems. However,
more important in this paper is the comparison of our own
basic architecture with the improve heterogeneous approach
in terms of their time-performance.

TABLE I
LEAVE-ONE-OUT CROSS-VALIDATION FOR 20 VIDEOS IN THE USED
DATASET. THE TABLE DEPICTS TP (TRUE POSITIVES), TN (TRUE

NEGATIVES), FP (FALSE POSITIVES), FN (FALSE NEGATIVES) AND THE
METRICS PRECISION, RECALL AND F1 SCORE.

Video TP TN FP FN Precision Recall F1
np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631

Weighted average: 0.9388 0.9850 0.9613

B. Live Analysis in Real-time

Basic Architecture. The basic multi-core CPU-only archi-
tecture performance results are depicted in figure 5. For all the
tests, we used 3 videos from 3 different endoscopic devices
and different resolutions. The three videos are wp_4 with
1, 920×1, 080, wp_52 with 856×480 and np_9 with 712×480.
We chose these videos to show the performance under the
different requirements that the system will have to face when
in practical use. The computer used was a Linux server with
32 AMD CPUs and 128 GB memory. The figures show, that
the basic system was able to reach real-time performance for
full HD videos using a minimum of 16 CPU cores and at least
12 GB of memory. This has the huge disadvantage that real-
time speed is only achieved on expensive multi-CPU systems.
In terms of memory, tests showed that the system has rather
small requirement. This is good, since it means that memory
consumption is not a bottleneck to scalability, and that we can
ignore it for now.

Heterogeneous Architecture. The videos used to evaluate
the system performance have different resolutions. The res-
olutions are full HD (1920 × 1080), WVGA1 (856 × 480),
WVGA2 (712 × 480) and CIF (384 × 288). They are labelled
correspondingly in figures 6, 7, 8 and 9. A framerate of 30
frames per second (FPS) was assumed, and consequently, 33.3
milliseconds processing time per frame was considered real-
time speed. Our results for the heterogeneous architecture were
obtained using a conventional desktop computer with an Intel
Core i7 3.20GHz CPU, 8 GB RAM and a GeForce GTX 460
GPU. To be able to compare the basic and improved systems
directly, the same Java source code from the basic system
was used to collect the evaluation metrics. In the figures,
the basic system’s results are labelled as Java. The improved
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Fig. 5. The detection performs efficiently and the required frame rate is
reached with 12 GB of memory and 16 CPU cores used in parallel on cluster-
based computation platform without utilizing heterogeneous architecture.

system’s results with disabled GPU-acceleration are labelled
as C. Finally, the improved system’s run in the heterogeneous
mode with enabled GPU-acceleration is labelled as GPU.

The performance evaluation shows, that the basic archi-
tecture can process full HD frames using all 8 available
CPU cores and up to 4 GB of memory at 6.5 FPS for Java
and 13.8 FPS for the C implementations (see figure 6) with
corresponding frame processing times of 154ms and 72ms,
respectively (see figure 8). For the smaller frame sizes, real-
time speed was reached at most 4 CPU cores and at most 4 GB
of memory. The maximum frame rates that were be reached
were 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and
CIF frame sizes, respectively (see figure 7 and figure 9).

The evaluation of the improved heterogeneous system shows
that the GPU-enabled architecture can easily process full HD
frames using only 4 CPU cores (see figure 6) and up to 5
Gb of memory with a frame processing time of 32.6ms (see
figure 8). The maximum frame rate for full HD frames was 36
FPS using all 8 CPU cores. For the smaller frame sizes, the
real-time requirements were reached with only 1 CPU core
and up to 4.5 GB of memory. The maximum frame rate that
we achieved was around 200 FPS (see figure 7 and figure 9).

The results show clearly, that the given hardware system
with the basic architecture cannot reach real-time performance
for full HD videos even using all available CPU cores, and
only for the low-resolution WVGA videos, real-time can be
reached. For the improved heterogeneous system, the real-time
performance for full HD videos is easily reached using only 4
CPU cores and one outdated GPU. The smaller videos can be
processed utilizing only one CPU core plus GPU. Memory size
is not a limiting factor and the system can be deployed even
on desktop PCs with a general-purpose GPU as an accelerator.

These quantitative results illustrate, that using a hetero-
geneous architecture is key to real-time performance and
parallel analysis of videos with different approaches. Fur-
thermore, the improved heterogeneous system has significant
over-performance in terms of real-time video processing. This

Fig. 6. The improved GPU-enabled heterogeneous algorithm reaches real-time
performance (RT line) with 30 frames per second for full HD (1920 × 1080)
videos on a desktop PC using only 4 CPU cores and 5 Gb of memory. The
maximum frame rate is around 36 FPS using 8 CPU cores. The Java and C
implementations cannot reach real-time performance on the used hardware.

Fig. 7. The smaller WVGA1 (856 × 480), WVGA2 (712 × 480) and
CIF (384 × 288) videos can be processed by the improved GPU-enabled
heterogeneous algorithm in real-time using only 1 CPU core. The maximum
frame processing rate reaches more than 200 FPS. These results can be
improved by putting all feature-related computations on the GPU.

makes it possible to implement more feature extractors, classi-
fiers and many other image processing algorithms to increase
the number of detectable diseases by our system while keeping
the real-time capability.

V. CONCLUSION

Efficient and fast data analysis of medical video data is im-
portant for to several reasons, including real-time feedback and
increased system scalability. In this paper, we have presented
a computer-based medical systems that tackles live automatic
analysis of endoscopy videos. The presented system utilizes
different parts of heterogeneous architectures and will soon
be tested in a clinical trial with high definition colonoscopy
videos. Compared to existing systems, our system provides
an abnormality detection precision and recall level at least
as good as existing related work. However, with an achieved
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Fig. 8. The processing time for the GPU-accelerated algorithm decreases
slightly with increasing number of used CPU cores for a single full HD frame.
This happens due to the CPU-parallel implementation of feature comparison
and search algorithms which are not as compute intensive as feature extraction.
The Java and C implementations reach the minimum frame processing time
with 4 used CPU cores. The reason is that the used CPU has 4 real cores
with hyper-threading feature enabled and it cannot handle CPU-intensive
calculations efficiently for all 8 (real plus virtual) cores.

Fig. 9. For the smaller frame sizes the GPU-accelerated algorithm results in
a processing time far below the real-time margin. The minimum is reached
with 5 milliseconds using 8 CPU cores. This is a prove for the high system
performance and ability to be extended by additional features or to process
several video streams at the same time on a conventional desktop PC.

performance of 200 frames per seconds, it is superior with
respect to video stream processing time and the ability to
provide real-time automatic feedback during live endoscopies.

We continue to optimize and improve our implementation
of the detection system. Ongoing work includes moving the
localisation to the GPU, and we are in the process of extending
the number of diseases detected. Our current performance
easily allows for this, and our future multi-disease detection
system will be distributed on several computers.
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ABSTRACT
The challenge of scaling IO performance of multimedia sys-
tems to demands of their users has attracted much research.
A lot of effort has gone into development of distributed sys-
tems that add little latency and computing overhead. For
machines in PCI Express (PCIe) clusters, we propose Device
Lending as a novel solution which works at a system level.

Device Lending achieves low latency and extremely low
computing overhead without requiring any application-specific
distribution mechanisms. For applications, the remote IO
resource appears local. In fact, even the drivers of the op-
erating system remain unaware that hardware resources are
located in remote machines.

By enabling machines in a PCIe cluster to lend a wide va-
riety of hardware, cluster machines can get temporary access
to a pool of IO resources. Network cards, FPGAs, SSDs, and
even GPUs can easily be shared among computers. Our pro-
posed solution, Device Lending, works transparently with-
out requiring any modifications to drivers, operating systems
or software applications.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; •Software and its engineering → Dis-
tributed systems organizing principles;

Keywords
Multimedia, GPU, PCIe, interconnect, device sharing

1. INTRODUCTION
Performing multimedia tasks in real time are challeng-

ing and frequently require distributed systems. Tetzlaff et
al. [28] early provided a classification for designing a dis-
tributed system. Actual implementations have often ad-
dressed requirements for low latency and high throughput
by specialized interconnect networks [8, 6, 10, 7]. The PCI
Express (PCIe) interconnect network [5, 19], which today
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is the dominant interconnection technology inside individ-
ual computers, can be connected to the internal networks of
remote computers by using PCIe non-transparent bridges
(NTB) [23]. The communication over such an intercon-
nect network may be performed just like in classical inter-
connected networks, for example by implementing a high-
performance TCP/IP stack for PCIe [11].

From the point of view of each computer, an NTB is just
another PCIe device that offers memory areas for mapping
into the remote computer’s physical address space. An un-
usual property of the NTB, is that this memory is not lo-
cated on it, but is rather a mapping of arbitrary memory
areas within the domain of other computers that are also
connected to the same NTB.

This raises the question whether all PCIe devices that are
connected to any of the computers attached to such an NTB,
can be considered part of one common resource pool. With
Device Lending, devices can by lent by one computer into
another without involving the CPU in data path forwarding.

All resources of any PCIe device are represented by mapped
addresses, including their control registers and interrupts, so
all of them can be mapped by an NTB. Obviously, such map-
ping cannot be trivial. Whereas data areas can be mapped
into a computer’s address space just like those of locally in-
stalled devices, a reverse mapping is required for interrupts.
Furthermore, devices can be lent dynamically by one com-
puter to another only if the operating systems can handle
that PCIe devices are added to and removed from their ad-
dress space, i.e., if they have hotplug support [14] for the
specific device.

Once these problems are solved, we can see that the power
of this approach goes far beyond the classic interconnection
challenges of a streaming server. Within a small cluster,
devices can be pooled together and time-shared by different

Root node

Root node

Root node

Root node
Device Pool

Network

Devices

Devices

Figure 1: PCIe devices on separate machines could be pooled
together and shared between multiple computers.
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computers (Figure 1). Network cards can be assigned to a
computer while it needs high throughput. Instead of copying
data between SSD disks over traditional network, the disk
can be borrowed and accessed directly. For a large CUDA
programming task, a computer can lend additional cards and
use CUDA’s own peer-to-peer model instead of relying on
additional middleware like rCUDA [4]. Pogorelov et al.[21]
have shown how a multimedia workload can be offloaded to
a remote GPU using Device Lending.

In this paper, we present how we achieve this pooling of
PCIe devices using only native device drivers. We present
the state of our proof-of-concept implementation of Device
Lending for Ethernet network cards and SSD disks, and in
more detail, our prototype for GPU lending. We show that
the GPUs can be lent dynamically without any modifications
to drivers or user-space applications.

The paper is organized as follows: we present essential
capabilities of PCIe in Section 2. Section 3 addresses the
current state of PCIe virtualization support. In Section 4
we discuss related work. Section 5 goes into details of our
implementation of Device Lending, followed by performance
results for GPU lending in Section 6. Conclusion and further
opportunities are discussed in Section 7.

2. PCI EXPRESS
PCIe is an industry standard for architecture-independent

connection of hardware peripherals to computers. In PCIe
terminology, such a peripheral is a PCIe endpoint. While its
predecessor PCI relied on parallel buses that were shared be-
tween endpoints, PCIe uses point-to-point links (still called
buses) that consist of 1 to 32 lanes. These buses can be
connected to PCIe switches, which may be connected to
other switches, forming a tree structure where endpoints are
leaves, switches are inner nodes, and buses are edges. An
example of a PCIe topology is illustrated in Figure 2. The
connection of a bus to a switch is called a port, but (pri-
marily to illustrate how backwards compatibility with PCI
is achieved) it is also known as a bridge. Ports towards the
tree root are called upstream, the other downstream. The
network of buses, endpoints and switches is referred to as
fabric. For communication, PCIe specifies a layered proto-
col structure, whose upper layer is called transaction layer,
exchanging transaction layer packets (TLPs). Routing oc-
curs in a strictly hierarchical fashion, i.e., packets do not
need to pass through the root of the tree.

At the root of the PCIe tree is the root complex, which an
implementation can either interpret as an endpoint that is
connected to the root node of the fabric or as being the root
node. In this paper, we refer to the root complex as the root

node. Directly connected to the root complex is the CPU
core and memory controller. Each endpoint may act like a
group of distinct devices. Each of these is called a function
and is separately addressable by the triplet of its bus, device
and function IDs, referred to as its BDF.

Both endpoints and buses are detected by reading their
configuration space. At system boot, the system (BIOS or
OS) scans possible BDFs for vendor IDs in a process called
bus enumeration. If an endpoint or bus is present at a given
BDF, the system reads the associated configuration space.
This contains data structures in a standardized format [19],
allowing the device to define its requirements.

2.1 Memory-mapped IO
When a configuration space is found at a given BDF, the

system reads the its Base Address Registers (BARs) to de-
termine the function’s size requirements and number of ad-
dress spaces that must be mapped into the host’s linear ad-
dress space. This mapping allows the CPU to access device
registers of the endpoint through regular memory accesses.
This process is called Memory Mapped IO (MMIO) and al-
lows memory operations to be transparently translated into
TLPs by devices and the CPU.

The system writes the mapped addresses into the BARs,
which allows the endpoint to interact with the host machine.
If the device has an onboard Direct Memory Access (DMA)
engine, it can be instructed to read from and write to any
memory buffers directly, including main memory and other
endpoints. Without a DMA engine, the CPU must write to
MMIO registers to transfer data.

2.1.1 Posted and non-posted transactions
Some PCIe requests require end-to-end notification upon

completion. These requests are called non-posted transac-
tions, while requests that do not require notification are
posted transactions. A memory write request is an exam-
ple of a posted transaction. The requester sends the write
request along with the data and after it leaves the egress port
it is no longer the responsibility of the requester. Memory
read requests, on the other hand, requires explicit comple-
tion TLPs.

Non-posted requests are significantly affected by the length
of a PCIe path. The longer the path, the higher the request-
completion latency becomes. In addition, the number of
read requests in flight is limited by how many the requester
supports. The number of supported read requests in flight
has an impact on read performance.

2.1.2 Transparent bridges
A switch is associated with one contiguous address range

in the host address space and is aware of it. The address
range is called address window, and spans all address ranges
assigned to endpoints downstream of this switch. Each port
on the root complex is associated with its own contiguous
address range. This allows shortest-path routing in the tree
based on physical address. Switches and their ports perform
only routing in this scenario, and are transparent in that
sense. PCIe bridges can be regarded as transparent bridges.

2.1.3 Non-transparent bridges
It is desirable to extend PCIe out of the single computer

and use it for high-speed interconnection networks due to its
high bandwidth and low latency [22]. One way of doing this
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is by using NTBs [23]. Although not standardized, NTBs
are widely adopted and all NTB implementations have sim-
ilar capabilities. Several processor architectures, including
recent Intel Xeon CPUs, support NTB implementations [26].

Despite the name, NTBs do actually appear as PCIe end-
points in one or more PCIe fabrics at the same time. They
are mapped with large MMIO areas similar to other end-
points. However, unlike other endpoints and like transpar-
ent bridges, memory operations on these areas are forwarded
from one fabric into another. Since an NTB is mapped dif-
ferently in each host’s address space, it performs address
translation on the TLPs during forwarding. This address
translation is similar to a single-level page table. Effectively,
NTBs create a shared memory architecture across several
hosts [13].

However, an NTB address space is not necessarily lin-
ear. Its MMIO area is divided into equally sized segments,
and each segment can be mapped anywhere into the remote
host’s address space. This is done by replacing part of the
address with a per-segment offset into the remote host’s ad-
dress space. Not only does this allow a remote host to access
local RAM memory, it also enables a remote host to access
MMIO areas of local PCIe devices.

2.2 Message-signaled interrupts
Whereas physical interrupts lines were used in traditional

PCI, PCIe uses Message-Signalled Interrupts (MSI) [17, 19].
When an endpoint issues an MSI, this is actually a normal
memory write to a special address, which is then interpreted
by the chipset and used to generate an interrupt to the CPU.
For our work, this has the essential implication that the
address of an MSI can be mapped through an NTB.

2.3 Hot-plugging
The idea of lending devices without any OS changes what-

soever includes the goal that the devices must appear to and
disappear from the OS at run-time. Obviously, there are
device drivers that are not capable of coping with run-time
appearance or disappearance. We can address the challenges
that occur on a level “underneath” the OS.

PCIe specifies the ability of hot-plugging devices, mak-
ing them available to the system while it is running. This
ability was designed for replacing devices without rebooting
the machine [22, 14]. Consequently, most OS implemen-
tations reserve MMIO ranges at boot time and keep them
unchanged until reboot.

This is sufficient for hot-plugging in the sense of hot-
replace, but problematic for hot-add, as shown in Figure 3.

When a device is hot-plugged, it appears in a port of a
PCIe switch whose contiguous address range has already
been mapped. A worst-case reservation for an arbitrary end-
point for every hot-plug capable port of a switch is not usual
but may be feasible. However, a hot-add operation may
plug an entire subtree of devices into the port, with an ar-
bitrarily large requirement for MMIO range. If the required
address range is too large, a remapping of the host address
space must be undertaken. This is, however, non-trivial, and
few OSes support it currently. In our implementation, the
hot-add variant of hot-plugging becomes trivial, as devices
become accessible through the NTB. The already allocated
address space is large enough to contain all the MMIO areas.

3. VIRTUALIZATION SUPPORT IN PCIE
Traditionally, virtualization has been used to provide host

resources to guest OSes in virtual machines (VM). Since end-
points are already mapped into the host address space, and
the VM has a different memory layout than the host, they
can traditionally not access endpoints without specialized
drivers in the guest OS, which are aware of the mapping.
Due to the performance penalty of this (and the breach of
VM isolation that a common memory layout would bring),
dedicated virtualization units have been introduced.

3.1 IO Memory Management Unit
By organizing memory in pages and adding a software-

defined page-table, a Memory Management Unit (MMU)
can translate addresses accessed by the CPU before passing
them to chipset and memory controller. The MMU provides
every processes in the host OS as well as every guest OS in a
VM their own virtual, linear address space, while the physi-
cal memory can be fragmented or non-existent (e.g., swapped
out).

The IO Memory Management Unit (IOMMU) [9] is sim-
ilar to an MMU, but it provides virtualization of addresses
between chipset (including CPU cores and MMU) and PCIe
fabric. One of the most important features of the IOMMU is
the DMA remapper, which translates addresses of memory
operations from any IO device. In other words, it translates
IO virtual addresses to physical addresses.

Similarly to pages mapped by an MMU, an IOMMU can
group PCIe functions into domains, where each domain has
separate mappings and its own address space. Such a do-
main can be part of the address space of a VM, while other
PCIe functions remain isolated from the VM. This allows
the VM to interact directly with the device using native
device drivers in the guest OS, often referred to as PCIe
passthrough.

Importantly, there is nothing that prevents the IOMMU
from performing such a mapping for the host OS as well.
This is an opportunity for Device Lending.

3.2 Single-Root IO Virtualization
Unlike the MMU’s page maps, IOMMU mappings are not

process-specific. Since IOMMU supports only one mapping
per PCIe function, it can only assign an endpoint function to
a single VM at a time. Single-Root IO Virtualisation (SR-
IOV) [20] addresses this. SR-IOV-aware device can allow
single physical PCIe functions to act as multiple virtual PCIe
functions, allowing SR-IOV to map a single physical function
to several VMs.



3.3 Performance penalty
As with most abstractions, DMA remapping brings a per-

formance overhead. The translation tables are held in mem-
ory like the MMU’s. When a memory access passes through,
the IOMMU must perform a multi-level table look-up. Fur-
thermore, it is located in the root complex, and all TLPs
must be routed through the root to perform DMA remap-
ping. In addition, unpredictable access patterns using small-
sized pages can lead to thrashing of the IO translation look-
aside buffer. PCI-SIG has developed an extension of the
transaction layer protocol that allows caching of mapped
addresses on the PCIe devices [19], but this is not widely
available yet.

4. RELATED WORK
The idea of a unified bus for the inner components of a

computer with those of another is not new. It was imagined
for both ATM [24] and SCI [1]. These ideas never got im-
plemented, because none of these technologies were picked
up for the internal interconnection networks of computers.

PCIe is the dominant standard for the internal intercon-
nection network. It is also proving to be a relevant contender
for an external interconnection network. PCIe, however, was
designed to be used within a single computer system only.
In this section, we will discuss some solutions for sharing IO
devices between multiple hosts.

4.1 Alternative protocols
There are several interconnection technologies, which are

more widely adopted for creating high-speed interconnection
networks than PCIe. These include InfiniBand, as well as
10Gb Ethernet. They may achieve the same throughput on
interconnection links, but they are not integrated as closely
with the system fabric as PCIe, and require soft-processing
of protocol stacks. Their latency is therefore, inevitably,
higher than that of PCIe interconnects.

4.2 Multi-Root IO Virtualization
Multi-Root IO Virtualization (MR-IOV) [18] specifies how

several hosts can be connected to the same PCIe fabric. The
fabric is logically partitioned into separate virtual hierar-
chies, where each host sees its own hierarchy without know-
ing about MR-IOV. MR-IOV require multi-root aware PCIe
switches, and, in the same way as SR-IOVs require SR-IOV-
aware devices to provide functions to several VMs, devices
must be multi-root aware to provide functions to several vir-
tual hierarchies (and thus hosts) at the same time.

Despite being standardized in 2008 [18], we are not aware
of any MR-IOV-capable devices and very few switches. In-
stead, there are attempts to achieve MR-IOV-like function-
ality through a combination of SR-IOV with NTB-like hard-
ware [27].

4.3 Ladon and Marlin
Our Device Lending idea is apparently timely, because

very similar functionality was proposed in Cheng-Chun Tu
et al. in the form of the Ladon [29] and Marlin [30] systems.

Ladon uses all PCIe and virtualization features as pro-
posed in this paper, but it achieves less freedom than our
Device Lending. In Ladon, PCIe devices that are offered
for sharing are all managed by a dedicated computer, the
management host. The only task of the management host

is to manage sharing of the devices. The guest OSes that
include these devices into their PCIe fabric are, first, all
running in VMs, and second, they include the remote PCIe
devices in their fabric for the entire lifetime of the OS. With
our Device Lending, we can actually pool the resources of
a small cluster of NTB-connected devices by lending in ar-
bitrary direction. We can even exchange devices, and do
this under the control of a running OS, not a dedicated ma-
chine. By combining PCIe hot-plug support in the OS with
use of the NTB, we can insert remote PCIe devices while
the OS is running. Finally, for devices whose native device
drivers support hot-remove, we can stop borrowing without
rebooting.

Marlin [30] can share network IO capacity in a cluster by
forwarding Ethernet packets underneath the host’s TCP/IP
stack to another node, using an Ethernet-over-PCIe driver
for legacy software and a dedicated stack for zero-copy mode.
While this replicates Dolphin Interconnect Solutions’ (Dol-
phin) SuperSocket approach [12], which is a continuation
of SuperSockets for SCI [25], the technique appears generic
for all interconnection technologies. With Device Lending,
however, we borrow the network card from the remote host
and require neither driver nor encapsulation overhead.

5. IMPLEMENTATION
We have implemented Device Lending for an unmodified

Linux kernel, using an NTB and the IOMMU. The imple-
mentation is composed of two parts, the lending side and the
borrowing side. For our proof-of-concept implementation,
we rely on a NTB implementation from Dolphin, namely
the PXH810 host adapter [2].

The lending side kernel module binds itself as a driver for
the targeted PCIe devices. This provides us with exclusive
access to the device, allowing the kernel module to access the
device’s configuration space while preventing other drivers
on the host from interfering. The kernel module then notifies
the borrowing side of all available devices.

When the user requests an available device, the borrowing
side kernel module communicates with the lending side ker-
nel module in order to read the device’s configuration space.
The lending side sets the targeted device into a per-borrower
IOMMU domain, isolating the device from the rest of the
system and other devices. The borrowing side then sets up
the necessary MMIO mappings using the NTB and tells the
lending side to set up the reverse mappings for device to
RAM DMA as well as MSI mappings. Following this, the
borrowing side then injects the device into the Linux PCI
subsystem and signals a hot-add event. Linux will probe the
device, set it up and load the device driver.

The device driver is now able to communicate with the
device using MMIO access. Whenever the device driver
sets up new DMA mappings using the Linux DMA-API,
the borrowing side kernel module intercepts these calls and
dynamically sets up and tear down the necessary IOMMU
mappings. This allows the borrowing side device driver to
transfer data to the remote device with no additional soft-
ware overhead.

6. EVALUATION AND DISCUSSION
As the global address space feature of PCIe is unique, and

since, to the best of our knowledge, no MR-IOV implemen-
tations exist, our Device Lending concept has few relevant



4,513 4,568
4,807

2,811 2,939 3,046

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local RAM to Remote RAM (write) Local RAM from Remote RAM (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(a) RAM to RAM

2,393 2,348 2,396
2,987 2,913 3,021

4,414 4,464
4,859

1,905 1,853 1,88

0

1

2

3

4

5

6

1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB 1 MB 4 MB 10 MB

Local GPU to Remote 
RAM (write)

Local GPU from 
Remote RAM (read)

Local RAM to Remote 
GPU (write)

Local RAM from 
Remote GPU (read)

G
ig

ab
yt

es
 p

er
 s

ec
on

d

(b) RAM to GPU

Figure 4: DMA transfer bandwidth across the NTB with different transfer sizes. The DMA engine on the NTB is used.

comparisons. Alternative solutions either require extensive
virtualization support or additional protocol stacks. In order
to evaluate our proof-of-concept implementation, we there-
fore evaluate the performance compared to what is possible
to achieve with specialized use of the NTB. To establish a
point of reference, we measured RAM to RAM bandwidth
as this shows the maximum possible transfer rate.

We configured two test machines, shown in Figure 5. Both
machines have a single Nvidia Tesla K40 directly connected
to the root complex each. The machines were connected
together using two x8 Gen3 Dolphin PXH810 adapter cards
and an external PCIe cable. In all our tests, Machine A was
used to initiate transfers.

6.1 Reference evaluation
For our RAM to RAM reference, we transferred data be-

tween the two machines over the NTB and measured the
bandwidth without Device Lending (Figure 4). Here, we
used Dolphin’s SISCI API for programming the DMA engine
on the NTB itself [3, 16]. All PCIe endpoints in our setup
are connected directly to the root complex, which is why
transferring between remote RAM and local RAM shows
the optimal performance over the NTB (Figure 4a). RAM
to remote RAM latency is approximately 573 ns.

Write requests peak at around 4.8 GB/s on our test con-
figuration, shown on the left-hand side in Figure 4a. As
mentioned in Section 2.1.1, memory read requests are af-
fected by the distance in the PCIe hierarchy because they
are non-posted transactions. However, there are is an addi-
tional factor that also limit the performance of read oper-
ations. PCIe defines a maximum read request size. This is
configured by the system to ensure that the bandwidth is
shared among all the devices in the hierarchy. For our test
system, the maximum read request size is 512 bytes, and
the TLP maximum payload size is 128 bytes. The DMA
engine on the NTB handles 64 read requests in flight. As
seen in Figure 4a, read requests peak at around 3 GB/s on
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Figure 5: The setup used for our evaluation

our configuration.
Since the GPU is even further away than RAM, as illus-

trated in Figure 5, we see a considerably lower bandwidth
for RAM to remote GPU and GPU to remote RAM trans-
fers. Figure 4b shows the results of using the DMA engine
on the NTB. The two scenarios on the left-hand side show
using a local GPU on Machine A and RAM on Machine B.
The two other scenarios on the right-hand side show the
opposite, using local RAM on Machine A and the remote
GPU on Machine B. It is important to note that when using
a local GPU, the DMA engine on the NTB first has to per-
form read requests to the GPU before it is able to push it
to the remote side using write requests. In other words, it is
a two-part operation. It is interesting to note that reading
from a local GPU and pushing it to remote RAM (Figure 4b,
second from left) is is similar to reading from remote RAM
(Figure 4a, on the right). This indicates that the latency
added by the NTB is around the same as having to route
TLPs through the root complex.

6.2 Device Lending evaluation
One of the novel properties of Device Lending is that it

can be achieved with no modifications to endpoint devices
or device drivers or even user-space software. We there-
fore wanted to use an already existing benchmarking tool.
A well-known tool in the CUDA developer community, is
the bandwidthTest [15] utility. This tool is included in the
CUDA Toolkit samples. In default mode of operation, this
program allocates page-locked buffers in RAM and measures
the bandwidth it achieves when copying to the GPU and vice
versa using the GPUs onboard DMA engine. We argue that
making one of the most complex proprietary GPU drivers
on the market work with our implementation serves as good
test for our proof-of-concept.

In our setup, Machine B was configured to lend its Tesla
K40 GPU to Machine A, making it available for the OS and
driver on the remote machine. Figure 6 shows the results
of running bandwidthTest on the remote Tesla K40 using
different transfer sizes. The left side shows the results of
making the onboard DMA engine write to remote RAM on
Machine B (around 4.9 GB/s), while on the right we see
the results of making the onboard DMA engine read data
from remote RAM (around 2 GB/s). These numbers are
comparable to the numbers seen in Figure 4b, as they show
a similar scenario. However, as they use different DMA en-
gines, they also have different locality to the data.

Using the onboard DMA engine to write to remote RAM
is close to the speeds for local RAM to remote RAM trans-
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Figure 6: bandwidthTest running on a borrowed GPU. The
DMA engine on the GPU is used to transfer.

fers (around 4.9 GB/s). Reading from remote RAM and
pulling it to GPU memory (around 2 GB/s) is a bit slower
than reading from remote RAM and writing it to local RAM
(around 3 GB/s). This is caused by the onboard DMA en-
gine on Machine A’s GPU being even further away from
the remote RAM on Machine B than the DMA engine on
Machine A’s NTB.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the Device Lending concept,

which allows a cluster of PCIe-connected computers to es-
tablish a pool of PCIe devices. These devices can subse-
quently be time-shared in a process of lending and borrow-
ing. Since these devices appear like hot-plugged local devices
to the borrowing OS, even the host OS can use them with
their native drivers. For all native device drivers that sup-
port hot-plugging, these borrowed devices can be returned
without rebooting. Having built the infrastructure for this,
we demonstrated its performance in this paper, and provide
hints for the best possible use of borrowed devices.

In further work, we will investigate concurrency challenges
when multiple devices are borrowed and situations where the
lender needs to take the device back forcefully. We are also
planning to implement a framework for managing Device
Lending. In addition, we are investigating the possibility
for lending separate functions of SR-IOV devices in order to
implement MR-IOV without needing specialised hardware.
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ABSTRACT
In this paper, we present a demo that utilizes Device Lend-
ing via PCI Express (PCIe) in the context of a multi-auditory
environment. Device Lending is a transparent, low-latency
cross-machine PCIe device sharing mechanism without any
the need for implementing application-specific distribution
mechanisms. As workload, we use a computer-aided diag-
nosis system that is used to automatically find polyps and
mark them for medical doctors during a colonoscopy. We
choose this scenario because one of the main requirements
is to perform the analysis in real-time. The demonstration
consists of a setup of two computers that demonstrates how
Device Lending can be used to improve performance, as well
as its effect of providing the performance needed for real-
time feedback. We also present a performance evaluation
that shows its real-time capabilities of it.

CCS Concepts
•Information systems→ Information retrieval; Mul-
timedia and multimodal retrieval;

Keywords
Medical Multimedia; Information Systems; Classification

1. INTRODUCTION
Colonoscopy is a medical procedure, during which spe-

cialists in bowel diseases (gastroenterologists), investigate
and operate on the colon through minimally invasive surgery
by using flexible endoscopes. These examinations are usu-
ally done in a special examination room as depicted in fig-
ure 1(a). A standard hospital normally has several of these
rooms in their gastroenterology department. These rooms
contain screens for the doctors that show the video stream
from the camera, a bed for the patient, the endoscopic pro-
cessor, a desktop computer for reporting and some medical
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(a) The examination room where
the endoscopies are performed. A
usuall hospital has several of these
rooms.

(b) Different endoscopes for dif-
ferent examinations and patients.
For example the very small one is
for children.

(c) The tip of the endoscope. It is
very flexible and can be moved by
the gastroentologist in every pos-
sible direction.

(d) The controll unit of the endo-
scope the gastroentologiest uses to
controll the endoscope in terms of
zoom, rotation, etc.

Figure 1: These images show an auditorium and en-
doscopic equipment in the Bæerum Hospital in Nor-
way where our system will be used.

treatment supplies. The endoscopes can vary in their at-
tributes like the thickness of the endoscope or its length,
but also in the resolution of the videos. Figure 1(b) shows a
collection of different endoscopes. Endoscopes are frequently
moved between examination rooms to fit the requirements
of a specific examination. From the tip of the endoscope
(figure 1(c)), a video is transmitted, and the gastroenterolo-
gist relies on the video stream to diagnose disease and apply
treatments. To control the endoscope, the control unit that
is part of every endoscope is used. As one can see in fig-
ure 1(d), this is a complex mechanism that requires a lot
of concentration from the doctor during the whole proce-
dure, lasting up to 2 hours depending on the findings. The
camera can be seen as the virtual the eye of the gatroentol-
ogists, and the video stream is all they perceive. Usually,
doctors get "third eye" support from their nurses to support
them during the examinations and increase the number of
findings.
Recently, computer-aided diagnostic systems are more and

more used in gastroenterology. The most recent and best



working system is Polyp-Alert [10]. This computer-aided
diagnostic system helps to determine the quality of the colo-
noscopy during the procedure. It reaches very high accuracy
and sensitivity, but it only reaches near real-time and not
full real-time feedback. This is not optimal for live exami-
nations where the medical expert controls the camera man-
ually and cannot rely on a system that introduces delays.
Even though real-time performance can be reached by using
multiple GPUs in one sufficiently powerful desktop machine,
placing such noisy and costly machines in the examination
rooms of a hospital is impractical. A more realistic sce-
nario is therefore to have or to use already installed smaller
machines in each room and to use Device Lending when-
ever more resources are needed. Here, Device Lending is a
concept where computers interconnected in a PCI Express
network can share devices using a transparent cross-machine
device sharing system without any special effors to use re-
mote resources locally. It is a low-latency, high-throughput
solution for distributed computing, utilizing common hard-
ware already present in all modern computers and requiring
little additional interconnection hardware.
In this paper, we will present a demo that utilizes Device

Lending of GPUs in combination with our own computer-
aided diagnosis system. With this demo, we address two
main challenges. First, we will show that real-time support
is possible using this technology. Second, we demonstrate
the possibility of having one mainframe that can lend the
devices to different computers based on the computational
demands. This can be an important advantage and even re-
quired for scenarios where no room for large machines exists.
Further, it can be important for setups where the require-
ments change fast and often on the fly (e.g., an examination
room in a hospital changes the used endoscopes several times
during the day; endoscopes with a very high resolution need
more processing power than those with lower resolution).

2. REAL-TIME COMPUTER AIDED DIAG-
NOSIS SUPPORT

Automatic detection of polyps in colonoscopies has been
in focus of research for a long time [9]. However, few com-
plete systems exist that are able to do real-time detection, or
that can support endoscopists by computer-aided diagnosis
for colonoscopies in real-time and at the same time main-
tain a high detection accuracy. The most recent and best
working approach is Polyp-Alert [10] that is able to give near
real-time feedback during colonoscopies. Visual features and
a rule based classifier are used to detect the edges of polyps,
and a performance of 97.7% correctly detected polyps is re-
ported. However, real-time support is limited as they reach
only 10 frames per second.
To target the real-time performance, we have proposed

EIR [8, 7, 6] medical experts supporting system for the task
of detecting diseases and anatomical landmarks in the gas-
trointestinal (GI) tract, which used in this demo as a use
case. It has several key attributes, i.e., EIR (i) is easy to
use, (ii) is easy to extend to different diseases, (iii) can do
real time handling of multimedia content, (iv) is able to be
used as a live system and (v) has high classification per-
formance with minimal false negative classification results.
Compared to Polyp-Alert, our detection accuracy is slightly
below. The classification performance of the polyp detection
in our EIR system lies around a precision of 0.903 and a re-

call of 0.919, but it is tested on a different dataset, meaning
that the numbers are not directly comparable.
Currently, the system consists of two parts, the detection

subsystem that detects irregularities in video frames and im-
ages and the localisation subsystem that localises the exact
position of the disease. The detection can not determine the
location of the found irregularity. The location determina-
tion is done by the localisation subsystem. The localisation
subsystem uses the output of the detection system as input.
After the automatic detection and analysis of the content,
the output has to be presented in a meaningful way to the
gastroentologists. Therefore, the system has a visualisation
subsystem that is reliable, robust and easy to understand
also under stressful situations that can occur during a live
examination. Moreover, it supports easy search and brows-
ing through a large amount of data after the examination. In
this demo, we do not focus on EIR but rather using Device
Lending and how it can improve performance. EIR itself is
just a relevant use case.

2.1 GPU Implementation
Parts of EIR had to be improved and changed to run on

multiple GPUs and allow the system to perform in real-
time. Therefore, the most compute-intensive parts have
been ported to CUDA, a computation support framework
for nVidia graphic cards. To achieve this, parts of the sys-
tem had to be built as a heterogeneous processing subsys-
tem. The GPU framework supports at the moment a num-
ber of features, namely Joint Composite Descriptor (JCD),
which includes Fuzzy Color and Texture Histogram (FCTH)
and Color and Edge Directivity Descriptor (CEDD), and
Tamura, but we are working on increasing the supported
features.
A main processing application interacts with a modular

image processing subsystem. Both of these are implemented
in Java. A multi-threading architecture is used by the image
processing unit to handle multiple processing and feature ex-
traction requests at the same time. A shared library that
is responsible for maintaining connection with and stream
data to the stand-alone CUDA-enabled processing server is
implemented in C++. To ensure high data transfer per-
formance and reduce excessive data copy operations, shared
memory has been used, while sending requests and receiving
status responses uses local UNIX sockets. A CUDA server
implemented in C++ runs in the background and performs
computations on GPU. The whole system can easily be ex-
tended with multiple CUDA servers running locally or on a
number of remote servers. This is also valid for the process-
ing server, which can be extended with new feature extrac-
tors and advanced image processing algorithms, and utilize
multi-core CPU and GPU resources concurrently.

2.2 Device Lending
Device Lending is a concept where computers intercon-

nected in a PCI Express [5] network can share devices. It
provides transparent, low-latency cross-machine PCIe de-
vice sharing without any need to implement application-
specific distribution mechanisms or modify native device
drivers. As the workload increases or decreases, the system
can allocate and de-allocate additional resources.
Today, PCIe is the most common interconnection network

inside a computer, and with PCIe non-transparent bridges
(NTB) [1], it can be turned into an interconnection network



Figure 2: Pooling of devices attached in the PCIe
network in the experimental setup.

for multiple machines. In PCIe, all devices connected to the
computer are considered part of one common resource pool
(figure 2). All devices resources in PCIe are represented
by addresses that can be mapped into a remote memory
space by an NTB. Device Lending is implemented [3] using
Dolphin Interconnect Solutions NTB software [1].
For the EIR system, Device Lending enables the com-

bination of multiple GPUs through CUDA’s own peer-to-
peer communication model, instead of either writing a dis-
tributed system, using rCUDA [2] or MPI [4].

2.3 Performance Evaluation
To evaluate the performance of our system and also to

show that Device Lending in our scenario works as intended,
we performed 4 different experiment sets. An overview of
the hardware used and the performed experiments can be
found in table 1. For all configurations, we used the same
CPU (Intel Core i7-4820K 3.7GHz) and RAM (16GB Quad
Channel DDR3). The test setup consists of 2 computers
(Machine A and B, see figure 2), where the host code of the
tests runs on one of them. The second one lends a GPU to it.
Experiment E1 uses one local GPU, E2 uses two local GPUs
and E3 uses three local GPUs. In E4, we borrowed one GPU
from the second computer in addition to three local GPUs.
With the current machine setup it is not possible to lend
more that one GPU because of software limitations in the
motherboard’s BIOS.
In the experiments, we performed polyp classification and

real-time feedback on the video for up to 16 parallel video
streams. All video streams are full HD (1920x1080) videos
from colonoscopies. We measured the performance from
capturing the video up to showing the output on the screen.
The complete evaluation is shown in figure 3.
Figure 3(a) shows the performance in terms of processing

time per frame for all streams simultaneous. The results

Device Type E1 E2 E3 E4
GPU1 Nvidia Tesla K40c * * * *
GPU2 Nvidia Quadro K2200 * * *
GPU3 Nvidia GeForce GTX 750 * *
GPU4 Nvidia Tesla K40c *

Table 1: This table shows the used hardware com-
binations of the different experiments. GPU 1 to 3
are local GPUs. GPU4 is lend via Device Lending.

reveal that for up to 7 parallel full HD streams, the 3 lo-
cal GPUs are fast enough. For more than 7 streams, GPU
lending is required. The graph shows that the more par-
allel streams are processed, the better is the performance
gain from the borrowed GPU. We assume that this is due
to the excessive overhead for transferring small amount of
data, which hinders Device Lending to reach its full poten-
tial. This becomes less important when we have more par-
allel streams, and that Device Lending can indeed improve
performance.
The plot in figure 3(b) shows the overall system perfor-

mance. The evaluation shows that Device Lending can in-
deed improve the system performance. The maximum over-
all frames per second we reach when using 4 GPUs at the
same time is 30 fps for 9 parallel full HD streams, which is
equivalent to 270 fps for a single video stream. Further, this
graph shows that the borrowed GPU does not increase the
performance for a smaller number of videos, but for 5 and
more videos the increase is higher. This is another indicator
that Device Lending can increase performance a lot for large
scale processing.
All in all, the experiments showed two important things:

(i) Device Lending does not make sense for small amounts
of data, but if the data to process is large it can give a large
performance boost, and (ii) Device Lending makes sense in
a multi-auditory scenario like we present with our demo.

3. DEMONSTRATION SETUP
The above experiments show the performance of EIR on

powerful machines and that Device Lending works efficiently,
i.e., high performance and low latencies at a very low over-
head. However, placing such a setup in the many exami-
nation rooms in a hospital is impractical for a number of
reasons like high costs and noisy machines. A more real-
istic scenario is therefore to have smaller machines in each
room and use Device Lending whenever more resources are
needed.

(a) Frame processing time for several full HD streams in parallel. (b) Overall system performance for multiple full HD steams in parallel.

Figure 3: System performance evaluation in terms of processing time per frame and maximum performance
using 4 different configurations described in table 1. Each video stream is a full HD video.



Figure 4: A compete overview of the demo setup.
The demo consists of 2 computers, 1 Dolphin in-
terconnect device, 1 screen, an artificial colon and
a flexible camera. The users can use the camera
in the flexible colon and will get real-time feedback
about possible findings. Furthermore, the demo can
be switched between Device Lending on and off to
demonstrate the effect of it more clear.

To demonstrate the usefulness of Device Lending, we there-
fore use the above scenario. In the demo, users can use
a flexible camera to perform a colonoscopy in an artificial
colon, and the system will support them in real-time with
analysis and feedback. The complete demo setup is depicted
in figure 4. During the demo, the camera can be used to ex-
amine the artificial colon and the output of the system will
be shown in real-time on the screen. The demo will show
the performance increase when a GPU can is borrowed from
another machine. Therefore, the demo application can be
switched between lending and not lending a GPU. An exam-
ple of the output for detected polyps can be seen in figure 5.
This setup is similar to our real world setup of the system for
live colonoscopy with videos as shown to the doctors. Thus,
the processing will be done on a very weak computer that
is not able to perform the complicated analysis in real-time.
Therefore, it is connected to another PC via a Dolphin in-
terconnect device and uses Device Lending to allocate the
required processing power. The demo will clearly show the
visible differences when Device Lending is used and when
not. We also would like to point out, that the presented
demonstration is based on the findings in [3] which describes
the Device Lending in more detail for further reading.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented a demo for Device Lending for

computer-aided diagnosis that can assist medical doctors to
analyse colonoscopy videos in a multi-auditory scenario. We
proved that we can reach high performance in terms of pro-
cessing time for several full HD video streams in parallel
which make it possible to use the proposed system during
several and parallel live colonoscopies. We showed that run-
ning multiple classifiers in parallel by offloading the process-
ing to multiple machines connected through a PCI Express
network and using GPU lending works in our scenario. This
optimized version of the application will be able to dynam-
ically allocate, distribute and release compute resources on
demand from a pool of available GPUs. For future work,
we would like to improve the scheduling of tasks within our
lending network. This would include decisions for what and
how much to lend to which part of the system using different
input information like the required support level of doctors
and the endoscope used. We also think that this idea is ap-
plicable to other scenarios like for example in cinemas where
a less powerful PC in each saloon allocates GPUs based on
the quality of the movie to show, e.g., one room shows 4k,
one 3D and another one full HD.

Figure 5: This figure shows 2 examples of what the
doctor will see on the screen and what we will show
during the demo. In both pictures, the system de-
tected polyps and marked them with a cross. If
nothing is detected, the corners of the screen are
marked green for feedback.
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