
Using Machine Learning to
Predict Elite Female Athletes’
Readiness to Play in Soccer

Mathias Menkerud Sagbakken

Thesis submitted for the degree of
Master in Informatics: Robotics and Intelligent

Systems
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2023

Using Machine Learning to
Predict Elite Female Athletes’

Readiness to Play in Soccer

Mathias Menkerud Sagbakken

© 2023 Mathias Menkerud Sagbakken

Using Machine Learning to Predict Elite Female Athletes’ Readiness to
Play in Soccer

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In today’s world, both sports and technological advancements hold a key
role in our society. Machine learning is becoming a more relevant tool in
the industry due to the abundance of data available to analyze players and
strategies. Especially soccer, the most watched sport in the world, embraces
this technological shift to improve training conditions among players and
provide insight into game strategies. To maximize performance in soccer,
athletes push themselves to the limits of their potential. This rigorous
process puts athletes at continuous risk of negative developments such as
injuries and illness. Therefore, athletes and coaches coordinate and execute
training based on experience and data from different monitoring tools to
achieve a safer athletic progression. These tools result in large amounts of
data, which can be difficult to interpret. A machine learning model can
utilize these data to make predictions of an athlete’s future performance
and make the transition from raw data to strategy easier. These strategies
can include choosing the most relevant players for important events and
improving training conditions. Most attempts at using time series data
to predict future performance among soccer players have been limited to
male soccer using either wellness or positional data paired with a small
selection of often simple machine learning models. In this thesis, we
present a pipeline conducting several experiments to determine important
data and model configurations when predicting readiness to play among
professional female soccer players. The pipeline comprises data extraction,
pre-processing and data analysis, experiments, and evaluation, where
we visualize and quantitatively present results. We discover that by
leveraging complex imputation for multivariate data, we reduce error by
up to 16%. We present three use-cases and show their ability to generate
actionable data that enhances player and team performance. Our proposed
experiments and extensive data analysis show how utilizing an approach
that can dynamically capture the unique response of players improves
results. The methods used in this thesis further contribute to generalizing
these time series analyses to other sports.

i

Acknowledgments

First and foremost, I would like to thank my supervisors, Pål Halvorsen,
Cise Midoglu, Matthias Boeker, and Jim Tørresen, for their guidance and
support. Their insights have been invaluable. I also want to extend my
gratitude to my friends who have been there for the past five years through
all courses, obligatory tasks, and thesis work. Finally, I would like to thank
my family for always supporting my endeavors.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Scope and Limitations . 4
1.4 Research Methods . 5
1.5 Ethical Considerations . 6
1.6 Main Contributions . 6
1.7 Thesis Outline . 7

2 Background and Related Work 9
2.1 Terminology . 9
2.2 Athlete Health and Performance Monitoring 10

2.2.1 Wellness Reporting . 10
2.2.2 Training Load . 11
2.2.3 Injury . 11
2.2.4 Positional Data . 11

2.3 Machine Learning Fundamentals 13
2.3.1 Domain Awareness . 13
2.3.2 Data Collection . 13
2.3.3 Data Splits . 13
2.3.4 Supervised Learning 14
2.3.5 Unsupervised Learning 14
2.3.6 Overfitting . 14

2.4 Machine Learning - Types of Algorithms 15
2.4.1 Neural Networks . 15
2.4.2 Linear Regression . 17
2.4.3 Decision Tree Regressor 17
2.4.4 Long Short-Term Memory (LSTM) Networks 18
2.4.5 Convolutional Neural Networks 18
2.4.6 Transformer . 19

2.5 Machine Learning - Selected Algorithms 20
2.5.1 eXtreme Gradient Boosting 20
2.5.2 ROCKET . 22

iii

2.5.3 Temporal Fusion Transformer 23
2.5.4 Additional Models . 24

2.6 SoccerMon Dataset . 24
2.6.1 SoccerMon Subjective Metrics 24
2.6.2 SoccerMon Objective Metrics 26
2.6.3 PmSys Framework . 26

2.7 Time Series Prediction for Soccer 29
2.7.1 Time Series Data . 29
2.7.2 Predicting Peak Readiness-to-Train 29
2.7.3 Predicting readiness to train Using LSTM 30
2.7.4 Exploration of Different Time Series Models 30
2.7.5 Injury Forecasting With GPS data 31

2.8 Chapter Summary . 32

3 Methodology 34
3.1 Characteristics of Useful Forecasts 34
3.2 Proposed Pipeline . 35

3.2.1 Data Importing . 36
3.2.2 Data Analysis and Processing 37
3.2.3 Experiments Overview 38
3.2.4 Evaluation . 43

3.3 System Specifications . 43
3.4 Evaluation Metrics . 44
3.5 Chapter Summary . 46

4 Dataset Analysis and Preprocessing 47
4.1 Overview and Composition 47
4.2 Stationarity Test . 49
4.3 Feature Correlations . 50
4.4 Data Distributions . 53

4.4.1 Overview . 53
4.4.2 Individual Players . 55
4.4.3 Characteristics of Peak Readiness 56

4.5 Imputation . 59
4.5.1 Statistics on Missing Data 59
4.5.2 Correlation . 59
4.5.3 Distribution . 60
4.5.4 Notable Changes to the Dataset 64

4.6 Feature Importance . 64
4.7 Chapter Summary . 66

5 Experiments and Results - First Iteration 67
5.1 Regression Models . 67

5.1.1 Model Parameters . 67
5.1.2 Size of Input and Output Windows 70
5.1.3 Forecasting Horizons 72
5.1.4 Recursive Multi-step Versus Direct Forecasts 74
5.1.5 Multivariate Versus Univariate Data 75

iv

5.1.6 Multivariate Data . 76
5.1.7 Univariate Data . 77
5.1.8 Comparison of Multivariate and Univariate Data . . 78
5.1.9 Team A versus Team B 79
5.1.10 Data Transferability 81

5.2 Classification Models . 82
5.2.1 Model Parameters . 83
5.2.2 Classification Experiment Results 83

5.3 Shortcomings and How We Can Improve Them 89
5.4 Chapter Summary . 90

6 Experiments and Results - Second Iteration 91
6.1 Data Alterations . 91
6.2 Experiments Overview . 91
6.3 Regression Models, Second Iteration 92

6.3.1 Size of Input and Output Windows 92
6.3.2 Forecasting Horizons 94
6.3.3 Multivariate Versus Univariate Data 95

6.4 Classification Models, Second Iteration 98
6.5 Comparing First and Second Iteration Results 103

6.5.1 Comparing Dummy classification Results Across It-
erations . 103

6.5.2 Comparing Imputed and Non-Imputed Predictions . 105
6.6 Chapter Summary . 107

7 Discussion 109
7.1 Daily and Session Based Time Series Intervals 109
7.2 Imputation . 110
7.3 Input And Output Window Sizes 110
7.4 Multivariate Versus Univariate Data 111
7.5 Relevant Features and Data Types 111
7.6 Evaluation of Selected Models 112
7.7 Use-Cases . 113
7.8 Hyperparameter Tuning . 113
7.9 Ethical Considerations . 114
7.10 Chapter Summary . 114

8 Conclusion 115
8.1 Revisiting the Problem Statement 116
8.2 Other Contributions . 117
8.3 Limitations of the Work . 118
8.4 Future Work . 118

9 Appendix 127
9.1 Correlation Matrices After Imputation 127
9.2 Boxplots Training on Both Teams Predicting Players From

Either Team A or B . 128
9.3 OLS-analysis . 132

v

List of Figures

2.1 Model Fit . 15
2.2 Example of a Neural Network 16
2.3 PMSys- point and click body silhouette for injury reporting. 27
2.4 PMSys- reporting training load. 28
2.5 PMSys- reporting wellness. 28

3.1 Illustration of our proposed pipeline 36
3.2 Image before and after using IterativeImputer 38
3.3 Illustration Showing The Process of Performing Sliding

Window on Data . 40
3.4 Confusion matrix . 45

4.1 Correlation Matrix Team A before imputation 52
4.2 Correlation Matrix Team B before imputation 53
4.3 Histogram of readiness (Teams) 54
4.4 Histogram of readiness (Players) 56
4.5 Barplots- feature distribution when readiness is four or

below and eight or higher before imputation 58
4.6 Binary Plot Showing Missing Dates For a Random Player . . 59
4.7 Histogram of readiness (Teams) after imputation 61
4.8 Barplots- feature distribution when readiness is four or

below and eight or higher after imputation 63
4.9 Permutation feature importance plots 64
4.10 SHAP Plot . 65

5.1 Lineplots showing how different input window values affect
RMSE-Scores for different type of output window sizes . . . 71

5.2 Lineplot showing how RMSE-score increase with forecasting
horizon . 73

5.3 Direct and one-step ahead forecast 74
5.4 Barplots- Direct Versus One-Step Ahead comparison 75
5.5 Boxplots showing RMSE-Scores for all regression models for

all players on team A using multivariate data 76
5.6 Boxplots showing RMSE-Scores for all regression models for

all players on team A using univariate data 78
5.7 Two plots showing the best and worst performing players

data using multivariate data compared to using univariate
data . 79

vi

5.8 Comparing team A and B using all features for regression
models . 80

5.9 Comparing team A and B using univariate data for regres-
sion models . 81

5.10 Confusion matrices- classifying original ten classes 84
5.11 Confusion matrices- classifying readiness peaks 86
5.12 Confusion matrices- classifying type of change in readiness . 88

6.1 Input window plots second iteration 93
6.2 Forecasting horizon plots second iteration 94
6.3 Boxplots showing RMSE-Scores using multivaraite data for

the second iteration . 95
6.4 Boxplots showing RMSE-Scores using univariate data for the

second iteration . 96
6.5 Confusion matrices- classifying original ten classes (Second

Iteration) . 99
6.6 Confusion matrices- classifying readiness peaks (Second

Iteration) . 100
6.7 Confusion matrices- classifying type of change in readiness

(Second Iteration) . 102
6.8 comparing forecast error for data with imputation and no

imputation . 105
6.9 Boxplots showing RMSE-Scores for all models using only

actual days for imputed data 106
6.10 Comparing imputation to no imputation classifying peaks . 107

9.1 Correlation Matrix Team A After Imputation 127
9.2 Correlation Matrix Team B After Imputation 128
9.3 RMSE training on both team A and B predicting players from

A (multivariate) . 129
9.4 RMSE training on both team A and B predicting players from

A (univariate) . 130
9.5 RMSE training on both team A and B predicting players from

B (multivariate) . 131
9.6 RMSE training on both team A and B predicting players from

B (univariate) . 132
9.7 OLS analysis variance impact on model error 133
9.8 OLS analysis dummy model 133

vii

List of Tables

2.1 Wellness metrics in the SoccerMon dataset 24
2.2 Training load metrics in the SoccerMon dataset 25

3.1 Description of notable python libraries used 43

4.1 Description of features used in the final dataset for the first
iteration . 49

4.2 Statistical properties of the distribution of readiness for both
teams before imputation . 55

4.3 Statistical properties of the distribution of readiness for both
teams after imputation . 61

5.1 LSTM- Hyperparameter configuration 68
5.2 XGBoost- Hyperparameter configuration 69
5.3 TFT- Hyperparameter configuration 70
5.4 Table describing the boxplots in Figure 5.5 with numerical

values . 77
5.5 Table describing the boxplots in Figure 5.6 with numerical

values . 78
5.6 Table describing the statistical properties of Team A and B

RMSE-scores found in Figure 5.8 80
5.7 Table describing the statistical properties of Team A and B

RMSE-scores found in Figure 5.9 81
5.8 classification metrics- results ten classes 84
5.9 classification metrics- results peaks 86
5.10 classification metrics- results readiness change 88

6.1 Table describing the statistical properties of the RMSE values
found in Figure 6.3 . 95

6.2 Table describing the statistical properties of the RMSE values
found in Figure 6.4 . 97

6.3 Table showing percentage decrease in loss using multivari-
ate over univaraite data . 98

6.4 classification metrics- results ten classes- sessions 99
6.5 classification metrics- results peaks 101
6.6 classification metrics- results readiness change- Sessions . . 102
6.7 Table showing accuracy score for all classification tasks

across both iterations . 103

viii

6.8 Table showing F1-scores for all classification tasks across
both iterations . 104

6.9 Table describing the statistical properties of the RMSE values
in Figure 6.9 . 107

ix

Acronyms

ADF Augmented Dickey-Fuller test. 50

AI artificial intelligence. 13, 114

LPM Local Position Measurement. 12

LSTM Long short-term memory. 3, 7, 18, 24, 29, 30, 41, 67, 68, 71–73, 76,
78, 80, 82, 84, 86–89, 92, 94, 97, 98, 100, 101, 106, 110, 112, 113

ML Machine Learning. 1–3, 7, 9, 13, 15, 20, 28–30, 32, 34, 43, 50, 60, 70, 77,
103, 110, 115, 118, 119

MLP Multilayer Perceptron. 16

MSE Mean Square Error. 44

NLP Natural Language Processing. 19

RMSE Root Mean Square Error. 44, 70–74, 77, 79–81, 89, 92, 94–97, 103,
106, 108, 109, 111, 112, 116, 117, 128, 132, 133

RNN recurrent neural network. 18, 30

TFT Temporal Fusion Transformer. 23, 41, 44, 67, 69, 72, 73, 76, 78, 80–82,
91, 92, 94–97, 106, 107, 110–113

TPE Tree-based Parzen Estimators. 41, 69

x

Chapter 1

Introduction

Analyzing time series data using Machine Learning (ML) to find patterns
and trends in the well-being of soccer players might uncover valuable
insight. With such an approach, a model can be fed data from multiple
monitoring devices used by athletes, such as subjective wellness feedback
and objective positional data. The resulting data can be transformed into
easily understandable indicators of an athlete’s future performance. This
knowledge, in turn, can be valuable for a coach to make decisions for
important events. However, most attempts using athlete time series data in
soccer to predict future performance have mainly used subjective wellness
or positional data. Therefore, using relevant features from both data types
motivates the prospect of better results. This thesis explores several ML
and deep learning models to forecast readiness to train, a self-reported
metric describing the perceived ability to perform among professional
female soccer players. The aim is to explore different approaches to both
data and model configurations to give insight into important factors when
forecasting such time series.

1.1 Motivation

Soccer clubs are interested in models that analyze training data and give
concrete and understandable feedback in a way that helps coaches with
decision-making [33, 57]. Therefore, a ML approach must produce statistics
represented in a way that can support making decisions for relevant
strategies on the playing field. With this in mind, a model that can reliably
predict an athlete’s future well-being will benefit clubs.

Injuries are a regular occurrence in soccer and affect the injured player’s
performance as well as their team’s [3]. The monetary cost of injuries was,
among others, made apparent by Eliakim et al. [17]. They estimated the
average cost of injuries among English Premier League teams for a single
season was 45 million pounds. This number was calculated based on the
weaker performance of a team due to the injured player combined with
the injured player’s salary. It would then stand to reason that preventing
injuries with any available tool would be invaluable in saving costs.

1

Subjective wellness feedback is an essential and much-used method
to track an athlete’s performance [31, 36]. Knowing how well an
athlete performed and overall felt during previous training sessions and
competitions makes it easier to keep track of progress and how best to
make improvements for further athletic development. Subjective wellness
feedback is a field with plenty of research, and impactful systems that
collect wellness data from athletes are already made evident by Johansen et
al. [31] with the PmSys monitoring system. The wellness metric Readiness
to train originates from the PmSys monitoring system [31] and measures a
player’s perceived ability to perform for a given session. Readiness plays a
crucial part in this thesis as it will be used to map the future performances
of elite female soccer players.

Utilizing readiness to predict how well a player will perform in future
events offers opportunities to maximize player and team performance.
By analyzing development in readiness among athletes, it is possible
to extrapolate trends that can lead to enhanced performance or risk of
negative development, such as injuries and overload [49, 60]. Such
analyses improve training conditions among players. Further, clubs can
use readiness for important events such as matches to derive strategies.
These strategies can be to select a team lineup, choosing the most ready
players at the most optimal times during a match. In this thesis, in addition
to readiness, we will look at other wellness features but also features
derived from GPS data and see whether they can complement our model
predictions.

Positional data extracted using GPS or similar technology make it possible
to create objective metrics such as total distance traveled, average running
speed, and number of accelerations above a certain speed. Such metrics can
give insight into an athlete’s objective performance on the field [49]. Posi-
tional data also has the advantage that it is objective and inaccurate data is
a cause of faulty equipment and technology rather than subjective reports
from a participant. A recent study by Lourencco et al. [36] showed that
objective and subjective fatigue monitoring data complement each other
since they describe different aspects of fatigue. These findings suggest that
objective and subjective data are needed to gain a holistic perspective on
how fatigue affects athletes. Therefore, exploring several objective and sub-
jective features and their effect on predicting readiness might yield better
results. Further, leveraging recent algorithmic advancements using current
state-of-the-art time series models could also provide an improved predic-
tion outcome.

Using ML in soccer to forecast an athlete’s future performance is a relatively
new idea that has already seen promising results [4, 49, 60]. There are
numerous ML models, and finding a suitable one that works optimally can
prove challenging. Such a model has to handle sparse data and not be too
computationally taxing as the forecasts will be in the very near future.

2

Long short-term memory (LSTM) [27] is a much-used model for time
series forecasting and has already been successfully tested to forecast
future athletic performance among soccer players [60]. However, other ML
architectures such as transformers and convolutional neural networks have
proven to perform as good or better in terms of accuracy and efficiency for
time series forecasting [12, 18, 63]. Due to their exceptional performance
with spatial data, convolutional neural networks can also effectively
manage 1D time series data. The transformer [58] has gained popularity for
its ability to predict larger forecasting horizons. The attention mechanism
of the transformer allows for relational properties to be weighted such that
the relationship between certain data points across time is more important
than others, which is vital for solving time series problems.

Using an ML approach to analyze subjective wellness and positional- data
might uncover promising results that would otherwise be impossible to
discover by only looking at one or the other. There are already examples
of wellness and positional data used in ML predictions for professional
soccer players [60] [49], but to our knowledge, using both kinds of data
with current state-of-the-art models has not yet been done.

1.2 Problem Statement

Few studies have used ML to forecast the perceived performance of
professional female soccer players, with even fewer using both wellness
and positional data in a multivariate time series approach. The main
research question this thesis seeks to answer is:

’What is a good approach to forecast readiness to train among
professional female soccer players that result in actionable data for
players and teams?’

From this research question, we find that the overall objective of this thesis
is to investigate and discover what type of time-dependent trends and
features in our dataset are most important in defining the readiness of
an athlete and feed this data through different model configurations to
produce useful data. Further, we intend to compare these ML models to
determine important mechanisms useful to forecast time series data of this
type. To better give answers to our research question, it is necessary to
provide smaller sub-questions that, as a whole, provide an answer to our
research question.

We use sparse data with a significant number of missing time stamps,
which motivates the idea of using complex imputation to see if such an
approach can contextualize the missing values. We, therefore, ask the
question:

Q1 Is the use of complex data imputation useful to our forecasts?

3

The data configurations input and output windows have a big effect on
results. The input window size determines how many prior time steps
are used for a prediction, with the optimal size varying depending on the
test data and models. The output window size determines how many
unknown time steps to predict. Consequently, each increase in output
window size makes the predictions more uncertain. To understand the
impact of these data configurations, we ask the question:

Q2 What number of prior time steps is optimal to use when making a
forecast, and for how many time steps in the future is it feasible to
make forecasts?

We want to investigate whether incorporating more features will positively
affect our predictions. Therefore, we ask the question:

Q3 To what extent do multivariate forecasts produce better results than
univariate forecasts?

Most previous attempts have only used a univariate approach to forecast
readiness. When multivariate data was utilized, the data was limited to
a single data type, such as GPS or subjective wellness data. Therefore,
exploring how multiple features with different data types impact readiness
is important to investigate, and we ask the question:

Q4 What type of time series features are important when forecasting
readiness to train?

A prediction in itself is useless if it can not be utilized in a practical
application. Therefore, we are exploring several ways of predicting
readiness to provide statistics that can aid in decision-making. Our
question is:

Q5 What is the viability of our selected use-cases, and do they have the
potential to provide actionable data for coaches and players to use?

1.3 Scope and Limitations

The scope of this thesis is to use a combination of features describing
the overall physical and mental state of Norwegian female soccer players
to forecast readiness to train, a subjective metric describing how well
players perceive their abilities to exert themselves physically. We provide
a comparative study showing the difference in performance for each
of our models on several configurations and investigate different data
configurations and use-cases to find practical approaches to forecast
readiness. However, this approach is limited to the sport soccer and
data/features gathered by the PmSys system [31].

4

Our dataset is relatively small and consists of time series such as subjective
wellness data and objective features derived from GPS data. The data was
collected over a period of two years from two different teams. The dataset
is also affected by missing time steps (days), resulting in less consistent
data.

Much of our data is derived from a self-reporting system called PmSys [31]
that collects wellness data from each player. Apart from features like the
number of hours slept, the wellness data is subjective and based on the
given athlete’s quantification of how they feel. The error in subjective
wellness reports is the difference between the given answer and the true
answer, which is unknown. Therefore, the usefulness of our predictions for
real-world use-cases is determined by the error being small enough and
the data being a good enough representation of the actual condition of the
players. Further, GPS data, which we discuss in Chapter 2.2.4, are prone
to inaccurate readings resulting in the data being an approximation of the
players’ movements.

For our experiments, we have chosen a selection of models that we have
deemed promising for time series forecasting. However, this is only
a selection, meaning other architectures or models might prove more
accurate. Therefore, terms describing the best or most efficient model are
limited to our selection of models. Further, we discuss our selection of
models in Section 2.5.

In the current state of the available data, the computational cost for running
even the most complex models among our selection is not a huge concern.
However, if more years of data and features were to be added in the future,
then computation could prove an issue.

1.4 Research Methods

The research methods applied in this thesis were predominately quantit-
ative and experimental in nature. The generated results from our experi-
ments were quantitatively analyzed and further evaluated with statistical
methods. Our experiments and pipeline are a product of experimental and
iterative prototyping [7, 8, 10]. The goal and implementation of each exper-
iment are explained. Each experiment is either an investigation or a hypo-
thesis that is either validated or not. The pipeline was iteratively improved
by observing the results from our experiments.

We chose these research methods as we did not know the outcome of our
experiments and needed to make improvements based on our findings.
Quantitative research allows for comparisons using statistical methods to
determine factors like optimal data and model configurations. Further,
experimental prototyping ensures clear and testable experiments, while

5

iterative prototyping supports the sequential refinement of our prototype.

1.5 Ethical Considerations

This thesis centers around using wellness and positional data from
professional Norwegian female soccer teams [39]. The use of personal
information follows a responsibility to safeguard the participants’ data
and give them agency by properly informing them of the data’s intended
use [45]. Therefore, the data is made anonymous. To be more specific, this
means the removal of all metadata and the use of randomly generated file
names. Each athlete has also given their consent and knows what data is
collected and in what way it is being used. Further, this data has been
exempt from further demand of consent from users since it is anonymous
and certified by the Norwegian Privacy Data Protection Authority.

1.6 Main Contributions

The work in this thesis is meant to establish fundamental knowledge
important to forecast readiness to train among professional female soccer
players. Gaining insight into the future perceived performance of athletes
will help players improve athletic abilities, avoid injuries, and aid in-
game and training strategy decisions. Some attempts exist to predict
readiness for professional female soccer players but lack a comprehensive
study regarding complex imputation and the use of multivariate data [34,
46, 60]. We propose a pipeline to use and process wellness and GPS
data to generate experiments meant to give insight into optimal data
configurations and model selection. We also present several use-cases and
a comprehensive statistical analysis of our dataset.

• We present a pipeline to run experiments related to forecasting
readiness to train for professional female soccer players. The pipeline
consists of a data extraction step (extracting relevant tables from a
database), a data analysis and pre-processing step (data is analyzed,
imputed, and cleaned), an experiment step (use different data and
model configurations to generate specific results), and a results step
(visualizing and storing results).

• We provide an extensive statistical analysis of the data, describing
the time series qualities of the data, relationships between features,
data distributions, effect on data using imputation, and feature
importance.

• We leverage complex imputation to determine its effect on our fore-
casts compared to not using imputation. Through these comparisons,
we discover a unique method using imputed data that improves our
results.

6

• Through our experiments, we present three use-cases: Predicting
readiness between values one and ten, classifying peaks, and clas-
sifying positive, negative, and neutral change in readiness.

• The generated experiments are evaluated quantitatively using a
variety of performance metrics. To get a better sense of the impact
of our methods, we look at several baseline results to see how our
approach compares to trivial methods.

• The best performing models for regression experiments LSTM,
XGBoost, and Linear Regression achieved consistently the same error
rate. However, for classification tasks, the model with the highest
accuracy and F1-score varied for each use-case.

The novel methods presented in this thesis include time series forecasting
using multivariate data consisting of different data types such as subjective
wellness and GPS data, a unique forecasting method using imputed data
that achieves better results compared to not using imputed data, and a use-
case that classifies the positive, negative, and neutral change in readiness.
Our approach provides extensive insight into key areas important to
forecast readiness.

1.7 Thesis Outline

In this section, we will briefly describe the main topics of all chapters found
in this thesis.

Chapter 2- Background lays out the necessary theoretical knowledge
relevant to our thesis. Here we present the fundamental concepts within
the field of ML, different ML algorithm types, and our selection of ML
models. Further, we describe athlete health and performance monitoring
methods and why they are relevant to this thesis. We present our dataset
and how the data was collected. Lastly, previous work, such as time series
analysis in soccer, is explored.

Chapter 3- Methods presents how we intend to implement our pipeline.
The pipeline comprises four steps: data importing, data processing,
experiments, and interpretation of results. We give a description of the
system specifications along with describing the evaluation metrics.

Chapter 4- Analysis and Data Processing chapter describes the statistical
properties of the dataset used in this thesis and how we alter the data with
data processing methods.

Chapter 5- Experiments- First Iteration presents the results acquired
by conducting the experiments explained in chapter 3. We explain
the significance of each experiment result before discussing what we

7

learned from implementing our pipeline and how we can make possible
improvements to it.

Chapter 6- Experiments- Second Iteration improves on what we learned
from implementing the first iteration of our pipeline. We conduct the
experiments we think are still relevant and discuss their significance. We
compare both approaches to further understand what methods have the
most positive outcome for these types of time series forecasts.

Chapter 7- Discussion further elaborates on the results gathered from
Chapter 5 and 6 to give insight into their significance.

Chapter 8- Conclusion summarizes this thesis and proposes future work
based on our findings.

8

Chapter 2

Background and Related Work

Incorporating strong defining features of an athlete’s performance in a
multivariate time series ML approach to make automated analyses may
save time and resources and lead to beneficial training and game strategy
changes. This chapter describes the underlying theory to create such a
system in the case of soccer. First, we will go over relevant terminology and
explain concepts in athlete health and performance monitoring. Further,
we will examine some rudimentary ML concepts relevant to our problem.
We will explore several approaches to ML architectures designed for
multivariate time series data. We will also discuss the data collection
process and the self-reporting system PmSys from which our ML model
will be attached and fed data to perform its predictions. Next, we will
look at what has previously been done in the field of time series analysis
of soccer players using an ML approach with subjective wellness and
positional- data. Lastly, we will end the chapter with a summary.

2.1 Terminology

Words have different meanings depending on the context. Therefore, it is
important to find common ground and understand the definitions of these
key concepts in our thesis:

• Session is defined as either a soccer match or training session. This is
a continuous period of time that normally lasts up to two hours.

• Active period refers to the date period (in days) when players started
answering the survey that generates wellness data until they stopped
answering the survey.

• Imputation is a technique used to replace missing values with an
alternative substitute in order for the dataset to retain as much
information as possible. There are various methods for imputation,
and their complexity can vary depending on the technique used. For
example, a simple method can be to replace missing values with the
average value. A more complex method is to use ML to predict the
missing value based on previous data.

9

• Soccer club or simply association, is defined as an organization
consisting of players, coaches, and other parties retaining to a specific
soccer team.

• Forecast is the word used to refer to a prediction in the time series
domain. Forecast and prediction are used interchangeably.

• readiness to train, also referred to as readiness, is the target value
that the work in this thesis aims to forecast. Readiness is defined as a
subjective metric of how ready a player feels to take part in a session.
Players report readiness on a scale of 1-10, 10 representing the highest
perceived readiness possible.

• Input window is the number of previous time steps used to make a
single prediction. An input window of three represents three days of
athlete data in the case of our dataset.

• Output window, also called forecast horizon, is the number of time
steps past the input data to predict. An output window of three
means predicting three days in the future relative to the latest sample
in the input data.

• Peaks in this thesis is referred to as very high or very low values of
readiness. Peaks are mentioned in related work and the work done in
this thesis. Our definition of peaks is readiness values four and below
and readiness values eight and higher.

• Actual days refers to the data samples only based on days the players
answered the survey and provided data. This definition does not
extend to days that are a result of imputation.

2.2 Athlete Health and Performance Monitoring

In sports, especially soccer, tools to monitor athletes’ physical and mental
state are used to obtain information to enhance player performance and
avoid the risk of injuries [1, 53, 60, 61]. In this section, we will explain
different types of performance monitoring and why they are important to
gain insight into the well-being of athletes.

2.2.1 Wellness Reporting

Wellness reporting allows for the internal conditions of the athlete to be
monitored by having them give a score of their perceived wellness across
multiple areas, such as muscle soreness, stress, fatigue, and sleep. Together
these values are often used to calculate a total wellness score [61].

As stated by Wing et al. [61]: The use of wellness reporting is widely
regarded as useful in sports science. Many find wellness reporting a
better metric than objective ones, such as heart rate measures and blood

10

markers [61]. However, the overall usefulness of the wellness reporting
depends on the specific questions providing meaningful data relevant to
the given sport [53]. The wellness questions should also be general enough
to give an understanding across the entire team and limit the time needed
to complete them. Reducing the number of questions and restricting
responses to numerical scores is necessary to optimize the time used on
surveys. [53].

2.2.2 Training Load

Load monitoring tools help identify how an athlete adapts to a training
program and give insight into the risk of fatigue or injury to minimize
them. To fully understand and effectively use training load metrics is a
complicated process as very few of these metrics have substantial scientific
evidence and because no definitive metric exists [22]. Rather, it is important
to derive the monitoring systems from what is most relevant to the given
sport, and that gives meaningful data about the individual [22].

2.2.3 Injury

Injury and Illness frequently occur to players in varying degrees and will
inevitably impact an athlete’s performance and well-being. To combat this
issue, finding patterns and trends describing possible causes might prevent
unwanted developments. FIFA has long conducted injury prevention
programs targeting areas that often cause problems [1]. They found that
using these programs reduced the overall risk of any injury by 34%. For
specific exercises such as the Nordic Hamstring exercise (NH), the long-
term result was 51% less hamstring-related injuries compared to teams
with no injury prevention programs [1]. This suggests that finding patterns
leading up to injuries and making preventative programs can substantially
reduce the risk of injury.

2.2.4 Positional Data

In soccer, players are running on a large field trying to score a ball in the
opposing team’s net. It is the movements of the players that eventually
dictate the outcome of the game. Understanding these movements makes
it possible to gain insight into the physical state of athletes as well as
game strategies. The positional data can be transformed into sports metrics
such as top speed and total distance traveled [49]. These are objective
measures of training load indicating the intensity of the given session.
Using positional data can lead to more informed decision-making and
improve player and team performance on the field.

A Case Study on Acquiring Positional Data

Positional data can give important insight into an athlete’s perform-
ance [44, 49], but challenges arise when acquiring accurate locomotor

11

movements, as stated by Pettersen et al. [44]. The paper compares GPS
to Local Position Measurement (LPM) that generates positional data from
professional soccer players. While GPS only receives signals, LPM emits
them to local receivers that do the necessary triangulation. GPS has been
the preferred method in wearable positional technology by clubs, but as
evident in Pettersen’s paper [44], other technologies like LPM might be a
better alternative. The use of LPM over GPS has shown better accuracy,
and factors like clouds and the satellite’s angle to the ground also do not
affect data gathered using LPM.

Multiple studies were conducted to test the accuracy of both GPS and
LPM. In the first study, six high-level female players wore two GPS and
two LPM tags and performed the Copenhagen Soccer Test for Women.
The subsequent distance measured was 11,668 ± 1,072 m with CV of 6%
and 10,204 ± 103 m with CV of 1% for GPS and LPM, respectively. For
high-intensity runs, which means a speed greater than 16kmh−1, the results
for GPS and LPM were 612 ± 433 m with CV of 37.4% and 1238 ± 38 m
with CV of 3.1% respectively. From the first study, it can be concluded
that GPS has far more spread in its data points which becomes even more
apparent when the athlete’s speed is increased. Having two tags of each
makes it possible to test inter and intra-reliability. The paper found that the
difference measured between the two tags on the same player using GPS
data ranged between 800 and 2,071 m, while the LPM data was between 25
and 290 m. This suggests that the data from the GPS consistently measure
a higher total distance, which is further supported by Johansen et al. [32]
where 19 players wore the same tags and obtained an average distance
of 10,805 ± 847 m using GPS data compared to 9,891 ± 974 m from using
LPM data. Moreover, the second study supports the results found in the
first study, where GPS-measured data continues to measure much larger
distances for High-intensity runs-related tests.

The accuracy of both devices was also tested by making the players run
along the edge of the soccer field wearing all four tags. The athletes’
path was drawn on top of the playing field, and the resulting two images
differed significantly. Both images have curved corners, which is expected
as the players will not run at an exact 90-degree angle. However, the
LPM image is much more accurate than its counterpart, which struggles
to stay on the edges and keep its lines from curving out. Several forms
of interference can play a part in the poor performance of the GPS. For
instance, clouds and fog can cause inaccurate data. The tests took place
69.65 degrees north, and the GPS satellite’s inclination from orbit is 55
degrees north and south, which means there were no satellites directly
overhead. However, the error of identical tags producing different results
has occurred for other GPS models at more optimal orbits. The paper
concludes that LPM shows superior accuracy over the GPS [44]. Still, it is
unsure if the worse accuracy impacts the GPS’s usefulness in quantifying
the athlete’s performance.

12

2.3 Machine Learning Fundamentals

ML is a field in computer science and part of the umbrella term artificial
intelligence (AI), consisting of algorithms that find patterns and try to
improve learning by observing data [23]. These algorithms create unique
models based on sample data to make predictions or decisions it was not
explicitly programmed to do. ML has been present since the mid-20th
century and was first coined by Arthur Samuel in the 1950s [52]. ML has
seen a resurgence over the past decade with tremendous leaps in accuracy
and scalability with advances in hardware and algorithms [21]. Moreover,
models are tailor-made to specific areas and data types. Architectures like
convolutional neural networks are often used for computer vision and time
series analysis [12], and transformers are making great strides in natural
language processing [58]. Next, we will delve into several concepts in
ML to establish the required knowledge to understand this chapter’s more
intricate parts.

The general approach to perform ML is to collect data, carry out data
cleaning if needed, train the model, test it on unseen data, and review its
performance. In all these steps, there are a number of factors and methods
to consider, detailed further in this section.

2.3.1 Domain Awareness

To properly use ML, it is necessary to focus on the models, the data, and
the domain in which one seeks answers [30]. Since the idea behind ML is
to learn algorithms to solve problems, the problems the algorithms solve
must be as close to the real-world problem as possible. This means having
good data sufficiently representing the domain.

2.3.2 Data Collection

The usefulness of the model output is highly dependent on the quality of
the input data [30]. Extracting data in general but also from several sources
might lead to a dataset containing missing data or data with different
formats, making data cleaning necessary. One also needs to consider how
the data was acquired. If the data is a poor representation of the domain,
then the subsequent prediction will have little practical value. Having more
data benefits models. However, it is important to consider that more data
also leads to a higher computational cost which might be essential to avoid
depending on the use-case.

2.3.3 Data Splits

To ensure that tuned ML models can generalize on unseen data it is
necessary to split data into three distinct purposes.

• Train split is the data used to train the model and should have
enough data to generalize new unseen data properly.

13

• Validation split is the data used to check how well the model can
generalize unseen data while tuning model parameters to achieve
better results.

• Test split is the data used to ensure that the model with tuned
hyperparameters can still generalize on new unseen data. We want
to do this to avoid overfitting.

The validation and test splits must not know anything about the training
data to avoid memory leakages, as this would lead to misleading results.

2.3.4 Supervised Learning

We use labeled data to train algorithms to classify data or predict specific
outcomes in supervised learning [59]. For example, with an input space X
and an output space Y, supervised learning tries to approximate a function
f that attempts to map X→Y. Thus, the learning process occurs during
mapping X to Y when weights are adjusted until the model is appropriately
fitted.

2.3.5 Unsupervised Learning

Unsupervised learning has no overarching programming telling it exactly
how it should interpret observations and whether its reasoning is correct.
Instead, it will traverse its data and find patterns often by clustering data
points the algorithm deems similar enough [59].

2.3.6 Overfitting

Overfitting is a term used when a statistical model fits too well to the
training data [59]. The issue is then that the model will not perform nearly
as well on other unseen datasets as its ability to generalize is gone. An
example would be: Given several data points, the following function of the
overfitted model to the training data would be exact lines separating two
data classes as shown in the rightmost image in Figure 2.1. However, if
the model is not fitted well enough to the training data, we end up with
underfitting. Figure 2.1 shows an example of what that looks like. The
wanted result is a balanced fit to the data where the model can generalize
on unseen data but also fits well to the validation data. An example of this
is also visible in Figure 2.1.

14

Figure 2.1: An illustration showing three images of a model underfitting
the data, overfitting the data, and having a balanced fit to the data.

Interpretable AI

The concept of Interpretability in ML models has become more prudent
with the rise of more complex models being a part of more and more
people’s lives [47]. Explaining how a prediction was made is crucial,
especially when sensitive or even personal data is used or when a
prediction directly impacts individuals [47].

2.4 Machine Learning - Types of Algorithms

ML is the process of learning algorithms to solve problems. These
algorithms vary greatly in both use-cases and complexity. This section will
go through different types of ML algorithms relevant to this thesis.

2.4.1 Neural Networks

Neural networks are a subset of ML and an artificial approach to imitating
how biological neurons found, for example, in the human brain, send
signals to each other. These networks consist of an input and output layer
with an N number of hidden layers in between, where each artificial neuron
is a node connected to other nodes in the network. In Figure 2.2, we can
see an example of what that looks like.

15

Figure 2.2: An Example of a simple neural network with one hidden layer.

The first trainable artificial neural network was the Multilayer Perceptron
(MLP) introduced by Rosenblatt [48] in the 1950s. The MLP was designed
as a linear classifier with only one layer between the input and output
layers with a threshold activation function. This design differs from
modern neural networks, which use non-linear activation functions [19]
that allow learning from a wider variety of data, creating more intricate
decision boundaries.

The learning process

A neural network has mainly three steps defining its learning process [6]:
Forward propagation, error computation, and backpropagation. These
processes, in tandem, will iteratively learn and improve the network’s
overall performance.

Forward propagation

Forward propagation is the process of input data propagating through all
the network layers resulting in output in the form of a prediction. The
process is initialized by nodes being fed data from all the nodes of the
previous layer, which are then combined with a node’s own set of weights.
Furthermore, for each node, an activation function is applied to calculate
what is known as the hidden activation, which will serve as input to the
next layer of nodes.

16

Error computation

When forward propagation has produced a prediction it is necessary to
compare this value to the actual prediction the model was supposed to
generate. This is known as calculating the error and can be done by using
a loss function like squared error 1

n ∑n
i=1(yi − y∗i)

2. The loss function is
applied to adjust the network’s weights to better approximate the mapping
of X→Y by using backpropagation.

Backpropagation

So far, we have described the process of generating predictions from
input data through forward propagation and finding the error between the
predicted value and the true value, known as the loss. Further, for the
network to learn, it needs to minimize this loss by adjusting its weights
accordingly with a delta in a direction where loss is minimized. This is
called backpropagation.

2.4.2 Linear Regression

Linear regression [55] is a regression model that models linear relationships
between a response variable and one or more explanatory variables. The
motivation behind the linear model is to examine whether the explanatory
variables manage to predict the response variable accurately. By doing this,
we estimate unknown parameters, which is the process of fitting the model
to the data. As with the learning process of all models, it is crucial that
the model is able to generalize. This is evident when the model properly
adjusts its predictions when encountering new unseen data. Next, we will
go through the general mechanisms of multiple linear regression.

y = β0 + β1X1 + β2X2 + ... + βkXk + ϵ (2.1)

In Equation 2.4.2, we have the equation for multiple linear regression. y is
the response variable with β0 being a constant, referred to as the intercept.
Xk is the explanatory variable, and βk is the slope coefficient for each
explanatory variable. Lastly, ϵ is the model’s error term, referred to as the
residuals.

2.4.3 Decision Tree Regressor

The decision tree model is initialized by the root node consisting of the
complete sample, which is further split into several new nodes. These
nodes branching from the root node are called interior nodes and represent
all the features, with branches being the decision rules. Further, we have
the leaf nodes, and these represent the outcome.

17

When the tree models are given data, each sample is run through each node
in the tree until it reaches a leaf node, producing an outcome. When going
through each node, the data sample is compared to several TRUE/FALSE
questions determining its next node. The outcome is the average response
variable value in the specific leaf node. It is through several iterations that
the model is able to predict a reasonable value for a data sample.

2.4.4 Long Short-Term Memory (LSTM) Networks

LSTM [27] builds on the recurrent neural network (RNN) architecture
to mitigate the issue of exploding and vanishing gradients as well as
improving short-term memory. Exploding and vanishing gradients occur
as the gradients are a product of past gradients, and these tend to grow
exponentially, which leads to weights being too big or unchanged. This
culminated in creating the LSTM that works by using cell-states and gates
that allow the network to forget or remember certain information. These
mechanisms let the model retain long-term and short-term memory, which
is important for large sequences of time series data.

2.4.5 Convolutional Neural Networks

A convolutional neural network is an artificial neural network mainly
applied to spatial data with a grid-like structure such as image and time
series data [2, 12]. Further, we will describe the convolutional neural
network’s general learning process before discussing convolution and
pooling.

The Learning Process

The iterative learning process is similar to the one described in Section 2.4.1,
where the input data is forward-propagated through the network. Some
loss is calculated and propagated backward in a direction so that the
weights can be adjusted to minimize loss. The convolution and pooling
layers set convolutional neural networks apart from the simple neural
network we have already described.

Convolution

Convolution is a mathematical operation on two functions that produces
a third function giving insight into the relationship between them. In
a convolutional layer, we have the same number of learnable filters as
we have nodes since each node constitutes a filter learning feature. The
convolution can be visualized as a sliding window called a convolving
kernel over the input data. The convolution output is called a feature map,
while a set of feature maps is called the output volume. The feature maps
are further processed in a non-linear activation function; otherwise, all
the deep convolutional neural network layers would collapse into a single
convolutional layer. Moreover, the convolution layer has hyperparameters

18

like size, padding, stride, and dilation, dictating the spatial dimensions of
the output volume.

The values and dimensions of the convolving kernel are based on the input
data. In the case of images, it would be a 2d convolving kernel with
values for examples corresponding to finding edge features. In time series
data, the kernel would be of one dimension and roughly give the moving
average of the time series, providing insight into a possible trend.

Pooling

Pooling is a commonly used mechanism to reduce the spatial size of
the feature maps to allow for more efficient computation. The pooling
operation is applied to the feature maps after they have gone through
the non-linearity function. The pooling filter is always smaller than the
feature maps and results in a size reduction. There are two techniques:
max pooling and average pooling. In max pooling, the greatest value in
a segment represents that segment, while in average pooling, the average
value of all values in a segment is used.

2.4.6 Transformer

The transformer architecture [58] uses an encoder-decoder structure to
make predictions. However, it does so without the use of convolution or
recurrence. Still, models built on the foundation of the transformer have
achieved state-of-the-art results in a wide variety of fields such as Natural
Language Processing (NLP), music generation, computer vision, and time
series analysis [28, 58, 62, 63]. In the case of NLP, the transformer learns
the relationships found in sequential data. It does this by regarding some
words as more important than others and therefore is able to learn sentence
structure. Further, we will describe the transformer architecture.

The Transformer Architecture

Each input sequence fed through the transformer is first transformed into
an embedding vector equal to the model dimension. The embeddings
are then augmented with a positional embedding by generating sine and
cosine functions that are simply summed to the embeddings. As there is no
recurrence, the model depends on positional embeddings to understand
the relative positions of the sequences. Further, the embedding vectors
are sent through an encoder block containing two layers: The first layer is
a multi-head attention mechanism that outputs normalized keys, values,
and queries and is fed into a feed-forward network consisting of two
linear transformations. The input to the decoder, which is a predicted
output at timestep t-1, is also augmented with positional embeddings. The
decoder block consists of 3 layers, where the first layer applies masking
to the succeeding elements in the sequence. The second layer introduces
the output from the encoder block and unmasks all the elements in the

19

sequence. As for the third layer, the output goes through a fully connected
feed-forward network, followed by a soft-max layer that predicts the next
element in the output sequence.

2.5 Machine Learning - Selected Algorithms

A none-deep ML approach like decision trees [11] offers fast learning but
often results in a lower accuracy when compared to a more computation-
ally complex model with multiple layers like convolutional neural net-
works [18]. Further, by understanding how different models learn, it might
be possible to extract information on why some mechanisms are better
suited to athlete time series data than others. This section aims to under-
stand the models when we later interpret the results in chapters 5 and 6.
Having insight into the details of each model and why it performed the
way it did might give a better understanding of what to change to allow
for better results. Therefore, we intend to use ML models with different
architectures and complexity that have shown state-of-the-art results using
time series data. We will also use less complex models like the decision tree
and linear models as a baseline for comparisons. Next, we will present our
selection of models that we will be using for our comparative study.

2.5.1 eXtreme Gradient Boosting

eXtreme Gradient Boosting or XGBoost is a tree-based algorithm highly
used by data scientists for various ML tasks [11]. The model saw its rise
in adaptation through ML competitions where it was widely used and
achieved state-of-the-art results [11]. Next, we will go through the model
architecture and explain its unique mechanics, which makes it perform well
with different kinds of data.

XGBoost is based on the boosting machine, a sub-group of Tree-based
Ensemble algorithms similar to random forest. However, random forest
uses a parallel approach to learning by creating several decision trees and
using the average of the aggregated result from each tree. XGBoost, on the
other hand, employs a sequential learning algorithm by adding one new
decision tree at a time. It does this by initializing the first model and then
calculating the error of this model; it then creates a new model to predict the
error of the previous model, which is then added to the ensemble. At this
point, XGBoost will repeat the process of generating new models to predict
the previous model error and add it to the ensemble. Despite generating
trees sequentially, XGBoost, from a system optimization perspective, is
designed for parallel computation to reduce the computational cost and
is, therefore, very competitive in terms of performance.

The "eXtreme" part of its name comes from implementing several al-
gorithms that enable XGBoost to fully exploit the available computational
components of the given system, such as CPU, GPU, memory, and disc.

20

Some of these algorithms are out-of-core computation dividing data into
blocks to be stored on disc, cache-aware pre-fetching algorithm improving
the performance of a factor of two for large datasets (>10 million instances),
and block sharding allowing for efficient pre-fetching of data when mul-
tiple discs are available [11]. All these methods allow the model to scale
with hundreds of millions of examples and to be run on a single desktop.

Aside from creating an end-to-end tree boosting system, There are three
significant innovations made in creating the XGBoost model.

• Weighted Quantile Sketch proposes possible split points in the
approximate algorithm. The idea is to provide a data structure
supporting merge and prune operations where each operation can
maintain a certain accuracy level.

• Sparsity Aware Algorithm considers sparsity in data, meaning
missing data, frequent zero entries, and consequences of feature
engineering such as one-hot encoding. Therefore the algorithm
instills a direction in each tree, making the algorithm aware of the
sparsity patterns in the data.

• Cache-Aware Block Structure For Out-Of-Core Tree Learning: is a
series of algorithms enabling effective use of the memory hierarchy
of computers from the cache to disc to more efficiently fetch data.

XGBoost balances variance and bias in the way of L1 and L2 regularization
to make the model more proficient in model generalization. Especially
compared to gradient boosting, which only considers the variance and is
prone to overfitting. Further, XGBoost allows for tweaking a wide variety
of hyperparameters such as learning rate, depth of tree, number of trees,
and the number of nodes, for mentioning a few. These factors allow
XGBoost to improve the variance-bias issue further.

Tree-based models like XGBoost are known to perform exceptionally well
on tabular data. When the features are heterogeneous, e.g., number of sales,
weight, and average time spent. For these data types, XGBoost or other tree
models like random forest tends to outperform neural networks [11]. This
can be explained by how XGBoost handles features independently, where
the rules for generating leaf nodes are expressed as if statements. To obtain
a prediction of whether a person is going to buy an item, a tree-based model
generates statements such as: "Is the person older than 30" and "Is the
person married". A neural network on the other hand could, for example,
model the probability of a sale such as Sale = W1 ∗ age + W2 ∗ married.
Generally, finding meaning by linearly combining features very different
from each other is a difficult task and explains why tree-based models are
still very relevant today.

21

2.5.2 ROCKET

ROCKET [12] uses random convolutional kernels to transform time series
data into features to train a linear classifier. Most models achieving state-
of-the-art accuracy on time series data are computationally expensive. Still,
examples of better scaling deep architecture like InceptionTime [29] and
time series Transformer [63] are prevalent. However, as the paper points
out, ROCKET uses only a fraction of the computation of such models,
as is evident when comparing test results from the 85 "bake off" datasets
from the UCR archive. While InceptionTime spent more than six days to
complete the task, ROCKET only needed 1 hour and 50 minutes while also
achieving state-of-the-art results.

ROCKET is made scalable and programmed to run in parallel on CPU cores
or GPUs automatically. The architecture, with its random convolutional
kernels and linear classifier, is, in reality, a 1-layer convolutional neural
network. ROCKET applies either a logistic or ridge regression depending
on the dataset size: Primarily using ridge regression and only logistic
regression when the number of training examples is far greater than
the number of features, as logistic regression trained to utilize stochastic
gradient descent scales better on larger datasets.

The paper notes four main differences in the convolutional layer common
in typical convolutional neural networks: Firstly, there is only one layer
of kernels, and their weights are not learned, so the cost of computing
convolutions is exceedingly low. Therefore ROCKET uses an enormous
amount of these kernels. Secondly, all aspects of the kernels are random.
This means that length, dilation, padding, bias, and weight are all given
random values. It is typical in convolutional neural networks that dilation
increases exponentially with depth. However, dilations in ROCKET are
randomly sampled from each kernel, giving a large variety of dilations that
capture patterns at different scales and frequencies. Lastly, ROCKET uses
what the authors call "the proportion of positive values" to let a classifier
weigh a pattern’s commonness within a time series. This is described
as the most important aspect of the architecture concerning accuracy.
Hyperparameter K defines the number of kernels that directly impact the
computation cost and performance of the model. A lower K results in lower
accuracy but less time for training, while a higher K has the opposite effect
with higher accuracy but requires more time to train.

In the TST paper [63], ROCKET was compared to other state-of-the-art
MTS models on multivariate time series datasets from the UEA archive
and performed best in 3 out of 11 datasets and overall was the second-
best model in terms of rank. ROCKET proves that using a large number
of random kernels to discriminate patterns in time series data is extremely
efficient in terms of accuracy and computation.

22

2.5.3 Temporal Fusion Transformer

The Temporal Fusion Transformer (TFT) [35] is a transformer-based
model created for interpretability, high performance, and multi-horizon
forecasting. It leverages self-attention mechanisms to map complex
temporal dynamics across multiple time series.

TFT is unique in that it supports different kinds of features consisting
of time-varying known and unknown as well as time-invariant real and
categorical. Holidays are an example of a known time-varying variable,
while we categorize something like CPI as an unknown time-varying
variable. Further, ID is a categorical time-invariant variable, while the
yearly inflation rate is a real-time-invariant variable. The purpose of
accommodating these feature types is for the model to learn their temporal
relationships. Further, what sets TFT apart from other models is that
it offers interpretability for these forecasts using different variable types.
Previous work was plagued by "black-box" solutions [35]. These novel
properties are a product of the model’s unique architecture.

The most contributing parts of the TFT architecture [35] are the following:

• Gating mechanisms disregard unused parts of the architecture to
allow for adaptive model complexity. This mechanism ensures that
the model is able to take into consideration extensive examples of
scenarios and datasets.

• Variable selection networks chooses relevant input features at each
time step.

• Static covariate encoders incorporates static features into the net-
work.

• Temporal processing is used to learn long and short-term temporal
relationships between known and observed time-varying inputs.

• Prediction intervals leverages quantile forecasts to approximate a
range of probable target values at each prediction horizon.

The main contribution of the TFT in the time series domain is how it offers
an interpretable and versatile model for multi-horizon forecasting. Its
architecture supports interpretability regarding global feature importance,
temporal patterns, and significant events. By temporal patterns, we mean
a segment that recurs frequently, for example, a combination of chords
in a musical piece. By learning these patterns, the model can also detect
abrupt changes in temporal patterns that might signal a significant event.
An added focus on the temporal relationship between variables makes the
TFT model suited for complex time series forecasting.

23

2.5.4 Additional Models

In addition to the models presented in this section, we will use linear
models, a simple decision tree model, and an LSTM model for our
experiments. These have previously been presented and discussed in
section 2.4.

2.6 SoccerMon Dataset

In this section, we present the soccermon dataset [39] and the framework
PmSys [31], where we obtain data for our dataset. We will go through how
the data was collected and explain the subjective and objective nature of
the data.

2.6.1 SoccerMon Subjective Metrics

Subjective wellness feedback is an essential and much-used method to
track an athlete’s performance and wellness. Knowing how well an
athlete performed and overall felt during previous training sessions and
competitions makes it easier to keep track of progress and how best to make
improvements for further athletic development and prevent injuries. The
subjective wellness data can be multiple numerical values to an athlete’s
sleep, stress, and soreness or comprise all these values into a single score.
As for this thesis, our dataset regarding subjective wellness data consists
of numeric values to perceived wellness across multiple areas as shown in
Table 2.1. Table 2.2 shows subjective training load metrics.

Metric Description Data Type Range
Fatigue The current fatigue

level of the player
Numeric 1-5

Mood The current mood
of the player

Numeric 1-5

Readiness to play The athlete’s read-
iness for a training
session or a game

Numeric 1-10

Sleep duration The duration of the
sleep

Numeric 0-12

Sleep quality The quality of the
sleep

Numeric 1-5

Soreness The level of sore-
ness

Numeric 1-5

Stress The current stress
level of the player

Numeric 1-5

Table 2.1: Wellness metrics in the SoccerMon dataset.

24

Metric Description Formula
Session RPE (sRPE) The workload of a single session depend-

ing on the duration and the reported RPE
values

RPE · duration

Training load The sum of sRPE during a day ∑ sRPE per day
Weekly Load (WL) The sum of sRPE over the last 7 days ∑ sRPE per

week
Acute Training Load
(ATL)

The current level of fatigue (average sRPE
over the last 7 days)

7−1 ∑i+7
n=i DLi

Chronic Training Load
(CTL)

The cumulative training dose that builds
up over a longer period of time (average
sRPE over the last 28 or 42 days)

x−1 ∑i+x
n=i DLi,

x = 28 or 42

Acute Chronic Work
Load (ACWR)

An indication of whether an athlete is in a
well-prepared state, or at an increased risk
of getting injured (ATL divided by CTL)

ATL · CTL−1

Monotony Reflection of training variation across the
last 7 days (mean sRPE divided by the
standard deviation (SD) = ATL / SD)

ATL · SD−1

Strain Reflection of the overall training stress
from the last 7 days (total weekly sRPE
multiplied with Monotony)

WL · Monotony

Table 2.2: Training load metrics in the SoccerMon dataset. For a training
session, the players report session duration and the overall Rating of
Perceived Exertion (RPE). These subjective parameters are then used to
calculate a variety of different measures of training load as shown in this
table.

25

2.6.2 SoccerMon Objective Metrics

Positional data obtained through, for example, GPS gives data on move-
ment by measuring athletes’ position several times a second. Such data
can, in turn, be used to calculate total distance, the number of accelerations
above a certain speed, and average speed, to mention a few. These types
of data are objective and show the true performance of an athlete. How-
ever, the importance of understanding athletic development might vary
immensely between players. This is why it is crucial to make systems that
consider each athlete’s subjective nature.

2.6.3 PmSys Framework

PmSys [31] is a smartphone-based monitoring and reporting system
athletes use to gather and analyze subjective wellness data to gain
insight into an athlete’s development and avoid injuries. Unfortunately,
creating and supporting a smartphone application is costly and resource-
demanding. Still, the Johannes et al. [31] argue that focusing on user
experience to reduce time spent reporting each day is essential for users
to want to use the application. This statement is also supported by other
literature [53].

Several improvements and changes were made to avoid tedious reporting,
such as making a point-and-click body silhouette to report injury rather
than answering 11 complex questions. An example of this can also be found
in Figure 2.3. Text and button clicks were reduced, questions simplified,
and scrolling eliminated. These were among the changes that were deemed
essential to ensure a better user experience. In Figures 2.4 and 2.5, we see
two images showing how each athlete reports wellness and training load
utilizing these improved functionalities for faster reporting.

26

Figure 2.3: An image from the PMSys app illustrating the point and click
body silhouette for reporting injuries. The user indicates what body part is
affected and the severity of the injury (courtesy of ForzaSys).

PmSys collects data from the athletes’ answers to questions regarding their
training load, wellness, and mood. These data are further analyzed and
are available for coaches and physicians through a trainer portal. The
coaches can view individual players’ and teams’ statistics through the
trainer portal and send direct messages to the player’s PmSys profile [44].
A key component of PmSys is the dynamic between the coaches, analyzed
data, and athletes that the system support to give better insight and educate
all parties. The system’s intended use is daily, and the time to report is right
after waking up to the start of the first training session.

27

Figure 2.4: An illustration of how training load is reported by users in the
PMSys application (courtesy of ForzaSys).

Figure 2.5: An illustration of how wellness is reported by users in the
PMSys application (courtesy of ForzaSys).

PmSys is being actively used by junior, elite, and national teams in Norway.
Additionally, 400 female soccer players from Norway, Denmark, and
Portugal are part of a research project on the development of elite female
performance using the PmSys framework. The nature of the collected data
makes it compatible with time series analysis because it is measured over a
consistent time interval. Good data is crucial for a ML model to learn and
output reliable predictions. The paper found promising initial results when
predicting future athlete performance based on the data from PmSys. More
details on PmSys time series data predictions are described later in this
chapter. Further, the paper states the reaction by the athletes and coaches
to be positive, and several changes in strategy have been made due to the
information given by PMSys [31].

PMSys incorporates intelligent and efficient methods of extracting athletes’

28

training load and wellness data to give insight into their performance.
Statistics and other visual representations of their athletic state are used
to simplify and abstract time series data measured over a consistent time
interval. Adding an automated ML analysis component to predict future
athletic performance could draw more information about an athlete’s true
state. Moreover, utilizing multiple features with different characteristics to
profile athletes might provide more context to describe performance better.
PMSys is based on self-reporting of mostly subjective wellness data, which
is only as accurate as the questions and the user’s reporting.

2.7 Time Series Prediction for Soccer

2.7.1 Time Series Data

Time series data is chronological data measured consistently over an even-
spaced interval of time and is used to discover trends that may indicate the
future movements of the data. These movements are used in a number of
fields to gain valuable insight, such as weather forecasting [9] but also in
analyzing athletic performance [60], which is the focus of this thesis.

Finding and analyzing patterns in time series data allows for predicting
likely outcomes with a significant degree of certainty. In an athlete’s per-
formance context, these predictions can help avoid injury and contribute to
knowledge used to change and find better matches and training strategies.
There are already cases where analytical data in sports have been utilized to
alter game strategies [31]. Further in this section, we will present examples
of what has been previously done in analyzing time series data with an ML
approach in the world of soccer.

2.7.2 Predicting Peak Readiness-to-Train

Using time series data to predict important events is not a new concept.
It has already been utilized to predict peak readiness among professional
soccer players [60]. Wiik et al. have athletes submit subjective wellness
data, which is used to train a LSTM [27] model that predicts positive and
negative peaks. The readiness-to-train value serves as input to the LSTM
model, where the output is the predicted readiness value for the next day
as the model works on a day-by-day basis. The readiness value is between
1 and 10, with positive peaks being everything eight and above and
negative peaks three and below. Negative and positive peaks were used
as predictions rather than trying to predict a specific number accurately.
As the paper states, this was done to mitigate the problem of limited data.

The model was tested on two teams, and each individual was given a
predicted readiness value based on their data and the combined data
of the team excluding themselves. This led to the result where the
predicted values were more accurate on the team’s data than on their

29

data. However, they argued this to be because the data available for
each individual was too sparse and that the team’s dynamic influences the
player’s performance. Using these methods, they predicted positive and
negative peaks with recall and precision above 90%. Serving as proof that
it is possible to predict an athlete’s future performance with a significant
degree of certainty. However, a model that can better predict an athlete’s
performance based on only their data is still desirable since each player is
unique and will respond to training parameters differently.

2.7.3 Predicting readiness to train Using LSTM

This thesis further builds upon previous work regarding predicting
athlete time series data which mostly based their research on the LSTM
architecture with a univariate approach [34, 46, 60]. Their research shows
promising results and concrete ideas to further contribute to this field.

Ragab [46] used the LSTMPlus model from the TSAI library [41] and
achieved the best results by training on the team’s data and making
forecasts for each individual player. These predictions were made for two
unique teams: A and B. Team A had a higher player consistency, leading
to more accurate forecasting, and team B had lower player consistency.
Further, they discovered that utilizing more data and training only on
individual players resulted in worse results than using substantially fewer
data samples and training on the whole team. Generally, they discovered
that more data did not increase accuracy and that less and more recent
data is preferable to more data that is not so recent. As the LSTMPlus
supports multi-step, forecasting multiple days in the future was attempted,
leading to less accurate results with each increase in forecasting horizon.
An increase in input size did not mitigate the issue. Regarding the
hyperparameters, significant deviations were not found by changing them
except for turning shuffling on, which yielded slightly higher accuracy.
Further work points to other ML models and variables for multivariate
forecasts.

2.7.4 Exploration of Different Time Series Models

Kulakou et al. [34] used several ML models to predict future readiness
to train among professional female athletes using both a univariate and
a multivariate approach. The paper builds on the findings from Wiik et
al. [60] and utilizes the same system (PmSys) to extract training data from
two different Norwegian elite female soccer teams over two years. They
used ML models from the TSAI library [41].

Kulakou et al. investigated multiple areas important to athlete predic-
tions using time series data: Multiple ML models were employed (RNN,
LSTM, GRU, RNNPlus, LSTMPLus, GRU-Plus, RNN-FCNPlus, LSTM-
FCNPlus, GRU-FCNPlus, InceptionTime, MRNN-FCNPlus, MLSTM-
FCNPlus, MGRU-FCNPlus) with univariate- or multivariate data using

30

readiness only for the univariate approach and mood, stress, soreness, fa-
tigue, and readiness for the multivariate approach. Trained models were
given different window sizes on the test data to discover how much input
data was needed for predictions and if longer predictions were viable. As
was also done in Wiik et al. [60], Kulakou also compared training on indi-
vidual players and the whole team. Further, they investigate the impact of
hyperparameters along with the issue of missing values.

Kulakou found in their experiments that a multivariate approach did not
perform better with their chosen models and dataset. However, they
encourage future work to explore a more comprehensive approach to
multivariate data. The best-performing model using multivariate data was
inception time, while LSTMPlus was the top performer using univariate
data. A smaller output window size proved to be more accurate, meaning
that daily predictions were more accurate than weekly predictions. As Wiik
et al. discovered [60], training on the entire team rather than on each player
proved more accurate in finding positive and negative peaks. Other than
enabling shuffling, changing hyperparameters had no significant impact
on the results. Lastly, the missing data were treated with and without gaps,
but the most accurate results were found using missing values without
gaps.

2.7.5 Injury Forecasting With GPS data

GPS-tracking allows measuring an athlete’s speed and distance during
games and training sessions. This data can, in turn, be translated into
training load features and used to profile athletes for future performance
and injury prevention. Alessio’s paper [49] proposes methods to effectively
utilize GPS data to analyze professional soccer players by extracting 12
features to be used in a multi-dimensional model that forecasts whether
or not an athlete will sustain injuries based on the most recent training
load. The 12 workload GPS features extracted are categorized into three
groups: (1) Kinematic features describe the overall movement of an athlete.
(2) Metabolic distance features quantify the energy expenditure of an
athlete’s movement. (3) muscular-scheletrical load gives a general measure
of load on the body. Together with these 12 features are another 43
that consist of personal data such as age, and the number of occurred
injuries, Exponential Weighted Moving Average features, Acute Chronic
Workload Ratio features, MSWR features describing the monotony of the
workload features, and the relationship between a current training session
and previous injury.

All features mentioned comprise the dataset and are further processed to
find the best features by reducing the feature space dimensionality, lim-
iting the risk of overfitting. This is done by performing a feature selec-
tion process called Recursive Feature Elimination with Cross-Validation
(RFECV) [20]. The most relevant ones are the subsequent subset of features
that give the highest score on the validation set.

31

The dataset is used on several different models, but the decision tree is
the best-performing one, and a recall and precision of 0.8 and 0.5 were
achieved. These results show that the model finds injuries 80% of the time
and correctly classifies games/training sessions as injuries 50% of the time.
This suggests that the model predicts a non-injury as an injury one time out
of every two occurrences, which is substantially less accurate than the best
result presented by Wiik et al. [60]. However, Wiik et al. predict extreme
readiness values, while Rossi et al. predicts injuries that are much rarer.
Also, Wiik et al. use the team’s data for predictions rather than only the
relevant player, which has been shown to help results significantly.

In addition to being tested with data from a complete season, they tested
the model on another season but were only given new data for every new
training session/game. This was done to see how the model performed
with limited data. The paper reports poor performance the first few weeks,
but from week six until end of season, the model finds nine injuries out of
14 with a precision of 0.56. With this, Rossi et al. indicate that it only takes
a couple of months of data before the model becomes efficient.

2.8 Chapter Summary

In this chapter, we have presented the basic concepts in ML, different
types of ML architecture, and specific ML models that will be used for
our experiments. Further, we discussed the importance of health and
performance monitoring tools to evaluate players’ mental and physical
state along with SoccerMon, our dataset. Lastly, we presented related work
using wellness or GPS data to forecast athletic performance.

Multivariate and univariate time series analysis of athlete data has proven
valuable in injury and performance forecasting. However, the examples
shown have mainly used subjective wellness or positional- data. This
motivates the idea of combining a multitude of features describing an
athlete’s performance to use in a multivariate time series ML architecture.
Using several state-of-the-art ML models might provide better insight into
what type of models is a good approach for these kinds of time series data.

Based on related work discussed in this chapter and their comments
on future work [34, 46, 49, 60], it is important to conduct a more
comprehensive investigation regarding:

• Data Configurations such as an optimal number of input windows
and how this value might change depending on the forecasting
horizon and model type [34].

• Exploration of Architecture Types that looks at models outside the
TSAI library [34].

32

• More Advanced Methods of Imputation to better represent the daily
time series data [34].

• A Deeper Analysis of Multivariate Data to investigate what other
data types have a strong explainable relationship to readiness [34].

• Investigating the Transferability of Data to see whether it is possible
to use data from multiple clubs to train and forecast on an arbitrary
player [49].

These bullet points represent research that is missing or not thoroughly
investigated [34, 46, 49, 60]. Therefore, we will address these questions
as they are important to understand the ability to forecast readiness and
are also relevant to our research question. Next, we will describe our
methodology in chapter 3.

33

Chapter 3

Methodology

We explained the health and performance benefits of tracking an athlete’s
performance in chapter 2, including the concept of ML and its application
in forecasting future performance based on previous time series data.
Further, a description of several deep learning architectures, related work,
and the base data which will become our dataset has also been elaborated
on in the previous chapter.

The focus of this chapter is the implementation of our pipeline to conduct
experiments. We propose a novel approach using subjective wellness and
GPS data with the current state-of-the-art time series models to forecast
future readiness to train among professional female soccer players. We will
first discuss what is considered a good approach to forecast athlete data to
produce useful information for players and clubs. We will then explain
each step in our proposed pipeline before giving a technical description of
the requirements to implement such a system. Lastly, we will present the
evaluation metrics used to interpret our results and present a summary for
this chapter.

3.1 Characteristics of Useful Forecasts

To better comprehend our main research question, it is necessary to un-
derstand what signifies useful characteristics when forecasting readiness.
From what we presented in chapter 2, we have derived the following prop-
erties as important when forecasting readiness to train.

- Data impacting game strategy: The model output should produce
data to help make game strategy decisions. By this, we mean
anything from selecting players for matches to adjusting training
schemes to improve performance and avoid injury.

- Personalized to the player: The model output should reflect each
player’s unique patterns and variability. Having models only capable
of forecasting certain types of players would be detrimental to its
real-world use-case. The main focus of this thesis is understanding
players on an individual level.

34

- Robust models: The models used to make forecasts should be reliable
and not too computationally expensive. By reliable, we mean that
the model error is not higher than its usefulness. However, what
error is too high is difficult to conclude and will be discussed later
in chapter 7.

3.2 Proposed Pipeline

The motivation behind representing our work as a pipeline is to show each
unique part of our work and how they are connected. A pipeline approach
allows us to enforce a structure on how we go from acquiring data to
producing results. We previously explained in Section 1.4 how our research
methods are based on experimental and iterative prototyping; We generate
results and try to improve them based on what we learned by conducting
experiments. An ordered approach to our overall methodology aids us to
more efficiently and Rigorously conduct experiments. Figure 3.1 shows the
pipeline describing our workflow.

To thoroughly investigate what elements are important when forecasting
athlete data, we must determine methods for reducing forecasting error
and consider what constitutes useful data that clubs and players can act
on. We have previously discussed in sections 2.2 and 2.6 the benefits
of knowing the future well-being of an athlete to optimize training and
potentially avoid injury. However, the format in which model output is
expressed is also crucial to any data analyzing tool. Therefore, we will
do regression and classification to explore different use-cases and ways
of representing our results. We will provide two iterations, with a first
approach and a second approach that builds on what was learned in the
first iteration. Next, we will go through each step in the pipeline, from
acquiring data to visualizing the results.

35

Figure 3.1: Illustration showing the workflow of each step in our proposed
pipeline.

3.2.1 Data Importing

The process of importing data is the first step in our pipeline. We extract
the data from an MySQL database. MySQL is a relational database
management system that efficiently stores data in a table format [16],
compatible with the time series data from the PmSys project [39]. We
import specifically two tables containing subjective wellness and GPS-
derived features. We have previously mentioned in chapter 2 section 2.6.3
regarding PmSys how each player submits their data through an app by
answering short surveys. This data is subsequently stored in an MySQL
database which we use. The GPS data is not gathered from the PmSys
surveys but is generated from sensors worn by the players and then
uploaded to the MySQL database.

36

3.2.2 Data Analysis and Processing

When the data is acquired, it is immediately processed to a format fit to be
sent through our models. More specifically, the data is processed by several
methods, such as imputation and handling of outliers. We use padding to
fill all missing time steps with empty row values before removing all time
steps before they started actively answering the survey and everything
after they stopped answering the survey. This ensures that the days we
are left with include only the period they actively answered the survey.
However, this leaves us with missing data within the active periods,
which is then imputed. Also, time steps containing wrongly formatted
values or outliers are deleted or changed. Each player’s active period is
unique, resulting in time series data with variable lengths. We solved this
issue by adding each player’s data sequentially into our dataframe while
incorporating time-specific features into the dataset. Also, our dataframe
knows what dates are a result of imputation, so we can always choose
between imputed and non-imputed data.

Be it holidays, rest days, injury, illness, or simply that they forgot to fill out
the survey, all players, to some extent, have missing data. To combat this
issue, we decided to impute these time stamps rather than accept them as
missing. Our choice of imputation: IterativeImputer [50] is a multivariate
imputer that works by estimating each missing feature value from all other
features. An example of what that looks like can be found in Figure 3.2.
The issue of imputation is that we stray farther from the actual data. As
explained in Section 3.2.2, We have tried to minimize the number of data
samples needed to be imputed by only including data from the period
the players were actively answering the survey. However, many players
still have many missing time steps within this period. The lack of actual
data causes our final dataset to have 59% of its data directly resulting from
imputation. In chapter 4, we will present the implications of performing
this imputation on the dataset.

37

Figure 3.2: Images showing before and after using IterativeImputer on the
data of one of the athletes in our dataset.

An important part of this thesis is understanding the data and its
capabilities for time series forecasting. We, therefore, include a chapter
dedicated to analyzing the statistical properties of the data, such as
feature correlation, feature distribution, feature importance, stationarity,
and how imputed data affects these statistical properties. As we will later
see in Chapters 5, 6, and 7, understanding these statistical properties is
instrumental in properly evaluating the performances of our experiments.

3.2.3 Experiments Overview

We use the processed data for all our different configurations of experi-
ments where we produce different types of statistics. Some experiments
create models for each model type for all players, while others only create
models for each model type for one player. This is because we want a spe-
cific model for each player to maximize accuracy in a real-world scenario.
Also, depending on the experiment, we want to see how the population
of all players on a given team performs. At other times we only want to
consider the performance of one individual player. Therefore, we produce
results describing both the team and individual players.

We split our experiments into regression and classification sections for
several reasons. Firstly, these two approaches are different, with distinct
use-cases and limitations. Secondly, we want to clarify the different

38

use-cases and how they differ from each other. Thirdly, these two
approaches have a slightly different selection of models with different
model configurations. Also, we are comparing how regression and
classification contribute to the overarching research question. Therefore,
separating these two approaches is sensible for both readability and clarity.
Next, we will explain the reason for our model training schemes before
looking at the different experiments and why we have included them.

It is important to understand how predictions in a time series domain work.
We use the previous N days to predict the next M unknown days. The
previous day(s) is the input window, while the next unknown day(s) is
the output window. Figure 3.3 illustrates the process of a moving window
procedure using the previous five days to predict the next three days.

39

Figure 3.3: Illustration Showing The Process of Performing Sliding Window
on Data.

40

Training Scheme

In chapter 2 in related work, we described how Wiik et al. [60] achieved
the best results by training on the whole team’s data rather than only using
one player’s data for both training and predicting. This is due to the lack
of data for a new player joining the team. In the imputed dataset a player
on average has 396 data points. For our pipeline, we intend to train using
the whole team and predict for only one player. This method of training
is more beneficial to the more complex deep learning models we are using
since it allows us to use thousands of data points rather than only a few
hundred if we were only to use data from one player at a time. Moreover,
since the team dynamic also greatly affects each player’s performance [60],
training on the whole team might lead to discoveries of important trends.
The instances where we look at all players in a given team we perform leave
one out cross validation where each player is a sample. We will mainly
look at the average value derived from the leave-one-out cross-validation.
For all experiments, we will use team A except for the instances where we
compare team A to team B. Reason for this is that team A has more data
and less missing data in between the period the players actively answered
the survey.

Hyperparameter Configuration

We are tuning hyperparameters for all relevant models to adequately rep-
resent each model’s performance. The process of tuning the network para-
meters is done in several ways, but all methods are verified so they are not
overfitting. For the TFT and LSTM models, we do a combination of manual
tuning in combination with author and documentation recommendations.
For the XGBoost model, we use a library called hyperopt [5] that automatic-
ally finds the best hyperparameters by leveraging an algorithm called Tree-
based Parzen Estimators (TPE). The TPE approach outperforms Bayesian
Optimization and Random Search [15]. The main perk of TPE is how it
handles complex interactions among hyperparameters using a tree-based
structure.

Regression Experiments

In our regression approach, we intend to answer questions regarding the
optimal input window size, how large the forecasting horizon can be,
what models among our selection are best suited to forecast readiness, the
optimal forecasting method, what the most relevant features are, and how
team A and team B compares in performance. These experiments will give
important insight into the practicality of forecasting readiness and help
answer our overarching research question.

• Effect of Input and Output window sizes on RMSE-score: In order
to understand how the data parameters input and output window
sizes affect the error rate, we decided to create plots showing the
movement of the RMSE score when increasing the input window

41

with several different output window sizes. This allows us to
choose the optimal input window size. However, it is highly
computationally costly to generate such plots.

• Model Comparison Using All Features: For each algorithm and
player, we create unique models that all output an RMSE score. We
use these values to create boxplots, one for each model, where each
player represents one data point in the boxplot. This way, we can see
the average error and spread of errors between all players on a team.
We do this by using all features in our dataset

• Model Comparison Using Only Readiness: We perform the same
experiment as the previous one mentioned, but only using the
feature readiness instead of all features. The previous and current
experiments let us compare if a multivariate approach provides less
error than a univariate approach.

• Incremental increase of output window using optimal input win-
dow size: To see if it is possible to forecast for longer time horizons,
we use the optimal input window size found in one of the previous
experiments and try to forecast while increasing the output window
with one up to 14. The motivation is to observe whether the error
increases significantly from forecasting one day to N days.

• One-Step Ahead versus Direct Forecasts: By comparing different
approaches to forecasting we can determine which method provides
lowest model error.

• Team A Versus Team B: Comparing results forecasting on different
teams might give insight into what data Characteristics are important
on a population level when forecasting readiness to train.

• Data Transferability: By training on both teams we observe how
transferable the data of one team is to another by evaluating the
model predictions.

Classification Experiments

The purpose of conducting experiments through classification problems
is to explore different ways of producing actionable statistics for coaches
and players. Therefore, we have settled on three unique approaches to
modeling readiness to provide actionable data.

• Readiness- Forecasting 10 Classes: As observed in table 4.1, we
have that readiness is between 1 and 10. Therefore in a classification
problem, we will have ten classes. The first classification approach
will attempt to classify readiness to train, consisting of its ten original
classes.

• Readiness- Forecasting Peaks: In section 4.4, we discuss how
forecasting exact readiness values might not be important and that

42

forecasting peaks are a better approach. By this, we mean to forecast
three classes: The first is all readiness values four and below, the
second is five to seven, and the third is eight and above.

• Readiness- Forecasting Positive, Negative Or Neutral Change:
Readiness is a subjective metric where the raw value of six might
for one player represent a certain performance, while for another,
it might be better or worse performance. Therefore, the actual
usefulness of readiness might not be its numeric value; rather, the
change in the readiness value might be more informative. Knowing
if a player performs better or worse in the next game might be a more
sensible interpretation of readiness than an arbitrary number.

3.2.4 Evaluation

The raw results produced from the experiments are in the format of
a pandas dataframe, allowing the transformation of the data into any
statistics. For this thesis, we produce a wide range of different plots to
interpret the data easily.

3.3 System Specifications

All data analysis, model implementations, experiments, and evaluations
are done within the Python programming language. Python has long
been the go-to tool for data science tasks and offers extensive libraries for
statistical analysis, as well as ML and deep learning models [13].

The main libraries used for our analysis and experiments is Pandas [38,
56], Scikit-learn [43], Darts [26], XGBoost [11], and pytorch [42]. All notable
libraries used can be seen in table 3.1.

Name Version Description
Pandas 1.5.2 Dataset and analysis
Pytorch 1.12.1 Deep learning tool
Scikit-learn 1.2.1 Data processing and machine learning tool
CUDA 11.3.1 Required for running on GPU
mysql-connector-python 8.0.18 Used to extract data from mysql dataset
Statsmodels 0.13.5 Used to perform various statistical analysis
Darts 0.23.1 Deep learning library for time series forecasting
XGBoost 1.6.2 A boosted tree-based machine learning model
Sktime 0.13.2 Time series machine learning library

Table 3.1: Description of notable python libraries used.

Mysql-Connector-Python

The data used in this thesis is extracted from a MySQL database with the
use of the Python library mysql-conncetor-python. The correct table is
extracted and further converted into a pandas dataframe for preprocessing.

43

Pandas

Pandas [56] is an open-source library for python built on top of NumPY,
that offers tools for data modeling, exploration, and analysis. It is highly
used in data science for it’s versatility in storing and manipulating data.

Scikit-Learn

Scikit-learn is a python library used for machine learning tasks. It offers
algorithms and general purpose tools for machine learning.

Pytorch

Pytorch is an open source library that offers a framework used to create
deep learning models. It is built on top of torch and is highly used in deep
learning research.

Darts

Darts is an open source library for machine learning in the time series
domain. The library offers a variety of models from RandomForest to deep
learning networks such as the TFT.

3.4 Evaluation Metrics

This section introduces all evaluation metrics that are used to analyze the
results generated in this thesis.

Mean Square Error (MSE)

Mean Square Error (MSE) is used in regression to measure error. It finds
the average squared distance between the predicted and actual value. An
MSE of zero means that the model has no error while MSE values above
zero indicates model error with higher values indicating worse accuracy.
One characteristic of MSE is that by squaring the values, it penalizes larger
error more than smaller ones

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.1)

Root Mean Square Error (RMSE)

The metric Root Mean Square Error (RMSE) is similar to MSE because it
is used to measure the average distance between target and actual value
for regression problems. The main difference is that RMSE is measured in
the same units as the response variable, while MSE is measured in squared
units.

44

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3.2)

Confusion Matrix

A confusion matrix is used in classification problems to observe how well a
model classify data to their respective classes. A confusion matrix with two
classes, negative and positive, will look like that of Figure 3.4. Increasing
number of classes will also increase the dimension size of the confusion
matrix.

Figure 3.4: Example of a 2D Confusion matrix.

Accuracy

Accuracy is calculated by adding True Positive (TP) and True Negative
(TN) and dividing by the number of total entries classified.

TP + TN
TP + TN + FP + FN

(3.3)

The accuracy score gives an exact measure of how many data points were
correctly classified.

Precision

Precision gives the false positive rate, meaning that a model that produces
no false positives, has a precision of 1. This is an important metric in the
case were avoiding false positives is important and is calculated as follows.

TP
TP + FP

(3.4)

45

Recall

Recall gives the true positive rate by offering a probability that a positive
sample will be classified as positive. Recall is calculated as shown below.

TP
TP + FN

(3.5)

F1-Score

The F1-score combines the two competing metrics, recall and and precision,
to account for both FP and FN. The motivation is to have a single metric
that optimizes recall and precision, which in itself is not possible since they
work against each other. Therefore, in the case where both FP and FN are
equally important to reduce, we choose F1-score.

2TP
2TP + FP + FN

(3.6)

3.5 Chapter Summary

This chapter presented our proposed pipeline to explore different use-
cases and data configurations for forecasting readiness. The pipeline
consists of a data extraction step, a pre-possessing and analyzing step,
an experiment step, and an evaluation step. We described our system
specifications providing the parts necessary to replicate our pipeline.
Lastly, we introduced our evaluation metrics. The pipeline is relevant
for both iterations regarding experiments seen in Chapter 5 and 6. The
reason for the two iterations is to base the second iteration on what we
learned from implementing the first set of experiments. Further, we intend
to compare these iterations with each other. The motivation behind the
two iterations is to provide important insight into our research question by
exploring different ways of modeling time series data to forecast readiness
and iteratively making improvements to our pipeline.

46

Chapter 4

Dataset Analysis and
Preprocessing

The previous chapter described the overall methodology and how we
intend to implement our pipeline. This included each step in our
pipeline consisting of data importing, data processing, experiments, and
presentation of results. We also explained why the chosen experiments are
important to our research question. We provided the system specifications
for our pipeline. and reviewed the evaluation metrics we will use for
Chapters 5 and 6 regarding experiments.

In this chapter, we will discuss the properties of our dataset and why
they are important to our forecasts, and how we process our dataset. The
dataset comprises subjective wellness and GPS data with a target variable
readiness to train and time-dependent variables such as the day of the week
and month of the year. This chapter centers around understanding the data,
where we analyze qualities such as distributions, correlations, and other
important underlying factors when working with time series data.

4.1 Overview and Composition

The dataset contains features describing the overall wellness and training
load of 45 players from two Norwegian professional female soccer teams.
For simplicity, we will refer to these as teams A and B. Each time step
represents one day, with the data collected from the start of 2020 until the
end of 2021. However, given that some players did not join their respective
teams until mid-season in either year, each player’s range of data points
varies. Therefore, only the data from which a player started using the
PmSys monitoring tool and until the end of 2021 or they stopped using
the PmSys monitoring tool is used. In other words, we only use the period
when they actively recorded data. We chose to do this to ensure that the
data, to a high degree, represents their actual wellness and performance,
as it would make little sense to impute months of data for an arbitrary
player from before they joined the team or after they stopped answering the

47

survey. However, in between the active periods, missing data still exists,
which is addressed later in this chapter.

We combine content from Tables 2.1 and 2.2 in addition to data from
soccermon and GPS-derived1 and time-specific features to create Table 4.1
representing our complete dataset. In Table 4.1, we see all the different
variables with a description, data type, and value range. Compared to
related work [34, 60], we have several more features available to thoroughly
investigate the viability of using multivariate data for forecasting. Most
notable is the inclusion of GPS-derived features. Further, we will determine
the nature of our time series data and see whether it is stationary.

1GPS features have been derived from the raw SoccerMon data in collaboration with
Lars Hoel (Master thesis: Using Soccer Athlete GPS Monitoring Data to Visualize and Predict
Features, University of Oslo, 2023)

48

Metric Description Data Type Range
Fatigue The current fatigue level

of the player
Numeric 1-5

Mood The current mood of the
player

Numeric 1-5

Readiness to train The athlete’s readiness
for a training session or
a game

Numeric 1-10

Sleep duration The duration of the
sleep

Numeric 0-12

Sleep quality The quality of the sleep Numeric 1-5
Soreness The level of soreness Numeric 1-5
Stress The current stress level

of the player
Numeric 1-5

Daily Load Daily subjective load of
a player

Numeric 0-

injury_ts binary indication of in-
jury with 1 suggesting
an injury

Numeric 0-1

Total distance The total distance run in
one session (KM)

Numeric 0-

Average running speed The average running
speed for one session
(m/s)

Numeric 0-

Top speed Highest achieved speed
in one session (m/s)

Numeric 0-

NumberOfHir Number of high intens-
ity runs

Numeric 0-

player name Anonymous ID repres-
enting a player

string None

Team name Letter describing which
team a given player be-
longs to

string A-B

Month The month of the year Numeric 1-12
Day The day of the week Numeric 1-7
Date The date specifying day,

month, and year
Pandas datetime 01.01.20-31.12.21

Table 4.1: Description of features used in the final dataset for the first
iteration.

4.2 Stationarity Test

An important trait to regard when dealing with time series is the concept
of stationary data. For data to be stationary, the statistical properties of the
time series can not change with time. This means that each data point in a
time series is considered independent from each other. Further, no seasonal
trend exists, meaning that the mean and variance in the entire time series
are constant over time. The benefit of stationary data when doing time
series analysis is that it is easier for the model to learn periodicity within
the data. The issue with non-stationary data is that future data points might

49

be several means higher than previous ones, which are difficult trends to
learn.

An Augmented Dickey-Fuller test (ADF) [14] is used to investigate
stationarity. The null hypothesis tests for a unit root in a time series, while
the alternative test suggests that no unit root is present and that the data is
stationary. The idea is that if we keep the null hypothesis, then the lagged
value of the series (yt−1) provides no useful observations in predicting (yt)
other than the lagged changes (△yt−k).

We implement the test using the library Statsmodels [54] with a max lag
of 12. We perform the test for all individual player’s data and reject
the null hypothesis for all but a few of the players’ data. There are
abrupt shifts from the current trend for instances where we reject the null
hypothesis. Because players comprise very few data points, a sudden
shift in trend can cause the dickey-fuller test to treat some individuals as
non-stationary. However, when treating all the players on the team as a
complete time series, we can reject the null hypothesis and conclude that
the data is stationary. Next, we examine feature correlations to determine
their usefulness and possible trends.

4.3 Feature Correlations

When dealing with ML, it is crucial to understand the data and the domain
that data inhabits. Understanding the relationships between features
makes it possible to understand how and why an increase or decrease
in certain feature values affects other variables. In this initial analysis,
we extract the most notable information from our correlation matrices as
illustrated in Figures 4.1 and 4.2 where we show correlations for the unique
teams’ A and B.

We create the correlation matrices from the unprocessed dataset compris-
ing 25 and 20 players for teams A and B, respectively. We chose to include
the unprocessed dataset so that we can later compare it to the processed
one to see if the data still has the same pattern and behavior. The correl-
ation scores are the averages of all unique players for each team. Using
the average among all players provides a more robust representation than
generating the correlation matrix based on only one player. This is because
individual players have few data points and have very different distribu-
tions.

Most notably, when observing the feature readiness in Figures 4.1 and 4.2,
we see that wellness features like mood, soreness, and fatigue have much
higher correlations to readiness than time or positional-features. However,
it is reasonable to reason that readiness, a metric describing how ready an
athlete feels for physical exertion, correlates more to an athlete’s general
wellness. It is also worth mentioning that all wellness metrics are answered

50

in the same survey, which would explain some innate bias as to why they
are more correlated to readiness than the objective features derived from
GPS data.

In the correlation matrices, we also included a readiness feature one time-
step in the future, denoted as readiness_t+1. The readiness variable itself
is not our target variable. Rather, the target variable is readiness for one
or more time steps in the future since we are forecasting time series data.
For the correlation matrices of both teams, we see that all or some GPS
features, especially HIR and Average running speed, have a high negative
correlation to readiness_t+1. By comparing the correlation between GPS
features and readiness_t+1, we observe that team B has a higher negative
correlation than team A. Further, excluding the readiness and fatigue
features, we see that HIR, Top_speed and Average running speed are the
features most correlated to readiness_t+1 for team B. When looking at team
A, we observe similarities only that Top speed has a very low correlation
and that daily load has a high negative correlation. These results show that
objective data, such as GPS-derived features, can have a greater impact
on determining athletic performance, even perceived ones, than other
wellness variables. Further, we will analyze the different distributions
of our data, as well as how other features are affected by peak readiness
values.

51

Figure 4.1: Pairwise correlation matrix of our data before imputation for
Team A.

52

Figure 4.2: Pairwise correlation matrix of our data before imputation for
Team B.

4.4 Data Distributions

For our experiments, we are doing both regression and classification.
Therefore, understanding the distributions within the data is useful for
both use-cases, although more important for classification problems. The
issue lies with skewed distributions. If 80% of the data belongs to a single
class, and the chosen model has an 82% accuracy, then the model would not
really be better than always choosing the majority class. The purpose of this
section is to describe the underlying distribution of the variable readiness
and how the distribution of other variables is affected by readiness.

4.4.1 Overview

Readiness is the target value, so it is important to know its distribution
to determine how well our models perform. Knowing how well the
models perform relative to each other is not enough. This is why we
will use dummy models for model comparisons in Chapters 5 and 6.
From Figure 4.3, we can see clear differences between the different teams,
with team A consisting of more extreme values and generally having data
points more evenly spread. One important thing to note is that most data

53

points center around values six, seven, and eight. We expect that athletes
mostly find themselves at an adequate level of readiness, as low values of
readiness would suggest high levels of stress, fatigue, soreness, or an injury,
which should be a rare occurrence. On the other hand, a high readiness
score would suggest peak performance relative to their current average
physical state, which should be rare. However, the values suggesting
fatigue or peak performance are most useful to map since they impact an
athlete’s athletic state the most.

Figure 4.3: Histogram showing distribution of readiness for both Team A
and Team B. X-axis denoting the readiness score, while y-axis denotes the
percentage between zero and one.

The practical application of forecasting degrees of readiness is limited
since most distribution lies between good and very good readiness values.
Predicting data within this range is not necessarily useful information for
clubs, as what will have the most impact is forecasting the edge cases when
readiness is very low, signaling fatigue or possible injury, and very high,
suggesting peak performance. Everything in between suggests an average
perceived athletic state. Predicting small trend changes might prove useful
when athletes are subject to changes in how they train. In that case,
observing how the readiness of players or teams moves after incorporating
changes might lead to greater insight into athletic development.

54

Team A Team B

Mean 7.18 7.1
Median 7 7
Standard Deviation 1.17 1.06
Readiness <5 1.4% 0.29%
Readiness Between 5 And 7 61.25% 62.97%
Readiness >7 37.34% 36.74%

Table 4.2: Table showing numeric values describing the distribution of
readiness for Team A and Team B before imputation.

In Table 4.2, we see numerical values describing both teams’ statistical
properties of readiness. We observe that both teams have an almost
identical mean. Further, the overall grouped distribution of readiness seen
in the last three rows in Table 4.2 are also very similar. Although, with
a notable exception, team A has a considerably higher representation of
readiness values that are four and below. Team A also has a higher standard
deviation resulting in a distribution farther from the mean than Team B.
This observation is important because team B will likely have less model
error when performing regression tasks and higher accuracy when doing
classification tasks purely based on the data distribution.

4.4.2 Individual Players

The general wellness among individual players can vary substantially and
is apparent when viewing the histograms in Figure 4.4. Some players might
have almost all occurrences in a single score, while others have readiness
scores more evenly spread over multiple values. Skewed distribution
among players is important to consider, as what can be considered
good accuracy scores for individual players will vary depending on their
distribution.

55

Figure 4.4: Histograms showing distribution of readiness for eight players,
four from both Team A (blue plots) and Team B (red plots). X-axis denoting
the readiness score, while y-axis denotes the number of occurrences.

4.4.3 Characteristics of Peak Readiness

As discussed in Section 4.4, the extreme values are most important for clubs
to identify and understand. Understanding how other metrics behave
when readiness is either very high or very low could potentially indicate
important trends and allow for a better understanding of what dictates
perceived athletic performance.

In Figure 4.5, barplots show the distribution of features when readiness
is four or lower and eight or higher to see if there are any major
differences in feature distributions when readiness is very low or very high.
Unsurprisingly, lower readiness values also result in lower wellness values,
such as fatigue, soreness, and sleep quality. Other wellness values such as
stress, mood, and sleep duration are also lower but only around 5-10%.
Further, observing the GPS-derived features shows that HIR is consistently
much higher when readiness is low. However, the total distance is much
lower, with the average running and top speeds being the same. Generally,
this suggests that HIR is a good indicator of readiness. We also included the
readiness value for the next time-step to see the average recovery readiness
value after experiencing low readiness. We see that for the next session,
readiness, on average, goes quickly up to higher values of readiness. We
also see that team B recovers faster than team A. Daily load is lower
when readiness is four and below compared to eight and above. Team
B especially sees much lower values for daily load than team A. Team B
only has one case of injury rendering it useless. In contrast, team A has
more than 20, enough to extract useful information. By looking at team
A in Figure 4.5, we see that injuries are prevalent when readiness is low
compared to high.

56

The results from Figure 4.5 are promising in regards to using multivariate
data to forecast readiness since they show consistent differences in several
feature values among low and high readiness values for both teams.
Especially the wellness values fatigue, soreness, sleep quality, and GPS-
features such as HIR and total distance.

57

(a) Team A

(b) Team B

Figure 4.5: Barplots showing the distributions of features when readiness
is four or below and eight or higher.

58

4.5 Imputation

In Chapter 3 Section 3.2, we explained our imputation method. We chose to
use IterativeImputer [50] because it supports imputation for both discrete
and continuous variables and is intended for multivariate data [50]. The
method is also far more complex than previous methods used in related
work [34, 60]. However, imputation is an enormous field on its own [40],
and other methods might prove more robust for our work. Still, our aim
for imputation is to use an adequate method to demonstrate its potential for
these kinds of data. Next, we will describe the missing data and compare
the statistical properties of the imputed dataset with the dataset before
imputation.

4.5.1 Statistics on Missing Data

Figure 4.6: Binary plot showing missing dates for a random player. A value
of zero indicates a missing value.

The plot in Figure 4.6 shows when missing data occurs for a random player.
The most notable observation is how many dates containing missing data
are clustered together. Especially the dates from late December 2020 to
March 2021 are void of data. All players in our dataset have this two to
three-month absence of data around that time. Several of the players also
share the same smaller clusters of missing data. These findings suggest
that much of the missing data among players is, in fact, not entirely
random. However, the possibility that professional soccer players have a
period where they do not train for three months is highly unrealistic. The
probability that they did not use wearable monitoring tools for some reason
in that period is more likely, especially since these periods are common
among players. Further, most occurrences of missing dates only consist of
one missing day. However, in Figure 4.6, larger clusters of missing data
with a size of seven or greater account for 57% of all the missing values.

4.5.2 Correlation

For team B we observe in Figure 9.2 that the correlations between features
and readiness after imputation are very similar to those observed in the

59

dataset before imputation in Figure 4.2. The correlation between wellness
parameters is around the same, with fatigue, sleep duration, and soreness
having the highest correlation. As for GPS-derived features, we see that
for team B, top speed, HIR, and average running speed still substantially
correlate to readiness, as the data did before imputation. Overall, Team B
is not greatly affected by performing imputation, with the previous most
correlated features still having the highest correlation after imputation.
Also, comparing readiness_t+1 we observe the same development. As for
Team A, in Figure 9.1, we observe that the GPS features correlate less to
readiness_t+1 than the dataset before imputation. However, comparing
readiness before and after imputation for team A, we generally see the same
distribution of correlation among all features.

It is promising that the overall relationship between features is intact, albeit
with feature correlation deviating by a few percentages. However, some
deviation is expected, especially since the imputation process replaced up
to 59% of a given player’s data.

4.5.3 Distribution

By observing the histogram in Figure 4.7 we see that the distribution is
slightly different from Figure 4.3 representing the data before imputation.
The main differences in the imputed dataset are the increased number of
very low values for both teams and a reduction in very high values. This
difference is greater in team A. Since we have fewer very high values, more
are between five and seven. However, the standard deviation of both teams
has increased, which we observe from Table 4.3. Increased numbers of very
low readiness values and a higher standard deviation indicate that the ML
models will experience more error using the imputed dataset.

60

Figure 4.7: Histogram showing distribution of readiness for both Team A
and Team B after imputation. X-axis denoting the readiness score, while
y-axis denotes the percentage between zero and one.

Table 4.3 tells us that the average readiness value in the imputed dataset is
slightly decreased by a few percentages. Generally, team B is less affected
by the imputation and retains more statistical properties from before using
imputation compared to team A.

Team A Team B

Mean 6.78 6.91
Median 7 7
Standard Deviation 1.36 1.13
Readiness <5 5.09% 1.4%
Readiness Between 5 And 7 68.41% 67.63%
Readiness >7 26.5% 30.97%

Table 4.3: Table showing numeric values describing the distribution of
readiness for Team A and Team B after imputation.

We observe Figure 4.8. The wellness parameters fatigue, soreness, and
sleep quality have the same distribution pattern. However, The GPS data,
especially HIR and total distance, are now either equal for both cases of
very low and high readiness or have been skewed. This is possible to

61

observe for team A regarding HIR, where very high readiness on average
has a higher HIR value. Before imputation, we observed the opposite.

62

(a) Team A

(b) Team B

Figure 4.8: Barplots showing the distributions of features when readiness
is four or below and eight or higher after imputation.

63

4.5.4 Notable Changes to the Dataset

Generally, we observe that imputation did not change the statistical
properties of the dataset to such a degree that it no longer represents
the players. However, it is still a less true representation of the players
nonetheless. A higher standard deviation and an increase in very low
readiness values will likely increase model error. Although, more examples
of very low readiness values might help the model better learn such trends.
Overall, the correlation between features and the distribution of readiness
stayed roughly the same.

4.6 Feature Importance

Our correlation matrices already indicate what features are important in
predicting readiness. Nonetheless, to derive more certain conclusions, we
need further evidence. Therefore, this section will generate permutation
feature importance scores and SHAP values to determine how features
impact our predictions.

Figure 4.9: Permutation feature importance plots.

Permutation feature importance works by answering the question: What
effect on accuracy occurs when the data of a single feature is randomly
shuffled in the validation set while all other data remains the same? A
prediction using the non-shuffled data is first obtained and then compared
to the prediction using shuffled data. The permutation feature importance
score is the difference between these two predictions. This process is
repeated to create scores for all features. In Figure 4.9, we have the
permutation importance scores for all features for both the training and
test set. We observe that all features in the training set are, to some extent,
important. In the test set, we observe that all the GPS-derived and time-
related features are inconsequential to the prediction. The negative scores
indicate that the random shuffled values had more impact on predictions
than the real values. Apart from the lagged readiness value, the daily load
is the most important feature, followed by the remaining wellness features
except for stress. The correlation matrices earlier in this chapter suggested
that GPS-derived features had a good correlation to readiness. However,
in this test, GPS-derived features do not impact model output.

64

A possible answer to the behavior of the permutation method is that the
GPS-derived features are highly correlated, meaning that when one feature
is shuffled, that feature is still available to the model through other GPS-
derived features. This causes reduced feature importance scores for the
correlated features.

Figure 4.10: SHAP Plot.

SHAP values, an acronym from SHapley Additive exPlanations [37],
introduces a method to understand the importance of each feature in
a prediction. It is based on cooperative game theory, and the process
can be thought of as a game with multiple players where each player’s
contribution (or feature) is given based on the model output. We
visualize each feature’s average importance on predictions in Figure 4.10.
Interestingly, we use the same model and data configurations we used for
the permutation feature importance plots. We observe the opposite results
where wellness features have little to no impact on model predictions while
GPS-derived features have a very high impact on model predictions.

65

4.7 Chapter Summary

In this chapter, we presented the underlying statistical properties of
our dataset and discussed their significance regarding model forecasting.
These properties include stationarity, feature correlations, readiness and
other feature distributions, and feature importance. We also gave a
comparison between the imputed data and the non-imputed data. We
showed that much of the statistical properties remained the same despite
the impact of imputing data.

66

Chapter 5

Experiments and Results - First
Iteration

In the previous chapter, we analyzed our dataset and described its
statistical properties. The purpose of this chapter is to present the results
derived from our experiments for the first iteration. We split our results
into two sections, one for regression and another for classification. For
each section, we first provide the parameter configuration for all models.
Further, we go through the results of each experiment and explain their
importance to our research question. At the end of this chapter, we
summarize our findings.

5.1 Regression Models

This section will present our findings, forecasting with five different
regression models. The models used in this section are LSTM, XGBoost,
Linear Regression, Decision Tree, and TFT. Moreover, this section
will thoroughly describe the model configurations and discuss general
thoughts about the models and their behavior during training. We then
proceed sequentially to go through all experiments and present their
results.

5.1.1 Model Parameters

To better understand the more subtle mechanisms of the models and make
it possible to reproduce all experiments, it is necessary to discuss and
provide the hyperparameters used for each model. All models use a
random seed to maintain reproducibility, meaning the experiments are
possible to replicate while producing the same result. Hyperparameter
tuning is not the focus of this thesis but is done to represent each model
and its performance adequately.

67

Linear Regression- Configuration

We are using Sklearn’s ordinary least squares Linear Regression model.
We included this basic model to observe how other more complex models
perform against it. Since we are using several features and many with
high correlations between each other, the linear regression model might
be prone to overfitting. However, we tested the model with several
train/val/test sets combinations and saw good fits for all data splits.

Decision Tree Regressor- Configuration

The Decision Tree regressor, along with the linear regression model, are
fairly simple models. The idea is also to compare the decision tree model
with the more complex models.

Long Short-Term Memory- Configuration

The parameter configuration of the LSTM model can be viewed in table 5.1.
The parameters were manually tested and set, and the number for
epoch and batch size is a good compromise between performance and
computational speed. Further, early stopping with patience has been
implemented. Early stopping is a method used to stop training when
the validation loss no longer decreases. Patience is the number of epochs
the model will run without measuring any improved validation loss. If
early stopping with patience of two is applied, the model will stop training
after observing two consecutive epochs with no improved validation loss.
Applying early stopping is important since we want to reduce validation
loss as much as possible, not training loss. By not including this method,
we end up overfitting our model to the training data.

Type Hyperparameter Value

Data

Batch Size 16
Epoch 12
Input Sequence Length 7
Output Sequence Length 1

Network

Learning Rate 0.001
Number Of Hidden Layers 32
Loss Function RMSE
Number of LSTM layers 2
Optimizer Adam
Dropout 0
Early stop 0.005

Table 5.1: LSTM- Hyperparameter configuration.

68

eXtreme Gradient Boosting- Configuration

The XGBoost model has the following parameters as shown in table 5.2.
The model parameters were found using the open-source hyperopt
library [5] as explained in 3.2.3 where we utilize the TPE algorithm. We
also applied early stopping for this model.

Type Hyperparameter Value

Data
Input Sequence Length 7
Output Sequence Length 1

Network

Learning Rate 0.01
booster ’gbtree’
n-estimator 150
objective ’reg:squarederror’
colsample_bytree 0.97
max_depth 9
min_child_weight 3.47
reg_lambda 0.45
seed 0

Table 5.2: XGBoost- Hyperparameter configuration.

There was little or no difference in using the default parameters compared
to the tuned hyperparameters. Using different train/test/val splits, we
observed only a few percentages reduced loss at most.

Temporal Fusion Transformer- Configuration

The hyperparameters of the TFT model were found by manually testing
different configurations. An increase in batch size led to much faster
computation and less accurate results, which meant more epochs were
needed. Therefore, we struck a balance to optimize performance and
results. Further, early stopping is applied to stop training when validation
loss is no longer shrinking over a period of 5 epochs. We used a patience
value of 5 since, during training; validation loss would often go up
substantially before decreasing again. All other features were the default
values recommended by the library darts [25].

69

Type Hyperparameter Value

Data

Batch Size 32
Epoch 40
Input Sequence Length 7
Output Sequence Length 1

Network

Learning Rate 0.001
Number Of Hidden Layers 64
number of attention heads 4
Number of LSTM layers 1
likelihood QuantileRegression
Dropout 0.1
Optimizer Adam
Early stop 0.005

Table 5.3: TFT- Hyperparameter configuration.

5.1.2 Size of Input and Output Windows

One of our sub-questions is investigating the optimal input window
size, which means we need to understand the relationship between past
and future time series. In order to properly answer this question, it
is necessary to see how our models perform given different input but
also output window values. Figure 5.1 shows five plots, each a unique
model, and illustrates how input window size affects RMSE scores. Each
data point for each model is the RMSE value of training on team A and
forecasting a specific player with a unique input and output window values
configuration. Therefore, the plots show how input and output window
values affect the forecasting error for a single player. For this experiment,
we limited the predictions to only one player since creating these plots even
for the non-deep ML algorithm XGBoost demanded a lot of computational
resources. The particular player we forecast consists of 502 data points
and has a baseline RMSE of 1.22 when using a model only predicting the
mean. We chose this particular player because the player is among the ones
with the least missing data. The player also has a high spread in readiness
distribution with several very high and very low readiness values relative
to the other players. The plots also have four lineplots with different output
window values. This is to see if forecasting time steps further in the future
changes the optimal number of input window values.

70

(a) XGBoost (b) Linear Regression

(c) Decision Tree (d) LSTM

(e) TFT

Figure 5.1: Five plots showing five unique models on how different input
and output window values affect the RMSE-score. The plot starts at x-axis
= 0 which has an input window of one.

Figure 5.1 shows that input window size larger than one produces less
error. The models XGBoost, Linear Regression, and LSTM have very
similar behaviors, where each of the four lineplots in each sub-figure goes
drastically down for the first few increases of input window size. From
there, the lineplots find a minimum point, and the error increases again
before a plateau is met. The most decrease in RMSE happens when the

71

input window value is one and increases to three. The model TFT and the
decision tree do not follow the same trend. For the decision tree, it does
not seem like the input window size has any meaningful impact on error.
For the TFT model, we see at least for larger output window sizes that the
error consistently goes down with the first few increases in input window
size. However, there is no obvious trend when the output window value is
one. The minimum point is the optimal input window size, and for these
three models, we observe that it occurs between values five and eight. We
also observe for the three best models that the optimal input window size
is around the same for all output window sizes. We see a clear trend for
the three models achieving the lowest error: LSTM, XGBoost, and Linear
Regression have an optimal input window value between five and eight
days.

It is also important to point out that the plots in Figure 5.1, indicates
that the RMSE scores are much higher for output window sizes above
one compared to RMSE scores when the output window is one. Also,
the difference in RMSE scores between configurations with higher output
window values is either very low or non-existent. In other words, an
increase in output window size after one increases RMSE, but an increase
in output window size when the output window size is more than one does
not increase RMSE by substantial levels. It might seem positive that RMSE
does not increase when the output window size goes from three to seven or
fourteen. However, the large increase of RMSE when increasing the output
window from one suggests that forecasting multiple days into the future is
difficult for the models to learn. Figure 5.1 shows a substantial increase in
RMSE, only increasing the output window size from one to three. In some
cases, configurations with a higher output window size might have a lower
RMSE score than those with a smaller output window size. These findings
support the notion that the forecasts using larger output windows are too
uncertain to extract useful data.

The plots in Figure 5.1 offers a unique perspective on how input and
output windows affect forecasting of readiness to train and indicate that
the most recent days are by far the most important. By increasing the
output window, we did not see any major trend difference for the input
window. For the remainder of this chapter, we will use seven as the value
for the input window since it, on average, produces the least error among
the best-performing models. Further, we discuss the issue of forecasting
longer time horizons in Section 5.1.3.

5.1.3 Forecasting Horizons

A part of our research question is to investigate how large the forecasting
horizon can be before the model output becomes too unreliable. In Sec-
tion 5.1.2, we briefly examined how the RMSE score went up substantially
after only increasing the forecasting horizon from one to three. We also
observed that the RMSE score did not change much, going from seven to

72

fourteen, suggesting that the models beyond a certain value for the output
window only forecast the mean rather than following a reasonable trend.
Further in this section, we will show how much the error increases for all
models when we increase the forecasting horizon to discover when the un-
certainty in the model outputs becomes too high.

Figure 5.2: The Line-plot shows how the RMSE-score of all the models is
affected by increasing the forecasting horizon. X-axis value equal to zero
represents an output window of one

To see how an increase in forecasting horizon affects each model, we
created the plots in Figure 5.2. The lineplots use the data from team A, and
each output window size configuration forecasts the readiness of the same
player for all models. A clear trend for all models is apparent, with RMSE
scores rising for each increase in the forecasting horizon until the output
window is three. The difference in RMSE scores is almost negligible for
most models when going from three to fourteen. These findings suggest
that forecasting readiness with this approach for longer time horizons is
too difficult for the models to provide useful forecasts and that the models
perform as well with a forecasting horizon of three as it does fourteen.
Generally, we see that reliably forecasting several time steps into the future
is not attainable with our approach.

By observing the performance of each model from Figure 5.2, we see that
XGBoost and linear regression has the least error throughout. At the same
time, the LSTM starts with a lower RMSE score than the TFT, but the LSTM

73

ends up with a larger error after the output window equals six. The tree
regressor performs considerably worse than all the other models. It offers
no useful knowledge other than reinforcing the concept that increasing
the output window from one increases the error. None of the models
deviated in terms of the trend where an output window larger than one
drastically increased the model error. These findings show that no specific
model among our selection can forecast longer than one time step without
drastically increasing the RMSE. Therefore, except where mentioned, we
will use an output window of one.

5.1.4 Recursive Multi-step Versus Direct Forecasts

Another point of interest is to investigate whether the technique of
recursive multi-step forecasts is better than direct forecasts. By direct
forecasts, we mean a model only trained to forecast a specific time-step
interval that can be any N number of time-steps. On the other hand,
one-step ahead forecasts will reuse the predicted value(s) as part of the
input to make the prediction for the next time step and recursively repeat
this process for each unknown time step. An illustration visualizing both
methods is available in Figure 5.3.

(a) Direct Forecasting Method

Figure 5.3: Image to the right visualizes how the direct forecasting method
works by training the model to (in this case) forecast values three time-
steps beyond the input data. Image to the left shows the one-step ahead
forecasting method that retains the same input window but for each next
time-step will reuse it’s prediction in it’s input window to generate the next
prediction.

To observe potential differences in error between one-step ahead and direct
forecasts, we created the barplots shown in Figure 5.4. The figure shows
four sets of barplots, each with a specific configuration of forecasting
horizon and forecasting method. The forecasts use data from team A and
forecasts for a single player. We make comparisons between the barplots
with the same output window sizes. Left to right, we observe that the

74

RMSE score between XGBoost and Linear Regression for the first two sets
of barplots with an output window equal to three are the same. We observe
the same occurrence for the next pair of barplots with an output window
of seven. Further, the decision tree has a higher error when using the direct
method with an output window of three. However, the opposite happens
when the output window is seven, and we observe a lower error using the
direct method. As previously stated, the simple decision tree is seemingly
not able to understand the data reliably. These plots show that we can not
justify any difference between these two forecasting methods.

Figure 5.4: Barplots showing the difference in RMSE-scores using either
direct or one-step ahead forecasts. This example uses the XGBoost, linear
regression, and tree regressor model.

5.1.5 Multivariate Versus Univariate Data

One of our sub-questions, important in answering our main research
question, is to investigate whether the forecasts become more reliable by
adopting a multivariate approach to the data. Rather than only using
the lagged value of readiness, we can incorporate several other variables
that also correlate to the target variable. The addition of new variables
might make the forecasts more accurate. Therefore, this experiment aims to
provide a comparison of how the models perform using both multivariate
and univariate data.
To understand how the models perform across all players in a team, we
created the boxplots in Figures 5.5 and 5.6. The idea is to see how each
model performs when training on the team and forecasting readiness for
a specific player. Previously mentioned literature found that this method
yielded the most accurate results [60]. The player used to forecast is not

75

in the training set, as that would be a blatant example of memory leakage.
Rather, in our case, we are using the data from team A, which consists of 25
players, meaning we are training 24 players and forecasting one. We do this
for all players on team A, meaning we are performing leave-one-out cross-
validation. The motivation behind this is to see the spread in forecasts of
each model when used in a real-world scenario where we want to forecast
the performance of all players.

5.1.6 Multivariate Data

The boxplots in Figure 5.5 and the table in Figure 5.4 describe how the
models perform forecasting each unique player in the population team
A using multivariate data. The XGBoost, Linear Regression, LSTM,
and TFT model yields the most accurate results, with the TFT having a
slightly worse performance. Comparatively, the tree regressor performs
considerably worse. The best four models also have about the same
distribution of outliers. The tree model is the worst performer and seems
to have difficulties learning the different trends in the data.

Figure 5.5: The illustration shows RMSE-Scores expressed through box-
plots. Each data point in the boxplot is the RMSE-Score of predicting all
readiness values for a single player, with all other players being used for
training. In this case we have used team A and predicted RMSE-Scores for
all players, meaning 25 data points for each boxplot.

76

Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.97 0.95 1.67 0.95 1 1.32
Median 0.88 0.9 1.6 0.89 0.94 1.13
SD 0.32 0.28 0.39 0.29 0.32 0.52
Min 0.47 0.47 1.13 0.51 0.52 0.45
Max 1.94 1.74 2.56 1.78 1.77 2.86

Table 5.4: The table describes the boxplots in Figure 5.5 with numerical
values. We also included the values from a dummy model only predicting
the mean.

Looking further at Table 5.4 and the column describing the results from the
dummy model, we can compare the ML models and the dummy model.
The dummy model only predicts the mean, which means that if the other
models do worse or not significantly better, they will not be better than
just predicting the average value of readiness. We see that the tree model
performs far worse than the dummy model. Whereas the other models, on
average, have around 40% less error than the dummy model. However, if
we look at the median values, we see that the four best-performing models
only do about 20% better than the dummy model. A high discrepancy
between the mean and the median values suggests that the dummy models
have several forecasts of players with very high RMSE scores. These are
data with high variance in which forecasting the mean yields a very high
error.

Further observing min, max, and standard deviation values in Tables 5.4
and 5.5, shows that the ML models have a much lower spread than the
dummy model. This is attributed to the ML models attempting to learn
patterns while the dummy model only predicts a straight line. Therefore,
the dummy model performs worse when the data has a high variance. The
best performing ML models produces increasingly better results than the
dummy model when the variance in the data increases. We tested the effect
variance has on the dummy model in Figure 9.8, and it shows a significant
relationship where an increase in variance also increases model error. We
also perform t-tests on the best-performing models and the dummy model
with a p-value threshold of 0.05 and observe that the best-performing
models have significantly less error. Moreover, we previously mentioned
in section 4.4 that the data distribution is mostly centered around the same
values, meaning that for some players’ data, a good strategy is to predict
the mean.

5.1.7 Univariate Data

The same type of boxplots and table describing the overall error over
different train/test splits explained in section 5.1.6 was also created using
only the readiness variable and is shown in Figure 5.6 and Table 5.5. We see
the same model behavior observed in Section 5.1.6 with XGBoost, Linear

77

Regression, and LSTM achieving the best performance. TFT performs
slightly worse, and the decision tree performs considerably worse.

Figure 5.6: The illustration shows RMSE-Scores expressed through box-
plots as explained in Figure 5.5 but only using univaraite data.

Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 1 0.99 1.35 0.99 1.04 1.32
Median 0.97 0.89 1.28 0.91 0.98 1.13
SD 0.32 0.31 0.44 0.3 0.33 0.52
Min 0.47 0.47 0.6 0.48 0.48 0.45
Max 1.96 1.81 2.65 1.82 1.93 2.86

Table 5.5: The table describes the boxplots in Figure 5.6 with numerical
values. We also included the values from a dummy model only predicting
the mean.

5.1.8 Comparison of Multivariate and Univariate Data

By observing the numeric values such as mean and median in Tables 5.5
and 5.4, it is apparent that a multivariate data approach in most cases has
a positive effect on model output. Multivariate data performs better on
average for all models except for the tree regressor. The variance is around
the same, if not lower, for multivariate data models. Generally, these
preliminary results suggest that adding more relevant variables gives the
models more context on to base their forecasts and reduces error. However,
the difference is small, with XGBoost having the largest improvement
with 9% less median error using a multivariate approach. For the Linear
Regression, LSTM, and TFT, we see an improvement of -1.7%, 2.3%, and
4% less median error using a multivariate approach, respectively. Still, we

78

see a much higher discrepancy between using multivariate and univariate
data when looking at individual players rather than a team’s average.

(a) Player 1 (b) Player 2

Figure 5.7: Two plots where Player 1 represents the player having the
best performance using multivariate data and Player 2 having the worst
performance on multivariate data compared to using univariate data.

Figure 5.7 displays readiness values from two players. Players 1 and 2 are
the examples with the greatest gap in error between using multivariate and
univariate data. Player 1, when forecasting with a multivariate approach,
performs 11% better than using only univariate data, and Player 2 performs
9% better using a univariate approach over a multivariate one. The
difference in variance is not high, with Player 1 having a variance of 1.75
while Player 2 has a variance of 1.46. In this case, we see no obvious
reason as to why one player performs much better with multivariate data
while another performs much better with univariate data. We performed
a linear regression analysis with difference in RMSE value between using
multivariate and univariate data as the target variable and variance as the
explainable variable. The analysis is available in Figure 9.7. We can reject
the null hypothesis by observing the T-test with a p-value threshold of
0.05. The analysis suggests no significant relationship, meaning variance
does not determine when multivariate data positively or negatively affect
predictions.

5.1.9 Team A versus Team B

To observe possible discrepancies between team A and team B, we conduct
the same experiments done in Section 5.1.5 using team B’s data. This lets
us see how our models perform on both teams.

79

(a) Team A (b) Team B

Figure 5.8: The figure shows two images, each using the data from either
team A or team B using all features.

Team A- Multivariate
Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.97 0.95 1.67 0.95 1 1.32
Median 0.88 0.9 1.6 0.89 0.94 1.13
SD 0.32 0.28 0.39 0.29 0.32 0.52
Min 0.47 0.47 1.13 0.51 0.52 0.45
Max 1.94 1.74 2.56 1.78 1.77 2.86

Team B- Multivariate
Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.76 0.75 1.25 0.77 0.99 1.05
Median 0.74 0.75 1.24 0.77 0.86 1.05
SD 0.28 0.27 0.23 0.24 0.4 0.28
Min 0.33 0.25 0.87 0.38 0.57 0.6
Max 1.43 1.367 1.83 1.36 2.41 1.84

Table 5.6: The table describes the boxplots in Figure 5.8 with numerical
values. We also included the values from a dummy model only predicting
the mean.

Looking at both the boxplots in Figure 5.8 and the statistics in Table 5.6,
we observe that team B has a less overall error. However, the behavior
of the models is approximately the same. The decision tree performs
considerably worse than all other models, and the TFT is slightly worse
than the remaining models. The LSTM, XGBoost, and Linear Regression
models perform best and obtain roughly the same RMSE score. Further,
we learned from Section 4.4 that team B has less variance and outliers,
meaning forecasting values closer to the mean result in lower RMSE values
than team A.

80

(a) Team A (b) Team B

Figure 5.9: The figure shows two images, each using the data from either
team A or team B using univaraite data.

Team A- Multivariate
Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 1 0.99 1.35 0.99 1.04 1.32
Median 0.97 0.89 1.28 0.91 0.98 1.13
SD 0.32 0.31 0.44 0.3 0.33 0.52
Min 0.47 0.47 0.6 0.48 0.48 0.45
Max 1.96 1.81 2.65 1.82 1.93 2.86

Team B- Multivariate
Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.76 0.75 1.25 0.77 0.99 1.05
Median 0.74 0.75 1.24 0.77 0.86 1.05
SD 0.28 0.27 0.23 0.24 0.4 0.28
Min 0.33 0.25 0.87 0.38 0.57 0.6
Max 1.43 1.367 1.83 1.36 2.41 1.84

Table 5.7: The table describes the boxplots in Figure 5.9 with numerical
values. We also included the values from a dummy model only predicting
the mean.

We compare A with B when fitting univariate models. Again, team B has a
lower RMSE, and the model behavior is the same between the teams. The
decision tree and the TFT perform much better using univariate data. The
difference between using multivariate over univariate data is less in team
B. Team A benefits more from using multivariate data. We attribute this to
team B having less variance than team A, shown in Figure 4.2. Therefore,
team B is less affected by wrongly forecasting peak values since fewer exist.

5.1.10 Data Transferability

We investigate whether the unique dynamics within a team are important
when forecasting readiness for a player. When playing together, the idea
is that all players on a given team will impact each other’s performance.

81

Further, this means that the data among players on a team should represent
the data from an arbitrary player from that team better than an arbitrary
player from another team. However, it would be beneficial to clubs if it
is possible to use data from one team to train models to predict player
data from other teams since these data types are sparse and hard to obtain.
Therefore, we test whether using the data from both teams for training
positively affects the results.

We observe the Figures 9.3, 9.4, 9.5, and 9.6. For team A, we observed
no improvement or worse accuracy depending on the model for both
univariate and multivariate data. As for team B, we saw no improvement
except when using the TFT, which managed to achieve 30% less error
using univariate data training on both teams. However, this was the only
example where training using both teams led to better results. Further,
we attribute this to TFT being a complex model needing massive data to
function properly [35].

5.2 Classification Models

An important aspect of our research is exploring different approaches
to forecast readiness to train. As previously mentioned in Section 4.4,
it might be more beneficial for athletes and coaches to use classified
readiness values because discrete values are more intuitive to interpret than
continuous ones. Also, with a classification approach, it is possible to make
the problem easier for the models by reducing the number of classes. Our
selection of models for classification is Ridge Classifier, ROCKET, LSTM,
and XGBoost. We chose not to include a decision tree classifier based on
the poor performance of the decision tree in Section 5.1.5. The TFT is also
not included based on its poor performance. We chose to include ROCKET
because of its state-of-the-art results on classification datasets [12]. We
will also compare these models to a dummy model that only predicts the
majority class. Next, we will describe three use-cases for classification
using our dataset.

For our experiments, we have used three different approaches to classify
readiness. The aim is to provide useful statistics for both players and clubs.
The first approach is classifying the readiness variable using the original
ten classes. The second approach is similar to the first but uses only three
classes to forecast peaks. Lastly, the purpose of the third approach is to
forecast the trend. Rather than interpreting an exact readiness value, the
model indicates a positive, negative, or neutral change in the readiness
score. The models need to output actionable data, so it is important
to explore several different use-cases. Next, we will declare the model
parameters.

82

5.2.1 Model Parameters

We declare the model parameters configured for each model used in our
classification approach.

• Linear Classification- Configuration: For our Linear classifier model,
we are using Sklearn’s Ridge classifier model. We use the default
parameters [43].

• ROCKET- Configuration: To implement the rocket model, we use
the recommended model parameters described in the paper [12]. We
set the kernel size to 10 000 and the alpha for the ridge classifier to
logspace(-3, 3, 10).

• XGBoost- Configuration: We tested different hyperparameters with
hyperopt but found that reusing the same parameters from Sec-
tion 5.1 yielded the best results.

• Long-Short-Term Memory- Configuration: We tested different hy-
perparameters manually but found that reusing the same parameters
from Section 5.1 yielded the best results.

5.2.2 Classification Experiment Results

Next, we will go through each of the three use-cases. We use accuracy,
F1-scores, and confusion matrices to evaluate the results. Particularly,
F1-scores are used since the data in our classification experiments has a
high class imbalance. The input window is set to seven with a forecasting
horizon of one. Because each player has widely different data distributions,
using a player with readiness values distributed across all classes as the test
set is reasonable. We will use the player from Section 5.1. In addition to
having fewer missing values than most other players, this player also has
several very low and very high readiness values.

Forecasting The Original 10 Classes

The approach of classifying ten classes is similar to the experiments in
the regression section. However, instead of generating continuous values,
the models predict a discrete value between one and ten. This method’s
possible limitation is that most readiness values are between a narrow
range of values and, therefore, not evenly spread among all or most classes.
This means there will be fewer data points at both tail ends of readiness,
potentially leading the models to forecast most values as somewhere close
to the mean.

83

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 5.10: In this figure we have four confusion matrices each produced
from a unique model where we classify readiness with it’s original 10
classes. We train on the whole team and forecast on the data of a single
player.

ridge rocket xgboost lstm dummy
Accuracy 0.32 0.36 0.42 0.42 0.28
F1-Score 0.28 0.34 0.40 0.39 0.12

Table 5.8: Accuracy and F1 score for classification experiments classifying
original ten classes.

When looking at Figure 5.10 it is apparent that most of the data is largely
concentrated in only a small interval of values. The accuracy and F1-scores
in Table 5.8 show that XGBoost and LSTM perform the same. They have the
same accuracy of 42% and only a slight difference in F1-score in favor of the
XGBoost model of 40% compared to 39%. Next is Rocket with 36% accuracy
and 34% F1-score. The simple Ridge classifier achieves 32% accuracy and
a 28% F1-score. The Ridge classifier performs far worse than the other
models and generally struggles to differentiate the classes containing the

84

most data points. The dummy model achieves 28% accuracy and 12% F1-
score. The F1-score among the best-performing models is slightly lower
than their accuracy scores, indicating that the imbalanced dataset does not
affect the predictions to a high degree. Generally, the accuracy and f1-
score for each model are low. The models struggle to differentiate between
classes, especially those close in value. Therefore, we try to simplify the
problem for the next two experiments by sacrificing detailed results for
simple, intuitive ones.

Forecasting Peaks

Classifying readiness with ten classes might be unnecessary, so we reduce
the number of classes as seen in Figure 5.11. Instead of having ten classes,
it is now three, with one defining low readiness, two defining adequate
readiness, and three defining high degrees of readiness. The purpose of
this use-case is to forecast peaks.

85

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 5.11: In this figure we have four confusion matrices each produced
from a unique model where we classify readiness peaks. By this we group
and transform readiness into three classes. First class are all readiness
values four and below, second class consists of readiness values of five to
seven, and third class represents readiness values of eight and above.

ridge rocket xgboost lstm dummy
Accuracy 0.67 0.68 0.71 0.72 0.59
F1-Score 0.61 0.65 0.69 0.72 0.44

Table 5.9: Accuracy and F1 score for classification experiments classifying
peaks.

As shown from Figure 5.11 for all four confusion matrices, most data
points belong to the neutral class. In this scenario, the models provide
a much higher accuracy score than predicting all ten readiness classes.
We observe accuracy and F1-scores in Table 5.9. The LSTM provides the
highest accuracy and F1-score of 72%, followed by XGBoost 71% and 69%,
respectively. ROCKET achieves an accuracy of 67% and an F1-score of 65%.
The Ridge classifier obtains a 67% accuracy but a much lower F1-score

86

of 61%. It is apparent from the confusion matrix that the Ridge classifier
mostly classifies all classes as neutral. It cannot correctly classify any of the
values for class zero and has the fewest true positives for class two. The
baseline dummy model only predicting the majority class has an accuracy
of 59% and an F1-score of 44%. The LSTM correctly classifies six out of eight
peaks for class zero, which is far superior to the other models that, at most,
manage one. In this scenario, the LSTM is the best-performing model with
its ability to capture rare events. This approach of predicting peaks results
in a skewed data distribution since peaks, especially those signaling low
readiness, are rare. We will therefore look at an approach that provides a
metric describing whether a player will perceive readiness for the next day
better, worse, or the same as the last day.

Forecasting Positive, Negative, or Neutral Change in Readiness

Rather than focusing on the exact value change between time steps, we now
try to classify if the readiness change for the next time step is a positive,
negative, or neutral development. The benefit of such an approach is
that it provides an interpretable and easy-to-act-on metric. The readiness
value of six might be a different standard than that of another player who
reports the same. Therefore, comparing players’ actual performance to an
indication that they will perform worse, better, or the same as last time
might be a better alternative to comparing it to an arbitrary readiness score
between one and ten or one and three.

87

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 5.12: In this figure we have four confusion matrices each produced
from a unique model where we forecast positive, negative or neutral
change in readiness from last to next day. We train on the whole team and
forecast on the data of a single player.

ridge rocket xgboost lstm dummy
Accuracy 0.54 0.50 0.54 0.53 0.44
F1-Score 0.53 0.49 0.53 0.53 0.27

Table 5.10: Accuracy and F1 score for classification experiments classifying
readiness change.

In Figure 5.12, we see four confusion matrices expressing the results of
trying to forecast these three classes. Table 5.10 shows the accuracy and F1-
score obtained by the different models. We observe that XGBoost, Ridge,
and LSTM have the same F1-score of 53% and accuracy of 54% with the
LSTM only deviating one percentage point and with an accuracy of 53%.
ROCKET has the lowest accuracy of 50% and an F1-score of 49%. The
dummy accuracy of predicting only the majority class has accuracy and

88

F1-score of 44% and 27%, respectively. Since the most important aspect is
to be able to predict when a player has a change in readiness, we observe in
the confusion matrix that the LSTM has the most true positives for classes
zero and two. However, it has the fewest true positives for class one.

5.3 Shortcomings and How We Can Improve Them

Our forecasts perform much better than a baseline only predicting the
average. The difference in RMSE between the dummy model and the
"real" models is amplified when the variance in the dataset is increased,
suggesting that the models are able to learn patterns in the data. These
findings are promising, but during the implementation and gathering of
results, we saw possible shortcomings in our work and ideas for fixing
them and improving our pipeline to produce more informative data.
Therefore, the following changes justify a new chapter creating a second
iteration for our implementation.

• Time series interval: The most notable change for the second
iteration is the move from a day-to-day time series perspective to
a session-to-session time series perspective. Meaning instead of
the dataset consisting of all days the players have been on the
team, the data we now use are only the days in which the players
reported a training session or a match. This approach mitigates two
issues. Firstly, by only using time steps where the players reported
a training session or match, we no longer need to perform any
imputation. Avoiding imputation should have a positive effect on
model error since introducing more variance to the data increases
RMSE. Secondly, only focusing on the actual sessions is a more true
representation of the players’ performances. Since the number of
sessions a given player participates in differs widely, having data and
models that consider this helps to tailor the overall system to each
player.

• Forecasting horizon: As observed in this chapter, increasing the
forecasting horizon beyond one day substantially increased the
model error. Therefore, for the second iteration, we intend to
focus mainly on the next session rather than doing large forecasting
horizons. This choice is further justified by the teams with which this
research initiative collaborates are more interested in how the players
will perform for a given match or session than on an arbitrary day.

• More relevant features: Switching over to a session-based time series
interval also introduces the need for new variables better describing
the session and the relationship between past and future sessions. In
light of this, we introduce four new variables:

- Session duration is the number of minutes a session lasted for.
- Metabolic power is a metric that approximates the energy used for

acceleration and deceleration using GPS data.

89

- Days since last session is the number of days between last and
current session

- Match is a Boolean indicating that the session is a match if ’1’ and
a training session if ’0’.

• Objective versus subjective data: The idea of the first iteration was
to map the general well-being of the players for each day, while with
the new approach, we focus more on how they will perform in a given
session. Even though GPS data was less correlated to readiness than
subjective data, we saw through the results of the SHAP-value plots
that they have more of an impact on the actual predictions. These
findings suggest that objective data describes the athletes better than
the subjective quantification of things like sleep quality and mood.

5.4 Chapter Summary

This chapter presented the results of running our experiments using our
pipeline. These results are meant to provide key factors important to
predict readiness to train among elite female soccer players. The results
can be summarized as follows:

• We observed that most models’ optimal input window size is
between five and eight, supporting a seven-day periodicity.

• We attempted forecasting for larger output windows but found that
a forecasting horizon of more than one with our proposed methods
generates too large an error.

• There was no real difference between using either forecasting
method: direct or one-step ahead.

• In most cases, using a multivariate approach over a univariate one
had slight benefits in reducing error. However, this depended on the
model type and the specific players.

• Team A and B generally had the same behavior other than that team B
achieved less error due to the data having less variance and examples
of peak values.

• For the classification experiments we tested several use-cases. Peak
detection and change in readiness showed the most promise in
generating actionable data and accuracy. Still, the accuracy scores
are low, although much higher than the dummy accuracy.

In the next chapter, we will build on what we have learned with this first
iteration of our pipeline to implement potential improvements.

90

Chapter 6

Experiments and Results -
Second Iteration

The work in chapter 5 provided the idea of a second iteration by combining
the work from the first iteration with a slightly different approach
described in section 5.3. In this chapter, we will reuse most of the
experiments but substantially alter the time series data to accommodate
a session to session based time series perspective.

6.1 Data Alterations

The data is the main change to the implementation of the first iteration to
create the second iteration. We no longer perform imputation to account for
missing time steps. By avoiding imputation, we observe that the number
of sessions a given player has in a window of two weeks can be everything
from zero to fourteen. The irregularities of when players report a session
also support the idea of looking at a session-to-session perspective since
the data will represent the athletes more accurately. However, a problem
with this approach is the lack of data. For team A, we go from around 10
000 data points with imputation to about 4000 data points with our second
iteration. This substantial decrease in the number of samples might render
more data-hungry models like the TFT unusable. We have also added new
variables that we explained in section 5.3. These new variables further help
in explaining the general load of each session.

6.2 Experiments Overview

In the following experiments in this chapter, we will be reusing the
same model parameters found in chapter 5 section 5.1.1. We saw no
improvements using other combinations of hyperparameters. When
the forecasting horizon is larger than one, we will use one-step-ahead
forecasting for the relevant models. However, as mentioned in section 5.1.4,
neither method has an advantage over the other. Further, except where we
compare teams A and B, we only use the data from team A.

91

6.3 Regression Models, Second Iteration

6.3.1 Size of Input and Output Windows

We have previously explored the concept of approximating the optimal
input window size for our data. We found a considerable reduction in
RMSE when increasing the size to seven from one. We also learned from
the last chapter that forecasting more than one unknown time step is highly
unreliable. Therefore, it makes more sense to primarily look at the optimal
input window when the output window is one. We reuse the same player;
in this iteration, the player consists of 220 data points. In Figure 6.1, we
have generated the same plots and observe that the optimal input window
for XGBoost, LSTM, and the decision tree is three. The optimal input
window for the TFT model is nine, while the linear regression model
achieves the lowest RMSE value when the input window is five. The
benefit of choosing the optimal input window reduces model error between
six and fifteen percent depending on the model.

92

(a) XGBoost (b) Linear Regression

(c) Decision Tree (d) LSTM

(e) TFT

Figure 6.1: Lineplots showing how different input window values affect
RMSE-Scores for different types of output windows. The x-ticks denotes
added size to the original output window of one. This means that the
output window is two when x-tick is one.

In the second iteration, the optimal input window size is smaller, meaning
less data for predictions are needed. Needing less data for predictions is
generally good since it means a lesser computational cost. Since there are
missing dates between sessions, the same time series dependence might be
intact, as seen in the first iteration of around seven days. This is because

93

the player used for this experiment has an average of 3.1 sessions in a week.
Further, we will use an input window size of five for the remainder of our
experiments in this chapter.

6.3.2 Forecasting Horizons

We produce the same experiment as in chapter 5, where we observe the
change in RMSE by increasing the size of the forecasting horizon. We create
the model outputs by training on team A and forecasting a player left out
of the train set. The player is the same one used in Section 6.3.1

Figure 6.2: The Line-plot shows how the RMSE-scores of all the models is
affected by increasing the forecasting horizon.

We observe from the plots in Figure 6.2 much of the same behavior as
in the previous experiment regarding input windows in Section 5.1, but
with a few distinctions. The TFT is unaffected by the output window and
performs as well with low values as high. The TFT model has generally
performed worse in this iteration using multivariate data as it struggles
to learn relationships among features because of a lack of data. Further,
the three best models, XGBoost, LSTM, and Linear Regression, all have the
expected outcome of larger error with an increase in forecasting horizon.
However, the increase in RMSE is lower in this iteration. It is especially
noticeable when observing the linear regression model in Figure 6.2, where
it trends downwards after adding three to the initial output window. This
can be explained by the dataset having less variance. Therefore, sessions

94

at random time steps are more likely to be similar. Larger output windows
still result in too uncertain predictions meaning models with larger output
windows produce errors similar to only predicting the mean.

6.3.3 Multivariate Versus Univariate Data

We observe how the second iteration performs using both multivariate and
univariate data. In Figure 6.3, we have the same type of boxplots seen
in Section 5.1.5, plotting the performance of each model and providing
RMSE scores describing the overall performance of the forecasts and how
the error varies depending on the player. Generally, the error compared to
the previous iteration is much lower for all models except for the TFT. We
attribute this to the TFT being a very complex deep learning model needing
massive data to run optimally, which we have less of for this iteration.

Figure 6.3: The illustration shows RMSE-Scores expressed through box-
plots for all regression models using multivaraite data.

Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.9 0.88 1.47 0.89 1.09 1.16
Median 0.79 0.82 1.38 0.82 0.94 1.07
SD 0.3 0.22 0.33 0.25 0.46 0.42
Min 0.55 0.58 1.08 0.63 0.55 0.6
Max 1.81 1.52 2.6 1.74 2.35 2.3

Table 6.1: The table describes the boxplots in Figure 6.3 with numerical
values. We also included the values from a dummy model only predicting
the mean.

95

The decrease in RMSE in this second iteration is not necessarily a result
of models performing better on the current data. Rather, the data now
contains less variance and fewer extreme values, making it easier for the
models to learn the data. Suppose we compare the dummy model in
Table 6.2 to the dummy model in Figure 6.3. We observe for the second
iteration that the median and average RMSE values are 5% and 11.8% less,
respectively. These results mean less error in adopting a strategy predicting
values closer to the mean in the second iteration. However, since the data in
this iteration is not afflicted by imputation, it is a more true representation
of the actual well-being of the athletes. Further, despite the improved
results, to a certain degree being a consequence of the data being easier
for the models to learn, it is still a more beneficial approach since the error
is decreased and the data represents the players better.

Comparing a univariate to a multivariate approach, we observe similar
results as in the previous chapter, where the error in the univariate
approach is slightly higher for most models. The most apparent exception
is the TFT and decision tree models performing much better using
univariate data. Regarding the TFT model, this is mostly a problem
attributed to the limited number of data samples. In the second iteration,
we have roughly 4000 data points for team A compared to more than 10
000 in the first iteration.

Figure 6.4: The illustration shows RMSE-Scores expressed through box-
plots for all regression models using univariate data.

96

Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.92 0.89 1.16 0.9 0.91 1.16
Median 0.82 0.84 1.08 0.83 0.85 1.07
SD 0.29 0.23 0.26 0.24 0.25 0.42
Min 0.56 0.56 0.77 0.62 0.58 0.6
Max 1.7 1.46 1.75 1.58 1.66 2.3

Table 6.2: The table describes the boxplots in Figure 6.4 with numerical
values. We also included the values from a dummy model only predicting
the mean.

Figure 6.3 describes the percentage decrease in RMSE using multivariate
over univariate data for each player on team A. The decision tree and
TFT models favor univariate data for almost all players. In contrast,
the models XGBoost and LSTM favor multivariate data for most players,
with the Linear Regression model on average being indifferent. The
LSTM at most obtains a model error decrease of 28% for one player using
multivariate data but for another sees an increase in error of up to 15%
using multivariate data. To summarize Figure 6.3, it shows that the benefit
of using multivariate data depends on the specific player and model.

97

XGBoost Linear Regression Decision Tree LSTM TFT
Player1 4.5% 7.9% -7.5% 6.0% 1.7%
Player2 -3.6% -6.2% -30.0% 2.9% -5.1%
Player3 0.1% -13.7% -35.0% -8.6% -41.3%
Player4 5.9% 8.1% -25.0% -13.4% -51.3%
Player5 -2.9% 0.4% -15.3% -4.5% -20.4%
Player6 2.7% 3.6% -6.2% 11.0% -5.2%
Player7 2.2% -4.4% -27.1% -8.8% -19.1%
Player8 0.3% 1.0% -27.4% 0.8% -5.9%
Player9 2.6% -0.3% -26.3% 4.7% -48.8%

Player10 7.4% 9.6% -4.3% 16.4% -8.8%
Player11 -5.8% -4.9% -21.7% -3.3% -21.8%
Player12 3.3% 0.8% -7.6% 3.8% -4.9%
Player13 -0.6% -7.4% -33.0% -8.7% 5.9%
Player14 11.1% 13.9% -3.3% 16.2% -14.4%
Player15 3.9% 4.5% -14.6% 8.7% -6.3%
Player16 0.3% -1.8% -22.0% -0.9% -16.4%
Player17 6.1% -0.2% -38.1% -3.3% -13.2%
Player18 0.4% -1.6% -36.2% -0.3% -23.5%
Player19 1.5% 4.5% -18.1% -7.8% -25.5%
Player20 7.1% 8.5% -12.5% 3.0% -1.2%
Player21 -7.4% -8.3% -29.7% -15.3% -36.5%
Player22 1.6% 1.9% -24.5% 3.1% -14.3%
Player23 -2.9% 1.0% -30.0% 0.2% 3.8%
Player24 5.1% 0.1% -26.2% -10.5% -33.3%
Player25 8.1% 10.8% -6.9% 28.3% -2.7%

Table 6.3: Table showing percentage decrease in loss using multivariate
over univaraite data for all players on team A for all models. Positive
values indicating better results using multivariate data.

6.4 Classification Models, Second Iteration

The same classification experiments conducted in chapter 5.2 are also
recreated for this iteration using our altered time series dataset. We reuse
the same model hyperparameters. We apply an input window of five and
an output window of one. We also reuse the same player, although the
player now has fewer data points than in the last iteration. Further, this
section will go through these experiments.

Forecasting The Original 10 Classes

We use the original ten classes in this experiment and observe the results
in Figure 6.5 and Table 6.4. ROCKET has by far the highest accuracy of
45% but an F1-score of 41%. Xgboost achieves an accuracy of 40% and an
F1-score of 39%, followed by the LSTM obtaining an accuracy of 38% and
an F1-score of 36%. Aside from the dummy model, the Ridge classifier

98

performs the worst with 35% accuracy and 32% F1-score. In this iteration,
we see no substantial improvement in accuracy and F1-scores.

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 6.5: In this figure we have four confusion matrices each produced
from a unique model where we classify readiness with it’s original 10
classes. We train on the whole team and forecast on the data of a single
player.

ridge rocket xgboost lstm dummy
Accuracy 0.35 0.45 0.40 0.38 0.26
F1-Score 0.32 0.41 0.39 0.36 0.11

Table 6.4: Accuracy and F1 score for classification experiments classifying
original ten classes.

As discussed in Chapter 5, this use-case struggles to achieve high accuracy
scores largely because the models struggle to differentiate between similar
readiness values. However, the next classification experiments rectify this
issue and simplify the approach of predicting readiness to provide metrics

99

capturing important events.

Forecasting Peaks

The idea of forecasting peaks shows promise and achieves the highest
accuracy among our classification experiments. We observe the results in
Figure 6.6 and Table 6.5. The XGBoost model achieves the highest accuracy
and F1-score of 69%, followed by the Ridge classifier with 68%. The LSTM
achieves 65% for both accuracy and F1-score, while this number is 63% for
the ROCKET model. The accuracy and F1-score for the dummy model are
44% and 27%, respectively. In this case, there is only one value for class
zero which none of the models are able to classify correctly.

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 6.6: In this figure we have four confusion matrices each produced
from a unique model where we classify readiness peaks. By this we group
and transform readiness into three classes. First class are all readiness
values four and below, second class consists of readiness values of five to
seven, and third class represents readiness values of eight and above.

100

ridge rocket xgboost lstm dummy
Accuracy 0.68 0.63 0.69 0.65 0.44
F1-Score 0.68 0.63 0.69 0.65 0.27

Table 6.5: Accuracy and F1 score for classification experiments classifying
peaks.

Forecasting Positive, Negative, and Neutral Change in Readiness

In this classification experiment, we predict positive, negative, or neutral
changes in readiness compared to the last session. We observe the results in
the confusion Matrices in Figure 6.7 and accuracy and F1-score in Table 6.6.
We observe that the LSTM performs best with an accuracy of 58% and
an F1-score of 57%. This is followed by XGBoost achieving 55% for both
accuracy and F1-score. The Ridge classifier and ROCKET obtain about
the same accuracy and F1-score. Our dummy model only predicting the
majority class has an accuracy of 44% and an F1-score of 27%.

101

(a) XGBoost (b) LSTM

(c) Ridge (d) Rocket

Figure 6.7: In this figure we have four confusion matrices each produced
from a unique model where we forecast positive, negative or neutral
change in readiness from last to next day. We train on the whole team and
forecast on the data of a single player.

ridge rocket xgboost lstm dummy
Accuracy 0.52 0.53 0.55 0.58 0.44
F1-Score 0.52 0.51 0.55 0.57 0.27

Table 6.6: Accuracy and F1 score for classification experiments classifying
readiness change.

This approach classifying change of readiness offers a unique perspective
that considers the development of readiness regarding the specific players.
For this method, only the perceived change of readiness among players
matters, not the readiness score itself. However, an accuracy of 58% is still
generally low for a real-world application.

102

6.5 Comparing First and Second Iteration Results

Overall, the first iteration has a much higher RMSE score than we observed
in the second iteration of our pipeline. Also, for classification experiments,
we saw a slight increase in accuracy in the second iteration of our pipeline,
except for peak classification, which achieved three percent less accuracy
and F1-score. However, these preliminary results are limited and lack
conclusive evidence. In order to further verify what approach has the best
potential, we need to look at the following:

• Compare dummy predictions to actual predictions across both
iterations and evaluate the differences between dummy scores and
actual predictions.

• Compare the RMSE of the first iteration using imputed data but only
using prediction values from actual days to the RMSE of the non-
imputed second iteration predictions.

6.5.1 Comparing Dummy classification Results Across Iterations

The classification results are similar for both pipeline iterations, although
the second iteration has slightly better results. By comparing these results
to dummy models, we can determine which approach has the greatest
gap in accuracy and F1-score between dummy models and the other ML
models.

First Iteration- Accuracy
Model Original Classes Peaks Change
XGBoost 42% 71% 54%
Ridge 32% 67% 54%
ROCKET 36% 68% 50%
LSTM 42% 72% 53%
Dummy 27% 59% 44%
diff- dummy and best model 55% 22% 23%

Second Iteration- Accuracy
Model Oirginal Classes Peaks Change
XGBoost 40% 69% 55%
Ridge 35% 68% 52%
ROCKET 45% 63% 53%
LSTM 38% 65% 58%
Dummy 26% 44% 44%
diff- dummy and best model 73% 57% 30%

Table 6.7: The table shows all accuracy scores across both iterations, all
classification models, and dummy models.

103

First Iteration- F1-Score
Model Original Classes Peaks Change
XGBoost 40% 69% 53%
Ridge 28% 61% 53%
ROCKET 34% 65% 49%
LSTM 39% 72% 53%
Dummy 12% 44% 27%
diff- dummy and best model 330% 64% 96%

Second Iteration- F1-Score
Model Oirginal Classes Peaks Change
XGBoost 39% 69% 55%
Ridge 32% 68% 52%
ROCKET 41% 63% 51%
LSTM 36% 65% 57%
Dummy 11% 27% 27%
diff- dummy and best model 373% 256% 204%

Table 6.8: Table showing F1-scores for all classification tasks across both
iterations.

Tables 6.7 and 6.8 show all models’ overall accuracy and F1-scores for
all classification use-cases. The table also denotes the greatest difference
in accuracy and F1-scores between the dummy model and the best-
performing model for each use-case. The best solution forecasting original
classes was ROCKET in the second iteration achieving accuracy and F1-
score 73% and 373% higher than the dummy model. For comparisons,
the best model in the first iteration predicting ten classes achieved 55%
better accuracy and 330% better F1-score than the dummy model. Since
the F1-scores and accuracy are almost identical for the best-performing
models, only mentioning accuracy is adequate. The first iteration has
slightly higher accuracy and F1-scores in the use-case predicting peaks.
However, the first iteration only has 22% better accuracy than the dummy
model, while the second iteration has an accuracy 57% better than the
dummy model. For the third use-case predicting change in readiness, these
numbers are 23% in the first iteration and 30% in the second iteration in
terms of accuracy. For all use-cases, the second iteration performs much
better than the dummy model compared to the results in the first iteration.
Since both iterations forecast dissimilar data, knowing how they perform
compared to each other and the dummy models provide a necessary
context for evaluating these approaches. The second iteration achieves
far better results for the use-cases original classes and change in readiness
but is slightly worse regarding peak prediction. However, as stated, the
second iteration performs much better than the dummy model compared
to the first iteration. It then stands to reason that the second iteration might
be better, although with lower accuracy. These findings suggest that the
second iteration is performing better for classification tasks.

104

6.5.2 Comparing Imputed and Non-Imputed Predictions

In this comparison, we want to observe whether the error for the days
that are not a result of imputation is lower for the forecast using imputed
data compared to the forecasts only using non-imputed data. By this,
we mean to filter out the predictions only predicting an imputed value,
so we are left with only predictions predicting real data that the players
filled in. This comparison is to observe whether imputed data improves
results for session to session based predictions. Also, the imputed values
might be noisy and contain more variance than the real data. Therefore,
this comparison will provide better insight into the usefulness of our
imputation method.

(a) Imputed

(b) Not Imputed

Figure 6.8: Image 6.10a shows the predicted versus the actual readiness
values when forecasting using the dataset from the first iteration but only
viewing the predictions/days that were not imputed. Image 6.10b shows
the predicted versus the actual readiness values when forecasting using the
dataset from the second iteration. Plot 6.10a has an RMSE of 0.74 while Plot
6.10b has an RMSE of 0.88.

Figure 6.8 displays two plots where Plot 6.10a shows predicted versus
actual values using the imputed dataset, while Plot 6.10b shows predicted
versus actual values using the non-imputed dataset from the second
iteration. By only glancing at the plots, we see that the plot using imputed

105

data performs much better than the one not using imputed data. The
plot also manages to follow the largest peak to the downside correctly.
Plot 6.10a has an RMSE of 0.74 while Plot 6.10b has an RMSE of 0.88,
meaning that the method not using imputation has 19% more error. So far,
this method provides the least amount of error, suggesting that imputed
data is able to contextualize missing data. Therefore, the better approach is
using imputed data to predict the next session, not the day. Next, we will
examine how this approach performs using leave-one-out cross-validation
on team A.

We recreated the same boxplots previously used in this chapter but for the
approach using imputed data to only predict actual days. The boxplots,
available in Figure 6.9, show a reduction in RMSE compared to the previous
experiments found in Figures 5.5 and 6.4 for all models except the TFT.
In table 6.9, we observe numerical values describing the boxplots in more
detail. The mean and median for XGB, Linear Regression, and LSTM are
very similar, and the lowest produced by our experiments. These results
show that using imputation can offer better results for these types of time
series forecasts.

Figure 6.9: The illustration shows RMSE-Scores expressed through box-
plots for all regression models. This approach uses only the predictions
from the first iteration that are not imputed dates to calculate RMSE.

106

Metrics XGB Linear Regression Decision Tree LSTM TFT Dummy
Mean 0.86 0.85 1.59 0.88 1.08 1.16
Median 0.77 0.81 1.46 0.77 1.04 1.07
SD 0.32 0.26 0.34 0.31 0.32 0.42
Min 0.57 0.56 1.21 0.58 0.52 0.6
Max 1.87 1.6 2.32 1.77 2.02 2.3

Table 6.9: The table describes the boxplots in Figure 6.9 with numerical
values. We also included the values from a dummy model only predicting
the mean.

(a) Uisng imputed data (b) Not using imputed data

Figure 6.10: This figure shows two confusion matrices with one using
imputed data to generate predictions while the other one only uses actual
days. Figure 6.10a has accuracy and F1-score of 73% while Figure 6.10b has
accuracy and F1-score of 69%.

Figure 6.10 shows two confusion matrices predicting peaks. Figure 6.10a
uses imputed days to predict actual days, while Figure 6.10b only uses
actual days to predict actual days. We use XGBoost since it provided the
best result for this use-case. The approach using imputed data achieves
accuracy and F1-score of 73%, while the other approach only using actual
days achieves accuracy and F1-score of 69%. Also, for classification tasks,
using imputed data to predict actual days improves overall accuracy and
F1-scores.

6.6 Chapter Summary

The objective of this chapter was to apply the improvements we derived
from creating the first iteration of our experiments to the next iteration
of experiments. We discovered that a session-to-session time series
perspective using non-imputed data (except for the TFT) preferred a

107

smaller input window between three and five. The overall forecasting
error when increasing the output window size decreased, most likely
due to lower variance in the dataset, making the strategy of predicting
the mean more viable. However, this did not change the fact that a
forecasting horizon equal to one has a much lower RMSE than a forecasting
horizon above one. In most cases, multivariate data was beneficial but
less so compared to the first iteration. Still, this is very dependent on
the player. Some players achieve higher scores with multivariate data,
while others achieve higher scores with univariate data. Choosing a feature
selection strategy for each player should drastically decrease RMSE. As
for classification tasks, we saw a slight increase in accuracy for the second
iteration.

Further, the second iteration did much better than the dummy models
compared to the first iteration. We also compared the non-imputed and
imputed predictions using only the dates available in both predictions
and found that using imputed data resulted in lower RMSE. Therefore,
using imputed data offered the best results when only using predictions
from actual days. The approach using imputed data to predict actual days
improved results for both regression and classification tasks.

108

Chapter 7

Discussion

In this chapter, we intend to further elaborate on the results obtained from
the experiments in chapter 5 and 6. We will discuss the significance of
our findings and describe the general limitations of our methods and their
ability to forecast athlete data. We will also mention ethical considerations
relevant to the work in this thesis.

7.1 Daily and Session Based Time Series Intervals

The main motivation behind creating the second iteration was to imple-
ment a more consistent and practical approach to time series forecasting
of readiness. The models predict data more true to the original domain
by focusing more on a session-to-session time series perspective. As dis-
cussed earlier, teams are interested in athletes’ performance during import-
ant events. A session to session based time series perspective supports this
statement since we only use data from days when players attended relev-
ant soccer activities. Capturing important events is relevant to all sports,
making this method applicable to other sports.

We observed lower RMSE values using a session-to-session time series
perspective in our regression experiments. The reduction in RMSE is
largely because the implemented imputation method we used in the
first iteration increased the variance in our dataset. In turn, making it
more difficult for the models that already struggled to forecast values
different from the mean. Also, since we included all days in a player’s
active periods, the imputation algorithm had to, in several cases, impute
more than 50% of a player’s days. Imputation to such an extent causes
uncertainties in the actual practical use of the model outputs since a large
part of the data is artificially generated. However, with our imputation
method, IterativeImputer, we discovered that the first iteration was more
accurate when only accounting for predictions for non-imputed dates.

109

7.2 Imputation

The first iteration of our pipeline utilized imputed data. This data
configuration resulted in a dataset with greater variance and, therefore,
higher model error than forecasting using non-imputed data. However, in
Section 6.5.2, we discovered that in the first iteration, when only accounting
for the predictions of actual days, the error was lower than that found in
the second iteration. Suggesting that the imputed data helps give context
to the models for actual days that do not result from imputation. Given
that the data used in this thesis is sparse and hard to obtain, it is beneficial
that imputation is a viable method capable of improving results.

7.3 Input And Output Window Sizes

In our experiments, we observed different optimal input window sizes
across both experiment iterations and models. However, the deviations
only applied to the worst performing models: Decision Tree and the TFT.
The remaining three models, XGBoost, Linear Regression, and LSTM, had
the same behavior with only a slight difference in optimal input window
size. The optimal input window size for the first iteration is between
five and eight, while for the second iteration, it is between three and five.
Regarding the first iteration, these three models show that using around the
previous week provides the lowest forecasting error. The second iteration
has a variable time interval where there can be anywhere from zero to seven
or more sessions in a week. The player we used for these experiments has
an average of 3.1 sessions a week. In the second iteration, the optimal input
window size is between three and five, indicating that the sessions from the
past week provide the best results. Using the past seven days as the input
window value was also discussed in related work by Kulakou et al. [34] to
be optimal.

We also observed that the models performed better using the previous
seven days as the input window when increasing the output window size,
as shown in Figure 5.1. This means that output window size is irrelevant
in determining input window size. Further, the greatest decrease in model
error happened, going from input windows one to three. Therefore, only
looking at the previous time step is suboptimal in understanding the
athletic state of athletes, at least with our approach and selection of ML
models.

Generally, we observed that increasing the forecasting horizon from one
greatly increased model error. Forecasting multiple days or sessions
is difficult or impossible with the data and methods proposed in this
thesis. Since readiness is a measure of perceived ability to perform, other
factors that the models have no knowledge of might impact readiness.
Additionally, after increasing the forecasting horizon to three days, the
model error did not substantially change when the forecasting horizon

110

further increased. Therefore, forecasting three time steps into the future
was as accurate as forecasting two weeks into the future. With larger
forecasting horizons, we see that the models are predicting values close
to the mean.

7.4 Multivariate Versus Univariate Data

On average, using multivariate data reduces the overall error of the model
forecasts. However, this difference was small. By mapping individuals, we
observed a high discrepancy between players and whether or not using
multivariate data has a positive outcome on predictions 6.3. For some
player’s data, when looking at the best performing models, the reduction
in RMSE was as high as 28% using multivariate data; for others, the
RMSE increased up to 15% compared to using univariate data. In our
comparisons of teams A and B in Tables 5.6, we saw that team B on average,
had less of a positive effect using multivariate data than team A. Team B
also has less variance. We observed no significant relationship between
variance and benefits in using multivariate data, as shown in the analysis
in Figure 9.7. We found no common denominator indicating when a player
will benefit from using multivariate data. However, we speculate that this
is dependent on the subjective nature of the player and whether the data
from the survey is able to represent the well-being of the athlete. Further
investigation is needed to determine when certain features become relevant
in predicting readiness.

In cases where the models were bottlenecked by their complexity level
or lack of data, using multivariate data caused worse performance. We
observed this for the decision tree and the TFT model. The decision tree
struggles with multivariate data and learning the complex relationships
among multiple features, while the TFT needs more data to learn these
relationships. The TFT performed worse in the second iteration, where
data was more sparse.

7.5 Relevant Features and Data Types

In our data analysis, we discovered how the impact of specific features on
predictions depended on the player’s subjective nature. For some players,
GPS-derived features had a big impact; in others, it was as impactful
as adding random noise. Also, using too many features in other cases
resulted in worse performance than a univariate approach. However, on
average multivariate data yielded better results than univariate. Based on
these findings, the main issue is that each test set, representing a player,
deviates from the training data in an unforeseeable way. Therefore, ranking
the relevant features after the most to least impact on predictions is not
obvious.

111

For our experiments, we chose not to use feature selection. Our reasoning
is that the preferred features in the train set differ from those in the test set.
Our analysis and experiments showed that player predictions responded
differently to different features, suggesting that the models have issues
generalizing to all players.

Since we are training on the team rather than the relevant player, the model
is not learning data specific to that player. A possible method to improve
this issue is to use a form of transfer learning like fine-tuning. In this case,
the weights from the model trained on the team are used as a base, and
the model is further trained on a percentage of the relevant player to better
capture the unique patterns of the specific player’s data.

7.6 Evaluation of Selected Models

In our experiments, both regression and classification, we tested six
different unique models for the first and second iterations: LSTM,
XGBoost, Linear model, Decision Tree, TFT, ROCKET. As previously
mentioned in Section 2.5, our reasoning for this selection of models is based
on criteria such as state-of-the-art results in the time series domain and
model complexity.

For regression tasks, we found that the Linear Regression model, LSTM,
and XGBoost performed best for both iterations and obtained, in essence,
the same quantity of error. This was the case for all experiments; univariate
and multivariate data and forecasting horizons. The tree model overall
was highly inaccurate and is not worth mentioning. The TFT generally
performed worse than the other three best models in the first iteration. For
the second iteration, the TFT Performed much worse with multivariate data
but had only slightly higher RMSE when using univariate data relative to
the other best-performing models. We attribute the poor performance to a
lack of data and an inability to ignore unimportant features.

In our classification experiments, we presented results for three different
use-cases. We observed that the linear Ridge classifier obtained the
lowest accuracy scores. ROCKET performed exceptionally well in one
example where we predicted the original classes in the second iteration.
The LSTM and XGBoost models achieved the highest accuracy in most
examples. They were also in addition to the Linear Regression model the
best performing models for the regression tasks. Despite linear regression
performing well for different train/val/test splits and leave-one-out cross-
validation, it is still highly likely that the linear regression is overfitting to
the data.

112

7.7 Use-Cases

In our experiments, we presented three different use-cases: Prediction
using all ten classes, predicting peaks, and predicting positive, negative, or
neutral change in readiness. The motivation behind presenting several use-
cases was to investigate how to best generate data that can aid in decision-
making by players and coaches.

Regression values are the least practical approach to present data among
our selection of use-cases since it consists of arbitrary continuous numbers
between one and ten. Also, this approach does not consider that what
some players perceive as seven might be perceived as five, among others.
Therefore, the use-case does not consider the subjective nature of perceived
readiness. We also saw for classification that the original ten classes at most
had an accuracy of 45%, which is low. The use-case predicting peaks offers
a more robust way of interpreting readiness by differentiating between
important and unimportant events. High values above seven and low
values below five should reflect the same perceived readiness better among
all players, as these are rare occurrences. Differentiating between neutral
readiness values between five and seven is not as important as capturing
peaks. The final use-case considers the relative development of readiness
only indicating if the next session will have a lower, higher, or the same
readiness score. How well a player perceives their abilities are subjective,
and a use-case that accommodates the subjective nature of players in
a simple and interpretable way is the better approach. Therefore, the
previous two use-cases show the most promise for a real-world application.

7.8 Hyperparameter Tuning

For our models, we used either the hyperopt [5] library for hyperparameter
tuning, manual tweaking, or author recommendations for hyperparamet-
ers. Further research into hyperparameter tweaking is possible to achieve
even greater results.

For the LSTM model, we saw a benefit in using two LSTM layers. However,
this did not benefit the TFT model. Dropout is a regularization technique
that prevents models from overfitting by avoiding co-dependence between
units. We tested different levels of dropout for both deep learning
models and observed no positive effect on the LSTM and only a slight
improvement for the TFT. An increase in batch size above 32 led to worse
results and longer training because more epochs were needed despite the
faster GPU performance. For the XGBoost, we observed that the model
was prone to overfitting when using the hyperopt optimization tool with
too wide parameter range. Especially the parameter max depth would lead
to overfitting of the model if left too high. Therefore, we only searched
max depth values between 1 and 12 for our hyperparameter tuning. Also,
XGBoost offers regularization which we enabled.

113

7.9 Ethical Considerations

It is important to reflect upon the consequences of research and the
potential misuse and harm it can cause. Therefore, it is crucial to consider
how the given research impacts systems and, subsequently, people, as Saltz
et al. [51] argued in their paper which discusses the ethical implications of
research in data science. Following is a discussion of possible ethical issues
relevant to this thesis.

A tool created to show the future performances of athletes can cause unfair
situations where some players are consistently more favored than others. In
other words, our model is biased towards some or a combination of data.
These types of biases are one of the key issues in data science addressed
by Saltz et al. [51]. In the case of this thesis, all data are either health
or soccer performance related and are supposed to provide important
insight into every player involved. Therefore, it is crucial that models work
properly, or it could cause harm to the overall success and well-being of
the team/player. Therefore, it is important to analyze the features and use
feature importance metrics in a real-world application to understand how
the models weigh specific predictions.

Using readiness scores to actively choose players for important events
might cause issues if players inaccurately report high readiness values
to increase the likelihood of being chosen. System-wise, it would result
in unreliable predictions since the data is untrue. From a wellness
perspective, this could lead to players fixating on an arbitrary number and
induce stress which is counter-intuitive to the overall goal of enhancing
training conditions and game strategies. Therefore, the overall system
needs to be used ethically and with consideration for the players’ well-
being. Incorporating a trustworthy AI approach where each part can
be explained and accounted for should be a priority, especially when
predictions directly impact people.

A problem that has plagued research communities for years is p-
hacking [24]. In short, it means producing unrealistic results through select-
ive data selection and analysis. These methods turns insignificant results
significant [24]. Such practices result in misleading results and are often im-
possible to replicate [24]. Therefore, the work in this thesis is reproducible.
Further, our code is also available through GitHub.

7.10 Chapter Summary

In this chapter, we discussed the significance of our key findings and how
they overall relate to our research question to determine a good approach
to predict readiness. We also described relevant ethical considerations.

114

Chapter 8

Conclusion

In this thesis, we present several data and model configurations and three
use-cases to determine what factors have the greatest impact in forecasting
readiness to train among elite female soccer players to provide actionable
data. Our work is structured as a four-step pipeline to efficiently and
rigorously generate results from our experiments. These steps include data
importing, data analysis and pre-processing, experiments, and evaluation.

We chose a novel approach by combining subjective wellness and GPS data
with several state-of-the-art ML models for time series forecasting. We
leverage complex imputation to contextualize the missing data. We also
thoroughly analyze the dataset, both with and without imputed data. The
experiments in our pipeline determine what impact several data and model
configurations have on forecasts, such as optimal input window size,
forecasting horizon, forecasting method, univariate and multivariate data,
and different use-cases using regression and classification. We make model
comparisons using these configurations to derive results. The structure
of our pipeline makes for easy implementation of new experiments
compatible with our processed data and plots for visualization.

Our experiments show several key factors important when forecasting
readiness: By providing context to missing data in the form of complex
imputation, we see a reduction in model error. Further, there is a great
discrepancy between what is important to each unique player. For some
players, using more features had the same result as adding random noise,
while it greatly increased accuracy for others. Therefore, dynamically
choosing the optimal data and model configuration for each unique player
will greatly impact accuracy. Regarding the arbitrary nature of readiness,
use-cases that define important moments, such as peak detection, or the
relative change in performance, such as predicting the type of change, is a
more interpretable metric providing more reliable data to make decisions.

115

8.1 Revisiting the Problem Statement

From Section 1.2, we derived five sub-questions to answer our main
research question adequately.

• Q1: Is the use of complex data imputation useful to our forecasts?
We discovered that the use of complex imputation, namely Iterati-
veImputer, could provide reasonable context to the missing data to
improve results.

• Question 2: What number of prior time steps is optimal to use
when making a forecast, and for how many time steps in the future
is it feasible to make forecasts? For each model, we ran forecasts
with different input windows and observed for both iterations that an
input window taking into account the previous seven days resulted
in the least amount of error on average for the best models. This is
in line with the findings from related work [34]. Further, we found
that doing this experiment for several configurations of the output
window size did not change the seven-day trend.

Forecasting one time-step yielded the least error, but further increases
to the output window resulted in much higher error. However, we
also observed that increasing the forecasting horizon from three and
up showed little to no change in the RMSE score. Regarding the
difficulties of forecasting only one time step and how much the error
rises by only making the forecasting horizon slightly larger, we can
conclude that forecasting more than one time step is not feasible and
carries too much uncertainty with it.

• Question 3: To what extent do multivariate forecasts produce better
results than univariate forecasts? In our experiments, on average
across teams we observed a consistent positive effect on results by
utilizing multivariate data. However, we observed exceptions. In
the cases where the model either lacked the complexity to learn
relationships between features, was not able to ignore unimportant
features, or was not given enough data relative to its complexity,
we saw that using multivariate data negatively affected performance
compared to using univariate data. Still, these were exceptions, and
for most data configurations and models, we saw a performance
increase of up to 28% using a multivariate approach.

• Question 4: What type of time series features are important
when forecasting readiness to train? Based on our data analysis
in Chapter 4 and what we observed through our experiments,
we determined that the most impactful features in forecasting
readiness aside from the lagged readiness value were a mix of
wellness and GPS-derived features. However, what features proved
beneficial were reliant on the specific player’s data. The features that
consistently showed the most impact in our analysis included daily
load, fatigue, Top Speed, HIR, and Total Distance.

116

• Question 5: What is the viability of our selected use-cases and do
they have potential to provide actionable data for coaches and play-
ers to use? We demonstrated three use-cases using regression and
classification and discussed their unique contribution in providing
actionable data for players and coaches. Based on related work and
our findings, we determined that easily interpretable statistics taking
into account the unique data of each player are more favorable for a
real-world use-case. Therefore, classification approaches classifying
peaks or change in athletic development provides more useful insight
than generating continuous RMSE values between one and ten. To
further validate this statement, user studies need to be conducted.

We have answered our sub-question which allows us to go back and
provide our solution to the main research question:

’What is a good approach to forecast readiness to train among
professional female soccer players that result in actionable data for
players and teams?’

Our answer to the research question is an approach capturing important
events or trends that consider each player’s individual nature. Specifically,
in terms of work presented in this thesis, it consists of combining several
methods. Firstly, a time series approach predicting the next session
that uses imputed data that can adequately contextualize missing data.
Secondly, techniques ensuring optimal data configurations such as input
window and feature selection tailored to the specific model and player.
Thirdly, three-class classification such as classifying readiness peaks or
positive, negative, or neutral changes in readiness as these use-cases
reflect qualities that provide actionable data for training and game strategy
decisions.

8.2 Other Contributions

Other contributions related to this thesis are as follows:

• Source code: All the source code created to implement our pipeline
is accessible through a public repository on GitHub: https://github.
com/simula/pmsys.

• Dashboard: The work in this thesis contributed to an interactive
dashboard, deployed as a web application on Streamlit cloud, called
“Soccer Dashboard”: https://soccer-dashboard.simula.no

• Paper submission (ongoing): We are in the process of preparing a
submission to a scientific venue (tentative title “Subjective readiness-
to-play scores in soccer: how to predict and how to use”), in order to
present the findings of this thesis in the form of a long paper.

117

https://github.com/simula/pmsys
https://github.com/simula/pmsys
https://soccer-dashboard.simula.no

8.3 Limitations of the Work

Despite previous conclusions, our findings suggest that player-based
models might be a better approach. However, we could not follow up
in-depth due to a lack of data. Another data-related limitation lies in the
distribution. Because there are very few extreme data points, it is difficult
for the models to reliably learn these patterns.

To understand what metrics have the greatest impact on an athlete’s per-
formance, conducting comprehensive surveys and studies using different
metrics is needed. The perspective of this thesis is more centered around
a computer science perspective rather than a sports science one and, there-
fore, might provide limited insight into the sports science aspect of this
multidisciplinary field.

The field of machine learning and time series forecasting is enormous
and constant development continuously produces better alternatives. The
models used in this thesis only represent a fraction of relevant models used
for time series prediction, which means that other better performing ML
models may exist.

The use-cases we presented were based on previous work and observations
during our data analysis. Other ways of predicting or representing
readiness might yield more actionable data.

The reliability of the GPS data depends on the technology used to acquire
them and the methods used to go from positional data to sports metrics
like the average running speed of players. This process may cause
an information loss where the sports metrics are not the exact original
movements of the athletes. A similar issue is also present regarding the
wellness reports provided by the players. If the players cannot answer
reliably or the questions do not capture the athletic state of players, then
the benefit of the wellness reports is diminished.

We mainly looked at how readiness moves over time for individual players.
However, a more general overview time series perspective looking at the
team’s development over a longer time horizon might yield actionable
data.

8.4 Future Work

The implementation of our pipeline has several possibilities to be used as a
springboard for future work.

• Surveys: To better understand what will have a positive effect on
soccer teams using ML, it can be beneficial to conduct surveys. These
surveys can offer insight into what type of performance forecasting
will provide actionable data.

118

• Objective Data: We have already observed the benefit of using
objective data such as GPS-derived features in Chapter 4, 5 and 6. We
also saw inconsistencies and a lack of contribution from the subjective
wellness features. Therefore, focusing more on objective data might
prove beneficial. Further, forecasting objective data might also lead
to positive discoveries.

• Online Learning and Deployment: A reasonable next step is
implementing a model in an online learning environment and
deploying a passive ML analyzing tool on the PmSys app.

• Different Use-Cases: Rather than only focusing on wellness time
series forecasting, it can prove beneficial to forecast strategies. For
example, to see what movements or player position through GPS data
leads to injuries or goals.

• Other ML Models: For our thesis we chose a selection of ML models
which are described in Section 2.5. Choosing adequate models
outside our selection can also lead to better results.

• Model Fine-Tuning: Fine-tune the models on a certain percentage of
the data to the players that are being predicted.

• Dynamic Parameter Selection: Dynamically select the most relevant
data configuration, meaning input window size and features, for each
player and model type. This should increase results substantially
based on our findings.

Overall, there are a plethora of possible avenues to investigate to further
contribute to predicting athlete data to improve training conditions and
derive game-changing strategies. These methods are not limited to only
time series wellness forecasting in soccer but are also applicable to be
integrated with other sports to derive other types of important statistics.

119

Bibliography

[1] Wesam Saleh A Al Attar and Mansour Abdullah Alshehri. ‘A
meta-analysis of meta-analyses of the effectiveness of FIFA injury
prevention programs in soccer’. In: Scandinavian Journal of Medicine
& Science in Sports 29.12 (Aug. 2019), pp. 1846–1855. DOI: 10.1111/
sms.13535.

[2] Saad Albawi, Tareq Abed Mohammed and Saad Al-Zawi. ‘Under-
standing of a convolutional neural network’. In: 2017 international
conference on engineering and technology (ICET). Ieee. Akdeniz Univer-
sity, Antalya, Turkey, Aug. 2017, pp. 1–6. DOI: 10.1109/ICEngTechnol.
2017.8308186.

[3] Arni Arnason, Stefan B Sigurdsson, Arni Gudmundsson, Ingar
Holme, Lars Engebretsen and Roald Bahr. ‘Physical fitness, injuries,
and team performance in soccer’. In: Medicine & Science in Sports &
Exercise 36.2 (2004), pp. 278–285. DOI: 10.1249/01.MSS.0000113478.
92945.CA.

[4] Cornelius Arndt and Ulf Brefeld. ‘Predicting the future performance
of soccer players’. In: Statistical Analysis and Data Mining: The ASA
Data Science Journal 9.5 (Aug. 2016), pp. 373–382. DOI: 10.1002/sam.
11321.

[5] James Bergstra, Daniel Yamins and David Cox. ‘Making a science
of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures’. In: International conference on
machine learning. PMLR. Atlanta, USA, June 2013, pp. 115–123. URL:
https://proceedings.mlr.press/v28/bergstra13.html.

[6] Chris M Bishop. ‘Neural networks and their applications’. In: Review
of scientific instruments 65.6 (June 1994), pp. 1803–1832. DOI: 10.1063/
1.1144830.

[7] Bradley Camburn, Brock Dunlap, Tanmay Gurjar, Christopher
Hamon, Matthew Green, Daniel Jensen, Richard Crawford, Kevin
Otto and Kristin Wood. ‘A systematic method for design prototyp-
ing’. In: Journal of Mechanical Design 137.8 (Aug. 2015), p. 081102. DOI:
10.1115/1.4030331.

[8] Bradley Camburn, Vimal Viswanathan, Julie Linsey, David Ander-
son, Daniel Jensen, Richard Crawford, Kevin Otto and Kristin Wood.
‘Design prototyping methods: state of the art in strategies, tech-

120

https://doi.org/10.1111/sms.13535
https://doi.org/10.1111/sms.13535
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1249/01.MSS.0000113478.92945.CA
https://doi.org/10.1249/01.MSS.0000113478.92945.CA
https://doi.org/10.1002/sam.11321
https://doi.org/10.1002/sam.11321
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1063/1.1144830
https://doi.org/10.1063/1.1144830
https://doi.org/10.1115/1.4030331

niques, and guidelines’. In: Design Science 3 (Aug. 2017), e13. DOI:
10.1017/dsj.2017.10.

[9] Sean D Campbell and Francis X Diebold. ‘Weather forecasting for
weather derivatives’. In: Journal of the American Statistical Association
100.469 (Dec. 2005), pp. 6–16. DOI: 10.1198/016214504000001051.

[10] Mahil Carr and June Verner. ‘Prototyping and software development
approaches’. In: Department of Information Systems, City University
of Hong Kong, Hong Kong (1997), pp. 319–338. URL: https : / /
citeseerx . ist . psu . edu / document ? repid = rep1 & type = pdf & doi =
0b05add730e04843e234937a070f24b19efaadc3.

[11] Tianqi Chen and Carlos Guestrin. ‘Xgboost: A scalable tree boosting
system’. In: Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. San Francisco, USA, Aug. 2016,
pp. 785–794. DOI: 10.1145/2939672.2939785.

[12] Angus Dempster, François Petitjean and Geoffrey I Webb. ‘ROCKET:
exceptionally fast and accurate time series classification using ran-
dom convolutional kernels’. In: Data Mining and Knowledge Discovery
34.5 (July 2020), pp. 1454–1495. DOI: 10.1007/s10618-020-00701-z.

[13] Akshit J Dhruv, Reema Patel and Nishant Doshi. ‘Python: the most
advanced programming language for computer science applica-
tions’. In: Proceedings of the international conference on culture heritage,
education, sustainable tourism, and innovation technologies (CESIT 2020).
2021, pp. 292–299. URL: https : / /www. scitepress . org/Papers /2020/
103079/103079.pdf.

[14] David A Dickey and Wayne A Fuller. ‘Distribution of the estimators
for autoregressive time series with a unit root’. In: Journal of the
American statistical association 74.366a (1979), pp. 427–431. DOI: doi .
org/10.1080/01621459.1979.10482531.

[15] Haipei Dong, Dakuo He and Fuli Wang. ‘SMOTE-XGBoost using
Tree Parzen Estimator optimization for copper flotation method
classification’. In: Powder Technology 375 (July 2020), pp. 174–181. DOI:
10.1016/j.powtec.2020.07.065.

[16] Paul DuBois. MySQL. Pearson Education, 2008.

[17] Eyal Eliakim, Elia Morgulev, Ronnie Lidor and Yoav Meckel. ‘Estim-
ation of injury costs: financial damage of English Premier League
teams’ underachievement due to injuries’. In: BMJ Open Sport & Ex-
ercise Medicine 6.1 (May 2020), e000675. DOI: 10.1136/bmjsem-2019-
000675.

[18] Kevin Fauvel, Tao Lin, Véronique Masson, Élisa Fromont and
Alexandre Termier. ‘XCM: An Explainable Convolutional Neural
Network for Multivariate Time Series Classification’. In: Mathematics
9.23 (Dec. 2021), p. 3137. DOI: 10.3390/math9233137.

121

https://doi.org/10.1017/dsj.2017.10
https://doi.org/10.1198/016214504000001051
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e234937a070f24b19efaadc3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e234937a070f24b19efaadc3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e234937a070f24b19efaadc3
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s10618-020-00701-z
https://www.scitepress.org/Papers/2020/103079/103079.pdf
https://www.scitepress.org/Papers/2020/103079/103079.pdf
https://doi.org/doi.org/10.1080/01621459.1979.10482531
https://doi.org/doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1016/j.powtec.2020.07.065
https://doi.org/10.1136/bmjsem-2019-000675
https://doi.org/10.1136/bmjsem-2019-000675
https://doi.org/10.3390/math9233137

[19] Matt W Gardner and SR Dorling. ‘Artificial neural networks (the
multilayer perceptron)—a review of applications in the atmospheric
sciences’. In: Atmospheric environment 32.14-15 (Aug. 1998), pp. 2627–
2636. DOI: 10.1016/S1352-2310(97)00447-0.

[20] Isabelle Guyon, Jason Weston, Stephen Barnhill and Vladimir
Vapnik. ‘Gene selection for cancer classification using support vec-
tor machines’. In: Machine learning 46.1 (Jan. 2002), pp. 389–422. DOI:
10.1023/A:1012487302797.

[21] Gregory D Hager, Randal Bryant, Eric Horvitz, Maja Mataric and
Vasant Honavar. ‘Advances in artificial intelligence require progress
across all of computer science’. In: arXiv preprint arXiv:1707.04352
abs/1707.04352 (Feb. 2017). DOI: 10.48550/arXiv.1707.04352.

[22] Shona L Halson. ‘Monitoring training load to understand fatigue in
athletes’. In: Sports medicine 44.2 (Sept. 2014), pp. 139–147. DOI: 10 .
1007/s40279-014-0253-z.

[23] Pavel Hamet and Johanne Tremblay. ‘Artificial intelligence in medi-
cine’. In: Metabolism 69 (Mar. 2017), S36–S40. DOI: 10.1016/j.metabol.
2017.01.011.

[24] Megan L Head, Luke Holman, Rob Lanfear, Andrew T Kahn and
Michael D Jennions. ‘The extent and consequences of p-hacking in
science’. In: PLoS biology 13.3 (Mar. 2015), e1002106. DOI: 10 .1371/
journal.pbio.1002106.

[25] Julien Herzen, Francesco LÃ¤ssig, Samuele Giuliano Piazzetta,
Thomas Neuer, LÃ©o Tafti, Guillaume Raille, Tomas Van Pot-
telbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin,
Maxime Dumonal, Jan KoÅ›cisz, Dennis Bader, FrÃ©dÃ©rick Gus-
set, Mounir Benheddi, Camila Williamson, Michal Kosinski, Matej
Petrik and GaÃ«l Grosch. ‘Darts: User-Friendly Modern Machine
Learning for Time Series’. In: Journal of Machine Learning Research
23.124 (Jan. 2022), pp. 1–6. URL: http : / / jmlr . org / papers / v23 / 21 -
1177.html.

[26] Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta,
Thomas Neuer, Léo Tafti, Guillaume Raille, Tomas Van Pottelbergh,
Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin et al. ‘Darts:
User-friendly modern machine learning for time series’. In: The
Journal of Machine Learning Research 23.1 (2022), pp. 5442–5447. URL:
https://dl.acm.org/doi/pdf/10.5555/3586589.3586713.

[27] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long short-term memory’.
In: Neural computation 9.8 (Nov. 1997), pp. 1735–1780. DOI: 10.1162/
neco.1997.9.8.1735.

[28] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam
Shazeer, Ian Simon, Curtis Hawthorne, Andrew M Dai, Matthew D
Hoffman, Monica Dinculescu and Douglas Eck. ‘Music transformer’.
In: arXiv preprint arXiv:1809.04281 (Dec. 2018). DOI: 10.48550/arXiv.
1809.04281.

122

https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.48550/arXiv.1707.04352
https://doi.org/10.1007/s40279-014-0253-z
https://doi.org/10.1007/s40279-014-0253-z
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
http://jmlr.org/papers/v23/21-1177.html
http://jmlr.org/papers/v23/21-1177.html
https://dl.acm.org/doi/pdf/10.5555/3586589.3586713
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1809.04281
https://doi.org/10.48550/arXiv.1809.04281

[29] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte
Pelletier, Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb,
Lhassane Idoumghar, Pierre-Alain Muller and François Petitjean.
‘Inceptiontime: Finding alexnet for time series classification’. In: Data
Mining and Knowledge Discovery 34.6 (Sept. 2020), pp. 1936–1962. DOI:
10.1007/s10618-020-00710-y.

[30] Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep
Mehta, Shanmukha Guttula, Shashank Mujumdar, Shazia Afzal,
Ruhi Sharma Mittal and Vitobha Munigala. ‘Overview and import-
ance of data quality for machine learning tasks’. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. Long Beach , CA, USA, Aug. 2020, pp. 3561–3562. DOI:
10.1145/3394486.3406477.

[31] Håvard D Johansen, Dag Johansen, Tomas Kupka, Michael A Riegler
and Pål Halvorsen. ‘Scalable Infrastructure for Efficient Real-Time
Sports Analytics’. In: Companion Publication of the 2020 International
Conference on Multimodal Interaction. Utrecht, Netherlands, Dec. 2020,
pp. 230–234. DOI: 10.1145/3395035.3425300.

[32] Håvard D Johansen, Svein Arne Pettersen, Pål Halvorsen and Dag Jo-
hansen. ‘Combining Video and Player Telemetry for Evidence-based
Decisions in Soccer.’ In: icSPORTS. Vilamoura, Algarve, Portugal,
2013, pp. 197–205. URL: https://home.simula.no/~paalh/publications/
files/icSport2013.pdf.

[33] Donald T Kirkendall and Jiri Dvorak. ‘Effective injury prevention in
soccer’. In: The physician and sportsmedicine 38.1 (Mar. 2015), pp. 147–
157. DOI: 10.3810/psm.2010.04.1772.

[34] Siarhei Kulakou, Nourhan Ragab, Cise Midoglu, Matthias Boeker,
Dag Johansen, Michael A Riegler and Pål Halvorsen. ‘Exploration
of Different Time Series Models for Soccer Athlete Performance
Prediction’. In: Engineering Proceedings 18.1 (June 2022), p. 37. DOI:
10.3390/engproc2022018037.

[35] Bryan Lim, Sercan Ö Arık, Nicolas Loeff and Tomas Pfister.
‘Temporal fusion transformers for interpretable multi-horizon time
series forecasting’. In: International Journal of Forecasting 37.4 (2021),
pp. 1748–1764. DOI: 10.1016/j.ijforecast.2021.03.012.

[36] Joao Lourencco, Elvio Rubio Gouveia, Hugo Sarmento, Andreas Ihle,
Tiago Ribeiro, Ricardo Henriques, Francisco Martins, Cintia Francca,
Ricardo Maia Ferreira, Luis Fernandes et al. ‘Relationship between
Objective and Subjective Fatigue Monitoring Tests in Professional
Soccer’. In: International Journal of Environmental Research and Public
Health 20.2 (Jan. 2023), p. 1539. DOI: 10.3390/ijerph20021539.

[37] Scott M Lundberg and Su-In Lee. ‘A unified approach to interpreting
model predictions’. In: Advances in neural information processing sys-
tems 30 (Dec. 2017), pp. 4765–4774. URL: https://proceedings.neurips.

123

https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1145/3394486.3406477
https://doi.org/10.1145/3395035.3425300
https://home.simula.no/~paalh/publications/files/icSport2013.pdf
https://home.simula.no/~paalh/publications/files/icSport2013.pdf
https://doi.org/10.3810/psm.2010.04.1772
https://doi.org/10.3390/engproc2022018037
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.3390/ijerph20021539
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-
Paper.pdf.

[38] Wes McKinney. ‘Data Structures for Statistical Computing in Py-
thon’. In: Proceedings of the 9th Python in Science Conference. Ed. by
Stéfan van der Walt and Jarrod Millman. Austin, Texas, 2010, pp. 56–
61. DOI: 10.25080/Majora-92bf1922-00a.

[39] Cise Midoglu, Andreas Kjæreng Winther, Matthias Boeker, Susann
Dahl Pettersen, Sigurd Pedersen, Nourhan Ragab, Tomas Kupka,
Steven A. Hicks, Morten Bredsgaard Randers, Ramesh Jain, Håvard
J. Dagenborg, Svein Arne Pettersen, Dag Johansen, Michael A.
Riegler and Pål Halvorsen. SoccerMon, A Large-Scale Multivariate
Soccer Athlete Health, Performance, and Position Monitoring Dataset.
Open Science Framework (OSF). 2023. URL: https://doi.org/10.17605/
OSF.IO/URYZ9.

[40] Thu Nguyen, Khoi Minh Nguyen-Duy, Duy Ho Minh Nguyen, Binh
T Nguyen and Bruce Alan Wade. ‘Dper: Direct parameter estimation
for randomly missing data’. In: Knowledge-Based Systems 240 (Jan.
2022), p. 108082. DOI: 10.1016/j.knosys.2021.108082.

[41] Ignacio Oguiza. tsai - A state-of-the-art deep learning library for time
series and sequential data. Github. 2022. URL: https : / / github . com /
timeseriesAI/tsai.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga et al. ‘Pytorch: An imperative style, high-
performance deep learning library’. In: Advances in neural inform-
ation processing systems 32 (Dec. 2019), pp. 8026–8037. URL: https :
/ / proceedings . neurips . cc / paper _ files / paper / 2019 / file /
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and
E. Duchesnay. ‘Scikit-learn: Machine Learning in Python’. In: Journal
of Machine Learning Research 12 (Dec. 2011), pp. 2825–2830. URL: https:
//www.jmlr .org/papers/volume12/pedregosa11a/pedregosa11a.pdf ?
ref=https:/.

[44] Svein A Pettersen, Håvard D Johansen, Ivan AM Baptista, Pål
Halvorsen and Dag Johansen. ‘Quantified soccer using positional
data: A case study’. In: Frontiers in physiology 9 (July 2018), p. 866.
DOI: 10.3389/fphys.2018.00866.

[45] W Nicholson Price and I Glenn Cohen. ‘Privacy in the age of medical
big data’. In: Nature medicine 25.1 (Jan. 2019), pp. 37–43. DOI: 10.1038/
s41591-018-0272-7.

124

https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.17605/OSF.IO/URYZ9
https://doi.org/10.17605/OSF.IO/URYZ9
https://doi.org/10.1016/j.knosys.2021.108082
https://github.com/timeseriesAI/tsai
https://github.com/timeseriesAI/tsai
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://doi.org/10.3389/fphys.2018.00866
https://doi.org/10.1038/s41591-018-0272-7
https://doi.org/10.1038/s41591-018-0272-7

[46] Nourhan Ragab. ‘Soccer athlete performance prediction using time
series analysis’. MA thesis. OsloMet-storbyuniversitetet, 2022. URL:
http : / / home . simula . no /~paalh / students /NourhanRagab - OsloMet -
2022.pdf.

[47] Mauricio Reyes, Raphael Meier, Sérgio Pereira, Carlos A Silva, Fried-
Michael Dahlweid, Hendrik von Tengg-Kobligk, Ronald M Summers
and Roland Wiest. ‘On the interpretability of artificial intelligence
in radiology: challenges and opportunities’. In: Radiology: artificial
intelligence 2.3 (May 2020), e190043. DOI: 10.1148/ryai.2020190043.

[48] Frank Rosenblatt. ‘The perceptron: a probabilistic model for inform-
ation storage and organization in the brain.’ In: Psychological review
65.6 (Nov. 1958), p. 386. DOI: 10.1037/h0042519.

[49] Alessio Rossi, Luca Pappalardo, Paolo Cintia, F Marcello Iaia, Javier
Fernández and Daniel Medina. ‘Effective injury forecasting in soccer
with GPS training data and machine learning’. In: PloS one 13.7 (July
2018), e0201264. DOI: 10.1371/journal.pone.0201264.

[50] Alex Rubinsteyn and Sergey Feldman. fancyimpute: An Imputation
Library for Python. Version 0.7.0. 2016. URL: https : / / github . com /
iskandr/fancyimpute.

[51] Jeffrey S Saltz and Neil Dewar. ‘Data science ethical considerations:
a systematic literature review and proposed project framework’. In:
Ethics and Information Technology 21 (Mar. 2019), pp. 197–208. DOI: 10.
1007/s10676-019-09502-5.

[52] Arthur L Samuel. ‘Some studies in machine learning using the game
of checkers. II—Recent progress’. In: IBM Journal of research and
development 11.6 (Nov. 1967), pp. 601–617. DOI: 10.1147/rd.116.0601.

[53] Anna E Saw, Luana C Main and Paul B Gastin. ‘Monitoring athletes
through self-report: factors influencing implementation’. In: Journal
of sports science & medicine 14.1 (Jan. 2015), p. 137. URL: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4306765/pdf/jssm-14-137.pdf.

[54] Skipper Seabold and Josef Perktold. ‘statsmodels: Econometric and
statistical modeling with python’. In: 9th Python in Science Conference.
Austin, Texas, July 2010, pp. 92–96. URL: https://pdfs.semanticscholar.
org/3a27/6417e5350e29cb6bf04ea5a4785601d5a215.pdf.

[55] Xiaogang Su, Xin Yan and Chih-Ling Tsai. ‘Linear regression’.
In: Wiley Interdisciplinary Reviews: Computational Statistics 4.3 (Aug.
2012), pp. 275–294. DOI: 10.1002/wics.1198.

[56] The pandas development team. pandas-dev/pandas: Pandas. Ver-
sion latest. Feb. 2020. DOI: 10 .5281/zenodo .3509134. URL: https ://
doi.org/10.5281/zenodo.3509134.

[57] Poojan Thakkar and Manan Shah. ‘An assessment of football through
the lens of data science’. In: Annals of Data Science 8 (Mar. 2021),
pp. 823–836. DOI: 10.1007/s40745-021-00323-2.

125

http://home.simula.no/~paalh/students/NourhanRagab-OsloMet-2022.pdf
http://home.simula.no/~paalh/students/NourhanRagab-OsloMet-2022.pdf
https://doi.org/10.1148/ryai.2020190043
https://doi.org/10.1037/h0042519
https://doi.org/10.1371/journal.pone.0201264
https://github.com/iskandr/fancyimpute
https://github.com/iskandr/fancyimpute
https://doi.org/10.1007/s10676-019-09502-5
https://doi.org/10.1007/s10676-019-09502-5
https://doi.org/10.1147/rd.116.0601
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306765/pdf/jssm-14-137.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306765/pdf/jssm-14-137.pdf
https://pdfs.semanticscholar.org/3a27/6417e5350e29cb6bf04ea5a4785601d5a215.pdf
https://pdfs.semanticscholar.org/3a27/6417e5350e29cb6bf04ea5a4785601d5a215.pdf
https://doi.org/10.1002/wics.1198
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1007/s40745-021-00323-2

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser and Illia Polosukhin.
‘Attention is all you need’. In: Advances in neural information processing
systems 30 (2017), pp. 5998–6008. URL: https : / /proceedings . neurips .
cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

[59] H Wang, ZeZXeZBePJ Lei, X Zhang, B Zhou and J Peng. ‘Machine
learning basics’. In: Deep learning (2016), pp. 98–164. URL: http : / /
whdeng . cn / Teaching / PPT _ 01 _ Machine % 5C % 20learning % 5C %
20Basics.pd.

[60] Theodor Wiik, Håvard D Johansen, Svein-Arne Pettersen, Ivan
Baptista, Tomas Kupka, Dag Johansen, Michael Riegler and Pål
Halvorsen. ‘Predicting peek readiness-to-train of soccer players
using long short-term memory recurrent neural networks’. In: 2019
International Conference on Content-Based Multimedia Indexing (CBMI).
IEEE. Dublin, Ireland, Sept. 2019, pp. 1–6. DOI: 10.1109/CBMI.2019.
8877406.

[61] Chris Wing. ‘Monitoring athlete load: Data collection methods and
practical recommendations’. In: Strength & Conditioning Journal 40.4
(Aug. 2018), pp. 26–39. DOI: 10.1519/SSC.0000000000000384.

[62] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang,
Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer
and Peter Vajda. ‘Visual transformers: Token-based image repres-
entation and processing for computer vision’. In: arXiv preprint
arXiv:2006.03677 abs/2006.03677 (2020). DOI: 10 .48550/arXiv .2006 .
03677.

[63] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha
Bhamidipaty and Carsten Eickhoff. ‘A transformer-based framework
for multivariate time series representation learning’. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. Singapore, Aug. 2021, pp. 2114–2124. DOI: 10.1145/3447548.
3467401.

126

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://whdeng.cn/Teaching/PPT_01_Machine%5C%20learning%5C%20Basics.pd
http://whdeng.cn/Teaching/PPT_01_Machine%5C%20learning%5C%20Basics.pd
http://whdeng.cn/Teaching/PPT_01_Machine%5C%20learning%5C%20Basics.pd
https://doi.org/10.1109/CBMI.2019.8877406
https://doi.org/10.1109/CBMI.2019.8877406
https://doi.org/10.1519/SSC.0000000000000384
https://doi.org/10.48550/arXiv.2006.03677
https://doi.org/10.48550/arXiv.2006.03677
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401

Chapter 9

Appendix

9.1 Correlation Matrices After Imputation

Figures 9.1 and 9.2 is used in Section 4.5 and show the correlation matrix
between all features after imputation for teams A and B.

Figure 9.1: Pairwise correlation matrix of our data after imputation for
Team A.

127

Figure 9.2: Pairwise correlation matrix of our data after imputation for
Team B.

9.2 Boxplots Training on Both Teams Predicting Play-
ers From Either Team A or B

Figures 9.3, 9.4, 9.5, and 9.6 are used in Section 5.1.10 showing how training
on both teams impact readiness RMSE scores for both univariate and
multivariate data.

128

Figure 9.3: RMSE training on both team A and B predicting players from A
(multivariate).

129

Figure 9.4: RMSE training on both team A and B predicting players from A
(univariate).

130

Figure 9.5: RMSE training on both team A and B predicting players from B
(multivariate).

131

Figure 9.6: RMSE training on both team A and B predicting players from B
(univariate).

9.3 OLS-analysis

Figure 9.7 is used in Section 5.1.8, and is a regression analysis showing the
impact variance has on RMSE difference between using multivariate and
univariate data.

132

Figure 9.7: OLS analysis showing how variance impact model error.

Figure 9.8 is used in Section 5.1.6, and is a regression analysis showing the
impact variance has on RMSE in respect to dummy model performance.

Figure 9.8: OLS analysis showing how variance increases RMSE using a
dummy model predicting the mean.

133

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Scope and Limitations
	Research Methods
	Ethical Considerations
	Main Contributions
	Thesis Outline

	Background and Related Work
	Terminology
	Athlete Health and Performance Monitoring
	Wellness Reporting
	Training Load
	Injury
	Positional Data

	Machine Learning Fundamentals
	Domain Awareness
	Data Collection
	Data Splits
	Supervised Learning
	Unsupervised Learning
	Overfitting

	Machine Learning - Types of Algorithms
	Neural Networks
	Linear Regression
	Decision Tree Regressor
	Long Short-Term Memory (LSTM) Networks
	Convolutional Neural Networks
	Transformer

	Machine Learning - Selected Algorithms
	eXtreme Gradient Boosting
	ROCKET
	Temporal Fusion Transformer
	Additional Models

	SoccerMon Dataset
	SoccerMon Subjective Metrics
	SoccerMon Objective Metrics
	PmSys Framework

	Time Series Prediction for Soccer
	Time Series Data
	Predicting Peak Readiness-to-Train
	Predicting readiness to train Using LSTM
	Exploration of Different Time Series Models
	Injury Forecasting With GPS data

	Chapter Summary

	Methodology
	Characteristics of Useful Forecasts
	Proposed Pipeline
	Data Importing
	Data Analysis and Processing
	Experiments Overview
	Evaluation

	System Specifications
	Evaluation Metrics
	Chapter Summary

	Dataset Analysis and Preprocessing
	Overview and Composition
	Stationarity Test
	Feature Correlations
	Data Distributions
	Overview
	Individual Players
	Characteristics of Peak Readiness

	Imputation
	Statistics on Missing Data
	Correlation
	Distribution
	Notable Changes to the Dataset

	Feature Importance
	Chapter Summary

	Experiments and Results - First Iteration
	Regression Models
	Model Parameters
	Size of Input and Output Windows
	Forecasting Horizons
	Recursive Multi-step Versus Direct Forecasts
	Multivariate Versus Univariate Data
	Multivariate Data
	Univariate Data
	Comparison of Multivariate and Univariate Data
	Team A versus Team B
	Data Transferability

	Classification Models
	Model Parameters
	Classification Experiment Results

	Shortcomings and How We Can Improve Them
	Chapter Summary

	Experiments and Results - Second Iteration
	Data Alterations
	Experiments Overview
	Regression Models, Second Iteration
	Size of Input and Output Windows
	Forecasting Horizons
	Multivariate Versus Univariate Data

	Classification Models, Second Iteration
	Comparing First and Second Iteration Results
	Comparing Dummy classification Results Across Iterations
	Comparing Imputed and Non-Imputed Predictions

	Chapter Summary

	Discussion
	Daily and Session Based Time Series Intervals
	Imputation
	Input And Output Window Sizes
	Multivariate Versus Univariate Data
	Relevant Features and Data Types
	Evaluation of Selected Models
	Use-Cases
	Hyperparameter Tuning
	Ethical Considerations
	Chapter Summary

	Conclusion
	Revisiting the Problem Statement
	Other Contributions
	Limitations of the Work
	Future Work

	Appendix
	Correlation Matrices After Imputation
	Boxplots Training on Both Teams Predicting Players From Either Team A or B
	OLS-analysis

