
Unsupervised Preprocessing of
Medical Imaging Data with Generative

Adversarial Networks

Mathias Kirkerød

Thesis submitted for the degree of
Master of science in Informatics: Technical and Scientific

Applications
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

Unsupervised Preprocessing of
Medical Imaging Data with

Generative Adversarial Networks

Mathias Kirkerød

© 2019 Mathias Kirkerød

Unsupervised Preprocessing of Medical Imaging Data with Generative Adversarial
Networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Machine learning has in the last decade changed the way we do our daily tasks.
In this new age of machine intelligence, the usage of computer assistance has sky-
rocketed in fields ranging from education to health care. In recent years, the medical
field has seen significant improvements regarding the practice of computer-assisted
medical diagnosis, and as computing power increases, the models used by medical
professionals get more and more accurate. Within the medical field, the practice of
automated disease detection in videos and images from the gastrointestinal tract has
received much attention in the last years. However, the quality of image data is often
reduced due to overlays of text, personal data, and black corners around the medical
images.

As an attempt to address the challenge of improving the field of computer-aided
diagnosis, our work explores ways to help existing models to increase their accuracy
when it comes to finding anomalies in medical images. In this thesis, we tackle the
problems associated with the misclassification of data based on overlays and other
artefacts in the medical image data.

We will look at how we can use machine learning to develop a system to increase
the classification accuracy of existing models, as well as going in-depth into the topic
of preprocessing to see if it has a place in modern classification models based on deep
learning.

During this thesis, we will look at different tools that we can use to remove dataset
specific artefacts, and we will look at the consequences of removing them. Our primary
focus lies in the usage of generative adversarial neural networks to cover up parts of
images that we have deemed unwanted in our medical images.

In the end, we demonstrate that our system can be of great use as a tool for
preprocessing of medical data, showing clearly that with our tools, pretrained networks
can be generalised to a much greater extent. With the use of our preprocessing our
models saw an increase in classification accuracy of 29.5% when training on new unseen
data.

i

ii

Acknowledgments

First and foremost I would like to thank my supervisors; Michael Riegler, Pål
Halvorsen. They have given me the help and motivation I needed throughout my
thesis.

I would also like to thank the two PhD students; Steven Hicks and Rune Borgli.
Without their help and support, I would not have finished this thesis.

I would like to thank my family for the support I’ve gotten both before and during
this thesis, and especially my parents Rune and Heidi for supporting my curiosity for
all my living years.

I big thank you goes out to Realistforeningen, as they have been like a second home
for my last five years as a student.

Finally, I would like to thank my partner Jorun Ramstad. I would not have finished
this thesis without the support and thoughtfulness she provided.

Mathias Kirkerød
30.04.2018

iii

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Scope and Limitations . 4
1.4 Research Method . 4

1.4.1 Theory . 4
1.4.2 Abstraction . 4
1.4.3 Design . 5

1.5 Main Contributors . 5
1.6 Outline . 6

2 Background 9
2.1 The Medical Background . 9
2.2 CAD - Computer Aided Diagnosis . 10
2.3 Machine Learning . 11

2.3.1 Machine learning types . 12
2.3.2 The Basic Concept of Machine Learning 16

2.4 Neural Networks . 20
2.4.1 The Perceptron . 20
2.4.2 Feed Forward and Backpropagation Through the Perceptron . . . 21
2.4.3 Multilayer perceptrons . 22
2.4.4 Convolutional Neural Networks 23

2.5 Complex Neural Network models . 28
2.5.1 Autoencoders . 29
2.5.2 Advaserial Neural Networks . 30
2.5.3 Transfer Learning . 31

2.6 Summary . 32

3 Methodology 33
3.1 Bird’s Eye View . 33
3.2 Design of the Inpainting Algorithms . 35

3.2.1 Removing Black Corners . 37
3.2.2 Removing the Green Square . 38

v

3.2.3 Removing Both Corners and the Green Square 39
3.2.4 Removal of Over-saturated Areas and Text 39
3.2.5 The Generative Modelling Algorithms 39
3.2.6 Summary . 40

3.3 Design of the Transfer Learning Experiments 41
3.3.1 Models . 41
3.3.2 Pooling and Freezing . 44
3.3.3 Configuring the Optimal Combination for Our Testing 44
3.3.4 Summary . 44

3.4 Libraries . 45
3.4.1 Python . 45
3.4.2 Tensorflow . 45
3.4.3 Keras . 46

3.5 Custom Functions for Keras, Tensorflow and Python 47
3.5.1 Channel-Wise Fully-Connected Layer 47
3.5.2 Subpixel . 48
3.5.3 Masklaod and Setload . 49
3.5.4 Self Attention . 49
3.5.5 Masked Loss . 49

3.6 Stabilising the GAN . 51
3.7 Code Description . 52

3.7.1 Autoencoder . 52
3.7.2 Generative Adversarial Network 53
3.7.3 Transfer Learning Classifier . 54

3.8 Summary . 55

4 Experiments 57
4.1 Datasets . 57

4.1.1 Kvasir . 57
4.1.2 CVC 356 and CVC 12k . 58

4.2 Metrics . 61
4.2.1 The Confusion Matrix . 61
4.2.2 Common Metrics . 63
4.2.3 Singleclass vs Multiclass Metrics 65

4.3 Setup of experiments . 67
4.4 Results of the Inpainting . 67

4.4.1 Black corners . 68
4.4.2 Green square . 71
4.4.3 Combination . 74
4.4.4 Double resolution . 74

4.5 Results of the Transfer Learning Experiments 77
4.5.1 Models . 77

4.6 Densenet121 . 78

vi

4.6.1 Densenet121 Base Model . 78
4.6.2 Densenet121 Corners Inpainted . 80
4.6.3 Densenet121 Green Square Inpainted 82
4.6.4 Densenet121 Full Inpainting . 84

4.7 InceptionResNetV2 . 87
4.7.1 InceptionResNetV2 Base Model 87
4.7.2 InceptionResNetV2 Corners Inpainted 89
4.7.3 InceptionResNetV2 Square Inpainted 90
4.7.4 InceptionResNetV2 Full Inpainting 92

4.8 Classification Results Based on the Densenet Model 94
4.9 Classification Results Based on the InceptionResnetV2 Model 95
4.10 Classification Results Based on the Densenet Model at Double Size . . . 95

5 Conclusion and Future Work 103
5.1 Summary . 103
5.2 Contributions . 104
5.3 Future Work . 106

Appendices 117

A Published Papers 119
A.1 Paper I - Using preprocessing as a tool in medical image detection 119
A.2 Paper II - Unsupervised preprocessing to improve generalisation for

medical data . 123

vii

viii

List of Figures

2.1 Diagram of the human GI tract . 10
2.2 The three main types of machine learning and their most common subtypes 13
2.3 Examples of the two most common use cases for supervised learning . . 14
2.4 Examples of the two most common use cases for unsupervised learning 15
2.5 The basic structure of reinforcement learning 15
2.6 Example of linear regression. Here the red line is the best approximation

of a y value, given an x value. 17
2.7 Image of a simplified neuron . 21
2.8 Simple perceptron that sends out an output that is the tanh of the the

sum of the inputs . 22
2.9 Simple illustration of a multilayer perceptron with three inputs, one

hidden layer with four nodes, and one output layer with three nodes. . . 23
2.10 The values calculated when a convolutional filter after 4 sliding window

operations, here the number of inputs does not represent how many
inputs there usually is in an image . 25

2.11 Activation functions from -2 to 2 on each axis. From left to right: ReLu,
Tanh, Sigmoid . 26

2.12 Both max and average pooling done on a 4 × 4 matrix 26
2.13 Global pooling. Here, each of the four layers gets averaged or maxed in

to a scalar, giving us a 1D vector at output 27
2.14 Three cases of data boundary prediction. In most cases we desire

appropriate amount of fitting to our dataset to keep generalisation . . . 28
2.15 The general structure of an autoencoder, encoding x with f, then

decoding h with g to an output x. 29
2.16 Autoencoder where the goal is to inpaint the masked area shown in the

original dataset as a purple circle, and as a red circle generated by the
autoencoder. 30

2.17 The basic concept of the generative adversarial network 31

3.1 Heat and Saliency maps of an unaugmented dataset where the images
are generated by Mirmir . 34

3.2 Heat and Saliency maps of an augmented dataset where the green corner
is removed. The images are generated by Mirmir 34

ix

3.3 Images where the troubling areas are removed before training 36
3.4 All three mask types used in this thesis, and associated images used

during training. The different masks require different levels of cropping,
as shown in the subfigures. 40

3.5 The model we use for classifying with the most important options for the
learning process. 41

3.6 The two main components in InceptionResNetV2 43
3.7 The compressed view of the InceptionResNetV2 network inspired by

Mahdianpari et al. 43
3.8 The compressed view of the DenseNet network inspired by Mahdianpari

et al. 43
3.9 How the layers in the sub pixel layer is stacked. Recreated from the

SubPixel paper by Shi et al. [76] . 48
3.10 How the layers in the Self-Attention layer is stacked. Recreated from the

Self-Attention paper by Zhang et al. [77] 50
3.11 A standard image taken in by the autoencoder 54

4.1 The Kvasir dataset with each of the eight classes 59
4.2 The two classes from the CVC 356 dataset . 60
4.3 The two classes from the CVC 12k dataset . 60
4.4 The Kvasir divided in to 6 folds . 61
4.5 An empty confusion matrix . 62
4.6 The confusion matrix with [3 5] and [0 0] inserted 62
4.7 The confusion matrix with almost 1600 predictions 63
4.8 Confusion matrix with eight classes, here True positive is marked in

green, False Negative and False positive marked in red, and True
negative in blue. 64

4.9 Images from the polyp class and the z-line class. Both the AE and the
GAN performed well in this scenario. 69

4.10 Images from the polyp class and the ulcerative colitis. Here we see
results that are not up to a good standard with regards to light and colours. 70

4.11 Images from the polyp class and the normal-z-line class. Here we see
results that needed finer detail when inpainting. 72

4.12 Images from the polyp class and the normal-cecum class. Here we
have images with a problematic green square, and an image with details
drawn from both sides of the inpainted area. 73

4.13 Images from the normal-pylorus an the polyp class. These images
represent good images where most of the job was just to match the
colour, rather than understanding complex structures in the images. . . 75

4.14 Images from the dye lifted polyp an the polyp class. The images were
chosen because it highlighted flaws in both models. 76

4.15 Images from the esophagitis class.The images from the double resolution
dataset is much more smeared out compared to the smaller images. . . . 77

x

4.16 Densenet121 Base results . 79
4.17 Densenet121 Inpainted corners with the GAN results 81
4.18 Densenet121 Inpainted corners with the AE results 82
4.19 Densenet121 Inpainted green square with the GAN results 83
4.20 Densenet121 Inpainted green square with the AE results 84
4.21 Densenet121 Inpainted both areas with the GAN results 85
4.22 Densenet121 Inpainted both areas with the AE results 86
4.23 InceptionResNetV2 Base results . 88
4.24 InceptionResNetV2 Inpainted corners with the GAN results 89
4.25 InceptionResNetV2 Inpainted corners with the AE results 90
4.26 InceptionResNetV2 Inpainted square with the GAN results 91
4.27 InceptionResNetV2 Inpainted square with the AE results 92
4.28 InceptionResNetV2 Inpainted both areas with the GAN results 93
4.29 InceptionResNetV2 Inpainted both areas with the AE results 94
4.30 Visualisation of the CVC 356 dataset MCC values made by both

Densenet121 and InceptionresnetV2 . 100
4.31 Visualisation of the Kvasir dataset MCC values made by both

Densenet121 and InceptionresnetV2 . 100
4.32 Visualisation of the CVC 12k MCC values made by both Densenet121

and InceptionresnetV2 . 101
4.33 Visualisation of two out of the three datasets with Densenet121 at 512 ×

512 px . 101

xi

xii

List of Tables

3.1 Models provided by Keras . 55

4.1 Software specifications for our system . 66
4.2 Hardware specifications for our system 67
4.3 Details of all datasets we generate in the experiments. 68
4.4 Training attributes for Densenet121 base model 78
4.5 Training attributes for InceptionResNetV2 base model 87
4.6 DenseNet121 at the CVC 356 dataset . 97
4.7 DenseNet121 at the Kvasir dataset . 97
4.8 DenseNet121 at the CVC 12k dataset . 97
4.9 InceptionResNetV2 at the CVC 356 dataset 98
4.10 InceptionResNetV2 at the Kvasir dataset 98
4.11 InceptionResNetV2 at the CVC 12k dataset 98
4.12 Densenet121 at the 512× 512px CVC 356 dataset 99
4.13 Densenet121 at the 512× 512px Kvasir dataset 99
4.14 Densenet121 at the 512× 512px CVC 12k dataset 99

xiii

xiv

Chapter 1

Introduction

1.1 Background and Motivation

Cancer is today the second leading cause of death in the world, only behind
cardiovascular diseases [1]. It is one of the leading causes of mortality worldwide,
with an estimated 9.6 million deaths in 2018 [2]. Contrary to normal cells, cancer cells
are often invasive, and it will spread if not treated. In contrast to many other diseases,
cancer does not need to start from a foreign entity such as a bacteria or virus, but it
is often from a malfunctioning cell that starts dividing rapidly. This cell division can
happen when a cell is damaged, by for instance radiation or other factors like specific
proteins, or other chemicals. The result is that the cell either has damage in the DNA
which contributes to abnormal cell division or the cell division itself malfunctions. In
both cases the damage causes the cell to divide uncontrollably. Cancer can in some
cases form without any external forces. The cell division is not always perfect, and
dysfunctional cells might start a rapid division after being created. In most cases, this
is not a problem, as most cells self destruct when they cannot operate [3], [4].

The risk of getting cancer is also increased by age. As we grow older, our body gets
more prone to defective cell division, and for each imperfect division, the chance of
getting cancerous cells increases. Our own body is designed to detect and remove cells
that are prone to divide uncontrollably. Unfortunately, this system is not perfect, and
the immune system can in some cases overlook cancerous cells. In either external or
internal cases, cancer is by definition this uncontrollable multiplication.

Because cancer can hit anyone, at any age, without any predispositions, it is a
heavily researched area, both in Norway and the rest of the world. Despite being such
a researched area, it is still one of the top causes of human death. Some types of cancer,
like breast cancer, is one of the simpler forms of cancer to treat, and at this point, those
kind of cancers are non-fatal in 78% of the cases in the United Kingdom [5].

Humans can get cancer in every major organ, but some types of cancer are more
common than others. For instance cancer in the gastrointestinal (GI) tract is such a
place, with approximately 40,000 cases each year in the UK [6]. There are around 16,000
bowel cancer deaths in the United Kingdom every year, and it is the 2nd most common

1

cause of cancer-related death, accounting for 10% of all cancer mortalities.
Given the global focus on cancer, research into detection and treatment is highly

relevant in modern western society. Especially with detection of cancerous areas in the
body, the advancement of computer-aided diagnosis (CAD) has significantly helped
when it comes to early detection and localisation. In addition to the boom in computing
power, machine learning has become prevalent in the past few years, and specifically
deep learning has become a tool in image and video classification both within and
outside the medical domain [7]–[10]. With machine learning and CAD, researchers
have now the ability to help doctors with the vital task of detecting and classifying
anomalies found in medical images and videos.

Earlier projects regarding CAD have shown promising results, giving doctors new
tools when looking for cancer in the GI tract. The two first project on CAD that formed
the basis for this thesis is the basic EIR system by Riegler et al. [11] and the work by
Zeno Albisser in his thesis regarding polyp detection [12].

The EIR system set the goal of automatically detecting diseases in the GI tract from
videoes or images in real time, and the presented work showed great results on images
from the GI tract. Zeno Albisser presented a model for automatic detection of polyps
in the GI tract in his master thesis. To improve the classification and detection of
polyps, he used image augmentation for prepossessing of the data. Building on the
work started by Albisser, Fredrik Henriksen and Rune Jensen did similar work in their
joint master thesis [13]. Here they looked at the effect of changing the contrast of the
medical data, as well as rotating the images and removing reflections.

We find more recent CAD research in the paper on Mimir by Hicks et al. Here
they present a system to both improve the “black box” understanding and assist in
the administrative duties of writing an examination report, helping medical staff with
CAD [14].

The work published by Hicks et al. and Riegler et al. show that deep learning
has excellent applications when it comes to CAD, but, as the papers show, there is
insufficient work into generalising the methods to work on new data.

Machine learning has also found many use cases outside of CAD. Recently there
has been a surge in generative modelling algorithms, ranging from the work by
corporations like Nvidia [15], to the context-driven work by researchers like Denton
et al. [16] and Pathak et al. [17].

In this thesis, we explore these topics. We will look at methods into how to improve
the classification of medical data, as well as methods to help generalise models to better
adapt to new unseen datasets. We will do this by using generative modelling as a
method to improve the quality of the datasets we already have, with the goal of making
our existing CAD methods even more reliable when used on new data.

1.2 Problem Statement

Based on the motivation presented in the previous section, we believe that we still
have room for improvement when making models using CAD. Extending on the

2

previous work done in the research area [11], [14], [18], we present the following two
hypothesises as a basis for the thesis:

Hypothesis H0: When classifying images, we will get the best result when we have
images with the least amount of sparse information1. Hence, by removing areas with
sparse information, we will see an increase in classification performance compared to
not removing the areas.

Hypothesis H0 talks about how black or white areas in pictures might create unwanted
classification errors, and that by removing those areas might improve the results of the
classification. We also mention low entropy areas as part of the hypothesis, though this
needs to be tested individually.

Hypothesis H1: When training a classifier, we will get a higher probability of
generalisation of our results when removing the dataset-specific artefacts2 compared
to not removing artefacts.

Hypothesis H1 talks about pixels that are not originating from the original image, or
pixels that do not represent the real sample. We believe that the removal of these
dataset specific artefacts, the machine learning algorithm does not learn to take these
areas into account when classifying images, and subsequently learns the real features
for the dataset, instead of the artificial features created by the artefacts.

Our objective in this thesis is to explore the following two questions to show their
validity.

The hypotheses raise the following questions which we will address:

Research Question Q0: Can the process of redrawing an area with a new more relevant in-
formation (we define it as inpainting), of sparse areas in datasets help with training and classi-
fication performed by machine learning? If so, how detailed should the inpainting be?

Research Question Q1: Can inpainting of dataset-specific artefacts help with the classifi-
cation of previously unseen data done by machine learning? If so, how detailed should the
inpainting be?

1Sparse information in the setting of this thesis is images where there are no relevant pixels for the
classification, and the area has little to no entropy. A specific example for us is the area around images
with RGB values of 0.

2Artefacts in the setting of this thesis is parts of images where there are components of the image not
containing ´´true pixels” from the real world. A specific example for us is any overlay put on the medical
images, or for instance oversaturated pixels or lens flares.

3

1.3 Scope and Limitations

Based on the hypothesises in section 1.2, the scope of the thesis is to check their
validity, both each on their own and their validity together with each other. Both our
scope and the problem statement is based on medical images taken from the GI tract,
and the goal is to see if the hypothesises can, in the end, help with medical image
classification. We want to look at the problem statements on three different datasets,
all with different attributes, and three forms of inpainting. For each of the datasets, we
test all three combinations of inpainting with two different inpainting algorithms. For
the six created datasets plus the base dataset we run two different pretrained transfer
learning networks to see the success of the newly created dataset. In addition to doing
this at the size 256× 256 pixels (px), we also do all the tests above at double resolution
to check the validity at larger image sizes.

In total, we make fourteen datasets, and we test the first seven a total of 70 times,
and the last seven 35 times. Including the base case, we do 105 total tests to check the
validity of inpainting.

1.4 Research Method

For this thesis, we have decided to use the Association for Computing Machinery’s
(ACM) methodology for our research. The article “Computing as a discipline” presents
the discipline of computing into three main categories [19].

1.4.1 Theory

The “theory” part of the article is rooted in mathematics and describes the development
of a theory. The article describes the four steps of the theory phase as (1) characterise
objects of study (definition), (2) hypothesise possible relationships among them (theo-
rem), (3) determine whether the relationships are true (proof), and (4) interpret results.

In this thesis, we touch upon the theory behind machine learning, more specifically
deep learning and convolutional neural networks. We identify the problems regarding
overfitting and the lack of generalisability.

1.4.2 Abstraction

The “abstraction” part of this thesis is rooted in the experimental scientific method and
relates to the investigation of the hypothesis. The four of stages the investigation are:
(1) form a hypothesis, (2) construct a model and make a prediction, (3) design an exper-
iment and collect data, (4) analyse results.

The experiments done in this thesis falls under this category. Also, we have the
hypothesises (H0 & H1) and methodology as part of the abstraction. Based on the

4

hypothesises presented, we created tests to check their validity, of which we were able
to either verify or refute the theory presented.

1.4.3 Design

The third part, “design”, is rooted in engineering and consists of four steps followed in
the construction of a system to solve the given problem: (1) state requirements, (2) state
specifications, (3) design and implement the system, (4) test the system.

This category was supported by the finished system able to inpaint images to
improve classification accuracy. This system was extensively used throughout the
thesis to conduct a plethora of experiments.

1.5 Main Contributors

During this thesis we have worked closely on the two hypotesises (H0 & H0) and
research questions (Q0 & Q1). We present the main contributions we achieved during
this thesis, followed by our two published articles.

1. Q0: Can the process of inpainting of sparse areas in datasets help with training and clas-
sification performed by machine learning? If so, how detailed should the inpainting be?

We have shown in this thesis that inpainting areas with sparse information do
help with classification. When it comes to the detail of inpainting, we do not draw
any definite conclusions regarding the best method, but the results tend to show
that a smoother form of inpainting is better. The inpainting of sparse information
is also very dataset spessific, meaning that the inpainting does not always yield
the best results. We do show that, for the majority of our test, inpainting of the
sparse regions work.

2. Q1: Can inpainting of dataset-specific artefacts help with the classification of previously
unseen data done by machine learning? If so, how detailed should the inpainting be?

We conclude in this thesis that inpainting artefacts improve the classification
results, in most cases. When it comes to the detail of inpainting, our results show
that the more detailed inpainting the better with some few exceptions. As with
Q0, the inpainting is very dataset spesific, meaning there are no clear best solution,
though in general we see improvement. Our result gave us at best almost a
tripling of the classification score in one case.

In summary, our medical image inpainting system can remove the dataset-specific
artefacts found in our training sets, and thereby improve the detection and classification
of anomalies in medical images. With our models, we observed an overall increase in
MCC score in both our test sets, where the results solely come from inpainting.

5

The two papers we published during the thesis conclude with similar results. The
results from our first paper draw a direct mapping to research question Q0. While the
second paper draws a direct mapping to both research question Q0 as well as research
question Q1.

Using preprocessing as a tool in medical image detection [20] The first paper
presented at the MediaEval conference in Nice, France worked exclusively on
the Kvasir dataset. The result we published showed an increase in classification
performance when inpainting sparse regions. Here, we displayed that even though we
tested and trained on the same dataset, we saw small performance gains. We concluded
the paper with that, if the test and training set are similar to each other, we can achieve
better performance gain with hyperparameter optimisation rather than preprocessing
with inpainting.

Unsupervised preprocessing to improve generalisation for medical image classifica-
tion [21] The second paper presented at the ISMICT conference in Oslo, Norway ex-
panded the work presented at the MediaEval conference in 2018. The presented result
used an average of multiple runs instead of K-fold cross-reference, though we used
the same datasets and transfer learning models. Here, we saw similar results as the
findings presented in this thesis, only less significant. The publication presents two
hypothesises that bears resemblance to H0 and H1. We conclude the publication by
supporting both hypothesise.

1.6 Outline

The thesis is organised as follows:

Chapter 2: Background We give more background information about medical
practice and machine learning. We talk about how modern hospitals administer
colonoscopies and give insight into how we find polyps and remove them. Here,
we also present how digital diagnosis is performed in the modern era. We give
an introduction to machine learning and its uses, both the history and present-day
applications. We will look at the most successful type of machine learning, and give
a brief tour into how it works, and how it can be applied to medical data. We round off
this chapter by looking at how machine learning and medical colonoscopy can work
together to help with the detection of anomalies in the GI tract.

Chapter 3: Methodology We describe the methodology by presenting the work we
want to do to test the hypothesises we use in the thesis. We first look into how we
can solve our problems by using inpainting and go into detail into the areas we want
to remove to test our problem statements. After this, we describe a system to review
our models, followed by technical details on the programming languages and packages

6

used. We end the chapter by looking at the two programs we end up with to test our
theories.

Chapter 4: Experiments We start by giving a review of the datasets we use to train
and evaluate our model, followed by the metrics we use to describe our rate of success.
We go more in detail into the six datasets we make, and the 105 total runs we take to
ensure reliable results. We end this chapter by presenting the inpainting datasets and
then presenting the evaluation of the datasets.

Chapter 5: Conclusion Finally, we summarise and conclude this thesis. We also
present ideas and suggestions for further studies surrounding the findings in this thesis
and present final remarks about the research.

7

8

Chapter 2

Background

In this chapter, we present the background and motivation of our thesis. We start with
our background in medical procedures, looking at how doctors perform colonoscopies,
mainly from a gastrointestinal perspective. After this, we then look at what the
objective is for the medical staff, with different anomalies in the GI tract. Then, we
shift our focus to how doctors use computer-aided diagnosis (CAD) today to help with
the screening.

After the discussion from a medical point of view, we shift our focus to machine
learning and give a brief introduction to different machine learning methods. We look
at how machines can “learn” and discuss different areas we can use and the areas we
are using machine learning today. We then go in depth into the examples and look at
the most common machine learning models. We look at the most state of the art form
of machine learning, namely neural networks, and look into the most frequent use case
of this type of algorithm. With this in mind, we look at neural networks, especially
convolutional neural networks, and how they work. Lastly, we combine the need for
computer-aided diagnosis with machine learning, looking at where previous models
fall short and why that is the case.

2.1 The Medical Background

As we recall from the introduction, our motivation for this thesis is the improvement
of medical diagnosis, more specific CAD. Before we look into the CAD procedures that
are in use today, we need to go more in-depth into the capture of the medical images.

Gastrointestinal endoscopies are one of the most routine medical examinations
where medical staff visualise the mucosa of the patient via a camera through the GI
tract [22]. Today the medical staff working with the visual screening of the intestinal
tract use primarily two different methods: colonoscopy and gastroscopy. Colonoscopy
is the practice of inserting a colonoscope into the rectum and moving through the large
intestine towards the small intestine. Gastroscopy is the practice of inserting a camera
via the mouth to get a visualisation through the stomach.

9

The endoscopic tool used for this visualisation is made out of a flexible tube with a
charged coupled device (CCD) working as a camera at the end. In addition to the light
sensing chip, there is also an optical fibre to transport light to the camera. At the other
end, the colonoscope is connected to a device that records the video, and a light source
for the optical fibre. The video from the CCD is shown live for the medical staff for the
doctors to analyse [23]. As Figure 2.11 shows, the colonoscope can either be inserted
into the anus, and traverse up the colon, or it can be inserted through the stomach, and
traverse through the small intestine.

Figure 2.1: Diagram of the human GI tract

2.2 CAD - Computer Aided Diagnosis

In the previous section, we gave a summary of the medical procedure associated
with a colonoscopy. We described the tool used for colonoscopy, and the need for a
medical team to support during the procedure. The research into better systems for
automation and detection has been prevalent in the twenty-first century. This shift
towards CAD is an essential move, given the invasiveness and stress associated with
medical colonoscopies, and the more confident we are in the findings of anomalies
during the procedure, the higher chance of a patient not getting cancer due to the
missed anomalies. Despite the effort by the medical staff, on average, 20% of polyps
are either missed or incompletely removed [24]. Given the increase in cancer risk, this
is highly undesirable. In addition to the possible miss chance during colonoscopies,
the price of the procedures is high despite its importance. In the US a colonoscopy can
cost 1000 dollars, and the annual cost for every examination is more than 10 billion

1From https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg.

10

https://commons.wikimedia.org/wiki/File:Stomach_colon_rectum_diagram-en.svg

dollars [25], [26].
The motivation for this thesis is to advance the systems in place that does CAD, and

in more detail, we want to improve the medical systems for detecting polyps in the GI
tract. Automatic detection of polyps is, in general, a well-researched study, and at the
time there are many publications regarding this detection and classification, especially
when it comes to generalisation and limited datasets [27]. Despite the numerous papers
published on the subject, there are still challenges that need more research.

Wang et al. published a system called Polyp-Alert that provides near real-time
feedback during colonoscopy [28]. The system correctly detected 97% (42 of 43) of the
polyps in the videoes provided. The system had a 4.3% error, marking non-polyps as
polyps. Polyp-Alert shows that we already have fast, effective and potentially useful
colonoscopy tools to guide medical staff.

When it comes to network training, Tajbakhsh et al. demonstrated how fine-tuning
a pretraind convolutional neural network in a layer-wise manner leads to incremental
performance improvement in medical images [29].

In 2016 Pogorelov et al. presented a complete end-to-end multimedia system for
tackling automatic analysis of GI tract videos. The proposed system includes a pipeline
ranging from data collecting, processing and data analysis, to visualisation [30].

Pogorelov et al. also recently published a paper on the generalisation of data,
for the purpose of using open datasets for training CAD systems [31]. In this paper,
they presented hand-crafted and deep learning-based methods for detection of polyps
in videos from colonoscopies. In this paper they worked to achieve real-world
comparability by using challenging datasets captured with different kinds of hardware.
In addition to this, they used imbalanced datasets and as little as possible training data.
Their best model, a Generative adversarial network for handcrafted features, reached
a detection specificity of 94% and an accuracy of 90.9%, done with only 356 training
samples.

As mentioned in the introduction, Hicks et al. published the Mirmir system [14]
for better understanding of the “black box” that is neural networks. The result we a
system that automatically detected and selected frames with anomalies, and presented
them to the user on an image analysis web page. For all the given frames the user can
look through the images and verify of the anomaly was in fact correctly classified. In
the end, the images were printed to a report with the most relevant data [18].

2.3 Machine Learning

We have looked at the challenges that the medical staff has when it comes to detecting
polyps, and how it is solved today. However, to truly understand how automated
systems like Mirmir [14] works, we need to look at how machine learning helps with
the detection of the anomalies the medical staff are searching for.

Machine learning is a broad term, but we summarise it with the quote from Tom M.
Mitchell in his machine learning book from 1997 [32]:

11

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with the experience E.

A few things of note from this quote is the variables mentioned. Experience (E) is
the stored knowledge the program has gotten. It is in most cases just numbers used to
approximate a solution given input, to try to get it as close to the right answer. This
approximation is made for every task (T) until we are happy with the result. Lastly, to
tell how well our program performs we need a measure (P) that tells us how far away
from the desired output we got.

From this, we see that the goal of machine learning is to improve some performance
P with experience. This behaviour is a mimicry of how humans learn, where we as
humans in the real world need to practice on a task to improve it. As the amount of
experience increase, both for us and the machine, the performance of the task becomes
better and better. We have seen that machine learning algorithms have become superior
at solving some human tasks [9], [33], [34], given enough time and computing power.
Projects like AlphaGO and OpenAI Five show that, given the right amount and type of
data, our machine learning algorithms can solve the same problems humans solve.

Until now, we have talked about machine learning in broad terms at this point.
We have drawn a parallel between how humans learn, and how machines gather
experience. Now, we will look into the most popular machine learning techniques,
and show how the machine learning algorithms store the experience gathered.

2.3.1 Machine learning types

With a basis in the quote from the machine learning book from Tom Mitchell [32],
we have a broad definition of what machine learning can be. As long as we have a
model trying to complete a task based on previous experience, it can be called machine
learning. Though just like for humans, machine learning has multiple ways to gather
and retain information. Figure 2.2 shows a chart over the three most common categories
within the field of machine learning.

We have three subcategories of machine learning: Supervised, Unsupervised, and
Reinforcement learning. We will now present the three methods briefly. Then we will
look at famous examples that helped shape machine learning types and algorithms we
are using today.

Supervised machine learning

Supervised machine learning concerns the iterative process of labelling data based on
previously labelled data. Supervised machine learning functions have the objective of,
given an input-output pair, approximate the input to be as close to the output. [35]
Alternatively, in simplistic terms, given an input x, produce an answer as close as
possible to the output y. A supervised algorithm analyses the training data and

12

Figure 2.2: The three main types of machine learning and their most common subtypes

produces an inferred function, which can be used to map new data entries. The two
most common types of Supervised learning is shown in Figure 2.3.

Examples of supervised tasks are to recognise handwritten numbers, or differentiate
between different car models. We consider a task supervised if the images come with
the correct label in the data set. A more straightforward classification assignment is
binary classification, where the target is (often, but not always) yes or no. Examples for
binary classification is if an email is spam or not, is a car Norwegian or International.
In the last example, the classification changes from binary to multi-class if we sort
the cars on every nationality, and not just Norwegian/non-Norwegian. Another type
concerning supervised learning tasks is regression. Regression is the act of prediction
given prior data. Examples of regression are the prediction of stock prices, to estimating
house prices or to predicting the weather.

An intuitive way to differentiate between the two supervised methods is to look
at the output. If the output is a category or class from a predefined set, it is usually
classification. If the output is an unbounded number, it is most likely regression.

13

(a) Supervised classification (b) Supervised regression

Figure 2.3: Examples of the two most common use cases for supervised learning

Unsupervised machine learning

Unsupervised learning is the act of training without any supervision, in the sense that
we do not give the algorithm the next output to the given input as we do in supervised
learning. Figure 2.4 shows a simplified concept of unsupervised learning. Since we
do not have categorised data in unsupervised learning, we often want the algorithms
to find some underlying structure of the data, rather than classifying it. Types of
unsupervised learning can, for instance, be clustering or dimensionality reduction. In
this context we define clustering as the act of sorting data based on similarity, and
dimensionality reduction as the act of simplifying or compress the data.

An example of this can be if we want to sort plants based on similarity, or we are
detecting anomalies in a dataset. We often use unsupervised learning for principal
component analysis (PCA) [36] or other dimensionality reduction methods. A third
method used in unsupervised learning is the adversarial route, where we use machine
learning to make similar looking data to the original data set.

14

(a) Unsupervised clustering (b) Unsupervised
dimensionality reduction

Figure 2.4: Examples of the two most common use cases for unsupervised learning

Reinforcement Learning

Reinforcement learning is the area in machine learning that is concerned with how a
software agent should take actions. The agent bases its actions on the environment, and
it is influenced by the objective to get the maximum reward, as illustrated in Figure 2.5.
It is closely influenced by behaviourism, with the fact that the software agent wants to
maximise the reward obtained continually.

Successful types of reinforcement learning alogrithms are, for instance, Deep
Recurrent Q-Learning [37] or State–action–reward–state–action (SARSA) [38].

Figure 2.5: The basic structure of reinforcement learning

Well known machine learning algorithms

Now that we have a basis on the three types of machine learning we can go into more
detail on the most successful types of machine learning used both now and in the past.

15

Machine learning was coined as a term as early as in the 1950s by Alan Turing. The first
concept was related to the Turing machine and is now considered a foreshadowing of
genetic algorithms. [39]

Forward to 1967, the Nearest Neighbour algorithm [40] was created, which is
considered the start of basic pattern recognition. The Nearest neighbour algorithm
is a type of machine learning that requires no prior training, making it fast and
deterministic.

Another early adoption of machine learning was in the form of regression.
Regression is the statistical concept of estimating the relationships among variables. It
is in heavy use today, and one of the core concept we use machine learning. Legendre
first used regression in 1805 with his method of least squares. The least square methods
were initially being done by hand, and it was at the time one of the best models, backed
by math, to estimate the relationship between an input and a subsequent output. Today,
regression analysis is widely used in statistics and informatics, and there is a significant
overlap between the two research fields. While often we can make analytical models
when working with a dataset with few variables, machine learning has the possibility
of making much more complex models.

A newer and applied form of supervised machine learning is the support vector
machine. The original support vector machine had the objective of dividing two
classes with the highest margin using support vectors. In 1995, Corinna Cortes
and Vladimir Vapnik suggested ways to make the support vector machine work in
multiclass examples by using kernels [41], making it still a viable pattern recognition
tool in par with modern machine learning models.

Summary

We have now discussed the general structure of the three types of machine learning. For
each of the three methods, we have looked at designs that utilise their form of learning,
showing their real-world applications. We have also looked into some successful
algorithms through the ages, highlighting innovations that helped form our vast library
of methods we can use to tackle statistical problems we meet. We will now first go more
in-depth into how a general machine learning algorithm works, giving a rundown on
how a simple algorithm works from start to end. After this, we look into more advanced
examples of modern machine learning algothroms that forms a basis in this thesis.

2.3.2 The Basic Concept of Machine Learning

One of the easiest to tasks to understand in machine learning is the process of
regression. As stated earlier, regression is a process of approximation given prior input.
We start with one of the simplest forms of approximation, namely linear approximation.
In linear approximation, we are interested in finding the function that best defines
our data using only a polynomial of the first degree. First, we recall that a first-order

16

Figure 2.6: Example of linear regression. Here the red line is the best approximation of
a y value, given an x value.

function is always on the form

y = ax + b (2.1)

Where x is input, y is output and the constants a and b defines the function.
Figure 2.6 shows an ideal example of linear regression with the model we are

solving. Here we approximate the values of our model with the straight line defined
by choosing the right slope (a) and the right constant (b). With the knowledge of math,
we look into how to do it computationally with the help of machine learning.

We can recall from the quote 2.3 by [32] that we gain experience E by doing a task
T. In our example we choose to store our experience as its done in equation 2.2.

y = W(0)x + W(1) (2.2)

Here, like before, our output is y, and our input is x. We have replaced “a” and “b” with
new placeholders W(0) and W(1). In this example W(0) and W(1) are constants, but in
more complex examples, W would be matrices. Now our goal is to, given a task T, gain
experience E and store it in W(0) and W(1). With our values for W(0) and W(1) we want
the best performance P. The best performance here is defined as getting the smallest
difference between the predicted output data and the actual output data.
The most prominent way of calculating this error is to use the mean square error

17

between the predicted and actual output of the data.

MSE =
1

2m ∑
i
(ŷ− y)2

i = L (2.3)

Where m is the number of samples, y is the real output, and ŷ is the predicted output.
The 2 in the denominator is just a constant to make the derivation of the formula easier.
From this, we can intuitively see that the error tends towards 0 when ŷ=y. We can also
note, because of the squaring in the formula, that the error is only based on L22 distance
between ŷ and y.
Now that we have an error, we need a way to improve it. At this point, we have a way
to store experience E (in W(0) and W(1)), measure performance P (in the MSE), and we
have tasks T (in the form of input-output pairs). Given an input-output pair, we will
now look at how to use machine learning to better approximate the next input-output
pair.

Lets start with:

x =

 1
2
3

 , y =

 1.5
2

2.5

 (2.4)

As we can discern from this formula, and by looking at the Figure 2.6, our ideal model
would lie at y = 0.5x + 1 as marked with the dotted red line. This means that our
ideal weights would be W(0) = 0.5 and W(1) = 1. In our initial formula, we set the
the weights W(0) = 1 and W(1) = 0.5. To get the ideal formula, we would like W(0)

decrease by a half and W(1) to increase by a half. Using the formula 2.2 with the input
x values we can calculate ŷ, given our weights, to be:

ŷ =

 1.5
2.5
3.5

 (2.5)

We can now calculate the performance by applying an error function. Using the MSE
formula 2.3, the loss L is:

L =
1

2 ∗ 3

(
(1.5− 1.5)2 + (2.5− 2)2 + (3.5− 2.5)2

)
= 0.20 (2.6)

With our new found error, we need a way to use this to update our weights W(0) and
W(1) to get a better estimate.
The most common way to update our weights is to use gradient descent. Gradient
descent is a first order iterative optimisation algorithm for finding the minimum of a
function [42]. In our case, we are looking for the minimum value of the MSE function.
Gradient descent is defined as (simplified for our example):

an+1 = an − γ∇F(an) (2.7)
2The L2 distance is the Euclidean distance between two points in a plane. L1 distance, often called

Taxicab distance, taking the absolute value instead of the square root.

18

Where ∇F is the derivative of the function in question, a is the input at step n, and γ
is a learning rate set to a small number. The learning rate is an essential part of the
calculation, as without it we would often calculate the new weights too extreme for our
problem. By introducing a learning rate, we take small, more controlled steps in the
right direction.
Derivating 2.3 and using a learning rate of 0.2 we get the following.

∇FW(0) =
d

dW(0)

1
2m ∑

i
(ŷ− y)2

i

=
1
m ∑

i
(ŷ− y)i · xi

=
1
m ∑

i
(W(0) · x + W(1) − y)i · xi

(2.8)

∇FW(1) =
d

dW(1)

1
2m ∑

i
(ŷ− y)2

i

=
1
m ∑

i
(ŷ− y)i

=
1
m ∑

i
(W(0) · x + W(1) − y)i

(2.9)

Inserting 2.8 and 2.9 in to 2.7 gives us the two following formulas for W(0) and W(1)

W(0) = W(0) − γ
1
m ∑

i
(W(0) · xi + W(1) − y)i · xi

= 1− 0.2 · 1
3 ∑(0 + 1 + 3)

= 0.733

(2.10)

W(1) = W(1) − γ
1
m ∑

i
(W(0) · xi + W(1) − y)i

= 0.5− 0.2 · 1
3 ∑(0− 0.5− 1)

= 0.6

(2.11)

The new weights gives us ŷ to be:

ŷ =

 1.25
1.85
2.45

 (2.12)

19

This gives us the loss:

L =
1

2 ∗ 3

(
(1.33− 1.5)2 + (2.06− 2)2 + (2.79− 2.5)2

)
= 0.019 (2.13)

After one iteration of gradient descent, we see the weights becoming closer to the
desired result. With more iterations the closer the weights will get to the point that
gives the smallest error, as long as the learning rate is small enough. We looked at an
example using the formula for a linear approximation. In the real world, there are only
a handful of problems that we can solve by making a linear approximation. We will
now look into more advanced types of approximations made with machine learning.

2.4 Neural Networks

We have looked at different types of machine learning, and we have gone in depth into
how a linear regression model works. In this section, we want to get further insight
into how we can make more complex models, and we will look into the most popular
method for machine learning, namely neural networks [43]. After the rundown on how
neural networks are built up and how they operate, we will look into convolutional
neural networks. In the end, we will look at successful networks, mainly made
for image generation and classification which is our target challenge in the medical
domain.

2.4.1 The Perceptron

To explain how a neural net operates, we first need to look at the most fundamental
structure present in every type of neural network, namely the perceptron. Frank
Rosenblatt introduced the first perceptron in 1957 as an attempt to mimic the human
neuron [44].

Figure 2.73 shows what a human neuron look like, and in which direction the signal
goes. Each neuron is connected to multiple other neurons by connecting the dendrites
to other neighbouring neurons forming a pathway for the electrical signals to flow.
When a signal is sent, the dendrites register the signal and sends it through the axon
out to the axon terminal. At the axon terminal, other neurons pick up the electrical
signal and pass it through their axon. This flow of electricity is the fundamental way
different part of our brain communicates, and the different pathways the signals can
take represent how we learn. The original idea behind the perceptron and this branch of
machine learning is to mimic this process of making pathways throughout the network
as a way to learn from experience.

With the biological neuron as a reference point, we can now look more in-depth into
the mathematical equivalent. Figure 2.8 shows the equivalent in the realm of computer
science, having the same flow from the input to the output. The perceptron does,

3From https://commons.wikimedia.org/wiki/File:Neuron.svg

20

https://commons.wikimedia.org/wiki/File:Neuron.svg

Figure 2.7: Image of a simplified neuron

however, not work with electrical signals. Instead, it works with numbers representing
this signal. This abstraction gives the perceptron the ability to have arbitrary high
values, as well as negative ones. We multiply the input signals to the perceptron with
an associated weight. In biological terms, this weight is equivalent to the strength of
the connection between the two neurons trying to communicate. We sum together the
weighted inputs and apply a threshold function. In the first perceptron, the internal
function were:

fout =

{
1 i f W · x + b > 0,
0 otherwise (2.14)

where x is the input, W is a vector of real-valued weights, w · x is the dot product
∑m

i=1 wixi, where m is the number of inputs to the perceptron, and b a constant bias.
The general formula of the perceptron is unchanged, though we have moved away

from the “0-1 output” perceptron in favour for more complex output functions like the
sigmoid in 1989 [45], the ReLu and tanh in the 2000s.

fout = max
{

w · x + b
0

(2.15)

The typical ReLu preceptron.

2.4.2 Feed Forward and Backpropagation Through the Perceptron

The general concept of the learning process is similar to the one we presented in section
2.3.2. To better understand the function of a perceptron we will explain the same steps
as we saw in the linear regression example, only for our perceptron.

21

Figure 2.8: Simple perceptron that sends out an output that is the tanh of the the sum
of the inputs

First our perceptron gets signals x(i,0) − x(i,n) where n is the number of inputs to
the perceptron (for instance three in Figure 2.8). The signals received is the input
in the same way as we received an input an array in equation 2.4. For each of the
input values, x(i,0) − x(i,n), we multiply it by a weight W(0,0) - W(0,n). Here, in contrast
to the linear regression example, every input has its own weight. After the weight
multiplication, we sum the result to a scalar. We are now almost ready to give the result
as an output, but to prevent the perceptron of only being able to solve linear problems
when connection multiple perceptrons, we need to use an activation function. This
activation function can be ReLu as in equation 2.15, or something like tanh or Sigmoid
shown in Figure 2.11. Note that we do not use the threshold function in equation 2.14
as an activation function in modern neural networks, as it is not applicable for gradient
descent.

Now that we have an output, we look at the error between the output f(j,0) and the
expected output and apply a loss function. We can now backpropagate the error to
update the weights at the start of the perceptron.

2.4.3 Multilayer perceptrons

The neural network was a proposal made by Warren McCulloch and Walter Pitts
(1943) [46]. They created a computational model for neural networks based on
mathematics and algorithms called threshold logic.

The first multilayer network at the time used backpropagation with gradient decent
in the same way described in equation 2.7.

Figure 2.9 shows the basic structure of a multilayer network. This model has one
hidden layer and the standard input and output layers. In our figure, each of the nodes

22

Figure 2.9: Simple illustration of a multilayer perceptron with three inputs, one hidden
layer with four nodes, and one output layer with three nodes.

is a perceptron4 as described in section 2.4.1, and each vertex is the weight between
the corresponding perceptrons. For a model like the one in Figure 2.9, we need 20
placeholders to store our weights. The number of weights also increases with the
number of perceptrons equal to the number of perceptrons in each layer multiplied
together.

The advantage of using the multilayer structure proposed by McCulloch and Pitts
is the fact that we are not constricted to a linear boundary classification model. By
using the multilayer structure the network can, for instance, tackle the XOR problem,
not solvable by a single layer neural network.

2.4.4 Convolutional Neural Networks

The multilayer perceptron we have discussed is a robust tool that can learn a multitude
of decision boundaries, and subsequently learn to classify thousands of different
classes. As we get more data and more classes, the networks needed to solve our
problem also need to grow. We can recall from section 2.4.3 that the number of weights

4In reality the input layer does not usually behave as a perceptron with an activation function. The
input layer is only there to propagate the signal to the neurons further into the network.

23

between neurons is i · j where i is the first layer and j is the connected second layer. As
the number of perceptrons per layer in our neural networks increases, the total amount
of storage space increases too.

Given that we want to classify colour images to recognise if an image is of a dog
or a cat, we first want to feed the whole image with all three colour channels into our
network.

heighti · widthi · channelsi · heightj · widthj · channelsj = weights (2.16)

Given an image with height and width of 128 pixels connected to the same shape in a
network with a fully connected layers, the total amount of weighs per connection are:

(128 · 128 · 3) · (128 · 128 · 3) = 2415919104 = 2.4 · 109 (2.17)

Given that we are working with quadratic images, the number of weights increases
with a factor of four as we increase the layer height and width. As we saw in equation
2.17, the number of parameters for a relatively small image is already 2.4 · 109, not
including the bias on top. The models we use to store our data saves the weighs as
float32, which means that each weight is 4 bytes of storage. That means that the total
storage for this single layer is:

4b · 2.4 · 109 = 9, 66 GB (2.18)

Given that a standard computer usually have 8-16 GB of RAM, this one layer might not
be able to load at all.

Another problem with the standard MLP is the fact that it is spatially dependent.
Given an input x, the output, y, of the MLP will vary a lot if we shift the input data
by one place, or if we flip the data. In some cases, this is something we want in our
machine learning algorithms, but more often this behaviour is not a desirable outcome.
Given the downsides we have with regards to memory usage and non-spatiality in
our multilayer perceptrons, we present Kunihiko Fukushima [47] solution to solve
both complications. Convolutional neural networks (CNN) are the most popular form
for image recognition, segmentation, and classification [7] [48]. When building a
convolutional neural network we often use multiple layers stacked on top of each other
to give the network traits that a regular multilayer perceptron could not achieve. By far
the most essential layer of the convolutional neural network is the convolutional layer.

Convolutional layers

Convolutional networks work with filters as opposed to perceptrons with weights
assigned before and after the input in the vertices between perceptron as shown
in Figure 2.10. Convolutional layers assign a weight to each position in a special
filter matrix. This use of filters significantly reduces the number of weights between
layers, since we now have weights that are not dependent on the input size, and only
dependent on this matrix size.

24

The three main parameters of a convolutional layer are the number of filters, kernel
size and strides. When making a convolutional layer, we start by pseudo-randomly
initialising a (F × K × K) matrix as our weights. In this matrix, F is the number of
filters in the convolutional layer and K is the filter size. We can think of this as F filters
of size (K × K) stacked on top of each other. When applying the convolutional layer
to an input vector, we take each of the F filters and slide it over the image. For each
position of the filter, we multiply the image value with the filter and sum the result.
The scalar made by this multiplication is the value passed on to the next layer at that
specific point. Figure 2.10 shows this convolution process after 3 sliding operations
with a (3× 3) filter. When sliding across the image we have the option to take larger
strides for the sliding window, in practice this striding still “see” the entire image, but
the number of output connections are 1

stride .

Figure 2.10: The values calculated when a convolutional filter after 4 sliding window
operations, here the number of inputs does not represent how many inputs there

usually is in an image

As we can see from this architecture, we only change the weights in the filter
matrix, as there are no other variables in the convolutional operation. Using this
sliding window technique gives us the benefit that the filter only gathers information
from the local area, and subsequently makes the convolutional operation non-spatially
dependent.

Activation layers

As we discussed in section 2.4.1, in addition to summing the inputs and passing them
on, we need to apply an activation function to the output. The encounter same problem
with our desire to make non-linear problems, apply in the CNN model. To apply an
activation layer to a CNN, we take every value in the matrix and apply the activation
function separately to every data-point.

In this thesis, our CNNs used only the three activation functions shown in Figure
2.11, with slight modifications.

25

Figure 2.11: Activation functions from -2 to 2 on each axis.
From left to right: ReLu, Tanh, Sigmoid

Figure 2.12: Both max and average pooling done on a 4 × 4 matrix

Pooling

Pooling layers, often also called downsampling layers, are commonly found in CNN’s.
Their primary role in the network is to reduce the spatial size of the data provided,
and thus reducing the number of weights and variables used by the network. This
reduction helps with reducing processing and memory costs. The two most common
pooling operations are max pooling and average pooling [49]. Both methods resemble
convolutions in the way that they apply their function to a sliding filter over the data.

Just like in Figure 2.12 the most common pooling parameters are of filter size 2 and
stride 2. Using this configuration leaves every point of the input checked once, and
the resulting output size is halved. Pooling layers do generally not have any weights
associated with them. This lack of weights means that the pooling layer routes the
signal back without changing it during backpropagation.

In addition to the pooling described above, we in this thesis use global pooing in
addition to regular pooling. Global Max pooling and Global average pooling works
with individual layers of the convolutional net, taking the max or average of the whole
feature map instead of using a sliding filter, as shown in Figure 2.13. Global pooling
has the effect of transforming the network from 3 dimensions to 1 dimension, making
this layer ideal right before any fully connected layers at the end of longer networks.

26

Figure 2.13: Global pooling. Here, each of the four layers gets averaged or maxed in to
a scalar, giving us a 1D vector at output

Normalisation

Training deep neural networks can often be complicated with the fact that the
distribution of each layer changes during training, as the parameters of the previous
layers change. In some cases, this constant shift of input values slows down the training
by requiring a lower learning rate to keep the network stable. We refer to this problem
as internal covariate shift, and we use normalisation as a tool to correct for it [50].

The most common way to normalise the data is to use batch normalisation. When
calculating the batch normalisation, we take the following steps presented in S. Ioffe
and C. Szegedy publication: “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift” [50].

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β
Output: {yi = BNγ,β(xi)}

µβ ←
1
m

m

∑
i=1

xi (mini-batch mean)

σ2
β ←

1
m

m

∑
i=1

(xi − µβ)
2 (mini-batch variance)

x̂i ←
xi − µβ√

σ2
β + ε

(normalise)

yi ← γx̂i + β ≡ BNγ,β(xi) (scale and shift)

In the original paper we the writers saw a significant reduction in the number of
epochs needed to train the network, as well as increased accuracy.

27

Figure 2.14: Three cases of data boundary prediction. In most cases we desire
appropriate amount of fitting to our dataset to keep generalisation

Dropout

A major problem in machine learning is the act of overfitting the data. We say that a
model is overfitting to the data when it learns the bias that comes with the dataset as
shown in Figure 2.14. A practical way to see if a model is starting to overfit is to look
at the training error versus the test error. If the training error keeps decreasing while
the test error increases, we tend to believe that the model is learning the training data
distribution and not generalising to unseen data.

Dropout, first proposed by Srivastava et al. [51], in 2014 was used to prevent
overfitting of neural networks (As seen in figure 2.14). Dropout layers in the CNN will
randomly cut a certain number of connections in a layer. The number of cut connections
is usually between 25% and 50% of the total. The result of the use of dropout is that the
network can not rely on only a few numbers of weights during training since there is a
chance the input from the weight will be cut at random intervals.

This random cutting forces the network to spread out the essential weights
throughout the network. Even though dropout does not explicitly change the weights,
it implicitly forces the stong weights to be evenly distributed throughout the network.

Another popular way to combat overfitting is to add a weight regulariser like L1
or L2 distance penalty. This penalty gives the network weights an additional penalty
based on their size. As we recall, big weights in the networks have the most significant
influence on the result, as each weight is multiplied by the input. If the network finds
some bias hidden in the dataset, it is much harder for it to exploit this discovery. This
difficulty is because, with L1 or L2 regularisation, the network is also penalised for
strong weights. Dropout does, in practice, the same as an L1 or L2 regulariser.

2.5 Complex Neural Network models

We have now looked at the basic concept of the neural network, and a more in-depth
look into the convolutional neural network and the relevant layers. Our primary

28

Figure 2.15: The general structure of an autoencoder, encoding x with f, then decoding
h with g to an output x.

focus has been from a computer vision perspective, where we have looked at image
classification. To get a better insight into the act of inpainting, we need to present
two other types of network, namely the Autoencoder (AE) [52] and the generative
adversarial network (GAN) [53].

We often base both models on the convolutional architecture, to have the option to
work with image and video data. Both networks are a type of unsupervised learning,
where the goal is to either recreate or construct data based on the training data.

We will also present the concept of transfer learning as a tool for easier classification.

2.5.1 Autoencoders

An autoencoder is a neural network that is trained to recreate a copy of the input given.
As with the networks explained at this point, it has an input, some number of hidden
layers and an output. The network can be considered to have two internal structures,
the encoder (denoted as h = f (x)) and decoder (denoted as r = g(h)) shown in figure
2.15. The general goal of the autoencoder is to recreate the input g(f (x)) = x, but in the
real world, we often add restrictions to make the autoencoder unable to copy the input
perfectly. Because of this restriction, the autoencoder is forced to prioritise particular
properties of the data, and hence it might learn underlying features that define the
dataset.

Traditionally, autoencoders were used for tasks like feature learning and dimen-
sionality reduction, though with the rise in computing power, autoencoders are now in
use at the forefront of generative modelling.

To use an autoencoder for generative modelling, we need to set an objective for
autoencoder to achieve. When generating new images we can propose regulisers to
the latent space5 between the encoder and the decoder. The reguliser might be that
the output of the latent space layer should follow a Gaussian noise pattern or another
easily replicable pattern. This type of autoencoder is called a variational autoencoder.
Variational autoencoders have the advantage of being able to create new completely
unseen data if Gaussian noise is inputted at the latent space, effectively cutting out the
encoder and supplying random noise instead. Another way to use an autoencoder for
generative modelling is by masking areas in the input data the model used to train on,
and give the unmasked data as the target output. Figure 2.16 shows this concept of

5We often call the area between the encoder and the decoder the latent space. Here the information is
at its maximum compression.

29

Figure 2.16: Autoencoder where the goal is to inpaint the masked area shown in the
original dataset as a purple circle, and as a red circle generated by the autoencoder.

an inpainting autoencoder. The act of inpainting forces the autoencoder to learn the
underlying features of the inpainted area to make a prediction.

As with supervised classifiers, autoencoders use gradient descent to optimise the
result, as the model work to recreate the input x from out output x̃.
We achieve this by minimising the loss function:

L(x, g(f (x))) (2.19)

As this is a problem where the goal is to minimise error, autoencoders often use MSE
or mean absolute error (MAE) as the optimiser for the gradient descent. As we noted
earlier, Figure 2.16 show a visual example of equation 2.19 when inpainting.

2.5.2 Advaserial Neural Networks

As an alternative to using autoencoders for generative modelling, we introduce the
generative adversarial network proposed by Goodfellow et al. [53].

As shown in Figure 2.17, the GAN consist of two components: a generative model
G that captures the data distribution, and a discriminator model D that estimates
the probability that the sample from G is fake, and does not come from the training
data. The training procedure for the generator is to maximise the probability of the
discriminator to make mistakes. The generator-discriminator network resembles a
two-player game where both parties want to “win” over the other. As we are using
multilayer perceptrons in our network, we can use backpropagation to train both the
generator and discriminator.

In mathematical terms: The generator produces samples x = g(z; θ(g)), where g is
the network given the weights θ. Then the discriminator network predicts if a sample
is drawn from the dataset or the generator. More specific, it gives a probably given by

30

d(x; θ(d)) , and determines if x is from the generator or the data-set. Since we have two
networks competing against each other we can look at this as a zero-sum game where
the generators payoff is determined by v(θ(g), θ(d)), and the discriminators payoff is
determined by −v(θ(g), θ(d)).

Where v is a function that is determined by both the success rate of the discriminator
and the generator, the most commonly used is:

v(θ(g), θ(d)) = Ex∼pdata log d(x) +Ex∼pmodel log (1− d(x)) (2.20)

as derived from [53].

Figure 2.17: The basic concept of the generative adversarial network

2.5.3 Transfer Learning

Neural networks are prone to overfitting when training on a small dataset or over
multiple iterations. We often have problems with the fact that we need to train a
network for a long time for it to learn the features associated with the data, though
we often learn the bias in the dataset either in addition or instead of the features that
define the dataset.

The most obvious solution is to gather more training data to prevent this overfitting,
or to use regulisers to force the network to diversify the layer weights, as proposed in
section 2.4.4.

In this thesis, we have chosen to use transfer learning to address this problem.
Transfer learning is the process of using knowledge from similar problems to help
solve the current goal. Let us say we want to classify different wolf breeds without
the necessary amount of data. We can use our knowledge about dog breeds to help the
classification, by using a pretrained model as a base for training. Since both wolf and
dogs share many of the same features, like four legs and fur, the model does not need
to learn those features from scratch. Similarly, we can use general models to help solve
our specific problem.

31

2.6 Summary

We started the background chapter by looking at the medical procedure associated with
a colonoscopy, and we went in-depth into how the medical staff work with digital
equipment. We got some insight into the time and complexity invested in finding
polyps when doing the said colonoscopy. We then looked at systems for computer-
aided diagnosis and the prevalent systems that is in use today to help medical staff
with polyp detection. From this assessment, we saw that the polyp detection rate was
relatively high, but polyps were often overlooked, and model-overfitting was often the
cause of the high-grade results. Though the advances in medical image diagnosis, the
ability for models to generalise to other areas has not come far enough. We then took
a close look at machine learning, from the building blocks in the perceptron to the
complex pretrained neural networks used today in modern algorithms.

As we noted in chapter 2.2, in modern medical diagnosis systems we lack the ability
to adapt to new datasets from a different distribution than the training set. We have a
strong belief that this is related to the fact that we overfit the data on the training set and
the fact that we learn dataset-specific features not present in other unknown datasets.

Hicks et al. in the paper “Dissecting Deep Neural Networks for Better Medical
Image Classification and Classification Understanding” goes in-depth into the problem of
overfitting with regards to the problem with dataset specific features. We can see from
this paper that by removing dataset specific artefacts, the classification score increased
when evaluating the model on previously unseen data.

Pogorelov et al. in the paper “Deep Learning and Hand-crafted Feature Based
Approaches for Polyp Detection in Medical Videos” shows similar results when training
on the small datasets and evaluating the data on different larger publicly available
datasets.

In this thesis, we want to continue to explore this problem of lack of generalisation
and find ways to improve models in that manner.

32

Chapter 3

Methodology

With our background in both medical procedures and machine learning, we can now
look at how we want to solve the problems associated with setting up a system for
medical diagnosis. We will first get a birds-eye view of the objective of this thesis,
looking at the hypothesises presented in the introduction, and take a look into how we
can test their validity. We look at the proposed program set up to test the hypothesises
both for classification and generation. Then we look at the programming language and
packages suitable for this project. We go in-depth into the reasoning behind why we
chose the tools and packages that became the foundation of the programs. We end the
chapter by presenting the program designed to test our problem statements.

3.1 Bird’s Eye View

In the summary of the background chapter, we looked at two articles published by
Pogorelov et al. and Hicks et al. where they discussed the effect of overfitting and the
consequences of dataset-specific artefacts. To help solve these predicaments we look
back at the two hypothesises presented in section 1.2:

Hypothesis H0 stated that sparse information in the images made it harder to
classify the images correctly. Figure 3.1 from Hicks’s paper shows the case where the
black areas with sparse information activates the classification map. As we can see, the
black areas trigger as a “positive” in some om the saliency maps. We can interpret this
as the network learning features not useful for the classification. Our quest is to check
the validity of hypothesis H0. We propose to test the classification of images with and
without areas with sparse information by inpainting the images.

Hypothesis H1 stated that dataset specific artefacts create false positives and false
negatives. This error is clearly shown in 3.1b, where the classification is affected by the
green square in the image. As long as the classification is affected by dataset specific
artefacts, the ability to adapt the dataset to new use cases might suffer.

We note that H0 concerns both training and testing on the same dataset, while H1
is more concerned about the generalisability of the model, and hence the goal is to use

33

(a) Original image (b) Heatmap (c) Saliency map

Figure 3.1: Heat and Saliency maps of an unaugmented dataset where the images are
generated by Mirmir

(a) Augmented image (b) Heatmap (c) Saliency map

Figure 3.2: Heat and Saliency maps of an augmented dataset where the green corner is
removed. The images are generated by Mirmir

different datasets for training and testing, as well as testing on the training set.

To test the two hypotheses, we first need new datasets to compare against our
base case dataset. In addition to the dataset with sparse information and dataset-
specific artefacts that we already have, we need similar looking datasets without these
unwanted features. In an ideal scenario, we would have our base dataset without the
features added post-capture, though we do not have this luxury.

In the real world, gathering labelled data is often both a challenging and expensive
task. In this thesis, we have decided to focus our attention at modifying existing data
instead of finding new data. We propose to use unsupervised machine learning to
inpaint the areas with dataset specific artefacts as well as sparse areas. We then propose
a transfer learning network to classify the newly created images.

34

3.2 Design of the Inpainting Algorithms

Our main goal to test the significance of dataset-specific artefacts need a platform
where we can create new datasets without unwanted features, based on the datasets
we provide. When generating the datasets, we use the Kvasir dataset [54] as the
training set, as Hicks et al. did in their paper on removing dataset specific artefacts [18].
In addition to the Kvasir dataset, we use the CVC datasets [55] for testing, as they
are without the same type artefacts. This selection of the dataset sources was made
intentionally to have a fundamentally different test and training set. With a greater
difference between testing and training we believe it is a more meaningful indication
of generalisation.

Figure 3.3 shows two different image types from the Kvasir dataset. Figure 3.3a
shows an image of esophagitis. This image shows one of the main problems with the
Kvasir dataset when it comes to artefacts. In addition to the cut corners, we have an
extra wide area to the left of the image containing non-relevant information like name,
sex, and other comments. This area gives us ample opportunity to test hypothesis H0,
given that the image contains a large amount of sparse information that we want to
remove to see the effect on classification. We believe that if we can change images
like the one in Figure 3.3a into images like the one in Figure 3.3b, we will see an
improvement in classification when testing and training on the same dataset.

Figure 3.3c shows another problem with datasets like Kvasir. Here we have a green
square in the bottom left corner that occludes parts of the image and the same type of
text displaying name age and other non-relevant information. We recall from section
3.1 that information like this can give the classifier false positives, and subsequently
provide us with a lower classification score. We believe that if we can change images
like the one in Figure 3.3c into images like the one in Figure 3.3d we will see an
improvement in classification when testing and training on different datasets.

We propose three different types of inpainting to prove or disprove our two
hypothesises.

35

(a) Example of an image with a large
area without relevant medical

information

(b) The same image as in Figure 3.3a
with the non-relevant information

removed

(c) Example of an image with green
square occluding the parts of the GI

tract

(d) The same image as in Figure 3.3c
with the green square inpainted

Figure 3.3: Images where the troubling areas are removed before training

36

3.2.1 Removing Black Corners

The most straightforward experiment to conduct is to test how the removal of the
black corners will affect the result. As we propose in hypothesis H0, we believe that
this masking can help giving the classifier fewer areas with non-relevant information.
Figure 3.4b shows the mask used to inpaint the corners.

As we recall from section 2.1, the black borders around the images in our datasets
are present in medical colonoscopy images in general. By removing the black corners
around the image, we do not change Kvasir specific artefacts, but according to our first
hypothesis, we believe we will get a higher classification accuracy since this removes
areas with sparse information.

When classifying images during the testing stage, we need to take inpainting during
training into account.

1. We can do the same masking and inpainting on the test set.

2. We can crop the image in a way that removes the black corners without
inpainting.

3. We can forgo modifying the test data and just run the test set as is.

Method 1 We tested method 1) in our paper “Using preprocessing as a tool in medical
image detection” [20]. The goal of this paper was related to hypothesis H0 with the fact
that we wanted to see how removing areas with sparse information affected the result
of classification when training and testing on similar datasets. In the experiments run
within this paper, both the training set and test set were inpainted. Since the focus of
this task was to classify a test set we had from beforehand correctly, we had the option
to preprocess the test set in addition to the training set without any penalties based on
time restrictions. Our paper inpainted the test set as proposed in method 1) and from
the results, it showed minimal improvement. The lack of improvement is mainly not
connected to the fact that we inpainted the test set, but the fact that the test set came
from the same distribution as the training set, and subsequently ended up with a model
that overfitted to the data. Given that we, in the end, want to classify images from a
live colonoscopy, we have decided to forgo the inpainting of the test set using method
1). By not augmenting the test set the experiments are also suited to reflect a larger
research area of machine learning.

Method 2 Method number 2) was the proposal of cropping the images during
evaluation. Thambawita et al. did similar methods in the Mediaeval 2018 conference
but also had the same cropping during training. In the paper “The Medico-Task
2018: Disease Detection in the Gastrointestinal Tract using Global Features and Deep
Learning” [56] we can see that this method worked with great success. The operation of
just cropping images is also multiple times as fast as inpainting images, so it is feasible
for a live recording.

37

One of our four test cases in our first publication looked into cropping the images to
the extent that we removed the black corners completely [20]. The result from our tests
showed the lowest classification score, far below the baseline of comparison, giving
us the impression that our extensive cropping removed essential parts of the image.
The downside of cropping the images from the test set is the fact that we do not have
control over what we remove from the data. Given that the test set might come from a
completely different distribution, we might unwillingly remove information we desire
to keep. We do also run into the problem that cropping the images are not feasible
when the sparse areas are within the image, and not at the outer edges.

Method 3 The last proposed method is not to augment the images during testing.
This method, since we are not preprocessing the test data at all, is the fastest when it
comes to live classification. Without the augmentation, we risk getting a lower classifi-
cation score, but we do not remove any data. Also, we make our results better reflect
on how it will work on non-medical datasets.

In this thesis we will use method number 3.
We base this decision on that we want the final product to have the option to be used

live and be easily adaptable to other datasets. Method number 3) also coincides with the
method used in our second paper, “Unsupervised preprocessing to improve generalisation
for medical image classification” [21]. By using the same inpainting methods for the test set
as in our published paper, we can reasonably draw direct comparisons. An important
note here is that the datasets in the thesis and the published paper are the same, though
the method for achieving the results differ.

3.2.2 Removing the Green Square

The next major area in question is the removal of the green squares located in the
bottom left area of some of the medical images. This area is a Kvasir specific artefact
and is found in 38% of the images spanning five out of eight classes. By inpainting the
lower left area we can see if our hypothesis H1 is correct since here we are removing
a dataset-specific feature that the network can use to determine classes. We have also
chosen to inpaint every image, regardless of the green square is there or not. We do this
so that the network can not “learn” that the pattern from the inpainted area correlates
with the five classes with the green square, and hence defeating the purpose of the
inpainting. Figure 3.4c shows the mask used to inpaint the lower left corner.

When classifying images during the testing stage, we have the same decision to take
when it comes to inpainting of the test set.

1. We can either do the same masking and inpainting on the test set.

2. We can crop the image in a way that removes the dataset-specific artefacts.

3. We can forgo modifying the test data and just run the test set as is.

38

To keep the consistency between the two different inpainting methods, we use
method 3) for the test set. As with the black corners to be inpainted, we choose not
to preprocess the test data, as this takes time, and should in theory not be necessary to
get the right classification.

3.2.3 Removing Both Corners and the Green Square

The last set we want to test is the combination of both inpainting the green square
and the black corner as shown with the mask in Figure 3.4d. Here we hope that a
combination of hypothesis H0 and H1 will give the strength of both methods without
any harmful interference.

3.2.4 Removal of Over-saturated Areas and Text

To thoroughly test the hypothesis H1 we should also remove areas that are not always
found in the same area each time. Text and over-saturated pixels can, in the Kvasir
dataset, be at any region, making the inpainting task less trivial.

To remove those kinds of artefacts, other methods to locate the areas are also
needed. We conducted experiments using Google’s Tesseract OCR [57] to locate text,
though, the time it took to find the areas made it not feasible for training. In the finished
product, we do not remove that kind of artefacts, given the complexity of the problem
coupled with the relatively small size of the artefacts in question.

3.2.5 The Generative Modelling Algorithms

With the three masks discussed, we now want to present the generative modelling
algorithms. As addressed in section 3.1 our goal is to make new datasets without
the unwanted artefacts based on the original dataset. We have chosen to use the two
generative models presented in section 2.5.1 and in section 2.5.2, namely Autoencoders
and GANs.

As we recall from section 2.5.1 the autoencoder and GAN1 networks both use a
ground truth when training. When training, we need images that are already inpainted
as a reference point. We solve this by zooming in the images to the limit that the edges
are gone, as shown in figure 3.4b. When removing the dataset-specific features, we
have the luxury that not all images contain the green square, giving us ample data for
training after the images are sorted. By removing the corners by zooming and by using
images without artefacts during training, we have images where we know the whole
ground truth, giving us the option to use MSE for backpropagation.

When training the GAN, we often do not need a ground truth behind the mask, as
the network only tries to discern if the image is real or fake. This gives us in practice
the same restrictions as with backpropagating with MSE.

1It is necessary to mention that regular GANs does not use a ground truth when training, though our
modified GAN does use a MSE loss weighted to 1% in addition to the adversarial loss weighted at 99%.

39

3.2.6 Summary

We have now talked about the three main masks we use, combined with the two
generative models that make the datasets. In total, we end up with six generated
datasets, two for each mask type, and one unaugmented base case. The seven datasets
will be the basis for our test of the problem statements.

(a) Image from the original
non-augmented dataset

(b) Red area shows the area
masked in the first of the

generated datasets

(c) Red area shows the area
masked by the second of the

datasets

(d) Red area shows the area
masked by the third of the datasets

Figure 3.4: All three mask types used in this thesis, and associated images used during
training. The different masks require different levels of cropping, as shown in the

subfigures.

40

Figure 3.5: The model we use for classifying with the most important options for the
learning process.

3.3 Design of the Transfer Learning Experiments

To test the hypothesises we need a system in place to compare the datasets we generate
with inpainting. As we recall, we base both our hypothesis on an improvement
compared to the original dataset we provide. To see if we have any improvement
we propose to use a classifier based on transfer learning to see how the newly
generated datasets give a better classification score compared to the base dataset
without augmentations.

We want to test our system with a range of different models and classifiers to test
the validity of the system and to make sure that our results are not just good outliers.

Figure 3.5 shows the general structure of the transfer learning model we use in this
thesis.

Hyperparameter optimisation of the models is a challenging task [58]. In this
thesis, we have chosen to use automatic hyperparameter optimisation provided by the
hyperparameter optimiser made by Borgli et al. in the MediaEval workshop 2019 [58],
to give us the optimal model for training. Based on our dataset, the optimal network,
DenseNet121 [59], was chosen as our primary model for evaluation. In addition to
an optimal model, we have chosen to use InceptionResNetV2 [10] as a more general
model. InceptionResNetV2 showed the highest top 1 and top 5 accuracies on imagenet
when we designed the transfer learning program based on the Keras website in August
2018. We find a more recent table with more pretrained models in Figure 3.1.

3.3.1 Models

Though the two models we use for our evaluation have some similar aspects, they have
relatively different methods for feature learning. To get a better understanding of our
results we give a short introduction of both pretrained networks.

41

Inception Residual Network architecture We can often see performance gains in
our neural networks when we increase their size. To increase the size, we can either
increase the depth of the network, i.e. the number of layers, or we can increase the
width of the network, i.e. increase the number of units per layer. Both methods are
often easy to implement, but it often comes with the drawback of either increasing the
number of parameters we need to train, which can result in overfitting, or it can result
in the computation time of the network to increase to an undesirable length. To find a
balance between accuracy and memory is often a hard task, and it has been a central
aspect of classification challenges like the imagenet challenge [60].

Szegedy et al. presented an architecture for the imagenet challenge with the
intention of reducing the computational cost of training large neural networks by
decreasing the number of parameters [61]. The network presented, GoogLeNet, used
inception modules to reduce the computational cost. Inception modules (networks
within networks) tries to answer the question of witch convolution is the correct for
each layer. Often it is up to the network architect to decide this, but with inception
modules, the network chooses for itself. In the GoogLeNet paper, the inception
modules are the same as in Figure 3.6b, showing the option between 1× 1, 3× 3, 5× 5
convolutions, and 3× 3 max pooling, followed by a concatenation of the four options.
In addition to the convolution in parallel, the original authors added 1× 1 convolution
before the larger filters. This layer uses 128 filters that are designed to reduce the
dimensionality if the network, and subsequently, reduce the number of parameters in
the network.

Microsoft proposed another solution to training very deep neural networks in the
form of residual modules [9] as shown in Figure 3.6a. When using sufficiently large
enough networks the backpropagation often encounter the problem with vanishing
gradients. By adding a direct link between the layers, we counteract the vanishing
gradient problem. A consequence we encounter when using residual modules is that
instead of recreating the input for each layer, each layer learns only to modify the input
value instead of completely recreating it.

Finally, combining the inception and residual modules, we end up with the modules
used in InceptionResNetV2. Here we combine the strength of both networks. A
compressed view of the network is shown in Figure 3.7 as shown in the article by
Mahdianpari et al. [62]

DenseNet architecture Huang et al. published the DenseNet architecture, as shown
in Figure 3.8, with the same goal as InceptionResNet, namely to reduce network
size and to get better classification accuracy from a better gradient flow [63]. In the
DenseNet model, all layers are connected in a way to ensure the maximum flow of
information between layers. The network achieves this flow by letting each layer
convey all its information to all subsequent layers with similar dimensions. This
gradient flow gives the network the ability not to store redundant information, and
Huang et al. showed significant results for classification with small training datasets
where overfitting often would serve a problem.

42

(a) Residual module concept as
proposed in [9]

(b) Inception module concept as proposed in [61]

Figure 3.6: The two main components in InceptionResNetV2

Figure 3.7: The compressed view of the InceptionResNetV2 network inspired by
Mahdianpari et al.

Figure 3.8: The compressed view of the DenseNet network inspired by Mahdianpari et
al.

43

3.3.2 Pooling and Freezing

The pretrained networks were initially trained for the 1000 classes in the imagenet
dataset. Without modifying the network, it would output one of the 1000 classes when
confronted with an image. In this thesis, this is not desirable since none of the original
classes is usable for medical image classification [60], [64]. When we introduce our
pretrained network, we cut the last two layers from the model and introduce a pooling
layer instead. The two layers cut are the fully connected layer with 1000 nodes, and
a softmax layer (The Purple and The Red blocks at the right side of the networks in
Figure 3.7 & 3.8). As we recall from section 2.4.4, it is common in the practice of transfer
learning to add a pooling followed by a fully connected layer and a softmax layer as a
substitute for the original layers removed. The pooling can either be average or max
pooling, and we have the option of using global or local pooling.

Another prominent way to improve the performance of transfer learning is freezing
the layers in the model. When we freeze a layer, we lock the weights of the layer
making it not trainable. The main consequences of freezing layers are related to time
and accuracy.

If we freeze all layers but the last five, the network only has to backpropagate the
gradient five steps, reducing the computation time drastically in an extensive network
like Densenet. By freezing weights, we obviously can not learn anything new with
the frozen weights, which means that we can only store new information in the latest
unfrozen layers. For similar datasets, this might not be a notable problem, given that
they most likely have similar features. When the dataset differs a lot from the transfer
learning dataset, we might not reach an optimal solution, given the smaller feature
space.

3.3.3 Configuring the Optimal Combination for Our Testing

Based on the article by Huang et al. [63], we believe that the densenet model would
give us the best result. As stated, the densenet model has good gradient flow, and the
architecture helps small datasets with overfitting. We have also decided to use global
average pooling as our pooling layer for both models. We base our decision of the usage
of global average pooling on the models used in the Mediaeval workshop by Hicks et
al. [65] and Borgli et al. [58] whom both got great results when using global average
pooling on medical image data.

3.3.4 Summary

We have, in this section, talked about how we want to use transfer learning to help
the classification process. We have looked at the two main advantages with transfer
learning, namely the time saved in training and the accuracy gained during evaluation.
The advantages coupled with the fact of the widespread use of transfer learning makes
it the best option for us, compared to regular classification. We then took the results
from the hyperparameter optimiser tool made by Borgli et al. and used the most

44

optimal network as our primary network in this thesis. In addition to the best network,
based on hyperparameter optimisation, we used InceptionResNetV2 as a secondary
network for evaluation, reasoning that the use of a generally good network would yield
a scenario closer to the real world. After a brief discussion about the composition of the
networks, we concluded with the DenseNet model with global average pooling would
yield the best result based on our datasets.

3.4 Libraries

With the general structure of the algorithms discussed, we will now go more in-depth
into the libraries used in the creation of the programs.

In this section, we will discuss the foundation of our code, important external and
internal libraries, and the setup and execution of our project. We first discuss the
programming language in question, give insight into the reasoning behind it. Then
we will look into the framework used for machine learning, and in detail how it
implemented in our programming language. Lastly, we look into the wrapper we use
to get a higher level of abstraction over our code, together with custom functions that
are in use by our wrapper.

3.4.1 Python

When doing machine learning, some of the most popular languages, in no particular
order, are Python, Java, R, C++, and C [66]. Some of these languages, like C and C++,
are chosen for their speed, which is often a significant factor in Machine learning. Other
languages, like R, is chosen because of its integration into the scientific community long
before machine learning became a trend. The last group, consisting of Java and Python
has gained popularity because of its already big user base and user-friendliness. Python
is also the winner when it comes to machine learning because of, like R, its integration
into the scientific community. Right now Python is the leading language for machine
learning. Driven by this, there is considerable focus into making it faster, to compete
with already fast languages, like the C family.

Python is an interpreted, high-level, general-purpose programming language
created in 1991. It, like many other modern languages, is object-oriented and supports
functional programming. Mainly because of the excellent support when it comes to
machine learning, and the general ”easy to use and no compiling” we have chosen
Python as the base for our code in this thesis.

3.4.2 Tensorflow

Arguably the biggest reason for the success of machine learning in Python lies in
Tensorflow [67]. Tensorflow is a machine learning package released by Google in
November 2015 and has since then become the leading framework for machine learning

45

worldwide [66]. Tensorflow is in use by companies like AMD, Twitter, eBay and
Snapchat.

Tensorflow is today a multi-language tool, but it had its origin in Python. It is just
in later years that other languages have gotten Tensorflow support. The data flows
through a graph network, where the objects in the graph describe the mathematical
operations used in the machine learning, and the edges between graphs are the
multidimensional arrays storing the weights associated with the operation in question.
The name Tensorflow is a combination of the flow we experience during calculation
and the tensors between the mathematical operations.

As stated, Python, and subsequently machine learning in Python, would be much
slower than a counterpart in C. Because of this, Tensorflow works as a layer of
abstraction to code running in the C language. In addition to the layer of abstraction,
Tensoflow can do the computation using a graphical processing unit (GPU). Using a
GPU for machine learning will often give a considerable speedup to the training, given
that the GPU is designed with matrix multiplication in mind. This gives the GPU the
option to easily calculate large chunks of the data in a fraction of the time.

Other packages for machine learning like PyTorch [68] and Microsofts CNTK [69]
would be alternative options. Because of the widespread usage of Tensorflow, we have
chosen it as our primary machine learning package.

3.4.3 Keras

One of the least attractive things with Tensorflow is its unnecessary complexity. Even
though Tensorflow offers more abstraction compared to running the code in pure
C, the Tensorflow library can be unnecessarily complex. As a result of this, many
external libraries try to simplify many of the complexities that accompany Tensorflow.
Libraries like TFlearn is a modular and transparent deep learning library on top of
Tensorflow. It gives a higher-level API to Tensoflow to reduce complexity and speed
up experiments [70]. The most successful library for on top of Tensorflow is Keras [71].
Just as TFlearn, Keras is a high-level package written in Python. It is capable of running
on top of TensorFlow, CNTK, or PyTorch, which is the tree most popular machine
learning libraries at the time of writing. Keras is made to be user-friendly, modular,
easily extensible, and to work with Python.

One of the core elements of Keras that makes it a better choice than just running, for
instance, Tensorflow, is the concept of a model. A model in Keras is a way to organise
the layers of the network in a more organised way, giving a better understanding of
how the network is set up, and how each layer type contributes to the graph.

This thesis relies on Keras as a wrapper for Tensorflow. As stated, the use of
models and the simplicity of the language makes it an excellent choice of such a large
project. Also, Keras has good support for convolutional operations which is the most
used methods when managing images. Keras also has the most popular pretrained
convolutional neural network models available in its package.

46

3.5 Custom Functions for Keras, Tensorflow and Python

In addition to the standard functions and packages provided by Python, Tensorflow
and Keras, we present a list of packages designed during the thesis. A majority of the
packages is implementations of leading methods already in place in machine learning,
though all methods are redefined to work within the scope of this thesis. The methods
presented have all undergone testing during the thesis, though not every method ended
up in the finished product.

3.5.1 Channel-Wise Fully-Connected Layer

A problem often encountered when working with autoencoders which are not
undercomplete is the fact that they learn to represent the data flawlessly [72]. When
this problem arises, the network does not learn the fundamental features that define the
dataset and instead passes the signal through the network without any consideration
of the input data. This flaw will often defeat the purpose of the algorithm, so data
scientists often put in safeguards, like undercompleteness or regulisers, to combat this
lack of feature learning. This problem extends to other types of generator networks
where there are not sufficient compression or regularisation in the layers of the network.
Even though this problem often is solved by compressing the network into a space
that can not contain the information correctly, the network does not always learn the
features that define the network.

We propose a custom “channel-wise fully-connected layer” in Keras to help with
the problem of correctly learning features. This layer is based on the work done by
Pathak et al. in their paper on context encoders [73]. The channel-wise fully-connected
layer is primarily used in the GAN to transfer information within each feature map,
without using convolutions to do it. As we recall, fully connected layers are often not
suitable because of the large size of the weight layer associated with it. This layer
is essentially a fully connected layer with groups, where the goal is to propagate the
information within each feature map. Given the latent space of n × n with m feature
maps, by not connecting the feature maps together in the fully connected layer we
achieve a parameter reduction from m2n4 to mn4 (ignoring bias terms) [73]. With the
channel-wise fully-connected layer the network can learn features from the entirety of
the image, and not just local regions as it would with just convolutions. Listing 3.1
shows the source code used for the channel-wise fully-connected layer. The code is
presented in the standard way Keras structure its layers.

1 from keras . engine . topology import Layer
2 import keras . backend as K
3

4 c l a s s CWDense(Layer) :
5 def i n i t (s e l f , * * kwargs) :
6 super (CWDense , s e l f) . i n i t (* * kwargs)
7

8 def bui ld (s e l f , input shape) :
9 , s e l f . width , s e l f . height , s e l f . n feat map = input shape

47

10 s e l f . kernel = s e l f . add weight (”CWDense” ,
11 shape =(s e l f . n feat map ,
12 s e l f . width * s e l f . height ,
13 s e l f . width * s e l f . height) ,
14 i n i t i a l i z e r = ’ g lorot uni form ’ ,
15 t r a i n a b l e =True)
16 super (CWDense , s e l f) . bui ld (input shape)
17

18 def c a l l (s e l f , x) :
19 x = t f . reshape (x , [−1 , s e l f . width * s e l f . height , s e l f . n feat map])
20 x = t f . t ranspose (x , [2 , 0 , 1])
21

22 x = t f . matmul (x , s e l f . kernel)
23

24 x = t f . t ranspose (x , [1 , 2 , 0])
25 x = t f . reshape (x , [−1 , s e l f . height , s e l f . width , s e l f . n feat map])
26 re turn x

Listing 3.1: The channel-wise fully-connected layer source code

3.5.2 Subpixel

When working with the generative adversarial network, we wanted to achieve more
realistic representations at a reasonable image size. Making large scale images in
generative adversarial networks has been a challenge that has only recently been
cracked [74] [75]. As an early measure to fix this problem, we experimented with the
use of a Sub-pixel layer as presented by Shi et al. [76] to give a more realistic output
compared to just a standard conv-tanh layer.

During this thesis, we have done multiple tests with this layer. In the datasets used
for evaluation, we did not end up using any Subpixel layers.

Figure 3.9: How the layers in the sub pixel layer is stacked. Recreated from the
SubPixel paper by Shi et al. [76]

48

3.5.3 Masklaod and Setload

The most common way of loading data into Keras is with the usage of the default
generators provided by their library. The Keras.ImageDataGenerator() does an
adequate job when loading images, though it had some shortcomings. Maskload and
Setload are custom loaders we made for this thesis to get a more simple way of loading,
augmenting, and storing images.

Maskloader has the primary job of adding and removing masks from images. In
addition to masking, it can flip and mirror the images. Maskloader can mask text in
images, though at a timeframe not feasible for this thesis, at a time up to two seconds
per image.

Setload is a library for loading a large number of images for training. In addition to
loading images, we designed Setload to remove black borders from images if necessary.
We use morphological opening2 to remove any nonblack pixels in the edges of the
image that original from text added post-capture, which gives us a clean cut as close
to the “true” image as possible. The Setload function defaults to normalise the images
around zero. This normalisation is to stabilise both the GAN and AE.

3.5.4 Self Attention

There are features in the images that are more important than others. One of the
things we often want to preserve when we recreate images are hard edges. To get a
semantically meaningful image, we often want to differentiate between background
and the mucous. To see if the network can learn the features needed we are introducing
the Self Attention layer to help with this. We base the self-attention on the work done
by Zhang et al. [77].

Self attention for the purpose of this thesis is a tool that the GAN can use to better
focus on certain parts of the image. In our testing, self attention was used with a
residual connection to prevent the layer from destabilising the model. We do not use
self attention in the final datasets used for evaluation.

3.5.5 Masked Loss

A problem encountered for both the autoencoder and the GAN is what happens when
the non-inpainted area gets too close to correct ground truth. As most of the image
remains unchanged between the input-output space, the loss for most of the image
approaches 0 while the inpainted area stays at a high loss value for most of the training.
As we recall from section 2.4.4, we store our data as float32, and as the loss gets smaller
and smaller, the squaring of the float32 gives at some point a number so small that the
loss flips to a large integer and subsequently ruins the run3.

2Morphological opening is the dilation of the erosion of an image
3This flipping is at this time our best theory concerning the sudden spike in the loss as it gets closer

and closer to zero.

49

Figure 3.10: How the layers in the Self-Attention layer is stacked. Recreated from the
Self-Attention paper by Zhang et al. [77]

To improve the stability of the training, we have modified the loss to only apply to
the areas we inpaint, leaving the rest of the image without a gradient to improve itself.
Listing 3.2 shows the source code for the masked MSE. For each point in the MSE we
apply a binary mask. If the binary mask is zero, we do not consider that space during
backpropagation.

The masked loss showed a considerable increase in stability during training, but
in the finished product, we only used it for the autoencoder when we struggled with
stability problems.

1 import keras . backend as K
2

3 def masked mse (mask value) :
4 def f (y true , y pred) :
5 mask true = K. c a s t (mask value ,K. f l o a t x ())
6 masked squared error = K. square (mask true * (y t r u e − y pred))
7 masked mse = K. sum(masked squared error) / K. sum(mask true)
8 re turn masked mse
9 f . name = ’Masked MSE ’

10 re turn f

Listing 3.2: The self attention layer source code

50

3.6 Stabilising the GAN

Before we ended up with the model we used in the thesis we ran multiple experiments
to make the generative adversarial network stable for training. In contrast to the
autoencoder, the GAN does not use the ground truth as a reference point. Where the
autoencoder always has a gradient based on the input data, the generator in the GAN
gets its learning gradient from another network.

This lack of a ground truth gives the GAN many pitfalls that cause the training
process to crash4.

Normalise the inputs One of the first measures we did to prevent training collapse
was to normalise the inputs. Instead of using images in the range 0 to 255 in pixel values
we switched the values to -1 to 1. Later, when the images were generated, we switched
out the standard sigmoid output layer with a tanh output layer. As we wanted the
output to be between -1 and 1, this was necessary, as the sigmoid only outputs between
0 and 1.

Using Gaussian noise When generating noise for the generator model, we only
sample from a Gaussian distribution and not a uniform distribution. We base the
reasoning on previous work in the generative modelling field of research.

Permanent Dropout A measure we took to improve stability were to use permanent
dropout [78]. We used the same amount of dropout both during training and testing.
The usage of dropout, in general, was a quintessential part of stable GANs, but in the
end, we did not end up with permanent dropout in the finished model.

Normalising the batches One of the most significant challenges we encountered
when training the adversarial network was the use of correct normalisation. The
practice of individually training the discriminator with real and fake samples gave
higher stability overall compared to a mix during training. The use of instance
normalisation gave a better result compared to using batch normalisation. We believe
this is contributed to the fact that the discriminator learned that the average pixel
value was lower for the whole batch since the area inpainted had 0 as the pixel value.
The final model ended up not using batch or instance-normalisation except for in the
discriminator.

Avoiding sparse and vanishing gradients Most of the well-known networks use the
ReLu[79] activation function [8] [10] [9]. We saw the best result when we used non-
sparse gradients during training. Instead of using ReLu we used the slightly modified
LeakyReLu [80].

4Crashing is not the right word to use, but the result is the same: The learning process stops.

51

In addition to trying to remove sparse gradients, we also wanted to address the
problem with vanishing gradients during training. Given that we have fully saturated
pixels (with the value of 1) and we have fully darkened pixels (with the value of -1)
we, at the end of the experimentation phase, ended up removing the tanh layer. The
removal of the tanh layer meant that the pixel values could be arbitrary on both positive
and negative value, so we had to clip the value not to get an error at test time.

Avoiding residual and inception layers When training the GAN, experiments show
that the usage of both residual [52] and inception [61] models do not contribute to a
better result.

We recall that residual modules primary strength is that they always send the
image/signal throughout the network in addition to the standard layers, making the
gradient flow better at the start of the network. This modification to the original image
might seem reasonable when it comes to inpainting, but in reality, this does not work.
Given an image where we want to change only the inpainted area, the image is about
80% unchanged. The network could focus on just filling in the inpainted area in theory,
but in practice, the network tries to change the rest of the image in addition to the
square. This incorrect inpainting gives us a generator that changes too much of the
image and a discriminator that does not learn any essential features since the input and
output are relatively similar from the start.

Inception modules primary strength is the fact that the gradient can flow through-
out the path most suited to the problem at hand. We tested some training runs with
inception modules, but the result was not impactful enough to continue to use this
architecture.

From multiple training runs, it seems like just a straight forward encoder-decoder
network for the generator yielded the best result while the best result for the decoder
was to use convolutions with a stride to downsample the signal.

3.7 Code Description

We have, at this point, gone through the objective of our thesis, and shown how we
want our result to be generated and evaluated in practice. We will now go more in-
depth into the two networks used for generating the new datasets and go in-depth into
the model we use for classification.

3.7.1 Autoencoder

The autoencoder we used to generate the datasets used in this thesis bears a
resemblance to the standard autoencoder proposed in chapter 2.5.1. Here we use a
standard encoder decoder network.

Loss, Optimiser To get the autoencoder to give the best result, we have chosen to use
the mean square error loss as in equation 2.3 and the Adam [81] optimiser. The mean

52

square error was a logical choice since we already have the ground truth and we only
want to recreate the inpainted area based on what used to be there before the masking.
The Adam optimiser was chosen by the widespread usage in machine learning, coupled
with the fact that it works well with sparse gradients.

Encoder The input to the autoencoder were the masked images at 256 × 256 px to
compress the information in the encoder we solely used convolutions with a stride of
2. An alternative to using stride for the downsampling would be to use pooling, as
described in section 2.4.4. Both concolution with stride and pooling gives adequate
results, though we chose to use convolutions.

Decoder Between the encoder and decoder we added a 25% dropout layer. This layer
is the only reguliser in the network, though since the job was to inpaint and not recreate,
the autoencoder needed information about a rather large area of the image, and hence
had little possibility to overfit.

Upsampling could either be achieved with upconvolution or with upsampling.
Using upconvolution gives the network more variables (as the filters use weights,
and upsampling does not), and hence would require more training. In this thesis, we
achieved the most significant results by using upsampling compared to upconvolution,
though we can not rule out that upsampling would be better with more complex
images, or at larger image sizes.

To describe the model we will look at the example where we try to inpaint the green
square in the image, and nothing else. To train the autoencoder for inpainting, we
divide the dataset in two, first images with the green square and images without the
green square. We discard the images with the green square since they are not viable for
training. The resulting dataset will only contain images without green sources.

The next step before training is to cut the images according to the mask provided.
Figure 3.11a shows what the finished masking looks like, and 3.11b shows what we
want to achieve after training.

We feed 3.11b into the autoencoder consisting of the convolutional layers described
earlier with primarily leakyReLu layers within the model and a tanh layer at the end.

3.7.2 Generative Adversarial Network

The GAN used the same generator discriminator elements as the Goodfellow GAN;
however, the most significant difference is the fact that our model does not generate
the image from Gaussian noise. Instead of the standard Gaussian noise as input to the
generator, the inpainted image is taken as input.

Discriminator The discriminator, as we can recall, had the job of determining if an
image is real or fake. As with the decoder in the autoencoder, we can use both
pooling and convulsions as downsampling. Here, as in the autoencoder we solely

53

(a) Image the autoencoder receives as an
input

(b) The missing part the autoencoder tries to
replicate

Figure 3.11: A standard image taken in by the autoencoder

used convulsions with stride as to downsample, with intermittent normalisation. The
Normalisation layers helped with the stability issues that we face when training GANs.
In the end, we flatten and connect the network to a fully connected node to determine
true or false.

Generator The generator in the GAN used both up and downsampling with the fully
connected dense layer in the middle, as described in section 3.5.1. During the five
repetitions of downsampling, we added LeakyReLu and batch normalisation and, as
before, used convulsions with a stride to compress the network. Upsampling consisted
of upsampling in the same way as in the autoencoder, followed by convolutions,
LeakyReLu and a dropout rate of 40%.

3.7.3 Transfer Learning Classifier

We have in section 3.3 gone in-depth into the two desired networks used in this thesis.
Our main objective when making a classifier is to make a system that is robust, reliable
and has the option to be modular. We built the classifier to gather the same information
as shown in Figure 3.5, meaning we first specify the desired network (VGG [82],
DenseNet [59], or Mobilenet [83]), then we specify the optimiser (NAdam, Adam,
RMSprop or SGD). After the network and optimiser are chosen, the network takes
information about the dataset related parameters; batch size, K-folds, Patience, and
epochs.

Table 3.1 shows the pretrained networks available to load in the Keras framework.
When training we did some extra steps at the end, namely added global average
pooling and a fully connected layer with the desired number of outputs (usually eight
classes, and eight outputs)

54

Model Size Top-1 Accuracy Top-5 Acc Parameters Depth

Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
ResNeXt50 96 MB 0.777 0.938 25,097,128 -
ResNeXt101 170 MB 0.787 0.943 44,315,560 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Table 3.1: Models provided by Keras

3.8 Summary

In this chapter we have, in more detail, looked at the process and purpose of inpainting
and classifying. We started with the discussion regarding where to inpaint, and the
problem statements we wanted to test for each of the inpaintings. We made a decision
regarding if inpainting of the test set were feasible, and decided the two types of
generative modelling algorithms we use in this thesis. We looked at the need for a
classification model to discern the results of our inpainting and decided to use transfer
learning to represent a real-world scenario better. We looked into the two transfer
learning models we use in this thesis, namely Densenet121 and InceptionResNetV2,
and gave a brief overview of their similarities and differences.

After a more conceptual view, we talked more about how we would achieve the
experiments in practice. Here we talked about why we chose Python, Tensorflow and
keras, followed by custom functions needed for our machine learning algorithms. We
ended the chapter with the description of the three models in practice.

55

56

Chapter 4

Experiments

In the previous chapter, we described our methodology and our system for performing
inpainting to improve the input data. We presented the framework we used for our
setup, and we went into detail on the configuration of the experiments, and the project
as a whole describing both the masking and the neural networks. In this chapter, we
will start with the description of the datasets used on the results and the metrics chosen
as a reference point for the evaluation of our results. Finally, for each model, we will
evaluate it for the datasets we have presented.

4.1 Datasets

Before we present our results, we first need to take a closer look at the datasets used
for training and evaluation. In this thesis, we primarily use one dataset for training
and two other datasets for the evaluation of our results. Here we will look at the three
different datasets, and we will comment on similarities and differences.

4.1.1 Kvasir

Kvasir is a Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease
Detection made in Norway [54]. The data is gathered from the Vestre Viken Health
Trust, and it contains not only polyps but also two other findings, two classes related
to polyp removal and three anatomical landmarks in the GI tract. The dataset contains
the eight classes mentioned above with 1000 samples for each of them. In the Kvasir
dataset, we have primarily two dataset-specific artefacts, that is, Kvasir is the only set
with a map in the lower left corner, and it is the only dataset with text. Another artefact
present in the Kvasir dataset is the rounded edges, though this kind of border is a
shared feature between all three datasets. Over 60% of the dataset contains images with
text, and text is present in all classes. The text is located on the left side of the images,
and it is always white. The green square is present in 38% of the images but only in 5
of the classes. Figure 4.3 shows a sample with images from each class. The classes with

57

images containing green squares are also the same images that contain green squares
in the figure. As we can see in Figure 4.3 all images got the rounded corners.

4.1.2 CVC 356 and CVC 12k

The CVC datasets are both dual-class datasets created from routinary explorations at
Hospital clinic of Barcelone, Spain [55]. The goal of the datasets is to cover all different
scenarios that a given support system should face. In addition to the images, the CVC
356 dataset also comes with a mask that is an approximation of the ground truth. The
CVC datasets are publicly available datasets from the CVCVideoClinicDB database.

In the CVC 356 dataset, we have 356 video-frames originating from the polyp class,
and 1928 frames originating from the non-polyp class. In general, the video-frames
from the non-polyp class are more alike to each other, meaning the video is from the
same place in the GI tract, given that there are more film from areas without polyps
than with them. Given that 85 % of the images originate from a small subset of videos,
it is likely easy to overfit any model trained on this dataset.

The CVC 12k dataset has many of the same problems as the CVC dataset as many
of the images are identical to each other. One of the most substantial issues with the
CVC 12k that makes it a worse set compared to the CVC 356 dataset is the fact that the
polyps image can almost be outside of the frame during capture, meaning that there are
images without polyps that are classified as a polyp image. Because of the numerous
misclassifications in the CVC 12k dataset, we can never achieve a perfect score.

58

(a) Dyed lifted polyps (b) Dyed resection margins

(c) Esophagitis (d) Normal cecum

(e) Normal pylorus (f) Normal z line

(g) Polyps (h) ulcerative-colitis

Figure 4.1: The Kvasir dataset with each of the eight classes
59

(a) Polyp (b) Non-polyp

Figure 4.2: The two classes from the CVC 356 dataset

(a) Polyp (b) Non-polyp

Figure 4.3: The two classes from the CVC 12k dataset

60

4.2 Metrics

To discern the results of our experiments we introduce multiple metrics and tables to
get an indication of our success. The primary dataset we used for training, Kvasir, was
split into k number of folds, using k-fold cross-validation. K-fold cross-validation is a
tool used in statistics and machine learning to help to get an accurate representation of
the data based on finding a statistical average of the dataset. In machine learning, it is
a powerful tool that can help with adapting to new datasets and prevent overfitting.
We recall that the Kvasir dataset contains 8000 images, with 1000 of each class. In our
testing, we split the dataset up in k=6 folds. This split means that we split our dataset
into six pieces before training. With the six folds, we assign one of them as a test set, and
we assign the four other for training and validation. We then train our data five times,
using four folds for training and the last fold for validation during training. For each
training run, we rotate the validation set, so each of the five folds is used for validation
once.

Figure 4.4: The Kvasir divided in to 6 folds

The advantage of using k-fold cross-validation is that we maximise the utility of
the dataset. We find the distribution of the dataset that hopefully covers the most
significant range of the unseen data.

4.2.1 The Confusion Matrix

With k-fold cross-validation, we end up with the dataset that scored the highest during
the final validation step. There are multiple ways to calculate metrics for how well a
dataset is doing, but they all are a comparison of the predicted class versus the true
class.

Take for instance the case with the 8-class dataset Kvasir, where we predict an image
to be normal-cecum. We translate this to an integer representation of, for instance, class
3. In our example, the actual True class is normal-z-line, here represented as 5.

61

We can represent this as [
3 5

]
Storing value pairs like this can very quickly get cluttered and unorganised. The most
common way to store these value pairs is to use a confusion matrix. We initiate the
matrix as a N× N matrix where N is the total number of classes as shown in Figure 4.5



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Figure 4.5: An empty confusion matrix

After we have initialised the confusion matrix, we add each value pair to the matrix
at its corresponding position. Given the pair

[
3 5

]
we increment the number at the

position corresponding to (x=3, y=5), changing it from 0 to 1. Another example could
be given the pair where we guessed class 0 and the true class was 0:

[
0 0

]
. Here, we

increment the matrix at position (x=0, y=0) from 0 to 1. With the two examples we get
the following confusion matrix as shown in Figure 4.6



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Figure 4.6: The confusion matrix with [3 5] and [0 0] inserted

As we fill in the matrix with more predictions, we can start to infer properties of the
classifier. After approximately 1600 evaluations, our result might at the end look like
Figure 4.7. We can see that the majority of predictions lie around the diagonal. This
centralisation means that most of our results were classified correctly, as values at the
diagonal are the same x and y values, and subsequently a correct prediction. We can
also discern something about the four primary metrics associated with a value in the
matrix.

True Positive (TP): True positive for a class is when the sample is predicted posi-
tive, and the True label is also positive. In the Kvasir dataset, we have a True positive

62



195 50 0 0 0 0 2 1
4 148 1 0 0 0 0 0
0 0 152 0 3 40 0 5
0 1 0 198 0 0 13 4
0 0 0 0 195 1 5 2
0 0 47 0 1 159 0 0
1 0 0 0 0 0 172 8
0 1 0 2 1 0 8 180



Figure 4.7: The confusion matrix with almost 1600 predictions

result if, for the class polyp, we predict a polyp.

True Negative (TN): True Negative is the opposite of true positive. Given the class
Polyp from the Kvasir dataset, we guess that the image is not a polyp when the True
label is non-polyp.

False Positive (FP): False positive is, given a True label, we predict it to be False.
We often call this type of error a ”Type 1 error”. In the polyp case, this is the case where
we predict a polyp when there is no polyp present.

False Negative (FN): False positive is the case where we fail to predict the class
when it is True. We call this error for ”Type 2 error”. False Negative is, in our case,
the least desirable outcome for our classes with pathological findings like Esophagitis,
Polyps and Ulcerative Colitis.

The metrics described is in the case of “single class” labelling. In most medical cases
we often want to use more than two classes for the data. When labelling data based on
multiple classes we use the metrics as shown in Figure 4.8, here we can see that for a
given class we only have one option for True positive, and the diagonal and horizontal
represent False positive and False Negative respectively. The rest of the options are
True negative.

4.2.2 Common Metrics

When evaluating our results, we use a set of common metrics used in the field of
statistics and machine learning. The metrics we will be using in this thesis are Recall
(REC), Precision (PREC), Specificity (SPEC), Accuracy (ACC), Matthews correlation
coefficient (MCC), and F1 score (F1).

Accuracy: Accuracy is the percentage of the predictions that were classified correctly.
It describes how many of our predictions were correct out of the total predictions made
as shown in equation 4.1. It is the most common metric given its simplicity both in
calculation and understanding. In general when our data is balanced, and we only
have a few classes, we can get away with using accuracy. A pitfall with the accuracy
metric is the lack of a comprehensive overview of the data, as it is just a summation

63

Figure 4.8: Confusion matrix with eight classes, here True positive is marked in green,
False Negative and False positive marked in red, and True negative in blue.

without respect to classes involved. In this project, we use accuracy during the training
step as a metric of success. After training is complete, we do not use accuracy as an
indication of success given our unbalanced datasets.

ACC =
TP + TN

TP + TN + FP + FN
(4.1)

Recall: Recall is the probability of detection, often called sensitivity. This metric is
a measure of the fraction of relevant instances that have been retrieved over the total
amount of relevant instances for a binary classification example. It is calculated using
equation 4.2.

Recall together with Specificity and Precision give a complete view of the data
compared to for instance accuracy alone. This difference is shown when we have
uneven datasets. Given a dataset where we know that only 1% of the data is negative,
we will get an accuracy of 99% if we label all the data as positive. When adding
recall, specificity and precision, our score will reflect that we mislabeled all the negative
values.

REC =
TP

TP + FN
(4.2)

Specificity: Specificity measures the proportions of our samples that were correctly
identified as negative, when the true class were also negative. Specificity is related to

64

recall as an opposite in the binary class example. Equation 4.3 shows the equation used
for specificity.

TPR =
TN

TN + FP
(4.3)

Precision: Precicion is the meassure of relevance in the binary classification case.
As we can see from equation 4.4 the formula is similar to recall, but it only looks at the
positive samples.

PREC =
TP

TP + FP
(4.4)

F1 score: F1 score is a combination of precision and recall as shown in equation 4.5.

F1 =
precision× recall
precision + recall

(4.5)

Matthews correlation coefficient: Matthews correlation coefficient is a metric that
takes all four possible states of TP, TN, FN and FP in to account. As with the F1 score,
the Matthews correlation coefficient gives a score that is based on a more complete
understanding of the data compared to how metrics like recall and precision only looks
at a subset of the data.

Equation 4.6 shows the formula. It can output a score from -1 to 1, where 1 is a
correct classification and -1 a total incorrect prediction. A score of 0 shows no statistical
relevance in the result we have.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.6)

4.2.3 Singleclass vs Multiclass Metrics

The metrics presented are, in general, a solid way to present the validity of a model.
However, not all metrics presented are the same when switching between single and
multiclass classification. Metrics like Accuracy is designed to work for multiclass
classification, given that there is only one way to calculate the score as shown in either
equation 4.1 or in equation 4.7.

∑(diag(CovarienceMatrix))
∑(CovarianceMatrix)

(4.7)

The problem with multiclass metrics arises when there is more than one way to
calculate the metrics needed, this can be for instance Recall and Specificity, where we
have multiple ways to add together the class-wise scores. The three most common ways
to calculate the average are:

Micro average: calculates the mean value of each of the binary metrics and averages
the result over the total number of samples. Micro average ignores all class frequencies
and gives us a metric based on all samples gathered. Micro-averaging may be preferred

65

Name Version

Ubuntu 18.04.2
Python 3.6.7

Tensorflow 1.13.0
Keras 2.2.4

CUDA 10.0.130
cuDNN 7

Table 4.1: Software specifications for our system

in multilabel settings, including multiclass classification where a majority class is to be
ignored.

Macro average: calculates the mean of each of the binary metrics, giving the same
weight to each of the classes. The macro average gives importance to classes with few
samples, and infrequent classes play the same roles as the frequent ones. The disad-
vantage with Macro average is the fact that in the real world some classes often plays a
more significant role than others, and primarily classifying wrong at some of the classes
can worsen the total result, even though it might not matter in the end.

Weighted average calculates the mean of each of the binary metrics but gives a
weighted sum for each of the scores before it is averaged. The weight of each class
depends on the size of the true data samples. The weighted average gives us the ad-
vantage that small classes still count more than it would with for instance Micro aver-
age, but since it depends on the number of samples from each class it can end up more
or less as a black box during calculation. Weighted average gives us the best of both
worlds, but it lacks the intuitiveness from the two other classes.

With the three methods presented, we have chosen to Macro average our results.
While both Macro and Weighted average would give a good indication given that not
all our datasets are balanced, we argue that the weighted average would give metrics
that are harder to explain when we are working on datasets with unbalanced classes.

In addition to looking at the Macro average of precision and recall, we want to look
at specific cases of the classification. In many cases, we have multiple classes, where we
are most interested in just one or a handful of the classes shown. For instance, a focus
we have in this thesis is to give a score on how predictable polyp detection is, and on
that case, we want to discuss the True positive rate (TPR) of the polyp detection versus
the TPR of the non-polyp classes.

As stated, our primary metric for comparison is the Matthews correlation coeffi-
cient, with a secondary focus on precision and recall when we compare different re-
sults.

66

Category Name

CPU Intel i5-4590 CPU @ 3.30GHz
GPU Nvidia GeForce GTX 1080 TI
RAM Kingston 16 GB DDR3 @ 1600 MHz

Table 4.2: Hardware specifications for our system

4.3 Setup of experiments

As we recall, we proposed the following hypothesis.

Hypothesis H0: When classifying images, we will get the best result when we have
images with the least amount of sparse information. Hence, by removing areas with
sparse information, we will see an increase in classification performance compared to
not removing the areas.

Hypothesis H1: When training a classifier, we will get a higher probability of
generalisation of our results when removing the dataset-specific artefacts compared
to not removing artefacts.

In this thesis we use the hypothesises as the basis to solve the problem statements.
We divide our work into two parts, inpainting and classifying. First, we will look at the
process of inpainting in detail, and inspect the results we have. We will look at how
parameters affect the results, and how different networks will differ in the generating
process.

After a rundown of the generation of the custom datasets trough inpainting, we will
show how the classification scores for each of the created dataset. Here we look at the
datasets generated by inpainting and compare them with a base case.

Our primary goal in this thesis is to see if any of the generated datasets can help with
classification. We will both compare the different areas inpainted, and the method used
to inpaint the images. For the classification, we will use MCC as our primary metric
for comparison, as described in section 4.2.2. As we described in the MCC paragraph,
this metric gives us the best indication of success based on the imbalance of data in
the CVC datasets. We chose to show the other metrics from section 4.2.2 as well, but
they are only there to get a comprehensive picture of the results. For the experiments
we used the hardware setup shown in table 4.2. The software type and version for the
experiments is shown in table 4.1.

4.4 Results of the Inpainting

We will first take a look at the generation of the new datasets and the machine learning
methods used to inpaint the problematic areas.

We can recall that based on Hypothesis H0, we can assume that the removal of

67

areas with sparse information we achieve a higher classification score. We have chosen
our first dataset to contain the images from the Kvasir dataset where the black corners
and edges are inpainted. From this, we hypotosise that we will see an increase in
classification when training and testing on the same dataset, as well when testing on a
new dataset, given that the network has less sparseness to take into account.

Based on Hypothesis H1, we predict that the removal of areas with dataset specific
artefacts will result in a higher classification score. By removing the green squares in
the corners and the text overlayed on top of the images, we predict that we get a higher
classification score on previously unseen datasets compared to not removing dataset
specific artefacts.

With Hypothesis H0 and H1 in mind, we present three types of datasets with two
different generators to see if our hypothesises are correct. The full list of datasets is
shown in Figure 4.3

BC: Black corner. GS: Green square. BC+GS: Black corner and Green square

Dataset labels Size Inpainted area Generator network used

I - Base Case 256x256 px - -
II - Autoencoder with black corner 256x256 px BC Autoencoder
III - Autoencoder with green square 256x256 px GS Autoencoder
IV - Autoencoder with both 256x256 px BC+GS Autoencoder
V - GAN with black corner 256x256 px BC GAN
VI - GAN with green square 256x256 px GS GAN
VII - GAN with both 256x256 px BC+GS GAN
VIII - Base Case 512x512 px - -
IX - Autoencoder with black corner 512x512 px BC Autoencoder
X - Autoencoder with green square 512x512 px GS Autoencoder
XI - Autoencoder with both 512x512 px BC+GS Autoencoder
XII - GAN with black corner 512x512 px BC GAN
XIII - GAN with green square 512x512 px GS GAN
XIV - GAN with both 512x512 px BC+GS GAN

Table 4.3: Details of all datasets we generate in the experiments.

4.4.1 Black corners

When generating the two first datasets (II & V in Table 4.3), we used the mask shown
in Figure 3.4b. Here we did two operations, first cropping, then inpainting. The result
is shown in Figure 4.9 and Figure 4.10.

In Figure 4.9 we present representative images from both datasets inpainting the
four edges around the image. Figure 4.9 show images that, for both datasets, images
are well inpainted, and a good portion could pass as real images. We can discern that,
in general, the autoencoder dataset gives a much more blurry image compared to the
dataset generated by the GAN.

Figure 4.10 show images that are more problematic. In Figure 4.10b the image

68

(a) Original polyp image (b) AE generated polyp
image

(c) GAN generated polyp
image

(d) Original normal-z-line
image

(e) AE generated
normal-z-line image

(f) GAN generated
normal-z-line class image

Figure 4.9: Images from the polyp class and the z-line class. Both the AE and the GAN
performed well in this scenario.

69

(a) Original ulcerative colitis
image

(b) AE generated ulcerative
colitis image

(c) GAN generated
ulcerative colitis image

(d) Original polyp image (e) AE generated polyp
image

(f) GAN generated polyp
image

Figure 4.10: Images from the polyp class and the ulcerative colitis. Here we see results
that are not up to a good standard with regards to light and colours.

70

generated by the Autoencoder has drawn its colour from the nearby white over-
saturated area, and subsequently, it has misdrawn the corner. In Figure 4.10c we do not
have the same problem, as it has drawn information from a larger part of the image,
and hence not drawn the oversaturated area. When confronted with a green box, both
models failed inpainting the right colour over it. In general, we remove a lot of the areas
with sparse information solely by cutting the black border of the image. The finished
product is without any areas with sparse information, compared to for instance 4.9a,
where 25% of the image contains no relevant information.

The training time for the AE regarding removing the black edges took under 4 hours.
This wait, in the realm of machine learning, is fairly quick and based only on the
training time, might be worth doing. The training time of the GAN was over two
days. The result of the GAN is a significant improvement over the AE, but might not
be worth it at 12 times the training time.

4.4.2 Green square

The next two datasets (III & VI in Table 4.3) were generated from the mask in Figure
3.4c. The goal of the datasets generated by the Autoencoder and the GAN is to
remove the dataset-specific green square. The same cropping-inpainting procedure
were applied. The results is shown in Figure 4.11 and Figure 4.12.

Figure 4.11 and Figure 4.12 show two examples from the datasets with the green
square inpainted. Figure 4.11 show images that, for both datasets, images are
challenging areas to get correct, and require more than just colour matching to pass
as real images. In the first image, a large part of a polyp is covered, and we can see that
both algorithms try to recreate the area to varying success. We can see that the GAN
is much better, in both examples, to find the right colours at the edges, giving a more
natural look. Another advantage with the GAN is the ability to estimate the corner size
better, as we can see that the corner is unnaturally large in Figure 4.11e compared to
Figure 4.11f.

Figure 4.12a, 4.12b and 4.12c show how the two algorithms handles unexpected
data. Here the green area was moved to the right to the point it was outside the mask
range. Both algorithms added a green tint to the images, though the GAN did a better
job making it natural looking. The last image set shows that the GAN has learned to
connect structures throughout the inpainted area. The mucosa we see in the foreground
in Figure 4.12f is a full structure as we would expect if we removed the green square.

Just as with the black corners, the training time for the AE regarding removing the
green square took about 4 hours. The training time of the GAN was over two days,
closer to three days. However, the ability to predict structures and overall a greater
awareness of context might be worth the training time.

71

(a) Original polyp image (b) AE generated polyp
image

(c) GAN generated polyp
image

(d) Original z-line image (e) AE generated z-line
image

(f) GAN generated z-line
image

Figure 4.11: Images from the polyp class and the normal-z-line class. Here we see
results that needed finer detail when inpainting.

72

(a) Original polyp image (b) AE generated polyp
image

(c) GAN generated plyp
image

(d) Original normal-cecum
image

(e) AE generated
normal-cecum image

(f) GAN generated
normal-cecum image

Figure 4.12: Images from the polyp class and the normal-cecum class. Here we have
images with a problematic green square, and an image with details drawn from both

sides of the inpainted area.

73

4.4.3 Combination

The last two datasets (IV & VII in Table 4.3) were generated from the mask in Figure
3.4d. The goal of the datasets generated by the AE and the GAN check how a
combination of the previous datasets would do to the classification. The same cropping-
inpainting procedure were applied as with the other sets. The result are shown in
Figure 4.13 and Figure 4.14.

Figure 4.13 and Figure 4.14 show two examples from the datasets with the green
square inpainted as well as the black corners inpainted. The first set of images in Figure
4.13 shows cases where both algorithms did reasonably well. Here, most of the job was
cutting the images, and because the areas inpainted were homogeneous, the main task
was to colour-match the areas.

Figure 4.14 show some more problematic areas. Image 4.14b show a downfall with
the AE by the fact that it uses a green colour not present in any of the training images.
Luckily the GAN in Figure 4.14c manages to use the dyed mucosa to better inpaint the
area. We encounter the opposite problem in Figure 4.14d, 4.14e and 4.14f. Here the
AE manages to not use the blue strip to inpaint the square green, while the GAN does.
This mispainting by the GAN is probably caused by the blue ´´instrument” in the top
left corner of the image. Here we believe the GAN misclassifies the image, assuming it
is a dyed-lifted-polyp, and subsequently fills in the blue ink into the image.

The training time for the total AE inpainting was the longest, but still within 5 hours.
Just as with the inpainted corners, the training time of the GAN was closer to three
days. The results were reasonably better.

4.4.4 Double resolution

In addition to the datasets at standard size, we created the datasets at double resolution
(IX & XIV in Table 4.3). The goal of the seven datasets generated at double resolution
was to see how image size affects the results. We apply the same cropping-inpainting
procedure as with the other sets. The result is shown in Figure 4.15.

As we see in figure 4.15 the inpainted areas is more smeared out in contrast to the
previous datasets. In this thesis, we have chosen to keep our focus primarily on the
images at 256× 256 px resolution though we keep the double resolution images as a
means to draw more context from our results.

74

(a) Original normal-pylorus
image

(b) AE generated
normal-pylorus image

(c) GAN gnerated
normal-pylorus image

(d) Original polyp image (e) AE generated polyp
image

(f) GAN generated polyp
image

Figure 4.13: Images from the normal-pylorus an the polyp class. These images
represent good images where most of the job was just to match the colour, rather than

understanding complex structures in the images.

75

(a) Original dye lifted polyp
image

(b) AE generated dye lifted
polyp image

(c) GAN generated dye lifted
polyp image

(d) Original polyp image (e) AE generated polyp
image

(f) GAN generated polyp
image

Figure 4.14: Images from the dye lifted polyp an the polyp class. The images were
chosen because it highlighted flaws in both models.

76

(a) Original esophagitis
image

(b) AE generated esophagitis
image

(c) GAN gnerated
esophagitis image

Figure 4.15: Images from the esophagitis class.The images from the double resolution
dataset is much more smeared out compared to the smaller images.

4.5 Results of the Transfer Learning Experiments

In the previous section, we looked at the generation of the new datasets. We looked
at how the different hypothesises formed the basis for different masking, and we
discussed downfall and advantages with the autoencoder method versus the GAN
method. We will now look at the results when using the newly created datasets when
training a classifier for each one of them. The model used for the classifier is the same
for all the datasets. We use the same learning rate, the same model, and the same
parameters for early stopping of the training. In this section we will first go through
the model, then we will look at the results for each of the runs.

4.5.1 Models

The classification model is constructed to give the best real-world correspondence.
First, we supply information about the model. This information is for instance batch

size, type of network, and choice of an optimiser. The transfer learning network chosen
is loaded with the imagenet weights. With the model loaded into memory, the global
average pooling layer is added, followed by a fully connected layer with the number of
nodes equal to the number of classes in the input dataset and a softmax activation step
as described in more detail in chapter 3.3.

With the model loaded we complete it by adding the desired optimiser, and set
parameters like batch size, learning rate, validation patience, and image size.

As described, we increase our confidence in our results by using k-fold cross-
validation. This method ensures a realistic result using the theoretically best model for
the task. When we are looking at the models, we use the base case results as a reference
point improve upon. This base case is the result of a standard run of classification
without any inpainting.

77

4.6 Densenet121

As stated in Section 3.3, we use the research provided by Borgli et al. in hyperparameter
optimisation [58]. We concluded that Densenet121 is the optimal network to achieve the
highest score when both training and evaluating on the Kvasir dataset.

Based on the results, we assume that Densenet121 will give the best results both
when evaluating our network on the Kvasir dataset, and when we use the generalised
models on the CVC datasets. The attributes for the Densenet training routine is shown
in Table 4.4.

Atribute Value

Max number of epochs 20
Patience for validation 3
Folds 6
Image size 256x256
Batch size 24

Table 4.4: Training attributes for Densenet121 base model

The max number of epochs is an artificial roof where we do not allow any more
training, even when the network is improving. We believe that the network, should it
come to 20 epochs, will only overfit the results. During the construction of our network,
we got models that trained over 20 epochs, though the extra time it took did not help
with the overall classification score.

To prevent the network of reaching 20 epochs we have chosen validation patience
of 3. A validation patience of 3 ensures that, if we do not improve our results within the
three most recent epochs, we do not continue training. This patience is a compromise
between a higher value, more likely to overfit, and a lower value, more likely to stop
too early to learn all the meaningful representations.

In addition to the number of epochs trained we divided Kvasir into six folds. Based
on the six folds we got 1333 images for both validation and testing, while we use the
majority of the images for training. A smaller fold would leave the training with too
little data, and hence we could not expect as good of a result. A higher number of folds
would increase the number of training runs substantially, since we are training on 14
different datasets.

Finally, the batch size was decided to be the highest number that did not give any
memory issues. We believe that a batch size of 24 is well within the scope of reality.

4.6.1 Densenet121 Base Model

We present the results from the Densenet121 network in table 4.16. This table shows
the base case result with the Densenet121 model, meaning the unaugmented dataset.

78

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1310 37
G 618 319

(a) Baseline Confusion
matrix for the CVC 356

dataset

A B C D E F G H



A 150 6 0 0 0 0 1 0
B 14 160 0 0 0 0 0 0
C 0 0 130 0 1 19 0 0
D 0 0 0 162 0 0 1 3
E 0 0 0 0 164 0 0 0
F 0 0 36 0 0 147 1 0
G 1 0 0 3 1 0 161 2
H 1 0 0 1 0 0 2 161

(b) Baseline
Confusion matrix for

the Kvasir dataset

I G[]
I 1311 3553
G 618 6472

(c) Baseline Confusion
matrix for the CVC 12k

dataset

CVC 356 dataset

MCC 0.4244
F1 0.6467
Precicion 0.7878
Recall 0.6565
Accuracy 0.7132

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9202
F1 0.9299
Precicion 0.93
Recall 0.9313
Accuracy 0.93

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2435
F1 0.5711
Precicion 0.6626
Recall 0.5912
Accuracy 0.6511

(f) The CVC 12k
dataset Metrics

Figure 4.16: Densenet121 Base results

The Matrices in Figure 4.16 shows the evaluation of the test set on each of the three
datasets used.

On the Kvasir dataset, we used five folds for training and validation, and the last
sixth fold for the testing. That left us with 1342 images divided evenly between the
classes. The CVC datasets were only used for testing and hence did not need k fold
cross-validation.

CVC 356 The CVC 356 base case MCC lies at 0.42 with an accuracy of 71%. From the
Confusion matrix, we can discern that most polyps were classified correctly, except for
37 polyp images incorrectly classified as non-polyp. Moreover, we also had 618 cases
of non-polyps classified as polyps. In a vacuum, the results are adequate, showing a
high accuracy on an unseen dataset.

The Kvasir In this Confusion matrix, we see that most of the samples lie throughout
the diagonal, which, as we recall, is the correct classification. The Kvasir base case

79

MCC lies at 0.92 which coincides with a near perfect accuracy given the complexity of
the dataset. The misclassification is between the esophagitis class, and the normal-z-
line class, which are already two notoriously different classes to differentiate. There is
also a small mixup between dyed lifted polyps and dyed resection margins, another
remarkably different classification task.

CVC 12k The CVC 12k base case MCC lies at 0.24 with an accuracy of 65%. From the
Confusion matrix, we can discern that most polyps were classified correctly, though the
model missed a third of the polyps. Though the accuracy were 65%, this model most
likely did not learn the essential features for classifying polyps.

4.6.2 Densenet121 Corners Inpainted

Based on Hypothesis H0 we would expect the act of inpainting the corner in the
images to give Kvasir a higher score compared to the baseline. Also, we expect to
see improvement in both CVC 356 and CVC 12k. We present the dataset created
by the GAN followed by the dataset created by the Autoencoder evaluated with the
Densenet121 model.

80

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1647 179
G 281 177

(a) GAN corners
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 157 12 0 0 0 0 0 0
B 8 154 0 0 0 0 0 0
C 0 0 116 0 0 11 0 0
D 0 0 0 162 0 0 3 5
E 0 0 1 0 166 0 3 0
F 0 0 49 0 0 155 1 0
G 1 0 0 2 0 0 158 2
H 0 0 0 2 0 0 1 159

(b) GAN corners
Confusion matrix for

the Kvasir dataset

I G[]
I 1648 4699
G 281 5326

(c) GAN corners
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.3184
F1 0.6562
Precicion 0.6757
Recall 0.6442
Accuracy 0.7986

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.914
F1 0.9233
Precicion 0.9239
Recall 0.9287
Accuracy 0.9239

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2842
F1 0.5398
Precicion 0.6928
Recall 0.6048
Accuracy 0.5834

(f) The CVC 12k
dataset Metrics

Figure 4.17: Densenet121 Inpainted corners with the GAN results

Figure 4.17 and 4.18 show the evaluation of the test set on each of the three datasets
made by both the GAN and Autoencoder.

CVC 356 We got the highest MCC from the Autoencoder with a score of 0.56
compared to a score of 0.31 from the GAN. In general, the Autoencoder has a higher
score overall compared to the GAN, where the Autoencoder reaches a higher score
than the base case, and the GAN does not. This difference indicates that the way the
Autoencoder inpaints sparsely covered areas give an edge in this use case.

The Kvasir When evaluating our results on the Kvasir dataset we see similar scores
for both the GAN and Autoencoder with 0.91 and 0.92 respectively. Here the
Autoencoder reaches a higher score than the base case, though the margin is too
small to significant. We can discern that the number of small errors throughout the
confusion matrices increases, indicating that the inpainted areas negatively help with
classification.

81

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1746 106
G 182 250

(a) AE corners
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 150 9 0 0 0 0 1 0
B 12 157 0 0 0 0 0 0
C 0 0 141 0 0 21 0 0
D 1 0 0 160 0 0 4 2
E 0 0 0 0 166 0 1 0
F 0 0 25 0 0 145 0 0
G 3 0 0 3 0 0 157 2
H 0 0 0 3 0 0 3 162

(b) AE corners
Confusion matrix for

the Kvasir dataset

I G[]
I 1747 5227
G 182 4798

(c) AE corners
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.563
F1 0.7792
Precicion 0.8039
Recall 0.7607
Accuracy 0.8739

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9226
F1 0.9321
Precicion 0.9322
Recall 0.9322
Accuracy 0.9322

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2867
F1 0.516
Precicion 0.6921
Recall 0.607
Accuracy 0.5475

(f) The CVC 12k
dataset Metrics

Figure 4.18: Densenet121 Inpainted corners with the AE results

CVC 12k The MCC scores for the GAN and Autoencoder both reaches a higher value
than the base case. When inpainting the corners we see an increase in MCC value of 0.04
for both methods, giving some indication that removing areas with sparse information
might give a higher classification score on other datasets with the same sparse areas.

4.6.3 Densenet121 Green Square Inpainted

We can recall from Hypothesis H1 that removing dataset specific artefacts we will
achieve a higher classification score when evaluating our models on previously unseen
datasets. In this experiment, we expect the Kvasir dataset not show any improvements,
though both the CVC 356 and the CVC 12k dataset we hope to improve compared to the
base case. We present the dataset created by the GAN followed by the dataset created
by the Autoencoder and evaluate their performance with the Densenet model together.

Figure 4.19 and 4.20 show the evaluation of the test set on each of the three datasets
used both for the GAN and Autoencoder.

82

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1848 92
G 80 264

(a) GAN green square
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 157 13 0 0 0 0 0 0
B 7 153 0 0 0 0 0 0
C 0 0 146 0 1 37 0 0
D 0 0 0 161 0 0 8 4
E 0 0 1 0 165 1 1 0
F 0 0 19 0 0 128 0 0
G 2 0 0 3 0 0 153 0
H 0 0 0 2 0 0 4 162

(b) GAN green square
Confusion matrix for

the Kvasir dataset

I G[]
I 1849 6850
G 80 3175

(c) GAN green square
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.71
F1 0.8549
Precicion 0.85
Recall 0.86
Accuracy 0.9247

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9116
F1 0.9222
Precicion 0.9224
Recall 0.9237
Accuracy 0.9224

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2275
F1 0.4131
Precicion 0.6376
Recall 0.594
Accuracy 0.4203

(f) The CVC 12k
dataset Metrics

Figure 4.19: Densenet121 Inpainted green square with the GAN results

CVC 356 As this is a dataset unseen by the classifier during training, we would
expect, given that Hypothesis H1 is True, that the classification score would be higher
than the base case. Here we have significantly higher score with both the GAN and
Autoencoder. The GAN reached an MCC score of 0.71 compared to the base case of
42. The Autoencoder also beat the base case with a large margin, given the MCC score
of 0.60. For both models, we see an increase in the recall, suggesting the number of
mismatches decreased.

The results highly suggest that our hypothesis about removing dataset-specific
artefacts to improve accuracy is indeed correct.

The Kvasir As with the previous tests we see little change in the scores when
evaluated on the Kvasir dataset. Here both the GAN and the Autoencoder got a
lower score compared to the base, though only with a small margin. Just like with
the experiment with the corners inpainted, inpainting the green square does little to
nothing with classification when the classifier already overfits.

83

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1746 106
G 182 250

(a) AE green square
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 150 9 0 0 0 0 1 0
B 12 157 0 0 0 0 0 0
C 0 0 141 0 0 21 0 0
D 1 0 0 160 0 0 4 2
E 0 0 0 0 166 0 1 0
F 0 0 25 0 0 145 0 0
G 3 0 0 3 0 0 157 2
H 0 0 0 3 0 0 3 162

(b) AE green square
Confusion matrix for

the Kvasir dataset

I G[]
I 1747 5227
G 182 4798

(c) AE green square
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.6072
F1 0.8017
Precicion 0.8248
Recall 0.7837
Accuracy 0.8879

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9158
F1 0.9262
Precicion 0.9262
Recall 0.9271
Accuracy 0.9262

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2029
F1 0.4185
Precicion 0.6257
Recall 0.5819
Accuracy 0.4287

(f) The CVC 12k
dataset Metrics

Figure 4.20: Densenet121 Inpainted green square with the AE results

CVC 12k As with the CVC 356 dataset, the CVC 12k dataset is unseen by the classifier
during training. Here, both the GAN and Autoencoder reaches a lower MCC value
when evaluated on the dataset. This result is a direct contradiction to the hypothesis H1,
showing that removing dataset specific artefacts does not always yield better scores. It
is important to note that there are significant differences between the two CVC datasets
which can influence the results. The most prominent feature is the edges around
the images in the 12k dataset. The much larger borders could ´´overwrite” much of
the work done by inpainting the green square, and could subsequently disrupt the
classifier.

4.6.4 Densenet121 Full Inpainting

In addition to testing the two hypothesises separately we, as we recall, want to check
both types of inpainting at the same time. When testing both inpainting types, we do
not draw any predictions, given that we do not know if the two methods interfere with
each other. We present the GAN inpainting of both the areas followed by the same

84

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1916 129
G 12 227

(a) GAN both areas
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 159 7 0 0 0 0 2 1
B 7 158 0 0 0 0 0 0
C 0 0 118 0 0 8 0 0
D 0 0 0 161 0 0 3 4
E 0 0 1 0 164 0 3 0
F 0 0 47 0 0 158 1 0
G 0 0 0 0 1 0 154 0
H 0 1 0 5 1 0 3 161

(b) GAN both areas
Confusion matrix for

the Kvasir dataset

I G[]
I 1917 7851
G 12 2174

(c) GAN both areas
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.7483
F1 0.8638
Precicion 0.8157
Recall 0.9434
Accuracy 0.9383

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9192
F1 0.9278
Precicion 0.9285
Recall 0.9339
Accuracy 0.9285

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2005
F1 0.3419
Precicion 0.6053
Recall 0.5954
Accuracy 0.3422

(f) The CVC 12k
dataset Metrics

Figure 4.21: Densenet121 Inpainted both areas with the GAN results

inpainting with the Autoencoder.
Figure 4.21 and 4.22 show the evaluation of the test set on each of the three datasets

used both for the GAN and Autoencoder.

CVC 356 Evaluating on the CVC 356 dataset we see the most significant increase in
the MCC score compared to the other models. We have, compared to the base case,
a 76% increase in MCC score, from 0.42 to 0.74 This increase shows that there might
be some viability to do more inpainting when training a model for unseen data. In
addition to getting the highest score for evaluation, we also got one of the lowest
scores too. The main difference in score is most likely the result of the precision of
the autoencoder being much lower than the precision of the GAN. The difference in
score can also be the result of variation within the k-fold transfer learning. Based
on our previous research, we have shown that this method had the highest standard
deviation for both generator models followed by the base case [21].This can indicate
that we should not rely on the result given its high variance.

85

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1889 238
G 39 118

(a) AE both areas
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 149 11 0 0 0 0 1 0
B 11 155 0 0 0 0 0 0
C 0 0 143 0 0 25 1 0
D 0 0 0 156 0 0 0 2
E 0 0 0 0 166 1 2 1
F 0 0 23 0 0 140 0 0
G 4 0 0 5 0 0 154 3
H 2 0 0 5 0 0 8 160

(b) AE both areas
Confusion matrix for

the Kvasir dataset

I G[]
I 1890 7452
G 39 2573

(c) AE both areas
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.4462
F1 0.6959
Precicion 0.6556
Recall 0.8198
Accuracy 0.8787

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9097
F1 0.9209
Precicion 0.9209
Recall 0.9213
Accuracy 0.9209

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2105
F1 0.3713
Precicion 0.6182
Recall 0.5937
Accuracy 0.3733

(f) The CVC 12k
dataset Metrics

Figure 4.22: Densenet121 Inpainted both areas with the AE results

The Kvasir As with the earlier tests, we see little change in the scores when evaluating
on the Kvasir dataset. Here we can see that the MCC values are within a margin to close
to draw any firm conclusions.

CVC 12k As with the inpainted square example, the MCC values when inpainting the
largest possible area is lower than the base case. For the Densenet model, on the CVC
12k set, removing artefacts gives not any advantages compared no not removing the
artefacts. Here we can notice that the recall is constant between each model and the base
case, while the precision decreases for both inpainted datasets. This drop in precision
can indicate that the inpainted models less frequently gets its predictions correct.

86

4.7 InceptionResNetV2

In addition to just testing our results with the Densenet121, we wanted to see
if the results were replicable with other networks. We present our result from
InceptionResNetV2 (IRV2) as a base of comparison versus the Densenet121 model.

As mentioned in the metodology, InceptionResnetV2 is a model with more
parameters, and hence needs more time to train compared to the Densenet architecture.
For the InceptionResNetV2 model, we used greater patience while training to ensure
that the model did not underfit, or skipped essential features when training. The stats
for the InceptionResNetV2 training is shown in Table 4.5.

Atribute Value

Max Number of epochs 20
Patience for validation 4
Folds 6
Image size 256x256
Batch size 24

Table 4.5: Training attributes for InceptionResNetV2 base model

From the previous tests in done on the same datasets with the InceptionResNetV2
network, we had gotten inconclusive results when the training patience was too low
[21]. With the patience of four we, on average, train longer and hence get a more stable
result without overfitting.

4.7.1 InceptionResNetV2 Base Model

We present the results with InceptionResNetV2 in table 4.23. This Table shows the base
case result with the larger Inceptionresnetv2 model.
The Matrices in Figure 4.23 shows the evaluation of the test set on each of the three
datasets used. As with the Densenet model we used k-fold cross-validation with six
folds for the Kvasir set and evaluated on the CVC sets.

CVC 356 The CVC 356 base case MCC lies at 0.20 with an accuracy of 61%. Compared
to the Densenet model we lost half of our MCC score and 10% accuracy. From the
Confusion matrix, we can discern that the model had trouble finding polyps with
only 243 of the 356 total polyps found. Here we get strong indications that the
InceptionResNetV2 model did not learn the essential features of a polyp, given the
high score on the training set and low score on the test set. The results from this model
are arguable to low to be used successfully as a classifier.

87

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1142 113
G 786 243

(a) Baseline Confusion
matrix for the CVC 356

dataset

A B C D E F G H



A 132 2 0 0 0 0 1 0
B 31 163 0 0 0 0 0 0
C 0 0 124 0 0 15 0 0
D 0 0 0 160 0 0 4 6
E 0 0 2 0 166 1 1 1
F 0 0 39 0 0 150 1 0
G 3 0 0 1 0 0 146 1
H 0 1 1 5 0 0 13 158

(b) Baseline
Confusion matrix for

the Kvasir dataset

G I[]
I 1142 4857
G 787 5168

(c) Baseline Confusion
matrix for the CVC 12k

dataset

CVC 356 dataset

MCC 0.2005
F1 0.5342
Precicion 0.6375
Recall 0.5731
Accuracy 0.6064

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.89
F1 0.902
Precicion 0.9029
Recall 0.9083
Accuracy 0.9029

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.0791
F1 0.4675
Precicion 0.5538
Recall 0.5291
Accuracy 0.5279

(f) The CVC 12k
dataset Metrics

Figure 4.23: InceptionResNetV2 Base results

The Kvasir As with the Densenet model we have scores close to the highest MCC
possible. This score, as with the previous model, shows that the model most likely
is overfitting to the data. The misclassification is between the esophagitis class, and
the normal-z-line class, as well as a small mixup between dyed lifted polyps and dyed
resection margins.

CVC 12k The InceptionResNetV2 model evaluated on the CVC 12k dataset gives a
relatively low MCC score of 0.07. The score gives us a good indication that the model
did not learn the dataset-specific features that define the dataset, and hence gave us
such a low score. Given the significant differences between the Kvasir and the CVC 12k
set, a 50% classification accuracy is acceptable for an unseen dataset with 83% polyps,
though not acceptable for a model used by medical staff.

88

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1489 188
G 439 168

(a) GAN corners
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 155 8 0 0 0 0 2 0
B 10 158 0 0 0 0 0 0
C 0 0 133 0 0 43 0 2
D 0 0 0 162 0 0 3 1
E 0 0 1 0 166 0 8 0
F 0 0 31 0 0 123 1 0
G 0 0 0 2 0 0 143 0
H 1 0 1 2 0 0 9 163

(b) GAN corners
Confusion matrix for

the Kvasir dataset

I G[]
I 1490 3507
G 439 6518

(c) GAN corners
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.2005
F1 0.5875
Precicion 0.6221
Recall 0.5823
Accuracy 0.7255

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.8927
F1 0.9056
Precicion 0.9059
Recall 0.9072
Accuracy 0.9059

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.3152
F1 0.5989
Precicion 0.7113
Recall 0.6175
Accuracy 0.6699

(f) The CVC 12k
dataset Metrics

Figure 4.24: InceptionResNetV2 Inpainted corners with the GAN results

4.7.2 InceptionResNetV2 Corners Inpainted

For the first comparison, we look at the dataset with the inpainted corner. We present
both the work done by the GAN and the Autoencoder.
Figure 4.24 and 4.25 shows the evaluation of the test set on each of the three datasets
made by both the Autoencoder and GAN.

CVC 356 Evaluating our GAN generated model gives us an MCC value close to the
baseline. We can see a higher accuracy, F1, precision and recall score with this model,
though the skewness of the dataset is the cause of it. The AE MCC value here is
Negative, indicating that the model was not statistically significant at all.

The Kvasir When evaluating our results on the Kvasir dataset we see similar scores
for both the GAN and Autoencoder with 0.892 and 0.891 respectively. The same
potential overfitting gives us no clear indication if any of our hypothesises are valid.

89

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 225 49
G 1703 307

(a) AE corners
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 158 23 0 1 0 0 0 1
B 8 143 0 0 0 0 1 1
C 0 0 107 0 0 11 0 0
D 0 0 0 160 0 0 8 4
E 0 0 0 0 163 0 0 1
F 0 0 58 0 1 155 0 0
G 0 0 0 1 2 0 157 2
H 0 0 1 4 0 0 0 157

(b) AE corners
Confusion matrix for

the Kvasir dataset

I G[]
I 225 491
G 1704 9534

(c) AE corners
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC -0.0234
F1 0.2319
Precicion 0.4895
Recall 0.487
Accuracy 0.2329

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.8913
F1 0.9026
Precicion 0.9036
Recall 0.9114
Accuracy 0.9036

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.1049
F1 0.5335
Precicion 0.5338
Recall 0.5813
Accuracy 0.8164

(f) The CVC 12k
dataset Metrics

Figure 4.25: InceptionResNetV2 Inpainted corners with the AE results

CVC 12k Both models beat the baseline for the CVC 12k MCC value. Here we can
see clearly that the GAN has gotten results better than the Densenet model. The high
MCC value for the GAN shows with great confidence that the removal of the corners
around the image helped the InceptionResNetV2 model with learning the features of
the polyps, rather than relying on the edges for detection.

4.7.3 InceptionResNetV2 Square Inpainted

Here we present the results from the dataset with the inpainted green square, both
with the Autoencoder and the GAN. Based on our hypothesis we expect the same
improvement here as we had in our Densenet model.

Figure 4.26 and 4.27 show the evaluation of the test set on each of the three datasets
used both for the GAN and Autoencoder when the green square was inpainted.

90

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1871 174
G 57 182

(a) GAN square
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 147 9 0 0 0 0 1 0
B 15 157 0 0 0 0 0 1
C 0 0 135 0 0 19 0 0
D 1 0 0 165 0 0 18 18
E 0 0 0 0 166 4 3 0
F 0 0 31 0 0 143 0 0
G 2 0 0 0 0 0 140 2
H 1 0 0 1 0 0 4 145

(b) GAN square
Confusion matrix for

the Kvasir dataset

I G[]
I 1872 7821
G 57 2204

(c) GAN square
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.5708
F1 0.7768
Precicion 0.7408
Recall 0.8382
Accuracy 0.8989

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.8888
F1 0.9019
Precicion 0.9021
Recall 0.9064
Accuracy 0.9021

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.1788
F1 0.3405
Precicion 0.5952
Recall 0.584
Accuracy 0.341

(f) The CVC 12k
dataset Metrics

Figure 4.26: InceptionResNetV2 Inpainted square with the GAN results

CVC 356 Evaluating our GAN generated model gives us an MCC value of 0.57 which
is close to three times the MCC value of the baseline. This score highly indicates that
our hypothesis H1 holds ground. Similarly, our AE generated model gives us the MCC
score of 0.43. Though not as good, it is still a doubling of the baseline. The results here
gives us a strong belief that, even with unoptimised datasets, we can get merit from
removing dataset specific artefacts.

The Kvasir As with the previous tests we see little change in the scores when
evaluated on the Kvasir dataset. Here, as with the corners inpainted, both the GAN and
the Autoencoder got a lower score compared to the base with the same small margin.

CVC 12k The results from the CVC 12k dataset is here similar to the Densenet model.
Here we see that, by inpainting the square area we have a noticeable improvement in
MCC score, indicating that the inpainting of the artefacts give a positive influence to
the classifier.

91

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1784 195
G 144 161

(a) AE square
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 149 12 0 0 0 0 2 0
B 16 154 2 0 0 0 0 0
C 0 0 138 0 0 40 0 0
D 0 0 0 158 0 0 14 7
E 0 0 0 0 159 1 3 0
F 0 0 22 0 2 116 0 0
G 1 0 1 5 1 4 142 2
H 0 0 3 3 4 5 5 157

(b) AE square
Confusion matrix for

the Kvasir dataset

G I[]
I 1785 6055
G 144 3970

(c) AE square
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.4026
F1 0.7002
Precicion 0.6888
Recall 0.7147
Accuracy 0.8516

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.867
F1 0.8822
Precicion 0.8833
Recall 0.8836
Accuracy 0.8833

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.2488
F1 0.4635
Precicion 0.6607
Recall 0.5963
Accuracy 0.4814

(f) The CVC 12k
dataset Metrics

Figure 4.27: InceptionResNetV2 Inpainted square with the AE results

4.7.4 InceptionResNetV2 Full Inpainting

As with the Densenet model we test the two hypothesises separately by inpainting both
areas We would expect our models to follow the scores from the Densenet model. We
present the GAN inpainting of both the areas followed by the same inpainting with the
Autoencoder.
Figure 4.28 and 4.29 show the evaluation of the test set on each of the three datasets
used both for the GAN and Autoencoder.

CVC 356 For the CVC dataset, we see a small improvement for the autoencoder,
while the GAN gives us one of the lowest scores in this experiment. The low scores
here, compared to our previous example, with only the artefacts inpainted, suggest
that the inpainting of the edges around the image contributes to more misclassification,
especially for the GAN, as the success of the lies in the high precision.

92

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 295 37
G 1633 319

(a) GAN both areas
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 143 2 0 0 0 0 0 0
B 19 164 0 0 0 0 0 0
C 0 0 138 0 0 22 0 0
D 0 0 0 163 0 0 6 3
E 0 0 2 0 166 1 3 1
F 0 0 26 0 0 143 0 0
G 3 0 0 1 0 0 152 0
H 1 0 0 2 0 0 5 162

(b) GAN both areas
Confusion matrix for

the Kvasir dataset

I G[]
I 295 478
G 1634 9547

(c) GAN both areas
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.0505
F1 0.2687
Precicion 0.5245
Recall 0.5260
Accuracy 0.2688

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.8718
F1 0.8864
Precicion 0.8870
Recall 0.8918
Accuracy 0.8870

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.1574
F1 0.5594
Precicion 0.5526
Recall 0.6177
Accuracy 0.8233

(f) The CVC 12k
dataset Metrics

Figure 4.28: InceptionResNetV2 Inpainted both areas with the GAN results

The Kvasir As with the other Kvasir tests, here the InceptionResNetV2 model gives
us an MCC score of approximately 0.9, as the other test also has shown.

CVC 12k The CVC 12k set with full inpainting is better than the baseline for both the
autoencoder and the GAN, giving us reason to believe that, given the similarity to the
scores for the last inpainting, the removal of the dataset-specific artefacts improved the
model the most. We can see, for both models, that the precision rose significantly.

93

A:dyed-lifted-polyps , B:dyed-resection-margins , C:esophagitis , D:normal-cecum , E:normal-pylorus ,
F:normal-z-line , G:polyps , H:ulcerative-colitis , I:non-polyp

I G[]
I 1167 89
G 761 267

(a) AE both areas
Confusion matrix for
the CVC 356 dataset

A B C D E F G H



A 141 3 0 0 0 0 4 0
B 24 163 0 2 0 0 0 0
C 0 0 130 0 1 15 0 0
D 0 0 0 148 0 0 1 2
E 0 0 0 0 163 0 0 0
F 0 0 36 0 0 151 0 0
G 1 0 0 14 1 0 160 7
H 0 0 0 2 1 0 1 157

(b) AE both areas
Confusion matrix for

the Kvasir dataset

I G[]
I 1167 3061
G 762 6964

(c) AE both areas
Confusion matrix for
the CVC 12k dataset

CVC 356 dataset

MCC 0.2590
F1 0.5594
Precicion 0.6776
Recall 0.5944
Accuracy 0.6278

(d) The CVC 356
dataset Metrics

Kvasir dataset

MCC 0.9097
F1 0.9209
Precicion 0.9209
Recall 0.9213
Accuracy 0.9209

(e) The Kvasir dataset
Metrics

CVC 12k dataset

MCC 0.9017
F1 0.9134
Precicion 0.9134
Recall 0.9178
Accuracy 0.9134

(f) The CVC 12k
dataset Metrics

Figure 4.29: InceptionResNetV2 Inpainted both areas with the AE results

4.8 Classification Results Based on the Densenet Model

Tables 4.6 to 4.8 show the summary of the results gathered from the Densenet model,
and Figures 4.30 to 4.32 show the visualised MCC values.

The CVC 356 dataset (Figure: 4.6 & Bar: 4.30a) Here we can see a considerable
improvement when inpainting in general. The results coincide well with our
hypothesis H1, and we can argue that hypothesis H0 also holds some ground when
evaluated on this dataset.

The Kvasir dataset (Figure: 4.7 & Bar: 4.31a) Here we do not expect the same result
as we would for a dataset not seen by the classifier. We hypothesised that model III and
VI would get us the best results, as they only removed areas with sparse information.
From the results, we can see no significant improvement to the results when evaluated
on the datasets. Thus we can not prove hypothesis H0 with the densenet model.

94

The CVC 12k dataset (Figure: 4.8 & Bar: 4.32a) Here we see the most significant
change when we removed sparse areas at the corner as opposed to removing dataset
specific artefacts. As the MCC rose with 0.08 for both the datasets and no others, it
seems like removing dataset specific artefacts does not always yield the best results.

4.9 Classification Results Based on the InceptionResnetV2
Model

Tables 4.9 to 4.11 show the summary of the results gathered from the Densenet model,
and figure Figures 4.30 to 4.32 shows the visualised MCC values.

The CVC 356 dataset (Figure: 4.9 & Bar: 4.30b) Here we can see the same
considerable improvement when inpainting the dataset-specific artefacts as we saw with
the densenet model. We see that we can, with this model, double the MCC score with
the GAN dataset. A significant difference in the InceptionResNetV2 model compared
to the Densenet model is the fact that some of the results did considerably worse than
the base case.

The Kvasir dataset (Figure: 4.10 & Bar: 4.31b) The Kvasir dataset shows minimal to
no improvement. We can conclude that when inpainting to only remove sparseness the
the machine learining algortithms draws no benefit from it, independently of the model
used.

The CVC 12k dataset (Figure: 4.11 & Bar: 4.32b) For the CVC 12k dataset, every
model show improvement compared to the base case, with the highest score for the
GAN removing dataset specific features. Though all the scores are low compared to the
CVC 356 dataset, we can get double MCC when using inpainting.

4.10 Classification Results Based on the Densenet Model at
Double Size

In addition to the two models tested with the generated dataset, we also looked at what
would happen at larger resolutions. We made the same datasets as in the previous
section but at twice the size. The results can be found in table 4.14 with the visualised
examples in Figure 4.33.

We can see from this summary that the results seem to keep the same trend at the
larger size. It is important to note that the image quality is harder to maintain at double
size.

95

The CVC 356 dataset (Figure: 4.12 & Bar: 4.33a) At double the size the inpaining
results tend to have the same shape as with the smaller size, except for the fully
inpainted dataset produced by the GAN. The baseline were also a bit higher at double
size, while we would believe that it would be lower due to the non-polyp images from
the CVC 356 set is around 288 × 384 px, meaning that we interpolate the images to get
them to the appropriate size. The fact that we interpolate only the non-polyp images
might have helped the classifier due to the now different quality of the images.

The CVC 356 dataset (Figure: 4.13) The Kvasir dataset shows minimal to no
improvement. As with the standard size model, we can conclude that when inpainting
to only remove sparseness the the machine learning algorithms draws no benefit from
it, independently of the model used.

The CVC 12k dataset (Figure: 4.14 & Bar: 4.33b) In the CVC 12k dataset all images
are at the size 288 × 384 px. The upscaling of the images to 512 × 512 px distorts all the
images, curiously enough the baseline is higher compared to the 256 × 256 px images,
indicating perhaps a bad baseline for the previous dataset, though this might also be
coincidental.

96

I: Base Case. II: GAN Green square. III: GAN Black corner. IV: GAN Both inpainted. V: AE
Green square. VI: AE Black corner. VII: AE Both inpainted.

Table 4.6: DenseNet121 at the CVC 356 dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.4244 0.6467 0.7878 0.6565 0.7132
II 0.7100 0.8549 0.8500 0.8600 0.9247
III 0.3184 0.6562 0.6757 0.6442 0.7986
IV 0.7483 0.8638 0.8157 0.9434 0.9383
V 0.6072 0.8017 0.8248 0.7837 0.8879
VI 0.5630 0.7792 0.8039 0.7607 0.8739
VII 0.4462 0.6959 0.6556 0.8198 0.8787

Table 4.7: DenseNet121 at the Kvasir dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.9140 0.9233 0.9239 0.9287 0.9239
II 0.9116 0.9222 0.9224 0.9237 0.9224
III 0.9140 0.9233 0.9239 0.9287 0.9239
IV 0.9192 0.9278 0.9285 0.9339 0.9285
V 0.9158 0.9262 0.9262 0.9271 0.9262
VI 0.9226 0.9321 0.9322 0.9322 0.9322
VII 0.9097 0.9209 0.9209 0.9213 0.9209

Table 4.8: DenseNet121 at the CVC 12k dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.2435 0.5711 0.6626 0.5912 0.6511
II 0.2275 0.4131 0.6376 0.5940 0.4203
III 0.2842 0.5398 0.6928 0.6048 0.5834
IV 0.2005 0.3419 0.6053 0.5954 0.3422
V 0.2029 0.4185 0.6257 0.5819 0.4287
VI 0.2867 0.5160 0.6921 0.6070 0.5475
VII 0.2105 0.3713 0.6182 0.5937 0.3733

97

I: Base Case. II: GAN Green square. III: GAN Black corner. IV: GAN Both inpainted. V: AE
Green square. VI: AE Black corner. VII: AE Both inpainted.

Table 4.9: InceptionResNetV2 at the CVC 356 dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.2004 0.5342 0.6375 0.5731 0.6064
II 0.5708 0.7768 0.7408 0.8382 0.8989
III 0.2005 0.5875 0.6221 0.5823 0.7255
IV 0.0505 0.2687 0.5245 0.5260 0.2688
V 0.4026 0.7002 0.6888 0.7147 0.8516
VI -0.0234 0.2319 0.4895 0.4870 0.2329
VII 0.2590 0.5594 0.6776 0.5944 0.6278

Table 4.10: InceptionResNetV2 at the Kvasir dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.8900 0.9020 0.9029 0.9083 0.9029
II 0.8888 0.9019 0.9021 0.9064 0.9021
III 0.8927 0.9056 0.9059 0.9072 0.9059
IV 0.8718 0.8864 0.8870 0.8918 0.8870
V 0.8670 0.8822 0.8833 0.8836 0.8833
VI 0.8913 0.9026 0.9036 0.9114 0.9036
VII 0.9017 0.9134 0.9134 0.9178 0.9134

Table 4.11: InceptionResNetV2 at the CVC 12k dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.0791 0.4675 0.5538 0.5291 0.5279
II 0.1788 0.3405 0.5952 0.5840 0.3410
III 0.3152 0.5989 0.7113 0.6175 0.6699
IV 0.1574 0.5594 0.5526 0.6177 0.8233
V 0.2488 0.4635 0.6607 0.5963 0.4814
VI 0.1049 0.5335 0.5338 0.5813 0.8164
VII 0.2305 0.5819 0.6498 0.5887 0.6802

98

I: Base Case. II: GAN Green square. III: GAN Black corner. IV: GAN Both inpainted. V: AE
Green square. VI: AE Black corner. VII: AE Both inpainted.

Table 4.12: Densenet121 at the 512× 512px CVC 356 dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.5908 0.7948 0.8074 0.7839 0.8875
II 0.6946 0.8306 0.7766 0.9360 0.9264
III 0.3850 0.6602 0.7481 0.6494 0.7526
IV 0.4502 0.7102 0.7709 0.6871 0.8104
V 0.5401 0.7680 0.7902 0.7512 0.8682
VI 0.4655 0.7174 0.7804 0.6932 0.8148
VII 0.5707 0.7812 0.8152 0.7583 0.8717

Table 4.13: Densenet121 at the 512× 512px Kvasir dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.9215 0.9303 0.9307 0.9345 0.9307
II 0.9118 0.9222 0.9224 0.9251 0.9224
III 0.9068 0.9181 0.9179 0.9222 0.9179
IV 0.9158 0.9261 0.9262 0.9269 0.9262
V 0.9091 0.9200 0.9202 0.9218 0.9202
VI 0.9209 0.9306 0.9307 0.9310 0.9307
VII 0.9218 0.9313 0.9315 0.9319 0.9315

Table 4.14: Densenet121 at the 512× 512px CVC 12k dataset

Dataset MCC F1 Precision Recall Accuracy

I 0.3146 0.5342 0.7118 0.6168 0.5682
II 0.2804 0.4473 0.6743 0.6127 0.4576
III 0.2256 0.5299 0.6533 0.5830 0.5846
IV 0.2833 0.5506 0.6925 0.6042 0.6005
V 0.2613 0.4909 0.6729 0.5987 0.5167
VI 0.2325 0.5023 0.6565 0.5863 0.5387
VII 0.2423 0.4748 0.6590 0.5924 0.4975

99

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.563
0.607

0.446

0.318

0.71
0.748

AE
GAN
Base Case

(a) Densenet121 at the CVC 356 Dataset

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.403

0.259

0.201

0.571

0.051

AE
GAN
Base Case

(b) InceptionResNetV2 at the CVC 356 dataset

Figure 4.30: Visualisation of the CVC 356 dataset MCC values made by both
Densenet121 and InceptionresnetV2

Corner Square Both
0

0.2

0.4

0.6

0.8

1
0.923 0.916 0.910.914 0.912 0.919

AE
GAN
Base Case

(a) Densenet121 at the Kvasir dataset

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.891
0.867

0.9020.893 0.889 0.872

AE
GAN
Base Case

(b) InceptionResNetV2 at the Kvasir dataset

Figure 4.31: Visualisation of the Kvasir dataset MCC values made by both
Densenet121 and InceptionresnetV2

100

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.287

0.203 0.211

0.284
0.228

0.201

AE
GAN
Base Case

(a) Densenet121 at the CVC 12k dataset

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.105

0.249 0.231

0.315

0.179 0.157

AE
GAN
Base Case

(b) InceptionResNetV2 at the CVC 12k dataset

Figure 4.32: Visualisation of the CVC 12k MCC values made by both Densenet121 and
InceptionresnetV2

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.466

0.54
0.571

0.385

0.695

0.45

AE
GAN
Base Case

(a) Densenet121 at the 512 × 512 px CVC 356
dataset

Corner Square Both
0

0.2

0.4

0.6

0.8

1

0.233
0.261 0.2420.226

0.28 0.283

AE
GAN
Base Case

(b) Densenet121 at the 512 × 512 px CVC 12k
dataset

Figure 4.33: Visualisation of two out of the three datasets with Densenet121 at 512 ×
512 px

101

102

Chapter 5

Conclusion and Future Work

5.1 Summary

The task of making general models that can classify a broad aspect of medical images
is still a widely researched area today, and most likely, it will continue to be so in the
future. There are a plethora of different ways to build models for the medical domain,
and in most of them, there are room for improvement. Right now, the mean age of
the world population increases, and as a consequence, we perform more colonoscopies
than ever before. The demand for better systems for medical diagnosis will follow this
trend.

We have during this thesis presented a system that removes user-specified areas
from provided images. The program can take any highlighting, in the form of a binary
mask, as input and inpaint the specified area. In this thesis the areas we wanted to
inpaint were the same for all images, meaning we converted whole datasets based on
the provided binary mask. In the end, we made two fully functional algorithms that
could inpaint any part of an image, given that it already was trained on similar datasets.
This inpainting is making the augmented datasets easier and more reliable to train, and
more predisposed to be generalised.

In addition to the two generative modelling algorithms, we also created a classifier
as an instrument to check the success of the newly created datasets. The model was
based on transfer learning, with the ability to use any pretrained network to check the
validity of any provided data. The model used k-fold cross-validation to secure the
most reliable result.

An underlying goal was to make a system that could help with the generalisation of
data, and the programs presented in the thesis we believe is a step in the right direction
when it comes to aiding systems for automation of medical diagnosis. We have seen the
power of inpainting when it comes to datasets previously unseen during training, both
shown in our publications and the thesis. In general, to find the right inpainting and
network type is not a trivial task. Because of this, we can not recommend any method
in preference to another, as the results show that the ideal type of inpainting is closely
related to the dataset used both for training and for testing.

103

5.2 Contributions

As described in the problem statement in section 1.2, we have addressed the following
research hypothesises and questions:

1. H0: When classifying images, we will get the best result when we have images with the
least amount of sparse information. Hence, by removing areas with sparse information,
we will see an increase in classification performance compared to not removing the areas.

From our testing, we can see that inpainting sparse areas in images improve
classification accuracy. Throughout our testing of the datasets, when we removed
sparse areas, we generally saw an increase in classification score. Except for some
inconsistencies, as we see in 4.25d and 4.17d where both MCC values are below
the baseline, H0 seems to hold some merit, especially datasets similar to the CVC
12k dataset.

2. Q0: Can the process of inpainting of sparse areas in datasets help with training and clas-
sification performed by machine learning? If so, how detailed should the inpainting be?

Inpainting areas with sparse information do help with classification in numerous
cases. When it comes to the detail of inpainting, we do not draw any definite
conclusions, but the results tend to show that a smoother form of inpainting is
better. For an evaluation dataset like the CVC 356, the new dataset generated
with the autoencoder gave better classification results compared to the base
case when evaluated with the Densenet121 network. Datasets like the CVC 12k
dataset show performance gain when inpainting sparse regions. Looking at the
“corner” results from Figure 4.32, we observe that all four datasets improved the
classification score compared to the baseline. This performance gain indicates
that, given the notable borders in the dataset, inpainting the sparse areas work.
For datasets used for both training and testing, like Kvasir, we see too little of
improvement to confirm the usage of inpainting confidently.

3. H1: When training a classifier, we will get a higher probability of generalisation of our
results when removing the dataset-specific artefacts compared to not removing artefacts.

Inpainting areas containing artefacts helps significantly with classification. With
the right setup, we observed results like Figure 4.19d and 4.21d. Here, our
MCC scores increased with 69% and 76% respectively, compared to the baseline.
As with hypothesis H0, hypothesis H1 holds some merit, though we observed
exceptions with the CVC 12k dataset as it did not gain any classification
improvements with this method.

4. Q1: Can inpainting of dataset-specific artefacts help with the classification of previously
unseen data done by machine learning? If so, how detailed should the inpainting be?

Inpainting dataset-specific artefacts improve the classification results in most
cases. When it comes to the detail of inpainting, the GAN outperformed the

104

autoencoder in all but one of the tests. The results give us reasonable suggestions
that inpainting dataset-specific artefacts help with the classification of unseen
data. In addition, it gives us evidence that the more precise inpainting of the
images is, the better. For the CVC 356 dataset, removing artefacts within the
training images gave the best result for both models. When inpainting areas
within the image, the images generated by the GAN outperformed the images
generated by the autoencoder five out of six times, making it the most reliable
model for generating new images without artefacts. For the CVC 12k dataset,
we saw lower scores in general, giving us indications that this dataset is notably
harder to classify, and that the removal of dataset-specific artefacts does not
always work flawlessly. As with the research question Q0 regarding sparse areas,
the experiments both training and testing on the Kvasir dataset does not show
any clear indication that the removal of dataset-specific artefacts helps.

In summary, our medical image inpainting system is able to remove the dataset-
specific artefacts found in our training set, Kvasir, and thereby improve the detection
and classification of anomalies in medical images. With our models, we observed an
increase in MCC score of 0.225 on the CVC 12k dataset, and an increase of 0.371 on the
CVC 356 dataset, both score increases based solely on inpainting.

The two papers we published during the thesis conclude with similar results. The
results from our first paper draw a direct mapping to hypothesis H0, and tries to answer
Q0. The results from our second paper draw a direct mapping to both hypothesis H0
and H1. In this paper the conclusion satisfy both Q0 and Q1.

Using preprocessing as a tool in medical image detection [20] The first paper
presented at the MediaEval conference in Nice, France worked exclusively on
the Kvasir dataset. The result we published showed an increase in classification
performance when inpainting sparse regions. Here, we showed that even though we
tested and trained on the same dataset, we saw small performance gains. We concluded
the paper with that, if the test and training set are similar to each other, we can achieve
better performance gain with hyperparameter optimisation rather than preprocessing
with inpainting.

Unsupervised preprocessing to improve generalisation for medical image classifi-
cation [21] The second paper presented at the ISMICT conference in Oslo, Norway
expanded the work presented at the MediaEval conference in 2018. The presented re-
sult used an average of multiple runs instead of k-fold cross-reference, though we used
the same datasets and transfer learning models. Here, we saw similar results as the
findings presented in this thesis, only less significant. The publication presents two
hypothesises that bears resemblance to H0 and H1. We conclude the publication by
supporting both hypothesises.

105

5.3 Future Work

The work done in this thesis shows that there might be improvements when classifying
images with non-perfect information. There is still much work that can be done, both
to improve inpainting and classification, and to better understand the “black box” that
is machine learning.

Better performance GAN Since the start of this project, there have been published
multiple new papers concerning making realistic GANs including [75] [15]. As this is
still a relatively new research field, there are still many improvements that could be
done to make the models better. The best way to improve the GAN models is just
to let them train longer covering more data. The latest model used to generate the
inpainted dataset were running for approximately 40 hours, here we believe that the
model still did not reach the most optimal result. By using more time when training
the models, we might achieve even better MCC when classifying the medical datasets.
Another way that might improve the GAN is better utilisation of the channel-wise fully-
connected layer. In this thesis, this layer was a quintessential part of the result we got,
and tweaking the layers might give even better results.

Looking into using the generated images for classification The images generated
with the GAN algorithm will most likely have features that are an essential part of the
original image. If this is the same underlying features that are used in, for instance,
DenseNet or Inceptionresnet, we might not need to paste the inpainted area back into
the original image. Instead, we might be able to use the output from the GAN without
reverting a majority of the image back to its original form. Further research regarding
the generator learning features from the different classes could show good results.
Another promising aspect of this is to let the discriminator guess the class in addition
to real and fake images. If that is the case, the generator needs to learn features that
define the different classes. We can see from images like Figure 4.14f that this, to a
case, is already happening without making an auxiliary GAN. In the end, the ability to
compress the images with a GAN or AE might give us a new way to classify images.

Experiment with self attention We touched upon self attention in section 3.5.4.
Though we did some experiments with self attention, more testing is required for a
conclusion if its good or not in the context of this thesis. Future work should be to
implement the attention layer into the GAN to see if the reconstructed areas can become
better.

Make a generator for new data We have used the GAN and AE to exclusively inpaint
images, but both models can, without any extensive modifications, generate data from
the same image domain from the original dataset, just like the original DCGAN [84]
does. By using the dataset to generate new previously unseen data, we might help
classification not to overfit.

106

Improving the program to work cross domain For future work, we would like to
automate the process of inpainting by making the models look better, and give the user
the option of choosing their areas to inpaint. The model presented can be used at any
dataset, but the user has to edit the masks manually.

Using OCR to remove text We tested the option to remove text using Google’s
Tesseract OCR [57] during this thesis, but the time used by the OCR algorithm were
too slow to work in real-time. Combining the system presented in this thesis with a
system like Tesseract OCR [57], Rosetta [85] or EAST [86] might give a speedup, but at
the conclusion of this thesis, we are not able to run OCR and classification without a
multi-GPU setup.

NASNetLarge When we chose our general model for classification back in August
2018, we used InceptionResNetV2 as our model. Since then, F. Chollet has added
NASNetLarge [87] to the list of transfer learning models. NASNetLarge has higher
accuracy on the imagenet model and should possibly be the standard model for the
classification.

107

108

Bibliography

[1] (May 2018.). The top 10 causes of death, [Online]. Available: https://www.who.
int/news-room/fact-sheets/detail/the-top-10-causes-of-death (visited
on 04/17/2019).

[2] (February 2018.). Cancer facts, [Online]. Available: http : / / www . who . int /
mediacentre/factsheets/fs297/en/ (visited on 04/19/2018).

[3] S. Allinson, How self-destructing cells may hold key to cancer cure, http : / /

theconversation.com/how-self-destructing-cells-may-hold-key-to-

cancer-cure-31707, 2014. (visited on 04/15/2019).

[4] Alberts, Johnson, Lewis, and et al., Molecular biology of the cell. 4th edition. https:
//www.ncbi.nlm.nih.gov/books/NBK26873/, 2002. (visited on 04/15/2019).

[5] (2019). Breast cancer statistics, [Online]. Available: https://www.cancerresearchuk.
org/health- professional/cancer- statistics/statistics- by- cancer-

type/breast-cancer (visited on 03/29/2019).

[6] (2019). Bowel cancer statistics, [Online]. Available: https://www.cancerresearchuk.
org/health- professional/cancer- statistics/statistics- by- cancer-

type/bowel-cancer (visited on 03/29/2019).

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
Curran Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http : / /

papers . nips . cc / paper / 4824 - imagenet - classification - with - deep -

convolutional-neural-networks.pdf.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. arXiv: 1409 . 1556.
[Online]. Available: http://arxiv.org/abs/1409.1556.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. arXiv: 1512 . 03385. [Online].
Available: http://arxiv.org/abs/1512.03385.

[10] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.
arXiv: 1602.07261. [Online]. Available: http://arxiv.org/abs/1602.07261.

109

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://theconversation.com/how-self-destructing-cells-may-hold-key-to-cancer-cure-31707
http://theconversation.com/how-self-destructing-cells-may-hold-key-to-cancer-cure-31707
http://theconversation.com/how-self-destructing-cells-may-hold-key-to-cancer-cure-31707
https://www.ncbi.nlm.nih.gov/books/NBK26873/
https://www.ncbi.nlm.nih.gov/books/NBK26873/
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261

[11] M. Riegler, K. Pogorelov, P. Halvorsen, T. de Lange, C. Griwodz, P. T. Schmidt,
S. L. Eskeland, and D. Johansen, “Eir—efficient computer aided diagnosis
framework for gastrointestinal endoscopies,” in 2016 14th International Workshop
on Content-Based Multimedia Indexing (CBMI), IEEE, 2016, pp. 1–6.

[12] Z. Albisser, “Computer-Aided Screening of Capsule Endoscopy Videos,” Mas-
ter’s thesis, University of Oslo, Norway, 2015.

[13] F. Henriksen and R. Jensen, “Polyp Detection using Neural Networks,” Master’s
thesis, University of Oslo, Norway, 2017.

[14] S. Hicks, M. Lux, T. de Lange, K. R. Randel, M. Jeppsson, K. Pogorelov, P.
Halvorsen, and M. Riegler, “Mimir: An automatic reporting and reasoning
system for deep learning based analysis in the medical domain,” Amsterdam,
Netherlands: ACM, 2018, pp. 369–374, ISBN: 978-1-4503-5192-8. DOI: 10.1145/
3204949.3208129.

[15] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” CoRR, vol. abs/1812.04948, 2018. arXiv: 1812.
04948. [Online]. Available: http://arxiv.org/abs/1812.04948.

[16] E. L. Denton, S. Gross, and R. Fergus, “Semi-supervised learning with context-
conditional generative adversarial networks,” CoRR, vol. abs/1611.06430, 2016.
arXiv: 1611.06430. [Online]. Available: http://arxiv.org/abs/1611.06430.

[17] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” CoRR, vol. abs/1604.07379, 2016.
arXiv: 1604.07379. [Online]. Available: http://arxiv.org/abs/1604.07379.

[18] S. Hicks, M. Riegler, K. Pogorelov, T. de Lange, K. R. Randel, K. V. Ånonsen, M.
Jeppsson, P. Halvorsen, and S. L. Eskeland, “Dissecting deep neural networks for
better medical image classification and classification understanding,” Karlstad,
Sweden: IEEE, 2018. DOI: 10.1109/CBMS.2018.00070.

[19] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a discipline,” Commun. ACM, vol. 32, no. 1, P. J. Denning, Ed.,
pp. 9–23, Jan. 1989, ISSN: 0001-0782. DOI: 10 . 1145 / 63238 . 63239. [Online].
Available: http://doi.acm.org/10.1145/63238.63239.

[20] M. Kirkerød, V. Thambawita, M. Riegler, and P. Halvorsen, “Using preprocessing
as a tool in medical image detection,” CEUR Workshop Proceedings (CEUR-
WS.org), 2018.

[21] M. Kirkerød, R. J. Borgl, V. Thambawita, S. Hicks, M. A. Riegler, and P.
Halvorsen, “Unsupervised preprocessing to improvegeneralisation for medical
image classification,” ACM, 2019.

110

https://doi.org/10.1145/3204949.3208129
https://doi.org/10.1145/3204949.3208129
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1611.06430
http://arxiv.org/abs/1611.06430
https://arxiv.org/abs/1604.07379
http://arxiv.org/abs/1604.07379
https://doi.org/10.1109/CBMS.2018.00070
https://doi.org/10.1145/63238.63239
http://doi.acm.org/10.1145/63238.63239

[22] Holme, Bretthauer, Fretheim, Odgaard-Jensen, and Hoff, “Flexible sigmoi-
doscopy versus faecal occult blood testing for colorectal cancer screening in
asymptomatic individuals,” Cochrane Database of Systematic Reviews, no. 9, 2013,
ISSN: 1465-1858. DOI: 10.1002/14651858.CD009259.pub2. [Online]. Available:
https://doi.org//10.1002/14651858.CD009259.pub2.

[23] (2011). Colonoscope, [Online]. Available: https : / / www . who . int / medical _
devices/innovation/colonoscope.pdf (visited on 03/01/2019).

[24] M. F. Kaminski, J. Regula, E. Kraszewska, M. Polkowski, U. Wojciechowska, J.
Didkowska, M. Zwierko, M. Rupinski, M. P. Nowacki, and E. Butruk, “Quality
indicators for colonoscopy and the risk of interval cancer,” New England Journal
of Medicine, vol. 362, no. 19, pp. 1795–1803, 2010.

[25] E. Rosenthal, The $2.7 trillion medical bill, https://www.nytimes.com/2013/06/
02/health/colonoscopies-explain-why-us-leads-the-world-in-health-

expenditures.html?pagewanted=all, 2013. (visited on 04/12/2019).

[26] ND, The weird world of colonoscopy costs, https://www.nytimes.com/2013/06/
09/opinion/sunday/the-weird-world-of-colonoscopy-costs.html, 2013.
(visited on 04/12/2019).

[27] M. Riegler, M. Lux, C. Griwodz, C. Spampinato, T. de Lange, S. L. Eskeland,
K. Pogorelov, W. Tavanapong, P. T. Schmidt, C. Gurrin, et al., “Multimedia and
medicine: Teammates for better disease detection and survival,” in Proceedings of
the 24th ACM international conference on Multimedia, ACM, 2016, pp. 968–977.

[28] Y. Wang, W. Tavanapong, J. Wong, J. H. Oh, and P. C. De Groen, “Polyp-alert:
Near real-time feedback during colonoscopy,” Computer methods and programs in
biomedicine, vol. 120, no. 3, pp. 164–179, 2015.

[29] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway,
and J. Liang, “Convolutional neural networks for medical image analysis: Full
training or fine tuning?” CoRR, vol. abs/1706.00712, 2017. arXiv: 1706.00712.
[Online]. Available: http://arxiv.org/abs/1706.00712.

[30] K. Pogorelov, M. Riegler, S. L. Eskeland, T. de Lange, D. Johansen, C. Griwodz,
P. T. Schmidt, and P. Halvorsen, “Efficient disease detection in gastrointestinal
videos – global features versus neural networks,” Multimedia Tools and Applica-
tions, vol. 76, no. 21, pp. 22 493–22 525, 2017, ISSN: 1573-7721. DOI: 10 . 1007 /
s11042-017-4989-y. [Online]. Available: https://doi.org/10.1007/s11042-
017-4989-y.

[31] K. Pogorelov, O. Ostroukhova, M. Jeppsson, H. Espeland, C. Griwodz, T. de
Lange, D. Johansen, M. Riegler, and P. Halvorsen, “Deep learning and hand-
crafted feature based approaches for polyp detection in medical videos,” in 2018
IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS),
IEEE, 2018, pp. 381–386.

[32] T. M. Mitchell, Machine learning, eng, New York, 1997.

111

https://doi.org/10.1002/14651858.CD009259.pub2
https://doi.org//10.1002/14651858.CD009259.pub2
https://www.who.int/medical_devices/innovation/colonoscope.pdf
https://www.who.int/medical_devices/innovation/colonoscope.pdf
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html?pagewanted=all
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html?pagewanted=all
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html?pagewanted=all
https://www.nytimes.com/2013/06/09/opinion/sunday/the-weird-world-of-colonoscopy-costs.html
https://www.nytimes.com/2013/06/09/opinion/sunday/the-weird-world-of-colonoscopy-costs.html
https://arxiv.org/abs/1706.00712
http://arxiv.org/abs/1706.00712
https://doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1007/s11042-017-4989-y

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, p. 484, 2016.

[34] OpenAI, Openai five, https://blog.openai.com/openai-five/, 2018.

[35] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Third Edition.
2010, ISBN 9780136042594.

[36] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points in space,”
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
vol. 2, no. 11, pp. 559–572, 1901. DOI: 10 . 1080 / 14786440109462720. eprint:
https://doi.org/10.1080/14786440109462720. [Online]. Available: https:
//doi.org/10.1080/14786440109462720.

[37] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable
mdps,” CoRR, vol. abs/1507.06527, 2015. arXiv: 1507.06527. [Online]. Available:
http://arxiv.org/abs/1507.06527.

[38] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist
systems,” Tech. Rep., 1994.

[39] A. Turing, “Computing Machinery and Intelligence,” Mind, vol. LIX, no. 236,
pp. 433–460, Oct. 1950, ISSN: 0026-4423. DOI: 10.1093/mind/LIX.236.433. eprint:
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.

pdf. [Online]. Available: https://dx.doi.org/10.1093/mind/LIX.236.433.

[40] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf.
Theor., vol. 13, no. 1, pp. 21–27, Sep. 2006, ISSN: 0018-9448. DOI: 10.1109/TIT.
1967.1053964. [Online]. Available: https://doi.org/10.1109/TIT.1967.
1053964.

[41] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[42] R. Herbert and M. Sutton”, “”a stochastic approximation method”,” ”Ann. Math.
Statist.”, vol. ”22”, no. ”3”, ”400–407”, ”1951”. DOI: "10.1214/aoms/1177729586".
[Online]. Available: "https://doi.org/10.1214/aoms/1177729586".

[43] S. Haykin, Neural networks. Prentice hall New York, 1994, vol. 2.

[44] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review, vol. 65, 1958. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&

rep=rep1&type=pdf.

[45] K. Funahashi, “On the approximate realization of continuous mappings by neural
networks,” Neural Netw., vol. 2, no. 3, pp. 183–192, May 1989, ISSN: 0893-6080.
DOI: 10.1016/0893-6080(89)90003-8. [Online]. Available: http://dx.doi.
org/10.1016/0893-6080(89)90003-8.

112

https://blog.openai.com/openai-five/
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1507.06527
https://doi.org/10.1093/mind/LIX.236.433
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
https://dx.doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/"10.1214/aoms/1177729586"
"https://doi.org/10.1214/aoms/1177729586"
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1016/0893-6080(89)90003-8

[46] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[47] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193–202, 1980, ISSN: 1432-0770. DOI: 10 . 1007 /
BF00344251. [Online]. Available: https://doi.org/10.1007/BF00344251.

[48] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[49] Y.-T. Zhou and R. Chellappa, “Computation of optical flow using a neural
network,” in IEEE International Conference on Neural Networks, vol. 1998, 1988,
pp. 71–78.

[50] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.
arXiv: 1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available: http:
//jmlr.org/papers/v15/srivastava14a.html.

[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1,” in, D. E. Rumelhart, J. L.
McClelland, and C. PDP Research Group, Eds., Cambridge, MA, USA: MIT Press,
1986, ch. Learning Internal Representations by Error Propagation, pp. 318–362,
ISBN: 0-262-68053-X. [Online]. Available: http://dl.acm.org/citation.cfm?
id=104279.104293.

[53] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume
2, ser. NIPS’14, Montreal, Canada: MIT Press, 2014, pp. 2672–2680. [Online].
Available: http://dl.acm.org/citation.cfm?id=2969033.2969125.

[54] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D.
Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt, M. Riegler,
and P. Halvorsen, “Kvasir: A multi-class image dataset for computer aided
gastrointestinal disease detection,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, ser. MMSys’17, Taipei, Taiwan: ACM, 2017, pp. 164–169, ISBN:
978-1-4503-5002-0. DOI: 10.1145/3083187.3083212. [Online]. Available: http:
//doi.acm.org/10.1145/3083187.3083212.

[55] J. Bernal and H. Aymeric, “Miccai endoscopic vision challenge polyp detection
and segmentation,” Accessed: 2019-01-07, 2017. [Online]. Available: https://
endovissub2017-giana.grand-challenge.org/home/.

113

https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://doi.org/10.1145/3083187.3083212
http://doi.acm.org/10.1145/3083187.3083212
http://doi.acm.org/10.1145/3083187.3083212
https://endovissub2017-giana.grand-challenge.org/home/
https://endovissub2017-giana.grand-challenge.org/home/

[56] V. Thambawita, D. Jha, M. Riegler, P. Halvorsen, H. L. Hammer, H. D. Johansen,
and D. Johansen, “The medico-task 2018: Disease detection in the gastrointestinal
tract using global features and deep learning,” CEUR Workshop Proceedings
(CEUR-WS.org), 2018.

[57] R. Smith, “An overview of the tesseract ocr engine,” in Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), IEEE, vol. 2, 2007,
pp. 629–633.

[58] R. J. Borgli, P. Halvorsen, M. Riegler, and H. K. Stensland, “Automatic hyperpa-
rameter optimization in keras for the mediaeval 2018 medico multimedia task,”
CEUR Workshop Proceedings (CEUR-WS.org), 2018.

[59] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional
networks,” CoRR, vol. abs/1608.06993, 2016. arXiv: 1608 . 06993. [Online].
Available: http://arxiv.org/abs/1608.06993.

[60] ND, List of imagenet classes, https : / / gist . github . com / yrevar /

942d3a0ac09ec9e5eb3a, 2016. (visited on 04/13/2019).

[61] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014. arXiv: 1409.4842. [Online]. Available: http://arxiv.
org/abs/1409.4842.

[62] M. Mahdianpari, B. Salehi, M. Rezaee, F. Mohammadimanesh, and Y. Zhang,
“Very deep convolutional neural networks for complex land cover mapping
using multispectral remote sensing imagery,” Remote Sensing, vol. 10, no. 7, 2018,
ISSN: 2072-4292. DOI: 10.3390/rs10071119. [Online]. Available: http://www.
mdpi.com/2072-4292/10/7/1119.

[63] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. DOI: 10.1109/cvpr.2017.243. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2017.243.

[64] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

[65] S. Hicks, P. Smedsrud, P. Halvorsen, and M. Riegler, “Deep learning based disease
detection using domain specific transfer learning,” CEUR Workshop Proceedings
(CEUR-WS.org), 2018.

[66] R. Vikraman, Global report on state of data science and machine learning 2018 based
on kaggle survey, https://rpubs.com/cvrajesh/kagglesurvey2018, Accessed:
2019-04-09, 2018.

114

https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.3390/rs10071119
http://www.mdpi.com/2072-4292/10/7/1119
http://www.mdpi.com/2072-4292/10/7/1119
https://doi.org/10.1109/cvpr.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
https://rpubs.com/cvrajesh/kagglesurvey2018

[67] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org, 2015.
[Online]. Available: https://www.tensorflow.org/.

[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[69] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16, San Francisco, California, USA: ACM,
2016, pp. 2135–2135, ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2945397.
[Online]. Available: http://doi.acm.org/10.1145/2939672.2945397.

[70] A. Damien et al., Tflearn, https://github.com/tflearn/tflearn, 2016.

[71] F. Chollet, Applications - keras documentation. [online], https : / / keras . io /

applications/, Accessed: 2019-01-07, 2019.

[72] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[73] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
encoders: Feature learning by inpainting,” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. DOI: 10 . 1109 / cvpr . 2016 . 278.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.278.

[74] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative im-
age models using a laplacian pyramid of adversarial networks,” CoRR,
vol. abs/1506.05751, 2015. arXiv: 1506 . 05751. [Online]. Available: http : / /
arxiv.org/abs/1506.05751.

[75] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high
fidelity natural image synthesis,” CoRR, vol. abs/1809.11096, 2018. arXiv: 1809.
11096. [Online]. Available: http://arxiv.org/abs/1809.11096.

[76] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang, “Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network,” CoRR, vol. abs/1609.05158, 2016. arXiv:
1609.05158. [Online]. Available: http://arxiv.org/abs/1609.05158.

[77] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative
adversarial networks,” CoRR, vol. abs/11805.08318, 2018. arXiv: 11805.08318.
[Online]. Available: https://arxiv.org/abs/1805.08318.

115

https://www.tensorflow.org/
https://doi.org/10.1145/2939672.2945397
http://doi.acm.org/10.1145/2939672.2945397
https://github.com/tflearn/tflearn
https://keras.io/applications/
https://keras.io/applications/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/cvpr.2016.278
http://dx.doi.org/10.1109/CVPR.2016.278
https://arxiv.org/abs/1506.05751
http://arxiv.org/abs/1506.05751
http://arxiv.org/abs/1506.05751
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1609.05158
http://arxiv.org/abs/1609.05158
https://arxiv.org/abs/11805.08318
https://arxiv.org/abs/1805.08318

[78] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” CoRR, vol. abs/1611.07004, 2016. arXiv: 1611.
07004. [Online]. Available: http://arxiv.org/abs/1611.07004.

[79] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10, Haifa, Israel: Omnipress, 2010,
pp. 807–814, ISBN: 978-1-60558-907-7. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3104322.3104425.

[80] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic models,”
2013.

[81] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International
Conference on Learning Representations, Dec. 2014.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[83] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. arXiv: 1704.
04861. [Online]. Available: http://arxiv.org/abs/1704.04861.

[84] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” in 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016. [Online]. Available: http://arxiv.org/
abs/1511.06434.

[85] F. Borisyuk, A. Gordo, and V. Sivakumar, “Rosetta: Large scale system for text
detection and recognition in images,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp. 71–
79.

[86] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST: an
efficient and accurate scene text detector,” CoRR, vol. abs/1704.03155, 2017.
arXiv: 1704.03155. [Online]. Available: http://arxiv.org/abs/1704.03155.

[87] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architec-
tures for scalable image recognition,” CoRR, vol. abs/1707.07012, 2017. arXiv:
1707.07012. [Online]. Available: http://arxiv.org/abs/1707.07012.

116

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1704.03155
http://arxiv.org/abs/1704.03155
https://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

Appendices

117

Appendix A

Published Papers

A.1 Paper I - Using preprocessing as a tool in medical image
detection

119

Using preprocessing as a tool in medical image detection
Mathias Kirkerød 1,3, Vajira Thambawita1,2, Michael Riegler1,2,3, Pål Halvorsen1,3

1Simula Research Laboratory, Norway
2Oslo Metropolitan University

3University of Oslo
mathias.kirkerod@gmail.com,vajira@simula.no,michael@simula.no,paalh@simula.no

ABSTRACT
In this paper we describe our approach to gastrointestinal disease
classification for the medico task at MediaEval 2018. We propose
multiple ways to inpaint problematic areas in the test and training
set to help with classification. We discuss the effect that prepro-
cessing does to the input data with respect to removing regions
with sparse information. We also discuss how preprocessing affects
the training and evaluation of a dataset that is limited in size. We
will also compare the different inpainting methods with transfer
learning using a convolutional neural network.

1 INTRODUCTION
Medical image diagnosis is a challenging task in the industry of
computer vision. In the last couple of years, as computing power
has increased, machine learning has become a tool in the task of
image detection, segmentation and classification. In this paper we
are looking in depth how to use machine learning to help solve
classification tasks on the data-set from the Medico task [8]. The
Medico task focuses on image classification in the gastrointestinal
(GI) tract. The data is divided in to 16 different classes.

Similar to other parts of image detection, the Medico dataset
encounter the challenges that the amount of data is too small, or
that the training data does not cover the full distribution of the data
in the test case. The main goal of this task is to classify medical
images. Our proposal is to use unsupervised machine learning for
removal of the green corners that are in the Medico dataset. The
details of the task are described in [5, 7].

2 APPROACH
Our approach is divided in to two steps: first preprocessing, then
classifying. Our focus is mainly on the preprocessing of the data to
remove the green corners in the medical images.

After the preprocessing the dataset we run it through a Con-
volutional Neural Network (CNN) based on transfer learning. We
chose the CNN model based on the top 5 and top 1 accuracy of the
pre-trained networks on the Keras documentation pages.

In our approach we use the InceptionResNetV2 [9] network.
We also remove the top layer and replace it with a global average
pooling layer and a dense 16 layer output, to match the number of
classes wanted. In addition, we do not freeze any layers of the model.
The five submissions that we run is with the same hyperparameters
in the transferlearning model. This means that the difference in

Copyright held by the owner/author(s).
MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

(a) Image before inpainting (b) Image after inpainting

Figure 1: Differences of images after inpainting

results should only come from the different training datasets we
use.

The medical data has 1 main feature that we focus on during the
preprocessing, namely the green square in the bottom left corner.
A neural network often struggle with areas with really sparse infor-
mation. Our hypothesis is that just replacing the green area with a
similar black area will not yield a better result.

We have a dataset that we use as a base case. This dataset was
not augmented, other than shrinking the size of every image to a
fixed resolution. The other datasets were augmented in a way that
would cover up the green square in one way or another.

Our hypothesis it that if we recreate the areas as they would
look like without any sparse areas, the classifier can focus on the
right features for classifications. We propose 4 different methods
on how to inpaint the corner area of the medical images.
An autoencoder [4], a context conditional generative adversarial
network[2, 3], a context encoder [6], and a simple crop of the image.

2.1 Autoencoder
For the autoencoder approach, we created and trained a custom
autoencoder from scratch. Our autoencoder consist of a encoder-
decoder network, with 2D convolutions as well as rectified linear
units as activation functions. In the layer between the encoder and
the decoder we included a 25% dropout. [1]

To preprocess the medical data we feed the whole image through
the encoder-decoder network. We take the loss of the whole recon-
structed image, but only keep the inpainted part. Under training,
the goal is to minimize the loss: L(x ,д(f (x̃))) Where x is an image
without a green corner, and x̃ is the same image with an artificial
green corner. In theory we can replace any part of the image with
this method.

MediaEval’18, 29-31 October 2018, Sophia Antipolis, France Kirkerød et al.

Table 1: Validation set’ results

Method REC PREC SPEC ACC MCC F1

Autoencoder 0.929 0.929 0.981 0.929 0.923 0.928
CC-GAN 0.931 0.932 1.000 0.931 0.926 0.931

Contextencoder 0.926 0.928 0.945 0.926 0.920 0.926
Clipping 0.903 0.904 0.980 0.903 0.895 0.903

Non-augmenteted 0.925 0.927 0.981 0.925 0.919 0.924

2.2 Context encoder
For the context encoder approach, we created a new encoder-
decoder network. Here the encoder has a similar structure to the
autoencoder, but our decoder is only making outputs at the size of
the desired area to inpaint. In addition to the loss generated from
taking a MSE loss[6]:
L(x̂ ,д(f (x))) Where x̂ is an image with an artificial green corner,
and x is the part that was replaced by the corner, we include an
adversarial loss, as described in [6].

With the context encoder we feed images without a green corner
in to the encoder-decoder network. The output of the network is
the same size as the area we want to fill.

2.3 Context conditional generative adversarial
network

For the generative adversarial approach, we create a similar struc-
ture as the autoencoder. We have a constant 10% dropout at each
layer in the discriminator. As with the autoencoder we have the
same size input as output, but we only decide to keep the parts we
want to inpaint.

We use the same type of loss as the context encoder, with 15%
of the loss coming from a MSE loss, and the remaining 85% coming
from the adversarial loss.

2.4 Clipping instead of inpainting
The last method was just to crop the images in a way that excluded
the green corner. Since every image is scaled down to 256x256 px
during preprocessing, the same is done with the clipped version
(after the clip the size was reduced to 256x256).

The clipping was done in a way so that we had the most amount
of center frame, and minimal amount of the bottom left corner,
without sacrificing to much of the image.

3 RESULTS AND ANALYSIS
We made the augmented datasets before we trained the prepro-
cessing model. This means that the transferlearning model did not
augment the images at runtime. We split the data into a 70% train
set, and a 30% validation set.

Our results on the test set are tabulated in Table 1. The official
Results on the test set are tabulated in Table 2. Table 3 shows the
confusion matrix from the CC-GAN from the official test set.

The results show that the CC-GAN got the highest MCC score
with 0.926, and also the most realistic inpaintings. The context
encoder had the lowest MCC score with 0.920, and also the worst
inpainted areas. The official result did have the same pattern in

Table 2: Official Results

Method REC PREC SPEC ACC MCC F1

Autoencoder 0.915 0.915 0.994 0.989 0.910 0.915
CC-GAN 0.915 0.915 0.994 0.989 0.910 0.915

Contextencoder 0.910 0.910 0.994 0.988 0.905 0.910
Clipping 0.904 0.904 0.993 0.988 0.898 0.904

Non-augmenteted 0.917 0.917 0.994 0.989 0.911 0.917

Table 3: Confusion Matrix
A:ulcerative-colitis , B:esophagitis , C:normal-z-line , D:dyed-lifted-polyps , E:dyed-
resection-margins , F:out-of-patient , G:normal-pylorus , H:stool-inclusions , I:stool-
plenty , J:blurry-nothing , K:polyps , L:normal-cecum , M:colon-clear , N:retroflex-
rectum , O:retroflex-stomach , P:instruments

A B C D E F G H I J K L M N O P
A 510 0 1 0 1 0 1 0 69 0 5 24 0 3 0 13
B 3 401 68 0 1 0 5 0 0 0 0 0 0 0 1 0
C 0 153 489 0 0 0 3 0 0 0 0 0 0 0 0 0
D 0 0 0 502 39 0 0 0 0 0 3 0 0 1 0 45
E 0 0 0 46 517 1 0 0 0 0 1 0 0 0 0 15
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 2 2 3 0 0 0 547 0 0 0 0 0 0 0 1 0
H 0 0 0 0 0 0 0 486 35 0 0 0 0 0 0 0
I 3 0 0 0 2 0 0 1 1857 0 3 1 0 0 0 3
J 1 0 0 0 0 1 0 1 0 36 0 0 1 0 0 0
K 8 0 1 5 2 3 4 0 0 0 349 17 0 2 1 55
L 11 0 1 2 1 0 1 0 1 1 11 542 0 0 0 3
M 2 0 0 0 0 0 0 18 2 0 1 0 1064 0 1 3
N 2 0 0 1 1 0 0 0 0 0 1 0 0 183 4 5
O 0 0 0 0 0 0 0 0 1 0 0 0 0 2 389 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 131

MCC score, though the base case got the best result. In both cases
the clipping gave significantly worse result.

As expected, most of the images was classified correctly, but
we had some problems distinguishing between esophagitis and
normal-z-line. We also had a few cases of instruments where there
were none.

4 CONCLUSION
In general, when training on a dataset that is homogeneous, the
preprocessing is less valuable. Wewant to remove areas with sparse-
ness, and areas that has nothing to do with the classification.
In our example we used 3 different methods to do this, and we had
no improvements in the results. As we can see from the validation
set, we saved under a percent on the best method, and we got a
worse score on the official results.
We conclude that preprocessing the Medico dataset is not worth
the hassle. The effort put in to preprocess the images yields little to
no improvement to the result. We recommend that the time is used
to find the right network, with the right hyper-parameters instead.
A reason to lackluster results might be caused that the training
and the test set have the same green squares in the same classes.
We suspect that the similarity in the test and train set makes the
squares an essential part of the image. We believe that the result
would be much better if the test set would be completely without
the squares, as they would if they were ”real time” images.

In a future test we would also recommend removing the four
black edges too. With the images being round, this might be a
challenge, since there are no full-resolution images (without zoom)
that captures the edges. With the medico dataset, this method will
probably not give a better score, on the basis that every image in
the dataset has the same four black corners.

Medico Multimedia Task MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

REFERENCES
[1] Aaron Courville Yoshua Bengio DavidWarde-Farley, Ian J. Goodfellow.

2013. An empirical analysis of dropout in piecewise linear networks.
abs/1609.05158 (2013). arXiv:1312.6197v2 https://arxiv.org/pdf/1312.
6197v2

[2] Emily L. Denton, Sam Gross, and Rob Fergus. 2016. Semi-Supervised
Learning with Context-Conditional Generative Adversarial Networks.
CoRR abs/1611.06430 (2016). arXiv:1611.06430 http://arxiv.org/abs/
1611.06430

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial nets. In Advances in neural information process-
ing systems. 2672–2680.

[4] Y. Kamp H. Bourlard. 1988. Auto-Association by Multilayer Percep-
trons and Singular Value Decomposition. (1988). http://ace.cs.ohio.
edu/~razvan/courses/dl6890/papers/bourlard-kamp88.pdf

[5] Pål Halvorsen Thomas de Lange Kristin Ranheim Randel Duc-Tien
Dang-Nguyen Mathias Lux Konstantin Pogorelov, Michael Riegler.
2018. Mediaeval information. http://multimediaeval.org/
mediaeval2018/medico/. (2018). Accessed: 2018-10-16.

[6] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell,
and Alexei A. Efros. 2016. Context Encoders: Feature Learning by
Inpainting. CoRR abs/1604.07379 (2016). arXiv:1604.07379 http://arxiv.
org/abs/1604.07379

[7] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz,
Sigrun Losada Eskeland, Thomas de Lange, Dag Johansen, Con-
cetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter The-
lin Schmidt, Michael Riegler, and Pål Halvorsen. 2017. KVASIR: A
Multi-Class Image Dataset for Computer Aided Gastrointestinal Dis-
ease Detection. In Proceedings of the 8th ACM on Multimedia Sys-
tems Conference (MMSys’17). ACM, New York, NY, USA, 164–169.
https://doi.org/10.1145/3083187.3083212

[8] Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Thomas De
Lange, Kristin Ranheim Randel, Duc-Tien Dang-Nguyen, Mathias Lux,
and Olga Ostroukhova. 2018. Medico Multimedia Task at MediaEval
2018. (2018).

[9] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. 2016.
Inception-v4, Inception-ResNet and the Impact of Residual Connec-
tions on Learning. CoRR abs/1602.07261 (2016). arXiv:1602.07261
http://arxiv.org/abs/1602.07261

A.2 Paper II - Unsupervised preprocessing to improve general-
isation for medical data

123

Unsupervised preprocessing to improve
generalisation for medical image classification

Mathias Kirkerød, Rune Johan Borgli
Simula Research Laboratory, Norway

University of Oslo, Norway
mathiaki@ifi.uio.no, rune@simula.no

Vajira Thambawita, Steven Hicks, Michael Alexander Riegler, Pål Halvorsen
SimulaMet - Simula Metropolitan Center for Digital Engineering, Norway

{vajira, steven, michael, paalh}@simula.no

Abstract—Automated disease detection in videos and images
from the gastrointestinal (GI) tract has received much attention
in the last years. However, the quality of image data is often
reduced due to overlays of text and positional data. In this
paper, we present different methods of preprocessing such images
and we describe our approach to GI disease classification for
the Kvasir v2 dataset. We propose multiple approaches to
inpaint problematic areas in the images to improve the anomaly
classification, and we discuss the effect that such preprocessing
does to the input data. In short, our experiments show that the
proposed methods improve the Matthews correlation coefficient
by approximately 7% in terms of better classification of GI
anomalies.

Index Terms—Machine learning, GAN, Autoencoder, Inpaint-
ing

I. INTRODUCTION

In the field of computer vision, image-based disease de-
tection has become a popular area of research. For example,
algorithms based on deep neural networks have been used to
automatically analyse the human digestive system for anoma-
lies such as polyps, lesions and other common illnesses. This
is important as the detection and removal of colon polyps
is the main prevention method of colorectal cancer, which
ranks within the top-three terminal cancer types for both men
and woman [1]. Automatically detecting this disease goes
a long way of aiding doctors to perform a more thorough
analysis of their patients, and has the potential of saving lives.
In addition to gastroenterology, we continue to see machine
learning based classification systems appear in nearly every
branch of medicine.

In recent years, deep learning based algorithms have be-
come a popular method for solving these problems. Aided
by the rapid advancement of computational power due to
the efficiency of GPUs, deep learning has shown state-of-the-
art performance across numerous fields, including medicine.
However, deep neural networks are only as good as the data
used to train them. Thus, data which contains artefacts such
as text and overlays may negatively impact the performance
of models trained on this data. This is particularly problematic
in medicine, as the selection of datasets is often limited, and
the datasets available may include artefacts from the software

Fig. 1: Example image from the Kvasir dataset with included
overlays and black borders.

the doctors use to analyse the images/videos (e.g., overlays,
text, and other information).

In this work, we look at improving the quality of a publicly
available endoscopy dataset called Kvasir [2], which contains
several of the artefacts previously mentioned (example shown
in Figure 1). We hope that this shows that there are more ways
of improving the performance of a deep neural network than
increasing its number of training samples. This work can be
seen as an extension of our approach to this years MediaEval
Medico task [3], where we presented a similar technique, albeit
to a much lesser extent [4]. Additionally, a recent study using
Kvasir for training deep learning based models showed that
these artefacts directly impacted the classification performance
of said models, showing that there is potential room for
improvement [5].

The main contributions of this paper are (i) we present
different methods for preprocessing data to be able to create
better generalisable models, (ii) a detailed cross-dataset eval-
uation of the methods used and (iii) we report classification
performance across different datasets.

II. RELATED WORK

As mentioned in the introduction, medical image classifi-
cation has been a heavily researched area. Research gathered
by Lu and Weng [6] give current practices, problems, and
prospects of image classification.

Our methods for inpainting bears a resemblance to context-
encoder made by Pathak et al. [7] who introduce an encoder-
decoder network in style close to our proposed generative
adversarial network. However, a big difference is the use of
a channel-wise fully connected layer in their model to share
information around in the image space. This part was not
necessary for us, given the homogeneity of the medical images
coupled with the use of a non-random filter for inpainting.

Denton et al. [8] presented a model for inpainting close
to the context-conditional adversarial network presented by
Pathak et al. that is also trained on non-medical images, with
random filter placement during training and evaluation. Their
results showed that their generative adversarial network (GAN)
model was capable of producing semantically meaningful in-
paintings in a diverse set of images.

Previously, Hicks et al. [5] applied various preprocessing
steps to Kvasir based on analysis conducted on common
CNN architectures. Using heat maps and saliency maps, they
discovered a common issue where artefacts such as text, black
borders, and green navigation boxes were directly correlated to
the misclassification of some images. In an attempt to correct
this issue, they applied various preprocessing steps to the
training data, namely cropping black borders and blacking out
the green navigation box. Their results revealed improvement
in all cases of data preprocessing, and in the best case,
they achieved an increase of Matthews correlation coefficient
(MCC) by approximately 3%.

In this paper, we aim to improve on this work by not simply
removing borders and green navigation boxes. We also try
to replace the artefacts using ideas from GAN inpainting to
generate an automatically generated mask which attempts to
replicate what would have been there if not for said overlay
artefacts.

III. APPROACH

By using machine learning, we aim to classify medical
images from the gastrointestinal (GI) tract correctly. With
this approach, it is common to use a dataset for training
and validation, with a separate set for testing. In practice
the dataset we test on is never seen by the model before its
evaluation. This is the main reason why we often struggle to
get the same level of accuracy when evaluating our model if
the data originates from different sources. In our case, the test
data from the CVC dataset differs from the training data in
both the image content and size. When this problem arises, it
is practice to use domain-specific knowledge to help training,
and if the amount of training data is small, methods like K-fold
cross-validation [9] can also be used to improve the results.

For this paper, we focus on inpainting as a form of gen-
eralised preprocessing. We do this to remove dataset specific
overlays for better classification on new datasets no matter the
source of the dataset. Furthermore, we have also chosen to use

(a) Original image (b) Square inpainted

(c) Edges inpainted (d) Corner and edges inpainted

Fig. 2: Here we have a sample of what we want to achieve. (a)
Original from the Kvasir dataset. Here we also see extended
edges that we can cut away without any machine learning. (b)
Same image without edges and the green square. (c) Same
image with new corners, (d) Same image with both new
corners and new area for green square

the same Bayesian optimisation techniques as in the Borgli et
al. paper [10] to find the optimal network for classification.
With both hyperparameter optimisation and inpainting, our
goal is to get the highest classification score on the CVC
datasets.

A. Preprocessing

As discussed, the Kvasir dataset has some unwanted arte-
facts that are present in a good portion of the data. Some
of the unwanted artefacts are Kvasir specific, and some are
general artefacts when capturing images from the colon. First,
the camera used in colonoscopies has an exceptionally wide
lens. This setup takes good medical images but comes with
the drawback that the images are not rectangular. Because of
this, the camera needs to add black corners and borders to save
the images. Another unwanted artefact that is Kvasir specific
is an unwanted additional overlay added to the images. They
are added post-image-capture by the medical staff, and they
show essential information about the patient. As we can see
from this, we have multiple areas in the images with pixels
not originating from the patient, and subsequently contains no
information relevant for classification.

A neural network will also often struggle with areas with
really sparse information. Because of this, we believe that just
replacing the green area with a similar black area will not yield

TABLE I: Details of all datasets used in the experiments.

BC: Black corner. GS: Green square. BC+GS: Black corner and
Green square

Dataset
labels Size Inpainted

area

Generator
network
used

D-I 256x256 px - -
D-II 256x256 px BC Autoencoder
D-III 256x256 px GS Autoencoder
D-IV 256x256 px BC+GS Autoencoder
D-V 256x256 px BC GAN
D-VI 256x256 px GS GAN
D-VII 256x256 px BC+GS GAN
D-VIII 512x512 px - -
D-IX 512x512 px BC Autoencoder
D-X 512x512 px GS Autoencoder
D-XI 512x512 px BC+GS Autoencoder
D-XII 512x512 px BC GAN
D-XIII 512x512 px GS GAN
D-XIV 512x512 px BC+GS GAN

the best result. However, we expect improvement if we instead
try to inpaint both the green corner and the black edges with
data gathered from similar images. Furthermore, by removing
areas that are specific for that dataset, we believe the model
will be far better at generalising to other datasets within the
same domain. In our case, the area we will be inpainting is
the green area, since it is not present in the CVC datasets, and
most other medical datasets are also without it.

With our two hypotheses, we have two different features that
we believe will make the classification harder. We first aim to
inpaint both areas separately to see how each of them affects
classification. We also want to try to collectively remove both
areas to see if a combined mask will yield a better or worse
result.

With this in mind, we use two different methods for
inpainting the desired areas. First, an autoencoder (AE) [11]
as a lightweight way to generate new data, and second we use
a GAN [12] as a more sophisticated generator. Both methods
are unsupervised learning methods to generate new data within
the distribution of the original dataset.

For our experiments, we scale our data to a constant
resolution. We run four experiments with 256x256 pixels (px)
resolution, and four experiments at 512x512 px. Our change
in resolution is to compare the effect it has compared to our
standard 256x256 px. With this configuration, we end up with
14 augmented datasets shown in table I.

B. Classification

Our research from the 2018 MediaEval workshop showed
less desirable result compared to other projects that researched
on the same dataset [13] [10]. Therefore one of our goals is
to make our model more realistic by using a model that works
better on the augmented Kvasir dataset. Using the Bayesian
hyperparameter optimiser on our newly created datasets, we

TABLE II: Details of experiments.

Test Training datasets Testing dataset Network model

T1 D-I - D-VII Kvasir V2 DenseNet121
T2 D-I - D-VII CVC-12k DenseNet121
T3 D-I - D-VII CVC-356 DenseNet121
T4 D-I - D-VII CVC-356 InceptionResnetV2
T5 D-VIII - D-XIV CVC-356 DenseNet121

choose Densenet121 [14] as our default architecture for train-
ing our new datasets. We are also interested in the accuracy
compared to a more general classification network. We ran
model D-I - D-VII with the pretrained InceptionResNetV2 [15]
network. We chose this network because of its high accuracy
on the Keras websites [16], and thus we hypothesise that
the model will be generally good without hyperparameter
optimisation. In both cases, we remove the top layer and
replace it with a global average pooling layer and a dense eight
layer output to match the number of classes in the training
dataset.

Our focus is the comparison between the generated datasets
and the baseline; hence we do not change the hyperparame-
ters after they are chosen. We believe this sets up a valid
comparison since the only difference in score should come
from the differences in the dataset and not the classification
model. An overview of our experiments are shown in Table II,
where Models T1 - T3 is a direct comparison on how well we
have generalised our model, while Models T4 & T5 show how
changing models will affect the results. Below, we give brief
a description of the three datasets used.

a) The Kvasir V2 dataset [2]: The Kvasir V2 dataset
consists of 8,000 images from the GI tract. Several of these
images contain artefacts such as navigation boxes (green box
as seen Figure 1), overlayed text, black borders, and black
edges. With our first hypothesis in mind, we assume that the
dataset with the inpainted rounding corners (D-II & D-IV) will
do slightly better than the baseline (D-I). This is because the
training and test data is from the same set, and subsequently
our generalisation will not help. That leaves us with the only
way to improve the result is to remove sparseness.

b) The CVC-356 dataset [17]: The CVC-356 dataset
consists of 2,285 images from the lower GI tract. CVC-356
does not have images with green boxes. It does have images
with black borders, and rounded black edges. As stated in
our second hypothesis; the inpainting of the green square will
presumably give the best result. This is because, as stated,
the CVC-356 images has the same black rounded corners as
Kvasir, but lacks the green squares.

c) The CVC 12k dataset [17]: The CVC-12k dataset
consists of 11954 images from the lower GI tract, with a
resolution of primarily 288x384 px. Given the similarity with
the CVC-356 dataset, this will presumably follow our second
hypothesis stating that the inpainting of the green square would
give the best result. Given that the CVC-12k images has the
same black rounded corners as Kvasir, but lacks the green
squares.

IV. PREPROCESSING TOOLS

The networks used for inpainting are based on the network
presented in the Mediaeval conference [4]. Both networks
are using on masking, where only the parts of the image
corresponding to a mask was inpainted.

A. Autoencoder

The first approach we created and trained was a custom
autoencoder [11] from scratch. Our autoencoder consists of
an encoder-decoder network, with 2D convolutions as well
as rectified linear units as activation functions, and a 25%
dropout between the encoder and decoder. The network used
is a modification of the network presented in [4]. The modi-
fications are a smaller batch size and a more consistent filter
size throughout the network. These modifications were made
to make more credible results, and to get a lower error during
training. The loss function was also modified to solely train on
parts of the images that were modified. This lead to a larger
and more accurate gradient descent, which also contributed to
a better reconstruction.

B. Context conditional generative adversarial network

For the GAN approach, we create a similar structure to the
autoencoder. We have a generator-discriminator network that
serves much of the same functionality as the encoder-decoder
network in the autoencoder. As with the autoencoder, we have
the same size input as output, but we only decide to keep
the parts we want to inpaint. The model we ended up with is
closely inspired to the model made by Denton et al. in [18].
The main differences are the number of layers used, and the
lack of a low-resolution image as an extra input.

V. RESULTS

We divide our results into two sections, preprocessing and
classification. In our preprocessing section, we discuss the
appearance of the dataset, and how close the results are to
the ground truth. In our classification section, we discuss the
rate of generalisation and rate of success.

A. Preprocessing

Since there are no specific metrics associated with the
training of Autoencoders and GANs, we used the mean square
error of the ground truth as a metric of our progress. Figure 3
from the z-line shows how the two different models perform
on the two different sizes. This is a typical case where both
the GAN and the AE are fairly similar, except for more
features added by the GAN. The features are most present
in the smaller images, as the images are easier to train on,
and subsequently easier to add complex local features too.

B. Classification

We evaluated our model on both the Kvasir and the CVC
dataset as described in the classification section (III-B). When
presenting our results, our main point of comparison is the
MCC [19]. In addition to the MCC score, we use F1, precision

(a) GAN generated image at
512x512 px

(b) Autoencoder generated image at
512x512 px

(c) GAN generated image at
256x256 px

(d) Autoencoder generated image at
256x256 px

Fig. 3: Same image from the z-line with four different inpaint-
ing attempts. Each image is re-sized to fit in the figure.

and recall as metrics when presenting our results. In addition
to the best MCC score, we present the average MCC score as
an indicator of the general success of the method in question.

Since our task was to improve classification and cross-
dataset generalisability through inpainting, each table has its
first row as the dataset without any inpainting, followed by
the rest of the datasets. The first column is the maximum
MCC score of the runs. Then we give the maximum F1
score followed by the maximum precision and recall. The last
column gives us the average MCC of all four runs for each
model.

First, we evaluated our results on the three datasets: Kvasir,
CVC-356 and CVC-12k. Here our goal was to see the general
improvement based only on inpainting and dataset. Then we
evaluated the InceptionResNetV2 network on the CVC-356
dataset, and lastly, re-evaluated the CVC-356 network, at
double image size.

a) Kvasir, Test T1: These are our results from training
and evaluating on the Kvasir v2 dataset with the 5,600 image
training set, 800 image validation set, and 1,600 image test
set split. Table III shows the highest value for each of the six
methods compared to the highest baseline.

As we can see in the results shown in Table III, we got
the highest MCC score on the baseline dataset. Both the
best and average scores were highest for the baseline, but
the average was consistently high for all methods. As we
recall, we predicted that we expected a higher MCC score
for the Autoencoder inpainting the black corner and the GAN

TABLE III: Test T1, Kvasir dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.9307 0.9394 0.9396 0.9394 0.9163 0.0166
D-II 0.9150 0.9254 0.9303 0.9250 0.9053 0.0102
D-III 0.9212 0.9310 0.9347 0.9306 0.9040 0.0167
D-IV 0.9187 0.9287 0.9298 0.9288 0.9105 0.0057
D-V 0.9208 0.9308 0.9316 0.9306 0.9108 0.0067
D-VI 0.9096 0.9204 0.9226 0.9206 0.9055 0.0038
D-VII 0.8960 0.9094 0.9174 0.9081 0.8926 0.0049

TABLE IV: Test T2, CVC-12k dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.2897 0.5558 0.6968 0.6067 0.2723 0.0329
D-II 0.3031 0.5413 0.7148 0.5927 0.2675 0.0250
D-III 0.3197 0.6152 0.7050 0.6600 0.2649 0.0374
D-IV 0.2956 0.4663 0.7632 0.5156 0.2733 0.0225
D-V 0.2967 0.5451 0.7072 0.5965 0.2523 0.0440
D-VI 0.2803 0.4548 0.7571 0.5038 0.2244 0.0410
D-VII 0.2225 0.5740 0.6451 0.6236 0.1984 0.0195

inpainting the black corner. The results do not show a clear
indication that the baseline was the best method, nor that there
are any good ways to inpaint this dataset.

b) CVC-12k, Test T2: The T2 test case was trained on
the Kvasir v2 dataset with the 5,600 image training set and
the 800 image validation set, then evaluating on the CVC-12k
dataset. Table IV shows the highest value for the six methods
compared to the highest baseline, with four runs each.

As we can see in the results, shown in Table IV, we got
the highest MCC score on the dataset with the inpainted green
square made by the autoencoder. Also, the average score was
consistently higher for the autoencoder datasets compared to
the GAN datasets. The results give a small indication that
inpainting the green area with an autoencoder might give a
better result compared to the baseline.

c) CVC-356, Test T3: The T3 test case was, as test case
T2, trained on the Kvasir v2 and evaluated on the CVC-356
dataset. The table V shows the highest value for each of the
six methods compared to the highest baseline, with four runs
each.

As we can observe in the results shown in Table V, we
got the highest MCC score on the dataset with the inpainted
green square made by the autoencoder and the GAN. We can
also see a constant higher value for both datasets inpainting
the green area. The highest value was from the dataset with
both corner and square inpainting, but this is most likely just
a lucky result, given the low average MCC. The results give a
reasonable indication that inpainting the green area will give
a better result compared to the baseline.

d) InceptionResNetV2, Test T4: These are our results
from training on the Kvasir v2 dataset with the 5,600 image
training set and the 800 image validation set, then evaluating
on the CVC-365 dataset. The table VI shows the highest value

TABLE V: Test T3, CVC-356 dataset on DenseNet121

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.7070 0.9137 0.9132 0.9164 0.5904 0.1104
D-II 0.5153 0.7846 0.8153 0.8065 0.4861 0.0307
D-III 0.7325 0.9402 0.9535 0.9348 0.6465 0.0978
D-IV 0.6631 0.9264 0.9410 0.9194 0.5637 0.1011
D-V 0.5714 0.8387 0.8487 0.8516 0.4557 0.1002
D-VI 0.7150 0.9214 0.9206 0.9225 0.6334 0.0819
D-VII 0.7466 0.9370 0.9391 0.9356 0.4576 0.1941

TABLE VI: Test T4, CVC-356 dataset on InceptionResNetV2

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-I 0.4038 0.8851 0.9130 0.8678 0.2999 0.0841
D-II 0.2221 0.7957 0.7958 0.7955 0.1227 0.0900
D-III 0.0745 0.4489 0.5535 0.5131 0.0299 0.0374
D-IV 0.3147 0.7793 0.7730 0.7916 0.1636 0.1197
D-V 0.1802 0.5434 0.6201 0.5985 0.0446 0.0923
D-VI 0.3276 0.8372 0.8429 0.8323 0.2234 0.0826
D-VII 0.2738 0.6754 0.6938 0.7106 0.1417 0.1230

for each of the six methods compared to the highest baseline,
with four runs each. In this run we used the InceptionRes-
NetV2 network to train our model.

As we can see from the results shown in Table VI, we
got the highest MCC score on the baseline dataset. From our
tests, it looked like the overall scores were much lower here
compared to our DenseNet121 models, and in general, we got
more unpredictable scores.

e) Double image size, Test T5: These are the results from
training on the Kvasir v2 dataset with the 5600 image training
set and the 800 image validation set, then evaluating on the
CVC-365k dataset. The table VII shows the highest value for
each of the six methods compared to the highest baseline, with
four runs each. Here we have doubled the size of the images
for the training and evaluation set to see how size affects the
results.

On the CVC-356 dataset at 512x512 px resolution, we see
a generally lower MCC score compared to the same dataset at
256x256 px. Our best average results came from the dataset
with both inpainted corners and inpainted squares, but it looks
like the more inpainting, the better. The results give a small
indication that inpainting large areas with sparse information
might give a better result compared to the baseline, at least
compared to smaller areas.

Overall, we can observe through all experiments that in-
painting can both improve and worsen the results. In general,
inpainting works best when applied in dataset specific artefacts
that are not present in the test set.

VI. DISCUSSION

Our first hypothesis was that removal of the black edges
and corners around the images would result in a better clas-
sification and better generalisation. Our results also show that
training and testing on the same dataset gave approximately

TABLE VII: Test T5, CVC-356 dataset with double resolution

Dataset MCC F1 Precision Recall MCC (AVG) MCC (SD)

D-VIII 0.5865 0.8711 0.8702 0.8770 0.4696 0.1560
D-IX 0.6447 0.8992 0.8980 0.9015 0.4775 0.1142
D-X 0.4346 0.8894 0.9157 0.8735 0.3754 0.0709
D-XI 0.6449 0.8998 0.8986 0.9019 0.5935 0.0402
D-XII 0.7189 0.9294 0.9311 0.9282 0.4499 0.2110
D-XIII 0.5956 0.8891 0.8880 0.8905 0.5547 0.0604
D-XIV 0.7234 0.9235 0.9228 0.9247 0.5737 0.1173

the same MCC score, with and without corners. In addition, we
observed that the removal of areas within the images with no
relevant information did not give any better results, given the
same training and test distribution. This was not the case when
the images were up-scaled above their original size, as we saw
a much better result when the areas were inpainted. We also
observed that by removing the corners on the Kvasir set during
training, the testing on the CVC-sets we did not get any better
results in general. This was as expected since all the images
had black edges, and removing them from training would make
the datasets less alike. Our second hypothesis was concerning
the removal of the green squares in the training set. With this,
we wanted to see how the inpainted training sets affected to the
test set that did not originate from the original distribution. We
observed good results for both the CVC-12k set and the CVC-
356 set. For the set, we deemed most realistic, namely the
CVC-356 set, we saw that our score consistently was higher
both for the average and the max MCC. Lastly, using a non-
optimised network gives a lower MCC score when inpainting.
In general, we see that inpainting to only remove sparseness
will often worsen the results when the test and training set is
from different sources. The same goes for excessive inpainting.

VII. CONCLUSIONS

Our two main hypotheses regarding types of inpainting for
this paper were about how it would affect classification. We
tested this on various datasets with different models at different
sizes to see how the datasets affected the classification score.
From our experiments, we can see that inpainting can help
when generalising the training data to other datasets. In our
GI anomaly classification experiments, our models show an
average increase of at least 7% MCC score when using an
optimal network for testing on images that are not from the
same domain as the training data, shown in VII. When working
with bigger size images, and subsequently larger areas with
sparse information, it seems that inpainting does a better job,
compared to smaller images. The results coincide with the
previous work done [4].

REFERENCES

[1] B. Stewart and C. Wild, International Agency for Research on Cancer.
World Cancer Report 2014 (International Agency for Research on
Cancer). World Health Organization, 2014.

[2] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange,
D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T.
Schmidt, M. Riegler, and P. Halvorsen, “Kvasir: A multi-class image
dataset for computer aided gastrointestinal disease detection,” in
Proceedings of the 8th ACM on Multimedia Systems Conference, ser.
MMSys’17. New York, NY, USA: ACM, 2017, pp. 164–169. [Online].
Available: http://doi.acm.org/10.1145/3083187.3083212

[3] K. Pogorelov, M. Riegler, P. Halvorsen, S. Hicks, K. Randel, D.-T. Dang-
Nguyen, M. Lux, O. Ostroukhova, and T. Lange, “Medico multimedia
task at mediaeval 2018.” CEUR Workshop Proceedings (CEUR-
WS.org), 2018.

[4] M. Kirkerød, V. Thambawita, M. Riegler, and P. Halvorsen, “Using
preprocessing as a tool in medical image detection.” CEUR Workshop
Proceedings (CEUR-WS.org), 2018.

[5] S. Hicks, M. Riegler, P. Konstantin, K. V. nonsen, T. de Lange,
D. Johansen, M. Jeppsson, K. R. Randel, S. Eskeland, and P. Halvorsen,
“Dissecting deep neural networks for better medical image classification
and classification understanding,” 2018.

[6] D. Lu and Q. Weng, “A survey of image classification methods
and techniques for improving classification performance,” International
Journal of Remote Sensing, vol. 28, no. 5, pp. 823–870, 2007. [Online].
Available: https://doi.org/10.1080/01431160600746456

[7] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros, “Context encoders: Feature learning by inpainting,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun
2016. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.278

[8] E. Denton, S. Gross, and R. Fergus, “Semi-supervised learning with
context-conditional generative adversarial networks,” 2016.

[9] S. M., “Cross-validatory choice and assessment of statistical predic-
tions.” Journal of the Royal Statistical Society, no. 36(2), pp. 111–147,
1974.

[10] R. J. Borgli, P. Halvorsen, M. Riegler, and H. K. Stensland, “Automatic
hyperparameter optimization in keras for the mediaeval 2018 medico
multimedia task.” CEUR Workshop Proceedings (CEUR-WS.org),
2018.

[11] Y. K. H. Bourlard, “Auto-association by multilayer per-
ceptrons and singular value decomposition,” 1988. [Online].
Available: http://ace.cs.ohio.edu/ razvan/courses/dl6890/papers/bourlard-
kamp88.pdf

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[13] S. Hicks, P. H. Smedsrud, P. Halvorsen, and M. Riegler, “Deep learning
based disease detection using domain specific transfer learning.” CEUR
Workshop Proceedings (CEUR-WS.org), 2018.

[14] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul 2017.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2017.243

[15] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
2016.

[16] F. Chollet, “Applications - keras documentation. [online],”
https://keras.io/applications/, 2019, accessed: 2019-01-07.

[17] J. Bernal and H. Aymeric, “Miccai endoscopic vision challenge polyp
detection and segmentation,” 2017, accessed: 2019-01-07. [Online].
Available: https://endovissub2017-giana.grand-challenge.org/home/

[18] E. L. Denton, S. Gross, and R. Fergus, “Semi-supervised
learning with context-conditional generative adversarial net-
works,” CoRR, vol. abs/1611.06430, 2016. [Online]. Available:
http://arxiv.org/abs/1611.06430

[19] B. Matthews, “Comparison of the predicted and observed
secondary structure of t4 phage lysozyme,” Biochimica et
Biophysica Acta (BBA) - Protein Structure, vol. 405,
no. 2, pp. 442 – 451, 1975. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005279575901099

	Introduction
	Background and Motivation
	Problem Statement
	Scope and Limitations
	Research Method
	Theory
	Abstraction
	Design

	Main Contributors
	Outline

	Background
	The Medical Background
	CAD - Computer Aided Diagnosis
	Machine Learning
	Machine learning types
	The Basic Concept of Machine Learning

	Neural Networks
	The Perceptron
	Feed Forward and Backpropagation Through the Perceptron
	Multilayer perceptrons
	Convolutional Neural Networks

	Complex Neural Network models
	Autoencoders
	Advaserial Neural Networks
	Transfer Learning

	Summary

	Methodology
	Bird's Eye View
	Design of the Inpainting Algorithms
	Removing Black Corners
	Removing the Green Square
	Removing Both Corners and the Green Square
	Removal of Over-saturated Areas and Text
	The Generative Modelling Algorithms
	Summary

	Design of the Transfer Learning Experiments
	Models
	Pooling and Freezing
	Configuring the Optimal Combination for Our Testing
	Summary

	Libraries
	Python
	Tensorflow
	Keras

	Custom Functions for Keras, Tensorflow and Python
	Channel-Wise Fully-Connected Layer
	Subpixel
	Masklaod and Setload
	Self Attention
	Masked Loss

	Stabilising the GAN
	Code Description
	Autoencoder
	Generative Adversarial Network
	Transfer Learning Classifier

	Summary

	Experiments
	Datasets
	Kvasir
	CVC 356 and CVC 12k

	Metrics
	The Confusion Matrix
	Common Metrics
	Singleclass vs Multiclass Metrics

	Setup of experiments
	Results of the Inpainting
	Black corners
	Green square
	Combination
	Double resolution

	Results of the Transfer Learning Experiments
	Models

	Densenet121
	Densenet121 Base Model
	Densenet121 Corners Inpainted
	Densenet121 Green Square Inpainted
	Densenet121 Full Inpainting

	InceptionResNetV2
	InceptionResNetV2 Base Model
	InceptionResNetV2 Corners Inpainted
	InceptionResNetV2 Square Inpainted
	InceptionResNetV2 Full Inpainting

	Classification Results Based on the Densenet Model
	Classification Results Based on the InceptionResnetV2 Model
	Classification Results Based on the Densenet Model at Double Size

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	Appendices
	Published Papers
	Paper I - Using preprocessing as a tool in medical image detection
	Paper II - Unsupervised preprocessing to improve generalisation for medical data

