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Abstract

On-line multi-player games have experienced an impressive growth over the last decade.

Despite this success, game providers struggle to keep up with the many different types

of cheating occurring in these games. Due to the computational demand of a large scale

multi-player on-line game, server resources are becoming scarce. This makes the task of

implementing cheat detection mechanisms difficult, because of the lack of computational

resources. Advances within the field of General Purpose computing on Graphic Processing

Units (GPGPU), have given developers easier access to the computational power of the

GPU.

In this thesis, we investigate what possible benefits there are of implementing a GPGPU

cheat detection mechanism. We have developed a framework for a game simulator that

includes a simple customizable physical engine and a cheat detection mechanism. We have

created both a CPU and a GPGPU version of the cheat detection mechanism we have

constructed. The GPGPU implementation runs on NVIDIA GPUs using the Compute

Unified Device Architecture (CUDA) framework. We have also constructed a simple user

interface to provide a graphical representation of the game simulator.

The results we have obtained from our research indicate that offloading cheat detection

mechanisms to the GPU, increases the speed of the mechanism. We also discover that in

addition to being faster, the GPU mechanism allows the Central Processing Unit (CPU)

to perform other game relevant tasks while the mechanism is executing. Overall, our

research shows that game providers can benefit from offloading certain parts of their

server side processing to the GPU.
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Chapter 1

Introduction

On-line multi-player gaming has experienced an amazing growth over the last decade.

Game providers of popular games must deliver reliable service to thousands of concurrent

users, indicating a need for scalable solutions. Even when scalability is taken into account

and thoroughly considered in the design of an on-line game, its service providers find that

server side processing power is inevitably becoming scarce [8]. Along with the success of

on-line multi-player gaming, cheating is prominent as one of the leading cases of malicious

behavior performed by game players. It is in the best interest of game service providers

to keep cheating to a minimum, but the demand for a stable service for resource inten-

sive games, restricts the amount of resources that can be dedicated to cheat detection

mechanisms.

Our goal with this thesis, is to determine if programming the Graphics Processing Unit

(GPU), can help offloading cheat detection mechanisms in game systems. We also want

to investigate how such a solution might scale, compared to a mechanism executing on

the Central Processing Unit (CPU). If cheat detection mechanisms running on graphics

hardware leave a smaller performance footprint compared to that of standard mechanisms,

our research can give game providers an efficient alternative when implementing cheat

detection mechanisms in on-line multi-player games.

1.1 Background and Motivation

On-line computer games are becoming increasingly popular, but with this growth, cheat-

ing is also advancing and could turn into a major problem for on-line game operators

and service providers [9]. As an effect of the large variety of current on-line computer

1
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games, cheating has evolved into a complicated phenomenon. Adapting current client-

server game architectures to support even basic cheat detection would certainly imply

the need for architectural changes, as the scalability of game systems is already a major

issue [8].

While adding more hardware to a system can increase its performance, it only serves as

a temporary solution. Hardware used in commercial game server clusters is expensive,

and the performance gained might only be sufficient for a short period of time. Because

of the physical limitations halting the performance increase in the single-core CPUs,

expansion needs to be horizontal rather than vertical. Vertical expansion is a common

term used to explain the performance increase of single processing components withing

a system. Horizontal expansion is where the overall system performance is increased by

adding several identical processing units which all work in parallel. This process is called

parallelization and has proved to be a solution to many slow and aging systems running

serial algorithms.

Vertical expansion has for a long time been the solution for system administrators to

increase the performance of their system. However, the process of adding new, faster

hardware is slowly being substituted by migrating systems to run on parallel hardware.

For this change to be beneficial, serial algorithms must be parallelized. The modern GPU

is a relatively inexpensive example of such a parallel device. We aim to utilize general

programming of GPUs to achieve a low-budget and scalable solution for detection of

cheating in on-line multi-player games.

1.2 Problem Statement

Cheating in on-line multi-player games is an issue that has not been given the attention it

deserves, neither from the game industry nor the scientific field. Many on-line multi-player

games still suffer from excessive cheating in one form or another. However, in many cases

the existence of cheating is hard to prove [10]. The only part of a distributed system that

a game service provider can trust, is the part of the system running on hardware under

their control, which is commonly the central servers. Any other part of the system can

and most likely will be attempted to be exploited by a cheater.

As of yet, no existing framework manage to eliminate all kinds of cheating, so game de-

velopers are forced to either create their own mechanisms or use a selection of existing

solutions to cover all the aspects of a game that a cheater might exploit. In-game physics,

aimed to increase game realism, is experiencing increased popularity in many kinds of
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games. However, this is just another added feature where bugs can be exploited or mod-

ifications can yield advantages to dishonest players. Most games that have implemented

in-game physics use it as major part of the game-play experience, some even base the

entire game-play around physics alone [11]. In-game physics is therefore a very likely part

of a game to be exploited.

Figure 1.1: The anti-gravity gun of Half-Life 2 [1] from Valve Software allowed the player
to move and throw game objects around. Courtesy of [2].

To solve such a problem, central servers, or other trusted entities, must ensure consistency

in the movements of all of the clients of the game. This is potentially a computationally

heavy task, which most game servers would struggle to complete within real-time demand

limits. Game servers need to run many concurrent tasks in addition to the cheat detec-

tion mechanism. The servers must maintain stable and reliable communication with all

connected clients, accept new connections and terminate connections to clients that wish

to disconnect. Security related tasks, like user authentication and account management,

must also be performed concurrently with the cheat detection mechanism. We investigate

alternative hardware where the cheat detection mechanism can execute to offload the

main CPU. The goal is to allow game servers to run physics consistency checks whilst

performing standard game administration tasks with considerable less trouble.
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In this thesis, we will focus on game models which are based in virtual worlds. Virtual

worlds are simulated virtual environments where partakers control one or several avatars1.

If the virtual environment has a physical model, the movement of these avatars are often

affected by a set of simulated physical laws, or forces. These forces are similar to the

ones we experience in the real world; like gravity for instance. It is also common for

participants to be able to move through different mediums; i.e., the air of an atmosphere

or a liquid like water. All game participants will be affected by these mediums based on

the structure and shape of their avatar. Cheating participants might find ways to modify

the parameters of the physics engine calculating the way forces and mediums act upon the

objects of the world. This way, the cheaters can gain unfair advantages over adversaries

to achieve undeserved results and rewards.

The algorithms used to detect cheating participants have to be adapted to the physical

model of the game. The entire cheat detection system of a game can consist of many

different cheat detection mechanisms, if there is a need for it, so it is important to create

a scalable framework for running a widely varied set of cheat detection mechanisms on

a server. In this thesis, we have not researched how to best implement cheat detection

mechanisms, mainly because mechanisms would rarely be usable unmodified over different

kinds of games. Mechanisms must be tailored to the game that will use them. We have,

however, designed two simple mechanisms to fit a game model we have defined ourselves.

We are interested in how our mechanism executes and if it manages to offload the main

CPU. Further work could be to research how different kinds of mechanisms running on

GPUs can be optimized and which techniques work with which kinds of games.

1.3 Main Contributions

We investigate existing research and solutions to limit cheating in on-line multi-player

games. Cheating and cheat detection are problematic issues in the game industry, be-

cause of the many types of cheating that exist. The scope of the different proposed and

implemented solutions vary from detecting cheats where the client has modified his or her

own system, to expel or disable the accounts of people selling in-game items and currency

on on-line auction sites. We have researched what types of cheating is relevant to our

thesis. Because modern AAA2 game titles focus not only on top notch graphics, but

also in-game real-time physics, several physics engine simulators have emerged in the last

few years. We have researched the general theory behind these physics engines to gain

1Avatar is the common name for the game object (or objects) that the client controls.
2AAA is a common classification for high-budget game titles.
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knowledge about how physics in games is implemented.

Our contribution is to investigate how a cheat detection mechanism can be implemented

as transparently as possible in a game system by utilizing parallel hardware. We present

our research with a concrete example of a game simulation framework we have devel-

oped. In the simulation, cheating clients modify physical properties of their game avatar

to gain an advantage. The framework uses a Client-Server communication model and

includes a physics engine, basic client management and the cheat detection mechanism.

We investigate how parallel hardware, more specifically the GPU, performs when used for

cheat detection. Originally aimed at graphics tasks, the GPU has proved to be an ideal

platform for parallel development and execution with the introduction and advances of

General Purpose computing on Graphic Processing Units (GPGPU). We use the CUDA

framework and API from NVIDIA to develop and run cheat detection mechanisms within

our game simulation.

We show that by using the GPU to offload a cheat detection mechanism, we can save

CPU cycles that can be used for other processing. We also show that the execution time

of the GPU mechanism is considerably lower than the CPU implementation. We hope

our contribution to the matter of cheating in on-line multi-player games can help in the

battle against malicious behavior in networked systems. We also hope this thesis will

server as a motivation to inspire developers to reap the benefits of parallel computation

and to contribute to the kind of development likely to become more prominent in the near

future.

1.4 Outline

In chapter 2, we will look into what kinds of cheating exists in games in general and which

types of cheating applies to this thesis. We investigate the basic theory behind common

physics engines and what parts of this applies to our implementation in chapter 3. In

chapter 4, we introduce the technology and architecture behind our cheat detection en-

abled multi-player game simulator, where we examine modern multi-core architectures

and frameworks used to program and develop on these architectures. We present our im-

plementation, including our physics engine and cheat detection mechanisms, in chapter 5.

In chapter 6, we try to explain the results we have found and what might be the cause of

these. Finally, we will give a brief conclusion and summary of the thesis in chapter 7.
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Chapter 2

Cheat Detection in On-Line

Multi-Player Games

To implement mechanisms against cheating in on-line multi-player games, we need to gain

a better understanding of what kinds of cheating actually exists, and what has already

been attempted and achieved to hinder cheating. In this chapter, we will therefore intro-

duce existing work prior to this thesis, and explain why cheat detection and prevention

is important to the game industry. We investigate how cheating exists in modern on-line

multi-player games and review existing solutions to cheating.

2.1 Introduction

One of the leading factors for the attractiveness of all games, is their sense of fairness.

Cheating compromises the fairness of a game and thereby also its appeal to users. Discon-

tent users affect the reputation of a game and thus its revenue. Good revenue results in

continuous game development which again leads to better games. Hence, it is in the best

interest of both a game service provider and the clients to keep cheating to a minimum,

to maintain the best possible user experience. However, cheat detection and avoidance

systems are not trivial to implement and maintain because of the diverse means of which

cheating is employed [9,10,12]. To gain an understanding of the different types of cheats

that exist in current games, and to be able to distinguish which varieties of cheats are

relevant to which types of games, a classification of cheating is needed.

7
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2.2 Classification of Cheating

Through the evolution of on-line multi-player games, cheating has emerged to become

a serious problem for game providers. Cheating can ruin in-game economics, turn hon-

est players into cheating players and in the worst case, lead to players abandoning the

game [13]. This way, cheating can be a major factor affecting the success of a game. The

diversity of the current games being played on the internet allows for equally diverse means

of cheating, as each genre of games have their own unique exploitable vulnerabilities. The

first important step towards a cheat-free game, is to examine and determine which forms

of cheating are most likely to be attempted in games of the type being designed and de-

veloped. For this reason, cheating must be categorized and linked to the types of games

where the certain cheat is feasible. This depends on many different attributes of a game,

such as its architectural structure, its style or genre, player-to-player interaction and how

security and privacy should be handled in the game.

An early review of the existence of cheating and its prevention was done by Matt Pritchard [10].

As one of the developers of Age of Empires and an avid gamer, he has experienced cheat-

ing and its impact on both the developers and game players. His paper, aimed at the

game development industry, mentions concrete examples of games which have experienced

problems with cheating, different game communication models and how cheating applies

to these models. He also presents several ideas on solving different cheating cases. Not

much scientific effort had yet been put into the field of cheating behavior in multi-player

games before his review. Mostly because at the time, the multi-player on-line gaming

industry was still in its infancy.

As an early research field, the study of cheating in multi-player games was unstructured,

without classifications of the different existing methods of cheating. Cheating problems

were largely investigated and dealt with on a case-by-case basis until Yan and Randell [9]

presented an extensive list of different categories existing cheating might fall into, and

with it, a taxonomy of on-line cheating. It is a three-dimensional taxonomy based on

what is the underlying vulnerability, the cheating consequence and the cheating principal,

which translates to: what within the game is exploited, what type of failure can this

exploit cause and who is performing the cheating, respectively.

The taxonomy presented in [9] is thorough, but unstructured, so GauthierDickey et al [14]

present a more structured taxonomy by categorizing cheats in the layer in which they

occur: game, application, protocol and network. Continuing from this, Webb and Soh [12]

present an updated review and classification of cheating in networked computer games

based on the same categories defined by [14]. They have renamed the network category
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Game Level Bug
Real Money Transactions

Application Level Information Exposure
Invalid Commands
Bost/reflex enhancers

Protocol Level Suppressed update
Timestamp
Fixed Delay
Inconsistency
Collusion
Spoofing, Replay
Undo
Blind Opponent

Infrastructure Level Information Exposure
Proxy/Reflex Enhancers

Table 2.1: Classification of certain game cheats into categories. Adapted from [12].

to infrastructure. Table 2.1 illustrates the four categories and which types of cheats that

falls under these. The four categories are defined as follows:

Game level cheats Achieved by breaking the rules or misusing features of the game.

Game level cheats do not require any modifications to the game client or the general

infrastructure. An example is Real Money Transactions, which are common in

Multi-Player Online Games (MMOGs). People are able to retrieve valuable items

in a game by buying these with real money and exchanging the items within the

game. Many MMOGs use this as the revenue plan for the game, while several other

MMOGs, mainly western games, forbid Real Money Transactions [12].

Application level cheats Cheating by modifications to the code of the game or the

operating system. A rather common form of application level cheats are reflex

enhancers and farming bots which give the cheater an unfair advantage by boosting

such as the accuracy of the aim or allow for automation of certain tasks to let the

cheater gain resources while not even playing the game. An example of a farming

bot is MMO Glider [15] for World of Warcraft (WoW) [16].

Protocol level cheats Changes to the protocol of a game (i.e., changing packet contents

or delaying packets). Fixed delay cheats are based on introducing a delay before

sending packets from the cheater. This delay appears only as latency for the other

players and the central server. The delay can allow the cheater to examine all

updates received from the other players before choosing an appropriate action based

on the knowledge acquired.
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Infrastructure level cheats Cheats involving modifications and manipulations of game

dependent pieces of infrastructure. i.e., modifications to driver, libraries, hardware,

network, etc. Information exposure cheats can examine broadcasted network traffic

to give additional information to a cheater. Reflex enhancers can run on proxies

that are placed between the cheater and the server and can modify packets to give

the cheater an advantage.

Many of the categories of cheating Yan and Randell mentioned in [9] can be classified

as general security issues for internet based applications and do not apply just to games.

Security in on-line applications is a research field much more explored compared to that

of cheating. Webb and Soh [12] discard these categories as cheating to separate general

security issues from cheating, which is unique to gaming applications. Some categories

from [9] that fall outside of the classification scheme of Webb and Soh are: compromised

passwords, exploits due to lack of authentication and unreliable communication between

participants or servers. Cheating that falls under several of the other categories listed

in [9] can be caused by player interaction on other communication channels than the ones

intended by the game. Players might exchange information between each other by phone

to beat a common opponent in a situation where cooperation might not be intended

(cheating by collusion). In addition, untrustworthy personnel might compromise all kinds

of private game data.

Since cheat classification is not part of the research in this thesis, we will settle with the

classification scheme proposed by Webb and Soh [12].

2.3 Protecting Online Games Against Cheating

One of the main problems with implementing cheat detection and prevention mechanisms

in games, is the loss of valuable computational resources to the execution of the cheat

detection mechanism. Game developers strive to create revolutionary games, with the

latest features in the fields of graphical effects, in-game physics, low-latency communica-

tion and artificial intelligence. These features already require most of the resources of a

computer, both in the server and the systems of the clients. A mechanism for the detec-

tion of cheating is only usable if its impact on the application is very transparent, both

with regard to performance demands and modifications to the existing infrastructure1.

1Changes to existing infrastructure would mostly affect games that have already been released to the
public and can be considered in active use.
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2.3.1 Communication Models of Networked Games

The architectural model of the game affects the approach to take when implementing cheat

detection mechanisms. The two major architectures used in game design are Client-Server

(C/S) and Peer-to-Peer (P2P) models, although P2P games can be said to be rather rare.

The general communication models of the two architectures are illustrated by figure 2.1.

C/S models consist of centralized servers controlling game state and communication flow.

Every client is connected to the server alone, and all communication between clients

passes through the server. P2P architectures are decentralized, meaning there is no single,

controlling server. Clients must communicate with each other and exchange game state

themselves. There are also proposals for hybrid architectural models, mixing C/S and

P2P models to gain advantages from both of them [17].

Central Server

Clients

Client-Server Architecture Peer-to-Peer Architecture

Figure 2.1: Client-Server architecture vs. Peer-to-Peer architecture.

The game industry still turns to the C/S architecture, not only for MMOGs, but for most

game types. With MMOGs like WoW [16], a server is the host of just one game instance.

The server is also under the control of the game service provider, Blizzard. This gives

the game service provider total control of the server and how it behaves. With total

control of the server, implementing cheat detection can be considered relatively easy. In

First Person Shooters (FPSs), however, servers are often distributed and hosted by clients

themselves, like Counter-Strike: Source [18]. A client hosts a server for a small group of

peers who can then join the server. A disadvantage with a solution like that is that the

connecting clients have no way of knowing if the server has been tainted or not.

Scalability is a main goal for game service providers during the entire lifetime of a game,

as a growing user base would increase revenue. If game producers want to create and

maintain a successful game, an architecture supporting thousands of active clients must

be at the base of the system. If the infrastructure risks performance shortcomings as



12

the game expands, the actions needed to meet the new performance requirements should

be minimal. That being said, with a scalable infrastructure, there should be no need

for overcompensations to maintain a stable service, because expansions will be quick

and transparent, and if possible, automatic. In other words, a system that manages to

maintain a stable service during a rapid increase of clients, connections or in-game events,

is not scalable if the way it handles such an increase is solely by running redundant idle

servers that wait to offload the main servers.

C/S communication models suffer from the fact that scalability is an issue. Since pro-

cessing power in a single machine is not infinite, a single server is not capable of serving

a steadily increasing number of participants forever, as the demand for processing power

will reach an upper bound. A simple solution, and probably the most common, is to add

new hardware to the infrastructure which offloads critical parts of the system. A problem

which is not solved by adding more hardware is increased bandwidth demand. Not only

is the internal processing power of the server an issue, the network bandwidth must also

be able to serve the rising number of clients. Another problem is that the server is also

the single control unit in the model, which means it is also a single point of failure. If

a central server goes down, the entire game might come to a halt, whereas in a P2P

architecture, the game may continue to run without problems. Communication between

clients internally in the game also suffers from the fact that messages must be relayed

through the central server, increasing the time a message would take to arrive, compared

to the time it would take through a direct client-to-client connection.

Central Server

Proxy Servers

Clients

Figure 2.2: Client-Server architecture with proxy servers.

Proxies, illustrated by figure 2.2, have been a common solution to internal resource prob-

lems, bandwidth issues and high latencies. Proxy servers are helper servers that are placed

between a central server and the clients. Proxies allow for servers to be placed closer to

the clients, reducing latencies. Because all communication passes through the proxies, the

bandwidth requirements of the central server can be reduced. The central server is still
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the controlling part of the system, but much of the information passed from the clients to

the proxies does not have to be forwarded to the central server, reducing the bandwidth

demand of the central server. Finally, if a central server would go down for some reason,

the proxies might be able to keep the game running until the server is back up again or

replaced.

P2P systems have been shown to deal with scalability issues better than C/S systems

in the sense that expansions give a collective increase in resource demand, while in C/S

models, the resource demand growth must be handled by the central server alone [19]. C/S

systems may therefore have a lower overall system cost increase with the increase of clients,

but the central server can not maintain this increase forever. However, a pure P2P network

model, where clients maintain a connection and communicate with all the other clients,

has been proved to suffer from scalability issues as well. MiMaze [20] is a distributed

game created for research of distributed game development. MiMaze suffers from these

scalability issues, supporting fewer than 100 players [19]. The main question is: where in

the system is it best to place a cheat detection mechanism? P2P architectures have the

disadvantage that implementing a collective cheat detection mechanism is challenging [14,

17, 21], but in such systems the processing power is available. The opposite is true for

C/S architectures, where implementing a cheat detection mechanism is relatively easy,

but processing power is scarce.

Although not very common, there are games that have chosen P2P as the communication

model. The Genie Engine of Age of Empires I and Age of Empires II support P2P

communication [22]. Age of Empires was an early game to feature internet-based multi-

player possibilities and despite its commercial success, it was very vulnerable to many

forms of cheating [14]. Age of Empires I bypassed some of the scalability issues by

letting every client calculate game progress, reducing network traffic. This did, however,

introduce the issue that the game could not progress faster than the slowest connected

client. FreeMMG [23] is a scalable, hybrid game distribution model that uses a lightweight

server that delegates the bulk of the game simulation to the clients.

2.3.2 Existing Cheat Detection Mechanisms

Because of the many existing forms of cheating, there are many attempted solutions

to battle cheating, both within academics and the game industry. Different types of

cheats apply to different types of games, so the solutions we investigate in this section,

approach different problems with different communication models and game types. Some

are designed for C/S systems, while others for P2P. There are also systems that are
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usable with whichever communication model the game has. Other cheat detection and

avoidance systems only apply to certain game genres and so on.

GauthierDickey et al [14] present a low delay event ordering called NEO, for P2P games.

They claim it to be secure for five different types of cheats defined as protocol level cheats.

Fixed-delay cheats are handled by ignoring late updates. Timestamp cheats are avoided

by encryption. After a round, updates are decrypted and players can no longer submit

actions. Suppressed update cheats are circumvented as the other clients will stop sending

updates to the cheater, because the missing updates from the cheater will be perceived as

congestion by peers. Inconsistency cheats can be dealt with by using digital signatures

and state comparisons. Players perform state comparisons by regularly auditing the game

state. Cheating by collusion is avoided by decreasing the probability of colluding players

forming a majority.

Mönch et al [24] present a solution that prevents modification to the code of the game-

client, and prevents uncontrolled access to sensitive game data stored in the memory of

the client. It does not detect cheats concerning modifications to network data between

different nodes in the game. The system relies on mobile guards which ensure the integrity

of the protection mechanism and dynamically change and extend the protection mecha-

nism used in a game. In essence, they are small code segments changed with small time

intervals, making them impossible to reverse engineer before they expire. The solution

greatly increases the difficulty of cheating in a game. However, the solution is also depen-

dent on the creation of trustworthy mobile guards which is non-trivial in P2P games. The

solution also increases client-side computation demand which affects the performance of

the clients.

Baughman et al [25] have created a system where lookahead based cheats are avoided. A

lookahead cheat is where a cheating participant knows which actions the other participants

are going to perform in the next time frame, before choosing his or her own action. Nor-

mally, the cheating participant would run an automated agent of some sort, that initiates

a defensive or offensive action based on the actions received from the other players. Their

solution is a variation of the lockstep protocol, called Asynchronous Synchronization (AS).

The lockstep protocol prevents lookahead based cheats, with the disadvantage that packet

delay is introduced. AS reduces this delay by assigning a Sphere of Influence (SoI) to each

client. Whenever a client falls out of synchronization with another client, the two clients

are no longer within each others SoI. Clients continue to synchronize with other clients

within their SoI until another sphere intersects with the same sphere. Then the two are

joined to form a new SoI, which is then synchronized.

Webb et al [17] have come up with a system for cheat protection in games they call Referee



15

Anti Cheat Scheme (RACS). The system is primarily designed for P2P based games. The

anti-cheat scheme depends upon a referee being in charge of the game state. The referee

acts similar to a central server in a C/S architecture. Communication between clients can

follow two ways: (1) relayed through the referee, Peer-Referee-Peer (PRP), which is the

way communication is handled in C/S games and (2) between peers directly (PP). Their

anti-cheat scheme would most likely also be possible to have in a C/S based architecture.

RACS is in fact a hybrid between P2P and C/S inter-node communication wise. They

present the basic concept of RACS and that it limits referees to be processes running

on trusted hosts. In [26], Webb et al present a way to select referees in a strictly P2P

based game, where referees can be normal game clients. This way, cheat detection can be

distributed amongst the clients in a game, ensuring a low probability of corrupt referees,

while maintaining the benefits of a P2P communication model.

There are several anti-cheating systems that have been put to mainstream use. Two of the

most notable are Valve Anti-Cheat System (VAC) [27] and PunkBuster [28]. Warden [29],

developed by Blizzard, is also worth mentioning as it is used to protect most of the newer

games developed by Blizzard, most notably World of Warcraft. The similarity between

the three mentioned anti-cheat systems is that they are separate programs that examine

programs running alongside the game being played. They inspect the main memory of

the computer for programs altering or reading the memory of the game. Valve reported

over 10.000 cheating players of Counter-Strike: Source were caught with running cheating

software within a single week in late 2006 [30].

We can only mention a fraction of the work attempting to reduce cheating in on-line

multi-player games, but even from what is listed above, it is apparent that cheating can

be dealt with in many ways. While Mönch et al prevent modifications to game-clients,

which are application level cheats, GauthierDickey et al prevent several protocol level

cheats. RACS aims to prevent cheating by selecting trusted referees that examine and

hold the game state. RACS relies on systems like VAC or PunkBuster to avoid some

game and application level cheats, showing us that cheat detection mechanisms can be

used together to increase the protection against cheats.

Rather than to attempt to solve many forms of cheating, we investigate ways to effectively

implement cheat detection mechanisms into games. We focus on parallel hardware and

how it can be utilized to make the impact of a cheat detection mechanism on the game

system as transparent as possible. The cheats that can be exposed by our cheat detection

mechanism would be application, protocol and infrastructure level cheats. Mainly such

cheats where there are modifications to the client application and network packets aiming

to improve physical properties. Cheats have also been discovered where clients increase
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the internal clock speed of their computer, increasing simulation speeds so that objects

may accelerate faster. These kinds of cheats can also be discovered.

2.4 Summary

In this chapter, we have looked at reasons why cheat detection should be a priority

for both game service providers and gamers. We have given a short classification of

the different ways cheating exists in on-line multi-player games. Because of the large

processing demands of modern on-line multi-player games, we have had a focus on the

importance of scalable solutions and performance. Before we move on to the underlying

hardware and frameworks that form the base of our implementation, we will investigate

some of the theory behind the physical models of modern games in chapter 3.



Chapter 3

Physics in Modern Games

To determine if a client has modified his or her system to exploit the physical model of a

game, we need to check the reported movements of all clients and see if these are possible

with regard to the physical model. A physical model is a model that defines how objects

move through a virtual world, and how they might interact with each other. Physical

models are enforced by physics engine simulators, or just physics engines for short. To

perform such a check, we need to know how typical physics engine simulations work, by

investigating the theory behind them. In this chapter, we focus on simple physics theory

that would be essential to any physical model, and that is used in all physics engines. We

present some existing physics engines, before describing what we have decided to include

in our own implementation of a simplified physics engine (see section 5.3).

3.1 Introduction

In modern games, there is not only a large focus on graphical realism, but also giving the

user a realistic interaction with the gaming environment. Games have evolved from being

constrained within static boundaries, to fully animated and interactive worlds, where

objects can be moved around and collide into each other. In the same way, the movement

and actions of a controlled game avatar is constrained by physical laws implemented in

the game. Mass inertia, viscous drag and gravitational pull are just a few of these physical

properties game objects adhere to. A consequence of adding physical properties to a game,

is the substantial increase in its computational demand. Every animated object must be

affected by the environment and the other objects according to the specified rules, which

means every physical property must be calculated for every object.

17
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Performing all physics calculations on the server in a MMOG, would drastically increase

game latency and degrade the realistic gaming experience. For this reason, most of the

physics of a game is calculated on the machines of the clients. As we stated in section 1.2,

computations performed by the clients can potentially be exploited by malicious users.

The solution would be to perform consistency checks of the movement data coming from

the clients, but even performing occasional checks for consistency by using conventional

methods might overstrain a server. This could mean a considerable part of a game is

exploitable, and with no checks to uncover the exploits. We investigate if it is possible to

add consistency checks that have a smaller performance footprint to a server, by offloading

those calculations to a GPU. We know that PhysX [31] benefit from performing such

physical calculations on the GPU.

To implement both a physics engine and a mechanism to check the consistency of move-

ment generated by such an engine, we need to know the theory behind general physical

models and physics engines. Most of the formulas and the theory we discuss in this chap-

ter is based on [32]. While a considerable part of the material in this chapter is general

physics, much aid came from this book when we implemented the theory into a game

simulation.

3.2 Basic game physics - Linear Motion

Which physical properties are implemented and used in a game, depends on the type

or genre of the game. However, for most games, the central concept of their physical

implementation revolves around Newton’s second law of motion:

∑
F = ma (3.1)

In short, the law states that the sum of all forces
∑

F acting on an object, is the product of

the mass m of the object and its acceleration a. Also, because most games are situated in

a multidimensional environment1, the forces acting on objects must be considered vectors

with a given direction and magnitude. This is a consequence of a being a vector value,

and thus
∑

F = ma must be a vector. We will typeset vector values with a bold font to

distinguish them from scalar values.

1Multidimensional environments are environments where coordinates are made up of more than one
component, each along a dimensional axis. An environment with two dimensions contain coordinates on
a plane, while a three dimensional environment contain coordinates in a virtual space, as depth is the
third dimension.
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Equation 3.1 illustrates an important property with real-life objects; inertia. When we

rewrite equation 3.1 to:

a =

∑
F

m

we can see that when
∑

F is constant, changing the value of m affects the acceleration

of an object. If the sums of the forces acting on two objects of unequal mass are F1 and

F2, and where F1 = F2, then the object with the lowest mass will experience the largest

acceleration. In other words, objects with higher mass will be more resistant to change

its current motion. If the magnitude of
∑

F acting on an object is zero, the object will

maintain its current motion in a straight line, or stay still if it was not moving. Otherwise,

the object will accelerate in the direction of a. We can define inertia as the resistance an

object has to accelerate.

Acceleration is defined as the value of which the velocity v of an object is changing at a

given point in time. This means that a = f ′v(t), where v = fv(t). This is the same as

stating that a = dv

dt
. When the acceleration is constant, the velocity can be found with

equation 3.2:

v2 = v1 + at (3.2)

The linear displacement2 of an object s, is defined as the sum of the changes to its speed

over time. When the speed of an object is constant, the displacement can be found with

equation 3.3:

s2 = s1 + v1t+
1

2
at2 (3.3)

By implementing these simple concepts into a game, static game objects begin to turn

into animated life-like objects, creating realistic environments in the virtual world. If

these laws somehow get broken, or the parameters to the functions altered, the movement

of certain objects would seem unnatural. Since an object is only able to change its speed

as quickly as the maximum acceleration in a direction allows, sudden stopping or turning

is perceived as defying the physics of a game.

The physical model begins to get more complicated once the need for non-constant ac-

2We define displacement as a measure of uniform movement, where linear displacement is the distance
an object has moved over a given time period, while angular displacement is the rotation of an object
about an axis over a given time period.
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celeration arises. One of the main forces acting on real-life objects that is a type of

non-constant acceleration, is drag. Any object moving through any kind of medium with

a density (i.e. not vacuum), experiences drag. The drag force is proportional to the

velocity of the object squared, but in the opposite direction of the direction the object is

moving. This means that drag Fd is a function of velocity v. In simplified terms, Fd is

defined as:

Fd = f(v) = −Cv2 (3.4)

where C is a drag coefficient3 of an object, which is reliant on empirical data determining

the drag properties of the object. Also notice the negation of the statement above, which

indicates that Fd is a force acting in the opposite direction of v.

The sum of forces
∑

F = −Cv2, means that ma = −Cv2. We stated earlier that a = dv

dt

and rewrite the equation to the following:

m
dv

dt
= −Cv2

dt = m
1

−Cv2
dv

We can then integrate the left side from 0 to t1 and the right side from v1 to v2:

∫ t1
0

dt =
m

C

∫ v2
v1
−

1

v2
dv

t1 − 0 =
m

C
(

1

v2

−

1

v1

)

We rewrite the equation to form an expression for v2:

3C can be calculated from a function dependent on the surface area and friction properties of the
object and the medium in which the object is moving. In many cases, it is sufficient to keep C constant
after its initial calculation.
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t1 =
m

C
(

1

v2

−

1

v1

)

Ct1

m
=

1

v2

−

1

v1

1

v2

=
Ct1

m
+

1

v1

v2 =
1

Ct1
m

+ 1

v1

(3.5)

Equation 3.5 is an expression for finding the velocity v of an object as a function of time,

which is undefined if v1 = 0. This function in itself, is useless to represent the velocity

as a function of time, as drag alone will not make an object move. To describe a moving

object, we need to add a thrusting force of some sort, for example gravity Fg:

∑
F = ma = Fg −Cv2 (3.6)

Equation 3.6 describes the vertical forces acting on a non-propelled, falling object. As the

integration of equation 3.6 will be rather messy, we will not include it here.

3.3 Angular Motion

To allow object rotations, we need to extend the properties of the objects in the game

simulation. Similar to the linear motion properties of s, v and a, we have angular motion

properties: Ω, ω and α, each corresponding to the former respectively. Ω is the angular

displacement of an object in radians, ω is the angular velocity in radians per second, and

α the angular acceleration in radians per second squared. The following equations show

how these relate to each other:

Ω =
dω

dt

ω =
dα

dt

The corresponding equations for expressing these properties as a function of time, closely

resemble the ones for linear motion:
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ω2 = ω1 + αt (3.7)

Ω2 = Ω1 + ω1t+
1

2
αt2 (3.8)

Where equation 3.7 is similar to 3.2 and equation 3.8 is similar to 3.3.

As with linear movement, angular acceleration of objects is affected by inertia. Where

mass inertia is the term used for describing linear inertia, mass moment of inertia, or just

moment of inertia, describes the angular inertia of an object. The moment of inertia of

an object can be explained as the resistance the object has for changes in angular velocity

in a given axis of rotation.

3.4 Collisions

The motion of objects moving around in a virtual world would not seem very realistic if the

objects pass right through each other when they come into contact. Experience from real-

life situations would suggest that some kind of a collision would occur when the exterior

of two objects intersect. Collisions between game objects are a major concept in game

physics. Either if the player interacts with the world through pushing or pulling objects

or if other obstacles like a rockslide appear in front of the player, the physics engine would

have to calculate whether a collision has happened or not between the objects involved.

If so, the physics engine must calculate new trajectories and velocities of the colliding

objects.

Collision detection is necessary to determine if objects actually have collided. The collision

detection mechanism can become a complex routine in advanced physics engines. Objects

of irregular size and shape must have their vertexes and edges calculated to find inter-

sections with the vertexes and edges of other objects. Even for more advanced objects,

collisions between parts of the object itself might be possible.

Once a collision has been detected, the engine applies an impulse to both of the objects.

An impulse, by definition, is the integral of a force acting upon an object over time,

changing the momentum of that object.
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3.5 Existing Physics Engines

Because of the fact that physics incorporated into games is becoming more and more

popular, several physics engines and frameworks have emerged over the last years. Some

are open source and available for all to use and change, while others are released on

more limited licenses. Physics engines vary in complexity, ranging from simple two-

dimensional engines, to advanced off-line three-dimensional physics simulators used in

scientific simulations. Most of the mainstream available physics engines are designed for

games. A requirement for a physics engine designed for games, is that it must be able

to compute all physics operations in real-time. This means that physics engines used

in games are not as accurate as physics engines used for scientific simulations, but their

accuracy is sufficient to provide a realistic gaming environment.

Box2D [33] Small two-dimensional, open source physics simulation engine. It is a rigid

body simulator written entirely in C++. It has support for object collisions, joints

between objects, friction and restitution forces. It also has an integrated testbed for

unit-testing and demo environment.

Bullet [34] A collision detection, soft body and rigid body dynamics multithreaded

physics library released under the MIT license. It is integrated into the free 3D-

modeling software Blender 3D [35]. It has optimized back-ends with multi-threaded

support for Playstation 3 Cell SPU, CUDA, OpenCL and other platforms.

Open Dynamics Engine (ODE) [36] Open source, high performance library for sim-

ulating rigid body dynamics. Aiming at platform independence with a C/C++ API.

Modified versions of ODE have been used in several high budget games, including

S.T.A.L.K.E.R and Call of Juarez [37].

PhysX [31] Proprietary physics library owned by NVIDIA. Supports several platforms,

including PC and all current gaming consoles. There is also an existing implemen-

tation for GPU. Main properties: complex rigid body physics system, character

control, multi-threaded and soft body simulation.

Havok Physics [38] Extensive proprietary physics library which has been put into main-

stream use in many high budget games. It supports integration with major 3D mod-

eling tools along with most other necessary features of a physics engine. It also has

a performance tuning and testing suite and is optimized for several modern gaming

consoles.

Because of the complexity of all the previously mentioned physics engines, we have decided

to implement our own simplified physics engine. Our engine uses the same basic concepts
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as a normal engine, but we have reduced the complexity by removing features that might

complicate the cheat detection mechanism beyond the scope of this thesis. We will explain

what we have decided to include in the next section.

3.6 Physics used in this thesis

In this thesis, we have only included a few of the many concepts possible of adding

to a physics engine. Physics engines are complicated simulators, and creating a cheat

detection mechanism for one of the above mentioned physics engines would mean all

elements of the engine have to be considered in the mechanism. This would result in a

very advanced mechanism, beyond the scope of this thesis. One of the challenges for game

developers, is finding a compromise between realism and computational resources, as they

are proportional to each other. Increased realism requires more advanced models, which

again require more resources. Very realistic models of physical environments, can not

be processed in real-time, and are suited for high-precision off-line simulations. Games

require real-time physics, so they must have degraded realism.

Our simulation takes place in a space-like environment, near a gravitational field. The

objects are not affected by drag, but they experience both linear and angular acceleration.

There is a constant gravitational pull, affecting the objects. All the other forces are

generated by the objects themselves. These forces are generated from thrusters. Figure 3.1

shows an outline of a game object, with the main rear thruster and the bow thrusters.

For simplicity, every object is identical with regard to shape. Size and thruster power can

be modified by parameters, to allow objects to behave differently from each other.

Bow thrusters

Main thruster

Figure 3.1: Illustration of a game object with bow thrusters in the front and the main
thruster at the back. Arrows indicate the direction of the thrust force from the engines.

To begin with, the physics engine of the system used just linear motion. Objects within
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the simulation could not rotate, but they could move in arbitrary directions, based on the

notion that objects had an infinite number of thrusters around a spherical shell. This way,

they could apply thrust in any direction. Torque from the thrusters was not calculated,

another lacking feature affecting realism. After initial testing with linear motion physics,

some angular effects were added. Objects now move with a main rear thruster and rotate

around by using bow thrusters.

3.7 Summary

In this chapter, we have discussed much of the theoretical material behind the physical

model of our game simulation. We mentioned some essential functions in Newtonian

mechanics that apply to almost any physics engine. We also commented on other topics

often seen in physics engines. Finally, we gave information about what of the previously

mentioned material we have used in our simplified physical model. Physics has been

proved to be be relatively easy to parallelize, and we will investigate hardware alternatives

for running parallel physical calculations in the next chapter.
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Chapter 4

Multi-Core Architectures, Graphics

Processing Units and GPGPU

Frameworks

We have already seen in the previous chapters that cheat detection may require a con-

siderable amount of processing power, and scaling up this process to support a large

number of clients is an important goal. In this chapter, we begin therefore by investigat-

ing several multi-core architectures that might serve as the underlying hardware of our

implementation. Multi-core architectures provide a foundation for parallel processing, be-

cause multiple concurrent threads are made possible by the hardware, not just simulated

in software. Many different architectures fall under the category multi-core, because it is

such a broad term. Most modern commodity CPUs, like the Core 2 Duo from Intel, are

multi-core processors. So is the Cell Broadband Engine from the STI alliance1.

The GPU is also a multi-core processor. Although the GPU is designed for graphics

computation, the advent of GPGPU development has enabled programmers to harvest

the computational power of the GPU for general purpose tasks. We want to determine

how cheat detection mechanisms can be run on a GPU with GPGPU. In particular,

we will research NVIDIA’s line of GPUs, with the main focus on the GeForce GT200

processor, the latest generation of NVIDIA GPUs. We continue with a brief description

of the GPGPU concept, and techniques used for GPGPU development. We investigate

further a particular GPGPU framework; CUDA from NVIDIA. The CUDA framework is

under constant development and relatively well documented. It has an active developer

community, with an on-line forum where developers help solve each others problems and

1STI is an inter-corporation alliance between Sony, Toshiba and IBM.
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share experiences [39]. These are amongst the reason we have chosen the GPUs from

NVIDIA as the hardware used in this thesis.

4.1 Introduction

Since the first transistor based CPUs were introduced, the development of micro- pro-

cessors have followed a certain trend. The transistor count of a single processor has

increased in an exponential fashion, roughly doubling every two years [40,41]. This trend

is often referred to as Moore’s law. Along with the increased number of transistors came

augmented computational power, and thus a higher power consumption. This again, in-

creased the power density on the chip, and the expansion of the processing units began to

reach a limit, because of too much heat being generated by the chip. Probably the most

well known product to reach this "heat-wall", was the Pentium 4 from Intel. To work

around the heat problem, hardware manufacturers have begun to incorporate several in-

dividual processor cores in architectures, to improve the computational power of modern

processors, but with less power consumption than a single-core processor.

Another limitation constraining the performance of single-core processors is the "memory-

wall". Processors have increased in speed faster than memory latencies can be reduced.

The distance between main memory and the processor introduces memory latencies that

slow down single-threaded applications, and is a physical limitation that cannot be by-

passed. Increasing cache sizes can only hide some of the latency. Inevitably, single-

threaded execution will be bound by the latencies of the memory. Multi-threaded execu-

tion allows us to hide these latencies, as several operations are running in parallel. These

operations can then overlap, so that operations ready for execution run while others wait

for memory accesses. Throughput is increased, but the execution time of a single thread

is not improved. Problems that can not be solved with parallel execution will for this

reason be a bottleneck in a parallel system.

4.2 Multi-Core Architectures

Multi-core architectures have multiple processing units packaged into a single integrated

circuit, often referred to as die2. A multi-core processor can also consist of several dies

bundled together onto a single circuit board. Due to the vast nature of multi-core ar-

chitectures, they are classified in two main categories, homogeneous and heterogeneous

2Intel’s Core 2 Duo [42] is an example of such an processor.
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multi-core architectures. Multi-core architectures have been around for quite some time,

and early systems mostly used Symmetric Multiprocessing (SMP). SMP is a homogeneous

multi-core technology where several identical processing units exist and cooperate in the

same system architecture. The processing units share the same main memory, but they

may be independent of each other. Modern multi-core CPUs can also be viewed as an

SMP system, where the identical processing units are the separate cores of the chip. SMP

systems suffer from the fact that scalability is limited. Systems can rarely have more than

16 cores before the benefit of adding more cores stagnates, due to main memory accesses

being serialized. Cache coherency also becomes troublesome with added cores, reducing

efficiency as integrity is harder to maintain.

4.2.1 Homogeneous Multi-Core Architectures

Homogeneous multi-core architectures are architectures where all processing units are

symmetric. This means that all of the processing units are identical with regards to in-

struction set, registers, local cache and the clock frequency of the unit (see figure 4.1).

Most modern multi-core, commodity CPUs have identical cores and are classified as ho-

mogeneous. The modern multi-core CPU normally has the processing units on the same

die. Intel’s dual-core Intel’s Core 2 Duo [42] processor is an example of such a homoge-

neous architecture. A system with several identical single-core CPUs placed in several

sockets on the same motherboard would also be classified as a homogeneous system. This

was a solution used in personal computers before the release of multi-core CPUs and also

common in SMP systems.

4.2.2 Heterogeneous Multi-Core Architectures

A heterogeneous multi-core architecture is a system where at least one processing unit

differs from the other units in either of the points stated under section 4.2.1: instruction

set, registers, local cache or the clock frequency. Figure 4.2 illustrates an example of a

heterogeneous processor design. It is quite common that only the main processor has

access to main memory, while the co-processors have their own memory. Communication

and memory transactions happen over a bus. A legacy example of a heterogeneous archi-

tecture was the correlation between the Intel 8088/8086 processors [40, 41] and the Intel

8087 floating point co-processor. The 8086/8088 was able to pair up with the 8087 to

offload floating point operations.

A more recent example in commodity systems, is the relationship between the CPU and
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Homogeneous Processor

Core 1

n GHz

Core 2
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Core 3
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MemoryMemory

Figure 4.1: Sketch of a homogeneous processor with four identical cores. All cores have
access to the same main memory.
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Figure 4.2: An example illustration of a heterogeneous processor with a main processor
and six co-processors connected through a bus.

the GPU. Many modern computers have a GPU responsible for offloading graphical

computations from the CPU. This way, the CPU is able to assign tasks, concerning

graphics to the GPU, which then performs calculations and displays the results to the

system monitor. The GPU is a highly parallel processor, with a large number of simple

processing cores.

Another heterogeneous CPU architecture is the Cell Broadband Engine (CBE) [43], de-

veloped as an inter-corporation project by the STI alliance. The CBE is currently being
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used as the central processor in Sony PlayStation 3 game console. It is also available in

IBM blade centers. A cut-down version of the Cell processor is also used as a co-processor

in several Toshiba laptops, and as a processor to upscale DVD video. The CBE consists of

a main processing unit from the Power architecture, and eight smaller, vector processing

cores. The vector processing cores are designed to accelerate multimedia applications,

and other types of dedicated computation. Figure 4.2 is based very loosely on the way

the CBE is constructed.

We can also witness heterogeneity in newer homogeneous multi-core processors like the

Core i73 from Intel [44]. The processor allows for independent clocking of the individual

cores. Generally, with multi-core processors when all cores are loaded, the chip will have a

maximum power consumption and a given heat dissipation. When one or more cores are

idle and the remaining are running at a constant clock frequency, they will not have the

same power consumption and heat dissipation as the fully occupied chip, leaving power

headroom for overclocking. Since the individual cores of the Core i7 can be clocked to

higher clock frequencies, the chip can achieve up to the same power consumption and

heat generation as when all cores are loaded, allowing the processor to perform closer to

its peak performance even when cores are idle [45]. This feature is largely made possible

by the fact that the Nehalem architecture allows for idle cores with a power consumption

close to zero watts.

4.3 Graphics Processing Units

A GPU is a co-processor alongside the CPU. It is found in most commodity personal com-

puters, workstations and game consoles. The GPU has served the purpose of offloading

visual data computations from the CPU. The GPU is designed to handle graphic specific

calculations, which includes floating point arithmetic and computations on primitive ge-

ometric objects, like triangles, rectangles and circles. Given the highly parallel nature of

graphics rendering, the GPU has a large amount of transistors devoted to data processing,

rather than data caching and flow control. Figure 4.3 shows this logical difference between

a CPU and a GPU. The GPU has a significantly larger number of arithmetic units, and

a considerably smaller number of transistors are devoted to caching and control. Rough

estimates by NVIDIA show that about 20% of transistors are devoted to computational

tasks on a CPU against 80% on a GPU [46].

3Core i7 is of the Nehalem architecture and the successor to the Core 2 architecture.
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Figure 4.3: Simple overview of a CPU and a GPU [3]

4.3.1 The Graphics Pipeline

General graphics computations are structured the same way on all GPUs through the use

of a graphics pipeline (figure 4.4). The main purpose of the pipeline is for the GPU to

maintain high computation rates through parallel execution. Each stage in the pipeline

is designed as a dedicated piece of hardware on the chip. In previous generation graphics

hardware, the pipeline served as a fixed-function unit. Through the evolution of both APIs

and hardware, the pipeline has become more flexible, and in modern hardware, both the

vertex and fragment units are programmable using shader languages like OpenGL [47]

and DirectX [48]. The graphics pipeline is described in further detail in [49].

Figure 4.4: The basic graphics pipeline. Taken from [4].

The main purpose of the GPU is to generate graphic renderings that are as realistic

as possible. Since the need for a more flexible pipeline arose, graphics vendors have

added more customizable and programmable features to the pipeline, with each chip

generation. This increased flexibility has allowed for general- purpose programming of

graphics hardware, exposing the immense processing potential the devices are capable

of. Though very complicated with the use of only shader languages in the beginning, the

modern GPUs from the leading vendors have turned into fully programmable co-processors

with their own Software Development Kit (SDK) [50,51].
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4.3.2 A Unified Graphics Processing Unit Design

In late 2006 and through 2007, GPU vendors started introducing unified shader architec-

tures. The releases introduced a total redesign of the graphics pipeline, DirectX 10 [48]

support, and powerful GPU physics and high-end floating-point computation ability. The

most revolutionary feature was the graphics pipeline redesign, which was given a uni-

fied shader design. This resulted in making the original, sequential flow through discrete

shader types more looping oriented, with a shader processing core handling all shader

stages (illustrated by figure 4.5).

Figure 4.5: Classic vs. unified shader architecture [5].

The new unified architecture minimizes idle hardware, because a shader processing core

can work both as a vertex, geometry and pixel shader depending on the need [5]. Another

feature, made possible by the unified design, was the introduction of APIs simplifying

GPGPU. Most notably CUDA from NVIDIA and Close to Metal from AMD. Close to

Metal is now obsolete and replaced by FireStream.
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4.3.3 Overview of the NVIDIA GeForce GT200 architecture

In this section, we will describe the general structure of the GPUs of the unified graphics

and computing architecture4, with basis in the specific architecture of the latest generation

of GPUs from NVIDIA, the GT200 processor. Most of the general information given, will

also apply to the NVIDIA Tesla [52] line of products. Tesla products are in almost every

way regular GPUs, except that they are without the ability to output graphics to a display.

They are aimed towards aiding in simulation and other large scale calculations for the

professional and scientific fields.

NVIDIA unveiled the GeForce 8800 architecture, codenamed G80, in November 2006 [5].

The release of the G80 graphics processor introduced CUDA, and with it, GPUs able to

perform non-graphics specific tasks with considerable less complexity compared to the

earlier generations. NVIDIA released the GT200 graphics processor in June 2008, which

is referred to by NVIDIA as the second generation of their unified graphics design [46].

Figure 4.6 shows an image of a GT200 processor die with overlays illustrating the different

parts of the chip, and its general structure. Several design goals were set for the new

GPU, aiming for a doubling of the performance, relative to the previous generation,

increased power efficiency, better DirectX 10 support and a significant enhancement of

the computation ability for high-performance CUDA applications.

Figure 4.7 gives a logical overview of the GT200 chip, and its features. The GT200 con-

sists of Texture Processing Clusters (TPCs), a global block scheduler, memory controllers,

and L2 texture cache in front of the frame buffer (main device memory). The memory

controller has also an atomic unit, which is a unit responsible for handling atomic read

and write operations to memory. The GPU has a total of ten TPCs, while older genera-

tions had up to eight. The TPC is the topmost grouping of the computing units of the

architecture; the other units mentioned are basically memory and control units. A TPC

has a Texture Unit and three Stream Multiprocessors (SMs)5. The TPC also has a L1

cache, several texture filtering units and texture address units.

An SM is divided into several components, most notably its eight Stream Processors (SPs)

Cores, which are the main processing units of the GPU. Additionally, it has two Special

Function Units for internal functions and complex mathematical operations, and on-chip

shared memory. With ten TPCs, each with three SMs, which again has eight SPs each,

results in a total of 240 processing cores for the GT200. An SM is responsible for mapping

software threads to single hardware threads to each of its SPs. The SM handles thread

4This includes all NVIDIA GPUs from the 8th generation and onwards
5The older models have two SMs per TPC.
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Figure 4.6: Die diagram with overlay of the GT200 processor core

scheduling and also fetches the instructions to be performed on each SP. The GT200

are able to run a total of up to 30,720 threads per chip, indicating extreme parallelism

possibilities. These devices have several different types of memory. On-chip memory

includes local registers and shared memory; while the larger Dynamic Random Access

Memory (DRAM), or frame buffer, resides off-chip. The size of the frame buffer depends

on the card manufacturer. New to the GT200 chip is also double-precision, 64-bit floating

point computation support. Each SM incorporates a double-precision floating-point math

unit, this means the GT200 chips have 30 double-precision processing cores. The floating-

point math unit shares registers with the eight SPs. While the SPs can run eight threads

simultaneously, the floating-point unit can only run one at a time, resulting in slower

execution of double precision operations.

4.3.4 General-Purpose Computation Using Graphics Hardware

The original task for the GPU was to offload the CPU from computationally heavy graph-

ical processing. From the original fixed-function graphics pipelines, the new generations of

GPUs have given increasingly amounts of flexibility concerning the different stages in the

graphics pipeline [4]. Several APIs have been designed for programming what the GPU
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Figure 4.7: Overview of the GT200 [6]

is going to process to produce rasterized 2D images. These APIs mainly consider vertex

data that is processed by the graphics pipeline to produce the desired graphical output.

The two main APIs for graphical programming, OpenGL and DirectX, have already been

mentioned.

The performance of GPU hardware, measured in GFLOPS6, is roughly doubling every six

months [3,4]. The discrepancy between the development of the GPU and that of the CPU

is caused by the architectural differences between the two. Because of the large number

of processing units available, the GPU excels when dealing with problems that can be

expressed as parallel computations with high arithmetic intensity - the ration between

arithmetic and memory operations.

Development in the field of GPU has led to better utilization of the processing power of

the GPU with the advent of GPGPU abilities. GPGPU was originally made possible by

exploiting shader languages. However, the programmer was forced to view the problem

in terms of geometric primitives and fetching textures, which rarely maps easily to the

6Giga Floating-Point Operations Per Second. Often a measurement used for performance comparisons
between different processors.
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nature of the problem being addressed. Because of this, GPGPU programming was in

many cases more complicated than it needed to be. To simplify GPGPU development,

GPU producers begun to develop new technology to narrow the gap between shader

languages for the GPU, and programming standards for CPUs.

We have already named CUDA from NVIDIA as a GPGPU framework. AMD with the

brand name ATI is another major vendor of GPU hardware who has released an API

for GPGPU development. Firestream is the name of their architecture and SDK [53].

Firestream uses AMD’s own implementation of the open source C/C++ compiler Brook,

called Brook+. The AMD Compute Abstraction Layer provides direct communication

with the device, allowing programmers to avoid learning graphics-specific languages. The

Compute Abstraction Layer also provides low-level access to code, which opens for fine-

tuning device performance. The SDK also aims to provide a math performance library

(AMD Core Math Library), which is currently under development [54]. Additional tools

allow for profiling and debugging of GPU code, to simplify software development.

OpenCL [55] is another API designed for GPGPU development. It is under development

by the Khronos group in collaboration with many industry-leading companies, including

NVIDIA and AMD [55]. The goal of OpenCL is to support a wide range of applications

through a low-level, high-performance, portable abstraction. OpenCL is not restricted

to GPGPU, but will ease development on most multi-core architectures. Other advan-

tages with OpenCL is that it will be the first open, royalty-free standard for this kind

of development. OpenCL will support portable code designed to effectively utilize the

processing power of multi-core architectures. In August 2008, AMD announced that they

will support OpenCL and aid the effort of developing OpenCL into an open standard [56].

NVIDIA has also announced that they will fully support the OpenCL 1.0 specification

alongside CUDA, on all its upcoming platforms [57].

We have chosen CUDA and NVIDIA GPUs as the underlying architecture for this thesis.

We find CUDA to have the best documented API and also to be a well received API in

the scientific field. The remaining part of this chapter will focus on CUDA.

4.4 Compute Unified Device Architecture (CUDA)

We have discussed several different types of multi-core architectures in the first part of

this chapter. We gave a more in-depth description of the newer generation of GPUs from

NVIDIA supporting CUDA. We dedicate the rest of this chapter to the CUDA framework,

which is intended for GPGPU application development.
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A CUDA application is created from mainly two parts, one for the main CPU and one for

the GPU. The GPU that runs the CUDA specific parts of an application will be referred

to as the CUDA device, or just the device, from this point on. Such hardware devices

mainly include the newer NVIDIA GPUs described earlier and the NVIDIA Tesla [52]

products. The CPU that interacts with the CUDA device will simply be referred to as

the host.

Code written for the host is like any other CPU-specific code, and the programmer has

access to all libraries he or she would normally have access to. The device-specific code

is the code intended to run on the CUDA device. How CUDA applications are compiled

and run will be discussed further in section 4.5.

4.4.1 Programming Model

The CUDA programming model is an extension to the ANSI C programming language. By

supplying a familiar development environment, starting out with GPGPU programming

is considerably easier. CUDA also allows developers to program in a similar way to what

they are used to, instead of having to think in graphics API terms.

Figure 4.8: The CUDA software stack [3]

Figure 4.8 illustrates the layers in the software stack of CUDA. CUDA applications rely

on a device driver. On top of the driver, you find the CUDA runtime environment and

then the dynamic libraries. A CUDA developer has access to every layer of the software

stack through individual APIs. The driver and runtime API expose similar functionality,

but the driver API gives somewhat more control to the developer while the runtime API

reduces complexity of several operations. The two APIs are mutually exclusive, meaning

once the decision to use on of them has been made, the application is restricted to use that
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API only. The dynamic library consists of several convenience functions and macros to

ease development and increase stability of CUDA applications. The library also consists

of standard structures used in 3D based applications such as matrices and quaternions.

All CUDA code used in and developed for this thesis use the runtime API.

4.4.2 Kernels

A CUDA application can not be run entirely on a CUDA device, it is dependent on the

host CPU. All interaction with the device is done through the device driver, and the host

is responsible for all interaction with this driver. The device only receives device-specific

instructions on what operations to perform and executes these operations. The portion

of the code written for execution on the CUDA device is referred to as a kernel.

Kernels define the behavior of the smallest logical structure in CUDA, the thread. The

CUDA device is able to run thousands of concurrent threads, each executing the code

specified in the kernel. This implies that the device executes the same kernel code over a

large number of software threads, which allows for a highly parallel programming model.

The number of threads that should execute the kernel on the device is specified by the

programmer as a hierarchy of threads, described in section 4.4.3.

CUDA threads can not access the main memory of the system, so the host must copy the

proper data to the memory of the device before a kernel launch. For the same reason, all

resulting data must be fetched from the device by the host after the completion of the

kernel execution. We will take a closer look at the CUDA memory model in section 4.4.5.

CUDA kernel code focuses mainly on the elements related to serving the application

purpose, or a part of the application purpose. Since the host handles synchronization and

interaction between itself and the device including inter-device memory operations, the

kernel code should mainly consist of algorithm-specific operations7, and as few memory

operations as possible.

When a kernel is invoked from the host, control is returned to the host as soon as the

device begins executing the kernel. The host is able to continue executing code while the

device runs the kernel. This asynchronous launch reduces the amount of time the host

is idle while the device executes a kernel. Synchronization calls are available that blocks

the host until the device is finished executing.

7Operations with a high arithmetic intensity, meaning they are not memory-bound.
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4.4.3 Threads, Blocks and Grids

An abstraction defining a thread hierarchy specifies how many threads will be run when

invoking a kernel. Figure 4.9 illustrates thread organization in blocks and grids. Threads

are grouped together into a unit called a block. The threads in a block will run on the

same SM, and the SM is responsible for mapping one software thread to one of its SPs.

The thread block can be arranged in up to three logical dimensions. The identification

of a thread is calculated from the x, y and z components of the thread’s position in the

block. Several thread blocks can again be combined in a logical grouping called a grid.

The grid only supports one and two dimensions of blocks. In each kernel execution there

can only be one grid, but with little restraint on the number of blocks in the grid.

Figure 4.9: Example of CUDA thread organization

Since a block is executed on one SM, all threads within the block have access to the same

shared memory. This memory is not shared between different blocks, communication

between these, will have to go through the global device memory. The programmer has

no control over the scheduling of the blocks within the grid. Furthermore, the block

execution order should be perceived as random, as there is no guarantee of the order

of which blocks are scheduled to run. Sequential dependencies will severely cripple the

application design, and should if possible, be avoided. This is a common problem when

adapting sequential algorithms to parallel algorithms.

There is absolutely no performance benefit of multiple threads computing the exact same
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thing and placing the same calculations in the same place, therefore it is important for

each thread to know where to find input data and where to place output data, specific

to that one thread. To achieve this, each thread will have to have, and know, a thread

id. As mentioned, CUDA allows threads to be arranged in up to three logical dimensions

in each thread block, and blocks in two dimensions in the grid. For the kernel, a couple

of implicit variables are available to distinguish which thread should access which part of

the memory.

4.4.4 Single-Instruction, Multiple-Threads (SIMT)

In CUDA, when every thread follows the same kernel execution path, the execution will

have similar behavior to regular Single-Instruction, Multiple-Data (SIMD) operations.

SIMD operations are exactly what the name indicates; an instruction performed over

multiple data in only one operation. Whenever one or more threads take a different

execution path when evaluating a conditional statement the behavior of CUDA differs

from regular SIMD. Threads in CUDA are assigned to an executional unit called a warp.

A warp is defined as a set of threads assigned to a SM. Figure 4.10 illustrates how warps

of threads belonging to different blocks can be assigned to an SM. The warp consists of

32 concurrent threads belonging to the same block. The threads that make up the warp

begin at the same starting address in the code, but are from there on free to branch in

different directions and execute independently from each other. When threads of a warp

diverge on a branch, they will form two warps, one for each alternative of the branch.

The term half-warp is defined as either the first or second half of a warp.

The reason for the existence of warps is that each SM can only execute one instruction

for all its SPs at a time. Since each SP handles one instruction for only one thread at

a time, all the SPs must handle threads that share a common instruction, which would

be threads within the same warp. Branching of code results in threads following different

paths of execution. The SM serializes execution of threads diverging on a branch, reducing

performance. Whenever the threads in a warp that diverged on a conditional statement

return to the same path of execution, they are joined to form one warp again so that

all the threads can continue to execute in parallel. Because of this possible deviation

between different threads and the usage of different warps we state that CUDA is not a

SIMD architecture, but a SIMT architecture.
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Figure 4.10: Warps of threads assigned to an SM [6].

4.4.5 Memory Hierarchy

There are several types of memory on the GPU that each have unique properties. Private

to a single thread, are registers and local memory. Registers are fast accessible on-chip

memory, while local memory is off-chip DRAM and considerably slower. If a thread needs

to store more local data than what is possible in registers, it will store it in local memory.

Shared memory is an on-chip memory, which means it is very fast. Shared memory can

in fact, when there are no bank conflicts, be accessed just as fast as local registers [3].

Shared memory is also shared between all the threads in a block. This memory is used for

communication between threads of a single block. It also offers much faster access times

than local memory. As mentioned above, memory which does not fit into local registers

will be placed in the local memory. Shared memory should therefore be used for as much

local storage as possible.

Global memory is the main portion of off-chip DRAM. The DRAM is divided into three

different types of memory: global, constant and texture memory. The name global memory

is a bit deceiving, as it can refer to either the DRAM entirely, or just the part of DRAM

which is not constant or texture memory. We will refer to the off-chip DRAM as DRAM

only, to avoid confusion, and global memory is the remaining part of DRAM not classified

as any of the other memory types residing in DRAM.

Global memory is the only writable part of the DRAM, as constant and texture memory

are read-only. Global memory reads and writes are equally slow as the thread local

memory, but its advantage is that its accessible for every thread running on the device.
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It is also persistent over consecutive kernel launches, meaning threads in a kernel launch

might leave data in global memory for a subsequent kernel. The host does not have

access to thread registers, local memory or shared memory, so global memory is the only

way for threads to leave resulting data for the host. Because of the high costs of global

memory access, it is important to follow the right access patterns to get maximum memory

bandwidth.

Constant and texture memory is read-only, as previously stated. The host is re-

sponsible for classifying parts of DRAM as either constant or texture memory and filling

it with data. The advantages of constant and texture memory is that each SM has its

own cache for these two memory types, which results in some performance increase. This

cache, however, is not very large, so the increased performance might be limited when us-

ing scattered, random memory accesses. Texture memory has another advantage over the

other DRAM memory types, as it allows for multi-dimensional fetches. A texture fetch

can broadcast packed data into several separate variables in a single operation. It also

supports data type conversions during fetches (8- and 16-bit integer input data converted

to 32-bit floating-point values). Texture fetches are also not affected by the constraints

of memory access patterns that applies to global and constant memory accesses.

4.5 CUDA Compiler and Programming tools

In section 4.4, we introduced the programmatic features of CUDA. In this section, we

will look closer at how CUDA programs are compiled and some tools available to ease de-

velopment. CUDA requires its own compiler, but it also makes use of the native compiler

for C/C++ of the development system. There is also an assembly-like language which all

kernel code is compiled to. We will also briefly mention the available debugger, profiler

and the emulation mode.

4.5.1 NVCC: The CUDA Compiler

CUDA code is compiled with the CUDA compiler, called NVCC. The common file exten-

sion given the code files of CUDA programs is .cu. A file containing CUDA code might

contain both host- and device-specific code. CUDA programs are written with certain

function type qualifiers that notifies NVCC whether the function should execute on the

host or the device. Code written for the host is passed to the native C/C++ compiler

on the system while the code written to execute on the device is handled by NVCC.
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Figure 4.11 illustrates the way CUDA applications are compiled.

Figure 4.11: The compiler flow of NVCC [7]

The front end of NVCC (CUDAFE), separates the host and device code. The host code is

passed on to the native compiler of the system, while the device code makes another pass

through CUDAFE. Different compiler options will specify the direction of the compilation

steps. At the end of compilation, the device code can be embedded in the host binary or

be an external resource.

The device code is not GPU machine code, but rather an intermediate object code, similar

to code read by Virtual Machines (VMs). This shader assembly code is converted at

runtime into GPU-specific machine instructions by the GPU driver, using a Just-In-

Time (JIT) compiler. The reason for the JIT compiler is to allow CUDA applications to

be compatible with several generations of CUDA supporting devices. The JIT compiler

allows the run-time environment to optimize the CUDA object code for the device on the

system where the application will be executed. This object code is what is embedded in

the final host binary.
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4.5.2 Additional tools for CUDA development

There are several existing tools created by NVIDIA that aims to simplify and enhance

CUDA applications and aid in application debugging. The debugger for use with CUDA

applications is called CUDA-GDB [58]. Its purpose is to provide developers with ways

to debug their applications directly on the hardware. With simulation and emulation

environments, correction variations from the hardware are often introduced. CUDA-GDB

is a ported version of GDB: The GNU Debugger, version 6.6 [58]. The debugger allows

for a unified environment for application debugging, both for device and native host code.

The debugger is currently only in beta version.

There is also a profiler available that allows the developer to investigate the efficiency

of the device specific code. The profiler find the occupancy of the device during code

execution, as well as timing of kernel launches and memory operations.

4.6 Summary

In this chapter we have discussed several different multi-core architectures beginning with

homogeneous and heterogeneous architectures. We then gave a more in-depth description

of a heterogeneous system, the GPU. With focus on NVIDIA and their line of modern

GPUs we introduced some properties of the processors. We have given a brief introduction

of several frameworks for development of GPGPU applications and described CUDA in

further detail, a framework and API for GPGPU programming. We have examined how

the hardware of the CUDA device relate to programmatic features. We have also seen how

a developer would structure a CUDA application by specifying host and device specific

code. CUDA gives developers access to a massively parallel architecture by using a familiar

programming language and programming environment.

In chapter 5 we will go on to introduce the cheat detection solution where we use CUDA

kernels running cheat detection code over many clients. Our implementation illustrates

how CUDA applications might fit in with a larger software system.
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Chapter 5

Implementation

We have used the former chapters to present the work and motivations of reducing cheating

in on-line multi-player games. We have investigated hardware options for our solution

along with possible GPGPU frameworks. In this chapter, we present our game simulation

framework. We also describe how the cheat detection mechanisms we have created work.

5.1 Introduction

Throughout the thesis, we have listed several important points to consider when imple-

menting cheat detection mechanisms in a game system. As clients in a game often have

the same parametric properties, the cheat detection mechanism would in most cases be

identical for every client it should check. There might of course be varying values for these

parametric properties associated with each game object (i.e. the size or shape of game

objects might change resulting in different physical behavior), but the motion of every

object will be calculated with the same operations. This indicates that cheat detection

is a problem solvable through parallel execution. The same code should be run on the

different data coming in from all the clients. To allow the mechanism to run within games

with many clients and high traffic, the hardware should be massively parallel. GPGPU

applications have proved effective for highly parallel tasks, and we want to investigate

how our solution for cheat detection performs on this hardware.

Because of the way we have intended to perform tests of the system (see chapter 6), we

have implemented a game simulation rather than a real working game. We have created

a physics engine to enforce the physical model we have defined. We have attempted to

implement several cheat detection mechanisms, and for each of these, we have created

47
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a CPU version and a GPU version. The GPU version is implemented with the CUDA

framework and runs on NVIDIA GPUs. We introduce the simulation by giving a general

overview of its structure before describing the different relevant parts of the system in

further detail.

5.2 General Overview

To mimic the properties of a game, we have decided to create a simple game simulation.

With a simulation, it is easier to achieve the desired game structure and define a simple

enough physics engine for our purpose. The simulation follows a client-server based game

architecture, which is chosen for the same reasons as for consumer market game develop-

ment: ease of development, total control of client communication and a centralized control

point. The system is implemented entirely in the C++ programming language and writ-

ten for a UNIX environment. The main libraries and templates used in the system are

pthreads for multi-tread support, the Standard Template Library (STL), the Boost C++

Libraries [59], OpenGL [47] and GLUT [60].

Figure 5.1 illustrates how the simulation is structured during execution of playback mode.

The definition of playback mode will be given later in section 5.2.3, but the illustration

can serve for the purpose of describing how the simulation is generally structured. Even

though the illustration indicates it, the simulation does not currently support networked

traffic. All clients run on a single machine. However, discrete clients are created within

the simulation, and communication follows the same flow which would be normal to a

networked multi-player game. To reduce overhead and to avoid having to start many

separate processes for each program launch, clients operating on the local machine do

not run as separate processes, but within the main server process. We are interested in

examining how our solution manages to scale up the number of clients it can handle by

investigating how the cheat detection mechanism performs with an increasing number

of clients. Network delays and connection limits are not taken into account with our

solution. Further details about the topology and structure of the simulation is given in

section 5.4.

To allow running reproducible tests, the simulation uses two different modes of opera-

tion named generation mode and playback mode, which we describe individually in sec-

tions 5.2.2 and 5.2.3 respectively. The simulation is multi-threaded and figure 5.2 displays

the general program flow of the two initial threads of the system. The general program

flow is the same for both modes of operation and it is mainly just the update routine
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Figure 5.1: Illustration of the topology of the simulation during playback mode.

(colored red) which is the main difference between the modes. The start and stop threads

methods define which threads should run alongside the control thread. For both modes

there is a separate User Interface (UI) thread. There is no user interaction in the simula-

tion besides the possibility to cancel execution, so the UI only displays the current state

of the system. The UI thread needs access to the client container to display the current

position of the clients, which means the client container must be protected by a mutex to

ensure consistency between the main thread and the UI thread.

5.2.1 Principles of the game

The game simulator is a space race type of game where the main goal for the clients is

to move around in a virtual environment, reaching preset random target locations. These

targets are randomly placed out in the game environment. We can say that the first client

to reach all of the targets is the winner, but we have not invested any time or effort into the

playability of the simulation since all clients are controlled by the computer. The clients

playing the game are placed randomly around in the virtual world giving some clients an
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Figure 5.2: Diagram of the general flow of the two initial threads of the system.

advantage as they might be placed closer to the first target. Figure 5.7 is a screenshot of

the Graphical User Interface (GUI) implemented to give a graphical representation of the

game simulation. The GUI is described very briefly in section 5.6.

Because all clients of the game are controlled by the computer, some rules must be set for

how they behave when trying to reach a target. To give the clients some kind of intelligent

way to reach their targets, they require motion planning. We have not implemented any

advanced motion planning algorithms for this thesis. They way the clients move are

based on actions decided by just a few simple checks, making the clients rather stupid.

They may in fact never properly reach the targets. Whether or not the clients reach

their targets, the important thing is that the movement of the clients are restricted by

the physical model. Honest clients will not break the rules of the model, while cheating

clients will.

There are different ways to perform a cheat in our simulation. We have made clients cheat

by either modifying the power of their thruster temporarily or by modifying the values of

their current state: their position, velocity and rotation. If a cheating client temporarily

increases the thrust capabilities of one of its thrusters, it will be able to accelerate faster

in a direction to perform quicker turns or pick up speed faster. Cheaters who change their
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state can position themselves closer to a target or change their rotation to point towards a

target. They might also increase or decrease the magnitude of their velocity vector when

either dashing for a target or slowing down to prevent passing a target.

Because we wanted to design our simulation independent of real time, we have used an

artificial timeline based on game ticks. A tick is basically a theoretical time duration

specified in the configuration of the system. The duration of the tick is specified in

our implementation in microseconds. A tick can also be thought of as the duration of

a discrete game frame. Physical calculations are done over one tick and updates from

the clients would arrive each game tick. So if an execution of the simulation manages to

process ticks faster than their theoretical duration, the simulation is able to meet real-time

requirements.

5.2.2 Generation mode

The generation mode uses the principles of the game (section 5.2.1) to determine its

actions. The generation mode places a given number of clients randomly in a virtual

environment. From these positions, the clients want to reach the different targets and

using a thruster they propel themselves around. External forces, such as gravity, might

affect the clients to make their paths a bit more complicated. While this is happening,

each client writes periodically its location to a file, generating a list of positions. These

files are used by the playback mode.

The flow of the update routine of the generation mode is illustrated by figure 5.3. The

update routine iterates over all the clients and allows them to perform course changes to

try and reach their target. The clients do this by turning on or off the different thrusters

of the game object. After all clients have performed their actions, the physics engine is

updated by adding up all forces from thrusters and external forces and calculating the

integral of the forces over time interval defined by the tick duration.

The generation mode is also responsible for generating movement for cheaters. The

cheaters are generated by using the normal checks of the honest clients, but regularly

they perform unrealistic motions. This can be actions like halving the angle between the

current orientation of the object and the target within a single game tick, or doubling the

speed of the object within a unreasonably short time span. The files generated for cheaters

and honest players are placed in the target motion directory under the subdirectories cheat

and clean respectively.
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Figure 5.3: Diagram of the flow of the update routine in generation mode.

5.2.3 Playback mode

Similar to the generation mode, the playback mode initializes the given number of clients.

The difference is that the clients running in playback mode find and open the files gen-

erated by the generation mode. For each game tick, client state information is read from

the files and the clients report this state to the server. Clients open files from the same

directory, so if there are more clients running than there are unique files there will be sev-

eral clients reporting the same data from the same file to the server. The server samples

the state information updates from every client, putting the samples in a sample queue.

This occurs in the update routine of the server running in the control thread. The update

routine follows the flow illustrated by figure 5.4. The sample queue is read by another

thread, the cheat detection thread. The cheat detection thread runs the cheat detection

mechanism on the samples in the sample queue when the queue is full.

The update routine of the playback mode updates clients just like the generation mode,

but the clients get their positions, velocities and rotations from file, rather than generating

these on the fly through the physics engine. After a client has been updated, the server

samples the state of the client and places the sample in the sample queue. There is a

minimum two sample queues in the system. One for adding new samples, and one that is

used by the checking mechanism. The sample queues are protected by mutexes which are

opened when either the sampler has filled a queue or the checker has performed a cheat

detection check. Because samples need to be gathered from the clients, there is a natural
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Figure 5.4: Diagram of the flow of the update routine in the control thread in playback
mode.

delay before cheaters will be discovered. This means that cheating clients are discovered

some time after the time the cheating behavior started. This is a very small delay though,

which is rarely langer than a few seconds.

5.3 Physics Engine

The physics engine is one of the main parts of the simulation. The engine is responsible for

calculating the sum of all physical forces acting on all objects and updating their positions

accordingly. The physics engine is controlled by configuration parameters that allow for

changing physical properties quickly, even during runtime. Objects are registered with

the physics engine so it maintains a pool of objects to manage. Updates of the parameters

of an object, such as throttle, is handled by the individual clients. The integrations of the

time steps from a game tick to the next is done by the engine. The physics engine does

this by updating every object in the object pool.

We presented some of the basic theory behind physical models in chapter 3. All physics

calculations are dependent on time. To give reliable results, the simulation does not use

real system time, but logic ticks to represent a timeline. The timeline is maintained by

the external system, so the physics engine works just as well with real-time as it does

with simulated time. The physics engine is mainly run off-line, or more correctly, as

fast as possible. It does not have any real-time dead-lines that it needs to fulfill. The
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main implementation of the physics engine runs on the host and is only used during the

generation mode. During playback mode, the cheat detection mechanisms in the different

CUDA kernels act as a reverse physics engine, in the sense that they try to determine if

positions generated by the physics engine are valid with the current physical model.

Collisions between objects is implemented in the physics engine, but it is not turned on.

With the way the cheat detection mechanism works, collisions would introduce depen-

dencies between the different checks, reducing the possibilities for parallel execution. We

have not researched how collisions might be included in a cheat detection mechanisms like

ours. The physics engine can also add boundaries to the virtual environment so that the

clients do not wander off into oblivion, but rather bounce off the boundry walls.

5.4 Simulation Structure

Because our simulation uses a C/S communication model, there are two main node types

in our simulation; the server and the clients. Even though the server and the clients

do not communicate over a real network, they do exchange packets similar to network

packets used in networked games. A packet is either generated by the generation mode

or read from file in playback mode by the clients each game tick.

5.4.1 Server

Servers are the backbone of the entire simulation. No clients can run without a server

because clients are running within the server process. Figure 5.1 illustrates how the

simulation is planned to be run in playback mode with network support. Node 4 runs

only a server. This is the server that is responsible for running the cheat detection

mechanism. Node 1 to 3 run local servers that again handle a number of local clients.

The servers in nodes 1 through 3 report the status of all their clients to the main server.

These servers act like proxy servers. The reason we have chosen this solution is to allow

any number of clients to run on any node.

These local clients are just internal object instances of a client class, thus existing only

within the server. To distribute client state information files to be used by the playback

mode, servers should be run in generation mode on any node that should be included in

the playback mode. With regards to figure 5.1 this would mean node 1 through 3 would

run generation mode before playback mode can be executed. It is also possible for the

node 4 to run local clients while administering remote clients.
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The server samples all incoming data from the clients. When a cheater is reporting

erroneous positional data, the calculations should indicate that the movement of the

player does not follow the rules and restrictions of physical parameters of the game. The

server does not currently support clients to be on remote machines. However, the design

is easily expandable to extend to the use of network communication for clients to send

movement data to a remote server.

5.4.2 Client

The responsibility of the clients in the system depends on the execution mode of the

program. During the generation of movement files, clients act as writers for the server,

writing their locations and other appropriate data to file periodically. When the program

is run in playback mode, clients read from the generated files and report the data written

during the generation mode. This way, the system allows for reproducible tests as the

test data is the same for each test run. If the simulation is to be expanded to support

network communication, clients would be managed under one of the proxy servers on the

node they are running, as illustrated in figure 5.1. How the main server running the cheat

detection mechanism will manage the remote clients is not yet thought of.

We mentioned under section 5.2.1 how clients might cheat in our simulation. We have

no motion planning in our implementation, but clients evaluate their position in the

environment and try to adjust their thrusters to orient themselves towards their target.

Cheaters might bypass the thruster adjustments by setting their position and orientation

manually, manipulating the calculations of the physics engine. If the cheating client

observes that its orientation is x degrees of rotation away from pointing towards the

target, they might halve this rotation by setting their rotation parameter. Whenever a

client performs such a manipulation of its state, the cheat detection mechanism must be

able to detect it.

5.5 Cheat Detection Mechanisms

We always implement two versions of a cheat detection mechanism. One is written for the

host CPU, while the other is a CUDA version, written for the CUDA device. In essence,

they execute the exact same operations on the same type of data structure supplied by the

sampler. The CUDA device supports the kernel to run on a large number of threads to

achieve massive parallel execution, while the host implementation only uses basic looping
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structures to simulate the same behavior. The host implementation is not threaded in

any way.

To determine legal client movement patterns, the cheat detection mechanisms is given

samples of the movement of each client. Every sample has a positional vector with three

values: x, y and z, the three-dimensional axes. Another similar tuple holds the velocity of

the game client object. The velocity is calculated in the first implementation, so it is not

necessary to include this in the samples used in the first implementation. There are also

a few other parameters mostly related to the physical properties of an object used in the

mechanism, the object mass and maximum allowed acceleration. The sample structure is

considered a simple model of a theoretical game packet structure.

There has been developed several cheat detection mechanisms for our system to test

the performance difference of various approaches. The cheat mechanisms needed to be

implemented for the diversity of existing games would have to vary considerably. Testing

several possible solutions would wise to determine how the relation between memory and

arithmetic operations impact the system. Throughout the thesis we have rewritten the

cheat detection mechanism several times and attempted different approaches. We ended

up with one solution in the end that we decided to test the performance of. We also

made one that was not very successful, so we do not include that implementation when

we present our results in the next chapter. We will, however, describe both of the two

ideas we came up with and implemented.

The way the mechanisms are implemented for the host, mirror the way they are im-

plemented in the CUDA kernels, except that the threads (labelled th1 to thn in the

illustrations below) are serialized when executing on the host. Apart from this, the host

implementations should be identical in the general order of operations and which opera-

tions are performed. We will not focus on how the mechanisms are implemented on the

host.

5.5.1 Stable Implementation

The first initial implementation idea of the cheat detection mechanism, deduces the veloc-

ity and acceleration of an object from the state information contained in three consecutive

samples at a time. After finding the acceleration of the object as a three dimensional

vector, all external forces existing in the physical model are subtracted. The resulting

acceleration is the result of the forces the object itself has applied, which in the simulation

would mean its thrust. If the thrust the object has applied is greater than the maximum

thrust the object could be capable of applying, the client would most likely be a cheater.
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In a way, the implementation reverses the physical behavior calculated by the physics

engine.

Each block of the mechanism checks one client. The size of the block is determined by how

many samples the mechanism should check for that client. Because each check requires

three samples like we mentioned above, the total number of checks to be performed

in a block is num_samples - 2. Each check is performed by one thread, resulting in

num_samples - 2 threads in a block. Each thread needs three consecutive samples to

perform a check and so the reading and execution pattern of each thread is as illustrated

by figure 5.5.

...s0 s1 s2 s3 s4 s5 s6 s7Samples

th1

th2

th3

th4

th5 th7

th6

Figure 5.5: Sample reading and execution pattern of the first CUDA kernel.

In the beginning of our research, this implementation proved to be very inefficient. The

physical model was too simple, which resulted in the GPU version being slower than the

CPU version in almost every test. When we increased the complexity of the physics engine

and the way the playback mode handled the buffering of the samples from the clients, the

GPU implementation increased its throughput. See the next chapter for the benchmarks

and results we obtained with this implementation.

The mechanism is able to detect cheaters using this implementation. However, it is

not very accurate, marking some honest players as cheaters and missing some cheating

participants. The implementation results in a scalar value indicating the thrust that

must have been present to achieve the acceleration the object has had over the three

samples checked. If the motion generated by the physics engine is close to the maximum

acceleration the object can achieve in the physical model we have defined, the object

might be marked as a cheater. Also, the motion of the cheating clients generated by

the generator mode, might not always generate motion breaking the rules of the physical

model. This results in cheating clients actually performing legal motion. To create a more

accurate cheat detection mechanism, we must have invested more time into research of

the problem of reversing the physics generated by the physics engine.
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5.5.2 Discarded Implementation

The second implementation of the cheat detection mechanism uses its information about

where an object is by checking a sample which contains a positional and a velocity vector.

Based on these values, the kernel calculated several possible extremes for where the next

sample might be positioned, and then checked if the next sample was within these con-

straints by interpolation. This implementation is a computationally heavier solution. It

is also dependent of more information about the state of the clients, because it does not

calculate the velocity of the clients like the first implementation. This means that more

data has to be transferred to the device for the GPU implementation.

Figure 5.6 illustrates the sample reading and execution pattern of the second implementa-

tion. Where threads in the first implementation read and check three samples, the second

implementation only reads two. To improve memory reads, the threads performs two

checks each, so that the read operations do not overlap.

th1 th2 th3 th4

th1 th2 th3 th4

...Samples s0 s1 s2 s3 s4 s5 s6 s7

1st iteration

2nd iteration

Figure 5.6: Sample reading and execution pattern of the second CUDA kernel.

Each thread in the kernel of the checker knows two positions of an object. By knowing the

position, velocity and rotation of the object, the threads calculate a number of possible

positions for the object to end up with accelerations in several directions: along the

velocity vector, the opposite direction, right, left, up and down. When these positions are

calculated, the thread checks if the second sample is withing these bounds by creating a

bounding sphere through these points. Cheating has likely occurred if the second sample

is outside of this bounding sphere.

5.6 Other parts of the system

Earlier in this chapter we have described the most important discrete parts of our game

simulator. There are several more minor features that might be worth mentioning.

GUI
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Figure 5.7: Screenshot of the graphical representation of the game state.

To see the result of the moving objects in the system a simple GUI was added. Figure 5.7 is

a screenshot of the graphical representation of the game state. The GUI uses the GLUT

library for windowing in a UNIX environment and OpenGL for the three-dimensional

rendering. The GUI allows us to see the result of the moving objects. It is very simple

and only intended to serve as a development aid.

Configuration system

Most of the parts of the system are configurable through either command-line or an INI-

like [61] file. The configuration is read at start-up and eases modification of parametric

parts of the system (i.e., the physics engine) to avoid recompilation between changes. Ta-

ble 5.1 lists a few of the most important configuration parameters used in the simulation.

Templates

For ease of further development, two simple templates has been made: a three-dimensional

vector and a quaternion representation. Both templates are complete with constructors,

operator overloads and other utility functions. In theory, both of the templates should

work in the GPU kernel code, but for some reason, a compile-time error occurs when

trying to use the quaternion template for the GPU. The vector template supports to be

used both in the host-specific code and in the CUDA kernel.
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simulator
tick_duration_us How long a game tick lasts in microseconds.
local_clients How many local clients to instanciate
move_dir Directory containing movement files for reading

or where to place generated files
cheat_percentage How large of a percentage of the clients should be cheaters
generator
duration The duration of the game session to generate

movement files for
targets How many targets to create
physics
gravity_[xyz] Three fields of a vector describing the

gravitational acceleration
bounds_[xyz] Set the physical bounds of the environment
collisions Turn on/off collisions
object
minimum_radius The minimum radius of a game object
maximum_radius The maximum radius of a game object
mass_density The mass density of the game objects
max_engine_thrust The engine thrust of the objects
max_bow_thrust The maximum thrust of the bow thrusters

Table 5.1: The most essential configuration parameters used in the simulation.

5.7 Summary

In this chapter, we have described how we have chosen to implement and create a cheat

detection system. We have described the different parts of our implementation and how

all the different parts fit together. Our simulation uses two modes of operation; generation

mode and playback mode. The first generates movement files that can be used by the latter

as input. When the simulation runs in playback mode, the cheat detection mechanism

is active and attempting to detect cheaters. We have described how our cheat detection

mechanism calculates the same operations the physics engine did in the generation mode

to determine if the movements of the clients are consistent with our physical model. We

have also described how the cheat detection mechanism is implemented both on the CPU

and the GPU so that tests can be run to compare the two. In the next chapter, we present

our results of the CPU and the GPU versions of the cheat detection mechanisms. We

describe how we have performed tests of the system and explain our results and what is

the cause of the results we have obtained.



Chapter 6

Testing and Results

In the previous chapter, we gave an overview of our game simulation with cheat detection.

We described how the simulation uses two modes of operation; one to generate files

containing data similar to that of packets in multi-player games, and one to gather data

from game clients and run the cheat detection mechanism on samples of the data gathered

from the clients. The two modes of operation was chosen to ensure that repeated tests with

the same data, could be run on different cheat detection mechanisms and with different

mechanism launch parameters.

In this chapter, we describe the performance of our solution by presenting the results of

different benchmarks we have run on the system. In the previous chapter, we described

that we attempted two different approaches at implementing cheat detection. Because

of errors and lack of stability in the second implementation, we are not able to present

any numbers of its performance in this chapter. There are many things to consider when

optimizing CUDA applications for best performance. We try to explain our results and

we give our viewpoints on how our system might be improved. We will also briefly discuss

what we have learned from our implementation and how this would apply to similar

systems.

6.1 Introduction

When testing the efficiency of a simulation like ours, there are several different elements

to take into account. A benchmark strategy commonly used is to record the time different

parts of a system takes to execute. The result of such a benchmark is only interesting

if we compare the results of one execution with the results of another. Often the two

61
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executions would differ in one way or another, because identical executions should yield

identical results, which in most cases is not very interesting. The difference between two

executions can be the number of clients connected to a server, which is interesting to

test in a simulation like ours. Such a test would give an indication of the scalability of a

system. As an example, if the execution time of our cheat detection mechanism is four

times as long with twice as many clients, the solution might not be very scalable. But if

the alternative solution takes eight times as long, the first solution might be pretty good

after all.

In a multi-core application, it is important for all the processing cores of the processor

to be occupied with work. If cores are idle, the processor is not performing optimally.

Occupancy is a term that is very interesting when benchmarking CUDA applications.

Occupancy can be defined as a scalar value indicating how many cores of a multi-core

device is busy processing data at any given time. A low occupancy indicates that pro-

cessing power is wasted, while a high occupancy would indicate that the entire multi-core

processor is active. With regard to CUDA applications, the occupancy is calculated as

the ratio between the number of active warps and the maximum number of supported

warps of the CUDA device being used. Results of an occupancy check can be interesting

by themselves, as opposed to most timing-based benchmarks, because the check gives a

good indication of how efficient the kernel is.

6.2 Detect the Cheaters

We have no results indicating exactly how many of the cheating clients our mechanism is

able to detect. The success rate of our implementation is not what should be considered

the important part of the game simulator. We are able to detect quite a few cheaters, but

the mechanism we have created also seem to point out honest players from time to time.

Also, cheating participants may not always be discovered. There are several reasons for

this. Our mechanism calculates the acceleration an object has had over the three samples

in a check. If the object is having an acceleration close to the maximum allowed by the

physical model, the object might be marked as a cheater. The cheat detection check

returns a value indicating the thrust required to achieve the acceleration reported by the

clients. This value should be adjusted with a tolerance value so it does not include honest

players. A consequence might be that more cheaters go unnoticed.
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6.3 Test Setup

Before any tests can be run, it is necessary to generate a large number of data files. This

is done by the generation mode of the simulation, as stated in the chapter 5. Generated

files are placed in subdirectories of a target directory. The subdirectories are named cheat

and clean and all files within these directories simulate either cheaters or honest players.

If there is a desire to start more clients than there are generated files, the playback mode

makes several clients share files. This means they report identical data to the server.

The cheat detection mechanism we have tested is implemented for both the GPU using

CUDA and for the CPU. To compare the execution time of the two versions up against

each other, we have to run the simulation with the same data twice; once for the GPU

version and once for CPU version. To automate tests, we have written simple test scripts

in the Python scripting language. They run the simulation in playback mode with various

configurations to aggregate results of each execution. All timing internally (i.e., taking

the time of a cheat detection mechanism launch) is done within the simulation and not

by these scripts. The results of the internal benchmarks are written to standard output

and collected by the test scripts.

6.4 Mechanism Execution Time

Determining how long the cheat detection mechanisms takes to execute is one of the

main interests we have when testing the efficiency of our system. This can lead to a

diverse number of tests, because each launch of the mechanism implies numerous variable

parameters affecting performance. Because we are comparing the execution time of the

mechanism on the CPU up against the execution time on the GPU, the launches will

have to have identical parameters set. Because the GPU requires us to think of a launch

as a number of threads contained in a number of blocks, we will use this terminology to

describe the different factors affecting a launch.

The number of clients is probably the most important point to consider because we

are checking for scalability. First of all; the mechanisms we have created try to check

all clients in one launch. We have not looked into the possibility of checking subsets of

the clients for each check. A major reason for this is that we attempt to find how well

the system performs as we scale up the number of clients to check. If the launch of the

mechanism checks just a subset of the clients, then we could have run the system with a

smaller number of clients to achieve the same effect.
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The number threads in a block is relevant as there is an optimal number of threads

contained within a block for every given kernel giving the best throughput. This number

should ideally be multiple of 16, stated in the CUDA Programming Guide. This relates

to the warps and half-warps we discussed in section 4.4.4. If this number is not a multiple

of 16, there is a risk of warps being underpopulated which can result in idle processing

cores.

The number of blocks in a grid is another relevant factor affecting the performance

of a launch. The SM performs context switches when threads of a warp wait for reads

or writes to main memory. It is important that when a warp is switched out of context

another is ready. If the launch consists of several blocks, then there are always warps

ready to be switched into context, meaning the launch benefits from a high block count.

Another benefit of high block counts, is the support of future devices with a higher number

of processing cores.

We run tests changing the different values of the three major factors affecting a kernel

launch that we mentioned above. This is automated by the test script we have written

that also collects the information and calculates the average time of each mechanism

launch.

6.4.1 Number of tests

Because of the many different values that we can set for the different parameters we listed

above, we need to run a large number of tests. The test script calls the simulation with

all the different values we want to use sequentially. What we are trying to show with

the following tests is the difference in mechanism launch times between the CPU and the

GPU. Both mechanisms are given the exact same data placed in identical buffers.

All tests are run on data generated by the generator mode over two minutes of "game

time"1. For these tests we have set the tick duration to 1/40s, meaning there are 40 up-

dates per second. This means there are 4800 samples per client. We have used client ranges

from 200 to 1200. For the largest tests, we have therefore a total of 4800 ∗ 1200 = 5760000

samples being used over the duration of the playback mode. The first execution, illus-

trated by the graph in figure 6.1, uses a much smaller buffer size than the last execution,

illustrated by the graph in figure 6.4. A smaller buffer size means there are fewer samples

to check and the mechanism runs quicker. Larger buffer sizes means more checks per

kernel launch, giving longer execution times.

1Because we execute the simulation with a best-effort launch, it has no concept of time. The game
time mentioned here is basically just what the physics engine simulates.
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Be aware that in the following graphs, the scale of the y-axis may change quite consider-

ably. The difference in the axis means that deviations in the plots in the graphs with a

smaller scale will look more drastic as opposed to the graphs with a larger scale.

6.4.2 Results

In this section, we present graphs illustrating the results we have obtained from the

benchmarks testing different number of connected clients, minimum block count and

block size. In the first set of graphs we have calculated the average execution time of the

CPU and the GPU implementations.

Figure 6.1 and 6.2, illustrate two launches with two different values for the block size.

Both graphs illustrate executions where the minimum number of blocks in a mechanism

launch is 16. The graph in figure 6.1 uses a block size of 256 threads, while the other

uses a block size of 448 thread. The number of clients range from 200 to 1200. Figure 6.3

and 6.4 illustrate two graphs of a executions where the number of blocks used has been

increased to 64. We have the same number for the block size as in figure 6.1 and 6.2, 256

threads for the first and 448 for the second. The clients range of clients is the same, 200

to 1200.

From the four graphs it becomes quite apparent that both the number of blocks and the

size of the blocks greatly affect the performance of the GPU. GPU is able to outperform

the CPU with almost every configuration we have tested. However, when the block size

and the number of blocks is small, the GPU performs considerably worse than with larger

numbers. In the tests with the smallest block sizes and the smallest number of blocks, the

GPU runs approximately twice as fast as the CPU. When the block size and the number

of blocks is increased the GPU runs three to four times as fast as the CPU.

There are two reasons for these results. The first is the memory transaction overhead

associated with moving sample data to the GPU. If the data to be moved is too little the

overhead of the memory transaction becomes a large part of the overall execution time of

the mechanism. In these cases, the CPU will benefit from the fact that it does not require

a memory transaction. The other reason for the low performance of the GPU when both

the block size and number of blocks is small, is that large parts of the GPU will be idle.

Because the buffer size is direct consequence of the minimum number of blocks and the

block size, for all the different number of clients we tested above, the buffer size will be

the same. This is why the graphs are so straight, as it is natural to think that there

would be some increase in execution time with a larger number of clients. When the



66

200 400 600 800 1000 1200
Clients

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

0.0013

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

gpu
cpu

Minimum blocks: 16, Block size: 256

Figure 6.1: The average cheat detection mechanism execution time of the GPU (red) and
the CPU (blue). Minimum number of blocks is 16 and a block size of 256 threads. Lower
is better.
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Figure 6.2: The average cheat detection mechanism execution time of the GPU (red) and
the CPU (blue). Minimum number of blocks is 16 and a block size of 448 threads. Lower
is better.

buffer size is the same over over the different number of clients, it means that the same

number of checks are being performed by each launch of the mechanism. The difference
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Figure 6.3: The average cheat detection mechanism execution time of the GPU (red) and
the CPU (blue). Minimum number of blocks is 64 and a block size of 256 threads. Lower
is better.
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Figure 6.4: The average cheat detection mechanism execution time of the GPU (red) and
the CPU (blue). Minimum number of blocks is 64 and a block size of 448 threads. Lower
is better.

is that with fewer clients, the system will fill up its buffer slower than when there are

more clients. This would mean that when more clients are connected to the system, the
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cheat detection mechanism is launched more frequently. To illustrate this, we present the

graphs illustrated by figure 6.5 to 6.8. These graphs are generated from the same test

data as the graphs in figure 6.1 through 6.4. But this time we have multiplied the average

execution time of the mechanism with the number of mechanism launches for each test

run. This gives us an estimate of how much time is actually being spent within the cheat

detection mechanism of both the GPU and the CPU implementation.

There are two things that are apparent from the graphs in figures 6.5 to 6.8: most

importantly the GPU is considerably faster than the CPU, and that the performance

of the GPU is very dependent of the dimensions of both the grid and the blocks of a

launch. With a careful look at all of the four graphs in the two figures, it is possible to

see that the CPU has the same execution time independent of the number of blocks and

the size of the blocks. This is because the CPU code is serial. For the GPU, however, it

is quite clear that when we use a small number of blocks and a small block dimension,

the performance is reduced. This can be explained by idle processing cores on the GPU

wasting processing resources. From the first graph to the last, the GPU approximately

doubles its performance, while the CPU is stagnant.

If we were to speculate on the projections presented by these graphs, it seems like the GPU

also scales considerably better than the CPU. If we look at the graph in figure 6.8, we

can see that the incline of the graph of the GPU is much gentler than that of the CPU.

Alas, we have not any consistent test results with more clients. Without a simulation

supporting network, all data must be read from the disk, resulting in an exponential

increase in test execution time because of file I/O. This is a problem we see a bigger effect

from in the next section.

6.5 Offloading Effect

When the cheat detection mechanism runs on the GPU, the CPU is relieved of performing

cheat detection tasks and can instead work on other game relevant computation. Even if

our results would have revealed that the execution of the GPU implementation took longer

time than the CPU version, the GPU would still offload the CPU, allowing the CPU to

perform other tasks. This offloading effect might be all that is necessary to implement

a cheat detection mechanism in a game. As long as the CPU has enough resources to

administer sampling of the movements of the clients and launch the GPU cheat detection

mechanism, then the addition of a such a mechanism to a game will not have a large

performance impact on the system.
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Figure 6.5: A graph of the product of the average execution time and the number of
launches of the cheat detection mechanism on the GPU (red) and the CPU (blue). A
minimal number of 16 blocks of size 256 for each launch of the mechanism. Lower is
better.
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Figure 6.6: A graph of the product of the average execution time and the number of
launches of the cheat detection mechanism on the GPU (red) and the CPU (blue). A
minimal number of 16 blocks of size 448 for each launch of the mechanism. Lower is
better.
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Figure 6.7: A graph of the product of the average execution time and the number of
launches of the cheat detection mechanism on the GPU (red) and the CPU (blue). A
minimal number of 64 blocks of size 256 for each launch of the mechanism. Lower is
better.
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Figure 6.8: A graph of the product of the average execution time and the number of
launches of the cheat detection mechanism on the GPU (red) and the CPU (blue). A
minimal number of 64 blocks of size 448 for each launch of the mechanism. Lower is
better.
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To determine the offloading effect the GPU has for the CPU, we have measured the

different CPU-times of user space execution of the two implementations. We have only

included the user space time in our graphs because it is the most relevant, as the code

executes in user space. We know from the test results we presented in section 6.4.2, that

the GPU implementation is faster than the CPU implementation. We now want to see

exactly how much the GPU relieves the CPU.

Figure 6.9 and 6.10 illustrate two graphs where we have used similar values for the block

size and the minimum number of blocks to the ones we used in section 6.4.2. We can

tell by the graphs in figure 6.5 that the GPU version takes less CPU time than the CPU

implementation. We quickly notice that the difference between the CPU and the GPU

implementations is not as great as we might have guessed. First of all, these graphs

illustrate the time of the entire execution of the simulation. The framework does several

other operations than just running the cheat detection mechanism, and all of these are

handled by the CPU. When we inspected the profiler output from gprof [62], we saw that

the majority of the execution of the simulation was within I/O related methods. Parsing

the input data was also a major bottleneck. These time-consuming methods are used

when running both the CPU and the GPU implementations. Therefore, even though the

GPU version is considerably faster, the difference in execution time between the test runs

using the two mechanisms is not that great. If we had been able to discover this sooner,

we could have improved the I/O and parsing mechanisms of our simulation to probably

speed up its execution considerably.

6.6 When to use the GPU

We have seen how the CPU and the GPU implementations of the cheat detection mech-

anism perform differently in relation to each other when we use different launch models.

The difference between the two, is smallest when the number of checks to be performed

is small. However, as the number of checks is increased, the increase in execution time

of the CPU implementation is much steeper compared to the increase in the GPU imple-

mentation. This indicates that the GPU implementation is the most scalable of the two,

in addition to being the fastest.

The cheat detection mechanism we have implemented for our system is easy to parallelize

because there are no dependencies between what must be calculated for each client. Simi-

lar systems that have tasks that can map the operations that must be performed to a large

number of threads, would benefit from using a GPU to offload the processing. A thing
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Figure 6.9: Execution time in user space. Minimum 16 blocks with a block size of 256
threads. Lower is better..
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Figure 6.10: Execution time in user space. Minimum 64 blocks with a block size of 448
threads. Lower is better.

worth noting, is that the GPU is only effective if it has enough to process. Operations

that require only a few calculations over a small number of threads would not be very

efficient running on a GPU.
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Although we have experimented with cheat detection in a game simulation, the GPU can

be used for many additional tasks. If the game uses a physics engine that supports GPU

execution, it might be able to perform all physics calculations on the server. If the scale

of the game is not intended to be too great, this allows the game providers to perform all

physics calculations on trusted hardware. This will reduce the control the clients of the

game have and removes the need for a cheat detection mechanism checking for consistency

in the movements of the clients entirely.

6.7 Summary

In this chapter, we have presented the results of our benchmarks of our cheat detection

mechanism. We have seen that the GPU is able to outperform the CPU when performing

cheat detection tasks. Offloading a cheat detection mechanism to a GPU not only speeds

up the operation, but also frees up CPU cycles that can be used to perform other tasks

related to game management. In the next and concluding chapter, we summarize the

work that has been done in this thesis and we suggest further work that can be done to

improve our existing solution.



74



Chapter 7

Conclusion

In this final chapter, we summarize what research has been done in this thesis, our main

contributions and the results we have achieved. After a short summary of this thesis, we

suggest a few ideas for the future that might improve, or at least extend the scope and

functionality, of our game simulation.

7.1 Summary and Contributions

Even though there is an increasing popularity of on-line multi-player games, cheating is

prominent. This destructive behavior degrades the gaming experience of honest game

players. The game industry has always been a step behind the cheaters, struggling to

keep up with new and creative cheating methods. Although the existing solutions are not

sufficient to eliminate cheating, there is an increasing amount of research attempting to

reduce cheating in on-line multi-player games. Because of the large diversity of the types

of existing on-line games, the existing cheats and the cheating mechanism that aim to

battle them, are equally diverse. In this thesis, we have presented a game simulator with

a cheat detection mechanism aiming to detect cheating that exploits the physical model

of a game. Computational resources in modern game infrastructures are already scarce,

so the major goal we set for implementing a cheat detection mechanism was to keep its

performance requirements low.

An increasing interest in GPGPU development and research, has given system developers

easier access to the computational power of the GPU. The GPU is a relatively cheap,

but powerful processor ideal for performing computationally heavy tasks that can be

parallelized. In this thesis, we have investigated how a GPGPU cheat detection mechanism
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performs compared to a mechanism implemented on the CPU only. We have used the

CUDA framework from NVIDIA to conduct our research on. The CUDA framework is a

popular alternative in the GPGPU community and under constant development. It is also

relatively well documented, not only because of helpful programming and optimization

guides released by NVIDIA, but also for an active on-line forum of developers exchanging

experiences with the framework.

We have obtained promising results indicating that a cheat detection mechanism running

on a GPU, can outperform the same mechanism running on a CPU. Although cheat

detection mechanisms will vary greatly from game to game, a mechanism checking for

consistency in physical calculations can be migrated to the GPU to achieve a performance

boost. We have also witnessed that by moving a cheat detection mechanism to the GPU,

it is able to offload the CPU, allowing the CPU to perform other tasks while the cheat

detection mechanism is executing. Even though there are many improvements that can be

made to our game simulation framework, we have shown that cheat detection mechanisms

can be offloaded to the GPU to relieve the CPU.

7.2 Critical Assessments

Implementing an entire game simulator with its own physical engine and cheat detection

mechanism, is a time-consuming task. Many quite essential features are missing from

our implementation; amongst network communication, a proper user interface, advanced

physical model, client motion planning and a more advanced cheat detection mecha-

nism. Especially the lack of network support has limited how we have been able to test

the scalability of the system. We saw how much I/O operations affect our simulation

in section 6.5. An improvement that probably would have improved the speed of our

implementation quite considerably, is a change in the file format we have used for our

simulation. The movement files are saved in a human readable format, which greatly

increases the amount of parsing that is required to read the files back into the simulation

in playback mode.

More time could have been dedicated to optimize and extend our game simulation. The

physical model we have used is very simple and contains just a few of the many features

used in mainstream physics engines. With a more advanced physical model, our cheat

detection mechanisms would have to be extended considerably. This might have given us

a different set of results on how the GPU would perform compared to the CPU.
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7.3 Future work

Many improvements can be made to this cheat detection prototype. This section is

devoted to possible additions and modifications to the current system which might lead

to interesting results.

Modular cheat detection mechanisms

The server system should support modular CUDA kernels in shared libraries that can

be connected and disconnected from the main system. This way, server uptime can be

maximized as the server does not need to be taken down to add new cheat detection

mechanisms. Running mechanisms can also be removed so that they could be changed

or deleted if they are obsolete. Shared libraries with detection code would then act as

system plug-ins that can also be tested on a staging server before being released onto

a main game server. Also, with a plug-in based system, less significant cheat detection

mechanisms could be disabled if the server load becomes unmanageable and enabled again

when system load drops.

Use network connectivity

To test the scalability of the system further, network connectivity should be added. Then

several nodes can connect to the checking server, supplying data from a higher number of

clients. Solutions including proxies might also be tested if the system supports network

communication.

Change the simulation architecture

The simulation is currently a client-server architecture. P2P games are emerging to battle

scalability issues. Such systems lack the centralized control unit, the main server. To

detect cheaters within a P2P system, some network nodes must be performing detection.

Several possibilities exists for this problem. The game developer might introduce passive

clients into the system to join game sessions searching for cheaters. These clients are not

visible to other clients and do not participate in the actual game. They solely sample

information about all other clients which they then run through the detection mechanism.

Cheat detection can also be made into a collective effort, where selected or all clients with

free system resources perform smaller portions of the detection mechanism at turn. This

way, cheaters can be discovered by the other player themselves. To make such a solution

reliable, there must be a sufficient number of clients performing the check routines and

redundant tests must be run so that clients can compare results. Clients with deviating

results are likely a cheater. Both of these type of mentioned clients act as referees in the
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P2P system. Webb et al [26] have done research on fair referee selection while minimizing

impact on the system. They investigate how it is possible to solve the problem of safely

choosing who will serve as checkers, or referees.

CUDA physics engine

The main physics engine of the simulator currently only runs on the host system. The

physics engine is mainly used during the generation mode, where the need for a cheat

detection mechanism is not present. To improve the speed of the generator, the physics

engine could be ported to CUDA. This is something already achieved by PhysX [31].
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List of Acronyms

API Application Programming Interface

AS Asynchronous Synchronization

CBE Cell Broadband Engine

C/S Client-Server

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

FPS First Person Shooter

GPGPU General Purpose computing on Graphic Processing Units

GPU Graphics Processing Unit

GUI Graphical User Interface

JIT Just-In-Time

MMOG Multi-Player Online Game

ODE Open Dynamics Engine

P2P Peer-to-Peer

PP Peer-Peer

PRP Peer-Referee-Peer

RACS Referee Anti Cheat Scheme
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SDK Software Development Kit

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multiple-Threads

SM Stream Multiprocessor

SMP Symmetric Multiprocessing

SoI Sphere of Influence

SP Stream Processor

STL Standard Template Library

TPC Texture Processing Cluster

UI User Interface

VAC Valve Anti-Cheat System

VM Virtual Machine

WoW World of Warcraft



Appendix B

Source Code and Test Results

Attached is a CD-ROM with the source code developed during this thesis and the tests

results of the benchmarks.

The contents can also be found on the following address:

http://martinom.at.ifi.uio.no/master/
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