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Abstract

In a time when people are moving away from desktop computers to mobile devices, technology
places higher constraints on the computational power and quality of graphics. To solve this, we
have designed and implemented a streaming engine which can run a graphical heavy OpenGL
application on a server and stream only the output to a client web browser. The streaming
engine performs so e�ciently that the time it takes for the user to interact with the application
until the user sees the e�ect is fewer than 90 milliseconds. We manage this by utilizing NVENC,
Nvidia’s hardware H.264 encoder, which is located on the GPU. By running all the expensive
tasks on the GPU, we are able to keep the latency low, while saving CPU resources and power.
In the future, we see the possibility of streaming rich operating systems, while the client is just
a simple video decoder and monitor connected to the Internet.
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Chapter 1

Introduction

1.1 Background
In recent years, desktop computer sales have plummeted, while sales of smaller electronic devices
such as phones, tables and laptops have risen [1–3]. While today’s hand-held devices are powerful
compared to yesterday’s computers, they are still far slower than high-end servers powered by
Intel CPUs and Nvidia GPUs.

The di�erence in computational power between hand-held devices and high-end computers
create a gap between what is possible to compute and what the user is able to experience, given
a real time requirement. The gap is especially noticeable when looking at games, the big games
available on the Apple App Store for iPhone today are often games which were released for PC
over a decade ago [4, 5].

Another segment in which the smaller devices are lagging behind is in processing of larger
data sets. Our research group has been working on a project called Bagadus where we track
soccer player’s position and create a panorama video of the soccer field while they are playing [6].
The entire Bagadus pipeline has been optimized to run in real-time, including grabbing frames
from 5 Full HD cameras, storing player positional information, and stitching together a panorama
image of the entire soccer field [7].

Using the data extracted by the Bagadus pipeline, we have been able to create a virtual
camera where the user, in real-time, can control the camera heading and even automatically
follow their favorite player [8]. However, running the program requires a lot of resources from the
client as it has to decode the high resolution panorama video and make a cylindrical projection
of it. With the shift from powerful desktop computers to low powered hand-held devices and
laptops, this presents a challenge in availability.

The accessibility of a program is often limited by computational power requirements. A
modern laptop or tablet is not able to run the latest games and heavy duty programs which an
Intel powered server with a desktop level GPU could run.

A program, like the Bagadus virtual camera, requires about six gigabyte of video in addition
to player tracking data. It also requires a powerful GPU to process a panorama image when
creating the virtual camera image. As the Bagadus system was designed for doing soccer analysis,
it is conceivable that the user wants to keep all the games her team has played in one season.
With 16 teams in the Norwegian Tippeligaen, the combined data set would then be in the range
of 96 gigabytes.

3
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Storing 96 gigabytes on a tablet is possible, e.g., Apple’s iPad can be bought with a 128
gigabyte solid state disk (SSD). However, the data set would then occupy almost the entire disk
and downloading it would require a lot of waiting for the user. Another key point to this data
set is that it may be company property which requires theft protection, such as encryption. Still,
the space requirement for the Bagadus virtual camera application is more an annoyance than a
challenge.

The main challenge with running a system like the Bagadus virtual camera is the require-
ments it imposes on the system computation power. Most modern laptops and tablets have the
available hardware to decode a Full HD 1920◊1080 stream, however decoding the full panorama
video at 6700 ◊ 960 is something very di�erent. In addition to decoding the video, the analysis
system performs a lot of transformations on the decoded video to achieve the illusion of the user
being in control of the camera.

In this thesis we have designed, implemented and tested a solution where programs, like the
Bagadus virtual camera, can run entirely on a server and the final framebu�er is streamed to
the client as a H.264 encoded video stream. We have also looked into the responsiveness of the
system by running a video game through it.

Technologies enabling running applications remotely have been available for decades [9]. The
main problem with streaming framebu�ers used to be encoding them. Specialized algorithms
were designed to encode changes in typical desktop environment images [10], but they are strug-
gling with rich content such as video playback and computer generated graphics.

With the introduction of high performing H.264 video encoders on consumer GPUs [11],
enabling applications to run in a cloud environment should now be possible without much added
cost. In addition, almost all modern mobile devices have specialized hardware for decoding video.
This combination should make it possible to create low cost, high performing cloud application
streaming solutions.

1.2 Problem Statement

Figure 1.1: Basic overview of application streaming

As an alternative to lowering the power requirements and creating a lower quality service
for running on modern mobile devices, we suggest moving entire programs to a GPU enabled
server which can stream the framebu�er to a client, i.e., a 3D cloud application (figure 1.1).
This will enable fast access to all the data at a lower risk of data theft and with very low system
requirements for the client.

The problem we are trying to solve in this thesis is designing and implementing a high
performance, remote computing service for running graphical applications, where all the client
needs to access it is a common web browser with no extensions or browser plugins installed.
This service should be possible to implement using only readily available consumer hardware.
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Instead of using a custom algorithm for compressing the images sent from the server to the
client, we will try to use H.264, a general video encoding format which several web browsers
support playback of. Modern GPUs now include a hardware video encoder supporting the H.264
video format. We will test one such encoder, the Nvidia NVENC, and compare it to the popular
software-based H.264 encoder x264. When comparing the two, our main focus will be on factors
important for low latency streaming, such as encoding latency, visual image quality, and resource
usage in terms of CPU utilization and energy usage.

As client for our streaming service, we will look into using a common web browser. This
includes sending user mouse and keyboard input back to the server and displaying the video
generated on the server. The HTML 5 standard does contain several technologies which can
facilitate our use case including the HTML 5 video element and WebSockets. We will try to use
the video element for displaying the H.264 stream generated on the server with very low latency,
i.e., minimal bu�ering, while streaming the user input through a WebSocket. This will enable
users fast access to the streamed application without installing any extensions in the browser or
a stand-alone client application.

To verify the streaming service, we will try to enable the Bagadus virtual camera application
to run inside the streaming service we have designed. Once there, we will do some additional
comparison of using NVENC and x264 as video encoder and look into how well the application
scales if we were to run several instances on a single server.

The last case study we will perform will be to make Quake III Arena [12] run inside the
streaming service. Quake 3 is a high paced first person shooter game which requires low inter-
action latency and high frame rate to be playable. We will then be able to conclude whether
our streaming engine is able to run an actual video game, given the latency and frame rate
requirements.

1.3 Limitations
To keep the complexity of the system as low as possible while still being usable, we will design
it with a single user in mind. Preliminary tests shows that enabling multiple users in one single
instance adds a lot of new problems to be solved, e.g., OpenGL call scheduling, sharing of shaders
and other resources, and interaction input routing. Instead, we use the facilities provided by
the operating system and device drivers, which may not be as e�cient as a custom solution.

As HTML5 video elements are not yet as portable as we would like [13], we will focus on
Google Chrome which at the moment is the browser with the highest market share [14]. This
does not mean that other browsers will be excluded, however the application will be optimized
for Google Chrome. Google has announced that it in the future will remove support for H.264
and focus more on VP8/VP9, but this has not happened yet and might never happen [15].

To be able to deliver this thesis in a timely fashion, we will focus on NVIDIA NVENC as
the hardware H.264 encoder. We know that AMD also has an H.264 encoder available in their
hardware, but support on Linux was not released until February 2014, and only for their newer
GPUs.

1.4 Research Method
The research presented in this thesis is done in accordance to the Design paradigm as described
by the ACM Task Force in Computing as a discipline [16]. We have stated requirments together
with specifications, and designed and implemented a functional prototype system on which we
have performed a series of tests to very that it meets the requirments.
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1.5 Main Contributions
This thesis is a study of using web browsers as thin clients connecting to a remote server where an
OpenGL application is running. As such, we contribute several details of this process, including
the design and implementation of a working prototype.

Other contributions include:

• Analysis of the NVENC hardware encoder in the context of low latency, live streaming.

• Fast downloading of OpenGL bu�ers from GPU memory to system memory.

• Techniques for lowering latency when streaming to Google Chrome.

• A way to measure latency when streaming to a web browser.

• Analysis of latency when streaming to a web browser.

• Proving it possible to run fast paced games through the streaming engine.

In March of 2014, we attended the Nvidia GPU Technology Conference (GTC) where we
presented a poster showing the design of our pipeline and some preliminary results from running
it with the Bagadus virtual camera [17].

We have also a paper describing the latency and scalability of our streaming engine in
proceedings for the ICM conference of 2014 [18].

1.6 Outline
Chapter 2 — Remote Computing.

Chapter 2 will introduce the reader to what remote computing is and how it has evolved
through time.

Chapter 3 — Commodity Hardware Encoders.
Chapter 3 will introduce basic H.264 and common encoders. Main focus will be on the
Nvidia NVENC H.264 hardware encoder.

Chapter 4 — Design and Implementation.
Chapter 4 will propose a design for a graphics streaming engine. The input for this engine
is an OpenGL program rendering to an o�ine RGB framebu�er which is then converted
to NV12 before being encoded as H.264 and streamed to a client web browser. Lessons
learned in Chapter 3 are used to select the best encoder and encoder settings for the
application.

Chapter 5 — Case Study: Bagadus.
Chapter 4 is a case study of the Bagadus Virtual Viewer running inside the streaming
engine with emphasis on resource usage.

Chapter 6 — Case Study: Quake III Arena.
In Chapter 6 we put an implementation of the streaming engine proposed in Chapter 4 to
the test by running a modified version of Quake III Arena through it. We look into how
well the engine performs in terms of latency and how it a�ects the experience for the user.

Chapter 7 — Summary and Conclusion.
In Chapter 7 we draw some final conclusions from the stream engine and suggest ways of
improving it further.



Chapter 2

Remote Computing

2.1 Background
The idea of streaming applications, or rather the output and input of applications, over a network
is not new. It dates back to the early time sharing computers of the 1960s when the user would
connect and share resources on a mainframe computer through a teletypewriter terminal and
later a video display[19]. Today, most people have their own personal computer (PC) in form of
a desktop computer, laptop, tablet, and/or smart phone, but the notion of controlling a remote
computer is still prevalent. Servers are often controlled remotely by running a Secure Shell
(SSH) daemon where a user can connect and get a virtual teletypewriter console. Through this,
an administrator can service and configure almost all of the modern servers in a concise fashion.

On a Windows server, an administrator can log on using the Remote Desktop Protocol
(RDP)[20]. The protocol was designed for presenting the user with a virtual desktop of the
computer the user has connected to. The user can then point and click using a mouse, just
as if he was sitting right next to the server with his human input devices (HID) and monitor
connected right into the server. Usually, when using RDP the client is presented with a new
application window frame in which all the externally running applications reside, but there is
nothing actually preventing a program to be displayed on the client just as if it was actually
running there, just as its Unix brother the X Window System (X11).

On Unix servers running the X Window System (X11)[21], it is also possible to forward
windows running on an external server to a local running instance of the X11 server. This
is a side e�ect of X11 actually being designed with networking in mind. Such a forwarding
connection is often initiated using X11 forwarding when connecting to a remote SSH server. For
the user, there is no visual di�erence when interacting with a remotely running application and
a local one, other than that there may be added latency.

A popular fourth and portable option is to use a Virtual Network Computing (VNC) service,
which functionally does the same as the RDP, where programs run inside a window frame, only
it is also available for Unix systems running X11.

7
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The main problem with RDP, X11 forwarding, and VNC is that the latency may is high,
especially for applications which include a lot of graphics. While RDP and X11 forwarding is
optimized for drawing “normal” window applications, VNC only transfers changes in the remote
framebu�er. Users who have tried this will often experience a lot of latency when trying for
instance to move windows or run their favorite game. The root cause of this latency is that the
images must be encoded. At least two of the most popular VNC implementations use a modified
Tight Encoder[10] algorithm for the frame bu�ers, which uses a combination of zlib and a set of
image filters. While Tight Encoder uses a mixture of image filters and zlib, the modified version
extends the preprocessing of the framebu�er to include search for high entropy areas which are
encoded using JPEG. As this algorithm is without motion estimation, it performs sub optimal
on moving elements, such as scrolling a web page.[22].

Instead of using any of the previously mentioned technologies, we use a coding format de-
signed for video, H.264/MPEG-4 Part 10 (H.264). This format has since been succeeded by
HEVC, but as of now the video encoders embedded in consumer hardware does not support
this new standard. In a discussion on TigerVNC’s bug tracker[22], the maintainer of TurboVNC
presents a few valid points on why VNC would not benefit from using H.264 instead of tight
encoding, most of which are directed at streaming desktop applications. He admits that for
scenarios such as games, H.264 may be better but believes that the performance of the encoder
could be a problem.

2.2 Related Work
2.2.1 Remote data visualization through WebSockets
Wessels et. al.[23] present a way of streaming remotely rendered visualization of large data sets.
A server uses a GPU to create a visualization of the data set. The visualization is then encoded
as JPEG and sent to the user through a HTML WebSocket where the image is presented to
the user on a web page in real-time. The paper suggests Base64 encoding of the image before
transferring it to the client because binary data may interfere with the WebSocket protocol and
JavaScript running in the web browser only supports handling Base64 encoded images.

This paper was released in 2011, but we see no reason why binary data would ever interfere
with the WebSocket protocol for two reasons. A WebSocket frame includes the length of the
frame, and a WebSocket frame may include a mask which basically renders the transferred data
“binary” on the wire, even if the message is encoded as 7-bit ASCII. We do not know whether
working with binary arrays was possible back then, e.g., unsigned 8-bit arrays, but there are
specifications suggesting they were available already in 2010[24].

The main flaw with the project is that they are using JPEG for encoding the images. Stream-
ing JPEG is basically the same as streaming H.264 with intra encoding only. As images in such
a stream usually are very similar, it would be preferable to use some form of inter encoding.

2.2.2 A hybrid thin-client protocol for multimedia streaming and interactive
gaming applications[25]

D. De Winter et. al.[25] propose a complex hybrid thin-client protocol where they combine a
normal thin-client protocol with a video streaming advanced graphics. They rely on having an
abstract 3D driver which can inspect the rendering commands issued and decide whether they
should be forwarded to the client’s GPU or be rendered on the server and streamed to the client
as an H.264 video, depending on the amount of motion in the framebu�er. There is no need to
modify applications to work in the their thin-client architecture.
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Because of hardware limitations in 2006, to test their service they used a setup with an
additional frame grabbing computer reading the VGA signal from the computer running the
application. The frame grabber uses x264 to encode the stream to H.264 at 25 frames per
second which is then sent to the thin client through a local network.

They found that they were able to display a frame within 100 ms of reading it on the server,
an impressive result for the hardware available to them. They also mention the fact that using B
frames when encoding would add extra latency as they are bidirectionally predicted. However,
there is no mention of how user input latency is a�ected.

2.2.3 Remote rendering of industrial HMI applications
Perez et. al.[26] presents a solution very similar to the one we are proposing in this thesis. Their
domain is in HMI (Human Machine Interfaces) for industrial machine control systems, but the
solution is general.

To grab frames they use the Windows GDI API, which allows an application to read the
framebu�er of a computer running Windows, and tests both using Nvidia NVENC, Nvidia’s
dedicated hardware H.264 encoder, and x264, an open source software H.264 encoder. Frames
grabbed by GDI are in the RGB format and have to be converted to YUV (YCbCr). For this
they use OpenCV [27], an open source software library for working with images.

They were able to run up to 10 applications at what they call a smooth 25 frames per second,
and found that “x264 based encoding is more robust in terms of keeping up the frame rate”,
while they got a latency of 500ms, due to bu�ering in the client. Their results are in stark
contrast to the results we were able to obtain with similar hardware.

2.2.4 A Networked Service for the Remote Execution of Interactive Multi-
media Applications

In this master thesis from July 2008, Mogstad [28] attempts to develop a system that allows
end users to play computer games remotely. For some reason, probably due to hardware, he is
testing the system with games at a very low frame rate (5-20 fps, page 88). He concludes that
the delay (i.e., latency) was the primary factor for users not using his system. Video quality
was this second highest reason for not using it, but he argues that higher bandwidth may solve
the problem. The primary cause for high latency was because of network and processing.

When looking into types of games playable using the service, he found that arcade racing
games and real time strategy games were much more enjoyable than first person shooters. He
concludes that first person shooters are the ultimate stress test for thin-client services.

2.2.5 Cloud Gaming
A technology very similar to the one we are presenting in this thesis is the one used by cloud
gaming companies. Cloud gaming companies, such as OnLive [29] and Gaikai [30], run games
on a remote server and stream only the input and output of the game from and to the client.
As such, it does exactly what we are trying to achieve with this thesis.

OnLive is a company which rents out games which run on their servers. Users can select
from a large library of games which will be streamed directly to their mobile device, laptop or
desktop computer. The only requirements they put on the client is that it has at least 2 Mbps
internet connection and the facility to decode a H.264 stream.

Exactly how OnLive’s architecture works is not fully confirmed, but they seem to have a
separate piece of hardware which grabs the output from the GPU and encodes it [31]. Whether
this is true today, after Nvidia released it’s NVENC encoder is not known.
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The latency from gaming on OnLive’s servers was measured by a independent source which
found it to be in the range of 135 to 240 ms [32].



Chapter 3

Commodity Hardware Encoders

3.1 Introduction
The last few generations of hardware from the big consumer hardware vendors have included
dedicated hardware for encoding H.264 video. This includes smart phones, CPUs and GPUs.
The main advantages of using a dedicated encoder is that it may be faster than a pure software
implementation, it may use less power, and it frees CPU cycles which can be used for other
computations.

Hardware video encoders have been around for a long time, but have mainly been used in
commercial TV production. The form of this kind of hardware is often external devices which
takes AUX signals as input and produce a digital encoded video over Ethernet as output. There
are also dedicated hardware encoders which can be installed into a computer using the PCIe
bus. We have tested no such hardware and will not be able to reason about their video quality
and performance.

The most popular software encoder seems to be x264, which is available as a package in
all the major Linux distributions, and there are pre-built binaries for both Windows and OSX
available. x264 is an open source project that is highly optimized to utilize modern CPU SIMD
(Single instruction, multiple data) instruction sets, and is known for producing very high quality.
However, as a software encoder, it will consume a lot of CPU resources. Because our goal is
to create an engine for streaming applications, a key requirement is that the encoder does not
inhibit resources needed for running the source application as this would constrict scaling. This
makes x264 less attractive for our use case.

Before the advent of dedicated H.264 encoders in Nvidia and AMD’s hardware, there were
several projects to make use of the GPU cores for encoding [33]. Generally, they have all been
recognized as bad in that they do not produce adequate visual quality and compression. The
lead maintainer of x264, Jason Garrett-Glaser (aka Dark Shikari), explained in great detail
why running the encoding on the GPU cores fail [34]. In short, his explanation is that motion
estimation can not be done good when each macro block is computed in isolation as they need
some knowledge about their neighbor blocks for the entropy encoder to be e�cient. For x264, he
has implemented OpenCL look-ahead, i.e., pre encoding, with the following commit comment
in the project repository:

Because of data dependencies, the GPU must use an iterative motion search which
performs more total work than the CPU would do, so this is not work e�cient or
power e�cient. But if there are spare GPU cycles to spare, it can often speed up the
encode. Output quality when OpenCL lookahead is enabled is often very slightly
worse in quality than the CPU quality (because of the same data dependencies) [35].

11
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3.2 H.264 video compression format
H.264 (H.264/MPEG-4 Part 10) is a standard developed by ITU-T Video Coding Experts
Group [36]. The details of H.264 are too convoluted to be discussed all in detail here, but
some are important for understanding the basics of how video encoding works and how video
can be streamed over a network.

One important attribute is the Quantization Parameter (QP). Quantization is an algorithm
for lossy compression where the Discrete Cosine Transform (DCT), the real values of a Discrete
Fourier transformation, of a block, e.g., 8x8, of pixels are computed. This produces another
block which the QP is applied to set the accuracy of this calculation. A QP value of zero is a
lossless transformation, and as the QP increases, the accuracy decreases. Because the quantized
blocks are passed through an entropy coder, only the deltas of the block values in a zig-zag
pattern is coded. Smaller deltas means lower entropy, which in turn means better compression.

H.264 has two entropy coding algorithms: Context-Adaptive Binary Arithmetic Coding
(CABAC)and Context-Adaptive Variable-Length Coding (CAVLC). The main di�erence be-
tween the two is that CABAC has a somewhat better compression rate than CAVLC. While
CAVLC was introduced early in H.264’s lifetime, CABAC was introduced more recently with
the H.264 High Profile.

Another important thing to know about H.264 is slice prediction. The most important slice
types are I frames, P frames, and B frames. I frames are inter predicted meaning that they
are predicted only using information available in the current frame. They are therefore free
standin, meaning that they can be decoded without any of the preceding of following frames.
Both P and B frames are what is called intra predicted, e.g., temporal predictions. While a P
frame is encoded using only preceding frames, a B frame is bi-directional and is encoded using
both preceding and following frames.

In the case of live streaming, we do not want to use B frames as using them would add
several frames of additional latency. Therefore, we are limited to only using I and P frames.

3.3 Selecting an encoder
There are several possibilities when selecting a hardware H.264 encoder. A quick search on
ebay.com shows that the low-end encoders typically starts at $1501 while the high-end Cisco
(previously Tandberg) equipment can set you back $65002. Most of this hardware are external
devices which you connect to using a vendor specific port and have variable configurability. In-
stead of focusing on these, we will be looking into using cheap commodity and common available
hardware shipped with modern GPUs and CPUs. All the major vendors now incorporate some
kind of H.264 encoder hardware: AMD VCE, Intel QuickSync, Nvidia NVENC.

All the applications we have in our current setup are fine tuned for running in a Linux
environment. As we already have a Linux environment; to not add a lot of complexity by having
some services running on Windows, we make Linux support a requirement for the encoder.

1Samsung SPE-100N 1CH H.264 VIDEO ENCODER
2Tandberg Ericsson EN8090 HD SDI MPEG4 H.264 AVC
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3.3.1 AMD VCE
AMD VCE was available starting with the Radeon HD 7000-series. VCE version 1 is an extension
to OpenCL which enables the GPU to generate an H.264 stream from input NV12 formatted
frames. The NV12 format will be discussed in section 4.2. VCE version 1 does not support the
more advanced features of H.264, such as B frames, but includes all parts we see as vital for
live streaming, e.g., I/P frames and some rate controlling mechanism. Sadly, VCE1 is currently
only available on Windows.

VCE2 was released with the Radeon Rx200-series in late 2013. As of 4th of February 2014,
Linux support was published. However, the release date was too late for us to include it in our
streaming engine.

3.3.2 Intel QuickSync
QuickSync was first available with the Sandy Bridge CPU architecture. The hardware has
since been developed further and the latest version, available on Intel’s Haswell architecture has
displayed some promising results [37]. On Linux, QuickSync can be accessed through the libva
library. We performed some tests with it on an Ivy Bridge CPU and we were pleased with the
results. We did not, however, integrate it in our streaming engine because of lack of time, and
the fact that images have to be rendered on the GPU and transferred to system memory to be
encoded (see section4.3.4).

3.3.3 NVENC
Starting with the Kepler architecture which was released in 2012, Nvidia included the NVENC
encoder. It supports resolutions up to 4096x4096 pixels and advanced parts of H.264 such as B
frames and CABAC entropy coding. Linux support includes all the features except asynchronous
encoding mode. We were able to run our experiments on two generations of Nvidia hardware,
the Nvidia Quadro K2000 which is of the older Kepler-generation, and the Nvidia GTX 750 Ti
which is a Maxwell generation chip.

Quadro K2000 is a card in Nvidia’s professional line of video cards, i.e., specialized for
Computer-Aided Design (CAD) etc., and is built using the Kepler architecture. We will only
use this card for testing the performance of NVENC on Kepler and compare it to the newer
GTX 750 Ti graphics card.

GTX 750 Ti is one of the first GPUs released by Nvidia on the new Maxwell architecture [38,
39]. It includes a version of NVENC which Nvidia claims is two times faster than the NVENC
found on Kepler (6-8x real-time vs. 4x on Kepler).

3.3.4 Encoder Matrix

Encoder Max Resolution B frames Windows Linux
Intel QuickSync 4096x4096 X X X
AMD VCE 1920x1088 X X3

Nvidia NVENC 4096x4096 X X X

Table 3.1: Device support matrix

3VCE2 only as of February 4th, 2014
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Based on these findings we chose to use NVENC, but the design of the streaming back-end will
be done in a way that does not couple it too closely to NVENC. In addition, the streaming
engine will have an x264 back-end enabling us to compare NVENC to a software encoder.

3.4 NVENC
3.4.1 Method
The Nvidia NVENC API provides a lot of configuration options, but due to time constraints we
were only able to explore some of them. The ones we picked were the ones we saw as the most
important: the ones controlling visual quality, performance, and rate control. In addition, we
tested how the encoder interacted with the rest of the system in terms of CPU processing power
and electrical power usage.

Our use-case requires an encoder which can produce visually pleasing images while not
degrading the user experience. For measuring image quality objectively, we used the Structural
SIMilarity index algorithm (SSIM [40]) which generates a value between -1.00 and 1.00, where 1
is only obtainable when comparing two identical images. Good SSIM results, by our experience,
have values 0.96 to 1.00. We are aware of the weaknesses of using both SSIM and the older PSNR
(Peak signal-to-noise ratio), but the lack of better simple well-known algorithms for determining
visual quality have forced us to use them [41, 42].

Quality is of course tightly connected with the stream’s bit rate, which create a trade-o�
between bandwidth and quality. A site called nettfart.no [43] operated by the Norwegian Post
and Telecommunications Authority claims that the average bandwidth in Norway is 6-8 Mbit/s
while Akamai claims it to be 8.7 Mbit/s ([44] pg. 29). Streaming 1080p video should be possible
at that speed, but the quality may su�er, especially on high frame rates.

The main reasons for using a hardware encoder is speed, lower CPU usage and lower power
usage. When streaming an application we do not want our streaming engine to degrade the avail-
able resources for applications thus reducing overall user experience. To test this we compared
NVENC to the resources needed by x264 when encoding at similar quality and bit rate.

We also compared both power usage and CPU usage between the hardware and the software
encoder. When measuring power usage of the full system we used an APC Rack PDU 2G
specified to have an accuracy of ± 3% of the reading. The PDU was not designed for measuring
the power usage of just one single computer but rather for an entire rack filled with servers and
therefore only yielded power usage in kW with two decimals. A typical server will usually use
about 170 W on average, which means that the equipment yielded results in a reasonable range
for what we are measuring.

3.4.2 Configurability
NVENC is bundled with a set of default configurations for various scenarios, known as presets,
which the user can use as basis for further tuning according to the wanted use-case. We found
that some of the presets yielded exactly the same configuration and may be placeholders for
more specialized configurations in later versions. Table 3.2 shows the di�erent presets, a short
description of them, and which are equal. We found their equality by both comparing the
configurations yielded by them and running through 690 frames of tractor.yuv (a common 1080p
test sequence) and checked for binary di�erences. The ones we claim to be similar are equal in
both tests and there are none which were di�erent in one of the tests and di�erent in the other.
Throughout this thesis we will just refer to three presets: Low Latency (LL), High Performance
(HP), and High Quality (HQ).
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Id Name Description Comment
0 DEFAULT Low latency Equal to Id 4, 5, and 6
1 HP High performance Unique
2 HQ High quality Equal to Id 3
3 BD Blue ray Equal to Id 2
4 LL DEFAULT Low latency Equal to Id 0, 5, and 6
5 LL HQ Low latency Equal to Id 0, 4, and 6
6 LL HP Low latency Equal to Id 0, 4, and 5

Table 3.2: Available presets

Because NVENC supports H.264 High Profile, the user has a lot of options to configure.
They are divided into two sections, the general encoder settings and the H.264 specific settings.
In our streaming engine it is important for us that we can disable automatic Picture Type
Decisions (PTD). This means that we can decide how frames should be encoded, e.g., intra
(I frame) or P/B inter prediction (P frame / B frame). With PTD enabled the encoder will
produce I frames on a given interval or on request, while when disabled the user can choose
to only have an intra predicted frame at the beginning of the stream and use inter predicted
frames for the rest of the stream. Intra frames are encoded using no temporal predictions and
are usually much larger than P inter predicted frames, which only look backwards, and B inter
predicted frames, which look in both temporal directions. There are clearly situations where
I frames are preferred, i.e., as the first frame or as the first frame after a scene change. It is
possible to detect larger changes in the image like that, but is not something we will focus on
in this thesis. The e�ect of not sending I frames on scene changes is that the first few frames
will be visually blurry and gradually get clearer after a short amount of time.

Another general encoder setting is the rate control mode. NVENC supports 7 di�erent rate
control modes, presented in table 3.3. As we are looking for the lowest latency possible, the two
pass settings are not suitable for our streaming engine. The most interesting modes are constant
bit rate (CBR) and variable bit rate (VBR). In the next chapter, we will discuss the importance
of high bit rates to fill browser bu�ers faster. This was discovered much later, after we had run
the tests presented in this chapter. Still, we have chosen to include the compression available in
NVENC to be compared with x264 in this chapter for completeness of the encoder evaluation.

Handle Description
CONSTQP Constant QP mode
VBR Variable Bit rate
CBR Constant Bit rate
VBR_MINQP Variable with a minimum QP.
2_PASS_QUALITY Two pass encoding optimizing for quality.
2_PASS_FRAMESIZE_CAP Two pass encoding optimizing for bit. rate.
CBR2 Two pass encoding optimizing for bit rate on I frames.

Table 3.3: Rate control modes available in NVENC

3.4.3 Using NVENC
Nvidia provides an API for interfacing with their encoder. To set up the encoder, the user has
to provide an encoder configuration, and allocate input and output bu�ers.
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To encode a frame, an input bu�er must first be locked down4 before a frame in the NV125

format can be copied to it. When the frame has been copied, the input bu�er must be unlocked.
Conceptually, when an input bu�er has been unlocked the data it stores has been transferred to
the device where it can be used. In practice this spawns a direct memory access (DMA) transfer
of the data from main memory to device memory.

When a complete input bu�er has been created, the user can run the encode function where
she provides a pointer to the input bu�er and an output bu�er. The output bu�er is where the
resulting H.264 stream for the frame in the input bu�er will be stored.

The encode function can return one out of two success flags: success or need more data. If
it returns success, the user can lock the output bu�er and copy the fully encoded frame from
it. If the encode function returned need more data, the encoder was trying to create a B frame
and needed more frames to complete it. The user will then have to upload more frames and run
encode on them until the encode function returns success. Then the user can download all the
frames enqueued for encoding up to that point. This process is displayed in figure 3.1.
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Figure 3.1: Sequential NVENC encoding flow chart

We quickly found that this way of using NVENC is not the best way when aiming for high
throughput. Since the encoder is located on a discrete GPU, when uploading a frame the data
has to travel across the PCIe bus to the memory located on the video card. This process takes
time which can be hidden by overlapping computations.

4Locking or mapping a bu�er is common terminology across several APIs concerning transferring data to
bu�ers non-local to the CPU, including OpenCL, CUDA, and Microsoft GDI.

5Information about NV12 is available in section 4.2. In short, it is a derivative of YUV420, where the chroma
channels are stored interleaved.
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When profiling the application space code for encoding, we found that uploading and running
the encode function takes a very short time while locking the output bu�er takes very long. This
is counter intuitive because transferring the data as H.264 should be very fast as it is highly
compressed.

We believe this is because uploading and encoding will just add commands to a queue. When
an output bu�er is being locked down, it will have to wait for all the previously issued commands
to complete and the bu�er has been downloaded to the host memory.

For higher throughput we found that if we first upload one frame before entering the encode
loop the throughput increased from 152 fps to 210 fps on Maxwell. This approach did of course
add one frame of extra latency, or 1◊ 1s

152 ¥ 6.58ms versus 2◊ 1s

210 ¥ 9.52ms. As most streaming
applications will be running at 60 fps, using this approach will not be necessary to maintain the
frame rate and the added latency of about 2.93ms can be avoided.

3.4.4 Test sequences
To test performance and visual quality of the NVENC H.264 encoder, we selected a few well
known test sequences [45] for the resolutions we were interested in. We limited the resolutions
tested to the High Definition (“HD”) resolutions: 720p (“HD-ready”), 1080p (“Full-HD”), and
2160p (“Ultra-HD”). Encoding a Standard Definition (“SD”) stream is very fast using software
encoders on modern CPUs, which is why we did not select them for testing.

The test sequence for 720p (figure 3.2a) is a camera filming the city of Stockholm. For
1080p (figure 3.2b) there is a tractor driving through a field. In the 2160p (figure 3.2c) there
is a cobra sitting in a tree. What all the test sequences have in common is that they include
zoom and camera panning which are features very common in films and is exactly what motion
estimation was designed to handle. They are all 30Hz clips stored as raw YUV 4:2:0, an image
format explained in section 4.2.2.

Two of the clips, Tractor and Stockholm, were found on a website run by xiph which is the
organization behind several free and open video and audio compression formats such as Ogg
Vorbis, FLAC, Theora etc. [46]. The cobra clip was found on a website run by Harmonic which
has released it under the Creative Commons license.
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(a) Stockholm, 1280x720 YUV 4:2:0

(b) Tractor, 1080p, 1920x1080 YUV 4:2:0

(c) Cobra, 2160p, 3840x2160 YUV 4:2:0

Figure 3.2: Sample frames from the test sequences.
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3.4.5 Performance
Encoder performance is important in a live streaming system which enables real-time interaction.
The longer it takes from a frame is fully rendered until it is displayed to the user the more the
user will notice the latency when interacting. For applications requiring accurate input using
a mouse, high latency can make the user experience unpleasant or even render the application
unusable.

In this section, we will test the performance of NVENC on both the Kepler based Quadro
K2000 and the Maxwell based GTX 750 Ti. We will also compare the numbers with x264 on a
comparable visual quality. The test will be performed on an Intel i7-3930K running at 3.20GHz
with 32 gigabytes of memory. The i7-3930K is a 6 core CPU with hyperthreading enabled
making a total of 12 threads that support AVX1 vector instructions.

As part of the NVENC SDK there is a sample encoder which uses NVENC for encoding raw
input YUV 420 and output H.264. We had several problems with this implementation and it did
not actually demonstrate the performance of NVENC as it was poorly implemented. Fixing bugs
and improving performance proved di�cult because it was built as a framework using a lot of
custom Nvidia libraries, such as thread handling libraries and containers supporting concurrent
access. Our solution was to scrap the encoder, and build a new shell for NVENC where we
would have better control over the environment and provide easier methods for profiling.

For x264, we tested the ultrafast, superfast, and medium presets. Our experience was that
the ultrafast preset produced a visual quality too low to be compared with NVENC, while
superfast and medium was somewhat closer to the NVENC presets.

The performance comparison of x264 and NVENC is not of much value other than it can
give a view of how the two perform on the hardware given. Especially for x264, the performance
is very dependent on the processor running it.

On NVENC, we found that there is not that much di�erence in performance between the
presets LL and HP. Using a pipeline approach adds almost 50% performance on both presets.
If we look more closely at the numbers we find that there is a connection between the frame
rate and the number of pixels in the image. From this, we looked into creating a formula to
approximate the expected performance in pixels per second: pps = res ◊ fps. Table 3.4 shows
the numbers for the di�erent resolutions using the LL preset, both sequential and pipelined
encoding. The numbers we got are not very close but in the same ball park.

A 1440p frame is about 3.7 mega pixels. Just by looking at the plot in figure 3.3, NVENC
should be able to encode it at about 470 MPPS, or 127 fps. We tested this with 510 frames from
a 1440p test clip and got 137 fps, which we consider close, e.g., only 7.87% more than expected.

To verify that the numbers we got were not dependent on the video test sequences we used,
we tried with a second set of test sequences and got very similar numbers, i.e., a common test
clip “Susie logoed @ 2160p” ran at 66.54 fps versus Cobra at 61.60 fps.

No tests were done on resolutions lower than 720p. The reason for this is that we believe
that people today expect at least Full HD/HD-ready video while Standard Definition (SD) is a
thing of the past. There are still some applications for SD video, such as mobile streaming, but
by judging the results we have got, we can tell that encoder performance will not be a problem
in those cases.



20 Real-Time Interactive Cloud Applications

Resolution Approach Megapixels per second
720p Sequential 271.10
1080p Sequential 302.97
2160p Sequential 354.50
720p Pipelined 399.61
1080p Pipelined 452.05
2160p Pipelined 510.88

Table 3.4: LL megapixels per second
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Figure 3.3: Performance in megapixels

In figure 3.5 we show a detailed profile of where the time is spent while encoding in sequential
(3.5a) and pipelined mode (3.5b). We see that the time spent uploading is constant at about
1500 microseconds. A pipelined approach seems not to add time in any of the stages, it only cut
the time spent locking the output bu�er in half. In a real time streaming scenario, there would
be no need to upload a frame to the GPU when using NVENC as the frame is produced by the
GPU and reside only in GPU memory.

For the profile to better reflect the true performance of NVENC we created a benchmark
where we preconvert our YUV 420 video to NV12 and only use a small number of frames so
that we can be sure that they are fully loaded in CPU memory before testing.

Our conclusion on performance is that for real time scenarios, NVENC’s performance is well
suited. Smooth running 3D applications often run at 60Hz, which both NVENC and x264 can
do, given the hardware we are using. We see that at higher resolutions, such as 2160p (4K), a
pipelined encoding approach is required to get reach 60 fps and that x264 running at medium
is not an option for real time applications at all on resolutions higher than 720p.
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(a) Encoding performance for 2160p
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(b) Encoding performance for 1080p
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(c) Encoding performance for 720p

Figure 3.4: Encoding performance of NVENC compared to x264
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Figure 3.5: Detailed profile of encoding on Kepler
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3.4.6 Visual Quality
Judging visual quality is challenging, especially using objective algorithms such as structural
similarity index (SSIM) [40]. When comparing NVENC to x264 in the context of live streaming
we had to select the bit rate. We also did some experiments using only Variable Bit rate mode
(VB) for both encoders and got some interesting results. On VB, NVENC create much larger
files than x264, but also much higher quality, while x264 chose a lower bit rate with lower SSIM
measured quality. We decided not to try drawing any conclusions from the test as it is a well-
known pitfall which several commercial encoders have fallen for when they are proving that their
encoder is better than the competition.

Instead, we selected a series of bit rates to compare the two encoders on. To guide us
when selecting bit rates, we used the numbers suggested by YouTube on their advanced encoder
settings recommendations page [47]. They suggest 8Mbit for 1080p streams. Our experience
is that this may be somewhat low, especially since we are using fast presets for low latency.
Because of this we also selected a few higher bit rates which, by judging the SSIM results,
provide more adequate results. In each case, we also did a visual inspection of the result and,
even though the di�erences may be di�cult to spot, we tend to agree with the result from the
SSIM algorithm.

We tested the following presets:

LL is NVENC’s low latency preset

HP is NVENC’s high performance preset

HQ is NVENC’s high quality preset. This preset is only included for completeness and will not
be considered for the streaming engine.

ultrafast is x264’s fastest preset. This preset is highly focused on fast computation and will
sacrifice quality.

superfast is x264’s second fastest preset. This preset is also highly focused on fast computation,
but focuses more on quality than ultrafast.

medium is x264’s default preset. It trades less quality for faster computation than ultrafast
and superfast.

To calculate SSIM, we use a modified version of qpsnr [48] which calculates both PSNR (Peak
Signal To Noise Ratio) and SSIM. The major modification we did to qpsnr was to vectorize the
computation using SIMD (Single instruction, multiple data) so that it could complete in our
allocated time frame6.

In table 3.6 we present the results from 690 frames of the 1080p tractor test clip. We chose
to present all the numbers gathered on this resolution because we focused especially on 1080p,
and the trends seen in this data closely matched our findings in the other resolutions.

We found that LL actually produces better quality than all the other NVENC presets,
something we found in all the tests we performed. The reason for this, we can not explain, and
it is really strange because LL does not use CABAC as entropy coder. Another observation we
made was that the x264 superfast preset produces much lower quality than the other presets.

The reason we added the medium preset is to show how a preset which trades in more time
for doing computations produces somewhat better quality. In the previous section, we showed
that medium was too slow to be used in a live streaming scenario. LL and superfast are however
strikingly similar in the visual quality they produce for all resolutions.

6The extra speed was needed because we ran a lot of tests...
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Figure 3.6: SSIM for 1080p, tractor

In figure 3.7 we show the data gathered from 720p (3.7b) and 2160p (3.7a). We see that for
720p, 5Mbit is far from enough. There may be several reasons for this: the encoder is simply
not able to produce a satisfactory quality on the bit rates we are testing, or more likely the
source video contains a lot of noise which the SSIM algorithm fails to recognize is unimportant
when comparing the two.

For 2160p, YouTube suggest bit rates in the interval 35 Mbit to 45 Mbit. We see that the
SSIM for those values are generally good and by watching the video we agree. The image is in
our opinion crystal clear.

From the results shown here we can conclude that the LL preset produces the best quality
out of the three presets provided by Nvidia and that it is comparable to x264’s superfast preset
setting.
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Figure 3.7: Encoding performance of NVENC compared to x264



Real-Time Interactive Cloud Applications 25

3.4.7 Resources
Resource usage is very important to our application. We need an encoder which does not use
so much resources that the application we are streaming is struggling to run properly. In the
case of x264, the encoder will grab almost all the resources available on the system which in our
case was 10 out of 12 cores. However, encoding is not only a computational heavy task, it also
requires a lot of memory bandwidth, something we have not measured but we can generally say
that it is not insignificant.

Table 3.8 shows how much more resources are required by x264 compared to NVENC. This
graph shows both running at full speed encoding the 1080p tractor test clip, LL versus superfast.
In figure 3.4c we saw that both are running at similar speed. A flaw here is that this actually
includes the conversion between YUV420 and NV12 on the CPU, a job which could just as easily
been done on the GPU, o�oading even more work from the CPU.

Even though NVENC is using almost an entire core, the encoder shell is designed with threads
in mind which means that the performance we read is not due to the program saturating the
performance of the core it is running on.
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Figure 3.8: CPU resources used when encoding

3.5 Summary
We have shown that NVENC is a good option for live streaming, especially in cases like ours
where low encoder latency is key to have an overall low interaction latency. Because x264 is
a software encoder it will scale with the performance of the CPU, but a Maxwell was not far
behind when comparing LL with superfast. However, running x264 at a high speed required a
lot of the available computing power of the CPU which otherwise could be used for running the
stream source application.

Additionally, we learned that the visual quality of NVENC’s LL preset is comparable to
x264’s superfast preset. The x264 ultrafast preset did not produce adequate visual quality while
x264 medium was too slow to handle 60 fps applications on resolutions higher than 720p.

In the next chapter, we will use what we have learned in this chapter when we try to design
and implement a streaming engine capable of streaming OpenGL applications to a web browser.
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Chapter 4

Design and Implementation

In this chapter we present the pipeline for streaming OpenGL applications to a web browser
using several technologies including OpenGL Framebu�ers, OpenGL Compute Shaders, Google
Chrome, libx264, Nvidia NVENC and WebSockets. The pipeline is divided into the following
three parts:

The inner pipeline runs the application to be streamed. It handles timing issues such as
running at a constant frame rate, rendering to an o�-screen framebu�er, converting the
framebu�er from RGB to NV12, encoding the converted framebu�er, and multiplexing
the H.264 stream in a Matroska container (MKV). The stream is then passed to the outer
pipeline.

The outer pipeline accepts clients connecting to a custom built HTTP server and serves the
HTML front end to the users. It also handles sending a valid MKV stream to the users.
This means that it will do book keeping on which frames the user has received and which
are missing. Using this information it can decide whether the user needs a new key frame
(IDR) or if the stream bandwidth needs to be tuned down.
The HTTP server it runs also accepts WebSocket connections. The messages it receives
over WebSocket connection will be parsed into mouse and keyboard inputs which is then
passed to the source application.

HTML front-end The HTML front is the web page served to the user when she connects to
the custom web server. It contains some JavaScript for opening a WebSocket connection
to the HTTP server through which user interaction input such as mouse movement and
keyboard keys are sent. It also contains an HTTP5 video element which presents the
stream produced in the inner pipeline and later passed through the outer pipeline.

Figure 4.1 shows a simplified overview of what the entire pipeline looks like and how the
di�erent parts of it interact with each other.

27



28 Real-Time Interactive Cloud Applications

+70/ :HE6RFNHW 6WUHDP

+773�VHUYHU

&OLHQW

)LOH�IURP�GLVN :HE6RFNHW�
GHFRGHU

)UDPH�
4XHXH

6RXUFH�$SSOLFDWLRQ

19���
FRQYHUWHU

(QFRGHU

0.9�PX[HU

8, ,QSXW 9LGHR

0HVVDJH�
SDUVHU

,QQHU�SLSHOLQH

2XWHU�SLSHOLQH

)URQWHQG

Figure 4.1: Overview of the delivery pipeline



Real-Time Interactive Cloud Applications 29

4.1 Delivery Pipeline
Our streaming pipeline was designed to be generic in the sense that it should be able to stream
most programs using OpenGL as the graphics library. Generally, OpenGL is not required to
make such a pipeline work and one could imagine that using DirectX on Windows could work
equally well. In Section 2 we discussed the work of Perez et. al. [26] who suggested a very
similar concept. Instead of using OpenGL directly, they used the Windows GDI API [49] to
record the content of the desktop. Other possible application also exists, e.g. a cloud video
player which plays remote videos encoded using formats not supported by the browser. At the
core, all sources of images may be used as input to our streaming pipeline, but applications
where user input is important is our main focus.

We designed the engine so that all the source application has to provide is an OpenGL texture
and a way to accept the user input. The user input has been divided into three categories: mouse
movement, mouse button and keyboard input. The reason for only accepting OpenGL textures
is that we are going to work with the data on the GPU. If we instead accept raw data arrays,
the pipeline would then have to upload the data to the GPU as most of our operations are
performed there. If the source program already was using OpenGL for rendering this would
mean that it would have to download the framebu�er, only to be re-uploaded by the pipeline,
which would add a lot of overhead.

When streaming to the browser, a stable frame rate is important to get good results. If the
source suddenly decided to render at 120Hz when the pipeline was expecting 60Hz the client
would notice this very quickly as bu�ering would occur. If the client started bu�ering, the
stream would no longer be real-time and user interaction would quickly become awkward as the
resulting images from input would be lagging far behind.

Keeping a stable frame rate is di�cult, especially considering that the images are transferred
over a network connection which may introduce variable latency. We overcame much of this by
telling the client that the video stream is running at a much higher frame rate than it actually
is. A dropping frame rate do not matter as the client would just display the frame as soon
as it can, but increasing frame rates above the expected rate will initiate more bu�ering. To
better handle this, the delivery pipeline was designed to control the render loop of the source
application. In addition to the advantage of less bu�ering, this could potentially lead to lower
latency as the pipeline would then be able to adjust the source rendering to match the refresh
rate of the client’s monitor!

NVENC expects the input images to be in the NV12 format, while OpenGL produces RGB
images. To convert from RGB to NV12, we eventually decided to go for an OpenGL Compute
Shader. During the design and testing process we also considered using a CUDA kernel or an
OpenCL kernel. Both have OpenGL interoperability which means that they can share data
bu�ers between their API’s. Out of the two, only OpenCL is a portable API, while CUDA only
runs on Nvidia hardware. Using a CUDA kernel would then mean that the streaming engine
would be dependent on using Nvidia hardware. Converting the image using an OpenCL kernel
was easy, but there was no simple way to transfer an OpenCL bu�er to NVENC. It was only
later that we discovered OpenGL Compute Shaders, which were perfect for our application.

When encoding using NVENC, we used the LL preset set up with a tweaked GOP length and
IDR frame period. IDR frames usually have a lower data compression ratio than P frames. Less
data often means less packets sent resulting in fewer packets lost and lower bandwidth usage
which again may result in lower network latency. The reason for selecting NVENC and its LL
preset was discussed in detail in Chapter 3. When encoding using x264, we used the superfast
preset in zerolatency mode. The zerolatency mode tells the encoder to tune for live streaming
with low latency. At this mode, no B frames are produced.
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The Encoding pipeline stage was designed to be controlled by two other stages: the RGB
to NV12 converter which feeds it, and the Frame Queue which can request encoding setting
changes and read the encoded frames back. For simplicity, the logical MKV multiplexing stage
was actually merged with the Encoding stage. This means that the frames fetched by the
Frame Queue are already multiplexed in MKV. Non-multiplexed frames are never needed in our
pipeline.

MKV multiplexing is the process of encapsulating the raw H.264 video stream in a multimedia
container called Matroska (MKV). MKV is a standard for defining field names for use with
multimedia such as video, audio, subtitles etc. It uses EBML, Extensible Binary Meta Language,
a tree structured binary markup language, somewhat similar to XML. An analogy would be that
EBML is to MKV what XML is to XHTML. Our use case only required a few of the available
MKV fields: video codec, frame rate, video resolution, and the frame timing field.

Before any frames would be streamed to the client, the streaming engine sends a MKV stream
header. The streaming engine was designed to pre-generate this header when the application
boots and reuse it for all consecutive clients. The header contained all the information about
the stream, such as frame rate and video resolution.

When a frame returns from the encoder, the MKV multiplexer would then encapsulate it in
a tiny per-frame header containing time codes and frame byte size. For simplicity, we made it
create a new MKV cluster with one block for each frame.

The Frame Queue was the most advanced stage in the entire pipeline. On a high level, it
controlled everything about the client’s video stream. It was the Frame Queue’s responsibility
to see to that the MKV header was sent before any frames were sent. It also checked that
the client was actually receiving the frames and would tell the encoder that an IDR frame was
required for the client to continue streaming if a frame was lost. The ability to drop frames for
the client if it lags behind was key to meeting the engine’s low latency requirements as it allows
for seeking her back on track.

The pipeline was designed to have a built-in HTTP server for serving the client. The server
was built using cpp-netlib [50]. When the user points her browser to the server’s URL a simple
HTML page would be presented. In the HTML there would be an HTML5 video element
referring to the location of the video stream located on the same server. In addition, there
were some JavaScript code which initiated a WebSocket connection through which all input
interaction would happen. Using the jQuery JavaScript library, mouse and keyboard input was
hooked and piped through the WebSocket.

On the server side, all HTTP connections asking for /websocket would require that the
connection was upgraded from a normal HTTP protocol connection to a WebSocket protocol
connection. We implemented a crude, lightweight, implementation of the WebSocket protocol
which supported basic message passing from the client to the server. A very simple ASCII
based massage protocol was designed for communicating the user input. Messages received
on the WebSocket connection would be decoded using this protocol and translated into calls
accepted by the video source application.

All connections to the HTTP server requesting /stream/ would be responded by a HTTP
200 (OK) before the socked was handed over to the Frame Queue. The server was designed to
spawn a new Frame Queue instance for each and every incoming /stream/ request.
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Figure 4.2: Color spaces.

4.2 Image formats
4.2.1 RGB
RGB is a color space format where each pixel is stored as a tuple of the three additive prime
colors for light: red, green, and blue. When working with colors in OpenGL, all operations are
done in the RGB color space, both for textures and framebu�ers. The number of colors which
can be represented using RGB is depending on the bit depth of each RGB tuple component,
e.g. a 24 bit RGB pixel represents 8 bit in each channel which can represent 2563 = 16777216,
about 16.8 million colors. In addition to the three color components a forth channel is often
used called the alpha channel (RGBA). The alpha channel usually represents the translucency
used when blending several colors, e.g. mixing two textures. Often, the alpha channel is unused
in computation and only serves as padding for making each pixel 32 bit instead of 24 bit as this
matches more closely modern hardware.

The OpenGL framebu�er is the destination where rasterization is targeted. It can consist of
several planes, but usually only a color bu�er stored as RGBA8, RGBA where each channel is
8bit, and a depth bu�er used to test whether a fragment from a rasterized vertex will be visible
or not. The main advantage of using a depth bu�er is that it saves the application some work
by not having to sort the triangles it from back to front before rendering each frame.
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Internally, OpenGL can store colors as signed integers, unsigned integers or IEEE 32bit
floating points. For floats each component is clamped to the interval [0, 1] where the value
represents the component’s intensity. Often, the framebu�er’s color bu�er is often a 32bit RGBA
where each component is stored as 8 bit unsigned integers having the interval 0 to 255. The depth
bu�er is often an implementation dependent type only labeled as GL_DEPTH_COMPONENT
which can be 8, 16, 24 or 32 bit. It is only single channel and is represented as floats in the
range 0 to 1.

Notice the distinction between the words framebu�er and color bu�er. In OpenGL a frame-
bu�er is not actually a bu�er as it only contains references to the real bu�ers such as the color
bu�er and the depth bu�er. OpenGL now supports having several color bu�ers attached to one
framebu�er but we will only focus on color bu�er zero in our pipeline.

When representing an RGB image in memory they are usually stored as, illustrated in
figure 4.2a, a 1D array of pixels where the width and height is meta information used only when
doing processing on the image.

4.2.2 YUV
YUV also describes color as a three component tuple containing one luminance channel and
two chroma channels, respectively Y, U, and V. This format dates back to advent of the color
television where the two chromas were added to the black and white luminosity signal for
backwards compatibility. The correct term for digital use of the color space is YCbCr, but
YUV is still frequently used. The main advantage of the format today is the fact that it stores
the luminosity as a separate channel. Human eyes are much better at detecting changes in
brightness than hue which means that when encoding video for humans we can dedicate more
bandwidth for the luma. The format where there are 1:1 mapping between Y, U, V is referred to
as YUV444. When the chroma channels are down-sampled to four luma values for each U and
V tuple luma it is normally referred to as YUV420 if it is stored as a plane for each component,
as illustrated in figure 4.2b.

H.264 is made for storing images in the YUV color space, but as input NVENC only supports
NV12, which is a mutated version of YUV420 with only two planes. The luma (Y) plane is
unaltered while the chroma planes are interleaved where every other value is either U or V, as
illustrated in figure 4.2c.

For alignment reasons, encoders usually provide a stride, also known as the pitch, which is
the number of bytes between each image line when laid out in memory. Judging by the source
of x264 there are no requirements [51] , while for NVENC we believe it to be 512 byte.

4.2.3 Conversion between RGB and YUV
To convert between the two color spaces we are using the formula given by Microsoft [52]. This
formula matches well with our use of unsigned integers because we do not have to convert them
into floating points in the range 0 to 1.

Y = ((66r + 129g + 25b + 128)/256) + 16
U = ((≠38r ≠ 74g + 112b + 128)/256) + 128
V = ((112r ≠ 94g ≠ 18b + 128)/256) + 128

Notice that for this formula to work, r, g, and b are casted to signed 32-bit integers. This is a
direct mapping from RGB to YUV with one to one sampling otherwise known as YUV444.
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To go from YUV444, the one to one mapping from RGB to YUV, to YUV420 we simply
down-sample the U and the V channels by taking the average of each 2 by 2 blocks. Strictly
speaking, this is the convolution of the [1

4
1
4 ; 1

4
1
4 ] kernel, then sampling every other pixel in each

direction. NVENC at the moment does not support YUV420 as input, only NV12. NV12 is
very similar to YUV420 except for how it is organized in memory. While YUV420 consists of 3
planes Y, U and V, NV12 consist of two planes Y, and UV where UV is the two chroma planes
interleaved. Back in 2010, when x264 added support for NV12 it was stated in the commit
message that this format is better suited for processor caches and should be about 1% faster on
the Conroe CPU family (Intel Core 2 Duo) [53].

4.2.4 Implementation
Earlier versions of our pipeline used an OpenCL kernel for converting from RGB to YUV. The
main reason for this was to make most of the pipeline portable to non-Nvidia hardware later.
OpenCL is an open standard for parallel programming, much like OpenGL is an open standard
for graphics programming. Their committees are even under the same umbrella organization,
Khronos.

Some advantages of using OpenCL is that it is very portable. Most CPUs and GPUs support
it at various levels of performance and it has excellent interoperability with OpenGL. The
language is almost identical to ISO/IEC 9899:1999 (C99), the standard even states so, which
means that most programmers can read, understand, and most importantly reason about the
code. The portability is a key point as the rest of the pipeline is designed to be used portable
with minor changes to the code. In an ideal world, only the code actually interacting directly
with the encoder is need to be added when changing encoder back-end. As basically all H.264
encoders use some form of YUV as input, this part can be shared among all the back-ends.

However, using OpenCL did not fit well with our use of NVENC as the encoder. The main
reason for this is that Nvidia have not created the needed interoperability to pass or copy an
OpenCL bu�er to CUDA. This meant that we had to first synchronize our OpenGL color bu�er
with an OpenCL texture, run the conversion kernel which stores the output in another OpenCL
bu�er. This output bu�er would then have to be synchronized with a OpenGL bu�er which in
turn could be synchronized with a CUDA bu�er. The CUDA bu�er could then be copied over
to another CUDA bu�er which was synchronized with an NVENC input bu�er to be encoded.
Clearly, such a system would be fragile as it involves too many synchronization points which
could go wrong. Instead, we decided to skip interop and use system memory as a bu�er going
from the OpenCL bu�er through system memory to the NVENC input bu�er. For a while, this
worked great and quickly enabled us to work on other more pressing parts on the system. After
all, the PCIe bus is fast and a 1080p YUV420 frame is only about 1.3 MB.

Later, it came to our attention that the Khronos Group have added Compute Shaders to a
recent version of OpenGL. For our us, this meant that we could drop OpenCL from our pipeline
without adding additional dependencies or have a separate code path for conversion when using
NVENC. Nevertheless, using OpenGL Compute Shaders was proven to be more challenging than
expected. Reading the color bu�er was straight forward as it is an OpenGL texture and there
are special functions for sampling it using normalized coordinates. The problem was that we
can not logically use any of the provided texture formats for our pipeline since we do not want
YUV444. What we wanted was the chroma-down-sampled YUV420 format, where, for every
four luma values, there was one chroma value of each channel (illustrated in figure 4.2b).
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The most obvious method we could think of was to store the output in three di�erent gray
scale textures where one was of the same dimension as the original color bu�er, for the luma,
and the other two were one forth of the original dimension, for the two chroma channels. The
advantage with this approach was that the shader would be very simple: spawn one thread
for each corresponding chroma. Each thread would then output four luma values to the luma
texture and one of each chroma values to the chroma textures. Still, this presented a few new
challenges. It would require synchronizing three OpenGL textures with CUDA (actually two,
in the case of NV12) to be copied into one bu�er in the format NVENC expected it. More
importantly, when using other encoders, such as x264, the memory would have to be transferred
to main memory using either the OpenGL functions glMapBu�er or glReadPixels. These calls
are known for being notoriously slow as they stall the OpenGL pipeline and blocks until the
memory is available. Having one of those was bad, having three was worse.

A second version we made used Shader Storage Bu�er Objects (SSBO). In this SSBO we
allocated s ◊ h ◊ 3

2 bytes of memory to store the converted NV12 image and this worked very
good (s is the image stride). The code for converting a 2D coordinate into a 1D coordinate
was as simple as y ◊ width + x which, when hidden inside a helper function did not add much
complexity to the shader. The flaw with using this method was not discovered before we found
out that the OpenGL Shading Language (GLSL) does not include support for operating on 8-bit
integers. The only reason it worked was because we tested it using the Nvidia implementation
which provided 8-bit integers as an extension (GL_NV_gpu_shader5). Instead, we would have
to write 32-bit integers. This would include using shared memory and a barrier which would
add a lot of unnecessary complexity to the shader.

The final approach which we stuck with was to swap out the SSBO from the second approach
with a 1D texture backed by a Texture Bu�er Object (TBO). This texture is of the format
GL_R8UI, meaning one 8-bit color channel stored as an unsigned integer. Basically, this is just
a normal bu�er which is written to using special functions instead of directly indexing an array
in the shading language.

4.2.5 MKV multiplexing
MKV is a standard for containing multimedia information like video, audio, and subtitles etc.
The information is stored in a binary tree structure utilizing EBML, Extensible Binary Meta
Language, for encoding it. Basic EBML only specifies how branches, keys, and values are to be
stored. The basic structure is that every element starts with an id, which also encodes the type
of the element, it’s size, and the payload. The type may be either some kind of integer, a string,
or branch. Ids are not strings but rather binary values.

In MKV’s case, it starts of with the basic EBML headers before continuing with the MKV
elements. Figure 4.3 shows a dump of the MKV our pipeline produces. The MKV header starts
with a doc type, Matroska, and it’s version, then continues by specifying the tracks we are going
to use.

Our header only contained one single video stream, the video we wanted to deliver to the
user. We found that using an extremely high frame rate would counter some bu�ering in Google
Chrome. This meant that would need a high time code scale to encode that each frame should
have a very short interval. Because our streaming engine would deliver frames at a much lower
frame rate, e.g. 60 fps, telling Google Chrome that the frame rate was much higher, say 300
fps, tricked it into showing the frames earlier than it would otherwise. Still, we were not able
to remove all bu�ering from Google Chrome.

As Codec ID we used V_MPEG4/ISO/AVC. AVC, Advanced Video Codec, the old project code
name before H.264 was standardized by ITU. Track UID is just a random value we decided, in
this case 0xDEADBEEF.
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+ EBML head
+ EBML version: 1
+ EBML read version: 1
+ EBML maximum ID length: 4
+ EBML maximum size length: 8
+ Doc type: matroska
+ Doc type version: 2
+ Doc type read version: 2

+ Segment, size unknown
+ Seek head (subentries will be skipped)
+ Segment information
+ Timecode scale: 1000000
+ Muxing application: glstreamer
+ Writing application: glstreamer

+ Segment tracks
+ A track
+ Track number: 1
+ Track UID: 3735928559
+ Track type: video
+ Codec ID: V_MPEG4/ISO/AVC
+ Video track
+ Pixel width: 1920
+ Pixel height: 1080
+ Stereo mode: 0 (mono)
+ Frame rate: 900

+ Cluster
+ Cluster timecode: 1.290s
+ SimpleBlock
+ Frame with size 66121

+ Cluster
+ Cluster timecode: 1.290s
+ SimpleBlock
+ Frame with size 66121

Figure 4.3: mkvinfo dump of MKV produced by the pipeline

Because our streaming engine was not designed for changing resolution when running, we
implemented it so that the MKV header would be created at program boot and be reused for
every connecting client. For simplicity, we decided to pack each new frame generated into a new
MKV block. It would be possible to add several frames to each cluster, but then we would have
to do the multiplexing process per client instead of once per frame.



36 Real-Time Interactive Cloud Applications

4.3 Inner Pipeline
The inner pipeline of our video application streamer is where the video is generated, i.e., ren-
dered, encoded, and passed to the outer pipeline for broadcasting. It was designed to run
OpenGL programs which, instead of rendering to the default framebu�er, rendered to an o�
screen framebu�er configured by the pipeline. When a frame is fully rendered, the target frame-
bu�er will be converted from RGB to NV12 (a YUV420 derivative) then passed to either a
hardware encoder or a software encoder back-end. We created two back-ends, the NVENC
back-end, and the x264 back-end. NVENC is the hardware encoder provided by Nvidia which
utilizes application-specific integrated circuits (ASIC) residing on the same chip as the GPU.
x264 is the popular free and open source software encoder known for its speed and visual quality.

4.3.1 OpenGL

Figure 4.4: OpenGL 4.4 Pipeline. [54]
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OpenGL (Open Graphics Library) is an API standard for controlling graphics hardware de-
veloped by the Khronos Group. Early versions only supported rasterization of geometry through
a fixed function pipeline. Over time, more configuration options were added to this pipeline
which eventually was dropped when more and more of the pipeline was made programmable
using shaders. This is perfectly illustrated by comparing the original ”Programmer’s View of
OpenGL” section from version 1.0 to how it is stated today, 20 years later, in version 4.4:

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebu�er. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn. ... [55]

To the programmer, OpenGL is a set of commands that allow the specification
of shader programs or shaders, data used by shaders, and state controlling aspects
of OpenGL outside the scope of shaders. Typically the data represent geometry in
two or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments gen-
erated by rasterization, resulting in rendering geometry into the framebu�er. ... [54]

The most important changes happened in version 1.5 (2003) and 2.0 (2004) when respectively
Vertex Bu�er Objects and the OpenGL Shading Language (GLSL) were introduced. Vertex
Bu�er Objects (VBO) broke OpenGL free from immediate-mode only rendering, where to draw,
one would have to specify all geometry for every frame. This was very slow when using GPUs
because one would have to send the all the geometry over the PCIe bus for every frame. By
using a VBO, the programmer only needed to transfer the vertices once and point to that bu�er
when issuing draw calls.

OpenGL version 2.0 introduced the use of shaders to control vertex transformations and pixel
fragment processing. This allowed the programmer to have full per pixel control of the raster-
ization to the framebu�er which made it easier to create e�ects like bump mapping, parallax
mapping, soft shadow mapping, and using height maps for geometry. Later versions now enable
programmable shaders for all the rendering pipeline stages such as tessellation and geometry in
addition to compute shaders.

Normal interaction with modern OpenGL includes uploading vertices and textures, com-
piling shaders for usage in the rasterization pipeline and specifying draw calls. The OpenGL
specification only defines the final e�ect of the issued OpenGL commands and not their specific
implementation. This is to keep the API portable without getting vendor lock-in. It is still im-
portant to remember that the Khronos Group consists of the hardware vendors, such as AMD,
Apple, Intel, and Nvidia, and the big users, such as Pixar, Valve, Google, and Mozilla [56].
This helps the specification keeping in sync with current hardware while not being too specific,
making it future proof as the hardware is evolving.

In common implementations of OpenGL, when issuing a draw call, the function returns
immediately and does not block until the result is drawn to the framebu�er. This is often done
by creating a command queue which is executed out of sync from the program running on the
CPU. To utilize this e�ciently, it is common to have two, or even three, framebu�ers to which
OpenGL renders the geometry. This lets the CPU push all the commands for drawing one frame
to one framebu�er then swap framebu�ers and continue pushing commands while OpenGL is
working on the commands from the last frame. If the performance of the program is CPU bound
the GPU will finish rendering the frames faster than the CPU can supply the commands. If the
performance of the program is GPU bound or asked to synchronize with the display’s refresh
cycle, the program will at the swap bu�er give the GPU some time to catch up with the CPU.
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4.3.2 Designing the pipeline

Figure 4.5: Spout by P_Marlin.

Before design our pipeline we first had to select a program or scene to render while testing.
To not add too much noise to our test results from CPU computations we went with one of
the shaders from shadertoy.com. The shader we selected is called Spout [57] and is created by
Paul Malin also known as P_Malin, currently the technical director at Activision. The shader
features a running water tap where the view point is controllable using mouse input. It is
implemented as a single fragment shader in GLSL and uses a technique called Ray Matching
of Distance Fields [58]. We only modified the shader slightly to use a fixed color instead of a
texture.

Our primary test GPU, the Nvidia 750Ti, was able to run this shader rendering directly
to the default framebu�er connected to a display, with vertical synchronization turned o�, at
about 140 frames per second. We considered this the target frame rate for our pipeline. It is
naïve to believe that we will hit this frame rate, but we do expect to be close. We do add some
additional work for the GPU when converting the framebu�er and even more so when download
it for the software encoder back-end. For the hardware back-end, the process of OpenGL interop
with CUDA may add some synchronization overhead.

At 140 frames per second, every frame takes about 7.14 milliseconds to render. This is well
within the peak performance of NVENC, Nvidia’s hardware encoder. On the other hand, the
software encoder, x264, will struggle to keep up with the GPU in addition to requiring the frame
to be downloaded.

When designing a pipeline for encoding the OpenGL framebu�er, one has to keep in mind
the parallel nature of the API. Depending on the implementation, it is common that OpenGL
commands are dispatched to a queue for execution on the GPU. With a single GPU, only
one such task will ever run at a time. This means that if one creates two OpenGL contexts
with resource sharing and starts dispatching commands from two threads it may not increase
throughput. It may actually lower the throughput, as we will see later in this chapter, because
the driver will need to do extra work to keep the two contexts in sync and swapping in and out
their states when interleaving their execution.

The pipeline can be divided in 6 logical stages which are illustrated in figure 4.6.
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Figure 4.6: 6 stage frame flow.

Stage 1 is rendering the frame using OpenGL. This work is done entirely by the source
application. When the source application has finished rendering the frame, the inner pipeline
grabs the framebu�er and converts it from RGB to NV12. Then, the inner pipeline has to wait
for OpenGL to finish all commands queued up to that stage before it can transfer the frame to
an encoder. In the case of a hardware encoder on the GPU the frame is copied from an OpenGL
bu�er to an encoder specific bu�er which is a very fast operation. When using a software
encoder, the bu�er is transferred from the GPU bu�er to a bu�er local to the CPU which then
can be used by x264. Copying from GPU memory to host memory is a slow operation.

When a frame returns from the encoder, it is multiplexed in MKV, as explained earlier in
this chapter, and transferred to the Frame Queue in the outer pipeline.

Pipeline configurations

We have constructed 6 pipeline setups to find the peak performance of the system.

T1B1 is running one thread which renders, converts, and encodes operating on a single frame-
bu�er. This test is fully sequential from our point of view and is the way of running the
pipeline with the lowest interaction latency.

T1B2 is running one thread which alternate between two framebu�ers. It renders to n, then
waits for n to complete and gives it to the encoder. Then it waits for n ≠ 1 to finish
encoding.
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T1B3 is running one thread which alternate between three framebu�ers FIFO. It renders to n,
then waits for n ≠ 1 to complete and gives it to the encoder. Then it waits for n ≠ 2 to
finish encoding.

T1B4 is running one thread which alternate between four framebu�ers FIFO. The purpose
with this is to see how adding framebu�ers scales the performance.

T2B2 is running two threads. One thread renders to framebu�er n and issues the conversion
on the associated NV12 bu�er, then it waits for that bu�er to be complete and transfers
it to the encoder. The other thread waits for the encoding of n ≠ 1 to finish.

T2B3 is very similar to T2B2. The first thread issues the rendering and conversion of n, but
then waits for bu�er n ≠ 1 to complete and transfers the bu�er. The other thread waits
for encoding of n ≠ 2.

T3B3 the final test uses three threads where the first is only rendering to n, the second is
only waiting for sync of n ≠ 1 and transfers it to the encoder. The last is only waiting
for encoding of n ≠ 2. As the second thread is accessing OpenGL, it requires an extra
OpenGL context set up with resource sharing.

The first test, T1B1, is optimized to be highly responsive to user input. It is reasonable to
say that using the NVENC hardware encoder with this setup should not be a problem as the
encoder is very fast. Using x264 may struggle as there is little time for encoding after waiting
for the frame to finish rendering. Another flaw with this test is that if submitting several draw
calls to OpenGL takes time, this will decrease the frame rate, e.g., computing game logic before
actually drawing anything. Adding another bu�er to this will probably solve the situation as the
GPU gets time to render while the program is doing its thing and submitting more commands.
x264 will still have to run encoding in the same thread as the draw calls are issued.

The other tests add more threads which enables concurrent encoding. When using x264,
this added concurrency may aid it in finishing faster.

Rendering

Our inner pipeline is designed for easy integration with any OpenGL program witch have a simple
render loop. When initiating, the inner pipeline will create the framebu�ers which will be used as
target for rendering. For each framebu�er we attach a texture as GL_COLOR_ATTACHMENT0
and a render bu�er as the depth bu�er. The reason for using a texture as color bu�er is obvious
as we need to access the resulting colors from a render when encoding. We will never need
to access the depth bu�er and because of this we attach a render bu�er. Render bu�ers are
specialized bu�ers for use with framebu�ers [59].

At each render cycle, we bind to a framebu�er before giving control to the client program.
There are some flaws with this approach. One is that if the client program is doing any post
processing of its frames it will use its own framebu�er for this and then most likely rebind to
framebu�er zero. OpenGL does not specify that glBindFramebu�er should function as a stack
where it binds to the previous bu�er. Instead, binding to framebu�er 0 is binding to the default
framebu�er, e.g., the one displayed in the desktop window manager (DWM). We do not try to
solve this in this thesis.
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Latency

Depending on the configuration we are running in, we are selecting the framebu�er to bind
to from a FIFO stack. This way, we can run more OpenGL commands while waiting for the
previous frame to render, download, or encode, depending on the number of framebu�ers we
start with. By adding more framebu�ers to the stack, we may utilize or hide more operations
while rendering, but it also introduces more latency from a frame is queued for rendering until
we are able to fetch it and send it out.

Added latency from adding framebu�ers is not linear because it may increase the throughput.
For instance rendering a frame to framebu�er A, waiting for framebu�er A to be complete then
convert and encode framebu�er A may produce 80 frames per second. Instead, rendering to
framebu�er B, waiting for framebu�er A then convert and encode framebu�er A can produce
110 fps. Respectively, a frame will take 12.50 ms and 9.09 ms to render.

In the worst case, the user sends some input just as a frame started rendering. In the case
of 80 fps, the user then will have to wait for 12.50 ms + 12.50 ms + convert time + encode
time + network transfer + decoding + local display sync. If the frame rate was 110 fps, she will
have to wait 9.09 + 9.09 + 9.09 + convert time + encode time + network transfer + decoding
+ local display sync. If the time it takes to convert, encode, transfer and decode is unchanged
between the two, the di�erence between the two is only about 2.27 ms.

For this reason we introduce the time L = L
i

+ L
o

where L
i

is the inner latency and L
o

is
the outer latency. L

i

is the worst case latency for user interaction: L
i

= 2L
f

+encode, where L
f

is the latency for rendering a frame and encode is the time it takes a frame from being rendered
until it leaves the inner pipeline.

For a sequential pipeline configuration, the time L
i

is simply 2
fps , but for the more advanced

configurations with several framebu�ers the logic is: let the current frame i finish, render the
frame with the user input to i + 1, wait for i + 1 to be rendered and put into encoder which
should be n

frame rate , the wait for i + 1 to be encoded and retrieved. For simplicity, we are only
working with full encode cycles.

L
i

= 1
fps + 1

fps + n ≠ 1
fps

This can be simplified to
L

i

= n + 1
fps

where n is the number of bu�ers.

4.3.3 Optimizing for hardware encoders (NVENC)
The main di�erence between the hardware encoder and the software encoder is the fact that
the hardware encoder does not have to transfer data across the PCIe bus. Instead, we have to
transfer the bu�er from an OpenGL and to an NVENC bu�er. This means that the output from
the converter should be exactly in the format the encoder expects. The input bu�ers NVENC
can process are NV12 bu�ers with a pitch between the lines aligned at 128byte.1 To make sure
we design an agnostic pipeline, our goal is to create a portable OpenGL Compute Shader to
convert from RGB to NV12.

1Incidentally, this is exactly the same format AMD’s hardware encoder, VCE, expects.
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As mentioned earlier, using an SSBO as back-end for the bu�er and using a regular bu�er
array as input to the shader worked well until we found out that indexing individual bytes in this
array is not portable, but rather an extension Nvidia provides (GL_NV_gpu_shader5). We
ended up using a Texture Bu�er Object (TBO) as backing for a texture. The process of creating
a TBO is exactly the same as with any other OpenGL bu�er object: glGenBu�ers, glBindBu�er
with TBO as target then glBu�erData. The size used for glBu�erData is stride ◊ height ◊ 3

2 .
To bind a texture with this TBO, we used the glTexBu�er with TBO as target and GL_R8UI
as internal format. GL_R8UI means that each pixel is only one 8bit byte, stored in the red
channel as an unsigned integer. This gives us a 1D textures 1 to 1 mapping of each byte in the
TBO. Inside the compute shader we use the imageStore function to store the converted data
like so: imageStore(out, index, uvec4(value, 0, 0, 0)).2

OpenGL interop

Interoperability between OpenGL, CUDA, and NVENC is a complex, but at the same time easy
operation. NVENC does not have any concept of OpenGL bu�ers, only NVENC bu�ers and
NVENC bu�ers backed by a CUDA 2D bu�er. Therefore, we have to use CUDA interoperability
with OpenGL to transfer data from OpenGL into this NVENC bu�er backed by a CUDA bu�er,
i.e., a logical three stage operation.

Creation of an NVENC bu�er registered to a CUDA bu�er is done by first allocating some
pitched CUDA memory using the cuMemAllocPitch function. This function takes the image
dimensions as input and returns a CUdeviceptr and the pitch of the allocated 2D memory. This
device pointer is then used to register a new NVENC input bu�er. All TBOs used as target for
conversion is then registered into CUDA space using the cuGraphicsGLRegisterBu�er function.
This returns a CUgraphicsResource handle which we store in a tuple containing the CUDA
bu�er used as backing for the NVENC input bu�er, the NVENC input bu�er, the TBO, and
the CUDA resource handle for the TBO.

Each time a frame has been converted and stored into a TBO, the resource handle asso-
ciated with TBO is mapped using cuGraphicsMapResources. We can then get a CUdeviceptr
representing the memory in the TBO using cuGraphicsResourceGetMappedPointer. Then we
issue a copy from the mapped memory into the CUDA memory used as backing for the NVENC
bu�er and unmap the resource handle. In theory, it may be possible to skip this copy stage by
directly associating the NVENC input bu�er with the pointer received from the CUDA resource
handle for the TBO. We did not test this as it depends on all the bu�ers staying in one place
at all time. We do not know if OpenGL is doing optimizations which may change the bu�er.

To encode the frame residing inside the CUDA bu�er, we first have to map the bu�er into the
NVENC input bu�er. This is simply done using the NVENC API call nvEncMapInputResource
which returns an NVENC input bu�er which can be used by the nvEncEncodePicture function.
As noted in the chapter about NVENC, nvEncEncodePicture is an asynchronous call which
starts encoding the frame. On Linux, there is no way to know when the frame is finished other
than locking the output bu�er. Locking is a blocking call which waits until the frame is encoded
and transferred into system memory. When the frame is retrieved, we can unmap the CUDA
bu�er from NVENC and use it as copy target from another TBO.

1. Map TBO into NVENC

2. Copy NVENC handle of TBO to CUDA bu�er

3. Unmap TBO
2It is interesting that even though GLSL supports overloading based on argument types and the type of out

is an uimageBu�er with r8ui layout it is not able to infer that the value should only a scalar.



Real-Time Interactive Cloud Applications 43

4. Map CUDA bu�er into NVENC input bu�er

5. Encode frame

6. Retrieve encoded frame

7. Unmap CUDA bu�er

Test results: GPU bound performance

Each test is done by rendering 5000 frames of the test program Spout, as described in sec-
tion 4.3.2, on an Nvidia 750 Ti. The computer is an Intel i7-2600 running at 3.40 GHz with
16GB of system memory.
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Figure 4.7: NVENC pipeline configuration latency and performance when GPU bound

Looking at figure 4.7 it is clear that in this test, to get peak frame rate one would need
three bu�ers, but if one want the lowest interaction latency, the fully sequential T1B1 test
outperforms the others. The frame rate and latency enabled by having two threads and two
framebu�ers T2B2 seems to be a good trade-o�.

Test Render Convert Sync Transfer Encode Retrieve TS T1 T2 T3
T1B1 0.09 0.02 8.79 0.05 0.14 3.31 12.53 12.53 - -
T1B2 0.04 0.01 8.87 0.02 0.11 0.07 9.21 9.21 - -
T1B3 0.10 0.02 5.45 0.05 0.15 3.24 9.14 9.14 - -
T1B4 0.10 0.02 0.03 0.05 0.16 8.90 9.35 9.35 - -
T2B2 0.03 0.01 9.00 0.19 0.10 3.25 9.27 9.27 3.26 -
T2B3 0.10 0.02 5.21 0.05 0.16 9.05 9.15 5.64 9.05 -
T3B3 0.20 0.02 4.13 0.09 0.15 9.96 10.54 0.29 4.45 9.98

Table 4.1: Detailed performance of the di�erent pipeline configurations (ms)

In table 4.1, TS is the average for a cycle and T1 .. T3 is the time the work in each individual
thread takes on average over the tests. For the multithreaded configurations, we can see that
TS does not necessarily match the time from any of the individual threads. This is in small part
due to the synchronization which is done using boost::barrier, which in turn is implemented
using kernel semaphores. The main reason for this, we believe to be that the threads sometimes
require much more work than the average. TS here is therefore the average of slowest thread of
each cycle.

Below is a description of the various fields in the table.

Render The time it takes to issue the render draw calls.
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Convert The time it takes to issue the RGB to NV12 conversion shader.

Sync The time it takes to synchronize with the completion of the last draw calls. For multi-
bu�ered configurations, this is synchronization with the n-th previous draw. In the case
of the software encoder, this also includes downloading the frame.

Transfer The time it takes to transfer a frame from a GL bu�er to a CUDA bu�er. In the
case of the software encoder, this is the time it takes to make a copy of the bu�er with the
right stride for the U and V channels.

Encode The time it takes to start encoding.

Retrieve The time it takes to retrieve an encoded frame from the encoder. This involves
waiting for it to finish.

Test results: CPU bound performance

This test is similar to the previous test, but we add 10ms of sleep before each draw call to simulate
additional work, e.g., game logic. The flaw here is that a sleep does not create additional real
work for the CPU which may be unfair for hardware encoders vs software encoders, as this
would inhibit resources which the encoder could have used. It is hard constructing a test case
which can mirror real world applications and we are more interested in knowing which pipeline
configuration is best for low latency user interaction and which is best for high frame rate.

With 10ms synthetic latency on each frame, the maximum theoretical frame rate is 100 fps.
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Figure 4.8: NVENC pipeline configuration latency and performance when CPU bound

Test Render Convert Sync Transfer Encode Retrieve TS S1 S2 S3
T1B1 10.20 0.02 9.93 0.04 0.14 4.23 24.67 24.66 - -
T1B2 10.20 0.02 9.93 0.04 0.13 0.09 20.52 24.52 - -
T1B3 10.20 0.02 0.00 0.05 0.16 1.12 11.69 11.69 - -
T1B4 10.20 0.02 0.00 0.05 0.16 1.12 11.69 11.69 - -
T2B2 10.20 0.02 9.93 0.04 0.13 3.82 20.43 20.43 3.83 -
T2B3 10.20 0.02 0.02 0.06 0.16 11.47 11.62 10.56 11.47 -
T3B3 10.20 0.02 8.79 0.05 0.15 2.33 10.34 10.32 9.07 7.99

Table 4.2: Detailed performance of the di�erent pipeline configurations when CPU bound (ms)
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4.3.4 Optimizing for software encoders
As the software encoder back-end, we are using libx264. x264 is known for being a fast encoder
utilizing all the newest instructions available on the AMD64 architecture. In our case, we are
using an Intel i7-2600 running at 3.40GHz with 16GB RAM. This processor was released early
2011 and is therefore not a state-of-the-art CPU anymore, but is still able to encode our stream
at an impressive rate. Out of the SIMD instructions available in today’s processors, the i7-2600
is missing AVX2 and FMA (Fused Multipy-Add). It does however provide MMX, MMX2, SSE,
SSE2, SSSE3, SSE4.1, SSE4.2, and AVX. When starting our build of x264, it claims to use
MMX2, SSE2Fast, SSE4.2, and AVX.

SIMD instructions were added to Intel-like processors starting with 3DNow! on the AMD
k6 in 1998. What makes SIMD (Single Instruction, Multiple Data) instructions di�erent from
other instructions is that they perform processing on vectors instead of scalars. On newer
x86, they work with 128-bit and 256-bit vectors3 which can consist of for example 4, 8, or 16
single precision floating point values. Operations on these are performed in parallel, which can
significantly increase throughput, but because of the instruction level parallelism (ILP) available
in all x86 implementations today and the fact that many programs are limited by either not
being inherently data-level parallel or are bound by memory, most programs do not benefit
from SIMD. However, video encoding is one such task that really can take advantage of vector
instructions with good results.

The most crippling part of using x264, common to all software encoders, is that it requires
the rendered frame to be transferred back to system memory. We had to explore several ways
of doing this before settling with a performance we found satisfactory.

Fast read back

In OpenGL, there are several ways to download a bu�er and we are of the impression that we
tried all of them when trying to get peak performance.

The problem we tried to solve was downloading the data in the framebu�er after a frame has
been rendered. The normal way of doing this is to run glReadPixels after a frame is done. This
will stall the OpenGL command queue pipeline until the scene has been rendered and the pixels
have been transferred to the system memory. Doing so defeats all the advantages from having
multiple framebu�ers as described earlier in the chapter. Using glReadPixels in the conventional
way does not allow us to convert the frame from RGB to NV12 before downloading, which would
require the CPU to perform the conversion. Because RGB to NV12 is a task performed much
faster by the GPU than the CPU, this is not preferable.

Our first solution was to perform the download in the most naïve way we could. We allocated
a TBO and used it as target for the OpenGL Compute Shader, just as we did for the GPU
encoder. Then, when the frame was finished, we downloaded the bu�er using glMapBu�er.
When timing this we found that it took 24 ms to perform the bu�er mapping, far more than we
expected. A 1080p NV12 frame is only about 3MB, meaning that the download speed was only
136 MB/s. The bus speed for 16 lane PCIe 2.0 is specified to be 8 GB/s.4

3and 512-bit, currently only available on Intel’s Xeon Phi
4Note that all times in this section includes the time of rendering the shader!
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We then changed how the TBO was allocated from the regular glBu�erData to glBu�er-
Storage which was introduces with OpenGL 4.4. glBu�erStorage supports additional usage flag
hints which lets OpenGL create a persistent coherently mapped bu�er where system memory
can be used as backing. The idea was that we could use this as target for the conversion shader.
This bu�er is only mapped once and as long as we wait for the compute shader to complete, the
data in the bu�er will be coherent. When benchmarking this we found that it did not change
download time significantly compared to the normal glMapBu�er approach.

The third and final solution was to instead of writing to the texture backed by a TBO, we
create another framebu�er and used it’s color bu�er as target for the convert kernel. Directly
after dispatching the compute shader, we bind to this new framebu�er. Then we bind to a bu�er
allocated as an GL_PIXEL_PACK_BUFFER and call glReadPixels. Pixel Bu�er Objects
(PBO) was introduced as an extension by ARB in late 2004 specifically for downloading pixel
data from framebu�ers. Framebu�ers support 1D textures which would have mapped very well
to the code written for the hardware encoder, but 1D textures have some restrictions on the
size which were too low for our NV12 frames. Instead we had to use a texture with the frame
stride as width and height ◊ 3

2 as height and only write to the red channel. To accomplish this,
we used glReadPixels, which supports swizzling, i.e., reading only one channel.

To pass a copy of the bu�er to system memory, we mapped the PBO used with glReadPixels.
The data should then be readily available in system memory for us to copy into the x264 input
bu�er. Using this approach we were able to download a frame in about 10 ms or 300 MB/s.
This means that the upper limit frame rate we can run the pipeline using the software encoder
on is 100 fps.

Encoder configuration

As discussed in a previous chapter, to get x264 to encode at a similar quality as NVENC we
have to use the superfast preset. The quality produced when using the ultrafast preset was
unsatisfactory because the resulting image su�ered from visual blocking e�ects. To make sure
the encoder is aware it is used for real time low latency streaming, we provide zerolatency as
tuning and X264_KEYINT_MAX_INFINITE as key frame interval.

Encoding a frame

When passing a frame to NVENC it starts encoding it right away asynchronously while libx264’s
encode call, x264_encoder_encode, blocks until the encoder has finished. This gives NVENC
an obvious advantage as there will be some time between a frame was downloaded and the next
frame cycle begins when using a threaded pipeline configuration and constant frame rate. We
emulate this behavior by having a separate thread to which downloaded frames are passed. This
thread then starts encoding incoming frames as soon as the previous frame has finished or the
new frame arrives.

Test results: GPU bound performance

Note that the time it takes to download the bu�er is recorded in the sync column. This time
corresponds to the 300 MB/s we found when optimizing for read back in section 4.3.4. We see
that the frame rates when using the software encoder is somewhat lower, mostly due to having
to download the framebu�er.
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Figure 4.9: x264 pipeline configuration latency and performance when GPU bound

Test Render Convert Sync Transfer Encode Retrieve TS S1 S2 S3
T1B1 0.15 0.18 11.59 0.53 0.01 7.72 20.32 20.32 - -
T1B2 0.17 0.19 11.57 0.46 0.00 0.00 12.50 12.50 - -
T1B3 0.17 0.26 10.70 0.46 0.00 0.01 11.77 11.77 - -
T1B4 0.17 0.34 10.45 0.47 0.00 0.16 11.77 11.77 - -
T2B2 0.15 0.19 11.57 0.45 0.00 5.53 12.47 12.47 5.54 -
T2B3 0.15 0.26 10.71 0.46 0.00 5.54 11.77 11.69 5.57 -
T3B3 0.20 0.32 10.96 0.65 0.02 0.01 11.77 0.64 11.71 5.63

Table 4.3: Detailed performance of the di�erent pipeline configurations when GPU bound (ms)

Test results: CPU bound performance
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Figure 4.10: x264 pipeline configuration latency and performance when CPU bound



48 Real-Time Interactive Cloud Applications

Test Render Convert Sync Transfer Encode Retrieve TS S1 S2 S3
T1B1 10.25 0.18 15.60 0.46 0.00 6.81 33.28 33.27 - -
T1B2 10.26 0.17 13.08 0.46 0.00 0.00 24.09 24.09 - -
T1B3 10.25 0.22 0.56 0.66 0.01 0.00 11.84 11.84 - -
T1B4 10.25 0.29 0.47 0.67 0.01 0.00 11.83 11.83 - -
T2B2 10.45 0.18 13.08 0.46 0.00 6.84 24.08 24.08 6.83 -
T2B3 10.25 0.22 0.59 0.66 0.01 8.71 11.84 11.83 8.72 -
T3B3 10.25 0.23 11.05 0.64 0.00 5.40 11.88 10.60 11.78 5.41

Table 4.4: Detailed performance of the di�erent pipeline configurations when CPU bound (ms)

4.4 Outer Pipeline
The outer pipeline is the interface between the client and the stream. Basically, it is a custom
web server which serves connecting clients the web interface and the stream. It takes special
care of the stream connection where it always knows which frame the client last received. If the
client is lagging behind, the outer pipeline will store a bu�er of the upcoming frames. In cases
where the client lags too far behind, it will reset the frame queue and ask the inner pipeline to
create a new keyframe (IDR) which will put the client back on track. If this happens too often,
it can ask the inner pipeline to decrease the frame rate at which it is generating the queue and
the encoding bit rate.

4.4.1 HTTP server: CPP-netlib
To save us the hassle of implementing our own HTTP parser and socket library, we decided to
use The C++ Network Library Project (cpp-netlib) [50]. Cpp-netlib is a C++ library which
provides easy setup of basic HTTP servers. All it does is listen to the TCP port asked by
the user where it will parse HTTP commands of incoming connections. When a connection has
successfully provided an HTTP header, it will transfer control of it to a callback function defined
by the library user. Parameters for this callback is a structure of the HTTP commands and a
shared pointer to an object representing the TCP connection.

When starting cpp-netlib, one first creates a thread pool of threads which should handle the
incoming connections. This means that the server will not spawn more threads to handle requests
and when the requested is passed to the callback it is still running in one of the threads from
the thread pool. If handling a request takes a long time it will deplete the thread pool leaving
no threads to handle new incoming connections. Instead, the callback function is expected to
handle a connection quickly and not do any blocking operations. Writes are done asynchronously
by passing the data to be written and another callback to be called when the write has gone
through. The actual call to write returns immediately, but the function is expected to return
shortly after.

For easy interfacing with cpp-netlib’s asynchronously write mechanism, we created a wrapper
object we called a generator streamer. This generator streamer is a self-owning object, a term
introduced with boost/C++11 shared_ptr. Self-owning objects are defined by inheriting from
std/boost::enable_shared_from_this. When a shared pointer pointing to such an object is
created, the object functions inside the object is able to request a copy of the reference counted
pointer owning it. Using this idiom lets other parts of the code just fire and forget about object
lifetime, a weird though in a language which used to be known for it’s notoriously hard memory
management.
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When creating this generator streamer we supply a generator which implements four object
functions: the overloaded call operator, done, available, and post. The generator streamer
which first probe it’s encapsulated object if it is done. When a streamer is done, the generator
streamer will just let itself and the encapsulated object get cleaned by not rescheduling itself.
If the generator has available data, the generator will call the overloaded call operator and send
the data with a copy of it’s shared this pointer bound inside a functor as callback. In modern
C++, this can be done by simply creating a lambda which fetches a copy of the shared pointer,
while in the older C++03 this was usually done using boost’s bind-library [60] . If there is no
data available yet, we call the post function with a function the callee should call when it wants
to reschedule itself. In most cases it is OK to just call this function immediately.

We created an object which handles all incoming HTTP requests, then switches depending
on the requested resource: /, /stream/[0-9]*, or /WebSocket. If the user requested / we just
read a file called index.html from disk and write it to the connection. Because this file is so tiny,
there is no performance loss associated with re-reading the file every time. Instead, it allows us
to edit the index.html file while the server is still running. Creating some mechanism for caching
and checking if the file is modified is not a subject for this thesis.

4.4.2 WebSocket
Connections requesting the /websocket resource will start a new generator designed for Web-
Sockets. As the client requesting this resource is aware that it is requesting a WebSocket [61]
connection it will include a header token asking the client to upgrade the connection context.
This is done by it sending a key challenge to which the client must respond properly. To solve
the challenge, the server appends 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 to the given
challenge, then SHA1 hashes the result and send it back as hex encoded ASCII with status code
101: Switching Protocols.

Communication over WebSockets follows a standard specified by W3C. All data sent is put
in a container frame together with the data length and other attributes about it. For our
simple use case, all we care about are text frames less than 127 bytes long. This simplifies our
implementation greatly as we can parse the frames with only a few lines of code.

When the browser sends a message it will encapsulate it in a WebSocket frame. WebSocket
frames, as illustrated in figure A.1 (appendix), have several fields, but we implement only a few
of them and put some requirements on how the browser should behave. We do not support
frame fragmentation so the first bit in the frame must be 1, FIN. We only support text frames
so op code must be 1. The messages we want to send are always small which means we can limit
the support to frames less than 127 bytes long. Google Chrome uses the masking so we added
support for decoding masked messages. Masking is a really simple process where the frame
includes a 4 byte masking keys which is XOR-ed with the message to produce the unmasked
message. The purpose of such a weak encryption is not known to us, but it may counter some
very basic attacks.

The messages received through the WebSocket represents commands to the streaming appli-
cation. To encode these we used a very simple language, as described in figure 4.11.

We did some testing of the latency of WebSockets in Google Chrome, and it was consistent
withing less than one ms of the latency measured using the “ping” system application.
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ÈmessagesÍ ::= ÈmessagesÍ ÈcommandÍ
ÈcommandÍ ::= ÈmousemoveÍ | ÈmousebuttonÍ | ÈkeyboardinputÍ
ÈmousemoveÍ ::= ‘MM’ ÈcoordÍ ‘ ’ ÈcoordÍ
ÈmousebuttonÍ ::= ‘MK’ ÈkeycodeÍ
ÈkeyboardinputÍ ::= ‘KB’ ÈkeycodeÍ
ÈcoordÍ ::= integer
ÈkeycodeÍ ::= integer

Figure 4.11: Grammar for messages passed from HTML front end to outer pipeline

4.5 HTML front end
Instead of having a stand alone custom built client, we are using a standard web browser. The
solution is only known to work properly in Google Chrome, currently the most frequently used
web browser by some measurements. Google Chrome has excellent support for MKV and H.264
which allowed us to tune down the number of frames it will bu�er.

4.5.1 HTML and CSS
The HTML page presented to the user is very simple. It contains only one single element inside
the <body>, the HTML5 <video> element. The video element is set to auto play the video
source available at /stream/ once the page is loaded, as shown in figure 4.12. Browsers tend to
add some default margin to the <body> element [62, 63] which we remove by setting the body’s
margin to 0 pixels. If the video element is too large for the client’s view port usually a scroll bar
will appear. For our application, this does not make much sense as we will, using JavaScript,
hijack all keyboard and mouse input. We disable the scroll bar by setting the CSS directive
overflow to hidden.

<body>
<video autoplay id=’video ’>

<source src =’/ stream / ’ type=’ video /x≠matroska ’>
</ video>

</body>

Figure 4.12: HTML body presented to the user

body {
margin : 0px ;
overflow : hidden ;

}

Figure 4.13: CSS presented to the user.

4.5.2 JavaScript and WebSocket
The JavaScript is very simple. It uses jQuery for portable hooking of the mouse and keyboard
and is passing this back to the server through a WebSocket.
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ws = new WebSocket (
"ws://" + window . l o c a t i o n . host + "/websocket"

) ;
ws . onopen = function ( e ) {

\$ ( document ) . mousemove ( function ( e ) {
ws . send ( "MM" + e . pageX + "�" + e . pageY ) ; })

. mousedown ( function ( e ) {
ws . send ( "MK" + e . button ) ; })

. keydown ( function ( e ) {
ws . send ( "KB" + e . which ) ; })

}

Figure 4.14: JavaScript for sending user input.

4.6 Assessment of the entire pipeline
The time it takes from the draw commands are sent to OpenGL until a frame is fully encoded is
possible to calculate as we know all the details concerned with the process. However, as we send
the frame out to the client, things are not as easy to work with. There are two main reasons for
this: Network and Client side.

4.6.1 Network limitations
Sending anything over a network is always associated with some unpredictability, especially
when sending over longer distances. If we were able to send data at the speed of light in vacuum
(3◊108m/s), sending a packet from Oslo, Norway to Bodø, Norway (a flight distance of 8370km)
it would take about 3ms. The speed at which light is able to travel through a modern fiber optics
cable is about 60% of the speed of light in vacuum, which would make it 5 ms. Of course, the
distance between Oslo and Bodø only feels long for us humans but is not really that far compared
to the distance between Norway and New Zealand, or even Earth and Sol. Still, the point is
that using modern technology, the speed of light is not the retarding factor of our networks.

The main issue with networks are the hardware switching packages. We did an experiment
to see how fast we could ping a server located in Nydalen, Oslo, Norway (www.blix.com) from
several locations in Norway and Europe. The results are presented in table 4.5. We can tell
from this that the impact of using a WiFi instead of an Ethernet cable has significant impact on
the latency (12.577 ms / 8.495 ms). Another thing to notice is that typically, for home networks
provided by ISPs such as GET, Canal Digital, and NextGenTel the service is much worse than
network provided for schools, such as UiO and NTNU. There is no linear relationship between
the number of hops, i.e., the number of routers passed through, and the ping time. Some hops
may be invisible due to routing protocols.

4.6.2 Client side decoding
A web browser, such as Google Chrome, was not specifically designed for real time streaming.
Instead, it was designed for smooth play back across the Internet. To compensate for the network
problems described in the previous section, the web browser will begin by bu�ering a few frames
before actually playing the stream. In our use case, this means that it adds some additional
latency which we in general can not a�ord as low latency is our main goal.



52 Real-Time Interactive Cloud Applications

ISP location ping time hops
GET Oslo 8.495 ms 9
GET + WiFi Oslo 12.577 ms 9
Canal Digital Oslo 7.000 ms 11
UiO Oslo 0.725 ms 11
NTNU Trondheim 8.356 ms 11
NGT + WiFi Trondheim 23.329 ms 9
Canal Digital + WiFi Bodø 27.000 ms 13
Signal + WiFi Bodø 22.000 ms 11
- Faroe Islands 74.301 ms 20
k-net Virum, Denmark 13.000 ms 8

Table 4.5: Round-trip time for network packages at several locations

The source code for Google Chrome’s H.264 encoder is closed source and not publicly avail-
able. We attempted to understand some of the inner workings of the browser by looking at
what is open source through the chromium project, but quickly understood that the source is
far too complicated to be understood without serious e�orts. We decided to instead handle it
as a black box where we can only tune H.264 and MKV parameters and see what happens.

4.6.3 Impact on latency from MKV claimed frame rate
The following tests were run using the T2B2 inner pipeline setting, as double bu�ered rendering
is usually the way games run, and uses the NVENC hardware encoder. The scene rendered is a
modified Spout, as described in 4.3.1, fixed at 60Hz.

Before running the tests we measured the ping round-trip time to average at 0.287 ms.
Compared to the time period a frame represent on 60Hz, a number so small represents an
insignificant amount of time.

In this test, we are interested in how changing the frame rate given in the MKV header
impacts the latency we are able to measure. As mentioned earlier, this must always be higher
than the frame rate the inner pipeline is generating frame at or else the latency will continuously
increase. In figure 4.15 we can see that the average latency from a frame begins rendering until it
is shown in the client browser decreases almost logarithmically. We have observed some sluggish
displaying of frames when the frame rate in the MKV header is set to high and because of this
we want the frame rate to be as low as possible while still getting a decent latency. The latency
gain seems to diminish after 300 fps. This seems to be the best value for 60Hz streams.
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Figure 4.15: Impact on latency on 60Hz when changing frame rate in MKV.
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Looking at the box and whiskers plot in figure 4.16, we can see that the latency is not stable.
The di�erence between the high and low medians seems to be less than 20 ms, which is pretty
high. A possible reason for this may actually be that the frame rate is not constant as we are
using the variable bit rate setting on NVENC.

The numbers here represent the time it takes from a frame starts to render until it is displayed
in the browser. Since T2B2 is using 2 bu�ers and running at a constant 60Hz, we can calculate
the latency of the inner pipeline using the formula given in 4.3.2 minus the first wait 2

60s ¥
33.33ms. When the MKV claims that the frame rate is 300, the measured average latency is
75.58 ms. By subtracting calculated time in the inner pipeline by the measured average time
we get the time from when a frame leaves the inner pipeline until it is displayed in the client
browser: 75.58ms ≠ 33.33ms = 42.25ms. A frame at 60Hz lasts approximately 16.67ms, this
means that the browser is bu�ering on average 2.53 frames. As counter intuitive as this may
seem, the browser may no actually count frames when it bu�ers, only the number of bytes it
expects a frame to be.

Increasing the frame rate in the MKV header does reduce browser bu�ering and playback
latency, but may have an impact on the playback animation. We are able to notice this, but the
di�erence is so small that it does not have a significant impact on the experience.
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Figure 4.16: Impact on latency on 60Hz when changing frame rate in MKV.

300 frames per second is 500% more than 60 frames per second. With the impact such a
high frame rate may have on the playback of the stream, we tested how the e�ect was when
rendering the exact same scene on 30Hz. Our results were very similar to the 60Hz rendering. A
claimed frame rate 500% more than the actual frame rate seems to produce the best results in
Google Chrome. The numbers from this test is presented in table 4.6. In this case, the average
latency for claimed 150 fps was 129.147. The inner latency minus one frame in this case is
2
30s ¥ 66.67ms. The time between the inner pipeline and the client display is then 62.48ms.
But whereas the browser bu�ered 2.53 frames when reading a 60Hz stream, the browser only
bu�ered 1.89 frames when reading a 30Hz stream.
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MKV Frame rate L
m

36 175.249 ms
60 159.671 ms
120 144.217 ms
150 129.147 ms
300 132.207 ms

Table 4.6: Latency for 30Hz. T2B2, NVENC

The peak performance for T2B2 was measured earlier to be 108.93. Running the same test
on it too provided additional insight on how changing the MKV frame rate influence the latency.
We discovered that a when claiming the frame rate to be 1080 fps the browser would simply
not try to play the stream. At such a high frame rate, it seems that the curve flattens seems
to be earlier than in the 60Hz and 30Hz tests, already at 300% or 400%. The latency from a
frame leaves the inner pipeline until it reaches the display is 50.57ms ≠ 2000

108.93ms = 32.21ms.
The number of frames bu�ered is 3.5.

MKV Frame rate L
m

116 60.9623 ms
216 53.0671 ms
324 51.5814 ms
432 50.5663 ms
540 51.4286 ms
648 50.2203 ms
864 49.7936 ms
972 50.0024 ms
1080 -

Table 4.7: Latency for 108.93Hz. T2B2, NVENC

4.7 Latency
The inner latency, L

i

, discussed earlier, is the worst case time from user input arrives at the
server until the frame where this input is taken into account is fully rendered and encoded. This
depends on the number of bu�ers n and the frame rate f , given as frames per second.

L
i

= n + 1
f

s

The latency measured, L
m

is the time it takes from a frame starts rendering until it is visible
on the client display. To measure this, we used a technique where ever frame is tagged with a
green dot in the upper left corner, except one frame every two seconds. Using JavaScript on the
client, we are able to detect the frames which do have a black dot instead of the green dot and
signal this back to the server. The server can then calculate the time it took from it created the
marked frame until the client responded.

To copy the video bu�er from the <video> element to a JavaScript bu�er for detecting the
dot, we had to make a detour through a <canvas> element. <canvas-elements support copying
data from a <video> element, which in turn can be extacted to a JavaScript byte-array.
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Because we can not accurately detect the dot using JavaScript, sometimes the dot may be
detected later than it has been displayed and other times it will not be detected at all. However,
the latency measured will never be lower than the actual latency. If the latency is higher than
two seconds, the calculated L

m

will be erroneous, but a human will quickly detect such high
latencies and abort the test.

The outer latency, L
o

, is the time measured, L
m

, minus the inner latency and the extra
frame taken into account in L

m

.

L
o

= L
m

≠ L
i

≠ 1
f

L
o

= L
m

≠ n

f

Finally, the worst case interaction latency is the sum of the inner latency and the outer
latency, or just the measured latency plus 1

f

L = L
i

+ L
o

L = n + 1
f

+ L
m

≠ n

f

L = 1
f

+ L
m

The number of frames bu�ered, B, is L
o

divided by the time each frame represent 1
f

. There
are several places a frame may be bu�ered including the server’s TCP stack, a network switch,
the client’s TCP stack, the client’s browser, or even the H.264 encoder.

B = L
o

1
f

B = L
o

f

B = (L
m

≠ n

f
)f

B = L
m

f ≠ n

f L B

24 fps 199.74 ms 1.79
25 fps 200.00 ms 2.00
30 fps 161.05 ms 1.83
50 fps 108.31 ms 2.42
60 fps 96.63 ms 2.80
90 fps 66.84 ms 3.02

100 fps 63.49 ms 3.35
109 fps 60.60 ms 3.61

Table 4.8: GPU bound, T2B2, NVENC, n = 2
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Figure 4.17: GPU bound, T2B2, NVENC, n = 2

In figure 4.17, we present latency for various frame rates as a stacked bar. As can be seen
from this, at variable bit rate using NVENC with the scene we are testing, a frame rate of at
least 60 fps is needed to achieve a full cycle latency of less than 100 ms. With full cycle latency,
we mean the time it takes from the user sends input until it is displayed in her browser. Looking
at the number of frames bu�ered in table 4.8, we see that as the frame rate increases the number
of frames bu�ered also increases. This can also be seen in figure 4.17 by looking at how the ratio
of L

o

and L
i

change with the frame rate. In section 4.8.1, we will look into using constant bit
rate to lower the number of frames bu�ered.

We also did the same test using the x264 back-end. Even though the numbers were similar,
x264 actually performed somewhat better at the frame rates we test. When measuring the bit
rate we found that they were not similar at all. For the 60 fps test NVENC used 926kB/s while
x264 used 1589kB/s. To test this further, we tuned up the bit rate for NVENC to 1500kB/s
and sure enough, we get a much lower latency, even lower than the one we measured with x264:
L

m

= 69.28ms.

f L
m

25 137.876 ms
60 73.3011 ms
80 57.8975 ms

Table 4.9: GPU bound, T2B2, x264, n = 2

4.8 Resource usage
We see three important factors of resource usage for our system: Bandwidth, CPU usage, and
power usage. The problem with bandwidth is not as much a server problem as it is a client
problem. We expect the server to be located in some location where Internet access is wast,
such as a data center.
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In section 3.4.1, we discussed the average bandwidth available in Norway and found two
di�erent claims: 6-8 Mbit/s [43] and 8.7 Mbit/s [44]. However, using an average of bandwidth
may be flawed because of geographical reasons. It is highly likely that in cities such Oslo,
the average bandwidth is much higher than in rural areas such as Rodøy in Nordland. In our
opinion, having access to at least 20 Mbit/s in Oslo is not inconceivable, and because of this we
use it as the high bar when testing latency based on bandwidth.

CPU usage is a highly important factor for the success of our streaming engine. Our goal in
this thesis was to design a streaming engine which uses as little resources a possible leaving most
to untouched for the source application to use. Being able to measure this was one of the main
reasons why we selected Spout as our test application because it almost uses no CPU resources
(see section 4.3.2). This is made possible by the fact that the entire scene is generated on the
GPU with only minor interaction from the CPU.

The third important factor is how much power the streaming engine uses measured in Watts.
Even though electrical power is generally considered cheap in Norway compared to other coun-
tries, power is usually expensive in data centers. This is because the cost of transferring the
heat produced by the hardware out of the data center and replacing it with cool air is usually
included in the price, in addition to UPS and other backup generator systems.

4.8.1 Bandwidth
When testing latency we discovered that the bit rate has a significant e�ect on the latency. This
put us in a di�cult position because bandwidth is i finite resource, especially when streaming
over the internet. On one hand we want the latency to be as low as possible, on the other we
want the stream to be as small as possible. The fact that the latency drop on higher bit rate
strengthens our theory that the browser bu�ering is not done by counting frames but rather
on bytes received. As with all the other tests done with latency, the numbers we present are
gathered when using Google Chrome as our client.

Bit rate L
m

L B

2.06 Mbit 114.69 ms 131.36 ms 4.88
4.11 Mbit 96.92 ms 113.59 ms 3.82
6.16 Mbit 79.51 ms 96.18 ms 2.77
8.22 Mbit 75.99 ms 92.65 ms 2.56

12.36 Mbit 72.17 ms 88.84 ms 2.33
14.39 Mbit 65.43 ms 82.10 ms 1.93
16.45 Mbit 65.35 ms 82.02 ms 1.92
24.67 Mbit 64.22 ms 80.89 ms 1.85

Table 4.10: E�ect of bit rate on latency in Google Chrome on a 60Hz stream, T2B2 NVENC

In table 4.10, we see that as we increase the stream’s bit rate, the number of frames B
bu�ered decreases up to about 14 megabit per second. From there we see no or little gain in
increasing the bandwidth. To get a full cycle latency L less than 100 ms, we have measured
that we need a stream bit rate of about 6 megabit per second. At 1.93 frames bu�ered, the full
cycle latency is calculated to be 82.10 ms which seems to be as low as we can go using Google
Chrome as client with a HTML5 video element.

The reason for the impact of bit rate is, as mentioned earlier, most likely due to the browser
bu�ering in bytes, not in number of frames.
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Figure 4.18: Bit rate vs L
m

, T2B2 NVENC

Incidentally, the visual quality also seems to reach a peak at about 14 megabits. This is of
course an unsubstantiated claim as it depends very much on the type of video streamed and is
judged subjectively by us. In figure 4.19, we show a comparison of a region where the di�erence
in bit rate is very noticeable on the visual quality. To save space, we have only included half of
the samples.

When comparing 4 Mbit/s (figure 4.19a) to 8.22 Mbit/s (figure 4.19b), we notice that the
image is much smoother with less noise from quantization. There is even less of this noise in the
14.39 Mbit stream (figure 4.19c, while it is di�cult to spot any increase in quality from 14.39
to 24.67 Mbit/s (figure 4.19d).

The images were generated by cropping a 200x200 region from a full size 1920x1080 frame.
They have since been scaled to make the e�ect seen more accessible on print.
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(a) 4.11 Mbit (b) 8.22 Mbit

(c) 14.39 Mbit (d) 24.67 Mbit

Figure 4.19: 200x200 extraction at various bit rates, NVENC
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4.8.2 CPU resource usage
To measure the CPU usage of a process, we use what the system tool ‘ps’ claims is the usage.
The exact command we use is:

ps au|grep -i glstreamer|grep -v grep |grep -v sudo| \
awk ’{print $3}’

This extracts the CPU usage from the ps-line associated with our program called glstreamer.
We then wait for this to stabilize use that as the CPU usage percentage. When the program is
running an external computer connects to the stream. This is done using ‘curl’ to make sure the
external computer downloads the stream without creating any trouble for the server. Curl is a
command line tool and library for handling HTTP connections. We are piping the downloaded
stream directly to the null device on the client computer. The CPU used for testing is an Intel
Core i7-2600, 4 cores plus hyper threading, running at 3.40GHz. A CPU usage percentage of
100% means that 1 core is running at 100%. This computer has 4 cores, and 8 logical cores as
hyper threading is enabled.

The numbers gathered from running NVENC is presented in table 4.11. A bright and
observant read may notice the close correlation between the frame rate and the CPU usage.
One may even feel compelled to say that the frame rate is equal to the CPU usage. This is,
however, a flawed conclusion as it may only hold for this specific processor with this specific
scene rendered. CPU usage, as presented here, only tells us that the system does not use much
resources and it scales almost linearly with the frame rate.

fps NVENC x264
25 25.9 % 111.2 %
30 31.9 % 132.6 %
50 53.1 % 215.3 %
60 61.9 % 211.3 %
80 75.8 % 257.8 %
85 79.2 % -

108 98.0 % -

Table 4.11: CPU usage of GPU bound, T2B2, NVENC/x264
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Figure 4.20: CPU usage

4.8.3 Power usage
To measure power usage when running Spout inside the streaming engine, we used an APC
Rack PDU (Power Distribution Unit) 2G specified to have an accuracy of ± 3% of the reading.
Because this equipment was designed for measuring the power usage of entire racks stacked with
computers, it is only able to measure in terms of kW (kilowatt) with two decimals. This means
that we only are able to know the usage within tens of Watts.

Yet another flaw with the APC Rack PDU 2G is that it will round every reading less than
0.5 A to zero, or everything less than 120 W. To work around this we connected a lamp specified
to use 120 W to the same PDU and let it heat up. When the lamp was warm, we measured to
use a stable 0.14 kW which we subtract all the following readings. The next thing we did was
to measure the computer’s idle power usage which we found to be 0.05 kW. This has also been
subtracted from the readings we present in figure 4.21.

As with all the other tests performed on the streaming engine, this test was also run on a
quad core Intel i7-2600 running at 3.4GHz with an Nvidia GTX 750 Ti as the GPU.

Plamp = 0.14kW

Pidle = 0.05kW

We then tested running the application at various frame rates using both NVENC and x264
as encoding back-end. What we found was that at low frame rates, such as 25 and 30 Hz, the
di�erence in power usage is insignificant, but as the frame rate increases the di�erence increases
notably. At the highest frame rate we were able to run the streaming engine on x264, the
software encoder uses almost twice as much power as NVENC.
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The most interesting frame rate will be 30 Hz for low end applications and 60 Hz for high
end applications. At 60 Hz we see that NVENC only uses 20W, while x264 uses 50W, more
than twice the power usage. This proves that using the hardware encoder as back-end scales
much better. If we were to run 10 instances of this application at 60Hz, the NVENC back-end is
expected to use only 200W while the x264 back-end would have used 500W. At a cost of NOK
1200 per kW/month, the NVENC would solution would cost about 1200NOK/kW/month ◊
0.2kW/month = 240NOK while the x264 solution would cost about 1200NOK/kW/month ◊
0.5 = 600NOK. We conclude that there is a significant amount of money to save when using a
hardware encoder versus a software encoder.
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Figure 4.21: Power usage of the streaming engine at various frame rates

4.9 Summary
In this chapter we have presented the design for an engine capable of streaming OpenGL graphics
to a client web browser while receiving user input through a WebSocket. The design was divided
into three connected parts: the inner pipeline, the outer pipeline, and the HTML front-end.

The inner pipeline took care of reading the source application’s frame bu�er, converting it
from RGB to NV12, encoding it and passing it along to the outer pipeline. The outer pipeline’s
responsibility was to create an HTTP server and managing the incoming connections, including
streaming the video from the inner pipeline to the client. The HTML font-end was just a simple
HTML page served by the outer pipeline containing an HTML 5 <video> element and JavaScript
for capturing keyboard and mouse input and sending it back to the server.

To convert the OpenGL RGB-formatted framebu�er to NV12, we used an OpenGL Compute
Shader. We also tried using an OpenCL kernel, but this added unnecessary complexity because
of lack of interoperability between OpenCL and CUDA-bu�ers, needed for transferring the bu�er
to NVENC.
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For encoding, we created a back-end for both the NVENC hardware encoder, and the x264
software encoder. Transferring a NV12 bu�er to NVENC was done through OpenGL/CUDA
interop, while transferring a NV12 bu�er to x264 included downloading the bu�er from GPU
memory to system memory. To ensure high frame rate when downloading the NV12 bu�er,
we tested several ways and ended up with using OpenGL Pixel Bu�er Objects (PBO) and the
glReadPixels function.

Testing showed that for di�erent scenarios, di�erent setups of the pipeline was preferable for
best performance. For both encoders with GPU bound applications, T2B2 excelled, while for
CPU bound applications T2B3 was a good compromise.

When streaming to the browser, we found that increasing the frame rate which the MKV
claimed the stream to be decreased the latency. The golden number seemed to be 500% of the
actual frame rate. The browser bu�er was also a�ected by the bit rate of the stream, where
higher bit rate was preferable. When streaming 60 frames per second, the lowest bit rate was
reached around 14 megabit.

When we explored the scalability of the streaming engine, we discovered that using NVENC
as back-end used much less CPU resources and power.

In the next chapter, we will put the streaming engine we designed and implemented in this
chapter to the test by running a few case studies on it. The first case study will be to enable the
Bagadus virtual camera to run using our streaming engine, and look into how it scales. Later, in
chapter 6, we will try running Quake III Arena and measure the latency we are able to achieve
on a fast paced first person shooter game.
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Chapter 5

Case Study: Bagadus
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Figure 5.1: Virtual match viewer

The Bagadus project [6, 64–66] is a research project in soccer analysis using player position
tracking technology and video recording. The Bagadus recording rig consists of five cameras in
a matrix. Video streams from the cameras are stitched into a panorama image [7], which in turn
is used for creating a virtual camera playback of the matches [8].

Every stage in the Bagadus pipeline have been optimized to run in real-time. The stream
we did the tests on for this case study was recorded at 30Hz, about half the frame rate which
the streaming engine was designed for. At such a low frame rate, latency is expected to be high.

In this case study we modified the virtual camera player by Vamsidhar et. al. into using
our streaming engine as the video sink. The performance of the system was measured in terms
of CPU usage, encoding latency, and power usage. We included tests using both the NVENC
encoder back-end and the x264 driven back-end. A conceptual flow diagram for the entire system
is included in figure 5.1.

The test system is the same as used during testing of the pipeline in chapter 4. An Intel
i7-2600 running at 3.4GHz with an Nvidia GTX 750 Ti.

5.1 CPU Usage
Just as in section 4.8.2, we probed the CPU usage reported from the ‘ps’ system tool on Linux.
When testing CPU usage, we ran the virtual camera viewer inside our streaming engine at both
720p and 1080p. Just as expected, we found that CPU usage when using the x264 back-end was
almost double that of when using NVENC.
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Figure 5.2: CPU usage

For comparison, we were unable to measure any di�erence between using NVENC as encoder
and not encoding anything at all. This was expected, as encoding using NVENC is fully o�oaded
to the GPU and the CPU is not a�ected by it. We also see no significant di�erence between 720p
and 1080 when using NVENC. The minor di�erence there may be connected to actually handling
a larger output stream on 1080p, i.e., sending the encoded stream to the client. However, that
does not explain why the pipeline without any encoding uses more CPU than a 720p stream.
We must therefor conclude that the di�erence is caused by errors when measuring.

For applications with similar CPU utilization to the Bagadus virtual camera, encoding using
x264 almost doubles the CPU requirements. Running several instances clearly scales much
better on NVENC.

We also tested the scalability of the system by running several instances of it on the same
computer. With the x264 software encoder back-end, we were able to deliver to streams in
parallel while maintaining the 30 frames per second frame rate. When using NVENC on the
same machine, we were able to deliver four concurrent sessions while still maintaining the frame
rate.

5.2 Power Usage
The power measurements can be seen in figure 5.3. The data is collected by monitoring the
entire system while running our delivery pipeline. To measure the power consumption, we
used an APC Rack PDU 2G specified to have an accuracy of ± 3% of the reading. From the
measurements, we observe that the NVENC pipeline uses considerably less energy compared to
the software encoder. We also observe that the power usage using NVENC does not increase
much when we change the resolution.
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Figure 5.3: Power usage

5.3 Encoder Latency
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Figure 5.4: Encoding latency

In this case study, we did not look into the user input latency, only the latency from we
start encoding until we have the encoded frame in system memory. For x264, we do not include
the time it takes to download a frame, we only look include the time the encoder is actually
encoding. Because this test is running at a very low frame rate, we were able to hide the
framebu�er transferring in the rendering stage of the pipeline.

The latency of the encoder is measured inside the running system, i.e., it comprises the time
it takes from when a frame is sent into the encoder component until it is ready. In figure 5.4,
we observe, as expected, that NVENC is more than twice as fast compared to x264 superfast.

In both cases, we see that encoding 1080p takes about twice as long as encoding 720p. This
is expected as there are more than 2 times the amount of pixels in a 1080p frame compared to
a 720p frame (2.1 megapixels / 0.9 megapixels).
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5.4 Quality

��������

��������

�������	


��������
����


������������


���������

����

����

���

����

���

����

����

�

��
 !

�����
"���

Figure 5.5: Visual quality

The test was performed by first recording the output from running the application to a raw
YUV420 file. The recorded video was then run through the encoders with the same settings
as if they were done online in the streaming engine. Visual quality was then measured using
the SSIM algorithm, as explained in chapter 3. The encoders were configured to output a 14
megabit video stream for 1080p stream and 7 megabit for the 720p stream.

Results from the test can be seen in figure 5.5). We found that the quality of all three
NVENC presets are similar, and they perform between x264 superfast and medium. We also
used subjective testing of the videos, and we found that x264 ultrafast did not produce adequate
video quality compared to the other presets. There was no noticeable di�erence between the
other presets.

We noticed that x264 produced much better quality on 720p than 1080p, while NVENC, in
contrast, produced somewhat better quality on the 1080p.

5.5 Summary
While this case study was very basic, it served as a verification of the system in that it works
and it does so e�ciently. We found that in all the tests we performed on the system, except for
the quality tests, NVENC performed better than x264.

The CPU usage of our streaming engine is in general very low, especially when using the
NVENC encoder. Using NVENC, we were able to run twice the amount of instances of the
service, while still maintaining the frame rate. Power usage when using NVENC is also consid-
erably lower than when the x264 encoder is used. As this test does not include transferring the
framebu�er to system memory, what we see is only the latency from encoding a frame. If we
were to include the transfer, x264 would be much slower.

The only test we ran on which the x264 encoder performed better was when measuring visual
quality. When streaming on 720p using the x264 superfast preset, we measured somewhat better
quality than NVENC on the same input. On 1080p, SSIM values were consistently higher for
NVENC.

In the next case study, we will look into if the overhead and latency of our streaming engine
is low enough to stream a computer game. Focus will be on the interaction latency experienced
by the user, and compare it to previous studies in latency perception.



Chapter 6

Case Study: Quake III Arena

In this case study we will look into how our streaming engine performs on a real life applica-
tion, such as Quake 3 Arena. Our focus will be on how latency is experience on home networks
using consumer laptops, such as the MacBook Air from mid 2012.

6.1 Limitations
There are several parts of the system that can be tested, but we have selected only a few. We
are only experimenting the T2B2 pipeline setup from section 4.3.2 which means that there are
two threads running. The first thread is responsible for rendering the game, converting the
framebu�er and sending it o� to the encoder. The second thread is waiting for a frame to return
from the encoder, multiplexing it in a MKV container and adding it to the output queue of
the client. The threads are running in lock step, which means that both threads have to finish
before the next iteration.

Also, in this experiment we will only be using the Nvidia NVENC hardware encoder and
not x264. Doing both would be too time consuming as running a test takes a while and requires
human interaction, i.e., playing the game. While the game is fun for a while, it gets old after a
few weeks.

In chapter 3, we found that NVENC is not able to encode 2160p at 60 frames per second
with sequential encoding. Because our interest is in low latency, we will only include 1080p and
720p in our tests. Instead, we will be looking at how the engine performs in an environment
closely matching what we are convinced is a common Norwegian home. We are interested in
seeing how latency is depending on the network connectivity using both WiFi and Ethernet
cable at di�erent frame rates and resolutions.

69
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As for bit rate, at all our tests we try as good as we can to run at 14 megabit per second.
This was selected due to our findings in section 4.8.1.

6.2 Quake 3
Quake III Arena (Q) is a first person shooter by Id Software released in 1999 which was, as
with all Id Software games, considered technically advanced for the time. The source code was
released under the GNU General Public License (GPL) in 2005 and has since been modified by
the community in several ways, e.g., making it possible to compile with modern versions of GCC
(The original required GCC 2.95) [67].

By today’s standards the game looks dated but is still relevant as it is to this day one of the
most high-paced action games where low latency is vital to the experience and playability.

We decided to modify ioquake3 [68], a modified version of the original Quake3 engine where
support for the AMD64 architecture and a proper SDL back-end are added. Because of the high
quality of the code, modifying the engine to use our streaming back-end instead of SDL was
very easy. The platform dependent parts of the code is clearly separated from the game logic
and the render code which meant that all we had to do was implement a few function calls,
mostly by removing all SDL code. As we are using a modern GPU, the functions which query
for available OpenGL extensions was set to always return true if the extension string included
ARB.

The biggest di�erence in how our streaming engine is designed and how Q3 works is that
our streaming engine is meant to control the rendering application while Q3 was designed to
control the OS layer. This was not a major hindrance as we could just swap out the main entry
function of Q3 with our own and run the game loop as we see fit. Listing B.1 shows how the
original main function looks while Listing B.2 shows how this was fitted into our framework.

As Q3 is a first person shooter (FPS), we had to do some changes to the client side to capture
the mouse properly. Using the JavaScript Pointer Lock API [69] and browser fullscreen, we were
able to capture mouse input properly. The issue with the normal mousemove event is that as
the mouse moves to the border of the view port it will not be able to move any further which
means that the game is basically unplayable as the user has to plan mouse movement. With the
Pointer Lock API, the mouse becomes invisible and events only send relative mouse movement.

6.3 Lab tests
To establish a base line of how well the system possibly can perform through the internet, we
first performed a series of preliminary tests in our computer laboratory on a local area network
(LAN). The game and the streaming engine was run on the same hardware as all the tests in
the previous chapter: a four core Intel i7-2600 running at 3.40 GHz. The Google Chrome web
browser client run on a computer with similar hardware in Linux.

In test, the game was running at 120 frames per second, somewhat more than is expected
from a high end modern computer running a modern triple-A game. To measure latency we
tagged all frames with a green dot in the upper left corner, except for some frames which are
tagged with a black dot. Using JavaScript, we can detect when the dot is black and send a
message back to the server which then computes the latency from it started rendering that
frame until the frame was displayed and the message was sent back. This is exactly the same
technique as described in section 4.7.
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Our willing test subject was Asgeir Mortensen, who used to play a lot of Q3 in his younger
days. He was asked to play the game for several minutes while the system was logging the
latency. The values from this test run are presented in table 6.1. We found that the median
L

m

was 46.72 ms. Using the formula established in section 4.7, the interaction latency with the
system is L = 1/f + L

m

= 1s/120 + 46.71 ◊ 1s/1000 ¥ 55.04ms.

Avg L
m

Med L
m

Med L
m

lo Med L
m

hi
47.98 ms 46.72 ms 43.75 ms 51.06 ms

Table 6.1: Measured latency for Mortensen’s quake 3 game at 120 fps

We did a few more tests with di�erent hardware in the lab before starting with the remote
tests. The results from these can be seen in figure 6.1 together with the Mortensen test. While
the outlier in Ljødal WiFi probably is mostly due to WiFi connectivity problems, the outlier
in the Mortensen test will be explained later in section 6.5. The general trend in the lab
environment is that median latency L

m

is about 47 ms.
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Figure 6.1: L
m

from playing ioq3 in the lab

6.4 Remote testing
Because of a rigid network policy at the University of Oslo, to perform our remote tests we
co-located the server used for all the previous tests with Blix Solutions [70] in Nydalen, Oslo.
Blix Solutions was kind enough to o�er us this service free of charge while working on this thesis.
The server’s IP connectivity is 1 gigabit/s which means that the server’s internet uplink should
not be an important factor for the latency measured.
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The testing location is a residential apartment on Grünerløkka, central Oslo. Internet here
is provided by GET which is a very popular internet provider in the Oslo area. We measured
the internet connectivity by using http://www.speedtest.net to be 51 megabit/s downstream
and 11 megabit/s upstream. Incidentally, the server this test was run against on speedtest.net
is also hosted by Blix Solutions.

We measured the ping round-trip latency between the location and the server we were running
the streaming engine on to be 7.103 ms when connected using an Ethernet cable and 10.025 ms
when connected using WiFi. This means that the WiFi added three additional milliseconds to
the round-trip. Tracing the route from the testing location and to the server using the tracepath
tool commonly available on Linux distributions, we found that there were 8 hops. Two of those
were inside GET’s network, one was portlane located at the NIX at the University of Oslo, and
three were routers inside Blix’ network.

To perform the tests we used two computers. One is an older AMD system (Phenom II
1050T) which is connected to the home router through an Ethernet cable, the other is a MacBook
Air from mid 2012. The AMD system is running Linux and has an AMD GPU supporting H.264
decoding enabled in Google Chrome. The MacBook Air is running OSX and has H.264 decoding
enabled in its GPU.

6.4.1 720p
WiFi (MacBook)
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Figure 6.2: L
m

from playing ioq3 remotely at 720p over WiFi

Normally, a graphical computer application runs at 60 frames per second. We see here that
at that speed, the median measured latency is 80 ms. Adding the 16 ms for the input wait, we
end up with an interaction latency of about 96 ms. In the next chapter, we will discuss how this
a�ects the human perception of the game.

http://www.speedtest.net
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As with the lab tests, we that there are a lot of outlier when we are testing WiFi. When
this happens, mostly because of packet loss, the user can experience some “lagging” before the
stream catches up with the live stream.

What is more interesting is that as we increase the frame rate, the measured latency de-
creases. We know from the discussion about latency in section 4.7 that the interaction latency
should decrease with the frame rate as the interval one frame represents is shorter, i.e., 1/f
seconds. In our engine, when a frame has finished rendering and is encoded it will be sent to the
client at once without waiting for the rendering thread to finish it’s next frame. In that sense,
frame rate should not a�ect L

m

, only L. We think the reason for what we are seeing is that the
browser is more “willing” to display frames faster if it receives more frames to always keep up
with the stream.

Since Q3 is an old game, modern hardware have no problem running it at very high frame
rates. We were even able to run and stream the game at 480 frames per second on the lab
hardware, but on the MacBook that proved challenging. However, running the game at 240
fps worked extremely well and with a very impressive L

m

of 50ms. At that frame rate the
interaction latency is 54.17 ms. Still, we see it as unrealistic that modern games would be able
to run at that frame rate as most are optimized for either 60 or 30 fps.

Ethernet (AMD)

60 90 120 240
Frame rate

0

50

100

150

200

M
ea

su
re

d 
La

te
nc

y

Figure 6.3: L
m

from playing ioq3 remotely at 720p over Ethernet

In this test we were running the game on a AMD Phenom II 1050T, bought in 2010. At
the time writing this, the computer is 4 years old and the only upgrade done on this machine is
to upgrade its GPU. The GPU on the system is a AMD HD7970, which is really fast although
it produces a lot of heat. The test is run on Linux, and has the advantage of being connected
through a Ethernet cable which, in the ping tests, had a round trip time to the server of 3 ms
less than the WiFi.
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Even though it had the advantage of better connectivity, the L
m

we measured was somewhat
higher than in the WiFi tests. There are several reasons why this may be. One is that the CPU is
older and does not have all the newer features of modern Intel CPUs. Another is that the H.264
decoder is on a discrete GPU, while the MacBook’s decoder is built into the CPU (QuickSync).
However, we have found no sources to back this claim.

In the case of 240 fps, the AMD decoder was not able to keep up with the stream and the
latency we measured was in order of seconds, not milliseconds. Still, the 120 fps test ran very
smoothly while having an L

m

of almost 10ms more than the MacBook on WiFi.

6.4.2 1080p
WiFi
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Figure 6.4: L
m

from playing ioq3 remotely at 1080p over WiFi

In the 1080p test, none of our test computers were able to decode the stream at any higher
frame rate than 120 fps. Even at 120 fps, we experienced a lot of jitter which also is visible in
figure 6.4 when looking at the di�erence in upper and lower median.

In general, we found L
m

for 1080p to be about 5 to 10 ms higher than for the equivalent
frame rate on 720p.

Ethernet

In this test, we can see the same gradual improvement by frame rate until we reach 120 fps. There
we see that the system is not able to play back the stream as fast as with the lower resolutions.
At such a high frame rate, the data is actually 1920◊1080◊3◊120 = 711megabytes per second
when the stream has been decoded to RGB.
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Figure 6.5: L
m

from playing ioq3 remotely at 1080p over Ethernet

6.5 Challenges observed during testing
6.5.1 Rate control

Figure 6.6: The Quake III level selection menu

In the previous section we saw some outlier that were hard to explain why happened. When
looking at the stream of L

m

samples while they took place we were able to pin-point exact types
of scenery causing them. The most obvious place where they happened was in the game menus
which were very unresponsive and changes in mouse position lagged far behind the actual mouse
movement.
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At first, this was though to be due to the game using an old rendering technique when
drawing the menus where it would only update sections with changes. Such a technique would
match poorly with the way our engine expects the game to render to several framebu�ers.

After reading through the source code of ioq3 we were able to dismiss this theory. It was not
before measuring the bandwidth used when playing the game that we discovered exactly why
we were seeing the e�ect. The reason for it was that because each frame when rendering the
menu is so similar to the previous, the H.264 encoder was able to encode it at a very low bit
rate, even though the encoder was asked to encode at constant bit rate. This is related to the
bandwidth issue we discussed in section 4.8.1, but to a more extreme degree.

While recording L
m

values we removed all samples from when we were in the menus, and
only selected those from when playing the actual game. When looking at the data, we noticed
that there were still some unexplainable outlier in the data set. Those are from when there are
no motion in the scene, e.g., when the player dies and the score board is rendered while the
camera is facing a wall or the ground.

Solving the challenge may be problematic as we then have to interfere with the encoder’s
rate control mechanism. A simple and naïve solution would be to detect that the output of the
encoder decreases and then add some padding in the MKV to overcome the browser bu�ering.
We see a few issues by doing that which includes sudden bursts in bit rate if the frame detected
to be tiny was just a fluke and not a part of a series of similar frames. If we then added the
padding, the encoder would still think that as it saved some bits in the previous frame it can
use those in the next one to increase the visual quality.

A better solution seems to be using temporal prediction scheme where the engine detects a
trend in well compressed frames and then starts to add padding. We have not looked into the
details of how this algorithm would be constructed.

6.5.2 Visual Quality

Figure 6.7: Floor texture which the encoder struggles with
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Some maps in Q3 have textures which the encoder struggles to encode properly and results
in poor visual quality of the stream when there is motion. This results in a rather funky visual
e�ect where some places in the map have very bad visual quality while other places have superb.
Figure 6.7 shows an example of the texture messing with the quality.

Another strange e�ect the player may notice is that while he is moving fast while looking
around, the visual quality may be low. But if the player stops, even for less than a second, the
quality progressively gets better. This is of course due to the use of constant bit rate where the
encoder is not able to cope with the major changes in scenery between the frames.

6.6 Perception of latency
How humans perceive the latency of a system is still not fully understood. There have been
several studies on the subject, but none, as far as we know, have been fully conclusive.

When talking about game latency there are two very di�erent situations they are mentioned.
One is the client/server latency, usually important when playing a game locally where it connects
to a remote server. In this kind of gaming, the game is just a client which renders the frame
while the server keeps all state. There have been a some studies into how the latency between the
client and the server a�ects this and methods of reducing the latency by doing local calculations
mirroring the ones happening on the server.

The second type of game latency is more related to the one we are studying in this thesis. It
is the time it takes from the user interacts with the game until he or she can see the e�ect on their
display. Usually, the frame rate at which the game run at is an important factor. Everybody
have tried playing a game which the computer running the game is too slow to handle, which
results in a choppy game play and it is not very pleasant experience. Solving the frame rate
challenge is often done by removing some complexity from the rendered scene.

For our streaming engine, the latency from the application rendering is of course inherited.
In addition to that time, we have added some latency from encoding the frame, sending it to
the client over a network, and then decoding it before displaying it. Because our client is just
a simple H.264 decoder, we can not utilize the local rendering technique used for multiplayer
games to lessen the e�ect of latency.

6.6.1 Previous Work
One recent study done by Jota et. al. [71] on mobile touch devices, strengthens the theory
that as latency increases, productivity decreases. They also found that the performance is more
severely a�ected by latency on smaller targets which matches closely the prediction made by
Jake Cannell in his blog post about latency in cloud gaming [72].

In Cannell’s blog post he discusses the feasibility of running games in the cloud and how
much latency is acceptable for the user. His key point is that gamers on consoles have been
playing games running at 30 fps for some time now, and while hardcore PC gamers used to play
at 60 fps would notice the di�erence, players seems to be contented. His findings is presented in
table 6.2.

300ms> games become unpleasant, even unplayable
200ms> delay becomes palpable

100-150ms limit of delay detection for full scene actions - camera panning and so on
50-60ms absolute limit of delay detection - small object tracking - mouse cursors

Table 6.2: Cannell’s latency table
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An article presented by Jarschel et. al. [73] concludes that the slower the gameplay in a
game is, the less latency a�ects the user. In figure 6.8 we can see that fast games, such as racing
games, have a much steeper slope on latency than slow and medium paced games such as soccer
and role playing games. However, they do not have any data for delays less than 80ms. Because
this figure have measurements at zero delay, it must represent the addition delay, and not the
actual delay of the game. Jarschel described the di�erent MOS values, where 5 is best and 1 is
worst, as:

While the delay is recognized in the racing simulation and rated with a MOS
value of 3, only some people detected it in the role play game and the soccer game
resulting in a MOS value of 4 for both.

Figure 6.8: Latency / Mean Opinion Score[73]

If we compare the results from both studies, we see that they do not agree fully. While
Cannell describes a limit for detectable full scene actions to be in the range of 100ms to 150ms,
this would result in a MOS value of 2 - 2.5 for fast paced games according to Jarschel’s study.

6.6.2 Considering Quake 3 Latency
Earlier in this chapter, we measured the latency of playing Quake 3 over the Internet. While
both the server and the client was located in Oslo we managed to get the latency when running
at 60 fps down to 96 ms.

If we make the assumption that Quake 3 is a fast paced game, we find that while this is well
within the limit of delay detection from Channell’s table, it scores somewhere between 3 and 2.5
in Jarschel’s MOS scale. If we were to remote the delay from local play, e.g., 2

f

at 60 fps, the
delay would be 64 ms, which probably would yield a MOS of 3.5.

On the 120 fps WiFi game, the measured latency minus one frame would yield a delay as
low as 53 ms. If the numbers we have gathered from measuring the latency of Quake 3 are
comparable with the delays from Jarschel’s study, we must say that our system is indeed able
to keep the latency within an acceptable range between the recognizable 3 MOS and detectable
4 MOS. This fits well with how we would describe the subjective experience.
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6.6.3 Errors
There may however be flaws in the data we measure. To measure latency, the server sometimes
tags a frame with a black dot in the upper left corner. The client is programmed to detect this
black dot using JavaScript and send a message back to the server. The server can then calculate
the time it took from it started rendering that frame until it was displayed in the client browser
plus the time it took the signal to reach the server. Frames which are not tagged will have a
green dot instead, as visible in figure 6.6.

Errors may include that the JavaScript is not able to detect the white dot. We see this
especially on higher frame rates, such as 120 fps, where the JavaScript does not seem to keep up
with the pace. As the JavaScript is just sampling at what may be random intervals, we know
that it will not be able to give accurate results and may most of the time detect tagged frames
later than when they actually appeared on the client display.

6.7 Summary
We found that running ioquake3 on a remote server and streaming the video output to a client
web browser located in a typical Oslo home environment is indeed possible and is quite enjoyable.
It is our opinion that the game ran smoothly at 60 fps, while we preferred the experience of
running it at 120 fps.

To get the best performance on the hardware tested, we found that playing the game at
720p is required. Only then was the client able to decode the stream fast enough at 120 fps to
get close to an L

m

of 60 ms.
The challenge with dropping bit rate discussed in section 6.5.1 seems like a problem which

is possible to fix, but requires some additional research in understanding the exact nature of it.
The naïve quick fix by just padding every frame which high compression seems like a good start,
but will probably not be the best solution possible.

When comparing the latency we were able to measure of Quake 3 running inside the streaming
engine to some studies of perception of latency, we found that our system scores somewhere
between 3 MOS and 4 MOS. According to a statement in Jarschell’s study, users reported that
a MOS value of 3 was recognizable, and a MOS value of 4 was detectable.
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Chapter 7

Summary and Conclusion

7.1 Summary

In section 1.2, we defined the problem which we tried to solve in this thesis to be designing and
implementing a high performance, remote computing service for running graphical applications,
where all the client needs is a common web browser with no extensions or browser plugins
installed.

To achieve this, we decided to use the H.264 video encoding format for encoding the source
application framebu�er. The main reason for selecting H.264 was that many web browsers
support this video format and can readily decode it when used through the HTML 5 video
element.

7.1.1 Hardware H.264 encoder
In chapter 3 we tested NVENC, Nvidia’s H.264 encoder, and compared it to x264, a popular
open source H.264 encoder. There, we found that in terms of visual image quality, the encoder
performed very similar x264 at the superfast preset. We also found that NVENC is able to encode
a Full-HD (1080p) at more than 140 fps when encoding in a sequential setup. A sequential setup
is a configuration where we always wait for a frame to finish encoding before we start encoding
the next one. Using a pipelined approach, we were able to push the encoder up to more than
200 fps. However, in a live streaming scenario with the latency requirements we have, only
sequential encoding is viable. Figure 3.4 shows the encoding performance for 720p, 1080p, and
2160p. Since both NVENC and the software x264 encoder were able to encode at frame rates
higher than 60 fps, we were able to conclude that it is viable to use H.264 as video encoding
format for our streaming service.

In terms of visual quality, we discovered that NVENC produces a visual frame quality of
about 0.96, judged by the SSIM algorithm (figure 3.6). This value was later confirmed in the
Bagadus case study (figure 5.5). We also confirmed our suspicion that the NVENC, as a GPU
encoder, uses much less CPU resources (figure 3.8).
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7.1.2 Streaming Engine
The main challenge in chapter 4 was to actually design a streaming engine able to read an
OpenGL framebu�er, encode it, and send the resulting H.264 stream to a client web browser.
Because the OpenGL framebu�er is stored in RGB, we had to translate it into NV12 which is
the format both NVENC and x264 accepts as input. We first used an OpenCL compute kernel
to do the conversion, but later we settled with an OpenGL compute shader in an e�ort to keep
the API interops to a minimum as NVENC must be accessed through CUDA.

A di�cult task we managed to tackle was to transfer the converted NV12 bu�er from GPU
memory to system memory for the x264 encoder. We tested several approaches which all were
slow. In the end, we determined that using a pixel bu�er object (PBO) and glReadPixels was
the only way to get a su�cient frame rate of 100 fps at 1080p.

To enable the web browser to stream the video from our engine and send user interaction
input back to the server we created a simple HTML page. This page included some JavaScript
for capturing mouse and keyboard input and mouse input and sending it back to the server
using a WebSocket. The HTML page also included a simple HTML 5 <video> element which
opened a HTTP stream for the streaming engine output. To lower bu�ering done by Google
Chrome, we discovered that if we increase the frame rate claimed in the MKV with 500% of the
actual stream frame rate, we were able to save about 10 ms of latency at high frame rates.

The way we managed to measure latency was two-folded. Part of it we were able to calculate
from knowing how the pipeline was designed. The other part was measured by tagging some
frames sent with a green area in the upper left area of the frames. Using JavaScript, we were
able to detect changes in this area and send a signal back to the server when those changes were
detected. The server would then know when those changes actually occurred on the server side
and calculate di�erence L

m

. The process of measuring latency is described in section 6.3.
When trying to decrease the measured latency, we found that increasing the stream bit rate

gave good results. Going from 8 to 14 mbps, we were able to shave of another 10ms of latency.
Increasing the bit rate any further did not have any significant e�ect on the measured latency
(section 4.8.1). Obviously, increasing the frame rate also decreased the latency. However, it did
also increase bu�ering. This e�ect can be seen in table 4.8.

After having implemented the streaming engine, we measured that it did not use much
resources. On the quad-core hyperthreading enabled CPU we ran the tests on, we found that on
a 60Hz stream it would only use about 60% of one core when NVENC was used for encoding.
When x264 was used, the streaming engine with its encoder used more than 2 cores. Without
having profiled the application properly, we concluded that the streaming engine did not inhibit
the source application at a high degree when using the NVENC encoder.

7.1.3 Bagadus virtual camera
In the Bagadus test-case we verified that the system actually worked by running the Bagadus
virtual camera application by Vamsidhar. The program ran smoothly at 30 frames per second,
and we were able to send both mouse and keyboard input to the application.

We found that using NVENC both reduced CPU and power usage. The CPU usage of
running the system through the NVENC and running it through a dummy no-operation encoder
was exactly the same. The lowered CPU usage meant that we were able to run more instances
of the program on the same machine, compared to using the streaming engine’s x264 back-end.
As for power usage, we found NVENC used almost 40W less than x264, which could lower the
cost of running the service.
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When we tested the video quality produced by the two encoders, we confirmed the results
from chapter 3. x264 produced somewhat lower SSIM results than the previous tests, but still
x264 superfast and NVENC produced comparable quality.

7.1.4 Quake III Arena
In the Quake 3 test, our goal was test the latency as experience by the user of the system.
To do this, we tagged some frames with a distinctive black dot in the upper left corner which
the JavaScript client was able to detect. When the JavaScript code detected the dot, it sent a
signal back to the server which then could calculate the time from marking the frame until the
JavaScript detected it.

The results from running it in the lab were promising for further testing outside the lab.
Latency measured there was below 50 ms. The remote test was conducted from a residential
apartment in central Oslo, while the server was located in Nydalen Oslo.

We tested streaming both 1080p and 720p with and without WiFi, and found that the latency
was highly dependent on frame rate. At 720p, we were able to get the measured latency down
to 50 ms when running Quake 3 at 240 frames per second.

During testing we observed a few new challenges. One was that when streaming the menus,
the latency increased as the bit rate dropped. The reason for the bit rate dropped was due to the
small di�erence between each frame rendered resulted in very high compression from the encoder.
We already knew of the e�ect of low bit rate in the browser, as discussed in section 4.8.1, but
we had not experienced bit rate drops in our earlier tests. We made no attempts to solve this,
but believe that padding small frames with null-data may be a plausible, but naïve, solution.

The other problem with the system we discovered was that when the scene contained high
entropy textures, the visual quality of the encoded stream lowered. When this happens, a user
may experience that the image becomes blurry where there is motion. The quality quickly
regains if the motion stops. The problem of lowered quality is due to constant bit rate where
the encoder increases quantization to compensate for the higher entropy in the frames. We did
not attempt to solve this problem.

7.2 Contributions
During this thesis we have made several contributions related to low latency streaming and high
performance computing.

The streaming engine
Our main contribution is the design, implementation, and analysis of the streaming engine,
as described by chapter 4. This engine is able to stream OpenGL applications running at
a server to a web browser client with very low latency at high frame rates.

Analysis of NVENC
We performed extensive testing of Nvidia’s NVENC hardware encoder on two hardware
generations: Kepler and Maxwell. We compared the encoder to the open source x264
encoder in terms of visual quality, speed, and power consumption.

Downloading of OpenGL bu�ers
For the x264 powered back-end, we needed to download an OpenGL bu�er containing the
frame encoded as NV12 from the GPU to the system memory. We found that using a pixel
bu�er object with the asynchronous glReadPixels call was much faster than mapping the
bu�er using glMapBu�er or similar.
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Techniques for streaming to the browser
To be able to stream video to the browser we had to come up with a series of techniques
for mitigating the browser bu�ering strategy. This included study of the e�ect of MKV
frame rate / time codes, and bit rate.

Running Quake 3 in the web browser through a video stream
Others have compiled Quake 3 for running directly in the browser. This uses the local
GPU to render the game. Instead, we stream the game, rendered at a remote computer,
to the client web browser.

Measuring video latency
To measure the latency of our system between the server and the client’s display, we had
to come up with a way of tagging frames and detecting the tags in the browser. This was
achieved through visual tags and reading a section of each video frame from the <video>
element through a <canvas> to the JavaScript code, then signaling this back to the server.

Poster at GTC 2014
In march of 2014, we entered Nvidia’s GPU Tech Conference (GTC) with a poster [17]
describing the process of streaming OpenGL framebu�ers to a client web browser. The
web browser used was Google Chrome without any extensions or plug-ins. The only
requirement to the web browser was that it supported the HTML 5 video-element and
WebSocket connections.

Paper in proceedings
We have a paper in proceedings for the ICM conference of 2014 [18]. This paper is very sim-
ilar to chapter 5, and focuses on scaling systems using our streaming engine and NVENC.

7.3 Conclusion
Our conclusion is that it is possible to create a streaming engine able to stream graphical heavy
programs from a remote server to a client using only commodity hardware and open technologies.
We achieved this by using Nvidia’s NVENC hardware H.264 encoder, and HTML 5 elements
such as the <video> element and WebSockets.

Through extensive testing of the Nvidia NVENC encoder, we found that the encoder is able
to encode at high speeds with low power usage. When we compared the resulting video stream
quality to x264 using the SSIM algorithm, our finding was that NVENC’s quality is comparable
to x264 running with the superfast preset. Thanks to NVENC being located close to the GPU
memory, we were able to run the streaming engine at a much higher frame rate than when using
x264. This was due to the challenge of downloading the framebu�er to system memory for use
with x264.

Using the streaming engine we designed, we were able to run the Bagadus virtual camera
at 30 fps, the frame rate the program was designed for. Through testing, we confirmed that
using NVENC resulted in almost no additional overhead for encoding, while x264 used twice as
much CPU resources. By using less CPU resources, we were able to run more instances of the
program on a single computer than when we used x264 for encoding. We also confirmed the
visual quality from chapter 3 tests where we found that NVENC is comparable to x264 running
with the superfast preset.
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When we tested Quake 3, we discovered that we were able to push the latency from rendering
a frame until it was displayed on a client down to 60 ms. We managed this by running the service
at 720p resolution at a high frame rate of 120 frames per second. With a frame rate of 240 fps, we
were able to decrease this to 50ms. By comparing the latency we measured to studies in human
latency perception, we found that our system lies between the detectable and the recognizable.
This fits well with our subjective experience of using the system.

When we tested Quake 3 we also discovered two new challenges: dropping bit rate, and
dropping visual quality. We made no attempt to solve them, but discussed a plausible solution
for one of them.

7.4 Future work
We see several parts of the streaming engine which could benefit from future studies. Below we
have included a list of them with a short description.

• The streaming engine does not support audio. Including audio presents several new chal-
lenges, including synchronizing it with the video.

• Changes directly to the browser to better facilitate low latency streaming, mitigating the
need for the hacks we had to perform.

• Look into ways of better controlling the bit rate post encoding, as discussed in section 6.5.

• Creating a stand-alone client and compare the latency possible to achieve when better
controlling the client to the latency in the web browser.

• Finding a better, non-intrusive, way of measuring the latency in the web browser.

• Find ways of automatically enable programs for streaming through the engine without hav-
ing to compile it into the source application. This could be done by using LD_PRELOAD
(man 8 ld.so) and hooking the bu�er swapping call.

• Research ways of sharing resources, e.g., textures, shaders etc., so that several clients can
be connected to the same server, while still having their own unique “instance”. This could
enable much better scalability.
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Appendix A

WebSocket

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-------+-+-------------+-------------------------------+

|F|R|R|R| opcode|M| Payload len | Extended payload length |

|I|S|S|S| (4) |A| (7) | (16/64) |

|N|V|V|V| |S| | (if payload len==126/127) |

| |1|2|3| |K| | |

+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +

| Extended payload length continued, if payload len == 127 |

+ - - - - - - - - - - - - - - - +-------------------------------+

| |Masking-key, if MASK set to 1 |

+-------------------------------+-------------------------------+

| Masking-key (continued) | Payload Data |

+-------------------------------- - - - - - - - - - - - - - - - +

: Payload Data continued ... :

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +

| Payload Data continued ... |

+---------------------------------------------------------------+

Figure A.1: WebSocket frame. https://tools.ietf.org/html/rfc6455#section-5
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Appendix B

Quake 3

int main ( ) {
// . . .
Sys_Plat formInit ( ) ;

// . . .

Com_Init ( commandLine ) ;
NET_Init ( ) ;

CON_Init ( ) ;

while ( 1 ) { // game loop
IN_Frame( ) ;
Com_Frame( ) ;

}

return 0 ;
}

Listing B.1: Original main function for ioQuake3
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struct Q3 : pub l i c RenderCl ient {
void i n i t ( ) { // i n i t , run a f t e r a GL con t ex t i s a v a i l a b l e

// . . .
Sys_Plat formInit ( ) ;

// . . .

Com_Init ( commandLine ) ;
NET_Init ( ) ;

CON_Init ( ) ;
}

void mouse ( int x , int y ) {
// . . . save mouse input

}

void key ( unsigned char k , int x , int y ) {
// . . . save key input

}

void render ( ) { // game loop func t i on
// . . . send input to game event queue

IN_Frame( ) ;
Com_Frame( ) ;

}
} ;
int main ( ) {

auto c l i e n t = std : : make_shared<Q3>() ;
// 1080p@120Hz running at por t 8088
setupGLS (1920 , 1080 , 120 , 8088 , c l i e n t ) ;

}

Listing B.2: Modified main function for ioQuake3
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