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Abstract

Sports content is in significant demand in today’s society. However, as the
number of sports broadcasts is too high for anyone to consume, highlight
reels that point to the most important events of a game are often used as
a substitute for watching the entire match. To make these highlights, we
must first find the events that are most interesting. Today, events from
sports games are usually manually annotated by human operators, which
is an expensive and time-consuming task. Recent research has shown that
machine learning might be used to find these events without the need for
any human intervention, potentially saving high costs of money and time.
However, most approaches use only visual information to detect events,
leaving out other valuable information like sound.

This thesis presents multi-modal approaches to spotting and classific-
ation of events in soccer games. We experiment with audio and visual
information and explore different ways to combine these. We extract au-
dio information through spectrograms and create audio-visual features
through concatenation with pre-computed visual features. We evaluate the
performance of the various approaches on the soccer-specific dataset Soc-
cerNet [29], and compare the results to using only audio or visual inform-
ation alone. We compare the results to state-of-the-art models for action
spotting on SoccerNet. Furthermore, we analyze how the amount of data
the models use for predictions influence the performance. For the task of
spotting, we also analyze the impact of increasing the required tolerances
of temporal accuracy for the predictions.

Our experiments show that multi-modal (audio and visual) approaches
are beneficial for several use cases and that they show great potential for
further utilization. We found that audio-visual approaches significantly
improve performance for certain types of events, but that the performance
depends on the configuration for other events. For classification, the
audio-visual approach that uses the softmax average of an audio and a
visual model increases the performance by 1.64% compared to the visual
model alone. For spotting, the audio-visual approach through feature
concatenation increases the performance for goals significantly, but does
in some cases have a negative effect on the performance for other events.
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Chapter 1

Introduction

1.1 Motivation

Watching videos is a very popular activity in today’s society, and there is
a huge amount of video content available. You can find all kinds of videos
online, and streaming videos has become easier than ever with the growing
availability of internet access. On YouTube alone, there is consumed over
a billion hours of video every single day [1]. A lot of this content is sports,
and in recent years, there has been a growth in both searching and watch-
time of sports "highlight" videos. From 2016 to 2017, the growth of watch-
time was 80 percent, which shows that viewers increasingly seek the most
important parts of the games [4]. 80 percent of sports viewers also say that
they use an extra device to check out stats, live scores, and related videos
while watching a game [4]. In other words, the fans are not only interested
in the full game streams, but seek additional information and highlights as
well.

The popular content is made available for the fans through annotations
and tags in the videos. Usually, most of these annotations are manually
tagged1 in a costly and time-consuming operation. People have even tried
to use existing metadata from media sites for offline operations [39], but
this approach introduce large delays. However, with a huge amount of
content, these annotation operations might not be possible to do manually.
With efficient use of automatic action spotting2, it may be possible to extract
clips from the videos without the need for a human operator to manually
go through all of the data. The tags can be used to extract valuable and
appreciated data that otherwise would be hard or time-consuming to find.
This would give value to different actors, such as the fans, the broadcasters,
or even the teams themselves. This would especially help leagues and
sports with fewer resources, as big leagues already have great productions
of content and stats.

1Using for example Forzify tagging: https://forzasys.com/videos/forzify-tagging-
pluss-small.mp4

2Spotting and detection are both used in the literature to describe the concept of
predicting both the class and temporal location of an event. They are therefore used
interchangeably throughout this thesis.
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There are many possible approaches to create an efficient model for
automatic event detection through machine learning. This is a complex
task, and different approaches have been proposed [18, 29, 58, 76].
However, most approaches utilize only one modality to detect events,
which means that useful information might be left out. For this thesis, we
focus on the detection and classification of events in soccer videos, but we
believe that our findings will generalize to other sports as well.

1.2 Problem Statement

Annotations of sports events are today manually tagged, which is an
expensive and time-consuming task. With the use of well-performing
automatic event spotting, the availability of popular content could increase
and give a lot of value to the fans. We observe that many event detection
approaches only use visual information, therefore this thesis aims to
answer the question:

How do audio-visual approaches perform for automatic soccer event
spotting and classification?

Based in this main research question, we further define three objectives:

1. Research and develop suitable audio-visual approaches for event
spotting and classification in soccer.

2. Analyze the performance of the approaches using the SoccerNet
dataset [29].

3. Compare the results of the audio-visual approaches to single-modal
approaches, and to the current state-of-the-art for event spotting in
soccer.

1.3 Scope and Limitations

As each sport has its own set of special events, we decided to only focus
on soccer for the entirety of this thesis. However, we do believe that the
methods presented here are transferable to other sports as well. We limit
ourselves to use the open dataset SoccerNet [29] as it is currently the largest
public dataset for event spotting in soccer matches. This choice of the
dataset also affects the events we predict, as it is tied to those included
within SoccerNet ("goal", "substitution", and "card"). Our computational
ability is limited by the hardware we have available. Therefore, for visual
information, we use the pre-computed visual features supplied with the
SoccerNet, and not the raw videos, as this has a significantly lower demand
for computing power. We could have chosen to compute similar features
ourselves, as this is a pretty straightforward approach with available
off-the-shelf methods. However, it would not have made any valuable
contributions to our work, and testing models with the supplied features

2



could also be more beneficial for comparison with other approaches on the
same dataset.

1.4 Research Method

There are several different methods of how to do research. For this thesis,
we have based the research method on the Association for Computing
Machinery’s (ACM) research methodology. The fundamentals of computer
science and computer engineering were reported in Computing as a
Dicipline [21] in 1989. The report was created by a task force assigned
by ACM Education Board, and it describes three paradigms; theory,
abstraction, and design. We will now describe the three paradigms, and
explain how this thesis is created in accordance with these.

• Theory The theory paradigm is related to mathematical coherent and
valid theory. It includes four stages. These are (i) characterize objects
of study (definition), (ii) hypothesize possible relationships among
them (theorem), (iii) determine whether the relationships are true
(proof), and (iv) interpret results.

• Abstraction The abstraction paradigm is rooted in the experimental
scientific model. In the report, this includes four stages. These are (i)
form a hypothesis, (ii) construct a model and make a prediction, (iii)
design an experiment and collect data, and (iv) analyze results.

• Design The design paradigm is closely related to engineering, and
it includes four stages. These are (i) State requirements, (ii) state
specifications, (iii) design and implement the system, and (iv) test the
system. This relates to processes for software system development or
construction of physical devices.

Our work consists of researching and developing audio-visual approaches
for soccer videos and analyzing the results. We prototype our approach
based on a belief that audio-visual approaches would perform better than
approaches using only one of the modalities. We design experiments
to test this and analyze the results for different metrics. This supports
the abstraction paradigm well. Furthermore, the design paradigm is
supported, as the approaches we develop and test require a certain
performance to be useful, and we especially work in accordance with this
paradigm for the development of the audio feature extractor. We also touch
upon the theory paradigm through the use of machine learning concepts
and different hyperparameter optimizations for the models.

1.5 Main Contributions

As presented by the problem statement in Section 1.2, we want to
assess the performance of multi-modal approaches for action spotting and
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classification. During the work of this thesis, we make the following main
contributions:

• We research machine learning approaches for event detection and
classification, and develop multi-modal approaches for these tasks.
Specifically, we develop audio-visual approaches for soccer videos
from the SoccerNet dataset [29], which includes the event types
"goal", "card", and "substitution". We create an audio model which
extracts audio features from the dataset through spectrograms and
we use these to create concatenated audio-visual features. We
experiment with different ways of fusing modalities and test both
late fusion of models at decision time and early fusion through the
concatenated features. We experiment with various hyperparameters
and select optimized configurations for the models.

• We experiment with the selected models on SoccerNet and analyze
the performance on the test split of the dataset. We test models for
both event detection and classification, and assess the performance
for several metrics. We show that the audio model extracts valuable
features and that the concatenated features work well for action
spotting on the dataset.

• We compare the performance of our multi-modal approaches to
single-modal approaches and show that there is a great benefit, and
further potential, for using more than just visual information. We
present results showing that for the classification task, the best results
are achieved with an audio-visual model, outperforming the best
visual results from our experiments with over 1.5%. Further, we show
that for action spotting, the performance with concatenated audio-
visual input is superior for goals for all tested configurations. For
other events, the results improve with concatenated input for some
of the configurations, but it could also in some cases have a negative
effect on the performance.

Our contributions are interesting in the context of the problem statement,
and we present results valuable to assess the performance of audio-visual
approaches. We show that the potential of multiple modalities are great,
but that it might be event specific how it performs in some situations. This
work gives a strong foundation for further work with multi-modal models.
Furthermore, our results are presented in a paper which is under review.

1.6 Outline

Chapter 2 - Background In the background chapter, we will introduce
concepts and terminology needed to understand the further work in this
thesis. We will present relevant work in the field of event detection in
videos, and describe the key concepts of the approaches which are now
considered state-of-the-art. This chapter will provide information about
the foundation of which this thesis will build upon.
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Chapter 3 - Methodology In the methodology chapter, we will present
the dataset that is used in the thesis. It will be described which
preprocessing steps that are necessary for the dataset to fit the task, and
how the dataset is being used. Further, we will describe different relevant
models, and select which we want to experiment with. We present relevant
hyperparameters that could influence the performance of the models
and our approach to selecting these hyperparameters. We also present
how different modalities can be fused together in one model, and which
approaches we have experimented with for the models in this thesis.

Chapter 4 - Experiments and Results In the experiments and results
chapter, the results from our experiments with the models will be
presented. We will inspect the performance of the models and observe
how they perform for several metrics to gain insights into how different
modalities affect the models. The model’s strengths and weaknesses will
be highlighted, and we will try to understand why the models performs
as they do. We present results for both action classification and action
spotting, and assess how multi-modal approaches perform compared to
single-modality approaches.

Chapter 5 - Conclusion In the conclusion chapter, the work of the thesis
will be summarized, and the insights and contributions will be presented.
Further, it will be discussed possible future work related to this thesis, and
what we hope to see fulfilled in the future.
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Chapter 2

Background

Our main purpose is to find a model that can automatically detect events
in soccer games. We would like to be able to feed our model with audio
and visual information from a soccer game, on which our model would
identify that certain events happen and tag at which point in time the
events occurred. To create this model we will use machine learning.

In this chapter, we first present the needed terminology to read and
work with machine learning. Then we will introduce what is done in this
field until now, and what is active areas of research, in Section 2.8. The
related works will help gain insights into which approaches give the best
performances, and what the main challenges in this field are today. We will
present general action recognition work before we describe work done on
action detection in general, and for soccer videos in particular.

2.1 Video annotation

Annotations of sports events are today manually tagged, and this might be
expensive and time-consuming. Today the process of tagging requires an
operator to watch the whole game, and even if the operator watches several
games simultaneously, this takes a lot of time. In systems like Forzify
tagging plus, the process is split into two steps. A first-level operator
watches one or several games and tags events in the games as they happen.
After this, a second-level operator tunes the tags with exact start/stop
timestamps and relevant metadata [2]. The tagging task is expensive with
a two-level approach, but if the initial tagging could be automated the
amount of work could be reduced. This would make the tagging process
more efficient.

2.2 Event Definition

Events can be defined in several ways, and the Cambridge dictionary
defines it as "anything that happens, especially something important or
unusual". But is it obvious exactly when an event occurs? Sigurdsson et
al. [68] did an experiment showing that most of the time people agree on
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where the center of an event is in time, but that opinions on the start and
ending points of the event is much more diverse. This could potentially
influence the result for event detection a lot in general, since the event
proposal often will be checked against some defined true timestamp for
the event. For this thesis, it should not be a big problem, as the events
are tagged with an anchor at a single point in time. This eliminates the
problems with disagreement around starting and ending points, and keeps
only the center, which most people agree on.

2.3 Action Recognition

Action recognition is the task of identifying different actions from video
clips. The action may, or may not be performed throughout the whole
video [31], and the goal of action recognition is to identify the actions
of one or more objects from a series of observations [72]. The input is
often an image or a video, and it is normal to classify for only one target
action. There are also datasets containing multiple classes in the same
image/video.

2.4 Action Detection

While action recognition is classifying an action that is present, action
detection also has the aspect of locating when the action of interest
happened in space and/or time [41]. This means that to get action detection
right, you would have to both classify the right action and mark the
temporal interval of which this action took place. Action detection is also
referred to as action spotting, and the terms are used interchangeably in
this thesis.

2.5 Machine Learning

Machine learning is a field in computer science where algorithms are used
to parse data, learn from it, and create a model that should be able to
predict something [19]. The algorithms find patterns in the datasets, and
should be able to automatically learn from the data without being explicitly
programmed how to do so [79]. We will now go through some of the core
concepts of Machine Learning.

2.5.1 Supervised Learning

Supervised learning is the most common way of using Machine Learning
today [80]. It is recognized by the data, where each data point is paired
with a label that states the correct output for the data point. This allows the
algorithms to search for patterns in the data, and try to generalize a model
which predicts correct output for the given input.
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2.5.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning does not use data
labeled with the desired output. This gives unsupervised learning different
areas of use. It can be used to reduce the dimensionality of a dataset, gain
insights into the structure of the data before a classifier is designed, find
groups of data points with similarities (clustering), and to detect noise or
outliers in the data [36, 55].

2.5.3 Classification

Classification is the task of assigning a class to a given input. This is
typically done through a model trained with supervised learning. We
distinguish between three types of classifications.

1. Binary classification is the task of predicting between two possibilit-
ies. This is typically if something is, or is not, something. An example
is if a fingerprint to unlock your phone is recognized as your finger-
print or not.

2. Multi-class classification has a given number of classes, and is to
classify which of the classes the input belongs to. It is normal to
calculate some kind of probability-score for all the potential classes
and choose the class with the highest value as the answer. But it can
only be chosen one.

3. Multi-label classification is similar to Multi-class in the way that
it has a given number of classes available, but is different because
several classes could be predicted. The prediction of one class does
not exclude the prediction of another class. An example could be face
recognition in a photo featuring several people. The classifier would
have to predict, and then suggest all the persons found.

2.5.4 Non-maximum Suppression

Non-maximum Suppression (NMS) is a way of reducing the number of
predictions for a model. This is done to remove predictions that are
close to each other, which then could be considered redundant. What is
considered as "too close" is decided by the user of the algorithm, and is
set through a threshold. The algorithm starts with the original predictions
with confidence scores and selects the one with the highest score. Then,
each of the other predictions considered to overlap according to the given
threshold is removed. The one with the highest score is moved to the
list of output predictions. These steps are repeated with the remaining
predictions, and it continues until all predictions are removed from the
original list. The list of output predictions we are left with has then no
predictions closer to each other than the threshold limit.
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2.5.5 Regression

Regression is also a task associated with supervised learning. In regression,
the model predicts an answer to a given question, but does not predict a
class. The answer is not limited by pre-given classes, and often predicts a
number. An example is a model that predicts the price of a car, given some
attributes that describe the car.

2.5.6 Dataset

A dataset in Machine Learning is a set of data points, stored in the same
format so that a model can understand it. In the context of supervised
learning, the dataset would consist of both the data points and the
corresponding classes which the data points belong to. A dataset has
several use cases, and it is often split into three subsets with different
purposes. A training set, a validation set, and a test set. These three should
be exclusive and without overlap.

• The Training set is used to train the model. The data is fed into the
learning algorithm, which finds patterns and learns from the data.

• The validation set is used to tune hyperparameters, avoid overfit-
ting, and generally try to make the model generalize from the training
data as good as possible.

• The test set is only used at the end when testing the performance of
the model, and is not seen before that. That is because we want to see
how the model performs on completely unseen data, and should be
representative of how the model will perform in the real world.

2.5.7 Overfitting

Overfitting is when the model fits well on the training data, but does not
generalize properly to other data. It often occurs if the model is trained for
too long, so the model adapts too much to the training set. This is a problem
as the goal of training a model is not to make it perform well on the training
data, which we already know the class of, but to perform well on unseen
data. Therefore we use the validation set to tune the hyperparameters to
avoid overfitting the model. The performance on the training set should
ideally not be much better than on the validation set, but it is not unusual
to see a small difference in favor of the training set. Figure 2.1 shows the
difference between an underfitted, a robust, and an overfitted model.

2.5.8 Principal Component Analysis

Principal Component Analysis (PCA) is a method to reduce the number of
dimensions for data. The approach is a form for feature extraction, which
means that instead of just removing features feature elimination, the original
features are combined and reduced [8]. This way, a new set of features are
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(a) Good fit (b) Overfitted

Figure 2.1: Example of a model that fits well vs an overfitted model. This
shows that it is not good to adapt to much to the training data.

generated based on a combination of the old features, and the dimensions
are reduced by keeping as many of the new features as wanted.

2.5.9 Neural Networks

The idea of a neural network in machine learning is loosely based on the
actual neural network of the human brain. You have many interconnected
nodes, which alone only performs simple processing steps. The nodes are
spread out within different layers, where the data moves through these
layers while doing calculations in the nodes. The connections between two
nodes in different layers are assigned with a number called a "weight" [33].
The number between all connected nodes between two layers makes the
weights between the two layers. Figure 2.2 shows how the nodes in a
neural network are connected with the nodes in both the previous and the
next layer.

The weights between the two layers define how much the data sent
through the connections is to be considered when doing calculations in
the node. The node receives data from each of its incoming connections,
uses the data as input of a linear function, before the result is passed to a
nonlinear function called an activation function. This calculation gives the
node a number, and if the number is considered big enough the node "fires",
and sends the number to its connected nodes in the next layer. Figure 2.3
shows how a single node is working. The nonlinear function is necessary
to avoid that the result just collapses to a big linear function. A popular
nonlinear function is the ReLU function, which is defined in Equation 2.1.

ReLU(x) = max(0, x) (2.1)

When we train a neural network we need a loss function and an
optimization method. The task of a loss function is to give an evaluation of
how well the algorithm models the dataset [37]. This creates a foundation
for the learning in the network, as the optimization method uses the result
of the loss function to optimize the model. One of the most popular
optimization algorithms is the gradient descent. It updates the learnable
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Figure 2.2: Model of a neural network with one input layer, two hidden
layers and an output layer.

Figure 2.3: Model of the workflow for a typical single node in a neural
network

weights through an iterative process where the gradients are used to move
towards the minimum of the loss function. Gradient descent is formally
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defined in Equation 2.2.

wt+1 = wt − α∇w J(wt) (2.2)

Where α is the learning rate, J is the loss function, and ∇w J(wt) is the
derivative of the loss function w.r.t w.

2.5.10 Convolutional Neural Networks

A convolutional neural network takes an image as input, and is able to
capture spatial and temporal information from the image through the use
of relevant filters [65]. The filters are implemented as kernels that convolve
over the image and assigns a value to the center pixel through calculations
with the surrounding pixels. The principle is shown in Figure 2.5. This will
be done for each filter you want to convolve over the image, and for each
filter, the output will be a feature map, as shown in Figure 2.4. You can see
that the dimensions of the output layer is smaller than in the input layer.
This is because the kernel starts in the corner, as you see in Figure 2.5, and
the outer pixels will then be lost since the kernel describes the central pixel
of the kernel. This can be handled by zero-padding the image, so the center
of the kernel begins in the corner of the original image.

Figure 2.4: Convolution for input size 3x8x8 with 4 filters of size 3x3x3,
resulting in 4 feature maps of size 6x6.

2.6 Spectrograms

Spectrograms are a way of visualizing sound by showing the amount of
the different frequencies over time. The decomposition of a sounds signal
frequencies is extracted through a Fourier Transform [26]. The visual
representation will show both which frequencies and the amplitude of
them at each moment in a timeline. An example of such a representation
is shown in Figure 2.6. The Mel scale [54] is often used for the frequency
scale. This is done to better match the distance in the scale to how the
distance sounds to humans, since the difference between 500 Hz to 1000 Hz
is much more noticeable to humans than 7500 Hz to 8000 Hz, even though
the change in Hz is the same. [27]
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Figure 2.5: Illustration of a convolutional operation. The convolutional
kernel shifts over the source layer, filling the pixels in the destination. The
pixels interacting with the kernel, as well as the kernel itself, are marked
blue. The red pixels illustrate the reduction of size from input to output
when the input is not padded.

Figure 2.6: An illustration of a spectrogram. The x axis is time, and the y
axis is Hz. The color represents amount of the given Hz at the given time.

2.7 Transfer Learning

Transfer learning is the concept of using a model that is trained for a
task as a basis for another model with a different task [9]. This means
that instead of randomly initializing the weights of a new model, you use
the weights found by another model as a basis. If the task of the two
models is somewhat similar this might lead to a head start in the training
of the new model, as some of the insights from the other model could be
relevant. In the Figure 2.7 some potential benefits are illustrated, and we
can see that the starting point is higher, the model learns faster, and that
it ends up converging with better performance. This is just a hypothetical
comparison, but it still gives an illustration of the benefits we might get
from using transfer learning.
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Figure 2.7: Illustration of three ways in which transfer learning might
improve training. The three possible improvements are higher start, slope
and asymptote.

2.8 Related Works

In this section, we will describe work already done that is related to this
thesis. We will first describe some relevant datasets and the improvements
in this field in recent years. Then, we will cover some important works
on video and audio understanding, as well as works with multi-modality.
Further, we will describe interesting works with action detection in general
and action detection on soccer videos specifically. Lastly, we will mention
work done with automatic video summaries.

2.8.1 Datasets

Using machine learning to perform action recognition and detection is
a difficult task that usually requires large datasets with high-quality
annotations. This can be expensive to create as annotations often are
done manually, and the use of metadata to annotate might be inaccurate.
Fortunately, there are several datasets available, which have made big
contributions to the field. Some of the first datasets with the purpose of
action recognition and detection was the Hollywood2 [53], UCF101 [71]
and HMDB-51 [47]. State-of-the-art results on UCF101 is now at 98.69%,
which shows that the field has made good progress from the baseline on
43.9% released with the dataset in 2012. More datasets have been released
over the years after this, and some of the largest in terms of the number
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of videos are Youtube-8M [5], Sports-1M [42], and Moments in Time [56].
Youtube-8M originally had 8.2 million videos with 4800 classes when it
was released in 2016, but was updated in 2018 as a smaller dataset with
higher quality, containing 6.1 million videos [3]. In 2019, Youtube-8M
Segments was released with segment-level annotations. This includes 230k
human-verified segments with 1000 classes. Another big dataset is the
Kinetics-400 [43], which was released in 2017 with over 300k videos and
400 human action classes. When it was released, it could be seen as the
successor to the UCF101 and HMDB-51 for the human action video area.
Later Kinetics-600 [13] and Kinetics-700 [14] have been released with more
videos and classes, now containing 650k videos and 700 classes. The latest
release in the Kinetics-series is the AVA-Kinetics [49], which extends the
original AVA dataset[32] with videos from Kinetics-700 annotated using the
AVA annotation protocol. What stands out the most with those datasets
is that the actions are localized both temporally and spatially. Two other
datasets are THUMOS14 [38] and ActivityNet [24], which both contributes
as popular datasets.

For audio, there are several domains for the datasets, such as music,
audio speech, and environmental sound classification. AudioSet [28]
is a dataset from 2017, containing 632 audio event classes with over 2
million clips extracted from Youtube videos. The clips are 10 seconds long
and annotated by humans. MagnaTagATune [48] is a dataset containing
music from different genres. The clips are 29 seconds long, and it is
a total of 25,863 clips, from 5223 songs, 445 albums, and 230 artists.
Each clip contains multiple tags, annotated by humans through game-like
situations where several people tag the same clips. Typical tags are for
example "singer", "drums", or "jazz". A dataset for environmental sound
classification is Urban8k [66]. This is a dataset containing 10 classes, such
as "car horn", "dog bark" and "gunshot". There are 8732 clips, and each is
no longer than 4 seconds.

A soccer-specific dataset that was released in 2018 is the SoccerNet [29].
This is a dataset containing 500 videos of soccer games from 2014 to 2017
with games from six European leagues. It has a total duration of 764 hours,
and includes 6637 annotations of the event types goal, yellow/red card,
and substitution. This gives a frequency of an event happening every
6.9 minutes on average, which is sparse within long videos. Recently, a
new version of this dataset named SoccerNet-v2 [20] was released. In this
version it was added several other event types and the total number of
annotations increased to 300k. It was also introduced a new task for camera
shot segmentation with boundary detection, and a replay grounding task.

2.8.2 Video understanding

Computer vision is an active area of research. One of the most important
sections of this is video understanding. There are several interesting
areas of video understanding, but two of the biggest problems addressed
in this field are action recognition/classification and action detection.
Several different approaches have been tried out for the task of action
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recognition. Karpathy et al. [42] provided an empirical evaluation of CNNs
on large-scale video classification, encouraged by CNNs performance on
image recognition problems. Multiple CNN architectures were studied
to find an approach that combines information across the time domain.
The CNN architecture was modified to two process streams to improve
runtime performance, a context stream and a fovea stream. The runtime
performance was increased with 2− 4×, and the accuracy of classification
was kept. The features learned generalized to a different smaller dataset,
showing benefits of transfer learning. Simonyan and Zisserman [69] tried a
two-stream convolutional network in 2014 and exceeded by a large margin
the previous attempts to use deep nets for this task at the time. The
network was split into one spatial stream performing action recognition
on still video frames, and one temporal stream recognizing action from
motion in the form of dense optical flow. Tran et al. [74] proposes using
3-dimensional convolutional networks (3D ConvNets), and found out
that 3D ConvNets are more suitable for spatio-temporal feature learning
than 2D ConvNets. Further, the features are compact and efficient to
compute. Donahue et al. [23] used long-term recurrent convolutional
networks models combining CNN as a feature extractor, and feeding the
features to a special kind of RNN called long short-term memory (LSTM).
This approach reached comparable results to Simonyan and Zissermans
two-stream approach on UCF101. Carreira and Zisserman [12] introduces
an inflated 3D ConvNet (I3D) that is expanded from the 2D ConvNet
inflation. With pretraining on Kinetics, the I3D model reaches 80.9% on
HMDB-51 and 98% on UCF101. Qiu et al. [62] presents Local and Global
Diffusion(LGD) networks. That is a novel architecture for the learning of
spatio-temporal representations capturing large-range dependencies. LGD
networks have two paths, a local and a global for each spatio-temporal
location. The local path describes local variation, and the global path
describes holistic appearance. The LGD network outperformed several
state-of-the-art models at the time on benchmarks, including UCF101,
where it reaches 98.2%. Kalfaoglo et al. [40] combined 3D convolution
with late temporal modeling. With the use of the Bidirectional Encoder
Representations from Transformers (BERT) instead of the Temporal Global
Average Pooling (TGAP), they increased performance for 3D convolution.
They provide state-of-the-art results for both HMDB51 (85.10%) and
UCF101 (98.69%).

When it comes to action detection the task can be divided into
two parts, to generate temporal proposals and to classify the temporal
proposals generated. In many cases, these two are taken apart in detection
methods [15, 67, 70, 82], but they are also together as a single model in other
methods [10, 50]. There are two approaches to the proposal generation task,
one top down and one bottom up. The top down is most used in previous
works [11, 35, 82], and involves pre-defined intervals and lengths. This has
the problems of boundary precision and the lack of flexibility on duration.
There are also methods that uses the bottom up approach, like TAG [82]
and BSN [52]. The drawback for them is the lack of ability to generate
sufficient confidence scores for retrieving proposals. Recently Lin et al. [51]
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addressed this by introducing Boundary-Matching Network (BMN), which
generates proposals with more precise temporal boundaries and more
reliable confidence scores. Combined with an existing action classifier they
report state-of-the-art performance for temporal action detection.

2.8.3 Audio understanding

As with video understanding, audio understanding is also an active area
of research, and contributions to this field are regularly published. It is
experimented with different datasets, such as MagnaTagATune [48] and
AudioSet [28], having different sound domains. Dieleman et al. [22] tested
a convolutional neural network approach for music, where they explore
the possibilities for applying feature learning directly to raw audio signals.
They compare this approach to an approach with a representation of
sound using spectrograms and found that the approach with raw audio
signals did not outperform the spectrogram approach. Choi et al. [17]
presented an automatic tagging algorithm using fully convolutional neural
networks with Mel-spectrograms as input. They concluded that Mel-
spectrograms are effective as a time-frequency representation. Nayyar
et al. [57] performed experiments on the MagnaTagAtTune [48] dataset
with architectures like convolutional neural network and convolutional
recurrent neural network with Mel-spectrograms as input. They showed
that tagging of several types of information, such as genre, instruments,
and emotions could be classified. Pons et al. [61] performed a comparison
for music audio tagging between input as Log-Mel spectrograms and in
waveform. They show that waveform outperformed spectrograms when it
is a big amount of data available. Kong et al. [46] propose pretrained audio
neural networks, trained on the AudioSet [28]. They achieve state-of-the-
art performance on the AudioSet tagging, as well as for several other audio
pattern recognition tasks.

2.8.4 Multi-modality

The idea of a multi-modal analysis of video content goes back at least
20 years. For example, Sadlier et al. [64] performed an audio and
visual analysis of video separately, then combined the statistics of the
two approaches afterward, showing the potential of multi-modal analysis.
Simonyan et al. [69] propose a two-stream convolutional neural network
used for human activity recognition, where the class scores for the different
modalities are fused before the final predictions. Vielzeuf et al. [77] tried
what they address as standard score fusions for an emotion classification
challenge. The score fusions mentioned are majority voting, means and
maximum of scores, and linear SVM. Kim et al. [45] propose an approach
using three networks taking as input respectively image, landmark, and
audio, before fusing the softmax-output from the three networks with
a specialized method called emotion adaptive fusion. Arevalo et al. [7]
propose an original Gated Multimodal Unit (GMU). It is meant to be used
as a part of a neural network with the purpose to find an intermediate
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representation for data combined from different modalities. In this case,
the input was textual and visual. Chen et al. [16] follow an approach of
fusing text, visual, audio features through a special fusing method and use
these features as input to a model. Vielzeuf et al. [78] also propose a multi-
modal fusion approach. It begins with two feature extraction models, one
for each modality, before the features are fused and used in a classifier.

Recently and in parallel with our work, some other approaches have
also been presented. Ortega et al. [59] combined audio, video, and
textual features by first separately using fully connected layers, followed
by concatenation. Audio-visual SlowFast [81] used video frames as input
at different sample rates, combined with an audio stream that takes Log-
Mel spectrograms as input, with lateral connections and a special training
method to avoid overfitting, reporting state-of-the-art results on six video
action classification and detection datasets. Finally, AudioVid [75] used
a pretrained audio model to extract features and combine them with
NetVLAD [6, 30] at different points in the model through concatenation.
They found that audio generally increased the performance, i.e., a mAP of
7.43% for an action classification task and of 4.19% for an action spotting
task using SoccerNet [29].

2.8.5 Action detection in soccer videos

After the release of SoccerNet in Giancola et al. [29], the works on action
detection in soccer videos have accelerated. The SoccerNet was released
with a baseline model reaching an Average-mAP of 49.7% for tolerances δ
ranging from 5 to 60 seconds for the task of spotting, which they define as
finding the temporal anchors of soccer events in a video. Giancola et al.
has a sliding window approach at 0.5s stride, using C3D [74], I3D [12],
and ResNet [34] as fixed feature extractors. Rongved et al. [58] use a
ResNet 3D model pretrained on kinetics-400, and reports an Average-mAP
of 51%, which is an increase from the baseline provided in Giancola et
al [29]. Rongved et al. further showed that the model generalized to
datasets containing clips from the Norwegian Eliteserien and the Swedish
Allsvenskan. The results showed that in clips containing goals they could
classify 87% on the samples from Allsvenskan, and 95% on the samples
from Eliteserien with a threshold of 0.5. Cioppa et al. [18] introduce a
novel loss function that considers the temporal context present around the
actions. They address the spotting task by using the introduced contextual
loss function in a temporal segmentation module, and a loss similar to
YOLO [63] for an action spotting module creating the spotting predictions.
This approach increased the Average-mAP for the spotting task to 62.5%
and is considered the state-of-the-art for the SoccerNet spotting task.
Another approach to the spotting task in SoccerNet is studied in Vats
et al. [76] where they introduce a multi-tower temporal convolutional
network architecture. 1D CNNs of varying kernel-sizes and receptive
fields are used, and the class-probabilities are obtained by merging the
information from the parallel 1D CNNs. They report an Average-mAP of
60.1%, which is a difference of 2.4% from Cioppa et al. [18] with a simpler
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approach using a cross-entropy loss function.

2.8.6 Automatic video summaries

Automatic video summaries and highlights generation is something that
also would be interesting for the fans. This goes straight to the core of the
needs of fans who want only the main events in a game. This task might be
a little more forgiving when it comes to tagging too many events, as long
as the recall rate is high at crucial events, such as goals. In the paper by
Cioppa et al. [18], they also consider the model for automatic highlights
generation and find that the segmentation scores in their approach are
useful for this task. High segmentation scores that did not lead to an
annotated type of event might be of interest for a game summary, even
though it is not an annotated event in the system now. This could be
unannotated classes of interest, like goal-scoring attempts or fouls that
did not lead to a card. They manually inspected the videos with a high
segmentation score for goals where there was no annotated goal as ground
truth. When adjusting the threshold they found that most of the clips
were considered goal opportunities. To create a highlights generator they
dropped the substitution events and included cards given and goals with
a segmentation score over a threshold. They found this solution to be
adequate, but with room for improvement. A special weakness is the way
of extracting the video clips, which they do by starting 15 seconds before
spotting and ending 20 seconds after. This is not ideal, and with better
video clip extraction this could give even better game summary results.

2.9 Summary

In this chapter, we have first presented useful background information
and terminology needed to understand the thesis. This included machine
learning-specific concepts and applications for machine learning in this
thesis. We described general machine learning concepts, and specifically
described neural networks and convolutional neural networks. We then
presented works related to the topic of this thesis and found that automatic
event annotations are an active area of research.

Several machine learning approaches have been tried for action recog-
nition in the last decade, and for general video understanding, some im-
pressive results have been reported. The performance of UCF101 has now
exceeded 98%, with Carreira and Zisserman [12] using an inflated 3D Con-
vNet giving 98%, Qiu et al. [62] reporting 98.2% using a Local and Global
Diffusion (LGD) networks, and Kalfaoglu et al. [40] reporting 98.69% with
the use of BERT. When it comes to action detection the task is a bit harder,
as you also have the temporal detection aspect. Lin et al. [51] made some
promising work when introducing a Boundary-Matching Network, and
it performs as state-of-the-art on both ActivityNet-1.3 and THUMOS14.
We also presented some multi-modality work and described different ap-
proaches tested for multi-modality, with Audio-visual Slowfast [81] report-
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ing state-of-the-art results on six video action classification and detection
datasets.

We presented the release of SoccerNet in Giancola et al. [29] as an
accelerator for work on action detection in soccer videos and described
some methods that had outperformed the baseline (49.7% Average-mAP)
released with the dataset. After this, we presented the most recent progress
in this field with Cioppa et al. [18] and Vats et al. [76]. We presented
how Cioppa et al. introduced a contextual loss function, increasing the
results on the spotting task to 62.5%, and how Vats et al. performed to
60.1% with a simpler approach. We also presented recent multi-modal
approaches that have been presented in parallel to our work on this
task, with AudioVid [75] showing improvements compared to the baseline
model. In the end, we explained how Cioppa et al. also created an
automatic highlights generator by doing some small modifications to the
approach.

This shows that action detection in videos in general, and soccer videos
in particular, are active areas of research. There are promising works in
the field, and the state-of-the-art is still improving, showing possibilities to
increase the performance. Although the works are promising, the results
are still not good enough to be really useful. It might be good enough
for some types of events, but for important events, the sport itself requires
very high accuracy. This means that more work is needed to find even
better models. Observing that most approaches to this task primarily use
only visual information, we find it interesting to experiment with models
where both visual and audio input are combined. This gives a foundation
for our work, and in the next chapter, we use the insights gained to select
approaches including both audio and visual information, to test if this
combination perform.

21



22



Chapter 3

Methodology

Annotations of sports events are today manually tagged, which is an
expensive and time-consuming task. There is a high demand for sports
video content, and with an increasing amount of content produced, it is
not possible to manually annotate all content without using a vast amount
of time. With the use of well-performing machine learning models, we
might be able to annotate more content automatically. This requires less
time-consuming work for manual operators. Through an increasing supply
of datasets appropriate for training machine learning models for sports,
we see that the working conditions for research in this field have been
improved. This is an active area of research, and for the soccer-specific
dataset SoccerNet [29], we have seen several improvements of the state-of-
the-art since it was released in 2018 [18, 58, 76]. Most of the approaches
have in common that they consider visual input only, and with multi-
modal approaches to machine learning models showing great potential,
we want to study how including the sound as input would impact the
performance.

In this chapter, we describe our approach with audio-visual input
for action spotting and classification on the SoccerNet dataset. We first
describe the dataset in use more thoroughly before describing the models
in more detail, as well as how the audio features were extracted. Then,
we will introduce how the fusion of the audio and visual features has
been done and how we have chosen the different configurations of the
hyperparameters of the models. Finally, we discuss the evaluation metrics
used to assess our experiments and interpret what they mean.

3.1 Dataset description

The dataset we used for all experiments is SoccerNet, which was presented
by Giancola et al. [29] in 2018. This is a dataset whose main purpose is
for action spotting in soccer games. This means that the main task for this
dataset is not only to classify which events that occurs, but also when they
happen in time. However, it is possible to use the annotated events for
classification tasks as well. It contains 500 games from some of the biggest
soccer leagues in Europe played between 2014-2017. The leagues included
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in the dataset are the top-level leagues in England (EPL), Spain (LaLiga),
Germany (Bundesliga), France (Ligue 1), and Italy (Serie A), as well as the
European Champions League. The distribution between the leagues and
seasons is shown in Table 3.1.

Season
League 14/15 15/16 16/17 Total
EPL 6 49 40 95
LaLiga 18 36 63 117
Ligue 1 1 3 34 38
Bundesliga 8 18 27 53
Serie A 11 9 76 96
Champions League 37 45 19 101
Total 81 160 259 500

Table 3.1: Distribution of games per league and season in the SoccerNet
dataset.

The structure of the dataset is sorted on both league and season, with
one directory per league and a sub-directory for each of the seasons. Inside
these, there is one folder for each game containing both the actual video in
MKV format and its annotations in a JSON file. These JSON files contain
some metadata about the game, as well as the name and timestamps of the
annotated events in the video. In addition to this, the game folder includes
pre-extracted visual features in NumPy-files. Each game is split up into
two videos, one for each half of the soccer match, which results in 1000
videos in total. The dataset contains 764 hours of gameplay. The games
are split into a training set, a validation set, and a test set which includes
respectively 300, 100, and 100 games. The games are not saved and sorted
in these splits but are divided into the correct splits by lists defining the
games belonging to each set.

The dataset contains annotations of the 3 event types goal, card, and
substitution. These events are defined as follows:

1. Goal The instant the ball crosses the goal line to end up in the net.

2. Card The instant the referee shows a player a yellow or a red card
because of a foul or a misbehavior.

3. Substitution The instant a new player enters in the field.

The annotations in SoccerNet are anchored in a single frame in the video.
This means that instead of marking a start and a stop time of an interval, it
is annotated as a single frame at the exact moment an event is happening
as defined above. This is illustrated in Figure 3.1, where we see that the
middle frame is where the event is annotated for each of the examples.
With this approach, we have an exact moment in time we are trying to
predict. This means that we also can operate with different time-tolerances
for how far away from an event a prediction is considered a true positive.
There is a total number of 6,637 annotated events in the included 500
games. Knowing that there is a total of 764 hours in the dataset, this gives
a frequency of approximately one event per 6.9 minutes on average. The
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(a) Card.

(b) Substitution.

(c) Goal.

Figure 3.1: Sample frames from the SoccerNet dataset [29] for 3 different
event types. The middle frame is at the annotated time.

distribution of events in the training, validation, and test splits is shown in
Table 3.2.

Class Training Validation Test
Card 1, 296 396 453
Substitution 1, 708 562 579
Goal 961 356 326
Total 3, 965 1, 314 1, 358

Table 3.2: The number of samples per class in the SoccerNet dataset.

Along with the 3 classes above, we follow the example of Rongved
et al. [58] and add a background class by sampling in between events. If
the distance in time between two consecutive events is larger than 180
seconds, then a new background sample is added in the center, such that
a background sample will never be within 90 seconds of another event.
This adds 1, 855 events to the training set, 636 events to the validation set,
and 653 events to the test set. We use the dataset containing the added
background class for a classification task, while only the original 3 classes
are used for spotting.

SoccerNet provides three sets of visual features already extracted from
the videos by C3D [74], I3D [12] and ResNet [34]. We have used the features
extracted by ResNet in our experiments, and in the context of this thesis
these features will be referred to as the "ResNet features". The features have
been extracted from the videos by using a ResNet-152 [34] image classifier
pretrained on ImageNet [i]. Features are extracted from single video frames
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at a rate of 2 times per second. Subsequently, PCA is used to reduce the
feature dimension to 512. How the features are extracted is illustrated in
Figure 3.2, and the outputted ResNet features are the visual features we
use in our experiments.

Video

2D-ResNet

PCA

ResNet Features

Figure 3.2: Visual representation of the pipeline which produces the ResNet
features provided with SoccerNet [29]. A pre-trained ResNet is used to
extract features from video, followed by PCA. The features can then be
used to train a network for action detection tasks.

In addition to the visual features provided by SoccerNet, we also use
the audio in the dataset to produce our own audio-features directly from
the media. We extract the sound from the videos in wave format, before
we create spectrograms we can produce features from. How these audio-
features are produced is described further in Section 3.2.2 where the audio
model is presented.

While working on this thesis, the creators of SoccerNet released a
second version of the dataset. This dataset is called SoccerNet-v2 [20]
and expands the already released dataset. SoccerNet-v2 contains the same
amount of videos but has added more events, which has increased the
number of annotations to 300k. In addition to action spotting, it has been
created tasks for camera shot segmentation with boundary detection, and
a replay grounding task. We considered using SoccerNet-v2 instead of, or
in addition to, the original dataset, but the dataset was released too late for
us to do so. When it was published we had already gone through a lot of
work with the original dataset, and it would not be a good idea to change
dataset so late in the process. Therefore, we decided to continue using the
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original version of the dataset. Thus, the SoccerNet-v2 is very interesting
for future work in the field.

3.2 Model Selection

As we want to test how adding sound would affect performance, we must
choose which model, or models, we want to try this approach on. We also
need a way to extract audio features, so we must create a model for this as
well. The three models we have selected are:

• The model from Cioppa et al. [18], which is using the Context-Aware
Loss Function (CALF). This model is tested for action spotting.

• An audio ResNet model with spectrograms as input. This is used as
a feature extractor and is also tested for classification.

• A visual 2D-CNN model with the ResNet features supplied with the
SoccerNet as input. This is tested for classification.

In this section, we will describe the models we have tested, and discuss
why they were chosen.

3.2.1 CALF model

Reasons for selection

To effectively observe how the models perform for action spotting on soccer
videos when we add audio information, we think it is a good idea to use
a model we know works well for this task with visual input alone already.
This way we know the model will perform with visual input for the task,
and can effectively compare how adding audio information affects the
performance. Therefore, we look at the models that have been tested for
action spotting on SoccerNet [29] before. Some of the models considered
are the baseline models supplied with the SoccerNet paper and the top-
performing models for the task. The two best performing models (at time
we made our choice) are the model described in Vats et al. [76] and the
model described in Cioppa et al. [18], which is using the Context-Aware
Loss Function (CALF).

The CALF model is the best performing model based on the average-
mAP metric (see Section 3.5 for an explanation of metrics), and is
considered the current state-of-the-art model architecture for this task. We
also see that the code for CALF is supplied, with code for training and
running the model. This is also supplied with the baseline model, but we
could not find this for Vats et al. When considering if any of the three stands
out as an intuitively better fit to include audio information we did not find
that one of them stands out as easier.

In total, we see that the CALF model seems like the best option in our
case because it is the best performing model and has openly available code
to give us a great foundation to work on. With available code for training
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and running the model, we get more time to create code to extract more
analysis data and dive deeper down into the results of the performance
when adding audio input. It also allows us to test several configurations
of the model, as the hyperparameters that fit best for video input do not
necessarily fit best when adding audio.

Description

Cioppa et al. [18] introduced a loss function that considers the temporal
context present around the actions, called Context-Aware Loss Function
(CALF). Their model consists of a base convolution, a segmentation
module that uses their novel loss function, and a spotting module. The
overall structure is illustrated in Figure 3.3. In the context of this work,
we refer to this model as the “CALF model". The inputs to the model
are the ResNet [34] features provided with the SoccerNet dataset [29] (see
Section 3.1 for details about the ResNet features).

Figure 3.3: An overview of the CALF model. Reprinted from Cioppa et
al. [18]

The concept of the Context-Aware Loss Function (CALF) is to not
only penalize the model if a prediction is wrong but also include some
information on how far away it was from a correct prediction. The loss
function differentiates how big the loss is based on the distance between
the annotations and the predictions. This way the model tries to learn
which type of information should have the most impact on the prediction.
This is logical, as the frames far before an event do not give away as much
information as the frames right after an event occurred. To do this, there
are six "temporal segments" around each event, where the loss is weighted
differently based on which segment the frame belongs to. The segments
are illustrated in Figure 3.4. The segments far before (definitely no action)
and far after (definitely no action) is not desirable to have an impact on
the predictions. Thus, the frames in these segments are trained to not
predict anything. This is done by heavily penalizing predictions of events,
and rewarding predictions of no actions. The segment just before (possible
action) is not wanted to influence the decision, as the lead up to an event
occurring could potentially lead up to either of an event happening or not.
Since you can not tell from the frames just before if the event will happen
or not, the network is not influenced by these frames. For the segment
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just after (action occurred) there is a lot of information about the event
happening or not, so these frames are trained to heavily influence to predict
an event. A low score is therefore heavily penalized, and high scores are
rewarded. Finally, the two last segments are transition zones between the
two segments close to the event, and the two segments far away. This is to
create a gradual change in the influence of the frames.

Figure 3.4: Illustration of the different temporal segments in the CALF
model. Reprinted from Cioppa et al. [18]

The model takes as input chunks of frames, and the chosen chunk size
in the original CALF model covers 120 seconds of gameplay. The receptive
field (the temporal dimension of the convolutional kernel) in the original
model is 40. The chunk of input frames is first sent through a multi-layer
perceptron (MLP) consisting of two layers, which reduces the features per
frame to 32. These output features are used in a temporal pyramid with
four different lengths. The temporal pyramid output is concatenated with
the output features from the two-layer MLP, which produces 152 features
per frame. This is fed to a convolution layer which creates the input to
the segmentation module with 48 features per frame. The segmentation
module reshapes this to be 16 features per class per frame, and these
features are used to create a segmentation score for each class per frame.

The spotting module takes as input both the output and the ReLU
activated input of the segmentation module. The two inputs of the spotting
module are concatenated. The dimensions are reduced with temporal max-
pooling three times, with ReLU activated convolutions in between. The
last temporal max-pooling is flattened out and fed to two fully connected
layers: one with sigmoid activation to obtain the confidence scores and
timestamps, and one with a softmax activation to obtain the class spotting.
These results are concatenated to create the action spotting in the same
format as the ground truth actions. Each prediction then contains 5 values;
a confidence score, a timestamp, and one softmax activated score for each
of the three classes.

The model outputs both the segmentation score and the spotting
predictions. There is one loss function for each of the two outputs, and they
are combined to calculate the total error of the model. The segmentation
loss uses information about where a frame is located in relation to ground
truth events to decide how big of an influence the score for that frame
should have on the total loss. For each frame, the loss is computed for
each class based on the position in relation to the given class, as described
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earlier. This is done based on a Time Shift Encoding each frame has for each
class. The Time Shift Encoding represents how far away from an event the
frame is, and this decides which segment it belongs to, and thereby how
the loss should be calculated. This is summed together to create a total
segmentation loss.

For the spotting loss, an iterative one-to-one matching is used to match
up each ground truth event with a prediction. For each of the ground
truth events, the weighted squared error loss is calculated for each of the
attributes (confidence score, timestamp and one for each class), which is
summed together and added to the loss of predictions matched up with no
ground truth events. These predictions calculate a weighted loss based on
only the attribute of whether an event is present or not. The spotting loss
is added to a weighted segmentation loss to produce the total loss for the
model.

Implementation

For the CALF model, we used the code supplied with the original
paper [18] for training. For testing we used a combination of supplied and
new code, to extract in-depth results. We used an Nvidia DGX-2, which
consists of 16 Nvidia Tesla V100 GPUs and has a total memory capacity of
512 Gigabytes.

We experiment with ResNet features, audio features, and concatenated
features that combine the ResNet features and audio features. The audio
features are the features extracted with the audio model in Section 3.2.2
for window size 8. We vary the chunk size and temporal receptive field,
as it might affect the results for lower tolerances and when audio features
are used. The configurations we test on the test set have chunk sizes 120
and 60, with receptive fields 40, 20, and 5. These three configurations are
referred to as CALF-120-40, CALF-60-20 and CALF-60-5. See Section 3.4 for
details of the selection process.

We use a learning rate of 0.002 for all variations of the CALF model. For
our tests with only visual ResNet features, we train CALF for 300 epochs,
validating every 20 epochs. Due to instabilities when training with audio
and concatenated features, we train for 30 epochs on audio features and
50 epochs on concatenated features and validate every other epoch. We
use the weights that achieve the best Average-mAP on the validation set
during training for each of the models. When testing, we calculate the
best threshold for the models on each of the tolerances on the validation
set and use these when calculating the performance on the test set. Non-
maximum suppression (NMS) is also applied to the predictions, with an
overlap threshold corresponding to the tolerance for the predictions.
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3.2.2 Audio ResNet model

Reasons for selection

In addition to the CALF model that we want to use for the action spotting
task, we need a model to extract audio features. We need these features
both as audio features alone and together with the visual ResNet features
supplied with the SoccerNet to create concatenated audio-visual features.

We draw inspiration from the Audiovisual SlowFast Networks [81],
which use spectrograms and a ResNet-based network. We do not do the
same modifications to the ResNet but look at ResNet [34] as a good option
to work as the CNN in our model. We use ResNet for several reasons.

• It is available as an "off the shelf" model in PyTorch.

• It is not of the heaviest neural networks to run but is still a network
we have confidence in that will do a good job for our purpose.

• It can be used as a feature extractor if we remove the final layer of the
model.

• The features fit well to concatenate together with visual features to
use with the CALF model. (See section 3.3).

Description

To create the audio features we need to have access to the audio from
the dataset. We do this by changing the video format of the videos in
the dataset to avi and use FFmpeg [25] to extract the sound in wave-form
from the original media. When we have access to the audio, we can
extract the features with a model. Convolutional Neural Networks are a
good way to generate features, and we can utilize this if we first get the
audio in a compatible input format for a CNN. To do this we generate
spectrograms to create a visual representation of the sound, and then use
these spectrograms to extract features through the neural network.

To generate the audio features, we train a ResNet model on spectro-
grams. We use the SoccerNet dataset with the additional background
events to train the model for a classification task. With this approach, we
most importantly get an audio feature extractor by removing the last layer
in the ResNet model. But in addition to this, we also get a classifier we
can test on the dataset events. By testing the classifier we can confirm that
the features extracted in the model contains useful information, and gain
more insight into how a model using sound performs. We can also create a
comparable 2D-CNN network for visual input and compare the models to
each other, as well as to a combined approach. This way we can gain even
more insights into how visual, audio and combined models perform.

Summarized, we first extract audio from video in wave-form, which
again is used to generate Log-Mel spectrograms. We then use a CNN as
a classifier, i.e., an 18-layered 2D-ResNet [34], but remove the last layer
to generate features. Figure 3.5 shows the pipeline for the audio model.
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We also test with different window sizes (denoted W) over which the
spectrograms are generated, representing the temporal extent of the input
used.

Video

Extract Audio

Audio Signal

.Log-Mel Spectrogram

2D-ResNet

Audio Features

Figure 3.5: Visual representation of the pipeline used by the audio feature
extractor. First, audio is extracted from the video. The audio is used to
compute Log-Mel spectrograms, which are then used as inputs to a 2D-
ResNet that creates the features.
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Implementation

We implemented the audio model in PyTorch [60] and trained on an Nvidia
DGX-2, which consists of 16 Nvidia Tesla V100 GPUs and has a total
memory capacity of 512 Gigabytes. We use a minibatch size of 32, an initial
learning rate of 0.001, and a momentum of 0.9. We use a scheduler that
reduces the learning rate by a multiplicative factor of 0.1 every 10 epochs,
and we train for 25 epochs. During training, we save the model that had
the best accuracy on the validation set and evaluate its performance on the
test set. We first generate Log-Mel spectrograms, after which we train on a
2D-ResNet as described in Section 3.2.2. We train and test models with the
window sizes 2, 4, 8, 16 and 32.

3.2.3 2D-CNN model

Reasons for selection

We want to test a classification model with a comparable approach to
the audio model, but with visual and combined input. This way we
can observe how the audio model itself performs compared to these, and
create a better foundation to learn more from our experiments. This
will give additional insights into how sound affects performance, not just
through the extracted features as input to the CALF model, but through
a comparison to a similar visual model as well. We choose a 2D-CNN
network, comparable to the audio model approach, but with visual input
instead. This is chosen for several reasons. It is easily accessible, which
is convenient to save some time in the process. It has similarities to the
audio model approach, making them comparable for the classification
task. Furthermore, we know that 2D-CNN approaches perform well for
classification tasks for visual input. All together we think this is a good
model selection for having a model to compare the audio model to, which
we are confident will perform well, while still being time-efficient to create.

Description

We use a 2D-CNN model that uses the pre-extracted ResNet features
provided by SoccerNet. The model takes in (2 ∗W)× F features for each
sample, where W is the window size used for sampling in seconds, and
F = 512. Inspired by the approach in SoccerNet [29], we first use a 2D
convolution with a kernel 1× F. This is followed by batch-normalization
and another 2D convolution that has a kernel of W

2 × 32, such that it has a
temporal receptive field of W

2 . Finally, we have two fully connected layers
and an output layer. The model is trained and tested on SoccerNet with the
added background class as a classification model. A detailed workflow of
the model is illustrated in Figure 3.6.
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Figure 3.6: Detailed workflow for the 2D-CNN model. This model uses a
pre-computed set of visual features as input.

Implementation

The implementation details for the visual 2D-CNN model are mainly the
same as for the audio model described in Section 3.2.2. The only difference
is that for the visual 2D-CNN model we use the supplied ResNet features
from SoccerNet as input, instead of the spectrograms we use with the audio
model.

3.3 Modality Fusion

To assess the effects of using multiple modalities, results from different
models must be combined. In this respect, there are several ways of
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fusing different modalities. The two opposite concepts when it comes
to modality fusion are early fusion and late fusion. We have tested both,
with early fusion for concatenating the input for the CALF model, and late
fusion by combining the audio model with the visual 2D-CNN model at the
prediction level.

3.3.1 Early fusion

Early fusion, also referred to as data-level fusion or input-level fusion is a
traditional way of fusing data before conducting an analysis [44]. Within the
context of our work, this approach translates to generating concatenated
audio-visual features (generation of audio features and concatenate them
to existing visual ResNet features), which can be used as input to a model.
Of the multi-modal approaches mentioned in the background chapter
(Section 2.8.4, Arevalo et al. [7] and Chen et al. [16] propose approaches
considered as early fusion. Vielzeuf et al. [78] propose a multi-modal fusion
approach, where they argue that their approach is neither a pure early or
late fusion approach, but we find it more similar to early fusion than late
fusion.

Video

AudioVideo Frames

Feature ExtractionFeature Extraction

Concatenate

Model

Figure 3.7: Early fusion. Visualization of how audio-visual features can
be created. A ResNet is used to compute visual features based on single
frames. For the audio, a Log-Mel spectrogram is used to train a 2D-ResNet,
and further used as a feature extractor by removing the output layer. These
features are then concatenated.

We choose to do this approach for the testing of the CALF model,
and the reasoning behind this is explained in Section 3.3.3. We use the
ResNet features supplied in SoccerNet [29] as our visual features. For
our audio features, we generate these using the audio model described in
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Section 3.2.2. We first train an audio model for classification on SoccerNet
using Log-Mel spectrograms on window size 8 (See Section 3.4.1 for
details of why this window size was chosen). Next, we remove the last
layer, resulting in a 512-dimensional feature vector. These are the same
dimensions as the ResNet features provided with SoccerNet. This means
that if we extract them at the same frequency we can concatenate them
together over time. The audio features are therefore also calculated two
times per second, and we concatenate them such that we align them over
time, resulting in a 1024-dimensional feature vector two times per second.
This way we have created feature vectors containing information from both
audio and video, which suits our multi-modal approach well. This is used
as input to the CALF model, so we can compare the performance for fused
features to visual-only features, as well as audio features. We illustrate the
process of concatenated feature generation in Figure 3.7. The concatenation
itself, when the features are extracted, is a relatively straightforward
concatenation. It might be more complex ways to concatenate features,
but showing that performance can be increased with a relatively simple
approach could imply a great potential for feature concatenation when it
comes to action spotting.

3.3.2 Late fusion

In late fusion, also referred to as decision-level fusion, data sources are
used independently until fusion at a decision-making stage. This method
might be simpler than early fusion, particularly when the data sources
are significantly varied from each other in terms of sampling rate, data
dimensionality, and unit of measurement [44]. Of the multi-modal work
mentioned in the background chapter (Section 2.8.4, Simonyan et al. [69],
Vielzeuf et al. [77], and Kim et al. [45] propose approaches considered as
late fusion.

Within the context of our work, this approach translates to fusing
independently built visual and audio models by taking the softmax
average, or softmax max, of their predictions at test time. The approach is
illustrated in Figure 3.8. The intuition behind this is that, in cases where the
visual model might make a strong prediction that an event has occurred,
the audio model might have weaker and more uniform predictions or vice
versa.

For softmax average fusion, we use the audio and visual models, which
have been trained on their respective inputs. For each sample, we take
the average softmax prediction between the two models. For softmax max
fusion, we calculate it similarly to softmax average, except that instead of
average, we use the maximum softmax prediction value between the two
models. We choose to use the late fusion approach with the audio model
with spectrograms as input, and the 2D-CNN model with ResNet features
as input as the visual model. The reasons for testing them with this fusion
approach are explained in the following chapter below.

36



Input

AudioVideo

Audio ModelVisual Model

Softmax PredictionSoftmax Prediction

Average / Max

Prediction

Figure 3.8: Late fusion. Visualization of how two seperate models can be
fused through softmax average.

3.3.3 Fusion approach selection

We wanted to try out both early fusion and late fusion approaches, so we
had to select which approach we wanted to test for which models. When
looking at the two fusion approaches and how they would be implemented
in the models, we chose to test early fusion for the CALF model and late
fusion for the audio model and 2D-CNN. This has a couple of reasons. The
first is that we want to compare the audio model to the 2D-CNN model for
the classification task on SoccerNet. Since the audio features are generated
with the same audio model, we think that it might be unfortunate to
compare the audio model to the 2D-CNN model with concatenated audio-
visual features as input. This because the audio features used would have
been generated through the same model we compare the 2D-CNN to. The
second reason is that it is more convenient to adjust the models we have
implemented to fuse together at the stage of the softmax output than to re-
implement and modify the supplied code for the CALF model to do this.
It would be easier for the CALF model to test with generated audiovisual
input. We also know that we extract features with the same dimensions as
the visual ResNet features that are used as input to the CALF model. With
this in mind, we know it would be possible to concatenate the features and
align them over time, which gives us a good way to experiment with an
early fusion approach for the CALF model.
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3.4 Hyperparameter selection

Hyperparameter selection is an important part of any machine learning
process. Without the correct set of hyperparameters, we risk that the model
does not work as well as it could, or in some cases, fails to learn at all. In
this section, we discuss our selection of hyperparameters and explain why
they were chosen.

3.4.1 Audio model and 2D-CNN

We want to compare the performance of the audio model to the 2D-CNN
model, but we also want to compare them to the multi-modal approach
for the models, where we combine the softmax output by taking either the
average or max value. We want to experiment with different window sizes,
both to analyze how window sizes affect the performance of the models,
but also to use in the selection of which window size to use in the audio
model we choose for our audio feature extractor.

We test 2, 4, 8, 16, and 32 seconds as the window sizes as this gives a
nice variety of how much audio the model gets as input. We train them for
25 epochs and run the tests on the validation set. The results for the tests
are presented in Section 4.1.1, as a preliminary experiment. We use these
results to select a meaningful window size for the audio feature extractor
and to select the combined model we want to use.

When we have to choose the window size to use for the audio feature
extractor, there are two things we want to take into account. First, we must
select a model that performs well on the validation set, as this implies that
it can generalize to unseen data. The second is that we must consider that
bigger window sizes also mean more temporal information to the single
features. For the first point, we use the results we present in Section 4.1.1,
and we see that the performance has increased for the audio model when
we increase the window size. This means that to get the best performing
model, we should use bigger window sizes. However, we do not want the
features to have a too big temporal extent since they are going to represent
moments in time. When we consider both of these aspects, we see that
it becomes a trade-off as they pull in different directions when it comes
to window size. Therefore, we choose something in the middle for our
window size. We choose window size 8 for our audio feature extractor,
as this gives us features from a model with an accuracy that exceeds 70%,
while still having a relatively small temporal window, at 4 seconds at each
side of the center of the window.

We want to compare how the combined approaches to each other, to
choose which of them we want to test further. From the results presented
in Section 4.1.1, we observe that the models perform very similar, but that
the one using softmax average consistently outperforms the one which
uses softmax max. Therefore, we choose to let the combined model using
softmax average represent the combined approach in our experiments on
the test set.
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3.4.2 CALF

We use the CALF model to test how the concatenation of features affects
spotting performance, but several hyperparameters could influence how
well this approach works. Two of the hyperparameters we expected would
affect this the most were the chunk size and the receptive field. The chunk
size is the size of the chunks of consecutive video frames that are sent to
the network in seconds, and the receptive field is the temporal receptive
field (in seconds) of what influences the results for a frame. This means the
temporal dimension of the convolutional kernel. Furthermore, the number
of epochs used to train the model will affect the results, but we suspect
that the number of epochs could be reduced by a fair amount from 1000
in the original paper, while still keeping good performance. Reducing the
number of epochs would give us the opportunity to train more models with
different configurations of chunk sizes and receptive fields. This way we
could analyze how it affects the performance, and use more models when
testing the concatenated features on the test set later.

Therefore, we decide to use an iterative approach, where we start with
a low number of epochs and a relatively high number of different configur-
ations before we increase the number of epochs for the configurations that
we find interesting. This way, we sift out configurations we do not want to
test further and increase the performance of the interesting ones, while still
maintaining a relatively low cost. At the same time, we can observe both
the average-mAP on the validation set and how many validation cycles it
has been since the model last improved under training. We can compare
the average-mAP of the CALF-120-40 to a pretrained set of weights sup-
plied with the CALF-code, to observe if the model has approximately the
same average-mAP on the validation set. The supplied weights are pro-
duced by using the same configurations as the CALF-120-40 model we are
testing, but with 1000 epochs of training. The supplied weights achieve an
average-mAP on the validation set at 0.6410. This way we have two met-
rics to assess if we consider the number of epochs sufficient to proceed with
the models to our experiments with different features. The approach has
been performed for the visual features only, as this was the first step in our
process where we wanted to find which configurations we wanted to test
the multi-modal approach on. In the first iteration, we compared the res-
ults with and without NMS applied to the results. Based on these results,
we continued using NMS further in the experiments. The results with and
without NMS are presented in Section 4.1.4.

Other approaches, such as random search, grid search, and Bayesian
optimization could have been helpful or interesting additions to our
manual approach. Bayesian optimization was already performed by
Cioppa et al. for the CALF model, so we assume this approach would
again have pointed at a chunk size of 120 and a receptive field of 40 as
the best configuration. Our approach also differs slightly from regular
hyperparameter optimization, as we try to consider not only how the
model works with the current visual input but also takes into account that
they will be tested with different input as well. The visual input will still
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be present in the concatenated features, so observing the performance and
selecting configurations that give interesting results with visual-only input
is still valuable. However, the best performance overall is not the only
factor that influences the selection. We also want to try to understand
which could have potential in combination with sound. Therefore we
reward models with small receptive fields that show potential, as we
suspect that audio information changes more rapidly, and therefore could
be interesting in a shorter amount of time. We also reward models with
higher performance on lower tolerances, as these have better predictions
closest to the actual event.

The plan was originally to train and test the models with audio and
concatenated input for the same number of epochs (300) and validate on
the validation set with the same frequency (20). When training with the
audio and concatenated features we observed that this had to be modified,
as the training was very unstable for these approaches. This is described
further in Section 3.4.2.

Visual features

The configuration for the CALF model was selected by using the hyper-
parameters in the original CALf model as a starting point. This is because
we know this configuration has been chosen based on a Bayesian optimiz-
ation. This configuration has a chunk size of 120 seconds, and a receptive
field of 40. We name this configuration of the model CALF-120-40, and use
the same naming approach for the other configurations tested, with the first
number representing chunk size, and the second number representing the
receptive field. Since we have a starting point we know works well, we ex-
periment with both a higher and a lower number for the chunk size. We test
with chunk sizes 60 and 180, as well as the original 120 with a combination
of several receptive fields. Since we believe that audio information in the
soccer domain might rapidly change during the game, we primarily want
to test configurations with receptive fields at the original size and lower.
The original ratio between the chunk size and receptive field is a receptive
field at 1/3 of the chunk size, so for all the configurations we use this as
the biggest receptive field, and test with other lower numbers as well. We
decide that 5 is going to be our smallest value for the receptive fields we
are testing. Since the biggest value we are going to test is 180/3, we end
up with values ranging from 5 to 60 for the receptive field. We choose our
values to be 5, 20, 40, and 60 and combine all the three chunk sizes with the
receptive fields that do not exceed the upper boundary we have set at 1/3
of the given chunk sizes. This gives us a total of 9 configurations tested,
and they are listed in Table 3.3.

In the first iteration, we train the models for 150 epochs, validating
every 20th. We test the models on the validation set and extract results
for all the tolerances from 5 to 60 with an increasing step of 5 between each
tolerance. The results for the configurations we tested with 150 epochs
are presented in Section 4.1.2. Based on these results, we selected three
configurations we wanted to use in our further experiments with multi-
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Chunk size Receptive field
60 5
60 20
120 5
120 20
120 40
180 5
180 20
180 40
180 60

Table 3.3: The 9 different combinations of chunk sizes and receptive fields
we investigated with the CALF model.

modal input. The selected configurations are CALF-120-40, CALF-60-5
and CALF-60-20. We train these for 300 epochs, as we found it necessary
with an increase in epochs based on the results from the models trained
for 150 epochs. The results on the validation set for the selected models
are presented in Section 4.1.2. In that section, we also present results to
back up why we think 300 training epochs is sufficient to perform further
experiments with the models.

Concatenated and audio features

As mentioned earlier, the initial plan was to train and test the CALF model
with audio and concatenated features in the same way as we did with
the visual features. This shown to be an issue in the training phase. The
number of training epochs at 300, combined with validation testing at every
20 epochs had major problems. When we evaluated the results, we saw
that the results were very poor and unstable. Especially for sound were the
results useless, with mAP and average-mAP scores below 1%. This could
mean that the models needed more training time, but given that the results
were as low as they were, we rather thought it would be in the other end,
and that validation every 20 epochs were too sparse to evaluate a working
model before overfitting. Xiao et al. [81] also report results indicating that
audio is more prone to overfitting earlier than video, so we investigate
further with this in mind.

We experiment with different learning rates with little response. When
training, it is the validations along the way that is the most time-
consuming. This means that if we want to increase the frequency of
validations, it would take a very long time to complete the training of
each model if we continue with 300 training epochs. Therefore, we reduce
the number of training epochs and experiment with increased frequencies
for the validations. We present the findings from these experiments in
Section 4.1.3, and based on what we learned we decided to keep a lower
number of training epochs with a higher frequency of validations. For the
model with concatenated features, we set the number of training epochs
to 50, with validation every other epoch. For the model with only audio
features, we set the number of epochs to 30, with validation every other
epoch.
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3.5 Evaluation metrics

When we want to assess the performance of a model, we need metrics to
present objective measures. This gives us concrete numbers to work with
and creates a foundation for our analysis of the performance. It could be
tempting to use only one metric to create a simple way to compare models
to each other, but results are rarely that trivial. A single metric could
be misleading, and will often only cover a fraction of what we actually
want to understand about the performance of the system. For example, a
model could find 100 percent of every event, giving a recall of 100 only
by predicting everything all the time. Even though this gives a perfect
recall, it gives a horrible precision performance. The other way around,
you can achieve great precision by only predicting an event when nearly
100 percent sure, but then achieve a terrible recall. This shows us that
optimizing for one metric could affect others in a bad way, and by only
looking at one metric one could miss important aspects of the performance
of a system. By introducing several metrics we can assess multiple parts
of a model’s performance, and we can also optimize the system based on
what metrics we find most important. With multiple metrics, you gain a
deeper understanding, and could also to a higher extent find out where the
system has the most potential for improvement.

To measure the performance of the tested models we have used
standard metrics like accuracy, precision, recall, and F1-score in our
experiments. A prediction is considered to be a True Positive (TP) when
the model predicts the correct class, a False Positive (FP) when a class is
incorrectly predicted, a True Negative (TN) when a class is correctly rejected,
and a False Negative (FN) when a class is incorrectly rejected. This is defined
in Table 3.4 .

Positive ground truth Negative ground truth
Positive prediction True positive (TP) False positive (FP)
Negative prediction False negative (FN) True negative (TN)

Table 3.4: Definition of true and false predictions

Accuracy is defined as the number of correct predictions over the total
number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision is a metric that describes how many of the predicted events that
were correct predictions. It is formally defined in Equation 3.2

Precision =
TP

TP + FP
(3.2)

Recall is a metric that describes how many of the ground truth events were
found by the model. This is done by dividing the correctly predicted events
by the total number of events. It is formally defined in Equation 3.3

Recall =
TP

TP + FN
(3.3)
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F1 is a metric that combines the precision and recall values through their
harmonic mean. It is formally defined in Equation 3.4

F1 =
2(Precision · Recall)
Precision + Recall

(3.4)

We regard each class separately as a one-vs-all binary problem and
consider a positive prediction as a possible true positive if it is within a
tolerance δ of the ground truth event with a confidence equal or higher
than our threshold. Formally, we use the condition in Equation 3.5:

|gtspot − pspot| <
δ

2
(3.5)

where gtspot is a ground truth spot, and pspot a predicted spot in seconds.
We take predictions that match the criteria in Equation 3.5 and create
unique pairs of predicted spots and ground truth spots. These are matched
in a greedy fashion, where each ground truth spot is matched with the
closest prediction. Predicted spots that have no match are considered
a False Positive (FP). For a given gtspot, when no predictions are made
where this condition holds, we consider it a False Negative (FN). We use
the condition in Equation 3.5 to calculate the Average Precision for each
class:

AP = ∑
n
(Rn − Rn−1)Pn (3.6)

where Rn and Pn is the recall and precision at the n’th threshold. AP is
related to the precision-recall and can be calculated as the area under the
curve. This is useful as it reduces the PR-curve to a single numerical value.
Subsequently, we calculate the mAP:

mAP =
∑C

i=1 APi

C
(3.7)

where APi is AP calculated for the i’th class for C classes, and mAP is the
mean AP calculated over all classes. This is then calculated for tolerances
δ ranging between 5 and 60 seconds. Finally, we use the mAP scores
calculated for different δ to calculate the average-mAP score, which is
expressed as an area under the mAP curve with the tolerances. This
provides some insight into the model’s overall performance for tolerances
in the range of 5 - 60 seconds.

3.6 Summary

In this chapter, we have described our approach to comparing how us-
ing both audio and visual information for event spotting and classifica-
tion compare to approaches using only audio or visual information on the
soccer-specific dataset SoccerNet. We started with introducing the Soc-
cerNet dataset, describing how it is build up, and how we have used it.
Further, we have explained that we have used three models for the task.
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The first model is the state-of-the-art model on SoccerNet called the CALF
model, and this is tested on the spotting task of SoccerNet. This model
is tested with both audio, visual, and concatenated audio-visual features.
The second model is an audio model that converts the sound from the ori-
ginal videos into spectrograms, and train a ResNet classifier with these as
input. This model is also used as an audio feature extractor, by remov-
ing the last layer of the model. The third model is a 2D-CNN model used
with visual input, to compare to the performance of the audio model. The
2D-CNN model is also used to create an audio-visual approach through
late fusion with the audio model, by fusing the softmax-output from both
models. Further, we have described that we wanted to test several config-
urations of the CALF model, and how we chose the three configurations
we call CALF-120-40, CALF-60-20, and CALF-60-5. We have also presented
which window sizes we have tested for the audio and 2D-CNN models,
and which were used for the audio feature extractor. Finally, we presented
the evaluation metrics that we have used to analyze the performance of the
models.
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Chapter 4

Experiments and Results

In Chapter 3, we found that we wanted to test two different multi-modal
approaches on the SoccerNet, one for the task of action spotting and one for
the task of classification. We decided to test early fusion for the spotting task
with the CALF model by extracting audio features from the dataset and
concatenating them with the supplied visual ResNet features. We decided
to try this approach for three configurations of the model, which we named
CALF-120-40, CALF-60-20, and CALF-60-5. For the classification task, we
created an audio model, which takes generated spectrograms as input. This
was combined with a visual 2D-CNN model through late fusion, by taking
the softmax average scores of the two models. This approach is tested with
five different window sizes varying from 2 to 32 seconds.

We will start by presenting the results from the preliminary experiments
performed to select and configure our approaches. For the preliminary
experiments, we used the validation set to obtain the presented results.
In the further experiments for action spotting and classification, the testing
is performed on the test set. After the preliminary experiments, we will
present the results for the action spotting approach, before we will continue
with the results for the classification models. For both tasks we will start by
describing the overall results before we will analyze the results class-wise
to observe the differences between the event types. Further, we compare
the results we have observed in this thesis to other approaches tested on
the SoccerNet, and discuss how the results stand in a bigger perspective
when it comes to usefulness in a real-life scenario. We also discuss some
extra factors that possibly could affect the results on this dataset.

4.1 Preliminary experimental results

In the process of selecting hyperparameters for our models, we have
performed several preliminary experiments to help us make a good choice.
In this section, we present the results from these experiments, which
formed a foundation for our hyperparameter selection in Section 3.4.
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4.1.1 Window size for classification models

For the classification models, we tested the audio model, the visual 2D-
CNN model, and the combined models with softmax average/max on
the validation set to obtain valuable insights to use in the hyperparameter
selection. We tested models with 2, 4, 8, 16, and 32 seconds as window sizes
since this gives a nice variety how much audio the model gets as input. We
trained all the models for 25 epochs.

From Table 4.1, we observe that all models show a gradual increase
in accuracy as the window sizes get bigger. The visual 2D-CNN model
achieves the highest accuracy for the four smallest window sizes with
81.08% for window size 2, 84.26% for window size 4, 87.08% for window
size 8, and 89.74% for window size 16. The model achieving the closest
results for these four window sizes is the combined model which uses
a softmax average. This model achieves an accuracy of 78.72%, 82.31%,
86.21%, and 89.38% for these four window sizes in increasing order, so
it is not very far behind the visual model. The combined model which
is combined though softmax max achieves very similar results to the
softmax average model, with 0.26% lower accuracy for window size 2,
equal accuracy for window size 4, 0.42% lower for window size 8, and
0.35% lower for window size 16. For the biggest window size, the two
combined models outperform both of the single modality models, with
a max accuracy score for the softmax average model at 92.05%. This is
followed by the softmax max model at 91.59% and the visual 2D-CNN at
90.67%.

Accuracy (%)
Window size Audio Visual Softmax average Softmax max

2 63.54 81.08 78.72 78.46
4 68.26 84.26 82.31 82.31
8 72.15 87.08 86.21 85.79
16 73.90 89.74 89.38 89.03
32 75.49 90.67 92.05 91.59

Table 4.1: Comparison of the accuracy (%) of classification on the validation
set, for different models and fusion alternatives. The audio model is
described in Section 3.2.2 and the visual 2D-CNN model with pre-extracted
ResNet features is described in Section 3.2.3. The fusion of the audio and
video models is performed using late fusion (either softmax average or
softmax max), as described in section 3.3.2.

For all the window sizes, we observe that the audio model is the model
that achieves the lowest accuracy. It starts with 63.54% at window size 2
and increases for all window sizes until it reaches 75.49 at window size
32. This means that the audio model stays double digits behind the visual
model for all window sizes, with the closest window size being 8, where
the accuracy is 14.93% lower.

A trend we observe is that the model that is combined through softmax
average outperforms the model that is combined through softmax max for
all window sizes. The difference is not very big, but, consistently, the soft-
max average always performs a little bit better. As these two approaches
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are fairly similar, but with the softmax average consistently achieving a
better accuracy, we choose to continue with the softmax average model
representing the combined model approach in the experiments on the test
set.

4.1.2 Chunk size and receptive field for visual input for CALF

We performed experiments for the CALF model with visual input to
select which configurations we wanted to test with multi-modal input, as
described in Section 3.4.2. In this section we present the results from the
experiments with different chunk sizes and receptive fields for both 150
and 300 epochs. We also present the results used to back up why we found
300 epochs sufficient for our further experiments.

We test the models on the validation set and extract results for all
the tolerances from 5 to 60 with an increasing step of 5 between each
tolerance. In the tables where results are shown, we present the results
for the tolerances 5, 20, 40, and 60, as presenting all would decrease the
readability of the tables with an overflow of information. With these four
tolerances, in addition to the Average-mAP which is produced using all the
tolerances, we can still show the essence of the performance for different
areas of tolerances.

150 epochs

We observe from Table 4.2 that for average-mAP, it is the CALF-120-40 that
is the top-performer. This is as expected, as this is the configuration used
in the original paper [18]. This configuration achieves an average-mAP of
63.80%, with the configuration closest being CALF-120-20 at 61.42%. CALF-
120-40 also achieves the best results for all the three tolerances from 20-60,
while the CALF-60-20 achieves the best score for the smallest tolerance at
5. For the tolerance 5, we observe that it is the two models with chunk
size 60 that performs best, with the one with a receptive field of 20 clearly
ahead, with a score of 38.02% against a score at 32.90% for the one with a
receptive field of 5. This is a pretty low score but shows that these models
perform significantly better than the competitors when we demand a very
precise prediction, as the closest performance for tolerance 5 was for the
CALF-120-20 with a mAP score at 28.88%. We observe that it is clearly
divided between chunk sizes for this tolerance, where lower chunk sizes
are preferable over bigger ones. When assessing the impact of the receptive
field for tolerance 5, we observe that it generally seems to favor increasing
receptive fields when comparing models with the same chunk size. The
exception is for the receptive field of 20 and 40, where both chunk size 120
and 180 show a very small mAP-increase in favor of the receptive field of
20.

We observe a gradual increase in mAP scores when we increase the
tolerance for how far away from the ground truth event it can be a
prediction and still be considered a true positive. The biggest change in
mAP is between the tolerances of 5 and 20. For the tolerance of 20, several
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CALF model mAP
Chunk size Receptive field tolerance = 5 tolerance = 20 tolerance = 40 tolerance = 60 Average-mAP

60 5 0.3290 0.5232 0.5740 0.5849 0.5375
60 20 0.3803 0.5639 0.6168 0.6381 0.5831
120 5 0.2421 0.5379 0.6196 0.6431 0.5610
120 20 0.2888 0.5915 0.6681 0.6815 0.6142
120 40 0.2885 0.6191 0.6902 0.7137 0.6380
180 5 0.1081 0.4649 0.5875 0.6413 0.5066
180 20 0.2138 0.5592 0.6568 0.6720 0.5861
180 40 0.2118 0.5866 0.6715 0.6949 0.6054
180 60 0.2207 0.6048 0.6738 0.7111 0.6092

Table 4.2: Results on the validation set for 9 different configurations of the
CALF model. Trained on 150 epochs.

of the configurations have exceeded the CALF-60-20 model, with the best
performing being the CALF-120-40 at 61.91%. With this tolerance, we
observe a general preference for bigger receptive fields, now also between
the receptive fields of 20 and 40. This time we also observe that the chunk
size of 120 is outperforming the other two chunk sizes when looking at
models with equal receptive fields. When comparing this way we also
observe that chunk size 60 is achieving higher scores than chunk size 180
for equal receptive fields, but that CALF-180-40 and CALF-180-60 is still
performing better than the best configuration for chunk size 60. When
moving up to a tolerance of 40 we observe that 120-40 still performs best,
and the same preference for bigger receptive fields. Comparing the same
receptive fields we observe that chunk size 120 is still the best, but this time
180 achieves higher scores than 60. When we look at the results for the
final tolerance of 60 seconds, we observe the same results in terms of which
configurations perform best, but with a small increase in the scores for all
models.

When we consider the number of epochs trained, we first notice that
the performance of the CALF-120-40 model performs pretty similar to the
model with the supplied trained weights. The scores only differ with 0.3%,
and to a certain extent, this confirms our belief that reducing epochs does
not damage the performance too much. When we take a look at the training
data, we also extract information about how many epochs the models
had trained without improving performance. This information is listed in
Table 4.3. We test this on the validation set every 20th epoch, so we know
that the number of epochs will move in steps of 20. We observe that even
though we see a very similar result as the pretrained weights we compare
to, the average number of epochs since the best weights were found is
only approximately 22. This could imply that it is still some noticeable
movement in the training. Therefore we want to choose the models we
want to test further and train them for a longer period of time.

300 epochs

To select some of the models, we evaluate the performance of the models
and try to assess which configurations we believe could be of interest to
combine with audio features. Primarily, we want to continue with the
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CALF model
Chunk size Receptive field Epochs since best model found

60 5 0
60 20 40

120 5 20
120 20 20
120 40 20
180 5 60
180 20 20
180 40 20
180 60 0

Average 22.2222

Table 4.3: Number of epochs since it was last found a new best model for
each configuration when the training of 150 epochs was finished

CALF-120-40 model, as this achieves the best results for all tolerances from
20 to 60, in addition to the best average-mAP. This is also the configuration
chosen in the original CALF paper, and we find this configuration strong.
Further, we want to test a model with a small receptive field, as we suspect
the sound could benefit from small receptive fields in soccer. 5 is our
smallest receptive field, so we assess the three models with this. We
think CALF-60-5 could be of interest, as this has the best score among the
models with the same receptive field for the most accurate tolerance and a
pretty similar score as 120-5 for a tolerance of 20. The final configuration
we proceed with is the CALF-60-20, as this has the significantly best
performance on the lowest tolerance. It also has a receptive field of size
between the two other chosen models, so it fits well for our approach
further, as it could help provide some insights into how the receptive field
affects the performance of the model when combined with audio.

We double the number of epochs we train the models to 300 epochs.
When looking at the number of epochs since the models last improved
this time, we observe that the average is significantly higher than the last
time, calculating to over 113. This is mainly because of the big number
from the 60-5 model, but we see that for both of the other models, we also
have numbers bigger than the average from the previous training. The
number are shown in Table 4.4. We also observe that the average-mAP

CALF model
Chunk size Receptive field Epochs since best model found

60 5 240
60 20 40

120 40 60
Average 113.3333

Table 4.4: Number of epochs since it was last found a new best model for
each configuration when the training of 300 epochs was finished

has increased by 0.09% for the CALF 120-40 model when we double the
epochs, while the CALF-60-5 have increased with under 1%, and CALF-60-
20 decreasing the average-mAP by a negligible 0.05%. The CALF-120-40
model trained for 300 epochs now has a difference from the pretrained
weights of about 0.2% on the validation set. This could substantiate
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that to extensively train the models further would not gain too much
performance. When we observe the results for the models, we see that the
performances are pretty much as expected, with CALF-120-40 performing
best for average-mAP and tolerances from 20-60, while CALF-60-20 still
performs significantly better at the tolerance of 5. The biggest surprise is
that the CALF-60-5 has decreased the results for the tolerance of 5, which
means that it has increased for the higher tolerances since the average-mAP
has increased. These results are shown in Table 4.5

CALF model mAP
Chunksize Receptive field tolerance = 5 tolerance = 20 tolerance = 40 tolerance = 60 Average-mAP

60 5 0.2745 0.5494 0.5907 0.6021 0.5470
60 20 0.3769 0.5685 0.6110 0.6326 0.5826
120 40 0.2940 0.6333 0.6738 0.7124 0.6389

Table 4.5: Results on the validation set for 3 different configurations of the
CALF model. Trained on 300 epochs.

4.1.3 Epochs and validation frequency for audio and concaten-
ated input for CALF

Initially, we wanted to train the CALF model for the same number
of epochs with the same validation frequency for visual, audio, and
concatenated input. This was not possible as the audio and concatenated
input experienced troubles during training for these epochs and validation
frequency. In this section, we present the findings of the experimenting we
did to select the hyperparameters for these two input types in Section 3.4.2.
We suspected that overfitting could be the problem, so we tried different
approaches to deal with the problem. We experimented with different
learning rates with little response. We experimented further with lower
validation frequencies, and combined this with a lower number of training
epochs, as it would take a long time to complete the training with a
combination of many epochs and frequent validation.

When we did this, we observed that the performance increased early,
before suddenly dropping drastically. This keeps us thinking that it could
be some kind of overfitting and that the model is vulnerable to this
when trained with our audio features. For the concatenated features, this
approach seems to get the performance up to more normal levels, and we
observe performance more as expected. For the audio features, the training
is still very unstable, but at least we see that for some configurations
the model is capable of learning from the audio features, even if the
performance is still low.

Since we observe that we get results more as expected on the validation
set for concatenated features, we decide to stay with this approach but to
validate more frequently with a lower number of total training epochs. To
avoid the overfitting problem we set the number of epochs between each
validation to 2, and the number of epochs to 50. This effectively deals with
the unstable training problem for the concatenated features, at least on the
validation set that we used to validate the model.
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For the audio features, we choose even fewer epochs of training, as
the performance drops after very few epochs of training. We choose 30
epochs and have validation every other epoch. We still have big issues
with unstable training and bad performance. The results for the validations
when training with the audio features were peaking even earlier than for
the concatenated features, and for some of the configurations, it is not
obtained useful performance at all. As we can not exclude the possibility
that it is because it is just how audio features perform with this model,
even though this is unlikely given the results of other models with audio,
we decide to keep the results and show them together with the visual and
concatenated features. We discuss some perspectives on why the CALF
model with our audio features performs as it does in Section 4.4.1.

4.1.4 Non-maximum Suppression (NMS)

For our testing with the CALF models on the action spotting task, we
chose to apply Non-maximum Suppression (NMS) on the results. This was
done based on experiments on the results on the validation set with visual
input. The effect for the different configurations we tested are presented
in Table 4.6 As we observe from this table, all the configurations benefit

CALF model Average-mAP
Chunk size Receptive field With NMS Without NMS

60 5 0.5375 0.4504
60 20 0.5831 0.4712
120 5 0.5610 0.5150
120 20 0.6142 0.5302
120 40 0.6380 0.5644
180 5 0.5066 0.4747
180 20 0.5861 0.5583
180 40 0.6054 0.5852
180 60 0.6092 0.5730

Table 4.6: Results on the validation set with and without NMS for the CALF
models we trained for 150 epochs. This shows a significant advantage of
using NMS.

from NMS. The configurations showing most increase in performance with
NMS are the ones with the lowest chunk size. It seems like the the
difference between the results with and without NMS decreases on average
as we move towards bigger chunk sizes. We performed this experiment
for all the 9 configurations of CALF that we trained for 150 epochs, and
based on these number we chose to continue using NMS for the CALF
configurations.

4.1.5 Summary of preliminary experiments

In this section, we have presented the results from several preliminary
experiments. These were performed on the validation set and formed a
foundation for our selection and configuration of models to test. For the
classification models, we test with the window sizes 2, 4, 8, 16, and 32. We
selected the combined model that uses softmax average to be the combined
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model we test further. To extract the audio features, we selected the
model with a window size of 8 seconds. These features are concatenated
with the supplied ResNet features from SoccerNet and used as input to
the CALF model. For the CALF model, we experimented with a variety
of chunk sizes and receptive fields, and selected the three configurations
we call CALF-120-40, CALF-60-20, and CALF-60-5. For visual, audio, and
concatenated input, the models are trained for respectively 300, 30, and 50
epochs, and NMS is applied to the results.

In the further sections, we present the results from the experiments
performed with the selected models, and the results presented are results
from the test set.

4.2 Action spotting results

For the action spotting task, we have tested three different configurations
of the CALF model, and all three are tested with visual, audio, and
concatenated audiovisual features as input. We first analyze the overall
results for the action spotting task for all three classes combined and
compare the performance for the different input features. Then, we look
into the class-wise performance for the different inputs.

4.2.1 Overall results

Tolerance = 5 Tolerance = 20 Tolerance = 40 Tolerance = 60
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60-5 Audio NaN 0.0735 0.0010 NaN 0.1913 0.0075 NaN 0.3721 0.0187 NaN 0.3501 0.0293 0.0145
60-5 ResNet 0.1551 0.2947 0.2545 0.4385 0.5507 0.5113 0.5488 0.6110 0.5495 0.5766 0.6147 0.5634 0.5092
60-5 Concat 0.1425 0.1729 0.2123 0.4330 0.4780 0.5209 0.5453 0.5547 0.5998 0.5889 0.6135 0.6156 0.5408
60-20 Audio 0.0695 0.0704 0.0771 0.2416 0.1505 0.1940 0.3146 0.2084 0.2321 0.3729 0.2117 0.2475 0.2069
60-20 ResNet 0.3259 0.3069 0.3655 0.6401 0.5117 0.5493 0.6882 0.5327 0.5871 0.6145 0.5790 0.5971 0.5574
60-20 Concat 0.2419 0.2303 0.2769 0.5290 0.4659 0.4915 0.5984 0.5016 0.5683 0.6176 0.5398 0.6136 0.5231

120-40 Audio NaN 0.0374 0.0007 NaN 0.1519 0.0045 NaN 0.1585 0.0161 NaN 0.2454 0.0264 0.0123
120-40 ResNet 0.2195 0.2535 0.2869 0.6383 0.5819 0.6067 0.7199 0.6438 0.6425 0.7446 0.6506 0.6530 0.6007
120-40 Concat 0.1681 0.1855 0.2139 0.5749 0.4674 0.5579 0.6254 0.5836 0.6106 0.6602 0.5931 0.6345 0.5629

Table 4.7: Performance of the model with different configurations, tested
on the test set. The numbers describing the CALF model are the chunk
size (first number) and receptive field (second number). The mAP values
indicate the Average Precision values averaged over all event types. The
NaN values means "Not a Number", and occurs when it is tried to divide
by zero in the calculations for precision. This means that it was made 0
predictions for one of the event types.

For the overall results from Table 4.7, we observe that the best
performance for all tolerances combined (based on average-mAP) are
CALF-120-40 with only visual ResNet features as input with a score of
60.07%. It is followed by the CALF-120-40 model with concatenated input
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at 56.29% and CALF-60-20 with visual input at 55.74%. This shows us
that also when using concatenated audio-visual input, the configuration
using chunk size 120 with a receptive field of 40 performs best among our
selected configurations when it comes to average-mAP. For the average-
mAP, we observe that the models using only visual input outperform the
concatenated input for two of the three configurations, with CALF-60-5
being the only model where concatenated input achieves the best results
(54.08%). This is an over 3% increase from the same model with only visual
input. This could imply that concatenated features are more beneficial
compared to an equal model with visual features when the receptive field
is low. This is because it is only observed for CALF-60-5, and not CALF-
60-20, where the only difference is the receptive field. The CALF-60-
20 also has a lower average-mAP than CALF-60-5 for the concatenated
input. This could mean that the concatenated features also in total benefits
from smaller receptive fields, and not only when compared to an equal
configuration with different input. Further, we also observe in all cases
that the audio input alone performs worst, with maximal average-mAP
at 20.69% for CALF-60-20. The two other configurations with audio input
have an average-mAP of 1.23%, and 1.45%, which imply that the models
have learned close to nothing. In total for the average-mAP, we see the
tendencies of the model performing better with bigger chunk sizes, and
that the best results are gained through visual input alone.

Results per tolerance

We do not want to only look at the average-mAP, as this metric only gives
some insights into how well the models perform across all tolerances for
the mAP-scores. When observing the results for the lowest tolerance,
which is 5, we see that CALF-60-20 with visual input is winning by quite
a bit, having a 7% margin down to the closest score. The best score is
at 36.55%, while the runner-up is the CALF-120-40 with visual input at
28.69%, followed by CALF-60-20 with concatenated input a little over 1%
further back. For this tolerance, we observe that visual features are the
dominating input type, as all three configurations perform best with this
input here. Further, we observe that the recall values are better for visual
input, with a significant increase from concatenated input to visual input.
The scores are still at 30.69% at best, and therefore still not very useful. The
precision values are a bit less different on average, but still clearly in favor
of visual input for tolerance 5.

Not surprisingly, after observing the average-mAP results for audio-
only, we see that the models using only audio are performing poorly, with
two of them at around 0.1%, and CALF-60-20 at 7.71%. For the two worst
models we also observe some Not a Number (NaN) values for the precision
metric. If we again look at Equation 3.2 we see that the only possibility
for this to happen is if we divide by zero. This could only happen if
both true positive, and false-positive predictions are zero, meaning that
no predictions were made. As the recall score is not zero, we know that it
is not the case for the model in total, which means that this problem comes
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from one of the classes not predicting any events. When one class has a
NaN precision, this will affect the calculations when combining this metric
for all three classes, giving a total NaN score, since combining with NaN is
not possible. This problem continues through all tolerances for audio input
for CALF-60-5 and CALF-120-40.

When moving up to a tolerance of 20, we observe that this is the
first tolerance where the concatenated input achieves better mAP than the
visual input for CALF-60-5. From tolerance 20 and out, this is the case for
this model. It is still not the best-performing model among all. With a mAP
score of 52.09%, it is beaten by both of the other models for a tolerance of
20. CALF-120-40 is still the winner with a mAP score of 60.67% for visual
input. We observe that in addition to the increased mAP scores, the recall
and precision scores have increased by a lot when moving the tolerance
from 5 to 20. The recall values for the best performing model (CALF-120-
40) is for this tolerance at 58.19%. This means that we have found over
half of the events in the test set by a window of 10 seconds of each side of
the center frame where the event is annotated. We see that even though
the audio model still has the NaN values for precision, the recall values
here have increased to between 15-19% for the various configurations. This
could mean that the audio models are at least learning something.

For a tolerance of 40, we observe that the concatenated input for CALF-
60-5 achieves the highest mAP score among the input types for this model
(59.98%), as well as outperforming the best mAP score for CALF-60-20. It
is still outperformed by the CALF-120-40 with both visual (64.25%) and
concatenated (61.06%) input. This means that CALF-120-40 still performs
best both for visual and concatenated input. When it comes to precision
and recall we observe that for the CALF-120-40 with visual input, the
precision value has surpassed 70% by almost two percent. With a recall
value at 64.38%, we see that it is a significantly better combination than
any of the other models with a tolerance of 40.

Finally, we observe the highest tolerance at 60 seconds, with still the
visual CALF-120-40 as the best performing model at an mAP score at
65.30%. What is particularly interesting at this tolerance is that both of the
models with chunk size 60 have their best performance with concatenated
input, with CALF-60-5 barely outperforming CALF-60-20 with 61.56%
against 61.36%. This is a pretty close race but still favors the smaller
receptive field over the bigger, when the chunk size is equal. When
we increase the chunk size on the other hand, we observe that it is still
CALF-120-40 that performs the very best in total for concatenated features
(63.45%). This could mean that the concatenated features benefit from
bigger chunk sizes, even though it seems to prefer smaller receptive fields,
and that chunk size is of even bigger importance.

For the overall results of the action spotting task, we observe that for
most of the models the visual features alone were to prefer, as this performs
best when it comes to mAP scores. The exceptions were the CALF-
60-5 model, having the best scores for the concatenated input for most
tolerances, and the CALF-60-20 which had the best score for concatenated
input at a tolerance of 60. Still, none of these were able to outperform the
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best visual model. We also found that for equal chunk size the model seems
to prefer smaller receptive fields for the concatenated input, but that chunk
size affects the results even more, as CALF-120-40 still performed better
than the other two also for concatenated input.

4.2.2 Class-wise results

Until now, we have presented the results combined over all classes, as this
says something about how the models perform as a whole for the events
in the dataset. But, this is not the only information of interest when we
evaluate the performance of the models. The three events are different, and
with different actions, it could also be that it differs from event to event how
much the modalities could help to identify the event. One could imagine
the audio input can make a bigger impact on certain events with bigger
audible cues, for example, the loud celebration after a goal has been scored.
Therefore, we are curious to evaluate how the models perform when we
observe only one class at a time. We will observe the results for the different
input types, and evaluate their performance for the individual events. We
will also compare the strengths and weaknesses of the different input types
to each other. The results for the models on the different types of events are
shown in Table 4.8.

4.2.3 Class-wise results with visual input

The first class-wise results we are presenting are for the visual ResNet
features. This uses the same input to the model as in the original CALF
model[18].

Average Precision results

We start by getting an overview of the performance over the different
tolerances by looking at the average across the Average Precisions (AP). We
observe that for all three configurations that goals are the easiest to predict,
with around 9% and 10% margin to the closest event type. The CALF-
120-40 is not surprisingly the best performer, as this is the configuration
chosen in the original paper which uses visual input, and also performs
best when we look at all classes combined. For goals, it has an average of
69.12% Average Precision, with CALF-60-20 being the closest competitor at
66.53% and CALF-60-5 achieving a score of 61.11%. Further, we observe
that the second easiest event to predict on average is substitutions, again
with a clear margin to the last event, being cards. The order of how the
configurations perform for substitutions from best to worst is the same as
for goals, with CALF-120-40 performing best at 60.06%. When compared
to the best score for cards, which is CALF-120-40 with 47.75%, we observe
that it is an over 12% difference in performance between the best models
for substitutions and cards. With the performance for goals at over 9%
better than substitutions again, we see that it is a significant difference in
performance between the different event types.
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Tolerance = 5 Tolerance = 20 Tolerance = 40 Tolerance = 60
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60-5 Card Audio 0.0030 0.0667 0.0009 0.0096 0.2133 0.0089 0.0197 0.4378 0.0239 0.0254 0.5644 0.0398 0.0183
60-5 Card ResNet 0.1271 0.2733 0.2031 0.3489 0.4978 0.3748 0.4348 0.5556 0.4067 0.4486 0.5622 0.4184 0.3701
60-5 Card Concat 0.1455 0.0689 0.1242 0.4673 0.2222 0.3716 0.5779 0.2556 0.4218 0.6109 0.3000 0.4427 0.3728
60-5 Sub Audio 0.0022 0.1537 0.0021 0.0102 0.3604 0.0134 0.0192 0.6784 0.0320 0.0275 0.4859 0.0479 0.0254
60-5 Sub ResNet 0.1464 0.2827 0.2148 0.4353 0.5530 0.5323 0.5668 0.6148 0.5868 0.6185 0.6131 0.6007 0.5213
60-5 Sub Concat 0.0941 0.2014 0.1421 0.2912 0.5583 0.5003 0.4183 0.6784 0.6311 0.4732 0.7491 0.6528 0.5299
60-5 Goal Audio NaN 0 0 NaN 0 0 NaN 0 0 NaN 0 0 0
60-5 Goal ResNet 0.1918 0.3282 0.3456 0.5312 0.6012 0.6269 0.6448 0.6626 0.6551 0.6626 0.6687 0.6709 0.6111
60-5 Goal Concat 0.1879 0.2485 0.3705 0.5406 0.6534 0.6909 0.6398 0.7301 0.7465 0.6825 0.7914 0.7514 0.6879
60-20 Card Audio 0.0229 0.0178 0.0101 0.0609 0.0156 0.0580 0.0879 0.0356 0.0761 0.1069 0.0311 0.0885 0.0618
60-20 Card ResNet 0.2574 0.2511 0.2973 0.5012 0.4511 0.4144 0.5293 0.4622 0.4495 0.4395 0.5089 0.4670 0.4238
60-20 Card Concat 0.2243 0.1889 0.1891 0.4330 0.3444 0.3647 0.5044 0.3800 0.4391 0.5221 0.4200 0.4676 0.3865
60-20 Sub Audio 0.0251 0.1413 0.1193 0.1104 0.3410 0.2367 0.1623 0.4576 0.3111 0.2194 0.4753 0.3439 0.2695
60-20 Sub ResNet 0.2832 0.2862 0.3244 0.6297 0.5318 0.5594 0.7048 0.5654 0.6177 0.6161 0.6237 0.6231 0.5640
60-20 Sub Concat 0.1063 0.2014 0.1779 0.3040 0.5318 0.3896 0.3974 0.5848 0.4708 0.4320 0.6290 0.5550 0.4250
60-20 Goal Audio 0.1604 0.0521 0.1019 0.5536 0.0951 0.2872 0.6935 0.1319 0.3090 0.7925 0.1288 0.3101 0.2782
60-20 Goal ResNet 0.4371 0.3834 0.4746 0.7895 0.5521 0.6741 0.8304 0.5706 0.6941 0.7880 0.6043 0.7012 0.6653
60-20 Goal Concat 0.3952 0.3006 0.4637 0.8500 0.5215 0.7201 0.8934 0.5399 0.7951 0.8986 0.5706 0.8182 0.7383

120-40 Card Audio 0.0015 0.0222 0.0004 0.0068 0.1022 0.0042 0.0155 0.2333 0.0184 0.0261 0.3933 0.0343 0.0140
120-40 Card ResNet 0.2103 0.2444 0.2394 0.5624 0.5311 0.4802 0.6268 0.5822 0.5239 0.6522 0.6000 0.5399 0.4775
120-40 Card Concat 0.1505 0.1378 0.1587 0.5236 0.2956 0.4043 0.5230 0.4044 0.4453 0.5503 0.4133 0.4607 0.4012
120-40 Sub Audio 0.0038 0.0901 0.0017 0.0099 0.3534 0.0091 0.0203 0.2420 0.0299 0.0287 0.3428 0.0449 0.0231
120-40 Sub ResNet 0.1745 0.2155 0.2341 0.5685 0.5795 0.6269 0.6933 0.6590 0.6660 0.7218 0.6555 0.6735 0.6006
120-40 Sub Concat 0.1047 0.1979 0.1562 0.3844 0.5053 0.5102 0.4682 0.6378 0.5629 0.5384 0.6572 0.5988 0.5021
120-40 Goal Audio NaN 0 0 NaN 0 0 NaN 0 0 NaN 0 0 0
120-40 Goal ResNet 0.2737 0.3006 0.3872 0.7841 0.6350 0.7131 0.8396 0.6902 0.7375 0.8598 0.6963 0.7455 0.6912
120-40 Goal Concat 0.2491 0.2209 0.3269 0.8167 0.6012 0.7592 0.8851 0.7086 0.8237 0.8919 0.7086 0.8441 0.7507

Table 4.8: Comparison of precision, recall and Average Precision per class
(event type), for the CALF model with different configurations. The
numbers describing the CALF model are the chunk size (first number)
and receptive field (second number). The NaN values means "Not a
Number", and occurs when it is tried to divide by zero in the calculations
for precision. This means that it was made 0 predictions for the event
type. Highlighted cells indicate the best Average Precision score in each
individual experiment.

When we observe the results for the different tolerances in Table 4.8,
we see that the tendency of goals being the easiest event to predict begins
already at the lowest tolerance. The best model for Average Precision with
tolerance 5 for goals is the CALF-60-20, with a score of 47.46%, with the
closest model being CALF-120-40 at 38.72%. CALF-60-20 also achieves the
highest score for both of the other event types with 32.44% for substitution
and 29.73% for cards. This follows up on the earlier findings of CALF-60-20
performing the best among the configurations for the lowest tolerance.

The order of which configurations performing best for tolerance 5 is
the same for all three events, with CALF-120-40 being second and CALF-
60-5 being last. Since the CALF-60-20 performs best for this tolerance, we
compare the performance of CALF-60-20 for the three events. We observe
that the order of event-difficulty is the same as for the average across
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tolerances, with goals at the top and cards at the bottom. However, we
observe that the difference between substitutions and cards is smaller than
for bigger tolerances. A reason for this could be that the event of giving
a card happens faster, and does not necessarily keep giving hints over a
longer period of time. This is different from both goals and substitutions,
where the cues of the event actually happen for a longer period of time,
even though it is temporally annotated to one single frame. This means
that for cards you typically have a shorter window of time with interesting
information, and if it is not predicted within a close tolerance of the event,
it is less likely to predict it further away than for the other two events.
The two other events could be predicted further away from the actual
annotation, but still be predicted with actions related to the event on the
screen. This can be backed up by looking at the increase of the performance
when changing the tolerance from 5 to 20. When looking at these results for
all the configurations we observe an average increase for goals at 26.89 and
substitutions at 31.51. With cards on the other hand we observe an increase
of only 17.65, showing that it increases less than the two other event types
when moving up to a higher tolerance.

Another interesting takeaway for tolerance 5 is that for all events and
all configurations except one, the best performing input is visual alone.
The exception is for goals for CALF-60-5, where the concatenated input
achieves the highest score. When we move up to a tolerance of 20 however,
the visual input is not as dominating anymore, as the concatenated input
takes over as the input type performing best for goals for all models. For
the other two event types, the visual input still wins for tolerance 20.
When observing the scores for this tolerance, we observe that the goals and
substitutions have increased more in performance compared to tolerance 5
than the cards, as we mentioned earlier. We see that unlike for tolerance 5,
that CALF-120-40 is the configuration achieving the best Average Precision
scores for tolerance 20. This applies to the rest of the tolerances as well,
meaning that it is only for tolerance 5 that CALF-120-40 does not achieve
the highest scores for the three events. The best Average Precision score for
tolerance 20 with visual input is 71.31% for goals, 62.69% for substitutions,
and 48.02% for cards.

For the tolerances 40 and 60, we see pretty similar results to each other,
with only a few percent improvements for a tolerance of 60. Something
interesting for these is that for CALF-60-5 the visual input is no longer the
top-performing input for any of the event types. The input type performing
the best for these tolerances for CALF-60-5 is the concatenated features.
In addition to the goals, which are won by concatenated input for all
the configurations for these tolerances, we observe that for the highest
tolerance the concatenated features win marginally for cards for CALF-60-
20 as well. For the other events the visual input performs best, and it is
CALF-120-40 that achieves the best Average Precision scores.
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Confusion matrices

In addition to evaluating the Average Precision score, we create confusion
matrices so we can understand further what the models actually predict.
This way we see the numbers behind the precision and recall values and
can assess some strengths and weaknesses of the different configurations.
The confusion matrices describe which events have been predicted for
the ground truth actions, and show what went wrong for failed or
missing predictions. We create confusion matrices for each configuration
for tolerance 40, as 20 seconds in each direction could be considered a
reasonable distance for a true positive.

We begin with looking at the confusion matrix for CALF-60-5 in
Table 4.9. We observe that while it is a few predictions of wrong classes,
it is a very small number compared to the number of events where no
predictions were made, or where a prediction was made with no annotated
event nearby. This means that it is a very small amount of confusion
between classes. We observe that the confusion matrix reflects that goals
are the easiest to predict with both the lowest number of false negatives and
false positives. Even though the number of events is not perfectly balanced,
the difference in performance is clear, giving goals both the best precision
and recall. Even though the precision and recall for goals are better than for
cards and substitutions, it is still not very good, and the CALF-60-5 still has
a lot of wrong predictions. For cards, we observe a more distinct reason for
failure, as the number of false positives is much higher than missed ground
truths. This shows through the precision and recall scores giving a lower
precision than recall. The case is similar for substitutions, but the difference
is smaller, resulting in a smaller difference between the two metrics.

Ground truth
Goal Card Sub None

Prediction

Goal 216 0 0 119
Card 2 250 10 313
Sub 5 5 348 256

None 103 195 208 -

Table 4.9: Confusion matrix for CALF-60-5 with visual ResNet input
evaluated at a tolerance of 40. For ground truth, "none" means the absence
of an event at a position where it has been predicted one. For predictions,
"none" means that no class was predicted at a place where a ground truth
event was present.

When moving on to the confusion matrix for CALF-60-20 in Table 4.10,
we observe some significant differences from CALF-60-5. Overall we see
that it has made a much lower number of predictions. This shows for the
number of predictions without a belonging ground truth event, which is
a good thing, but also for the number of correctly predicted events. This
means that the number of ground truth events that were not found by the
model has increased, giving a worse recall than CALF-60-5. But in return,
fewer predictions of non-existing events create a higher precision score. By
reducing the number of predictions the CALF-60-20 achieved a better result
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in total, as the precision of the model is so much better than for CALF-60-5,
giving it a better Average Precision in total.

Ground truth
Goal Card Sub None

Prediction

Goal 186 0 0 38
Card 2 208 3 180
Sub 3 1 320 130

None 135 241 243 -

Table 4.10: Confusion matrix for CALF-60-20 with visual ResNet input
evaluated at a tolerance of 40. For ground truth, "none" means the absence
of an event at a position where it has been predicted one. For predictions,
"none" means that no class was predicted at a place where a ground truth
event was present.

When observing the confusion matrix for CALF-120-40 in Table 4.11,
we see that the number of correct predictions is higher than the other two
for all the event types. We observe that the number of false positives
is closer to CALF-60-20, but that it includes more true positives as well.
With the fewest of false negatives among the configurations as well, this
achieves a total score that outperforms the two other configurations. We
observe that the particularly strong side of the model is the precision for
goals, where the number of true positives is much bigger than for the false
positives. This creates a precision score of almost 84% for goals, which
is even better than the CALF-60-20, which was closest of the visual input
models with approximately 83%. CALF-120-40 also achieves a better recall
score for goals, giving a combined result that is stronger. When comparing
for substitutions, we observe that CALF-60-20 achieves a higher precision
score at just above 70%, while for cards the precision is better for CALF-120-
40 again. Combined with a greater recall score for all classes, this makes the
CALF-120-40 achieve the highest score in total.

Ground truth
Goal Card Sub None

Prediction

Goal 225 1 0 42
Card 2 262 1 153
Sub 2 3 373 160

None 97 184 192 -

Table 4.11: Confusion matrix for CALF-120-40 with visual ResNet input
evaluated at a tolerance of 40. For ground truth, "none" means the absence
of an event at a position where it has been predicted one. For predictions,
"none" means that no class was predicted at a place where a ground truth
event was present.

4.2.4 Class-wise results with audio input

The CALF model with audio features alone as input has in our experiments
not performed well. As already mentioned in Section 3.4.1, it had major
troubles under training, so when we observe the results on the test set
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it is not surprising that it achieves weak results. As we described in
Section 4.2.1 the model with audio input had results with a maximum
of a few percent for CALF-60-5 and CALF-120-40, while CALF-60-20 had
somewhat more meaningful results at about 20%. But, we do not only want
to observe the results combined over all classes, we also want to observe if
there are differences between classes. This way we can gain some insights
into why the models behave as they do.

When we observe the average-AP scores over all the tolerances for the
classes, we immediately notice that the two weak configurations both get a
score of 0 for goals. They show 0 for Average Precision and recall and a Not
a Number (NaN) value for precision. This NaN value means that it is tried
to divide by 0 in the calculation. Since the equation divides by the sum
of the true positives and the false positives it means that the models have
predicted zero events. This also means that we have found the reason for
the NaN values in Table 4.7, as the precision tries to combine the precision
score for all three classes. Further, we observe that the two weak models
actually provide some "normal" values for Recall and even have a recall
score at 67.84% for the substitution event for CALF-60-5 with tolerance 40.
But, we also see that the precision score is at 1.92%, showing that the reason
for the high recall is a huge number of predictions. This is confirmed by the
confusion matrix for CALF-60-5 in Table 4.12 where we see a huge number
of predictions, which is the reason for the high recall score. We see the
same concept, but with smaller numbers for CALF-120-40 in Table 4.13. For
these two confusion matrices, we also observe a much higher amount of
predictions of the wrong class and not just false positives at spots without
an event present. This could be due to the very high number of predictions,
which means that some predictions would happen inside the tolerance of
other events.

Ground truth
Goal Card Sub None

Prediction

Goal 0 0 0 0
Card 63 197 120 9644
Sub 233 215 384 19163

None 30 38 62 -

Table 4.12: Confusion matrix for CALF-60-5 with our extracted audio
features as input, evaluated at a tolerance of 40. For ground truth, "none"
means the absence of an event at a position where it has been predicted
one. For predictions, "none" means that no class was predicted at a place
where a ground truth event was present.

Moving on to the CALF-60-20 model, which was the only of the three
with some meaningful results, we observe that for the card event the results
are significantly worse than for the two other events. It has an average AP
of 6.18%, so compared to goals at 27.82% and substitutions at 26.95%, this
is pretty low. This could mean that cards are just much harder to predict
with sound alone, or that the model just failed to learn this class because
of the earlier described problems for the audio input. It could of course be
a combination, since the two other event types give much higher scores,
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Ground truth
Goal Card Sub None

Prediction

Goal 0 0 0 0
Card 53 105 117 6495
Sub 111 149 137 6352

None 162 196 312 -

Table 4.13: Confusion matrix for CALF-120-40 with our extracted audio
features as input, evaluated at a tolerance of 40. For ground truth, "none"
means the absence of an event at a position where it has been predicted
one. For predictions, "none" means that no class was predicted at a place
where a ground truth event was present.

and the result is still several times better than for the two other models.
This could indicate that cards could be harder to spot by sound. It might be
generally more and louder noise from a celebration after a goal, or applause
during substitutions. This way it makes sense that cards are harder to spot
by sound.

When observing the results for goals and substitutions we see that they
are pretty comparable, and which performed best switched throughout the
tolerances. For the tolerance of 40, the goals have an Average Precision
of 30.90%, while substitutions have 31.11%. We observe that for goals the
precision is pretty high at 69.35%, as it is a low number of predictions for
this event, with many of them correctly predicted. But, with finding few
of the total number of goals it ends up with a recall at 13.19%. Opposite of
the goal event, the substitution achieves high recall, with a score at 45.76%,
but has a high number of predictions, giving a low precision at 16.23%.
What is also interesting is that when the model predicts a goal wrong, it is
rare that it is another event, but is more likely to not be nearby any other
event. When it is a ground truth goal on the other hand, it is almost as
likely to predict one of the other events as a goal, if an event is predicted. It
is interesting that these mispredictions only go in one direction, as it might
have been natural to think that if two events are similar in the sound they
should both predict each other. Again, substitutions are opposite to goals,
as the probability of predicting any other event when the ground truth is
substitution is very low. There are also some predictions of substitutions
that had another class as ground truth, but this might also be due to the
high number of predictions for substitution.

Ground truth
Goal Card Sub None

Prediction

Goal 43 2 0 17
Card 33 16 4 130
Sub 9 22 259 1305

None 241 410 303 -

Table 4.14: Confusion matrix for CALF-60-20 with our extracted audio
features as input, evaluated at a tolerance of 40. For ground truth, "none"
means the absence of an event at a position where it has been predicted
one. For predictions, "none" means that no class was predicted at a place
where a ground truth event was present.
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4.2.5 Class-wise results with concatenated input

Finally, we observe the results for the CALF models with concatenated
audio-visual input. This is maybe the most interesting input, as this is the
early fusion approach we wanted to compare to visual-only input.

Average Precision results

When we observe the results we see that for all models this input increases
the average AP scores for goals compared to visual input. For CALF-60-5,
we also observe that the average AP has increased for all three event types.
This is not the case for the two other models, as these show a reduction
in average-AP for card and substitution. Since we observe an increase for
all events for CALF-60-5, but not for CALF-60-20, it could imply that when
compared to visual-only input for the same configuration, concatenated
input works better for smaller receptive fields. Even though the scores
for CALF-60-5 have increased compared to visual input for CALF-60-5, the
actual score is still better for both goal and card for CALF-60-20. This is why
the total average-mAP score for CALF-60-20 is better, even with CALF-60-
5 achieving better results in total for substitution. CALF-120-40 achieves
even higher scores for goals and cards, thus being the best performer for
these events. But, for substitutions the CALF-60-5 also outperforms CALF-
120-40, meaning that it performs best among the models with concatenated
input for this event.

When we observe the best performing average scores for the three event
types with concatenated input, we find that the order of difficulty is the
same as for visual input. This means that goals is the easiest with its 75.07%,
followed by substitutions at 52.99%, with cards last with 40.12%. These
scores show that even though the order of events is the same as for visual
input, it is bigger differences between goals and the two other events for
concatenated input. This is because concatenated features have shown a
positive effect for goals and a negative effect for cards and substitutions for
the best performing models.

We also observe the Average Precision for the different tolerances and
start with tolerance 5. What is particularly interesting for this tolerance
is that the reason why CALF-60-20 is the best performer for mAP is that
it achieves a high score for goals compared to the other configurations.
It achieves an Average Precision of 46.37%, which is over 9% better than
CALF-60-5, which is the closest score for goals with concatenated input.
Interestingly, CALF-120-40 is performing worst among the models for this
tolerance, even though it achieves the best average-AP score for goals.
CALF-60-20 also performs best for both of the other two events, but with
considerably lower scores. For this tolerance, both CALF-120-40 and CALF-
60-20 also achieve higher scores for cards than substitutions, but the scores
are low, and the differences small, so it might not be of much interest.

When moving to the tolerance of 20 we observe the same tendency
as for visual input, with goals and substitutions increasing the scores
more than for cards. We still believe that a possible reason for this
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could be that the event of showing a card often has a shorter interval of
valuable information around the annotated frame than substitution and
goals, which are events with cues over a somewhat longer period of time.
This means that if the card given is not spotted by the model by the time
of the lowest tolerance, it is a lower chance for it to predict it with further
distance than for the other two events, as more of the cues are gone. We
do not think that introducing sound to the input features should change
this thought notably in one way or another. For tolerance 20 and above we
observe that the concatenated input performs better than visual for goals
for all models. For tolerance 20 we observe that among the models with
concatenated input, the CALF-120-40 has taken over as the best performing
model for all three classes. For goals, the Average Precision has increased
to 75.92%, which is considerably higher than substitutions at 51.02% and
cards at 40.43%. Among CALF-60-20 and CALF-60-5 it is CALF-60-20 that
achieves the highest score for goals, while CALF-60-5 wins for both cards
and substitutions.

With the tolerances 40 and 60, we observe that CALF-60-5 achieves best
scores with concatenated input for all events. For the other two models,
the best Average Precision score for goals is achieved with concatenated
input. With tolerance 60, CALF-60-20 also achieves best score for cards with
concatenated input. Further, we observe that for these two tolerances (40
and 60) the CALF-120-40 with audio-visual input does not perform best in
total for all three classes anymore. CALF-60-5 achieves better scores for
substitutions for both tolerances, while CALF-60-20 performs best for cards
at tolerance 60. The highest Average Precision scores among the classes
are still goals for all models. We again find that the smallest increase in
Average Precision is found when moving from tolerance 40 to 60.

Confusion matrices

Ground truth
Goal Card Sub None

Prediction

Goal 238 6 4 124
Card 0 115 1 83
Sub 3 15 384 516

None 85 314 177 -

Table 4.15: Confusion matrix for CALF-60-5 with concatenated audio-visual
input evaluated at a tolerance of 40. For ground truth, "none" means the
absence of an event at a position where it has been predicted one. For
predictions, "none" means that no class was predicted at a place where a
ground truth event was present.

We also want to look into confusion matrices for concatenated input,
so we create confusion matrices for a tolerance of 40 again. We start
with the confusion matrix for CALF-60-5 in Table 4.15. The first thing
we notice when observing the confusion matrix is that the model has
a higher number of total predictions for substitutions than for the two
other events combined. This follows the pattern of how the models have
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behaved on visual and audio input from before. With this, we mean
that it generally has been predicted more substitutions and that audio
features had a much higher number of predictions for substitutions than
for the other two events. That the number of predictions for substitutions
is generally higher is not so weird as this event also has the highest
number of annotations. What is more interesting is that it seems like
using the audio features still affects the results in the direction of predicting
more substitutions. However, the eagerness to do so has been drastically
modified by combining the input with visual features. Interestingly, the
highest number of predictions for substitutions is still for CALF-60-5, as it
also is for audio input alone. With the high number of predictions, we also
get a pretty high recall score at 67.84% for substitutions. On the other hand,
it also creates a lot of false positives, achieving a precision score of 41.83.
Further, substitutions are also predicted 18 times when the ground truth
event is either goal or card. Again, this could be due to a high number
of predictions, so it is not necessarily because the model struggles with
separating the classes.

For cards, in particular, we observe a low number of predictions, but
still enough false positives to not really achieve a great precision either.
This results in the model performing weakest on cards, with an especially
low recall at 25.56%, even without a great precision, which is at 57.79%.
Compared to this the model performs much better for goals, with a much
higher recall at 73.01%, while still keeping a better precision at 63.98%.

Ground truth
Goal Card Sub None

Prediction

Goal 176 1 0 20
Card 0 171 0 168
Sub 3 10 331 489

None 147 268 235 -

Table 4.16: Confusion matrix for CALF-60-20 with concatenated audio-
visual input evaluated at a tolerance of 40. For ground truth, "none" means
the absence of an event at a position where it has been predicted one. For
predictions, "none" means that no class was predicted at a place where a
ground truth event was present.

Moving on to the confusion matrix for CALF-60-20 in Table 4.16, the first
thing we notice is that the number of false positives for goal predictions are
significantly lower than it was for CALF-60-5. It is for CALF-60-20 down
at 20, while it was at 124 for CALF-60-5, when considering only the ones
where no other ground truth event was present. This does of course impact
the precision score a lot, as it is actually very few predictions for goals that
were wrong. The model achieves a precision score for goals at 89.34, which
is the highest precision score at this tolerance for any event and model. But,
this score is not so useful alone, and the model finds barely over half of the
ground truth goals. That is not so strong and emphasizes how hard the
trade-off between precision and recall could be.

We observe that substitutions are still predicted at a higher rate than
the other two, but at a slightly lower rate than for CALF-60-5. What
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is surprising with this is that even though the model predicts fewer
substitutions, the precision is actually lower than for CALF-60-5. This
means that CALF-60-20 predicts worse for the substitutions than CALF-
60-5. This is also shown by the recall score, as this is also worse. For
cards, the number of true positives found by CALF-60-20 has increased
from CALF-60-5, but it does not help very much as the recall rate is still
down at 38%. The precision has also fallen, after introducing a big increase
of false positives.

Ground truth
Goal Card Sub None

Prediction

Goal 231 0 0 30
Card 0 182 1 165
Sub 0 10 361 400

None 95 258 204 -

Table 4.17: Confusion matrix for CALF-120-40 with concatenated audio-
visual input evaluated at a tolerance of 40. For ground truth, "none" means
the absence of an event at a position where it has been predicted one. For
predictions, "none" means that no class was predicted at a place where a
ground truth event was present.

Finally, we observe the confusion matrix for CALF-120-40 in Table 4.17.
We observe that it has a similarly low number for false-positive goal
predictions as CALF-60-20, but that the number of false-negative goals
is more close to CALF-60-5. This means that CALF-120-40 has numbers
similar to the good parts of each of the other models, which means that it is
the best in total. It has a recall of over 70%, while still keeping a precision
at a strong 88.51%. This means that this model performs pretty well for
goals. If we also compare these goal results to the performance for visual-
only input, we can see that the concatenated input performs better for all
metrics we observe. By comparing this with the confusion matrix for visual
input in Table 4.11, we can also see that with concatenated input we have
removed the few confusions with other classes. This results in a really clean
look for the goal event, with 0 confusion with other classes, both for goals
not being predicted when it is a different event present and for other events
not being predicted when the ground truth is a goal.

For cards with CALF-120-40, we observe a slight improvement com-
pared to CALF-60-20, with both recall and precision at around 2% better.
With a recall at 40.44% and precision at 52.30%, this is also a much more
even trade-off between the two metrics than for CALF-60-5, even though
CALF-60-5 has better precision. When we compare to the visual input for
the same model, we observe that the visual input performs better for both
recall and precision, resulting in a better total score.

For substitutions, we observe that the number of false positives has
decreased compared to the two other models with concatenated input. This
gives better precision than both of them, but it is still clearly behind the
same model with visual input. When compared to visual input we observe
that the number of predictions is much lower for visual input alone, but
still, the visual input has a higher number of true positives. Concatenated
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input also has more confusion among the three classes, and not just more
false positives away from a ground truth event.

4.2.6 Summary of action spotting results

(a) CALF-60-5, tolerance
= 20

(b) CALF-60-5, tolerance
= 40

(c) CALF-60-5, tolerance
= 60

(d) CALF-60-20, toler-
ance = 20

(e) CALF-60-20, toler-
ance = 40

(f) CALF-60-20, toler-
ance = 60

(g) CALF-120-40, toler-
ance = 20

(h) CALF-120-40, toler-
ance = 40

(i) CALF-120-40, toler-
ance = 60

Figure 4.1: Spotting performance in terms of Average Precision per event
type, for the CALF-120-40, CALF-60-5, and CALF-60-20 models over the
tolerances 20, 40, and 60. In general, we can observe that for goals, adding
audio information almost always improves performance. For other events,
it depends on the configuration.

To summarize the action spotting results, we found that the effect of
using the audio-visual features as input depends on the configuration
and event type. For goals, the audio-visual approach is superior to
audio or visual input alone and achieves significantly better maximum
results for all configurations. For the other events, it varies based on the
model configuration and prediction tolerance. On average, the CALF-60-5
model benefits from audio-visual input for all event types, but for lower
tolerances, cards and substitutions perform better with visual input alone.
The CALF-60-20 and CALF-120-40 achieves better average-mAP scores with
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visual input alone for cards and substitutions, but the CALF-60-20 achieves
a higher AP for cards for the highest tolerance with audio-visual input. The
highest mAP and average-mAP scores in total are achieved by CALF-120-
40. The results for the event types with the different input are visualized
for three tolerances in Figure 4.1.

4.3 Classification results

For the classification task, we have tested three different models. One
visual model that takes the supplied ResNet features from SoccerNet [29]
as input, one audio model that takes Log-Mel spectrograms as input, and a
combined model which combine the output of the first two models through
their softmax average. All the models are trained and tested with window
sizes varying from 2 to 32 seconds. The classification task is different from
the spotting task in that it uses the modified dataset which includes a
background event. The models are trained and tested on clips where one of
the events is present, and the task is to classify which it is. This way it does
not take into consideration the temporal annotation aspect, as the spotting
task does. We will first present the overall results for the models before we
present the class-wise results for the tested models.

4.3.1 Overall results

For the overall results we first look at the results in Table 4.18. This presents
the accuracy results on the test set for all the models for the 5 window
sizes. In general, we observe that all of the models increase their accuracy
when the window size is increased. For all the models the biggest increase
is gained when moving from window size 2 to 4, with a more gradual
increase for each window size after this. We observe a gradual change
for which model achieves the best accuracy results when increasing the
window size. With a small window size (2 to 8), the visual model performs
best, but the combined model gradually comes closer when the window is
increased. When we increase the window size to 16, the combined model
outperforms the audio and visual models. The combined model stays in
front also for window size 32 with an accuracy of 90.85%. The audio
model achieves the lowest accuracy for all window sizes, with a gap of
approximately 15% up to the nearest model for most of them. The accuracy
for the audio model is ranging from 61.11% with window size 2, to 73.89%
for window size 32.

It is interesting that even though the audio model consistently performs
worse than the visual model, a higher score is achieved when they are
combined. It is also interesting that the boundary for when the combined
model starts to outperform visual-only is so clear, with gradually closing in
from window size 2 to 8, before the combined model outperforms visual-
only from window sizes bigger than this. This is easy to spot by looking at
Figure 4.2.

We observe from Table 4.19 that the results F1 scores reflects the same
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Accuracy (%)
Window size Audio Visual Combined

2 61.11 79.81 76.93
4 67.28 84.39 82.40
8 71.11 87.22 85.98

16 72.55 87.87 89.21
32 73.89 89.21 90.85

Table 4.18: Comparison of the accuracy (%) of classification on the test
set. The audio model is described in Section 3.2.2 and the visual 2D-CNN
model with pre-extracted ResNet features is described in Section 3.2.3.
The fusion of the audio and visual models is performed using late fusion
through softmax average, as described in section 3.3.2.

Figure 4.2: A graph displaying the accuracy for the classification models for
the different window sizes on the test set. The classification models tested
are the audio model, the visual 2D-CNN model and the combined model
through softmax average.

order as for the accuracy. For the first three windows sizes, the visual
model achieves the highest scores, before the combined model outperforms
the other for the two biggest window sizes. The highest scores are
achieved with bigger window sizes, meaning that it is the combined model
with window size 32 that achieves the overall highest F1 score, which is
91.3%. The audio model achieves the lowest score for all window sizes for
precision, recall and F1.

We do not only want to compare the overall results for the models,
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Audio 0.641 0.632 0.636 0.698 0.697 0.697 0.736 0.730 0.733 0.750 0.741 0.744 0.752 0.746 0.749
Visual 0.803 0.812 0.806 0.850 0.852 0.851 0.876 0.879 0.878 0.889 0.882 0.885 0.902 0.898 0.899

Combined 0.786 0.787 0.786 0.835 0.838 0.836 0.870 0.870 0.870 0.902 0.898 0.900 0.913 0.912 0.913

Table 4.19: Comparison of precision, recall, and F1-score for the audio
model, visual 2D-CNN, and combined model on the test set. W is the
window size used for the input. The results for the combined model are
obtained using late fusion with softmax average.

but also how they perform class-wise. For this, we compare the audio
model, the visual 2D-CNN, and the combined model. We still compare the
results for the five different window sizes, and we mainly focus on the F1,
precision, and recall scores. As the F1 score is the harmonic mean between
precision and recall, is this a metric that gives a little more insight into the
overall performance for the class. Therefore, we highlight the best F1 scores
for each event type in Table 4.20.

4.3.2 Class-wise results for the visual model

For the visual model, we observe from Table 4.20 that the window size 32
performs best for all event types with respect to F1 scores. The performance
is not very much better than smaller window sizes, and particularly
substitutions have a very similar performance from window size 8 to 32.
For substitutions, it is even a tiny decrease of performance in the F1 score
between the window sizes 8 and 16. We further observe that the best F1
scores for the visual model are achieved for the goal event, at a maximum
of 95%. The second easiest event for the visual model is substitutions at
90.1%, followed by cards with an 88.2% F1 score. This leaves the generated
background class as the hardest class to predict, with an F1 score at 86.4%.

We generally observe that the visual model outperforms the audio
model and the combined model for three of the four classes for the window
sizes 2, 4, and 8. The only event type that is different is the goals, which
achieves the best F1 scores with the combined model for all window sizes.
Even though the visual model is outperformed for the goal events, we
observe that as we increase the window size, it gradually becomes a closer
battle between the two, with only a 0.4% difference for window size 32.
This could imply that it is the visual model in particular that benefits from
the increased window size, but that the combined model also benefits from
this, as the visual model is a part of the combined model as well. This could
be the reason for these results, as the combined model even decreases the
results for goals from window size 16 to 32. These thoughts are confirmed
by observing the results for the audio model, where we find that the F1
score increases until window size 8, but from there and out the performance
decreases significantly. This is visualized in Figure 4.3. We also observe a
somewhat similar tendency for the results for cards, which is visualized in
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Card Audio 0.564 0.552 0.558 0.601 0.618 0.609 0.650 0.647 0.648 0.672 0.704 0.688 0.632 0.664 0.648
Card Visual 0.811 0.757 0.783 0.836 0.808 0.822 0.869 0.848 0.858 0.873 0.850 0.861 0.873 0.892 0.882
Card Mixed 0.776 0.751 0.763 0.796 0.790 0.793 0.865 0.832 0.848 0.870 0.874 0.872 0.867 0.892 0.879
Sub Audio 0.625 0.573 0.598 0.651 0.672 0.661 0.694 0.718 0.706 0.777 0.674 0.722 0.817 0.770 0.793
Sub Visual 0.866 0.794 0.829 0.885 0.874 0.879 0.909 0.883 0.896 0.923 0.869 0.895 0.933 0.870 0.901
Sub Combined 0.803 0.741 0.771 0.818 0.841 0.830 0.857 0.872 0.865 0.922 0.893 0.907 0.945 0.914 0.929
Goal Audio 0.851 0.825 0.838 0.919 0.902 0.910 0.942 0.902 0.922 0.908 0.874 0.891 0.867 0.837 0.852
Goal Visual 0.803 0.936 0.864 0.885 0.923 0.904 0.898 0.942 0.919 0.941 0.923 0.932 0.959 0.942 0.950
Goal Combined 0.878 0.929 0.903 0.937 0.951 0.944 0.940 0.957 0.948 0.969 0.948 0.958 0.960 0.948 0.954
Back Audio 0.524 0.579 0.550 0.622 0.597 0.609 0.658 0.654 0.656 0.646 0.712 0.677 0.691 0.714 0.702
Back Visual 0.734 0.761 0.747 0.793 0.802 0.798 0.830 0.845 0.838 0.820 0.885 0.851 0.842 0.887 0.864
Back Combined 0.684 0.727 0.705 0.791 0.769 0.780 0.818 0.819 0.819 0.846 0.876 0.861 0.882 0.896 0.889

Table 4.20: Class-wise comparison of precision, recall, and F1-score per
class (event type) for the audio model, visual 2D-CNN, and combined
model on the test set. W is the window size used for the input. The
results for the combined input types are obtained using late fusion with
softmax average. "Back" means the background event, and "sub" means
the substitution event.

Figure 4.4. Here, the visual model again ends up behind the combined
model along the way, but after the audio model starts to decrease at a
certain point, the visual model starts to get closer to the combined model
again. In this case, it even surpasses the combined model at the end, but
the results are really similar for window size 32, and the visual model is
only 0.3% better.

For goals, we also find that the visual model generally achieves a higher
recall than precision for the three smallest window sizes. For the final two
window sizes this is reversed, so the precision is higher than the recall.
This could imply that the model understands better the difference between
goals and goal opportunities, which could occur in the background class,
when more context is added through a bigger window size. Since the recall
values do not fall notably, the model still predicts approximately the same
amount of the goals but has fewer wrong predictions for the class.

For cards and substitutions, we observe an opposite balance for
precision and recall than for goals for the lower window sizes. They start
with a higher precision number but have a lower recall. This indicates
that the model might be predicting fewer of these actions and that they
are wrongly predicted as goals instead since goals have such a high recall
with lower precision. Both cards and substitutions keep a higher precision
than recall score for all of the window sizes except for 32, where cards have
a higher recall. The background class is the only one having higher recall
than precision for all window sizes for the visual model.

4.3.3 Class-wise results for the audio model

Unlike the audio approach for the spotting task, the audio model achieves
meaningful results for the classification task. The audio model still
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Figure 4.3: A graph displaying the F1 scores for the classification models for
the event type goal for different window sizes. This shows that all models
increase to a certain windows size, before audio and combined eventually
decreases.

performs worst when we look at only the top-performing window sizes for
each class, but the difference from the other two is not that big. The audio
model even achieves better results for some combinations of window size
and event type. The audio model has almost the same order of which event
it predicts best as the visual model, and it is the same as for the combined
model. This means that it finds goals as the easiest to predict, with the
best F1 score at 92.2%. Even though this is not better than the other two
models, it shows that the audio model has learned a lot and that audio
input is valuable information. In second place we find substitutions at
79.3% F1, but unlike the visual model, the audio model has a better F1
score for background than for card. The best background score is 70.2%,
while the best for cards is 68.8%.

The audio model differs from the visual model when it comes to how
it reacts to increasing window sizes. Where the visual model generally
improved performance with increased window size, the audio model
seems to reach a threshold at some point for goals and cards, after which
the performance starts decreasing. This can be spotted by looking at
Figure 4.3 and Figure 4.4, where it is a point in the plot where the audio
model reaches its top, before it starts to decrease in performance. This
is not the case for the substitution and background events, as they keep
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Figure 4.4: A graph displaying the F1 scores for the classification models for
the event type card for different window sizes. This shows that the visual
and combined models increase to the biggest window size, while the audio
model reaches a top for window size 16.

increasing until the biggest window size we tested. This can be observed in
Figure 4.5 and Figure 4.6, where the plots for the audio model does not have
the same maximum point with a subsequent drop. Instead of a drop, we
actually observe a boost in performance for substitutions and background
when moving from 16 to 32 in window size. This increase for substitutions
is mainly because of an almost 10% increase in recall, but the precision
was improved as well. The case is not the same for the background event,
which also increased, but had a negligible increase in recall. However, the
precision increased, and is the reason for the improvement of the F1 score.

The results for goals with the audio model are particularly interesting,
as it for this event type performs much better compared to the other
events. Where the other events start far behind the other models already
from window size 2, the audio model begins much stronger for goals.
The results are already comparable to the visual model for this window
size, and when the window size is increased to 4 and 8, the audio model
outperforms the visual model for goals. After this, the audio model only
decreases in performance and ends up far behind for the rest of the window
sizes. For the other events, the results from the audio model are not as
comparable to the visual model and the combined model’s results. As
we observe from the Figures 4.6, Figures 4.4 and Figures 4.5, the blue line
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Figure 4.5: A graph displaying the F1 scores for the classification models
for the event type substitution for different window sizes. This shows that
all models increase to the biggest window size.

representing the performances of the audio model is relatively far below
the other two models, showing that the audio model alone is nowhere near
outperforming them for these event types.

This shows that the events differ in how much audio information is
relevant for the event type. This is as we suspected from before, with
goals and substitutions having the most to gain from audio, while cards
are harder to predict based on sound. The additional background task is
hard to know exactly what would sound like, as it is generated just based
on the absence of the three original classes in the dataset. In the actual
game, there are several other events that are not a part of the dataset we
have used, and all of these could potentially be present for the background
task. This makes it hard to intuitively think of how a general background
event sounds like.

4.3.4 Class-wise results for the combined model

The first observation from Table 4.20 for the combined model is that it
actually is the model that achieves the highest F1 score for three out of the
four classes. This is when we look at only the highest achieved score for
each event type across all window sizes. The only event type that achieves
a higher maximum score with another model is cards, where the visual
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Figure 4.6: A graph displaying the F1 scores for the classification models
for the event type background for different window sizes. This shows that
all models increase to the biggest window size.

model achieved the best F1 score. The difference is very small, with the
visual model at 88.2% against the combined model at 87.9%. These are
very similar results, and they even have the same recall, with only a small
difference in precision.

For the other events, the difference is bigger, with the combined model
outperforming both the visual and the audio model for all three. The
closest results are for goals, where the best-combined model (window size
16) achieves a 0.8% better F1 score than the best visual model (window
size 32), and a 3.6% better score than the best audio model (window size
8). For all other events than goals, the combined model outperforms the
audio model by double digits. For the visual model on the other hand the
results are closer. The combined model achieves a 2.8% better F1 score for
substitutions and 2.5% better F1 score for the background event for window
size 32, which achieves the best results for both models for these events.

Starting with the event type goal, we observe that this is the only event
type where the combined model achieves the best F1 results for all the
tested window sizes. This is interesting as the other event types do not
show better results compared to the other two models before the window
size has reached 8. This could be related to that the audio model performs
well already at window size 2 for goals, proving to contribute with valuable
information already at that point. For the other events, the audio model
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shows poor results for the smallest window size, which could mean that
it is harder for the combined model to perform well, as the audio model
is a part of the combined model. It is interesting to observe that even
though the audio and visual models have pretty similar results for many
of the window sizes for goals, the results of combining them improves
the performance to a higher score than any of them reaches alone. This
could mean that the intuition behind the combination of the models makes
sense and that two predictions based on different modalities could help
each other to create a better result.

We observe from Figure 4.3 that for goals, the combined model reaches
its best score at window size 16 before the results decrease a bit for window
size 32. By looking at the two other models in the graph as well, we find
this development to be as expected. This is because the combined model
is based on the two other models, and as we observe, the audio model
has had a big decrease in the performance for the bigger window sizes.
The visual model keeps increasing the score, but the decrease of the audio
model is bigger. It is therefore as expected that the performance of the
combined model should drop as a result. This could mean that even though
the combined model outperforms goals for the models we have tested, it is
no guarantee that this would have been the case if we had tested with even
bigger window sizes for the video model. The combined model seems to
have reached a maximum level, while the visual model potentially could
have been even better, and challenged the combined model’s top results
even more for this event. On the other hand, we do not know that the
maximum results for the combined model are at the correct spot either.
It is several window sizes to explore between the window size 8, where
the audio model start dropping, and 16 where the max score is found for
the combined model. This means that the audio and the combined model
potentially could have higher values between these two window sizes, but
as they are not tested, the graph displays it as a line between the two
values it has available. This way, even though the graph goes upwards
from window size 8 to 16 for the combined model, it could be that it is
hidden better results in between before the results start to decrease. For the
same reason, it is no guarantee that the visual model actually still improved
at the point of window size 32. The only thing we know from the graph is
that it is better than window size 16. So even though it could seem from the
graph that if we increased the window size even further it would perform
better, it is no certainty that it would really be the case.

For the event type card, we observe in Table 4.4 a kind of similar
development in the results as for the goals. The results achieved for this
event are not as good as for goals, but the development of the results
compared to each other is similar. The similarity is that halfway through
the window sizes, the combined model’s performance flattens out, at the
same time the audio model results start to decrease. This time the decrease
of the audio model starts from window size 16, but we do not observe a
decrease in the results of the combined model. Instead, we observe a lower
increase than before, allowing the visual model to barely jump ahead to
be the model achieving the best result for the biggest window size. This
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way we see that the falling performance of the audio model still affects
the combined model enough to end up as weaker than the visual model in
the end, even though the combined model does not actually decrease. The
development of the model’s performances for cards still has a difference
from the results for goals. We observe that where the combined model
outperforms the visual model already from the smallest window size for
goals, we find that this is not the case for cards. Actually, the combined
model only performs better than the visual model for one window size for
cards, with the visual model performing best both before and after window
size 16. 16 is the window size where the audio model achieves its maximum
score, so this makes sense.

The development of the results are fairly similar to cards for the
substitution and background events, but for these two, the combined
model stays ahead for both window size 16 and 32, while the results for
the visual model is the one that seems to flatten out. As we see for the
lowest window sizes, the visual model starts as the strongest performer for
both classes, before the combined model gets closer, and eventually takes
over as the top performer for the final two biggest windows sizes. The
development of the graph for the bigger window sizes is different from
the goals and cards, where the results seemed to flatten out or decrease for
the combined model. For substitution and background, the development
is rather opposite, with the results still improving between window sizes
16 to 32. This seems to have a direct correlation with that the audio model
keep increasing the results for the bigger window sizes as well, unlike for
the other two events. This way the audio model keeps giving better results
to the combined model, while the visual model seems to increase less. This
makes the combined model increase its lead over the visual model for these
events for the bigger window sizes.

4.3.5 Summary of classification results

In this section, we have presented the classification results from our exper-
iments. To summarize the presented results, we found that the combined
approach through softmax-average showed good results compared to the
audio model and the visual model. The highest overall results are achieved
with this combined model, reaching an accuracy of 90.85% on the test set.
The visual model performed best for lower window sizes, but for the big-
ger window sizes the combined model was better, and it was with these
window sizes the best results were achieved. For the different event types,
the combined approach also performs best for three out of four of them.
The only event type where the visual model achieves a higher maximum
score is for cards, and the difference is at only 0.3%. All in all, we found
that the audio-visual approach was beneficial for the classification task.
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4.4 Discussion

In the previous sections, we have presented the results from our exper-
iments for action spotting and classification with our audio-visual ap-
proaches. With these results presented, there are some topics we want to
discuss further, and that is done in this section.

4.4.1 Classification vs spotting results

We have tested two different multi-modal approaches, one for the spotting
task, and one for the classification task. We have presented results for both,
and compared the multi-modal approach to visual-only and audio-only
approaches for their respective tasks. When we observed these results, we
find that it is a difference in how the multi-modal approaches performed
compared to the single-modality approaches for classification and spotting.

For the spotting task, we primarily observed improved results for
the event type goal but did at the same time often observe a drop in
performance for the other two classes for two of the configurations. We
did also observe improvement for all classes for CALF-60-5, but this
configuration is not the best-performing model among all the tested ones.
When looking at the results from only the best performing models for each
of the different classes, we find that the goals are the only events with an
increase for our tested approach.

For the classification task, on the other hand, we find a more general
improvement for the audio-visual approach. Even though the visual-only
model outperforms the combined approach for smaller window sizes, the
overall tendency of the performance is that the combined model performs
better when the window sizes are increased. These models are also the
ones with the highest performance in total and are therefore the ones that
are interesting to observe the results from. This means that for the models
with the best results, the models benefit from an approach combining the
audio and visual model through softmax average. This approach achieves
the best F1 scores for three out of four classes (including the background
event), with cards being the only event that performs better with the visual-
only model. And even for this event, the difference is at only 0.3% in the F1
score.

Looking at these results we find that our tested approaches have in
general worked better for the classification task than for the spotting task.
This could be caused by several reasons, and we can not say for certain
why this is. But, we have some alternatives to what could have influenced
the results in this direction.

Classification format

The first is that sound is a more effective modality to include when we
are facing a classification task than a spotting task. It could be that the
restrictions given by a classification format, with the certainty of some kind
of event being present, could be beneficial to sound. This because with this
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premise, it could be easier to just distinguish between the given events,
rather than also having to understand what is not an event. A drawback
for the likeliness of this reason is that the background task is present
in the dataset used for classification. This means that even though we
just distinguish between given events, the background event still contains
events where no event is supposed to happen, as this is the nature of
this background class. This way the model to some extent still has to
distinguish between a "real" event being present or not.

Late vs early fusion

The second possible factor is that the late fusion approach could be more
effective for our domain. We experimented with two different ways of
fusing modalities, with early fusion for the spotting approach and late fusion
for the classification approach. It could be that the late fusion approach is
either more effective for this domain in general, or that we just have tested a
better version of this than we managed to do for our early fusion approach.
The late fusion approach is sometimes considered easier to perform, so it
could be that this approach just is better implemented, as it is easier to do.
It could also be that the selected model for the early fusion approach does
not fit well for concatenated audio-visual input.

Extraction of audio features

This leads us to the last factor that we will discuss. This is that it is possible
that our extracted audio features, or our concatenation of features, do not
provide good enough information as input to the model. It is possible that
either our extraction model for the audio features, or the chosen window
size for this extraction, could have been better for some of the events. If we
look back at the results for the classification models, we find that for the
chosen window size for the audio feature extractor, the visual model still
outperforms the combined and audio model for three out of four classes.
This is the final tested window size before the combined approach takes
over as the general best-performer. The audio model and combined model
performs better than the visual model for goals at this window size, but
it does not do so for the other events. As the combined approach starts
outperforming the other approaches after this window size, it is possible
that a bigger window size for the audio feature extractor could have
benefited more than just the goal event for the spotting task. A drawback
for this possible solution is that the audio model, which extracts the audio
features, starts to decrease in results after window size 8 for some of the
events. This means that the audio features might have been worse rather
than better if the window size were also increased for the audio feature
extractor. It is also possible that the audio features would have benefited
more from having a smaller rather than bigger window size. It could be
that given the nature of the CALF model, where the temporal distances
plays an important part, it would have been better to use a smaller window
size than we did, as this would contain information from a smaller period
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of time for each of the features.

4.4.2 Selective input for different events

We find that the spotting approach with the CALF model and audio-visual
input achieves different results for the event types. This could mean that it
differs for event types how valuable the concatenated information is when
we are trying to perform action spotting for the events. This could be a
general observation for spotting these events, or it could be due to some of
the reasons mentioned in the previous section (Section 4.4.1). Regardless,
the results for the CALF models we tested show this differentiation
between events, and a possible approach to max the performance for this
task could be to distinguish between which input modalities are used
to predict each event. With this approach we could benefit from the
best possible information source for the different events, and stop the
performance decrease for the events that do not benefit from the same
input.

We have not created a full model for this approach, but still want to
discuss how this approach could boost the total performance of the tested
CALF model. By extracting the results from the best input type for each
of the events, we could put the results together and calculate the results
in the same way we did for our other models. This way we would get
a hypothetical combined result and could see the tendency of how big of
an impact this would have, compared to the approaches with the same
input type for all events. Therefore, we revisit the results for the CALF
models per event in Table 4.8 and find that the best average-mAP results
are achieved by the CALF-120-40 model for all events. For the card and
substitution events, the best results are achieved with visual-only input.
The best results are for goals achieved with concatenated input. Therefore,
we combine the Average Precision results for CALF-120-40 with visual
input for cards and substitutions with the results with concatenated input
for goals. With these results, we create the mAP scores for each tolerance
and then calculate the average-mAP score.

The calculated results show an average-mAP at 62.17%. This means
that it has increased by over 2% compared to the average-mAP for CALF-
120-40 with visual input, which was the best performing model for this
metric in our spotting experiment. Further, we also find that for both
of the two biggest tolerances, the mAP score has increased by 2.87% and
3.28% compared to the same model. This shows us that an approach where
the input is optimized for each of the given events, we could increase the
performance of the models compared to just using one single type of input
and hope that this is the best for all.

4.4.3 Spotting in practice

When looking at the results, we should keep in mind the practical
consequences for a system performing this task in real life. In this context,
the spotting results are more of interest than the classification results, as
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the spotting task is more what we actually want to use this kind of system
for. We want to be able to use the system in real life so that we can spot
different events in real game scenarios, and not just in a classification task.
Therefore, we want to discuss some of the key factors and trade-offs that we
have to consider when we want to assess how the models would perform
in practice.

Importance of metrics

The first factor is which of the metrics would matter more and less in such a
context. A metric that we have used to compare the different configurations
of the CALF model is the average-mAP. This is a metric we have used to
gain some insights into how the models perform over all the tolerances.
This works fine for this purpose, so we get a number to compare general
performance over several tolerances, but in a practical perspective, we are
not interested in how the models perform over different tolerances. In
a practical context, we have to choose one model for a given tolerance
which we consider to be within what we want to consider a prediction
or not. What this tolerance is must be chosen given what we consider is
"close enough" to be a true positive, and it is not a general correct answer
for this. This will be a trade-off between how many true positives we
could add by increasing this tolerance, against how precise the predictions
are temporally. Since we know that the average-mAP is not a relevant
metric for one given model and tolerance, we could look at the mAP scores
instead. These apply as a mean of the Average Precisions of the event
types and could give valuable information about the performance of the
model. But, with the performance differing between the event types it is
not certain that this metric gives exactly the information that we need. As
the performance is different, it could be of interest to look at a trade-off
between what event types we actually want to spot, and how important it
is to spot all of them. Goals are the main purpose of a soccer game, and it is
what actually means something for the competitive aspect of the sport. In
this view, one could argue that goals are more important to spot correctly
and that substitutions and cards are more of an addition that could be of
less interest than goals. Even though they are of interest, and that it is better
with great performance for all event that exists, we view goals as being at
a different level of importance than the rest. This is relevant as it becomes
a trade-off between how many event types we want to include, and how
many false predictions we want to avoid.

When assessing the performance of the different events in a real-life
system, two of the most relevant metrics would be precision and recall.
With these two metrics, we get numbers saying exactly how many of the
events were spotted by the model, and how many of the predicted events
were wrong. These are maybe the two metrics that are easiest to wrap your
head around, and the meaning of them is straightforward to understand. In
a perfect system, we would of course have 100% for both recall of precision,
but this is of course not the case in a real system. Therefore, we get a
trade-off between precision and recall, since they pull in different directions
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when it comes to how high the threshold for a positive prediction should
be. Since we have to make a trade-off between precision and recall, we
would argue that for a real-life system with action spotting in soccer as
its application, the recall rate is of bigger importance than precision. This
is because until systems with close to perfect spotting exist, we would
still need some kind of manual monitoring of the results. With a manual
operator looking at the results from the system, the most important aspect
is that as many of the true positive events as possible are annotated by
the model. This way the operator could have shorter clips to evaluate if
are a true positive or not and the false positive are filtered out. This is
unlike having a manual operator watching and annotating whole games
manually, as this would take more time than just looking at the possible
events and sifting out the wrong ones. The manual operator could then
also monitor several games at once, as it is a lower workload for each of
the games. In a process like this, recall is more important than precision,
but a high recall would mean lower precision. Lower precision is still a
problem, as the lower the precision, the higher the number of false positives
annotated by the system. If the number of false positives is too high, the
benefit of this approach would be gone, and it would still be a lot of manual
work for the annotations. Precision is therefore still an important metric,
but just not as important as recall.

When we consider our thought of high recall being important for a
spotting task in practice, we observe from our spotting results that even
though our recall scores are relatively good, they are still not high enough
to be really useful. For a reasonable tolerance of 40 (20 in each direction
of the annotated event), we find that the highest reported recall value in
Table 4.8 is at 73.01% for goals, which is too low to be of any value in real
life. Even when making a small adjustment and optimizing the results for
recall, we do not achieve a combination of recall over 90% with precision
over 50% at the same time. This means that even though we would have
optimized the performance to fit an annotation approach that catches all
events, with subsequent human filtering of false positives, the performance
would still not be good enough. We would not catch all events without
creating a big amount of false positives, making the subsequent filtering
time-consuming.

Delay and performance

Another aspect of spotting in practice is if the spotting is being performed
live, or if it is being done afterward for some kind of highlight extraction
or summary. For the live approach, there are more aspects to take into
consideration, as the spotting would need to be performed faster with less
delay. With live spotting, we would also need to extract both the visual
and audio features as the game proceeds, before we would have additional
delay based on the number of frames which the model takes as input.
To ensure low delay for the spotting it would therefore be beneficial to
operate with smaller chunk sizes. This would again be a trade-off between
how good spotting results we are getting and how fast we need them, as

81



our experiments have shown that bigger chunk sizes generally perform
better. For the other situation where we want to create a sort of summary
or highlight extractor, we do not have the same restrictions as for live
spotting. For this task, we could focus on maximum performance, and
could therefore use the model we find having the best results rather than
the fastest one. It is also lower demand for a very high precision score, as
in a summary it could be fine to also include events such as goal scoring
attempts that ultimately did not lead to a goal. This shows that it is not a
general approach that fits all tasks, but that how to configure the model in
use depends on the application of the model.

4.4.4 Comparison of results with related work

We want to compare the results we have found not only to the other models
from our experiments but also to other work on the SoccerNet. There
are several other approaches [29, 58, 76] tested on the SoccerNet, as well
as the original CALF approach from Cioppa et al. [18] that we also want
to compare our results to. In addition to the original CALF results we
choose to compare our results to Rongved et al. [58], Vats et al. [76], and
the baseline results supplied with the dataset [29].

Cioppa et al. report an average-mAP of 62.5, and we notice that this is
better than our approach with the CALF model with visual input, which
achieves an average-mAP of 60.07. This could imply that even though the
average-mAP achieved for the CALF-120-40 model on the validation set is
almost equal to what was achieved with the supplied weights for the code,
the model seems to have benefited from the extra training epochs when
tested on the test set. This is worth noticing for the CALF results with
visual input, as this means it could be achieved better results for this. The
impact of using concatenated features is still clear though, as the changes in
performance for the different event types are so significant. This even with
concatenated features we believe have the potential of being optimized
further. It is also worth noting that this metric provides some insights
into how the model performs combined over all tolerances, and not so
much about the performance in a real-life scenario. Further, we can also
compare the original CALF score against our score with optimized input,
which we discussed in Section 4.4.2. Our approach with selective input for
different events achieves an average-mAP of 62.17, which is much closer.
This even with the usage of the visual results from our weaker visual model
(compared to the original CALF model) for 2 out of 3 events.

The comparison of the CALF model with visual input to other
approaches is already performed when the model was introduced by
Cioppa et al. [18]. The comparison of our findings for the CALF model
with visual input to the other results is therefore not so interesting.
What is interesting is comparing the other approaches to the best results
for the concatenated input, and the results for optimized input. From
Table 4.21 we observe that the concatenated input approach with CALF-
120-40 achieves higher average-mAP (56.29%) than both the baseline
(49.7%) and Rongved et al. [58] (51%). It does not outperform Vats et
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al. [76] (62.1%) or the original CALF model (62.5%). The optimized input
results with concatenated input for goals and visual-only input for cards
and substitutions achieve 62.17% average-mAP, meaning that among the
models that were introduced when we started this work, it is only the
original CALF model that achieved a better result for average-mAP.

Model Average-mAP
Tomei et al. [73] 65.5%
Cioppa et al. [18] 62.5%
Selective input (CALF) 62.17%
Vats et al. [76] 62.1%
Concatenated input (CALF) 56.29
Rongved et al. [58] 51%
Giancola et al. [29] (baseline) 49.7%

Table 4.21: Comparison of average-mAP scores for different approaches.
The Selective input approach is the CALF model where we used concaten-
ated input for goals and visual-only input for substitutions and cards. The
concatenated input approach is the CALF-120-40 with concatenated audio-
visual input.

Late in the process of this thesis, it was released a new model tested on
the SoccerNet, which outperformed the previous state-of-the-art models.
This is presented in Tomei et al. [73] and report an average-mAP of 65.5%
with the same visual ResNet features. They also report an additional
boost of 9.6% when finetuning their own ResNet features to the task.
They emphasize that this shows that the pre-computed features are a
good starting point for research and comparison purposes, but that better
performance can be gained through end-to-end training. This means
that the supplied features fit our purpose of comparing the performance
of visual-only vs audio-visual approaches, but that even better total
performance can be achieved by finetuning the features. Furthermore, it
is interesting that from the class-wise results they report in the paper, our
approach with concatenated audio-visual features still achieves a better
Average Precision for goals for most of the tolerances.

4.4.5 Deviation of events from dataset

When we were looking at the numbers in the confusion matrices for the
spotting task, we observed that the total number of events in the test set
deviated from the numbers given in the SoccerNet paper [29]. This made
us look into how big this difference was, and if it also applied to the training
and validation splits. When looking at the numbers for all the splits of the
dataset we found some deviations for all the splits. The deviations were
always in the negative direction, meaning that it was fewer events than
stated by the SoccerNet.

As we observe from Table 4.22, where the deviations are presented,
the differences were found only for substitutions and cards, and not for
goals. Most of the differences were substitutions, but some also cards. The
numbers are relatively small, compared to the total number of events which
is 6637. We are only lacking 16 of the events in the test set, so we conclude
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Class Training Validation Test Difference
Card 9 1 3 13
Substitution 29 10 13 52
Goal 0 0 0 0
Difference 38 11 16 65

Table 4.22: The number of samples per class that deviated from the given
number in the SoccerNet dataset, when tested with the CALF model.

that the final results would not be affected to any degree worth considering.
After investigating how this difference has been introduced, we believe that
it is related to the way the CALF code extracts the events, as the events are
not supplied directly in the format used for testing in the CALF model.
This also means that it only applies to the spotting task, as the classification
models do not utilize the event extraction from the CALF code.

4.4.6 Impact of half-time substitutions

When we look at how the events have been annotated, it caught our
attention that the annotations of the substitutions done at half-time were
annotated at the first frame of the second half. This seemed like a hard
event to predict, as the beginning of each of the videos is stated in the
SoccerNet paper [29] to be at the start of each of the halves. We also
watched the beginning of several second halves and found that they
do begin almost exactly at kick-off. Substitutions done at half-time are
in reality performed before the kick-off of the second half, and would
therefore not be shown at all in the videos. This makes these substitutions
practically impossible to spot, and we wanted to observe how this affected
the results. To do this we removed the annotations of substitutions at the
first frame of the videos and tested the best performing model (CALF-120-
40 with visual input). The average-AP score for substitutions was increased
by 2.2% (from 60.06% to 62.26%), while the average-mAP increased with
0.76% (from 60.07% to 60.83%). This is in line with the findings in Cioppa
et al. [18], which also address this issue. They state that this is an issue for
28% of the games, and applies for merely 5% of the total substitutions on
the test set.

4.4.7 Retrospect of process

Through the work of this thesis, there have been several occasions where
we have learned after a part of the process was done that we could have
solved it in a different way. When looking at the project in retrospect it
is therefore things we could have done differently, and we would like to
address some of them here.

When we experimented with different chunk sizes and receptive fields
for the CALF model, it might have been better to use a higher amount
of models with audio and concatenated features as input and optimize
on the validation set using one of the well-known hyperparameter
approaches. This is unlike what we did with first experimenting with the
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hyperparameters on visual input to find which configurations we wanted
to test with concatenated input. By evaluating with the validation set first,
we would not have had to increase the number of models we ended up
testing on the test set, even though it would have increased the number
of models tested on the validation set. This could potentially have had
the possibility to find an audio or concatenated feature model with even
better overall results. However, the main goal was to show how adding
audio to the input would impact the performance, and this goal is still
well preserved in our approach. This is because we test and compare
performance for different input types on the same chosen configurations.
It would also have been more computationally heavy to train and test
the same number of models also for models with audio and concatenated
features as input.

A smaller error found when looking over the results, is that we chose
the number of 150 epochs for the first iteration of hyperparameter testing.
When we did this we did not consider that the validation cycles were at
20, which does not add up to 150. This means that the final 10 epochs of
training were not taken into account when we kept the best-performing
weights from the validations.

When we compared our results for the CALF model with visual input,
we found that the original paper reports better results than what we
found. This is described in Section 4.4.4 where we compare results with
related works. We trained the model for fewer epochs than the original
paper because the results on the validation set were already similar to the
supplied CALF-weights. The number of epochs could be the reason for the
weaker results, so in retrospect, it might have been better to use a higher
number of training epochs to maybe come closer to the performance of the
original paper on the test set.

When we calculated the overall precision and recall scores, we did
so by taking the average across the precision and recall scores for the
individual events. As the number of events for each of the event types
is not completely even, this metric becomes more an average across the
classes and not the precision and recall as a whole for all events observed
as one. By calculating precision and recall over all classes at the same time
we could have avoided some problems for the overall scores for these two
metrics, such as the NaN values we encountered when trying to calculate
the average over the three event types when one of them included a NaN
value. It does not change any of the assessments or conclusions, as we
mainly assessed the results class-wise, and the results across classes were
to a greater extent driven by other metrics. The results for these metrics
still provide value, but they might be more precise with all event types
together, and since we also would avoid some problems along the way we
could have benefited from doing so.
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4.5 Summary

In this chapter, we have presented our results for both the action spotting
and classification task on the SoccerNet dataset [29]. We started with
presenting the results for some preliminary experiments that were done
during the hyperparameter selection in Section 3.4. Then, we presented
the results for our action spotting approach, where we used the CALF
model with concatenated audio-visual input. We showed that the approach
with visual input achieved better scores in total, but that the concatenated
input achieved better results for goals. Further, we presented the results
for the classification task, where we described that the best results were
achieved through a combined model through the softmax average of
the visual model and the audio model. Finally, we discussed several
aspects of the presented results and the process leading up to them. We
discussed the differences between the classification and spotting results,
how differentiating what input to use for each event type could increase
performance, how our results compared to other approaches to the
SoccerNet dataset, and how spotting in a real-life scenario would differ
from this academic approach. In the end, we discussed some aspects that
possibly could influence the results, before we mentioned some steps of the
process we could have done differently.
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Chapter 5

Conclusion

Today, sports games are usually manually annotated by human operators,
which is an expensive and time-consuming task. Recent research has
shown that machine learning might be used to automatically find exciting
events without any human intervention, potentially saving high costs of
money and time. However, most approaches only use visual data to detect
events, leaving out other valuable information like sound. In this thesis,
we experimented with audio information and tested different approaches
for combining visual and audio data for spotting and classification.

Our results showed that audio-visual approaches were beneficial for
several use cases, but that the advantage could differ depending on the
configuration and event type. For goals, the performance significantly
increased with the audio-visual approaches compared to using a single
modality. For the top-performing spotting model, the average AP for
goals was nearly 6% better with concatenated audio-visual input than with
visual input alone. Furthermore, the difference in Average Precision for
the highest tolerance was nearly 10% for the same models. However, the
performance decreased for cards and substitutions for the best performing
model but did improve with other configurations. For classification, the
audio-visual approach increased the total accuracy by 1.64% compared to
the visual-only model. The best results for both goals and substitutions
were achieved with the combined model. For cards, the performance was
similar for the visual and the combined model, with only a 0.3% difference
in favor of the visual model. In total, we found that the audio-visual
approaches have shown great potential, which we believe can be utilized
further in the future.

5.1 Main Contributions

We wanted to to assess the performance of audio-visual approaches for
action spotting and classification, as described in Section 1.2. During our
work, we have made the following contributions:

• We have researched machine learning approaches for event detection
and classification, and developed multi-modal approaches for these
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tasks. Specifically, we have developed audio-visual approaches for
soccer videos from the SoccerNet dataset [29], which includes the
event types "goal", "card", and "substitution". We created an audio
model which extracted audio features from the dataset through
spectrograms and these were used to create concatenated audio-
visual features. We experimented with different ways of fusing
modalities and tested both late fusion of models at decision time and
early fusion through the concatenated features. We have experimented
with various hyperparameters and selected optimized configurations
for the models.

• We have experimented with the selected models on the test split
of the SoccerNet dataset and analyzed the performance. We tested
models for both event detection and classification, and assessed the
performance for several metrics. We have showed that the audio
model extracts valuable features and that the concatenated features
worked well for action spotting on the dataset.

• We have compared the performance of our multi-modal approaches
to single-modal approaches and shown that there was a great
benefit of, and further potential for, using more than just visual
information. We presented results showing that for the classification
task, the best results were achieved with an audio-visual model,
outperforming the best visual results from our experiments with
over 1.5%. Further, we have shown that for action spotting, the
performance with concatenated audio-visual input was superior for
goals for all tested configurations. For other events, the results
improved with concatenated input for some of the configurations, but
could also in some cases have a negative effect on the performance.

Our contributions are interesting in the context of the problem statement,
and we have presented results valuable to assess the performance of audio-
visual approaches. We have shown the potential of multiple modalities, but
that it might be event-specific how it performs in some situations. This
work has given a strong foundation for further work with multi-modal
models. Furthermore, our results have been presented in a paper which
is under review.

5.2 Future Work

To continue the work with audio-visual approaches for event detection in
sports there are several steps that could be taken. First of all, it would
be interesting to observe how the tested models would perform on other
datasets than SoccerNet [29]. This would give insights into how the
approaches generalize to other data. In particular, the SoccerNet-v2 [20]
would be a good first step, as this would show how the models perform for
other events in the same format, with the same features available. Further,
it would be interesting to experiment with audio-visual approaches for
other sports as well.
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Testing the audio and concatenated features as input to other models
than the ones tested in this thesis would also be a related task. It could
be valuable to experiment with extracting own visual features, as well
as other methods for concatenation of audio-visual features. This would
be relevant both for the models we have tested and for other potential
models. Furthermore, experimenting with different window sizes for the
audio feature extractor would be valuable. This would be interesting for
the CALF model in particular, as there are results to compare to, and the
model emphasizes temporal context. It would therefore be interesting to
observe how the model reacts to audio features of shorter temporal size.
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