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Abstract 
In a world where more and more information is stored digitally rather than physically, the 

need to simplify the access to this information increases. This applies not only for literature, 

but also for most commerce businesses. While it is easy to take it for granted how easily we 

can find the information we want today, it lies massive research and effort behind many of the 

recommender systems that is constantly working in the shadows as we search and randomly 

browse for information to please our needs. We will in this thesis, look at the sport video 

application Forzify, and try to figure out what approach will give the best recommendations 

for users in this application. 

We first look through research currently available regarding recommendation systems, and 

introduce the general approaches, before we discuss how they are used in practice by some of 

the largest and most popular systems on the web. We look for approaches in recommendation 

systems, that are best suited for the data in Forzify. We want to find approaches that gives 

accurate recommendation and scales well with large amounts of data in Forzify. Because we 

currently do not have sufficient user-data in Forzify, must we look at recommendations 

frameworks that are publicly available. We will evaluate different frameworks by running 

tests, and decide which framework fits our needs. Then, we have to look at what data we have 

available and which are similar to Forzify’s data, so we can simulate a running system. At the 

end, we will evaluate the algorithms we have chosen with different datasets, and finally 

conclude which approach, or approaches, are best suited for the Forzify application. 
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1 Introduction 
Recommendation is something everyone is familiar with in one way or another. Whether a 

friend recommends a new book for you to read, or which workout-schedule you should 

follow, it all comes down to giving you good options and helping you make a choice. These 

recommendations are often given based on knowledge about what you like, or simply because 

someone who knows you believes that you will like it. Recommendation systems works in this 

exact way in the digital world, where the system tries to use data about users and items to 

predict what information you want to see. In this thesis, we will consider several approaches 

to create such systems, where the end goal is finding the best approach to use in the Forzify 

application. 

1.1 Background 

Over the entire world, there are millions of users of the internet, and the demand for more 

advanced and precise search engines increases all the time. Retrieving results based on only 

your basic search string is not good enough anymore, and to execute the more advanced 

searches, there is a wide array of algorithms which is getting more and more sophisticated 

every day. Such algorithms are often the search engine company’s biggest secret. Even with 

these advanced search-algorithms, we are not quite satisfied. We also want to develop 

websites and applications that recommend content to users based on user-data gathered.  

Opposite to physical stores, web-stores can have nearly unlimited numbers of products out for 

sales which demands an effective way for the system to pick out and display the most current 

products to its users so they are easy to see and access. How is this achievable and how does it 

work? For example, we have these applications: a news-site on the web want to recommend 

articles to users based on predicting what the user is interested in. What data can be gathered 

to achieve this? Web-stores wants to recommend products a user might be interested in based 

on earlier searches on the site or order history, or the products score and rank on the site. 

Media-streaming applications wants to be able to recommend additional content based on 

what the user has watched or heard before, based on data such as category, director or actors. 
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There are two different approaches of giving such recommendations on the web. We have 

personalized recommendations and non-personalized recommendations. Non-personalized 

recommendation systems are quite easy to implement and handle, as we do not need to gather 

and compare data from individual users. We could simply recommend the top-rated songs of 

all time on Spotify, or the most viewed videos on YouTube, to everyone. On the other hand, if 

we want to set up a personalized recommendation system, we need data from the users. This 

data needs to be gathered from every user, to be used for prediction of what content they like 

and would want to see next. 

1.2 Problem definition 

When designing a recommendation system, it is important to do research on the different 

usable techniques. There are a lot of options, and it can be hard to know exactly how the 

system should handle user interactions and data, and it is essential to consider other existing 

systems and how they work. In this thesis, we will work towards determining which 

recommendation approach is best suited for the Forzify application. However, given the 

current state of the application, we do not have enough user-interaction data to commit tests 

on this system.  

How we can conclude which approach suits the needs of Forzify is therefore the main 

problem we are trying to solve in this thesis. To solve this problem, we will be thoroughly 

studying research related to recommendation systems, and compare them with each other. By 

looking at the data sources each approach depends on, we can find similarities with what 

Forzify has available and decide which approach to bring to further evaluation. 

Without enough data from the application we want to create a recommendation system for, 

we need another way to run evaluation on the different approaches and algorithms, which is 

the second problem we will solve. We will look at available frameworks which contains pre-

defined datasets and algorithms, then choose those containing similar data to what we have 

found in Forzify, and algorithms used within the approaches we decided to evaluate. 

In a system like Forzify, which is expected to have a vast number of items, and probably 

users, it is important to consider the systems scalability. It is also important to conclude what 

kind of approach recommends with the best accuracy, both for recommendations within the 
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same domain, but also across domains. Therefore, the third problem we will solve in this 

thesis, is which approach provides the most accurate recommendations, and which approach 

is most scalable. To evaluate accuracy, we will find and look at different measuring 

techniques. To measure scalability, we will look at the different algorithms’ training time and 

prediction time.  

1.3 Scope & Limitations 

In this thesis, we work towards determining which approach and implementation-method is 

best suited for a recommender system, without having the necessary data from the application 

at hand, namely Forzify. By doing extensive research on recommendation systems and 

approaches, we gather necessary information about algorithms and possible frameworks that 

we can use to evaluate and give us meaningful results, as we answer our research problems. 

We analyze and compare the different approaches, and find similarities between the data used 

in these applications and the potential data we can use from Forzify. 

The deployment of Forzify has been delayed longer than what was planned when this thesis 

was started. Because of this, most experiments conducted in this thesis will be based on 

theoretical data and datasets like MovieLens and Jester, in an offline environment. Optimally, 

when designing a recommendation system, you would want to do your evaluation against real 

data on the application in consideration. 

1.4 Contributions 

The backbone of all our findings and conclusions in this thesis, is the thorough research we 

have done on the main recommendation approaches. With this knowledge as a foundation, we 

look further at several different approaches in recommendation systems, to find what is best 

for Forzify. We present different recommendation frameworks which can be used to evaluate 

the approaches, to help us determine which approach to use in Forzify.  

The current data in Forzify is both user-data and content-data. The user-data is gathered both 

implicitly and explicitly, and the content-data is in the form of simple tags and descriptions of 

videos. We are going to determine what recommendation approaches fit considering this data. 

Because we have limited user-data in Forzify, we have to evaluate our approaches based on 
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datasets that are similar to Forzify’s data. As there are several approaches that exist for 

recommendation systems, will we choose some approaches that we will evaluate within a 

chosen framework with some built in algorithms that provide recommendations. The chosen 

algorithms will be evaluated with measuring their accuracy and scalability, and we can then 

conclude which approach is the best fit for Forzify.  

1.5 Research method 

In this thesis, will we use the research method introduced by the ACM Task Force on the 

Core of Computer Science [9]. This is a report on how research should be conducted in 

computer science, and their design paradigm identifies these steps: 

1) State requirements 

2) State specifications 

3) Design and implement the system 

4) Test the system. 

While working through these steps, we will be looking at what data is currently available on 

Forzify, and what kind of recommender system we want to create. By looking through 

research already available on recommender systems, we will try to find the best suited 

approach to use for Forzify. With the information we have gathered, we will choose a small 

set of candidate algorithms which we will implement and run on some datasets with the help 

of a chosen framework.  

1.6 Outline 

• In Chapter 2, we will introduce the general concept of recommender systems and why 

we want to use them. Existing approaches and applications will be discussed, and 

compared by their strengths and weaknesses. We also start looking at how we can 

evaluate recommendation systems. 



5 
 

• Chapter 3 introduces the Forzify application. We discuss the current state of the 

application and its general features, as well as what data we have available and which 

recommender system is currently running. Based on this information, we start 

discussing what features we want in a new recommender system and which approach 

might be best suited to achieve this. 

• In Chapter 4, we will introduce several recommendation frameworks that provide 

algorithms, which we discuss in detail, and different datasets. The datasets most 

similar to the data in Forzify will be used in further evaluation.  

• In Chapter 5, we use the information we have gathered about suitable approaches, 

datasets, algorithms and data in Forzify to run evaluations on the datasets with our 

candidate algorithms. We gather data about the two main measures of 

recommendation systems, namely accuracy and scalability. 
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2 Recommendation systems  
In general, we can split the recommender system approaches into two broad groups, namely 

content-based filtering systems and collaborative filtering systems. In addition to these two, 

we have a few other approaches that will be introduced in the next few sections, as well as 

some possible hybrid versions. Before we dive into these approaches, we will introduce a 

brief example of how user-data can be stored in form of the utility matrix model, Table 1. This 

will give some context to the term user-data, which is crucial in several of the methods we 

will introduce, as they need proper user-data to predict items.  

 

 Item1 Item2 Item3 Item4 

User1 4 5  2 

User2  3 1  

User3 2 3 4 1 

 

Table 1: Illustration of user-item connection in form of a utility matrix [3] 

 

In search recommendation systems, it is quite typical to have two classes of entities, namely 

user and item. This is typically used on a Netflix-type of site, where users can browse and 

watch different content, or other stores where you can rate the items you have bought. The 

point of this is to create a connection between users and items by linking their ratings with 

different items. This can be presented in a matrix like Table 1, where we can see three users 

and four items. The numbers inside the cells represents each user’s rating for the different 

items, on a scale from 1-5. The blank cells are situations where the users have not given a 

rating for the item. By having a recommendation system implemented, the system can be used 

to predict rating for the items a user has not yet rated, represented by the blank cells in the 

matrix. It will also give the possibility to predict ratings for other users, for whom the system 

has determined have the same interest as another user. A system does not always recommend 
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based on a rating-scale, however, but can also be used to give top-n recommendations, which 

identifies a set of N items that will be of interest to a user [10].  

Now that we have discussed the general notion of how to consider recommendation systems, 

we will further in this chapter give examples of how they are used in practice in some of the 

biggest and well-known systems in the world, to get an even better insight and understanding 

of this topic. Even further, we will investigate each recommendation approach and their 

ability to deal with some of the issues that we come across, when comparing them.  

2.1 Why use recommendation systems 
In the previous section, we introduced the general idea behind recommendation systems and 

talked about the relationship between users and items in these systems. We might think that 

these systems are only in place to satisfy the users/customers, but this is only one side of it. 

The companies behind the systems that, for example, sell products on their websites have 

great benefits both directly economically and by all the sales-information gathered over time 

for further business planning. 

Here is a list, from Ricci et al., [33] of just a few of the benefits such service providers get 

from having a well-made recommender system in place, which ultimately also gives users the 

best possible experience and user satisfaction. 

• Information gathering: a very important part of business management is information 

gathering. In the case of a recommender system on a grand-scale webstore for example, 

the company behind it can make various decisions regarding restocking items and notice 

trends to determine what needs increased production, or maybe which items needs to be 

advertised more to a specific user-group. 

• General increase in sales: for companies behind commercial recommender systems, the 

obvious goal is to keep their business blooming and sell as much as possible. This is 

partly achieved by selling more products, because users have gotten the best possible 

recommendations and advertisement. This also applies to content-based web-sites that 

have no direct payment from their users, but rather base their success on views. 
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• Display more diverse items: as we said in the section 1.1, there are way more items stored 

on a website than in physical stores, and being in control of which items are on the 

frontline and not forgotten in the abyss is important for large websites. Some users may 

also be interested in getting all items from a given category, whether they are popular or 

not. These items are not generally advertised because of the lack out popularity, but they 

need to have a way to be accessed either way. 

• Gain user loyalty: with a good recommender system, customers will feel that the more 

they use the site, the more tailored it will become for his/her specific needs and interests. 

This will greatly increase user satisfaction and make it more likely customers will return 

and keep using the site instead of others. 

With all this primarily working to the service provider’s advantage, we also have several 

benefits for the users of the service. One of the characteristics of a well-made recommender 

system, is that there is a finely tuned balance between the profits gained for the business and 

the customers. While the tasks of the recommender system might differ between these two 

actors, there is, obviously, a link between how well the users’ recommendations are, and how 

the business can benefit from this regarding the listing above. 

Some of the tasks [33] a recommender system has that concerns the users are: 

• Find Some Good Items: The most typical use of a recommender system is to 

recommend “just some good items”, where the system predicts and lists some good 

items based on how much the user would appreciate the items. 

• Find all good items: A user sometimes has the need to see all possible good items, 

preferably also in a ranked list, to gather information from all reasonable sources on 

some topics. This is especially relevant if the item-base is small. 

• Recommend a sequence: While exploring either academic articles or movies, an 

recommender system should be able to give a user items not necessarily pleasing to 

just one recommendation, but also a group of items pleasing as a whole. If this paper 

is recommended for example, why not also recommend papers about machine learning 

or something similar. 
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• Improving your own user experience: Gaining user-loyalty is a great benefit for any 

business, and on the way to achieve this we want to have our recommender system 

constantly improving for every user. This is a two-way relationship, and by staying 

loyal to a system, the recommendation system should improve any user’s user-profile 

and provide them fresh and up to date recommendations. 

• Help and/or influence others. While some users only care about their own well-being 

in a system, there are some who are happy to provide and share information with 

others. By giving their opinion and ratings on different items, they feel they contribute 

and help others. This is a two-way street however, as some users might also take 

advantage of this in a malicious way. This is mostly relevant on a bigger scale than 

just single users, but on a commercial web service where competitors try to sell their 

products alongside each other, there surely is a possibility to down vote others’ 

products, or up vote your own, and influence the recommender system. To achieve a 

grand effect of this, you would need to control a huge amount of accounts, but botnets 

and related topics are not something we will go deeper into in this paper. 

2.2 Recommendation system approaches 

Recommendation systems provides us with several ways of finding items of interest, whether 

it is which video to watch next, or what book to buy [16]. These recommendations are based 

on data and metadata about users and/or items, and the different approaches we will introduce 

in the following sections takes advantage of this data in different degrees and ways. We start 

by looking at the two main approaches, namely content-based filtering systems and 

collaborative filtering, before looking at a few approaches that mostly work as supplements to 

those, or used when the system at hand does not gather enough data to make these approaches 

effective. 

2.2.1 Content-based systems 

Content-based recommender systems recommend items based on what the system knows 

about which features and items a user is interested in. The actual content the system learns 

from, refers to an item’s description in form of attributes and metadata, which is illustrated in 
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Table 2. With this content-data, the system can use this as training data to create a user-

specific classification, and make further predictions based on this [1].  

The properties/characteristics for an item are gathered in what we call an item profile. An 

example of a site that uses this approach to some extent is Netflix. In Netflix’s case, some of 

the item properties are actors, director, rating or genre for each video. It is very important to 

have a good and clean representation of items in a content-based system, as their properties 

defines how the system can find similarities between them. In Table 2, we see a basic 

example of how movies can be represented in a database, like Netflix’s. 

 

ID Name Genre Language Director Actors 

0001 From Russia with 

Love 

Action English …… …… 

0002 Harry Potter Adventure English …… …… 

0003 Casino Royale Action English …… …… 

 

Table 2: Typical representation of content in a movie database 

 

When the system has learned the user’s previous ratings of items within the same genre or 

with the same director, it will weight its recommendation higher for those items in the future. 

To do this properly, however, the system will need some sort of user profiles as well, and the 

relationship between users and items is like we have illustrated in Table 1, the utility matrix 

model. A new user profile will contain the user’s preferences, which are generally what the 

user is interested in. It will also contain the history of the user’s previously watched movies, 

along with the item’s description and a search history. On a movie streaming platform, we can 

use this information to either let the user go back to a movie that was recently watched, but 

not finished, or filter out the movies that has already been watched. With all this information 

stored about both the user and which items the users are interested in, we can start making 

recommendations.  
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One of the strengths of content-based systems, is that it deals with the cold start problem well, 

which is a common issue for new users in other approaches, where the system does not have 

enough data to recommend new items. In this approach however, the system can recommend 

new items as soon as the user has some sort of interaction history, at the cost of lower quality 

recommendations. However, because of how the system simply finds similarities between 

items, this approach is self-biased, which means that it has a problem recommending items of 

diversity. Because of advantages and disadvantages such as these, approaches are often 

merged into hybrid versions, to accommodate each other, and deal with the issues related to 

them when used alone. Hybrid systems will be discussed further in Section 2.2.5, and more 

strengths and weaknesses will be discussed in Section 2.4. 

2.2.2 Collaborative filtering systems 

Collaborative filtering systems focus on the relationship between users and items, which is 

illustrated in Table 1. The way this method recommends an item for a user, is by checking the 

columns in the utility matrix and comparing it to other users. If a user’s ratings of items are 

similar to another user’s rating, we can conclude that they have similar interests, and 

recommend items that the second user likes to the first user, which fills in the blank cells in 

the matrix. To calculate such similarity between users or items, we can use cosine similarity, 

which is exemplified and discussed more in detail in Section 4.2.3. 

There are two main approaches to do collaborative-filtering; model-based and memory-based 

filtering, where the latter is also commonly known as neighborhood-based filtering. Memory-

based filtering was one of the earliest ways of generating recommendations, and is used 

where the user-item ratings combination is predicted based on their neighborhoods, and can 

be defined by user-based collaborative filtering or item-based collaborative filtering [6]. 

Memory-based filtering 

In user-based collaborative filtering, the recommendations are created by gathering the ratings 

by similar users to a selected user (active user), so that we then can give recommendations to 

the active user. To do this, we must compute a weighted average of ratings from similar users, 

for items that the active user has not yet visited. For example, if user A and user B has shown 
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positive interest in several of the same movies by giving them equal ratings, we can predict 

that user A has an interest in a movie he has not seen, but where user B has rated it highly. 

When using item-based collaborative filtering, we create predictions based on the similarity 

of items. In this approach, if we want to predict the rating of a target item for any user, we 

determine a set of items similar to the target item [1], and by looking at the ratings of the 

items in the set, we can predict whether the user will also like the targeted item.   

Model-based filtering 

The model-based filtering technique revolves around the creation of predictive models. 

Machine learning and data mining plays a central part to create said models, where methods 

like decision tress, Bayesian methods, clustering techniques, and rule-based models are used 

to gather vast amounts of data [1]. The Bayesian network model is built of probabilistic model 

for collaborative filtering problem. The clustering model looks at collaborative filtering as a 

classification problem, and works by clustering similar users in a class and calculating that a 

particular user has the same interests as other users in a class, and finally calculates the 

conditional probability of ratings. The rule-based approach creates associations between 

purchased items and new items, which it then generates recommendations from.  

Representations of ratings 

For several of the recommendation systems to work, and collaborative filtering techniques in 

particular, the system requires a way of tracking ratings for items. The way the rating of items 

is set up, differs from system to system, but in general we have two approaches, represented 

in Table 1 and Figure 1. Table 1 shows us what is known as interval-based ratings, or ordered 

ratings, and is commonly used by video-streaming websites that allows us to rate the videos 

we have watched on a scale from 1-5 stars. The range of the rating scale can vary as well, like 

the Jester recommendation engine which uses a scale from -10 to 10 [1], which is not as 

common.  

Figure 1 shows us a representation of unary ratings, and such a matrix is known as a positive 

preference utility matrix [1], as there is no possibility of negative ratings, only positive. This 

is the case for systems where you can only press a like-button, which we will later see is the 
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only way Forzify collects user-rating currently. The values gathered are not necessarily 0, 1 or 

nothing, as they can also be a value to count page-views or video-views. 

 

 

Figure 1: Unary ratings example [1] 

 

While unary and ordered ratings are the two main types of ratings, how the system collects 

the rating data is split into two groups; explicit ratings and implicit ratings. Explicit ratings 

can be both unary and ordered ratings, but what they have in common is that it is information 

the system actively gathers to create recommendations. Explicit rating is therefore the best 

indicator or a user’s preferences, as this information gives concrete data of a user’s interests. 

On the other hand, implicit ratings are values gathered rather effortlessly by the system, 

through for example browse history. This data is not necessarily a good indicator of a user’s 

interest, as we cannot conclude that a user really likes an item just by visiting it, or watching a 

video once. However, in the case where the unary data is page views or amount of times a 

user has watched a video, it can be viewed as a good indicator.    

2.2.3 Knowledge-based systems 

The knowledge-based recommendation approach is solely based on item assortment, user 

preferences and recommendation criteria. This approach is often used for items that are not 

often visited, like for example luxury goods or expensive cars. By default, such items will 

more often than not, lack sufficient user ratings, and a collaborative filtering approach will not 
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be beneficial to use, as it will get bottlenecked by the cold start problem, described in Section 

2.4.3. To counter this, domain knowledge and user preferences provides necessary 

information to the system, and is both used to calculate similarities and base 

recommendations on sets of explicit rules and constraints [1]. 

Knowledge-based recommender systems are split into two groups, defined by how they 

achieve their goal of creating recommendations: constraint-based systems, and case-based 

systems [1]. A constraint-based system creates recommendations based on a set of explicitly 

defined rules between a user’s preferences and the features of items, where the system 

retrieves a set of items which fulfills the constraints defined by a user’s preferences. The case-

based approach on the other hand, retrieves items by using similarity measures [24].  

A knowledge-based recommender system can take form as a conversational system, which 

means that the system will get user requirements and preferences from a feedback loop. 

Search-based recommendation is also an approach, which gets its user feedback from user’s 

answers to questions. Navigation-based recommendation is based on use feedback provided 

from critiques, where it is typical that the user can alter his request for an item that has 

already been recommended, to narrow down and navigate towards a satisfactory result. 

While this approach handles problems like cold start well, it is limited and totally dependent 

on expert domain knowledge. In addition, as this kind of system is based on current 

knowledge and does not learn more and more about users, its ability to adapt is relatively 

poor. This is not necessarily an issue, however, as this approach is preferably used either in 

combination with other approaches in a hybrid recommendation system, to deal with the cold 

start problem, or where the consideration of user’s ratings of items are not relevant in regard 

to what kind of items are in the system.   

2.2.4 Demographic-based systems 

A demographic-based system takes advantage of demographic data from users to create 

recommendation groups. Such systems do not need domain knowledge, but instead it requires 

users to specify their demographic attributes. Demographic attributes can vary from gender, 

occupation, education or simply age, and is essential information for the system to be able to 

group a user with users who has similar features. Many systems use some sort of demographic 
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recommendation, but this is in most cases not a standalone technique in practice, and is 

therefore rather used as a supplement in knowledge-based or hybrid systems [1].  

As with knowledge-based systems, this approach does not require a learning period, only that 

the user specifies its own demographic data, and is therefore relatively static. However, as 

with other systems that does not base its recommendation on what the system learns over 

time, it requires user interaction and the user’s willingness to share its personal information. 

With privacy as a hot topic in today’s society, this introduces a disadvantage with this 

approach, which is its inability to recommend items without a user’s personal data [7]. A 

demographic-based system will also have issues with recommendations of new items, as they 

cannot be recommended properly before they are interacted with by several users who 

indirectly determines to who the item shall be recommended for. 

2.2.5 Hybrid recommender systems 

As there are clear drawbacks in each of the different recommender approaches, there has been 

done research [7] concluding that combining several approaches together would create a 

better system in many cases. The biggest standalone techniques we mix to create hybrid 

systems are the four we have introduced in the past subchapters; content-based, collaborative 

filtering, knowledge-based, and demographic. The main purpose of creating a hybrid system 

is to deal with issues like the cold start problem and sparsity, which we talk about in Section 

2.4.3 and 2.4.4. In the list below, we introduce the general ways of how such systems can be 

created. 

- Making content-based and collaborative-based predictions separately and then 

combining them. 

- Adding content-based capabilities to a collaborative-based approach. 

- Adding collaborative-based capabilities to a content-based approach. 

- Combining approaches into one model. 

 

To get into more detail, we can reference some of Burke’s [7] list of hybrid categories; 

weighted, switching, mixed, feature combination and cascade. 



16 
 

• Weighted hybrids: combining the results of different recommendation techniques by 

using the score from each one with different degree of importance, to compute a final 

recommendation. Relies on the fact that the different scores are linearly combinable.  

• Switching hybrids: this is a hybrid that will switch from one technique to another, 

depending on the situation. In practice, this could be a system using a content-

collaborative hybrid, where the content-based recommendation is the first step. If the 

recommendation results generated here is not satisfying, the collaborative approach is 

used to try to achieve a better result. This approach’s biggest challenge is to find a 

good switching condition.   

• Mixed hybrids: in this hybrid approach, we merge several ranked lists from different 

recommender approaches into one final ranked list. How to compute the scores for the 

final list from the ones created by the other techniques can be challenging, but the 

simplest example is just adding their scores together. 

• Feature combination hybrids: features from different recommendation sources provide 

input to the “final” technique.  

• Cascade hybrids: this hybrid uses the output from one technique as input to another 

that refines the recommendation result. The techniques involved have a pre-defined 

priority and order as to when they are executed. If the first technique gives good 

enough results that are clear and distinct, the need for the second technique is not there 

and will not be deployed. This is an effective way to save resources. 

 

A good and simple example of the usage of a hybrid system is Netflix. Netflix uses 

collaborative filtering by comparing the watching- and searching-habits of similar users, as 

well as showing the users movies that share similarities with other movies, which is in the 

content-based filtering domain. 

2.3 Applications of recommendation systems 

We have now discussed several ways of using recommendation systems, and will in this 

section take a look at some of the biggest and most known websites to see how they work in 

practice. We will discover that functionality we take for granted, have underlying technology 

that most people have not even heard of. However, a lot of these technologies are big secrets 
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for the involved companies, and is not published in great detail except the general idea behind 

them.  

2.3.1 Netflix 

The movie streaming service Netflix is a platform which is important to consider when we 

want to develop a recommender system for the application Forzify. There are several 

similarities between the two, with the biggest similarity being that they both gives users the 

possibility of watching videos online, and rate them to create further recommendations. 

Netflix uses different tags like action, comedy and so on to identify the content of the videos, 

and this is used in combination with implicit user data like user history, which will contain 

information of what genres, actors and titles the user has already watched. The first page on 

Netflix contains movies that are popular now, what you have watched before, and then 

movies under genres that may contain actors you have watched before. 

The system also gets information from what your friends have watched, and will recommend 

videos to you based on this. Netflix uses a lot of different algorithms that are optimized for 

different situations, and some of them are listed below [21].  

The personalized video ranker is an algorithm which sole purpose is to find the best 

personalized recommendations for each user, where it orders an entire catalog of videos from 

genres or different groupings and personalizing them for each user profile. Then a resulting 

ordering is used to select the order of the videos in genre and other rows.   

Another algorithm Netflix uses is called Top-N video ranker, which generates the 

recommendations in the top picks row. This algorithm has the job of finding the best few 

personalized recommendation of the users, where it focuses on only the head of the ranking. 

The trending ranker algorithms focuses on giving recommendations that are short-term and 

temporal, and are ranging from a few minutes to a few days. This ranker looks at two types of 

trends, (1) those that repeat every several months, but also have a short-term effect when they 

occur, and (2) one-off, short-term events, which is when something in media is trending and 

drives users to watch similar movies or documentaries. In Figure 2 we can see some items 

that have been recommended to the user, using this algorithm. 
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Figure 2: Netflix showing items that are trending and popular now 

 

Netflix also allows the user to watch movies in small bits, and the continue watching ranker is 

an important algorithm that sorts the subset of recently viewed videos based on the best 

estimate of whether the user will continue watching the title. This ranker uses the time elapsed 

since viewing, the point of abandonment, whether different titles have been viewed since, and 

the devices used.  

In Netflix, the user is shown a “Because You Watched”-row of videos, and is driven by the 

video-video similarity algorithm. This algorithm is non-personalized and computes a ranked 

list of similar videos. Even though this algorithm is non-personalized, it is still personalization 

that decides if a video makes it into the Because You Watched row. Figure 3 shows the items 

that is recommended when a user has watched the title “The Keepers”, and uses the Because 

You Watched algorithm to recommend these titles. 

 

 
 

Figure 3: Netflix showing items that are similar to an item you have watched before 
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Page generation: row selection and ranking. This algorithm uses every algorithm already 

described to generate every single recommendation, where it looks at the relevance of a row 

of videos to a user as well as the diversity of the page. 

Netflix introduced a new way of matching titles to user called “The thumbs up, thumbs down 

rating system” [2], which is a unary rating system. This was first well received, but ended up 

with users not liking it. The reason behind this, is that there no middle ground between liking 

or disliking items. Users were hesitant to rate titles when they only mildly enjoyed a title, 

because they did not want to mess with their ratings. In Figure 4, we can see how the series 

Narcos has been given a 97% match based on previous liking and disliking of items.  

 

 
 

Figure 4: Netflix showing a percentage of how well this item matches your profile 

 

2.3.2 YouTube 

YouTube is also a video streaming website, but on this platform users share their own videos 

by uploading them for other users to view, rate, share and comment on. The recommendation 

shows the users what videos are popular right now, videos that are similar to what the user 

have already watched, and videos you may not have watched earlier created by one of the 

user’s subscriptions. 
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The recommendation system for YouTube gets its data from the user’s activity and content 

data, which is the tags, titles, description of the video. The user activity data is collected from 

the user’s video ratings, favorites, views and how long the user has watched one video. 

Because YouTube lets users upload their own videos with a personalized thumbnail, title and 

description, it cannot create a recommendation based on video clicks. This user can end the 

video just after realizing that the video is not of interest, and because of this there must be 

created a recommendation based on several factors which are discussed below. 

Applications like YouTube must also handle searches where a user does not have a history of 

earlier searches. This is called a cold start [37]. There are different ways to handle a cold start, 

but YouTube generally handles this by recommending the highest ranked videos and videos 

that are trending right now [37]. 

What kind of algorithm YouTube is using is hard to know, because the details are kept 

somewhat a secret and have not been published to the public. However, there is an article on 

someone that reverse engineered the YouTube algorithms [20]. The different algorithms that 

are doing work for YouTube is recommended, suggested, related, search and metascore. 

Which are all optimized for “WatchTime”, this is a combination of Views, View duration, 

Session Starts, Upload Frequency, Session Duration and Session Ends. For a video on 

YouTube to become popular you need to get a lot of views in the beginning of the video 

release, and is calculated in something called View Velocity. View Velocity is the number of 

subscribers a user has, that is watching a video within the first 48 hours, if the video is not 

clicked on by a large number of subscribers, it will impact negatively on the next video you 

publish. View duration is a calculation of how long a video must be watched, until it can be 

decided that, that video is of interest to a user. Session Starts is how many of a user’s 

subscribers start their session on YouTube with watching the users video. Session Duration is 

how long a user’s videos are keeping other users on YouTube while watching the users 

content, and how long they stay after they are finished watching. Session Ends is a negative 

metric that calculates how often someone leaves YouTube while or after watching a user’s 

videos. Upload Frequency is also a metric used, which basically is how often a user uploads 

content and how fast the subscribers watch that content. From this article [20], which attempts 

to reverse engineer the algorithms used by YouTube, they have come up with an algorithm 

theory. They claim that YouTube’s algorithm is designed to promote channels, not individual 

videos, but, it uses videos to promote individual channels. 
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2.3.3 Spotify 

Spotify is a music streaming service, that lets a user share and stream music, which makes it 

comparable to our case of Forzify in some ways, and it is therefore important to consider 

Spotify when we are talking about recommendation ranking. Spotify’s “Discover Weekly” 

service is a recommendation system, and is creating a playlist for a user with undiscovered 

music based on the user’s history. This service has become very popular since its release, and 

has been streamed 1.7 billion times and the Discover Weekly model can be seen in Figure 5. 

From the user’s song history, Spotify creates a “taste profile” and then finds playlists with the 

same features. With this profile, the system creates a new playlist which contains 

undiscovered songs from the playlists found from the last search as shown in Figure 5. 

 

 

 

Figure 5: Spotify discover weekly model [32] 

2.3.4 Amazon 

Amazon is an electronic commerce and cloud computing company, and is the largest web-

based retailer in the word, by total sales and market capitalization. Amazon uses 

recommendations to predict what items a user may want to buy, and have different 
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approaches to how it does that. There is a “Your Recommendations” button, that if clicked 

returns you to a page with a list of items that is specified to what you may like and have 

browsed earlier. In Figure 6, there is an item that is clicked on and different items that is 

frequently bought with that item shows up and is recommended to you. This is an example of 

item-based collaboration filtering being used, where the item clicked is similar to the items 

shown in Figure 6. 

 

 

Figure 6: Amazon, frequently bought together 

 

When a user views an item of interest, Amazon also gives recommendations of other items 

that have been previously viewed by users who has also shown interest in this item. Such 

recommendations are shown in Figure 7. 
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Figure 7: Amazon: ”customers who viewed this item also viewed” 

 

One of Amazon’s also great marketing tactics is to recommend items to a user via email. 

Kwasi Studios [27], has written an article on how Amazon is able to give a user 

recommendation, based on a 3 minutes viewing of items. 

2.4 Comparison of approaches and recommender 
techniques 

By now, we know that there are a lot of different approaches to creating a recommender 

system. This makes it important to look at the advantages and disadvantages of the 

approaches, so that we can tailor our recommender system to the best of our ability to fill the 

needs of the application at hand.  

In Table 3, we have listed some of the potential problems in recommendation systems and the 

different recommendation approaches. We will determine where these problems occur and 

whether the approaches handle them well or not. We have decided to keep hybrid 

recommendation systems out of the matrix, because this approach can be a combination of all 

approaches. 
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 Content-based Collaborative Knowledge Demographic 

Popularity bias  -  - 

New items  - + - 

New users  - +  

Self-biased - +  + 

Over time 

learning 

+ +  + 

Identify cross-

genre niches 

 +  + 

 

Table 3: How different approaches deal with different issues related to recommendations  

 

2.4.1 Popularity bias 

In collaborative filtering especially, there will always be users who have a unique taste that 

does not match most other users. This can lead to a problem when the system wants to 

compare users to each other and then give recommendations. To handle this type of users, the 

recommender system must adapt so that it can catch these users and then give 

recommendations with a content-based approach. Then it can give recommendations of items 

that are similar to what the user has already liked or rated. 

2.4.2 Scalability issue 

The scalability of recommender systems can be a problem in most approaches [28], but 

especially in systems where machine-learning is essential, which is often the case in 

collaborative-filtering techniques. In collaborative filtering, we will have an exponential 

growth since there will be new users who will give new ratings all the time, on both old and 

newer items. An approach to distinguish the scalability issue, would be to use a hybrid 

recommender system which can switch between small and large calculations, and between 

different approaches. 

 



25 
 

2.4.3 Cold-start problem 

A great challenge in recommender systems is the cold start problem [28], which is when the 

system has a tough time recommending items to new users or recommending new items into 

the application. In Section 2.2, we learned that content-based systems are based on item 

descriptions and user preferences, and collaborative filtering creates recommendation on 

similarities between user’s information. Especially collaborative filtering techniques suffers 

greatly by the cold start problem, while knowledge-based filtering does not. Often the cold 

start problem is talked about when there are new users or new items entering a system, but 

this is not always the case. A system does not know if a user wants the same items as he/she 

did when they last visited, this user can have bought the item that was looked for earlier and 

have no longer interest in this item anymore. The problem will always exist, but these are 

circumstances where a user buys items that are not collectibles, such as desks, sofas, et cetera.  

We can minimize the cold start problem with different approaches, and one of the ways to do 

this, is to use the “what is popular now” strategy. This can be determined from what is 

popular recently or demographically, which can be determined by for example GPS 

coordinates, which site they came from or knowing the device/operation system they are 

using. There is also the solution of when interface agents can share their information of the 

specific user. 

2.4.4 Sparsity problem 

In systems where users either purchase or rate items, there is usually a vast number of items 

that will not be rated or purchased, like in the empty cells of Table 1. This can influence 

recommendations negatively, as the system cannot collect similarities between items that are 

not rated or purchased and will therefore not be able to recommend them [28]. The sparsity 

problem can be handled by reducing the number of items and users an algorithm runs on. This 

has been proven efficient from the Netflix Prize competition. In content-based systems, this is 

a frequent problem, since this type of filtering does a lot of recommendation based on items. 
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2.4.5 Self-biased 

When a user is recommended items based only on which items this user has rated or bought 

previously, it can become a problem that this user will only get recommendations from the 

same category. For instance, if a user in the Netflix universe only watches movies or series 

which is considered crime, the user might get overloaded with recommendations from the 

crime genre. 

2.5 Evaluating recommender systems 

Deciding which approach to use when developing and implementing a recommender system 

varies on several levels. Recommendation systems have several metrics we need to take into 

consideration, like accuracy, scalability, robustness, user experience and more. 

The most obvious way of evaluating a recommender system might be to look only at its 

prediction accuracy. This means retrieving only items that are extremely close to matching the 

meta-data of earlier items retrieved for each user. Having such an accurate recommender 

system is all well and good, but in many applications, users might want to discover a bit more 

than their exact anticipation. This is where it gets even trickier, and we will need to evaluate 

the recommender systems appropriately as to what kind of application it is being implemented 

for. To finally test these recommenders, we can either do offline experiments on existing 

datasets, a limited use-case study where users are asked to perform tasks with the current 

system, or online experiments on an up and running system with loads of data and users. 

2.5.1 Offline testing 

The least demanding way of testing out a recommender system is to do offline testing with 

simulated data and users [36]. This is a cheap way of first-time testing new systems, as it 

requires no online functionality, and we deal only with pre-arranged datasets. The goal of 

such testing is to simulate as real as possible user behavior scenarios, but it is limited in its 

ways when compared to real-time online testing because of the small amount of cases that 

gets tested. Because of this, what we really want to do here is filter out the most inappropriate 

recommendation-algorithms before going further to real user testing or even online 

deployment with way more user interactions and behaviors. 
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Datasets 

When we want to create a recommender system, we must test different algorithms on some 

kind of data to know how efficient and accurate an algorithm can be. This process often takes 

place in an offline environment, which is the way we will go about evaluating algorithms later 

in this thesis. The data we can test our algorithms on must be represented in an orderly 

fashion, and are often called datasets. A dataset is a table containing related sets of 

information, and in the context of this thesis that information would be user and item profiles, 

where every user has rated different movies and a preferred genre, and the items will contain 

movies with which genre they belong and what overall rating they have. There are several 

different datasets that can be used, such as Lab41, MovieLens, Jester and more. In the next 

chapter, we will look into popular algorithms used for recommending and test these 

algorithms with different frameworks on datasets. There are a lot of different datasets when 

we want to evaluate recommendation algorithms, some popular ones are MovieLens, Jester, 

Book-crossing, Last.fm. They have ratings from different categories and have different 

number of users. MovieLens have four different sized datasets, one with 100 thousand ratings, 

one with 1 million ratings, one with 10 million ratings, and the biggest one with 20 million 

ratings. The ratings from MovieLens are ratings on movies by users, and are rated orderly 

from 1 to 5. Jester come with three different datasets, dataset 1 with over 4.1 million ratings, 

dataset 2 with over 1.7 million ratings and dataset 2+ which contain the dataset 2 with another 

500 000 new ratings. Jester dataset is rating jokes with a rating ranging from -10 to 10. The 

Book-crossing dataset contains 1.1 million ratings on books. 

 

 Users Items Ratings 
MovieLens 100K 1,000 1,700 100,000 
MovieLens 1M 6,000 4,000 1,000,000 
MovieLens 10M 72,000 10,000 10,000,000 
MovieLens 20M 138,000 27,000 20,000,000 

Jester 1 73,421 100 4,100,000 
Jester 2 59,132 150 1,700,00 

Jester 2+ 79,681 150 2,200,00 
Book-crossing 287,858 271,379 1,149,780 

Last.fm 21,000,000 600,000,000  
 

Table 4: Number of users, items and ratings in different datasets 
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2.5.2 Testing with real users 

One of the most used techniques to test new developments in the programming world is by 

using test subjects who are given certain tasks to perform on the new system. While the tasks 

are being performed, the developers can observe and take notes of their behavior and see what 

scenarios the system struggles with, as well as what the users are having a hard time doing. 

We can see what tasks were particularly hard by measuring how much time it took for the 

users to complete them, and measure how much time the system spent on executing the tasks 

the users executed. 

An experiment like this can be done by providing several articles on the web to a user and 

have them read the ones they find most interesting. After a few iterations, we can observe 

how well the system recommends other articles, based on the data gathered from the previous 

reads.  

2.5.3 Online testing 

The testing method that will give us the most realistic and reliable info is online testing. This 

is where we implement the recommender into the system and deploy it online for real users to 

test. The scope of data gathered here will be a lot wider than the testing introduced in the two 

previous chapters, and as we all know: more test-data equals more precise results. One typical 

way of doing this in the game-industry especially is to have beta-testing. This is a testing-

phase where the users are aware of it not being the final iteration of the software, but they 

participate and are encouraged to report bugs and similar problems that needs to be fixed to 

the developers. In beta-testing, it is typical to have different builds that goes live after new 

fixes are implemented, and this gives the developers the possibility to test different 

functionality and observe how they interact with each other. 

Online testing can also be considered a bit risky if it is initialized without proper testing 

earlier. Users who test a very faulty system online might be discouraged to try the real thing 

later. Therefore, we suggest online testing to be the last step in a longer testing period, with 

offline- and user-testing first. 
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2.5.4 Evaluation metrics and measures 

Whatever the subject of evaluation, we need to know which characteristics to measure to be 

able to determine its quality. The quality of recommendation systems can be measured by 

looking at several metrics, and in this section, we will present the most important ones, in 

accordance to Aggarwal’s [1] listed goals of recommendation systems. It is important to keep 

in mind that different systems have unique needs and goals. Depending on these goals, the 

different metrics plays a big part in some systems, while they are not as important in other.  

- The most important measure of a recommendation systems quality is its accuracy. 

Accuracy can be measured in the case of estimating ratings in a system with ordered 

ratings gathered from explicit feedback, or in a system consisting of unary ratings with 

implicit user-feedback. Algorithms to compute accuracy are discussed in Section 

2.5.5. 

- While high accuracy is the main goal of most recommendation systems, it does not 

always give good coverage of items. A systems coverage measures how many items 

are accessible and recommended, and can be grouped by user-space coverage and 

item-space coverage. Respectively, user-space coverage determines how many items 

can be predicted for a user, and item-spaced coverage how many users an item can be 

predicted for. 

- Measuring confidence and trust can be crucial in critical systems. The basis of these 

measures is whether the system is confident in its recommendations, and if the users 

trust the systems recommendations. 

- Novelty and diversity are two measures of the same notion, but differs in a few ways. 

An items novelty refers to its difference from other items viewed by a specific user, 

while item diversity refers to a systems ability to recommend different items within 

the same set of recommended items [8]. 

- Serendipity measures the level of surprise in recommendations, which can tell us to 

what degree a user is able to discover unexpected material from successful 

recommendations.  
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- A possibility in many recommendation systems is fake information or ratings. This 

may be caused by profit-driven motivations, or can happen by accident. To measure 

how a system deals with this, we evaluate the system’s robustness. As systems can 

also evolve over time, we evaluate its stability, and see if the recommendations stay 

consistent. 

- With ever-growing data-collections and users of the internet, scalability has come one 

of the two most important measures to keep in mind alongside accuracy. Scalability 

revolves around both time consumption and space, and is measured by training time, 

prediction time and memory requirements.  

2.5.5 Accuracy measuring algorithms 

Depending on what kind of rating data the system is using, the preferred evaluation 

algorithms differ. While some are best if the system uses implicit data and unary ratings, 

others are better suited to evaluate explicit ordered ratings. 

Precision and Recall 

Precision and recall are two important measures in recommendation systems. Precision is the 

measure of what rate the retrieved items that is relevant to the user, while recall measures the 

rate of the relevant items that are retrieved [29]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠
(1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
(2) 

 

When we want to use precision and recall, we need to classify each item. These items can be 

classified as true positive, false negative, false positive and true negative. We get the 

classification based of if an item is used or and if the items is bought or not. This is shown in 

Table 5. 
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 Relevant Nonrelevant 

Retrieved True positive (TP) False positive (FP) 

Not retrieved False negative (FN) True negative (TN) 

 

Table 5: Classification of items [29] 

 

Then after the items have been classified we can measure precision and recall by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

 

RMSE & MAE 

In Chapter 5, we will run tests on datasets of movie ratings explicit ordered ratings. To 

compare different algorithms, we use the root-mean-square derivation (RMSE) and mean 

absolute error (MAE). The MAE is a measure of absolute values of errors to obtain the ‘total 

error’, and then dividing the total error by n [39], and from this paper, MAE is described with 

this formula: 

𝑀𝐴𝐸 =  [𝑛−1 ∑|𝑒𝑖|
𝑛

𝑖=1

] (5) 
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RMSE is calculated with getting the ‘total square error’, as the sum of the individual squared 

errors. This means that each error influences the total errors in proportion to its square, rather 

than its magnitude [39]. As a result, large errors have a greater influence on the total square 

error than the smaller errors. Then total square error is then divided by n, and we then get the 

mean-square error [39]. Finally, we then take the square root of the mean-square error and we 

get the RMSE. And within the paper [39] we have the formula: 

𝑅𝑀𝑆𝐸 =  [𝑛−1 ∑|𝑒𝑖|2
𝑛

𝑖=1

]

1
2 ⁄

(6) 

 

 

Mean Average Precision 

Mean average precision (MAP) is an evaluation metric commonly used to evaluate the 

precision in recommendation systems based on unary ratings, and focuses on getting the top n 

recommendations for the user. In “The Million Song Data Challenge” [30], there is a formula 

of the truncated ranking, described as:  “for any k ≤ τ, the precision-at-k (Pk) is the proportion 

of correct recommendations within the top-k of the predicted ranking:” 

𝑃𝑘(𝑢, 𝑦) =  
1
𝑘

∑ 𝑀𝑢,𝑦(𝑗)

𝑘

𝑗=1

(7) 

 

“For each user, we now take the average precision at each recall point:” 

𝐴𝑃(𝑢, 𝑦) =  
1

𝑛𝑢
∑ 𝑃𝑘(𝑢, 𝑦) ∗  𝑀𝑢,𝑦(𝑗)

τ

𝑘=1

(8) 
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“Where 𝑛𝑢 is the smaller of τ and the number of positively associated songs for user u. 

Finally, averaging over all m users, we have the mean average precision:” 

𝑚𝐴𝑃 =  
1
𝑚

∑ 𝐴𝑃(𝑢, 𝑦𝑢)
𝑢

(9) 

“where 𝑦𝑢 is the ranking predicted for user u” (The Million Song Dataset Challenge) [30]. 

2.6 Summary 

In this chapter, the general ideas behind recommendation systems are introduced. By having a 

well-tailored recommendation system active, benefits for both businesses looking for profit 

arise, as well as enhancing user experience. While you as a user sometimes know specifically 

what you are looking for, there are also times you are just browsing. With a system in place 

that guides you, and which seemingly knows your interests, it can help you discover new 

items and possibly influence others by giving your own opinion on visited items by leaving a 

rating.  

Loads of research has been done on recommendation systems the last decades, and four of the 

most common recommendation approaches has been discussed: content-based, collaborative 

filtering, knowledge-based and demographic-based. What they have in common, is that they 

all use data from either the users or items, or both, to guide users around in systems with often 

overwhelming amounts of data. While some of the systems compare either unary or ordered 

ratings between users to create personalized recommendations, others use domain knowledge 

and user feedback to achieve the same goal. Each of these approaches has advantages and 

disadvantages. To counter these, a common approach is to merge them to use the strengths of 

one to disarm the weaknesses of another. Such merged systems are called hybrid systems, and 

have several different possibilities for merging, depending on which issues is probable to arise 

in the related system. Some of the systems that uses these approaches, and most people can 

relate to, are Netflix, Spotify, Amazon and YouTube. 
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When evaluation recommendation systems, there are several metrics to take into 

consideration. Some of them being accuracy, coverage, confidence, trust, novelty, serendipity, 

diversity, robustness, stability and scalability, with accuracy and scalability often being most 

important. Depending on the type of rating data represented in the system, either RMSE or 

MAE is used, or MAP. While MAP is a good measure when evaluating implicit data and a 

top-n recommendation problem, RMSE and MAE is the best measure when dealing with 

explicit data, often in the form of ordered ratings. 
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3 Forzify 
As we have now covered several recommendation system approaches, we will here try to 

make use of the gathered information and discuss which approach is best suited for the 

application Forzify. We will talk about how the application works and what users can expect 

from the service, as well as considering its current recommender system and what we want to 

achieve. These conclusions will be made by using what we have learnt about seemingly 

similar systems, including what data we will have available in Forzify and what features we 

want included. 

3.1 About Forzify 

Forzify is a system that provides content in form of football clips and videos on the web. The 

system we are involved with in this thesis is a lightweight consumer version of the Forzify 

desktop version [17]. Social media is already a big part of most of our lives, and Forzify aims 

to build upon this and allow for quick access to football clips through sharing and interacting 

with friends, and rapid updates during game days. Eventually, this will hopefully generate 

more interest and social interaction on game days, but also act as a platform where fans can be 

a part of a football-loving community outside these specific days.  

The Forzify application is meant to give users, in form of football supporters, a social 

experience for sports. To accomplish this, Forzify is built up similarly to Spotify; a system for 

all your favorite sport events [18]. Some of the features included are the possibility of 

watching highlights and game summaries, sharing and discussing sport events with your 

friends, and creating your own events. Currently, Forzify is used by a few Norwegian clubs, 

namely Vålerenga IF, Viking FK and Tromsø IL. As of now, these versions are stand-alone 

versions, which means that they are completely separated and you will only be able to watch 

videos from the respective club depending on which site you have entered. This is about to 

change, though, as there will soon be one version for the Norwegian top division Eliteserien, 

alongside the Swedish Superettan and Allsvenskan. These versions will include a lot more 

clips than the current club based versions, so a good system to keep track of each users’ 

preferences will be needed, and how this can be done to make good recommendations is what 

we will be discussing in the next sections and chapters. 
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While we have already made a comparison of Forzify and Spotify, the applications’ layout is 

also similar to that of YouTube, which we can see in Figure 8. The screenshot shows us the 

front page of the Vålerenga IF version of Forzify, where videos from the latest Vålerenga 

game is shown in the upper container, and trending videos are shown below. A user can log 

in, search for videos, create a new playlist, add videos to a playlist or simply browse videos. 

You can also view your history of videos played, which is important for the system to keep 

track of in regard to personalized recommending. 

 

 

Figure 8: Front page of VIF Forzify 

3.2 Data 

Before we start discussing what recommender system is best suited for the application, it is 

crucial to know what data we can work with from the different data sources available in 
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Forzify. Both the videos and users have properties we can take advantage of, and these are the 

ones we will look at now. 

Videos on Forzify are uploaded and given a title and different tags to describe its content. 

Unlike text documents on the web, videos do not have the same default properties we can use 

to differentiate them from one another, which makes such properties invaluable. A few of the 

tags used as content descriptors in Forzify, are “shot”, “yellow card”, “goal” and “penalty”. 

While these are the main descriptors of a clip, they also contain meta-data. The meta-data is in 

place because it is not only relevant for the system to know what happens in the clip, but also 

what players were involved and which clubs. Why? Because when Forzify contains clips from 

hundreds of players and several clubs, a user will more than likely want his top 

recommendations to be goals and other content related to his favorite players and clubs. 

To create personalized recommendations, we need user data. As we introduced in the previous 

section, Forzify keeps track of a user’s interaction history. Even though it might be drastic to 

conclude that you like a video only because you have watched it, we can at least conclude that 

you are interested in its content, especially if the user has watched it more than once. 

However, there is also stored explicit data in form of the possibility to press the like-button on 

the videos. This, as well as adding videos to a playlist, is a much stronger indicator of a users’ 

liking of an item, and should be weighted higher than the previous example. What is currently 

lacking is the possibility to dislike items, and maybe more importantly, rate items. Without 

such grading of preference, it is not as achievable to predict ratings, which means we will 

have to predict user preference based on only positive indications. This can also greatly affect 

how algorithms perform on the system, and will be taken into account when running the 

evaluations in Chapter 5. 

3.3 Current recommendations in Forzify 

Currently, the first recommendations users will receive are the ones displayed on the front 

page as shown in Figure 9. If a user is not logged in however, the same part of the page will 

be occupied by trending videos instead, as we can see in Figure 8. These recommendations 

can also be viewed by entering your own recommendation page, which is achieved by 

clicking the “Recommended”-tab. The second way Forzify gives us recommendations is by 

showing related videos on the right-hand side of the page when watching a video, which is 
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very similar to the way YouTube does it. It is important to keep in mind that the current 

iteration of Forzify is split into versions for each team, and therefore recommendations will 

always be related to one club only. We will however consider Forzify’s recommendation 

system as if these versions were merged, in regard to further discussions of a suitable 

approach.  

 

 

Figure 9: Forzify “Recommended for you” 

 

Forzify currently uses Elasticsearch as a tool to manage information retrieval related to the 

site’s search engine, as well as for creating recommendations. Elasticsearch is a distributed, 

scalable, real-time search and analytics engine. This engine supports full-text searches, 

structured searches, analytics and a combination of all three [14]. Elasticsearch is based on 

Lucene which is an open-source information retrieval software library written in Java, and so 

is Elasticsearch. Lucene is used for its indexing- and searching-techniques, and Elasticsearch 

uses Lucene to make full-text searches easy by running a RESTful API, so that the 

complexity of Lucene is hidden. This makes Elasticsearch easy to use and can be more 

advanced as the user learns more [14]. Elasticsearch is used by many big co-operations such 

as: Facebook, GitHub and Netflix, but Elasticsearch is also used on prototypes to make the 

into scalable solutions. Elasticsearch can run on a laptop or scale over a vast number of 

servers. 

As Forzify currently bases its recommendations on the content of items, the approach in use is 

content-based, which is only logical given that this the only available data source in the 

system. As already discussed, such a system is good for handling the cold-start problem, as 
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well as learning over time to give users better recommendations. However, recommendations 

can become self-biased, and have a hard time with serendipity. In general, content-based 

systems also have lower accuracy than collaborating filtering. 

3.4 Improving the recommendation system 
In a system where content in form of videos will be uploaded often and on a regular basis, 

users will most likely pay frequent visits to the site to check out new content. In such 

situations, the system benefits from learning user behavior and their preferences from the 

respective user profiles, and improve recommendations over time. We also need to take the 

constant flow of new items introduced to the system into account, and find a way for the 

system to handle the cold-start problem, especially for new items. Helping users explore and 

discover new videos should also be one of the main concerns for a system like this, in terms 

of giving the users a pleasant experience when visiting the application. With a lot of new 

items, and possibly new users added to the system, we also have to take the systems 

scalability into consideration. 

Considering the data at hand, we can exclude the use of a demographic-based approach to 

improve the recommendation system. While it can be a good addition in a hybrid setting, the 

current data source only allows for either content-based or collaborative filtering. For a 

demographic approach to be feasible, the system needs to get explicit feedback from users 

about their demographic data, as described in Section 2.2.4. Some users are not willing to 

share their personal data, which results in below par recommendations. The knowledge-based 

approach could be a possibility, as it deals with the cold-start problem well, but has no 

improvement over time by learning preferences. And as stated in Section 2.2.3, it is heavily 

dependent on expert domain knowledge and engineering, which can be both costly and time 

consuming. 

The main disadvantages to consider if we want to implement collaborative-filtering based 

recommendations in Forzify, will be cold-start, sparsity and scalability. The latter two can 

especially become a problem due to the number of items being introduced to the system. With 

a vast number of users and items, there will be a lot of items that are not rated or interacted 

with by users, and the rating-matrix will become sparse.  
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When using a content-based approach, a problem might occur related to how well new items 

are described for the system. New videos need to be machine-recognizable, as the 

recommendations are based on the tags and description of the clips. When using a pure 

content-based approach, words that have the same meaning but are spelled differently can 

cause problems because the system might recognize these words as independent words, and 

will not find similarities between them. 

At the moment, Forzify collects implicit data in form of a user’s interaction history. In 

addition to this, it also gathers explicit feedback from users, who have the possibility to show 

their affection for items by clicking the like-button. While this is sufficient to create 

recommendations, the use of ordered ratings is also a possibility we will take into 

consideration, when evaluating the different approaches’ respective algorithms in Chapter 5. 

By looking at research done by using MAP to evaluate algorithms on datasets with unary 

ratings [31], we will evaluate by using RMSE & MAE on some of the same datasets with 

ordered ratings, and compare the results. 

3.5 Summary 

In this chapter, we have learned that Forzify is an application created to gather and share 

content in the form of football-videos to eager football fans. To allow those users to explore 

this content in an effective and user-friendly way, it is of most importance to have a 

recommendation system in place. Currently, the system is split into versions for each 

participating club, but will soon be a platform for all clubs in the leagues represented in the 

system. We see that there are currently both personalized and non-personalized 

recommendations implemented, which depends partly on whether the user is logged in or not. 

The usable user-data sources in Forzify are currently gathered both implicitly and explicitly. 

The system keeps track a user’s interaction- and search-history, as well as whether the user 

has added videos to a playlist. The explicit data is gathered by giving users the possibility of 

liking items, which is a unary form of rating. The main source of data needed to run the 

current content-based system, is the data about the videos. All videos on the site have 

descriptors in the form of tags, that allows the system to find similarities between them. 
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When discussing a suitable approach to use for Forzify, we have taken the current data-

sources into account and considered how they can be of further use, while at the same time 

minimizing the impact of the greatest challenges and problems concerning recommendation 

systems. We see that a content-based or collaborative filtering approach is the only option 

given this data, as a demographic-based or knowledge-based approach either demands 

additional data-sources. We also introduce the idea of implementing an ordered rating system, 

that allows for rating-prediction, and not only finding the top-n recommendations for the 

users. We will bring this information further to the next two chapter, where we look for 

suitable algorithms to use within the content-based and collaborative filtering approaches. 
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4 Implementation 
When we are going to choose an approach to recommend something to a set of users, it is 

important that we look at what options we have to choose from. When we have an idea of 

what we want to recommend and what user specifications which are important to us, we can 

start looking at the algorithms and frameworks that work great for us. There are several 

different algorithms that we can choose to use, but they have their own strengths and 

weaknesses. Some algorithms may give fast recommendations, but in return, they are less 

accurate than their counterparts. There are also the questions of how much money it is worth 

to use on computer parts for the recommender system. 

If we get a close look at the different options we have before we decide what approach we 

would choose, we can save a lot of money and get a recommender system that works great 

with our customers. In this chapter, we will look into different algorithms that are used in 

recommender systems, and also look at some frameworks for using these algorithms. We use 

the MovieLens dataset to test runtime of some popular algorithms on different frameworks. 

4.1 Frameworks 

There are several frameworks we can use when we want to evaluate how algorithms perform 

on different data. We will now present some frameworks that we may want to compare to 

decide which framework we want to use to evaluate algorithms for Forzify. 

4.1.1 Surprise (RecSys) 

Surprise is an open source recommender system, which is a Python recommender package 

[23]. This system has made it easy for the user to create their own implementation of 

prediction algorithms, while also having a lot of known recommenders already built into the 

package. Surprise is a package created for students and researchers.  
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4.1.2 Apache PredictionIO 

PredictionIO [15] is a machine learning server, which can be used to create a recommender 

system. This system is used with Apache Spark, MLlib, HBase, Spray and Elasticsearch. 

Spark is a large-scale data processing engine that works with the data preparation and input to 

the algorithm, training and the serving process. HBase is used as the data store, which stores 

imported events. PredictionIO supports user-based, item-based, item-based cross-action, 

defined ranking, item-set-based and limited content-based recommendations. The 

recommender uses the Correlated Cross-Occurrence algorithm to automatically correlate data 

such as items clicked, terms searched, categories viewed, items shared, people followed, 

items disliked, gender, age, location and device to make better recommendations.  

4.1.3 LensKit 

LensKit [12] is a recommender toolkit based on Java. It comes with recommendation 

algorithms in the category item-based collaborative filtering, user-based collaborative 

filtering, matrix factorization and slope-one. LensKit has three primary goals, modularity, 

clarity and efficiency. The modularity in LensKit is designed so that every algorithm and 

component, can be reconstructed and modified to serve the best needs. Efficiency is 

important, and LensKit is optimized for clear code over unnecessary optimization, but still 

have a reasonable efficiency through data structures. 

4.2 Algorithms 

In this section, we are going to present some popular prediction algorithms and show the 

equations for some of these algorithms. We are going to run these algorithms on a framework 

to determine what algorithms perform best on some datasets, and which one is the best option 

for recommending items on Forzify. 

4.2.1 Baseline algorithm 

When we want to create a recommender system, that involves users and items, it is important 

that we can handle new users and the cold start problem as we have discussed in section 2.4.3. 

Baseline algorithms are non-personalized and do not depend on a user’s rating of an item, 
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which helps when it comes to new users. At the same time, it can be useful for our 

personalized algorithms so that they can compare data. Baseline algorithms first job is to 

predict an average rating over all the ratings we have. [13] We set the baseline prediction to 

bu,i, where u is the user’s and i is the item, and the most basic understanding we have is bu,i = 

µ, here µ is the overall average rating. We can also predict the average rating by a user or for 

a specific item: bu,i = �̅�u or bu,i = �̅�i. From this article [13] we can further enhance the baseline 

predictor by combining the user mean with the average deviation from user mean rating for a 

particular item: 

𝑏𝑢,𝑖 =  𝜇 +  𝑏𝑢 + 𝑏𝑖 (10) 

 

bu and bi are user and item baseline predictors. This baseline can be further regularized as it 

has been in [13]. What is great for a baseline predictor is that we can assume that when a new 

user enters the system, he/she is an average user and will get predictions respectively.  

4.2.2 Matrix factorization 

Matrix factorization [25] is a collaborative filtering technique, which have become popular 

over the recent years. While collaborative filtering uses user feedback to give 

recommendations, matrix factorization has the possibility to gather a lot more data than what 

a user explicit give away, it has the possibility to get data from user purchases, behavior, 

internet history, searches and mouse movements. So that when a user does not give ratings or 

feedback, the system can give recommendations from other sources. This is a great strength in 

matrix factorization, since there will always be users who do not give feedback to all the 

items [26]. 

 

When we use Matrix factorization we start with a set of U users, and a set of I items. The 

matrix of size |U| x |I| we call R, and contains the ratings the users have given to the items. 

The latent feature would be discovered now. We then find two metrices, P(|U| x K) and Q(|I| x 

K) such that their product approximately equals to R is given by:  

𝑅 ≈ 𝑃 × 𝑄𝑇 =  �̂� (11) 
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Now the Matrix factorization models map both users and items to a joint latent factor space of 

dimensionality f, user-item interactions are modeled as inner products in that space. 

Accordingly, every item i is associated with a vector qi ϵ Rf, and the user u is associated with 

a vector pu ∈ Rf. The elements of qi measure the extent of which the item possesses those 

factors positive or negative for a given item i. The resulting dot product qi
Tpu gets the 

interaction between user u and item i, which is denoted by rui leading to the estimate [5]: 

�̂�𝑢𝑖 = 𝑞𝑖𝑇 𝑝𝑢 (12) 

 

The system the regularized squared error on the set of known ratings to learn the factor 

vectors (Pu and Qi) as [5]  

min
𝑞∗,𝑝∗

∑ (𝑟𝑢𝑖 −  𝑞𝑖
𝜏𝑝𝑢)2 + 𝜆(‖𝑞𝑖‖2 +  ‖𝑝𝑢‖2)

(𝑢,𝑖) ∈ 𝐾
(13) 

 

 

Now, K is the set of the (u,i) pairs of which rui is known the training set. The constant λ 

controls the extent of regularization and is usually determined by cross-validation [5]. 

Singular value decomposition (SVD) is a popular matrix factorization model, which handle a 

lot of the problems of collaborative filtering such as scalability, handling of large datasets and 

the empty matrix fields. How we use Singular value decomposition is complex, but the simple 

version is that we have a very spare matrix that we want to get the recommendation rankings 

out of. First, we take that matrix and decompose it into two low-rank matrices which include 

the user factors and item factors. We can do this by finding the minima or maxima by 

iteration, which is called the Stochastic Gradient Descent. After this is done we can then try to 

predict unknown values in our original matrix. SVD decomposes a matrix R into the best 

lower rank approximation of the original matrix R. SVD decomposes R into two unitary 

matrices and a diagonal matrix: R=U∑VT. [4] where R is user ratings matrix, U is the user 
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“features” matrix, ∑ is the diagonal matrix of singular values, and VT is the movie “features” 

matrix[x1] Then to get the lower rank approximation, we keep only the top k features from 

the matrices, which we think of as the k most important underlying taste and preference 

vectors. 

4.2.3 K-nearest neighbors(KNN) 

KNN is an algorithm which take user information and compares the information on other 

users, and creates recommendations based on what the nearest neighbors liked or bought. The 

user information compared might be age, demographic, salary or gender. KNN uses the 

cosine similarity to find the nearest neighbors; cosine similarity is a similarity computation 

technique [34] to get the similarities between two items or users. The two items we want to 

compare is looked at as two vectors, the similarity is measured by computing the cosine of the 

angle between the two vectors. We can refer to the items as A and B and denoted by sim(A,B) 

is given by: 

𝑠𝑖𝑚(𝐴, 𝐵) = cos(𝐴, 𝐵) =  
𝐴 ×𝐵

||𝐴||2||𝐵||2 
(14) 

 

In Table 6, users are compared with each other to determine a cosine similarity. We can see 

that six items have been rated by 5 users from a range 1-7. We want to give recommendations 

to user 3, by first finding out which user he/she is most similar to. In the table, and in the 

formula (14), we can see that the cosine similarity between user 3 and 2 is 0,981. As this is 

the highest similarity, user 3 will be recommended items which user 2 is also interested in. 

𝐶𝑜𝑠𝑖𝑛𝑒(2,3) =  
7×3 + 4×1 + 3×1

√72 + 42 + 32 × √32 + 12 +  12
= 0.981(15) 
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      Item-Id 

 

User-Id  

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Mean 

Rating 

 

Cosine(i, 3) 

(user-user) 

1 7 6 7 4 5 4 5.5 0.956 

2 6 7 ? 4 3 4 4.8 0.981 

3 ? 3 3 1 1 ? 2 1.0 

4 1 2 2 3 3 4 2.5 0.789 

5 1 ? 1 2 3 3 2 0.645 

 

Table 6: User-user similarity computation between user 3 and other users [1] 

 

We will now show you a simple example taken from [38], on how KNN actually work. We 

start with a picture with yellow circles (YC) and blue squares (BS), we want to find the class 

of the green star (GS). 

 

 

Figure 10: Explanation of KNN with different items 
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GS can either be YC or BS and nothing else. Let us assume that K = 4, and from that we want 

to find the 4 nearest neighbors to GS. Now we create a circle with GS at the center and only 4 

of the closest points. 

 

Figure 11: Explanation of the nearest neighbors to GS 

 

We can now see that the four closest points are all YC, and with this we can then assume that 

GS is in the class YC. This example was very simplified to explain it easy. 

4.2.4 Clustering 

Clustering is a technique for dimensionality reduction. In a collaborative filtering approach, 

we can easily end up with vast amounts of data to deal with, and by using something simple 

as grouping, clustering can help deal with issues related to this. Users are placed in clusters 

based on related item-information, and recommendations are computed for other users within 

these clusters.  

If we look at Table 7, we can see that customer B, C and D have similar items in interest, 

especially book 2 and 3, and therefore they are in the same cluster. If a new customer, F, has 

similar interest in book 3, he will become a “member” of this cluster. This leads to a 

recommendation of book 2 for this customer. 
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 Book1 Book2 Book3 Book4 Book5 Book6 
Customer A X   X   
Customer B  X X  X  
Customer C  X X    
Customer D  X    X 
Customer E X    X  
Customer F   X  X  

 

Table 7: Customer interests in books [40] 

 

Co-clustering is an algorithm based on clustering, and now we will give an example of that 

algorithm which is based of [19]. Users and items are assigned clusters Cu, Ci and some co-

clusters Cui. Then the prediction �̂�ui[22] is set as: 

�̂�𝑢𝑖 = 𝑐�̅�𝑖 + (µ𝑢 − 𝑐�̅�) + (µ𝑖 −  𝑐�̅�) (16) 

Where 𝐶̅ui is the average rating of co-cluster Cui, 𝐶̅u is the average rating of u’s cluster, and 𝐶̅i 

is the average ratings of i’s cluster[x4]. If the user is unknown, the prediction is �̂�ui = µi If the 

item is unknown, the prediction is �̂�ui = µu. If both are unknown, the prediction is �̂�ui = µ [22]. 

Clusters are assigned using a straightforward optimization method, much like K-means.  

4.3 Testing algorithms with frameworks 

Below we will run some built-in prediction algorithms on the Surprise and Lenskit 

frameworks, and get results with the average RMSE and MAE. We have chosen to use RMSE 

and MAE as a measuring over MAP, as Simen Roste Odden has written a thesis [31] on the 

same topic and used the MAP for measuring accuracy. This was used because the data that is 

collected in Forzify is unary and implicit feedback, and since this has already been done, we 

wanted to do see what algorithm is predicting good if the Forzify data was with user ratings. 

We evaluate with a 3-folds cross-validation procedure. The dataset consists of 100,000 ratings 

(1-5) from 943 users on 1682 movies, where every user has rated at least 20 movies. The 

execution time given is for all three folds, and the MovieLens 100k dataset is used.  

K-fold cross validation [35] is used for model evaluation. When it is used it divides the data 

set into k subsets and uses the holdout method k times. Every time a k subset is used as the 

test set and the other k-1 subsets are used to generate a training set. Then the average error 
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from all the k trials is calculated. The holdout method is sometimes referred as the simplest of 

model evaluations, since this method alone only involves a single run of predicting values in 

the testing set and then generating the mean absolute test set error. 

All the tests are run on a laptop with Intel Core i7-4712MQ, 2.30GHz, 8GB RAM. 

4.3.1 Surprise 

We will now look at how we can use our algorithms on the Surprise framework and then get a 

RMSE and MAE measure of the recommendations. We got the walkthrough from Surprise’s 

website [23]. Surprise has a lot of algorithms built into their system, which makes it easy for 

us to choose what algorithms we use by just editing a couple of code lines. In Code snippet 1 

we import the SVD algorithm from Surprise, but we can also choose NormalPredictor, 

BaselineOnly, KNNBasic, KNWithMeans, KNNBaseline, SVD++, NMF, SlopeOne and 

CoClustering. It is also possible to create your own algorithms. Surprise also lets us choose 

between three datasets, Jester, MovieLens 100k and MovieLens 1M. If we want we can also 

use different datasets, but then we have to create a Reader and define the datasets presets. In 

Code snippet 1 we use the built in MovieLens 1M dataset, which will automatically download 

when we run the code. We defined to use a 5-folds cross-validation and set the algorithm to 

SVD and asks for the measures RMSE and MAE. The results of the different algorithms can 

we see in Tables 8-17. 
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from surprise import SVD 
from surprise import Dataset 
from surprise import evaluate, print_perf 
import time, os 
 
start = time.time() 
#data = Dataset.load_builtin('jester') 
data = Dataset.load_builtin('ml-1m') 
#data = Dataset.load_builtin('ml-100k') 
 
 
data.split(n_folds=5) 
 
algo = SVD() 
 
perf = evaluate(algo,data,measures=['RMSE', 'MAE']) 
 
print_perf(perf) 
end = time.time() 
print(end-start) 

 

 

Code snippet 1: Running the SVD algorithm on the Surprise framework 

 

- NormalPredictor 
Algorithm predicting a random rating based on the distribution of the training set, 
which is assumed to be normal 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 1.2222 1.2190 1.2165 1.2192 
RMSE 1.5189 1.5179 1.5125 1.5164 

 

Table 8: NormalPredictor RMSE and MAE 

Execution time: 1.404 seconds 
 

- BaselineOnly 
Predicting the baseline estimate for given user and item 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7515 0.7505 0.7534 0.7518 
RMSE 0.9467 0.9480 0.9479 0.9476 

 

Table 9: BaselineOnly RMSE and MAE 

Execution time: 1.689 
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- KNNBasic 
A basic collaborative filtering algorithm 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7795 0.7780 0.7880 0.7818 
RMSE 0.9867 0.9861 0.9947 0.9892 

 

Table 10: KNNBasic RMSE and MAE 

11.123 seconds 
 

- KNWithMeans 
A basic collaborative filtering algorithm, taking into account the mean ratings of each 
user 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7552 0.7502 0.7545 0.7533 
RMSE 0.9575 0.9526 0.9574 0.9558 

 

Table 11: KNWithMeans RMSE and MAE 

Execution time: 11.880 seconds 
 

- KNNBaseline 
A basic collaborative filtering algorithm taking into account a baseline rating 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7393 0.7385 0.7344 0.7374 
RMSE 0.9383 0.9379 0.9311 0.9358 

 

Table 12: KNNBaseline RMSE and MAE 

Execution time: 13.460 seconds 
 

- SVD 
The algorithm that was popularized by Simon Funk during the Netflix Prize 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7436 0.7424 0.7454 0.7438 
RMSE 0.9439 0.9419 0.9447 0.9435 

 

Table 13: SVD RMSE and MAE 

Execution time: 10.753 seconds 
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- SVD++ 
The SVD algorithm while taking into account implicit ratings 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7340 0.7309 0.7300 0.7317 
RMSE 0.9275 0.9254 0.9263 0.9264 

 

Table 14: SVD++ RMSE and MAE 

Execution time: 283.822 seconds (4.73 minutes) 
 

- NMF 
A collaborative filtering algorithm based on Non-negative Matrix Factorization 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7686 0.7641 0.7661 0.7663 
RMSE 0.9783 0.9729 0.9744 0.9752 

 

Table 15: NMF RMSE and MAE 

Execution time: 10.097 seconds 
 

- SlopeOne 
A collaborative filtering algorithm 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7458 0.7483 0.7471 0.7471 
RMSE 0.9483 0.9515 0.9523 0.9507 

 

Table 16: SlopeOne RMSE and MAE 

Execution time: 9.995 seconds 
 

- CoClustering 
A collaborative filtering algorithm based on co-clustering 
 Fold 1 Fold 2 Fold 3 Mean 
MAE 0.7705 0.7620 0.7663 0.7663 
RMSE 0.9837 0.9723 0.9794 0.9784 

 

Table 17: CoClustering RMSE and MAE 

Execution time: 4.301 seconds 

4.3.2 LensKit 

Now we are going to run some algorithms on Lenskit evaluator. The walkthrough can be 

found at [11]. We are going to test two algorithms, the personalized mean (PersMean) and the 

item-item collaboration filtering (ItemItem) algorithm. The PersMean algorithm works by 
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calculating the user and item average offsets from the global rating. The prediction rule that is 

implemented is p(u,i) = q  + bi + bu, where q is the global mean rating, bi is the difference 

between the item’s mean rating and the global mean, and bu is the mean of the differences 

between the user’s rating for each item and that items mean. We do this by using 

UserMeanItemScorer, that scores items using a user average, as the ItemScorer, and telling it 

to use the item mean rating as the offset from which to compute user means which is the 

UserMeanBaseline. 

 

import org.lenskit.baseline.ItemMeanRatingItemScorer 
import org.lenskit.baseline.UserMeanBaseline 
import org.lenskit.baseline.UserMeanItemScorer 
 
bind ItemScorer to UserMeanItemScorer 
bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer 

 

Code snippet 2: Running the PersMean algorithm on the Lenskit framework 

 

The ItemItem algorithm uses standard item-item collaborative filtering. This is done by using 

ItemItemScorer as the item scorer implementation. It then normalizes the ratings by 

subtracting item means prior to computing similarities and scores. This is done by the 

UserVectorNormalizer, which is configured to subtract a baseline. The baseline then is set to 

the item mean rating. 

import org.lenskit.baseline.BaselineScorer 
import org.lenskit.baseline.ItemMeanRatingItemScorer 
import org.lenskit.knn.item.ItemItemScorer 
import org.lenskit.transform.normalize.BaselineSubtractingUserVectorNormalizer 
import org.lenskit.transform.normalize.UserVectorNormalizer 
bind ItemScorer to ItemItemScorer 
bind UserVectorNormalizer to BaselineSubtractingUserVectorNormalizer 
within (UserVectorNormalizer) { 
bind (BaselineScorer, ItemScorer) to ItemMeanRatingItemScorer 
} 

 

Code snippet 3: Running the ItemItem algorithm on the Lenskit framework 
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We then run the evaluator which we got from [11] which ran each algorithm 5 times, since we 

are using 5-fold cross-validation and we compute the average value of each metric for each 

data set. 

From Table 18, we can see the average RMSE by user and rating, and also get the normalized 

discounted cumulative gain for both algorithms. 

 

 BuildTime TestTime RMSE.ByUser RMSE.ByRating Predict.nDCG MRR 

Algorithm       

ItemItem 6.2442 13.4406 0.906771 0.909157 0.953564 0.085192 

PersMean 0.2114 1.6990 0.939325 0.952185 0.946713 0.001456 

 

Table 18: ItemItem and PersMean algorithms run on Lenskit 

 

4.3.3 Comparison of frameworks 

                          Frameworks         

Property 

LensKit Surprise 

Built in algorithms - ++ 

Support for implementation 

of different algorithms 

+ + 

Support for evaluation ++ + 

Built in datasets + + 

Documentation + + 

Installation - + 
 

Table 19: Comparison of frameworks 
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From Table 19 we can see that the frameworks do not differ in so many ways. When 

implementing the algorithms in Chapter 3.4 we noticed that the Surprise had more algorithms 

already built in than LensKit. Surprise’s way of changing algorithms where also easier done 

than on LensKit. The other thing that where different on these frameworks where that LensKit 

where more difficult to install and do evaluation on than Surprise. LensKit where better on the 

evaluation that it came with more metrics which we could compare the algorithms with. 

4.4 Summary 

In this chapter, we presented three recommendation frameworks, Surprise, PredictionIO and 

Lenskit, these frameworks are potential algorithm evaluators we could use. Then we 

presented some popular prediction algorithms and how some of their equations work, such as 

the baseline algorithm, which is non-personalized and does not need user’s rating to 

recommend items. Matrix factorization is a very popular collaboration filtering technique and 

the SVD algorithm is based on this. We also introduced K-nearest neighbors, which is a 

method that takes an items closest neighbors and pairs the up, so that the item gets the same 

recommendations as the closest neighbors. K-nearest neighbors uses the cosine similarity 

algorithm to get the similarities from items. Clustering is grouping users in clusters with 

related item-information, and recommendations is then computed for other users within those 

clusters, and CoClustering is a prediction algorithm that is within the Surprise framework. 

Then we looked deeper into the Surprise framework to see how we could evaluate some 

algorithms on a dataset. We tested algorithms on the Surprise framework with the 

MovieLens-1M dataset, and we used 5-fold cross-validation when predicting, the results are 

in Tables 8-17. Then we tested the ItemItem and PersMean algorithms from the Lenskit 

framework and the results are in Table 18. From these tests, we could determine what 

framework we wanted to use for our final tests, Surprise has more built in algorithms than 

Lenskit has, and we felt it was easier to do predictions on Surprise 
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5 Evaluation 
We will in this chapter run five algorithms we have chosen on three datasets, to compare their 

accuracy and scalability. We will also discuss what algorithms we would prefer for a system 

as Forzify based on the data we gather. We have chosen to use the RMSE and MAE as 

accuracy measures, because we want to see what algorithms perform good on a system with 

user ratingsn while we still know that Forzify now uses unary data. We discussed in section 

X, that Netflix introduced the thumbs up, thumbs down system, which was received badly by 

the users and may be badly received by Forzify users. Simen Røste Odden have written a 

similar thesis [31], but used MAP values and unary data for measures in the evaluation, 

instead of RMSE, MAE and ordered ratings. We try to find out if the same type of algorithms 

performs best on datasets consisting of both unary ratings and ordered ratings. 

5.1 Results 

We will now run a few chosen algorithms on different datasets on the Surprise framework to 

see how well each algorithm performs with different data. We will get results with the 

average RMSE and MAE on a 5-folds cross-validation procedure. The algorithms that are run 

are pre-built from the Surprise framework, such as Baseline, KNNBasic, CoClustering, the 

SVD algorithm and we will use KNNBasic with a content-based rework. We will use the 

MovieLens 100k, MovieLens 1m and Jester datasets to compare values on different types of 

data. The algorithms prediction and training times will be compared with each other, to see 

what type of scalability they have. All the tests are run on a laptop with Intel Core i7-

4712MQ, 2.30GHz, 8GB RAM with Ubuntu as the operating system.  

5.1.1 Accuracy 

We start by looking at the average RMSE and MAE from running our algorithms on the 

different datasets. In Figure 15 we have the results from these tests by executing the 

algorithms on the MovieLens 1M dataset. This is a relatively large dataset and we want the 

algorithms average RMSE and MAE values to be as low as possible. The ratings from 

MovieLens are from 1 to 5 and jester is -10 to 10 which is why the average MAE is higher on 

jester. On the MovieLens 1M dataset, we notice that the algorithms perform somewhat 
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equally, but there are some differences and we can see that SVD has the lowest RMSE and 

MAE and KNNBasic Content-based with the highest values. When we look at the RMSE we 

see that Baseline performs better than CoClustering. This is because large errors are weighted 

more on RMSE than MAE and that means that CoClustering has more large errors than 

Baseline has. 

 

Figure 12: Algorithms run on MovieLens-1M 

 

Now we have run the same algorithms on the MovieLens 100K dataset, and the values have 

changed, since this is a smaller dataset the algorithms are performing worse. That is because 

there is less ratings and information for the algorithms to learn patterns from. There is not 

much change in which algorithm performs better, except for the baseline algorithm. This 

algorithm is now getting better RMSE and MAE values than the CoClustering algorithm did 

from the MovieLens-1M dataset, but the rest stays the same. What we learn from this is that a 

baseline algorithm works better with a smaller learning curve, and this makes sense because 

the baseline algorithm is supposed to give recommendations when we do not have user 

ratings. However, overall the algorithms perform somewhat the same. 
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Figure 13: Algorithm run on MovieLens-100K 

 

When we ran the Jester dataset we did not get the KNNBasic to give recommendation 

because of a memory problem, but we did get KNNBasic Content-based to run. Here the 

CoClustering is getting the lowest MAE values and baseline is getting the lowest RMSE 

values. Jester has more users and less items than MovieLens, and again the baseline algorithm 

is outperforming the others on RMSE values. 
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Figure 14: Algorithms run on Jester 

 

In Figure 18 and 19 there are a better view of the average MAE and RMSE of the algorithms 

on the datasets MovieLens 100K and 1M. Here it is easier to see the comparisons of them and 

we left the Jester dataset out since it has a different rating system. 

 

 

Figure 15: Mean average error of algorithms run on MovieLens-100K and 1M 
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Figure 16: RMSE of algorithms run on MovieLens-100K and 1M 

 

When we look at all the data we have gathered we can see that the SVD algorithm’s RMSE 

and MAE values are better in both MovieLens datasets. However, in the Jester dataset, there 

is some differences. The CoClustering algorithm has the lowest MAE values, and the baseline 

algorithm has the lowest RMSE values. This means that these two algorithms perform better 

on a dataset where there are more users and much less items, than the SVD algorithm. In 

Simen Odden Røsten’s thesis [31], the MAP is being calculated and here the item-based and 

model-based algorithm performs best. The SVD is a model-based algorithm which makes it 

good in both cases. 

5.1.2 Scalability 

In this section, we will consider the scalability of the recommendation algorithms we have 

done tests on. We will use the same datasets as we have before, and we will take the 

prediction and training times separately, separately. The purpose of this is that we then can 

see where the five algorithms differ from one another. The training time is the time it takes 

the algorithm to prepare the dataset for recommendations, and prediction time is the time it 

takes to give recommendations.  
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In Figure 20, we see the prediction and training time of the algorithms KNNBasic Content-

based, CoClustering, KNNBasic, Baseline and SVD on the dataset MovieLens 100K. The 

Baseline algorithm uses 0,28 seconds to train its model and is the fastest to do the training, 

while KNNBasic uses 0,80 seconds. Next is CoClustering which uses 1,70 seconds, then 

KNNBasic Content-based with 2,79 seconds. The slowest algorithm is the SVD algorithm 

which uses 4.66 seconds. In Figure 21 we use the dataset MovieLens 1M, and we can see that 

there are some differences on training times. The Baseline algorithm is still the fastest with 

2,36 seconds, and the next algorithm is CoClustering with 13,07 seconds. The third fastest 

algorithm is KNNBasic content-based with 36,97 seconds, the fourth is the SVD algorithm 

with 45,87 seconds, and last is KNNBasic with 64.77 seconds. The big difference here is that 

the CoClustering algorithm performs better on a bigger dataset than KNNBasic, while the rest 

is somewhat the same in terms of order. 

Looking at the prediction times in Figure 20, we see that there are different algorithms that 

are performing better. The fastest algorithm is CoClustering with 0,63 seconds The 

performance of the algorithms in order from fastest to slowest is: Coclustering (0.63 seconds), 

Baseline (0.64 seconds), SVD (0.75 seconds), KNNBasic (13,10 seconds), KNNBasic 

content-based (13.57). In Figure 21 we can see the prediction times on the dataset MovieLens 

1M and here the fastest algorithm is Baseline with 7,23, then CoClustering with 7,63, SVD 

with 8,47, KNNBasic Content-based uses 271,43 seconds and last is KNNBasic which uses 

678,29 seconds. When we look at the different times of the MovieLens-100k and Movielens-

1M we see that KNNBasic and KNNBasic content-based scale a lot more than what the other 

algorithms do. 
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Figure 17: Prediction and training time on dataset ml-100k 

 

 

Figure 18: Prediction and training time on dataset ml-1m 

 

In Figure 22, we have a diagram of the algorithms total time on both MovieLens datasets, and 

we get a clear picture of which algorithms we should not use when we have a large dataset, 

such as KNNBasic and KNNBasic Content-based. 
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Figure 19: Total runtime of algorithms on MovieLens 

 

In Figure 23, we see the prediction and training time on the jester dataset. This dataset has 

more users and ratings, but less items than the MovieLens dataset. The training times are as 

follows: baseline uses 3.96 seconds, KNNBasic content-based 4,8 seconds, CoClustering 

34,36 seconds and SVD 78,77 seconds. The prediction times are CoClustering 12,88 seconds, 

baseline 12,99 seconds, then SVD 15,14 seconds. The last algorithm is KNNBasic content-

based with 96.22 seconds. 
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Figure 23: Prediction and training time on dataset jester 

 

In Figure 24 we have the total algorithm times on the Jester dataset. 

 

Figure 24: Total runtime of algorithms on Jester 

 

In Table 20, we are comparing the data we have gathered from our tests, to see the differences 

in the algorithms. The algorithms with the most accurate accuracy is SVD and baseline, while 
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the SVD algorithm is the most accurate. However, the baseline algorithm is faster on both 

prediction and training time on both MovieLens datasets. The CoClustering algorithm is has 

good accuracy on a large dataset, and is quick on prediction and training times. The 

KNNBasic and KNNBasic content-based is to slow to use with a large dataset, and are the 

two worst algorithms on accuracy as well.  

 

    Algorithm 

 

Property 

SVD CoClustering Baseline KNNBasic KNNBasic 

Content-

based 

Accuracy on 

small data 

+ - - - - 

Accuracy on 

large data 

+ + + + - 

Prediction 

time 

+ + + - - 

Training 

time 

- - + + - 

Scalability + + + - + 
 

Table 20: Summary of our algorithms’ properties 

 

The scalability tests we ran, show us that the Baseline algorithm is the fastest on training time 

on both MovieLens datasets, and the prediction time is fastest on the MovieLens-1M dataset. 

The CoClustering algorithm is faster on predicting with the MovieLens-100K dataset, which 

means that the bigger the data gets, the baseline algorithm will still perform faster than 

CoClustering. On the Jester dataset, the Baseline algorithm is still the fastest on overall time, 

but is beaten on prediction time by the CoClustering algorithm. 
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5.2 Best algorithm for Forzify 
We will now discuss what algorithms would be best for Forzify if the data we gathered where 

based on user ratings. To determine what algorithm is best, we will look at the scalability and 

accuracy of each algorithm. 

In the case of accuracy, the SVD algorithm where superior to the other algorithms on both the 

MovieLens datasets. However, the CoClustering and Baseline algorithms was having better 

values on the Jester dataset. When we look at the speed of each algorithm on the different 

datasets, it was clear that the Baseline algorithm where superior on both datasets, except with 

predicting on the MovieLens-100K dataset, where CoClustering was faster. However, the 

Baseline algorithm was faster with predicting on the bigger dataset, which we think is more 

valuable when it comes to a system that will scale upwards with data, like Forzify.  To 

determine one of these three algorithms, is up to what Forzify want most, if they value 

accuracy over speed or vice versa. 

5.3 Summary 
We have now looked at how well the 5 chosen algorithms perform on the different datasets. 

We have done tests on what kind of accuracy they each have, and what kind of prediction and 

training time each have. We used the average RMSE and MAE from a 5-fold cross-validation 

procedure to get a good accuracy. We tested the algorithms SVD, Baseline, CoClustering, 

KNNBasic and KNNBasic content-based. On the datasets MovieLens-1M, MovieLens-100K 

and Jester, each with a different number of users, items and ratings. We compared our 

algorithm results and found out that there were three algorithms that where potential for 

Forzify, SVD, Baseline and CoClustering. The SVD algorithm did give the best accuracy of 

all the algorithms, Baseline where better than CoClustering in all cases, except for the MAE 

value in MovieLens-1M dataset. While the Baseline algorithm where the fastest on prediction 

and training times, on the MovieLens-1M dataset, however it where slower than CoClustering 

on the smaller dataset MovieLens-100K. The Baseline algorithm gave the worst MAE 

accuracy on the Jester dataset of the three and CoClustering where the second worst, while 

again the SVD algorithm gave the best MAE results. For the RMSE values it was opposite, 

here the Baseline algorithm was scoring best, then Coclustering and last the SVD algorithm. 

The prediction times on Jester, showed us that the CoClustering algorithm used a lot of time 
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on predicting, and the SVD was slowest on training. The Baseline algorithm did score best on 

prediction of the three, and best on training. 
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6 Conclusion 
In this chapter, we will summarize our findings, related to our problem definition in section 

1.2. Our main contributions will also be listed, and alongside potential future work. 

6.1 Summary 
In our problem definition, we questioned how it is possible to find the best recommendation 

approach for Forzify, when the application does not have sufficient data to be tested. To 

answer this problem, we research the available recommendation approaches extensively, and 

look at the following: the content-based, collaborative filtering, demographic-based and 

knowledge-based. After comparing these in terms of strengths and weaknesses, we investigate 

how some of them are used in practice by some of the largest actors in the world, which in 

some cases are similar to Forzify. Further, we look at what data is available in Forzify, which 

is both explicit and implicit user-data, in addition to content-data. We considered which 

recommendation approach suits this type of data, and arrived at the conclusion that we should 

use either the content-based or collaborative filtering approach, or a combination of both. 

These approaches enable system-learning, which will give better recommendations over time, 

but can still have the problems with the likes of scalability. We talk about this further when 

summarizing our evaluation. 

To solve our problem of how to evaluate recommendation systems, we investigated different 

topics regarding testing. We concluded that it has to be done in an offline environment when 

it cannot be done on a system with barely any user-interaction data. To do this however, we 

need samples simulating real user- and item-data. Several frameworks were looked into, 

before deciding to use the Surprise framework. Surprise runs on different datasets, and among 

them, MovieLens. This dataset is fairly similar to that of Forzify, which made this a viable 

choice to run further tests on. 

Our third problem revolves around finding which approach gives the most accurate 

recommendation, and which one scales better. To evaluate accuracy, we have used our 

candidate algorithms on the Jester dataset, and two MovieLens datasets which only differs in 

size. The output measure for accuracy is RMSE & MAE, and the results gathered concludes 

that the model-based collaborative filtering algorithm, singular value decomposition (SVD), 
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generally scores best. However, the measures RMSE & MAE provides best accuracy for 

datasets with user ratings in form of ordered ratings, which is not currently the case for 

Forzify. We believe that an ordered rating system could be applied to Forzify, and refer to 

Odden’s evaluations [31], who has used MAP to measure accuracy in a modified MovieLens 

dataset using unary ratings. We can from both our own and Odden’s data, conclude that a 

model-based approach results in the highest accuracy for recommendations on the tested data.  

To measure the scalability of the different approaches, we look at the training time and 

prediction time of the algorithms. Mainly, we have looked at the execution time of our 

algorithms on the different sized MovieLens datasets, the 100k version and 1m version, as 

well as on the Jester dataset. Overall, we can see from our results that the baseline algorithm 

is fastest on all three datasets. While the model-based approach uses more time during the 

training-phase, it predicts relatively fast, and as we have concluded, it is the most accurate 

approach. Therefore, we recommend using a model-based approach for Forzify. 

6.2 Main contributions 
In this thesis, we have gathered information from available research done on recommendation 

systems, to figure out which approach is most applicable to Forzify. By comparing the 

different approaches, we learn their strengths and weaknesses, how they use different data 

sources to their advantage, but also which problems they can introduce. With this knowledge, 

we consider the Forzify application, in terms of what recommendation system it currently 

operates with, and what data we have available. 

Because of the lack of user-data in Forzify, we look at a few different datasets we can use to 

simulate this data. To evaluate our candidate algorithms, we take advantage of some of the 

publicly available recommendation frameworks. The most important dimensions to measure 

in recommendation systems are accuracy and scalability, and in our evaluation, we provide 

results measuring these. 

6.3 Future work 
In this thesis, we have found a suitable recommendation approach for Forzify, and we have 

looked at the differences in accuracy and scalability for recommendation approaches across 

different datasets. 
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The most suitable way of finding the best approach for Forzify, is to test recommendation 

approaches on Forzify’s data. This can be done with either offline evaluation or online 

evaluation, in this thesis we used offline evaluation, because we did not have sufficient user-

data from Forzify. It would be very valuable to do accuracy and scalability tests with the 

chosen algorithm in this thesis, with gathered data from Forzify. With more time, we could 

have tested the chosen algorithms on even bigger datasets, to further see how well each 

algorithm scaled.  

With more time and manpower, it would have been interesting to gather more algorithms and 

tune them better to the needs of Forzify, so that we may have come up with a solution that 

superior in both scalability and accuracy. It could also have been interesting to see what 

differences in data we would have, if Forzify did a rework on their data, so that it would use 

order ratings instead of only unary ratings.  
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