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Abstract

This thesis delves into the potential of artificial intelligence (AI), particu-

larly deep learning, in predicting the age group of children based on their

conversational text, ranging from ages 3 to 15. It employs Long Short-Term

Memory (LSTM) networks, a type of recurrent neural network optimized

for sequence-related tasks such as text classification. The research navigates

the unique challenges inherent in this task, including the distinct linguis-

tic patterns of children, varied developmental stages, and the imbalance

within the dataset. The thesis further examines the appropriate evalua-

tion metrics for an imbalanced dataset, the significance of cross-validation,

and the potential improvements for the model. While the research uncov-

ers fascinating insights, it also identifies areas for future exploration. The

results underscore the complexity of age-specific text classification, high-

lighting the need for a more refined understanding of children’s cognitive

and linguistic development and the further evolution of AI models.
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Chapter 1

Introduction

1.1 Introduction

The overarching project of this thesis entails how interactive computer-

based learning can provide effective and productive investigative inter-

views of minors[34], that are victims of sexual abuse. In recent years there

have been vast improvements in the field of digital avatars, characters, and

agents that are near realistic, with transfer knowledge and learning pro-

cess provided by the area of Artificial Intelligence in Education (AIE). The

main goal is to create a realistic child avatar, character, digital human[43],

based on different components and interactions together, which includes

dialogue models, and auditory, emotional, and visual components[17].

1.2 Motivation

Child age classification is a challenging task in natural language processing

and artificial intelligence. The ability to accurately determine a child’s age

based on text can have significant implications for various applications,

such as content filtering, personalized recommendations, educational tools,

and most importantly, child protection measures.

Classifying text for children’s age poses unique challenges compared
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to age classification for adults. Children’s vocabulary, language usage,

and writing style differ a lot depending on their developmental stage.

Additionally, children’s text often contains simplified syntax, frequent use

of specific words related to their interests, and distinct linguistic patterns

[31].

A primary challenge in child age classification is the acquisition of labeled

training data. Annotating large-scale data-sets with correct age labels for

children can be time-consuming and costly. In addition, available data-sets

are limited, with different representations across age groups, which in turn

makes it difficult to build a robust model that can generalize well to various

age ranges.

A second significant aspect is the ethical consideration with regard to

digital data collection with minors. Regulations need to be followed when

to ensure the responsible collection and use of data to protect children’s

privacy and protection [24].

The conversation of child age classification in the context of text analysis

opens opportunities for multiple applications. It can aid in producing age-

appropriate educational or recreational content for children online, and

detect cyberbullying, or other forms of abuse. But, in order to achieve

proper classification, careful consideration is required when approaching

the unique challenge of children’s development of vocabulary.

To create a setup for evaluation for classifying a child’s age from text, there

are some key points to consider. First, children’s language evolves quickly

as they age, and is reflected in their cognitive and emotional development

as they express themselves[6]. Lastly, a wide range of ages, with diverse

representatives in order to produce good generalization.

The field of artificial intelligence has improved in the later years with pre-

trained classifiers from Meta, Google, Hugging Face, etc, which all yield

terrific performance in certain fields, and unburdens the user’s time, data,
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and costly hardware. However, they are dependent on the corpus on

which they are trained, and their models are generic which could prove

interesting results when moving to the problem statement [3].

1.3 Problem statement

In light of the outlined motivations, this master’s thesis endeavors

to investigate the potential and precision of age group estimation for

children aged 3 to 15, grounded in conversational text. This will involve

utilizing pre-trained models derived from recognized communities and

organizations.

The available datasets are collected from the talk bank "CHILDES" [9]

which contains child interviews from different countries, and under

different settings. However, the children in focus are the ones from England

and America. These conversations will be the main source of data along

with specific linguistic properties for added features, which we will get

into later.

The research questions that will be addressed in this thesis are as follows:

1. Can artificial intelligence (AI), particularly deep learning algorithms,

accurately classify text suitable for children within the specific age

range of 3 to 15?

2. What are the key challenges and unique characteristics encountered

when classifying children’s age, particularly with respect to linguistic

patterns, developmental stages, and imbalance in the dataset?

3. What specific evaluation metrics should be employed for an imbal-

anced dataset, which additional features need to be taken into ac-

count, and what role could methodologies such as cross-validation

play in this process?

3



1.4 Limitation and scope

1.4.1 Limitation

Deep learning modules require a large volume of trainable and labeled data

in order to produce accurate estimations. A limitation encountered was the

available data in this field of age-specific content. The most amount of data

found in the talking bank was centered around ages 4, 5, and 6, with very

little trainable data on ages 7 and up. This resource limitation hampered

the AI model’s ability to accurately classify a child’s age, especially for the

older age groups. Furthermore, because of the restrictive data on children,

unintended bias toward the over-represented classes can happen to achieve

overall accuracy. In turn, this may also affect classification from the pre-

trained classifiers when producing child age estimation as the training data

needs to be complex and is limited in this field, and the availability of pre-

trained modules for such tasks.

A key difference between many other classification tasks and age estima-

tion is that the boundaries are fairly unclear, which is another limitation.

The use of language develops on an individual level, therefor age can some-

times be arbitrary, and overlap with different age groups.

1.4.2 Scope

There are many different tasks in the field of text classification such as

spam detection, sentiment analysis, topic labeling, language detection,

and many more. The thesis work is confined to text classification of

age group estimation, and the scope of the thesis is to explore and

gain insight into the potential of determining the age of a child from

conversation text. Furthermore, explore the potential of LSTM-based

deep-learning architecture with fine-tuning for age detection, and use pre-

trained transformers from Hugging Face, such as BERT and RoBERTa for

generating embedding.
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1.5 Research methods

There are several research methods that can be applied to a study, and more

than one can be applied to one’s research. Research methods are used to

keep the workflow structured and steady, and are considered the building

block of a thesis. They provide different utilities for information gathering,

and how that information is managed.

1.5.1 Research paradigm: Methodology

The methodology research paradigm concerns itself with a theoretically

informed way to approach data production. Before the work has begun,

it is the strategy, course of action, process, and design that helps to decide

the form of research method, and how that method is to be applied to one’s

research. Additionally, it is a deciding factor for which data are required

for the research, and which tools to use when gathering appropriate

information [37].

1.5.2 Empirical Approach

Empirical research techniques are a part of daily life, as it is a part of regular

studies, and is based on direct and indirect observations. The technique in

researching context involves planning why, when, and what to observe,

with the intention of reducing misleading and poor interpretations. For the

thesis, the empirical approach is well-suited for data gathering, design, and

analysis [33].

1.5.3 Mixed Approach

A mixed approach is the most practical. A quantitative method relies on

statistics and larger sample sizes to assume that your data contain good

generalization and representation. The drawback is the lack of depth in

the research. A qualitative method allows for lots of detail about specific

cases, groups, and people. However, it disables you from making a general

statement and is very time-consuming.
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A mixed approach collects both of these approaches, to answer questions

and to compliment each other. This project includes a variety of interview

objects and categorizes them by age groups, with additional features that

are unique to them [2].

1.6 Ethical considerations

1.6.1 Data collection

The data set collected for this thesis is provided by the "childes" talk bank[9]

and is properly cited throughout the thesis. The conversational data sets

are publicly available, and according to the project descriptions, each child

and parent are recruited and willingly participating. The talk bank has little

identifiable information about each child available, mostly the first name,

gender, and age. The reviewed conversations are structured around book

readings, free conversations between an interviewer or parents, games, and

child-on-child conversations. This may capture the cognitive and linguistic

development in a more general sense, and produce natural responses from

the children. The key ethical consideration when gathering data based

on children is the power dynamic during a conversation, which without

proper facilitation may lead to inauthentic expressions [28].

1.7 Main Contributions

This thesis serves as a demonstration of artificial intelligence’s capability,

specifically deep learning algorithms such as LSTM networks, to predict

children’s age groups based on their conversational text. This approach

aligns with the research question concerning the capability of AI to classify

text associated with different age ranges of children.

In addition, a detailed analysis of the unique challenges and characteristics

encountered when classifying children’s age based on linguistic patterns,

developmental stages, and dataset imbalances is provided. By outlining
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novel strategies and potential solutions for overcoming these challenges,

the research question about identifying and managing the key challenges

in this task is addressed.

Through the identification of specific evaluation metrics suitable for han-

dling imbalanced datasets, such as balanced accuracy, and the exploration

of cross-validation as a useful methodology to increase the robustness

of the model evaluation process, the study also successfully responds to

the research question concerning the appropriate evaluation metrics and

methodologies for this task.

Crucially, the research highlights key areas that warrant further develop-

ment, such as the need for incorporating more advanced linguistic features

and exploring alternative machine learning models. This not only serves as

a roadmap for future research and potential improvements in the field but

also enhances the study’s overall contribution.

By leveraging theories of cognitive development and integrating them into

the research design, the study also offers new perspectives on how these

theories can be applied to AI-driven age classification. This contribution

provides context for the observed results and contributes to broader

discussions on the interplay between cognitive development and language

use.

1.8 Thesis outline

1.8.1 Chapter 2 - Background

The background chapter will outline in detail the required knowledge

necessary before moving on with further chapters. It will provide

information about the relevant technology utilized, include information

about the linguistic development of children, and lastly related research

within the field of age detection with their respective results.
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1.8.2 Chapter 3 - Methodology

This chapter outlines the methodological choices underpinning the re-

search. It provides an extensive account of the dataset compilation and

presents the step-by-step procedure undertaken to preprocess the conver-

sation samples. Furthermore, it discusses the linguistic principles that

guided the integration of additional features into the dataset. The uti-

lized deep learning model’s design, parameters, and evaluation metrics are

meticulously explained.

1.8.3 Chapter 4 - Results

The result chapter will present the outcomes of the applied methodology. It

offers a detailed presentation of the results obtained from the deep learning

model, with interpretive commentary on notable patterns.

1.8.4 Chapter 5 - Discussion

This chapter involves an in-depth evaluation of the research findings in re-

lation to the initial objectives. It examines the practicalities, challenges, and

learning experiences derived from implementing deep neural networks for

model training.

1.8.5 Chapter 6 - Conclusion

The thesis reaches its culmination in this chapter. It draws together the

primary insights from the research, summarizing the extent to which the

research objectives were met. This chapter concludes with a consideration

of potential avenues for future research, thereby paving the way for further

scholarly discourse in this field.
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Chapter 2

Background

In this chapter, we provide background information for the relevant

technologies used in the thesis work in order to understand and recognize

the approach taken. We will begin with an introduction to some of

the technical aspects of machine learning that have been used and

are mentioned throughout this thesis. Then, introduce some linguistic

characteristics produced by children. Lastly, we will present and discuss

other relevant and related projects in the field of age detection using deep

learning.

2.1 Relevant technology

2.1.1 BERT

Bert is a language representational model that stands for "Bidirectional

Encoder Representation from Transformer", and is used to pre-train

unlabeled text with deep bidirectional representation. BERT jointly

conditions the right and left side context in all layers, resulting in the

model’s ability to be fine-tuned with only one extra output layer to produce

a high-quality model for a variety of tasks, such as age estimation in this

instance [13].
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The BERT architecture consists of a stack of transformer encoder layers

with many self-attention "heads". When a word or sentence is passed as

an input token in a sequence, each head computes a key, value, and query

vector that is used to create a corresponding weighted representation.

When all the tokens are vectorized, all the output heads in the same layer

are combined and run through a fully connected layer. The layers are

wrapped in a skip connection and a layer normalization [11]. The workflow

of BERT is divided into two parts, pre-training, and fine-tuning. Pre-

training falls into the category of masked language modeling (MLM), and

next sentence prediction (NSP). This involves the prediction of randomly

masked input tokens, and if two inputs are close to each other in a vector

space. Fine-tuning consists of one or many fully connected layers that

are stacked on the final encoder layer typically [38]. The input follows a

computational path through the BERT model. First, the input is tokenized

by each word, then passed through the token, position, and segment layers

and combined into a fixed-length vector. The special tokens [CLS] and

[SEP] are respectively used for classification prediction, and to separate the

input segments [38].

The embeddings created through the BERT model contain a contextual

word representation of the input vectors. The BERT model is trained on

an enormous corpus as a language model and is able to produce context-

sensitive embeddings of word representations for each word in a sentence,

which in turn can be fed into a downstream task such as age prediction

with deep learning [1].
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Figure 2.1: Visual representation of the BERT architecture, from towards

sience[32]
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2.1.2 RoBERTa

RoBERTa is an extention of the BERT model, and therefore also a

transformer. It serves the same purpose as BERT, by being developed for

sequence-to-sequence modeling. It is comprised of the same components

such as tokenizer, transformers, and heads. To reiterate, the tokenizer

transform text into sparse index encodings, and the transformer creates

contextual embeddings from these encodings. Lastly, the head wraps the

transformers so that the embedding can be used for the downstream task

[46].

What separates RoBERTa from the classic BERT transformer is the corpora

it was trained upon. It is trained on 4 different corpora, with 50 000

character level Byte-Pair Encoding, compared to BERT’s 30 000. Apart from

the corpus size that it is trained upon, RoBERTa uses longer sequences, and

has a longer run time.

2.1.3 Natural Language Processing

Natural Language Processing (NLP) is a branch of artificial intelligence/AI,

that allows computers to respond to text, speech or images in a similar way

that humans do. This field combines computational linguistics (CL) with

statistics, AI, and deep learning modules [19]. Some common tasks where

the field of NLP is deployed involve information extraction, sentiment

analysis, summarization, automatic speech, image recognition, translation,

and text prediction. Computational linguistics is a sub-field of NLP that

uses computational techniques to learn, categorize and understand human

language. The purpose is to aid with human-to-human communication, as

well as human-to-machine communication, as in Machine translation(MT).

Human languages are nuanced and ambiguous; considering double

meanings in words and phrases, the use of pronouns in different languages,

and many more. Therefore, one of the structural approaches is to develop

a module inhabiting a vast number of words in their simplified versions.
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2.1.4 Neural networks

Artificial neural networks, or neural networks (NN) for short, are com-

putational models trying to simulate the process of thinking. NN pro-

duces results through data gathering, pattern detection, relationship data,

and training. NN consists of layers with a ranging number of neurons(or

nodes): The input layer, hidden layer(s), and the output layer. The neurons

are connected to one another layer by layer, with an associated numerical

weight. There are a few attributes to take notice of when deploying a NN.

The weight is a coefficient, representing the signal or strength of the con-

nection between two neurons. A higher weight will have a larger influence

on the output, making the activation function trigger earlier. Bias is another

constant, acting as an intercept in a linear equation. It is used to adjust the

output in the NN, helping the model in a way to best fit the data. Weights

and bias work together on a neuron, and the process goes as such:

OUTPUT = SUM(WEIGHTS * INPUTS) + BIAS

2.1.5 Deep Learning Frameworks

Deep Learning Frameworks are interfaces, tools, and libraries, usually

open-source. These frameworks help with the implementation of machine

learning and AI and make it easier for people with little experience in

the field to integrate them. These interfaces and tools provide the means

to upload datasets and train modules in Deep Neural Networks. There

are a few open-source frameworks developed, each built upon similar or

different structures. TensorFlow was developed by Google and is an open-

source framework that allows for operations on datasets. The structure

is based on tensors, which are multilinear relations between objects in a

vector space. When operations are performed on data in the tensors using

TensorFlow, it is done so by building a stateful dataflow graph. TensorFlow

offers support for languages such as C++, Swift, and Javascript, and

Google’s Research datasets. PyTorch is more widely used currently and

is developed by Facebook. It uses a similar structure of tensors, with
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supposedly easier module creation. Since Python is so vastly practiced,

it found a popular following after its release. PyTorch is based on the

Torch framework, which has a Lua wrapper for module construction and

does computation in C. This framework was written from the ground

up. PyTorch offers great memory and optimization, control of module

structures, transparent model behavior, and compatibility with NumPy.

Lastly, PyTorch offers CUDA compatibility for GPU acceleration [21].

2.1.6 LSTM

The Long Short-Term Memory (LSTM) model, an extension of the tradi-

tional recurrent neural network (RNN), was developed with the primary

intent of preserving information over extended periods of time. It achieves

this by introducing specialized structures known as memory cells, which

contain self-connections that preserve the temporal state of the network,

and multiplicative gates that meticulously regulate the flow of information

[16].

These multiplicative gates, characterized as input, output, and forget gates,

administer the inflow and outflow of activations within the network. The

integration of the forget gate addressed earlier limitations of LSTM, en-

abling seamless handling of continuous input streams without necessitat-

ing segmentation into subsequences [16]. Essentially, the forget gate mod-

ulates the internal state of a memory cell, by selectively discarding or re-

taining information through a self-recurrent connection, which is a crucial

aspect in managing the cell’s state over time [23].

The innovative architecture of LSTM and the presence of these gates

make it possible to store and retrieve information over prolonged periods,

thereby substantially alleviating the pervasive problem of vanishing

gradients. This ensures that the activation of a memory cell remains

intact when the input gate is closed, and the preserved information can

be utilized at an appropriate future stage in the sequence by opening the

output gate [16].
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In sum, the LSTM’s ability to maintain and manipulate its internal

state over time is what makes it uniquely suited to tasks that involve

understanding and prediction based on sequences of data, such as long

text conversations.

Figure 2.2: Visual representation of an LSTM block with one cell[16]
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Figure 2.3: The architecture of an LSTM model with RoBERTa [46]
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2.1.7 Hyperparameters

After the appropriate neural network architecture, training procedures,

and regularization method are selected, the next step is to fine-tune the hy-

perparameters to achieve sufficient performance. This is a tedious task that

demands a lot of trial and error with many different value combinations of

the parameters until the researcher is left with a decent set of choices for

a particular dataset. There are many different hyperparameters that can

be fine-tuned, each with its specific usage and some that can auto-adjust

according to the performance at run time.

Epochs are the number of how many complete passes of training on the

dataset through the algorithm that has been performed. Epochs are an

important hyperparameter because it determines how many times the

learning algorithm will work through the dataset. It is traditionally large,

so seeing numbers between 100 and 1000+ is not uncommon.

Batch size is the sample size of the dataset that is passed through the

classifier. At the end of a batch, the predictions are compared to the

expected output, and an error is calculated, which the algorithm uses to

update the models performance. Popular batch sizes are 32, 64, and 128.

Train-test split is a procedure that divides the dataset and allows training

on labeled data, as well as evaluation on unseen data. It is a common and

simple process for larger data sets. The usual split performed on a dataset

is 80& to train-set and 20% to test-set, but can be modified if the data is

imbalanced. Libraries such as sklearn provide the option to stratify, so that

each split may contain an even amount of the labeled data to each split.

Hidden layers are an essential part of the architecture of neural networks.

It is positioned between the input and output layers. Their function lies

in the application of weights to the inputs, which are subsequently passed

through an activation function, and transforming them into outputs. Each

hidden layer performs a unique nonlinear transformation of the input
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data, thereby allowing the neural network to learn complex patterns and

represent complex functions. Hidden layers work collectively to identify

and decode the context of the input data through multiple layers of

computations. They can learn abstract representations of the inputs to

produce accurate and meaningful output. Therefore, hidden layers are an

indispensable cog in the design of effective neural networks [12].

The Adam optimizer is an advanced optimization algorithm used in deep

learning models. It is an extension of the stochastic gradient descent

method that is specifically designed to handle sparse gradients on noisy

problems. The strength of Adam lies in its adaptive learning rate,

which makes it an efficient choice for problems involving large data or

parameters. It works by maintaining a per-parameter learning rate that

improves performance when dealing with sparse gradients, a common

challenge with deep and recurrent neural networks. The algorithm

optimizes the weights by updates to the moving average of gradients,

and the average of squared gradients. These are computed based on the

exponential decay of previous gradients, and their purpose is to dampen

oscillations and accelerate convergence [4].

Weight decay is a robust technique in the domain of deep learning,

renowned for enhancing model regularization. It operates by introducing

a penalty to the loss function, subsequently driving the minimization of

weights during the backpropagation phase. The primary objective of this

technique is twofold: to prevent the model from overfitting and to mitigate

the exploding gradient problem [35].

Weight decay is divided into two distinct types: L1 and L2 regularization.

The latter is the more prevalent variant and is implemented by incorporat-

ing the squared sum of weights into an error term E, this is then scaled by a

manually-adjusted hyperparameter, lambda. In contrast, L1 regularization

uses the absolute sum of weights, deviating from the squared methodology

adopted by L2 regularization [35].
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A critical differential characteristic of L1 regularization lies in its capability

to eliminate parameters by assigning zero weights. This attribute stems

from the fact that penalties applied to zero weights decline more swiftly

when a larger constant is deducted from a non-squared value [35].

Learning Rate (LR) is a configurable hyperparameter, which controls how

fast the model is adapting to a problem. The LR number has a positive

small number usually between 0.0 and 1.0. Selecting a LR number is

important, as it can prevent the NN to converge on an effective solution.

Too small of a number and it may take too long to converge. It can be

selected by trial and error, done by calculating loss over time and adjusting

accordingly. As a rule of thumb, decrease the LR once the loss stops

improving [5].

Learning Rate Scheduler is a tool that adjusts the learning rate during

training in accordance with a pre-defined schedule. It decays the LR by

a set gamma step every epoch size. StepLR is one such scheduler from

Pytorch [36].

Early stopping is a handler supported by PyTorch that stops the training

process whenever there are no improvements after a certain number of

events. The handler requires a patience value that assigns the number

of events, a score function as an input to calculate the decrease in

improvements, and a trainer engine to stop if the score function does not

increase its score after the patience value is exceeded. Early stopping is

a tool that decreases the model’s time in unnecessary training when fine-

tuning [20].

2.1.8 Evaluation

Accuracy is a fundamental metric used when evaluating most models. It

quantifies the ratio of correct predictions made by the model to the total

number of predictions. More formally, it is calculated as the sum of True

Positives (TP), and True Negatives (TN) divided by the total number of
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instances in the dataset, which includes TP, TN, False Positives (FP), and

False Negatives (FN). The equation for accuracy is as follows [47]:

TP + TN
TP + TN + FP + FN

=
Number of correct predictions

Number of all predictions
=

Nr of correct predictions
Size of Dataset

Balanced accuracy is used in multi-class classification when the data is

imbalanced. It is the arithmetic mean of sensitivity/recall. The formula

for balanced accuracy is [30]:

Sensitivity =
TP

TP + FN

See below for the recall definition.

Balanced accuracy =
Total sum of sensitivity of all classes

Nr of classes

Precision is another important metric, evaluating the proportion of

relevant instances among the instances identified by the model. It is

computed as a ratio of TP to the sum of TP and FP, as shown [49]:

Precision =
TP

TP + FP

Recall, also known as Sensitivity or True Positive Rate, measures the

fraction of relevant instances that have been retrieved out of the total

amount of relevant instances. Its formula involves the ratio of TP to the

sum of TP and FN [49]:

Recall =
TP

TP + FN

F1-Score is a composite metric that combines both Precision and Recall

by computing their harmonic mean. This metric is particularly useful

for dealing with imbalanced datasets as it considers both Precision and

Recall in its calculations, this emphasizing the importance of balanced

performance. A high F1-score is achieved only when both Precision and

Recall are high. The formula for F1-score is given as [47]:

F1 Score = 2 × Precision × Recall
Precision + Recall
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Macro or weighted metrics are a great evaluation metric when the dataset

is imbalanced. It is a straightforward method where the unweighted

arithmetic mean of all the classes F1-scores are summarized, and divided

by the total number of classes. This will result in a value that treats all

classes equally regardless of their support. The formula will be as such[18]:

The sum of all F1-Scores
Number of classes

Cross-Entropy Loss is a logarithmic loss function extensively used in clas-

sification problems. This function compares the probability distribution of

predicted class labels against the actual class labels. The true labels are usu-

ally binary in nature, 0 or 1, representing the absence or presence of a class,

respectively.

The loss is computed for each instance by taking the logarithm of the

predicted probability for the actual class. If the predicted probability is

close to the actual value, the loss will be close to zero, indicating a good

model performance. Conversely, if the predicted probability diverges from

the actual value, the loss grows larger, signaling a poor model performance.

In essence, Cross-Entropy Loss quantifies the dissimilarity between the

predicted probability distribution and the true distribution, and the model

aims to minimize this discrepancy during the training process. Hence,

a smaller Cross-Entropy Loss score signifies a model that is performing

better, producing predictions that are more aligned with the true values

[48].

Here is the formula for Cross-Entropy Loss for binary classification:

Cross-Entropy Loss = − 1
N

N

∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi)

Note: N is the number of instances, yi represents the actual class label, and

ŷi represents the predicted probabilities. Additionally, the relevant term of

21



the sum is used in each case, given that yi is either 1 or 0.

Cross-validation with Kfold is a resampling procedure that partitions the

training dataset into a specified number k of equally sized subsets or ’folds’.

The model then undergoes k rounds of training and validation. In each

round, the model is trained on k-1 folds, using them as the training data,

and the results are validated on a held-out test set.

The overall performance of the model is determined by averaging the

performance measures from all the k iterations. This process helps in

obtaining a less biased or less optimistic estimate of the model performance

as it effectively utilizes all the available data for both training and

validation.

Although K-Fold Cross-Validation is computationally intensive due to

multiple rounds of training and testing, it is highly regarded for its efficient

use of data. Each data point gets to be in a validation set exactly once

and gets to be in a training set k-1 times. This method thus offers a

comprehensive insight into the model’s performance and robustness.[41].

2.1.9 CUDA

Deep Learning using Graphical processing units. Cuda is a platform

for computing on one or more graphical processing units (GPU). It was

developed by NVIDIA and was developed to increase the computing

power by GPU acceleration. This solution has multiple use cases e.g.

deep learning, machine learning, and data analytics. The GPU is widely

used as an accelerator for deep learning (DL), because of its programmable

architecture and availability. Training a neural network requires a long

time, and doing so on a simple central processing unit (CPU) is doable,

but inefficient compared to doing so on a GPU [27].

The resource-intensive process of training a module is shortened by the

GPU by the ability to parallelize the training tasks with a larger amount of

parameters, performing operations simultaneously. A solution like CUDA
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also allows for a distribution of tasks over a cluster of GPUs if necessary.

This process saves time for the development team, works faster than non-

specialized hardware, frees the CPU, and prevents bottlenecks [27].

2.2 Child cognitive development

Piaget’s cognitive development theory is based on four stages of general

cognitive development between birth and adulthood[6]. There are a few

theories about how children develop, such as Vygotsky’s sociocultural

study[25], Freud’s psychoanalytic theory[15], and Erikson’s psychosocial

theory of development[10]. Piaget and Erikson’s theories are similar in

that children develop through interaction with the external environment,

and that development occurs in the listed stages.

• Sensorimotor (0 to 2 years) is the first phase of children’s cognitive

development where the child first learns about their environment

through senses and reflexes, and later becomes more abstract in terms

of expressions.

• Preoperational (2 to 7 years) is the second phase where abstract

expression becomes more prominent. The child is able to converse

about past events and people not currently present. However, in this

stage, the child tends to not perceive others’ points of view.

• Concrete operational (7 to 11 years) is the third stage where problem-

solving and categorization are more developed. Numerical and

spatial abilities are also improved greatly at this stage.

• Formal operational (11 through adulthood) is the final phase where

abstract thoughts and concepts are better perceived, not limited to

time and individuals. Application of reasoning is more prominent,

and the ability to test hypothesis and draw conclusions are formed.
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2.3 Related work

Authorship attribution in more mature demographic groups has garnered

increased attention in recent years, propelled by recent advancements

in machine learning. Yet, the exploration of age detection in younger

populations through text analysis, leveraging deep learning techniques,

remains an under-researched domain. Empirical evidence substantiates

this claim when surveying the scholarly literature online. Therefore, in this

subsection, we will look into existing research that intersects the fields of

age detection and text classification.

The table below displays the achieved performance accuracy for each

respective research and publishing year. The first study looks into an

Arabic demographic on Twitter to perform author detection. Author

detection is the task of age, gender, and dialect detection. The study

used two different variations of the LSTM model. The first was an

LSTM model with three activation layers, a cross-entropy loss function,

and an adam-optimizer. The second was similar but with hand-crafted

features that were appended to the output layer [45]. The second study

implemented a different method that included FastText, VGG-Face model,

and CRNN. These tools were combined to use both text classification and

image detection for author age detection on Russian social media. FastText

is a tool created by Facebook for word representation and text classification

[51], much like BERT. The VGG-Face model [14] was used to determine

age based on images from social media profile pictures. CRNN model was

represented by 1, 3, and 5 convolutional filter dimensions, and the recurrent

architecture was represented by LSTM [39].

Table 2.1: Display of each study’s respective accuracy of age detection

Research study Year Model Accuracy

[45] 2019 LSTM 22.22%

[39] 2020 CRNN 65%
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Existing research in the domain of age detection has demonstrated limited

effectiveness in discerning age within smaller age brackets. The prevailing

approach in most related studies is to allocate age into larger groups

(e.g., [0-10, 10-20, 20-30, ...]) when using text as the sole determinant

of age. Some researchers have attempted to enhance the precision of

age estimation within narrower age ranges by employing a variety of

techniques. However, there remains a clear need for more comprehensive

and focused investigation in this field, extending beyond just minor

age groups to encompass adults, and thereby advancing the overall

understanding of age detection through text classification methods.

2.4 Summary

This chapter has offered a comprehensive exploration of the pertinent

technical knowledge, previous research in the domain of age detection, and

an introductory discussion on child development. The segment dedicated

to relevant technology delved into the specifics of data preprocessing,

highlighted the mechanics of the LSTM model, and shed light on its

suitability for our research task. The section also elaborated on the concept

of model fine-tuning and presented the metrics employed for evaluation,

thereby equipping readers with a robust foundation for subsequent

chapters.

Moreover, this chapter discussed two distinctive studies in author age

detection, providing insight into the varying methodologies applied in

the field. The first study innovatively employed a modified LSTM

model, while the second merged image and text classification using a

Convolutional Recurrent Neural Network (CRNN) to attain improved

precision. The reviews of these studies underscore the inherent challenges

of age detection, regardless of the age group, and illuminate the vast scope

of intriguing prospects in this area of research.
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Chapter 3

Methodology

The methodology helps to detail the approach, methods, and techniques

used when designing a research study. This chapter will explain the

methods used for data collection and different strategies for preprocessing

the necessary data for the experiment. In addition, it will describe the

architecture around the LSTM neural network, hyperparameter, support

functions, training, validation, and testing. The main goal of the

experiment is to be able to predict the age of children between the age of

three and twelve based on conversational interviews with neural networks.

3.1 Datasets

This section will contain information about the dataset, which will be used

for age detection. It will present where it originates, how it was collected,

and how it was preprocessed for further use. Furthermore, it will detail the

inclusion of additional features from the MRC Psycholinguistic Database.

3.2 Childes

The CHILDES corpora is a large organized talk bank, centered around

interviews of children from age 0 to 15. The website offers such
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conversations in numerous languages such as Chinese, French, Japanese,

Scandinavian, English, etc. This thesis will be centered around English-

speaking children to improve the interoperability and consistency in the

model.

The conversations from CHILDES are for the most part based on playful

subjects such as book readings, games, and guessing animals, as well as

free conversations, to provoke spontaneous answers within the constraint

of the conversations (Fletcher, 2004). In total, there are 8722 different

conversations, while the total of usable conversations was 4826. The reason

for such a drop in usable conversations was either a lack of age listed,

which would not provide a label for further training, or ineligible and non-

conversational words and sentences such as a description of activities and

onomatopoetic.

Table 3.1: A generic representation of the interview participants with

relevant information

Participant Role Name Language Age Sex

CHI Target Child First name Eng Age Date Male/Female

MOT/FAT Mother/Father - Eng - Male/Female

INV Investigator First name Eng - -

The notable values from the table are the tag for children and age. The

format is consistent for all conversations, with “CHI” as the child and age

in the format of “age;date of birth”.

List of all the corpus names from North America [7] :

• Bates

• BernsteinRatner
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• Bliss

• Bloom

• Bohannon

• Braunwald

• Brent

• Brown

• Clark

• Demetras - Trevor

• Demetras - Working

• EllisWeismer

• Evans

• Feldman

• Garvey

• Gathercole

• Gelman

• Gillam

• Gleason

• Haggerty

• Hall

• Higginson

• HSLLD

• Kuczaj
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• MacWhinney

• McCune

• McMillan

• Morisset

• Nadig

• Nelson

• New England

• NewmanRatner

• Nicholas

• Nippold

• Peters/Wilson

• POLER-Controls

• Post

• Rollins

• Rondal

• Sachs

• Sawyer

• Snow

• Soderstrom

• Sprott

• Suppes

• Tardif
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• Valian

• Van Houten

• Van Kleeck

• Warren

• Weist

List of all the corpus names from the United Kingdom[8]:

• Belfast

• Conti-Ramsden

• Conti-Ramsden

• Cruttenden

• Edinburgh

• Fletcher

• Forrester

• Gathercole/Burns

• Howe

• KellyQuigley

• Korman

• Lara

• Manchester

• MPI-EVA-Manchester

• Nuffield
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• OdiaMAIN

• QuigleyMcNally

• Sekali

• Smith

• Thomas

• Tommerdahl

• Wells

3.3 MRC Psycholinguistic database

To understand the contents of this database, one would need to understand

the concept of psycholinguistics. Psycholinguistics investigates the psycho-

logical process of understanding language, and what determines which age

an individual comprehends and produces language. At the core of linguis-

tics, you will find acquisition, comprehension, and production [50]

With that, in the MRC database, there is a wide range of possible

selections to choose from for database production. The relevant fields of

selection are “Kucera-Francis written freq.”, “Age of acquisition rating”,

and “Words”. The second optional property allows for limitations, where

the age of acquisition rating is limited by age. While this tool provides

very good limitational abilities and a variety of psycholinguistic properties

to narrow the results down to satisfactory results, there was, unfortunately,

a limitation met. The database is truncated at 5000 lines, which therefore

resulted in a search for the full MRC database from different sources, as the

full database from the MRC database had been discontinued.

The full database was extracted from a public repository from GitHub,

that used SQLAlchemy to communicate between Python scripts and the
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database, which resulted in the retrieval of 150837 values of words and

their related age of acquisition score, and Kucera-Francis written frequency.

The age of acquisition score is a point system where words are assigned

a value based on when a specific word is acquired [22]. There are many

different ways to retrieve the age of acquisition scores. Some researchers

have acquired the scores by having adult participants estimate when they

learned specific words, but the validity of these scores may be inaccurate

because of factors such as frequency of use, familiarity, and estimation

accuracy.

Other researchers used indices of word frequency from children’s exams to

study the frequency of words used in different age groups. In a study made

to confirm the validity of Age of acquisition scores, and derive an objective

measure, children were tasked to provide the name of pictures. Children

of age 2.5 to 10.9 years named 297 pictures in total. The resulting data was

matched with the adult ratings and provided evidence that adult scores are

reliable and valid measures of Age of acquisition scores [29]).

The Kucera-Francis Frequency was derived from a large corpus containing

one million words, and the word frequency was determined by how many

times a word occurred per one million words. The corpus itself was

a collection of 500 continuous samples, which had approximately 2000

words respectively [40]. There are several weaknesses in this approach.

First, Kucera-Francis frequency was developed in 1967, which results

in inaccurate frequency scores in terms of common parts of speech, as

languages develop over time. Second, the corpus consisted of appropriate

literature at the time, which again may skew the word frequency in terms of

today’s common part of speech. Another raised issue is that the literature

incorporated was subject to publication, so the count of unusual and

common words might be skewed [40].
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3.4 Data retrieval

To be able to train, validate and test a model, a data set needs to be

collected and properly treated in order to fit the model’s needs. For this

thesis, the relevant information from the mentioned CHILDES talk bank

was the target age and answers from the numerous conversations. The

conversational retrieval process was performed by acquiring the files in

their original format from the CHILDES talk bank and taken through 3

steps

Each file was processed by a bash script to alter the extension from “.cha”

to “.txt”, for readability, as “.cha” extensions require a certain program to

open, and was not compatible with my IDE The newly formed “.txt” files

were input to a Python script that extracted the age of the child, along with

the replies from the child in the conversation on a one-sentence-per-line

basis. This Python script ran through a loop in another bash script on all

files in the gathered data folder. Lastly, the extracted conversations were

cleaned of non-Ascii characters through a RegEx filter method. The output

format was two files, one named "Filename_preprocessed.txt" and the other

named "Filename_preprocessedNoAge.txt" to distinguish the files from one

another, as one contained the age of the interview object and the other did

not.
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Figure 3.1: The folder structure of original and processed conversations
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3.5 BERT Embeddings

The newly formed and cleaned text file without age was then transformed

into an embedding. The method used was a pre-trained BERT transformer

because it offers advantages such as transfer learning. A masked

language model such as BERT is pre-trained on a very large corpora,

and contains millions of model parameters, thus relieving the need for

self-made features [26]. However, for this task, the additional features

"Age of acquisition" and "Kucera-Francis frequency" were added to capture

relevant psycho-linguistic features.

The added features were taken from GitHub, as the database from the of-

ficial website only produced a truncated part of itself. Link to the GitHub

repository: https://github.com/samzhang111/mrc-psycholinguistics. Re-

quirements as per the repository:

• SQLAlchemy(0.9.3)

• Python 2.7

With SQLAlchemy, all the values in the MRC database were already loaded

to a variable when executed. To extract the preferred values, a session

query for all instances of "words", "aoa" (Age of acquisition) and "kf_freq"

(Kucer-Francis frequency) in the database was done, with the exception of

all non or zero values per word. The newly extracted values were stored in

a text document line by line to be utilized for further pre-processing.

The process of creating embeddings was performed through three main

functions: "load_kf_aoa_values", "get_embeddings", and "main". The first

step was to initialize the BERT model and Tokenizer, specifically the "bert-

base-uncased" model, which is trained on lowercase English text. The

python script then performs a device selection to check if a CUDA-capable

GPU is available for accelerated computation. The main function can be

viewed in the appendix. 6.1
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For each file, the sentence are loaded and tokenized into individual words

or subwords using the BERT tokenizer. If a word is not contained in BERT’s

vocabulary, it is broken down into known subwords. Sentences that are

empty after tokenization are discarded.

Next, the functions determines the structure of the BERT embeddings. It

finds the maximum sentence length among all the tokenized sentences

and sets up a numpy array, "file_embedding", with the dimensions of 1

x max_sentence_length x (BERT embedding size + 2). The "+2" accounts

for the additional features "age of acquisition" score and "Kucera-Francis

frequency", which is then stored alongside the embeddings.

The BERT embedding computation was performed on each non-empty

tokenized sentence. The function "get_embeddings" convert each token

into its corresponding BERT-id and forms a tensor from these ID’s. This

tensor is then passed to the BERT model to generate embeddings.

The function then iterates over each token in each sentence. If a token exists

in the function "kf_aoa_values" Dictionary (which maps words to their

corresponding age of acquisition score and Kucera-Francis frequency), then

those values were stored with the embedding in "file_embedding". In cases

where the tokens did not match any words in "kf_aoa_values", then only

the BERT embedding was stored.

Finally, the function returns the "file_embedding" array, which now

contains the BERT embeddings for each word in each sentence, along with

aoa and kf_freq values where available.
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Figure 3.2: A very simple example of the embedding creation process
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3.6 Data augmentation

3.6.1 Easy data augmentation

To be able to train a neural network, and have it perform well, requires

a large set of data. The BERT embeddings created were sourced

from approximately 4800 conversations, which yielded the same amount

of embeddings. The issue was that the median age was severely

disproportionate.

Table 3.2: Displays each unique age, with their respective count of

conversations

Age Count

3 739

4 880

5 605

6 254

7 373

8 148

9 174

10 115

11 66

12 7

13 42

14 33

15 35

The script contains a few helper functions in order to perform simple data

augmentation.

• read_file

• random_lines_swap

• random_lines_deletion
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• write_file

The list augmentations were selected to prevent unnecessary contextual

loss when performed, hence the method of re-organizing the words within

each sentence was not used. The main function takes in four arguments:

input_folder, output_folder1, output_folder2, and ages_to_process. The

inputs to the main function allow dynamic data augmentation on different

sets before the augmented data is turned into augmented embeddings. The

functions perform a series of operations. Creates a list of all files with

"_processed.txt" in its name from the input folder, and reads the content

of each file. Next, it skips empty lines or files that do not start with a

comma and proceeds to the next file. The script retrieves the age contained

in each separate file, and if the age does not equal the input age from

"ages_to_process" it skips to the next file. After the criteria of age and non-

empty files are met, it performs the listed augmentations.

The random_lines_swap functions perform file-length/2 number of swaps,

of the sentences within a file. Random_line_deletion deletes random lines

within a file with a probability of 0.25 per sentence.

Lastly, the script produces 2 separate files as output from each input, one

that contains only sentences, and one that contains the age as well as

sentences.

To summarize, the script reads files from a folder and performs random

swaps and deletions of random sentences within a file. The conditions are

that the sentences or the file cannot be empty, and swaps of lines are limited

so that the process does not go on unnecessarily long. The probability

of deletion is set to a reasonable level so that entire documents are not

removed. After augmentations are complete, the new files are stored with

a different naming convention so they can be held separately.
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3.6.2 Back-translation

Back-translation is the process of translating text from one language to

another, and then back to the original language. It is a well-established

form of data augmentation that has seen increased interest in recent times

with the availability and improvements of machine translation [44]. In

this instance, the files produced by the 12-year-old subjects were back-

translated from English to French, and back to English. As stated in the

paragraph above, unnecessary contextual loss within each sentence was

the goal, which back-translation could hinder to a good extent.

The script utilized the MarianMTModel and MarianTokenizer from the

transformers library, OS to interact with the operating system, glob for

file operations, and torch for PyTorch. The script defined several helper

functions:

• write_file: Writes a list of lines to a file.

• back_translate:

• back_translate_file:

• back_translate_files

back_translate is the function responsible for the core back translation

process, which involves the translation of batches of text from English to

French, and then back to English. It receives the source text, tokenizers,

models, and batch size as input. The function first checks for a CUDA

device that is available for accelerated computation, and then processes

the text in batches. The function returns back-translated English text.

Back_translate_file read lines from specific files and performs back-

translation with the "back_translate" function.

Back_translate_files takes an input folder, an output folder, and a fixed

batch size as input parameters. It loads the MarianTokenizer and

MarianMTModel and iterates over the provided list of files, and performs
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back-translation per line with the "back_translate_file" function. Back

translation is time-consuming, therefore the function utilizes the GPU if

available, or the CPU if not. In addition, a batch size of 32 was implemented

to process more data at a time to further reduce the processing time. The

files are then saved to the output folder with the write_file function. Lastly,

the function deletes the translation model and empties the GPU cache to

free memory.

In summary, this script reads files from an input directory, performs back-

translation on a text file, and writes the back-translated text back into a file

in a new directory. The translations are performed in batches for efficiency

and make use of GPU acceleration if available. The back translation was

performed on conversations where age 12 was found, after the easy data

augmentation took place, resulting in 14 new augmented conversations

with a new total of 28 conversations in that specific age group. This

technique was computationally heavy, hence the reason why it was only

performed on the lowest represented age in the dataset.

3.7 Long short-term memory - LSTM

3.7.1 Tools

The model creation can become quite cluttered with different functions

when it is set up, therefor a secondary script that can hold most of the

helper functions that help fit the embeddings into the neural network is

beneficial in terms of organization of the code, as well as debugging. It is

easier to test functions one by one before the embeddings are passed on to

the neural network.

The tool script primarily works with embeddings stored in a numpy format

and pre-processed files in text format. It extracts information from these

files, adjusts the size of the embeddings, groups the data according to their

respective age, and loads a tuple of embedding and age.
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The defined helper functions are as such:

• extract_first_number(file_name)

• extract_embedding_name(embedding_path)

• pad_truncate_sequence(seq, max_length_dim1, max_length_dim2)

• get_age_group(age, age_groups)

• load_embedding(data_dir, age_groups)

• move_embeddings(src_folder, dest_folder, age_list)

Firstly, the function "extract_embedding_name" takes in a file path to the

embeddings and extracts each embeddings base name, and removes the

added "NoAge_embedding" substring. This is used to return the original

base name from the embeddings.

The function "extract_first_number" then takes in the base name as a file

name, and constructs the file path for each embedding’s base name, back

to the original pre-processed file. As a reminder, when the interviews

were pre-processed each file had its respective file-ID or base name and

was saved with or without the age, with answers from the CHILDES

conversations.

Now that each embedding could be connected to its original file with

age contained using the new file path. The function reads the first line

of the file and split it by commas to extract the first element, which is

the age of the interviewee, and returns the value found. Should any

error (FileNotFoundError, ValueError, IndexError) occurs, then the age is

returned as none.

"pad_truncate_sequence" is designed to ensure that all sequences (in this

case, embeddings) have the same shape, which is often a requirement

for machine learning models. The function receives a sequence and two

maximum length dimensions as input, which are the desired lengths of the
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first and second dimensions of the sequence.

First, it checks whether the first input dimension is greater than the set max

length of the first dimension. If it is, the function truncates the sequence

to the max length of the first dimension, and only the elements that fit

within the max length are kept. However, if the sequence from the input

is smaller than the max length, it is padded with zeroes until it reaches the

max length. The same process of truncation or padding is applied to the

second dimension of the input sequence until the sequence reaches the set

max length of dimension two.

"get_age_group" is a function that takes an age and a dictionary, and maps

age groups to age ranges. It returns the age group that the provided age

falls into. Should the age not fall into a group, it returns none. This function

allows the creation of dynamic age range testing when the embeddings are

moved into the neural network.

"load_embeddings" loads the embedding from the previously created

numpy files in the provided directory, and proceeds to group them by age

according to the age_group dictionary.

The function iterates over all files in the directory. For each numpy file,

it extracts the original name, extracts the age with "extract_first_number",

and checks whether the age falls into one of the provided age groups using

"get_age_group". If the age is valid and falls into a group, then the function

adds the file path to "embedding_filepaths".

Next, the function determines a suitable size for the embeddings. It loads

each embedding from the file in "embedding_filepaths", records its size,

and computes the 95th percentile of the sizes for both dimensions. This was

done, so as to not include any outliers that were extremely large compared

to the other embeddings. These percentiles are used as maximum lengths

for padding and truncating the embeddings.

The function then iterates over "embedding_filepaths" again. For each file,
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it loads the embedding, checks whether its first dimension is less than or

equal to the maximum length determined in the previous step, and if it is,

pads or truncates the embedding to have the same lengths as determined

before. It also retrieves the age and age_group again.

Lastly, it appends a tuple that contains the embeddings, now all with the

same size, along with the corresponding age group to the "data" list, which

is then returned.

The last function "move_embedding" was created as a way to move certain

ages within the data set. The function moves all numpy files from the

source folder to a new one if the age, extracted from the file name (with

"extract_embedding_name" and "extract_first_number"), is in the provided

age list. This function was only utilized once, the ages zero, one, and two

provided little to no text that embeddings could be created. This was done

later in the development process.

This script is meant to be the retrieval method that is used further in the

model. It links each embedding to the original conversation it was created

from in order to retrieve the corresponding age and make sure that they all

meet the same-size criteria that the model requires. Additionally, it helps

to organize the next model script.

3.7.2 LSTM

The model utilized various libraries such as "numpy", "torch", "sklearn",

and "imblearn" among others to properly load and process the data, define

and train models, evaluate performance, and handle class imbalance.

Additionally, it checks and uses CUDA for GPU-accelerated computation

if a device was available, if not then CPU was the default device chosen.

The function "load_embedding" from the tools script was used to load

the precomputed embeddings from a specified directory. The embeddings

represent text data and were associated with an age group that was used

for labeling. The data was then split into training, validation, and test sets.
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Next, two different techniques to handle class imbalance were imple-

mented. The first was random over/under-sampling. This technique re-

quires a set number of desired samples from each age group, that was en-

tered manually. Since the class imbalance was severe, the approach chosen

was to reduce class zero to 500 and increase classes one and two to 500.

This way, classes one and two could get more usage from the augmented

files than the overly represented class zero could.

The second method was "SMOTE" from the "imblearn" library. This

technique oversamples the underrepresented classes to ensure the model

gets to see enough samples from all the classes present.

The specific LSTM model "AgeLSTM" is defined with a "forward" method

that specifies how input data should be processed to produce an output.

Here, it uses an LSTM layer followed by a dropout layer and a fully

connected layer to make predictions. The dropout layer is used for

regularization to prevent overfitting, and is a hyperparameter that can be

tuned in order to improve the model.

The "AgeDataset" class is a custom PyTorch "Dataset" made to handle

the specific format of the input data. It overrides the "__len__" and

"__getitem__" methods that return the size of the dataset, and is made to

return the embedding with the corresponding label instead.

The "train_and_evaluate_model" is where the model training, evaluation,

hyperparameter tuning, and early stopping are all managed. The function

takes in the learning rate, the hidden size of the LSTM layer, the number

of LSTM layers, the size of the input data, and the number of classes. All

these parameters are used to configure and train the LSTM model.

The function starts by implementing the "KFold" class from "sklearn.model_selection"

module. Five k-folds were used for cross-validation, which is a technique

to assess how well the model will generalize to unseen data by dividing the

data into k-number of folds. Each fold is used for training "k-1" number of
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times, and evaluated on the remaining fold.

For each fold, the function uses the train and validation data, and creates an

instance of the "AgeLSTM" model, the loss function (Cross-Entropy Loss),

and the optimizer (Adam). It also creates one of two learning rate sched-

ulers (StepLR or ReduceLROnPlateau from the "torch.optim.lr_scheduler"

library). Each of them adjusts the learning rate after a number of epochs.

The model is trained over a specified number of epochs. In each epoch, the

model parameters are updated to reduce the loss on the training data. The

parameters are then adjusted in accordance with respect to the gradient

computed from the model parameters.

The model is evaluated on the validation data, after each epoch. If

the validation loss does not decrease after a specified number of epochs

(patience), then the training is stopped early. This is known as "early

stopping" and is a technique to reduce overfitting. The lowest validation

loss achieved is then saved.

After each fold, the function adds the computed validation loss and

accuracy for all the folds and calculates the average validation loss and

accuracy.

Finally, the function loops over a set of hyperparameters as part of a

grid search. The hyperparameters in the search are learning rate, hidden

size, and number of layers. The goal of the grid search is to determine

what hyperparameters give the best performance on the validation set. In

addition, it also produces a trending scale that is used for further fine-

tuning.

After the training, the best model based on validation loss is evaluated on

the held-out test set to give an unbiased estimate of its performance. A

confusion matrix and a classification report (with precision, recall, and f1-

score) were used to evaluate the performance of the model on the test set.

Lastly, the script saves the state dictionary of the best model to disk and
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demonstrates how to load this state dictionary into a new model instance.

3.7.3 Model training

As mentioned, the main dataset consists of unique conversations that were

run through the BERT and RoBERTa transformers to create the embeddings

for the LSTM model. The embeddings were labeled with an age group

that the original conversation was based upon. There are 4 groups, or

classes utilized, each with an age range designed to even out the datasets

imbalance.

• Class 0 = [3]

• Class 1 = [4]

• Class 2 = [5, 7]

• Class 3 = [8, 15]

The model was divided into three sets: training, validation, and test set,

with a stratified split percentage of 70/30. This resulted in a split that

provided evenly split data per age group to each set, and enough data for

training, validation, and testing. After the split, the augmented data was

appended to the list of training data, so as not to contaminate the validation

and test set. Lastly, the embeddings now with the proper label were fed

into the classifier. The tabels below present the model and both of the best

hyperparameter combinations for each setup that was found when fine-

tuning.

Model:

Algorithm RNN

Decoder Formation LSTM, BERT, RoBERTa

Table 3.3

Setup with BERT-uncased:
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Hyperparameters Values

Learning rate 0.009

Hidden size 64

Number of layers 3

Dropout 0.4

Epochs 300

Batch size 32

Patience 15

Table 3.4: Best state model results with BERT

Setup with RoBERTa:

Hyperparameters Values

Learning rate 0.009

Hidden size 64

Number of layers 2

Dropout 0.4

Epochs 300

Batch size 32

Patience 15

Table 3.5: Best state model results with RoBERTa

3.8 Summary

This chapter delves into the usage and creation of the CHILDES corpora,

supplemented by features from the MRC Psycholinguistic Database. It

details the process of embedding creation leveraging transfer learning

benefits, data augmentation techniques, and handling class imbalance.

Furthermore, it outlines the development, training, and fine-tuning of an

LSTM model, equipped with helper functions for efficiency. Finally, it

discusses the evaluation of the model using metrics such as a confusion
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matrix and classification report. The next chapter will delve into the results

and performance of the experiments by the LSTM model in the context of

the CHILDES corpora.
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Chapter 4

Results

This chapter will provide a comprehensive presentation and analysis of

the empirical findings from the research experiments conducted as part of

this study. The findings derived from the LSTM model, supplemented

with embeddings from both BERT-uncased and RoBERTa models, will

be juxtaposed and thoroughly assessed, incorporating the modifications

undertaken for this specific experiment. A summative review of the

results and key findings will be delivered at the conclusion of the chapter,

accompanied by a thoughtful discussion of the implications and insights

drawn from the experimental outcomes. The overarching aim is to

scrutinize the results in the context of the study’s objectives.

4.1 Findings and Experiments

The experiments on the LSTM neural network were conducted by extensive

parameter research to achieve the best possible performance. The

network provided marginally better results overall with the BERT-uncased

embeddings, as well as faster results.
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4.1.1 Fine-tuning

The process of fine-tuning was performed through repeated grid-

searching. This is a useful method that enables the training process to be

repeated for each combination defined by the grid and to narrow down

the best combination of hyperparameters to achieve a good model. The

selected hyperparameters for the grid search were:

• Learning rates [x, y, z]

• Hidden size [x, y, z]

• Number of layers [x, y, z]

The model used the grid search to save the best state model found and

produces the trending values for all combinations, to indicate if further

fine-tuning is necessary. The grid search drastically increased the run time.

Therefore, when it was found that a parameter repeatedly appeared in the

best state model, that value was chosen, and the grid was shortened. The

grid used in this thesis was a 3x3x3 which resulted in 27 iterations of the

training process, each time it was running. In Appendix 6.2, you can find a

screenshot of the code used in this study.

4.1.2 Hardware

The computer used for training. It uses an Nvidia graphics card that

supports CUDA for GPU accelerations to save the training duration.

CPU AMD Ryzen 7 1800

RAM 32GB

GPU Nvidia 2070 super

Table 4.1: Caption
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4.1.3 Evaluation

A method to evaluate the results can be done by reviewing the confusion

matrix, and classification report. The classification report provides

information regarding Precision, Recall, F1-Score, Accuracy, Macro avg,

and Weighted avg. The confusion matrix displays information on the

True Positives, True Negatives, False Positives, and False Negatives. As

mentioned in Chapter 2. background, these evaluations can be used to

further calculate the model’s performance on an unbalanced dataset.

4.1.4 Classification Reports

Below are the classification report provided from the best state model

found. As mentioned in chapter 2. background, a way to evaluate

the model’s performance with an imbalanced dataset, is to calculate the

weighted metric done by adding the unweighted F1-Scores, and dividing

by the total number of classes. To reiterate, this method treats all classes

equally regardless of support.

Precision Recall F1-Score Support

Class 0 0.41 0.62 0.49 220

Class 1 0.41 0.40 0.41 287

Class 2 0.53 0.34 0.42 238

Class 3 0.49 0.61 0.54 238

Accuracy 0.46 1236

macro avg 0.46 0.50 0.46 1236

Weighted avg 0.47 0.46 0.45 1236

Table 4.2: Classification Report: BERT
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Precision Recall F1-Score Support

Class 0 0.36 0.52 0.43 429

Class 1 0.39 0.45 0.42 550

Class 2 0.63 0.19 0.30 861

Class 3 0.38 0.69 0.49 393

Accuracy 0.41 2233

macro avg 0.44 0.46 0.41 2233

Weighted avg 0.48 0.41 0.39 2233

Table 4.3: Classification Report: RoBERTa

BERT setup:

Weighted metric = +
0.49 + 0.41 + 0.42 + 0.54

4
= 0.465

RoBERTa setup:

Weighted metric = +
0.43 + 0.42 + 0.30 + 0.49

4
= 0.41

Here it is clear that the BERT setup is outperforming the RoBERTa setup by

0.055

4.1.5 Confusion Matrix

Below are the confusion matrices from the best state model for each setup.

These provide information on the predicted values, and the actual values

predicted. As mentioned in Chapter 2. a way to evaluate a multiclass

imbalanced model is to compute the balanced accuracy. This entails adding

the Sensitivity of all classes and dividing by the number of classes.
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117 44 33 6

102 116 56 13

88 100 168 135

11 20 61 146

Table 4.4: Confusion Matrix: BERT

224 140 13 52

183 247 34 86

179 204 167 311

30 44 49 270

Table 4.5: Confusion Matrix: RoBERTa

Sensitivity/Recall:

TruePositive
TruePositive + FalseNegative

BERT setup

Balanced accuracy =
0.62 + 0.40 + 0.34 + 0.61

4
= 0.4925

RoBERTa setup

Balanced accuracy =
0.52 + 0.45 + 0.19 + 0.69

4
= 0.4625

Again, there is a minuscule increase in performance by the BERT setup,

precisely 0.03

4.1.6 Precision-Recall Curve

Is a metric tool to evaluate the output quality from the classifier, when the

datasets are very imbalanced. It displays the tradeoff between precision

and recall of different thresholds. If the area under the graph is high, then

both the precision and recall are high, meaning low false positive and false
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negative rates. Additionally, if the precision is low, but the recall is high,

then many results will be returned but most will be incorrectly labeled. The

opposite will happen if the precision is high, but the recall is low, returning

very few results, but most will be labeled correctly [42].

Figure 4.1: Precision-Recall Curve with BERT
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Figure 4.2: Precision-Recall Curve with RoBERTa

By observing both graphs, it is clear to see that all classes provided by the

BERT setup have a higher precision starting point, and trend downward

with higher recall, compared to the RoBERTa setup. There is a breaking

point at around precision = 0.6, and recall = 0.2 where the graph flattens

with a downward trend, for both models.

The downward trend after the breaking point in the Precision-Recall curve

could indicate that the classifier’s ability to correctly identify positive

samples (precision) begins to decrease as it attempts to recover more

positive instances (increasing recall). Essentially, as the classifier broadens

its scope to capture more true positive results (increasing recall), it begins

to include more false positives, thereby lowering precision.

The flat segment in the curve suggests that increasing the recall beyond

this threshold (0.2 in this case) results in a larger number of false positives,

hence the decrease in precision. The classifier is beginning to incorrectly

label negative instances as positive, resulting in a larger number of false
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positives and consequently, a decline in precision.

This observation points to a trade-off between precision and recall, which

is a common challenge in many classification problems. When the model

becomes more inclusive to recover more true positives (higher recall), it

tends to include more false positives, which lowers precision.

4.2 Effect of data augmentation

After concluding that the best results were found with the BERT setup,

we can briefly look into the effects the data augmentations provided.

Previous training with the original dataset provided slightly worse results

when calculating the weighted metric and balanced accuracy of the non-

augmented setup.

182 16 0 22

187 50 0 50

224 32 0 235

54 5 0 179

Table 4.6: Confusion Matrix: BERT without data augmentation

Precision Recall F1-Score Support

Class 0 0.28 0.83 0.42 220

Class 1 0.49 0.17 0.26 287

Class 2 0.00 0.00 0.00 491

Class 3 0.37 0.75 0.49 238

Accuracy 0.33 1236

macro avg 0.28 0.44 0.29 1236

Weighted avg 0.23 0.33 0.23 1236

Table 4.7: Classification Report: BERT without data augmentation
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Balanced accuracy =
0.83 + 0.17 + 0.00 + 0.75

4
= 0.4375

Weighted metric = +
0.83 + 0.17 + 0.00 + 0.49

4
= 0.3725

As shown, the augmented dataset provided a slight improvement to the

overall performance of the best state model.

• The balanced accuracy improved by 0.4925 - 0.4375 = 0.055

• The weighted metric improved by 0.465 - 0.3725 = 0.0925

4.3 Summary

This chapter has offered a comprehensive overview of the experimental

findings from this study. The performance of the LSTM model, supple-

mented with the embeddings from both BERT-uncased and RoBERTa mod-

els, has been carefully assessed and juxtaposed, taking into consideration

the specific modifications undertaken for the experiment.

Through extensive parameter research and fine-tuning via repeated grid-

searching, optimal model performance was pursued. The hardware

utilized was capable of providing the necessary computational power,

allowing for the efficient execution of these complex processes. The

key metrics of model evaluation were meticulously examined through

the confusion matrix and the classification report, shedding light on the

model’s performance, especially within the context of an unbalanced

dataset.

Contrasting the classification reports of both the BERT and RoBERTa

setups highlighted that BERT outperformed RoBERTa by a slight margin.
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This trend was consistent across both the weighted metric and balanced

accuracy evaluations. Similarly, the precision-recall curves revealed a

higher precision starting point for all classes in the BERT setup, further

affirming its superior performance.

Notably, while both setups produced similar hyperparameters after fine-

tuning, they varied in the number of layers used, with the BERT setup

leveraging three layers, while the RoBERTa setup utilized two. This

observation may serve as a critical insight for future explorations in model

optimization and refinement.

4.4 Limitations

While the results of this study offer significant insights, it is equally crucial

to acknowledge the limitations encountered during the process. Firstly, the

performance of our LSTM model, with a validation accuracy of 43.46%,

does not measure up to some results reported in prior research related to

age detection, as mentioned in the background chapter. Previous studies

have reported achievements of 22.22% accuracy using an LSTM model and

even up to 65% accuracy employing age recognition through both image

and text analysis via LSTM. Although our model’s accuracy exceeds the

lower range of these comparative studies, it does not reach the higher

levels of accuracy reported. This discrepancy underscores the challenge

and complexity of age detection tasks and suggests that there may still be

room for performance optimization of our LSTM model.

Secondly, the study faced challenges relating to the nature of the dataset

used. In particular, datasets containing child conversations, which are

crucial for age detection studies, are not commonly available. This scarcity

restricts the quality and quantity of data that can be used for such research,

potentially limiting the performance and generalizability of the resulting

models. Within our dataset, an imbalance was noted, with classes 0 and

1 (representing ages 3 and 4) being overly represented and class 3 being

59



the least represented. This imbalance might have influenced the model’s

performance, potentially favoring the prediction of the more represented

classes and impeding the effective learning from the underrepresented

ones. This calls for caution in generalizing the results and further

underscores the need for balanced datasets in training robust and unbiased

machine learning models.

Lastly, the duration of the training process also posed a significant

limitation. The LSTM model’s training on the existing hardware was

relatively time-consuming, taking approximately 1.5 to 2 hours per run.

This long training duration had implications on the overall efficiency of the

fine-tuning process, limiting the number of iterations that could be feasibly

executed within a reasonable timeframe. Consequently, this might have

impacted the extent to which the model could be optimized.

Recognizing these limitations not only lends a critical perspective to our

findings but also highlights potential areas for improvement in subsequent

research endeavors. Possible ways to address these limitations could

include using balanced datasets, deploying more efficient hardware or

employing techniques to speed up the training process, and exploring other

methods or techniques that have demonstrated higher accuracy in related

research.
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Chapter 5

Discussion

5.1 General discussion

One of the significant takeaways from this research is the potential value of

advanced linguistic features tailored to the language patterns of children.

While the MRC Psycholinguistic Database and CHILDES dataset provided

valuable insights, they fall short of capturing the full complexity of

children’s language development and usage. Future models could benefit

from exploring semantic complexity, syntactic structures, and phonological

patterns prevalent in child-directed speech, as well as the role of pragmatics

and sociolinguistic context.

Furthermore, the importance of larger, more comprehensive, and balanced

datasets is undeniable. This study faced challenges with data truncation

and outdated word frequencies. More modern and representative datasets

could drastically enhance the learning and generalization capabilities of the

AI model.

In terms of model selection, this research employed Long Short-Term Mem-

ory (LSTM) networks. However, other models like Transformer models or

Gated Recurrent Units (GRUs) could present unique benefits. For exam-

ple, Transformer models excel at handling long-term dependencies, while
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GRUs, due to their simpler architecture, may require less computational

resources, providing a viable alternative for sequence-related tasks.

Relating these findings back to developmental theories in the background

chapter, Piaget’s cognitive development theory suggests that children

undergo distinct stages of cognitive development, each characterized

by unique ways of thinking and understanding. This aligns with the

observations made in this study where a one-size-fits-all approach to

classifying text may not be effective. Each child may not only be at a

different stage but also progress through these stages at varying paces,

influencing their language acquisition and comprehension.

This variability could potentially explain the broad age ranges (10-

year increments) observed in related research detail in the background

chapter. It suggests that age-based text classification, particularly for

children, is a complex task that requires a nuanced understanding of the

individual’s cognitive and linguistic capabilities. In essence, a child’s

cognitive development may not always align with their chronological age,

contributing to misclassification in a model trained on an imbalanced

dataset.

This view reinforces the importance of taking a more tailored approach,

considering the intricacies of child language development, cognitive

stages, and individual variability when training AI models for age-specific

text classification. Thus, while the research achieved notable insights, it

also revealed an avenue of challenges and opportunities for future work in

the field.

5.2 Research Objective

5.2.1 Deep Learning for Age-Based Text Classification

The initial research objective aimed to ascertain if artificial intelligence,

specifically deep learning algorithms, could accurately classify text appro-
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priate for children within the specified age range of 3 to 15. Based on the

study’s findings, it can be concluded that this objective was partially met.

The LSTM model employed demonstrated a potential in age-based text

classification, achieving a significant degree of accuracy. However, the

results also indicated the limitations of the model, given that its accuracy

might not be ideal for all applications, particularly those that depend

heavily on the precision of age-appropriate educational content.

5.2.2 Challenges and Unique Characteristics in Classifying Chil-

dren’s Age

The second objective was an exploration of the key challenges and unique

characteristics in classifying children’s age, with a particular focus on

linguistic patterns, developmental stages, and imbalance in the dataset.

This study emphasized the complexity inherent in age-based text classifica-

tion, identifying factors such as the considerable variation in linguistic de-

velopment across the target age range. This variability is intricately linked

with the rapid cognitive, linguistic, and social development observed in

children.

Furthermore, the study highlighted issues stemming from the imbalanced

nature of the dataset used. The imbalance risked biasing the model towards

overrepresented age groups, potentially compromising its performance on

underrepresented ones. This aspect underlines the crucial role balanced

datasets play in developing robust models for age-based text classification.

5.2.3 Evaluation Metrics and Methodologies

The final objective revolved around identifying suitable evaluation metrics

for an imbalanced dataset, understanding additional feature requirements,

and determining the role of methodologies such as cross-validation in this

process.
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The study suggested that the imbalance in the dataset necessitates recon-

sidering conventional performance metrics. Rather than relying on valida-

tion accuracy alone, the research indicated the potential value of weighted

accuracy and balanced accuracy metrics, which are designed to handle

class imbalances.

Cross-validation emerged as a valuable methodological tool, providing a

more robust evaluation framework by utilizing multiple train-test splits

instead of a singular division.

In terms of features, this research stressed the potential benefits of

integrating advanced, age-specific linguistic features into the model. Such

enhancements could allow the model to capture the nuanced differences in

language development across the age spectrum.

In conclusion, while strides were made in addressing each of the outlined

research objectives, the findings also shed light on the inherent complexi-

ties and potential areas of improvement in the task of age-based text classi-

fication.

5.3 Lessons learned

Jumping into neural networks felt like diving into a new language -

intriguing yet complex. With time and patience, however, a sense of

familiarity and understanding began to take hold.

The concept of fine-tuning a LSTM model initially seemed straightforward,

until the process proved itself to be quite a labyrinth. The task was not only

time-consuming but was also like a complex puzzle, with each adjustment

leading to new complexities.

Data management was an unexpectedly challenging task. Visualize a large

number of files, each carrying important pieces of information. Keeping

them organized and readily accessible proved to be a substantial task.
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Chapter 6

Conclusion

6.1 Summary and conclusion

The primary aim of this research was to explore if artificial intelligence,

specifically deep learning algorithms, could accurately classify texts

suitable for children within the specified age range of 3 to 15 years.

To do this, a LSTM-based AI model was created and trained on a

carefully curated dataset, supplemented with features from the MRC

Psycholinguistic database.

However, the results of the model’s performance were below expectations,

with a balanced accuracy of 0.4925 and a weighted metric of 0.465, showing

the model’s inability to effectively distinguish between different age

classifications in the imbalanced dataset. This highlights the considerable

challenges and complexity of the task at hand.

The study revealed multiple challenges when classifying children’s age,

particularly related to linguistic patterns, developmental stages, and

dataset imbalance, which formed the second research objective. The

complexities of children’s language development and the intricacies of

psycholinguistic features added layers of difficulty to the task.

In terms of the third objective, the research underscored the need for spe-
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cific evaluation metrics when working with an imbalanced dataset. It

demonstrated the potential of weighted accuracy and balanced accuracy

as more informative alternatives to conventional accuracy metrics. Addi-

tionally, the use of cross-validation served as a tool to combat overfitting

and provide a more robust estimate of the model’s performance.

In conclusion, while the research objectives were met in terms of uncover-

ing the complexities of age-specific text classification and identifying ap-

propriate evaluation metrics, the performance of the AI model was less

than satisfactory. The study underscores the need for further advancements

in data collection and algorithm development to improve the effectiveness

of AI in this challenging task. The experience provided valuable insights

into the challenges of handling imbalanced data, fine-tuning a complex

model, and managing extensive datasets, marking a starting point for fu-

ture exploration in this field.

6.2 Future work

Looking forward, there are several potential avenues for future research in

the field of age detection from children’s text. One area of focus could be

to address the data scarcity and imbalance issues by seeking to gather and

curate a larger and more balanced dataset. This could involve engaging in

extensive data collection from diverse sources, potentially also including

non-English datasets to expand the scope of the study.

The role of feature engineering in enhancing model performance could

also be explored further. For instance, additional or more advanced

linguistic features reflecting children’s cognitive development stages could

be incorporated into the model, aiming to capture the nuances of children’s

language use more effectively.

In terms of model optimization, future studies could delve into exploring

more sophisticated or innovative machine learning and deep learning

models that might deliver better performance. Techniques to speed
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up the training process, such as utilizing more efficient hardware or

employing strategies like transfer learning or federated learning, could also

be examined.

Additionally, future research might explore the integration of multimodal

data, such as combining text with auditory or visual information, to create

more robust and accurate age detection systems. As this field evolves, there

is a significant opportunity to push the boundaries of what is currently

achievable, paving the way for more precise, reliable, and efficient age

detection models.
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Appendix

6.2.1 Main function of embedding creation

Figure 6.1: The main function for embedding creation

6.2.2 Example of grid search
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Figure 6.2: Example output from a grid search
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